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Preface

The detailed understanding of matter, its phase transitions and its interaction with
radiation could be only reached, after its microscopic structure determined by the
kind of atoms or molecules as basic constituents of matter had been investigated.
This knowledge allowed the controlled optimization of characteristic properties of
matter. Atomic physics therefore represents not only an area of important fundamental
research, but has furthermore many applications which have essentially formed our
present technical world. The understanding of materials and their use in daily life,
has major impact of our culture and our attitude towards nature and our environment.

This textbook is aimed as an introduction to the microscopic world of atoms, mo-
lecules and photons. It illustrates how our knowledge about the microscopic structure
of matter and radiation came about and which crucial experiments forced an exten-
sion and refinement of existing classical theories, culminating in the development of
quantum theory, which is now accepted as the basic theory of atomic and molecular
physics.

The book therefore starts with a short historical review about the role of ex-
periments for correcting erroneous ideas and proving the existence of atoms and
molecules. The close interaction between experiments and theory has been one of the
reasons for the rapid development of atomic physics in the 19th and 20th centuries.
Examples are the kinetic theory of gases, which could be completely understood by
the assumption of moving atoms in the gas, or the postulation of energy quanta in the
radiation field, which could explain the discrepancy between measurements of the
spectral energy distribution of thermal radiation fields and classical electrodynamics.

The new ideas of quantum physics and their corroboration by experiments are
discussed in Chap. 3 while the fundamental equations of quantum mechanics and
their applications to some simple examples are explained in Chap. 4.

A theory can be best understood by applications to a real situation. In Chap. 5 the
quantum theory of the simplest real system, namely the hydrogen atom, is presented.
Here it is again illustrated, that experiments enforced an extension of quantum me-
chanics to quantum electrodynamics in order to understand all experimental results.
The description of larger atoms with many electrons is treated in Chap. 6, which also
reduces the chemical properties of chemical elements to the structure of the electron
shells and explains why all elements can be arranged in a periodic table.

The important subject of interaction of matter with radiation is discussed in
Chap. 7. This prepares the ground for the explanation of lasers, treated in Chap. 8.

Molecules, consisting of two or more atoms, form the basis for the great variety of
our world. They are discussed in Chaps. 9 and 10. In particular the question, why and
how atoms can form stable molecules, and which kind of interaction occurs, is treated
in more detail. In Chap. 11 the different experimental techniques for the investigation
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of atoms and molecules are presented, in order to give the reader a feeling for the
inventive ideas and the necessary experimental skill for their realization. The last
chapter presents a short overview on recent developments in atomic and molecular
physics, which shall demonstrate that physics will be never a complete and finalized
field. There is still much to explore and new ideas and scientific enthusiasm is needed,
to push the border of our knowledge further ahead. Some examples in this chapter also
illustrate possible important applications of new ideas such as the quantum computer
or new techniques of frequency metrology used in the world wide global positioning
system GPS.

Many people have helped to publish this book. First of all I would like to thank
the team of LE-TeX, who have made the layout. In particular Uwe Matrisch, who has
looked after the editing process and who has taken care of many handwritten remarks
and corrections of the author with great patience. Dr. Schneider from Springer-Verlag
has always supported this project, although it took longer as anticipated.

Many thanks go to all colleagues who have given their permission to reproduce
figures or tables.

This book is an extended version of volume 3 of a German textbook consisting
of 4 volumes. The authors hopes, that it will find a comparable good acceptance as
the German version. He will be grateful for any reply of readers, giving corrections
of possible errors or hints to improvements. Any of such replies will be answered
as soon as possible. A textbook lives from the active collaboration of its readers and
the author looks foreward to a lively correspondence with his readers. He hopes that
this book can contribute to a better understanding of this fascinating field of atoms,
molecules and photons.

Kaiserslautern,
August 2005 Wolfgang Demtröder
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1. Introduction

This book deals with the microscopic building blocks
of matter: atoms and molecules. These are the smallest
particles responsible for the characteristic properties of
gases, liquids and solids. Although with modern tech-
niques they can be split into still smaller particles, such
as electrons, protons and neutrons, these latter “elemen-
tary particles” do not bear the characteristic features of
the specific macroscopic body formed by atoms or mo-
lecules. We will discuss in detail in this textbook how
the diversity of macroscopic bodies and their properties
are related to their composition of atoms and molecules.
We will, however, restrict the treatment to free atoms
and molecules because a detailed discussion of the mi-
croscopic structure of solids would increase the size of
this book beyond reason.

A very important issue of atomic physics is the in-
teraction of atoms and molecules with electromagnetic
radiation, which can be absorbed or emitted by these
particles. Photons, or “energy quanta,” are the consti-
tuents of electromagnetic radiation and are created or
annihilated by matter. They therefore form an essential
part of the microscopic world.

“Classical physics” was already a well-established
closed theory at the end of the 19th century and could
explain nearly all aspects of fields such as mechanics,
electrodynamics and optics. Only the theory of relativity
and the physics of nonlinear phenomena, leading to the
discovery of chaos, were later developed.

On the other side, most of the discoveries about
atoms and molecules were made during the 20th century
and even the last decade brought us still many surprises
in atomic and molecular physics. The reasons for this
relatively late development of atomic physics are mani-
fold. First of all, the objects in this field are very small
and cannot be viewed by the naked eye. Many sophisti-
cated experimental techniques had to be invented first
in order to gain reliable information on these micropar-
ticles. Furthermore it turned out that classical theories

were not adequate to describe atoms and molecules and
their interactions. After a new theory called “quantum
theory” was developed in the first three decades of the
20th century, a rapid progress in atomic and molecular
physics took place, and our knowledge on this field in-
creased explosively. Nevertheless there are still a large
number of open questions and poorly understood phe-
nomena that await their solutions by future generations
of researchers.

1.1 Contents and Importance
of Atomic Physics

Atomic physics deals with the structure of atoms, their
mutual interaction and their dynamics, i. e., their time-
dependent properties. The goal of experimental and
theoretical efforts in this field is the full understanding
of macroscopic properties of matter on the basis of its
microscopic composition of the constituent atoms and
a quantitative description of the relations between mi-
croscopic and macroscopic features. We will later see
that this goal has, besides its essential contribution to
fundamental physics and a new concept of nature, an
enormous influence on technical applications.

At the beginning of the 20th century, when atomic
physics started to develop as an original field, it was
regarded as pure fundamental science, with no practical
application. Lord Ernest Rutherford (1871–1937), one
of the pioneers of early atomic physics, wrote as early as
1927, after the discovery of possible transformations of
atoms through impact by energetic particles, “Anyone
who expects a source of power from transformation
of atoms is talking moonshine.” This point of view
has radically changed. Although there is quite intensive
fundamental research in atomic physics, the number
of scientific and technical applications has increased
enormously.
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The methods developed in atomic physics are mean-
while used routinely in chemistry, biology, medicine
and industry. In particular the instruments invented du-
ring research work in atomic physics, such as the X-ray
tube, the electron microscope, the oscilloscope, spectro-
meters, tomographers, lasers etc., are now indispensable
tools in other scientific fields or for the solution of
technical problems.

The importance of atomic physics is therefore
not restricted to physics. Atomic physics, together
with molecular physics, forms the foundations of che-
mistry. It explains the chemical properties of atoms
and the order of elements in the periodic table, the
binding of molecules and the molecular structure.
Chemical reactions are reduced to collisions between
atoms and molecules. Because of its importance,
a new branch of chemistry called “quantum che-
mistry” has been established, which deals with the
theoretical foundation of chemistry based on quantum
theory. The famous natural philosopher Georg Chri-
stoph Lichtenberg (1742–1799) wrote, “Someone who
only knows chemistry does not really understand it
either.”

The complex reactions in the earth’s atmosphere are
started by the interaction of sunlight with atoms and mo-
lecules leading to energy deposition in molecules, their
ionization and dissociation into fragments. Collisions
between these particles can further increase the number
of possible chemical reactions. The reaction probabi-
lity depends not only on the temperature but also on
the internal energy and structure of the collision part-
ners. A more detailed understanding of these processes
and the influence of man-made pollutant substances on
such processes is of crucial importance for the survival
of mankind [1.1–4].

During recent years the molecular basis of bio-
logical processes has been widely investigated. New
experimental techniques of atomic physics have been
applied to the studies of living cells and the reacti-
ons proceeding inside a cell. It is now possible to
follow the paths of single molecules intruding a cell
using spectroscopic methods of high spatial and spectral
resolution [1.5].

Also in medicine, many diagnostic tools are borro-
wed from atomic physics and even therapeutic methods,
such as specific laser treatment of cancer or irradia-
tion with particle beams, are based on investigations in
atomic physics.

The development of star models in astrophysics has
gained important stimulation from laboratory experi-
ments on absorption and emission of radiation by atoms
or ions, on recombination processes between free elec-
trons and ions or on lifetimes of excited atoms and on
collision processes between electrons, ions and neu-
tral atoms and molecules. Besides high-energy physics,
atomic physics has considerably contributed to a bet-
ter understanding of the formation of stars, on radiation
transport and on the structure of star atmospheres [1.6].

Atomic physics has also played an essential role
for the optimization of modern technical developments.
One famous example is the rapidly increasing manifold
of lasers and their various applications [1.7]. Mo-
dern illumination techniques with energy saving lamps,
discharge tubes or light emitting diodes are essentially
applied atomic physics [1.8]. New procedures for the
nondestructive inspection of materials or for the enhan-
cement of catalytic reactions on surfaces are based on
results of research in atomic physics. For many tech-
nical developments in the production of semiconductor
chips, such as the controlled diffusion of impurity atoms
into the semiconductor or the interaction of gases and
vapors with solid surfaces, which are processes studied
in atomic physics, play an essential role [1.9, 10]. With-
out exaggeration, one may therefore say that atomic
physics has an important share in the development of
modern technology and this will certainly increase even
more in the future.

For metrology the measuring techniques developed
in atomic physics have increased the achievable accu-
racy by several orders of magnitude [1.11]. With laser
spectroscopic methods, for example, the absolute values
of fundamental physical constants, such as the Rydberg
constant, the fine structure constant or the ratio me/mp

of electron mass to proton mass, could be measured
with such high precision that the question of whether
these “constants” are really constant or change slightly
with time over millions of years can now be attacked
experimentally with measurement times of a few years.

The central importance of atomic physics for many
other fields is schematically illustrated by the block
diagram in Fig. 1.1.

Besides its influence on the technological deve-
lopment, atomic physics and quantum theory have
essentially contributed to a modern view of nature
that replaces the former mechanistic concept of our
world [1.12]. The belief of a strict separation bet-



1.2. Molecules: Building Blocks of Nature 3

Chemical
Reactions

Technical
applications

Metrology,
fundamental
constants

Molecular physics

Laser physics

Plasma physics

Biological processes

Medical physics

Astrophysics

Atmospheric physics,
meteorology,
geophysics

Atomic physics

Fig. 1.1. The central role of atomic physics

ween matter and energy had to be modified by the
recognition that both manifestations of nature are in-
terchangeable and the anticipation of a strict causality
for all processes in our surrounding has now been limi-
ted by the uncertainty relations in quantum mechanics.
Maxwell’s daemon of classical physics, who could ex-
actly predict the future outcome of events as long as he
knew the initial conditions sufficiently accurately, has
to be replaced by probability statements, since the exact
knowledge of all initial conditions is not possible. The
deterministic view of nature, where all future events
were already determined by the present conditions had
to undergo a critical revision. This change in the con-
cept of nature has considerably influenced philosophy
and epistemology, i. e., the theory of knowledge, and
has induced hot discussions about the question of whe-
ther objective cognition is possible independent of the
thinking subject [1.13].

These few examples should have illustrated the im-
portance of atomic physics for our modern world and
why it is therefore worthwhile to study this fascinating
field in more detail.

1.2 Molecules:
Building Blocks of Nature

In nature we find 92 different elements that correspond
to stable atoms. These atoms can form larger entities,
called molecules. The smallest molecules consist of two
atoms, such as H2, N2, O2, NaCl, etc., while large mo-

lecules (for instance proteins or DNA) are composed of
many thousands of atoms (Fig. 1.2).

The large variety and the manifold of species in na-
ture is due to the huge number of possible combinations
of these 92 stable atoms to form molecules. The che-
mical and therefore the biological properties of these
molecules depend on:

• The specific kind of atoms they are composed of.
• The spatial structure of the molecules, i. e., the way

in which the atoms are arranged within the molecule.
• The binding energy of atoms or atomic groups in

the molecule.
• The stability, depending on the heights of the energy

barrier, that has to be overcome to change the
geometrical structure of the molecule.

Only recently has it become possible to calculate
the structure and the binding energies of small- and
medium-sized molecules by ab initio methods using
fast computers. In many cases, however, experimental
methods are still indispensable because sufficiently ac-
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curate calculations surpass the capacity of even large
computers.

The goal of such investigations is a better know-
ledge of molecular structure and the potential surfaces
that determine this structure and the relevant binding
energies. In recent years the dynamics of excited mole-
cules, i.e., the way the energy, pumped into a molecule
(for example by absorption of light), is distributed wi-
thin the molecule over the course of time, has attracted
more and more interest from researchers. With a time
resolution of a few femtoseconds (1 fs = 10−15 s) ob-
tained with ultrashort laser pulses, it is now possible to
observe the motions of atoms in molecules in real-time
and to gain much information on molecular dynamics,
such as dissociation or isomerization. This allows one
to follow more closely the atomic processes in chemical
reactions. In special cases it is even possible to control
such reactions, i. e., to enhance wanted reaction chan-
nels and to suppress unwanted ones. This opens the
way for controlled synthesis of larger molecules from
smaller constituents.

Many biological processes, such as energy pro-
duction in living cells, photosynthesis, ion migration
through cell walls, signal transport in nerves or the time
sequence of the visual process from the illuminated re-
tina in the eye to the recognition of the light image in
the brain, can now be studied in more detail due to ad-
vanced experimental techniques developed in atomic
physics [1.14].

The experimental and theoretical molecular phy-
sics therefore gains increasing attention for many fields
in modern chemistry and biology. In many laborato-
ries, researchers are working on the ambitious goal of
unraveling the structure and the arrangement of dif-
ferent amino acid molecules in large biomolecules, to
understand their role in genes and to clarify the genetic
code and its relevance for the characteristic features of
life [1.15].

1.3 Survey on the Concept
of this Textbook

The goal of this textbook is to facilitate the under-
standing of the structure and dynamics of atoms and
molecules by starting from basic concepts and expe-
rimental facts in atomic and molecular physics. It is

also interesting to learn a little bit about the way our
present knowledge has developed. Therefore, a short
historical review is first provided about the successive
improvement of the atomic concept, which has led to
more and more refined atomic models. In particular,
the experimental key investigations resulting either in
the confirmation, modification or even change of exi-
sting theories are discussed in order to give a better
appreciation for the skill and imagination of earlier
researchers.

The most important theoretical approach for the de-
scription of the microworld is certainly the development
of quantum physics during the first three decades of the
20th century. We will discuss in Chap. 3 the basic ex-
perimental results that forced a correction of classical
physics. Then the basic features of quantum physics,
particle-wave duality, the uncertainty relation and its
experimental verification are presented and the probabi-
lity concept for describing processes in the microworld
is explained.

In Chap. 4 we then introduce the formal repre-
sentation of quantum mechanics, in particular the
Schrödinger equation and its application to some sim-
ple problems, in order to illustrate differences to and
similarities with classical physics.

In Chap. 5 the simplest of all atoms, the hydrogen
atom is treated with the tools acquired in the foregoing
chapters. Here we can learn about many features that
are also relevant for other atoms but can be calculated
more accurately for the H atom because it is the only
system for which the Schrödinger equation can be sol-
ved exactly. Even here, new characteristic features such
as the spin of the electron, resulting in the fine structure
of the measured spectra could not immediately be ex-
plained and demanded the broadening of the quantum
theory and the development of a new branch of quantum
physics, called quantum electrodynamics.

Chapter 6 deals with atoms consisting of more than
one electron, where new phenomena occur, which are
related to the Coulomb repulsion between the electrons
and to the fact that electrons cannot be distinguished
from each other. The treatment of many-electron sy-
stems is illustrated by the example of the two-electron
helium atom and is then extended to larger atoms.

The absorption and emission of light by atoms is
a source of detailed information on the structure of
atoms, on the possible atomic energy levels and on dy-
namical processes in excited atoms. This also includes
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X-rays, which are discussed in Chap. 7. After treating
the interaction of electromagnetic radiation with atoms,
we have laid the fundaments for the understanding of
lasers. Their basic principle and their various technical
realizations are presented in Chap. 8.

In Chap. 9 we start the discussion of the basic phy-
sics of molecules. The simplest stable molecules, the
H+

2 ion (two protons and one electron) and the H2

molecule (two protons and two electrons) serve as ex-
amples to explain the nomenclature and the principles
of theoretical approximations for the description of dia-
tomic molecules. Both examples illustrate the origin of
the chemical binding of atoms forming a stable mole-
cule. While for small atomic distances in a diatomic
molecule the quantitative treatment of chemical bin-
ding demands quantum theory, at large distances the
binding energy is small and can be treated by clas-
sical methods, which will be also discussed in this
chapter.

The most important source of information on mole-
cular structure is provided by molecular absorption and

emission spectra, which are discussed in more detail in
Chap. 10. We start with diatomic molecules and treat
polyatomic molecules in Chap. 11.

The last chapter of this textbook is devoted to ex-
perimental techniques in atomic and molecular physics.
Here we will illustrate how all knowledge of atomic and
molecular structure discussed in the foregoing chap-
ters has been achieved by experimental results and how
experiment and theory supplement each other to effi-
ciently achieve optimum progress in our understanding
of the microscopic structure of matter.

For a more detailed study of the subjects presented
in this textbook the reader is referred to the literature
given in the corresponding sections. Besides modern
treatments, sometimes the original historical papers on
new discoveries are also cited. This provides the reader
direct access to the way new ideas came about and to the
original interpretations of experimental results, which,
although often ingenious, did not always agree with our
present point of view, since our ancestors did not have
all of facts now available to us.



2. The Concept of the Atom

Our present knowledge about the size and internal struc-
ture of atoms is the result of a long development of ideas
and concepts that were initially based both on philo-
sophical speculations and on experimental hints, but
were often not free of errors. Only during the 19th cen-
tury did the increasing number of detailed and carefully
planned experiments, as well as theoretical models that
successfully explained macroscopic phenomena by the
microscopic atomic structure of matter, could collect
sufficient evidence for the real existence of atoms and
therefore convinced more and more scientists. However,
even around the year 1900, some well-reputed chemists,
such as Wilhelm Ostwald (1853–1932), and physicists,
e. g., Ernst Mach (1838–1916), still doubted the real
existence of atoms. They regarded the atomic model
as only a working hypothesis that could better explain
many macroscopic phenomena, but should not be taken
as reality.

In this chapter we will therefore discuss, after
a short historical survey, the most important experimen-
tal proofs for the real existence of atoms. Furthermore,
some measurements are explained that allow the quan-
titative determination of all atomic characteristics, such
as their size, mass, charge distribution and internal
structure. These experiments prove without doubt that
atoms do exist, even though nobody has ever seen them
directly because of their small size.

2.1 Historical Development

Historically, the first concept of the atomic structure of
matter was developed by the Greek philosopher Leu-
cippus (around 440 B.C.) and his disciple Democritus
(460–370 B.C.) (Fig. 2.1), who both taught that all na-
tural bodies consist of “infinitely small” particles that
completely fill the volume of the bodies and are not
further divisible. They called these particles “atoms”

Fig. 2.1. Democritus (∼ 460–370 BC) (from K. Faßmann: Die
Großen, BD I/2, Kindler-Verlag, Munich)

(from the Greek word atomos = indivisible). Outside
the atoms there is only the empty space (a vacuum).
Different atoms differ in size and shape and the charac-
teristic properties of matter are, according to this model,
due to different arrangements of equal or of differing
atoms. All observable changes in the macroscopic world
are caused by corresponding changes in atomic compo-
sition. Atom movements and collisions between atoms
create and modify matter.

We meet here for the first time the idea that the pro-
perties of macroscopic bodies can be explained by the
characteristics of their constituents. This hypothesis,
which comes close to our modern concept of ato-
mic physics, had been an extension and refinement of
former ideas by Empedocles (490–430 B.C.), who be-
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lieved that everything is composed of the four elemental
constituents: fire, water, air and soil.

The concept of Democritus represents in a way
a symbiosis of the different doctrines of pre-Socratic
philosophers. First, the static hypothesis of Parmeni-
des (around 480 B.C.) about the never-changing eternal
existence of the world and secondly the dynamical doc-
trine of Heraclitus (around 480 B.C.), which stresses as
the most important point the evolution instead of the
static nature of things, since everything changes with
time (nobody can submerge twice into the same river as
the same man, because the river, as well as the man, is
changing in time).

According to Democritus, atoms represent static
nature while their movements and their changing com-
position explain the diversity of matter and its time
evolution.

The famous Greek philosopher Plato (427–
347 B.C.) pushed the abstraction of the concept further.
He used the hypothesis of the four “elements” fire,
water, air, and soil but attributed to these elements
four regular three-dimensional geometric structures,
which are formed by symmetric triangles or squares
(Fig. 2.2). Fire is related to the tetrahedron (four equila-
teral triangles), air to the octahedron (eight equilateral
triangles), water to the icosahedron (20 equilateral tri-
angles), and the soil, particularly important to mankind,
to the cube (six squares or 12 isosceles triangles). Pla-
to’s ideas therefore reduced the atoms to mathematical
structures that are not necessarily based on the real
existence of matter. These “mathematical atoms” can
change their characteristics by changing the arrange-
ment of the elemental triangles. This is, according
to Plato, equivalent to the observable evolution of
matter.

Aristoteles (384–322 B.C.), a student of Plato, did
not accept this concept of atoms since it contradicted
his idea of a continuous space filled with matter. He
also did not believe in the existence of empty space
between the atoms. His influence was so great that
Democritus’ hypothesis was almost abandoned and
nearly forgotten until it was revived and modified la-
ter by Epicurus (341–271 B.C.), who attributed atoms
not only size but also a mass to explain why bodies fell
down.

After Epicurus the atomic theory was forgotten
for many centuries. This was due to the influence of
the Christian church, which did not accept the ma-

Fig. 2.2. The platonic bodies

terialistic view that everything, even human beings,
should be composed of atoms, because this seemed
to be in contradiction to the belief in God as the
creator of bodies and soul. There had occasionally
been attempts to revive the atomic idea, partly in-
duced by Arabic scientists, but they did not succeed
against church suppression. One example was the Prior
Nikolaus of Autrecourt in France, who was forced
in 1348 to “withdraw” his newly developed atomic
concept.

The large shortcoming of all these philosophical
hypotheses was the lack of experimental guidance and
proof. They were more speculative.

The real breakthrough of modern atomic physics
was achieved by chemists in the 18th century. They
found for many chemical reactions, by accurately weig-
hing the masses of reactants and reaction products, that
their results could be best explained by the hypothesis
that all reactants consist of atoms or molecules that can
recombine into other molecules (see below).

Besides this increasing amount of experimental evi-
dence for the existence of atoms, the atomic hypothesis
won a powerful ally from theoretical physics when
Rudolf Julius Clausius (1822–1888), James Clark Max-
well (1831–1879), and Ludwig Boltzmann (1884–1906)
developed the kinetic theory of gases, which could
derive all macroscopic quantities of gases, such as pres-
sure, temperature, specific heat, viscosity, etc., from the
assumption that the gas consists of atoms that collide
with each other and with the walls of the container. The
temperature is a measure of the average kinetic energy
of the atoms and the pressure represents the mean mo-
mentum the atoms transfer to the wall per second per
unit wall area.

Quantitative information about the size of atoms
and their internal structure, i. e., mass and charge distri-
bution inside the atoms was only obtained in the 20th
century. The complete theoretical description was pos-



2.2. Experimental and Theoretical Proofs for the Existence of Atoms 9

sible after the development of quantum theory around
1930 (see Chaps. 3 and 4).

In Appendix A.1 one finds a compilation of histo-
rical landmarks in the development of atomic physics.
For more detailed information on the history of ato-
mic and molecular physics the reader is referred to the
literature [2.1–6].

2.2 Experimental and Theoretical
Proofs for the Existence of Atoms

Before we discuss the different experimental techniques
developed for the proof of atoms, a general remark may
first be useful. The objects of atomic physics are not
directly visible since they are much smaller than the
wavelength of visible light, unlike bodies in the ma-
croscopic world. Therefore, indirect method for their
investigation are required. The results of such expe-
riments need careful interpretation in order to allow
correct conclusions about the investigated objects. This
interpretation is based on assumptions that are derived
from other experiments or from theoretical models.

Since it is not always clear whether these assumpti-
ons are valid, the gain of information in atomic physics
is generally an iterative process. Based on the results of
a specific experiment, a model of the investigated ob-
ject is developed. This model often allows predictions
about the results of other experiments. These new ex-
periments either confirm the model or they lead to its
refinement or even modification.

In this way, through collaboration between ex-
perimentalists and theoreticians, a successively
refined and correct model can be established that
reflects the reality as accurately as possible.

This means that it allows correct predictions for all
future experimental results. This will be illustrated by
the successive development of more and more refined
models of the atom, which will be discussed in the
following sections and in Chap. 3.

2.2.1 Dalton’s Law of Constant Proportions

The first basic experimental investigations that have
lead to a more concrete atomic model, beyond the

more speculative hypothesis of the Greek philosophers,
were performed by chemists. They determined the
mass ratios of the reactants and reaction products for
chemical reactions. The basic ideas had already been
prepared by investigations of Daniel Bernoulli (1700–
1782), who explained the experimental results of the
Boyle–Marriotte Law:

p ·V = const at constant temperature

where the movements of tiny particles in a gas with
volume V exert the pressure p onto the walls around V
through collisions with the wall. These ideas laid the
foundations of the kinetic gas theory, which was later
more rigorously developed by Clausius, Maxwell, and
Boltzmann.

Following the more qualitative findings of Joseph
Louis Proust (1754–1826) on mass ratios of reactants
and reaction products in chemical reactions, the English
chemist John Dalton (1766–1844) (Fig. 2.3) recogni-
zed, after many experiments of quantitative analyses
and syntheses for various chemical compounds, that
the mass ratios of reactants forming a chemical com-
pound, are always the same for the same reaction, but
may differ for different reactions.

EXAMPLES

1. 100 g of water are always formed out of 11.1 g of
hydrogen and 88.9 g of oxygen. The mass ratio of
the reactants is then 1 : 8.

Fig. 2.3. John Dalton (1766–1844)
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2. 100 g of copper oxide CuO contains 79.90 g Cu and
20.10 g oxygen with a mass ratio of about 4 : 1.

3. Some reactants can combine in different mass ra-
tios to form different products. For example, there
are five different manganese oxides where 100 g of
manganese combines either with 29.13 g, 43.69 g,
58.26 g, 87.38 g or 101.95 g of oxygen. The diffe-
rent amounts of oxygen represent the mass ratios
2 : 3 : 4 : 6 : 7.

From these experimental results Dalton developed
his atomic hypothesis in 1803, which stated that the
essential feature of any chemical reaction is the recom-
bination or separation of atoms. He published his ideas
in the paper “A New System of Chemical Philosophy,”
which contains the three important postulates:

• All chemical elements consist of very small
particles (atoms), which can not be further
divided by chemical techniques.

• All atoms of the same chemical element have
equal size, mass and quality, but they differ
from the atoms of other elements. This means
that the properties of a chemical element are
determined by those of its atoms.

• When a chemical element A reacts with
an element B to form a compound ABn

(n = 1, 2, . . . ) each atom of A recombines
with one or several atoms of B and therefore
the number ratio NB/NA is always a small
integer.

Dalton’s atomic hypothesis can immediately ex-
plain the experimental results given in the above
examples:

1. Two hydrogen atoms H recombine with one oxygen
atom O to form the molecule H2O (Fig. 2.4). The
observed mass ratio 11.1/88.9 is determined by the
masses of the atoms H and O. From the mass ra-
tio m(H)/m(O)= 1/16 (see Sects. 2.2.2 and 2.7),
the measured mass ratio of the reactants follows
as

m(H2)/m(O)= 2/16 = 11.1/88.9 .

2. For the reaction Cu+O → CuO the mass ratio of
the reactants corresponds to the relative masses
m(Cu)/m(O)= 64/16 = 4 : 1.

AMU12

OH

m

m

2

O

H

× +

→

⇒

+

+

mH

⇒2H

16 AMU 18 AMU

Fig. 2.4. Reaction of hydrogen and oxygen to form water
molecules as an example of Dalton’s atomic hypothesis

3. The different manganese oxides are MnO, Mn2O3,
MnO2, MnO3, and Mn2O7. Therefore, the num-
ber of O atoms that combine with two Mn atoms
have the ratios 2 : 3 : 4 : 6 : 7 for the different com-
pounds, which is exactly what had been found
experimentally.

Since Dalton’s laws only deal with mass ratios
and not with absolute atomic masses, the reference
mass can be chosen arbitrarily. Dalton related all
atomic masses to that of the H atom as the ligh-
test element. He named these relative masses atomic
weights.

Note:

“Atomic weights” are not real weights but dimension-
less quantities since they represent the ratio m(X)/m(H)
of the atomic masses of an atom X to the hydrogen
atom H.

Jörg Jakob Berzelius (1779–1848) started to accu-
rately determine the atomic weights of most elements
in 1814. Nowadays this historic definition of ato-
mic weight is no longer used. Instead of the H atom
the 12C atom is defined as reference. The atomic
weight has been replaced by the atomic mass unit
(AMU)

1 AMU = (1/12)m(12C)= 1.6605×10−27 kg .

All relative atomic masses are given in these
units.

EXAMPLES

The mass of a Na atom is m(Na)= 23 AMU, that
of Uranium 238 is m(U)= 238 AMU and that of the
nitrogen molecule N2 is 2×14 = 28 AMU.
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2.2.2 The Law of Gay-Lussac
and the Definition of the Mole

Joseph Louis Gay-Lussac (1778–1850) and Alexan-
der von Humboldt (1769–1859) (Fig. 2.5) discovered
in 1805 that the volume ratio of oxygen gas and hydro-
gen gas at equal pressures was always 1 : 2 when the
two gases recombined completely to form water vapor.
Further detailed experiments with other gases lead to
the following conclusion:

When two or more different gases completely re-
combine to form a gaseous chemical compound,
the ratio of the volumes of reactands and reac-
tion products at equal pressure and temperature
is always given by the ratio of small integer
numbers.

Fig. 2.5. Alexander von Humboldt (1769–1859) (with kind
permission from the Alexander von Humboldt foundation,
Bonn)

EXAMPLES

1. 2 dm3 hydrogen gas H2 and 1 dm3 oxygen gas O2 re-
combine to form 2 dm3 water vapor H2O (not 3 dm3

H2O as might be naively expected!).
2. 1 dm3 H2 and 1 dm3 Cl2 form 2 dm3 HCl gas.

Amadeo Avogadro (1776–1856) (Fig. 2.6) explained
these results by introducing the definition of molecules:

A molecule is the smallest particle of a substance
that determines the properties of this substance. It
is composed of two or more atoms.

Referring to the experimental results of Gay-Lussac,
Avogadro concluded:

At equal pressures and temperatures, the same vo-
lume of different gases always contains the same
number of molecules.

With this hypothesis the two preceding examples
are described by the reaction equations:

2 H2+O2 → 2 H2O ,

H2+Cl2 → 2 HCl .

The total mass M of a gas with volume V containing
N molecules with mass m is then:

M = N ·m . (2.1)

The mass ratio M1/M2 of equal volumes of different
gases at equal pressure and temperature therefore equals

Fig. 2.6. Amadeo Avo-
gadro (1776–1856) with
kind permission from the
Deutsche Museum, Mu-
nich
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the mass ratios m1/m2 of the corresponding molecules,
since the number N of molecules is the same for both
gases.

It is convenient to introduce a specific reference
quantity of molecules, called one mole [1 mol]. The
volume occupied by one mole of a gas is called
the mole volume VM. The definition of a mole is as
follows:

1 mol is the quantity of a substance that contains
the same number of particles (atoms or molecules)
as 0.012 kg of carbon 12C.

This definition is equivalent to: 1 mol of atoms or
molecules with atomic mass number X AMU has a mass
of X grams.

EXAMPLES

1. 1 mol helium He =̂ 4 g helium
2. 1 mol oxygen O2 =̂ 2 ·16 g = 32 g oxygen
3. 1 mol water H2O =̂ (2 ·1+16) g = 18 g water
4. 1 mol iron oxide Fe2O3 =̂ (2 ·56+3 ·16) g = 160 g

iron oxide

The number NA of atoms or molecules contained in
1 mol is the Avogadro constant. Its experimental value
is

NA = 6.0221415(10)×1023 mol−1 .

From the hypothesis of Avogadro the statement follows:

Under standard conditions (p = 1013 hPa, T =
0 ◦C) 1 mol of an arbitrary gas always occupies
the same volume VM, called the mole volume:

VM = 22.413996(39) dm3 mol−1 .

2.2.3 Experimental Methods for the Determination
of Avogadro’s Constant

Since the Avogadro constant NA is a fundamental quan-
tity that enters many basic physical equations, several
experimental methods have been developed for the ac-
curate measurement of NA [2.7]. We will only present
some of them here.

a) Determination of NA
from the general equation of gases

From the kinetic theory of gases the general equation

p ·V = N · k ·T (2.2)

can be derived for the volume V of an ideal gas un-
der the pressure p at a temperature T , which contains
N molecules. Here k is the Boltzmann constant. For
1 mol of a gas with volume VA, N becomes NA and
(2.2) converts to

p ·VM = NA · k ·T = R ·T . (2.3)

The gas constant

R = NA · k (2.4)

is the product of Avogadro’s and Boltzmann’s constants.
It can be determined from (2.3) when p, VM and T are
measured. If the Boltzmann constant k and the gas con-
stant R can be measured independently, the Avogadro
constant NA can be determined from (2.3).

b) Measurements of the gas constant R

The gas constant R can be obtained from measurements
of the specific heat. The internal energy of 1 mol is

U = f · 1
2 kT · NA = 1

2 f · R ·T , (2.5)

where f is the number of degrees of freedom of the
atoms or molecules of the substance. For example f = 3
for atoms, f = 3+2= 5 for diatomic molecules at low
temperatures where the vibrations are not excited and
f = 7 at higher temperatures.

The molar specific heat Cv for a constant mole
volume of a gas is

Cv =
(
∂U

∂T

)
v
= 1

2
f · R . (2.6)

This is the energy that increases the temperature of
1 mol of a gas by 1 K and can therefore be readily mea-
sured, giving the value of R, if the number of degrees
of freedom f is known.

Another way to measure the gas constant R is based
on the difference

R = Cp−Cv (2.7)

of the molar specific heats Cp at constant pressure and
Cv at constant volume.
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T T

T

S M

To pump

Gas inlet

Thermal isolation

Argon

P

Fig. 2.7. Determination of the gas constant R from measure-
ments of the velocity of sound in argon (M=microphone, T=
thermometer, S = loudspeaker as sound source, P= pressure
meter)

The most accurate determination of R uses the
measurement of the velocity of sound waves vs in an
acoustic resonator (Fig. 2.7). A spherical volume is fil-
led with argon at a pressure p and temperature T .
A small loudspeaker S produces sound waves that lead
to resonant standing waves if the sound frequency mat-
ches one of the eigenfrequencies f0,n ∝ vs/λ0,n with
λ0,n = r0/n of the spherical acoustic resonator with ra-
dius r0. These resonantly enhanced sound waves are
detected by a microphone M. The frequencies f0,n of
different resonances are measured. As is outlined in Pro-
blem 2.6, the gas constant is related to the measurable
acoustic eigenfrequencies f0,n , the sound velocity vs,
the molar specific heats Cv and Cv , the temperature T
and the volume V by

R = M ·v2
s

T ·κ = M

T

f 2
0,n ·r2

0

κ ·n2
= M

T

f 2
0,n

n2

(
3V

4π

)2/3

,

(2.8)

where κ = Cp/Cv [2.8].

c) Measurement of the Boltzmann Constant

The Boltzmann constant k was first determined in 1906
by Jean Baptiste Perrin (1870–1942). He observed the
vertical density distribution n(z) of small latex partic-
les in a liquid within a glass cylinder (Fig. 2.8). At
equilibrium the Boltzmann distribution

n(z)= n(0) · e−m∗gz/kT (2.9)

is obtained, where m∗g= (m−�L ·Vp)g is the effective
weight of a particle with volume Vp, (i. e., its real weight
minus its buoyancy in the liquid with density �L). This
gives the gradient

dn

dz
=−n · m∗ · g

k ·T , (2.10)

The mass m of the particles can be determined by mea-
suring their size (volume) under a microscope and their
density with standard techniques.

Counting the number of n(z) yields dn/dz and the-
refore the Boltzmann constant from (2.6). The rather
tedious counting can be avoided by the following con-
sideration. Due to gravity the particles sink down. If the
gravity force

Fg = (m−�L ·Vp)g (2.11a)

is just compensated by the friction force

Ff =−6πηrv , (2.11b)

z

At equilibrium z / m

kT/m*gz
0

3

D

en)z(n

m/)z(n

j

−

−

⋅=

−=

gj Dj

gj

Fig. 2.8. Stationary distribution n(z) of small particles in
a liquid



14 2. The Concept of the Atom

which spherical particles of radius r experience when
they fall with the velocity v in a medium with visco-
sity η, the net force is zero. The constant sink velocity
is then

vg = (m−�L ·Vp) · g
6πηr

where Vp = 4
3πr3 .

(2.12)

The downward flux of particles jg = vg ·n creates a con-
centration gradient dn/dz, which leads to an upward
diffusion flux

jdiff =−D · dn

dz
= D ·n · (m−�L ·Vp)g

k ·T , (2.13)

where D is the diffusion coefficient.
Finally, stationary conditions are reached when both

fluxes just cancel. This means

jdiff+ jg = 0 ⇒ k = 6πηr ·D

T
. (2.14)

Therefore, the Boltzmann constant k can be de-
termined from the measurements of viscosity η,
diffusion coefficient D, temperature T , and the
radius r of the spherical particles.

The most accurate method to measure k will be
discussed in Sect. 2.3.1.

d) Direct Determination of Avogadro’s Constant

From measurements of the absolute mass m of atoms X
(see Sect. 2.7) and the molar mass MX (i. e., the
mass of a gas of atoms X within the molar volume
V = 22.4 dm3 under normal conditions p and T ) the
Avogadro constant

NA = MX/mX

can be directly determined.
The molar mass MX can be also obtained for

nongaseous substances from the definition

MX = 0.012 mX/m(
12C) kg

when the absolute mass of the carbon atoms m(12C) is
measured (see Sect. 2.7).

e) Determination of Avogadro’s Constant
from Electrolysis

Another method for the determination of NA is based
on Faraday’s law for electrolytic process. It states that
the electric charge

F = NA · e = 96,485.3383(83)C/mol (2.15)

is transported to the electrode in an electrolytic cell,
when 1 mol of singly charged ions with mass x and
elementary charge e has been deposited at the electrode.
Therefore, weighing the mass increase of the electrode
after a charge Q has been transferred, yields NA.

EXAMPLE

In the electrolytic process

AgNO3 ↔ Ag++NO−
3

of silver nitrate the transport of charge F means a simul-
taneous deposition of the molar mass M = NA ·m(Ag)
at the negative electrode, which can be measured
by weighing the cathode before and after the charge
transport. With the atomic mass number of silver
AM(Ag)= 107.89 AMU the Avogadro number

NA = 107.89 AMU

∆m
· Q

e
(2.16)

is obtained from the measured mass increase ∆m
of the electrode and the transported charge Q =
(∆m/M)NA·e.

f) Determination of NA from X-Ray Diffraction

The most accurate method for the determination of NA

is based on X-ray diffraction or X-ray interferome-
try, which are used to measure the distances between
atoms in a regular crystal [2.9]. This yields the total
number of atoms per volume if the crystal structure is
known.

Let us consider a cubic crystal, where the atoms sit at
the corners of small cubes with sidelength a (Fig. 2.9).
When a plane wave with wavelength λ is incident on
the crystal under an angle ϑ against a crystal plane
(Fig. 2.10) the partial waves scattered by the different
atoms of adjacent planes with distance d interfere with
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a/2

a

Fig. 2.9. Elemen-
tary cell of a cu-
bic crystal

each other. In the direction −ϑ, which corresponds to
the direction of specular reflection, their path difference
is ∆s = 2d · sinϑ. If ∆s equals an integer m of the
wavelength λ, the interference is constructive and the
amplitude of the different partial waves add up. This is
expressed by the Bragg condition

2d · sinϑ = m ·λ . (2.17)

At a given wavelength λ one obtains maxima of in-
tensity I(ϑ) of the scattered radiation only for those
inclination angles ϑ, for which (2.17) is fulfilled.

One sees from (2.17) that for m > 0 the wavelength

λ= 2d

m
sinϑ < 2d

has to be smaller than twice the distance d between
adjacent crystal planes. For visible light λ� d, but for
X-rays of sufficient energy λ < 2d can be achieved (see
Sect. 7.6).

Crystal
planes

Phase
planes

d

ϑ⋅=∆
ϑ⋅

ϑ

sind2s
sind

ϑd

Fig. 2.10. Bragg-reflection of X-rays by two crystal planes

Note:

In (2.17) ϑ is the angle of the incident radiation against
the crystal planes not against the normal to the planes,
different from the conventional definition in optics.

The distances dk between neighboring parallel pla-
nes depend on the orientation angle α of these planes
against the surface planes at the cube. For a cubic crystal
we conclude from Fig. 2.11:

dk = a · sin αk for αk 	= 0

dk = a for αk = 0 , (2.18)

where the lattice constant a gives the distance between
neighboring atoms. If the crystal is turned against the
direction of the incident beam, one obtains for different
angles ϑm , maxima of the diffracted radiation, when

dk · sinϑ = a · sin αk · sinϑm = m ·λ
for m = 1, 2, 3, . . . .

If the wavelength λ is known (see Sect. 7.6) the
distances dk between adjacent planes and therefore the
lattice constant a can be determined from the measured
angles ϑm.

A macroscopic crystal cube with sidelength D con-
tains N = (D/a)3 atoms if one atom sits at every “lattice
point”. The Avogadro number is then

NA = N · Mm

Mc
= D3

a3
· Mm

Mc
, (2.19)

where Mc is the mass of the crystal, measured by
weighing, and Mm is its molar mass.

x
sinad

y

a

d

d

d

33

3

3

2

1

α⋅=

α

α

Fig. 2.11. Examples of crystal planes perpendicular to the
drawing plane with different separations di



16 2. The Concept of the Atom

Note:

There are considerations to replace the reference for
a mass unit (until present it has been a 1 kg cylinder
of platinum-iridium in Paris) by a perfectly polished
and more readily measurable spherical crystal of sili-
con, which forms a cubic-face-centered crystal. In such
a crystal each elementary cubic cell with sidelength a
contains 4 Si-atoms (One at a corner and three at the
centers of 3 side faces). A sphere with radius Rs � a
then contains

N = 4 · 4

3
π

Rs

a3
= 4V

a3
(2.20)

Si atoms. With the density � (kg/m3) we obtain from
(2.11a,b) the Avogadro number

NA = 4Mc

� ·a3
= 16π

3

(
Rs

α

)3

(2.21)

from measurements of the lattice constant a (by X-
ray diffraction) and the density � (or the mass M and
radius Rs of the sphere), since the molar mass Mm is
known.

The experimental results for the distance a obtai-
ned from such measurements range from 0.1−0.5 nm,
depending on the specific crystal. Since the diame-
ters da of the atoms cannot be larger than the lattice
constant a they have to be smaller than 0.1−0.5 nm
(see Sect. 2.4). This gives an upper limit for the size of
the atoms, forming the crystal.

The most accurate technique for measuring atomic
distances in crystals is X-ray interferometry which com-
bines X-ray diffraction with interferometric techniques.
Its basic principle is illustrated in Fig. 2.12. The interfe-
rometer consists of three parallel slices Si , all milled out
of one large single crystal of Si. In the first slice S1 the
incident X-ray beam is split into a transmitted beam 1
and a diffracted beam 2. Diffraction at the crystal pla-
nes parallel to the xy plane (in Fig. 2.12 schematically
drawn as horizontal lines) occurs if the Bragg condition
(2.10) is fulfilled. Both beams again suffer diffraction
in the second parallel slice S2 where (besides the trans-
mitted beams, not shown in Fig. 2.12) the diffracted
beams 3 and 4 are generated, which overlap in the
third slice S3 where they can again be transmitted or
diffracted.

1

2

3

4

Crystal
planes

4+5

3+6

21

1

2
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⎞

⎜⎜⎝
⎛

π
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∆
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z
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1212
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ϑ−°⋅∆=∆
ϑ
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∆
∆

ϑ ϑ

β β= 90°– 2ϑ

Fig. 2.12. An X-ray interferometer that has been milled out of
a single crystal

The transmitted part of beam 4 now interferes with
the diffracted part 5 of beam 3 and the detector D2 mo-
nitors the total intensity, which depends on the phase
difference between the partial waves 4 and 5. Detector
D1 measures the interference intensity of the superim-
posed transmitted beam 3 and the diffracted beam 6 of
beam 4.

When the slice S3, which can be moved against the
others, is shifted into the z-direction by an amount ∆z
the path difference∆s between the interfering beams is
changed by

δs = ∆z

sin θ
[1− sin(90◦ −2ϑ)] = 2∆z · sinϑ .

(2.22)

The arrangement is similar to that of a Mach–Zehnder
interferometer in optics. However, since the wave-
length λ of X-rays is about 104 times smaller than that of
visible light, the accuracy of the device must be corre-
spondingly higher. If the S3 is shifted continuously, the
detectors monitor maxima or minima of the inferference
intensity every time the path difference δs becomes an
integer multiple of λ.

The maxima are counted and its total number N at
a total shift ∆z is

N = 2∆z · sinϑ

λ
. (2.23)

The total shift ∆z is measured with a laser in-
terferometer to within an uncertainty of ∆z/z =
10−6−10−7 [2.10].
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Table 2.1. Different methods for the determination of
Avogadro’s number

method fundamental Avogadro’s
constant number

general gas universal gas
equation constant R

barometric
pressure formula
(Perrin)

diffusion

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Boltzmann’s NA = R/k

(Einstein) constant k

torsionsal
oscillations
(Kappler)

electrolysis Faraday’s
constant F

NA = F/e
Millikan’s oil-drop elementary
experiment charge e

X-ray diffraction distance d NA = D3/d3

and between crystal for cubic primi-
interferometry planes in tive crystal

a cubic crystal NA = 4M/�a3

measurements of for cubic face
mole volume centered
VM = D3 or 4πr3/3 crystal

EXAMPLE

d = 0.2 nm, ∆z = 1 mm, ϑ = 30◦ → N = 5×106,
which allows an accuracy with a relative uncertainty
of 2×10−7.

Table 2.1 compiles the different methods for the
determination of the gas constant R, the Boltzmann con-
stant k, the Faraday constant F, the elementary charge
e and Avogadro’s number Na. The values of these con-
stants, which are regarded today as the most reliable
ones, are given on the inside cover of this book, accor-
ding to the recommendation of the International Union
of Pure and Applied Physics IUPAP (CODATA 2004).

2.2.4 The Importance of Kinetic Gas Theory
for the Concept of Atoms

The first ideas of a possible relation between the inter-
nal energy U of a gas and the kinetic energies of its

molecules were put forward in 1848 by James Pres-
cott Joule (1818–1889). Initiated by suggestions from
August Karl Krönig (1822–1879), Clausius and Max-
well put these ideas on a more quantitative basis. They
derived independently the general equation of gases
pVm = RT from the kinetic energies of the gas mole-
cules. We will here only give a simplified version of
the gas kinetic model, which assumes that the gas in-
side a container with volume V consists of atoms or
molecules that can be treated as small rigid balls with
radius r0. They can undergo elastic collisions with each
other and with the wall. For these collisions energy and
momentum are conserved. Collisions with the wall can
only occur, if the balls approach the wall within a di-
stance r0. Collisions with each other can only happen
when the distance between the ball centers becomes
d = 2r0. For larger distances the interaction between
the balls is zero. The interaction energy between two
hard spheres is therefore (Fig. 2.13):

Epot(r)= 0 for r ≥ 2r0 ,

Epot(r)=∞ for r < 2r0 . (2.24)

If the density of such a model gas is sufficiently small
(r0 should be small compared to the mean distance 〈d〉
between the particles) it is called an ideal gas. For an
ideal gas the eigenvolume Ve = (4N/3)πr3

0 of the N par-
ticles is small compared to the total volume V of the gas.

Fig. 2.13. Interaction potential between two hard spheres with
radius r0
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The particles can therefore be approximately treated as
point-like particles.

EXAMPLE

At a pressure of 1 bar and room temperature T = 300 K,
1 cm3 of a gas contains about 3×1019 atoms or mole-
cules. Their mean distance is 〈d〉 = 3 nm. For helium
atoms r0 = 0.5 nm. This gives r0/〈d〉 = 0.017 � 1 and
Ve/V = 5×10−6. Helium under these conditions can
therefore be regarded as an ideal gas.

The gas exerts a pressure p onto the wall of the con-
tainer, which is caused by momentum transfer during
collisions of the gas molecules with the wall (Fig. 2.14).
Since the pressure is equal to the force per surface A and
the force equals the time derivative of the momentum
transfer, we obtain the relation for the pressure p:

p = d

dt

(
momentum transfer to A

area A

)
. (2.25)

If, for example, Nx atoms with velocity vx hit a wall
in the yz-plane per second, the momentum transfer per
second for completely elastic collisions is 2Nxmvx and
the pressure exerted onto the wall is

p = 2Nxmvx/A . (2.26)

The number density n of N atoms in the volume V is
n = N/V . Let us first only consider that fraction nx in
a cuboid with volume V that has velocities vx in the
x-direction (Fig. 2.15). Within the time interval ∆t the
number of atoms Z hitting the area A of a wall in the
yz-plane is

Z = nxvx A∆t . (2.27)

v
→

v
→

vy

vy

vx

−vx

xmv2p =∆

0v,v2v yxx =∆=∆

Fig. 2.14. Momentum
transfer at a particle col-
lision with the wall

Fig. 2.15. Illustration of (2.27)

These are just the atoms inside the blue volume
in Fig. 2.15 with length vx∆t and cross section A.
Each atom transfers the momentum 2mvx . There-
fore the force acting on the surface element A is
F = 2Zmvx/∆t = 2nxmv2

x A and the pressure p acting
on the wall is

p = 2mnxv
2
x . (2.28)

If an atom moves with the velocity v= {vx, vy, vz} at an
arbitrary angle against the wall, the momentum transfer
to the wall is only caused by its component vx , because
the tangential components parallel to the wall do not
transfer any momentum (Fig. 2.14).

There is another point we have to consider. Not all
atoms have the same velocity. At thermal equilibrium
the velocities of a resting gas are isotropic, i.e., each
direction is equally probable. Since the pressure of the
gas is isotropic the momentum transfer must be the
same in all directions. Therefore we obtain for the mean
square values〈

v2
x

〉= 1

N

∫
Nx(vx)v

2
x dvx =

〈
v2

y

〉= 〈
v2

z

〉
, (2.29)

where N is the total number of atoms or molecules in
the gas and Nx(vx) is the number of molecules with
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velocity components within the interval vx to vx + dvx .
Since on the time average the number of atoms moving
into the +x-direction equals that into the −x-direction,
the pressure on a wall in the yz-plane is

p = 1

2
n 2m

〈
v2

x

〉= nm
〈
v2

x

〉
, (2.30)

where n is the total number density. From the relation
v2 = v2

x +v2
y +v2

z we obtain with (2.29)〈
v2

x

〉= 〈
v2

y

〉= 〈
v2

z

〉= 1

3

〈
v2〉 . (2.31)

Using (2.30) this gives

pV = 2

3
N

1

2
m
〈
v2〉 , (2.32)

where 〈Ekin〉 = (m/2)v2 is the mean kinetic energy of
each molecule. Using the relation n = N/V this can
also be written as

p = 2

3
n · 〈Ekin〉 . (2.33)

Many experiments have proved that the product pV at
a constant number N of molecules in the volume V
solely depends on the temperature T . This means that
the mean kinetic energy of the molecules is a function
of T . One defines the absolute temperature T by the
relation

m

2

〈
v2〉 =

def

3

2
kT , (2.34)

where k = 1.38054×10−23 J/K is the Boltzmann
constant.

With this definition (2.32) transfers into

pV = NkT , (2.35)

which represents a generalization of Boyle–Mariotte’s
law pV = const at constant temperature T .

2.3 Can One See Atoms?

The spatial resolution of an optical microscope is limi-
ted by the wavelength λ of the light used to illuminate an
object. With some tricks one may achieve a resolution
of ∆x ≥ λ/2. Using the special technique of near-field

Scattering particles

Laser beam

Scattering light

Lens

CCD image plane

Image of the
scattering

microparticles

Fig. 2.16. Scattering of visible light by single atoms. Each
image point corresponds to one atom

microscopy, structures on surfaces can be resolved with
about 30 nm resolution. Since we have seen in the pre-
ceding paragraph, that the size of atoms is around
0.2−0.5 nm, we cannot expect to see atoms directly
through a microscope with visible light (λ≈ 500 nm).

However, several techniques have been developed
that allow an indirect observation of atoms and give
detailed information on atomic sizes, structure and
dynamics.

First of all, one can mark the location of atoms with
size d � λ through the light scattered by the atoms.
When an atom travels through an intense beam of visi-
ble laser light, it can absorb and reemit many photons
during its flight time through the beam (Fig. 2.16). One
can then “see” the atom as a light spot, i.e., as a structu-
reless point and no information about its size or structure
can be obtained. One can only say: “It’s there.”

There are several other methods that give similar in-
formation. With computer graphics one can produce
nice pictures of such “atom images” on the screen,
which may be impressive because they appear to give
a magnified picture of the microworld of atoms and
molecules. However, one should always keep in mind
that such pictures are produced due to the interaction
of light or particles with atoms. Only if this interaction
is fully understood can the interpretation of the images
give a true model of atoms or molecules. This will be
illustrated by the different techniques discussed in the
following sections.
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2.3.1 Brownian Motion

The biologist and medical doctor Robert Brown (1773–
1858) discovered in 1827 that small particles suspended
in liquids performed small irregular movements, which
can be viewed under a microscope. Although he first
thought that these movements were caused by small
living bacteria, he soon found out that the movement
could also be observed for inorganic particles that are
definitely not alive.

The observation can be explained if one assumes
that the particles are permanently hit by fast mo-
ving atoms or molecules coming from statistically
distributed directions (Fig. 2.17).

The visualization of Brownian motion is very im-
pressive. It is possible to demonstrate it to a large
auditorium when using cigarette smoke particles in
air, illuminated by a laser beam and viewed through
a microscope with a video camera.

Also here, the atoms are not directly seen but their
impact on the smoke particle can be measured and,
provided the mass of the smoke particle is known, the
atomic momentum transferred to the particle, can be
determined.

There is a nice demonstration that simulates Brow-
nian motion. A larger disk on an air table is hit by
many small discs, which simulate the air molecules. If
the large disc carries a small light bulb, its statistical
path over the course of time can be photographed and
the path lengths between two successive collisions (the
free path) can be measured (Fig. 2.18).
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Fig. 2.17. Schematic illustration of Brownian motion

Fig. 2.18. Irregular
path of a puck on
an air table, which
is hit statistically
by smaller pucks
(lecture demonstra-
tion of Brownian
motion)

The basic theory of Brownian motion was developed
independently in 1905 by Albert Einstein (1879–1955)
and Marian Smoluchowski (1872–1917). It is closely
related to diffusion [2.11]. We will only briefly outline
the basic ideas here.

Assume particles in a gas show a small gradient
dn/dx of their number density n, described by the linear
relation (Fig. 2.19)

n(x)= n(0)−Gx . (2.36)

Under the influence of mutual collisions the particles
perform statistical movements with a probability distri-
bution f(ξ)where ξ is the length of such a displacement
in the x-direction between two collisions. The number
density of particles with movement ξ , is then:

n(ξ) dξ = n f(ξ) dξ with n =
∫

n(ξ) dξ ,

(2.37)
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Fig. 2.19. Illustrating drawings for the derivation of (2.45)
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where the distribution function f(ξ) is defined as

f(ξ) dξ = 1

n
n(ξ) dξ .

For a positive gradient G in (2.36) the number N+ of
particles moving through a unit area in the plane x = 0
into the +x-direction is larger than the corresponding
number N− in −x-direction. Therefore, the net particle
diffusion flux through a unit area in the plane x = 0 is
(Fig. 2.19)

jdiff = N+− N−
∆t

êx . (2.38)

Out of all n(x) dx particles within the volume
dV = A dx centered around the plane x =−xi with unit
area A, only those particles with an elongation ξ > x1

can pass through the plane x = 0. Their number is

dN+ =
⎡⎢⎣ ∞∫
ξ=−x

n(x) f(ξ) dξ

⎤⎥⎦ dx . (2.39)

Integration over all volume elements along the negative
x-axis yields with (2.36)

N+ =
0∫

x=−∞

⎛⎜⎝ ∞∫
ξ=−x

(n(0)−Gx) f(ξ) dξ

⎞⎟⎠ dx .

(2.40a)

Renaming the variable x =−x′ gives

N+ =
∞∫

x′=0

⎛⎜⎝ ∞∫
ξ=x′

(n(0)+Gx′) f(ξ) dξ

⎞⎟⎠ dx′ .

(2.40b)

In a similar way we obtain for the rate N− of particles
moving from right to left in Fig. 2.19

N− =
∞∫

x=0

⎛⎜⎝ −∞∫
ξ=−x

(n(0)−Gx) f(ξ) dξ

⎞⎟⎠ dx ,

(2.41a)

which can be transformed by the substitution ξ→−ξ ′
(note that the distribution function f(ξ) is symmetric
and therefore f(−ξ)= f(ξ)) into

N− =
∞∫

x=0

⎛⎜⎝ ∞∫
ξ ′=x

(n(0)−Gx) f(ξ ′) dξ ′

⎞⎟⎠ dx .

(2.41b)

Since the name of a variable is irrelevant, we can
rename x′ → x in (2.40b) and ξ ′ → ξ in (2.41b). Sub-
tracting (2.41b) from (2.40b) we obtain the difference

N+− N− = 2G

∞∫
x=0

⎛⎜⎝ ∞∫
ξ=x

f(ξ) dξ

⎞⎟⎠ x dx

= 2G

∞∫
ξ=0

⎛⎝ ξ∫
x=0

x dx

⎞⎠ f(ξ) dξ , (2.42a)

where the interchange of the integration limits does not
change the double integral since both cover the blue
area in Fig. 2.19.

Integration over x gives

∆N = G

∞∫
0

ξ2 f(ξ) dξ . (2.42b)

Since the distribution function f(ξ) is symmetric
( f(ξ)= f(−ξ)) we can write (2.42b) as

∆N = 1

2
G

+∞∫
ξ=−∞

ξ2 f(ξ) dξ = 1

2
G
〈
ξ2〉 (2.42c)

because the average 〈ξ2〉 is defined as

〈
ξ2〉= +∞∫

−∞
ξ2 f(ξ) dξ . (2.43)

Inserting (2.42c) into (2.38) yields the relation

jdiff = 1

2

〈ξ2〉
∆t

G (2.44a)

between particle diffusion flux density and density
gradient G.

According to (2.13) we can also write jdiff as

jdiff =−D
∂n

∂x
=−D ·G . (2.44b)

The comparison of (2.44a) with (2.44b) gives the
diffusion coefficient

D = 1

2

〈ξ2〉
∆t

(2.45a)

expressed by the average squared elongation of the
particles on their statistical path (Fig. 2.18).
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The diffusion process is due to the kinetic energy
of the particles and their collisions in a medium with
a density gradient. The influence of collisions can
be macroscopically described by the viscosity η. For
spherical particles with radius r, where the friction
force equals 6πηrv (Stokes’ law), we obtain according
to (2.14)

D = kT

6πηr
(2.45b)

and therefore the mean square deviation of a particle
from its position at time t = 0 in a gas with viscosity η
is 〈

ξ2〉= kT

3πηr
∆t . (2.46)

It depends on the temperature T , the viscosity η and
the radius r of the particle and increases linearly with
time ∆t.

The quantity
√〈ξ2〉, which is a measure of the

mean deviation of a particle from its original
location at time t = 0 increases during the time
interval ∆t only with the square root

√
∆t.

If the mean quadratic deviation 〈ξ2〉 can be mea-
sured, the Boltzmann constant k can be determined
from (2.46).
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Fig. 2.20a–c. Determination of the Boltzmann constant k
from the Brownian torsional motion of a mirror. (a) Ex-
perimental setup. (b) Statistical path of the reflected light

beam. (c) Probability distribution W(ϕ) for the torsio-
nal elongation ϕ for an averaging time of 0.55 s (α) and
0.27 s (β)

Eugen Kappler (*1905) demonstrated an elegant ex-
perimental technique in 1939 [2.12]. A modern version
of it is shown in Fig. 2.20a. A small mirror is suspen-
ded on a thin torsional wire. The air molecules impinge
on the mirror surface and cause, by their momentum
transfer, small statistical angular deviations ∆ϕ of the
mirror from its equilibrium position at ϕ= 0, which can
be monitored by the reflection of a laser beam, detected
with a position-sensitive CCD detector.

The system has only one degree of freedom; it can
only perform torsional vibrations around the axis defi-
ned by the torsional wire. With the deviation angle ϕ
from the equilibrium position ϕ= 0, the mean potential
and kinetic energies are:〈

Epot
〉= 1

2
Dr
〈
ϕ2〉= 1

2
kT , (2.47a)

〈Ekin〉 = 1

2
I
〈
ϕ̇2〉= 1

2
kT , (2.47b)

where Dr is the restoring torque of the torsional wire
and I the moment of inertia of the system.

The statistical deviations of ϕ from the equili-
brium position ϕ = 0 of the mirror (Fig. 2.20b) follow
a Gaussian probability distribution (Fig. 2.20c)

P(ϕ)= P(0)e−ϕ
2/〈ϕ2〉 . (2.48a)

The measured full half-width

∆ϕ = 2
√〈
ϕ2
〉
ln 2 (2.48b)
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of this distribution yields the mean square deviation 〈ϕ2〉
and from (2.21) the Boltzmann constant

k = (Dr/T)
〈
ϕ2〉= (Dr/T)

(∆ϕ)2

4 ln 2
. (2.49)

2.3.2 Cloud Chamber

Charles T. Wilson (1869–1959) developed his cloud
chamber in 1911, which allowed him to view the spur
of single fast atoms, ions or electrons entering the cham-
ber. The basic principle is as follows: Incident particles
with sufficient kinetic energy can ionize the atoms or
molecules in the cloud chamber, which is filled with
supersaturated water vapor (nowadays alcohol vapor is

Fig. 2.21. Cloud chamber tracks of α particles (=He nuclei),
which are emitted from a source below the lower edge of the
photograph. One α particle collides with a (not visible) nitro-
gen nucleus at the crossing point of the two arrows, forming
an 17

8O nucleus and a proton. The O nucleus flies towards 11
o’clock (from W. Finkelnburg: Einführung in die Atomphysik,
Springer, Berlin Heidelberg New York, 1976)

generally used). The ions, formed along the spur of the
incident particle, attract the polar water molecules and
act as condensation nuclei for the formation of small
water droplets. When the chamber is illuminated by
visible light, the droplets cause Mie-scattering which
makes the particle track visible as a thin bright spur of
tiny water droplets (Fig. 2.21).

Although theobservationof thedifferent tracks in the
cloud chamber is impressive, it does not allow a direct
view of the incident particles themselves but only loca-
tes their paths through the chamber. In former times the
cloud chamber was used for the observation of nuclear
reactions (see theexample inFig. 2.21).Nowadaysanew
device, the bubble chamber, has replaced it and the cloud
chamber is mainly used for demonstration purposes.

2.3.3 Microscopes with Atomic Resolution

During the last four decades of the 20th century, new
devices have been developed that allow a spatial reso-
lution within the subnanometer range, and are therefore
capable of making single atoms “visible.” Since their
basic understanding demands the knowledge of atomic
physics and solid state physics, they can only be ex-
plained here in a more qualitative way while for their
quantitative description the reader is referred to the
literature [2.13, 14].

b) Field Emission Microscope

The oldest of these devices is the field emission elec-
tron microscope (Fig. 2.22) developed by Ernst Müller
in 1937 [2.15]. A very sharp tip at the end of a thin
tungsten wire serves as a cathode in the middle of an
evacuated glass bulb. The anode has the form of a sphere
and is covered on the inside with a fluorescent layer (like
a television screen). When a voltage V of several kilo-
volts is applied between cathode and anode, the electric
field strength at the cathode surface is

E = V

r
r̂ ,

where r is the radius of the nearly spherical tip of the
tungsten wire (Fig. 2.22b). With special etching tech-
niques it is possible to fabricate tips with r < 10 nm!
This means that for a moderate voltage V = 1 kV the
electric field at the surface of the tungsten tip is al-
ready E ≥ 1011 V/m. Such high electric fields exceed
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Fig. 2.22. (a) Basic concept of the field emission microscope.
(b) Enlarged view of the tungsten tip. (c) Image of the tungsten
surface around the tip, 107-fold enlarged on the screen of the
field emission microscope. (d) Visualization of Ba atoms on
the tungsten tip

the internal atomic fields (see Sect. 3.5) and are suffi-
ciently large to release electrons from the metal surface
(field emission, see Sect. 2.5.3). These electrons are ac-
celerated by the electric field, follow the electric field
lines, and impinge on the fluorescent screen at the anode
where every electron causes a small light flash, similar
to the situation at the screen of an oscilloscope. Most
of the electrons are emitted from places at the cathode
surface where the work function (i.e., the necessary
energy to release an electron) is minimum. These spots
are imaged by the electrons on the spherical anode (ra-

dius R) with a magnification factor M = R/r. With
R = 10 cm and r = 10 nm a magnification of M = 107

is achieved (Fig. 2.22).
Even with this device, only the locations of elec-

tron emission are measured but no direct information
on the structure of atoms is obtained. If other atoms with
a small work functions are brought to the cathode sur-
face (for example by evaporating barium atoms from
an oven near the cathode) then the electron emission
mainly comes from these atoms. One can now see these
atoms and their thermal motions on the cathode surface
with 107 fold magnification (Fig. 2.22d).

b) Transmission Electron Microscope

The electron microscope, first invented by Ernst Ruska
in 1932 has meanwhile been improved so much that it
reaches a spatial resolution of 0.1 nm [2.16, 17]. The
electrons are emitted from a heated cathode wire with

Hair needle cathode
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source

Aperture

Magnetic
condensor lens

Sample

Magnetic
objective lens

Imaging
lens

Fluorescence
screen

Fig. 2.23. Principle setup of the transmission electron
microscope
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a sharp kink (hair needle cathode) and are accelerated by
a high voltage (up to 500 kV). With specially formed
electric or magnetic fields, serving as electron optics
(see Sect. 2.6) the electrons are imaged onto the sam-
ple, which is prepared as a thin foil (Fig. 2.23). While
transmitting through the sample, the electrons are de-
flected by elastic collisions or loose energy by inelastic
collisions. The transmitted electrons are imaged again
onto a fluorescent screen where a magnified image of
the absorption or scattering centers in the sample is pro-
duced, which can be viewed either through an optical
microscope or with a CCD camera and an electronic
image converting system.

The spatial resolution of the electron microscope
increases with decreasing size of the electron source.
A nearly point-like source can be realized with field
emission from a sharp edged tungsten tip (Fig. 2.25)
like that in the field emission microscope. The emitted
electrons can than be imaged by the electron optics to
form a nearly parallel beam that traverses the sample.
Each point of the sample is then imaged with a large
magnification onto the screen.

The drawbacks of the transmission electron
microscope are the following:

• Due to strong absorption of electrons by solid ma-
terials, the penetration depth is very small. One
therefore has to prepare the sample as a thin sheet.

Fig. 2.24. Image of nerve cells in a thin undyed frozen slice
taken with a transmission electron microscope (with kind
permission of Zeiss, Oberkochen)

Field emission
tip

First
anode

Second
anode

Electron beam

01 VV

Fig. 2.25. Field-emission electron source where the electrons
are emitted from a point-like tungsten tip and imaged by
electrostatic lenses

• The electron beam has to be intense in order to ob-
tain sufficient image quality with a high contrast.
This means a larger current density j and total elec-
tron current I = A j, where A is the illuminated
area.

• The unavoidable absorption heats the sample up,
which may change its characteristics or may even
destroy parts of the sample. This is particularly
critical for biological samples.

Most of these drawbacks can be avoided with the
scanning electron microscope.

c) Scanning Electron Microscope

In the scanning electron microscope (Fig. 2.26) the elec-
tron beam is focused onto the surface of the sample
(which now is not necessarily a thin sheet), where it
produces light emission by excitation of the sample mo-
lecules and secondary electrons by impact ionization.
Theelectronbeamisscannedover thesurfaceof thesam-
ple by an appropriate deflection program for the electron
optics. This is quite similar to the situation in a TV tube.

The fluorescence light can be viewed through an
optical microscope or the secondary electrons, emitted
from the surface element dx dy of the sample, are ex-
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Fig. 2.26. Scanning electron microscope

tracted by an electric extraction field and imaged onto
a detector where a signal S(x, y, t) is produced that
depends on the intensity of the secondary electrons
emitted from the small focal area dx dy around the
point (x, y), which in turn depends on the characteristic
properties of the sample at that location [2.18, 19].

d) Scanning Tunneling Microscope

The highest spatial resolution of structures on electri-
cal conducting solid surfaces has so far been achieved
with the scanning tunneling microscope, invented at
the research laboratories of IBM in Rüchlikon, Swit-
zerland [2.20, 21] in 1984 by Gerd Binning (*1947)
and Heinrich Rohrer (*1933), who were awarded the
Nobel Prize in 1986 for this invention.

Similar to the electron field microscope a tungsten
needle with a very sharply etched tip is used, which is
however, not fixed but is scanned in a controllable way
at a very small distance (a few tenths of a nanometer)
over the surface.
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Fig. 2.27. Scanning tunneling microscope

If a small voltage of a few volts is applied between
the tip (cathode) and the surface (anode) the electrons
can jump from the needle into the surface by a process
called tunneling (see Sect. 4.2.3). The electric current
depends exponentially on the distance between tip and
surface. When the tip is scanned over the surface by
piezo elements (these are ceramic cylinders that change
their length when an electric voltage is applied to them),
any deviation of the surface in the z-direction from the
exact xy-plane results in a change of the tunnel current
(Fig. 2.27).

Generally the tunnel current is kept constant by
a controlled movement of the tip in vertical direction,
which always keeps it at the same distance∆z from the
real surface and therefore reflects the topography z(x, y)
of the surface. The control current of the piezo element
for the movement in z-direction is then taken as the
signal, which is transferred to a computer where a ma-
gnified picture of the surface can be seen (Fig. 2.28). If
single atoms or molecules are adsorbed at the surface,
they can be viewed by this technique, because the di-
stance to the needle is changed at the location of the
atom.

e) Atomic Force Microscope

The tunneling microscope is restricted to the investiga-
tion of conductive surfaces because for nonconductive
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Fig. 2.28. Arsenic atoms at the surface of a galliumarsenate
single crystal, visualized by a scanning tunneling micros-
cope (image size 17 mm×17 mm). Non-periodic structures
and steps on the surface can be resolved on an atomic scale
(with kind permission from A.J. Heinrich, W. Wenderath and
R.G. Ulbricht, University of Göttingen)

surfaces the tunnel current would result in surface char-
ges that alter the potential and therefore the voltage
between needle and surface. This limitation can be over-
come with the atomic force microscope, which uses
a similar design as the tunneling microscope [2.22].
However, here it is not the tunnel current that is mea-
sured but the force between the atoms of the tip and
those at the surface. These very small forces are mea-
sured by monitoring, through the reflection of a laser
beam, the small upwards or downwards shift of the care-
fully balanced lever carrying a small and sharp-edged
tip [2.23].

An impressive demonstration of the capabilities of
the atomic force microscope was published by scientists
at the IBM research center in San Jose [2.24]. A clean
nickel surface at low temperatures was covered by a few
Xenon atoms. With the atomic force microscope these
atoms were picked up and transported to selected places
on the surface, where they were released in such a way
that the atoms formed the letters IBM (Fig. 2.29). A si-
milar experiment was performed by Karl-Heinz Rieder
and his group at the Free University of Berlin [2.25],

Fig. 2.29. Manipulation of single Xe atoms on a Ni(110) sur-
face with an atomic force microscope (with kind permission
of Dr. Eigler)

Fig. 2.30. Arrangement of single CO molecules on a copper
surface to form the letters FU (with kind permission of Prof.
Rieder, FU Berlin)

who wrote the letters “FU” on a copper surface using
CO molecules (Fig. 2.30).

This is probably the most impressive way to make
single atoms “visible”, since here not only the
location but also the size of the atoms or molecules
can be measured.

For a survey on these different modern techniques
the reader is referred to the literature [2.20, 25].
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2.4 The Size of Atoms

There are many experimental methods that allow the
estimation of atomic size. We will provide a brief survey
here.

In a liquid (for instance in liquid helium or argon) the
atoms can be assumed to be densely packed (otherwise
the liquid could be more readily compressed). If one
mole of a liquid with density ρl occupies the volume VM

and has a mass MM the volume of a single atom is

Va � VM/NA = MM/ (ρl NA) , (2.50a)

where NA is the Avogadro number. Assuming
a spherical size of the atom, its radius r0 is

r0 � (3Va/4π)
1/3 . (2.50b)

After discussing two further methods we will see in
Sect. 2.8 that atoms cannot be regarded as rigid balls
with a well-defined radius. The electron cloud around
the atomic nucleus can be described by a charge distri-
bution that gradually decreases with increasing radius
and differs from the mass distribution within the atom.
The definition of atomic size and atomic radius is there-
fore dependent on the interaction between the atom and
the probe used to measure these quantities. Different
methods will therefore yield slightly different atomic
sizes.

2.4.2 The Size of Atoms
in the Van der Waals Equation

While an ideal gas (point-like particles without
interactions) obeys the general equation

pVM = RT (2.51a)

between pressure p, mole volume VM and tempera-
ture T , a real gas with atoms of volume Va that interact
with each other, is described by the van der Waals
equation(

p+ a

V 2
M

)
(VM−b)= RT . (2.51b)

The constant b = 4NAVa equals four times the “eigen-
volume” of all NA atoms in the mole volume VM (see
Problem 2.10), while a/V 2

M gives the “eigenpressure”
of the interacting atoms. The constant a depends on the
strength of the interaction between the atoms.

Measuring the relation between p and VM at dif-
ferent temperatures T allows the determination of the
“covolume b” and therefore the volume

Va = b

4NA
(2.51c)

of a single atom.

2.4.2 Atomic Size Estimation
from Transport Coefficients

When the characteristic quantities of a gas such as
mass density, energy density or momentum are not
constant over the volume of the gas, the gradients of
these quantities cause transport phenomena that finally
lead to equilibrium at a homogeneous distribution if the
gradient is not maintained by external influences.

For density gradients, diffusion takes place where
mass is transported, for temperature gradients, heat
conduction occurs where energy is transported and for
velocity gradients, the momentum of the molecules is
transferred.

All these transport phenomena are realized on
a microscopic scale by collisions between atoms or
molecules and therefore the mean free path length Λ
(i.e., the mean distance an atom travels between two
collisions) plays an important role for the quantitative
description of all these phenomena.

In a gas at thermal equilibrium with atom number
density n and pressure p the mean free path length is
given by

Λ= 1

nσ
√

2
= kT

pσ
√

2
, (2.52)

where σ = π(r1+ r2)
2 is the collision cross section. It

is defined as a circular disk around the center of atom A
with atomic radius r1, through which atoms B with
radius r2 have to pass in order to touch atom A and
suffer a collision (Fig. 2.31).

For the case of a gas of equal atoms, described by
rigid balls with diameter d0, the collision cross section
becomes σ = πd2

0 . The factor
√

2 in (2.26) accounts for
the fact that the average relative velocity of equal atoms
is larger by a factor of

√
2 than their average absolute

velocity. Measuring the mean free pathlength Λ gives
information on the collision cross section and therefore
on the size of the colliding atoms.

The above mentioned transport phenomena are
directly related to Λ.



2.4. The Size of Atoms 29

B

a)

A

B

b)

Collision probability

x

A

xnP

x

d

rrd

r

r

2

21

2

1

∆⋅σ⋅=

∆

⋅π=σ

+=

Fig. 2.31. Determination of atomic size from the collision
cross section σ = πd2

• Diffusion:
If a density gradient dn/dz exists in a gas, there will
be a net mass transport dM/dt per second through
the area A perpendicular to the z-direction. The mass
flux density is then

jZM = 1

A

dM

dt
=−Dm

dn

dz
. (2.53)

The diffusion coefficient D for atoms with mass m
and number density n can be calculated as

D = 1

3
vΛ= 2

3pσ

(kT)3/2

(πm)1/2
(2.54)

because the mean velocity of the atoms is
v= (8kT/πm)1/2.

• Heat conduction
In a gas with a temperature gradient dT/dz the heat
energy transported per second through the area A is
given by

dQ

dt
=−λA

dT

dz
, (2.55)

where λ is the coefficient of heat conduction. It is
related to the specific heat cv of the gas at constant
volume by

λ= 1

3
nmcvvΛ= 2cv

3σ

√
kTm

π
. (2.56)

Measuring the coefficient λ therefore yields the
collision cross section σ and with it the atomic
radius.

• Viscosity of a Gas
If a velocity gradient dvy/dx exists in a gas flo-
wing in the y-direction, the momentum transfer per

second through the unit area A = 1 m2 in a plane
x = const is

jPy = d

dt

(
nmv2

y

)
. (2.57)

The momentum transported through a unit area in
the plane x = const due to the velocity gradient is
caused by collisions between atoms in neighboring
layers dx at x = a and x = a+ dx. These collisi-
ons cause a frictional force between adjacent layers,
which depend on their difference in flow velocity vy

and is described by the viscosity η. One obtains

d jPy

dx
= η dvy

dx
, (2.58)

where

η= 1

3
nmvΛ= 2

3πσ

√
πmkT . (2.59)

In summary:

Measurements of diffusion coefficient D or heat
conduction coefficient λ or viscosity η yield the
corresponding collision cross sections and there-
fore the size of atoms. Since atoms are not really
hard spheres their mutual interactions do not ab-
ruptly drop at distances r1+ r2 but fall off only
gradually. Therefore, the different methods give
slightly different values of the atomic size.

2.4.3 Atomic Volumes from X-Ray Diffraction

In Sect. 2.2.3 we have seen that the diffraction of X-
rays by periodic crystals is one of the most accurate
methods for the determination of the distances between
adjacent lattice planes. From such distances the vo-
lume VE of the elementary lattice cell (often called a
primitive cell) (Fig. 2.32) can be obtained. In order to
derive the volume Va of the atoms of the crystal, one
has to know which fraction f of the elementary cell vo-
lume is actually filled by atoms. If there are NE atoms
per elementary cell, we get for the atomic volume

Va = fVE/NE . (2.60)

The following three examples illustrate different values
of f for some simple lattice structures, assuming the
atoms to be described by hard spheres with radius r0.
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Fig. 2.32. Elementary cell of a regular crystal

EXAMPLES

1. Primitive cubic crystal
It consists of atoms placed at the eight corners of
the cubic elementary cell, which touch each other
(Fig. 2.33a). The figure shows that only 1/8 of the
volume of each atom is inside the elementary cell.
This means that NE = 8×1/8 = 1. The side length
of the cubic primitive cell is a = 2r0, and the filling
factor is

f = (4/3)πr3
0

(2r0)3
= 0.52 . (2.61a)

2. Body-centered Cubic Crystal
Here an additional atom is sitting at the center of the
primitive cubic cell, which touches the neighboring
atoms at the corners along the triad axis, so that
4r0 = a

√
3. With NE = 2 we obtain

f = 2(4/3)πr3
0[

(4/
√

3)r0

]3 = 0.68 . (2.61b)

a) b)

Fig. 2.33a,b. Illustration of the determination of the volume
filling factor (a) for a primitive cubic crystal (b) for a cubic
face-centered crystal

3. Face-centered Cubic Crystal
In addition to the atoms at the eight corners of the
elementary cell one atom sits at the center of each
of the six faces (Fig. 2.33b).
The atoms touch each other along the side face dia-
gonal, which has the length a

√
2 = 4r0. From the

figure it is clear, that only one half of each atom
at the side faces belongs to the elementary cell.
The number of atoms per elementary cell is then:
NE = 8×1/8+6×1/2 = 4 and therefore

f = 4(4/3)πr3
0[

(4/
√

2)r0

]3 = 0.74 . (2.61c)

This shows that the face centered cubic crystal has
the highest packing density.

The atomic volume Va can now be obtained
from (2.61), where VE is determined by X-ray
diffraction and NE from the crystal structure.

2.4.4 Comparison of the Different Methods

The different methods all give the same order of
magnitude for the atomic size although their values
for the atomic radii differ slightly, as can be seen
from Table 2.2. These differences have to do with
the above-mentioned difficulty in defining an exact
atomic radius as can be done for a rigid sphere.
The real atoms experience long-range attractive forces
and short-range repulsive forces when interacting with
other atoms or molecules. The interaction potential
between two atoms A and B can be fairly well

Table 2.2. Atomic radii in units of 10−10 m = 1 Å for a hard
sphere model as determined from a) the van der Waals equa-
tion, b) the collision cross section obtained from measured
transport coefficients, c) X-ray diffraction in noble gas crystals
at low temperatures

Atom a) b) c)

He 1.33 0.91 1.76
Ne 1.19 1.13 1.59
Ar 1.48 1.49 1.91
Kr 1.59 1.61 2.01
Xe 1.73 1.77 2.20
Hg 2.1 1.4 —
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Fig. 2.34. Lenard–Jones-potential of the interaction between
two neutral atoms

described by the empirical Lenard–Jones potential
(Fig. 2.34)

Epot(r)= a

r12
− b

r6
, (2.62)

where the constants a and b depend on the kind of in-
teracting atoms. One possible definition for the atomic
radius is the value

rm =
(

2a

b

)1/6

, (2.63a)

where the potential energy has its minimum va-
lue

Epot(rm)=−b2/4a =−ε , (2.63b)

which equals the potential depth −ε.
Another possible definition is

r0 =
(a

b

)1/6
, (2.63c)

where E pot(r0)= 0. For R< r0 the step increase of the
repulsive part of the potential comes close to that of
a rigid sphere.

In summary:

The atomic radii all lie within the range of
(0.5−5)×10−10 m = 0.5−5 Å. Their exact va-
lues depend on the atomic model and different
methods for their measurement give slightly dif-
ferent values because they probe different parts of
the interaction potential.

2.5 The Electric Structure of Atoms

Various experimental investigations had already shown
at the end of the 19th century that matter consists of
electrically charged particles. The essential evidence
came from:

• Investigations of electrolytic conductivity in polar li-
quids, which proved that molecules could dissociate
into positively and negatively charged constituents
that drift in opposite directions when in an exter-
nal electric field. They were called “ions” (from the
Greek word “ιoν” for “the moving”).
Michael Faraday found that the charge transpor-
ted to the electrodes was proportional to the mass
transport (see Sect. 2.2.3.e).

• Experiments on gas discharges, where the observed
light emission could be drastically influenced by
electric or magnetic fields. This proves that elec-
trically charged particles are moving within the
discharge region.

• Observations of the influence of magnetic fields on
the electric current in metals and semiconductors
(Hall effect, Barlow’s wheel).

• The discovery that particles emitted from radioac-
tive substances show different deflections in magne-
tic fields. They should therefore consist of positively
charged heavy particles (called α particles) and ne-
gatively charged light particles (called β-particles,
which are identical with electrons) (Fig. 2.35).

Radioactive sample

Magnetic
field

γ

β

α

Fig. 2.35. Different deflections of α and β particles in
a magnetic field
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These experimental findings together with the assump-
tion that matter is composed of atoms led to the
following hypothesis:

Atoms are built up of charged particles. They can
therefore not be “indivisible,” but have a substruc-
ture, which, however, was unknown at this time.
The electrically charged positive and negative
constituents have different masses.

This raises the questions:

• What properties do these constituents have?
• What force keeps them together to form stable

atoms?
• What is the charge distribution inside the atom?
• How can the microscopic properties of matter be

explained by this model?

We can answer some of these questions immediately;
the others are discussed at the end of this chapter.

Since atoms are neutral, the amount of positive and
negative charge in an atom must be equal in order
to compensate each other. Many classical experiments
have shown that the electric Coulomb force is larger
than the gravitational force by about 20 orders of ma-
gnitude. The latter are therefore completely negligible
for the stability of atoms. Electric forces are responsible
for the interaction between the constituents of an atom.
Why the attractive Coulomb force between the positive
and negative atomic constituents does not lead to the
collapse of atoms has only been recently answered by
quantum mechanics (see Sect. 3.4.3).

2.5.1 Cathode Rays and Kanalstrahlen

Investigations of gas discharges by J. Plucker (1801–
1868), Johann Wilhelm Hittorf (1824–1914), Joseph
John Thomson (1856–1940), Phillip Lenard (1862–
1947) (Nobel Prize 1905), and many others have all
contributed much to our understanding of the electric
structure of atoms. It is worthwhile to note that the es-
sential experimental progress was only possible after
the improvement of vacuum technology (the invention
of the mercury diffusion pump, for example, allowed
one to generate vacua down to 10−6 hPa).

In a gas discharge tube at low pressures, Hittorf
observed particle rays emitted from the cathode that

followed (without external fields) straight lines, which
he could prove by the shadow that was produced on
a fluorescent screen when obstacles were put in the
path of the cathode rays. From the fact that these par-
ticle rays could be deflected by magnetic fields, Hittorf
correctly concluded that they must be charged partic-
les and from the direction of the deflection it became
clear that they were negatively charged (Fig. 2.36). The
first quantitative, although not very accurate, determi-
nation of the magnitude of their charge was obtained
in 1895 by J.B. Perrin (and with an improved appara-
tus in 1897 by Thomson, who collimated the particles
through a slit in the anode, deflected them after the an-
ode by 90◦ through a magnetic field and detected them
by an electrometer (Fig. 2.37a)).

With the design of Fig. 2.37b, where the cathode
rays are better collimated by two slits B1 and B2, thus
producing a small spot on the fluorescent screen, Thom-
son could measure the ratio e/m of charge e to mass m
of the particles by applying electric and magnetic fields
for beam deflection (see Sect. 2.6). This was the first
example of a cathode ray oscilloscope. Thomson could
also show that the ratio e/m was independent of the
cathode material, but was about 104 times larger than
that for the “Kanalstrahlen” discovered in 1886 by Eu-
gen Goldstein (1850–1930) in a discharge tube, which
fly through a hole in the cathode in the opposite di-
rection of the cathode rays (Fig. 2.38). Wilhelm Wien
(1864–1928) measured in 1897 the value of e/m for
the particles in the Kanalstrahlen and he proved that
they are positively charged atoms of the gas inside the
discharge tube [2.26].
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−

Fig. 2.36. Schematic drawing of the experimental setup for ob-
serving cathode rays. The deflection of the rays by an external
magnet can be observed on the screen
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Fig. 2.37a,b. Experimental arrangement of Thomson for the
determination of the ratio e/m of cathode rays through their
deflection (a) in a magnetic field and (b) in an electric field

The negative light particles of the cathode rays
were named electrons after a proposal by J. Stoney and
G. Fitzgerald in 1897. The positively charged heavy par-
ticles were named ions according to the existing name
for charged atoms or molecules in the electrolysis.

This short survey on the history of gas discharges
shows that all of these discoveries were made within the
short time span of a few years. They gave the following
picture of the charged constituents of atoms:

−+ R

Fluorescent
screen

Possible deflection
by external magnets

To pump

Anode Cathode

Gas discharge

Fig. 2.38. Apparatus for demonstrating “channel-rays” (posi-
tive charged ions) in a discharge with a hole (channel) in the
massive cathode

Atoms consist of negatively charged electrons
and positively charged particles that just compen-
sate the negative charge to make the whole atom
neutral.

Still nothing was known about the spatial distribu-
tion of negative and positive charges within the atom
and about the sizes of the charged particles.

2.5.2 Measurement of the Elementary Charge e

The first measurement of the absolute value of the
charge of a positive ion was made in 1899 by Thom-
son and his student Charles Wilson, who had developed
his cloud chamber (see Sect. 2.3). The ions generated in
the cloud chamber by external radiation act as nuclea-
tion centers for water droplets by attraction of water
molecules in supersaturated water vapor. These small
droplets, which are made visible by illumination, sink
slowly due to gravity. They reach a constant terminal
sink velocity in air with viscosity η when the gravita-
tional force Fg = m∗g (m∗ = m−ρairV is the apparent
mass, taking into account the buoyancy) just equals
the opposite frictional force Ff =−6πηrv for spheri-
cal particles. This gives for the apparent mass m∗ the
equation

gm∗ = g (ρwater−ρair)
4

3
πr3 = 6πηrv . (2.64)

From the measured values of the sink velocity

v= m∗g

6πηr
, (2.64a)

which depends on the viscosity η of the gas, the radius r
of the droplets can be determined and from the total
mass, condensed at the lower plate of the cloud chamber
per unit time and the transported charge Q, the number
of particles N can be obtained. This gives the average
charge q = Q/N of each particle. Assuming that each
particle carries only one elementary charge, Thomson
estimated this charge to be around 10−19 C, close to the
correct value of 1.6×10−19 C.

A much more accurate value was obtained 1910 by
Robert Andrew Millikan (1868–1953) in his famous oil
droplet experiment [2.27]. With an atomizer, he blew
a fine spray of minute oil droplets into the air between
the two horizontal plates of a condenser (Fig. 2.39).
These droplets could be viewed through a microscope
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Fig. 2.39. Principle scheme of Mil-
likan’s oil-droplet experiment for
measuring the unit of charge

by illuminating them with an arc lamp. They were char-
ged by irradiation with X-rays, which strip off a small
number n of electrons (n = 0, 1, 2, 3, . . . ) from the
droplets, leaving them positively charged. Without an
electric field, the droplets sink down with constant ter-
minal velocity v0, if the gravitational force m∗g is just
compensated for by the frictional force. From (2.64) we
then obtain

v0 = g (ρoil−ρair)
4
3πr3

6πηr

⇒ r =
√

9ηv0

(ρoil−ρair) 2g
. (2.65a)

From the measured sink velocity v0, therefore, the ra-
dius r of the droplets is obtained if the viscosity η of air
is known.

If an electric field E0 is now applied, an additional
force Fa = qE0 acts on the droplet, where q =−ne
and−e is the charge of one electron. With the right field
polarity the droplet can be kept at a constant height if
the electric force just compensates for the gravitation:

m · eE0 =−g (ρoil−ρair)
4

3
πr3 . (2.65b)

This gives the charge of the droplet

−q = ne =− g

E0

4

3
πr3 (ρoil−ρair) , (2.65c)

where r is taken from (2.65a).
In a variation of the experiment a larger electric

field E1 is applied, which moves the droplets upwards.
One droplet now experiences the total force

F = qE1− g
4

3
πr3 (ρoil−ρair)−6πηrv , (2.65d)

which becomes zero for the terminal velocity

v1 = qE1− g 4
3πr3 (ρoil−ρair)

6πηr
. (2.65e)

Subtracting (2.65a) from (2.65e) gives

v1−v0 = qE1

6πηr

from which the charge

q =−ne = 6πηr(v1−v0)

= 36π

E1
(v1−v0)

(η
2

)3/2
√

v0

g (ρoil−ρair)
(2.65f)

can be obtained. When the droplet changes its charge, its
terminal velocity v1 will change. The smallest change
is observed for ∆n = 1. This gives the elementary
charge e.

Millikan had already noted that the results he ob-
tained scattered for droplets with different radii. The
reason for this is that Stokes’ law for the viscosity
force on moving spheres is only valid if the radius r
of the droplet is large compared with the mean free
path Λ of the air molecules. This was not strictly true
for the oil droplets, and particularly not for the smaller
ones.

EXAMPLE

At a pressure of 1 bar the mean free path length is
Λ≈ 5×10−6 m = 5 µm. For droplets with r < 10 µm
a correction to (2.65a) has to be made.

The presently accepted value for e is e =
1.60217653(14)×10−19 C, where the number in
parentheses gives the uncertainty of the two last
digits.

2.5.3 How to Produce Free Electrons

Free electrons can be produced in many different ways.
We will discuss the most important methods.
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a) Thermal Emission from Solid Surfaces

When a metal is heated to a high temperature T
a fraction of the free conduction electrons can get a suf-
ficiently large kinetic energy to overcome the attraction
by the solid and can leave the metal (thermal emission)
(Fig. 2.40a). If these electrons are collected onto an an-
ode by an accelerating electric field one observes an
electric current I with a current density js [A/m2] per
unit area of the emitting surfaces, which follows the
Richardson equation

js = AT 2 e−Wa/kT , (2.66)

where Wa is the work function of the metal, i.e., the
necessary minimum energy of the electrons to leave
the metal. The constant A depends on the material and
the condition of the surface (Table 2.3). For a regular
crystal, A also depends on the direction of the surface
normal against the crystal axes. In order to achieve high
current fluxes, materials with low values of Wa and
high melting temperatures are needed. A commonly
used composite material is tungsten doped with barium
or cesium. At high temperatures the barium or cesium
atoms diffuse to the surface where they contribute to
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Fig. 2.40a,b. Thermal electron emission devices. (a) Arran-
gement for measuring the emission current and its saturation
value. (b) Technical realization of different thermal emis-
sion cathodes. (α) Hair-needle cathode, (β) cathode hollow
cylinder heated by a current through a tungsten helix in-
side the cylinder. (γ ) Focusing cathode, heated by electron
bombardment on the backside

Table 2.3. Work functions Wa = eUa and electric current den-
sity emission coefficients A for some commonly used cathode
materials

Material Wa/eV A/(Am−2K−2)

barium 2.1 6×104

tungsten-barium 1.66 ∼ 104

tungsten-cesium 1.4 ∼ 3×104

thorium 3.35 6×105

tantalum 4.19 5.5×105

tungsten 4.54 (1.5−15)×105

nickel 4.91 (3−130)×105

thoriumoxyd 2.6 (3−8)×104

a low work function Wa. The measured anode current
increases with the applied voltage until it reaches a sa-
turation value, where all electrons, emitted from the
cathode, are collected by the anode (Fig. 2.40a).

Thermal emission represents the most important
technique for the production of free electrons in oscil-
loscope tubes, TV tubes, broadcasting electron valves,
and for all instruments where high current densities
are required, such as electron beam welding or ion
sources for accelerators. In Fig. 2.40b different types
of cathodes are shown.

b) Field Emission

When a voltage U is applied between an anode and a ca-
thode formed as a sharp tip with radius r on a tungsten
wire, the electric field (E)=U/r may become as large
as 1011 V/m (see Sect. 2.3). Such high fields change the
potential at the surface of the tip and can extract elec-
trons. Field emission is technically used in cases where
a nearly point-like electron source is required, such as in
the field emission electron microscope (Sect. 2.2.3) and
in some types of high resolution electron microscopes
(Fig. 2.25).

c) Photoeffect at Metal Surfaces

When the surface of a metal is illuminated by UV light,
electrons with kinetic energy

Ekin = hν−Wa (2.67)

are emitted from the surface where ν is the optical fre-
quency of the illuminating light and h is a constant
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(Planck’s constant, see Sect. 3.2), Wa is the work func-
tion of the metal (i.e., the minimum energy required to
release an electron (see Table 2.3)).

d) Secondary Electron Emission

When the surface of a metal is irradiated with fast elec-
trons or ions instead of photons, so-called “secondary”
electrons are emitted (Fig. 2.41). The average number
of emitted electrons per single incident particle is cal-
led the coefficient of secondary emission. It depends on
the material, the angle of incidence and on the kind of
incident particles and their energy. Some values for η
are given in Table 2.4.

Secondary emission plays an important role in
many optical and spectroscopic devices. One example
is the photomultiplier (Fig. 2.42), where the incident
light releases electrons from the cathode (photoeffect),
which are then accelerated by an electric field and
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Fig. 2.41. Schematic illustration of secondary electron
emission under ion bombardment of a metal surface
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Fig. 2.42. Principle of a photomultiplier. The rise time of the output pulse reflects the time spread of the electrons in the tube,
the decay time solely depends on the product RCa

impinge on a specially formed electrode. There they
release secondary electrons, which are again accele-
rated onto a second electrode, and so on. Finally an
electron avalanche arrives at the cathode with a charge
q = Me, where the magnification factor M = ηm de-
pends on the secondary emission coefficient and on
the number m of electrodes. Typical values of M are:
M = 105−107. The electric charge pulse q(t) produces
a voltage Va(t)= q(t)/Ca at the exit capacitance Ca,
which is discharged through a resistor R at the end of
the avalanche.

EXAMPLE

Nph = 1, η = 4, m = 10, e = 1.6×10−19 C, Ca =
100 pF ⇒ Va = 410×1.6×10−19

10−10 = 17 mV.

Table 2.4. Maximum values ηmax of secondary emission
coefficients η for the optimum energy Wmax of incident
electrons

Material ηmax Wmax/eV

Ag 1.5 800
Al 1.0 300
C (diamond) 2.8 750
Na 0.8 300
W 1.4 650
KBr 14 1800
LiF 8.5 700
NaI 19 1300
MgO-crytal 20−25 1500
MsO-layer 5−15 500−1500
GaP+Cs 120 2500
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If the photocathode is replaced by a metal electrode
with a high secondary emission coefficient η, single
particles (electrons or ions) that are impinging on the
cathode can be detected (electron- or ion-multiplier).

Other examples of secondary electron emission ap-
plications are image intensifier or scanning surface
electron microscopes (Sect. 2.3.3).

2.5.4 Generation of Free Ions

While the techniques described above produced free
electrons emitted from solid surfaces, in the following
processes pairs of ions and electrons, generally in the
gas phase, are always being formed.

a) Electron Impact Ionization

The most important mechanism for the production of
free ion-electron pairs is the electron impact ionization,
where an electron with sufficient kinetic energy Ekin

hits an atom A and releases another electron

e−(Ekin)+A →A++ e−(E1)+ e−(E2) . (2.68a)

The final energies E1, E2 of the electrons after the
reaction have to obey energy conservation

E1+ E2 = Ekin− Eion . (2.68b)

Here a neutral atom looses one electron, which had
a binding energy Eion (also called the “ionization ener-
gy”) and is split into a positively charged ion A+
and an electron e− (Fig. 2.43). The probability of this
process depends on the kinetic energy Ekin of the inci-
dent electron, the atomic particle A and the ionization
energy Eion of the released electron. It is generally
described by the ionization cross section σion(Ekin),
which gives the circular area around atom A through
which the electron has to pass in order to ionize A.
Figure 2.44 shows ionization cross sections σion(Ekin)
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Fig. 2.43. Ionization of atoms by electron impact
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Fig. 2.44. Electron impact ionization cross sections σ(Ekin)

for some atoms. The values for Ar and Xe are really three
times and five times larger than shown

for some atoms A as a function of the electron impact
energy Ekin.

Electron impact ionization in gas discharges re-
presents the major contribution to the generation
of charge carriers.

When ions B+ instead of electrons collide with
atoms A to produce ionization

B+(Ekin)+A → A++B++ e− (2.68c)

the relative kinetic energy Ekin of the collision partners
must be much higher than the ionization energy Eion of
the electron, because only a small fraction (≈ me/mB)
of the kinetic energy of the heavy particle B can be
transferred during the collision to the electron of atom A
which has to be removed from the atom.

b) Photoionization of Atoms

When atoms are irradiated with light of sufficiently
short wavelengths (generally ultraviolet light), the ab-
sorbed light can excite an atomic electron to an
energy above the ionization limit (photoionization, see
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Sect. 7.6.1). This process represents the leading mecha-
nism for the production of ions in the upper atmosphere
(ionosphere). Here the UV light of the sun can ionize
nearly all atoms and molecules in this region. Since
the photoionization cross section is generally small, ef-
ficient photoionization of atoms demands high light
intensities in the UV. This process therefore gained
increasing importance after the introduction of lasers,
which can deliver intensities many orders of magnitude
larger than conventional light sources (see Chap. 8).

c) Charge Exchange Collisions

When ions A+ pass through a gas or metal vapor of
neutral atoms B, an electron can be transferred from the
atom B to the ion A+ during the close passage of A+
with B

A++B → A+B+ (2.68d)

if the ionization energy of B is smaller than that of A.
When slow electrons pass through a gas of neutral

atoms A, they may be captured by the atoms to form
negative ions

e−+A → A− (2.68e)

if the relative kinetic energy Ekin can be transferred to
a third partner. This process plays an important role in
the earth’s atmosphere and also in the sun’s photosphere
where the process

H+ e− → H−+hν (2.68f)

is mainly responsible for the emission of the sun’s
continuous visible radiation. The inverse process

H−+H+ Ekin(H
−,H)→H+H+ e− (2.68g)

resupplies the neutral H atoms lost by the pro-
cess (2.68f).

d) Thermal Ionization

At very high temperatures the kinetic energy of atoms
may become sufficiently large to allow ionizing atomic
collisions.

A+B → A+B++ e−

→ A++B+ e−

→ A++B++2e− (2.69)

Fig. 2.45a–d. Survey of the various processes for the pro-
duction of ions. (a) Electron impact ionization. (b) Ion
impact ionization. (c) Charge exchange for grazing collisions.
(d) Photoionization

depending on the kinetic energy of the relative motion
of A and B. Such processes occur, for instance, in the
hot atmospheres of stars. The state of matter at these
high temperatures consisting of a mixture of neutral
atoms, ions and electrons, is called a plasma.

The different mechanisms for the production of ions
are summarized in Fig. 2.45.

e) Technical Ion Sources

For the practical realization of atomic or molecular io-
nization, special devices for the ion production have
been developed which are called ion sources.

The most widely spread source is the electron impact
ion source (Fig. 2.46). Electrons are emitted by a hot
cathode and are accelerated by a cylindrical anode in the
form of a grid. They pass the ionization volume where
the atoms or molecules are inserted. The electrons can
be reflected by the electrode GE allowing them to pass
through the ionization volume a second time.
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Fig. 2.46. Electron impact ion source

The ions formed by this electron impact are ex-
tracted by properly designed electrodes at a negative
potential. They are imaged by special ion optics (see
Sect. 2.6) and form a nearly parallel beam of ions, which
can then be mass selected by electric or magnetic fields
(see Sect. 2.7).

The electron impact ion sources are operated at
low pressures (10−3−10−5 mbar). This implies that the
achievable ion currents are relatively small. Higher ion
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Fig. 2.47. Duo plasmatron ion source

currents can be realized with plasma ion sources, where
a gas discharge at high pressures is maintained. One ex-
ample is the duo-plasmatron source where a low voltage
gas discharge is initiated between the heated cathode
and the anode. The ions are extracted by a high vol-
tage (several kV) through the small hole in an auxiliary
electrode that compresses the plasma and therefore in-
creases its spatial density. A magnetic field keeps the
plasma away from the walls and further increases the ion
density. Even substances with low vapor pressure can
be vaporized (for example by electron- or ion impact)
and can then be ionized inside the discharge.

A more detailed discussion of different techniques
for the production of ions can be found in [2.28].

2.5.5 The Mass of the Electron

All methods for the determination of the electron mass
use the deflection of electrons in electric or magnetic
fields, where the Lorentz force

F = q(E+v× B) (2.70a)

acts on a particle with charge q, which moves with
a velocity v across the fields (Fig. 2.48). Inserting New-
ton’s equation F = mr̈ into (2.70a) we obtain the three
coupled differential equations

ẍ = q

m

(
Ex +vy Bz −vz By

)
,

ÿ = q

m

(
Ey +vz Bx −vx Bz

)
,

z̈ = q

m

(
Ez +vx By −vy Bx

)
. (2.70b)

These equations show that it is not the mass m directly,
but only the ratio q/m that can be obtained from mea-
suring the path of a charged particle in these fields.

Fig. 2.48. Lorentz-force
F acting on an elec-
tron e− that moves
with velocity v in
a homogeneous magne-
tic field B, pointing
perpendicularly into the
drawing plane
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One therefore needs an additional measurement (for in-
stance the Millikan experiment) in order to determine
the charge q seperately. The mass m can then be ob-
tained from one of the following experiments. We will
now illustrate (2.70) by several examples.

a) Fadenstrahlrohr

Electrons emitted from a hot cathode in a glass bulb are
accelerated in the y-direction and enter a magnetic field
that points into the z-direction (Fig. 2.49). Since here
v= {0, vy, 0} and B = {0, 0, Bz}, (2.70b) reduces with
q =−e to

ẍ =− e

m
vy Bz . (2.70c)

This shows that the electrons are bent into the x-
direction and acquire a velocity component vx but
remain within the plane z = const. The Lorentz force is
always perpendicular to their velocity v= {vx, vy} and
therefore does not change the magnitude of the velo-
city. The path of the electrons is therefore a circle with
a radius R (Fig. 2.50) defined by the compensation of
centrifugal and Lorentz force

mv2

R
= evBz . (2.71a)

This gives the radius

R = mv

eB
= 1

B

√
2Vm/e , (2.71b)

because the velocity v of the electrons is determined by
the acceleration voltage V according to (m/2)v2 = eV .

B

R

Electron
pathGlass bulb

Anode

Focusing
electrode Neon filling

RΛ ≈

Ions

+
+

+
+

+
+

+++

Cathode

Fig. 2.49. Experi-
mental device (“Fa-
denstrahlrohr”) for
measuring the ra-
tio e/m

Fig. 2.50. Circular path of an electron beam in a homogeneous
magnetic field perpendicular to the initial velocity v0 of the
electrons

The path of the electrons can be made visible, if
the glass bulb is filled with a gas at low pressure so
that the mean free path of the electrons is comparable
to the circumference of the circle. Through collisions
with the electrons, the atoms are excited and emit light
(see Sect. 3.4). This visible circular path of the electrons
allows the measurement of its radius R and of the ratio

e

m
= 2V

R2 B2
. (2.72)

If the electrons enter the homogeneous magnetic field
under the angle α against the field direction, the elec-
tron velocity v= {vx, 0, vz} can be composed of the

Fig. 2.51. Helical path of electrons that enter a homogeneous
magnetic field under an angle α 	= 90◦ against the field lines
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Cathode
Anode S1 S2

x

y
z

0V
E
→

B
→

Field region

V−

Fig. 2.52. Wien filter

two components vx and vz (Fig. 2.51). The vx compo-
nent is perpendicular to the field and leads to a circular
motion with radius R = mvx/(eB) and a circulation
time T = 2πR/vx = 2πm/(eB) independent of the ve-
locity component vx! The vz component is parallel
to the field lines and therefore the Lorentz force is
zero. This component leads to a straight line. The
superposition of the two movements results in a he-
lical path around the field lines with a ganghöhe
∆z = Tvz = 2πRvz/vx = 2πR/ tanα. For α= 90◦ the
electron path lies in the x-y plane and becomes a circle.

A more accurate measurement of e/m is possible
with the Wien filter of Fig. 2.52, where an electron beam
is accelerated through a voltage V and enters with the
velocity v a region where a homogeneous electric field
E = {−Ex, 0, 0} and a magnetic field B= {0,−By, 0}
are superimposed in such a way that the two forces
are antiparallel. The electron beam is collimated by the
aperture S1 to assure that the velocity components vx , vy

become negligibly small. With the proper selection of
field strengths one can achieve that the total force F =

Fig. 2.54. Historical expe-
rimental results for the
electron mass in units of
10−31 kg. The ordinate gi-
ves the relative deviations
∆m/m from the value ac-
cepted today. Note that
the error bars, stated by
the authors, are mostly
much smaller than the real
deviations

Cathode Anode

S1 S2

V

S3

HF

C1 C2

L

U U ft= ⋅ +0 2sin( )π ϕ

Fig. 2.53. Precision methods for the measurement of e/m
with two radio frequency deflection plates separated by the
distance L

−e(v× B)− eE acting on the electrons becomes zero.
This gives

vz ≈ v=
√

2Ve/m = E/B ⇒ e

m
= E2

2VB2
. (2.73)

Only electrons with a velocity v that give the exact com-
pensation of the electric and magnetic forces can pass
through the second aperture S2 and reach the detector.

Besides its application to the determination of the ra-
tio e/m, the Wien filter can be used as a narrow velocity
filter for electron or ion beams.

Instead of the Wien filter two condensers C1 and C2

can be used (Fig. 2.53). When an AC voltage with fre-
quency f is applied to the condensors the electric field
is time dependent. Electrons can only pass through
the aperture S2, if they transverse the first conden-
ser C1 at a time where the voltage is zero and they
pass through the next aperture S3 if they also tra-
verse the second condenser at zero voltage. With the
separation L between the two condensers their flight
time T = L/v= n/2 f must be an integer multiple n of
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the half period ∆T/2 = 1/2 f of the AC voltage. This
imposes the condition

vz =
√

2Ve

m
= 2L f/n . (2.74)

Varying the frequency f or the acceleration voltage V
yields maxima of the signal for the different va-
lues of the integers n = 1, 2, 3, . . . . This allows the
determination of n and thus of e/m.

The accuracy of e/m measurements has steadily in-
creased over the course of time. However, systematic
errors have often mislead experimenters and the results
of different laboratories often differed by more than the
error limits stated by the different scientists (Fig. 2.54).
The main uncertainty for the determination of the elec-
tron mass m from the measured ratio e/m stems from
the error limits in the measurement of the charge e. The
best value accepted today is

me = (9.1093826±0.0000016)×10−31 kg .

2.5.6 How Neutral is the Atom?

The experiments discussed so far have shown that atoms
can be split into negatively charged electrons and posi-
tive ions. Millikan had measured the charge of positive
ions that missed one or several electrons.

The question now is how exactly the negative charge
of the atomic electrons is compensated by the positive
charge in a neutral atom. We will see later that this
positive charge is provided by the protons in the atomic
nucleus. Our question can therefore also be stated as:

Is there any difference in the absolute values of
electron and proton charges?

This question is of fundamental importance, because
a tiny difference would cause huge macroscopic effects.
For example, if there was a difference

∆q = |e+|− |e−| ≥ 2×10−18 e

the expansion of the universe could be explained by
electrostatic repulsion forces [2.29].

In order to give upper limits for such a possible dif-
ference∆q, precision experiments have been designed.
We will only discuss a few of them.

a) Gas Effusion

Through the orifice of a large, electrically isolated metal
container containing N atoms or molecules (dN/dt)∆t
atoms effuse during the time interval ∆t into vacuum
and are condensed at a cold wall (Fig. 2.55). If there
was a net charge ∆q per atom, the isolated con-
tainer would loose the charge ∆Q =∆q(dN/dt)∆t.
With a capacitance of the container C, this would lead
to a voltage V =∆Q/e of the container against the
ground, which could be measured with an electrome-
ter. The experiment showed that no measurable voltage
appeared.

EXAMPLE

dN/dt = 1020 s−1, ∆t = 100 s, C = 10−9 F ⇒ V =
1022(∆q/e)Volt. Since the voltage can be mea-
sured with an uncertainty of 10−9 V, the upper
limit of a possible charge ∆q per atom must be
∆q ≤ 10−40 C ≈ 10−21 e.

Isolation

Cooled
metal wall

Gas

t)/qN()t(U ⋅C∆
⋅

=∆

tqNQ ⋅∆⋅=∆ ⋅

Fig. 2.55. Experimental arrangement for obtaining an upper
limit for a possible difference ∆q = |e+|− |e−|

b) Deflection of an Atomic Beam

Out of a cold reservoir, atoms effuse and are collima-
ted by two slits S1 and S2 to form a well collimated
horizontal beam, which is slightly bent due to gravita-
tion. Between the two apertures, a condenser is placed
where a positive or negative voltage is alternatively ap-
plied (Fig. 2.56). If there was any charge ∆q, the beam
would be deflected and the signal monitored by the de-
tector behind A2 would change. No such change was
observed.
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Fig. 2.56. Measuring the neutrality of atoms in an atomic beam
experiment

EXAMPLE

The orifice of the reservoir had a diameter of 0.04 mm
and the width of the two slits is also 0.04 mm, the
distance between orifice and slit S1 was 400 cm, the
length of the condenser 200 cm. With a voltage of
10 kV and a plate separation of 2 mm the electric field is
E = 5×106 V/m and the force acting on charged par-
ticles is F =∆q E. For Cs atoms this experiment gave
with a mean velocity of v= 300 m/s an upper limit of
∆q ≤ 10−32 C (see Problem 2.12).

c) Floating Ball

This experiment has similarities with Millikan’s oil dro-
plet experiment. Here a small ferromagnetic ball with
diameter 0.1 mm is kept floating in a vacuum by an
electromagnet, where the magnetic force just cancels
the gravity force. The ball position can be monitored
by a laser beam reflected at grazing incidence by the
ball (Fig. 2.57). The surfaces of the two magnetic po-
les carry the plates of a condenser, which produces an
electric field E. If the ball with N atoms each with Z
electrons carried a net charge

∆Q = Q+−Q− = NZ (|e+|− |e−|) (2.75)

Laser

Position
sensitive
detectorMagnetic-electric

field

Condensor

Magnetic poleshoe

Fig. 2.57. Checking the neutrality of atoms by measuring the
position of a small ferromagnetic ball in a magnetic+ electric
field, monitored by reflection of a laser beam

the ball would experience a force F =∆Q E that would
shift the ball out of its equilibrium position. This could
be measured sensitively through the corresponding
deviation of the reflected laser beam [2.30].

In summary, all of these experiments showed that
a possible difference ∆q = (e+)− (e−) between
the amounts of the charges of proton and elec-
tron has to be smaller than ∆q< 10−21 e≈ 1.6×
10−40 C.

2.6 Electron and Ion Optics

Charged particles can be deflected and imaged by pro-
perly designed electric or magnetic fields that act on
these particles in a similar way as lenses, mirrors
and prisms act on light in optics. Such field arran-
gements are therefore named electron or ion optics.
They have allowed the development of electron micros-
copes (Figs. 2.23–2.26) and mass spectrometers (see
Sect. 2.7). Since electron microscopes reach a spatial
resolution down to 0.1 nm they have become indis-
pensable for the investigations of small structures in
biological cells, material and surface phenomena and
molecular structure. Mass spectrometers play an im-
portant role in analyzing the atomic composition of
compounds, in measuring isotopic abundances, deter-
mining age in geology and archeology. They are used
to measure the absolute masses of atoms and molecu-
les and to define the absolute value of the atomic mass
unit AMU (see Sect. 2.2.1).

It is therefore worthwhile to study the basic
principles of electron and ion optics.

2.6.1 Refraction of Electron Beams

An electric field exerts a force on a particle with charge q

F = qE =−q gradφel , (2.76)

which is always perpendicular to the equipotential
surfaces φel = const.

Assume a particle with mass m and charge q moves
with constant velocity v1 through a field-free region
and enters at an angle α the planar boundary surface of
a homogeneous electric field (Fig. 2.58).
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Fig. 2.58. Deflection of an electron beam at plane boundaries
between regions of different electric fields

Such an arrangement can be, for instance, realized
by four planar metal grids kept at constant potentials.
Between grids 2 and 3 in Fig. 2.58 a homogeneous elec-
tric field E = (φ1−φ2)/d is maintained, while in the
regions above and below the electric field is E = 0.
Energy conservation demands

m

2
v2

2 =
m

2
v2

1+qV (2.77)

while passing through the field, the x-component of the
velocity remains unchanged. From Fig. 2.58 we rea-
lize the relations: sinα = v1x/v1, sinβ = v2x/v2 and
because of v1x = v2x we obtain the law of refraction of
a parallel electron beam

sinα

sinβ
= v2

v1
, (2.78)

which corresponds to Snellius’ law of refraction
sinα/ sinβ = n2/n1 in optics, if we replace the ratio
v2/v1 of the electron velocity by the ratio n2/n1 of the
refractive indices.

The electrons have acquired their initial velocity v1

by a potential difference V0 = φ0−φ1 where (m/2)v2
1 =

qV0. Inserting this into (2.77) gives

m

2
v2

2 = q(V0+V)⇒ v2

v1
=
√

V0+V

V0
. (2.79a)

Within the homogeneous electron field E the compo-
nent vx remains constant while vz is increasing. The

path of the electrons then follows a parabola

z(x)=−1

2

qE

m

x2

v2
1x

− v1z

v1x
x . (2.79b)

If the distance d between the grids at z = 0 and z = d is
sufficiently small, we can approximate the path of the
electron by two straight lines in the following way.

We extrapolate the straight path of the incident elec-
tron for z < 0 until the mid plane at z = d/2 and that of
the outgoing electron for z > d back to z = d/2 (das-
hed straight lines in Fig. 2.58). Then the analogy to the
optical refraction at the boundary plane between two
media with refractive indices n1, n2 becomes more sug-
gestive. According to (2.74) and (2.79) we can attribute
refractive indices to the electron optics arrangement by
the relation

n2

n1
= sinα

sinβ
=√

1+V/V0 . (2.80)

This shows that the ratio of the refractive indices
is solely determined by the potential difference
V = φ1−φ2 and the initial energy (m/2)v2

1 = eV0

of the incident electron.

The direction of a parallel electron beam can be
also changed by traversing a perpendicular electric
field (Fig. 2.59). When electrons enter the homoge-
neous field Ez of a condenser at z = 0 with the velocity
v = {vx, 0, 0} the force F = qE gives a parabolic
path

z = 1

2

q

m
E

x2

v2
⇒

(
dz

dx

)
x=L

= qE

m

L

v2
= tan δ .

(2.81)

In both cases (Figs. 2.58 and 2.59) the electron beam is
refracted analogously to a light beam in a prism.

z

x
L

−

+

{ }v
→

= v ,0,0x

δ

Fig. 2.59. Deflection of an electron beam in the homogeneous
electric field between two charged parallel metal plates
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2.6.2 Electron Optics in Axially Symmetric Fields

We will now look at the imaging of electron beams in
inhomogeneous electric fields with axial symmetry.

From (2.73) one obtains with E =− gradφ and
without magnetic field (B = 0) the basic equations:

m
d2x

dt2
= e
∂φ

∂x
, m

d2 y

dt2
= e
∂φ

∂y
, m

d2z

dt2
= e
∂φ

∂z
,

(2.82)

which can be solved, at least numerically, if the po-
tential φ is determined by the arrangement of charged
metal surfaces. If there are no space charges, the Laplace
equation becomes:

∂2φ

∂x2
+ ∂

2φ

∂y2
+ ∂

2φ

∂z2
= 0 . (2.83)

There is no analytical solution for the general case, but
there are, of course, always numerical ones.

Most of the electro-optic lenses are realized by axial
symmetric electric or magnetic fields, where the former
can be obtained by circularly charged apertures or tubes,
which can be set at a freely selectable potential.

L1 L2

F

a)

c)

U

b) z

F

d z / dzφ ( )2 2

φ( )z

φ1 φ2

Fig. 2.60a–c. Electron lens consisting of two cylindrical tubes
at different potentials. (a) Schematic representation. (b) Po-
tential φ(z) and its second derivative d2φ/dz2. (c) Optical
analogy

One example is given by Fig. 2.60 where two cy-
lindrical tubes are connected with a voltage source that
sets the potentials φ1 and φ2 for the two tubes. The
equipotential surfaces are indicated by the dotted lines.
Depending on the values of φ1 and φ2 a collecting or
a diverging electron lens can be realized. The appro-
priate coordinates here are cylindrical coordinates r,
ϕ, z. Since the system is axially symmetric, the poten-
tial cannot depend on the angle ϕ, but only on r and z.
While for r = 0 the derivative ∂φ/∂r = 0, this is not the
case for r 	= 0. Therefore, a force acts on those electrons
that move away from the symmetry axis. Electrons co-
ming from the left side in Fig. 2.60 are attracted towards
the axis (note that the force is always perpendicular to
the dotted equipotential lines), while they are driven
away from the axis in the right tube. For φ2 > φ1 the
electrons are accelerated when moving from the first to
the second tube. Their velocity is therefore larger at the
right side as at the left one. This means that the defocu-
sing effect on the right side is smaller than the focusing
effect on the left side. The system acts as a conver-
ging lens. For φ2 < φ1 the situation is inversed and the
system represents a diverging lens.

Let us prove more quantitatively the focusing effect
of an electric field with axial symmetry. We use as an
example the potential

φ(r, z)= a

(
z2− 1

2
r2
)

(2.84)

shown in Fig. 2.61, which is produced by two pairs
of axially symmetric hyperbolic electrodes, where the

Electrode

Electrode

Equipotential
surfaces

φ = 0

φ = 0

φ = φ0 φ = φ0

z

r

φ = const

Fig. 2.61. Hyperbolic electrostatic field with axial symmetry
around the z-axis
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z-axis is the symmetry axis. The electrodes are kept
at constant potentials φ = 0 and φ = φ0, respectively.
The general equipotential surfaces inside the system are
obtained by inserting φ = C into (2.84), which yields

z2

C/a
− r2

2C/a
= 1 . (2.85)

This proves that the equipotential surfaces φ = C are
hyperboloids around the symmetry axis r = 0 (z-axis).
Their minimum distance from the origin (r, z)= (0, 0)
is zH =√

C/a for r = 0 and rH =√
2C/a for z = 0. The

potential at the z-axis (r = 0) is:

φ(r = 0, z)= az2 ⇒
(
∂2φ

∂z2

)
r=0

= 2a . (2.86a)

Inserting this into (2.84) gives

φ(r, z)= φ(0, z)− 1

4
φ′′(0, z)r2 . (2.86b)

It is therefore always possible to determine the
hyperbolic potential φ(r, z) at an arbitrary point
(r, ϕ, z) when its value φ(0, z) and its second de-
rivative φ′′(r = 0)= (∂2φ/∂z2)0 at the symmetry
axis are known!

The radial components Er of the electric field can
be obtained from (2.84) as

Er =−∂φ
∂r

= ar . (2.87)

Electrons away from the symmetry axis always
experience a linear force

Fr =−eEr =−a · e ·r , (2.88)

which drives them back to the axis. The r-component of
their movement therefore represents a harmonic oscil-
lation. Furthermore, all electrons that start from a single
point (z = z1, r = 0) on the symmetry axis are again fo-
cused into a point (z = z2, r = 0) on the axis, as long
as their velocity components vz are equal, even if the
other components vr , vϕ differ for the different electrons
(Fig. 2.62). These properties of hyperbolic potentials
are used to realize ion traps.

The general axial symmetric potential will not ne-
cessarily have hyperbolic equipotential surfaces. In
order to obtain its value φ(r, z) at points not too far

z
z1 z2

v v1z 2z=z1 z2
z

a)

b)

v1
→

v2
→

)z(''Fr φ∝

)z(φ

Fig. 2.62a,b. Focusing in a cylindrical symmetric electric
field. (a) Hyperbolic field. (b) Arbitrary axially symmetric
field

from the axis r = 0 from its values on the axis, we use
the Taylor expansion

φ(r, z)= φ(0, z)+b2(z)r
2+b4(z)r

4+ . . . ,
(2.89)

where only terms with even powers of r can be non-
zero because of the axial symmetry (φ(−r)= φ(r)).
For small deviations from the axis (bnrn � φ(0, z)) we
can neglect all higher order terms with n > 2. Inser-
ting (2.89) into the Laplace equation (2.83), which reads
in cylindrical coordinates as

1

r

∂φ

∂r
+ ∂

2φ

∂r2

∂2φ

∂z2
= 0 , (2.90)

(because ∂φ/∂ϕ = 0), we obtain

φ(r, z)= φ(0, z)− 1

4

(
∂2φ

∂z2

)
0,z

r2 . (2.91)

The comparison with (2.86) shows that within this
paraxial approximation (b2(z)r2 � ϕ(0, z)) the same
relation exists for an arbitrary axially symmetric
potential (2.89) as for a hyperbolic potential.

This implies the remarkable fact that for all axial
symmetric potentials φ(r, z) the potential in an
arbitrary point not too far from the axis can be
calculated from its values φ(r = 0) and φ′′(r = 0)
at the axis.
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The electron path in such fields can now be obtained
from the general equations (2.82), which reduce here to

m
d2r

dt2
= e
∂φ

∂r
;m

d2z

dt2
= e
∂φ

∂z
. (2.92)

With the paraxial approximation (d2φ/dr2)r2 �
(dφ/dr)r we obtain from (2.90)

∂φ

∂r
=−1

2

∂2φ

∂z2
r ;
(
∂φ

∂z

)
r,z

=
(

dφ

dz

)
r=0

. (2.93)

The equations of motion are then

Fr = m
d2r

dt2
=− e

2

(
d2φ

dz2

)
r=0

·r =−a(z)r

Fz = m
d2z

dt2
= e

(
dφ

dz

)
r=0

. (2.94)

Close to the axis r = 0, vr � vz and therefore
v=√

v2
r +v2

z ≈ vz.
The radial component of the electron motion can

now differ from a harmonic oscillator, because the
restoring force Fr = a(z)r may change with z.

2.6.3 Electrostatic Electron Lenses

In Fig. 2.63 the path of an electron is shown schema-
tically for a “thin lens,” where the extension d of the
electric field is small compared to the focal length f . As-
sume the electric field is restricted to the space between
the planes z = z1 and z = z2. In the left side field-free
region the path is then a straight line, where for pa-
raxial rays, the angle α1 is small. Within the field region
z1 ≤ z ≤ z2 the path is bent, but the distance r from the
axis does not vary much within the small interval d,
which implies that ra ≈ rm ≈ rb. From Fig. 2.63 we can
then derive the relations(

dr

dz

)
z≤z1

= tanα1 ≈ rm

a
. (2.95)
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Fig. 2.63. Illustration of the lens equation for an electron lens

In the field-free region to the right we obtain(
dr

dz

)
z≥z1

=− tanα2 =−rm

b
. (2.96)

Adding (2.96) and (2.97) yields the lens equation for
thin electron lenses

1

f
= 1

a
+ 1

b
= 1

rm

[(
dr

dz

)
z=z1

−
(

dr

dz

)
z=z2

]
,

(2.97)

which exactly corresponds to the lens equation in geo-
metrical optics when the difference in the brackets
in (2.97) is defined as the ratio rm/ f . The focal length f
of the electron lens can be derived from (2.91) as

f = 4
√
φ0∫ z2

z1

1√
φ

(
d2φ

dz2

)
0,z

dz
. (2.98)

It depends on the potential φ(z) and its second deri-
vative on the axis r = 0 and also on the initial energy
(m/2)v2

0 = eφ0 of the incoming electrons.
Figure 2.64 shows two possible experimental reali-

zations of such electrostatic lenses using plane grids and
apertures. The voltage V = φ1−φ2 is applied between
the grid and a circular aperture at a distance d from
the grid. The equipotential surfaces are axially sym-
metric around the symmetry axis r = 0 (z-axis). Since
the electric field E=− gradφ is perpendicular to these
surfaces, the forces (F =−eE) acting on the electrons
is always perpendicular to the equipotential surfaces. If
the circular aperture is, for instance, grounded (φ2 = 0)

F z z

+ +
a) b)

dd

01 >φ 02 =φ

Fig. 2.64. Electron lens consisting of an aperture and a grid
at different potentials. A parallel beam of electrons coming
from the right are focussed into the point F while the beam
diverges if it comes from the left
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and the grid is set at a positive potential (φ1 > 0), a par-
allel electron beam entering from the right side into the
system, is focused into the focal point F (Fig. 2.64a).
The focal length f depends on the voltage V = φ1−φ2

and the kinetic energy of the incoming electrons. While
a parallel electron beam entering from the left diverges
(Fig. 2.64b).

The symmetrical arrangement of three apertures in
Fig. 2.65, with potentials φ1 = φ3 = 0 and φ2 	= 0 re-
presents a combination of collimating and diverging
lenses. Depending on the polarity of the applied voltage
between A2 and A1 or A2 and A3 either the collima-
ting or the diverging influence dominates. For example,
with a positive voltage applied to A2 (φ2 > 0) the elec-
trons entering from the left are accelerated between A1

and A2 but decelerated between A2 and A3. The diver-
ging effect then dominates and the whole system acts
as diverging lens, while for φ2 < 0 a collecting lens is
realized.

Electrostatic cylindrical lenses, which only focus in
one direction, can be, for instance, realized by a cylin-
drical condenser (Fig. 2.66), where the two cylindrical
surfaces are set at voltages +V/2 and −V/2, respec-
tively. Electrons passing through an entrance slit S0

Fig. 2.65. Einzel lens realized by a symmetric arrangement of
three apertures at different potentials

Entrance slit Focal plane S1
S2

−V/2

+V/2

)VV(e 0 ∆+⋅

0Ve ⋅ϕ

S0

Fig. 2.66. Electrical cylindrical capacitor acting as cylindrical
electron lens

and entering the field region with the energy eV0,
are imaged onto a line S1 in the focal plane of the
electron lens, while the image line S2 of electrons
with a different energy e(V0+∆V) is spatially shifted
from S1 to S2. The cylindrical condenser can there-
fore be used as energy analyzer for electrons with
an energy distribution N(E) (see Problem 2.15). The
analogue in optics is a cylindrical lens plus prism.
The focal length of the cylindrical condenser depends
on the angle ϕ and the voltage ±V/2 at the conden-
ser surfaces has to be adapted to the kinetic energy
(m/2)v2 = eV0 of the electrons. In the solution to
Problem 2.15 it is shown that the optimum path of
the electrons through the condensor is obtained for
V = 2V0 ln(R2/R1), where the Ri are the radii of the
condenser plates.

2.6.4 Magnetic Lenses

Electrons entering a homogeneous magnetic field under
the angleα against the field lines (Fig. 2.67a) experience
the Lorentz force F =−e(v× B), which deflects their
path. For B = {0, 0, Bz} we obtain Fz = 0. We separate
the velocity v= {vx, vy, vz} into a component v‖ = vz

parallel to the field lines and a perpendicular compo-
nent v⊥ = (v2

x +v2
y)

1/2. The parallel component v‖ is
always perpendicular to the force F. This means that
the amount of v⊥ remains constant, but the direction
of v changes. For vz = 0, the electron path would be
a circle with radius R, given by the balance between the
Lorentz and centrifugal forces:

mv2⊥
R

= ev⊥B ⇒ R = m

e

v⊥
B
. (2.99a)
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Fig. 2.67a,b. Homogeneous longitudinal magnetic field as an
electron lens. (a) Illustration of the helical path. (b) Definition
of the focal length

The time T for transversing one cycle

T = 2πR

v⊥
= 2π

e

m

B
(2.99b)

is independent of v⊥ and R!
For vz 	= 0 the electron path is a helix with a pitch

∆z = T ·vz . An electron starting from the axis r = 0 at
z = 0 and t = 0 is imaged onto a point z = vz ·T onto
the axis.

Any homogeneous magnetic field (which can be,
for instance, obtained by a current I flowing through
a cylindrical coil) represents an electron lens, which
focuses all electrons starting from a point z = 0 on the
z-axis into the focal point

z f = vzT = 2πm

eB
vz (2.99c)

independent on their angle α against the axis, if only
their velocity component vz is the same.

For practical realizations, generally v⊥ � v‖. The-
refore, electrons accelerated by a voltage V all have
approximately the same velocity vz ≈ v=

√
2eU . We

can then define a focal length f of the magnetic lens
according to Fig. 2.67b given by

f = 1

4
z f = π

2B

√
2Vm

e
. (2.100)

Besides such longitudinal magnetic fields transverse
fields can also be used as magnetic lenses for imaging
of electron or ion beams. A transverse sector field with
sector angle 2ϕ, shown in Fig. 2.68 represents a cylin-
drical lens, which focuses all electrons or ions starting
from the entrance slit S1, into a line S2 parallel to S2,
where both S1 and S2 are located in a plane passing
through the point M, which is the center of the circular
electron or ion path in the magnetic field. This can be
seen as follows.

We divide the sector field in Fig. 2.68 into two
half parts and regard in Fig. 2.69 only the right half.
Ions in a parallel ion beam entering the field from the
left, traverse the fields on circular paths with a radius
R = mv/(qB) where q is the charge of the ions (or the
electrons). The center of the circular path SA0 for ions
in the middle of the parallel beam with width b is de-
noted by M0, the center M1 for ions entering on the
path 1 is shifted upwards by b/2. The ions on the cen-
ter path SA0 have been deflected by the angle ϕ when
leaving the field, while those on path S1 by (ϕ+α). The

S1 S2

R

M

B

2ϕ
2α2α

a2f1⋅

12 ff =1f

Fig. 2.68. Magnetic sector field as cylindrical lens for ions or
electrons

b
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B g0

ϕ

α

ϕ
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α
α

R

A0

b/2

R

f0

D

H

Fig. 2.69. Focusing of a parallel incident ion beam by
a magnetic sector field
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straight paths after leaving the field are always perpen-
dicular to the radius M0 A0 or M1 A1, respectively. This
implies that the straight lines are inclined against each
other by an angle α. They intersect at the point F.

The distance g0 = A0 F is then:

g0 = A0 A1

tanα

= M0 A1−M0 A0

tanα
. (2.101)

For the triangle ∆M1 A1 M0 we obtain with M0 A0 = R
the relation

M0 A1 = sin(ϕ+α)
sinϕ

R . (2.102)

This yields

A0 A1 = M0 A1− R = R

(
sin(ϕ+α)

sinα
−1

)
≈ R(cosα−1+ cot ϕ sinα) . (2.103)

For small angles α the approximation cosα ≈ 1 and
sinα≈ tanα holds. This gives

g0 = A0 A1

sinα
≈ R cot ϕ . (2.104)

The distance g0 is nearly independent of the width b
of the ingoing beam as long as b � R. Then all ions
in the beam are focused into the point F, which is the
focal point. From (2.104) and the rectangular triangle
∆M0 A0 F (with the 90◦ angle at A0) it follows that the
angle 	 M0 FA0 equals ϕ, which implies that the line
FM0 is parallel to the direction of the incoming beam.

Similar to the treatment of thick lenses in geome-
trical optics we can define a principal plane DH at
x = D where the extrapolated lines of the incoming
center ray S and the outgoing straight line A0 F inter-
sect. The local length f0 of the magnetic sector field is
then defined as the distance f0 = HF. With the relation
HD = R and sinα= HD/HF we obtain

f0 = R

sinϕ
. (2.105)

The focal length of a magnetic sector field is the
ratio of radius of curvature R and sinϕ of the
sector angle ϕ.

When we now reflect the sector in Fig. 2.69 at the
plane x = 0 and add this mirror image to the sector in
Fig. 2.69 we obtain the arrangement of Fig. 2.68. Ions
that start as a divergent beam from the slit S1 form a par-
allel beam at the symmetry plane through M in Fig. 2.68
and are therefore, according to the foregoing discussion,
imaged onto S2. From (2.104) and the rectangular trian-
gle DHF in Fig. 2.69 it follows that �A0 FM0 = ϕ and
that S1, M and S2 must lie on the same straight line.

In the direction perpendicular to the drawing plane
of Fig. 2.68 (i.e., parallel to the magnetic field) no focu-
sing occurs. This means that for particle paths parallel
to the plane z = 0 (z gives the direction of the magne-
tic field) every point in the entrance slit is imaged onto
its corresponding image point in S2, quite analogous to
the situation for cylindrical lenses in optics.

For more details on electron- and ion optics see the
text books [2.31, 32].

2.6.5 Applications of Electron and Ion Optics

The applications of electron optics can be illustrated by
the example of a modern transmission electron micros-
cope, shown in Fig. 2.70. The incident parallel electron
beam is transmitted through a thin slice of the sample.
The electrons suffer elastic and inelastic collision with
the atoms and molecules of the sample. Since the energy
loss by inelastic collisions depends on the kind of atoms
it can be used to analyze the atomic composition of the
sample.

In order to measure this energy loss, the transmitted
electrons are focused by an electron lens system into
a first focal plane. The focal point serves as point like
source for the following magnetic sector field, where
the electrons are deflected to the left and reflected by
an electrostatic mirror, realized by an electro-optic sy-
stem at negative potential. The reflected electrons pass
through the magnetic field again and are deflected accor-
ding to their reversed velocity. Electrons with differing
energies are imaged at different positions x in the focal
plane. A movable aperture selects only those electrons
with the wanted energy. One may select the elastically
scattered electrons or those that suffered inelastic colli-
sions with a selectable energy loss in the sample. This
selection enhances the contrast of the final magnified
image and allows one to filter selected parts of the sam-
ple, e.g., spots containing heavy atoms that cause larger
energy losses [2.33].
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Fig. 2.70. Modern electron microscope. The lenses symbolize
electron lenses not optical lenses (with kind permission from
Zeiss, Oberkochen)

Examples of applications of ion optics are the va-
rious kinds of mass spectrometers that will be discussed
in the following section.

2.7 Atomic Masses
and Mass Spectrometers

After having discussed in the previous sections experi-
mental methods for the determination of atomic sizes
and electrical properties of atoms we will now deal with
the measurement of atomic masses [2.34, 35, 36].

The most simple method for measuring atomic
masses is based on the knowledge of Avogadro’s con-
stant NA. When the mass M of a mole of atoms x
in a gas is measured (it has a volume of 22.4 dm3 at
p = 1033 hPa and T = 0 ◦C), the mass mx of an atom is

mx = M/NA .

If the relative atomic mass

A = 12
mx

m
(

12C
)

in AMU is known (see Sect. 2.2.1) then the absolute
mass mx is directly obtained from M = A ·10−3 kg as

mx = A ·10−3

NA
kg

without further measurements.
The mass mx = M/N of atoms in a regular crystal

with mass M is determined from the total number N
of atoms in the crystal that can be obtained from
the geometry of the crystal and the distances bet-
ween crystal planes measured by X-ray diffraction (see
Sect. 2.4.4).

The most accurate method for the determina-
tion of atomic masses is, however, based on the
deflection of ions in electric or magnetic fields.

From the measured mass m(A+) of an atomic ion,
the mass of the neutral atom is

m(A)= m(A+)+m(e−)− 1

c2
EB , (2.106)

where the last term (which is generally neglected) re-
presents the mass equivalent of the binding energy EB

of the electron in the atom A.
It is quite instructive to briefly follow the historical

development and gradual improvement of mass spectro-
meters, in order to appreciate the work of our scientific
ancestors and to understand why modern devices are
more accurate.

2.7.1 J.J. Thomson’s Parabola Spectrograph

Ions with charge q are produced in a gas discharge, are
accelerated by a voltage V and pass in the z-direction
through a homogeneous magnetic field B= {Bx, 0, 0},
which is superimposed by a homogeneous electric field
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Fig. 2.71. Thomson’s parabola spectrograph

E= {Ex, 0, 0} (Fig. 2.71). The equations of motion are
then with Bx = B; Ex = E

d2x

dt2
= q

m
E ; d2 y

dt2
= q

m
vB ; d2z

dt2
= 0 .

(2.107a)

The time t can be eliminated by using the relations

dx

dt
= dx

dz

dz

dt
= dx

dz
vz ≈ v dx

dz
(2.107b)

because the velocity increase of vx in the electric field
is very small compared to the initial velocity vz . This
gives:

d2x

dz2
= q

mv2
E (2.107c)

d2 y

dz2
= q

mv
B . (2.107d)

Integration of (2.107c) over z for values −L/2 ≤ z ≤
+L/2 within the field region yields

dx

dz
=

z∫
−L/2

qE

mv2
dz′ = qE

mv2

(
L

2
+ z

)

⇒ x(z)= qE

2mv2

(
L

2
+ z

)2

. (2.108)

Integration of (2.107d) gives

y(z)= qB

2mv

(
L

2
+ z

)2

. (2.109)

For z > L
2 the two fields are zero, i.e., E = 0 and B = 0.

The total force on the ion is then zero and its path

follows a straight line with an inclination against the
x-direction, given by(

dx

dz

)
L/2

= qE

mv2
L . (2.110)

The ions therefore impinge on a photoplate at the plane
z = z0 at an x-coordinate

x(z0)= qEL2

2mv2
+ qEL

mv2

(
z0− L

2

)
= qEL

mv2
z0 (2.111a)

while the y-coordinate is

y(z0)= qBL2

2mv
+ qBL

mv

(
z0− L

2

)
= qBL

mv
z0 . (2.111b)

For a given initial velocity v= (2q V/m)1/2 = vz every
ion hits a point {x(z0), y(z0)} at the photo plate, which
depends on the ratio q/m. In the original mass spec-
trograph by Thomson, the ions were produced in a gas
discharge and had a broad velocity distribution. In or-
der to find a relation between x(z0) and y(z0) one has
to eliminate v. Solving (2.111b) for v and inserting this
expression into (2.111a) gives the relation

x(z0)= m

q

E

B2 Lz0
y2 = a(m)y2 . (2.112)

This represents a separate parabola x = ay2 for every
value of m/q (Fig. 2.72a). Measuring this parabola al-
lows the determination of the factor a and therefore the
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Fig. 2.72a,b. The ions
arrive at the photo-
plate along a para-
bolic curve, for each
mass mi on a separate
parabola. (a) Schema-
tic drawing. (b) Real
measurement of the dif-
ferent neon isotopes in
an isotopically enriched
neon discharge with ad-
mixtures of water and
benzene C6H6 (From
J. Mattauch [2.43])

ratio q/m. Figure 2.72b shows for illustration that such
parabolas are obtained for different isotopes of neon
ions from a gas discharge, where water vapor and ben-
zene vapor had also been added for calibration purposes
since they deliver H+ ions and C+ ions.

According to (2.111), the velocity spread ∆v

corresponds to a length ∆sp of the parabola given by

∆sp �
√
∆x2+∆y2 = qL

mv2
z0

√
B2+ 2E2

v2
∆v .

(2.113)

This spread decreases the sensitivity of photographic
recording.

Note:

The equations (2.111a) and (2.111b) show that
the deflection x of a charged particle by an elec-
tric field is inversely proportional to its kinetic
energy, while in the magnetic field it is inversely
proportional to its momentum mv. The deflection
in electric fields is therefore a measure of the ki-
netic energy that in a magnetic field is a measure
of the momentum.

2.7.2 Velocity-Independent Focusing

In Thomson’s mass spectrograph, ions of equal masses
but different velocities were spread out along a parabola.
This diminishes the intensity of the ions impinging onto

a specific point (x, y) on the photoplate. One would ob-
tain a much higher signal if all ions of equal mass could
be focused onto the same spot (for instance the ent-
rance aperture of an ion detector). This can be achieved
by the mass spectrograph constructed by Francis Wil-
liam Aston (1877–1945). Here the electric and magnetic
field regions are spatially separated (Fig. 2.73) and the
direction of the fields is chosen in such a way that the
deflections of the ions are in opposite directions. The in-
cident ion beam is collimated by the two slits S1 and S2

parallel to the y-direction and enters the electric field
as a parallel beam in the z-direction. The deflection an-
gle α of the beam by the electric field is, according
to (2.110)

tanα= qEL1

mv2
(2.114a)

while the deflection angle β caused by the magnetic
field is

tanβ = qBL2

mv
. (2.114b)

For small deflection angles (tanα� 1, tanβ� 1)
we can approximate tanα ≈ α, tanβ ≈ β and derive
from (2.114a), (2.114b) the relations:

dα

dv
=−2qEL1

mv3
=−2α

v
and (2.114c)

dβ

dv
=−qBL2

mv2
=−β

v
. (2.114d)

The total lateral deflection D of the ions against the
z-axis is then approximately (see Fig. 2.73)

D ≈ (a+b)α−bβ . (2.115)
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Fig. 2.73. Aston’s mass spectrograph with velocity independent focusing

For dD/dv= 0 the deflection becomes independent of
the ion velocity v. This yields

(a+b)
dα

dv
−b

dβ

dv
=−2(a+b)α

v
+ bβ

v
= 0

⇒ βb = 2(a+b)α⇒ D =−(a+b)α . (2.116)

This can be fullfilled, if the photoplate is arranged
in a plane that is inclined by the angle α against
the z-direction and that intersects the z-axis in the
middle of the electric field (see Fig. 2.73). The slit S3

defines a range ∆α of deflection angles α around
a medium value αm, which defines the position of the
photoplate. This means, that not all ions with vastly dif-
fering velocities are transmitted but only those within
a selectable range ∆v. Velocity-independent focusing
therefore means:

All ions with velocities within the interval vm−
∆v/2 up to vm+∆v/2 are imaged onto a small
spot with diameter ∆s on the photoplate. The va-
lue of ∆s is much smaller than in Thomson’s
parabola spectrograph, which implies that one re-
ally wins in intensity (number of ions impinging
per time onto a given spatial interval ∆s).

2.7.3 Focusing of Ions
with Different Angles of Incidence

Up to here we have assumed that the incident ions form
a parallel beam in the z-direction. Although this can be

approximately realized by apertures the loss in intensity
quadratically increases with increasing collimation. It
is therefore highly desirable if the ions with different
directions of their initial velocities could be refocused
and therefore contribute to the signal without loss of
mass resolution.

This goal was first realized by Arthur Jeffrey Demp-
ster (1886–1950) who built a magnetic sector field with
2ϕ = 180◦ where the ion paths are half-circles with ra-
dius R = mv/(qB). As is shown in Fig. 2.74a all ions
passing through the entrance slit A within the angular
range from−α to+α against the y-axis are imaged onto
the exit plane y = 0 within a small interval ∆x ≈ Rα2.
This can be understood from the relations obvious from
Fig. 2.74a:

AC = 2R ; AB = 2R cosα≈ 2R
(
1−α2/2

)
⇒∆s = AC− AB ≈ Rα2 .

EXAMPLE

R = 10 cm, α = 3◦ = 0.05 rad ⇒∆s = 2.5×10−2 cm.
Placing a 0.25-mm wide slit in the exit plane allows
all incident ions with equal ratios q/m, but velocity
directions ranging from −3◦ to +3◦, to be transmitted
through the slit.

As has been shown in Sect. 2.6.4, magnetic sector
fields with arbitrary sector angles ϕm act as cylindrical
lenses with a focal length

f = R0

sin(ϕm/2)
= m

q

v

B

1

sin(ϕm/2)
.
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Fig. 2.74a,b. Comparison of directional focusing (a) in a 180◦
magnetic sector field, (b) in an electrostatic 127.3◦ cylindrical
field

The comparison with the cylindric electric condenser
reveals (see Problem 2.15) that both fields act the same
way if the radius of curvature R0 in the magnetic sector
field is replaced by r0

√
2 for the curvature of the central

equipotential surface in the cylindrical condenser and
the sector angleϕm byϕel = ϕm/

√
2. The magnetic 180◦

sector field therefore corresponds to a 127.3◦ electric
cylinder condenser (Fig. 2.74b).

2.7.4 Mass Spectrometer with Double Focusing

When using a combination of electric and magnetic
sector fields with proper sector angles, simultaneous ve-
locityanddirectional focusingcanbeachieved,asshown
in the example in Fig. 2.75. The incident ion beam pas-
sing the entrance slit has an angular divergence of±∆α.
Behind the cylindrical condenser the slit S2 selects ions
within theenergyrange E±∆E.Sinceall ionshavebeen
accelerated by the same voltage V before reaching S1

theyall shouldhavethesameenergy.Theirenergyspread
comes about because their thermal velocity distribution
in the ion source has to be added to their acceleration
energy. This spreads the ions with slightly different ve-
locities over a spatial interval in the plane of slit S2. The

Energy selection

Mass selection

S1 S2

+

−
m1

m2EE ∆±

Fig. 2.75. Example of a double-focusing mass spectrograph

slit width of S2 determines the energy interval ∆E of
those ions entering the magnetic sector field, where the
mass separation takes place, because the magnetic field
separates ions with different momenta mv =√

2mE,
see (2.73). Both fields focus divergent ion beams if the
sector angles ϕel and ϕm have been chosen correctly as
has been shown in the previous sections. Forϕel = π/

√
2

all ions with energies within the interval E+∆E, which
pass through S1, are imaged onto S2. For the magnetic
sector angle ϕm = 60◦ S2 is then imaged with a focal
length fm = R/ sin 30◦ = 2R= 2mv/(qB)onto thepho-
toplate or a slit S3 in front of the detector. The imaging
of ions with different velocities is achieved in first order
in the same way as in Aston’s spectrometer, because the
deflections in both fields are in opposite directions.

For an illustration of the achievable resolution
m/∆m = 6×103, Fig. 2.76 shows a section of a mass
spectrum of different masses around AMU = 20, mea-
sured with such a double-focusing spectrograph. Their
masses differ only by small fractions of 1 AMU, due to
different mass defects of the individual nuclei.

2.7.5 Time-of-Flight Mass Spectrometer

The basic principle of a time-of-flight (TOF) mass spec-
trometer is simple (Fig. 2.77). At time t = 0 ions are
produced in a small volume (for example the crossing
volume of a laser beam and a molecular beam). They are
accelerated by a voltage V to a velocity v= (2qV/m)1/2

where m is their mass and q their charge. The ions
drift through a field-free region of length L before they
are detected. Measuring the time delay between ion
production at t = 0 and mass-dependent arrival time

tm = L

v
= L√

2qV/m
(2.117a)
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Fig. 2.76. Selection of the high resolution mass spectrum of
ions within the mass range around 20 AMU, obtained from
a gas discharge of argon and neon, mixed with methane CH4,
ammonia NH3, water vapor H2O and their isotopomers (From
Mattauch [2.37])

at the detector gives the mass m of the ion:

m = 2qV

L2
t2
m . (2.117b)

EXAMPLE

L = 1 m, V = 1 kV, m = 100 AMU = 1.6×10−25 kg,
q = e = 1.6×10−19 C ⇒ tm = 52 µs.

The accuracy of mass determination depends on
how accurate the distance L, the time of flight Tm , and

L

+U

V

Detector

Ionization volume −

∆t
U

t
S

t
t1 t2

φel

const=φ

Fig. 2.77. Principal scheme of a time-of-flight mass
spectrometer

the acceleration voltage can be measured. The mass re-
solution m/∆m depends on the shortest time interval∆t
that can still be resolved. From (2.117b) we obtain

∆m

m
= 2

∆t

tm
. (2.117c)

Since the time resolution ∆t cannot be better than the
initial time spread, the duration ∆t0 of the initial ion
pulse should be as short as possible. If the ions are, for
instance, formed through photo-ionization by a short
laser pulse of ∆t0 = 10−8 s, the initial pulse width is
short compared to the flight time and can therefore often
be neglected.

EXAMPLE

∆t0 = 10−8 s, tm = 50 µs ⇒ ∆m/m = 4×10−4.This
means that two masses m1 = 2500 AMU and
m2 = 2501 AMU can be still separated.

Another problem arises because the ions are not
all produced at the same location, but within a finite
volume. The electric field used to extract the ions va-
ries over this volume and therefore the kinetic energy,
the ions acquire by the extraction voltage, varies ac-
cordingly. Therefore, the velocities of ions, produced at
different locations, differ, which smears out the arrival
times and limits the mass resolution.

In order to improve this, a modification of the ex-
traction field was introduced by McLaren et al. [2.38],
where the acceleration occurs in two steps. This can
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be achieved by three plane grids kept at the poten-
tials φ1, φ2, and φ3 = 0 with distances d1 and d2

(Fig. 2.79) and homogeneous fields E1 = (φ2−φ1)/d1,
E2 = (φ3−φ2)/d2 between the grids.

Assume the x-axis to be the symmetry axis of the
spectrometer. An ion produced at the distance x1 from
grid 2 has a flight time t1 until it reaches the grid 2. We
obtain for ions starting at x = d1− x1 with a velocity
v= 0

x1 = 1

2

qE1

m
t2
1 ⇒ t1 =

√
2mx1

qE1
. (2.118a)

At grid 2 (x = d1) it has acquired the velocity

v1 =
(

dx

dt

)
t1

= qE1

m
t1 . (2.118b)

At grid 3 with potential φ3 the velocity has increased to

v2 = v1+ qE2

m
t2 , (2.118c)

where t2 is the flight time from G2 to G3. Integration
yields the relation between the distance d2 and the flight
times t1, t2 and the electric fields E1, E2

d2 =
t1+t2∫
t1

v dt =
t1+t2∫
t1

(
v1+ qE2

m
t

)
dt

= v1t2+ 1

2

qE2

m

(
2t1t2+ t2

2

)
= q

m

[
(E1+ E2)t1t2+ 1

2
E2t2

2

]
. (2.119)

The drift time across the field-free region is then
t3 = L/v2 and the total time of flight

t = t1+ t2+ t3 .
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Fig. 2.78. Two ions (black and blue dots) with the same
mass but different energies travel along different paths in the
reflector field and arrive at the detector at the same time

If t should be independent of the location x of ion
production, one has to demand dt/dx1 = 0. Inserting t1,
t2, and t3 into (2.119) and taking the derivative dt/dx1

yields the optimum flight path length Lopt in the field-
free region from G3 to the detector

Lopt = d1k3/2
(

1− d2

d1

1

k+√k

)
(2.120)

with

k = 1+ 2d2

d1

E2

E1
= 1+2

V2

V1
,

where V1 = φ2−φ1 and V2 = φ3−φ2 are the potential
differences between the grids in Fig. 2.79. It is therefore
possible to construct the spectrometer in such a way that
the distance from ion source to detector equals the opti-
mum flight distance Lopt where the total flight time is the
same for all ions independent of the location where they
are produced. In Fig. 2.79b the total flight times of these
ions produced at different distances x1 from grid φ2 are
illustrated. Ions with larger values of x1 have larger
flight paths to the detector but also gain higher kinetic
energies because they are produced at a higher poten-
tial φ(x). Therefore they pass the slower ions produced
at smaller x after a total flight time t2 at a total distance
x(t2)= Lopt+d2+ x1 from their production point. That
is where the detector has to be placed.

The advantages of time-of-flight spectrometers are
the following:

• It is possible to measure all mass components of
a mixture of different species

• Even atoms or molecules with very large masses (for
example biological molecules with m ≤ 105 AMU)

Fig. 2.79. Arrangement of grids and potentials in a McLaren
time-of-flight spectrometer with improved mass resolution
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can be detected, although they have a correspon-
dingly long flight time and the ion detector needs
a high acceleration voltage to achieve a sufficient
secondary electron emission coefficient.

• The TOF design is simple and easy to construct. It is
much cheaper than other types of mass spectrometer.

The mass resolution of TOF can be considerably in-
creased if the ions are reflected at the end of the drift
distance L by an electrostatic reflector, which consists
of grids at a positive voltage producing an electric field
that repels the ions (Fig. 2.78). Ions entering the field
under an incident angle α against the field direction are
reflected into an angle 2α against their incident direc-
tion, where they reach the detector after a further drift
distance L. The faster ions penetrate deeper into the
reflecting field and therefore travel a larger distance,
just compensating for an earlier arrival time at the re-
flecting field. This device, called a “reflectron” [2.39],
achieves the same total travel time for all ions wi-
thin a velocity interval ∆v (see also Problem 2.16e).
Time-of-flight spectrometers are particularly useful in
combination with photo-ionisation by short-pulse la-
sers, because here start time and ionization volume are
precisely defined [2.40].

For illustration, Fig. 2.80 shows the TOF mass spec-
trum of Nan clusters [2.41]. These are loosely bound
compounds of n sodium atoms. Such clusters are of

50 100 150 200

40 80 120

AME

T /(µs )2 2

spectrum
cluster

Fig. 2.80. Time-of-flight mass spectrum of sodium cluster ions
Na+n

current interest, since they allow detailed studies of the
transition regime between free molecules and liquid
droplets or solid micro particles.

2.7.6 Quadrupole Mass Spectrometer

In Sect. 2.6.2 it was shown that an axially symmetric
hyperbolic electrostatic field causes focusing or defo-
cusing of charged particles, depending on the polarity of
the applied dc voltage. The quadrupole mass spectrome-
ter developed in 1953 by Wolfgang Paul (1913–1994),
(Nobel Prize 1992) and H. Steinwedel [2.42] uses
a hyperbolic potential

φ(x, z)= φ0

2r2
0

(
x2− z2) , (2.121)

which is not axially symmetric. It is, however, invari-
ant against translation in the y-direction. It is formed
by four metal electrodes with hyperbolic inner surfaces,
where two opposite electrodes are electrically connec-
ted and are kept at the potential ±φ0/2 (Fig. 2.81b).
Note the difference between the potential diagram of
Fig. 2.81a and that of Fig. 2.61. While the latter has
axial symmetry around the z-axis and is generated by
electrodes with cylindrical symmetry, the potential in
Fig. 2.81a has no axial symmetry, although the diagram
looks similar, because the rods, forming the electrodes,
extend linearly into the y-direction and Fig. 2.81a just
shows the potential in an arbitrary plane y = y0.

The ions are accelerated by a voltage U0 before
they enter the mass spectrometer and fly into the y-
direction. With a time-independent constant voltage
U = φ0 between neighboring electrodes the field com-
ponent Ex =−φ0x/r2

0 causes a force Fx =+qEx that
drives the ions back to the center x = 0. The ions there-
fore perform harmonic oscillations in the xy-plane.
Because of the opposite polarity of the field compo-
nent Ez =+φ0z/r2

0 the force component Ez = qEz is
directed away from the center z = 0 and the ions are dri-
ven away from the central axis z = 0 along their flight
in y-direction. Their movement in the yz-plane is there-
fore instable and such a dc device would not be useful.
However, using a trick the ions can be stabilized in
both directions, if in addition to the dc voltage U an
ac voltage V cosωt is applied to the electrodes. The
potential φ then becomes

φ0(t)=U +V cosωt . (2.122)
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Fig. 2.81a–c. Quadrupole mass spectrometer. (a) Equipotential lines. (b) Hyperbolic electrodes. (c) The experimental
approximation of (b) uses cylindrical rods

The polarity of the electrodes changes periodically. This
means that within a half-period of the ac field the ions
are stabilized in the x-direction and destabilized in the
y-direction while in the next half period the situation is
just reversed. Before the ions during their destabiliza-
tion period can fly too far away from the axis they are
stabilized again and are brought back. It can be shown
mathematically, that on the time average this device
leads to a stabilization in both directions for ions of
a selected mass, but to a destabilization for ions of dif-
ferent masses. The mass selection is determined by the
frequency ω and the ratio U/V of dc and ac amplitude.

The equations of motion for the ions are

ẍ+ q

mr2
0

(U +V cosωt)x = 0 , (2.123a)

z̈− q

mr2
0

(U +V cosωt)z = 0 . (2.123b)

Introducing the dimensionless parameters

a = 4qU

mr2
0ω

2
, b = 2qV

mr2
0ω

2
, τ = 1

2
ωt (2.124)

transforms these equations into the (well-known to
mathematicians) Mathieu’s differential equations

d2x

dτ2
+ (a+2b cos 2τ)x = 0 , (2.125a)

d2z

dτ2
− (a+2b cos 2τ)z = 0 . (2.125b)

The parameter a represents twice the ratio of the ion’s
potential energy qV in the dc field to the average kinetic

energy (m/2)v2 = mr2
0ω

2/2 of its oscillation in the ac
field, while b gives the average ratio of Epot to Ekin in
the ac field.

Mathieu’s equations have stable and unstable so-
lutions depending on the values of the parameters a
and b.

The stable solutions describe oscillations of the
ions with limited amplitude. These ions pass through
the quadruple spectrometer in the y-directions without
hitting the electrodes.

The unstable solutions describe ions with oscillation
amplitudes in the x- or z-direction, which exponentially
increase while the ion is moving into the y-directions.
The ion hits the electrodes before it can reach the
detector.

The stable regions can be represented in the a–
b-diagram of Fig. 2.82. Note, that the conditions for
stability solely depend on the parameters a and b and
not on the initial conditions of the ions. Choosing the op-
timum combination of a and b allows one to transmit the
wanted mass m and to suppress all other masses. This is
illustrated by Fig. 2.82b, where the first stability region
for both the x- and z-direction limited by a< 0.237 and
b< 0.9 is plotted on an expanded scale. For given values
of U and V the different masses all lie on the straight
line a/b = 2U/V = const, as can be seen from (2.124).
The position of a mass mi = 4qU/(ar2

0ω
2) depends for

a mass spectrometer with fixed values of r0 and ω0 on
the parameter a. Only those ions that have masses within
the stable region reach the detector. For our example in
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Fig. 2.82. (a) Different stabiltity ranges (grey) of the quadru-
pole mass filter. (b) Enlarged section of the blue stability range
in (a). The straight line with a/b = const gives the location
for the masses mi . Only masses inside the colored region are
transmitted

Fig. 2.82b these are the masses m1 and m2. The closer
the straight lines approaches the peak of the stability
region, the smaller is the mass range ∆m transmitted
to the detector. Selecting the ratio a/b therefore allows
one to set the mass range of transmitted ions, which de-
termines the mass resolution of the spectrometer. The
mass resolution m/∆m of the quadruple mass spectro-
meter can therefore be easily adjusted (within certain
limits) by choosing the appropriate ratio U/V of dc
voltage U and ac amplitude V [2.43].

2.7.7 Ion-Cyclotron-Resonance Spectrometer

This type of mass spectrometer was developed in 1965
and since then has been greatly improved. Today it re-
presents the device with the highest accuracy in absolute
mass measurements and the highest mass resolution
(m/∆m ≥ 108!).

Its basic design [2.44] is illustrated in Fig. 2.83. It
consists of an axially symmetric hyperbolic electric
field (like that in Fig. 2.61) with the z-axis as sym-
metry axis, superimposed by a homogeneous magnetic
field B in the z-direction. The ions, produced in an
ion source are injected into the device and then the
electric field is switched on. The electric field stabili-
zes the ion in z-direction and the magnetic field causes
them to move on circles around the magnetic field lines,
thus stabilizing them in the radial directions (x- and y-
directions). In order to avoid collisions of the ions with
the background gas atoms the vacuum has to be very
good (p< 10−16 Pa). Without the electric field the ions
with an initial velocity v= {vx, vy, 0} would move on
circles with radius R =mv/(qB). The angular velocity
(see Sect. 2.7.4)

ωc = qB

m
(2.126)

is the cyclotron frequency. It is independent of the
radius R.

The electric field is formed by hyperbolic electro-
des, consisting of two hyperbolic caps and one ring

End cap

End cap

Ring

U0
z

Signal

+ −

z0

Electric
field lines

Ring
r z0 02= ⋅

B
→

Fig. 2.83. Cyclotron-resonance mass spectrometer (penning
trap)
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symmetric to the xy-plane. A positive voltage at the
caps stabilizes the ions in the z-direction. The axi-
ally symmetric electric field has the components (see
Sect. 2.6.2).

Er =+ U0

2z2
0

, Ez =−U0

z2
0

. (2.127)

Without a magnetic field the ions would perform har-
monic oscillations in the ±z-direction, due to the linear
restoring force qEz , but they were not stabilized in the
radial direction. The superposition of the homogeneous
magnetic field Bz stabilizes the ions in all directions but
their movement becomes more complicated (Fig. 2.84).
It can be composed of the cyclotron movement (circles
around an axis in the z-direction), a second component,
where the center of these circles performs oscillations in
the ±z-direction (axial oscillations) and a third compo-
nent, where the center of the circles undergoes a slow
drift on a large circle around the z-axis (magnetron
movement).

The angular frequency of the periodic ion movement

ω± = ωc

2
±
√(ωc

2

)2− ω
2
el

2
(2.128)

is determined by the cyclotron frequency ωc (2.93) and
the frequency ωel of the harmonic oscillation due to the
electric field. The periodic ion movement induces an ac
voltage U(t) at the caps, which can be used to monitor
the frequency of this movement.

Magnetron
motion

Axial
oscillation

ωel

Cyclotron
circular path

ωz

B
→

Fig. 2.84. Composition of the ion-motion of magnetron mo-
tion around the field direction, axial oscillations and circular
cyclotron motion
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Fig. 2.85. Illustration of mass resolution of the cyclotron re-
sonance spectrometer by showing the width of the resonance
frequency ω+ for the Cs+ ion [2.45]

The Fourier transform

U(ω−ω±)=
∫

U(t)ei(ω−ω±)t dt (2.129)

of the measured voltage exhibits sharp peaks at ω= ω+
andω=ω−, which allows the accurate determination of
the cyclotron frequencyωc and therefore, using (2.126),
the ion mass as well, if the magnetic field B is known.
The magnetic field can be calibrated using 12C+ ions
because their mass represents the unit of the atomic
mass scale (see Sect. 2.2.1).

As an illustration of the achievable accuracy,
Fig. 2.85 shows the resonance peak around the fre-
quency ω+ of 133Cs+ ions, which has a line width
of only 0.3 Hz (!) at a cyclotron frequency ωc = 2π ·
685,075.6 Hz. The central frequency can be determined
within±0.05 Hz, which implies, according to (2.93), an
accuracy of m/∆m ≥ 108 [2.45].

2.7.8 Isotopes

Measurements of atomic weights with chemical me-
thods (Sect. 2.1) brought the result that most of the
natural chemical elements have atomic mass numbers
x AMU, where x generally is close to an integer. For
some elements, however, large deviations from an in-
teger were found. The explanation of these findings
became possible through accurate measurements of the
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atomic masses with mass spectrometers. These measu-
rements showed that most chemical elements in nature
consist of a mixture of components with slightly diffe-
rent masses, differing from each other by one or a few
atomic mass units. These components of a chemical ele-
ment have exactly the same chemical properties, their
only difference lies in their masses. They were called
isotopes.

EXAMPLES

1. The natural isotopic abundance of oxygen is 99.75%
16O with 16 AMU and 0.2% of 18O with 18 AMU.
The average mass number (weighted without iso-
tope separation) is therefore 0.9975×16+0.002×
18 = 16.005 AMU.

2. Natural chlorine consists of 77.5% 35Cl and 24.5%
37Cl, which gives an average mass number of
0.755×35+0.245×37 = 35.49 AMU.

The atomic mass number of each isotope is writ-
ten as an upper left index before the chemical symbol,
whereas the number of its electrons, which determines
its chemical properties, is written as a lower left index.
Then 37

17Cl is a chlorine isotope with 17 electrons and
a mass of 37 AMU.

The real explanation for isotopes was only possi-
ble after the discovery of the neutron in 1932. It then
became clear, that the atomic nucleus (see Sect. 2.8)
consists of positively charged particles, called protons,
and neutral particles, called neutrons. The total charge

Fig. 2.86. Relative abundances of molybdenum isotopes,
measured with the double-focusing mass spectrograph of
Mattauch [2.37]

of all protons cancels that of all electrons in the atom.
Isotopes only differ in their number of neutrons.

Figure 2.86 shows the abundances of the mo-
lybdenum isotopes measured with a high-resolution
double-focusing mass spectrometer.

2.8 The Structure of Atoms

The experiments discussed so far, have given us infor-
mation on the size and masses of atoms and also on
the fact that neutral atoms carry negative and positive
charges. How these charges are distributed over the vo-
lume of an atom was only discovered in 1911 by the
scattering experiments of Rutherford and his group.

Such scattering experiments can also give informa-
tion on the interaction potential between two colliding
atoms and its dependence on the distance between the
collision partner. We will therefore discuss in this sec-
tion the scattering of particles by each other and the
atomic models resulting from such experiments.

2.8.1 Integral and Differential Cross Sections

When a parallel beam of particles A with a particle
flux density Ṅ = dN/dt pass per second and unit area
in the x-direction through a layer with thickness dx ,
which contains particles B with a particle density nB

(Fig. 2.87a) a fraction of the incident particles A will be
scattered out of the original x-direction due to their
collisions with particles B. The deflection angle at
such a collision depends on many parameters: the di-
stance between A and B, the interaction potential, the
masses mA and mB, and the relative velocity vA−vB.

If the number nB dx of scattering particles B along
the path dx is sufficiently small, each particle A will
pass, during its way through dx, at most one atom B
closely enough to be scattered by a measurable angle.
This means multiple scattering can be neglected.

We define the integral scattering cross section σint

for scattering of particles A by particles B as that
area σint = πr2 around B, through which A has
to pass in order to be deflected by an angle Θ
larger than the minimum detectable deflection
angle Θmin (Fig. 2.87b).
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Fig. 2.87. (a) Scattering of atoms A by atoms B with number
density nB in a layer with thickness dx. (b) Illustration of the
collision cross section by circles with radius r = rA+rB

Due to these deflections, the particle flux density Ṅ
decreases over the distance dx by

dṄ =−ṄσintnB dx . (2.130)

Dividing by Ṅ and integrating over dx gives the par-
ticle flux after having passed a distance x through the
scattering region

Ṅ(x)= Ṅ(0)e−nBσintx . (2.131)

The integral cross section is related to the mean free
path length Λ by (see Problem 2.17)

Λ= 1

nσ
. (2.132)

A possible experimental realization for measuring in-
tegral scattering cross sections is shown in Fig. 2.88a.
The incident beam of particles A is collimated by two
slits S1, S2 and passes either through a thin foil of
atoms B (in the case of fast particles A which can pene-
trate the foil) or through a gaseous sample restricted to
a volume V with thickness dx. Such a volume is reali-
zed either by a differentially pumped cell with holes for
the entrances and exit of the beam A or by a second col-
limated beam of particle B, which crosses the beam A
perpendicularly (Fig. 2.88b). In the case of a differenti-
ally pumped cell, the particles B, which effuse through
the holes of the cell have to be pumped away in order to
maintain sufficiently low pressures outside the cell so

A

S1 S2 S3

dx

nB

Detektor
d

b
θ>θ0

θ0

θ =0 b/2d

Streuebene

1
2

A
B Detektor-

fläche AD

R

y x

A

a)

b)

B1

B2

xFV ∆⋅=
∆Ω Θ

φ

Fig. 2.88. (a) Measurement of the integral cross section σ .
(b) Measurement of the differential cross section dσ/dΩ

that collisions of atoms A only occur inside the defined
volume of the cell but not outside.

The detector is located behind a third slit S3, that
transmits only those particles A that have not been
deflected by collisions.

More information is obtained by measuring that
fraction of the incident particles A, that is scattered
into a defined solid angle dΩ, and which is determined
by the differential cross section.

While for the determination of the integral cross
section, the decrease of the intensity of the
incident particles A (that is, the unscattered par-
ticles) is measured, the differential cross section
dσ(Θ)/dΩ is a measure for those particles that
have been deflected by a certain angle Θ into the
solid angle dΩ.

We will now derive an expression for the differential
cross section.

Assume Ṅ A incident particles pass per second
through the area A in the scattering volume V = A ·∆x,
and∆Ṅ(Θ,Ω) is the rate of particles scattered by a de-
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flection angle Θ and detected by the detector with an
acceptance solid angle ∆Ω. Then

∆Ṅ

Ṅ A
= nB

A
V

dσ

dΩ
∆Ω = nB∆x

dσ

dΩ
∆Ω (2.133)

is the fraction of incident particles that is scattered
into the solid angle ∆Ω accepted by the detector. It
is determined by the particle density nB of scatterers B,
the length ∆x which the incident beam of particles A
traverse through the scattering volume V and the diffe-
rential scattering cross section dσ/dΩ which depends
on the interaction potential between particles A and B.

For measuring dσ/dΩ the setup of Fig. 2.88b can be
used. Two beams, collimated by the apertures S1 and S2

cross each other in the scattering volume V = A∆x. The
particles A scattered by an angle Θ into the solid angle
of ∆Ω are monitored by the detector with sensitive
area AD = R2∆Ω in a distance R from the scattering
volume V where R �∆x.

The differential cross section gives information
on the interaction potential Epot(r) between the
colliding particles A and B at a distance r.

We will now look into the relation between Epot(r)
and dσ/dΩ in more detail.

2.8.2 Basic Concepts of Classical Scattering

As is generally shown in classical mechanics, the mo-
vements of two particles with masses m1, m2, velocities
v1, v2 and a mutual interaction potential Epot(|r1−r2|)
can be represented in the center of mass coordinate
frame as the movement of a single particle with reduced
mass

µ= m1m2

m1+m2

and relative velocity v= v1−v2 in a potential Epot(r),
where r = |r1− r2| is the distance between the two
particles. The description of the scattering of the two
particles by each other in this center of mass frame
is named “potential scattering,” because it demands,
besides the reduced mass µ and the initial conditi-
ons (r0, v0) solely the knowledge of the interaction
potential Epot(r).

We will here restrict the discussion to the most sim-
ple case of spherically symmetric potentials Epot(r),
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Fig. 2.89. Scattering of a charged particle A in a potential
V(r)∝ 1/r, where r is the distance between A and B

which is adequate for many real collision events. In
such a potential, the angular momentum L of the par-
ticle remains constant (see Problem 2.20). This implies
that the path of the particle is planar. It always stays
within the so-called “scattering plane.” Therefore, po-
lar coordinates (r, ϕ) are best suited for the description
of the particles time-dependent position. The deflection
angle of our particles, measured in the center of mass
frame is named ϑ, while it is described by Θ in the
laboratory frame (Fig. 2.89).

The deflection of the incident particle A depends
on its impact parameter b. This is the smallest distance
of A to the target particle B, if there is no deflection,
i.e., if A passes along a straight line (Fig. 2.90a). For the
potential scattering (i.e., the description of the scattering
process in the center of mass frame) the particle B is
fixed at the origin of our coordinate frame and it also
does not suffer any recoil, that is, it can be regarded as
a point-like particle with infinite mass.

When the initial velocity of particle A is |v(−∞)| =
v0, energy conservation demands

1

2
µv2+ Epot(r)= 1

2
µv2

0 = const , (2.134)

because Epot(r =±∞)= 0. The angular momentum L,
with respect to the scattering center at r = 0 is

L = µ(r×v)= µ
(

r×
[

dr

dt
êr +r

dϕ

dt
êt

])
= µrϕ̇

(
r× êt

)
, (2.135)

because êr is parallel to r. The unit vector êt points
along the tangent to the path of A. For L we obtain:

|L| = L = µr2ϕ̇ = µv0b , (2.136)
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because L(x =−∞)= µ ·v0 · r · sinϕ = µ ·v0 ·b. The
kinetic energy in the center of mass frame is

Ekin = 1

2
µv2 = 1

2
µ
(
ṙ2+r2ϕ̇2)

= 1

2
µṙ2+ L2

2µr2
. (2.137)

The total energy E = T + Epot in the center of mass
frame can then be written as

Etotal = E0 = 1

2
µṙ2+ L2

2µr2
+ Epot(r)= const .

(2.138)

Solving (2.138) and (2.136) for ṙ and ϕ̇ yields

ṙ =
[

2

µ

(
E0− Epot(r)− L2

2µr2

)]1/2

(2.139a)

ϕ̇ = L

µr2
. (2.139b)

In a real experiment the path (r(t), ϕ(t)) of a single
particle cannot be followed. However, the measured
deflection angle ϑ allows to determine the asymptotic
values of the path for r →∞. Since for a spherically
symmetric potential this path must be mirror-symmetric
to the line OS through the point S of closest approach
in Fig. 2.90b. (This means that the scattering process
is invariant against time-reversal.) We can relate the
asymptotic scattering angle ϑ to the polar angle ϕmin =
ϕ(rmin) by

ϑ = π−2ϕmin .

This yields the relation

ϕmin =
ϕmin∫
ϕ=0

dϕ =
rmin∫

r=−∞

dϕ

dt

dt

dr
dr

=
rmin∫

r=−∞
(ϕ̇/ṙ) dr =

+∞∫
rmin

ϕ̇

ṙ
dr .

With (2.139a) and (2.139b) the scattering angle in the
CM-frame becomes:

ϑ(E0, L)= π−2

+∞∫
rmin

(L/(µr2)) dr[
2
µ

(
E0− Epot(r)− L2

2µr2

)]1/2 .

(2.140)

x

b

y

A

v

r

B

0

r

a)

b

S

Asym
ptotic 

line

Actu
al p

ath of p
artic

le

0

r
ϕ

ϕ

b)

min

min
min

min

ϑ π ϕ= − 2 min

ϑ

ϑ

ϑ

0

ϕ

Fig. 2.90. (a) Scattering of a particle A with reduced mass
µ= mAmB/(mA+mB) in a potential V(r) with the origin
in B. (b) Relation between scattering angle ϑ in the center of
mass system and the polar angle ϕmin at the closest approach
between A and B (point S)

With the total energy E0 = 1
2µv

2
0 the amount of the

angular momentum

L = µrv sinϕ = µbv0 ⇒ L2 = µ2b2v2
0 = 2µb2 E0

(2.141)
is uniquely defined by the initial energy E0 and the
impact parameter b of the incident particle B. Inserting
these relations into (2.140) we obtain

ϑ(E0, b)= π−2b

+∞∫
rmin

dr

r2
[
1− b2

r2 − Epot(r)
E0

]1/2 .

(2.142)
This shows that the deflection angle ϑ is determined by
the interaction potential Epot(r), the impact parameter b
and the initial energy E0.

The lower integration limit rmin is fixed by
the condition ṙ(rmin) = 0. This gives with (2.139)
and (2.141)

rmin = b[
1− Epot(rmin)

E0

]1/2 . (2.143)
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Note:

• For r = rmin the integrand in (2.140) becomes in-
finite. Whether the integral remains finite depends
on the exponent n in the power dependence of the
interaction potential (Epot(rn)).

• For b = 0 is L = 0 ⇒ ϑ = π. Particles with b = 0
suffer central collisions with B. They are reflected
back into the incident direction.

• If ϑmin is the smallest still detectable deflection
angle then all particles with ϑ < ϑmin are regar-
ded as not scattered. These are all particles with
b> bmax(ϑmin). The integral scattering cross sec-
tion is then σint = πb2

max. This shows that with such
a definition the cross section, which should be solely
dependent on the particle characteristics, becomes
dependent on the design of the apparatus. This con-
tradiction is removed by the quantum-mechanical
treatment of collisions.

• For monotonic potentials Epot(r) (for example pure
repulsive potentials Epot ∝ r−1) there is, for a given
energy E0, a well-defined unique deflection angle ϑ
for each value b of the impact parameter (Fig. 2.91a).
This is no longer true for non-monotonic potentials
(Fig. 2.91b), where, for example, two different im-

(a)
r

b

r

(b)

b
b1 b2

a/2E0

E (r)potE r a
rpot ( )=

ϑϑ
ππ

2
π

Fig. 2.91a,b. Qualitative relation interaction potential and de-
flection function ϑ(b). (a) Monotonic potential. (b) Potential
with a minimum

pact parameters b1 and b2 may lead to the same
deflection angle ϑ. Plotting the curves ϑ(b) at a gi-
ven initial energy E0 yields deflection curves such as
those shown in Fig. 2.91. Their form depends on E0

and Epot(r).

We should keep in mind that the only quantity ob-
tained from a scattering experiment is the differential
or integral scattering cross section. The impact parame-
ter b itself cannot be directly measured! The measured
scattering cross section yields, however, the wanted in-
formation on the deflection curve ϑ(b) from which the
interaction potential can be derived. This can be seen as
follows.

Let us assume a parallel beam of incident partic-
les A with particle flux density ṄA = nAvA that passes
through a layer of particles B in rest with density nB.
All particles A passing through an annular ring with ra-
dius b and width db around an atom B are deflected by
the angle ϑ± dϑ/2, assuming a spherically symmetric
interaction potential (Fig. 2.92). Through this annular
ring dṄA = ṄA dA = nAvA2πb db particles A pass per
second. One particle B therefore scatters the fraction

dṄA
(
ϑ± 1

2 dϑ
)

ṄA
= 2πb db = 2πb

db

dϑ
dϑ (2.144)

of all particles A, incident per second and unit area onto
the target, into the range of deflection angles ϑ± dϑ/2.
The detector with area AD = R2 dΩ = R2 sinϑ dϑ dφ

B

R

A
v0

b

db

r

Detector area dAD

dA R d
R d d

D = ⋅
= ⋅ ⋅ ⋅

2

2
Ω

sinϑ ϑ φ

Area: 2 b dbπ ⋅

dΩ

ϑ

dφ

φ
dφ

Fig. 2.92. Relation between impact parameter b, scattering
angle ϑ and differential cross section dσ/dΩ
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in a distance R from the scattering center B, receives
the fraction

dṄA(ϑ, φ)

ṄA

dφ

2π
= b

db

dϑ
dϑ dφ , (2.145)

which passes through the segment b db dφ of the
annular ring in Fig. 2.92.

The fraction of all incident particles A, scattered by
all atoms B with density nB in the volume V = A∆x is
then:

dṄA(dΩ)

ṄA
= nB A∆xb

db

dϑ
dϑ dφ . (2.146)

The comparison with (2.133) gives, with dΩ =
sinϑ dϑ dφ, the differential scattering cross section

dσ

dΩ
= b

db

dϑ

1

sinϑ
. (2.147)

We can therefore also write (2.146) as

dṄA(dΩ)

ṄA
= nB A∆x

dσ

dΩ
dΩ . (2.148)

The integral scattering cross section is obtained by
integration over dΩ, where the integration limits are
ϑ(b = 0)= π and ϑ(bmax)= ϑmin:

σint =
∫
Ω

dσ

dΩ
dΩ =

ϑmin∫
ϑ=π

2π∫
φ=0

dσ

dΩ
sinϑ dϑ dφ ,

(2.149a)

where ϑmin is the smallest detectable deflection angle.
The integration over φ gives 2π. With (2.147) we get:

σint = 2π

ϑmin∫
ϑ=π

b

sinϑ

∣∣∣∣ db

dϑ

∣∣∣∣ sinϑ dϑ

= 2π

bmax∫
b=0

b db = πb2
max . (2.149b)

EXAMPLE

Collisions of hard spheres A and B with equal
diameters D. The potential energy in this case is:

Epot(r)=
{
∞ for r ≤ D

0 for r > D

}
.

D/2

b

ϑ/2

D/2
ϑ/2

ϕm

ϑ/2

ϑ/2

a)

b)

r

D

b

c)

π

2
π

ϑ

0V =∞=V

Dr =

)r(V

Fig. 2.93a–c. Collision of hard spheres with diame-
ter D. (a) Scattering angle for impact parameters b< D.
(b) Potential V(r). (c) Deflection function ϑ(b)

From Fig. 2.93a it is seen that at the closest approach
sinϕm = b/D, which implies that a collision can only
take place for b≤ D. For the scattering angle ϑ we find
ϑ/2 = π/2−ϕm.

The impact parameters for b ≤ D are therefore

b = D sinϕm = D cos(ϑ/2) .

Then the derivative db/dϑ becomes∣∣∣∣ db

dϑ

∣∣∣∣= D

2
sinϑ/2

and the differential scattering cross section is:

dσ

dΩ
= b

sinϑ

db

dϑ
= D cos(ϑ/2)D sin(ϑ/2)

2 sinϑ
= D2

4

⇒ σint =
∫

dσ

dΩ
dΩ = 4π

D2

4
= πD2 .
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The deflection function ϑ(b) for hard spheres
(Fig. 2.93c) is

ϑ = π−2ϕm = π−2 arcsin (b/2D) .

2.8.3 Determination of the Charge Distribution
within the Atom from Scattering
Experiments

In order to find the charge distribution in atoms the
best choice is to use charged incident particles A with
charge q1 as probes. The charge q2 = ρel dV of atoms B
inside the volume element dV contributes a force

dFc(r)= 1

4πε0

q1q2

r2
r̂ . (2.150)

The total force that is responsible for the deflection of
the charged particles A is obtained by integration of all
volume elements of atom B.

At the beginning of the 20th century charged pro-
jectiles were available in the form of α particles from
the radioactive decay of some radioactive substances
with charge q1 =+2e, mass m = mHe = 4 AMU and
kinetic energies Ekin = 1−9 MeV. Also, electrons with
lower energies Ekin < 10 keV could be produced from
cathode rays in gas discharges.

When the heavy α particles pass through an atom,
the light electrons of this atom, because of their small
mass, contribute little to the deflection of the α partic-
les which is mainly caused by the positive charges with
larger masses. The measured angular distribution N(ϑ)
of the scattered α particles therefore mainly gives in-
formation about the spatial distribution of the positive
charges while the presence of the atomic electrons only
gives a small correction.

2.8.4 Thomson’s Atomic Model

The results of his experiments and those of others
brought Thomson to the conclusion that each neutral
atom consists of Z electrons with the total charge
q− =−Ze and constituents with a total positive charge
q+ = +Ze. Since the atom is neutral, Thomson propo-
sed for the spatial distribution of the charges his “raisin
cake model,” where all charges were equally distribu-
ted over the volume of the atom with radius R because
this would result in a distribution of minimum energy,
if only electric forces were present (Fig. 2.94).
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Fig. 2.94. Thomson’s “raisin
cake” model for the distribu-
tion of positive and negative
charges in the atom

How can this model be tested experimentally?
The electric field of a homogeneously charged

sphere with radius R and charge Ze at a distance r ≤ R
from the center is given as

E = Q

4πε0r2
= Zer

4πε0 R3
r̂ , (2.151)

because the charge inside the radius r is Q = Z · e ·
r3/R3. If we first neglect the negative charges, an
electron would experience the force

F =−eE =−kr with k = Ze2

4πε0 R3
. (2.152a)

Any radial displacement of an electron from its equili-
brium position would then lead to a harmonic oscillation
(since the restoring force is linearly dependent on the
displacement) with a frequency

ω=√
k/m . (2.152b)

If we now consider the other Z−1 electrons, we as-
sume, according to the raisin cake model, a uniform
density

ne = Z
4
3πR3

(2.152c)

of the electrons that equals the density of the positive
charges. This cloud of electrons can oscillate against the
cloud of positive charges with the so-called “plasma-
frequency,” which can be derived as

ωp =
√

nee2

ε0me
=
√

3Ze2

4πε0me R3
, (2.152d)

which differs from the simple model of a single elec-
tron (2.152b) only by a factor of

√
3. When illuminating
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these atoms with light the atoms would preferentially
absorb at their resonance frequency ωp and its higher
harmonics ωn = nωp.

Atoms excited by light or electron impact should
emit light preferentially at these frequencies.

However, the observed frequencies of light absor-
bed or emitted by atoms do not at all agree with those
estimated by Thomson’s model.

The strongest argument against the raisin cake
model is supported by scattering experiments, first per-
formed by Sir E. Rutherford and his coworkers, using α
particles emitted by radioactive atoms. These experi-
ments give a different angular distribution of scattered
charged particles than expected from Thomson’s model.
This will now be outlined in more detail.

In Fig. 2.95 we consider the deflection of an α par-
ticle with charge q =+2e and mass mα ≈ 7350 me by
a spherical homogeneous distribution of the positive
charge Q =+Ze. Because of their small mass me the
electrons of the atom do not significantly contribute to
the deflection of heavy α particles. They are neverthe-
less important because they bring about that the total
atom is neutral for distances b> R. A charged particle
passing the atom with radius R at an impact parameter
b> R is therefore not deflected by much. In order to
measure the charge distribution inside the atom we the-
refore need to include only impact parameters b ≤ R.
The following estimation gives an upper limit for the
maximum possible deflection angle ϑmax for a homoge-
neous distribution of the positive charges. The existence

y
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0
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Fy

v0

b

px

py
p
→

F
→

r

Q Z e= + ⋅

β

ϑ

q e= 2

ϑ

Fig. 2.95. Scattering of a particle with charge q by
a homogeneous spherical charge distribution with total
charge Q

of the negatively charged light electrons will decrease
this angle only slightly.

A projectile particle with momentum mv0 in the
x-direction is deflected by the angle ϑ while passing
through the atom. The deviation is due to the repulsive
fore component

Fy = F(r) cosβ , (2.153a)

which acts at any point of the path within the atom and
causes a change

∆py =
∫

Fy dt (2.153b)

of the momentum (Fig. 2.95). The force F= qE at a di-
stance r from the center is determined by the electric
field E (2.151). We will later see that the deflection
is very small. We can therefore neglect the curvature
of the path and approximate the path by a slightly in-
clined straight line with a length d = 2

√
R2−b2 and

cosβ ≈ b/r. With this approximation, we obtain during
the time-of-flight

T = 2

v0

√
R2−b2

the momentum change

∆py = 2Ze2b

4πε0 R3
≈ 4Zkb

v0

√
R2−b2

with k = e2

4πε0 R3
. (2.154)

Since ∆py � px we may regard px ≈ p = const. This
yields

∆py

px
≈ ∆py

p
= tanϑ = 4Zkb

mv2
0

√
R2−b2 . (2.155)

The deflection angle ϑ depends on the impact parame-
ter b. Its maximum value is obtained when the derivative
dϑ/db is zero. With tanϑ ≈ ϑ we obtain

dϑ

db
= 4Zk

mv2
0

[√
R2−b2− b2

√
R2−b2

]
= 0 ,

which yields

b(ϑmax)= R/
√

2 and ϑmax = 2ZkR2

mv2
0

. (2.156)
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We can define with (2.155) an average deflection angle
averaged over all impact parameters b ≤ R. This gives

ϑ =
R∫

b=0

ϑ
2πb

πR2
db = 8Zk

mv2
0 R2

R∫
b=0

√
R2−b2b2 db

= π
2

ZkR2

mv2
0

= π
4
ϑmax = Ze2

8ε0 Rmv2
0

. (2.157)

The average deflection angle ϑ equals approximately
the ratio of potential energy Epot = 2Ze2/(4πε0 R) at the
distance R from the center and kinetic energy (m/2)v2

0.
For typical radii R ≈ 0.2 nm of gold atoms the mean

deflection angle ϑ for α particles with Ekin ≈ 5 MeV,
scattered by gold atoms (Z = 79) should be according to
Thomson’s model (2.157) with mv2

0 = 10 MeV= 1.9×
10−12 Nm

⇒ ϑ = 7.6×10−5 rad =̂ 4.6×10−3◦ = 0.27′ .
(2.158)

This is an extremely small deflection angle, which is
not easy to measure. However, until now we have only
considered the deflection ofα particles by a single atom.

In the experiment performed by Rutherford and his
coworkers Geiger and Marsden, the α particles pass
through a thin gold foil and are therefore scattered by
many gold atoms. For an atomic diameter of 0.4 nm and
a 20-µm thick foil, the α particles have to pass through
5×104 atomic layers. The impact parameters bi , rela-
ted to the centers of the different atoms are more or
less statistically distributed (see Fig. 2.96a). Therefore,
the average deflection angles ϑ caused by the different
atoms, will also be statistically distributed. The stati-
stical average 〈ϑ〉 of the total deflection angle after n

Fig. 2.96. (a) Multiple scattering of an α particle by gold
atoms in a foil according to Thomson’s model. (b) Expected
angular distribution of the scattered particles

scattering events is (see books on probability theory)〈
ϑ
〉=√

n ·ϑ .
The situation is completely analogous to the random
walk problem (see Feynman, vol. I) where a drunken
sailor throws a coin and goes for every step forward
one step to the left or to the right according to whe-
ther the coin shows its foreside or its backside. The
probability P that the sailor deviates after n steps by
a distance ∆y from the straight line y = 0 is given by
the Gaussian distribution

P(y)= C e−(y
2/n∆y2) .

By a similar consideration, one obtains

N(ϑ)= N0 e−ϑ
2/(nϑ2) . (2.159)

for the distribution N(ϑ) of particles deflected by an
angle ϑ after the foil.

EXAMPLE

For n = 5×104, ϑ = 7.6×10−5 rad ⇒ 〈ϑ〉 = 1.7×
10−2 rad ≈ 1◦. The Gaussian distribution with a maxi-
mum at ϑ = 0 has a full halfwidth of (∆ϑ)1/2 = 3.4×
10−2 rad = 2◦.

This is in sharp contrast to the experimental results
discussed in the next section.

2.8.5 The Rutherford Atomic Model

In order to test Thomson’s model, Geiger and Marsden
performed extensive scattering measurements [2.46]
with the experimental setup illustrated in Fig. 2.97.

The α particles were emitted by radon gas in the
tube T, and were collimated by the narrow channel D.
The nearly parallel beam of α particles then passes
through a thin gold foil F and the scattered α particles
produced faint light flashes on a phosphorous screen S,
which were observed through a microscope. The detec-
tor (screen and microscope) could be turned against the
direction of the incident beam. This allowed the detec-
tion of α particles scattered by an arbitrary angle ϑ into
a deflection range ϑ±1/2∆ϑ, where∆ϑ is the angular
resolution of the detector.

The experiments clearly showed that even partic-
les with large deflection angles up to ϑ = 150◦ (limited
by the experimental set-up) could also be observed,
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Fig. 2.97. Experimental setup for Rutherford’s scattering
experiment

in sharp contrast to Thomson’s atomic model. Ruther-
ford, who was very much surprised by these unexpected
results said, “This is as improbable as a bullet being
reflected back when shooting it into a cotton-wool
ball.” [2.46].

After many discussions, long thoughts and the ex-
amination of several models proposed in the literature,
Rutherford recognized that the positive charge must be
contained in a very small volume around the center
of the atom. This volume, which should carry nearly
the total mass of the atom, although it covers only
a tiny fraction of the atomic value, was given the name
“atomic nucleus” by Rutherford.

According to this model the α particles are deflected
only by the nucleus because the masses of the elec-
trons are small compared with that of the α particles
(me/mα ≈ 1.4×10−4).

Based on these considerations Rutherford derived
his famous scattering formula, which shows excellent
agreement with experimental findings.

2.8.6 Rutherford’s Scattering Formula

When the α particles, according to Rutherford’s model,
are essentially deflected solely by the atomic nucleus,

which may be regarded as a point-like particle, the
theoretical treatment of the scattering is reduced in the
center-of-mass frame to the scattering of a particle with
reduced mass µ= mαmN/(mα+mN)≈ mα in a Cou-
lomb potential (see Sect. 2.8.1). Following the argument
in Sect. 2.8.1, we obtain for the angular momentum
L = |L| from (2.136)

L = µr2ϕ̇ = µv0b (2.160)

and for the component Fy of the Coulomb-force,
responsible for the deflection of the α particles,

Fy = µ dvy

dt
= a sinϕ

r2

with a = qQ

4πε0
; q = 2e , Q = Ze . (2.161)

This gives

dvy

dt
= a sinϕ

µr2
= a sinϕ

L

dϕ

dt
. (2.162a)

The α particle comes from the point A (r =−∞) in
Fig. 2.98 and finally reaches, after the scattering event,
the point B (r =+∞). The angle ϕ changes during this
scattering for a particle with scattering angle ϑ from
ϕ= 0 toϕ= ϕmax = π−ϑ. Integration of (2.162a) gives

v0 sinϑ∫
0

dvy = a

µv0b

π−ϑ∫
0

sinϕ dϕ . (2.162b)

The solution of the integrals on both sides of (2.162b)
is

v0 sinϑ = a

µv0b
(1+ cosϑ) . (2.162c)

Because (1+ cosϑ)/ sinϑ = cotan (ϑ/2), the relation
between the deflection angle ϑ and impact parameter b

Fig. 2.98. Scattering in a Coulomb potential
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of a particle in a potential with potential energy Epot =
a/r becomes

cotan (ϑ/2)= µv
2
0b

a
. (2.163a)

The ratio a/b represents the potential energy at the
distance r = b. Inserting this into (2.163a) gives:

cotan (ϑ/2)= 2Ekin(r =−∞)
Epot(r = b)

= 4πε0

qQ
µv2

0b .

(2.163b)

The scattering angle ϑ in the CM-system is for
a Coulomb potential determined by the ratio

µv2
0/(a/b)= 2Ekin(r =−∞)/Epot(b)

of twice the initial kinetic energy to the potential
energy at the distance r = b.

EXAMPLE

b = 2×10−12 m (≈ 1/100 atomic diameter), µv2
0 =

10 MeV= 1.6×10−12 J; q = 3.2×10−19 C, Q = 1.26×
10−17 C, µ = 3.92 AMU ⇒ ϑ = 1.3◦. For b = 2×
10−13 m (1/1000 atomic diameter) ⇒ ϑ = 13.2◦, and
for b = 2×10−14 m ⇒ ϑ = 51◦.

This example illustrates that for ϑ > 1◦ the scatte-
ring cross section σ = πb2 = 10−4 πR2

A becomes very
small compared to the atomic cross section πR2

A. This
illustrates that in spite of the large number of gold atoms
in the foil each α particle is scattered by ϑ > 1◦ once at
most when passing through the foil.

In order to obtain the differential scattering cross
section, we have to calculate that fraction of all incident
α particles which is scattered into the angular range ϑ±
1
2∆ϑ and can reach the detector with area (Fig. 2.99)

∆AD = (R sinϑ)R∆ϑ∆φ = R2∆Ω . (2.164)

In (2.147) the differential cross section was derived as

dσ

dΩ
= b

db

dϑ

1

sinϑ
. (2.165a)

From (2.163a) we obtain

db

dϑ
= 1

2

qQ

4πε0µv
2
0

1

sin2(ϑ/2)
. (2.165b)

Gold foil

∆AD

R

φ∆
ϑ⋅sinR

ϑ∆⋅R

ϑ∆

ϑ

Fig. 2.99. Definition of solid angle ∆Ω and detector area
∆AD = R2∆Ω = R2 sinϑ∆ϑ∆ϕ

Inserting this into (2.165a) and using the relation
sinϑ = 2 sin(ϑ/2) cos(ϑ/2) and (2.163b) for the im-
pact parameter b we finally get the differential cross
section

dσ

dΩ
= 1

4

(
qQ

4πε0µv
2
0

)2 1

sin4(ϑ/2)
(2.166)

for the scattering of particles with initial kinetic energy
Ekin = 1

2µv
2
0 and charge q in a Coulomb potential

produced by a point-like charge Q. This yields the
fraction

∆Ṅ

Ṅ A
= ngold∆V

4R2 A

(
qQ

8πε0 Ekin

)2
∆AD

sin4(ϑ/2)
(2.167)

of incident particles Ṅ A in a parallel beam with
cross section A, that are scattered by n∆V gold
atoms within the volume ∆V = A ·∆x into the so-
lid angle ∆Ω around ϑ and reach the detector with
area ∆AD =∆Ω/R2 at a distance R � RA from the
scattering center.

Note:

Ṅ A is the total number of particles that passes per
second through the sample area A.
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Fig. 2.100. Comparison of experimental results (points) with
the predictions by Thomson (dashed curve) and Rutherford
(solid curve)

The measured angular distribution (Table 2.5 and
Fig. 2.100) agrees very well with (2.167). Note, that the
product∆Ṅ · sin4 ϑ/2 in Table 2.5 is fairly constant for
ϑ ≥ 45◦. The slightly larger values for small angles ϑ
are due to the fact, that here∆ϑ is no longer very small
compared to ϑ. Here sin4(ϑ/2) ·∆ϑ has to be replaced
by

ϑ+∆ϑ/2∫
ϑ−∆ϑ/2

sin4 ϑ/2 dϑ = 3

8
∆ϑ+ 1

8
cos 2ϑ sin∆ϑ

− cosϑ sin(∆ϑ/2) .

The experiments showed that for large angles ϑ > ϑc

which correspond to small impact parameters de-
viations from the expected values were observed
(Fig. 2.101). Rutherford had already recognized that
these deviations are due to the finite size RN of the
nucleus. If the impact parameter b becomes smaller
than RN, the α particle penetrates into the nucleus. For
b< RN the deflection should be described by (2.157).
However, for b< RN a new short range force, called
the nuclear force, becomes important and the Coulomb

Table 2.5. Measured counting rates for different scattering
angles ϑ [2.47]

angle ϑ counting rate ∆Ṅ ∆Ṅ · sin4 ϑ/2

15◦ 132,000 38.3
30◦ 7 800 35.0
37.5◦ 3 300 35.3
45◦ 1 435 30.8
60◦ 477 29.8
75◦ 211 29.1

105◦ 70 27.7
120◦ 52 29.1
135◦ 43 31.2
150◦ 33 28.7

Fig. 2.101. (a) Paths of particles with different initial ener-
gies, all scattered by ϑ = 60◦. (b) Deviation from Coulomb
potential for paths with Ekin > 25 MeV (i.e., b< bc) for
ϑ = 60◦. (c) Deviation at fixed initial energy Ekin = 10 MeV
for scattering angle ϑ > 100◦

law (2.150) is no longer valid. The attractive nuclear
force is much stronger than the repulsive Coulomb force
and changes the deflection of the α particles.
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Thus the impact parameter at which the measured
distribution deviates from the predicted one gives a mea-
sure for the size of the atomic nucleus. One obtains
values of

RN ≈ r0 A1/2 ,

where A is the atomic mass in AMU and r0 = 1.3×
10−15 m.

The volume of the nucleus therefore only accounts
for the fraction (RN/RA)

3 ≈ 10−13–10−15 of the
atomic volume VA!

While the atomic volume of the gold atom is
about VA = 10−29 m3 that of its nucleus is only
VN ≈ 10−42 m3.

• The initially diffuse and sometimes incorrect pic-
ture of atoms has been concretized by more
and more refined experiments during the past
200 years. This has lead to a quantitative ato-
mic model that describes most observations
correctly.

• In a first crude model atoms are described by sphe-
rical charge and mass distributions with mean
radii of 0.05−0.5 nm, which can be determined
by scattering experiments or by X-ray diffraction
in crystals.

• 1 mol is that quantity of matter that contains as
many atoms or molecules as 0.012 kg 12C, or that
contains as many grams as the mass number of
its atoms or molecules (in atomic units AMU)
indicates.

• The Avogadro constant NA = 6.022×1023 /mol
gives the number of atoms or molecules in 1 mol
of the substance.

• Each neutral atom consists of Z electrons
with mass me = (1/1836)AMU and charge
−e =−1.6×10−19 C and a much more massive
nucleus with mass A (in AMU) and charge +Ze.

• Free electrons can be produced by thermal
emission from metal surfaces, by field emis-
sions from sharp metal peaks in high electric
fields, by electron impact on atoms or mole-
cules and by photoionization, following light
absorption by atoms or molecules, and finally
by the photoeffect, where light incident on
metal surfaces can result in the emission of
electrons.

• Neutral atoms can be ionized through electron
impact, photon absorption, by collisions with fast
ions or by charge exchange in collisions with other

atoms. Atoms that have lost n electrons are called
n-fold ionized.

• Negative ions can be formed by recombination
of free electrons with neutral atoms. They have
a surplus of electrons and can be readily ionized
to become neutral atoms again.

• Charged particles can be deflected in electric or
magnetic fields. Specially formed fields can act as
electron- or ion-optics. The total length of elec-
trostatic or magnetic lenses can be continuously
varied with the field strength.

• The ratio q/m of charge q to mass m of electrons
and ions can be measured with instruments based
on the deflection of charged particles in electric
or magnetic fields. The mass can be determined
separately only if the charge q is known. Mass
spectrometers are devices that separate ions of
different masses and can measure the absolute va-
lues of masses after calibration with carbon atoms
representing the mass unit.

• In time-of-flight spectrometers the mass depen-
dent flight time through a field-free region of ions
accelerated by a known voltage U is used for mass
determination.

• The elementary charge unit q = e can be measured
with Millikan’s oil droplet experiment

• Scattering of α particles (He++) by gold atoms,
or more recent modern variants of Rutherford’s
initial experiments, using high energy electrons
or protons, support the Rutherford atomic model,
which proposes the following structure of atoms:
By far, the major part of the atomic mass is united
in a very small volume, called the atomic nucleus
with a typical radius of (1−5)×10−15 m, which
is about five orders of magnitude smaller than

S U M M A R Y
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the atomic radius RA ≈ 10−10 m. The volume of
the nucleus is therefore only about 10−13−10−15

of the atomic volume. The rest of the volume
contains the Z electrons, but is nearly completely
empty of mass although filled with the electric
field of the charges.

• The positive charge +Ze of the atomic nucleus is
compensated by the negative charges −Ze of the
Z electrons to form a neutral atom. Experiments
show that possible differences ∆q between the
absolute values of positive and negative charges
are smaller than ∆q/q ≤ 10−21.
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1. In 1 m3 of air there are 2.6×1025 molecules under
normal conditions (p = 101,325 Pa = 1 atm and
T = 273.2 K = 0 ◦C). How large is
a) the mean distance between two molecules?
b) the spatial filling factor η= Vmol/1 m3, when
the molecules are described by spheres with radius
R = 0.1 nm?
c) the mean free path length Λ?

2. The main constituents of air are: 78% N2, 21% O2

and 1% Ar. Using these numbers calculate the
mass density ρ of air under normal conditions.

3. How many atoms are in
a) 1 g of 12C?
b) 1 cm3 of helium at a pressure p = 105 Pa and
T = 273 K?
c) 1 kg of nitrogen gas (N2)?
d) In a steel bottle with 10 dm3 volume of H2 gas
at p = 106 Pa?

4. In interstellar space the mean density of H atoms
is about 1 atom/cm3 and the mean temperature
is about 10 K. What is the pressure under these
conditions? Why can such low pressures not be
obtained on earth under laboratory conditions?

5. Imagine that an international commission has de-
fined a new temperature scale, where the absolute
zero is defined as 0◦ N and the freezing point of
water as 100◦ N. What is the value of the boiling
point of water on this new scale? What would be
the value of the Boltzmann constant k in J/◦ N?

6. Prove the relation vs = vph = (κRT/M)1/2 bet-
ween sound velocity vs molar mass M and
temperature T given in Sect. 2.2.3b? How large
are the frequencies of radial acoustic resonances
in a spherical resonator with radius r0?

7. In his experiments about the number density dis-
tribution of latex particles in water, Perrin found
49 ·∆h particles per cm3 in a slice∆h at a height h
and 14 particles at h+60 µm. The mass density of
the particles was ρT = 1.194 kg/dm3 and their ra-
dius r = 2.12×10−7 m. What was the mass of the
particles, the Avogadro constant and their mole
mass?

8. a) What is the incidence angle α for X-rays
with λ = 0.5 nm falling onto a grating with
1200 grooves per mm when the first diffraction
maximum should be observed under the angle

β1 = 87◦. Where does the the second diffrac-
tion order appear? How large must α be to give
β1−β2 ≥ 0.75◦?
b) X-rays with λ= 0.2 nm are diffracted at the
(100) plane (parallel to two of the endfaces of
the cube) of a cubic NaCl crystal. The first dif-
fraction order appears at β = 21◦. What is the
lattice constant of the NaCl crystal? How large
is the Avogadro constant calculated from this
experimental result when the mass density is
ρNaCl = 2.1 kg/dm3?
c) What are the radius and the volume of Ar
atoms in a cold Ar crystal (face centered cu-
bic lattice = highest density package of spheres),
when the specular reflection maximum is at
ϑ = 43◦ for an X-ray beam with wavelength
λ= 0.45 nm, incident on the crystal under an an-
gle ϑ against the plane (100) parallel to one side
of the cubic crystal?

9. The general equation for a real gas can be writ-
ten either in the form of the Van der Waals
equation (2.51b) or as a Taylor series in powers
(1/VM)

n of the inverse mole volume VM:

pVM = RT(1+ B(T)/VM+C(T)/V 2
M+ . . . ) .

Compare the virial coefficients B(T),C(T), . . .
with the constants a and b in the van der Waals
equation and discuss their physical meaning.

10. Derive the equation (2.52).
11. How accurate can the ratio e/m for electrons be

determined under the following conditions?
a) In a longitudinal magnetic field, when the
electrons pass through apertures with 1 mm dia-
meter located before their entrance into the field
and in the focal plane. The current reaching the
detector can be measured with a relative ac-
curacy of 10−3, the magnetic field B and the
acceleration voltage U with 10−4 and the di-
stance L = 100 mm between entrance and exit
aperture with 2×10−3?
b) With a Wien filter, where entrance and
exit slits with width b = 0.1 mm are separa-
ted by d = 10 cm and the acceleration voltage
is U = 1 kV. The accuracies for all necessary
measurements are the same as above.

P R O B L E M S
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12. A beam of Cs-atoms with velocity v= 300 m/s
is emitted into vacuum through an orifice with
diameter d0 = 40 µm. The beam is collimated by
a slit S1 with width b1 = 40 µm, placed 200 cm
downstreams of the orifice.
a) Calculate the vertical deviation of the beam
from a horizontal line at a distance d2 = 200 cm
away from S1, caused by gravity. b) What is the
deflection of the atoms with assumed charge ∆q
after passing an electric field E = 5×106 V/m
with length L = 200 cm, placed between S1

and S2? c) How large is the relative change
∆N/N of particles passing through the second
slit S2 200 cm away from S1, when the electric
field is switched from +E to −E? d) Esti-
mate the accuracy limit for the determination of
∆q = |e+|− |e−|, when a change ∆Ṅ = 10−4 Ṅ
with Ṅ = 109 s−1 can still be monitored?

13. Ar+ ions with a kinetic energy of 103 eV pass
through a magnetic 60◦ sector field. What is the
magnitude of the magnetic field for achieving
a focal length of f = 80 cm?

14. The electric potential along the axis of an electron
lens with cylindrical symmetry shall be described
by

φ = φ0+az2 for 0 ≤ z ≤ z0

φ = φ0 for z ≤ 0

φ = φ0+az2
0 for z ≥ z0

How large is the focal length of this lens
for electrons entering the field with a velocity
v0 = (2eΦ0/m)1/2 for a potential φ0 = 104 V/m
and a = 103 V/m3?

15. a) Derive the relation U = 2V0 ln(R2/R1) bet-
ween the voltage U between the two cylindrical
plates of a condensor and the optimum accelera-
tion voltage V0 for electrons passing through the
condensor on the central curved path?
b) For which angle ϕ in Fig. 2.66 acts the con-
densor as cylindrical lens? What is its focal
length?

16. Within a thin layer of thickness b= 2 mm between
two grids, separated by d = 30 mm with a voltage
of 300 V between the grids, ions with mass m are

produced and sent through a time-of-flight mass
spectrometer.
a) What is the time of flight and its spread in
a 1-m long field-free drift tube? Is it possible
to separate two masses with m1 = 110 AMU and
m2 = 100 AMU?
b) Show that the reflectron has a larger mass reso-
lution than the linear time-of-flight spectrometer.
What is the reason for this? Which parameters in-
fluence the mass resolution?
c) Compare the mass resolution of a time of flight
spectrometer with that of a magnetic 180◦ mass
spectrometer, where ions within the velocity in-
terval v0±∆v/2 enter the field as a parallel beam
through an aperture that is 1mm in width. The
exit slit is also 1mm wide. What is the beam
divergence at the exit plane?

17. Prove, that the angular momentum of incident
particles, defined with respect to the centre point
is conserved during a collision, if the interaction
potential is spherical symmetric.

18. α particles with Ekin = 5 MeV are scattered
by gold atoms in a thin foil (d = 5×10−6 m,
ρ = 19.3 g/cm3, M = 197 g/mole).
a) What is the impact parameter b for particles
with a scattering angle ϑ = 90◦?
b) What is the value for rmin for backward scatte-
ring ϑ = 180◦?
c) What fraction of all incident particles is scatte-
red into angles ϑ ≥ 90◦?
d) What fraction is scattered into the range
45◦ ≤ ϑ ≤ 90◦?

19. Compare the relative numbers of particles scat-
tered into the range ϑ = (1±0.5)◦ and ϑ = (5±
0.5)◦ for both the Thomson and the Rutherford
model for the gold foil of Problem 2.18 when the
angular resolution is 1◦.

20. Protons are shot into a copper foil with d = 12 µm.
a) What is the proton energy if the central col-
lisions rmin become equal to the nuclear radius
rN = 5×10−15 m of the copper atoms?
b) For rmin < rN, deviations from the Rutherford
scattering formula are expected. For which scatte-
ring angles ϑ does this happen at a proton energy
of 9.5 MeV?



3. Development of Quantum Physics

At the beginning of the 20th century several experi-
mental findings could not be explained by the existing
theories of the time, which we will name “classical
physics”. These experiments indicated that the concep-
tion of classical physics had to be modified. Examples
are the measured spectral distribution of radiation from
black bodies, which was in disagreement with theoreti-
cal predictions, the photo effect, the explanation of the
Compton effect and a satisfactory answer to the que-
stion of why atoms in their lowest energetic state are
stable.

It turned out that the particle model of classical
mechanics had to be reviewed. This model attributed
to each particle a well-defined path in space that could
be predicted for all times provided the initial conditions
(location and velocity at time t = 0) and the force field
acting on the particle, were known.

Also the classical description of electromagnetic
fields and waves by the Maxwellian equations seemed to
need a critical revision when applied to the microscale
of atoms and molecules.

This chapter will present the most important ex-
perimental proofs for the necessary modification and
extension of classical physics, which have led to the
development of quantum physics. The basic ideas of
quantum physics will be presented here, while a brief
description of the mathematical framework of quantum
theory along with some examples are given in the next
chapter.

3.1 Experimental Hints
to the Particle Character
of Electromagnetic Radiation

During the 18th century a long-lasting quarrel was
fought among scientists about the correct description

of light. Newton and his school postulated that light
should consist of small particles [3.1]. Their model
could explain the straight paths of light rays and also
the refraction of light at the boundary between two
media with different refractive indices. Huygens and
other scientists, on the other side, believed that light was
a wave phenomenon. Their experiments on diffraction
and interference seemed to prove their theory [3.2].

The wave model was generally accepted when Hein-
rich Hertz discovered the electromagnetic waves and
when it was recognized that visible light was just a spe-
cial case of electromagnetic waves restricted to the
wavelength region between λ= 0.4 µm–0.7 µm, which
could be described by the Maxwellian equations like all
electromagnetic waves.

The following sections shall illustrate that both mo-
dels, the particle model and the wave description of
light, were partly correct but that both models must be
combined for a complete characterization of light. The
important point, shown by the quantum physical model
is that particle and wave descriptions do not contra-
dict but rather supplement each other. Depending on
which property of light is described, the wave model or
the particle model is a more proper description. Let us
first summarize the classical model of electromagnetic
waves.

In classical physics a plane electromagnetic wave

E = Acos(k ·r−ωt)

is described by its amplitude A= |A|êp, its frequencyω,
and its wave vector k, which points into the propagation
direction and has the amount |k| = 2π/λ, determined by
the wavelength λ= c/ν= 2πc/ω. In case of a polarized
wave the direction of the electric field vector is given
by the polarization unit vector êp. The energy density
of this electromagnetic wave in a vacuum

wem = ε0|E|2 = 1

2
ε0
(
E2+ c2 B2) [J/m3] (3.1)
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is determined by its electric field amplitude E = |E| and
can be also described by the magnetic field amplitude B.

The intensity (the incident power per unit area) of
an electromagnetic wave is

I = cε0 E2 = cwem (3.2a)

and the power, transmitted through the area A with the
normal unit vector ên

dW

dt
= IA

k
|k| ên (3.2b)

is determined by the relative orientation of wave vector k
and normal vector en of the area A.

Note that in this classical description both power
density and intensity depend on the square of the electric
field amplitude E. They are continuous functions of E
and of the space coordinates inside the radiation field.

The classical electromagnetic wave also has
a momentum density (momentum per unit volume),

πem = ε0(E× B)= 1

c2
S (3.2c)

described by the pointing vector S= ε0c2(E× B),
where the amount of S

|S| = ε0cE2 = I (3.2d)

equals the intensity of the wave.
An important quantity is the spectral intensity Iν

[W m−2 s] with

I =
∞∫

ν=0

Iν(ν)dν , (3.2e)

where Iν(ν)dν gives the incident power density within
the spectral interval dν.

All these results can be derived from Maxwell’s
equations and the continuity equation, which describes
all phenomena observed until the end of the 19th century
very well.

The first hints that corrections were necessary came
from experiments measuring the spectral distribution of
the radiation emitted by a hot blackbody, which will be
discussed in the following section.

3.1.1 Blackbody Radiation

Material that absorbs all incident radiation (its ab-
sorption is A∗ = 1) is called a blackbody. It can be

Fig. 3.1. A closed cavity absorbs nearly all radiation entering
the cavity through a small hole

approximately realized by a closed cavity with absor-
bing walls and a small hole in one of the walls (Fig. 3.1).
If the area ∆A of this hole is very small compared to
the area A of the inner walls, radiation passing from
outside through the hole into the cavity has a negligible
chance to leave the cavity again, i.e., it is completely
absorbed. This means that the absorption of the hole is
A∗ ≈ 1.

When the walls of the cavity are heated to a tem-
perature T> Ts, where Ts is the temperature of the
surrounding, the hole acts as radiation source with an
intensity that is larger than that of any other body at the
same temperature. This can be demonstrated by a sim-
ple experiment. Into one side of a solid graphite cube
the letter H is mill-cut (Fig. 3.2). At low temperatures
the letter appears much darker than its surroundings, but
at higher temperatures (about 1000 K) it appears bright
yellow on a dark red surrounding. This means that at

HH
SK TT ≈ SK TT >>

Fig. 3.2. The letter H mill-cut into a graphite cube appears
completely black at temperature Tk < Ts = temperature of the
surrounding, but appears bright for Tk � Ts
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low temperatures it absorbs nearly all incident radia-
tion while at higher temperatures it emits more than the
surface of the cube at the same temperature.

Inside the closed cavity of Fig. 3.1 a stationary radia-
tion field exists that depends solely on the temperature
of the cavity walls and not on the dimensions d of the
cavity as long as d � λ, where λ is the wavelength of
the enclosed radiation. The application of basic laws of
thermodynamics lead to the following considerations.

• For a stationary state of the cavity radiation the ra-
diation power emitted by the walls must equal that
absorbed by them for all frequencies ν of the radia-
tion (otherwise the radiation field would change in
time). This means

dWa(ν)

dt
= dWe(ν)

dt
. (3.3)

For such a stationary state we define the tempera-
ture T of the radiation field by the temperature of the
cavity walls. The radiation field has the following
characteristics.

• The cavity radiation field is isotropic, which means
that the spectral radiation density S∗ν (this is the
radiation power per frequency interval dν = 1 s−1

radiated into the solid angle dΩ = 1 Sterad) is inde-
pendent of the direction at every point of the cavity.
If this wasn’t the case, one could insert a black disc
with surface area dA into the radiation field and ori-
ent it in such a way that its surface normal would
point into the direction of maximum radiation den-
sity (Fig. 3.3). The disc would then absorb more
energy than it emits and would be heated above the

dF

isotropic
radiation
fielddt

dWA

Ωd

Ωd

dt
dWE

Fig. 3.3. A body in the cavity is at thermal equilibrium with
the thermal isotropic radiation inside the cavity

temperature T of its surrounding. This, however,
contradicts the second law of thermodynamics.

• The cavity radiation is homogeneous, i.e., its energy
density is independent of a special point inside the
cavity. Otherwise a similar argument would hold as
in the previous paragraph and a perpetual motion
machine of the second kind could be constructed.

When a body is placed inside the cavity radiation field,
its surface element absorbs the power

dWa(ν)

dt
= A∗

νS∗ν dA dΩ dν (3.4a)

from the radiation with spectral radiation power den-
sity S∗ν within the frequency interval dν incident on dA
within the solid angle dΩ. The constant A∗

ν is the spec-
tral absorbance of the body. The surface element dA
emits, on the other hand, the power

dWe(ν)

dt
= E∗

ν dA dΩ dν (3.4b)

into the solid angle dΩwithin the frequency interval dν.
For thermal equilibrium conditions both quantities

must be equal. Since the cavity radiation is isotropic
and homogeneous, this must be valid for every direction
(θ, ϕ) and for every location inside the cavity. Therefore
we obtain Kirchhoff’s law:

E∗
ν

A∗
ν

= S∗ν (T) . (3.5)

For all bodies in thermal equilibrium with the ca-
vity radiation the ratio of spectral emittance E∗ν
and absorbance A∗

ν equals the spectral radiation
density S∗ν of the cavity radiation, which itself
depends on the temperature T .

For a black body is A∗
ν ≡ 1 for all frequencies ν. We

therefore conclude from (3.5):

The spectral emittance E∗
ν of a blackbody equals

the spectral radiation density S∗ν of the cavity
radiation.

Our next task is now to determine the spectral de-
pendence of S∗ν , which equals the spectral intensity
distribution E∗

ν(ν) of the blackbody radiation.
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3.1.2 Planck’s Radiation Law

Let us assume a radiation field inside a cubic box with
side lengths L that is in thermal equilibrium with the
walls of the cavity at temperature T . The field can be de-
scribed as the superposition of waves with wave vectors
k= {kx, ky, kz}. A stationary field distribution, which
means a standing wave field, can be only realized if cer-
tain boundary conditions are fulfilled. These conditions
demand that the field amplitude be zero at the walls of
the box (Fig. 3.4a,b). This restricts the possible values
of the components of the k-vector to

kx = π
L

n1 , ky = π
L

n2 , kz = π
L

n3

⇒ k = |k| = π
L

√
n2

1+n2
2+n2

3 , (3.6)

where the ni are arbitrary integers. For the wavelengths
λ= 2π/k and the angular frequency ω= kc we then
obtain

λ= 2L√
n2

1+n2
2+n2

3

, (3.7a)

ω= ck = πc

L

√
n2

1+n2
2+n2

3 . (3.7b)

Every stationary field distribution with a specified triple
(n1, n2, n3) is called a mode of the cavity radiation field.

The question now is how many modes with frequen-
ciesω<ωm can exist, whereωm is a number determined
by the specific problem.

xk

yk

zk
k
→

x

y

z

2n/L2
L

z

y

zk−
zk+

yk+

zk+ zk−
yk−

yk+

yk−

3Lz nk ⋅= π

2Ly nk ⋅= π

1Lx nk ⋅= π

λ= /L2R

k
→

a) b) c)

Fig. 3.4a–c. Modes of a stationary EM field in a cavity.
(a) Standing waves in a cubic cavity (b) Superposition of
possible k vectors to form standing waves, illustrated in

a two-dimensional coordinate system (c) Illustration of the
calculation of the maximum number of modes in momentum
space

In a coordinate system in k-vector space with
coordinates (π/L)(n1, n2, n3) each triple of integers
(n1, n2, n3) represents a point in a three-dimensional
lattice with the lattice constant π/L. In this system (3.7)
describes all possible lattice points within the positive
octand of a sphere with radius ω/c (see Fig. 3.4c). If
this radius is large compared to the lattice constant π/L,
(which means L � λm) the number N = (L/π)3 ·V of
lattice points (n1, n2, n3)withω<ωm is approximately
given by the volume

V = 1

8

4

3
π
(ωm

c

)3

of the octant of the sphere in Fig. 3.4c. This also gives
the number of modes of a stationary radiation field.

Each mode can be composed of two standing waves
with independent polarization directions of the electric
field vector

E = a1ê1+a2ê2 , ê1 · ê2 = δ12 , ê1, ê2⊥k .

For the total number of possible standing waves with
frequencies ω< ωm inside a cubic cavity with length L
including the polarization we then obtain

N(ω≤ ωm)= 2
1

8

4π

3

(
Lωm

πc

)3

= 1

3

L3ω3
m

π2c3
. (3.8)

The mode density (i.e., the number of modes within the
unit volume)

n(ω≤ ωm)= 1

L3
N(ω < ωm)= 1

3

ω3
m

π2c3
(3.9a)
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Fig. 3.5. Spectral mode density n(ν) as a function of
frequency ν, represented on a double-logarithmic scale

becomes independent of the size of the cavity as long
as L � λ.

The spectral mode density (i.e., the number density
of modes within the spectral interval dω= 1 s−1 can be
obtained by differentiating (3.8)). This gives

nω = d

dω
(n(ω))= ω2

π2c3
. (3.9b)

Spectroscopists prefer the frequency ν instead of the an-
gular frequency ω= 2πν. This converts (3.9b) because
dω= 2π dν into

nν(ν)= 8πν2

c3
. (3.10a)

In Fig. 3.5 this quantity is plotted against the frequency ν
on a double logarithmic scale.

The number of modes per unit volume within the
frequency interval between ν and ν+ dν is

nν(ν)= 8πν2

c3
dν . (3.10b)

EXAMPLE

In the visible range (ν = 6×1014 s−1=̂λ= 500 nm), we
obtain from (3.10): n(ν)= 3×105 m−3 Hz−1. Within
the frequency interval dν = 109 s−1 (this corresponds

to the frequency width of a Doppler broadened spectral
line (see Sect. 7.3)), there are 3×1014 modes/m3.

The spectral energy density wν(ν) of the cavity
radiation field is then

wν(ν)dν = n(ν)w̄ν(T)dν , (3.11)

where w̄ν(T) is the average energy per mode, which
depends on the temperature T .

For the determination of w̄ν(T) Rayleigh and Jeans
used a classical model. They assumed that each mode
of the field could be treated like a harmonic oscil-
lator with the mean energy wν(T) = kT (remember
the proof in thermodynamics that the mean energy
of a system with f degrees of freedom is f

2 kT ). The
one-dimensional harmonic oscillator has potential and
kinetic energies with equal mean values. Therefore its
total mean energy is 2 1

2 kT . This yields for the spectral
energy density of the cavity field

wν(ν)= dν = 8πν2

c3
kT dν (3.12)

(the Rayleigh–Jeans radiation law).
Through a small hole in a cavity wall the radiation

density S∗(ν)dν = (c/4π)wν dνdΩ is emitted into the
solid angle dΩ. Using (3.11) this gives

S∗ν (ν)dν =
2ν2

c2
kT dν . (3.13)

The experimental check shows, that for small fre-
quencies (in the infrared spectral region) (3.13) agrees
quite well with the experimental results. However, for
larger frequencies (in the ultraviolet region) drastic dis-
crepancies were found. While the Rayleigh–Jeans law
predicts

lim
ν→∞ S∗ν (ν)→∞

the experiments proved that with increasing ν the ra-
diation density S∗ν (ν) increases at first, passes through
a maximum and then decreases again. This discrepancy,
which could not be explained at that time, was called
the ultraviolet catastrophe.

What is wrong with the Rayleigh–Jeans model?
This question was finally answered by Max Planck,

who in 1904 developed a new theory he called quan-
tum hypothesis [3.3, 4]. It is based on the following
assumptions.
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Planck also described the cavity modes of the ra-
diation field as oscillators. However, he postulated,
that these oscillators could not increase or decrease
their energies wν by arbitrary small amounts (as this
would be for wν = kT ), but only in integer multiples of
a minimum energy quantum hν. The constant

h = 6.6260755×10−34 Js

is named Planck’s constant.
This energy quantum hνwith the minimum possible

energy wν > 0 is called a photon. The energy stored in
a mode containing n photons is then

wν = nhν .

At thermal equilibrium the energy distribution wν(T)
of a system is governed by the Boltzmann factor
exp[−w/kT ]. Therefore the probability p(wν) that
a mode contains n photons, i.e., has the energy
wν = nhν, is given by

p(wν)= e−nhν/(kT)∑∞
n=0 e−nhν/(kT)

, (3.14a)

where the denominator represents the partition function
which normalizes the probablity p(wν) in such a way
that

∞∑
n=0

p(nhν)= 1

as can be immediately seen from (3.14a). This means,
that the total probability, that a mode contains an energy
between 0 and ∞ must, of course, be 100%.

The mean energy per mode is then (see Problem 3.2)

w̄ν =
∞∑

n=0

nhνp(nhν)

=
∑

nhν e−nhν/kT∑
e−nhν/kT

= hν

ehν/kT −1
. (3.14b)

The spectral energy density wν(ν) of the blackbody
radiation is then

wν(ν, T)= n(ν)w̄ν(ν, T) . (3.14c)

Inserting (3.10b) and (3.14b) yields the famous Planck’s
radiation law

wν(ν)dν = 8πhν3

c3

dν

ehν/kT −1
(3.15)

for the spectral energy density wν [J m−3 s], i.e., the
energy per unit volume and unit frequency interval dν=
1 s−1.

The spectral radiation energy, emitted within the
frequency interval dν by a surface element dA of
a blackbody into the solid angle dΩ is then

S∗ν dν dΩ dA = c

4π
wν dν dΩ

= 2hν3

c2

dν dΩ

ehν/kT−1
dA , (3.16)

which is in complete agreement with experimental
results!

For hν� kT the denominator in (3.16) can be ap-
proximated by hν/kT because ex ≈ 1+ x for x � 1.
Then we obtain

S∗ν (ν)=
2ν2

c2
kT ⇒w(ν)= 8πν2

c3
kT . (3.17)

This is identical to the Rayleigh–Jeans formula (3.13),
which turns out to be the asymptotic case of the gene-
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tribution of the blackbody radiation at two different
temperatures

ral Planck distribution for the long wavelength region
(hν/kT � 1).

Using the relation λ= c/ν, Planck’s law (3.15)
can also be written in terms of the wavelength λ.
Note that dλ/dν =−c/ν2 ⇒ dλ=−(c/ν2)dν. Defi-
ning wλ(λ)dλ as the spectral energy per wavelength
interval dλ gives

wλ(λ)dλ= 8πhc

λ5

dλ

ehc/(λkT)−1
. (3.18)

From dwλ/dλ= 0 one obtains (see Problem 3.3) for
the wavelength λm, at which wλ(λ) has its maximum

λm = 2.88×10−3 [m]
T [K]

⇒ λmT = 2.88×10−3 [m K] = const . (3.18a)

To illustrate, Fig. 3.6 shows the wavelength-
dependent distribution of the spectral radiation density
of a blackbody at four different temperatures and
Fig. 3.7 demonstrates the difference between the
Rayleigh–Jeans and Planck distribution.

EXAMPLE

The sun can be regarded, to a good approximation, as
a blackbody with a surface temperature of 5800 K. Its
spectral radiation density emitted at λ= 500 nm (ν =
6×1014 s−1) into the solid angle dΩ = 1 Sterad within
a wavelength interval dλ= 1 nm (∆ν = 1.2×1012 s−1)
is, according to (3.16),

S∗ν∆ν = 4.5×104 W

m2 Sterad
.

Integration over all wavelengths gives the total radiation
density

S∗ = 1×107 W/(m2 Sterad) .

Integration over the suns surface yields the total power

P� = 4πR2
�107 W = 3.82×1026 W

radiated by the sun into all directions.
The earth, seen from the center of the sun, at

a distance r = 1.5×1011 m covers a solid angle

∆Ω = R2
E/4

(1.5×1011)2
= 2.5×10−7 Sterad .

It therefore receives from the sun the total radiation
power

dW/dt = P�∆Ω/4π = 7.6×1018 W .

About 37% of this irradiation falls into the visible range
between ν1 = 4×1014 Hz (λ= 750 nm) and ν2 = 7×
1014 Hz (λ= 430 nm).

The intensity I = PE/A received per m2 of the earth
surface at vertical incidence is the solar constant

SC = 1.36×103 W/m2 .

About 37%=̂500 W/m2 are in the visible range.
Less than half of this radiation power heats the sur-

face of the earth. Part of it is reflected by the atmosphere
and the earth’s surface and part of it is absorbed in the
atmosphere.
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3.1.3 Wien’s Law

The maximum of the intensity distribution S∗ν (ν) (3.16)
is obtained by setting the derivative dS∗ν/dν = 0. This
is more tedious than looking for d(ln S∗ν )dν= 0, which,
of course, gives the same frequency νm for the intensity
maximum.

The result is (see Problem 3.3)

νm = 2.82

h
kT ⇒ νm

T
= 5.87×1010 s−1 K−1 .

(3.19)

The frequency νm of the maximum intensity therefore
increases linearly with the temperature T , which means
that the ratio νm/T is a constant.

Note:

λm does not equal νm/c, because wλ(λ) is defined for
a spectral interval dλ= 1 nm, while wν(ν) is defined
for dν = 1 s−1. Because of the nonlinear relation dλ=
−(c/ν2)dν the variation of wλ(λ) with decreasing λ
differs from that of wν(ν) with increasing ν.

The product λmT = 2.88×10−3 m K is a constant
(see Fig. 3.8). Wien’s law can therefore be written as

λmT = const or νm/T = const , (3.20)

where the two constants are different.
The experimental results are in perfect agreement

with Wien’s law, which is derived from Planck’s
radiation law.

54321

*S m545.0max µ=λ m7.2max µ=λ

)(500 λ*S
K5,000T =

m/ µλ

K1,000T =

Fig. 3.8. Illustration of Wien’s law. The ordinate of the 1000 K
distribution has been expanded by a factor 500

3.1.4 Stefan–Boltzmann’s Radiation Law

The total energy density of the blackbody radiation,
integrated over all frequencies ν is

W(T)=
∞∫

ν=0

wν(ν, T)dν = 8πh

c3

∫
ν3 dν

ehν/kT−1
.

(3.21)

We use the abbreviation x = hν/kT and expand

1

ex −1
= e−x

1− e−x
=

∞∑
n=1

e−nx .

Inserting this expansion into (3.21) yields, with

ν = (kT/h)x ⇒ dν = kT

h
dx ,

w(T)= 8πh

c3

(
kT

h

)4 ∞∑
n=1

∞∫
0

x3 e−nx dx . (3.22a)

The integration of each member of the sum gives the
final result for the energy density

w(T)= aT 4 with a = 4π5k4

15h3c3
. (3.22b)

The radiation power S∗ emitted from a surface element
A = 1 m2 into the solid angle dΩ = 1 Sterad is, with
S∗ = (c/4π)W ,

S∗(T)= π4k4

15h3c2
T 4 . (3.23a)

Into the solid angle dΩ = 2π the radiation power of
1 m2 surface of a blackbody is then

dW

dt
= 2πS∗(T)= σT 4 (3.23b)

with σ = c

2
a = 2π5k4

15h3c2

= 5.67×10−8 W m−2 K−4 .

The constant σ is named the Stefan–Boltzmann
constant.



3.1. Experimental Hints to the Particle Character of Electromagnetic Radiation 87

Planck’s law, Wien’s law and the Stefan–
Boltzmann law are all in complete agreement
with experimental findings. This strongly cor-
roborates Planck’s hypothesis of the quantized
radiation field, which postulates that the energy
densitywν(ν, T) is not a continuous function of T
but a discontinuous step function with smallest
steps h ·ν. In most cases these steps are so small
that they are not directly noticed. We will, howe-
ver, soon discuss experiments where they can be
directly detected.

3.1.5 Photoelectric Effect

When a negatively charged isolated metal plate is irra-
diated by ultraviolet light (Fig. 3.9) the electric charge
on the plate decreases, as was found in 1887 by Heinrich
Hertz (1857–1894) and later in 1895 through more de-
tailed experiments by Wilhelm Hallwachs (1859–1922).
This means that electrons must have left the plate.

This light-induced electron emission can be quan-
titatively measured with the device shown in Fig. 3.10.
The irradiated plate within an evacuated glass bulb ser-
ves as cathode, which is opposed by a similar plate
with positive voltage that forms the anode of an elec-
tric diode. The photocurrent Iph(U) is measured as
a function of the voltage U between cathode and an-
ode. The measurements show that Iph(U) starts already
at slightly negative voltages U0 (i.e., the anode has
a negative voltage U0 against the cathode), rises with in-
creasing voltage until it reaches a saturation value that
depends on the radiative power incident on the cathode

−−

Isolator

Electro-
meter

dQ
dt

N e= − ⋅
•

−Q
h ⋅ ν

Fig. 3.9. Experimental ar-
rangement of Hallwachs for
the demonstration of the
photoelectric effect
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Fig. 3.10. (a) Phototube
for measuring the photo-
induced electric current
Iph as a function of the ap-
plied voltage; (b) Photo-
current Iph(U)

(Fig. 3.10b). When electrons can reach the anode with
a negative bias voltage−U ≥−U0 they must have been
emitted from the cathode with a kinetic energy

Ekin = me

2
v2 ≥ eU .

In 1902 Lennard obtained the following results after
careful measurements:

• The kinetic energy (m/2)v2 of the photoelectrons is
dependent solely on the wavelength λ of the incident
light, not on its intensity!

• The number of ejected photoelectrons is proportio-
nal to the light intensity.

• There is no measurable time delay between
irradiation and electron ejection.

Einstein was able to explain Lennard’s experimental
results in 1905 using the model of light quanta (pho-
tons). Each absorbed photon transfers its energy hν
completely to an electron inside the metal, which is
bound to the metal by attractive forces and needs a mi-
nimum energy Wa (work-function) to leave the metal.
The maximum kinetic energy of the photo electron is
then

Emax
kin = hν−Wa . (3.24)

In the experiment this maximum kinetic energy

Emax
kin = eU0 (3.25)
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Fig. 3.11. Plot of the maximum bias voltage U0 as a function
of the frequency ν of the incident light

can be determined from the bias voltage −U0 at which
the photocurrent starts. The relation (3.24) can then be
written as

eU0 = hν−Wa . (3.26)

Plotting eU0 against the photon energy hν = hc/λ, gi-
ves the straight line shown in Fig. 3.11. From its slope
tanα= eU0/(hν), Planck’s constant h can be determi-
ned. The intersection with the vertical axis hν yields the
work function Wa of the cathode material.

In the classical model of an electromagnetic wave
the radiation power PL = IL A incident onto the area A
of the metal should be equally shared by all N∆V elec-
trons with a number density N within the irradiated
volume V = A∆z (∆z ≈ λ is the penetration depth of
the light wave with wavelength λ into the metal).

Each electron would then receive, on average, the
energy

w̄= PL∆t

NAλ
. (3.27)

Since w̄ has to be larger than the workfunction Wa, we
conclude from (3.27) that the irradiation time must be
at least ∆t ≥ Wa NAλ/PL.

EXAMPLE

A zinc plate (electron density N = 1023 /cm3, work-
function Wa ≈ 4 eV) is irradiated at a distance of 1 m
from the light source (Hg arc lamp) that emits (through
a spectral fitter) 1 W radiation power at λ= 250 nm.
The power incident onto 1 cm2 of the zinc plate is then

the intensity

Ic = 1 W

4πR2
= 8×10−6 W/cm2 .

This power is shared by N∆V = λ ·1023 = 2.5×1019

electrons. The average radiation power received by
one electron is Pel = 3×10−24 W= 2×10−5 eV/s. This
means it would take ∆t = Wa/Pel = 2×105 s before
an electron had accumulated sufficient energy to es-
cape from the metal. This strongly contradicts the
experimental results.

Einstein’s model could explain the experimental re-
sults completely. In 1926 he received the Nobel Prize
in Physics for his photoeffect theory (not for his theory
of relativity!).

There are numerous descriptions of detailed experi-
ments in the literature that unambiguously corroborate
Einstein’s theory of the photo effect [3.5]. One example
is the experiment performed by Joffe and Dobronrawov
in 1925 [3.6]. They measured the changes ∆Q of the
charge Q of a small bismuth particle balanced between
the plates of a capacitor (Fig. 3.12) during illumina-
tion of the particle with low intensity X-rays. Every
change ∆Q, due to the loss of an electron results in
a perturbation of the balance between gravitational and
electric force and leads to a movement of the particle,
which is observed through a microscope.

The X-ray source emitted Ṅ = 103 X-ray quanta
with hν = 104 eV per second into all directions, which
corresponds to a radiation power of 10−12 W. On the
average a charge change ∆Q of the particle was ob-
served every 30 min. The quantum hypothesis explains
this experimental finding as follows.

The number of X-ray photons hν, hitting the
bismuth particle within the time interval ∆t is

Fig. 3.12. Experiment of Joffé and Dobronrawov for
confirming the photon model of Planck
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Z = Ṅ∆t∆Ω/4π, where ∆Ω is the solid angle ac-
cepted by the particle. With ∆Ω = 6×10−6 Sterad and
∆t = 1800 s the estimated number becomes Z = 1 in
accordance with the experiment.

The classical model describes X-rays as a spherical
wave, propagating from a point-like source in all di-
rections. Like in the quantum model, the fraction dP
of the radiation power P absorbed by the particle
is dP = P dΩ/4π. However, the absorbed power dP
should be shared by all N ≈ 1012 electrons of the bis-
muth particle. In order to emit an electron after 30 min,
all electrons must simultaneously transfer their energy
share to the same electron, which is highly improbable.
This example shows that the deficiency of the wave mo-
del stems from the fact that it does not concentrate the
wave energy onto a single electron but spreads it out to
a larger volume determined by the irradiated area.

Note:

However, the discrepancy between the wave model of
light and the experimental results can be removed if not
only the radiation but also the electrons are described
as waves (see Sect. 3.2).

3.1.6 Compton Effect

The particle character of light quanta became particu-
larly clear by the results of an experiment performed in
1922 by Arthur Holly Compton (1892–1962). When
irradiating material by X-rays with wavelength λ0,
Compton found that the scattered radiation did not only
contain the wavelengths λ0 expected for elastic scatte-
ring, but also larger wavelength λs > λ0 (Fig. 3.13). The
intensity distribution I(λs) of this scattered radiation is
strongly dependent on the scattering angle ϕ, but only
slightly on the kind of material used.

The quantum model describes the Compton effect as
an elastic collision between a photon with energy hν and
momentum p = hk and a loosely bound electron of the
scattering material (Fig. 3.13b). If the binding energy
Eb � hν is small compared to the photon energy hν we
can neglect it and regard the electron as a free particle.
In order to simplify the following calculation we further
assume that the electron is at rest before the collision,
although this assumptions is not essential for the result.

For the elastic collision

hν0+ e− (Ekin = 0)→ hνs+ e−
(
E ′

kin > 0
)

(3.28)

total energy and total momentum have to be conserved.
Since the photon travels with the velocity of light and
the ejected electron might also have a large velocity,
we must use the relativistic description. We choose our
coordinate system in such a way that the incident pho-
ton travels into the x direction, and the xy-plane is the
scattering plane. The energy conservation then reads
with β = v/c as:

hν0 = hνs+ Ekin(e
−)

with Ekin = m0c2√
1−β2

−m0c2 (3.29)

and momentum conservation demands

p0 = �k0 = �ks+ pe with pe = m0v√
1−β2

.

(3.30)

Solving (3.30) for pe yields for |pe|2:

m2
0v

2

1−β2
= h2

c2

(
ν2

0 +ν2
s −2ν0νs cosϕ

)
, (3.31)

where ϕ is the angle between k0 and ks and the relation
|p| = �k = h/λ= hν/c has been used. Squaring (3.29)
yields(

hν0−hνs+m0c2)2 = m2
0c4

1−β2

which gives with c2 = v2/β2, after rearranging the
terms,

m2
0v

2

1−β2
= h2

c2
(ν0−νs)

2+2h (ν0−νs)m0 . (3.32)

A comparison between (3.31) and (3.32) yields

ν0−νs = h

m0

ν0νs

c2
(1− cosϕ) .

Inserting λ = c/ν and (1− cos ϕ) = 2 sin2(ϕ/2) we
obtain Compton’s scattering formula

λs = λ0+2λc sin2(ϕ/2) , (3.33)

where the constant

λc = h

m0c
= 2.4262×10−12 m (3.34a)
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Fig. 3.13a–d. The Compton effect. (a) Experimental setup
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length distribution IS(λ) of scattered radiation intensity for
different scattering angles ϕ

is the Compton wavelength of the electron, which re-
presents the wavelength change∆λ= λs−λ0 of the X-
rays for a scattering angle ϕ= 90◦. Multiplying (3.34a)
by c yields

λc

λ0
= hν0

m0c2
. (3.34b)

This shows that the ratio of Compton wavelength λc and
incident wavelength λ0 equals the ratio of incident pho-
ton energy hν0 to the rest energy m0c2 of the electron.

The experimental results are in excellent agreement
with this theoretical result and again corroborate the
particle model of electromagnetic radiation.

From measurements of λ0, λs and ϕ the Compton
wavelength λc and Planck’s constant h can be de-
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termined, since the electron mass m0 is known (see
Sect. 2.6).

3.1.7 Properties of Photons

The experiments described in the previous sections have
demonstrated the particle character of electromagnetic
radiation. Each electromagnetic field with frequency ν
consists of energy quanta hν, called photons. A field
with energy density wem contains

n = wem

hν
(3.35)

photons per m3. In an electromagnetic wave with field
amplitude E and intensity I = cε0 E2

Ṅ = I

hν
= nc (3.36)

photons pass per second through an illuminated unit
area ∆A = 1 m2, perpendicular to the wave vector k.
The Compton effect shows that the momentum

p = �k with |p| = �2π

λ
= hν/c (3.37)

can be attributed to a photon hν. The total momentum
per unit volume inside an electromagnetic wave with
energy density wem is then

πem = n�k and |πem| = nhν/c =wem/c .
(3.38a)

When a photon is absorbed by an atom (see Sect. 7.3) the
angular momentum of the atom changes by 1�= h/2π.
Since the total angular momentum of the system “atom
plus photon” must be conserved, the photon has to carry
the angular momentum ±1�, which is also called the
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= −s hk
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+

Fig. 3.14. Photon model of polarized radiation. (a) σ+ = left
circular (b) σ− = right circular (c) π = linear polarization

spin of the photon

sphoton =±�k
k

(3.38b)

and is independent of its energy hν. If left circularly-
polarized light (σ+-polarization) propagating in the z
direction is absorbed by atoms, the z component of
their angular momentum Jz is changed by ∆Jz =+�,
if σ−-light (right circular polarization) is absorbed Jz

changes by∆Jz =−�. We therefore must conclude that
σ+ light consists of photons with spins sph =+�k/|k|
pointing into the propagation direction, while σ− light
represents photons with sph =−�k/|k|.

Note:

In older literature σ+ light is called left circularly-
polarized, because the polarization vector rotates
counterclockwise for an observer looking against the
direction of light propagation. Similary σ− light was
named “right circular polarized”.

Since linearly polarized light (π-polarization) can
be regarded as a superposition of σ++σ− components,
it should consist of equal numbers of photons with
sph =+�k/|k| and sph =−�k/|k|. Indeed, the absorp-
tion of π-polarized light does not change the angular
momentum component Jz of the atoms.

According to the relation E =mc2 between mass m
and total energy E of a particle we can formally attribute
the mass

m = E

c2
= hν

c2
(3.39)

to a photon with energy hν. From the relativistic energy
relation

E =
√

p2c2+m2
0c4

between energy E and momentum p of a particle with
rest mass m0 it follows for the photon with E = hν and
p = E/c that its rest mass m0 must be zero. This result
can be also obtained from the relativistic relation

m = m0√
1−v2/c2

⇒ m0 =m
√

1−v2/c2 .

Since vphoton = c, we obtain for a finite mass m the result
m0 = 0.
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Note:

Photons at rest do not exist! It is therefore some-
how artificial to speak of the photon rest mass. It
is more logical to use the relation m = h ·ν/c2 for
the definition of the photon mass.

3.1.8 Photons in Gravitational Fields

When we attribute the mass m = hν/c2 to a photon,
it must experience a gravitational force. If a photon is
send from a point r1 with gravitation potential φG(r1)

to a point r2 with φG(r2) the potential energy changes
by

∆Epot = m∆φG = hν

c2
(φG(r1)−φG(r2)) . (3.40)

Because of energy conservation the photon energy hν
must change by this amount. The frequency ν1 of
a photon is therefore changing to

ν2 = ν1

(
1− ∆φG

c2

)
⇒ ∆ν

ν
= ∆φG

c2
(3.41a)

when it travels from the point r1 to the point r2 in
a gravitational field.

EXAMPLES

1. A light source at the earth’s surface at H0 = 0
emits light into the vertical direction (Fig. 3.15).
A detector at the height H measures the frequency

Detector

Source

H

ν1

ν2
∆ν
ν

= ⋅H g

c2

Fig. 3.15. Demonstration
experiment by Pound and
Rebka for the proof of
photon redshifts in the
gravitational field of the
earth

ν2 = ν
(

1− gH
c2

)
⇒ ∆ν

ν
= gH

c2 . With H = 20 m,

g = 9.81 m/s2 we obtain ∆ν/ν = 2.5×10−15. This
gravitational redshift was indeed measured by
Pound and Rebka [3.7] using the Mößbauer-effect
as a sensitive frequency detector.

2. Light with frequency ν1 emitted from the surface
of the sun, is received on earth with the smaller
frequency

ν2 = ν1

(
1−G

M�
R�c2

)
, (3.41b)

where M� is the mass of the sun, R� its radius
and G the gravitational constant. The frequency in-
crease of photons entering the gravitational field of
the earth is very small compared to this decrease
and has been neglected. Inserting numerical values
yields∆ν/ν = 5×10−7. This frequency shift can be
readily measured with modern interferometers [3.8].

3. For M = R ·c2/G we obtain ν2 = 0. This represents
a “Black Hole” where no light from locations R<
Rs = M ·G/c2 can escape. The radius Rs is called
Schwarzschild Radius.

Light suffers a red shift when propagating away
from an attracting mass. This red shift corre-
sponds to an increase∆Wpot in potential energy of
a particle with mass m = hν/c2. If ∆Wpot > hν0

the light cannot leave the attracting mass. This
situation is found for black holes.

3.1.9 Wave and Particle Aspects of Light

The discussion in the last section has shown that the
particle properties of photons, such as mass m = hν/c2,
energy hν and momentum p = �k; |p| = �/λ can be
only defined by using the wave characteristics fre-
quency ν and wavelength λ= c/v. This itself illustrates
the tight connection between the particle model and the
wave model of electromagnetic fields. As an example
we will consider the relation between the intensity I
of an electromagnetic wave and the corresponding pho-
ton flux density. When Ṅ = dN/dt photons hν pass per
second with velocity c through a unit area perpendicu-
lar to the propagation direction, the intensity I (energy
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per m2 per s) is

I = Ṅhν . (3.42a)

In the wave model the intensity is

I = ε0cE2 . (3.42b)

The comparison of (3.42a) and (3.42b) gives the re-
lation between the electric field amplitude E of the
electromagnetic wave and the photon flux Ṅ

E =
√

Ṅhν

ε0 · c (3.42c)

which shows that the field amplitude is proportional to
the square root of the photon flux Ṅ .

The photon structure of light can be demonstrated
by various experiments besides those already discus-
sed in the previous sections. A famous example is the
experiment by Taylor (Fig. 3.16) where many equal de-
tectors Di are arranged on a circle with radius R around
the light source S [3.12]. The light, isotropically emit-
ted by the source into all directions, is described in
the classical wave model as a spherical wave with field
amplitude

E = A

r
ei(kr−ωt) . (3.43a)

All detectors with sensitive area S at a distance R from
the centrum r = 0 receive, per s, the same radiation
power

dW

dt
= cε0

A2

R2
S . (3.43b)

S
R

D5

D4

D1

D2

D3

Fig. 3.16. Taylor’s experiment to prove the photon structure
of a light wave

This is indeed observed for sufficiently large light
intensities.

If, however, the emitted power of the light source
is diminished so much that dW/dt � hν/τ , where τ
is the time interval that can just be resolved by the de-
tectors then at most one photon can reach a detector
per resolved time interval. Not all detectors give simul-
taneous signals but only one or none of them during
the time τ . The output signals of the detectors Di are
statistically distributed in time. Averaged over a time
interval∆t � τ all detectors again show the same total
number of counts.

This means that in this experiment the quantum
structure of light becomes apparent at low light inten-
sities. The radiation energy of the source is in this case
not simultaneously emitted into all directions, but at one
time a photon flies only in one direction and at another
time into another direction.

The total number of photons received by each
detector over a time interval ∆t shows a Poisson
distribution

N = N̄ e−(N−N̄)/N̄ (3.44)

with a standard deviation σ =
√

N̄ . The probability P
that any one of the detectors has counted N = N̄±3

√
N̄

photons is P = 0.997.
This illustrates that the classical wave description

of light represents the asymptotic case of large photon
fluxes. The relative fluctuations of the photon flux

∆Ṅ

Ṅ
∝ 1√

Ṅ
(3.45)

decreases with increasing photon flux Ṅ and the quan-
tum structure of electromagnetic waves (i.e., the steps
hν in the energy density) becomes significant only for
small photon flux densities Ṅ .

An essential characteristic of a classical particle is
its localization within a small spatial volume, which is
the volume of the particle, in contrast to a wave that
is spread out over a larger volume. How this apparent
contradiction of particle and wave description can be
solved will be discussed in Sect. 3.3.

The question of whether light can be regarded as
a wave or a stream of particles was controversially and
vehemently discussed for a long time between Isaac
Newton (1642–1727), who represented the particle mo-
del, and Christian Huygens (1629–1695) who believed
in the wave model [3.2]. Both scientists met in Lon-
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don in 1689 and discussed their controversial views but
could not come to an agreement.

Experiments by Huygens, Thomas Young (1773–
1829), and many other researchers, looking at
diffraction and interference of light decided the quar-
rel in favor of the wave model, since at that time it was
generally accepted that particles will not show any in-
terference effects. It is very instructive to discuss the
diffraction and the interference of light by a double slit
(Young’s double slit experiments (Fig. 3.17). The de-
tector can be a photoplate in the observation plane or, in
a modern version, a two-dimensional CCD array, where
one can decide which diode of the array has received
a photon. The experiment shows that at sufficiently low
intensities one first sees a statistical spatial distribution
of photons without recognizable interference fringes
(Fig. 3.17a). Increasing the illumination time at a con-
stant source intensity, the interference pattern emerges
more and more clearly (Fig. 3.17b). As long as the diffe-
rence Nmax−Nmin of the photon numbers in the maxima
and minima of the interference pattern is less than

√
N̄ ,

the pattern can hardly be seen. However, if by accumu-
lation over a time interval∆t the number Ṅ∆t becomes
sufficiently large, interference clearly appears, even if

I(x)

I

x
c)

b)

a)

Fig. 3.17a–c. Observation of an interference pattern when
light passes through a double slit. (a) Very small light
intensity where ∆N > Nmax− Nmin (b) Medium intensity
∆N ≈ Nmax− Nmin (c) High intensity ∆N � Nmax− Nmin

Table 3.1. Characteristic properties of the photon and the
electromagnetic field

Energy Momentum Spin Mass
equivalent

E = h ν p = k s =± k̂ m = E/c2

= h/(c ·λ)
E = ω |p| = h/λ |s| = m0 = 0

= E/c

Spectral Intensity Momentum
energy density density

w0 = n ·hν I = n · c ·hν πSt = (1/c2) · S
= ε0|E|2 = cε0|E|2 = n k

the intensity is so small that only one photon passes the
slits at a time. From a classical point of view this can-
not be understood. How should a photon know through
which of the two slits the foregoing photon passed?
This apparent paradox has been solved by the quantum
theory, which will be discussed in Chap. 4.

The above examples show that according to our
present concepts, light has wave as well as particle
character. The important point is that both models
do not contradict but supplement each other, as
will become clearer in the next sections.

At the end of this section Table 3.1 compiles both
the wave and particle descriptions of light.

3.2 Wave Properties of Particles

We will now show that objects that had always been
regarded unambiguously as particles, such as electrons,
nuclei, atoms or molecules also show wave properties,
since diffraction and interference phenomena have been
meanwhile observed for these particles.

Louis de Broglie (1892–1987) (Fig. 3.18) was the
first to propose (in 1924) a wave description of
both light and particles, although at this early time,
no wave properties of particles had been observed
experimentally [3.9].

For this idea, which he later outlined in more detail,
de Broglie was awarded the Nobel Prize in 1929.
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Fig. 3.18. Loius de Broglie (1892–1987). From: E. Bagge: Die
Nobelpreisträger der Physik (Heinz-Moos-Verlag, München
1964)

3.2.1 De Broglie Wavelength
and Electron Diffraction

If the relation p = �k found for photons is also applied
to particles with mass m, moving with the velocity v,
we can attribute to them a wavelength λ= 2π/k, which
can be written with k = p/� as

λ= h

p
= h

mv
= h√

2mEkin
. (3.46)

The de Broglie wavelength is inversely proportio-
nal to the momentum of a particle.

When electrons are accelerated by a voltage U rea-
ching the velocity v� c, we obtain with Ekin = eU the

Fig. 3.19a,b. Comparison of (a) electron diffraction and (b) X-
ray diffraction by a thin-foil of crystalline aluminium

de Broglie wavelength

λ= h√
2meU

. (3.47a)

EXAMPLE

U = 100 V, me = 1.9×10−31 kg, h = 6.6×1034 Js ⇒
λ= 1.2×10−10 m = 0.12 nm.

Clinton Joseph Davisson (1881–1938) (Nobel Prize
1937) and Lester Halbat Germer (1896–1971) could
indeed demonstrate in 1926, two years after de Broglie’s
proposal, that electrons with the kinetic energy Ekin =
e ·U in a collimated beam from an electron gun at the
voltage −U produced interference patterns, when they
were reflected by a single crystal of nickel (Fig. 3.20).
There are two ways to detect these interferences:

a) When the electrons, accelerated by a constant
voltage U , are reflected by the Nickel-crystal, a dif-
fraction pattern I(ϕ) is measured, when the detector
has a variable direction ϕ against the incident beam.

Fig. 3.20. (a) Schematic drawing of the experimental setup of
Davisson and Germer. (b) Reflected intensity as a function of
the acceleration voltage U , according to (3.47b)
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Fig. 3.21a,b. Comparison of (a) light diffraction and (b) elec-
tron diffraction with Ekin = 38 keV at the edge of a MgO
single crystal. For (b) the distance r0 of the photoplate from
the edge was chosen such that the product r0λ was equal
for (a) and (b) (From: H. Raether: Elektroneninterferenzen
in: Handbuch der Physik Bd. 32, 443 (1957))

b) At fixed angles ϕ and ϑ the voltage U is varied and
thus the de-Broglie wavelength (Fig. 3.20b). Ma-
xima of the reflected intensity are observed for the
Bragg-condition (see Sect. 2.2.3) m ·λ= 2d · sinϑ;
m = 1, 2, 3, . . . , where d is the distance between the
crystal planes. With λ= h/

√
2meeU the maxima

appear at voltages U with
√

U = m ·h
2d · sinϑ ·√2e ·me

= m ·a . (3.47b)

With high energy electrons, transmitted through
a thin foil of crystaline aluminium, circular diffrac-
tion patterns can be detected on a photoplate behind
the foil which were quite similar to those patterns pro-
duced by X-rays (Fig. 3.19b), which had already been
recognized as short wavelength electromagnetic waves
(see Chap. 7).

This proved that electrons, which had always been
clearly regarded as particles, also show wave proper-
ties in this experiment, in accordance with de Broglie’s
hypothesis (3.41). In Fig. 3.21 the diffraction patterns
of light and of electrons produced by the sharp edge
of a MgO crystal are compared. It illustrates that the
same Fresnel diffraction pattern is produced in both ca-
ses if the product λr0 of wavelength λ, and distance r0

between the edge and the photoplate is the same.

3.2.2 Diffraction and Interference of Atoms

More recent experiments have shown that particle dif-
fraction and interference is not restricted to electrons

a)

b)

y

Observation
plane

D

y

x

Diffracted

atomic wave

Collimated

Sp

He∗

S1

S2

-

I (atoms per sec)

Background

0

100

200

0

beam

Fig. 3.22a,b. Diffraction of a collimated beam of He atoms
by a slit Sp and observation of the interference pattern
behind a double slit. (a) Observed interference pattern
(b) Experimental setup [3.17]

but can also be observed for atoms [3.10]. In Fig. 3.22,
helium atoms in an atomic beam pass in the x direc-
tion through a narrow slit of width b = 12 µm. The
atomic waves diffracted by S0 then reach two slits S1

and S2, with b = 1 µm each, separated by 8 µm, which
are located 64 cm downstream of S0.

In the observation plane x = x0 an interference
pattern I(y) is produced that can be monitored with
a detector, movable in the y direction. The observed
interference pattern looks like that of light in Young’s
double slit experiment.

Note:

He atoms in their ground state cannot be detected very
efficiently. Therefore energetically excited He atoms
He∗ are used, which are in a “metastable state” (see
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Sect. 6.1) with a lifetime longer than the transit time
from the He∗ source to the detector. These excited He∗
atoms release electrons when impinging on a metal
plate. The resulting ions can be effectively monitored.

In a second experiment, shown in Fig. 3.23, a col-
limated beam of metastable He atoms passes through
a standing light wave with optical wavelength λL, pro-
duced by two laser beams traveling in opposite ±y
directions. In the nodes of the standing wave the light
amplitude is zero and the atoms can pass undeflected.
In the maxima, the light intensity is high and the atoms
can absorb photons if the laser frequency is tuned to an
absorbing transition of the atoms. These photons trans-
fer their momentum �k in the±y direction to the atoms,
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Fig. 3.23a,b. Diffraction and interference phenomena obser-
ved when a beam of metastable He atoms passes through
a standing light wave. (a) Experimental setup (b) Ob-
served interference pattern N(θ) in the plane x = const,
y = L sin θ [3.10]

resulting in a deflection of atoms out of the x direction.
With a detector behind the light wave the atomic inter-
ference pattern shown in Fig. 3.23b is observed, where
the number N(Θ) of He∗ atoms is measured when the
detector is moved along the ±y direction [3.10]. The
result can be explained by two different models, which
do not contradict each other.

In the wave model the standing light wave acts
onto the atoms like a phase grating, quite analogous
to phase gratings used in optics, because the periodic
variation of the electric field E(y) of the standing light
wave acts on the atoms like a periodic variation of the
index of refraction. The reason for this is that the po-
tential energy of the atoms depends on the electric field
amplitude and since the total energy of the atoms is
constant, their kinetic energy changes accordingly. Dif-
fraction of the atomic de Broglie wave by this phase
grating with a grating constant d = λL/2 results in
intensity maxima if the phase difference between neigh-
boring diffracted partial waves ∆ϕ = (2π/λdB)∆s,
becomes ∆ϕ = n2π (n = 1, 2, 3, . . . ). With the path
difference ∆s = d sinΘ = λL sinΘ we obtain for the
nth diffraction maximum at angle Θn � 1

nλdB =∆s = λL sinΘn ⇒Θn ≈ nλdB

λL
. (3.48)

The result of Fig. 3.23b can be also explained with the
particle model if photons and atoms are both treated
as particles. The absorption of n photons in the ± di-
rection causes a recoil of the atoms with a transferred
momentum

∆py =±n�k =±nh/λL . (3.49a)

The atoms therefore change their flight direction by
angles Θn , determined by

sinΘn = ∆py

px
≈ ∆py

p
= nλdB

λL
, (3.49b)

which gives the same result as (3.48) and illustrates that
the particle model as well as the wave model correctly
describe the same experimental result [3.11].

3.2.3 Bragg Reflection
and the Neutron Spectrometer

When a collimated beam of particles with momentum
p=mv and de Broglie wavelengthλdB = h/p impinges
on a crystal under the angle ϑ against parallel crystal



98 3. Development of Quantum Physics

planes, the partial waves reflected by the different planes
with distance d can interfere constructively if the path
difference ∆s = 2d sinα becomes an integer multiple
of the wavelength λdB (see Fig. 2.10). This leads to the
Bragg condition:

2d sinϑ = nλdB (n = 1, 2, 3, . . . ) .

Measuring the different angles ϑn of incidence, where
maxima occur in the reflected beam, yields the de Bro-
glie wavelength λdB, if the distance d between adjacent
crystal planes is known.

This is illustrated in Fig. 3.24 by the example of
a neutron spectrometer [3.12]. The neutrons, produced
inside the core of a nuclear reactor are slowed down by
inelastic collisions with H atoms in paraffin and leave
the reactor through collimating apertures as a collima-
ted beam with thermal velocity distribution. They are
directed towards a crystal that can be turned around
a vertical axis to choose a wanted angle ϑ1 against the

Sample crystal

Aperture

Neutron
counter

Monochromator
crystal

a)

α1

2 1α

Monochromatic
neutrons with

Detector

b)

dx

Neutrons
from
reactor λ αD d= ⋅2 1sin

Fig. 3.24a,b. Neutron spectrometer. (a) Neutrons from
a nuclear reactor are monochromatized by Brass reflec-
tion (b) Velocity selection with two rotating discs and
time-resolved detection

direction of the incident neutron beam. A bortrifluo-
ride detector counts the incident neutrons. They have
a velocity

v= h

2md sinϑ1
.

The crystal acts as velocity filter and reflects only
neutrons with the wavelength λdB = 2d sinϑ1 into
the direction ϑ2. It therefore acts like a grating
monochromator in optical spectroscopy.

Instead of using the Bragg reflection by a crystal
with known distance d between its planes, a time-of-
flight technique can be used to select neutrons with
a given velocity (Fig. 3.24b). A rotating absorbing disc
with a narrow slit transmits neutrons only during the
short time interval ∆t at time t = 0. A gated detector
at a distance L from the disc, which measures neutrons
arriving at the time t1, selects neutrons with velocities
around v1 = L/t1. These neutrons with known veloci-
ties and therefore known de Broglie wavelength can
now be directed towards a Bragg crystal with unknown
distances dx of its planes. Measuring the angles ϑn ,
where maxima of the reflected beam are observed,
yields the wanted distances dx .

3.2.4 Neutron and Atom Interferometry

The wave properties of neutrons allow the construc-
tion of a neutron interferometer, analogous to an
X-ray interferometer (see Sect. 2.2.3). Such a par-
ticle interferometer can be used to measure many
quantities important for basic physics and for many
applications.

The device is shown in Fig. 3.25 (compare with
Fig. 2.12!). Three thin slices of a silicon crystal are cut
out of a single crystal. This guarantees that the three sli-
ces have the same crystal orientation. The intensities I1

and I2, measured by the detectors D1 and D2 depend on
the phase differences of the interfering partial neutron
beams. The sum of the intensities I1+ I2 is, however,
independent of phase shifts.

If a phase shifting sample is now brought into one
of the partial beams, the signals of D1 and D2 change.
Due to interactions of the neutrons with the nuclei of
the sample, their potential is altered inside the sample.
This causes a phaseshift of their de Broglie wave.

The phase shift can also be caused by the gravita-
tional field of the earth, if the two partial beams pass
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Fig. 3.25. Neutron interferometer

at different heights Hi through the interferometer, be-
cause then the potential energy of the neutrons mgHi is
different and therefore their kinetic energy changes by

∆Ekin =−m · g ·∆H .

Because Ekin = h2/(2mλ2
dB) we obtain

∆λdB = 2mg ·∆H

Ekin
.

Note:

Phase shifts caused by ∆H = 1 cm can already be
detected [3.14].

With such an interferometer, phase shifts caused by
electric or magnetic fields or by materials transparent
for neutrons can be measured. They give information
on the interaction of neutrons with the fields or with the
atoms of the sample.

Also for atoms interferometers can be reali-
zed [3.13]. Replacing the diffracting Bragg crystal
slices by standing optical waves, which deflects the

atoms by photon recoil allows the realization of an
atomic interferometer (see Sect. 3.2.3), which can mea-
sure the phase shift of atomic de Broglie waves, when
interacting with external fields or with matter.

3.2.5 Application of Particle Waves

The de Broglie wavelength λdB = h/(mv) can be adop-
ted to the special problem by selecting the appropriate
particle velocity v. For example, the measurement of the
distances d between adjacent crystal planes demands
λdB < d. In Table 3.2 some numerical values of λdB for
electrons, neutrons and He atoms at three different ki-
netic energies are compiled, in order to give a feeling
of the order of magnitude for λdB.

EXAMPLE

Helium atoms at room temperature (T ≈ 300 K) have
a mean velocity v̄ ≈ 1300 m/s and a mean kinetic
energy Ekin ≈ 0.03 eV. Their de Broglie wavelength
is then λdB = 8.3×10−11 m. This is about half of the
typical atomic distances in a crystal.

With such thermal He atoms, the surface structure
of solids can be probed by measuring the diffraction
pattern of the reflected atoms obtained when a paral-
lel beam of He atoms falls under an angle ϑ onto the
surface. Since the atoms, contrary to neutrons, do not
penetrate into the solid, only the surface layer of the
crystal atoms contributes to the diffraction. The diffrac-
tion pattern therefore gives information on the structure
of this surface layer and will change when other atoms
are adsorbed at the surface.

When we regard the electrons in an electron micros-
cope as de Broglie waves, their wavelength at a kinetic
energy of Ekin = 105 eV is λdB ≈ 4×10−12 m, i.e., by
five orders of magnitude smaller than the wavelength of
visible light. Therefore, the principle lower limit∆x for

Table 3.2. De Broglie wavelengths in units of 10−10 m= 1 Å
for electrons, neutrons and He-atoms with different kinetic
energies

Ekin/eV Electrons Neutrons He Atoms

0.03 70.9 1.65 0.83
1 12.3 0.28 0.143

104 0.123 0.003 0.001
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the spatial resolution (∆x ≥ λ/2) is much smaller than
in a light microscope. However, although the resolution
in a real electron microscope is not limited by diffrac-
tion and reaches a spatial resolution of ∆x < 0.1 nm, it
is still limited by imaging errors in the electron-optical
system.

3.3 Matter Waves and Wave Functions

In the wave model of a particle with mass m, moving
with a velocity v in the x direction, we write the wave
function quite analogously to that of light waves as

ψ(x, t)= C ei(kx−ωt) = C ei/ (px−Et) , (3.50a)

where we have used the relations E = Ekin = �ω bet-
ween the energy E of a free particle (Epot = 0) and the
angular frequency ω of its matter wave, and

p = �k (3.50b)

between its momentum p and the wave vector k with
|k| = 2π/λdB.

Note, however, that there exists an important dif-
ference between electromagnetic waves and matter
waves. The phase velocity of electromagnetic waves
in vacuum, obtained from the condition

d

dt
(kx−ωt)= 0 ⇒ vph = dx

dt
= ω

k
= const

⇒ dvph

dω
= 0 (3.51)

is independent of ω, since k = 2π/λ= ω/c ⇒ vph = c.

This means that electromagnetic waves propaga-
ting in a vacuum do not show dispersion.

For matter waves this does not hold! We obtain for
a free particle with E = Ekin = p2/2m

ω= E

�
= �k

2

2m
⇒ vph = ω

k
= �k

2m
= p

2m

⇒ dvph

dω
= 1

k
	= 0 . (3.52)

The phase velocity depends on the momentum p of the
particle. With the particle velocity vp = p/m = �k/m
we obtain the relation

vph = 1

2
vp (3.53)

between particle velocity vp and phase velocity vph of
its matter wave.

Matter waves do show dispersion and their phase
velocity is equal to 1/2 of the particle velocity vp.

Therefore the matter wave (3.52) and its phase ve-
locity vph is not directly useful for the description
of the moving particle. Furthermore, the particle is
restricted to a certain volume dV = dx dy dz around
a point (x(t), y(t), z(t)), which moves with the particle
velocity vp in space, while the matter wave (3.50a)
extends over the total space. This deficiency can
be removed by introducing the model of wave
packets.

3.3.1 Wave Packets

Wave packets represent a superposition of many mo-
nochromatic waves with frequencies ω j in an interval
∆ω. The introduction of wave packets (sometimes also
called wave groups) localizes the matter wave within
a certain space interval ∆x or for three dimensional
problems within the volume dV . This can be seen as
follows.

When many monochromatic plane waves with
amplitudes C j , frequencies ω j within a restricted in-
terval ∆ω and parallel wave vectors k within the
interval∆k (Fig. 3.27a), propagating in the x direction,

x

s itua tion  a t tim e
t = 0

ψ ω ω= − + −cos( ) cos( )1 1 2 2t k x t k x

v
kg = ∆ω

∆

x n

Fig. 3.26. Superposition of two monochromatic waves with
slightly different frequencies ω1 and ω2 and equal amplitudes
results resolutions in a beat pattern
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Fig. 3.27a,b. Wave packet as superposition of waves with
frequencies ω within the range k0±∆k/2 or ω0±∆ω/2.
(a) Equal amplitudes C(k) = C(k0) of all partial waves.
(b) Resulting wave packet ψ(x, t0) at a given time t = t0

are superimposed, their sum

ψ(x, t)=
∑

j

C j ei(k j x−ω j t) (3.54)

shows maximum amplitudes A(xm) at locations xm

(Fig. 3.27b), which propagate into the x direction with
the group velocity vg = dω/dk.

With an infinite number of such waves with
frequencies ω filling the interval

ω0−∆ω/2 ≤ ω≤ ω0+∆ω/2
and with wave numbers k0−∆k/2≤ k ≤ k0+∆k/2 the
sum (3.54) transforms into the integral

ψ(x, t)=
k0+∆k/2∫

k0−∆k/2

C(k)ei(kx−ωt) dk . (3.55)

For sufficiently small intervals∆k � k0 we can expand
ω(k) into the Taylor series

ω(k)= ω0+
(

dω

dk

)
k0

(k− k0)+ . . . , (3.56)

where we neglect the higher order terms. If the am-
plitude C(k) does not change much over the small
interval ∆k, we can replace C(k) by its constant va-
lue C(k0). Inserting (3.56) into (3.55) we obtain with
the abbreviations

κ = k0− k and u = (dω/dk)k0 t− x

the matter wave function

ψ(x, t)= C(k0)e
i(k0x−ω0t)

+∆k/2∫
−∆k/2

eiuκ dκ . (3.57a)

The integration is simple and yields

ψ(x, t)= A(x, k, t)ei(k0x−ω0t)

with A(x, k, t)= 2C(k0)
sin(u∆k/2)

u
. (3.57b)

This function describes a plane matter wave with
an amplitude A(x, t) that has a maximum for u = 0,
corresponding to a position

xm =
(

dω

dk

)
k0

t . (3.57c)

The maximum of the wave packet propagates with the
group velocity vg = (dω/dk)k0 into the x direction. We
call ψ(x, t) a wave packet (Fig. 3.27). The form of the
wave packet (maximum amplitude and width ∆x, i.e.,
the distance between the first side minima of both sides
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of the central maximum depends on the chosen inter-
val ∆k and the amplitude distribution C(k) in (3.25).
In Figs. 3.27b and 3.28b the wavepackets (3.55) with
constant amplitudes C(k)= C(k0) and with a Gaussian
distribution of C(k) are compared.

With the relations

ω= E

�
= p2

2m�
= �k

2

2m

⇒ vg =
(

dω

dk

)
k0

= �k0

m
= p

m
= vp (3.58)

Fig. 3.28a,b. Wave packet ψ(x, t0) composed of par-
tial waves with Gaussian amplitude distribution (a).
C(k) = C(k0) exp[−(k− k0)

2/k2
0]; (b) ψ(x) at given time

t = t0

it follows that the group velocity of the wave packet
equals the particle velocity vp.

Such a wave packet represents a better descrip-
tion of a particle than the spatially extended
plane wave, because its center wave vector k0

and its group velocity vg correspond to particle
properties:

• The group velocity vg equals the particle velocity vp• The wave vector k0 of the group center determines
the particle momentum pp = �k0• The wave packet is localized in space. The ampli-
tude A(x, t) of the wavefunction (3.57b) has non
vanishing values only within a limited space inter-
val ∆x. From (3.57) we obtain at time t = 0 the
width ∆x of the central maximum between the two
minima

∆x = 4π

∆k
≥ 2π

k0
= λdB .

This shows that the width ∆x of the wave packet
has a minimum value equal to the de Broglie
wavelength λdB.

We summarize:

Particles can be described by wave packets. The
particle velocity equals the group velocity of the
wave packet and the particle can be localized not
better than within its de Broglie wavelength.

Note that this spatial restriction corresponds to the
spatial resolution, when illuminating objects with light.
Here, however, the spatial resolution is limited by the
wavelength λ of the light.

Remark

The additional small side maxima in Fig. 3.27b that ap-
pear when a constant amplitude C(k)= C(k0) is used,
disappear when C(k) is represented by a Gaussian
distribution

C(k)= C(k0) exp
[−(k− k0)

2/2∆k2]
(see Fig. 3.28).

In spite of this close correspondence between the
wavepacket and its particle, the wave packet ampli-
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tude (3.57a) can not be the real representation of the
particle for the following reasons:

• The wave function ψ(x, t) in (3.57a) can as-
sume complex and negative values, which do
not correspond to real and measurable particle
properties

• The width ∆x(t) of the wave packet increases with
time because of the dispersion of the matter waves of
which it is composed (see next section). It changes
its form while propagating in space, in contrast to
a real particle, which keeps its form.

• Any elementary particle, such as the electron, is
indivisible according to our present knowledge.
A wave, however, can be split, for instance by a beam
splitter, into two components, which then move into
different directions.

Fig. 3.29. Max Born (1882–1970) From: E. Bagge: Die Nobel-
preisträger der Physik (Heinz Moos-Verlag, München 1964)

These difficulties induced Max Born (1882–1970,
Fig. 3.29) to propose a statistical interpretation of the
physical meaning of matter waves [3.15].

3.3.2 The Statistical Interpretation
of Wave Functions

Since a particle incident on a boundary plane between
two media has to be either reflected or transmitted, the
splitting of the corresponding matter wave into a re-
flected and transmitted partial wave could be related
to the probability of reflection or transmission of the
particle. However, the probability is per definition a po-
sitive real number between zero and one. Therefore, the
complex wave amplitude can not be directly interpre-
ted as a probability. Max Born proposed the following
definition.

The probability P(x, t)dx of finding a particle at
time t in the space interval from x−∆x/2 to x+∆x/2
is proportional to the absolute square |ψ(x, t)|2 of the
wave function ψ(x, t) representing the particle

P(x, t)∆x ∝ |ψ(x, t)|2∆x . (3.59)

|ψ(x, t)|2 is called the probability density at the
location x at time t (Fig. 3.30a).

A particle moving along the x-axis can be found with
certainty within the interval−∞≤ x ≤+∞. Therefore
the condition

+∞∫
−∞

|ψ(x, t)|2 dx = 1 (3.60)

can be used for the normalization of the wave func-
tion. With this normalization the proportionality factor
in (3.59) becomes unity and we obtain

P(x, t)∆x = |ψ(x, t)|2∆x . (3.61)

To a particle moving freely in three-dimensional space,
a three-dimensional wave packet ψ(x, y, z, t) can be
attributed (Fig. 3.30b) and the same arguments as above
result in the normalization∫∫∫

|ψ(x, y, z, t)|2 dx dy dz ≡ 1 .



104 3. Development of Quantum Physics

a)

b)

W x t dx x t dx( , ) ( , )0 0 0 0
2= ψ

ψ( , )x t t= 0
2

x0

vg

y

x

x

Fig. 3.30. (a) Absolute square of a one-dimensional wave
packet, representing the probability density to find a particle
at x = x0 at the time t = t0. (b) Two-dimensional wave packet

In summary:

Each “particle” can be represented by a three-
dimensional wave packet, described by the wave
function ψ(x, y, z, t). The real positive quantity

P(x, y, z, t)dx dy dz = |ψ(x, y, z, t)|2 dx dy dz

gives the probability of finding the particle at the
time t within the volume dV = dx dy dz around
the point (x, y, z). The probability is maximum at
the center of the wave packet, which moves with
the group velocity vg through space and which is
identical with the particle velocity vp.

Note, however, that the probability is larger than
zero not only at the point (x, y, z), but also within a fi-
nite volume dV around (x, y, z). This means that it is
not possible to localize the particle exactly at the point

(x, y, z). The localization of the particle is only possi-
ble within an uncertainty that is related to the spatial
width of the corresponding wave packet. We will now
discuss this aspect in more detail.

3.3.3 Heisenberg’s Uncertainty Principle

We choose a wave packet as a superposition of plane
waves with amplitudes C(k), following the Gaussian
distribution

C(k)= C0 e[−(a/2)
2(k−k0)

2] (3.62)

around the central wavenumber k0. The one-
dimensional wave packet then becomes

ψ(x, t)= C0

∫
e−[(a/2)(k−k0)]2 ei(kx−ωt) dk . (3.63)

The integration over k is analytically possible and yields
at t = 0

ψ(x, 0)=
(

2

πa2

)1/4

e−x2/a2
eik0x , (3.64a)

where we have chosen C0 =√
a/(2π)3/4 in order to ob-

tain the normalized wave function with the probability
density

|ψ(x, 0)|2 =
√

2

πa2
e−2x2/a2

, (3.64b)

which satisfies the condition
+∞∫

−∞
|ψ(x, 0)|2 dx = 1

as can be readily verified.
The wave packet (3.64) has its maximum amplitude

at x = 0. At the points x1,2 =±a/2 the probability den-
sity has dropped to 1/

√
e of the maximum value. The

interval ∆x = x1− x2 = a is defined as the full width
of the wave packet (3.64). The width ∆k = k1− k2 of
the amplitude distribution C(k) between the values k1

and k2 where C(k1,2)
2 = C0/

√
e is, according to (3.63)

∆k = 1/a.
This yields the important result:

∆x ·∆k ≥ 1 (3.65a)

The product of spatial width∆x and wave packet
wavenumber width ∆k is ∆x ·∆k ≥ 1.
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This result might already be familiar to you from op-
tics. In every spectrometer the smallest, still resolvable
frequency interval ∆ωmin = 1/∆tmax is limited by the
maximum traversal time difference between interfering
light waves.

With ∆ω= c∆k and ∆x = c∆tmax this gives again
∆kmin ·∆xmax = 1.

Therefore the result∆k ·∆x ≥ 1 is not specific for
quantum physics, but is typical for any wave mo-
del. Its significance for the quantum mechanical
description of particles stems from the interpreta-
tion of |ψ|2 as probability density of the location
of the particle.

With the de Broglie relation px = �kx for the mo-
mentum px of a particle moving in x direction, one

Fig. 3.31. Werner Heisenberg (1901–1975) From: E. Bagge:
Die Nobelpreisträger der Physik (Heinz-Moos-Verlag, Mün-
chen 1964)

obtains from (3.65a) the relation

∆x ·∆px = � . (3.65b)

It can be proved [3.16] that a Gaussian wave packet
has the minimum product ∆x ·∆px . For all other am-
plitude distributions C(k), the product becomes larger.
We, therefore arrive at the uncertainty principle, first
formulated by Werner Karl Heisenberg (1901–1975,
Fig. 3.31)

∆x ·∆px ≥ � . (3.65c)

The product of the uncertainty ∆x in the locali-
zation of a particle, defined as the spatial width
of its wave packet, and the uncertainty ∆px of
the particle’s momentum px , defined as the width
of the momentum distribution C(k)with k = p/�,
cannot be smaller than �.

This illustrates that Planck’s constant h (or the re-
duced constant �= h/2π) does not only describe the
quantization of photon energies but also governs the
uncertainty relation. This is due to de Broglie’ relation

a) b)

x x

∆
∆

x
k

= 1

∆
∆

k
x

= 1

x0x0

k0 k0kx kx

ψ( , )x t0
2

ψ( , )x t0
2

∆k
∆k

∆x

∆x

C k( ) C k( )

Fig. 3.32a,b. Illustration of the uncertainty relation between
localization and momentum uncertainty. (a) Small spatial
uncertainty (b) Large spatial uncertainty
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λdB = h/p between the momentum p of a particle and
the wavelength λdB of its matter wave.

Remark

Often, one defines the width∆x of a Gaussian distribu-
tion as the interval between the points x1 and x2 where
the functionψ(x) in (3.64a) drops down to 1/e (instead
of 1

√
e) of its maximum value and the width ∆k bet-

ween the values k1 and k2 where C(k) drops to 1/e of
C(k0). This definition then results in∆k = 2 ·2/a = 4/a
and ∆x = 2a and instead of (3.65a) and (3.65c)one
obtains the uncertainty product

∆x ·∆k = 2 or ∆x ·∆px ≥ 2� (3.66)

If the width of the wave packet with constant ampli-
tudes C0 is chosen as the distance between the first zero
points on both sides of the central maximum (Fig. 3.27a)
we obtain from (3.57b) instead of (3.65b), the relation

∆x ·∆px ≥ 2h = 4π� , (3.67)

which means that for this definition of ∆x, ∆px the
uncertainty product is 4π times larger than in (3.65b).

This should remind you that the numerical value
of the lower limit for the product ∆x ·∆px de-
pends on the definition of the uncertainties ∆x,
∆px and on the form of the wave packet.

For the other directions y and z of a three-
dimensional Gaussian wave packet one obtains in an
analogous way:

∆y ·∆py ≥ � , ∆z ·∆pz ≥ � . (3.68)

We will now illustrate the uncertainty principle using
some examples.

a) Diffraction of Electrons
Passing Through a Slit

We regard a parallel beam of electrons with momentum
p = {0, py, 0} and a large beam diameter incident onto
a narrow slit with width ∆x = b (Fig. 3.33). Before the
slit, the x component of the momentum of the electrons
is px = 0, but we cannot know the x coordinates of an in-
dividual electron, that is,∆x =∞. Of all electrons only

x

I

b

px = 0

θ
θ p

→

∆px

py

Fig. 3.33. Diffraction of electrons by a slit as explained by the
uncertainty relation

those with x coordinates within the interval x = 0±b/2
can pass through the slit. For these electrons we know
their x coordinates within the uncertainty b, i.e.,∆x = b.

According to the uncertainty principle (3.67), their
momentum components px must have the uncer-
tainty ∆px ≥ h/b. Since ∆px = py · sin θ ≈ p · sin θ,
this means that the electrons can be found within the
angular interval −Θ ≤ ϕ ≤Θ where

sinΘ =±∆px

p
=± h

bp
. (3.69a)

When we describe the electrons by their matter wave
with the de Broglie wavelength λdB = h/p, the wave is
diffracted by the slit, as in wave optics, and the central
diffraction maximum has an angular width ∆ϕ = 2Θ
between the two first minima. The wave model gives

sinΘ = λ
b
= h

bp
, (3.69b)

which turns out to be identical to (3.69a).

This illustrates that the uncertainty principle just
takes into account the description of particles
by matter waves. If this is accepted, the re-
lations (3.65) and (3.69) follow from classical
diffraction theory.
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b) Spatial Resolution Limit of the Microscope

Assume one wants to measure the location x of a particle
at rest by illuminating it with light of wavelength λ
(Fig. 3.34).

The photon must be scattered by the particle into
the solid angle with apex angle 2α in order to reach
the collimating lens of the microscope with diameter d,
where sinα≈ tanα= d/2y. The uncertainty∆px of the
photon momentum px is then

∆px = px sinα≈ h

λdB

d

2y
= h

λ
· d

2y
, (3.70)

because the de Broglie wavelength of a photon

λdB = h

p
= h · c

h ·ν = λ

equals the wavelength λ of the light wave.
Conservation of momentum requires that the scat-

tering particle must suffer a recoil −px with the
uncertainty ∆px .

Parallel light entering from above the collimating
lens (Fig. 3.34b) produces in the focal plane, at a di-
stance y from the lens, a diffraction pattern where the
central maximum has the diameter

D = 1.2 ·2y sinΘ ≈ 2y
λ

d
(3.71)

(see textbooks on optics).
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Fig. 3.34. Explanation of spatial resolution limit of a micros-
cope by the uncertainty relation

This shows that the location x of the scattering par-
ticle can not be defined more accurately than within
the interval ∆x ≈ D. From (3.70) and (3.71) we again
obtain the relation

∆px ·∆x ≥ h

λ

d

2y
2y
λ

d
= h . (3.72)

When using light with shorter wavelength λ, the uncer-
tainty ∆x becomes smaller, but the uncertainty ∆px of
the particles momentum becomes accordingly larger.

This example illustrates that the measuring pro-
cess itself (here the illumination of the particle)
changes the state of the measured object (here its
momentum and location).

3.3.4 Dispersion of the Wave Packet

According to (3.58) the group velocity vg of the
wave packet is related to the momentum p of the
corresponding particle by

vg = p

m
= vp . (3.73)

gv

gv|| 2ψ
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x

Fig. 3.35. Spread of a wave packet in time for two different
initial uncertainties ∆x(t1)
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The initial momentum p can be determined only
within the uncertainty interval ∆p. This implies
a corresponding uncertainty

∆vg = 1

m
∆p ≥ 1

m

�

∆x0
, (3.74)

where ∆x0 is the initial width of the wave packet,
i.e., the uncertainty of the determination of the starting
point x0. Because of the uncertainty∆vg of the velocity
the uncertainty ∆x =∆vgt+∆x0 increases with time.
We obtain

∆x(t)=∆vgt+∆x0 = �

m∆x0
t+∆x0 .

The width∆x(t) of the wave packet therefore increases
with time while the area

∫ |ψ(x, t)|2 dx remains constant
because of the normalization

+∞∫
−∞

|ψ(x, t)|2 dx = 1 .

The rate with which ∆x(t) increases becomes larger
when∆x0 is smaller, because the uncertainty∆vg incre-
ases as �/(m∆x0). The localization of a particle moving
with velocity vg±∆vg becomes more and more uncer-
tain after its initial parameters (x0±∆x0, vg±∆vg)t=0

had been determined at t = 0.

3.3.5 Uncertainty Relation for Energy and Time

In Sect. 3.3.3 we have discussed the spatial width ∆x
of a wave packet which is composed of an infinite
number of monochromatic waves with wavenumbers k
within the interval k−∆k/2 ≤ k ≤ k+∆k/2. We will
now investigate how accurate the energy �ω0 at the
center frequency ω0 of a wave packet can be mea-
sured, when the measuring time is ∆t. We consider
a wave packet composed of monochromatic waves
Ai exp[i(ωi t− ki x)], where the frequencies ωi are
spread over the intervalω0−∆ω/2≤ ωi ≤ ω0+∆ω/2.
We now integrate over the frequency interval ∆ω in-
stead over the wavenumber interval ∆k. We therefore
write the wave packet as the superposition

ψ(x, t)=
ω0+∆ω/2∫
ω0−∆ω/2

A(ω)ei(kx−ωt) dω . (3.75)

t
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b)
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t

ψ ω= ⋅A tsin 0
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Fig. 3.36. (a) Illustration of the uncertainty relation ∆ω ·
∆t ≥ 2π measured during the time interval ∆t only. (b) Am-
plitude distribution A(ω) of a sine wave. (c) Wave packet with
frequency uncertainty∆ω, passing through the detection point
x = x0

The procedure is quite analogous to that in Sect. 3.3.3.
Inserting the Taylor expansion

k = k0+
(

dk

dω

)
ω0

(ω−ω0)+ . . .
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into (3.75) we obtain for constant amplitudes C(ω)≡
C0 with the abbreviations

u = t− (dk/dω)ω0 x ; ∆ω= ω0−ω
the solution:

ψ(x, t)= 2A0
sin(u∆ω)

u
ei(k0x−ω0t) . (3.76)

At a fixed position x0 the maximum of the wave packet
at u = 0 appears at the time t0 = (dk/dω)x0. The two
minima at both sides of the central maximum pass the
position x0 at the times

t1,2 =
(

dk

dω

)
ω0

x0± π

∆ω
. (3.77)

It therefore takes the time ∆t = 2π/∆ω for the cen-
tral maximum to pass through the point x0, where the
measurement is performed.

On the other hand, when a wave packet is only
observed during the time interval ∆t, its central fre-
quency ω0 can only be measured within an uncertainty
∆ω= 2π/∆t. This can be proved as shown below.

When a monochromatic wave

ψ(x, t)= A0 ei(ω0t−k0x)

is measured, only during the time interval ∆t at x = 0
the Fourier transform of the wave train gives the
amplitude distribution

A(ω)=
+∆t/2∫

−∆t/2

A0 ei(ω0t−k0x) dt =
A0 sin

(
(ω−ω0)∆t

2

)
1
2 (ω−ω0)

,

(3.78)

which determines the frequency spectrum of the wave
train. The central maximum of this distribution has
a width ∆ω= 2π/∆t, defined by half the distance
ω1−ω2 between the zero points of (3.78) at ω1 = ω0+
2π/∆t and ω2 = ω0−2π/∆t.

Since the energy E = �ω is related to the
frequency ω we obtain the uncertainty relation

∆E ·∆t ≥ 2π�= h (3.79)

between energy E and observation time ∆t.

When a particle is observed only during the li-
mited time interval ∆t, its energy E can be
determined only within the uncertainty limits
∆E ≥ h/∆t.

Remark

1. If a Gaussian amplitude distribution A(ω) is assu-
med instead of the constant amplitude A(ω)≡ A0,
the smallest uncertainty ∆E ·∆t ≥ � is obtained
analogously to (3.65).

2. Equation (3.79) has been derived from classical
physics, using the Fourier theorem. The quantum
mechanical aspect comes only from the relation
E = hν.

3.4 The Quantum Structure of Atoms

Rutherford’s scattering experiments discussed in
Chap. 2 have proved that atoms consist of a nucleus with
positive charge Q =+Ze, a small radius RK ≤ 10−14 m
and a mass that nearly equals that of the total atom, and
of Z electrons with very small masses, occupying, ho-
wever, a volume that is about 1012–1015 times larger
than that of the nucleus.

Up to now we have not discussed any possible struc-
ture of the spatial and energy distribution of the atomic
electrons. In particular it must be cleared whether the
electrons move around within the atom or whether they
are at rest and form a static charge distribution. Both
assumptions lead to certain contradictions: Because of
the attractive Coulomb force between the positively
charged nucleus and the negatively charged electrons
a static configuration would not be stable. A dynami-
cal model in which the electrons move on closed paths
within the atom and must therefore be continuously
accelerated, cannot explain why these accelerated char-
ges do not radiate, as postulated by electrodynamics.
They would then loose energy and would also become
unstable.

The experiments presented in the following sec-
tions have essentially contributed to clarifying these
questions.

3.4.1 Atomic Spectra

In 1859 Gustav Kirchhoff (1824–1887) and Robert
Bunsen (1811–1899) had already found, through joint
research, that atoms only absorb or emit light at certain
discrete wavelengths λi . These specific wavelengths
that are characteristic of each chemical element, are
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called the absorption or emission spectra of the atom.
These spectra are like a fingerprint of the atom, since
every atomic species can be unambiguously recognized
by its spectrum.

A possible experimental arrangement for measuring
emission spectra is shown in Fig. 3.37a.

The light emitted by atoms in the light source (which
might be, for instance, a gas discharge or a high current
arc between two electrodes of the material to be investi-
gated) is collected by the lens L1 and imaged onto the
entrance slit S1 of the spectrograph, which is placed in
the focal plane of lens L2. The parallel light bundle pas-
ses through the dispersing prism and the lens L3 images
the entrance slit onto the observation plane, where the
position of the slit image S2(λ) depends on the wa-
velength λ. If the light source emits light with discrete
wavelengths λK, the photoplate in the observation plane
shows after being developed dark lines at all those po-
sitions xK that correspond to slit images S2(λK). Such
a spectrum as that in Fig. 3.37b) is therefore called a line
spectrum. Many light sources emit continuous spectra,
i.e., their emitted intensity I(λ) is a continuous func-
tion of the wavelength λ. Examples are the radiation
of the sun’s photosphere, the emission of a blackbody
(see Sect. 3.2) and generally the emission of hot solid
bodies.

Absorption spectra can be measured with the se-
tup shown in Fig. 3.38. The radiation from a continuous

Fig. 3.38a,b. Measurement of absorption spectra. (a) Experimental arrangement (b) Absorption spectrum of sodium vapor
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Fig. 3.37. (a) Prism spectrograph for measuring the emis-
sion spectrum of a light source. (b) Emission spectrum of an
iron arc in the spectral interval 390−398 nm, taken for three
different exposure times

light source is collimated by the lens L1 and the paral-
lel light bundle is sent through the absorbing gaseous
sample. The lens L2 focuses the transmitted radiation
onto the entrance slit of a spectrograph. At those wa-
velengths λK, where the sample atoms absorb light, the
transmitted intensity is smaller than at nonabsorbing
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wavelengths. The negative of the illuminated photo-
plate therefore shows bright lines on a dark background
(Fig. 3.38b).

Such experiments brought about the following
results:

• Each wavelength observed in an absorption spec-
trum also appears in the emission spectrum of the
same kind of atoms if the atoms have been excited
into the emitting state by absorption of light or by
collisional excitation.

• The absorption and emission spectra are characteri-
stic for specific atoms. They allow the unambiguous
determination of the chemical element correspon-
ding to these spectra. The spectral analysis therefore
yields the composition of chemical elements in
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Fig. 3.40. Simplified level scheme of the hydrogen atom and the different absorption or emission series

a sample. This is particularly important in astro-
physics where the spectrum of the starlight gives
information on the number and the composition of
chemical elements in the atmosphere of the star.

• The spectral lines are not completely narrow, even
if the spectral resolution of the spectrograph is ex-
tremely high. This means that the atoms do not emit

α β γ δ ε ν→

Fig. 3.39. Balmer series of the hydrogen atom emitted from
a hydrogen gas discharge
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strictly monochromatic radiation but show an inten-
sity distribution I(λK) around each wavelength λK

with a finite halfwidth ∆λ. The reasons for these
halfwidths will be discussed in Sect. 7.5.

The most simple of all atoms is the H atom, consisting of
only one proton and one electron. Its emission spectrum
was measured in 1885 by Johann Jakob Balmer (1825–
1898). He could fit the wavenumbers ν̄K = 1/λK of its
emission lines by the simple formula

ν̄K = Ry

(
1

n2
1

− 1

n2
2

)
, (3.80)

where the integer numbers n1, n2 take the values n1 = 2
and n2 = 3, 4, 5, . . . . The constant Ry = 109,678 cm−1

is the Rydberg constant, which is historically given by
spectroscopists in units of inverse centimeters cm−1,
since all wavenumbers ν̄K = 1/λK are measured in these
units.

EXAMPLE

A spectral line with a wavelength λK = 500 nm = 5×
10−5 cm has a wavenumber ν̄K = 2×104 cm−1.

Later on Theodore Lyman (1874–1954) and Fried-
rich Paschen (1865–1947) found further series in the
emission and absorption spectrum of the H atom, which
could all be described by the Balmer formula (3.80), but
with n1 = 1 (Lyman series) or n1 = 3 (Paschen series)
(Fig. 3.40).

How can we understand these experimental results?

3.4.2 Bohr’s Atomic Model

Many theorists tried to develop models that could ex-
plain the experimental findings. However, most of these
models could describe some results but not all of them in
a consistent way without any contradictions. After many
efforts Nils Bohr (1885–1962) (Fig. 3.41) starting from
Rutherford’s atomic model finally developed in 1913
the famous planetary model of the atoms [3.3, 4, 17],
which we will now discuss for atomic systems with
only one electron (H atom, He+ ion, Li++ ion, etc.).

In Bohr’s atomic model the electron (mass me,
charge −e) and the nucleus (mass mN, charge +Ze)
both move on circles with radius re or rN, respectively,
around their center of mass. This movement of two bo-
dies can be described in the center of mass system by

Fig. 3.41. Niels Bohr (1885–1962) From E. Bagge: Die
Nobelpreisträger (Heinz-Moos-Verlag, München 1964)

the movement of a single particle with reduced mass
µ= (memN)/(me+mN)≈ me in the Coulomb poten-
tial Epot(r) around the center r = 0, where r is the
distance between electron and nucleus. The balance
between Coulomb force and centripetal force yields the
equation

µv2

r
= 1

4πε0

Ze2

r2
, (3.81)

which determines the radius

r = Ze2

4πε0µv2
(3.82)

of the circular path of the electron. As long as there are
no further restrictions for the kinetic energy (µ/2)v2

any radius r is possible, according to (3.82).
If, however, the electron is described by its mat-

ter wave, λdB = h/(µv) a stationary state of the atom
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Fig. 3.42. Standing de Broglie matter wave illustrating the
quantum condition for the angular momentum in Bohr’s
model

must be described by a standing wave along the circle
(Fig. 3.42) since the electron should not leave the atom.
This gives the quantum condition:

2πr = nλdB (n = 1, 2, 3, . . . ) , (3.83)

which restricts the possible radii r to the dis-
crete values (3.83). With the de Broglie wavelength
λdB = h/(µv) the relation

v= n
h

2πµr
(3.84)

between velocity and radius is obtained. Inserting this
into (3.82) yields the possible radii for the electron
circles:

rn = n2h2ε0

πµZe2
= n2

Z
a0 , (3.85)

where

a0 = ε0h2

πµe2
= 5.2917×10−11 m ≈ 0.5 Å

is the smallest radius of the electron (n = 1) in the
hydrogen atom (Z = 1), which is named the Bohr
radius.

r r

a) b)

E rkin ∝1/

E rpot ∝ −1/

E r∝ −1/

E rkin ∝1 2/

E rpot ∝ −1/

− ∗Ry

a0

E

Fig. 3.43a,b. Radial dependence of kinetic, potential, and total
energy of the electron in the Coulomb field of the nucleus.
(a) Classical model (b) Quantum mechanical model

The kinetic energy Ekin of the atom in the center of
mass system is obtained from (3.81) as

Ekin = µ2 v
2 = 1

2

Ze2

4πε0r
=−1

2
Epot (3.86)

and equals −1/2 times its potential energy. The total
energy (Fig. 3.43)

E = Ekin+ Epot =+1

2
Epot =−1

2

Ze2

4πε0r
(3.87)

is negative and approaches zero for r →∞. Inser-
ting (3.85) for r yields for the possible energy values En

of an electron moving in the Coulomb potential of the
nucleus:

En =− µe4 Z2

8ε2
0h2n2

=−Ry∗
Z2

n2
(3.88)

with the Rydberg constant

Ry∗ = hcRy = µe4

8ε2
0h2

(3.89)

expressed in energy units Joule.
This illustrates that the total energy of the atom

in the center of mass system (which nearly equals the
energy of the electron) can only have discrete values
for stationary energy states, which are described by
the quantum number n = 1, 2, 3. . . . (Fig. 3.40). Such
a stationary energy state of the atom is called a quantum
state. In Bohr’s model, the quantum number n equals
the number of periods of the standing de Broglie wave
along the circular path of the electron.

Note:

1. The exact value of the Rydberg constant Ry
depends, according to (3.89), on the reduced
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mass µ of the electron nucleus system. It dif-
fers, therefore, slightly for different masses of the
nucleus. In order to have a unique definition, the
Rydberg constant Ry∞ for infinite nuclear mass
mN =∞⇒ µ= me is defined. Its numerical va-
lue is Ry∞ = 109,737.31534 cm−1.
The Rydberg constant for finite nuclear mass mN is
then:

Ry = Ry∞µ/me .

2. Bohr’s atomic model is a “semiclassical model”,
which treats the movement of the electron as that of
a point mass on a classical path but adds an additio-
nal quantum condition (which is in fact a boundary
condition for the de Broglie wavelength of the
moving electron).

3. This quantum condition can also be formulated
using the angular momentum L of the electron.
Multiplying (3.84) by µr yields

µrv= |L| = n� ,

where �= h/2π. This means:

The angular momentum of the electron on its
path around the nucleus is quantized. The abso-
lute value n� is an integer multiple of Planck’s
constant �.

The two conditions:

a) The angular momentum of the atom in the center of
mass system is |L| = n�

b) The circumference of the circular path of the elec-
tron 2πr = nλdB must be an integer multiple of the
de Broglie wavelength

are identical. They are both due to the boundary
condition for the standing de Broglie wave.

In order to explain the line spectra observed in ab-
sorption or emission, the following hypothesis is added
to Bohr’s model.

By absorption of a photon hν the atom can be excited
from a lower energy State Ei into a higher state Ek, if
the energy conservation

hνik = Ek − Ei (3.90)

is fulfilled. Inserting the relation (3.88) for the energies
Ek, Ei yields the frequencies

νik = Ry∗

h
Z2
(

1

n2
i

− 1

n2
k

)
(3.91)

of the absorbed light. With the wave numbers ν̄ = ν/c
and Ry∗ = hc · Ry we obtain for the hydrogen atom
(Z = 1) exactly Balmer’s formula (3.80) for his
observed spectra.

When emitting a photon hν, the atom undergoes
a transition from a higher energy state Ek to a lower
state Ei , where again energy conservation (3.90) has to
be fulfilled.

We will summarize the preceding results of Bohr’s
model of hydrogenic atoms with a single electron.

• The electron moves on circles around the
nucleus with quantized radii

rn = n2

Z2
a0 = n2h2ε0

πµZe2

that increase quadratically with the integer
quantum number n.

• The possible values rn are inversely propor-
tional to the nuclear charge Ze. For the He+
ion with Z = 2 they are only half as large as
in the hydrogen atom.

• In each quantum state the atom has a well-
defined total energy

En =−Ry∗
Z2

n2
, Epot =+2En ,

Ekin =−En .

The energy E∞ = 0 for n =∞ and rn →∞
is chosen as zero. In its lowest possible state
the energy is E1 =−Ry∗Z2. Therefore the
positive energy −E1 is necessary to ionize
the atom in its ground state (i.e., to bring
the electron from r = r1 to r =∞). It is cal-
led the ionization energy. For the H atom the
ionization energy is Eion = 13.6 eV.

• By absorption of a photon hν = Ek − Ei the
atom can be excited from its lower energy
state Ei into the higher state Ek. Emission of
a photon by an excited atom causes a transition
from Ek to Ei .



3.4. The Quantum Structure of Atoms 115

Note:

The first excited state (n = 2) of the H atom already
needs an excitation energy of about 10.2 eV, which is
3/4 of the ionization energy.

Although Bohr’s semiclassical atomic model ex-
plains the observed spectra very well, and also brings
some esthetical satisfaction, because of its resemblance
to the planetary system, it leaves several questions
open. One essential point is that, according to classi-
cal electrodynamics, every accelerated charge should
emit radiation. The electron on its circular path is such
an accelerated charge. It should, therefore, loose energy
by emitting radiation and should spiral down into the
nucleus. Therefore, the Bohr model cannot explain the
existence of stable atoms.

3.4.3 The Stability of Atoms

The stability of atoms is consistently explained by
quantum theory. We will here give a conspicuous ar-
gument based on the uncertainty relation. It should be
only regarded as a simple estimation that is not re-
stricted to circular paths of the electron. If a is the
mean radius of the atom, we can give the distance r
of the electron from the nucleus with an uncertainty
∆r ≤ a, since we know that the electron has to be
found somewhere within the atom. According to the
uncertainty relation the uncertainty ∆pr of the radial
component of the electron momentum p must be lar-
ger than �/a. Therefore we conclude for the uncertainty
∆p≥∆pr ≥ �/a (otherwise we could determine p wi-
thin narrower limits than its component pr ). We find the
relation p>∆p≥ �/a. The mean kinetic energy of the
electron is:

Ekin = p2

2me
≥ (∆p)2

2me
≥ �

2

2mea2
. (3.92)

Its potential energy at a distance a from the nucleus
is

Epot =− e2

4πε0a
(3.93)

and its total energy E = Ekin+ Epot at the distance a is
then:

E ≥ �
2

2ma2
− e2

4πε0a
. (3.94)

The largest probability of finding the electron is at a di-
stance amin where the total energy is minimum, i.e.,
where dE/da = 0. This gives

amin = 4πε0�
2

me2
= ε0h2

πµe2
= a0 (3.95)

which is identical to the Bohr radius a0.
Therefore, a stable state exists with the minimum

energy limit

Emin =− me4

2(4πε0�
2)2

=− me4

8ε2
0h2

=−Ry∗ ,

(3.96)

which is consistent with the energy of the lowest state
with n = 1 in Bohr’s model.

Although the quantum mechanical results for the
energy confirms Bohr’s result, the explanation of the
stability is different.

According to the uncertainty principle the atom can-
not radiate in its lowest state because it has minimum
energy. In order to emit a photon, it would have to make
a transition to a higher energy state, which contradicts
energy conservation. The reason for this energy mini-
mum is the sharp increase of the kinetic energy of the
electron with decreasing distance a, due to the uncer-
tainty of its momentum (Fig. 3.43). In higher energy
states the atom can radiate, in accordance with the
experimental results.

In Bohr’s model the stability is explained by the as-
sumption of standing waves for the electron, where the
Poynting vector is zero. However, this does not explain
why higher energy states, which are also represented by
standing waves, do radiate.

3.4.4 Franck–Hertz Experiment

James Franck and Gustav Hertz [3.18] gave in 1914
an impressive experimental proof for the energy quan-
tization of atoms based on the following experimental
arrangement (Fig. 3.44a).

Electrons, emitted from a hot cathode are accele-
rated to the energy Ekin = eU by the grid G at the
voltage U against the cathode in a bulb, filled with
mercury vapor at low pressures. The electrons can only
reach the collecting anode A that is kept at a lower vol-
tage UA =U −∆U , if their energy after having passed
the grid G is at least e∆U .
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Fig. 3.44a,b. Franck–Hertz experiment. (a) Experimental se-
tup (b) Electron current as function of the acceleration
voltage U in a tube with mercury vapor

When measuring the electron current IA(U) as
a function of the acceleration voltage U , one obtains
a curve like that in Fig. 3.44b. The current increases
with U between U = 0 and U = 4.9 eV and follows
a typical diode characteristics. Above U1 = 4.9 V the
current decreases sharply, goes through a minimum, ri-
ses again until it reaches a second maximum at about
Ue = 9.8 eV.

How can this be explained?

The electrons suffer elastic and inelastic collisions
with the Hg atoms. In inelastic collisions,

e− (Ekin)+Hg → Hg∗ (Ea)+ e− (Ekin− Ea)

the electrons excite the Hg atoms and transfer the
amount ∆Ekin = Ekin− Ea of their kinetic energy to
the excitation energy Ea of the atom. Because of
this loss of energy the electrons cannot overcome the
bias voltage −∆U and therefore cannot reach the
detector.

During elastic collisions the electron can at most
transfer the fraction 4me/mHg ≈ 10−5 of its kinetic
energy. At sufficiently low pressures each electron suf-
fers only a few elastic collisions and the total energy
loss due to elastic collisions is then completely negli-
gible. However, elastic collisions may result in large
angular changes of the electron’s flight direction and
the electrons may therefore hit the walls of the tube
before they reach the anode. Without inelastic collisi-
ons the electron current would follow the dashed curve
in Fig. 3.44b, which resembles the electron current in
a diode tube. The further maxima and minima in the ac-
tually measured current I(UA) are due to the fact that
at sufficiently large voltages U the electron can regain,
after n inelastic collisions, the minimum required ki-
netic energy e∆Z during its flight path to the grid G
but has not enough energy for the (n+1)th inelastic
collision.

The separation between subsequent maxima cor-
responds to the excitation energy Ea = 4.9 eV of Hg
atoms. The exact form of the curve I(U) in Fig. 3.44 is
determined by

• The energy dependence of the excitation probability
(Fig. 3.45)

• The energy distribution of the electrons emitted
from the hot cathode.

With the improved experimental setup of Fig. 3.45a
the energy resolution could be substantially impro-
ved. Here, two grids are used and the acceleration of
the electrons is essentially restricted to the short flight
path between K and G1, while the small adjustable vol-
tage U2 between G2 and G1 does not change the electron
energy much. The excitation probability is then nearly
the same for all points between G1 and G2. With such
an improved apparatus the finer details of the excita-
tion function could be resolved, which correspond to
different excited states of the Hg atoms (Fig. 3.46).
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Fig. 3.45. (a) Improved experimental arrangement for the
Franck–Hertz experiment with higher energy resolution.
(b) Electron current I(U)measured with the apparatus shown
in (a), where the excitation of many higher levels in the Hg
atom can be seen. The structured maximum corresponds to
the first maximum in Fig. 3.44b

The excited Hg∗ atoms release their excitation
energy by emission of light

Hg∗ → Hg+hν .

Measuring this fluorescence light through a mono-
chromator shows that the emitted spectral lines have
wavelengths λk, which exactly correspond to the mea-
sured absorption lines of Hg vapor. Time-resolved
measurements of this fluorescence prove that the excited
atomic levels Ei are not stable. They decay within a very
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Fig. 3.46. Energy dependence of the excitation cross section
for the excitation n = 1 → n = 2 in the H atom (black curve)
and on the singlet-triplet transition 61S0 → 63 P1 in the Hg
atom (blue curve)

short time (typically ≈ 10−8 s) into lower states Ek,
where

∆E = Ek − Ei = hνik = hc/λik .

Only the lowest atomic states (called the ground states)
are stable. Their lifetimes are infinitely long (if not
excited by collisions or absorption of photons). The
wavelength λik of the emission spectrum measured
through a spectrograph allow a much higher accuracy in
the determination of energy levels than those obtained
from the electron impact measurements in Figs. 3.45
and 3.46.

The experimental results of the electron impact
excitation prove that atoms can acquire energy
only in discrete energy quanta ∆E. Their magni-
tude depend on the specific atom and its level
structure.

3.5 What are the Differences Between
Classical and Quantum Physics?

In the quantum physical description of micropartic-
les, such as atoms, molecules, electrons and photons,
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there is no distinct separation between particle model
and wave model. The matter wave function is charac-
terized by the particle momentum p and energy E
as well as by the de Broglie wavelength λ or the
frequency ν = E/h. The examples given in the pre-
vious sections have illustrated the particle nature of
light and the wave properties of particles. In this
section we will discuss the particle-wave duality of
microparticles and make clear, by some more in-
structive examples, that this duality does not give
contradictory but rather complementary descriptions of
nature.

3.5.1 Classical Particle Paths Versus Probability
Densities in Quantum Physics

The classical path of a particle can be exactly predic-
ted, at least in principle, for all times, if the initial
conditions (e.g., r(t = 0) and v(t = 0)) and the forces
acting on the particle are known. For the model of
point-like massive particles the equation of motion
(Newton’s equation F = ma) can be solved either ana-
lytically or numerically with computers within any
wanted accuracy.

For linear equations of motion, small inaccuracies of
the initial conditions results in only small uncertainties
of the further path r(t) of the particles.

However, many phenomena in nature have to be
described by nonlinear equations of motion (e.g., the
motion of a particle in a turbulent flow). Here, tiny
changes in the initial conditions may already change the
future development of the particles motion drastically.
For such “chaotic” movements the exact calculation of
the motion r(t) is in principle not possible, even in
“classical physics.”

Quantum physics brings, through the uncertainty
relations, an additional principal limit to the calculation
of the time development of a physical system.

• The initial conditions r(0) and p(0) for location and
momentum of a particle can not be both given simul-
taneously exactly but only within uncertainty limits.
The product∆xi ·∆pi (i = x, y, z) of the uncertainty
∆xi ,∆pi cannot be smaller than Planck’s constant �
(Fig. 3.47). Instead of the classical well-defined path
represented by the solid curve in Fig. 3.47 the loca-
tion x(t) can be only determined within a certain area
∆x ·∆t, schematically shown by the coloured area

x
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Uncertainty area
of measurement
at time t

∆x( )0
( )v v

→ →
+ ∆
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∆t
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Fig. 3.47. Uncertainty limits of the path of a microparticle,
determined by the uncertainty ∆x, ∆px of the initial condi-
tions and by the principal uncertainty of the measurement of
∆x at the particle location at time t and ∆t of the time t

in Fig. 3.47, which becomes larger over the course
of time.

• The determination of the exact paths r(t) of
single particles is replaced in quantum physics
by probability statements. It is only possible to
determine the probability P(x, p, t) to find a mi-
croparticle with momentum p(t) at the location x(t)
at time t.

• Measurements of x and p changes the state of the
micro-particle (see Sect. 3.3.3).

• The probability of finding a particle at time t at the
location x is related to its wave function ψ(x, t).
Averaging over a large number of identical mea-
surements gives the mean probability |ψ(x, t)|2 dx
to find the particle at time t within the spatial
interval dx around x. In the classical wave descrip-
tion this corresponds to the intensity of the wave
at (x, t).

• The spatial uncertainty∆x of a particle corresponds
to its de Broglie wavelength λdB = h/p = h/mv.
While this uncertainty plays an essential role for
microparticles, it is generally completely negligi-
ble for macro particles because of their large mass.
Only under special conditions (electrons in me-
tals or neutrons in neutron stars) the uncertainty
relation remains essential for macroscopic bodies.
Of course, it is responsible for the stability of
atoms (see Sect. 3.4.3) and therefore of matter in
general.
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3.5.2 Interference Phenomena
with Light Waves and Matter Waves

The observation of interference phenomena had been
always regarded as convincing proof for the wave mo-
del of light. In this section we will illustrate the physical
essence of the quantum description of particles by mat-
ter waves, discussing several modifications of Young’s
double slit experiment, performed with:

• Macroscopic particles
• Light
• Electrons

a) Macroscopic Particles

A spray gun SP in Fig. 3.48a produces a divergent beam
of small dye particles (∅ ≈ 1 µm), which hits a screen
with the two narrow slits S1 and S2 (width b, separa-

Fig. 3.48a,b. Young’s double slit experiment (a) with
macroscopic dye particles and (b) with photons

tion d) at the position x = x1. At a distance x2 behind
the screen the transmitted particles hit a glass plate G,
where they stick to the surface. The intensity I(y) of the
transmitted particles can be measured by the density of
the deposited dye layer.

When we close the slit S2, we obtain the density-
distribution I1(y) (dashed curve) when closing S1,
a slightly shifted distribution I2(y) is measured. When
both slits are open, the measured intensity distribu-
tion I(y)= I1(y)+ I2(y) equals the sum of the two
distributions of each slit, as could have been expected.

With macroscopic particles no interference
phenomena are observed!

b) Light

When we replace the spray gun by a light source LS and
the glass plate by a photoplate, we observe for a proper
choice of the slit dimensions (b ≈ 2λ, d> b) similar
intensity distributions as in Sect. a, if only one of the
slits is open. They correspond to the central diffraction
maximum for the diffraction by a single slit. However, if
both slits are open, the observed intensity does not equal
the sum I1+ I2, but an interference pattern appears that
can be described by

I(y)= |A1(y)+ A2(y)|2
= I1+ I2+2A1 A2 cos(∆ϕ(y)) , (3.97)

where Ai is the amplitude of the partial wave transmitted
through the slit Si and ∆ϕ = (2π/λ)∆s is the phase
difference between the two interfering partial waves at
the point P(y) on the photoplate, resulting from the path
difference ∆s(y)= S1 P(y)−S2 P(y).

Now we perform an important modification of the
experiment.

We gradually decrease the intensity I0 of the light
source until at most one photon is traversing the system
during the passage time ∆t = D/c with D = D1+D2

from the source to the detector. There is then always at
most one photon on the way. Its arrival time and location
in the detector plane can be measured when replacing
the photoplate by an array of many small photo detectors
(CCD-array). The photon can only pass through one of
the two slits. If it passed simultaneously through both
slits, each slit would have transmitted half a photon
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1
2�ω, in contradiction to Planck’s hypothesis that �ω is
the smallest energy unit of the electromagnetic field.

If the experiment is continued over a sufficiently
long time period in order to collect a sufficiently
large signal, one again observes an interference pat-
tern. This interference could not have been produced
by the interaction between different photons, passing
simultaneously through the two slits.

If two shutters are placed in front of the two slits,
which open alternately at a defined time, so that the ob-
server knows which slit is open, the interference pattern
disappears! The intensity in the observation plane then
becomes

I = I1+ I2 .

This illustrates that the interference pattern only
appears when we do not know through which of
the two slits a photon has passed, although we
know that it must have passed through one of the
two slits. We can only state that the probability is
P = 0.5 for passing through one of the two slits.

The quantum physical description is unambiguous.
Ifψ1 is the wave function of the photon passing through
slit S1 and ψ2 for passing through S2 the wave function
must be ψ = ψ1+ψ2 for the case that both slits are
open and we do not know through which slit the photon
has passed. The probability of detecting a photon in the
observation plane is therefore:

|ψ(x = x1+ x2, y)|2 = |ψ1+ψ2|2
= |ψ1|2+|ψ2|2+ψ∗

1ψ2+ψ1ψ
∗
2 . (3.98a)

The last two terms represent the interference. If we
assume (following Huygen’s principle) that each point
of the slit acts as a source of an outgoing spherical wave

ψi = Ai

r
ei(kir−ωt)

the interference term becomes for A1 = A2 = A:

ψ∗
1ψ2+ψ∗

2ψ1 = A2

r2
cos [k(s1− s2)] , (3.98b)

where si is the distance between slit Si and the point of
observation P(y).

If the slit S1 is closed, ψ1 becomes zero and the
interference disappears.

c) Electrons

Instead of the light source in Sect. b we now use an
electron gun, which emits a divergent electron beam
covering both slits. A spatially resolving electron de-
tector (CCD-array) in the plane x = x1+ x2 measures
the transmitted electrons. The observed intensity pat-
tern is quite similar to that in Sect. b if all quantities
(b, d, x1+ x2) are scaled by the ratio λ/λdB of light
wavelength λ and the de Broglie wavelength λdB. The
experiment shows that electrons also produce interfe-
rence patterns due to their wave properties if the ratios
λdB/b and b/d are chosen properly.

We will now discuss another, very instructive
“Gedanken-experiment” as a modification of the pre-
vious experiment. When a light source LS is placed
behind the plane of the two slits, it can illuminate elec-
trons passing through one of the slits (Fig. 3.49). The
light scattered from the electron could be detected by
one of the two detectors Di (i = 1, 2) and gives infor-
mation about the location of the electron just behind the
slit. In this way it should be possible to decide through
which of the two slits the electron has passed.

If the detector Di and simultaneously a pixel of
the CCD-array in the plane x = x1+ x2 deliver a si-
gnal pulse we know that an electron has passed through
slit S1 and has impinged onto the point P(y) in the plane
x = x1+ x2. Will there be still an interference pattern?
Quantum mechanics says “no,” in accordance with the
experimental results. How can this be understood?

The collision between photon and electron changes
the electron’s momentum and the direction of its velo-

Fig. 3.49. Double slit experiment with electrons. The light
from a source LS scattered by an electron after having passed
slit S1 allows one, in principle, to know through which of the
two slits the electron has passed
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city. As was shown in Sect. 3.4 for the example of the
microscope, the momentum change is ∆py = h/d, if d
is the spatial resolution, i.e., the uncertainty, with which
the location of the scatterer can be determined. The
electron then arrives at the detection plane at another
point (x = x1+ x2, y+∆y). The statistical distribution
with a width∆y = (∆py/py)x2 becomes larger than the
distance∆= (λ/d)x2 = h/(pyd)x2. This means, the in-
terference is completely washed out if the uncertainty
of the electron’s location in the plane of the slits S1, S2

becomes smaller than the slit distance d. The measu-
ring process change the conditions for observation and
destroys partly or completely the interference.

New experiments reveal, however, that the recoil
during the measuring processes of the electron’s loca-
tion is not the main cause of the disappearance of the
interference pattern, but the knowledge about the way
of the electron (see Sect. 12.5). The path of an atom in
an atom-interferometer can be inferred from preparing
specific atomic states by microwave absorption. Be-
cause the microwave frequency ν is much smaller than
that of visible light, its momentum p= hν/c transferred
to an atom is completely negligible. Nevertheless, any
interference phenomena at the exit of an atom interfero-
meter disappeared when knowledge was gained about
which way an atom had gone [12.4]. We can therefore
summarize:

Interference phenomena for light or particle waves
are due to the principal lack of knowledge about
the exact path of particles through the interference
device.

The probability description of Born’s statistical
interpretation of matter waves can be illustrated by
the following example. When in the arrangement of
Fig. 3.48 only a single electron is detected at (x = D, y),
we do not know, whether it has passed through slit S1

or S2. However, we can give the probability amplitude
ψ1(y− y1) that the electron has passed through S1 and
is detected at (x = D, y) or ψ2(y− y2) for its passage
through S2. For a coherent superposition the amplitudes
have to be added. The total probability, to find the elec-
tron at the position y in the detector plane, independent
of its way through S1 or S2 is then

|ψ(y)|2 = |ψ1(y− y1)+ψ2(y− y2)|2
= |ψ1|2+|ψ2|2+ψ∗

1ψ2+ψ1ψ
∗
2 . (3.99)

Since the probability to find the electron somewhere in
the detector plane is

|ψ(y)|2 dy = 1 .

The detection probability for a detector that covers the
interval from y to y+ dy is

P(y)dy = |ψ(y)|2 dy .

When N electrons have passed per second through eit-
her of the two slits, the counting rate of the detector
is

Z(y)dy = N|ψ(y)|2 dy . (3.100)

Inserting (3.99) gives the spatial interference structure
of the counting rate Z(y).

3.5.3 The Effect of the Measuring Process

The examples in the preceding sections have illustrated
that in the quantum mechanical description of a mea-
surement, the measuring process itself affects the result
of the measurement. When we measure the location of
a particle, we change by this measurement its momen-
tum p. This change ∆p is the larger the more accurate
we measure its position. If this measurement of posi-
tion is performed with light of wavelength λ (remember
that the position x cannot be measured more accurately
than by ∆x ≈ λ). The photon transfers the momentum
∆p = h/λ to the particle and the random direction of
the recoil momentum results in an uncertainty ∆p of
the particles momentum.

The influence of the measuring process on the state
of the measured object can impose a limit to the accu-
racy of the measurement not only for microparticles but
even for macroscopic bodies.

One example is the measurement of gravitational
waves by a large metal cylinder with about 104 kg mass
suspended by elastic strings.

The gravitational waves, which are produced, for
example, by an exploding star (supernova) cause a pe-
riodic contraction and expansion∆L of the length L of
the cylinder. For a supernovae at a distance of 105 light
years the amplitude ∆L is estimated as 10−21 m. For
its measurements, two points (x1, y1) and (x2, y2 = y1)

at the ends of the cylinder have to be marked. The
measurement of their position with an uncertainty
∆x = 10−21 m will result in the momentum transfer
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∆p ≥ �/(2∆x). If the cylinder was at rest before the
measurement, it will afterwards move with a velocity
v=∆p/m ≥ �/(2m∆x). For a frequency νG = 103 s−1

of the gravitational wave the time between two con-
tractions is τ ≈ 10−3 s. Within this time the cylinder
moves by∆xm = vτ ≈ �τ/(2m∆x). Inserting the values
m = 104 kg, ∆x = 10−21 m, τ = 10−3 s, gives

∆xm ≥ 5×10−21 m = 5∆x .

The uncertainty of the local position of the massive
cylinder, caused by measuring its position, is therefore
larger than the shift expected due to the gravitational
wave. A way out of this dilemma is a larger mass m and
averaging over many measurements.

We note that the measuring process itself changes
the state of the measured object.

Remark

Meanwhile, several sophisticated experimental arran-
gements have been set up that allow “quantum nonde-
molishing” experiments, where information about the
measured system is obtained without altering the state
of the measured object. For more details see Sect. 12.5
and the literature [3.19, 20, 21, 22, 23].

3.5.4 The Importance of Quantum Physics
for our Concept of Nature

Quantum theory can answer all open questions discus-
sed in the preceding sections (for example concerning
the stability of atoms, the diffraction of electrons, the
ultraviolet disaster and the photoeffect). Its extension to
quantum electrodynamics (QED) is in complete agree-
ment with all known experimental results within the
range of its validity, which means that all phenomena
associated with atoms, molecules and solids are satis-
factorily described by this QED-theory. Its limitations
only become visible when investigating the nuclear
structure and the properties of elementary particles. Its
disadvantage is its lack of vividness. There is, for in-
stance, no vivid picture of the photon because of its dual
character as particle or as wave. Also the quantum me-
chanical postulate that a lack of knowledge about the
way in which a particle has reached the detector, causes

interference phenomena, contradicts our usual picture
of classical physics.

The concept of probability and the uncertainty re-
lations have essential philosophical consequences. The
future destiny of a microparticle is no longer comple-
tely determined by its past. First of all, we only know its
initial state (location and momentum) within limits set
by the uncertainty relations. Furthermore, the final state
of the system shows (even for accurate initial conditi-
ons) a probability distribution around a value predicted
by classical physics.

The possibility of exact predictions, postulated in
classical physics for exactly known initial conditions, is
restricted in quantum physics in a two-fold way. The in-
itial conditions are not exactly known and the measuring
process itself affects the state of the system.

This is further illustrated by the following example
in Fig. 3.50. A light beam is split by beam splitters BS
into two equally intense partial beams, which are de-
tected by the detectors D1 and D2. Each of the two
detectors counts the statistically impinging photons and
both measure on the average an equal mean photon rate.

Fig. 3.50. (a) The role of the beam splitter without observing
an interference pattern. (b) An additional beam splitter to form
an interferometer
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Since a photon is indivisible, the beam splitter BS can
only either transmit or reflect the photon. Which of the
photons is reflected and which is transmitted, is not pre-
dictable. One can only say that the probability for each
of the two processes is 0.5.

Now a second beam splitter BS1 is inserted
(Fig. 3.50b) that splits the incoming light beam into two
partial beams that are again superimposed at the beam
splitter BS2. From interference experiments in classi-
cal optics we know that the intensity received by the
two detectors D1, D2 depends on the phase difference
between the two interfering beams at S. At a proper
phase difference, destructive interference occurs for the
beam directed towards D2 and constructive interference
for the beam towards D1. This means that D2 receives
no light, but D1 all of the light. This is observed even
at very low light intensities, where only one photon
is simultaneously on its way from the source to the
detector.

How can the photons “know” that they now all
should travel towards D1 and not towards D2?

This example illustrates that the experimentator can
influence the future fate of photons by choosing the
corresponding experimental arrangement. Changing the
distance S2S1R1R2 affects the splitting ratio of BS1.
This demonstrates that it is not meaningful to attribute
a definite path to the photons, but rather only a detec-
tion probability for D1 and D2, which depends on the
experimental arrangement.

During recent years several modifications of such
“which way” experiments have been demonstrated.
Their results are all in complete agreement with
quantum theory but cannot be explained by classical
concepts.

For a more detailed discussion the reader is referred
to the recommendable book of Paul [3.20] and to several
other books or review articles about this interesting
field [3.21, 22, 23].

• Many experimental results prove the particle cha-
racter of electromagnetic waves. Examples are
the spectral distribution of blackbody radiation,
the photoelectric effect, the Compton effect or
measurements of the photon structure of the light
emitted by a weak light source.

• The derivation of Planck’s radiation formula ba-
sed on the photon model gives results that are in
complete agreement with experiments.

• The energy quanta hν of the electromagnetic field
are called photons. One can formally define the
photon mass as m = hν/c2. Photons are deflected
by gravitational fields, like other particles with
mass m. There are no photons at rest. Neverthe-
less one defines a rest mass m0 = 0, in order to
describe photons by the same relativistic equa-
tions for energy and momentum used for other
particles with m0 	= 0.

• To define the characteristic properties of a photon,
such as momentum pphot = hk= (h/λ)k, energy
E = hν = hω and mass m = hν/c2, one needs
the wave properties frequency ν, wavelength λ
and wave vector k. This shows the duality in the
description of light.

• The wave character of particles is proved
experimentally by diffraction and interference
phenomena. Examples are the Bragg reflection
of neutrons by single crystals, neutron inter-
ferometry and numerous experiments in atom
optics, demonstrating diffraction and interference
of matter waves.

• Matter waves show dispersion, even in a vacuum.
Their phase velocity, which equals one half of the
particle velocity, depends on the frequency ω.

• Particles can be described by wave packets. The
particle velocity equals the group velocity of the
wave packet.

• The absolute square |ψ(x, t)|2 of the matter wave
function represents a probability density. This
means that |ψ(x, t)|2 dx gives the probability to
find the particle at time t in the interval dx
around x.

• Position x and momentum px of a particle cannot
be simultaneously accurately measured. Heisen-
berg’s uncertainty relation ∆x ·∆px ≥ � puts
a principle lower limit to the uncertainties ∆x of
the particle position and∆px to its momentum, if
both are measured simultaneously.

S U M M A R Y

�
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• Analogous to the situation in classical optics the
uncertainty∆x for the location of a particle cannot
be smaller than the wavelength λ= h/p of its
matter wave.

• A similar uncertainty relation∆E ·∆t ≥ � is valid
for the measurement of the particle energy E and
the time duration ∆t of this measurement. The
energy of an excited atomic state with mean life-
time τ can only be measured with an uncertainty
∆E = �/τ .

• Bohr’s classical atomic model, where the elec-
trons orbit around the nucleus on circles like
planets around the sun, needs an additional quan-
tum condition in order to explain the discrete
energy levels of the atom. The condition for
the radius r of the orbit can be formulated as
2πr = nλ, where λ= h/p is the de Broglie wave-
length of the electron’s matter wave, or as the
quantization |l| = r p = nh of the angular mo-
mentum l of the electron. Both conditions are
equivalent and lead to a quantization of the energy
levels.

• The allowed energy levels of atoms or ions with
only one electron and nuclear charge Ze are

En =−Ry∗Z2/n2 (n = 1, 2, 3, . . . ) ,

where Ry∗ = µe4/(8πε2
0h2) is the Rydberg con-

stant for the system consisting of the electron and
nucleus with reduced mass µ.

• Bohr’s model predicts many features of atomic
spectra correctly, but has to be modified on some
essential points.

• The uncertainty relation explains the stability of
atomic ground states.

• All excited atomic states Ek are unstable. They
decay under emission of a photon hν = Ek − Ei

into lower states Ei .• The quantization of atomic energy levels is cor-
roborated by the results of the Franck–Hertz
experiment and by the observation of line spectra
in absorption and emission of atoms.

• The quantum mechanical description replaces the
exactly determined path of a microparticle by
a probability distribution |ψ(x, t)|2 of a wave
packet. This distribution spreads in time. The un-
certainty∆x becomes the larger the more accurate
the initial location x(t0) had been known.

• The interference phenomena observed for mat-
ter waves in interference experiments, where the
matter wave is split and later recombined, are
due to the imperfect knowledge of which path the
particle has taken. The final state of the particle
therefore has to be described by a linear combina-
tion of two or more wave functions. If the path of
the particle is defined by additional experiments
the interference pattern disappears, because now
the linear combination can be reduced to one of
the terms in the linear combination.

1. What is the velocity and the kinetic energy of
a neutron with the de Broglie wavelength λdB =
10−10 m? Is this still a thermal neutron?

2. Calculate the mean energy per mode of the cavity
radiation field and prove (3.14b).

3. Derive Wien’s law in the form of (3.18)
and (3.18a).

4. a) Show that energy conservation and mo-
mentum conservation cannot be simultaneously
fulfilled when a free electron with velocity v1

absorbs a photon hν, increasing its velocity to
v2 > v1. Why are both quantities conserved in the
Compton effect?

b) What is the momentum of a photon hν= 0.1 eV
(infrared), hν = 2 eV (visible), and hν = 2 MeV
(γ -Quant)?

5. A slit with width b is illuminated by a paral-
lel beam of electrons with kinetic energy Ekin.
For which slit width b is the width B
of the central diffraction maximum obser-
ved on a screen at a distance D from the
slit?

6. What are radius and electron velocity v on the first
Bohr orbit with n = 1
a) in the H atom with Z = 1?
b) in the gold atom with Z = 79?

P R O B L E M S

�
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c) How large is the relativistic mass increase for
the two cases? How much do the energy va-
lues change if this mass increase is taken into
account?

7. Free neutrons have a mean lifetime of about 900 s.
After what distance from the neutron source has
the number of neutrons with a de Broglie wave-
length λdB = 1 nm decayed to one half of its initial
value?

8. Calculate the wavelength of the Lyman-α line
a) for tritium atoms (Z = 1, A = 3)
b) for positronium e+e−.

9. An atom with one electron has the energy levels
En =−a/n2. Its spectrum has two neighboring
lines with λ1 = 97.5 nm and λ2 = 102.8 nm. What
is the value of the constant a?

10. The Balmer series of the hydrogen atom should
be measured with a grating spectrograph with
a spectral resolution λ/∆λ= 5×105. Up to which
principal quantum number n are two neighboring
lines still resolvable?

11. What are the numerical values for the first Bohr
radius of the electron and its kinetic energy in the
He+ ion? Which value of the minimum energy is
obtained from the uncertainty relation?
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In Chap. 3 we saw that because of the uncertainty rela-
tion, the location x and the momentum px of an atom
cannot be simultaneously measured exactly. The clas-
sical well-defined path r(t) of a particle moving with
velocity v(t) has to be replaced by the probability

P(x, y, z, t) dV = |ψ(x, y, z, t)| 2 dV (4.1)

of finding a particle at a given time t in the volume dV
around the point r = {x, y, z}. The probability den-
sity is determined by the absolute square of the wave
function ψ.

In this chapter we will demonstrate, using several
simple examples, how the wave function ψ can be ob-
tained. These examples also illustrate the physical ideas
behind the mathematical framework of quantum mecha-
nics and their differences from classical concepts. They
furthermore show under which conditions the quantum
mechanical results converge to the classical ones and
they demonstrate that classical mechanics represent the
correct theory for all situations where the de Broglie
wavelength λdB approaches zero (this is nearly always
the case in daily life phenomena).

We will also see that most of the quantum mecha-
nical phenomena are well known in classical optics.
This means that the essential new concept of quan-
tum mechanics is the description of classical particles
by matter waves, where the de Broglie wavelength
λdB = h/(mv) gives the minimum spatial uncertainty
range when the momentum p = mv is known within
∆p =±�/λdB =±mv/2π. The deterministic classical
model of the time-dependent location (r(t), p(t)) of
a particle in phase space is replaced by a statistical de-
scription, where only probabilities can be given for the
result of a measurement. There is a principal uncertainty
for the simultaneous determination of location and mo-
mentum of a particle, which cannot be overcome even
with sophisticated measuring techniques.

4.1 The Schrödinger Equation

In this section we will discuss the basic equation of
quantum mechanics that was introduced in 1926 by
Erwin Schrödinger (1887–1961) (Fig. 4.1). The soluti-
ons of this equation are the wave functions ψ(x, y, z, t)

Fig. 4.1. Erwin Schrödinger (1887–1961). From E. Bagge:
Die Nobelpreisträger der Physik (Heinz-Moos-Verlag, Mün-
chen 1964)
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we are looking for. They can be obtained, in analyti-
cal form, only for a few simple problems. For real and
therefore more complex situations the solutions have
to be calculated numerically. However, with present
day computing power, this generally poses no major
problems.

Although the Schrödinger equation cannot be deri-
ved in a direct mathematical way, it is possible to show
how Schrödinger arrived at this equation from classical
wave concepts if the description of particles by matter
waves is accepted.

We regard a free particle with mass m moving with
uniform velocity v in the x direction. With the relations
λ= h/p⇒ p= �k and E = �ω= Ekin (because Epot =
0) we obtain, analogously to an optical wave, the matter
wave function

ψ(x, t)= A ei(kx−ωt) = A e(i/ )(px−Ekint) , (4.2)

where Ekin = p2/2m is the kinetic energy of the particle.
With the derivatives
∂2ψ

∂x2
=− p2

�2
ψ and

∂2ψ

∂t2
=−ω2ψ = E2

kin

�2
ψ

we obtain the wave equation

∂2ψ

∂x2
= 1

u2

∂2ψ

∂t2
(4.3)

for waves that propagate with the phase velocity u =
ω/k = E/p.

For stationary problems, where p and E do not ex-
plicitly depend on time, the wave function (4.2) can
be split into a product of a factor ψ(x)= A eikx , which
only depends on x (not on t) and a time-dependent phase
factor e−iωt . We can then write

ψ(x, t)= ψ(x)e−iωt . (4.4)

Inserting (4.4) into the wave equation (4.3) yields, for
the space function ψ(x)with k2 = p2/�2 = 2mEkin/�

2,
the equation:

∂2ψ

∂x2
=−k2ψ =−2m

�2
Ekinψ . (4.5)

For the case of a particle moving in the x direction in an
external field with potential energy Epot, the particle has
the total energy E = Ekin+ Epot. Replacing Ekin in (4.5)
by E− Epot we obtain the one-dimensional Schrödinger
equation for stationary situations:

− �
2

2m

∂2ψ

∂x2
+ Epotψ = Eψ . (4.6a)

For the more general case of a particle moving in three-
dimensional space the wave equation (4.3) becomes

∆ψ = 1

u2

∂2ψ

∂t2

with the Laplace operator

∆= ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
.

For stationary conditions, the wave function
ψ(x, y, z, t) can be again split into a space dependent
factor and a phase factor Ψ(x, y, z, t)=ψ(x, y, z)e−iωt ,
whereψ(x, y, z) is the solution of the three dimensional
stationary Schrödinger equation

− �
2

2m
∆ψ+ Epotψ = Eψ . (4.6b)

For time-dependent problems we obtain the Schrödin-
ger equation as follows: Taking the partial derivative
∂ψ/∂t of (4.2) gives

∂ψ

∂t
=− i

�
Ekinψ . (4.6c)

For a free particle with Epot = 0 is Ekin = E = const.
Inserting (4.6c) into (4.5) gives

i�
∂ψ(x, t)

∂t
=− �

2

2m

∂2ψ(x, t)

∂x2
, (4.7a)

which can be generalized for the three-dimensional case
to

i�
∂ψ(r, t)
∂t

=− �
2

2m
∆ψ(r, t) . (4.7b)

If the particle is moving in an external potential with
potential energy Epot(r), the general three-dimensional
time-dependent Schrödinger equation is:

i�
∂ψ(r, t)
∂t

=− �
2

2m
∆ψ(r, t)+ Epot(r) ·ψ(r, t) .

(4.8)

Remarks

1. The “derivation” of the stationary Schrödinger equa-
tion (4.6b) is based on the de Broglie relation p= hk
between momentum p of a particle and wave
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vector k of the matter wave, which has been pro-
ved by many experiments but cannot be derived in
a mathematical sense.

2. The stationary Schrödinger equation (4.6) repres-
ents the energy conservation Ekinψ+ Epotψ = Eψ
in quantum mechanics. Just as the classical law of
energy conservation (first law of thermodynamics)
it cannot be derived from first principles but is solely
based on experimental experiences.

3. The Schrödinger equations (4.6) and (4.7) are linear
equations. This means that with solutionsψ1 andψ2

any linear combination c1ψ1+c2ψ is also a solution
(superposition principle).

4. Since (4.7) is a complex equation the wave functi-
ons ψ may also be complex. However, the absolute
square |ψ|2 is always real, as it should be, because
it describes a physical quantity, namely the spatial
probability density of a particle.

5. There is an important difference compared to
the linear dispersion relation ω(k)= kc of elec-
tromagnetic waves. For the matter wave of
a particle with energy E and momentum p,
where E = p2/(2m), the dispersion relation beco-
mes a quadratic relation ω(k)= (h/2m)k2, where
E = hω and p = hk. Therefore the group velocity
dω/dk = (h/m)k of the matter wave depends on k
(see Sect. 3.3.4).

For nonstationary problems (this means that energy
E = E(t) and momentum p = p(t) may be time
dependent) ∂2ψ/∂t2 can no longer be written as
−ω2ψ and (4.7b) cannot be derived from the wave
function (4.2).

Schrödinger postulated, that the generalized equa-
tion (4.8) for a particle moving in a time-dependent
external field with potential energy E pot(r, t) should
still be valid for this more general case.

Although there is no mathematical proof for
this postulate, numerous experiments have con-
firmed that the time-dependent Schrödinger
equation (4.8) is a correct description for all non-
relativistic phenomena observed so far. It is the
master equation of nonrelativistic quantum me-
chanics and all phenomena in this field can be (at
least numerically) calculated by this equation.

For stationary problems the wave function ψ(r, t)
can be separated into

ψ(r, t)= ψ(r)e−i(E/h)t .

Inserting this product into (4.8) again yields the sta-
tionary Schrödinger equation (4.6a) for the spatial part
ψ(r).

4.2 Some Examples

In this section we will demonstrate the application
of the Schrödinger equation (4.6) to some simple
one-dimensional problems. These examples shall illu-
strate the wave description of particles and its physical
consequences.

4.2.1 The Free Particle

A particle is called a free particle when it moves or
rests in a constant homogeneous potential Epot = const.
Because F =− grad Epot = 0 there is no force acting
on the particle. We can choose this constant potential
energy as Epot = 0 without restricting the generality
of the problem. From (4.6) we obtain the Schrödinger
equation of the free particle:

− �
2

2m

d2ψ(x)

dx2
= Eψ(x) . (4.9a)

The total energy E = Ekin+ Epot is now, because Epot =
0,

E = p2

2m
= �

2k2

2m
.

And (4.9a) reduces to

d2ψ

dx2
=−k2ψ . (4.9b)

With the general solution

ψ(x)= A eikx + B e−ikx

the time-dependent wave function

ψ(x, t)= ψ(x)e−iωt = A ei(kx−ωt)+ B e−i(kx+ωt)

(4.9c)

represents the superposition of a plane wave traveling
into the +x direction and a wave into the −x direction.
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The coefficients A and B are the amplitudes of these
waves, which can be determined from the boundary
conditions. If, for example, the wave function shall de-
scribe electrons that are emitted from a cathode and fly
into +x direction to the detector, the coefficient B must
be zero. From the experimental setup we know that the
electrons can only be found within the distance L bet-
ween cathode and detector (Fig. 4.2). This implies that
the amplitude A can be nonzero only for 0< x < L.

With the normalization condition
L∫

0

|ψ(x)|2 dx = 1 ⇒ A2 L = 1 (4.10)

we obtain for the amplitude A = 1/
√

L.
In order to define the location of a particle at time t

more precisely, we have to use wave packets instead of
the plane waves (4.21) for its description:

ψ(x, t)=
k0+∆k/2∫

k0−∆k/2

A(k)ei(kx−ωt) dk (4.11b)

(see Sect. 3.3.1).
The local uncertainty ∆x ≥ �/(2∆px)= 1/(2∆k)

at time t = 0 depends on the momentum uncertainty
∆px = �∆k (Fig. 3.32). The larger the uncertainty ∆k
the smaller the uncertainty ∆x (t = 0), however, the
faster the wave packet spreads for t> 0.

This can be nicely illustrated by our example in
Fig. 4.2. If we apply a short voltage pulse between the
cathode K and the anode A at t = 0, electrons can start
moving between K and A only during the pulse. Due to
the thermal velocity distributions of the electrons emit-
ted from the hot cathode their velocities are spread over
the interval ∆v ∝∆k. Electrons with different values

U

∆ =x(t 0)

K A D

∆x(t)
U

t

I

KD L=

Fig. 4.2. Illustration of the spread of the wave packet by ob-
serving a bunch of electrons emitted at t = 0 from the cathode
with velocity spread ∆v(t = 0)

of v emitted at t = 0 are “smeared out” over the interval
∆x at later times t. The uncertainty ∆x increases with
time according to

d

dt
(∆x(t))=∆v(t)= �

m
∆k(t)∝ ∆p(t = 0)

m
.

The spatial spread of the wave packet is proportional to
its initial spread of momentum.

4.2.2 Potential Barrier

We divide the total x range into two parts (Fig. 4.3).
For x < 0 the potential energy is zero, while for x ≥ 0
Epot = E0 	= 0. At x = 0 we have a step ∆Epot = E0 of
the potential energy. From the left side of Fig. 4.3 free
particles with energy E fly into the +x direction. We
describe them, as in (4.10), by the wave function

ψI(x)= A eikx + B e−ikx , (4.11)

where B is the amplitude of the wave functions for
particles reflected at the potential barrier and traveling
in the −x direction. Note, that only the spatial part of
the wave function is written in (4.11), the time depen-
dent part is here omitted because we are dealing here
with stationary problems. The complete wave function
is represented by (4.9c).

For x ≥ 0 the Schrödinger equation is

d2ψ

dx2
+ 2m

�
(E− E0)ψ = 0 . (4.12a)

With the abbreviation α=√
2m(E0− E)/� this redu-

ces to
d2ψ

dx2
−α2ψ = 0 . (4.12b)

The solutions of (4.12b) are

ψII = (x ≥ 0)= C eαx +De−αx . (4.13)

E (x)p

D eikx⋅

A eikx⋅

B e ikx⋅ −

E0

E > Ek 0

E < Ek 0 E Ep 0=

I II
0

x

Fig. 4.3. One-dimensional potential barrier
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Since the total wave function

ψ(x)=
⎧⎨⎩ψI for x < 0

ψII for x ≥ 0

has to be uniquely defined within the whole range
−∞≤+∞, the derivative dψ/dx must be a conti-
nuous function and has to be finite within this range.
Otherwise, the second derivative in (4.12b) would not
be defined and (4.12) could not be applied.

This gives the following boundary conditions for
x = 0:

ψI(x = 0)= ψII(x = 0)

⇒ A+ B = C+D (4.14a)

dψI

dx

∣∣∣∣
x=0

= dψII

dx

∣∣∣∣
x=0

⇒ ik(A− B)=+α(C−D) . (4.14b)

We distinguish the two situations where the energy
Ekin = E of the incident particles is smaller (E < E0)
or larger (E > E0) than the potential step (Fig. 4.3).

a) E<E0:

In this case α =√
2m(E0− E)/� is real and the co-

efficient C in (4.13) has to be zero. Otherwise ψII(x)
becomes infinite for x →∞ and could no longer be
normalized. With (4.14) we then obtain:

B = ik+α
ik−α A and D = 2ik

ik−α A . (4.15)

The wave function in the region x < 0 is then

ψI(x)= A

[
eikx + ik+α

ik−α e−ikx

]
. (4.15a)

Its real part is illustrated in Fig. 4.4.

0
x

A B=

Ek

E0

E E0 k−

e−

A
B

Fig. 4.4. Complete reflection of the incident wave for Ekin <

E0, in spite of its penetration into the potential wall

The fraction R of the reflected particles is

R = |B eikx |2
|A eikx |2 =

|B|2
|A|2 =

∣∣∣∣ ik+αik−α
∣∣∣∣2 = 1 . (4.16)

This means that all particles are reflected.
This would also be expected from classical mecha-

nics. Since the particles do not have sufficient energy,
they cannot reach the region x > 0.

However, there is an important difference in the
wave description:

The particles are not reflected exactly at x = 0 but
penetrate into the region x > 0 before they return
to the −x direction.

This can be seen from closer inspection of ψII. The
probability of finding a particle at x ≥ 0 is

P(x)= |ψII(x)|2 =
∣∣De−αx

∣∣2 = 4k2

α2+ k2
|A|2 e−2αx

= 4k2

k2
0

|A|2 e−2αx , (4.17)

where k2
0 = 2mE0/�

2. After a penetration depth x =
1/(2α), the probability has dropped to 1/e of its value
(4k2/k2

0)A
2 at x = 0.

Particles with energy E, described by matter
waves can penetrate into regions with potential
energy E0 > E, where they would not be allowed
in classical particle mechanics.

However, if we accept the wave description of par-
ticles the result, which is surprising at a first glance,
follows quite naturally and completely analogously to
the well-known phenomena of total reflection in wave
optics. If a light wave traveling in a medium with re-
fractive index n is incident on the boundary plane to
a second medium with refractive index n′ < n, under an
angle θ less than the critical angle θc it is totally reflec-
ted for n sin θ > n′. The wave, however, still penetrates
into the second medium with a penetration depth

xp = 1

kγ
with γ =

√
n2 sin2 θ−n′2 .

This shows that quite analogous formulas are obtained
for both cases if 2α is replaced by kγ .
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b) E>E0

Now the kinetic energy Ekin = E of the incident partic-
les is larger than the potential barrier E0. In the classical
particle model, all particles would travel into the region
x ≥ 0, while their kinetic energy Ekin(x ≥ 0)= E− E0

would become smaller (Fig. 4.5).
What does the wave model say?
The quantity α in (4.12b) is now purely imaginary

and we replace it by the real quantity

k′ = iα=√
2m(E− E0)/� . (4.18)

The solutions for ψI(x) are again (4.11) and for ψII(x)
we obtain instead of (4.13) for x ≥ 0

ψII(x)= C e−ik′x +Deik′x . (4.19a)

Since for x > 0 no particles travel in the −x direction,
the amplitude C has to be zero and we obtain

ψII(x)= De−ik′x . (4.19b)

From the boundary conditions (4.14) we deduce that

B = k− k′

k+ k′
A and B = 2k

k+ k′
A . (4.20)

The wave functions ψI and ψII then become:

ψI(x)= A

(
eikx + k− k′

k+ k′
e−ikx

)
x < 0 (4.21a)

and

ψII(x)= A
2k

k+ k′
eik′x x ≥ 0 (4.21b)

The reflection coefficient

R = |B|2
|A|2 =

∣∣∣∣k− k′

k+ k′

∣∣∣∣2 (4.22)

v A⋅ 2

v B⋅ 2

v' ⋅ D2

E > E0 E0

0
x

λ π= 2
k

λ π' '= 2
k

Fig. 4.5. Transmission and reflection for Ekin > E0
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Fig. 4.6. (a) Reflectivity R of a potential barrier plotted as
a function of the ratio E0/E of the heights E0 of the barrier to
the energy E of the incident particle. Negative values represent
negative potentials E0 < 0. (b) An enlarged section for E ≥
E0 > 0

gives the fraction of reflected particles, while the
transmission coefficient

T = v
′|D|2
v|A|2 = 4kk′

|k+ k′|2 (4.23)

gives the fraction of the fluxes of transmitted particles
(Fig. 4.5). Here the different velocities v and v′ in both
regions have to be taken into account. Since D2 gives the
spatial density of transmitted particles, the flux is v′D2.

From (4.22) and (4.23) it follows that R+T = 1
(conservation of the particle number!)

The reflection coefficient R strongly depends on the
ratio E0/E (Fig. 4.6), since k′ = √

2mE0(E/E0−1)/�.
For E = E0 ⇒ k′ = 0 and R = 1. All particles are

reflected.

Remarks

1. Instead of the positive potential step a negative step
with E0 < 0 can also occur. This can be realized
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when in Fig. 4.3 the particles enter from the right
side, i.e., all k-vectors are inverted.

2. Since in optics the wave number k = 2π/λ is related
to the refractive index n by k = nk0, (4.22) can be
directly converted to

R =
∣∣∣∣n1+n2

n1+n2

∣∣∣∣2 ,
which gives the optical reflection coefficient for
a boundary plane between two media with refrac-
tive indices n1 and n2. This again shows the close
relationship between wave optics and matter wave
description.

3. The reflection and transmission at a negative po-
tential step are analogous to the transition from an
optical dense medium with refractive index n1 into
a less dense medium with n1 < n2.

4.2.3 Tunnel Effect

We will now consider the case of a potential barrier with
finite width ∆x = a (Fig. 4.7). We therefore divide the
whole x range into three sections:

I : x < 0 , Epot = 0

II : 0 ≤ x ≤ a , Epot = E0

III : x > a , Epot = 0 .

The wave functions are similar to the discussion in the
previous section:

ψI(x)= A eikx + B e−ikx , (4.24a)

ψII = C eαx +De−αx , and (4.24b)

ψIII = A′ eikx + B′ e−ikx . (4.24c)

0 a

a

x

E0

λ π= 2
k

λ π= 2
k

I II III

Fig. 4.7. The tunnel effect. Penetration of a matter wave
through a rectangular potential barrier

Since there is no wave in region III that travels in the
−x direction, the coefficient B′ has to be zero. The
boundary conditions:

ψI(0)= ψII(0) , ψII(a)= ψIII(a) , (4.25a)

dψI

dx

∣∣∣∣
x=0

= dψII

dx

∣∣∣∣
x=0

, and

dψII

dx

∣∣∣∣
x=a

= dψIII

dx

∣∣∣∣
x=a

(4.25b)

yield relationships between the coefficients A, B,C,
D, A′. This gives for the transmission, after some
algebra

T = v|A
′|2

v|A|2 = |A′|2
|A|2

= 1− E/E0

(1− E/E0)+ (E0/4E) sinh2(aα)
(4.26a)

with α=√
2m(E0− E)/� (see Problem 4.4).

For large barrier widths (aα� 1) we can approxi-
mate

sinh(aα)= 1

2

(
eaα− e−aα)≈ 1

2
eaα

and obtain with E2
0 e2aα/(16E(E0 − E))� 1 from

(4.26)

T ≈ 16E

E2
0

(E0− E)e−2aα . (4.26b)

The transmission of the matter wave (and therefore of
the particle represented by this matter wave as well)
through the potential barrier, depends on the barrier

E

x

E0

R<1
T<1

E (x)p

E<E 0

Fig. 4.8. Illustration of the tunnel effect for a potential barrier
of general shape
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heights E0, on the difference (E0− E) and exponenti-
ally on the product aα of barrier widths a and coefficient
α=√

2m(E0− E)/�.
In the classical particle model, particles with E < E0

could never overcome the barrier. The transmission of
matter waves through a potential barrier is called the
tunnel effect, because the particles seem to penetrate
the barrier at energy E on a horizontal path, as if this
were a tunnel. The potential barrier Ep(x) can have an
arbitrary form, as indicated in Fig. 4.8. In our examples
we use rectangular barriers because the calculation of
transmission coefficients is much simpler for this case.

EXAMPLE

E = E0/2 ,

a = λdB/2π = �/p = �√
2m(E0− E)

⇒ aα= 1 .

With sinh(1)= 1.543 we obtain from (4.26a):

T = 0.5

0.5+0.5 ·1.5432
= 0.3 .

This means that 30% of all incident particles can
transmit through the barrier.

If a = λdB ⇒ aα = 2π. With sinh2(2π)= 7×104

the transmission becomes T = 1.5×10−5.

In Fig. 4.9 the reflection coefficient R and the trans-
mission T = 1− R are plotted as a function of the
ratio E/E0 for the special case of a barrier with width
a = 0.48λdD(E0) that is about half of the de Broglie
wavelength λdD of the incident particles. The diagram
shows that even for E > E0 the transmission is smaller
than one, which means that not all of the incident par-
ticles pass the barrier, although they would do so in the
classical particle model.

For E > E0 the quantity α in (4.26) becomes
imaginary. We, therefore, introduce the real quantity
k′ = iα=√

2m(E− E0)/�. This transfers (4.26) into

T = E/E0−1

(E/E0−1)+ (E0/4E) sin2(k′a)
. (4.26c)

This formula is completely analogous to the Airy-
formula in optics, which describes the transmission of
an electromagnetic wave through a glass plate. The
undulations of T in Fig. 4.9 are due to interferences
between the waves reflected at the front side and the

5 101

1.0

0.5

0

R
 u

nd
T

E /E 0

T

R

0

Fig. 4.9. Transmission T and reflectivity R of a rectangular
barrier of width a = 3 /

√
2mE0 = (3/2π)λdB ≈ 0.48λdB as

a function of the energy of the incident particle

backside of the barrier. For k′a = mπ⇒ a = nλ/2 de-
structive interference occurs, which results in R = 0 and
T = 1 for E = E0 because in this case the de Broglie wa-
velength λ′dB = 2π/k′ becomes infinite, the parameter α
therefore becomes zero and the transmission is T = 1
independent of the width as of the barrier (Fig. 4.10).
This can be verified using the rule of de-l’Hôspital,
i.e., by differentiating the nominator and denominator
in (4.26c) with respect to E and then inserting E = 0.

In classical wave optics the tunnel effect is a well-
known phenomenon. When a light wave is totally
reflected at the boundary plane between glass and air

a / 'λ

( )

E E

E E
E

E

−

− + ⋅

0

0
0
2

4

0

1

T

0.5 1

Fig. 4.10. Transmission T as a function of the ratio a/λdB of
barrier width a and de Broglie wavelength λ′dB for E > E0
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Laser

D1

D2

>

Piezo
U

d
Fig. 4.11. Measure-
ment of frustrated
total reflection in op-
tics, by changing the
separation d of the
two prism surfaces

(Fig. 4.11) the reflection coefficient is R = 1 and the de-
tector D1 receives the full incident intensity. If, however,
a second glass plate is brought within a distance d paral-
lel to the first interface, part of the light is transmitted to
the detector D2. The transmission T can be varied bet-
ween 0 and 1 depending on the distance d. The reason
for this is that part of the light wave penetrates through
the first interface and this evanescent wave travels par-
allel to the interface plane. Its amplitude decreases but
the transmission through the interface remains zero un-
less a second air-glass-interface is brought within d ≈ λ
to the first one.

The tunnel effect is, therefore, not a specific quan-
tum mechanical phenomenon (as is often stated
in text books), but occurs for all waves (optical,
acoustic or matter waves). The crucial quantum
mechanical aspect is the description of classical
particles by waves.

We will illustrate the tunnel effect, discussed so far
by a model barrier, for some real situations in atomic
and nuclear physics.

a) Field Ionisation of Atoms

The electron of the hydrogen atom is bound by the
Coulomb force

FC =− 1

4πε0

e2

r2
r̂ (4.27)

between electron and proton. If the atom is placed in
an external electric field, E = {0, 0, Ez} in z direction,
an additional force F =−eE =−eEzêz is acting on
the electrons (Fig. 4.12). With z = r cosϑ we obtain for

zm z

Coulomb potential

Penetration
through the
potential
barrier

φ = − ⋅E zz

E

E3

E2

E1

Effective potential

Fig. 4.12. Field ionization of high lying atomic energy levels
by an external electric field through the tunnel effect

ϑ = 0 the z dependence of the potential

φ(z)=− e

4πε0z
− Ezz (4.28)

which has a maximum for [dφ/dz]zm = 0. This yields

zm =
√

e

4πε0 Ez
. (4.29)

The energy level E3 in Fig. 4.12 would be stable in
a classical particle model but can decay by tunnel effect
in the quantum mechanical model, which describes the
electron by its matter wave.

b) Nuclear α-decay

The radioactive α-decay rate of instable radioactive
nuclei is determined by the tunnel effect. The α-particle
(2 protons+2 neutrons) is kept within the nucleus by
the strong attractive nuclear force, which can be mo-
deled by the potential well in Fig. 4.13. Superimposed
on the attractive potential is the repulsive Coulomb-
potential due to the electrostatic repulsion between the
positively charged α-particle and the positive charge
of the nucleus. If the energy of the α-particle is
above the total potential energy at r →∞ (E = Epot+
Ekin > Epot(∞)) the α-particle can tunnel through the
potential barrier and can leave the nucleus. The energy
difference ∆E = E(r0)− Epot(∞) appears as kinetic
energy of the emitted α-particle.
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Tunnelling
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Fig. 4.13. Emission of α particles out of the nucleus of heavy
atoms through the tunnel effect

c) Inversion Tunneling in the NH3 Molecule

A famous example of the tunnel effect in molecular
physics is the NH3 molecule (Fig. 4.14). The potential
energy Ep(z) of the N atom has two minima at z =
±z0 above and below the plane of the three H atoms,
separated by a maximum at z = 0. Even if the energy
of the N atom vibrating against the three H atoms is
less than the potential energy Ep(z = 0), it can tunnel

N

E (z)p

H

H

H

N

Coupling
of both levels
by tunneling

z
0

x

y
z

0

a) b)

Vibrational
level

Fig. 4.14. Tunneling of the N atom through the plane of the
three H atoms in the NH3 molecule, resulting in the inversion
splitting of vibrational levels

through the potential barrier and has, therefore, an equal
probability of being at z = z0 or z =−z0.

4.2.4 Particle in a Potential Box

We will now discuss the case that a particle is restricted
to a finite interval 0 ≤ x ≤ a (Fig. 4.15). This can be
realized, if the potential energy is chosen as

Epot(x)=
⎧⎨⎩0 for 0 ≤ x ≤ a

∞ elsewhere .
(4.30)

In order to calculate the possible energies of the
particle with mass m, we have to solve the one-
dimensional Schrödinger equation with the given
boundary conditions.

Within the interval 0 ≤ x ≤ a where Epot = 0 the
Schrödinger equation is

d2ψ

dx2
+ k2ψ = 0 with k2 = 2mE

�2
(4.31)

with the boundary condition ψ(x < 0)=ψ(x > a)= 0,
since the particle cannot reach these x ranges.

We use, as we did in Sect. 4.2.2, the trial wave
functions

ψ(x)= A eikx + B e−ikx (4.32)

as possible solutions. The boundary conditionψ(x = 0)
yields

A+ B = 0 (4.33a)

while ψ(x = a)= 0 gives

A eika + B e−ika = 0 . (4.33b)

Because of (4.33a) this reduces to

A
(

eika − e−ika)= 0 . (4.33c)

0 a x

E

Epot = 0

E Ekin=

Fig. 4.15. Particle in a one-
dimensional potential well with
infinitely high walls
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When inserting (4.32) and (4.33a) into (4.31) we obtain
the possible wave functions

ψ(x)= A
(

eikx − e−ikx)= 2iA sin(kx) . (4.34a)

The second boundary condition (4.33b) demands

2iA sin(ka)= 0 ⇒ ka = nπ (n = 1, 2, 3, . . . ) .
(4.34b)

The wave functions are then

ψ(x)= 2iA sin
(nπ

a
x
)
= C sin

(nπ

a
x
)

(4.35)

with C = 2iA. They describe standing waves with am-
plitudes C. Since these amplitudes have to be real
for real physical situations, the amplitude A = C/2i
must be imaginary. The boundary conditions allow only
certain wavelengths

λn = 2a

n
(4.36a)

or wave numbers

kn = 2π

λn
= n

π

a
. (4.36b)

These standing waves are completely analogous to vi-
brations of a string fixed at both ends (Fig. 4.16). The

E1

E2

E3

0 a
x

E

a)

16E1

4E1

9E1

E4

x

E

0 a

b)

Fig. 4.16a,b. Energy levels and eigenfunctions of a particle
in a one-dimensonal box with infinitely high walls. (a) Ei-
genfunctions ψ(x) as standing waves. (b) Spatial probability
distribution |ψ(x)|2

probability |ψ(x)|2 dx of finding the particle in the
interval x− dx/2 ≤ x+ dx/2 is shown in Fig. 4.16b.

The possible energies of the particle in the one-
dimensional box follow from (4.36b) as:

En = p2

2m
= �

2k2
n

2m

= �
2

2m

π2

a2
n2 (n = 1, 2, 3, . . . ) . (4.37a)

The energies are quantized. Not every energy is possible
but only discrete values En , which increase as n2 and
are proportional to 1/a2. This means that the larger
the width a of the potential well is, the smaller the
eigenenergies (Fig. 4.17a,b).

The minimum energy is not zero but

E1 = �
2

2m

π2

a2
. (4.38)

This zero-point energy is caused by restricting the
location x of the particle to∆x = a. The larger∆x
the smaller is the zero-point energy.

This is directly related to Heisenberg’s uncertainty
relation that demands

∆p∆x ≥ h/2 .

E1

E2

E3

0 a
x

0 2a
xE1

E2

E3

E

E6

E5

E4

a) b)

E

Fig. 4.17a,b. Comparison of energy levels in a one-
dimensional potential box with different widths ∆x.
(a) ∆x = a, (b) ∆x = 2a
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With ∆x = a this gives

p ≥∆p ≥ h

2a
⇒ Emin = p2

min

2m
≥ h2

8ma2
= �

2π2

2ma2
.

(4.39)

For the minimum wave number we obtain:

kmin = 1

�
pmin = π

a
⇒ λmax = 2π

kmin
= 2a . (4.40)

EXAMPLE

For an electron in a potential well with a = 1 nm the
energy values are

En = �
2π2

2mea2
n2 = 0.368 eV ·n2 .

The excitation of the electron from its lowest state E1

to the first excited state E2 demands the energy ∆E =
E2− E1 = 3 ·0.368 eV = 1.1 eV.

Remarks

1. When the walls of the potential box have a finite
height E0 the particle can partly penetrate into these
walls, as was shown in Sect. 4.2.2. Its wave function
decays inside the walls exponentially (Fig. 4.18).
The wave functions slightly change because the
boundary conditions ψ(0)= 0 and ψ(a) = 0 are
no longer valid. The energies En decrease. As
is outlined in Problem 4.4 the energies En can
be numerically calculated from the transcendent
equations

kn tan(kna/2)= α (4.41a)

E0

0
0 a

x
E1

E2

E3

E0

Fig. 4.18. Energy levels and eigenfunctions in a one-
dimensional potential box with finite heights of the
walls

or

− kncotan(kna/2)= α (4.41b)

depending on the boundary conditions, with

α= 1

�

√
2m(E0− E)

and

kn = 1

�

√
2mEn . (4.41c)

2. Energies E > E0 are not quantized, since the particle
is now no longer restricted to the interval 0≤ x ≤ a.
A particle with E > E0 traveling into the x direction
traverses the potential well, however, not with the
transmission probability T = 1. Part of its matter
wave is reflected, as has already been discussed in
Sect. 4.2.2.

3. Up to now we have described the particle by its mat-
ter wave with a well- defined k-value. In Sect. 3.3
we have, however, learned that the adequate descrip-
tion is a wave packet that contains many different
k-values within the interval k0−∆k/2 ≤ k+∆k/2.
While the solutions (4.35) describe the stationary
time-averaged situation of a particle in a one-
dimensional box, the time-dependent description of
a particle moving back and forth in the box has to be
performed with wave packets. Here the interference
pattern is much more complex, because many dif-
ferent wavelengths of the wave packet contribute to
it. An impression of the time-dependent description
gives the colored picture 1 in the Appendix.

4. If the energy scale in Fig. 4.18 is shifted in such
a way that

Epot =
⎧⎨⎩−E0 for 0 ≤ x ≤ a

0 elsewhere

all formulas in Sect. 4.2.3 can still be used if E0 is
replaced by−E0. Since E > E0, the transmission T ,
is now obtained from (4.26c), but with a different
value of k′

k′ =√
2m(E+ E0)/� .

At energies En = h2k2
n/2m with kn = nπ/a the

transmission shows maxima. This phenomenon,
caused by interferences between waves reflected at
the front and backside of the potential can be also
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observed for more general (i.e., non-square well)
potentials. For instance, the scattering cross section
of particles scattered by other atoms in a gas shows
minima for energies of the incident particle when
destructive interference occurs for the deflected de
Broglie waves (Ramsauer effect).

In Summary

If a particle is spatially restricted to the interval
∆x ≤ a, it can only have discrete energy values

En = �
2

2m

π2

a2
n2 = h2

8ma2
.

Its minimum energy is not zero but

E1 = �
2

2m

π2

a2
(zero-point energy).

4.2.5 Harmonic Oscillator

A very famous example of one-dimensional problems
is the harmonic oscillator, which plays an important
role in many branches of physics, such as molecu-
lar physics, solid-state physics and nuclear physics.
If a particle moves in a parabolic potential with
potential energy Epot = 1

2 Dx2 the restoring force is
F = − grad Epot = −Dx. The classical description
uses a point mass m, that is attached to a spring with re-
storing force F =−Dx (Hook’s law) (Fig. 4.19). If the
point mass is removed from its equilibrium position at
x = 0 and then released it performs harmonic oscilla-
tions x = A sin(ωt) or x = A cos(ωt) depending on the
initial conditions. The frequency of these oscillations is

ω=√
D/m ⇒ D = mω2 . (4.42)

Fig. 4.19. Classical model of the
harmonic oscillator

It depends on the mass m and the restoring force
constant D of the spring.

The quantum mechanical treatment starts from the
Schrödinger equation (4.6a), which now becomes:

− �
2

2m

d2ψ

dx2
+ 1

2
Dx2ψ = Eψ . (4.43)

Inserting (4.42) gives

− �
2

2m

d2ψ

dx2
+ 1

2
ω2mx2ψ = Eψ . (4.44a)

Using the transformation of the variable x to

ξ = x
√

mω/� (4.45)

and the abbreviation

C = 2E

�ω

we obtain from (4.44a) the Schrödinger equation in the
form

d2ψ

dξ2
+ (C− ξ2)ψ = 0 . (4.44b)

For the special case C = 1
(
E = 1

2�ω
)

the solution
of (4.44b) is:

ψ0(ξ)= A e−ξ
2/2 (4.46a)

as can be readily verified by inserting (4.46a)
into (4.44b). We now make the more general ansatz:

ψ(ξ)= H(ξ)e−ξ
2/2 . (4.46b)

Inserting this into (4.44b) yields the equation

d2 H

dξ2
−2ξ

dH

dξ
+ (C−1)H = 0 (4.47)

for the function H(ξ). This is a Hermitian differential
equation, well known to mathematicians. Its solutions
are the Hermitian polynomials Hv(ξ) of order v, which
are defined by the generation equation

Hv(ξ)= (−1)v eξ
2 dv

dξv

(
e−ξ

2
)

(4.48)

with v = 0, 1, 2, . . . , as can be verified by inser-
ting (4.48) into (4.47). The Hermitian polynomials can
be found in mathematical tables. The first four polyno-
mials Hv with v= 0, 1, 2 and 3 are listed in Table 4.1,
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Table 4.1. Eigenfunctions of the harmonic oscillator for the
four lowest vibrational levels

v E(v) ψv(ξ)

0 1
2 ω N0 · e−ξ2/2

1 3
2 ω N1 ·2ξ · e−ξ2/2

2 5
2 ω N2 · (4ξ2−2) · e−ξ2/2

3 7
2 ω N3 · (8ξ3−12ξ) · e−ξ2/2

where the Ni are normalization factors, which ensure
that

∞∫
ξ=−∞

|ψ(ξ)|2 dξ =
∞∫

x=−∞
|ψ(x)|2 dx = 1 . (4.49)

The Hermitian polynomials can be represented by the
power series

H(ξ)=
v∑

i=0

aiξ
i , (4.50)

which must be finite. Otherwise Hv(ξ) would become
infinite for ξ > 1 and the normalization (4.49) would
not be possible for the wave functions

ψ(x)= H̃(x)e−(mE/ 2)x2/2 . (4.51)

Inserting (4.50) into (4.47) and comparing the co-
efficients of equal powers ξ i yields the recursion
formula

(i+2)(i+1)ai+2 = [2i− (C−1)] ai . (4.52)

Assume that ξv is the highest power of ξ i . Then av+2

has to be zero. From (4.52) we can, therefore, conclude

(2v−C+1)= 0 ⇒ v= 1

2
(C−1) . (4.53)

Since C = 2E/�ω we obtain the relation between the
“quantum numbers” v and the energy values

E(v)=
(
v+ 1

2

)
�ω (v= 0, 1, 2, . . . ) . (4.54)

The possible energy values of the harmonic oscil-
lator are equidistant with the separation∆E = �ω.
The lowest energy for v= 0

E0 = 1

2
�ω (4.55)

is not zero but equals half of the level separation
∆E = �ω. E0 is called zero-point energy.

ψ0
2

ψ1
2

ψ 2
2

ψ 3
2

E

v=3

v=2

v=1

v=0

x

hω

E h= 3
2 0ω

E h= 5
2 0ω

E h= 7
2 0ω

E h= 1
2 0ω

ψ1

ψ0

ψ2

ψ3

0

E Dxp = 1
2

2

Fig. 4.20. Equidistant energy levels wave functions ψn(x)
and spatial probabilities |ψ(x)|2 for a particle in a parabolic
potential (harmonic oscillator)

The wave functions of the harmonic oscillator are

ψ(x)= H̃(x)e−(mEv/ 2)x2
. (4.56)

They are depicted in Fig. 4.20 for v= 0, 1, 2, 3 together
with their absolute squares |ψ|2 dx, which give the pro-
bability to find the particle in the interval dx around the
position x.

In classical physics, the probability of finding the
particle during the time interval dt within the spatial
interval dx during the harmonic oscillation with period
T = 2π/ω is

P(t) dt = dt

T
= dx

v(x)T
, (4.57)

where dt = dx/v(x) is the time interval the particle
needs to traverse the spatial interval dx. Since the
velocity v(x)= dx/dt becomes zero at the two tur-
ning points of the oscillation, the probability P(x) has
maxima at these points (Fig. 4.21).

Also the quantum mechanical description yields, for
v > 0, maxima around the turning points, but has an os-
cillatory probability P(x) dx of finding the particle in
the interval dx around x. For large quantum numbers v
the classical description (dashed curve in Fig. 4.21)
represents the average of the quantum mechanical
probability |ψ|2 dx, shown for v= 10.

For the lowest state v = 0, both descriptions dif-
fer considerably. The quantum mechanical probability
has a Gaussian distribution with its maximum at x = 0,
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−6 −4 −3 −2 −1 0 1 2 3 4 5 6

ψ 2

ξ
−5

Fig. 4.21. Comparison of classical (dashed blue line) and
quantum mechanical probabilities for a particle with high
vibrational quantum number (here v = 10) of the harmonic
oscillator. The abscissa is plotted in units of ξ = x

√
mω/

whereas the classical description assumes a particle
at rest and the probability would therefore be a delta
function at x = 0. The classical model gives the lowest
energy as E0 = 0, while the quantum mechanical mo-
del yields the zero-point energy E0 = hω/2, which is
justified by the uncertainty relation.

E

x

v + 3
v + 2

v + 1
v t2t1

vg

∆ ∆E h t= /

∆x

Fig. 4.22. Two momentary pictures of a wave packet oscil-
lating back and forth in the harmonic potential. The wave
packet is composed here of four vibrational wave functions
of levels v to v+3

All experiments performed so far (see Chap. 11)
have proven that the quantum mechanical model of the
harmonic oscillator is the correct description.

Remark

The quantities |ψ|2 dx in (4.39) give the probabilities
of finding the particle within the interval dx only for
the stationary case. This case is relevant if the ener-
gies En are measured with a low time resolution, which
means that the measuring interval∆t is large compared
to the vibrational period T of the oscillator. For measu-
rements with a very high time resolution, the dynamics
of the vibrating particle can be resolved. In this case the
stationary wave description is no longer adequate, but
wave packets must be used in order to localize the par-
ticle better during its vibration (Fig. 4.22). This wave
packet description comes closer to the classical model
(see Chap. 11).

EXAMPLE

The vibration period of a vibrating molecule depends
on the mass and the restoring force (i.e., the potential
coefficient D in (4.30)). For Na2 molecules T = 2×
10−13 s, for N2 molecules T = 1.4×10−14 s and for the
light hydrogen molecule H2 the vibrational period is
only T = 7.6×10−15 s.

In order to measure the dynamics of a vibrating
molecule a time resolution in the femtosecond range
(1 fs = 10−15 s) is necessary.

If the wave packet should have a spatial resolu-
tion ∆x corresponding to a resolved time interval ∆t
that is small compared with the vibrational period T ,
than its energy resolution ∆E > h/∆t becomes worse.
For instance, if∆t = 0.2 T than∆E is about five times
as large as the energy separation ∆Evib = En+1− En .
This means that five vibrational levels are simulta-
neously involved in the oscillation. The superposition
of the wave functions (including their time factor
exp(iωnt)) of these five levels determines the form of
the wave packet, which oscillates, like the classical par-
ticle, between the turning points within the harmonic
potential (Fig. 4.22).

The discrepancy between the oscillating classical
particle and the stationary wave functions is, there-
fore, somewhat artificial and does not represent a real
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problem. The stationary wave functions describe the
time-averaged motion of the particle with the time-
independent total energy, while the wave packet model
describes the dynamics of the particle, it separates the
kinetic energy (determined by the group velocity of the
wave packet) and the potential energy. Both energies
change during the oscillation, while the total energy
remains constant.

4.3 Two-and Three-Dimensional
Problems

For the solution of two- or three-dimensional problems
we have to start from the three dimensional Schrödinger
equation (4.6b)

− �
2

2m
∆ψ+ Epotψ = Eψ (4.58)

with the Laplace operator in Cartesian coordinates

∆ψ = ∂
2ψ

∂x2
+ ∂

2ψ

∂y2
+ ∂

2ψ

∂z2
. (4.59)

The solutions ψ = ψ(x, y, z) can be obtained analyti-
cally only for potentials with high symmetry. For all
other cases the Schrödinger equation has to be solved
numerically. We will start with the more simple case of
a two-dimensional potential box.

4.3.1 Particle in a Two-dimensional Box

If the potential energy is

Epot(x, y)=
⎧⎨⎩0 for 0 ≤ x ≤ a ; 0 ≤ y ≤ b

∞ elsewhere

(4.60)

(Fig. 4.23a) we can use the separable ansatz

ψ(x, y)= f(x)g(y) (4.61)

for the solution of (4.58). Inserting (4.61) into (4.58)
we obtain, with the boundary conditions

ψ(x = 0, y = 0)= ψ(x = a, y = b)= 0 , (4.62)

analogously to (4.35), the solutions are

f(x)= A sin
(nxπx

a

)
g(y)= B sin

(nyπy

b

)
(4.63)

E 0p =

x

y

a

m
b

a) b)

b

a

Epot = ∞ Epot

Fig. 4.23. (a) Rectangular two-dimensional potential box.
(b) Classical analogy of a mass bound by two springs to the
walls of a box as example for a two-dimensional harmonic
oscillator

with the integer numbers nx , ny. Our wave function then
becomes

ψ(x, y)= C sin
(nxπx

a

)
sin

(nyπy

b

)
(4.64)

with C = AB. The normalization
a∫

x=0

b∫
y=0

|ψ(x, y)|2 dx dy = 1 (4.65)

yields the condition C = 2/
√

ab.
Inserting this normalized wave function into the

Schrödinger equation (4.58) gives the possible energies

E(nx, ny)= h2

8m

(
n2

x

a2
+ n2

y

b2

)
= E1xn2

x + E2yn2
y

(4.66a)

with

E1x = h2

8ma2
; E1y = h2

8mb2
. (4.66b)

This shows, that every combination (nx, ny) yields
a possible energy value. The number of allowed energy
levels within a given energy interval is, therefore, much
larger than in the one-dimensional case (Fig. 4.24).

It may happen, that two different combinations
(nx, ny) result in the same energy. For example for the
quadratic potential box with a = b the two configurati-
ons with (nx = 7, ny = 1) and (nx = ny = 5) both have
the same energy E = 50E1, although their wave func-
tions differ completely (see Fig. 4.25). Such states with
different wave functions, but with the same energy are
called degenerate.
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Fig. 4.24. Energy eigenvalues Emx,my of a particle in a two-
dimensional rectangular potential box with unequal rectangle
sides a> b and for a quadratic box with a = b

The absolute squares |ψ(x, y)|2 of the wave func-
tions represent the probability to find the particle at
the position (x, y) in the energy state E(nx, ny). For
degenerate states different spatial distributions of this
probability give the same energy value.

A similar treatment gives for a two-dimensional pa-
rabolic potential the energy values of a two-dimensional
harmonic oscillator, illustrated by the classical analogon
in Fig. 4.23b.

4.3.2 Particle in a Spherically Symmetric Potential

For a potential with spherical symmetry the solutions
of the Schrödinger equation are easier to obtain when

7nx =

5nx =

5ny =

1ny =

1E50E =

1E50E =

Fig. 4.25. Spatial probability |ψ(x, y)|2 of a particle in a qua-
dratic potential box for two degenerated energy states (nx = 7,
ny = 1 and nx = ny = 5)

we use spherical coordinates (r, ϑ, ϕ) instead of the
Cartesian coordinates (x, y, z). The relations between
the two sets of coordinates (Fig. 4.26) is given by

x = r sinϑ cosϕ

y = r sinϑ sinϕ

z = r cosϑ

⎫⎪⎬⎪⎭⇒
r =√

x2+ y2+ z2

ϑ = arcos

(
z√

x2+y2+z2

)
ϕ = arctan(y/x)

(4.67)

The differentiation in the Laplace operator (4.59) using
the relations (4.67) gives ∆(r, ϑ, ϕ) as

∆(r, ϑ, ϕ)= 1

r2

∂

∂r

(
r2 ∂

∂r

)
+ 1

r2 sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
+ 1

r2 sin2 ϑ

∂2

∂ϕ2
. (4.68)
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z

y

x

m

ϕ

ϑ
r

E E rpot pot= ( ) Fig. 4.26. Spherical coordina-
tes for the description of
a particle in a spherical poten-
tial

Then the Schrödinger equation becomes, in spherical
coordinates,

1

r2

∂

∂r

(
r2 ∂ψ

∂r

)
+ 1

r2 sinϑ

∂

∂ϑ

(
sinϑ

∂ψ

∂ϑ

)
+ 1

r2 sin2 ϑ

∂2ψ

∂ϕ2
+ 2m

�2

(
E− Epot(r)

)
ψ = 0 .

(4.69)

For its solutions we try the product ansatz

ψ(r, ϑ, ϕ)= R(r)Θ(ϑ)Φ(ϕ) . (4.70)

Inserting this into (4.69) gives, after multiplication of
both sides with r2 sin2 ϑ/ψ,

sin2 ϑ

R(r)

d

dr

(
r2 dR

dr

)
+ sinϑ

Θ(ϑ)

d

dϑ

(
sinϑ

dΘ

dϑ

)
+ 2m

�2

(
E− Epot(r)

)
r2 sin2 ϑ =− 1

Φ(ϕ)

d2Φ

dϕ2
.

(4.71)

Now we draw an important conclusion:
The left side of (4.71) solely depends on r and ϑ, the

right side solely on ϕ. Since the equation has to be valid
for all values of r, ϑ, and ϕ it follows that both sides
have to be equal to a constant C1 (prove this statement!).
For the right side of the equation this gives

d2Φ

dϕ2
=−C1Φ (4.72)

with has a solution

Φ = A e±
√

C1ϕ . (4.73)

The function Φ(ϕ) has to be uniquely defined for all
possible values of ϕ. This results in the condition

Φ(ϕ)=Φ(ϕ+n2π)

⇒ e±
√

C12nπ = 1 ⇒√
C1 = m

with m = integer , (4.74)

which means that m must be a positive or negative
integer. The solutions Φ(ϕ) are then:

Φm(ϕ)= A eimϕ . (4.75a)

We will normalize them in such a way that

2π∫
0

Φ∗
m(ϕ)Φm(ϕ) dϕ = 1 ⇒ A = 1√

2π
.

This gives the normalized functions

Φm(ϕ)= 1√
2π

eimϕ . (4.75b)

They are orthogonal because

2π∫
0

Φ∗
mΦn dϕ = δm,n .

Now we will determine the solutions Θ(ϑ). We di-
vide both sides of (4.71) that equal the constant C1 =m2

by sin2 ϑ and rearrange the different terms in such a way
that only terms that solely depend on ϑ remain on the
right side, while on the left side only terms depending
on r remain. This yields:

1

R

d

dr

(
r2 dR

dr

)
+ 2m

�2
r2 (E− Epot(r)

)
=− 1

Θ sinϑ

d

dϑ

(
sinϑ

dΘ

dϑ

)
+ m2

sin2 ϑ
= C2 ,

(4.76)

where the same conclusion as for (4.71) is again drawn
that both sides have to be equal to a constant C2.

Remark

Unfortunately the symbol m in eqation (4.76) is used
for two different quantities. On the left side it represents
the mass of the particle and on the right side the integer
m =√

C1. Since in most of the literature, the symbol
m is used for the magnetic quantum number m =√

C1

(see later) we did not want to depart from this common
nomenclature.

From (4.76) we obtain for the function Θ(ϑ) the
equation

1

Θ sinϑ

d

dϑ

(
sinϑ

dΘ

dϑ

)
− m2

sin2 ϑ
=−C2 . (4.77)
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a) m=0

For the special case m = 0 (4.77) reduces with the
abbreviation ξ = cosϑ, to the Legendre differential
equation

d

dξ

[(
1− ξ2) dΘ

dξ

]
+C2Θ = 0 . (4.78)

The solutions can be written as the power series

Θ = a0+a1ξ+a2ξ
2+ . . . . (4.79)

Since the functionΘ(ϑ)must also be finite for ξ =±1,
i.e., for ϑ = 0◦ and ϑ = 180◦, the power series can only
have a limited number of terms.

Inserting (4.79) into (4.78) yields, when compa-
ring the coefficients of equal powers of ξ the recursion
formula,

ak+2 = ak
k(k+1)−C2

(k+2)(k+1)
. (4.80)

If the power series ends with the highest term alξ
l the

conditions al 	= 0 but al+2 = 0 must be fulfilled. This
gives

C2 = l(l+1) l ∈ N . (4.81)

The real solutions

Θl(ξ)= constPl(cosϑ) (4.82)

of Legendre’s equation (4.78) are named Legendre’s
polynomials. The boundary conditions demand:

Θ2(ϑ)=Θ2(ϑ+π)⇒Θ(ϑ)=±Θ(ϑ+π) .
Each of the functions represented by the power se-

ries (4.77) can therefore contain either even powers of ξ
only, or odd powers only.

b) m 	=0

For m 	= 0 the solutions of equation (4.78) are the as-
sociated Legendre functions Pm

l (cosϑ). As is shown in
mathematical textbooks, they can be obtained from the
Legendre’s polynomials

Θl(ξ)= Pl(cosϑ) with ξ = cosϑ

by solving the equation

Pm
l (cosϑ)= const(1− ξ2)|m/2|

d|m|

dξ |m|
(Pl|ξ) .

(4.83)

Since Pl(ξ) is represented by a power series up to the
highest power ξ l , we see from (4.83) that the condition
|m| ≤ l has to be fulfilled, otherwise the mth derivative
would not be defined. The integer numbers m can be
positive as well as negative. Therefore the range of
possible m-values is restricted to

− l ≤ m ≤+l . (4.84)

The functions Pm
l are defined by (4.83) only apart

from a constant factor, which is determined by the
normalization condition

π∫
ϑ=0

|Pm
l (cosϑ)|2 sinϑ dϑ = 1 . (4.85)

The product functions

Y m
l (ϑ, ϕ)= Pm

l (cosϑ)Φm(ϕ) (4.86)

are the spherical surface harmonic functions (Ta-
ble 4.2). Their normalization

π∫
ϑ=0

2π∫
ϕ=0

|Y m
l (ϑ, ϕ)|2 sinϑ dϑ dϕ = 1 (4.87)

Table 4.2. Spherical surface harmonics

l m Ym
l

0 0 1
2
√
π

1 ±1 ∓ 1
2

√
3

2π sinϑ e±iϕ

0 1
2

√
3
π

cosϑ

2 ±2 1
4

√
15
2π sin2 ϑ e±2iϕ

±1 ∓ 1
2

√
15
2π cosϑ sinϑ e±iϕ

0 1
4

√
5
π
(2 cos2 ϑ− sin2 ϑ)

3 ±3 ∓ 1
8

√
35
π

sin3 ϑ e±3iϕ

±2 1
4

√
105
2π cosϑ sin2 ϑ e±2iϕ

±1 ∓ 1
8

√
21
π

sinϑ (5 cos2 ϑ−1) e±iϕ

0 1
4

√
7
π
(5 cos3 ϑ−3 cosϑ)
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Fig. 4.27. Polar diagrams of the absolute squares |Ym
l (ϑ, ϕ)|2

of the spherical harmonics. The length |r| of the vector r
gives the values |Ym

l (cosϑ)|2 for the different values of ϑ.

All diagrams are symmetric with respect to rotations around
the z-axis, which has been chosen here as the vertical
axis

is automatically fulfilled because both factors are nor-
malized separately. The absolute squares |Y m

l (ϑ, ϕ)|2
are illustrated in Fig. 4.27 for some values of R and m.

The quantity |Y m
l |2 sinϑ dϑ dϕ gives the probability

of finding the particle within the cone ϑ± dϑ/2;ϕ±
dϕ/2.

Remark

The angular part Y m
l (ϑ, ϕ) of the wave function is inde-

pendent of the r-dependence of the potential Epot(r).
The only demand for the factorization (4.70) is the
spherical symmetry of the potential.



4.4. Expectation Values and Operators 147

The radial function R(r) in (4.70) can be determined
from the left side of (4.76). Based on the results (4.55)
and (4.81) we obtain after multiplication with R(r):

d

dr

(
r2 dR

dr

)
+
[

2m

�2
r2 (E− Epot(r)

)− l(l+1)

]
R(r)= 0 .

(4.88)

The solutions of (4.88) do depend on the radial de-
pendence of the potential Epot(r) and on the total
energy E. We will discuss these solutions for the case
of a Coulomb potential in the next chapter.

From (4.84) and (4.86) we can conclude that for
a given allowed energy E and a fixed quantum num-
ber l there are (2l+1) different spherical harmonics Y m

l ,
because the energy does not depend on the quantum
number m which can be any integer number within the
interval

− l ≤ m ≤+l . (4.88x)

Remark

The separation (4.70) is possible only for spherical sym-
metric potentials that do not depend on the angles ϑ
and ϕ. The spherical harmonics can, nevertheless, de-
pend on ϑ and ϕ. This means that even for a spherically
symmetric potential the probability of finding a par-
ticle generally depends on the angles and is therefore
not spherically symmetric! The spherical harmonics
are solutions for every potential with spherical symme-
try, independent of the radial form of this potential. In
acoustics the functions Y m

l describe the possible defor-
mations of the surface of a sphere caused by resonant
standing acoustic waves within the sphere. They are
therefore also called spherical surface functions.

4.4 Expectation Values and Operators

For the statistical description of properties of a many
particle system one has to define average values,
which depend on the distribution of these properties
over the particles of the system. For example, the
mean velocity v̄ in a system of particles with velocity

distribution f(v) is defined by

v̄=
∞∫

v=0

v f(v) dv . (4.88y)

The function f(v) dv gives the probability of finding
a particle within the interval v to v+ dv. The mean
square velocity

v2 =
∞∫

v=0

v2 f(v) dv (4.88z)

gives the average value of v2.
In quantum mechanics, the probability of finding

a particle within the interval from x to x+ dx is given
by |ψ(x)|2 dx. The average value

〈x〉 =
+∞∫

−∞
x|ψ(x)|2 dx (4.89)

is called the expectation value for the location x of the
particle. The exact location in classical mechanics is re-
placed by a probability statement. The above definition
of the expectation value has the following meaning.

When we perform a series of measurements of the
location x of a particle, the result will be a distribution
of slightly different values x around the mean value

〈x〉 =
∫
ψ∗(x)xψ(x) dx .

This distribution is not caused by errors or inaccura-
cies of measurement, but by the fact that due to the
uncertainty relation ∆x ≥ h/∆p, it is in principle not
possible to measure the location x more accurately.

In an analogous way, we can define the expectation
value of the three dimensional radius vector

〈r〉 =
∫
ψ∗(r)rψ(r) dτ

=
∫
x

∫
y

∫
z

ψ∗(x, y, z)rψ(x, y, z) dx dy dz .

(4.90)

When a particle with charge q is moving in an exter-
nal electric field with potential φ(r), its mean potential
energy is〈

Epot
〉= q

∫
ψ∗(r)φ(r)ψ(r) dτ , (4.91)
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where the volume element dτ = dx dy dz and the
integral indicates the integration over all three
dimensions.

The expectation value of a measurable quantity of
a particle is equal to its mean value obtained from
the wave function ψ of the particle replacing the
classical distribution function.

4.4.1 Operators and Eigenvalues

The general expectation value 〈A〉 of a measurable
quantity A (called observable), is defined as

〈A〉 =
∫
ψ∗ Âψ dτ (4.92)

where Â is the operator related to the observable A.
The operator Â performs a definite operation on the
wave function ψ. For example the operator r̂ corre-
sponding to the spatial coordinate r just multiplies the
wave function ψ with the radius vector r.

The expectation value of the kinetic energy can
be obtained from the Schrödinger equation, which
represents the quantum mechanical analogy to the
classical law of energy conservation Ekin+ Epot = E.
From (4.6b) we see that

〈Ekin〉 = − �
2

2m

∫
ψ∗∆ψ dτ . (4.93)

The operator of the kinetic energy of a particle

Êkin =− �
2

2m
∆ (4.94)

causes the second derivative of the particle’s wave
function. Performing the first derivative of the wave
function

ψ = A e(i/ )(pr−Et) (4.95)

with respect to x, y and z we obtain

− i�
∂

∂x
ψ = pxψ , −i�

∂

∂y
ψ = pyψ , and

− i�
∂

∂z
ψ = pzψ . (4.96)

This means that the operator of the particle’s momentum
can be expressed by

p̂ =−i�∇ . (4.97)

If A is a measurable physical quantity that is measured
N times, the measured values An will show deviations
∆An = An −〈A〉 from the mean value

〈A〉 = 1

N

N∑
n=1

An

that are caused by the uncertainty ∆A of the observa-
ble A. There may be additional deviations caused by
statistical or systematic errors of the measurement.

The deviations ∆A become zero, if the operator A
applied to the function ψ reproduces this function apart
from a constant factor A, i.e., if

Âψ = Aψ . (4.98)

The function ψ is called an eigenfunction of the ope-
rator Â and the constant A is the eigenvalue of the
operator Â. In this case we obtain for the expectation
value

〈A〉 = A
∫
ψ∗ψ dτ = A , (4.99)

which means that the expectation value of an opera-
tor Â formed with an eigenfunction ψ of this operator
equals the eigenvalue A that is well-defined and has no
uncertainty.

This can be seen as follows. For eigenvalues we
have the relations〈

A2〉−〈A〉 2 =
∫
ψ∗ Â2ψ dτ−

(∫
ψ∗ Âψ dτ

)2

=
∫
ψ∗ Â Âψ dτ− A2

(∫
ψ∗ψ dτ

)2

= A2
∫
ψ∗ψ dτ− A2(

∫
ψ∗ψ dτ)2

= 0 because
∫
ψ∗ψ dτ = 1 .

(4.100)

The mean quadratic deviation 〈(∆A)2〉 becomes zero,
because〈

(∆A)2
〉= 〈

(A−〈A〉)2〉= 〈
A2〉+〈A〉 2−2 〈A 〈A〉〉

⇒ 〈
(∆A)2

〉= 2
〈
A2〉−2 〈A〉 2 = 0 .

(4.101)

Here we have used the relation 〈A〈A〉〉 = 〈A〉2.
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This results means:

If the wave functionψ is eigenfunction of an ope-
rator Â, then the mean quadratic deviation of an
observable A is zero. The system is in a state
where the quantity A is constant in time and the-
refore the same value of A is obtained (apart from
measuring errors) when several measurements are
performed over the course of time.

Since A is a measurable quantity, it must be real. We
therefore only allow those operators for physical quan-
tities that have real eigenvalues and not complex ones.
This demand is fulfilled for all Hermitian operators.

Definition:

An operator is called Hermitian, if∫
ψ∗ Âψ dτ =

∫
ψ
(

Âψ
)∗

dτ , (4.102)

where ψ∗ is the conjugate complex of the
function ψ.

If the operators Â and B̂ of two observables A and B
have the same eigenfunctions ψ, both quantities A
and B of a particle described by the wave function ψ,
can be measured simultaneously.

This can be seen as follows. From the relations

Âψ = Aψ and B̂ψ = Bψ

it follows that

B̂ Âψ = B̂(Aψ)= A
(

B̂ψ
)
= ABψ

and

Â B̂ψ = Â(Bψ)= B
(

Âψ
)
= BAψ .

Since A and B are real numbers which are commutative,
i.e., AB = BA, we obtain(

Â B̂− B̂ Â
)
ψ = 0 ⇒ Â B̂ψ = B̂ Âψ . (4.103)

Two operators that fulfill the condition (4.103) are
called commutable.

If two operators are commutable their eigenva-
lues can be measured simultaneously with no
uncertainty (apart from measuring errors).

This will be illustrated by some examples.
We have seen from the discussion of the stationary

Schrödinger equation that the operator of the classical
kinetic energy Ekin = p2/2m of a particle is given in
quantum mechanics by the Laplace operator:

Êkin =− �
2

2m
∆ , (4.104)

which performs the second derivative operation on the
wave function.

The operator of the total energy E = Ekin+ Epot is
the Hamiltonian operator

Ĥ = Êkin+ Êpot =− �
2

2m
∆+ Epot(r) , (4.105)

which is analogous to the classical Hamiltonian func-
tion and describes the total energy of stationary
systems.

The total energy of a stationary state is the
eigenvalue of the Hamiltonian operator. The
Schrödinger equation (4.8) can be written as

Hψ = Eψ .

From (4.104) the operator of the momentum of
a particle follows as

p̂ =−i�∇ (4.106)

because the relation

Êkin = p̂2

2m
=− �

2

2m
∇2 =− �

2

2m
∆

can then be fulfilled.
The expectation value of the momentum is

〈p〉 = −i�
∫
ψ∗∇ψ dτ . (4.107)

The x-components p̂x of the momentum operator p̂
and x of the operator x̂ are not commutable. This can
be readily seen as follows:

x̂ · p̂x( f(x))− p̂x · x̂( f(x))

=−x̂i�
∂ f

∂x
+ i�

∂

∂x
(x f(x))

=−i�

(
x
∂ f

∂x
+ f(x)+ x

∂ f

∂x

)
	= 0 .
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If f(x) is an eigenfunction of x̂ it cannot be an ei-
genfunction of p̂x . This means, that the observables x
and px cannot be exactly measured simultaneously.

We can now make the general statement:

To every measurable physical quantity we can re-
late a Hermitian operator, where the quantity is
the eigenvalue of this operator.

In Table 4.3 some physical quantities are listed
together with their corresponding operators.

Remark

The representations of the vector operator r̂ as the vec-
tor r and of the momentum operator p̂ as −ih∇ are
useful if the wave functions are functions of the coor-
dinate r. There are physical situations (for example
in solid-state physics) where problems can be solved
easier when the wave functions ψ(r) are Fourier trans-
formed into functionsΦ(p) of the momentum p, which
are defined in momentum space. One example is the
eigenfunction

Φ(p)= ei(p/ )r

of the momentum operator p̂.
One obtains the location rp in momentum space,

if the operator r̂ p = p̂ = −i�∇p is applied to the
function Φ(p). This yields

r̂ pΦ = rΦ .

4.4.2 Angular Momentum in Quantum Mechanics

The classical definition of the angular momentum L of
a particle with mass m and velocity v with respect to
the origin r = 0 is

L = r× p = m(r×v) . (4.108a)

With the definition of the momentum operator
p = −ih∇ we obtain the operator of the angular
momentum

L̂ =−i�(r×∇) . (4.108b)

Table 4.3. Some measurable quantities and their operators

Physical quantity Operator

position vector r r
potential energy Epot Êpot = V(r)

kinetic energy Ekin
− 2

2m
∆

total energy Ĥ = Êpot−
2

2m
∆

E = Epot+ Ekin

momentum p p̂ =−i ∇
angular momentum L L̂ =−i (r×∇)
z-component of L L̂ z =−i

∂

∂ϕ

In Cartesian coordinates the components of L̂ are

L̂ x =−i�

(
y
∂

∂z
− z

∂

∂y

)
,

L̂ y =−i�

(
z
∂

∂x
− x

∂

∂z

)
, and (4.108c)

L̂ z =−i�

(
x
∂

∂y
− y

∂

∂x

)
.

In order to obtain L in spherical coordinates, we use the
transformations

∂

∂x
= ∂r

∂x

∂

∂r
+ ∂ϑ
∂x

∂

∂ϑ
+ ∂ϕ
∂x

∂

∂ϕ
(4.109)

with similar expressions for y and z. This gives the
components (see Problem 4.7)

L̂ x = i�

(
sinϕ

∂

∂ϑ
+ cotanϑ cosϕ

∂

∂ϕ

)
,

L̂ y = i�

(
− cosϕ

∂

∂ϑ
+ cotanϑ sinϕ

∂

∂ϕ

)
, and

L̂ z =−i�
∂

∂ϕ
. (4.110)

From (4.110) we get the operator of the square L2 as

L̂2 = L̂2
x + L̂2

y + L̂2
z

=−�2
[

1

sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
+ 1

sin2 ϕ

∂2

∂ϕ2

]
.

(4.111)

A comparison with (4.71) reveals that L̂2 is propor-
tional to the angular part of the Laplace operator ∆.
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Fig. 4.28. Absolute squares |Ym
l (ϑ, ϕ)|2, which are proportio-

nal to the spatial probability density of a particle in a spherical
symmetric potential, are plotted here in Cartesian coordinates

This implies that the spherical harmonics (Fig. 4.28)
are eigenfunctions of the operator L̂2.

We will prove this by applying L̂2 to the wave
function ψ(r, ϑ, ϕ)= R(r)Y m

l (ϑ, ϕ). With (4.111) we
obtain:

L̂2ψ = L̂2(R(r)Y m
l (ϑ, ϕ)= R(r)L̂2Y m

l (ϑ, ϕ)

= R(r)l(l+1)�2Y m
l (ϑ, ϕ)= l(l+1)�2ψ .

The expectation value of the square of the angular
momentum L is therefore〈

L2〉= ∫
ψ∗ L̂2ψ dτ = l(l+1)�2 (4.112a)

because the functions ψ are normalized.
The integer l is therefore named the angular mo-

mentum quantum number. For the absolute value of
the angular momentum we obtain from L2 = l(l+1)�2:

|L| =√
l(l+1)� . (4.112b)

For the z-component Lz we get, using (4.110),

L̂ zψ =−i�
∂

∂ϕ
(R(r)Θ(ϑ)Φ(ϕ))

=−i�R(r)Θ(ϑ)
∂

∂ϕ
eimϕ = m�ψ .

The eigenvalues of Lz are therefore

〈Lz〉 = m� . (4.113)

where m is the magnetic quantum number introduced
in Sect. 4.3.2.

The two operators L̂ z and L̂ have the same ei-
genfunctions. They are, therefore, commutable and the
quantities Lz and L2 can be simultaneously measured.

If the operators L̂ x or L̂ y are applied to the func-
tion ψ, one can prove that ψ is not an eigenfunction
of L̂ x , i.e.,

L̂ xψ 	= mxψ . (4.114)

The same is true for L y. However, for the opera-
tor L2

x + L2
y = L2− L2

z the function ψ in (4.70) is an
eigenfunction. The eigenvalues are(

L̂2
x + L̂2

y

)
ψ = [

l(l+1)−m2]
�

2ψ . (4.115)

Table 4.4. Labeling of levels with angular momentum
quantum number l and the degree of degeneracy

l m Name Degree of degeneracy

0 0 s 1
1 −1, 0,+1 p 3
2 −2 to +2 d 5
3 −3 to +3 f 7
4 −4 to +4 g 9
5 −5 to +5 h 11
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Table 4.5. Expression of the angular functions Y(x, y, z) in
Fig. 4.28 as functions of ϑ and ϕ

l |ml | Angular function

0 0 s = 1/
√

4π

1 0 pz =
√

3/4π cosϑ

1 px =
√

3/4π sinϑ cosϕ

py =
√

3/4π sinϑ sinϕ

2 0 d3z2−r2 =
√

5/16π (3 cos2 ϑ−1)

1 dxz =
√

15/4π sinϑ cosϑ cosϕ

dyz =
√

15/4π sinϑ cosϕ sinϕ

2 dx2−y2 =
√

15/4π sin2 ϑ cos 2ϕ

dxy =
√

15/4π sin2 ϑ sin 2ϕ

Historically the eigenfunctions with l = 0 are called s-
functions, with l = 1 p-functions with l = 2 d-functions
(see Table 4.4). The magnetic quantum number m gives
the orientation of the symmetry axis of these functi-
ons against the z direction. If an external magnetic field
B = {0, 0, Bz} is applied, the quantum number m gives
the projection of the angular momentum L onto the field
direction. Since m can take all integer values in the in-
terval −l ≤ m ≤+l there are 2l+1 different functions

Fig. 4.30. (a) Possible orientations of the angular momentum l
with a fixed projection 〈lz〉 = m and length |l| = √

l(l+1),
where the vector l can be everywhere on the surface of

the cone with angle ϑ and cosϑ = m /|l|. (b) Possible
projections of the angular momentum l with l = 3 and
−3 ≤m ≤+3

Lz

Lx

Ly

z

x

y

L
→

Fig. 4.29. The vector L
of the orbital angular
momentum has a de-
finite length |L| and
projection Lz , but no
defined orientation in
space

describing states with the same energy in a spherical po-
tential without magnetic field. Sometimes it is useful to
represent the functions Y m

l (ϑ, ϕ) in Cartesian coordina-
tes, for instance to illustrate the orientation of chemical
bonds in molecules.

With

sinϑ e±iϕ = 1

r
(x± iy)

the representation of the Y m
l (ϑ, ϕ) in Table 4.2 trans-

forms into the Cartesian representation Y(x, y, z) of
Table 4.5.
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We will demonstrate this transformation for the
example of p-functions with l = 1:

ψ(px)= f p(r)
x

r
= 1√

2

(
Y−1

1 −Y+1
1

)
=√

3/4π sinϑ cosϕ

ψ(py)= f p(r)
y

r
= i√

2

(
Y−1

1 −Y+1
1

)
=√

3/4π sinϑ sinϕ

ψ(pz)= f p(r)
z

r
= Y 0

1 =
√

3/4π cosϑ . (4.116)

While in classical mechanics the angular momentum
of a particle moving in a spherically symmetric poten-
tial is constant in time (because there is no torque on
the particle), which implies that the amount |L| and
all three components are constant and well defined, the
quantum mechanical description gives a different ans-
wer. The amount |L| and only one of the components
is constant and has a time-independent constant va-
lue, the two other components cannot be measured
simultaneously. Generally the z-axis is chosen as the
preferential direction (quantization axis), which means

that the z-component Lz is chosen as the component
that can be measured simultaneously with L2. With this
convention we get:

L̂2ψ = l(l+1)�2ψ ; L̂ zψ = m�ψ .

(4.117)

In Fig. 4.29 this is illustrated by a vector model. The
length of the angular momentum L (blue vector) is well
defined as is its projection onto the z-axis. The two other
components Lx and L y are not defined. This means in
our vector model that the endpoint of the vector L can
have any location on the dashed blue circle (Fig. 4.30).

In summary

The operators L2 and Lz have common eigen-
functions. Their eigenvalues are simultaneously
measurable. Lx and L y have no common eigen-
functions with L2. Only the sum L2

x + L2
y = L2−

L2
z can be measured simultaneously with L2

and L2
z .

• The essential part for the quantum mechanical de-
scription of particles is the wave function ψ(r, t),
which gives the probability amplitude for finding
the particle at the position r at time t.

• The wave functions ψ(r, t) are solutions of the
time-dependent Schrödinger equation, which al-
lows one to calculate (at least numerically) the
behavior of a particle with mass m in an arbitrary
potential Φ(r, t) as a function of position r and
time t.

• For stationary problems the time-independent
Schrödinger equation

− �
2

2m
∆ψ(r)+ Epot(r)ψ(r)= Eψ(r)

is used. The solutions are stationary wave func-
tions ψ(r), that depend only on the position r
but not on time. They might be complex functi-
ons. Their real absolute square |ψ(r)|2 dτ gives
the probability to find the particle in the volume
element dτ = dx · dy · dz around the position r.

• For time-dependent problems, the solutions of the
time-dependent Schrödinger equation

∂ψ(r, t)
∂t

=− i

�
Ĥψ(r, t)

with the Hamilton operator

Ĥ =− �
2

2m
∆+ Epot(r, t)

are wave functions ψ(r, t). The absolute square
|ψ(r, t)|2 describes the movement of the particle
in space. If Epot does not depend on time, the wave
functions

ψ(r, t)= ψ(r)ei(E/ )t

can be split into a product of a spatial part ψ(r),
which is a solution of the stationary Schrödinger
equation, and a phase factor with an exponent that
depends on time and on the energy of the particle.

• A particle with energy E can tunnel through
a potential barrier of height E0, even if E < E0

S U M M A R Y

�



154 4. Basic Concepts of Quantum Mechanics

(tunnel effect). The tunnel probability depends on
the difference E0− E and on the width ∆x of the
potential barrier. The tunnel effect is a wave phe-
nomenon and is also observed in classical wave
optics.

• When a particle is restricted to a spatial inter-
val ∆x (one-dimensional potential box) it has
discrete energy values

En = �
2

2m

π2

a2
n2 ,

which increase with the square of the integer n,
called a quantum number. The lowest energy
is realized for n = 1 and is larger than zero.
This zero-point energy is a consequence of the
uncertainty relation ∆px ·∆x ≥ �.

• In a parabolic potential Epot = ax2 the energy
eigenvalues

En = (n+1)hω

of the harmonic oscillator are equidistant.
• For a spherical symmetric potential the three-

dimensional wave function

ψ(r, ϑ, ϕ)= R(r)Θ(ϑ)Φ(ϕ)

can be separated into a product of three
one-dimensional wave functions.

• The angular part Θ(ϑ)Φ(ϕ) is the same for all
spherically symmetric potentials independent of
the radial form of the potential. It is described by
the spherical surface harmonics Y m

l (ϑ, ϕ), while
the radial part R(r) reflects the radial dependence
of the potential.

• The functions Y m
l (ϑ, ϕ) are eigenfunctions of the

square L̂2 of the angular momentum operator and
of the operator L̂ z of its z-component.

• The expectation values of a measurable physical
quantity A with the operator Â is given by

〈A〉 =
∫
ψ∗ Âψ dτ .

• If the functionsψ are eigenfunctions of the opera-
tor Â, the expectation value 〈A〉 of the measurable
quantity A is equal to the exactly measurable
eigenvalue A.

• Two operators Â and B̂ are commutable, if the
relation Â B̂ψ = B̂ Âψ holds.

• Two commutable operators have common eigen-
functions and eigenvalues that are simultaneously
measurable.

1. Show that for time-independent potentials the
solutions of the time-dependent Schrödinger
equation can always be written as the product
ψ(r, t)= f(r) · g(t) of two functions. What is the
form of g(t) for a constant total energy of the
particle?

2. What is the reflectivity R for a proton with Ekin =
0.4 meV that hits a rectangular potential barrier
with Epot = 0.5 meV and a width ∆x = 1 nm?

3. What is the reflectivity of a potential well
(Epot =−E0 =−1 eV, ∆x = 5 nm) as a function
of the energy E of an incident particle? Prove
that relations analogous to (4.26) are also va-
lid for a potential well with Epot =−E0. What
is the exact form of these relations for this
case?

4. Derive equations (4.26a) and (4.26c) for the tunnel
transmission.

5. How many energy levels of a particle with mass
m fit into a rectangular potential well with width
a = 0.7 nm up to the energy E = 10 eV, if the bot-
tom of the well is at E = 0 and the walls are
infinitely high (a) for a proton and (b) for an elec-
tron? (c) How do the values change when the walls
have finite heights Emax = 10 eV?

6. How large is the spatial uncertainty ∆x of
a particle in a parabolic potential Epot =
(1/2)Dx2, if its zero-point energy is E(v= 0)=
(1/2)�(D/m)1/2? How large is ∆x for v= 20?

7. Derive from (4.108c) the relation (4.110) for L
and (4.111) for L2.

8. A particle with kinetic energy E is confined in
a potential well with width ∆x = a and depth
E =−E0. What is the penetration depth into the
walls of the well where the probability |ψ(x)|2 has
decreased to 1/e of its maximum value?

P R O B L E M S

�
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9. An electron with energy E = E0/2 or E = E0/3
hits a rectangular potential barrier with heights E0

and width a= �/(2mE)1/2 = λdB. How large is its
transmission probability? For which value of the
ratio E/E0 is T a maximum?

10. Electrons with Ekin = 0.8 eV and 1.2 eV, respec-
tively, hit a potential barrier with E0 = 1 eV and
∆x = a = 1 nm. Calculate, for both cases, the

transmission T and the reflection R. Prove that
always R+T = 1.

11. An electron is confined in a two-dimensional
quadratic potential well with a = 1 nm and
E0 =−1 eV. How many bound states exist in this
well? (Use the formulas for a well with infinitely
high walls).



5. The Hydrogen Atom

Based on the discussions in Chap. 4 we will now ap-
ply the quantum mechanical treatment to the simplest
atom, the H atom, which consists of one proton and one
electron moving in the spherical symmetric Coulomb
potential of the proton. These one-electron systems,
such as the hydrogen atom and the ions He+, Li++,
Be+++, etc., are the only real systems for which the
Schrödinger equation can be exactly (i.e., analytically)
solved. For all other atoms or molecules approximations
have to be made. Either the Schrödinger equation for
these systems can be solved numerically (which offers
a mathematical solution within the accuracy of the com-
puter program, but generally gives little insight into the
physical nature of the approximation), or the real atoms
are described by approximate models that can be cal-
culated analytically. In any case, for all multielectron
systems, one has to live with approximations, either in
the numerical solution of the exact atomic model or for
the exact solution of the approximate model.

A closer inspection of the spectrum of the hydrogen
atom and other atoms reveals, however, that at higher
spectral resolution the lines show a substructure that
cannot be described by the Schrödinger theory, but is
due to new effects, such as fine structure, hyperfine
structure or the anomalous Zeeman effect. Therefore,
even for the simple hydrogen atom the quantum mecha-
nical model of an electron in the Coulomb field of the
proton has to be modified by introducing new properties
of electron and proton, such as electron spin or proton
spin and their mutual interactions. These effects, which
are small compared to the Coulomb energy, are inclu-
ded in a relativistic theory, based on the Dirac equation,
which is called quantum electrodynamics. The Schrö-
dinger equation can be regarded as the fundamental
equation of nonrelativistic quantum theory.

The treatment of the hydrogen atom illustrates in
a very clear way the basic ideas of quantum mechanics,
it explains the physical interpretation of quantum num-

bers, the description of the Zeeman effect and the fine
structure by the model of angular momentum vector
couplings and gives a better understanding of the more
complex many-electron systems that will be discussed
in the next chapter.

5.1 Schrödinger Equation
for One-electron Systems

The Schrödinger equation for a system consisting of one
electron (mass m1, charge q =−e and radius vector r1)
and a nucleus (mass m2 � m1, charge q =+Ze and
radius vector r2) is:

− �
2

2m1
∆1ψ− �

2

2m2
∆2ψ− Ze2

4πε0r
ψ = Eψ(r1, r2) ,

(5.1)

where∆i is the Laplace operator with respect to ri . The
first term describes the kinetic energy of the electron,
the second describes that of the nucleus and the third
one the potential energy of the Coulomb interaction
between the two particles, where r = |r1− r2| is the
distance between the two particles. The wave function
Ψ(r1, r2) depends on the location of the electron and
nucleus, which means it depends on six coordinates.

5.1.1 Separation of the Center of Mass
and Relative Motion

In classical mechanics it is shown that the movement
of a closed system of particles can always be separated
into the motion of the center of mass and the relative
motion of the particles in the center- of-mass system.
This is also possible in quantum mechanics as can be
seen by the following derivation.

We regard a system of two particles with coordinates
r1 = {x1, y1, z1} and r2 = {x2, y2, z2} written in lower
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Fig. 5.1. Transformation of laboratory frame into the center-
of-mass coordinate system

case letters and the coordinates of the center of mass
(written in capital letters)

R= m1r1+m2r2

M
with M =m1+m2 , R= {X,Y, Z} .

With the relative distance r = {x, y, z} = |r1− r2| =
|{x1− x2, y1− y2, z1− z2}| we obtain from Fig. 5.1 the
relations:

r1 = R+ m2

M
r , r2 = R− m1

M
r . (5.2)

In order to properly write the Schrödinger equation (5.1)
in the coordinates r and R we have to consider that the
differentiation of the function Ψ(r, R) with respect to
the variable xi (i = 1, 2) follows the chain rule:

∂ψ

∂x1
= ∂ψ
∂X

∂X

∂x1
+ ∂ψ
∂x

∂x

∂x1
= m1

M

∂ψ

∂X
+ ∂ψ
∂x

∂2

∂x2
1

= ∂

∂X

(
m1

M

∂ψ

∂X
+ ∂ψ
∂x

)
∂X

∂x1

+ ∂

∂x

(
m1

M

∂ψ

∂X
+ ∂ψ
∂x

)
∂x

∂x1

= m2
1

M2

∂2ψ

∂X2
+ 2m1

M

∂2ψ

∂X∂x
+ ∂

2ψ

∂x2
. (5.3)

Analogous expressions are obtained for x2. When (5.1)
is written in the new coordinates (X,Y, Z) and (x, y, z),
the mixed terms in (5.3) cancel and the Schrödinger

equation becomes[
− �

2

2M

(
∂2

∂X2
+ ∂2

∂Y 2
+ ∂2

∂Z2

)
+ �

2

2µ

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)]
ψ+ Epot(r)ψ = Eψ ,

(5.4)

where µ= (m1m2)/(m1+m2) is the reduced mass of
the system.

For the solution of (5.4) we try the ansatz:

ψ(R, r)= f(r)g(R) .

Inserting this into (5.4) yields after division by ψ

− �
2

2M

∆Rg

g
= �

2

2µ

∆r f

f
+ E− Epot(r) , (5.5)

where ∆R is the Laplace operator for (X,Y, Z) and ∆r

that for (x, y, z).
The term T1 on the left side of (5.5) depends so-

lely on the center-of-mass coordinates X,Y, Z. The two
other terms T2 and T3, on the right side, depend solely
on the relative coordinates x, y, z. The total energy E
of the system is constant.

Now we draw the same conclusion as in Sect. 4.3.2:
Since equation (5.5) has to be valid for arbitrary values
of the coordinates X,Y, Z and x, y, z, both sides of the
equation have to be constant. This means T1 as well as
T2+T3 have to be constant, otherwise (5.5) can not be
fulfilled for arbitrary choices of the coordinates. This
gives the two conditions:

�
2

2M

∆Rg

g
= const =−Eg

�
2

2µ

∆r f

f
− Epot(r)= const =−E f , (5.6)

with Eg + E f = E. We then obtain the two separate
equations

− �
2

2M
∆Rg(R)= Egg(R) (5.7a)

− �
2

2µ
∆r f(r)+ Epot(r) f(r)= E f f(r) . (5.7b)

The first equation describes the kinetic energy Eg =
E(CM)

kin of the center-of-mass motion, which means the
movement of the whole atom. Its solution is, as outlined
in Chap. 4, the spatial part of the plane wave

g(X,Y, Z)= A ei(kR−(Eg/ )t) .
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With the de Broglie wavelength

λCM = 2π

k
= h√

2MEg
,

which depends on the translational energy Eg of the
center-of-mass motion.

The relative motion of electron and nucleus is des-
cribed by (5.7b). Renaming f(r) as ψ(r), E f as E and
∆r as ∆, we obtain the Schrödinger equation

− �
2

2µ
∆ψ+ Epot(r)ψ = Eψ , (5.8)

which is identical to the Schrödinger equation (4.40)
for a particle in a spherically symmetric potential if
the mass m of the particle is replaced by the reduced
mass µ.

The Schrödinger equation of a moving one-
electron atom can be separated into a term
describing the translational motion of the cen-
ter of mass and a second term that describes the
motion of a particle with reduced mass µ around
the nucleus at r = 0 under the influence of the
interaction potential.

In Sect. 4.3.2 we have already discussed the separa-
tion of this equation in spherical coordinates (r, ϑ, ϕ).
It was shown there that the wave function

ψ(r, ϑ, ϕ)= R(r)Y m
l (ϑ, ϕ)

can be separated for arbitrary spherical potentials into
a radial function R(r) that depends on the r-dependence
of the potential and the angular part, which equals
the spherical functions Y m

l independent of the radial
coordinate r.

In order to obtain the wave functions for the hy-
drogen atom we have to look for the radial wave
function for the Coulomb potential. Inserting this func-
tion into the Schrödinger equation yields the energy
eigenvalues E.

Note:

The function R(r) has nothing to do with the
coordinate R of the center of mass!

5.1.2 Solution of the Radial Equation

With the product-ansatz

ψ(r, ϑ, ϕ)= R(r)Y m
l (ϑ, ϕ)

for the wave function Ψ(r, ϑ, ϕ) in Sect. 4.3.2 we had
already obtained (4.65) for the radial part R(r), which
converts for m → µ and C2 = l(l+1) into

1

r2

d

dr

(
r2 dR

dr

)
+ 2µ

�2

(
E− Epot(r)

)
R(r)

= l(l+1)

r2
R(r) . (5.9)

The integer l describes, according to (4.89), the integer
quantum number of the orbital angular momentum of
the particle with respect to the origin r = 0 in our relative
coordinate system, where the nucleus is at rest at r = 0.

Differentiation of the first term and introducing the
Coulomb-potential for E pot(r) yields

d2 R

dr2
+ 2

r

dR

dr

+
[

2µ

�2

(
E+ Ze

4πε0r

)
− l(l+1)

r2

]
R = 0 . (5.10)

In the limit r →∞ all terms with 1/r and 1/r2 approach
zero and (5.10) becomes for this limiting case:

d2 R(r)

dr2
=−2µ

�2
ER(r) . (5.11)

The solutions of this equation describe the asymptotic
behavior of the radial wave function R(r). The proba-
bility of finding the electron in a spherical shell with
volume 4πr2 dr around the nucleus between the radii r
and r+ dr is given by 4π|R|2r2 dr. The absolute square
of the function R therefore gives the probability of fin-
ding the electron within the unit volume of the spherical
shell.

Introducing W(r) = r · R(r) into (5.10) and ne-
glecting all terms with 1/r and 1/r2 yields, with
k =√

2µE/�, the asymptotic solution

W(r →∞)= A eikr + B e−ikr . (5.12a)

This gives for R(r)= W(r)/r

R(r)= A

r
eikr + B

r
e−ikr . (5.12b)

For E> 0 k is real and the first term in (5.12b) represents
the spatial part of an outgoing spherical wave

ψ(r, t)= A

r
ei(kr−ωt) , (5.12c)
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Nucleus

Electron wave

r

a)

b)

ψ κ= ⋅ −A e r

ψ

ψ = ⋅ + ⋅ −A e B eikr ikr

E > 0

E < 0

Fig. 5.2. (a) In-
going and out-
going spherical
waves as solutions
to the Schrödinger
equation for an
electron with E >
0 in a spherical
potential. (b) Ex-
perimentally de-
creasing wave am-
plitude for E < 0

which describes an electron that can, with a positive
total energy, leave the atom and can reach r →∞
(Fig. 5.2a). The second term corresponds to an ingoing
spherical wave that represents an electron coming from
R =∞ and approaching the nucleus (this is called
a collision process).

For E < 0 we substitute κ =√−2µE/�= ik and
obtain the real asymptotic solutions

R(r →∞)= A e−κr + B e+κr . (5.12d)

Since R(r) must be finite for all values of r (otherwise
the function R(r) could not be normalized) it follows
that B = 0. We then obtain the asymptotic solution

R(r →∞)= A e−κr .

This is an exponentially decreasing function which has
decayed to 1/e for r = 1/κ.

For the general solution, valid for all values of r, we
try the ansatz

R(r)= u(r)e−κr . (5.12e)

Inserting this into (5.10) we obtain for u(r) the equation

d2u

dr2
+2

(
1

r
−κ

)
du

dr
+
[

2a−2κ

r
− l(l+1)

r2

]
u

= 0 . (5.13)

Where the abbreviation a is

a = µZe2

4πε0�
2
.

The reciprocal value r1 = 1/a = 4πε0�
2/(µZe2) gives,

according to (3.85), the Bohr radius of the lowest energy
level.

We write u(r) as the power series

u(r)=
∑

j

b jr
j . (5.14)

Inserting this into (5.13) the comparison of the co-
efficients of equal powers in r yields the recursion
formula

b j = 2b j−1
κ j−a

j( j+1)− l(l+1)
. (5.15)

Since R(r) must be finite for all values of r, the power
series can only have a finite number of summands.
If the last nonvanishing coefficient in the power se-
ries (5.14) is bn−1 than b j becomes zero for j = n.
This immediately gives, from (5.15), the condition, that
only the coefficients b j with j< n contribute to the
series (5.14).We therefore have the condition

j< n . (5.16)

Since for j = n ⇒ b j = 0 we obtain from (5.15)

a = nκ . (5.17)

With κ =+√−2µE/� this yields the condition for the
energy values

En =− a2
�

2

2µn2
=−µZ2e4

8ε2
0h2

=−Ry∗
Z2

n2
(5.18)

with the Rydberg constant

Ry∗ = µe4

8ε2
0h2

. (5.18a)

Note that this formula is identical to that of Bohr’s
model in (3.88).

The quantum mechanical calculation of one-
electron systems gives the same energy values
as Bohr’s atomic model.

Note:

1. From the derivation of (5.18) it can be recognized
that the discrete eigenvalues En of possible ener-
gies stem from the restraint ψ(r →∞)→ 0, which
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implies that the electron is confined within a finite
spatial volume (see also Sect. 4.2.4).

2. Besides the condition (5.18) for the energies there
is also a restraint for the angular momentum quan-
tum numbers l following from (5.15). According
to (4.59) l must be an integer. For the values j< n
that are allowed according to (5.16) the denomina-
tor in (5.15) would become zero for l = j, which
would result in an infinite coefficient b j . We the-
refore have to demand that in (5.15) all terms with
j< l must be zero in order to keep the function u(r)
finite.
We have then the condition

l ≤ j ≤ n−1 ,

which gives the restraint for the angular momentum
quantum number l

l ≤ n−1 . (5.19a)

With the recursion formula (5.15) the functions u(r)
and with (5.12e) also the radial wave functions R(r) can
be calculated successively. Table 5.1 lists, for the lowest

Table 5.1. Normalized radial wave functions R(r) (Laguerre-
Polynomials) of an electron in the Coulomb potential of the
nucleus with charge Ze (N = (Z/na0)

3/2; x = Zr/na0; a0 =
4πε0

2/(Zµe2))

n l Rn,l(r)

1 0 2N e−x

2 0 2N e−x(1− x)

2 1 2√
3

N e−x x

3 0 2N e−x
(

1−2x+ 2x2

3

)
3 1 2

3

√
2N e−x x(2− x)

3 2 4
3
√

10
N e−x x2

4 0 2N e−x
(

1−3x+2x2− x3

3

)
4 1 2

√
5
3 N e−x x

(
1− x+ x2

5

)
4 2 2

√
1
5 N e−x x2

(
1− x

3

)
4 3 2

3
√

35
N e−x x3

values of n and l, the radial functions R(r). They depend
on n because of the condition (5.16) and on l because
of (5.15).

The energies En can be calculated from (5.18)
without the knowledge of the functions R(r). These
functions give, however, the radial electron distribution
and therefore the electric structure of the atom around
the nucleus. This will be discussed in more detail in the
following section.

5.1.3 Quantum Numbers and Wave Functions
of the H Atom

The normalized wave functions

ψ(r, ϑ, ϕ)= Rn,l(r)Y
m
l (ϑ, ϕ)

discussed in Sects. 4.3.2 and 5.1.2 are also called atomic
orbitals, because in the old Bohr-Sommerfeld theory the
electron was assumed to move on certain orbitals around
the nucleus. This expression is, however, misleading,
because we know from the discussion in Sect. 3.5 that
we can not attribute to the electron a definite path, but
only a probability of finding it within a volume dV ,
given by |ψ|2 dV .

The normalized total wave functions ψ for the lo-
west energy states of the hydrogen atom are compiled
in Table 5.2. They depend on the Quantum numbers n, l
and m. This also means that the probability of fin-
ding the electron at the position (r, ϑ, ϕ), i.e., the
spatial electron distribution depends on these quantum
numbers.

Each atomic state, described by its energy and its
spatial electron distribution is defined uniquely by
the three quantum numbers n, l and m.

The different (l,m) states are labeled according to
an international convention with lower case Latin and
Greek letters, as compiled in Table 5.3. For example,
a state with quantum numbers n = 2, l = 1 and m = 0
is a 2pσ state, one with n = 4, l = 3 and m = 2 is a 4 fδ
state.

In Fig. 5.3 the radial wave functions of some ato-
mic states are illustrated. Together with the angular
part Y m

l (ϑ, ϕ), drawn in Fig. 4.24, the total wave func-
tions can be visualized, as shown for two examples in
Fig. 5.4, which represents the three-dimensional elec-
tron distribution in the Coulomb potential for the 1s
and the 2pσ state.
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Table 5.2. Normalized total wave functions of an electron in
the Coulomb potential Epot =−Ze2/(4πε0r)

n l m Eigenfunction ψn,l,m(r, ϑ, ϕ)

1 0 0 1√
π

(
Z
a0

)3/2
e−Zr/a0

2 0 0 1
4
√

2π

(
Z
a0

)3/2 (
2− Zr

a0

)
e−Zr/2a0

2 1 0 1
4
√

2π

(
Z
a0

)3/2
Zr
a0

e−Zr/2a0 cosϑ

2 1 ±1 1
8
√
π

(
Z
a0

)3/2
Zr
a0

e−Zr/2a0 sinϑ e±iϕ

3 0 0 1
81
√

3π

(
Z
a0

)3/2
(

27−18 Zr
a0
+2 Z2r2

a2
0

)
e−Zr/3a0

3 1 0
√

2
81
√
π

(
Z
a0

)3/2(
6− Zr

a0

)
Zr
a0

e−Zr/3a0 cosϑ

3 1 ±1 1√
81π

(
Z
a0

)3/2(
6− Zr

a0

)
Zr
a0

e−Zr/3a0 sinϑ e±iϕ

3 2 0 1
81
√

6π

(
Z
a0

)3/2
Z2r2

a2
0

e−Zr/3a0(3 cos2 ϑ−1)

3 2 ±1 1
81
√
π

(
Z
a0

)3/2
Z2r2

a2
0

e−Zr/3a0 sinϑ cosϑ e±iϕ

3 2 ±2 1
162

√
π

(
Z
a0

)3/2
Z2r2

a2
0

e−Zr/3a0 sin2 ϑ e±2iϕ

Since, according to (5.18), the energy En of an
atomic state depends in this model solely on n and
not on l or m, all states with possible combinations
of l and m for the same n have the same energy. For
each quantum number l there are 2l+1 possible m
values, because −l ≤ m ≤+l. The total number of
different atomic states with the same energy is then,

0
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2
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a) b)2|)z,x(| ψ
2|)z,x(| ψ
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Fig. 5.4a,b. Illustration of the three-dimensional electron
charge distribution (a) for the spherical symmetric function
of the 3s state and (b) for the 2pσ (m = 0) state. In both

cases the two-dimensional projection of |ψ|2 onto the xz-
plane is shown (calculated by H. von Busch, Kaiserslautern,
Germany)

Table 5.3. Labeling of atomic states (l,m) using Latin and
Greek letters

l state label |m| state label

0 s 0 σ

1 p 1 π

2 d 2 δ

3 f 3 ϕ

4 g 4 γ

1.0

2.0

0
8

R(r)

0
4 8 12

0.1

n = 2

4 8
0

2

4

6
R(r) n = 1

l = 0 l = 0

0 8

0.4

4

l = 1

0
4 8 12

0.5

1.0
R(r) n = 3

l = 0

0
12

0.2 l = 1

l = 2m10/r 10− m10/r 10−

m10/r 10−

Fig. 5.3. The radial wave function Rn,l(r) for the principle
quantum numbers n = 1, 2, 3. The ordinate is scaled in units
of 108 m−3/2

because of l < n,

k =
n−1∑
l=0

(2l+1)= n2 . (5.19b)

Different states with the same energy are called ener-
getically degenerate. The number of degenerate states
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Fig. 5.5. Level scheme of the H atom, drawn on a correct scale

is called the degeneracy order. The states in the Cou-
lomb potential (e.g., for the H atom or the He+ ion)
are n2-fold degenerate, which means that n2 states with
different quantum numbers l and m and therefore dif-
ferent wave functions, but the same quantum number n
all have the same energy (Fig. 5.5).

EXAMPLES

The state with the lowest energy (ground state) with
n = 1, l = 0, m = 0 is nondegenerate.

States with n = 2 may have angular momentum
quantum numbers l = 0, m = 0 (2pσ) or l = 1 and
m =−1, 0 and +1 (2pπ). Such states are therefore
fourfold degenerate.

Note, that several effects (such as electron spin,
nuclear spins, external fields or the relativistic mass
dependence), which are not included in the Schrödin-
ger theory, may lift the degeneracy and split degenerate
levels into components with different energies (see
Sects. 5.3–5.6).

5.1.4 Spatial Distributions and Expectation Values
of the Electron in Different Quantum States

The spatial distribution of the electron in s states is
spherically symmetric. The electron has the angular

momentum

|l| =√
l(l+1)�= 0

in contrast to the Bohr-model, where the electron moves
on a circular path around the nucleus with an angular
momentum |l| = h. We can see from Table 5.2, that the
spatial probability density |ψ|(r, ϑ, ϕ)|2 in the 1s state
has its maximum at r = 0, i.e, at the location of the
nucleus.

When we want to calculate the probability P(r)dr
to find the electron within a spherical shell in a distance
between r and r+ dr from the nucleus, independent of
the angles ϑ and ϕ, we have to solve the integral

P(r) dr =
π∫

ϑ=0

2π∫
ϕ=0

|ψ(r, ϑ, ϕ)|2r2 dr sinϑ dϑ dϕ .

(5.20)

Inserting the wave functionψ for n = 1, l = 0 and m = 0
(i.e., for the ground state of the hydrogen atom), we
obtain

P(r) dr = 4Z3

a3
0

r2 e−2Zr/a0 dr . (5.21)

Comparing this with the wave function for the 1s state
we get the result:
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The probability to find the electron within the
distance r to r+ dr from the nucleus is in the 1s
state given by

P(r) dr = 4πr2|ψ(r, ϑ, ϕ)|2 dr .

Note:

Similar results are obtained for all s states with arbitrary
quantum number n.

The function P(r) is maximum for rm = a0/Z, as
can be seen immediately by differentiation of (5.21).
For Z = 1 one obtains the Bohr-radius rm = a0 (the
maximum probability of finding the electron is at the
Bohr-radius!). However, one should keep in mind that
the angular momentum obtained from the quantum me-
chanical treatment is l = 0, while the Bohr model gives
l = 1. All experiments performed so far have confirmed
the quantum mechanical result.

If one would like to use a classical model for the
movement of the electron in the 1s state, one has to re-
place the circular path of the Bohr model by periodic
linear motions of the electron through the nucleus. The
direction of this oscillation is, however, randomly dis-
tributed, causing an average electron distribution that
is spherically symmetric (Fig. 5.6). Arnold Sommerfeld
(1868–1951) showed that the electron motion can be
described to proceed on very eccentric elliptical orbits

a) 1 2b)

0rmaximum for|)r(| 2 ==ψ

maximumdr|)r(|r4 22 =ψπ
0arfor =

)t(r
→

|| 2ψ
||r 22 ψ

0a/r〈 〉r

mr

Fig. 5.6. (a) Classical model of electron paths as oscillati-
ons on straight lines through the nucleus of the 1s state.
The orientation of the lines is statistically distributed to give
an isotropic average. (b) Comparison between the probabi-
lity density |ψ(1s)|2 and the probability 4πr2|ψ(1s)|2 dr of
finding the electron within the spherical shell 4πr2 dr

passing close to the nucleus, which causes a fast pre-
cession of the large axis and brings about that the outer
turning points are uniformly distributed on a spherical
surface.

The expectation value 〈r〉 for the mean distance
between electron and nucleus is given by

〈r〉 =
∞∫

r=0

π∫
ϑ=0

2π∫
ϕ=0

r|ψ(r, ϑ, ϕ)|2r2 sinϑ dϑ dϕ dr .

(5.22a)

For the 1s state this yields, after inserting the 1s wave
function from Table 5.2,

〈r〉 =
∞∫

r=0

r

πa3
0

4πr2 e−2r/a0 dr = 3

2
a0 , (5.22b)

which differs from the Bohr radius a0!
In Fig. 5.7 the functions r2a0|Rnl(r)|2 are plotted for

some states against the abscissa r/a0, i.e., in units of the
Bohr radius. They are normalized in such a way that the
shaded area under the curve becomes

∞∫
r=0

r2|Rn,l(r)|2a0
dr

a0
= 1 .

The plotted curves are directly proportional to the pro-
bability 4πr2|Rnl(r)|2 dr of finding the electron within
the spherical shell between r and r+ dr.

The probability P(r < a0) of finding the electron
within the Bohr radius a0 is, for s-functions (l = 0),

Pn,l(r ≤ a0)= 4π

a0∫
r=0

r2|ψn,0(r)|2 dr , (5.23)

and can be calculated with the functions in Tables 5.1
and 4.2.

For n = 1 and l = 0, for example, we obtain:

P1,0(r ≤ a0)= 4

a3
0

a0∫
r=0

r2 e−2r/a0 dr = 0.32 .

For n = 2 and l = 0 one can verify the result:

P2,0(r ≤ a0)

= 1

8a3
0

a0∫
r=0

(
4r2− 4r3

a0
+ r4

a2
0

)
e−r/a0 dr = 0.034 .
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Fig. 5.7. Radial charge distribution of the electron in different states of the H atom. Note the different ordinate and abzissa scales

While for n = 2 and l = 1 one obtains the smaller
probability

P2,1(r ≤ a0)= 1

24a5
0

a0∫
r=0

r4 e−r/a0 dr = 0.0037 .

These results are illustrated by the curves in Fig. 5.7.
In the simplified classical model this means that the

orbits with l = 0 correspond to very eccentric elliptical
paths where the electron is often close to the nucleus,
while orbits with maximum possible l are close to circu-
lar orbits. With increasing principal quantum number n

the maximum possible values of l < n become larger and
the quantum mechanical spatial probabilities approach
more and more closely the classical circular orbits.

An interesting result arises:

Summing the spatial probability |ψ(r, ϑ, ϕ)|2 at
a given n over all allowed values of l and m gives
the total probability in the state n, which is always
spherically symmetric! Therefore the sum over the
electron distributions in all possible states (l,m)
for a given value of n is called an electron shell.



166 5. The Hydrogen Atom

5.2 The Normal Zeeman Effect

We will now discuss the behavior of the H atom in
an external magnetic field. In the beginning we will
use a semiclassical model (called the vector model),
where the electron motion is described by a classical
circular orbit, while the angular momentum is given by
the quantum mechanical expression

|l| =√
l(l+1)� .

An electron with charge −e moving with the velocity v
and the circular frequency ν = v/(2πr) on a circle with
radius r represents an electric current

I =−eν =− ev

2πr
, (5.24)

which causes a magnetic moment

µ= I A= Iπr2n̂ , (5.25)

where A= πr2n̂ is the area vector perpendicular to the
plane of the motion (Fig. 5.8).

The angular momentum of the circulating electron
is

l = r× p = mervn̂ . (5.26)

The comparison of (5.25) and (5.26) gives the relation

µ=− e

2me
l (5.27)

between magnetic moment µ and angular momentum l
of the electron. Since µ is proportional to l, the orbital
magnetic moment is often labeled µl.

In an external magnetic field the potential energy of
a magnetic dipole with magnetic moment µ is

Epot =−µ · B . (5.28)

Fig. 5.8. Classical model of or-
bital angular momentum l and
magnetic moment µ

Using the relation (5.27) this can be expressed by the
angular momentum l as

Epot =+ e

2me
l · B . (5.29)

When the magnetic field points into the z-direction (B=
{0, 0, Bz = B}), we obtain from (5.29), because of lz =
m�,

Epot = e�

2me
m B , (5.30)

where m (which had been introduced before as the
projection of l onto the z-axis) is called the magnetic
quantum number, that can take the values−l ≤m ≤+l.

The constant factor in (5.30)

µB = e�

2me
= 9.274015×10−24 J/T (5.31)

is called the Bohr magneton.
We can now write the additional energy caused by

the magnetic field as

∆Em = µBm B , (5.32)

which gives for the energies of the hydrogen atomic
states in an external magnetic field:

En,l,m = ECoul(n)+µBm B . (5.33)

The 2l+1 m states that are degenerate without magnetic
field split into 2l+1 equidistant Zeeman components
with an energetic distance (Fig. 5.9)

∆E = En,l,m − En,l,m−1 = µB B , (5.34)

which is determined by the product of Bohr magne-
ton µB and magnetic field strength B.

The splitting of the 2l+1 degenerate m com-
ponents in an external magnetic field B due to the
orbital magnetic moment related to the angular
momentum |l| = √

l(l+1)� is called the normal
Zeeman effect.

m

+2

−2

−1

0

+1

B ≠ 0B = 0

BE B ⋅µ=∆2I =
Fig. 5.9. Zeeman splitting of
a level with l = 2 in a ho-
mogeneous magnetic field
(normal Zeeman effect)
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Using the Bohr magneton (5.31) we can write the
orbital magnetic moment of the electron as

µl =−(µB/�)l . (5.34x)

Since the external magnetic field with cylindrical sym-
metry breaks the spherical symmetry of the Coulomb
potential the orbital angular momentum l of the electron
is no longer constant, because the torque

D = µl × B (5.34y)

acts on the electron. In the case of a magnetic field
B= {0, 0, Bz = B} in the z direction the z component
of l stays constant. The vector l precesses around the
z-axis on a cone with the apex angle 2α (Fig. 5.10),
where

cosα= lz

|l| =
m√

l(l+1)
. (5.34z)

The component lz has the values

lz = m� with − l ≤ m ≤+l . (5.35)

Also, the absolute value of l

|l| =√
l(l+1)� (5.36)

is well defined, while the two other components lx and ly

are not defined (see Sect. 4.4.2). Their quantum mecha-
nical expectation value is zero, as is the classical time
averaged value.

Fig. 5.10a,b. Vector model of the normal Zeeman effect.
(a) Classical model of orbital angular momentum preces-
sing around the field axis. (b) Possible orientations of l and
projections m in the quantum mechanical description

For the absorption or emission of light by atoms
in a magnetic field, our model makes the following
predictions.

When a circularly polarized σ+-light wave propa-
gates into the z direction all photons have the spin +h.
If they are absorbed by atoms in the magnetic field
B = {0, 0, Bz} they transfer their spin +h to the atoms
(because of conservation of angular momentum) and
therefore cause transitions with ∆lz =+h, where the
quantum number m changes by +1.

For σ−, polarization of the light wave transitions
with ∆m =−1 are induced.

A similar consideration is valid for the emission
of light by atoms in a magnetic field. For the light
emitted into the direction of the magnetic field (i.e., in
the z direction) the two circularly polarized σ+ and σ−
components are observed, while for light emitted into
the direction perpendicular to the field three linearly
polarized components are observed. One component
with the E-vector parallel to B, which is not shifted
against the field-free transition, and two components
with E⊥B, which are shifted to opposite sides of the
unshifted line (Fig. 5.11).

According to (5.34), the Zeeman splitting
∆E = µB B is independent of the quantum numbers n
and l. This implies that all atomic states should have
the same separation of the Zeeman components. The-
refore every spectral line corresponding to a transition
(n1l1)→ (n2, l2) should always split in a magnetic field
into three Zeeman components (Fig. 5.12) with σ+, σ−
and π-polarization and a frequency separation of

∆ν = µB B/h .

Transverse observation
linearly polarised

Longitudinal observation
circularly polarised

Without
With

magenetic field

BE ⊥
→ →

B||E
→ →

BE ⊥
→ →

1m +=∆ 1m −=∆0m =∆

BE ⊥
→ →

0ν

ν∆− ν∆ ν

Fig. 5.11. Normal Zeeman effect. Zeeman splitting and po-
larizations of a spectral line with frequency ν0 observed in
emission. The splitting is ∆ν = µB B/h
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Fig. 5.12. Level scheme and transitions∆m = 0,±1 between
Zeeman level in absorption and emission for the normal
Zeeman effect

Next we will discuss how this prediction and all the
other conclusions drawn from the Schrödinger model
of the atoms match the experimental results?

5.3 Comparison of Schrödinger
Theory with Experimental Results

Although the hydrogen atom is, from a theoretical point
of view, the simplest atomic system, and can be calcula-
ted analytically (at least within the Schrödinger model),
its experimental investigation is not as simple. There are
several reasons for this:

1. First of all hydrogen atoms cannot be bought in
a bottle. They have to be produced by dissociation
of H2 molecules. This can be achieved in several
ways.
The easiest method is dissociation by electron
impact in gas discharges, where electrons with
sufficient kinetic energy collide with hydrogen mo-
lecules H2 to form H atoms, according to the
scheme

H2+ e− → H∗ +H+ e− .

The excited atoms H∗ in the state |nk〉 release
their excitation energy partly or completely by
emitting photons with energy hν = E(nk)− E(ni)

with Ei < Ek:

H∗(nk)
h·ν−→ H(ni) .

Another technique is the thermal dissociation of H2

molecules at high temperatures (T = 1500−2000 K) in
the presence of catalysts (e.g., tungsten surfaces).

Nowadays the preferred method is the dissociation
by microwave discharges, which has proved to be the
most efficient way of forming H atoms.
2. The absorption spectrum of ground state hydrogen

atoms lies in the vacuum ultraviolet (VUV) spectral
region. It therefore can be measured only in the va-
cuum, i.e, in evacuated spectrographs (Fig. 5.13b).
In most experiments the emission rather than the
absorption is measured. The hydrogen discharge
is placed in front of the entrance slit of the eva-
cuated spectrograph (Fig. 5.13) and the dispersed
emission spectrum of the hydrogen atoms is detec-
ted on a photoplate. Since most materials absorb
in the VUV, no lenses are used and the curved gra-
ting (Rowland arrangement) images the entrance slit
onto the photoplate. For wavelengths below 120 nm
no entrance window can be used and the air co-
ming from the outside through the open entrance
slit has to be pumped away by differential pumping
in order to maintain the vacuum inside the spectro-
graph.
Since the emission of excited H atoms has a spec-
trum covering the whole range from the infrared to
the VUV region, that part of the emission spectrum
with wavelengths above 200nm can be measured
with spectrographs in air. Here, the intensity can be
enlarged by imaging the discharge spot S by a lens
onto the entrance slit and two curved mirrors M1

and M2 image the entrance slit S1 onto the CCD ca-
mera at the exit (Fig. 5.13a).
As has already been discussed in Sect. 3.4.1 the li-
nes in the spectrum of the H Atom can be arranged
in series (Fig. 3.40) with wavenumbers that can be
fit by the simple relations

ν̄ik = Ry

(
1

n2
i

− 1

n2
k

)
with Ry = Ry∞

mp

me+mp

= 109,677.583 cm−1 (5.37)

in accordance with the formula (5.18).



5.3. Comparison of Schrödinger Theory with Experimental Results 169

CCD-detector

Grating spectrometera)

Photoplate

Curved
Photoplate

Rowland-
grating

Vacuum chamber

Hydrogen
discharge

Pump

b)

++

1M

2M

2S

1S

G

λ

S

Fig. 5.13. (a) Experimental setup for measuring the emis-
sion spectrum of atomic hydrogen for lines with λ > 200 nm.
(b) Vacuum UV spectrograph for measuring the Lyman-series
with λ < 200 nm

Accurate measurements with higher spectral reso-
lution showed, however, significant deviations of the
measured line positions and line structures from the
predictions of the Schrödinger theory discussed so far.

a) The wavenumbers νik of the different transitions
between levels |i〉 and |k〉 depend not only on the
principal quantum number n but also slightly on the
angular momentum quantum number l. The abso-

Fig. 5.14a–c. Balmer series of the hydrogen atom. (a) Fine
structure of Hα measured with conventional Doppler-limited
spectroscopy. (b) High-resolution Doppler-free spectrum of
Hα showing the Lamb shift of the 22S1/2 level. (c) Level
scheme

lute wavenumbers for the H atom deviate from the
predictions by up to 0.2 cm−1.

b) All spectral lines starting from s levels with
l = 0 consist of two narrowly spaced components
(doublets). Those starting from levels with l > 0
contain even more components (Fig. 5.14).
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Table 5.4. Comparison of the measured wavenumbers of the
Balmer series and the calculated values obtained from the
Rydberg formula

n λair/Å νvac/cm−1 νRy/cm−1

Hα 3 6562.79 15,233.21 15,233.00
Hβ 4 4861.33 20,564.77 20,564.55
Hγ 5 4340.46 23,032.54 23,032.29
Hδ 6 4101.73 24,373.07 24,372.80
Hε 7 3970.07 25,181.33 25,181.08
Hζ 8 3889.06 25,705.84 25,705.68
Hη 9 3835.40 26,065.53 26,065.35
Hϑ 10 3797.91 26,322.80 26,322.62
Hι 11 3770.63 26,513.21 26,512.97
Hκ 12 3750.15 26,658.01 26,657.75
Hλ 13 3734.37 26,770.65 26,770.42
Hµ 14 3721.95 26,860.01 26,859.82
Hν 15 3711.98 26,932.14 26,931.94

c) The experimentally observed splittings of the Zee-
man components agrees only for a few atomic
species with the prediction of the normal Zeeman
pattern. For most atoms it is more complicated.
For the H atom, for instance, it looks completely
different from the regular triplet pattern in Fig. 5.12.

d) The ground state of the H atom (n = 1, l = 0) shows
a very narrow splitting into two components (hyper-
fine structure), which differs for the two isotopes 1H
and 2H = 2D.

In order to explain these deviations, the Schrödinger
theory has to be extended and new atomic parameters
have to be included. This will be discussed in the next
sections.

5.4 Relativistic Correction
of Energy terms

Part of the deviation between experimental results and
theoretical predictions of the energy term values (5.18)
can be explained when the relativistic mass increase
of the electron during its motion around the nucleus is
taken into account.

Instead of the nonrelativistic energy relation

E = p2/2m+ Epot (5.38)

anticipated by the Schrödinger theory, we have to use
the relativistic energy relation

E = c
√

m2
0c2+ p2−m0c2+ Epot . (5.39)

For the electron in the hydrogen atom, the velocity v of
the electron is still small compared to the velocity of
light c, which means that Ekin �m0c2 or p2/m2

0c2 � 1.
We can therefore expand the square root in (5.39) into
the power series√

1+ p2

m2
0c2

= 1+ 1

2

p2

m2
0c2

− 1

8

p4

m4
0c4

+ . . . ,

which gives for the energy expression (5.38)

E =
(

p2

2m0
+ Epot

)
− p4

8m3
0c2

+ . . .= Enr−∆Er .

(5.40)

For Ekin �m0c2 we can neglect the higher order terms.
In this approximation the last term in (5.40) repres-
ents the relativistic correction∆Er to the nonrelativistic
energy (5.38).

We can obtain the quantum mechanical expectation
value of this correction by substituting p → ih, which
leads to the expression

∆Er = �
4

8m3
0c2

∫
ψ∗

n,l,m∇4ψn,l,m dτ . (5.41)

Inserting forψ the wave functions of the hydrogen atom
ψn,l,m gives the “Darwin term” (see Problem 5.6)

∆Er = Enr
Z2α2

n

(
3

4n
− 1

l+1/2

)
. (5.42)

The constant

α= e2

4πε0�c
= 7.297353×10−3 = 1

137
(5.43)

is called Sommerfeld‘s fine structure constant.

The total energy of an eigen-state for the H atom is
then

En,l =−Ry
Z2

n2

[
1− α

2 Z2

n

(
3

4n
− 1

l+1/2

)]
,

(5.44)

which now depends not only on n but also on l! The
relativistic correction is maximum for n = 1 and l = 0.
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EXAMPLES

1. For n = 1, l = 0 and Z = 1 the magnitude of the
relativistic correction is

∆Er = E15α2/4 = 9×10−4 eV .

2. For n = 2, l = 0 we obtain

∆Er(n = 2, l = 0)=−13

16
E2α

2

= 1.5×10−4 eV .

3. For n = 2, l = 1 the correction is only

∆Er(n = 2, l = 1)=− 7

24
E2α

2

= 5.2×10−5 eV .

This illustrates that

a) The relativistic energy shift is maximum for the
ground state of atoms (n = 1, l = 0).

b) The correction depends on both quantum numbers n
and l. The (n−1)-fold degeneracy of states (n, l),
deduced from the Schrödinger theory is lifted by the
relativistic correction.

c) At a given value of n, the electron comes closest
to the nucleus (and therefore acquires the largest
velocity) for small values of l (the Sommerfeld or-
bits are then ellipses with large eccentricity). The
relativistic mass increase is then maximum, which
decreases the energy term value. For the maximum
allowed l = n−1 the orbit is circular and the velo-
city of the electron has a constant medium value.
The relativistic mass correction is then minimum.

Note:

As the numerical examples show, the relativistic mass
correction only amounts to less than 10−4 of the
Coulomb energy.

5.5 The Stern–Gerlach Experiment

The space quantization of the angular momentum intro-
duced by Arnold Sommerfeld in 1916 was considered by

many physicists as a purely theoretical model without
any real correspondence in nature. It was therefore in
doubt if the explanation of the Zeeman effect by the
corresponding space quantization of the magnetic mo-
ment could ever be proved experimentally. Nevertheless
this issue was intensely discussed among experimen-
tal physicists. Otto Stern (1888–1969), who had a lot
of experience with atomic beams, proposed to test the
idea of space quantization by measuring the deflec-
tion of atoms in a collimated atomic beam passing
through a transverse inhomogeneous magnetic field. He
found in Walther Gerlach (1989–1979) an enthusiastic
and experimentally skillful assistant whom he convin-
ced to try this experiment. They started in 1919 and
after many unsuccessful efforts and following impro-
vements to their beam apparatus, the two researchers
were finally rewarded with an unexpected result in
1921 [5.1].

They chose as test objects silver atoms because these
atoms could be detected on a glass plate, where they
condensate and form a thin layer with an optical trans-
parency depending on the thickness of the layer and
therefore the number of incident atoms.

The silver atoms were evaporated in a hot furnace
and emerged through a narrow hole A in the furnace
into the vacuum chamber (Fig. 5.15). They were then
collimated by the slit S before they entered, traveling in
the in x direction, the inhomogeneous magnetic field Bz ,
which pointed in the z direction. In the plane x = x0

the atoms were condensed on a cold glass plate. With
a densitometer the density N(z) of silver atoms on the
glass plate could be measured.

Without a magnetic field, the symmetric blue density
profile corresponding to the central curve in Fig. 5.15c
was obtained. It represents the density profile of the
non-deflected atomic beam due to the spread of the
transverse velocity components of the silver atoms
behind the collimating slit S.

In the inhomogeneous magnetic field the force

F =−µ grad B

on the atoms depends on the spatial orientation of the
magnetic moment µ relative to B. The intensity distri-
bution I(z) is therefore expected to split into as many
peaks as the possible values of the scalar product µ · B.
At that time the quantum number l of the orbital an-
gular momentum of silver was assumed to be l = 1.
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Therefore three possible values of µB were expected,
corresponding to the three magnetic quantum numbers
ml = 0,±1. The experimental result clearly showed
only two peaks and a minimum intensity in between
the peaks where atoms with m = 0 should arrive. Bohr,
who was asked for advice, explained this result by a mo-
del that assumed that atoms with their magnetic moment
perpendicular to the direction of the magnetic field were
unstable and would flip into one of the other quantum
states with m =±1 [2.6].

Stern and Gerlach had proved with their pionee-
ring experiment that space quantization is a real effect
and does not only exist in the brain of theoreticians.
O. Stern later on received the Nobel Price 1944 for his
contribution to the development of the molecular beam
technique and the discovery of the magnetic moment of
the proton.

Although their experiment was a very ingenious de-
monstration of space quantization, it turned out that the
interpretation of their results was not correct, because
the splitting was not due to the orbital angular mo-
mentum, but to a new quantity called the electron spin,
which was postulated as a new characteristic property
of the electron after further convincing experimental
discoveries.

5.6 Electron Spin

When spectroscopic measurements showed that the
ground state of silver atoms is in fact an s state with
l = 0, Bohr’s explanation of the results of the Stern–
Gerlach experiment could no longer be regarded as
correct.

Samuel A. Goudsmit (1902–1978) and George
E. Uhlenbeck (1900–1988) proposed a new model
where the electron possesses an intrinsic angular
momentum, called the electron spin in addition to a pos-
sible orbital angular momentum. This model attributes
a new property to the electron, which is then cha-
racterized by its rest mass m0, its charge q =−e, its
orbital angular momentum l and its spin s which is
connected with a magnetic moment µs that can inter-
act with magnetic fields. Many further experimental
findings such as the fine structure in atomic spectra
and deviations from the normal Zeeman splittings (cal-
led the anomalous Zeeman effect) corroborated this
hypothesis.

This spin can be mathematically treated like an an-
gular momentum and is therefore often regarded as
a mechanical “eigen-angular momentum” of the elec-
tron. The astronomical analogy is the earth revolving
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around the sun in one year but simultaneously tur-
ning around its own axis within one day. The total
angular momentum of the earth is the orbital angu-
lar momentum plus the “spin” of the earth. Similarly,
the electron of the hydrogen atom has for l > 0 an
orbital angular momentum l = r× p and in addition
its spin s. However, as will be discussed in Sect. 5.10
this interpretation of the electron spin as a mechani-
cal angular momentum runs into serious difficulties.
Nevertheless the spin can be treated as a vector obey-
ing the same mathematical rules as the orbital angular
momentum.

The absolute value of the spin s is written as

|s| =√
s(s+1)� , (5.45)

where s is the spin quantum number, which had already
been introduced by Pauli as an additional quantum num-
ber in order to explain the different components in the
fine structure of observed spectra (see below). Pauli,
however, regarded this as a pure mathematical quan-
tity and resisted giving it a physical meaning as a real
angular momentum.

The magnetic spin moment µs is related to the spin
by

µs = γss , (5.46)

where γ is the gyromagnetic ratio of magnetic moment
to spin.

From the experimental result of the Stern–Gerlach
experiment, that the beam of silver atoms was split
in the inhomogeneous magnetic field into two com-
ponents, it can be concluded that the angular momentum
should have two possible orientations. Since spectros-
copic investigations of the silver atom proved that the
orbital angular momentum in the ground state is zero,
the splitting must be due to electron spin. The magne-
tic spin moment µs must have two orientations and
therefore the electron spin must also have two com-
ponents sz =msh. If the electron spin should be treated
as an angular momentum then the quantum number ms

must obey the relation −s ≤ ms ≤+s. Since ms can
only change by an integer value, the explanation of two
components in the Stern–Gerlach experiment gives the
condition (Fig. 5.16):

s = 1/2 ⇒ ms =±1/2 . (5.47)
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⋅= 3|S|
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Fig. 5.16. Space quantization
of electron spin

The absolute value of the electron spin is then

|s| =√
s(s+1)�= 1

2

√
3� . (5.47a)

And the two components in ±z direction are

sz =±1

2
� . (5.47b)

We will at first introduce the experiments leading
to the introduction of the electron spin and will then
discuss some basic theoretical considerations.

5.6.1 Einstein–de Haas Effect

Einstein proposed the following experiment in order to
gain insight into the causes of magnetic properties of
solids. It was actually performed some years later by
the Dutch physicist Wander Johannes de Haas (1878–
1960).

An iron cylinder with mass m and radius R hangs
on a thin wire (Fig. 5.17) in a vertical magnetic field
B = {0, 0, Bz}, produced by an electric current through
a coil. The magnetic field was chosen sufficiently strong
to saturate the magnetization M = Nµ of the cylinder
with N free electrons, each possessing the magnetic mo-
ment µ. In cases of saturation, all magnetic moments
point in one direction opposite to that of the magnetic
field. Since the free electrons in the conduction band

Light source

Light beamMirror

Torsion wire

U
Magnetic
field coil

Fig. 5.17. Ein-
stein–de Haas ex-
periment
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of iron have no orbital angular momentum and there-
fore also no orbital magnetic moment (there is no force
center to cause a circular motion of the electrons) the
magnetic moment must have another reason. We will
see that it is caused by the spins of the free electrons.

Note:

In iron, the magnetic moment is not exclusively caused
by the free electrons in the conduction band. A minor
contribution also comes from the electrons bound in the
iron atoms. They can have orbital angular momentum
and spin. However, this contribution is small and we
will neglect it for the following discussion. (For a more
detailed discussion see textbooks on solid state physics).

If the magnetic field is reversed, all magnetic mo-
ments flip into the opposite direction. This causes
a change in magnetization

∆M = 2M = 2Nµ . (5.48)

From the measurement of ∆M the product Nµ can be
determined.

The reversal of the magnetic moments also results
in a flip of the corresponding angular momenta s of all
electrons. The resulting change

∆S= 2Nsz =−∆L =−Iω (5.49)

has to be compensated by the opposite change ∆L of
the mechanical angular momentum of the cylinder with
the moment of inertia I = (1/2)MR2. With a reversal of
the magnetic field, the cylinder that was initially at rest
acquires the angular momentum −L =−(1/2)MR2ω

and a rotational energy

Erot = L2/2I = L2/(MR2) , (5.50a)

which results in a torsion of the suspension wire with
a restoring force Fr =−Drϕ. The maximum torsion
angle ϕmax is reached when the potential energy

Epot = 1

2
Drϕ

2
max = Erot = L2/2I (5.50b)

of the twisted suspension wire equals the kinetic ro-
tational energy. The measurement of ϕmax therefore
allows the determination of L. The experiment gave
the surprising result

∆L = Nh = 2N�/2 . (5.50c)

This means that the z component of the angular momen-
tum of each electron must have the amount sz = �/2.
From the measured magnetization change ∆M it was,
however, clear that the magnetic moment related to this
angular momentum must be µ= µB, i.e, the same as
for the orbital angular momentum with l = 1�.

The gyromagnetic ratio

∆M/∆S = ∆µs

∆sz
= |µs|

|s| = 2µB/�= γs (5.51)

of magnetic moment |µs| and angular momentum |s|
is therefore twice as large as for the orbital angular
momentum, where it is

|µl|/|l| = µB/h = γl . (5.52)

This means that γs is twice as large as γl!

For the electron spin, the ratio of magnetic mo-
ment to mechanical angular momentum is twice
as large as for the orbital angular momentum of
the electron.

The magnetic spin moment is written analogously
to the orbital moment µl = (µB/�)l as

µs =−gs(µB/�)s . (5.53a)

The factor gs ≈ 2 is called the Landé factor.
The absolute value of the magnetic spin moment is

|µs| = gsµB

√
s(s+1) . (5.53b)

Remark

Here the electron spin has been introduced pheno-
menologically. The exact value of the Landé factor
gs = 2.0023 can only be explained by a theory that al-
ready includes the electron spin in the basic equations.
Such a theory has been developed by Paul Dirac (1902–
1984) who replaced the Schrödinger equation with the
Dirac equation. Its representation exceeds, however, the
level of this textbook.

5.6.2 Spin-Orbit Coupling and Fine structure

We will now discuss why the energy levels of the H
atom with l> 0, split into two components, which could



5.6. Electron Spin 175

not be explained by the Schrödinger theory. Since this
splitting is very small and can be only resolved with
high resolution spectrographs, where the hydrogen li-
nes appear as a fine substructure, it was named fine
structure.

We start with a semiclassical model, treating the
angular momenta as vectors with quantized absolute
values and quantized z components. In Sect. 5.2 it was
shown that an electron with charge −e, moving with
the orbital angular momentum l on a circle around the
nucleus, produces a magnetic moment

µl =− e

2me
l =−(µB/�) · l .

That is proportional to l.
In a coordinate system where the electron rests at

the origin, the nucleus with positive charge Z · e moves
with the frequency ν on a circle around the electron. This
causes a circular current Zeν that produces a magnetic
field B at the location of the electron (Fig. 5.18). Accor-
ding to Biot–Savart’s law (see textbooks on magnetic
fields) this magnetic field is

Bl = µ0 Ze

4πr3
(v× (−r))=−µ0 Ze

4πr3
(v×r)

=+ µ0 Ze

4πr3me
l (5.54)

because the angular momentum lp of the proton equals
the negative angular momentum l = me(r×v) of the
electron in a coordinate system where the electron
moves around the proton at rest.

The magnetic spin moment of the electron has two
spatial orientations in this field according to the two
spin directions sz =±h/2. This causes an additional

Fig. 5.18a,b. Vector model of spin-orbit interaction. (a) vector
model. (b) transformation to a coordinate system, where the
electron rests at r = 0

energy (in addition to the Coulomb energy)

∆E =−µs · Bl = gsµB
µ0 Ze

4πr3me�
(s · l)

≈ µ0 Ze2

4πm2
er3
(s · l) . (5.55)

Transforming the coordinate system back to the rest-
frame of the nucleus by a Lorentz transformation gives
a factor 1/2 (Thomas factor [5.2]), which is due to the
fact that the electron spin in the rest-frame of the nucleus
precesses when moving around the nucleus (Thomas
precession).

The energy levels En of (5.18), which had been
obtained without taking into account the electron spin,
now split, due to the spin-orbit coupling, into the fine
structure components with energies

En,l,s = En −µs · Bl = En + µ0 Ze2

πm2
er3
(s · l) . (5.56)

The scalar product (s · l) may be positive or negative
depending on the orientation of the spin relative to the
orbital angular momentum.

When we introduce the total angular momentum

j = l+ s with | j| =√
j( j+1)� (5.57a)

as a vector sum of orbital angular momentum l and
electron spin s (Fig. 5.19), we can square this sum and
obtain

j2 = l2+ s2+2l · s . (5.57b)

This gives for the scalar product

l · s = 1

2
�

2[ j( j+1)− l(l+1)− s(s+1)] . (5.58)

With this relation we can write (5.56) as

En,l, j = En + a

2
[ j( j+1)− l(l+1)− s(s+1)] .

(5.59a)

j
→ s

→

l
→

slj +=
→ → →

Fig. 5.19. Vector coupling of orbi-
tal angular momentum l and electron
spin s to form the total angular
momentum j of the electron
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Fig. 5.20. Energy level scheme
of fine structure splitting of
a 2 P(l = 1) state

With the spin-orbit coupling constant

a = µ0 Ze2
�

2

8πm2
er3

. (5.59b)

The energy levels split, depending on the orientation of
the spin, into the two components with j = l+1/2 and
j = l−1/2 (see Fig. 5.20). Finestructure splittings are
observed only for levels with l ≥ 1, i.e. for p, d, f, . . .
levels, not for s-levels with l = 0.

The fine structure may be regarded as Zeeman
splitting due to the interaction of the magnetic spin
moment with the internal magnetic field generated
by the orbital motion of the electron.

In the quantum mechanical model the distance r
of the electron from the nucleus cannot be given ex-
actly. Only the time-averaged value of r related to the
probability of finding the electron at the location r is
a measurable quantity

〈r〉 =
∫
ψ∗

n,l,mrψn,l,m dτ⇒〈
1

r3

〉
=
∫
ψn,l,m

1

r3
ψn,l,m dτ . (5.60a)

The quantum mechanical average 〈a〉 of the spin-orbit
coupling constant is then

〈a〉 = µ0 Ze2
�

2

8πm2
e

∫
ψ∗

n,l,m
1

r3
ψn,l,m dτ . (5.60b)

Inserting the hydrogen wave functions ψn,l,m(r, ϑ, ϕ),
the integral can be solved and one obtains

〈a〉 = −En
Z2α2

nl(l+1/2)(l+1)
, (5.61)

where the constant

α= µ0ce2

4π�
= e2

4πε0�c
≈ 1

137
(5.62)

is Sommerfeld’s fine structure constant, which was
already introduced in Sect. 5.4 for the relativistic
correction of the level energies.

The energy separation of the two fine structure
components (n, l, j = l+1/2) and (n, l, j = l−1/2)
is then, according to (5.59) and (5.61),

∆El,s = 〈a〉
(

l+ 1

2

)
=−En

Z2α2

nl(l+1)

≈−5.3×10−5 En
Z2

nl(l+1)
. (5.63)

This shows that the splitting is very small compared to
the energy En,l of the levels (n, l) and justifies the name
“fine structure.”

As can be seen from (5.63), the fine structure split-
ting decreases with increasing quantum numbers n
and l, but it increases proportionally to the product
Z2 En . Since the energies En of the levels with princi-
pal quantum number n follow the relation En ∝ Z2/n2,
we can write the fine structure splitting as

∆El,s ∝ Z4

n3l(l+1)
. (5.64)

EXAMPLE

For the 2p level of the H atom, we have Z = 1, n = 2,
l = 1 and En =−3.4 eV. From (5.63) we therefore
obtain for the fine structure splitting ∆El,s = 4.6×
10−5 eV ⇒ ∆El,s/hc =∆ν̄ = 0.37 cm−1.

If both effects, the relativistic increase of the elec-
tron mass and the spin-orbit coupling, are taken into
account we have to add (5.42) and (5.63) and obtain for
the energy of a fine structure component (n, l, j) (see
Problem 5.7)

En, j = En

[
1+ Z2α2

n

(
1

j+1/2
− 3

4n

)]
, (5.65)

which turns out to be independent of l.

In the Coulomb field with Epot ∝ 1/r the energy
of a fine structure component (n, l, j) does not
depend on the quantum number l. All levels with
equal quantum numbers n and j have the same
energy (Fig. 5.21).
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Fig. 5.21. Energy level scheme of the hydrogen atom, taking
into account the relativistic mass increase and the spin-orbit

coupling. The dashed lines mark the energies obtained from
the Schrödinger equation

EXAMPLE

The two levels 2s1/2 and 2p1/2 or 3p3/2 and 3d3/2 have
the same energy (Fig. 5.21).

However, this degeneracy applies only to one-
electron systems such as the hydrogen atom or the ions
He+, Li++, etc., where the electron moves in a Coulomb
potential. This is because the assumption Epot ∝ 1/r
enters into the relativistic mass correction, as well as
in (5.60), for the calculation of the fine structure con-
stant. For atoms with more than one electron there is no
longer a Coulomb potential because of the mutual inter-
action between the electrons. Here levels with different
values of the quantum number l have different energies
even for equal quantum numbers j.

5.6.3 Anomalous Zeeman Effect

When the electron spin s and the magnetic spin mo-
ment µs are taken into account, the total magnetic

moment depends on the coupling of the two vectors
µl +µs. The Zeeman splittings of levels in a magne-
tic field now become more complicated than those
for the normal Zeeman effect shown in Figs. 5.11
and 5.12, which are only observed, if the total spin
of the atomic electrons is S=∑

si = 0. This is, for
instance, the case for the helium atom with two elec-
trons with antiparallel spins in its ground state (see
Sect. 6.1).

Without a magnetic field, the total angular momen-
tum j = l+ s of the electron in a Coulomb field (central
force field) is constant, which means that its orientation
in space and its absolute value are constant, independent
of time (Fig. 5.22a). In an external homogeneous ma-
gnetic field B= {0, 0, Bz}, the magnetic moment µ j ,
and therefore j, precess around the field axis with
constant components µz and jz (Fig. 5.22b).

If the external magnetic field is weaker than the
magnetic field generated by the orbital movement of
the electron, the Zeeman splitting is smaller than the
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Fig. 5.22. (a) Coupling of l and s and their precession around
the space-fixed vector j = l+ s. (b) Precession of j in an
external magnetic field Bz . (c) Possible orientations of j with
components jz = m

fine structure splittings. In other words, the coupling
between orbital angular momentum and spin is stronger
than the coupling of µl and µs to the external field.
The spin-orbit coupling is still valid and the absolute
value | j| of the total angular momentum

j = l+ s with | j| =√
j( j+1)h (5.65a)

is conserved in the external magnetic field. Its direc-
tion is, however, no longer space-fixed because the
magnetic moment µ j = µl +µs, which is related to j,
experiences a torque

D = µ j × B . (5.65b)

For one-electron systems the component jz can take
the values jz =m jh with the half-integer values − jz ≤
m j ≤+ jz (Fig. 5.22c).

The magnetic moments of orbital motion and spin
of the electron are:

µl = (µB/�)l and µs = gs(µB/�)s . (5.65c)

There is an important point to mention:

Because of the Landé factor gs ≈ 2 for the spin
moment µs, the total magnetic moment

µ j = µl +µs = (µB/h)(l+ gss) (5.66)

is no longer parallel to the total angular
momentum j = l+ s!

Without an external field the absolute value and the
direction of j is constant in time. Since the vector s
precesses around the axis of the internal magnetic field

Fig. 5.23. (a) Projection of µ j onto the direction of j. (b) Pre-
cession of the angular momentum j and the average magnetic
moment 〈µ j〉 around the z-axis in an external magnetic field
B = {0, 0, Bz}

produced by the orbital movement of the electron and
µ j is not parallel to j, µ j has to precess around the direc-
tion of the space-fixed vector j. The time average 〈µ j〉
of µ j is then the projection of µ j onto j (Fig. 5.23a).
This gives〈

µ j
〉= µ j · j

| j| = − e

2me

(
l · j
| j| + gs

s · j
| j|

)
. (5.67)

From j = l+ s follows

l · j = 1

2
[ j2+ l2− s2]

= 1

2
[ j( j+1)+ l(l+1)− s(s+1)]�2 (5.67a)

and similar from l = j− s:

s · j = 1

2
[ j( j+1)+ s(s+1)− l(l+1)]�2 .

We can therefore write (5.67) with gs ≈ 2 as〈
µ j
〉=−3 j( j+1)+ s(s+1)− l(l+1)

2
√

j( j+1)
µB

=−g j

√
j( j+1)µB . (5.68)

The Landé factor g j is defined here as

g j = 1+ j( j+1)+ s(s+1)− l(l+1)

2 j( j+1)
.

(5.69)
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Fig. 5.24a,b. Anomalous Zeeman effect of the transitions (a) 2 P1/2 ←2 S1/2 and (b) 2 P3/2 ←2 S1/2 neglecting hyperfine
structure

For s = 0 (pure orbital magnetism) it follows j = l and
we obtain g j = 1. For l = 0 (pure spin magnetism) is
j = s and therefore g j ≈ 2. If orbital angular momentum
and spin both contribute to the magnetic moment, the
value of the Lande factor g is between 1 and 2.

In an external magnetic field B= {0, 0, Bz}, the spa-
tial orientation of the total angular momentum is no
longer constant. The vector j precesses around the field
direction. The projection of j can take the values

jz = m jh with − j ≤ m j ≤+ j .

The precession of µ j around j is faster than that of j
around B as long as the finestructure splitting is larger
than the Zeeman splitting. Therefore the z component
〈µ j〉z of the average magnetic moment 〈µ j〉 is〈

µ j
〉

z =−m j g jµB (5.69a)

and the additional energy of the Zeeman component m j

is

∆Em j =− 〈
µ j
〉

z B = m j g jµB B . (5.70)

The energy separation between two adjacent Zeeman
components comes out as

∆Em j −∆Em j−1 = g jµB B . (5.71)

Since the Landé factor g j depends on the quantum
numbers l and j,according to (5.69), the Zeeman
splitting for the anomalous Zeeman effect differs
for the different levels (n, l, j), contrary to the si-
tuation for the normal Zeeman effect. Therefore,
the Zeeman pattern of spectral lines is more com-
plicated here. There are generally more than three
Zeeman components.
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The following examples shall illustrate the situa-
tion for the anomalous Zeeman effect. In Fig. 5.24 the
Zeeman pattern of the two D-lines in the sodium spec-
trum are shown, corresponding to the transitions Na
2S1/2 →2 P1/2 (D1 line) and Na 2 S1/2 →2 P3/2 (D2 line).
For the H atom a completely similar pattern is obtained.
Only the spin-orbit coupling constant a is smaller and
therefore the fine structure splitting smaller. The Lande
factors of the different levels are

g j
(2S1/2

)= 2 , g j
(2 P1/2

)= 2/3 ,

g j
(2 P3/2

)= 4/3 .

The spectrum shows four Zeeman components for the
transition 2S1/2 →2 P1/2 and six components for the
2S1/2 →2 P3/2, which are not equidistant.

As for the normal Zeeman effect, transitions with
∆m j =±1 are circularly polarized and those with
∆m j = 0 are linearly polarized with the electric field
vector E in the direction of the external magnetic field.

5.7 Hyperfine Structure

In the previous sections we have described the atomic
nucleus as a point-like charge Ze that interacts with the
electron merely through the electric Coulomb-potential

φ(r)=− Ze

4πε0r
.

With this potential the Schrödinger equation allowed
the calculation of the term values of all levels in the
H atom and the wavenumbers of all transitions between
these levels. The fine structure of the spectral lines was

Fig. 5.25. Nuclear spin I, nuclear magnetic moment µI and
the projection Iz = mI

explained by the magnetic interaction between the ma-
gnetic moments of the orbital angular momentum and
the electron spin. This magnetic interaction was just ad-
ded to the Coulomb interaction. It cannot be calculated
from the Schrödinger equation, which does not include
the electron spin.

5.7.1 Basic Considerations

If the hydrogen spectrum is observed with very high
spectral resolution, one finds that even the fine struc-
ture components are split into two subcomponents. The
separation of these sub-components is, for the H atom,
smaller than the Doppler width of the spectral lines
and therefore these components cannot be recogni-
zed with Doppler-limited resolution. This very small
splitting, which for many atoms can only be resolved
with special Doppler-free spectroscopic techniques (see
Chap. 12), is called hyperfine structure. It is explained
as follows.

Atomic nuclei have a small but finite volume and
possess, besides their electric charge Ze, a mechani-
cal angular momentum I , called the nuclear spin. Its
absolute value

|I | =√
I(I +1)h (5.72)

is described by the nuclear spin quantum number I . The
projection of I onto the z-axis is

Iz = mI h with − I ≤ mI ≤+I , (5.73)

in complete analogy to the electron spin.

Fig. 5.26. Interaction between nuclear magnetic moment µI
and the magnetic field Bj produced at the location of the
nucleus by the orbital motion of the electron and the magnetic
moment µs due to the electron spin s
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A magnetic moment is connected with the nuclear
spin

µN = γK I . (5.74)

The unit of the nuclear magnetic moment is the nuclear
magneton

µK = e

2mp
�= me

mp
µB = µB

1836

= 5.05×10−27 J T−1 (5.75)

analogue to the Bohr magneton µB. However, the
nuclear magneton is smaller by a factor me/mp ≈
1/1836. The magnetic moment of the proton is
µI (p)= 2.79µK and is determined by the movements
and charges of the three quarks (u,u,d) inside the proton.

The magnetic moment of any atomic nucleus can be
written in units of the nuclear magneton as

µN = γK I = gN
µK

�
I , (5.76)

where the dimensionless factor gN = γK h/µK is called
the nuclear g-factor.

The nuclear magnetic moment gives two contribu-
tions to the shift and splitting of energy levels of the
atomic electrons:

a) The interaction of the nuclear magnetic moment µN

with the magnetic field produced by the electrons
at the nucleus (Zeeman effect of µN in the internal
magnetic field produced by the electrons).

b) The interaction of the electronic magnetic mo-
ment µ j with the nuclear moment µN (magnetic
dipole-dipole interaction).

The potential energy of the nuclear magnetic mo-
ment µN in the magnetic field produced by the electron
at the location of the nucleus is

Epot(I, j)=−µN Bint =−|µN|B j cos(	 j, I) .
(5.77)

Introducing the total angular momentum F = j+ I
of the atom as the vector sum of the total electronic
angular momentum j = l+ s and the nuclear spin I
(Fig. 5.27), we obtain, because of j · I = 1/2(F2− j2−
I2)= | j||I| cos(	 j, I),

cos 	 ( j, I)= j · I
| j||I|

= 1

2

F(F+1)− j( j+1)− I(I +1)√
j( j+1)I(I +1)

.

(5.77a)

Fig. 5.27. Coupling of total electronic angular momentum j =
l+ s and nuclear spin I to the total atomic angular momentum
F = j+ I

The hyperfine energy of the H atom is then

∆EHFS = A

2
[F(F+1)− j( j+1)− I(I +1)] ,

(5.78)
where the hyperfine constant

A = gNµK B j√
j( j+1)

(5.79)

depends on the internal magnetic field produced by the
electron, and is therefore dependent on the electronic
angular momentum j.

Each energy level En,l, j splits into hyperfine
components, due to the interaction between
nuclear magnetic moment and electronic magne-
tic moments. The energy of these components
is

EHFS = En,l, j

+ 1

2
A[F(F+1)− j( j+1)− l(l+1)] .

(5.80)

Fig. 5.28. Hyperfine structure of the 12S1/2 state of the H
atom. The hyperfine coupling constant is A = 0.047 cm−1
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For the H atom, with a proton as the nucleus, the
experiments give the values

I = 1/2 , gI =+5.58 ⇒ (µN)z =±2.79µK .

For the ground state 2S1/2 is j = 1/2, I = 1/2 ⇒ F =
0 or F = 1. This gives the two hyperfine components
(Fig. 5.28).

EHFS(F = 0)= E1,0,1/2− 3

4
A

EHFS(F = 1)= E1,0,1/2+ 1

4
A , (5.81)

with the separation ∆E = A = 0.047 cm−1.

5.7.2 Fermi-contact Interaction

The internal magnetic field at the location r = 0 of the
nucleus depends on j and on the spatial probability dis-
tribution |ψn,l|2 of the electron. The hyperfine splitting
is particularly large for 1S states where ψ has a ma-
ximum for r = 0. The magnetic interaction of the 1s
electron with the nucleus is called Fermi-contact in-
teraction, because there is close contact between the
electron and the nucleus. A more detailed calculation
shows that for S states the hyperfine constant is given
by

A = 2

3
µ0glµBgNµK|ψn(r = 0)|2 . (5.82)

This is the dominant contribution for the HFS of the H
atom. The absolute value of the hyperfine splitting in the
2S1/2 ground state of the H atom is∆ν̄ = 0.0474 cm−1.
In the optical spectral region it can only be resol-
ved with special Doppler-free techniques. One example
is the Doppler-free two-photon absorption 1S → 2S
(Fig. 5.29), where two photons are simultaneously ab-
sorbed out of two antiparallel laser beams. The splitting
of the two lines in Fig. 5.29 reflects the difference
∆ν =∆E(1S)−∆E(2S) of the hyperfine splittings
of the lower and the upper state of the transition
with ∆F = F(1S)− F(2S)= 0. The splitting ∆E(2S)
is small compared to that of the ground state.

The total angular momentum F has to be conserved
for the two photon transition because the two absor-
bed photons have opposite spins. They therefore do not
transfer angular momentum to the atom.

The hyperfine splitting of the ground state 1S can
be directly measured by a magnetic dipole transition

Fig. 5.29. The two resolved hyperfine components F = 0, 1 of
the two-photon transition 2S ← 1S in the H atom (with kind
permission of Th.W. Hänsch from G.F. Bassani, M. Inguscio,
T.W. Hänsch (eds) The Hydrogen Atom (Springer, Berlin
Heidelberg New York, 1989))

(see Sect. 7.2.4) between the two HFS components.
This transition lies in the microwave range with a wa-
velength of λ= 21 cm. It plays an important role in
radio astronomy, because H atoms are the most abun-
dant species in the universe and H atoms in interstellar
clouds can be excited by star radiation into the up-
per HFS level and can emit this transition as radio
signals received on earth by large parabolic radio an-
tennas. The measurements of the signal amplitude with
spatial resolution gives information of the density dis-
tribution, velocities and temperatures of H atoms in the
universe.

5.7.3 Magnetic Dipole-Dipole Interaction

The second contribution to the hyperfine splitting is the
dipole-dipole interaction between the magnetic dipo-
les of the electron and the nucleus. This contribution is
zero for S states with a spherically symmetric charge
distribution, because the average of the electronic ma-
gnetic moment is zero. It therefore plays a role only for
states with l ≥ 1 (Fig. 5.30), where the first contribution
is small because the electron density at r = 0 is zero
(Fig. 5.3).

For larger atoms there are also electrostatic contri-
butions to the hyperfine structure if the nucleus has an
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Schrödinger Electron
spin

Nuclear
spin

Fig. 5.30. Fine and hyperfine splittings of the 2P state of the
H atom with n = 2, l = 1, j = 1/2, 3/2, F = 0, 1, 2

electric quadrupole moment. For the H atom, howe-
ver, this electrostatic contribution is absent because the
proton has no quadrupole moment.

5.7.4 Zeeman Effect of Hyperfine Structure Levels

In a weak external magnetic field B the hyperfine com-
ponent with F = 1 splits into three Zeeman sublevels
with mF = 0,±1, while the component with F = 0
does not split. This is, however, only observed for weak
fields as long as the interaction energy ∆EHFS between
nuclear magnetic moment and electron moments is lar-
ger than the Zeeman coupling energy µs B between the
electronic spin moment and the external magnetic field.

Fig. 5.31a,b. Zeeman effect of the 12S1/2 ground state of the hydrogen atom. (a) Weak magnetic field. (b) Energy
dependence EF,I,S(B) of hyperfine components

Fig. 5.32. Vector model
of the Paschen–Back ef-
fect

This gives rise to the anomalous Zeeman effect of the
hyperfine levels.

For stronger fields, when µs · B becomes larger than
∆EHFS the electron spin s and the nuclear spin I become
uncoupled and the energy EF of the levels is governed
by the interaction energy µs · B between electronic ma-
gnetic moment and external field. In this case there are
only two Zeeman components with sz =±1/2. Each of
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these components shows a hyperfine splitting into two
HFS components with Iz =±1/2 (Fig. 5.31).

This uncoupling of angular momentum by the
magnetic field is called the Paschen–Back effect
(Fig. 5.32). It appears for hyperfine structure at rather
small magnetic fields. It is also observed for the fine
structure levels, but only at higher fields, because the
interaction energy between µs and the internal magne-
tic field produced by l is generally much larger than
the Zeeman energy µ j · Bext, while the Zeeman energy
µN · Bext can exceed the hyperfine energy ∆EHFS.

5.8 Complete Description
of the Hydrogen Atom

The preceding sections have shown that all the effects
discussed so far make the spectrum of the simplest
atom more complicated, as was assumed in Bohr’s
model of the H atom. In this section we will summa-
rize all phenomena discussed in this chapter and some
new ones for a complete description of the hydrogen
spectrum.

5.8.1 Total Wave Function and Quantum Numbers

The solutions of the Schrödinger equation for the H
atom gave (without taking into account the electron
spin) n2 different wave functions for each value of
the principal quantum number n. They represent n2

different atomic states with the same energy (they
are n2-fold degenerate), but with different spatial distri-
butions of the electron density. Each of these n2 wave
functions

ψn,l,ml (x, y, z)= Rn,l(r)Y
m
l (ϑ, ϕ) (5.83a)

is unambiguously defined by the quantum numbers n, l,
and ml .

The introduction of the electron spin with its two
possible orientations sz =±1/2h against the z-axis
(which is chosen as preferential axis by general agree-
ment and is called the quantization axis) adds a new
quantum number ms =±1/2, which defines the projec-
tion of the electron spin onto the quantization axis. Each
of the spatial electron distributions ψn,l,m(x, y, z) can
be realized with two spin orientations. This is described
by multiplying the spatial wave functionψn,l,ml (x, y, z)

with a spin function χms (sz) that defines the projection
sz = msh of the electron spin s onto the quantization
axis. We label the spin function as χ+ for ms =+1/2
and as χ− for ms =−1/2. The total wave function,
including the electron spin, is then

ψn,l,ml,ms (x, y, z, sz)= ψn,l,ml (x, y, z)χms .

(5.83b)

Each electronic state of a one-electron atom is
unambiguously defined by the four quantum num-
bers n, l,ml and ms. It is described by a single
wave function (5.83).

5.8.2 Term Assignment and Level Scheme

For the complete assignment of an atomic state by
its quantum numbers (n, l,ml, s,ms) the short hand
notation

n 2s+1X j (5.84a)

is used. The capital letter X stands for S (l = 0),
P (l = 1), D (l = 2), F (l = 3), . . . . The upper left
index 2s+1 is the multiplicity, which gives the number
of fine structure components for l> 0. For systems with
only one electron outside closed shells is s = 1/2 and
the multiplicity is 2s+1= 2. Atoms with a single elec-
tron always have doublet states, which split into two
fine structure components for l > 0. The lower right in-
dex gives the quantum number j of the total electronic
angular momentum j = l+ s (Fig. 5.19).

The hyperfine components are labeled by the quan-
tum number F of the total angular momentum F = j+
I, including the nuclear spin I (Fig. 5.27).

EXAMPLE

The first excited state 2 2P of the H atom that can be re-
ached by one-photon excitation from the 1 2S1/2 ground
state is defined by the quantum numbers n = 2, s = 1/2,
l = 1, and j = 1/2 or j = 3/2. The two fine structure
components are therefore labeled as 2 2P1/2 and 2 2P3/2.
Both of them split into two hyperfine levels 2 2P1/2

(F = 0 or 1) and 2 2P3/2 (F = 1 or 2).

Without nuclear spin interaction and without Lamb
shift (see Sect. 5.8.3) all levels of the H atom with
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equal quantum numbers (n, j) have the same energy,
because the energy shift due to the relativistic increase
of the electron mass me and that due to spin-orbit coup-
ling just cancel. This (2 j+1) fold degeneracy is lifted
by the hyperfine interaction, because the magnitude of
this interaction depends on the spatial distribution of
the electron density and is therefore different for diffe-
rent values of the quantum number l. Levels with equal
quantum numbers n and j but different values of l do
experience different hyperfine shifts and splittings.

In an external magnetic field, each atomic state
(n, l, s, j) splits without hyperfine interaction into
2 j+1 Zeeman components. The energy separation
of these components depends on the Lande fac-
tor g j (5.69), which might be different for the different
levels. Generally the Zeeman splittings of different
states are therefore different (anomalous Zeeman ef-
fect). For states with total electron spin S = 0 (which
can be only realized for atoms with an even number
of electrons) the normal Zeeman effect applies and the
Zeeman splittings are equal for all states.

If the Zeeman splittings are small compared to
the hyperfine splittings (µ j · B� A j · I), the external
magnetic field can not break the coupling between elec-
tronic and nuclear magnetic moments. The total angular
momentum including nuclear spin is then the vector
sum F = j+ I, which has 2F+1 possible orientations
against the external magnetic field with different ener-
gies. Therefore the hyperfine levels with the quantum
number F split into 2F+1 Zeeman components.

For the ground state 12S1/2 of the H atom no Zeeman
splitting is observed for the HFS component F = 0,
while the other HFS component with F = 1 splits into
three Zeeman sublevels (Fig. 5.31).

For higher magnetic fields (µ j · B>∆EHFS) the
coupling between j and I breaks down. The quantum
number F is no longer defined and the Zeeman shift
of the levels depends on µ j · B. For still higher magne-
tic fields (µ j · B>∆EFS) even the coupling between s
and l breaks down. In this case there is no longer a de-
fined total electronic angular momentum j but l and s
precess separately around the field axis (Paschen–Back
effect Fig. 5.32).

The complete level scheme of the H atom is shown
in Fig. 5.33 where, on the left side, the energy levels
without effects of the electron spin are plotted, which
are the energies obtained from Bohr’s atomic model
and also from the Schrödinger equation. The level ener-

gies plotted in the second column take into account the
relativistic mass increase and the fine structure due to
spin-orbit coupling. The next column adds the Lamb
shift (see next section) and the last column includes the
hyperfine interaction.

Note that the energy scales for fine and hyperfine
interactions are widely spread, in order to show these
small splittings in the same diagram. The absolute va-
lues for the splitting of the 2P1/2 level are illustrated in
Fig. 5.34.

Remark

In this chapter the electron spin was introduced in a phe-
nomenological way, based on the results of experiments,
such as the Einstein–de Haas effect, the fine structure in
the atomic spectra and the Stern–Gerlach experiment.
Mathematically, the total wave function was written as
the product of spatial wave function (solution of the
Schrödinger equation) and spin function. This heuri-
stic introduction of the electron spin is able to explain
all experimental results discussed so far, although it
does not meet the requirements of a strict mathematical
derivation.

A complete theory, including the electron spin ab
initio, was developed by Paul A.M. Dirac (1902–1984)
who used as a master equation, instead of the Schrödin-
ger equation, an equation that includes all relativistic
effects (Dirac equation). This equation can be solved
analytically for all one-electron systems as long as they
can be reduced to real one body systems (for instance the
treatment of the H atom can be reduced to a one-body
system, where one particle with the reduced mass µ
moves in the spherical symmetric Coulomb potential).
This treatment is no longer possible for the two par-
ticle system e+e− (positronium consisting of positron
and electron) because the interaction between the two
spins of e+ and e− represents a strong perturbation of
the Coulomb potential (see Sect. 6.7.4).

5.8.3 Lamb Shift

An atom can absorb or emit electromagnetic radiation.
The correct description has to take into account the
interaction of this atom with the radiation field. This
interaction is not only present during the absorption
or emission of photons, but also for so-called “vir-
tual interactions,” where the atomic electron in the
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Fig. 5.33. Complete level
scheme of the H atom inclu-
ding all interactions known so
far. Note: The fine, HFS struc-
ture, and the Lamb shift are not
drawn to scale. They are exag-
gerated in order to illustrate the
splittings and shifts

2s, 2p

Schrödinger
theory
without spin

Dirac
theory
fine structure

Lamb shift
quantum electrodynamics

Fig. 5.34. Fine structure and Lamb shift of the n = 2
level of the H atom
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Coulomb field of the nucleus can absorb and then
emit a photon of energy hω during a time interval
∆t< �/∆E = 1/ω. The uncertainty relation∆E∆t ≥ �
allows such processes without violating the energy
conservation law.

This interaction leads to a small shift of the energy
levels, which depends on the spatial probability dis-
tribution of the electron in the Coulomb field of the
nucleus and therefore on the quantum numbers n and l.

The Lamb shift can be understood at least qualita-
tively by an illustrative simple model. Because of the
photon recoil, the statistical virtual absorption and emis-
sion of photons results in a shaky movement of the

Random absorption and emission
of virtual photons

a)

b)

c)

Fig. 5.35a–c. Illustration of the random shaky motion of the
electron due to absorption and emission of virtual photons.
Motion of a free electron in a radiation field without taking
into account the photon recoil (a), with recoil (b), and shaky
motion of an electron in a Coulomb field on the first Bohr
orbit including the photon recoils (c)

electron in the Coulomb field of the nucleus (Fig. 5.35),
where its distance from the nucleus r varies in a random
way by δr. Its average potential energy is then〈

Epot
〉=− Ze2

4πε0

〈
1

r+ δr
〉
. (5.84b)

For a random distribution of δr is 〈δr〉 = 0 but 〈(r+
δr)−1〉 	= 〈r−1〉. Therefore an energy shift occurs. Its
quantitative calculation is not possible within the fra-
mework of the Schrödinger theory but can be performed
in an extended theory called quantum electrodynamics,
which contains the complete description of atoms and
their electron shells including the interaction with the
radiation field [5.3].

The effects of these interactions are generally very
small. Therefore, in most cases the Schrödinger theory,
including the electron spin, is sufficiently accurate to
match the experimental results. Only in special cases,
and in particular for high precision measurements, does
the Lamb shift have to be taken into account.

The complete term diagram of the levels with n = 2
in the H atom is drawn in Fig. 5.34. The Lamb shift∆EL

is maximum for the S states, because the wave function
has a maximum at the position of the nucleus and the
effect of the random variations δr are largest for small
r values.

The numerical values for the Lamb shifts are

∆ELa(1
2S1/2)=+3.55×10−5 eV

⇒∆νLa =+8.176 GHz

∆ELa(2
2S1/2)=+4.31×10−6 eV

⇒∆νLa =+1.056 GHz

∆ELa(2
2 P1/2)=−5.98×10−8 eV

⇒∆νLa =−14 MHz .

The first measurement of the Lamb shift was performed
in 1947 by Willis Lamb (*1912) [5.4] and Robert Re-
therford (*1912) using the experimental setup shown in
Fig. 5.36.

In a heated tungsten oven, hydrogen is thermally
dissociated. (In modern devices, a higher degree of
dissociation is achieved with a microwave discharge.)
The H atoms emerging from a hole in the oven into
the vacuum are collimated by the aperture B into
a nearly parallel atomic beam. The atoms are exci-
ted into the metastable 22S1/2 state by collisions with
electrons crossing the atomic beam. The lifetime of
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Fig. 5.36. Lamb–Retherford experiment

the 2S state is about 1s and therefore longer than
the flight time of the atoms through the apparatus.
After a pathlength L, the metastable atoms impinge
onto a tungsten target, where they transfer their excita-
tion energy, which is higher than the energy necessary
to release electrons from the conduction band, which
are collected by a detector. The rate of emitted elec-
trons represents a small electric current that can be
measured.

During their flight to the detector the elec-
trons pass a radio frequency field with a tunable
frequency. If the frequency matches the energy separa-
tion ∆E = E(22S1/2)− E(2 P1/2)= 4.37×10−6 eV (⇒
νres = 1.05×109 Hz or λ= 0.3 mm) between the 22S1/2

state and the 22 P1/2 state, transitions 22S1/2 → 22 P1/2

are induced. The lifetime of the 22 P1/2 state is
only τ ≈ 2×10−9 s, because it decays spontaneously
into the 1S state by emitting Lyman-α radiation.
Therefore atoms in the 2P state cannot reach the
detector. Hydrogen atoms in the 1S ground state
cannot release electrons from the tungsten target.
Therefore the measured electron current decreases
and I(νrf) shows a sharp dip at the resonance radio
frequency.

An alternative way for detecting the transitions
between the 22S1/2 and the 22 P1/2 states is the mea-
surement of the Lyman α-fluorescence emitted from
the 2 P1/2 state. It can be detected with a solar blind
photomultiplier viewing the rf field region.

The numerical value νres=1.05×109Hz=1.05 GHz
obtained from these experiments is in good agreement
with theory. However, recent, much more accurate mea-
surements, show that for a reliable comparison with
theory the charge distribution in the proton, which af-
fects the Lamb shift, must be known more accurately
than is presently possible from high energy scattering
experiments.

Note:

In real experiments [5.4] very small electric stray fields,
which are difficult to eliminate completely, already
cause Stark shifts that are different for the 2S and the
2P levels. These shifts not only add to the Lamb shift
but can also mix the 2S and 2P levels, causing Lyman-
α emission without applying the rf field. This effect
can be avoided by applying a static magnetic field B,
which causes a Zeeman splitting and an increase of the
energy separation between the 22S1/2 and 22 P1/2 levels
(Fig. 5.37). Instead of tuning the rf field, the magne-
tic field is now varied at a fixed radio frequency until
the resonance is reached for transitions between the
Zeeman levels. This has the additional advantage that
the radiofrequency can always stay in resonance with
the rf resonator and therefore the rf field amplitude in
the interaction zone is always constant at its maximum
value.
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Fig. 5.37. (a) Zeeman splittings of the 22 P1/2, 22S1/2 and 22 P3/2 levels for measuring the Lamb shift. (b) Frequencies of the
rf transitions as a function of the magnetic field strength

Fig. 5.38a,b. Optical measurement of the Lamb shift. (a) Level scheme. (b) Experimental arrangement
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If the experiment is repeated at different radio fre-
quencies, the resonance will occur at different magnetic
fields B. Plotting the measured values of νrf as a func-
tion of B (Fig. 5.37b) allows the extrapolation towards
B = 0, which yields the field-free Lamb shift.

While the Lamb–Retherford experiment measured
only the Lamb shift of the 2S state, a modern ver-
sion of Lamb shift measurement can also determine the
much larger Lamb shift of the 12S1/2 ground state [5.5].
It is based on the precise comparison of the frequen-
cies of two different optical transitions in the H atom
(Fig. 5.38):

Firstly the two-photon transition 12S1/2 → 22S1/2,
which is only possible if two photons are simulta-
neously absorbed (see Sects. 7.2.4 and 10.5). And
secondly, the one-photon transition 22S1/2 → 42 P1/2.

According to the Schrödinger theory (and also the
Dirac theory) the relation

ν0
1

(
12S1/2 → 22S1/2

)= 4ν0
2

(
22S1/2 → 42 P1/2

)
(5.84c)

holds. Taking into account the Lamb shift (which is
negligible for the 42 P1/2 level) we obtain for the actual
frequencies

ν1 = ν0
1 −∆ELa(1S)+∆ELa(2S) ,

ν2 = ν0
2 −∆ELa(2S) . (5.84d)

The difference

∆ν = ν1−4ν2

= ν0
1 −4ν0

2 − (∆ELa(1S)−5∆ELa(2S))/h

= (−∆ELa(1S)+5∆ELa(2S))/h (5.85a)

is measured. Since the Lamb shift of the 2S state is
known from the Lamb–Retherford experiment, the shift
of the 1S state can be determined from (5.85a).

The two-photon transition 1S → 2S is excited by
two photons from the frequency-doubled output of a dye
laser, tuned to the optical frequency νL = (1/4)ν(1S−
2S)= (1/4)ν1. The Lamb shift of the 1S ground state
is then

∆ELa(1S)= 5∆ELa(2S)−h · (ν1−4ν2) . (5.85b)

The very precisely measured frequencies ν1 and ν2 [5.6]
furthermore yields the present most accurate value of
the Rydberg constant

Ry∞ = 10,973,731.568639(91)m−1 .

5.9 Correspondence Principle

For many qualitative results, estimates are sufficient
and can save much of the time necessary for more de-
tailed calculations. Here, a correspondence principle,
formulated by Niels Bohr, is very useful. It illustra-
tes the relation between classical and quantum physical
quantities [5.7]. Its statements are as follows.

The predictions of quantum mechanics have to con-
verge against classical results for the limit of large
quantum numbers.

Selection rules for transitions between atomic states
are valid for all quantum numbers. This means that rules
obtained from classical considerations for large quan-
tum numbers must also be valid for quantum mechanical
selection rules for small quantum numbers.

This correspondence principle allows a quantitative
relation between classical and quantum physics and gi-
ves the validity area for a classical description and its
correspondence to a quantum mechanical model at the
borderline of the classical realm. We will illustrate this
using some examples.

EXAMPLES

1. According to classical electrodynamics, the fre-
quency of an electromagnetic wave emitted by an
electron on an orbit around the nucleus equals the re-
volution frequency of the electron. In Bohr’s atomic
model, this frequency is on the nth orbital

νcla = v

2πr
= m Z2z4

4ε2
0n3h3

. (5.85b)

The quantum theory demands that hν=∆E = Ei −
Ek. This gives

νQM = me Z2e4

8ε2
0h3

(
1

n2
i

− 1

n2
k

)
. (5.86)

For large quantum numbers n and small quantum
jumps∆n = ni −nk � ni we can approximate (ni +
nk)(ni −nk)≈ 2n∆n and we obtain:

νQM ≈ m Z2e4

4ε2
0n3h3

∆n . (5.87)

For ∆n = 1 the quantum model gives the clas-
sical fundamental frequency (5.85b) and for
∆n = 2, 3, . . . the corresponding harmonics (Ta-
ble 5.5).
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Table 5.5. Comparison of quantum mechanical and classical
transition frequencies ∆n = 1 for the H atom

n νQM νcla Difference (%)

5 5.26 ·1013 7.38 ·1013 29
10 6.57 ·1012 7.72 ·1012 14

100 6.578 ·109 6.677 ·109 1.5
1000 6.5779 ·106 6.5878 ·106 0.15

10,000 6.5779 ·103 6.5789 ·103 0.015

2. The angular momentum of the electron is, according
to Bohr’s model,

|l| = n� with n = 1, 2, 3, . . . , (5.88a)

while the Schrödinger theory yields

|l| =√
l(l+1)� . (5.88b)

For small values of l the differences between the
two models are significant, because the lowest state
is described by l = 1 in the Bohr model while the
quantum theory demands l = 0.
For large values of l and n both models con-
verge against l ≈ [l(l+1)]1/2 ≤ [(n−1)n]1/2 ≈ n
(because l ≤ n−1).

3. For the limiting case of small frequencies (large wa-
velengths) Planck’s radiation law converges against
the Rayleigh–Jeans law (see Sect. 3.1). The mean
energy of the black body radiation at the frequency ν
is 〈E〉 = 〈n〉hν, where 〈n〉 is the mean population
density of photons hν in a mode of the radiation
field. From Planck’s formula we can see that for
ν→ 0, the energy converges as E → kT . This gives

〈n〉 hν→ kT ⇒ 〈n〉→ kT/(hν) . (5.88c)

For hν� kT the mean photon density 〈n〉 becomes
very large, and 〈n〉hν� hν. The quantum structure
of the photon field becomes less prominent, because
the energy E = 〈n〉hν is now a nearly continuous
function of n and the classical model does not differ
much from the quantum mechanical one.

4. For the harmonic oscillator, the probability |ψn(R)|2
of finding the system in the nth vibrational level at
a distance R is for small quantum numbers n very
different for the classical and the quantum mecha-
nical models. However, for large values of n the
classical probability Pcl(R) approaches more and
more the average of |ψ(R)|2 (see Fig. 4.21).

The correspondence principle is particularly use-
ful for the discussion of selection rules for radiative
transitions between atomic or molecular levels (see
Chap. 7).

5.10 The Electron Model
and its Problems

We have learned so far that the electron has a rest
mass me = 9.1×10−31 kg, a negative electric charge
e =−1.6×10−19 Coulomb, a spin s with the absolute
value

|s| = 1

2

√
3� , (5.88e)

which can be mathematically treated like an angular
momentum, and a magnetic moment

|µs| = gsµB ≈ 2µB ,

which is related to the spin by

µs = γs · s with γs = e/me .

Up to now we have neither discussed the size of the
electron, nor the spatial mass and charge distribution.

In a simple classical model, one assumes that the
electron can be described by a charged sphere where the
mass is uniformly distributed over the volume of this
sphere and, because of the electric repulsion between
charges of equal sign, the charge is uniformly distribu-
ted over its surface. The radius re of this sphere (the clas-
sical electron radius) can then be calculated as follows.

The capacity of the charged surface is

C = 4πε0re . (5.88f)

Fig. 5.39. Classical model of
the electron as a sphere
with mass m, uniform sur-
face charge −e, spin s and
magnetic moment µs
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In order to bring a total charge Q =−e onto this
capacitor, one needs the energy

W = 1

2
Q2/C = 1

2
e2/C = e2/(8πε0re)= Epot .

(5.88g)

This potential energy corresponds to the energy
W = 1

2ε0|E|2 of the static electric field produced by
the charged electron. If this energy equals the mass
energy mec2 of the electron the classical electron radius
becomes

re = e2

8πε0mec2
= 1.4×10−15 m . (5.89a)

If the charge is not only on the surface of the sphere but is
uniformly distributed over the volume, an analogue con-
sideration yields twice the energy, i.e., W = e2/(4πε0re)

and a radius

re = e2/
(
4πε0mec2)= 2.8×10−15 m . (5.89b)

In this model the magnetic moment µs of the elec-
tron is produced by the rotating charge. The elementary
calculation gives the relation

µs = 1

3
ω · e ·r2

e (5.90)

betweenµs and the angular rotation frequencyω. Inser-
ting the absolute value µs = 2µB = 1.85×10−23 Am2,
obtained from the Einstein–de Haas experiment and the
classical electron radius re = 1.4×10−15 m, yields the
angular frequency

ω= 3µs

e ·r2
e
= 1.7×1026 s−1 . (5.91)

This would result in a velocity at the equator of the
sphere of

v= ωre = 2.3×1011 m/s � c = 3×108 m/s!!
(5.92)

This is clearly a problematic result.
A similar result is obtained, in contradiction to spe-

cial relativity, when the electron spin is interpreted as
mechanical angular momentum of a sphere with the
classical electron radius.

The moment of inertia of the sphere is I = 2
5 mer2

e
and the angular momentum

|s| = 1

2

√
3 ·�= I ·ω= 2

5
mer

2
e ·ω . (5.93)

This gives an angular velocity

ω= 5 ·√3 ·�
4mer2

e
(5.94)

and a velocity of a point at the equator of

v= 5 ·√3 ·�
4mere

. (5.95)

Inserting the numerical values yields

v= 9×108 m/s> c = 3×108 m/s .

From high energy scattering experiments it can be con-
cluded that the charge e of the electron is localized
within a smaller volume with r < 10−16 m. The re-
sultant smaller value of r would, however, increase
the discrepancies of this mechanical model even more,
because a smaller re in the denominator of the expres-
sion (5.95) would further increase the equator velocity
v∝ 1/r.

Apparently the mechanical model of the electron as
a charged sphere and the interpretation of its spin as
mechanical angular momentum must be wrong. Up to
now there does not exist a convincing vivid model of
the electron.

The high energy experiments and precision measu-
rements of the magnetic spin moment indicate that the
electron can be treated as a point-like charge. Its mass
me = E/c2 can be interpreted as the energy E of the
electric field produced by its charge −e. The spin is an
additional characteristic of the electron. Although it fol-
lows the same mathematical relations as other angular
momenta, such as the commutation relations, and it has
the properties of a vector, it apparently cannot be regar-
ded as a mechanical angular momentum in the classical
sense.

The charge distribution

dq(r, ϑ, ϕ)= �el(r, ϑ, ϕ) dτ

=−e|ψ(r, ϑ, ϕ)|2 ·r2 sinϑ dr dϑ dϕ

of the electron in the atomic electron shell gives the
probability to find the (probable point-like electron) in
the volume element dτ around the location (r, ϑ, ϕ).

These considerations illustrate a general problem
in the realm of microparticles. Is the distinction bet-
ween particles with mass m and field energy E = mc2

still meaningful? What are the lower limits of volumes
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∆V =∆x ·∆y ·∆z in space, where our geometrical
concept of space is still valid? Do we have to go to
a higher dimensional space when we want to describe
elementary particles?

There have been several attempts to answer these
questions, but a definite indisputable model has not
yet been developed. There are, however, mathemati-
cal theories which are consistant with all experimental
results, although they do not provide a clear and vivid
picture of the electron.

The Dirac theory starts from a relativistic equation
(the Dirac equation) that describes all properties of
the electron correctly (except its self-interaction with
its radiation field resulting in the Lamb shift). Analo-
gous to the situation for the Schrödinger equation the
Dirac equation cannot be derived in a mathematical
way from first physical principles. The complete theory
that includes all aspects of atomic and molecular phy-
sics is quantum electrodynamics (QED) [5.8, 9, 10]. Its
introduction is, however, beyond the scope of this book.

• The three-dimensional Schrödinger equation for
the hydrogen atom can be separated in the
center-of-mass system into three one-dimensional
equations. This is possible because of the sphe-
rically symmetric potential. The solutions of
the Schrödinger equation are wave functions
ψ(r, ϑ, ϕ)= R(r)Θ(ϑ)Φ(ϕ), which can be writ-
ten as the product of three functions of only one
variable. While the radial part R(r) depends on the
special r-dependence of the potential, the angular
part Y m

l (ϑ, ϕ)=Θ(ϑ)Φ(ϕ) represents spherical
surface harmonics Y m

l for all spherical potenti-
als. These functions depend only on the quantum
numbers l of the orbital angular momentum l
and ml of its projection lz .

• The constraints of normalization and unambiguity
for the wave function lead to the quantization of
bound energy states with E < 0 (only discrete
energy levels exist) while for states with E > 0
all energies are allowed (continuous states). One
can also say that if the wave function is restricted
to a finite volume in space, the energies are quan-
tized. If the particle can move all over the space,
a continuous energy spectrum appears.

• Each wave function ψ = ψn,l,m(r, ϑ, ϕ) of the
H atom is unambiguously defined by the three
quantum numbers n (principal quantum number),
l (quantum number of orbital angular momen-
tum l) and ml (projection quantum number of lz).

• The absolute square |ψ(r, ϑ, ϕ)|2 of the wave
function describes the probability density func-
tion. This means, that |ψ|2 dV gives the
probability to find the particle within the
volume dV .

• The energy eigenvalues En are obtained by
inserting the wave functions ψn,l,m into the
Schrödinger equation.

• Within the Schrödinger model the energies En

of the discrete states of the hydrogen atom de-
pend solely on n, not on l and m. All states with
equal n but different values of l or m have the
same energy (they are degenerate). For each pos-
sible value of En there are k =∑n−1

l=0 (2l+1)= n2

different wave functions ψn,l,m(r, ϑ, ϕ) that des-
cribe n2 different spatial charge distributions of
the electron. The energy states of the hydrogen
atom are therefore n2-fold degenerate.

• The normal Zeeman effect results from the in-
teraction of the magnetic moment µl (due to the
orbital motion of the electron) with an external
magnetic field. This interaction splits the energy
states En,l into (2l+1) equidistant Zeeman com-
ponents with energies shifted by ∆E = µBml B
against the field-free energies, where µB is the
Bohr magneton.

• Several experimental results (anomalous Zeeman
effect, Stern–Gerlach experiment, Einstein–de
Haas experiment) force an extension of the Schrö-

S U M M A R Y
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dinger theory. This was achieved by the intro-
duction of the electron spin with an additional
spin magnetic moment µs =−gs(µB/h)s with the
Lande factor gs ≈ 2. The total angular momentum
of the electron is the vector sum j = l+ s. The to-
tal wave function is now written as a product of
the spatial part and a spin function.

• The fine structure, observed in the atomic spectra,
can be explained as Zeeman splitting, caused by
the interaction of the spin magnetic moment µs

with the internal magnetic field, produced by the
orbital motion of the electron. The energies of the
fine structure components are

En,l, j = En + a

2
[ j( j+1)− l(l+1)− s(s+1)] ,

where

a = µ0 Ze2
�

2

8πm2
er3

is the spin-orbit coupling constant.
• In the Coulomb potential all energy terms with

equal quantum number j are degenerate. This is
due to the cancellation of the energy shift due to
the relativistic increase of the electron mass and
the shift caused by the spin-orbit interaction. This
degeneracy is lifted in non-Coulombic potentials,
even if they are spherically symmetric, because
here the two shifts are different.

• The anomalous Zeeman effect is observed for all
states with total spin S 	= 0. The energy shift of
the Zeeman components is ∆E =−µ j · B, with
µ j = µl +µs. Each term En, j splits into (2 j+1)

Zeeman components, which are generally not
equidistant as for the normal Zeeman effect.

• Atoms with a nuclear spin I and a corresponding
(very small) nuclear magnetic moment µN show
an additional small energy shift ∆E =−µN · B
of the atomic states, caused by the interaction
of the nuclear magnetic moment with the inter-
nal magnetic field produced by the electrons at
the position of the nucleus (hyperfine structure).
The energy levels split into (2F+1) hyperfine-
components, where F is the quantum number of
the total angular momentum F = J+ I = L+ S+
I, including the nuclear spin I.

• If the interaction of the electron with the radiation
field produced by virtual emission and absorp-
tion of photons is taken into account, the energy
levels experience a small additional shift, cal-
led the Lamb shift. The shift is maximum for
the 1S state, smaller for the 2S state and negligi-
ble for the P or D states. The Lamb shift can only
be calculated within the framework of quantum
electrodynamics.

• The Schrödinger theory describes the hydrogen
atom correctly if relativistic effects (mass increase
and electron spin) are neglected. The Dirac theory
includes these effects, but does not take into ac-
count the Lamb shift. A complete description of
all effects observed so far, is possible within the
quantum electrodynamic theory.

• Up to now no vivid model of the electron exists
that consistently describes all characteristics such
as mass, size, charge, spin and magnetic moment.
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1. Calculate the expectation values 〈r〉 and 〈1/r〉 for
the two states 1s and 2s in the hydrogen atom.

2. Which spectral lines in the emission spectrum of
hydrogen atoms can be observed if the atoms are
excited by electrons with kinetic energy Ekin =
13.3 eV?

3. By what factor does the radius of the Bohr or-
bit increases if the H atom in its ground state is
excited by (a) 12.09 eV and (b) 13.387 eV?

4. Show that within the Bohr model the ratio µl/l
of orbital magnetic moment and angular mo-
mentum is independent on the principal quantum
number n.

5. By how much does the mass of the hydrogen atom
differ in the state with n = 2 from that in the state
n = 1 (a) because of the relativistic increase of
the electron mass and (b) because of the higher
potential energy? Assume circular motion of the
electron.

6. In the classical model, the electron is descri-
bed as a rigid sphere with radius r, mass m,
charge −e and uniform charge distribution.
(a) What is the velocity of a point on the equa-
tor of this sphere when the angular momentum is
1/2

√
3h? (b) What would the rotational energy

of this sphere be? Compare the result with the
mass energy mec2. Use both numerical values
re = 1.4×10−15 m (obtained from the classical

model of the electron) and re = 10−18 m (obtained
from scattering experiments).

7. Assume you want to measure the Zeeman split-
ting of the Balmer α-line on the transition
22S1/2 → 32 P1/2 in a magnetic field of B = 1 T.
(a) What should the minimum spectral resolution
of a grating spectrograph be in order to resolve
all components? What is the minimum number of
grooves that must be illuminated if you observe
in the second diffraction order? (b) What is the
minimum magnetic field B needed to resolve the
Zeeman components with a Fabry–Perot interfe-
rometer (plate separation d = 1 cm, reflectivity of
each plate R = 95%)?

8. How large is the internal magnetic field produced
by the 1s electron in the H atom at the location
of the proton that causes the splitting of the two
hyperfine components observed in the transition
with λ= 21 cm between the two components?

9. Compare the frequencies of the absorption li-
nes 1S → 2P for the three isotopes 1H, 2D,
and 3T of the hydrogen atom (a) by taking
into account the different reduced masses and
(b) by calculating the hyperfine shifts and split-
tings with the nuclear spin quantum numbers
I(H)= 1/2, I(D) = 1 and I(T)= 3/2 and the
nuclear magnetic moments µN(H) = 2.79µK,
µN(D)= 0.857µK;µN(T)= 2.98µK.

P R O B L E M S



6. Atoms with More Than One Electron

In atoms with more than one electron additional pro-
blems arise that are caused by mutual electrostatic
and magnetic interactions between the electrons. In
addition, we are now confronted with new symmetry
principles that are valid if two electrons are exchan-
ged. These stem from the fact that electrons cannot be
distinguished from each other.

We will first study these phenomena for the he-
lium atom, which represents the simplest system with
two electrons. This will help us understand the buil-
ding up principle for the structure of electron shells for
larger atoms. We will see that the electron configura-
tions for all atoms can be obtained from the minimum
energy principle, the correct coupling of the different
angular momenta of the electrons and the observation
of certain symmetry rules. This results in the deter-
mination of all possible energy states of the atoms
and the characterization of these states by quantum
numbers.

6.1 The Helium Atom

The helium atom consists of a nucleus with charge
+Ze =+2e and mass mK ≈ 4mH and of two elec-
trons each with charge q =−e. The spatial distribution
of the two electrons depends on their wave func-
tion ψ(r1, r2), which is a function of the spatial
coordinates r1 = (x1, y1, z1) and r2 = (x2, y2, z2) of
the two electrons. Their distances from the nucleus
are r1 = |r1| and r2 = |r2| and their mutal distance is
r12 = |r1−r2|.

The potential energy of the electrons is then:

Epot =− e2

4πε0

(
Z

r1
+ Z

r2
− 1

r12

)
. (6.1a)

The operator of the kinetic energy in the center of mass
system is

Êkin =− �
2

2µ
(∆1(r1)+∆2(r2))

with µ= memK

me+mK
(6.1b)

where the operator ∆i acts on the coordinate ri .
Since mK ≈ 7300 me, we can use the approximation
µ≈ me =m. The Schrödinger equation is then:

− �
2

2m
∆1ψ(r1, r2)− �

2

2m
∆2ψ(r1, r2)

+ Epotψ(r1, r2)= Eψ(r1, r2) . (6.2)

The last term on the left side is the potential energy,
which is no longer spherically symmetric as in the hy-
drogen atom, but depends on the angle α between the
radius vectors ri to the electrons, because of their mu-
tual repulsion. From Fig. 6.1 we can derive the relation

r2
12 = |r1−r2|2 = r2

1 +r2
2 −2r1r2 cosα .

We therefore can not separate the total wave function
into a radial part and an angular part, as we could
in the case of one-electron systems. This implies that
the Schrödinger equation (6.2) is no longer solvable
analytically and we have to use approximations.

α

+Ze

−e

−e

1r
2r

12r
→

→
→

Fig. 6.1. The helium atom
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6.1.1 Approximation Models

Because of the mutual repulsion, the electrons will
move in such a way that on the time average
〈r12〉> 〈r1〉 = 〈r2〉.

In a first crude approximation we can therefore ne-
glect the last term in (2.1). Then we can separate the
wave function into the product

ψ(r1, r2)= ψ1(r1)ψ2(r2) . (6.3)

Inserting this into the Schrödinger equation (6.2) yields
two separate equations for the two electrons

− �
2

2m
∆1ψ1(r1)− e2

4πε0

Z

r1
ψ1(r1)= E1ψ1(r1)

− �
2

2m
∆2ψ2(r2)− e2

4πε0

Z

r2
ψ2(r2)= E2ψ2(r2)

(6.4)

with E1+ E2 = E. Each of these equations is identical
to the Schrödinger eqation (5.8) for the one electron
system and can be solved accordingly.

With Z = 2 we obtain in this approximation for the
energy of the two electrons in the lowest state with
n = 1:

EHe(1s)=−2Z2 EH =−2 ·4 ·13.6 eV

=−108.8 eV .

The experimental value for this energy that is necessary
to remove both electrons from the atom (this means to
convert the He atom into the doubly charged ion He++)
is, however, only Eexp = 78.93 eV.

The neglection of the electron repulsion therefore
introduces an absolute error of 30 eV, i.e., a relative
error of about 40%.

A much better approximation is obtained by a mo-
del that assumes that each of the two electrons moves in
the Coulomb potential of the nucleus, shielded by the
charge distribution of the other electron (which is assu-
med to have a spherically symmetric time average). The
resulting potential for each electron is then a spherically
symmetric Coulomb potential generated by the effec-
tive charge Qeff = (Z− S)e (Fig. 6.2). The quantity S
(0 ≤ S ≤ 1) is called the shielding constant.

For total shielding S = 1 and one would need the
energy EH to remove the first electron from the atom.
The remaining ion He+ now has the nuclear charge
+2e and the binding energy of the second electron is

e)e( s1*s12el ⋅ψ⋅ψ−=ρ

eZ ⋅

)e( 2elρ
e1

)t(r1
→

Fig. 6.2. Partial shielding of
the nuclear charge +Ze by
the negative charge distribution
ρel(e2) = −e|ψ1s(r2)|2 of a 1s
electron

therefore−Z2 EH =−4EH. The total ionization energy
of the He atom is then

EHe(1s)=−EH−4EH =−5EH =−67.5 eV ,
(6.5)

which comes much closer to the experimental value
EHe =−78.983 eV. For a shielding constant S = 0.656
the experimental value is exactly reproduced. In our
model the correct energy is therefore obtained for an
effective nuclear charge of Zeffe =+1.344 e. This im-
plies that about 33% of the real nuclear charge +2e is
shielded for one electron by the other electron in the
1s state.

Note:

The shielding for an electron in higher energy states
(for instance the 2s or 2p state) by an 1s electron can
be much larger, because the spatial charge distribution
for the higher state has only small values within the 1s
distribution of the shielding electron.

The spatial charge distribution of the shielding
electron in the 1s state is given by

�el = eψ∗
2 (1s)ψ2(1s) . (6.6)

The potential energy of the other electron is then

Epot(r1)=− e2

4πε0

⎛⎝ Z

r1
−
∫
ϑ

∫
ϕ

∫
r2

ψ∗
2ψ2

r12
dτ2

⎞⎠ .

(6.7)

In a first approximation we can assume that the charge
distribution of the second electron is not changed much
by the presence of the shielding electron. This means
that we can take the unperturbed hydrogenic wave func-
tions for its spatial distribution. This yields for the
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potential energy

Epot(r1)

=− e2

4πε0

⎛⎝ Z

r1
−2

(
Z

a0

)3/2 ∫
r2

e−2Zr2/a0

r12
dr2

⎞⎠ ,

(6.8)

which has the solution

Epot(r1)

=− e2

4πε0

[
Z−1

r1
+
(

Z

a0
+ 1

r1

)
e−2Zr1/a0

]
.

(6.9)

Inserting this expression into the Schrödinger equation
gives a much better value for the energy of the helium
ground state than by inserting the shielding factor S =
1. In addition the shielding is now dependent on the
distance r1 of the electron e1 from the nucleus. This is
reasonable because the more the electron e1 penetrates
into the charge distribution of e2, the lower the shielding
by e2 becomes.

6.1.2 Symmetry of the Wave Function

We will label the two electrons e1 and e2. The two
factors ψ1(n1, l1,ml1) and ψ2(n2, l2,ml2) of the sepa-
rated wave function (6.3) depend on the three quantum
numbers (n.l,ml) of the two electrons, which we will
abbreviate with

a = (n1, l1,ml1) and b = (n2, l2,ml2) .

The probability P(a, b)= |Ψab(r1, r2)|2, that the ato-
mic state (a, b) is realized, (this means that e1 is in
state a and e2 in state b) can be expressed in the appro-
ximate model of independent electrons (the interaction
term e2/r12 is neglected) by the absolute square of the
product function (6.3)

ψI
ab = ψ1(a)ψ2(b) . (6.10a)

If we exchange the two electrons, (e1 is now in state b
and e2 in state a) our product function becomes

ψII
ab = ψ2(a)ψ1(b) . (6.10b)

However, the two electrons are indistinguishable! This
means that the charge distribution of the total atom

undistinguishable

e2

e1

e1

e2

r1
→

r2
→

eZ ⋅ eZ ⋅

r1
→

r2
→

Fig. 6.3. The two-electron configurations are undistinguisha-
ble

should not be changed under exchange of the two
electrons. We can write this as

|ψI
ab|2 = |ψII

ab|2 ⇒ ψI
ab = eiϕψII

ab . (6.11)

Applying the permutation of the two electrons twice
brings the state back into its original configuration. This
demands ϕ = 0 or ϕ = π⇒
ψI

ab =±ψII
ab . (6.12)

Neither of the two functions ψI nor ψII fullfill this
condition. They therefore cannot represent the correct
eigenfunctions for the description of our atomic state.
We can, however, form a symmetric and an antisym-
metric linear combination of these product functions,
which obey the condition (6.12):

ψs
atom = ψ1(a)ψ2(b)+ψ2(a)ψ1(b) (6.13a)

ψa
atom = ψ1(a)ψ2(b)−ψ2(a)ψ1(b) . (6.13b)

The symmetric function ψs
atom reproduces itself under

exchange of the two electrons, whileψa
atom only changes

its sign.

Note:

ψs and ψa represent the probability amplitudes for the
configuration that one electron is in state a and the
other in state b. However, we do not know which of the
two electrons is in a and which is in b. This problem
is quite analogous to the situation in Young’s double
slit experiment (see Sect. 3.5.2), where the probability
of finding a photon on the screen behind the double
slit is given by the absolute square of the sum of two
probability amplitudes. In a similar way the probability
for the realization of an atomic state where one electron
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is in state a and the other in state b is given either by
|ψs

atom|2 or by |ψa
atom|2. Which of the two functions gives

the correct description of the atomic state depends on
the total electron spin of this state, as will be explained
below.

If both electrons are in the same state (a = b), we
obtain from (6.13b)

ψa
atom = ψ1(a)ψ2(a)−ψ2(a)ψ1(s)≡ 0 . (6.13c)

Two electrons with the same quantum numbers
(n, l,ml) are described by the symmetric spatial
wave function ψs

atom.

6.1.3 Consideration of the Electron Spin

Based on the experimental facts (fine structure and
the anomalous Zeeman effect) described in the pre-
ceding chapter we know that each electron has a spin s
with a value |s| = √

s(s+1)h, where the spin quantum
number s takes the value s =+1/2 and a component
sz =msh where the spin projection quantum number ms

can only have the values ms =+1/2 or ms =−1/2. We
will describe these two possible spin orientations by
spin functions χ+(ms =+1/2) and χ−(ms =−1/2).
The correct mathematical description of these func-
tions, which are represented by vectors with two
components (spinors), is not important for the following
considerations.

The spin state of the atom where both electrons
have parallel spins is described by the symmetric spin
function

χ1 = c1χ
+(1)χ+(2) and

χ2 = c2χ
−(1)χ−(2) , (6.14)

which remains unchanged, when the two electrons are
exchanged.

Since the two electrons are indistinguishable, the
two configurations (χ+1 , χ−2 ) and (χ−1 , χ+2 ) with an-
tiparallel spins have to be regarded as identical. The
atomic states with antiparallel electron spins have to be
described by the antisymmetric spin function

χ3 = c3
[
χ+(1)χ−(2)+χ−(1)χ+(2)] . (6.15)
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Fig. 6.4a,b. Vector model of (a) the three triplet sublevels with
S = 1, MS = 0,±1 and (b) of the singlet level with S = 0

If we normalize the spin functions (|χ∗χ|2 = 1), the
coefficients in (6.14) and (6.15) become c1 = c2 = 1;
c3 = 1/

√
2. This gives the three symmetric spinfuncti-

ons (Fig. 6.4a)

χ1 = χ+(1)χ+(2) ; Ms =ms1 +ms2 =+1

χ2 = χ−(1)χ−(2) ; Ms =ms1 +ms2 =−1

χ3 = 1√
2

[
χ+(1)χ−(2)+χ+(2)χ−(1)] Ms = 0 ,

(6.16)

which describe atomic states with total electron spin
S= s1+ s2, its amount |S| = √

S(S+1)�, the total spin
quantum number S = 1, and the total spin projection
quantum number Ms = ms1 +ms2 = 0,±1.
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The total electron spin S with S = 1 has three
possible projections onto the quantization axis
with quantum numbers MS = 0,±1. If the elec-
tron spin interacts with other angular momenta
or with external fields, the corresponding atomic
state splits into three components. We therefore
name such states triplet states.

The antisymmetric wave function

χa = χ+(1)χ−(2)−χ+(2)χ−(1) (6.17)

represents an atomic state with total electron spin-
quantum number S = 0 and therefore MS = 0, which
we call a singlet state (Fig. 6.4b).

The total wave function of an atomic state can now
be written as the product

ψtotal = ψab(r1, ϑ1, ϕ1, r2, ϑ2, ϕ2) ·χ(S,MS)

(6.18)

of the spatial wave function ψ(r, ϑ, ϕ) that is de-
termined by the two sets of quantum numbers
a= (n1, l1,ml1) and b= (n2, l2,ml2), and the spin wave
function χ(S,MS), which depends on the quantum
number S of the total electron spin S= s1+ s2 and
the quantum number MS =ms1 +ms2 of the projection
Mz = MS�.

Note:

This separation into the product (6.18) is only possible if
the interaction between the spin and the orbital angular
momentum can be neglected (see Sect. 6.5).

6.1.4 The Pauli Principle

The observation and the analysis of the helium spec-
trum (see next section) and of many other atoms with
more than one electron brought the following surprising
result.

The only atomic states that are observed in nature
are described by total wave functions (spatial function
times spin function) that are antisymmetric against a
permutation of two electrons.

Based on these experimental results and on
fundamental symmetry arguments Wolfgang Pauli
(1900–1958) (Fig. 6.5) postulated the general symmetry
rule in 1925 (called the Pauli principle):

Fig. 6.5. Wolfgang Pauli
(1900–1958) From: E. Bagge:
Die Nobelpreisträger der Phy-
sik, Heinz Moos-Verlag, Mün-
chen, 1964

The total wave function of a system with more
than one electron is always antisymmetric with
repect to an exchange of two electrons.

Up until now, no exception to this rule has been
found!

A more involved theoretical treatment of systems
with identical particles shows that this Pauli principle
is valid for all particles with spin quantum number s =
(n+1/2)h (n = 0, 1, 2, . . . ). Such particles are called
Fermions, whereas particles with integer spin quantum
number s are called Bosons.

The Pauli principle is therefore also valid for protons
and neutrons (both have a nuclear spin quantum number
of 1/2).

If two electrons of an atom are both in the same
state described by the spatial wave functionψn,l,m , (this
means that they have the same quantum numbers n, l,
and ml), their antisymmetric spatial wave functions be-
comes, according to (6.13c), zero. This implies that such
a state has to be described by a spatial wave function
that is symmetric against exchange of two electrons.
Since the Pauli principle demands that the total wave
function has to be antisymmetric, it follows that the spin
wave function must be antisymmetric and can be descri-
bed by (6.17). The two spin projections ms1� and ms2�

must differ in their sign.
In other words, two electrons with the same quantum

numbers n, l,ml must have different spin projection
quantum numbers ms1 	= ms2 ! When we describe an
atomic state by the four quantum numbers (n, l,ml,ms)

we can formulate the Pauli principle as:
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Fig. 6.6. Ground
state 11S0 of the
helium atom with
n = 1, l = 0, ml =
0, Ms = 0

An atomic state characterized by the set of four
quantum numbers (n, l,ml,ms) can be occupied
by at most one electron.

or:

An atomic state with the three quantum numbers
(n, l,ml), can be occupied by at most two elec-
trons with opposite spin orientations ms =+1/2
and ms =−1/2 (Fig. 6.6).

6.1.5 Energy Levels of the Helium Atom

The lowest energy level of the He atom (ground state)
is obtained if both electrons have the lowest possible

Fig. 6.7. Symbolic representation of the quantum numbers n, L and S for the ground state and some excited states of the helium
atom. The electron e1 is always in the 1S ground state

principal quantum number n = 1. The other quantum
numbers must then be l = 0 and ml = 0. The two elec-
trons now have identical quantum numbers (n, l,ml)

of the spatial wave function and therefore their spin
quantum numbers ms1 =+1/2 	=ms2 =−1/2 must be
different. Since the spatial wave function is symmetric,
the spin function must be antisymmetric. For the total
spin we get S= s1+ s2 = 0. Both spins are antiparal-
lel and MS = ms1 +ms2 = 0. The helium ground state
is a singlet state. The state does not split in an external
magnetic field but has only one Zeeman component be-
cause its total angular momentum and therefore also its
magnetic moment are zero.

The number 2S+1 of possible orientations MS of
the total spin S is called the multiplicity of the atomic
state. The multiplicity of an atomic state is written as an
upper index in front of the symbol for the total orbital
angular momentum. Each atomic state is characterized
by the symbol nS+1 L J , where n is the principle quantum
number, L = l1+ l2 the quantum number of the total
orbital angular momentum (apart from spin) and J the
quantum number of the total angular momentum J =
L+ S including the spin.

The helium ground state is then labeled as the 11S0

state (n = 1, 2S+1 = 1, L = 0 and J = 0).
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The helium atom can be excited into higher electro-
nic states by absorption of photons or by electron impact
or by collisions with other particles, if their energy is
sufficiently high. If one electron, say e1, is excited into
a state with n = 2 and the other electron e2 stays in the
lower state with n = 1, the quantum number l1 can take
the values l1 = 0 or l1 = 1. Since the principle quantum
numbers n1 = 2 and n2 = 1 differ, all other quantum
numbers can be the same for the two electrons or they
can differ (see Fig. 6.7). Therefore the following exci-
ted states of the He atom can be realized for n1 = 2 and
(n2 = 1, l2 = 0, ml2 = 0, ms2 =+1/2):

21S0

(
l1 = 0,ml1 = 0,ms1 =−1

2
, J = 0

)
21 P0

(
l1 = 1,ml1 = 0,±1,ms1 =−1

2
, J = 1

)
23S1

(
l1 = 0,ml1 = 0,ms1 =+1

2
, J = 1

)
23 P0

(
l1 = 1,ml1 =−1,ms1 =+1

2
, J = 0

)
23 P1

(
l1 = 1,ml1 = 0,ms1 =+1

2
, J = 1

)
23 P2

(
l1 = 1,ml1 =+1,ms1 =+1

2
, J = 2

)
.

While the ground state 1S0 of the helium atom
must be a singlet state according to the Pauli prin-
ciple, the excited states can be either singlet or
triplet states.

Because of spin-orbit coupling (see Sects. 5.6.2
and 6.5) all triplet states with the spin quantum num-
ber S = 1 and the orbital quantum number L ≥ 1 split
into three fine structure components that differ in the
quantum number J of the total angular momentum
J = l1+ l2+ s1+ s2 (Fig. 6.8).

The magnitude of the splitting and the energetic
order of the fine structure components depend on the
kind and strength of the coupling between the different
angular momenta (see Sect. 6.5).

The level system of the helium atom therefore
consists of a singlet system (single components with
S = 0 ⇒ J = L) and a triplet system with S = 1
(Fig. 6.9).

Fig. 6.8. Fine structure of the 23 P state compared with the
unsplit 23S1 state of the helium atom

The energy of the singlet levels is quite different
from that of the triplet levels with the same quantum
numbers (n, l,ml). The reason for this difference is
not the magnetic interaction of the spin-orbit coup-
ling (which only causes small fine structure splittings),
but a consequence of the Pauli principle. For exam-
ple, the energetic difference between the 21S0 level and

24.59
eV

0

19.82

20.62

22.92

23.67

Singlet Triplet
1S 1P 1D 1F 3S 3P 3D 3F

41S

31S 31P

31D

21S

21P
2 3P

11S

2 3S

Fig. 6.9. Level scheme of singlet and triplet states of the he-
lium atom from L = 0 up to L = 3. The ground state 11S0 is
chosen to have the energy E = 0
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the 23S0 level is∆E = E(1S0)− E(3S0)= 0.28 eV! The
23S level is described by the antisymmetric spatial wave
function, where the mutual time-averaged distance 〈r12〉
between the two electrons is larger than in the 21S state,
where the electrons can come much closer together
since the spatial wave function is even for r12 = 0 not
equal to zero. The time-averaged electrostatic repulsion
between the two electrons〈

Epot(r12)
〉= 〈

e2

4πε0r12

〉
= e2

4πε0

∫
ψ∗ 1

r12
ψ dτ

is therefore larger in the 21S state than in the 23S state.
This pushes the energy of the 21S state above that of
the 23S state.

6.1.6 Helium Spectrum

The spectrum of the helium atom consists of all allowed
transitions between two arbitrary energy levels Ei , Ek

(see Chap. 7). For all excited states where only one of
the two electrons is excited only this electron is involved
in such a transition, the other stays in the ground state.
The energy of the absorbed or emitted photons is

hνik = Ei − Ek ⇒ λik = hc

Ei − Ek
(6.19)

E

Singlet system Triplet system
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2 3P
21S 0
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3 3S 1

11S 0

2 3S 1

Fig. 6.10. Possible transitions within the singlet and the triplet
system

(Fig. 6.10). However, not every transition obeying the
energy relation (6.19) is actually observed in the
spectrum, because certain selection rules exist (see
Chap. 7) for possible transitions Ei(ni, li ,mli ,msi )↔
Ek(nk, lk,mlk ,msk ) in absorption or emission. Only
those changes in the quantum numbers (n, l,ml,ms) of
the excited electron that fulfill the following conditions
are allowed:

∆l =±1 ; ∆ml = 0,±1

∆ j = 0,±1 except ji = 0� jk = 0

∆s = 0 .

Since the excitation of one electron does not change the
quantum numbers of the other electron, these selection
rules are also valid for the quantum numbers of the total
angular momenta

∆L =±1 , ∆ML = 0,±1 ; ∆S = 0 . (6.20)

According to these selection rules, transitions between
the singlet system (S = 0) and the triplet system (S = 1)
are forbidden.

For transitions between triplet levels with L ≥ 1,
more than three components are often observed, as can
be seen from Fig. 6.11, which shows the six possible
transitions between the fine structure components of
33 D and 23 P levels.

Since the spectrum of the singlet system looks
quite different from that of the triplet system regar-
ding the line positions and the fine structure (Fig. 6.10)
the two spectra were initially regarded as originating
from different kinds of atoms. Because the chemical
analysis had unambiguously identified both systems as
belonging to helium, it was believed that two kinds of
helium might exist, which were named para-helium
and ortho-helium.

0

1
2

J

J
1
2
3

D3

3P

Fig. 6.11. All allowed transitions between the fine structure
levels of the 3 D and the 3 P state
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Today we know that there exists only one kind of
helium and that the difference in the spectra stems from
the different total electron spin S= s1+ s2. For para-
helium the total spin quantum number is S = 0 and for
ortho-helium it is S = 1.

6.2 Building-up Principle of the
Electron Shell for Larger Atoms

Since the Pauli principle does not allow more than two
electrons in the 1s state with n = 1, the additional elec-
trons in atoms with more than two electrons have to
occupy higher energy states with n ≥ 2 even in the
lowest energy state (ground state) of these atoms.

The population of electrons in atoms with energy
levels (n, l,ml,ms) occurs in such a way that

1. The Pauli principle is obeyed and
2. The total energy of all electrons is minimum for the

atomic ground state.

It is remarkable that the structure of the electron
shells of all existing atomic elements can be explained
by these two principles. In particular, the arrangement
of the elements in the periodic table postulated by
D. Mendelejew 1869 and indepently by L. Meyer 1870
by comparing the chemical properties of the elements,
follows quite naturally from these principles in a very
satisfactory way. It explains the periodic table using
the structure of the atomic electron shells, governed by
these two principles.

Without the Pauli principle the electron shells of
all atoms would collapse into the 1s shell with
the lowest energy. One can therefore say the Pauli
principle guarantees the stability of atoms and
the great variety of chemical properties of the
different elements.

We will explain these general remarks by some
specific examples.

6.2.1 The Model of Electron Shells

The radial distributions of atomic electrons, according
to Sect. 5.1.4, is given by

P(r)= r2|Rn,l(r)|2 ,

where Rn,l(r) is the radial part of the wave function
for an electron with principal quantum number n and
orbital angular momentum quantum number l.

We discussed in Sect. 4.3 that for each value of l there
are (2l+1) degenerate wave functions Y m

l , with diffe-
rent quantum numbers ml , describing different angular
distributions. For each value of the principal quantum n
there are n possible values l = 0, 1, 2, . . . , n−1 of the
angular momentum quantum number. Therefore, there
are

n−1∑
l=0

(2l+1)= n2 (6.21)

different states described by the wave functions
ψn,l,m(r, ϑ, ϕ) that can be occupied by at most 2n2 elec-
trons with pairs of opposite spins, according to the Pauli
principle.

The time-averaged total charge distribution of
all 2n2 electrons with the same principal quantum
number n

e|ψn|2 = e
∑

l

∑
ml

|ψn,l,ml |2 = C · e
∑

l

|Rn,l(r)|2

(6.22)

is obtained by summation over the squares of all pos-
sible wave functions with l < n and −l ≤ ml ≤ +l,
where C is a normalization factor. This gives a spheri-
cally symmetric charge distribution, as can be seen by
summing over all squared spherical harmonics Y m

l for
a given value of n. This charge distribution has maxima
at certain values of the distance r from the nucleus,
which solely depend on the principal quantum num-
ber n. The main part of the electron charge is contained
within the spherical shell between the radii r−∆r/2
and r+∆r/2 (Fig. 6.12). Such a spherically symme-
tric charge distribution is called an electron shell. The
different shells are labeled as follows:

n = 1 : K-shell , n = 4 : N-shell

n = 2 : L-shell , n = 5 : O-shell

n = 3 : M-shell , n = 6 : P-shell

Each of these electron shells has, including the electron
spin, 2n2 states (n, l,ml,ms), where each of these states
can be occupied by at most one electron. Some of these
states can be degenerate (for instance all 2l+1 levels
of a given l-value are degenerate without an external
magnetic field).
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Fig. 6.12. Radial electron density distribution for fully
occupied shells with n = 1, 2 and 3

According to the Pauli principle each electron
shell can be occupied by at most 2n2 electrons.

Since the radial wave function for non-Coulomb
potentials also depends on the angular momentum quan-
tum number l (Fig. 6.13), one calls the arrangement of
all electrons with given values of n and l a subshell.

For each value of n there are n different values
of l and therefore n subshells.

6.2.2 Successive Building-up of Electron Shells
for Atoms with Increasing Nuclear Charge

The successive building-up of the electron shell with
increasing total number Z of atomic electrons according
to the Pauli principle is illustrated in Fig. 6.14 for the
ground states of atoms with the ten smallest values
of Z from hydrogen (Z = 1) to neon (Z = 10). The
two possible spin states ms =±1/2 are symbolized by
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Fig. 6.13. Radial dependence of the probability density for
an electron between the spherical shells for r and r+ dr for
different quantum numbers n, l

upwards or downwards arrows. Fully occupied states
are marked as dark blue, states with only one electron
as light blue and unoccupied states as white.

For lithium, with Z = 3, the third electron can-
not occupy the K-shell (1s), because there are already
two electrons. It has to be in the next highest energy
L-subshell 2s with n = 2 and l = 0. The electron con-
figuration of the Li atom is then (1s)2(2s), where the
exponent gives the number of electrons in the corre-
sponding subshell. The quantum numbers of the third
electron are n = 2; l = 0, ml = 0; ms = 1/2 and the Li
ground state is labeled as 22S1/2 (see Sect. 6.1.4).
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Fig. 6.14. Building up principle of the electron configurations for the ground states of the first ten elements in the periodic table

The fourth electron in the beryllium atom can still
occupy the 2s state (n = 2; l = 0; ml = 0; ms =−1/2)
if the spin quantum number ms differs from that of
the third electron. The ground state of the Be atom is
therefore 21S0.

For the fifth electron in the boron atom the state 2s is
already occupied and it has to go into the 2p state with
n = 2 and l = 1. The ground state of B is then 22 P1/2.

The next two electrons for the elements carbon C
and nitrogen N still fit into the subshell 2p with l = 1
and ml = 0,±1. It turns out that the lowest energy is
realized, if the three electrons have parallel spins. The
reason for this rule is that the spatial wave functions
for electrons with parallel spins are antisymmetric (see
Sect. 6.1.4) and describe an electron distribution where
the electrons are farther apart than for symmetric wave
functions. Therefore their mutual Coulomb repulsion is
smaller and the energy is lower. This is summarized in
Hund’s rule:

For every atomic ground state, the total electron
spin has the maximum value tolerated by the Pauli
principle.

Table 6.1. Maximum number of electrons in the different atomic electron shells and subshells

Shell K L M N O

Maximum
number of electrons 2 8 18 32 50
in shell X

Subshells 1s 2s 2p 3s 3p 3d 4s 4p 4d 4 f +5g
Number of electrons 2 2 6 2 6 10 2 6 10 14 18

Total number of
electrons up to the 2 10 28 60 110
filled shell X

The quantum numbers (L, S, and J) of the ato-
mic ground states are determined by the total orbital
angular momentum L =∑

li , the total spin S=∑
si

and their coupling to J = L+ S. The ground state of C
is then 23 P1 and of N it is 24 P3/2. For the next three
atoms O, F and Ne the three additional electrons still
fit into the 2p shell, but according to the Pauli prin-
ciple, their spins must be opposite to that of the three
electrons, already occupying this subshell. The total
spin quantum number therefore decreases from oxy-
gen (S = 3/2) to fluorine (S = 1/2) to neon (S = 0).
For neon the L-shell with n = 2 is fully occupied. The
total orbital angular momentum is L =∑

li = 0 and
the total spin S =∑

si = 0. The time-averaged electron
charge distribution for neon is spherically symmetric.
The spectroscopic labels of the ground states of the first
ten elements are given in Fig. 6.14.

With sodium (Z = 11) the building-up of the M-
shell with n = 3 starts, until eight electrons fill this
M-shell, which is still not fully occupied for argon
with Z = 18 because the d subshell is not yet occu-
pied (Table 6.2). The analysis of the atomic spectra
proves that with potassium (Z = 19) in the first row
of the third period in the periodic table the building
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Table 6.2. Electron configuration in the ground states of the chemical elements

Shell K L M O Shell K L M N O
Z Element 1s 2s 2p 3s 3p 3d 4s Z Element 1s 2s 2p 3s 3p 3d 4s 4p 4d 5s 5p

1 H Hydrogen 1 28 Ni Nickel 2 2 6 2 6 8 2
2 He Helium 2 29 Cu Copper 2 2 6 2 6 10 1
3 Li Lithium 2 1 30 Zn Zink 2 2 6 2 6 10 2
4 Be Beryllium 2 2 31 Ga Gallium 2 2 6 2 6 10 2 1
5 B Boron 2 2 1 32 Ge Germanium 2 2 6 2 6 10 2 2
6 C Carbon 2 2 2 33 As Arsenic 2 2 6 2 6 10 2 3
7 N Nitrogen 2 2 3 34 Se Selenium 2 2 6 2 6 10 2 4
8 O Oxygen 2 2 4 35 Br Bromium 2 2 6 2 6 10 2 5
9 F Fluorine 2 2 5 36 Kr Krypton 2 2 6 2 6 10 2 6

10 Ne Neon 2 2 6 37 Rb Rubidium 2 2 6 2 6 10 2 6 1
11 Na Sodium 2 2 6 1 38 Sr Strontium 2 2 6 2 6 10 2 6 2
12 Mg Magnesium 2 2 6 2 39 Y Yttrium 2 2 6 2 6 10 2 6 1 2
13 Al Aluminum 2 2 6 2 1 40 Zr Zirconium 2 2 6 2 6 10 2 6 2 2
14 Si Silicon 2 2 6 2 2 41 Nb Niobium 2 2 6 2 6 10 2 6 4 1
15 P Phosphorus 2 2 6 2 3 42 Mo Molybdenum 2 2 6 2 6 10 2 6 5 1
16 S Sulfur 2 2 6 2 4 43 Tc Technetium 2 2 6 2 6 10 2 6 6 1
17 Cl Chlorine 2 2 6 2 5 44 Ru Ruthenium 2 2 6 2 6 10 2 6 7 1
18 Ar Argon 2 2 6 2 6 45 Rh Rhodium 2 2 6 2 6 10 2 6 8 1
19 K Potassium 2 2 6 2 6 1 46 Pd Palladium 2 2 6 2 6 10 2 6 10
20 Ca Calcium 2 2 6 2 6 2 47 Ag Silver 2 2 6 2 6 10 2 6 10 1
21 Sc Scandium 2 2 6 2 6 1 2 48 Cd Cadmium 2 2 6 2 6 10 2 6 10 2
22 Ti Titanium 2 2 6 2 6 2 2 49 In Indium 2 2 6 2 6 10 2 6 10 2 1
23 V Vanadium 2 2 6 2 6 3 2 50 Sn Tin 2 2 6 2 6 10 2 6 10 2 2
24 Cr Chromium 2 2 6 2 6 5 1 51 Sb Antimony 2 2 6 2 6 10 2 6 10 2 3
25 Mn Manganese 2 2 6 2 6 5 2 52 Te Tellurium 2 2 6 2 6 10 2 6 10 2 4
26 Fe Iron 2 2 6 2 6 6 2 53 I Iodine 2 2 6 2 6 10 2 6 10 2 5
27 Co Cobalt 2 2 6 2 6 7 2 54 Xe Xenon 2 2 6 2 6 10 2 6 10 2 6

up of the 4s shell starts, which is fully occupied for
calcium (Z = 20) before the 3d shell is filled. The rea-
son for this apparent deviation from the regular scheme
stems from the fact that the 3d electrons are, on ave-
rage, farther away from the atomic nucleus than the
4s electrons. Therefore their energy is higher and the
principle of energy minimization favors the 4s elec-
trons. Indeed extensive computer calculations of the
total energy Etotal prove that Etotal of the electron shell
of K and Ca is smaller if the 4s shell is filled instead of
the 3d shell.

In Fig. 6.16 the successive building-up of the diffe-
rent electron shells is illustrated by an arrow diagram
(without taking into account the peculiarity for Cu,
where electrons are rearranged within a subshell).

This model of atomic electron shells can explain
all peculiarities in the periodic table such as the group
of rear earth elements, sitting all in the same row of

the table. Here inner shells 4 f and 5d are successively
filled without changing the occupation of the outer 6s
shell, which determines the chemical character of an
element (see below). Also for all actinides from radium
(Z = 88) to Rutherfordium (Z = 104) the occupation
of the outer shell 7s is the same while the inner shells
5 f and 6d are successively filled up.

6.2.3 Atomic Volumes and Ionization Energies

The shell structure of the atomic electron distribution
is substantiated by many experimental results. We will
only present some of them here.

The experimental techniques discussed in Sect. 2.4
allow the determination of atomic sizes and volu-
mes. The dependence of these volumes on the number
Z of atomic electrons exhibit a typical periodicity
(Fig. 6.15) corresponding to that of the periodic table.
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Table 6.2. Electron configuration in the ground states of the chemical elements (continued)

Shell N O P Shell N O P Q
Z Element 4 f 5s 5p 5d 5 f 6s Z Element 4 f 5s 5p 5d 5 f 6s 6p 6d 7s

55 Cs Cesium 2 6 1 80 Hg Mercury 14 2 6 10 2
56 Ba Barium 2 6 2 81 Tl Thallium 14 2 6 10 2 1
57 La Lanthanium 2 6 1 2 82 Pb Lead 14 2 6 10 2 2
58 Ce Cerium 2 2 6 2 83 Bi Bismuth 14 2 6 10 2 3
59 Pr Praseodymium 3 2 6 2 84 Po Polonium 14 2 6 10 2 4
60 Nd Neodymium 4 2 6 2 85 At Astatine 14 2 6 10 2 5
61 Pm Promethium 5 2 6 2 86 Rn Radon 14 2 6 10 2 6
62 Sm Samarium 6 2 6 2 87 Fr Francium 14 2 6 10 2 6 1
63 Eu Europium 7 2 6 2 88 Ra Radium 14 2 6 10 2 6 2
64 Gd Gadolinium 7 2 6 1 2 89 Ac Actinium 14 2 6 10 2 6 1 2
65 Tb Terbium 9 2 6 2 90 Th Thorium 14 2 6 10 2 6 2 2
66 Dy Dysprosium 10 2 6 2 91 Pa Protactinium 14 2 6 10 2 2 6 1 2
67 Ho Holmium 11 2 6 2 92 U Uranium 14 2 6 10 3 2 6 1 2
68 Er Erbium 12 2 6 2 93 Np Neptunium 14 2 6 10 5 2 6 2
69 Tm Thulium 13 2 6 2 94 Pu Plutonium 14 2 6 10 6 2 6 2
70 Yb Ytterbium 14 2 6 2 95 Am Americium 14 2 6 10 7 2 6 2
71 Lu Lutetium 14 2 6 1 2 96 Cm Curium 14 2 6 10 7 2 6 1 2
72 Hf Hafnium 14 2 6 2 2 97 Bk Berkelium 14 2 6 10 8 2 6 1 2
73 Ta Tantalium 14 2 6 3 2 98 Cf Californium 14 2 6 10 10 2 6 2
74 W Tungsten 14 2 6 4 2 99 Es Einsteinium 14 2 6 10 11 2 6 2
75 Re Rhenium 14 2 6 5 2 100 Fm Fermium 14 2 6 10 12 2 6 2
76 Os Osmium 14 2 6 6 2 101 Md Mendelevium 14 2 6 10 13 2 6 2
77 Ir Iridium 14 2 6 7 2 102 No Nobelium 14 2 6 10 14 2 6 2
78 Pt Platinum 14 2 6 9 1 103 Lr Lawrencium 14 2 6 10 14 2 6 1 2
79 Au Gold 14 2 6 10 1 104 Rf Rutherfordium 14 2 6 10 14 2 6 2 2

Each time a new electron shell starts to be occupied
(for the elements Li, Na, K, Rb and Cs), the ato-
mic volumes jump upwards. The atomic shell model
explains this readily, because the new shell with a hig-

Fig. 6.15. Variation of atomic volume with the number Z of
electrons

her principal quantum number n has a larger mean
radius 〈r〉 (see Fig. 5.7) than the shells with lower n
values.

Also, the ionization energies Eion show this periodi-
city. The energy necessary to remove the outer electron
(which is the most weakly bound electron) from its state
(n.l.ml) to infinity is

Wion =
∞∫

rn

Zeffe2

4πε0r2
dr = Zeffe2

4πε0rn

= 2Ry∗
Z2

eff

n2
(6.23)

which depends on the average distance 〈r〉 = rn of
the electron from the nucleus with the effective
charge eZeff = e(Z− S), partly shielded by the inner
electrons.

The noble gases, with their closed, fully occupied
shells have the smallest value of 〈r〉, which means the
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Fig. 6.16. Building up the electron shells of all chemical elements

largest effective charge eZeff of all elements in the same
row of the periodic table and therefore the highest ioni-
zation energy. They form the sharp peaks in the curve in
Fig. 6.17 while the alkali atoms, where the electron in
the outer shell, occupied by only one electron, is more

shielded by the lower closed shells, represent the mi-
nima in the ionization curve Eion(Z). In Table 6.3 all
measured ionization energies and the effective charge
numbers Zeff are listed for the first 36 elements in the
periodic table.
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Table 6.3. Nuclear charge number Z, principle quantum number n, ionization energy Eion, effective nuclear charge number Zeff
and shielding constant S for the leucht-electron in the ground states of the first 36 chemical elements

Element Z n Eion/eV Zeff S = Element Z n Eion/eV Zeff S =
Z− Zeff Z− Zeff

H 1 1 13.595 1.00 K 19 4 4.339 2.26 16.74
He 2 1 24.580 1.36 0.64 Ca 20 4 6.111 2.68 17.32
Li 3 2 5.390 1.25 1.75 Sc 21 4 6.56 2.78 18.22
Be 4 2 9.320 1.66 2.34 Ti 22 4 6.83 2.84 19.16
B 5 2 8.296 1.56 3.44 V 23 4 6.738 2.82 20.18
C 6 2 11.264 1.82 4.18 Cr 24 4 6.76 2.82 21.18
N 7 2 14.54 2.07 4.93 Mn 25 4 7.432 2.96 22.04
O 8 2 13.614 2.00 6.00 Fe 26 4 7.896 3.05 22.95
F 9 2 17.42 2.26 6.74 Co 27 4 7.86 3.04 23.96
Ne 10 2 21.559 2.52 7.48 Ni 28 4 7.633 3.00 25.00
Na 11 3 5.138 1.84 9.16 Cu 29 4 7.723 3.01 25.99
Mg 12 3 7.644 2.25 9.75 Zn 30 4 9.391 3.32 26.68
Al 13 3 5.984 1.99 11.01 Ga 31 4 5.97 2.66 28.34
Si 14 3 8.149 2.32 11.68 Ge 32 4 8.13 2.09 28.91
P 15 3 10.55 1.64 12.36 As 33 4 9.81 3.40 29.60
S 16 3 10.357 2.62 13.38 Se 34 4 9.75 3.38 30.62
Cl 17 3 13.01 2.93 14.07 Br 35 4 11.84 3.73 31.27
Ar 18 3 15.755 3.23 14.77 Kr 36 4 13.996 4.06 31.94

Fig. 6.17. Variation of ionization energies with the nuclear
charge number Z = total number of electrons

Since the mean radius rn in the Bohr’s atomic model
is given by (3.85), the ionization energy for an elec-
tron in an unshielded Coulomb potential of the nuclear
charge Ze is

W0 = Ze2

4πε0rn
= 2Ry∗

Z2

n2
. (6.24)

A comparison of (6.24) with (6.23) allows the deter-
mination of the effective charge Zeffe and the shielding

constant S = Z− Zeff:

Zeff = n

√
Wion

2Ry∗

⇒ S = n

√
W0−Wion

2Ry∗
(6.25)

from measured ionization energies Wion.
More detailed information on the quantitative cha-

racteristics of the different elements can be found
in [6.1, 2, 3].

6.2.4 The Periodic System of the Elements

Dijmitrij Iwanowitsch Mendelejew (1834–1907) and
Julius Lothor Meyer (1830–1895) had the idea, in-
dependent from each other, to arrange all chemical
elements with increasing atomic numbers A in a ta-
ble with several rows in such a way, that elements
with similar chemical properties are all placed in the
same column of the table (Fig. 6.18). Later on, it tur-
ned out that the number Z of atomic electrons, rather
than the atomic mass number N is the correct orde-
ring parameter. This gives seven rows (periods) and
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Fig. 6.18. The periodic table of the elements. The mean mass
numbers are averaged over all natural isotopes of an element.
The lanthanides (upper blue row) are all in column III of the

sixth row, the actinides (lower blue row) are in column III of
the seventh row

eight columns (groups of elements), where all elements
with similar chemical properties are included in one of
these groups. The alkali elements form the first group,
the alkaline earth elements form the second, the halo-
gens the seventh and the noble gases are in the eighth
column.

In the sixth period, the third row comprises all
rare-earth elements (lanthanides) from La to Lu and in
the seventh period, the third row includes all actinides
and trans-uranium elements from Th to the artificially
produced heavy element Lawrencium Lr with nuclear
charge Z = 103.

The explanation of this arrangement of all elements
is now completely understood based on the structure of
the atomic electron shells, discussed in the foregoing
section.

The ordering parameter in the periodic system
of the elements is the nuclear charge number Z
that equals the number of atomic electrons. Going
from left to right in the nth period the elec-
tron shell with principal quantum number n is
successively filled.

Theatomicmassnumbers A arenearly integers forall
elements with a single isotope. Isotopes of the same che-
mical element have the same nuclear charge number Z
(i.e., thesamenumberofprotons in thenucleus)butdiffer
in the number N of neutrons. Their atomic mass numbers

A = [
Z(mp+me)+ N ·mn

]
/(MC/12)

therefore differ.
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The small difference in A from an integer for ele-
ments with only a single isotope is caused by the
mass defect ∆M =∆ENB/c2 due to the nuclear bin-
ding energy. If several isotopes of an elements exists,
the atomic mass number can be far from an integer. It
depends on the relative abundances of these isotopes
and is the weighted average of the mass numbers of the
different isotopes:

Ā =
∑
ηi Ai with ηi = Ni∑

Ni
, (6.26)

where Ni is the number of atoms per mol of the isotope
with mass Mi and N =∑

Ni is the total number per
mol of atoms of this element.

The chemical properties of the elements are mainly
determined by the outer electrons with the smallest
binding energy, which are therefore called the valence
electrons. The reason for this is as follows.

In chemical reactions where atoms collide with each
other and form molecules

A+B+M → AB+M (6.27a)

the atomic electrons are rearranged during such a re-
action. The third collision partner M (which could be
the wall of the container) is necessary to take away the
excess kinetic energy and to allow the binding of AB.

For instance, the electron from the Na atom is trans-
ferred to the Cl atom. The energy that is necessary for
such a rearrangement is provided by the kinetic energy
of the reactants and the binding energy of the reaction
product. These energies are, however, small and amount
to only a few eV. Therefore the binding energy of the
electrons can not be larger and inner shell electrons can
not participate in such reactions.

If atoms collide with molecules, the molecule can
be dissociated and new reaction products are produced,
such as

A+BC → AB+C . (6.27b)

Such reactions also lead to a rearrangement of atomic
electrons or to a transfer of electrons from one atom to
the other. For such rearrangements the electron cannot
be too tightly bound, otherwise the electron could not
leave “its atom”. Therefore only valence electrons can
participate.

Since the ordering parameter in the periodic table is
the number Z of electrons, and after a shell is fully oc-
cupied a new period starts, elements in the same column

have the same number of electrons in the outer shell.
The binding energies of electrons in the outer shell
of atoms in the same column in Fig. 6.18 are nearly
the same, because their effective charge number Zeff

is nearly equal. These elements should therefore show
a similar chemical behavior.

EXAMPLES

1. The alkali atoms Li, Na, K, Rb, Cs and Fr all have
only one valence electron in the outer shell. They
are all monovalent and have a similar chemical
behavior.

2. All noble gases He, Ne, Ar, Kr, Xe and Rn have
a fully occupied outer shell. These are therefore pla-
ced in the last column of the periodic table. In order
to excite an electron, it has to be lifted into a hig-
her nonoccupied shell. This demands a large energy
(for He, e.g., about 20 eV). Such a large energy is
not available for most chemical reactions. Therefore
noble gases are chemically inactive and do not re-
act with other elements under normal conditions.
If, however, one of the electrons is excited into a hig-
her shell by other means (for instance by electron
impact in a gas discharge), then the noble gas atom
can react, because now much less energy is requi-
red to transfer the electron from the excited state to
the other reaction partners.

3. The halogens F, Cl, Br and I all have one empty
place in their nearly filled outer shell. They all be-
have chemically similar and react with alkali atoms
readily, because the energy gain achieved by brin-
ging the electron from the alkali atom into this hole
is larger than the binding energy of the electron in
the alkali atom. The alkali-halogen molecule forms
an ionic bond Na+Cl−, where the electron has a lar-
ger probability of being in the electron shell of the
halogen atom than in the alkali atom.

4. All lanthanides from Lanthanum to Lutetium have
the same number of electrons in the outer P-subshell.
They only differ in the number of electrons in inner,
incompletely filled shells (see Table 6.2).

Other physical properties of the elements, such as
the electrical conductivity, also depend on the structure
of their electron shell and can be satisfactorily explained
by our atomic model.
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6.3 Alkali Atoms

The alkali atoms are the most similar to the hydrogen
atom. They are therefore called “hydrogen-like”. They
have, besides n0 closed shells with principal quantum
numbers n ≤ n0 = 1, 2, 3, . . . , a single electron in the
outer shell with n = n0+1.

Since the time-averaged electron distribution in the
closed shell is spherically symmetric with quantum
numbers L = 0 and S = 0 for the total orbital angu-
lar momentum and the total electron spin, the outer
electron moves in a spherically symmetric potential,
which, however, differs from the Coulomb-potential
of the hydrogen atom. It consists of the Coulomb po-
tential produced by the nearly point-like nucleus with
charge Ze and the spatially extended spherical distri-
butions of the other electrons with charge −(Z−1)e in
the filled shells.

The outer electron can be excited into higher states
by absorption of visible light and can emit visible light
afterwards. It is therefore called a “leucht-electron”
from the German verb leuchten, which means “to
shine”.

When rc is the mean radius of the highest closed
electron shell, the potential Φ(r) of the leucht-electron
can be approximated by a Coulomb potential for all
values r> rc. Since the nuclear charge Ze is very effec-
tively shielded by the Z−1 electrons in closed shells,
the effective charge number is Zeff ≈ 1.

For r < rc this is no longer true, because here the
outer electron submerges into the closed shells and the
screening of the nuclear charge becomes less effective.
Here the potential depends on the radial distribution in
the electron shell. The effective radial dependence of
the potential Φ(r) changes from a Coulomb potential
with central charge Ze at small values of r to one with
a completely screened charge (Z− (Z−1))e= e at very
large distances r (Fig. 6.19):

lim
r→0

φ(r)= Ze

4πε0r
; lim

r→∞φ(r)=
e

4πε0r
. (6.28)

We will illustrate this by the simplest case of the Li
atom, where the outer electron in the 2s state moves in
the potential of the nucleus with charge Q =+3e and
the two screening electrons in the 1s state. If ri is the
distance of the 2s electron from the nucleus and rij to
the jth electron in the 1s state (Fig. 6.20), the potential

Fig. 6.19. Radial dependence of the effective potential energy
for the outer electron in an alkali atom

for the 2s electron is given by

φ(ri)= Ze

4πε0ri
− e

4πε0

[ ∫ |ψ1s(r1)|2
ri1

dτ1

+
∫ |ψ1s(r2)|2

ri2
dτ2

]
, (6.28x)

whereψ(r j) is the wave function of the jth electron and
the integration is performed over the coordinates of the
jth electron. In a crude approximation the interaction
between the two 1s electrons can be neglected and the
wave functions ψ j can be written as hydrogenic 1s
wave functions, listed in Table 5.2. Inserting these wave
functions into (6.28x) yields the potential for the 2s
electron (see Problem 6.2)

φ(r)= e

4πε0r

[
1+2e−2Zeffr/a0

(
r · Zeff

a0
+1

)]
.

(6.28y)

For r → 0 the potential equals the Coulomb poten-
tial for Z = 3, while for r →∞ the potential becomes
a Coulomb potential with Zeff = 1, which means that the
two 1s electrons have the screening factor S = 2. For
the potential energy Epot(r)=−e ·φeff(r) we therefore
obtain:

− Ze2

4πε0r
< Epot(r) <− e2

4πε0r
. (6.29)
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Fig. 6.20. Illustration of shielding of the nuclear charge Ze
for the 2s electron by the charge distribution of the two 1s-
electrons

For the hydrogen atom, levels with the same princi-
pal quantum number n but different quantum numbers l
are degenerate. This (n−1)-fold degeneracy is due to
the Coulomb potential and no longer holds for another
potential, even if it is spherically symmetric. There-
fore this l-degeneracy is lifted for the alkali atoms,
where levels with different values of l within the same
n shell do have different energies, even if spin effects
are neglected. The splitting between these levels be-
comes larger for small principal quantum numbers n,
because the mean radius 〈r〉 of the electron distribu-
tion differs for different l-values and the screening
effect is therefore different. For l = 0 the penetration
depth of the outer electron into the electron core is
more pronounced (in a classical model, the motion of
an electron with l = 0 would be a straight line pas-
sing through the nucleus), the electron experiences the
nearly unshielded nuclear charge and its mean energy

is lower than that for l > 0. The classical path for an
electron with l = n−1 would be a circle with a ra-
dius 〈r〉 and the penetration into the electron core is
minimum, the electron experiences an optimum shiel-
ded nuclear charge and its energy is higher than that
for all lower l-values with a given principal quantum
number n.

This implies that the energies follow the sequence

E(n, l = 0) < E(n, l = 1) < E(n, l = 2) . . .

(Fig. 6.21) .

Using different nomenclature we can write

En(S) < En(P) < En(D) . . . . (6.30)

The zero reference point E = 0 is either chosen as the io-
nization limit E(n →∞)= 0, in which case all energies
of bound states become negative (left scale in Fig. 6.21),
or the energy of the ground state is chosen to be Eg = 0.
In this case all energies of excited states become positive
and the ionization energy Eion =−EB becomes equal
to the negative binding energy of the electron in the
ground state. In spectroscopic nomenclature, generally
the second possibility is chosen. Instead of energies E

0

−1

−2

−3

−4

−5

H Li Na K Rb Cs

2

3

4
5

2

2

3

3

4
4

S P D F
n

3

4 4

3

4

5

3

4

5
4

3

4
55

4

4

3

4

5

6
5

4

5 5
6

5

6

7

5

6

7

4

5

6
4
5

6

7

8

6

5

7 6

7
4
5

S P D FS P D FS P D FS P D FE / eV

Fig. 6.21. Simplified level scheme E(n, l) of the alkali atoms
compared with the hydrogen atom (dashed red lines)
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the term values T = E/hc are given. This allows one
to express the wavenumber ν̄ = 1/λ [cm−1] of a tran-
sition between level |i〉 and |k〉 as the difference of the
two term values:

ν̄ik = Ti −Tk .

For illustration, the level scheme of the sodium atom and
the possible transitions are given in Fig. 6.22. The left
scale gives the energies in electron volts eV with E(n =
∞)= 0, while the right scale gives the corresponding
term values in cm−1 with Eg = 0. The conversion factor
is

1 eV = 8065.541 cm−1 . (6.31)

For large principal quantum numbers n (which means
large mean distances 〈r〉 of the electron from the
nucleus), where the potential approaches the Coulomb
potential of the H-atom (Fig. 6.19), the energy levels
of the alkali atoms can be described by the modified
Rydberg formula (see Sect. 6.6.4)

En,l =− Ry∗

n2
eff

=− Ry∗

(n− δn,l)2
, (6.32)

Fig. 6.22. Level scheme and transition of the sodium atom

where the integer principal quantum number n is
replaced by an effective quantum number

neff = n− δnl .

The quantity δnl , that depends on n and l is called the
quantum defect, which expresses the changes of the
energy values Enl against that of the hydrogen atom
(δ= 0) by a dimensionless number.

To summarize we can say that the shifts of the alkali
energy levels Enl against those of the hydrogen atom
are caused by the following effects.

• The deviation of the effective potential from the
Coulomb potential, which causes energy shifts∆Enl

that depend on n and l, because of the n- and l-
dependent penetration depths of the outer electron
into the core of the other electrons.

• The outer electron interacts with the other electrons
in the core and polarizes the electron shell. This
leads to a deviation from the spherical charge distri-
bution even for closed shells. The magnitude of this
polarization depends on the angular momentum l of
the outer electron.

• When the outer electron penetrates into the core, it
can collide with the other electrons. This may result
in an exchange of the outer with an inner electron,
which causes an additional energy shift.

All these effects are included in the quantum defects δnl .
In Table 6.4 the measured quantum defects for different
levels of the sodium atom are compiled.

Note:

The numbers in Table 6.4 illustrate that the quantum
defects depend only slightly on the principal quantum
number n. Therefore the ∆E of the energies shifts

En =−Ry∗/(n− δ)2

Table 6.4. Measured quantum defects δnl for different
Rydberg states of the sodium atom

Term n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

s: l = 0 1.373 1.357 1.352 1.349 1.348 1.351
p: l = 1 0.883 0.867 0.862 0.859 0.858 0.857
d: l = 2 0.010 0.011 0.013 0.011 0.009 0.013
f :l = 3 – 0.000 −0.001 −0.008 −0.012 −0.015
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against the energy levels En =−Ry∗/n2 in the H atom
decreases with increasing values of n.

EXAMPLE

The shift of the level En,l=0 is:
∆E = Ry∗[1/n2 − 1/(n− δ)2]. For n = 3 this

amounts to ∆E = Ry∗[(1/9)−1/1.6272] = 0.27R∗,
while for n = 20 the shift is only ∆E = Ry∗[1/400−
1/336.7] = 0.0005Ry∗.

6.4 Theoretical Models
for Multielectron Atoms

In Section 6.1 we already saw that even for the simplest
case of a multielectron atom, namely the two-electron
He atom, an exact theoretical treatment is not possible.
The reason for these difficulties are the interacti-
ons between the electrons, which because they have
a non-spherical symmetry, prevent a separation of the
Schrödinger equation as in one-electron atoms. Either
numerical methods have to be used or approximate mo-
dels that might be calculated analytically. If one starts
from a crude, but easier-to-calculate model and then
improves this model in successive steps, the physical
insight into the effect of the improvements and their
physical significance is much better, than for a nume-
rical treatment of the accurate atomic model without
approximations. Furthermore this successive way of im-
proving the atomic model is not restricted to a specific
atom but can be applied to all multielectron atoms.

In the following we will discuss some commonly
used approximation models for the description of larger
atoms.

6.4.1 The Model of Independent Electrons

If we consider an arbitrary electron ei from a many-
electron atom, its electrostatic interaction with the other
electrons e j results in a potential energy

Epot(ri, r j)= e2

4πε0

∑
j 	=i

1

|rr −r j | . (6.33)

In the model of independent electrons, this interaction
is not explicitly introduced but it is taken into account

implicitly by using an effective potential Φeff(r) that
depends on the nuclear charge Ze and the time avera-
ged spherical charge distribution of all other electrons.
Any arbitrarily chosen electron ei moves in this poten-
tial, that is independent of the momentary location of
the other electrons. This model therefore reduces the
problem to a one-electron model, which can be sol-
ved more easily with numerical techniques. Contrary
to the situation in the H atom, the radial dependence
of this potential is different from that of the Coulomb
potential, although both potentials have spherical sym-
metry. When we insert this effective potential into the
Schrödinger equation we get the wave functions and the
energy eigenvalues for any of these arbitrarily chosen
electrons.

These one-electron wave functions can be separa-
ted into an angular part and a radial part. While the
angular part is the same as that of the hydrogen wave
functions (because the potential has spherical symme-
try), its radial part is different (because the potential is
not Coulombic).

The energy states Ei (ni, li ,mli ,msi ) in the one-
particle model are defined by the four quantum
numbers ni , li , mli and msi of the i-th electron. The
Pauli principle demands that each of these states can
only be occupied by at most one electron. Starting from
the lowest energy state and filling all electrons of the
atom successively with increasing energy into the dif-
ferent states gives the structure and electronic energy of
the atom.

The question now is how to obtain the effective
potential. If the one-electron wave functions ψ j of all
electrons e j (i 	= j) were known, the potential for the
ith electron could be calculated according to

φeff(ri)

= e

4πε0

⎡⎣ Z

ri
−
∑
j 	=i

∫
1

rij
|φ j(r j)|2 dτ j ,

⎤⎦ ,
(6.34)

where the first term gives the attractive interaction due to
the nuclear charge Ze and the second term the repulsive
interaction with the electronic charge, which is written
as the sum over the charge distributions −e|ψ j |2 of all
electrons e j with j 	= i, shielding the nuclear charge.
Since the integration extends over all angular coordina-
tes, the mutual distance rij is averaged and the second
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term becomes a function that depends solely on r. The
total effective potential is then spherically symmetric.

We can therefore reduce the problem of finding
the optimum effective potential to that of finding the
optimum one-electron wave functions.

The procedure for calculating wave functions as so-
lutions of the Schrödinger equation is called ab-initio
method, because it starts from the basic equation, where
the approximation is solely due to the approximate
potential inserted into the Schrödinger equation.

6.4.2 The Hartree Method

The optimum wave functions can be obtained by an
iterative procedure, first proposed by Douglas Ray-
ner Hartree (1897–1958). It is illustrated by the flow
diagram in Fig. 6.23.

We start with a guessed spherically symmetric po-
tential φ(0)(r), that approximates, in a crude way, the
screening of the nuclear charge by the electrons. A pos-
sible ansatz for such a zeroth-order potential could be,
for the lithium atom,

φ(0)(r)= e

4πε0

(
Z

r
−ae−br

)
, (6.35)

which describes the screening of the nuclear charge by
the two 1s electrons and provides the effective potential
for the 2s electron. The two parameters a and b can be
adjusted to optimize the effective potential.

Inserting this potential into the one-electron Schrö-
dinger equation for the ith electron, the one-electron
wave function ϕ(0)i and the energy eigenvalue Ei can be
calculated. This is now done for all N electrons of the
atom.

The different energy states are then filled with elec-
trons, starting from the lowest state and obeying the
Pauli principle, until each of all N electrons is assigned
to a specific state.

Now these wave functions are used to calculate,
according to (6.34), the improved potential for the ith
electron

φ
(1)
i (ri)= e

⎡⎣ Z

ri
−
∑
j 	=i

∫ |ϕ(0)j (r j)|2
rij

dτ j

⎤⎦ ,
(6.36)

which is produced by the nuclear charge and all other
electrons with time-averaged charge distributions. This

Fig. 6.23. Flow charge diagram of the Hartree procedure

potential is inserted into the Schrödinger equation,
giving improved wave functions ϕ(1)i (r) and energy
eigenvalues E(1)i for the ith electron, which are com-
pared with the wave functions ϕ(0)i and energies E(0)i .
If they do not agree with each other within given li-
mits, the procedure is continued until a minimum value
is approached for the lowest energy, because it can be
shown that the energies, obtained with the “true” wave
functions, are always lower than those obtained with
approximate functions. After a certain number of ite-
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rations, depending on the quality of the zeroth order
potential of the wave functions, the effective potential
and the energy values converge and further iterations do
not change them noticeably. The procedure is therefore
called “self-consistent field approximation” (SCF).

The important point of the Hartree method is, that
the total wave function ψ(r1, r2, . . . , rN) is reduced to
a product

ψ(r1, r2, . . ., rN)= ϕ1(r1)ϕ2(r2) . . . ϕN(rN) (6.37)

of one-electron wave functions [6.4].

Note:

This approximation is much better than the product
(6.3) discussed for the He atom. There the interaction
between the electrons had been completely neglected.
Here it is implicitly introduced in a global way by choo-
sing the best effective potential for obtaining the one
electron wave functions.

In Section 6.1 we have already noted that the total
wave function must be antisymmetric with respect to
the exchange of two arbitrary electrons. This can be
achieved if linear combinations of product functions,
such as (6.37), are formed that meet this symmetry
condition. Such an antisymmetric linear combination
can be written as the determinant

ψ(r1, r2, . . . , rN)= C

∣∣∣∣∣∣∣∣∣∣
ϕ1(r1)ϕ1(r2) . . . ϕ1(rN)

ϕ2(r1)ϕ2(r2) . . . ϕ2(rN)
...

ϕN(r1)ϕN(r2) . . . ϕN(rN)

∣∣∣∣∣∣∣∣∣∣
(6.38)

which automatically fulfills this demand. When two
electrons are exchanged, two columns of the determi-
nant are interchanged, which inverts the sign of the
determinant. This representation of an antisymmetric
multielectron wave function is called a Slater determi-
nant. It describes the wave function of a level in an atom
with many electrons as an antisymmetric linear combi-
nation of products of one-electron wave functions. More
details can be found in [6.4].

6.4.3 The Hartree–Fock Method

So far we have neglected the electron spin. In Sect. 6.1.3
we saw that the total wave function can be written as

the product

ψ = ϕ(r)χ(s) (6.38a)

of the spatial part and spin function. This is valid if the
interaction energy between the magnetic moments of
spins and orbital momenta (causing the fine structure
splitting) is small compared to the electrostatic energy,
which is generally the case. Instead of (6.38) we then
obtain the determinant

ψ(r, s)

= C

∣∣∣∣∣∣∣∣
ϕ1(1)χ1(1), ϕ1(2)χ1(2) . . . ϕ1(N)χ1(N)

...

ϕN(1)χN(1), ϕN(2)χN(2) . . . ϕN(N)χN(N)

∣∣∣∣∣∣∣∣
(6.38b)

which is again antisymmetric with respect to an ex-
change of two arbitrarily chosen electrons. When using
these Hartree–Fock functions for computing the energy
eigenvalues, the necessary computer time is much lon-
ger than for the Hartree functions, but the results are
much more accurate and nowadays such functions are
nearly exclusively used for ab initio calculations.

6.4.4 Configuration Interaction

The best and most often used method for including
the interaction between the electrons (electron corre-
lation) is the configuration interaction (CI) technique.
Combined with the Hartree–Fock method it provides
the most accurate wave functions and energy values for
multielectron atoms.

The wave function of an atomic state is written as
the linear combination

Ψ(r, s)=
∑

k

ckψk (6.38c)

of Slater determinants (6.38b), where each of the Sla-
ter determinants gives the distribution of the atomic
electrons over the different one-electron levels, called
a configuration. If the energy

E = 〈Ψ | H |Ψ 〉
of an atomic state is calculated with the functi-
ons (6.38c), integrals of the form 〈ψi |H|ψk〉 also
contribute to the total energy. These integrals describe
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the contributions of interactions between the diffe-
rent configurations ψi , represented by the one-electron
functions (6.38b) to the energy.

In the sum (6.38b) only functions ψk with the same
symmetry and the same spin are included. Otherwise
the integrals 〈ψi |H|ψk〉 vanish.

6.5 Electron Configurations and
Couplings of Angular Momenta

Besides electrostatic interactions, the magnetic inter-
actions between the magnetic moments of electrons
must also be taken into account. These much smal-
ler interactions cause a splitting of the energy states
into fine structure components. While for one-electron
atoms there are only two fine structure components for
all levels with l ≥ 1, corresponding to the two different
orientations of the electron spin s with respect to the or-
bital angular momentum l (see Sect. 5.6.3), there might
be more than two components in multielectron atoms.
The manifold of fine structure components of a given
state (n, l) is called a multiplet.

The different electrons characterized by their one-
electron wave function, are labeled according to their
principal quantum number n and the quantum num-
ber l of their orbital angular momentum. The electron
configuration describes these quantum numbers for all
electrons of the atom. For instance, the electron configu-
ration 1s22s2p represents a four-electron atom with two
electrons in the 1s state with n = 1 and l = 0, one in the
2s state with n = 2 and l = 0 and one in the 2p state with
n = 2 and l = 1. The configuration 2s22p3 of a seven-
electron atom has two electrons in the filled 1s state
(which are not included in the labeling, because it is self-
evident that the 1s shell has to be occupied in the ground
state of atoms with more than one electron), two elec-
trons in the 2s state and three electrons in the 2p state.
The total quantum numbers of the atomic state depend
on the quantum numbers of the individual electrons and
on the couplings of their angular momenta.

6.5.1 Coupling Schemes
for Electronic Angular Momenta

The way the orbital angular momenta li and the spins si

of the individual electrons are coupled to form the total
angular momentum J of the atom, depends on the ener-

getic order of the different interactions. We will discuss
two limiting cases.

a) L-S Coupling

If the interaction energies

Wlil j = aijlil j (6.39a)

between the orbital magnetic moments of electrons ei

and e j and

Wsi s j = bijsis j (6.39b)

between their spin moments are large compared to the
interaction energy

Wli s̄i = ciilisi (6.39c)

between orbital magnetic moment µli = µBli and spin
moment µs = gsµBsi of the same electron, then the
orbital angular momenta li of the different electrons
couple to a total orbital momentum

L =
∑

li with |L| =√
L(L+1)� (6.40a)

and the individual spins si to a total spin

S=
∑

i

si with |S| =√
S(S+1)� (6.40b)

of the atomic state. The total angular momentum of the
electron shell is then

J = L+ S with |J| =√
J(J +1)� . (6.40c)

This limiting coupling case is named L− S coupling
(Fig. 6.24). The electron configuration with total orbital
angular momentum L and total spin S results (depen-
ding on the coupling of L+ S= J) in different fine
structure components of a multiplet, which only differ
in their quantum number J . The number of possible
fine structure components equals the smaller of the
two numbers (2S+1) or (2L+1), because this gives
the number of possible relative orientations between
the two vectors S and L, and therefore the number of
different couplings L+ S= J.

The energy of a fine structure component is

EJ = E(n, L, S)+C · L · S , (6.41)

where the last term gives the coupling energy of the
interaction between total orbital angular momentum L
and total spin S. The coupling constant C is given in
units of [1 kg−1m−2].
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Fig. 6.24. Vector model of L-S coupling

Because of the vector relation

J2 = (L+ S)2 = L2+ S2+2L · S (6.42)

we obtain for the fine structure coupling energies

C · L · S
= 1

2
C[J(J +1)− L(L+1)− S(S+1)]h2 . (6.43)

The labeling of a fine structure component is n2S+1L J .

EXAMPLES

33 P1(n = 3, S = 1, L = 1, J = 1) ;
42 D3/2(n = 4, S = 1/2, L = 2, J = 3/2) ,

The following nomenclature is used in accordance
with the labeling of levels in one-electron atoms:

L = 0 : S-terms ; L = 1 : P-terms ;
L = 2 : D-terms , . . . .

Note:

Unfortunately the letter S is used in the literature for
two different things, namely, for the total electron spin
and for levels with L = 0.

EXAMPLES

1. The electron configuration with L = 2 and S = 1
results in three fine structure components with quan-
tum numbers J = 1, 2, 3 (Fig. 6.25a). The corre-
sponding vector couplings are shown in Fig. 6.25b.

L 2; S 1= =

C
J
→

L
→

S
→

J
→

J
→L

→ L
→

S
→S

→

J 3= J 2= J 1=

a) b)

2C

2C

J

3

2

1

Fig. 6.25a,b. L-S coupling for the case L = 2, S= 1. (a) Level
scheme (b) Coupling possibilities

The energies of the fine structure components are
calculated according to (6.41)–(6.43)

EJ(n, L, S, J)

= E(n, L, S)+C/2[J(J +1)−6−2]h2

= E(n, L, S)+2Ch2 for J = 3

= E(n, L, S)−1Ch2 for J = 2

= E(n, L, S)−3Ch2 for J = 1

The fine structure components are not equally
spaced!

2. The configuration with L = 1 and S = 3/2 has three
possible fine structure components with J = 5/2,
3/2 and 1/2. The components are labeled 4 P5/2,
4 P3/2, and 4 P1/2.
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Fig. 6.26. Level scheme
of the lowest quartet
states of the nitrogen
atom
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For L-S coupling, the fine structure splitting
∆EFS = EJ − EJ is small compared to the ener-
getic separation of levels with different values
of L or S. In the spectrum of an atom, following
L-S coupling, one recognizes a distinct multi-
plet structure of narrow fine structure components
(Fig. 6.26).

• The fine structure constant C is largest for
the lowest atomic levels (small values of n)
with L 	= 0 and S 	= 0. The magnitude of the
multiplet splitting decreases with increasing
principal quantum number n (Fig. 6.27).

• L-S coupling is valid mainly for light atoms
with small Z values. Quantum mechani-
cal calculations show that the fine structure
constant C is proportional to

C ∝ Z4/n3 , (6.43y)

while the energy separation between levels
with different values of L only increases with
Z2/n3.

• For large Z values, the fine structure splittings
become comparable with the separation of le-
vels with different L values and the validity of
the L-S coupling scheme breaks down.

Note that the weighted average of the energies of all
fine structure components

Ē = 1

k

k∑
j=1

(2 j+1)E j = E(n, L, S) , (6.43x)

where each component is weighted by its statisti-
cal weight factor 2J +1 (according to the number of
possible spatial orientations of J) coincides with the
energy E(n, L, S) of the unsplit level ((2.45) without
the coupling term). This weighted average is indicated
in Fig. 6.25a by a dotted line.

The small fine structure splitting is, for instance,
visible in the spectrum of the smaller alkali atoms
(Fig. 6.27), where transitions from the ground state n 2S,
which has no fine structure splitting, to higher levels
(n+ x) 2P are observed. The splittings of the lines the-
refore directly give the splittings of the upper levels.
The figure illustrates that the splitting increases with Z
although the principle quantum number n of the ground

Na

K

Rb

Cs

10,00020,00030,00040,000

2,512

2,544

2,594

Ionization limit

a)

b)

λ /Å

ν / cm−1

Fig. 6.27a–c. Absorption spectra of the alkali atoms. (a) En-
larged section of the Na spectrum in (b). (c) Spectra and
ionization limits of K, Rb, and Cs

states also increase (n = 3 for Na, n = 4 for K, n = 5
for Rb and n = 6 for Cs).

In Fig. 6.28 the different interaction terms in the
case of L-S coupling are schematically illustrated for
the example of two interacting electrons with l1 = 1
and l2 = 2. The Pauli principle demands for singlet
terms (S = 0) another spatial distribution of the two
electrons (symmetric spatial wave function) than for tri-
plet terms (S = 1) with an antisymmetric spatial wave
function. In the latter case the two electrons are farther
apart than in the first case and the electrostatic repul-
sion energy is smaller. The triplet states therefore have
a lower energy than the singlet states. It should be stres-
sed again that the splitting between singlet and triplet
levels with equal L values is not due to a magnetic inter-
action, but due to the electrostatic interactions between
the electrons, which is different for singlet and triplet
levels.

Since the potential for electrons in multielectron
atoms is no longer a Coulomb potential, the L de-
generacy discussed for the H atom is lifted and

Table 6.5. Fine structure splittings of the levels (n = 2, l = 1)
for some light atoms in cm−1

Element Z State fs-splittig / cm−1

He 2 2p 3 P
0

1
Be 3 2p2 3 P

0
3

C 6 2p2 3 P 42
O 8 2p4 3 P 226
F 9 2p5 3 P0 404
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Fig. 6.28. Energetic sequences of the different interactions with the corresponding level splittings in the case of L-S coupling
for the example of the (n1 p)1(n2d)1 configuration

levels with different L values have different energies.
The vector sum L = l1+ l2 of the two orbital angu-
lar momenta li results in possible quantum numbers
L = 1, 2, 3. The singlet term with S = 0 splits into the
levels 1 P(L = 1), the 1 D level (L = 2) and the 1 F levels
with L = 3 and the triplet states in the corresponding
triplet components.

The singlet levels show no fine structure (because
the total spin is zero), while the triplet states split into
three fine structure components. The splitting is largest
for the largest L value (see (6.41)).

The different fine structure components are labeled
by the quantum number J , which is given in Fig. 6.28,
together with the degeneracy 2J +1.

b) j- j Coupling

If the interaction energy

Wli si = ciilisi (6.44)

between the magnetic moment of an electron due to
its orbital angular momentum and its spin moment
becomes larger than the magnetic interactions

Wlil j = aijlil j or Wsi s j = bijsis j

between different electrons, the order of couplings
changes. Now li and si initially couple to form the
resultant angular momentum

ji = li + si (6.45a)

of the electron ei , and the vectors ji of the different
electrons couple to the total angular momentum J of
the atomic state

J =
∑

ji . (6.45b)

This limiting coupling case, which is mainly obser-
ved for heavy atoms with large Z values, is called
j- j coupling. The vector coupling diagram is shown
in Fig. 6.29.

+ =
→
l 1

→
j 1

→
j 1

→
s 1

→
l 2

→
j 2

→
j 2

→
s 2

→
J =

→
j 1 +

→
j 2

Fig. 6.29. Vector model of j- j coupling
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Note:

In the limiting case of j- j coupling the total orbital an-
gular momentum L and the total spin S are no longer
defined, although the individual vectors li and si are
known. There are no longer S, P, D. . . levels and also
no distinction between singlet, doublet or triplet levels
can be made. The only well-defined “good” quantum
number is J for the total angular momentum J with
|J| = (J(J +1))1/2. Levels with equal quantum num-
bers li for the individual electrons but different spins si

no longer form narrowly spaced fine structure com-
ponents of multiplets but are energetically mixed with
levels of different li .

The spectra of such atoms with large Z numbers
are therefore confusing and not easy to assign. The
spectrum is very crowded as can be seen in the example
for the iron spectrum, from which a small section is
shown in Fig. 6.30.

EXAMPLE

The tin atom Sn (Z = 50), has the ground state con-
figuration 5s25p2. When one of the two p electrons
is excited into the 6s level, the electron configura-
tion (5s2, 5p, 6s) is obtained with L = 1, S = 1, and
J = 0, 1, 2.

If the 6s electron is completely removed, the Sn+
ion with the configuration (5s2, 5p) results in the 5p2 P
state, which shows a fine structure splitting of the same

Fig. 6.31. Transition range between
L-S coupling and j- j coupling for
equivalent states of atoms in the fourth
column of the periodic table

390.0 .1 .2 .3 .4 .5 .6 .7 λ / nm

Fig. 6.30. Section of the emission spectrum of iron atoms in
the near UV

magnitude as the (5s25p, 6s) configuration of the Sn
atom. This demonstrates that the main part of the fine
structure splitting is caused by the interaction of the p
electron with the other electrons, because the p electron
submerges into the electron shell of the Sn atom. Only
the minor part is due to spin-orbit coupling between the
6s and the 5p electron. This is a further indication for
j- j-coupling [6.3].

For most atoms, intermediate coupling cases apply,
which are between pure L-S coupling and j- j coupling.
In Fig. 6.31 the transition from L-S coupling for the
carbon atom (Z = 6), over the intermediate coupling
for Germanium (Z = 32) to the j- j coupling for lead
Pb (Z = 82) is illustrated.

The total number of possible levels for a given elec-
tron configuration (li, si) is the same for the two limiting
cases. It is therefore possible to draw for the transition
from L-S coupling to j- j coupling in such a diagram
unambiguously connecting lines for levels with a given
J-value. Such a diagram is called correlation diagram
(Fig. 6.32).



6.5. Electron Configurations and Couplings of Angular Momenta 225

J

0

2

2

1
0

j1 j2

3/2 3/2

3/2 1/2

1/2 1/2

0
1
2

Fine structure
of Sn+

J 1=

J 2=

J 1=
J 0=

C(2p3s) Si(3p4s) Ge(4p5s) Sn(5p6s)

b)

a) 1S

1D

3P

3P

2P3/2 − 2P1/2

1P 1

→
L–

→
S

→
j –

→
j

(s1/2 p3/2)1,2

(s1/2 p1/2)

Fig. 6.32a,b. Correlation diagram for the transition from
L-S coupling for light atoms to j- j coupling for heavy
atoms. (a) For the p2-configuration. (b) For the (n p, (n+1)s)
configuration of some atoms

6.5.2 Electron Configuration and Atomic States

In this section we will discuss how the different ato-
mic states and their spectroscopic assignment can be
deduced from the electron configurations.

From the building-up principle, discussed in
Sect. 6.2 it follows that in the case of L-S coupling the
total orbital angular momentum L =∑

li for a filled
electron shell must be zero, because for each quantum
number l, all levels with projection quantum num-
bers ml (−l ≤ ml ≤+l) are occupied. This means that
all possible orientations of the orbital angular momen-
tum are realized and therefore the vector sum L =∑

li

must be zero.
Since this shell is filled with pairs of electrons with

antiparallel spins, according to the Pauli principle, the
total spin S =∑

si must also be zero. This is illustrated
in Fig. 6.33 for the neon atom.

Fig. 6.33. Illustration of the vector sums
∑

lo = L = 0 for
orbital angular momentum and

∑
si = S= 0 for the electron

spins for closed shell atoms such as neon

All noble gases in their ground states have the
quantum numbers L = S = J = 0, their ground
state is 1S0.
For all other atoms the values of L and S can be
determined by counting only electrons in unfilled
shells. All filled shells with a given principal quan-
tum number n do not effect the angular momenta
of the unfilled shells.

We will illustrate this for the example of the carbon
atom with six electrons.

The electron configuration in the ground state is
1s22s22p2. The 1S shell and the 2S subshell are fil-
led. Their quantum numbers are S = L = J = 0. We
only need to consider the two 2p electrons with l = 1
and s = 1/2. Depending on the relative orientation of
the two orbital angular momenta li and their spins si

different atomic states can be realized, which differ in
their quantum numbers L, S and J . This is illustra-
ted in Fig. 6.34a, where the possible orientations of the
two vectors l1 and l2 of the two p electrons are indica-
ted. The level diagram of Fig. 6.34b shows the different
energies of the resulting states, that are allowed by the
Pauli principle. If the two electrons have the same prin-
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Fig. 6.34. (a) Vector model of the p2-configuration. (b) Term
diagram. The blue levels are only possible for n1 	= n2

cipal quantum number (n = n′), only the black energy
terms are allowed. For these states the sum L+ S is al-
ways an even integer. For electrons with n1 	= n2, five
additional terms can be obtained, which are marked in
red in Fig. 6.34b. The triplet states are lower than the
singlet states. Within the triplet states the D states are
lower than the P states and for a given value of L the
levels with the smallest J value have the lowest energy.

The possible states resulting from the p2 configura-
tion are illustrated in another way by the Slater diagram
of Fig. 6.35. Here the left part shows all ML and MS

values that can be realized. The white circles indicate
states that are forbidden by the Pauli principle. The right
part of Fig. 6.35 shows how the different states contri-
bute to all possible ML and MS values on the left side.

−1 0 1

+2

+1

0

−1

−2

ML

MS

+ +=

p2 1D 3P 1S+ +

Fig. 6.35. Slater diagram of all levels (ML ,MS) for a p2-
configuration of equivalent electrons (n1 = n2). The white
circles are not observed because of the Pauli principle

This diagram shows that for equivalent 2p electrons
with n1 = n2 fifteen combinations of ML and MS are
possible. Five of these combinations result in the 1 D
state, nine in the 3 P state and one in the 1S state. The
combination ML = MS = 0 comes from three different
couplings of the individual angular momenta of the two
p electrons, and ML =±1, MS = 0 from two, as explai-
ned by Table 6.7. Table 6.7 shows in detail the different
quantum numbers L, S, ml1 , ml2 , ms1 , ms2 , MS MJ and
the resulting atomic states. In Table 6.8 the possible
multiplicities due to the coupling of the electron spins
are compiled.

Table 6.6. Possible total angular momenta and resulting
atomic levels for different two-electron configurations

Electron Quantum numbers of Level assignment
configuration angular momenta

L S J

s 0 1
2

1
2

2S1/2

s2 0 0 0 1S0

0 1 1 3S1 for n1 	= n2

sp 1 0 1 1 P1

1 1 0, 1, 2 3 P0, 3 P1, 3 P2

p2 0 0 0 1S0

1 1 0, 1, 2 3 P0, 3 P1, 3 P2

2 0 2 1 D2

0 1 1 3S1

1 0 1 1 P1

⎫⎪⎬⎪⎭
only for
n1 	= n2

2 1 1, 2, 3 3 D1,2,3



6.6. Excited Atomic States 227

Table 6.7. Possible quantum numbers for levels resulting from
a n p2 electron configuration with n1 = n2 = n

L S ml1 ml2 ms1 ms2 MS MJ Term

0 0 0 0 + 1
2 − 1

2 0 0 1S0

1 0 0 −1 + 1
2 + 1

2 +1 0 3 P0

1 −1 + 1
2 + 1

2 +1 +1

1 1 1 0 − 1
2 − 1

2 −1 0 3 P1

1 −1 − 1
2 − 1

2 −1 −1

1 0 + 1
2 + 1

2 +1 +2

1 −1 + 1
2 + 1

2 +1 +1

1 1 0 0 + 1
2 − 1

2 0 0 3 P2

1 −1 − 1
2 − 1

2 0 −1

0 −1 − 1
2 − 1

2 −1 −2

+1 +1 + 1
2 − 1

2 0 +2

+1 0 + 1
2 − 1

2 0 +1

2 0 1 −1 + 1
2 − 1

2 0 0 1 D2

0 −1 + 1
2 − 1

2 0 −1

−1 −1 + 1
2 − 1

2 0 −2

The total spin S and with it the multiplicity 2S+1
of an atomic state depends on the number of electrons
in not completely filled shells (Table 6.8).

6.6 Excited Atomic States

In Sect. 6.1.5 we illustrated for the case of the He atom
that for excited atomic states, the number of possible
ways to couple the different angular momenta becomes
much larger than for the ground state. The reason for this
larger manifold of possible states is that now the excited
electron has a different principal quantum number and
therefore the Pauli principle imposes fewer restrictions.

In this section we will present the different
possibilities of populating excited atomic states.

Such excitations can be experimentally realized by
the absorption of photons, by collisions with electrons,
or with high energy ions.

One speaks of one-electron excitation if in the inde-
pendent electron model (Sect. 6.4.1) only the quantum
numbers of one electron are changed while they re-
main the same for all other electrons. One should,

Table 6.8. Total electron spin and multiplicity of atomic states
resulting from different numbers of valence electrons

Elec- Spin quantum number ms Multi-
trons plicity

1 ms = 1
2 Doublet

2 ms1 =+ 1
2 , ms2 =+ 1

2 ⇒ S = 1 Triplet

ms1 =+ 1
2 , ms2 =− 1

2 ⇒ S = 0 Singlet

3 + 1
2 ,+ 1

2 ,− 1
2 ⇒ S = 1

2 Doublet

+ 1
2 ,+ 1

2 ,+ 1
2 ⇒ S = 3

2 Quartet

4 + 1
2 ,+ 1

2 ,− 1
2 ,− 1

2 ⇒ S = 0 Singlet

+ 1
2 ,+ 1

2 ,+ 1
2 ,− 1

2 ⇒ S = 1 Triplet

+ 1
2 ,+ 1

2 ,+ 1
2 ,+ 1

2 ⇒ S = 2 Quintet

however, keep in mind that because of the electron
correlation the excitation of one electron does affect
the energies of the others, because the electrostatic
interaction is changed and also, to a smaller extent,
the magnetic interactions might change. The energy
transferred to the atom by photon absorption or elec-
tron impact is, even for one-electron excitation not
completely transferred to the excited electron but also
changes the energy of the residual electron shell. This
is particularly true for the excitation of an electron
from inner shells, because here the average distance
between the electrons is smaller and the correlation
larger.

6.6.1 Single Electron Excitation

The smallest energy is required, when an electron in
the outer valence shell is excited into higher states.
The excitation energy of these valence electrons ranges
from 1−10 eV. Exceptions are the noble gases, where
the outer shell is completely filled, the binding energy
is larger and the excitation energy of an electron in this
shell is higher. For example, for helium the first excited
state lies about 20 eV above the ground state.

The excited state Ek is not stable. It can decay spon-
taneously into lower states Ei by emitting a photon with
energy hν = Ek − Ei . The mean lifetime τk of the ex-
cited state depends on the total probability of radiative
transitions into lower states (see Sect. 7.3). For some
states this transition probability is very small and the
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lifetime correspondingly long. Such states are called
metastable states.

EXAMPLES

1. Lifetimes of some excited states:

H(22 P1/2) : τ = 1.5×10−9 s

He(21 P1) : τ = 0.5×10−9 s

Na(32 P1/2) : τ = 16×10−9 s

2. Lifetimes of metastable states:

H(22S1/2) : τ = 8 s

He(21S0) : τ = 19.6 ms

He(23S1) : τ = 7870 s

6.6.2 Simultaneous Excitation of Two Electrons

Under special conditions two electrons can be excited
simultaneously. Assume, for instance, that two electrons
from the 2s state of Be (Fig. 6.14) are excited into higher
states. The two excited electrons can populate the 2p
state, or one electron is excited into the 2p state and the
other into the 3p state, etc. The total excitation energy
is then

E = E1+ E2+∆E , (6.46)

where Ei is the excitation energy for the single ex-
citation of electron ei and ∆E is the change in the
interaction energy between the two electrons and with
the core, caused by the excitation of the two electrons.

The doubly excited atomic state can decay either by
emission of two photons, or the energy of one excited
electron can be transferred to the other excited electron,
due to the Coulomb interaction between the two elec-
trons. This causes a further excitation of one electron
into still higher states and a de-excitation of the other.
This process becomes less likely if the two electrons are
excited into states with very different principal quantum
numbers, because then the mean distance between the
two electrons becomes larger and their mutual interac-
tion weaker. This increases the lifetime of such doubly
excited states if their energy is still below the ionization
energy.

++++ ++
ET ET

A
Excitation

A**
Auto-

ionization
A e+ −+

Fig. 6.36. Illustration of autoionization of a doubly excited
atomic state (ET= energy transfer)

Since the total energy must be conserved, this pro-
cess of energy transfer from one electron to the other is
only possible, if an excited atomic state exists, that mat-
ches the energy E∗ of this highly excited electron. This
is very unlikely for the discrete atomic energy levels be-
low the ionization limit, i.e, for E∗ < Eion, but is always
possible for the continuous energy spectrum E∗ > Eion.
In this case the transfer of the excitation energy of one
of the two excited electrons to the other allows this
electron to leave the atom and the atom becomes io-
nized (Fig. 6.36). This process, which is illustrated in
Fig. 6.37, is called autoionization. The term diagram is
shown in Fig. 6.37b for the case of the doubly excited
Li atom. One electron is excited from the 1s into the 2p
level, the other from the 2s into the 3p level. The total
energy of the doubly excited state 1s2p3p lies above

Fig. 6.37a,b. Simultaneous excitation of two electrons in
the Li atom. (a) Bohr model. (b) Level scheme with
autoionization
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the ionization energy

Eion = lim
n→∞(1s2n p) (6.46a)

of singly excited states at about 5.4 eV. If the 2p electron
transfers its energy to the 3p electron, the energy of the
latter becomes higher than Eion and the electron can
leave the atom.

6.6.3 Inner-Shell Excitation and the Auger Process

When an electron from an inner shell is excited into
higher unoccupied states, larger energies are required
than for the excitation of a valence electron, because
electrons in inner shell are much less screened from
the nuclear charge and their binding energy is accordin-
gly larger. Inner shell excitation therefore needs either
UV or even X-ray photons or collisions between inner
shell electrons and incident electrons having sufficient
energy.

The hole created in the inner shell by the excita-
tion of an electron can be refilled when an electron
from a higher state Ei falls into this hole. The energy
∆E released by this process is generally emitted as
UV or X-ray photons hν =∆E (Fig. 6.38). This is the
source for the discrete X-ray emission in X-ray tubes
(see Sect. 7.6.2).

The energy ∆E = Ei − Ek, awailable during the
transition of an electron E1 from level |i〉 to |k〉, can also
be transferred directly onto another electron e2 of the
same atom, due to the interaction between the electrons.
If the binding energy EB of e2 is smaller than∆E, it can
leave the atom, which means that autoionization takes

Fig. 6.38. Inner shell excitation with subsequent emission of
characteristic X-rays

Fig. 6.39. The Auger effect. The electron e−1 in the L shell
falls down into the vacancy in the K shell and transfers its
energy to the electron e−2 , which leaves the atom

place (Fig. 6.39). This special kind of autoionization is
called the Auger effect.

The kinetic energy of the ejected Auger electron is

Ekin = Ei − Ek − EB .

Measuring this energy allows the determination of the
atomic state out of which it was ionized.

The emission of X-rays and the Auger process are
competing processes. The fraction of all inner shell ex-
citations that lead to X-ray fluorescence on the transition
Ei → Ek is called the fluorescence yield. It depends on
the level Ek and on the nuclear charge Ze of the atom.
For Z < 30 the Auger process is dominant, for Z > 60
the fluorescence yield reaches 90%, if the excitation
starts from the K shell.

6.6.4 Rydberg States

In Sect. 4.3 it was shown that the mean radius of the
electron in the H atom

〈r〉 = a0n2 with a0 = 5×10−11 m

is proportional to the square of the principal quantum
number n. An electron with n = 100, therefore, has
a mean radius of its orbit 〈r〉 = 5×10−7 m = 0.5 µm!
When its orbital angular momentum has the maximum
value |l| = (n−1)h the electron orbit approaches a cir-
cular path with radius r = 〈r〉, since for large values of n
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the quantum mechanical description converges towards
the classical one (see Sect. 5.8).

For l � n the classical orbits are elliptical. The inner
turning point (perihelion) of the ellipse comes close to
the nucleus and therefore experiences a revolution of
the major axis (Fig. 6.40). The maximum probability of
finding the electron is around the black dashed circle
in Fig. 6.40, because there are the outer turning points
(aphelions) of the elliptical orbits where the electron
has its smallest velocity.

According to the Rydberg formula (6.32) in
Sect. 6.3,

En =−Ry∗/(n− δ)2 , (6.46b)

the binding energy of a Rydberg electron becomes very
small for large n values. It can therefore be readily
ionized by small perturbations, such as collisions with
atoms or electrons or by external electric fields.

The field ionization of Rydberg atoms is used for
a very sensitive detection of these atoms.

The level scheme is shown in Fig. 6.41. For suf-
ficiently large values of n, the potential is close to
a Coulomb potential with Z = 1 because the nuclear
charge is nearly completely shielded by the electron
core. The homogeneous external field in the x di-

l n 1= −

l <<n

v
→

Fig. 6.40. Classical paths of Rydberg electrons with l � n
(blue curves) and l = lmax = n−1 (black curve)

Fig. 6.41. Field ionization of a Rydberg level

rection has the potential energy Epot =−eE0x. With
x = r cosϑ, the sum of the two potentials

Epot =− e

4πε0r
− eE0x

=−e

(
1

4πε0r
+ E0r cosϑ

)
(6.46c)

has a maximum for dEpot/dr = 0. This yields a radius rc

of maximum energy

rc =
√

1

4πε0 E0 cosϑ

and the potential energy

Epot(rc)=−e

√
E0 cosϑ

πε0

The ionization energy is therefore lowered for ϑ = 0 by

∆Epot =−e

√
E0

πε0
. (6.46d)

EXAMPLE

With the external electric field E = 5×103 V/m, the
maximum of the total potential energy is Epot(rc)=
−0.858×10−21 J=−5.4 meV. All Rydberg levels with
n > 50 are above this energy and are therefore ionized.
In fact, due to the tunnel effect even levels with n < 50
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Table 6.9. Characteristic data of atomic Rydberg states (a0 = 5.29×10−11 m, Ry = 1.09737×107 m−1)

Physical quantity n-dependence H(n = 2) H(n = 50)

Binding energy −Ry∗n−2 3.4 eV 0.0054 eV =̂ 43.5 cm−1

Energy E(n+1)− E(n) ∆En = Ry
(

1
n2 − 1

(n+1)2

)
5
36 R ∼ 2 eV 0.2 meV =̂ 2 cm−1

difference

Mean Bohr radius a0n2 4a0 2500a0 = 132 nm

Geometric πa2
0n4 16πa2

0 6π×106a2
0 = 5×10−14 m2

cross section

Revolution Tn ∝ n3 10−15 s 2×10−11 s
period

Radiative lifetime ∝ n3 5×10−9 s 1.5×10−4 s

Critical electric Ec = πε0 Ry∗2e−3n−4 5×109 V/m 5×103 V/m
field for
ionization

can be ionized, although their ionization probability
decreases exponentially with decreasing n.

For the mean kinetic energy of a Rydberg electron
in a Coulomb potential, the virial theorem states that

〈Ekin〉 = −1/2
〈
Epot

〉
.

From energy conservation En = Ekin+ Epot ist follows
then that

Ekin = En + Ry∗/n2 .

With increasing n the velocity of the electron decreases
as 1/n.

The absorption or emission frequencies for transiti-
ons between neighboring Rydberg levels are

ν = (En − En−1)/h ≈ 2Ry∗

n(n−1)
.

For n ≥ 60 they are in the microwave range, for n ≥ 300
in the rf range.

EXAMPLE

For the Rydberg level of the hydrogen atom with
n = 100 the kinetic energy is Ekin = 2×10−22 J= 0.6×
10−3 eV. The velocity of the Rydberg electron on a cir-
cular path with r = n2a0 is then v= 2.2×104 m/s, its
revolution period is Tn = 2π/v = 1.4×10−10 s and its
revolution frequency ν = 7×109 s−1. Compared to the
period T1 = 1.4×10−16 s for the lowest orbital with
n = 1 the Rydberg electron moves very slowly.

For heavy atoms with Z � 1 the difference beco-
mes even larger, because the velocity on the inner orbit
where the nuclear charge Ze is barely shielded, scales
with Z.

The frequency ν(n → n+1) of transitions between
neighboring Rydberg levels n = 100 and n+1 is ν =
6.5 GHz.

If in atoms with more than one electron, one of
the electrons is excited into such a high lying Rydberg
state, it mainly moves outside the charge distribution of
the other electrons. The potential for the Rydberg elec-
tron is therefore nearly the Coulomb potential of an ion
with the effective charge Qeff =+e, because the nuclear
charge is nearly cancelled by the Z−1 other electrons.
The screening of the nuclear Coulomb potential de-
pends on the penetration depth of the Rydberg electron
into the atomic core, which in turn depends on the
angular momentum of the Rydberg electron. For the ma-
ximum angular momentum quantum number l = n−1
the classical orbit is circular and the penetration depth
is minimum while for small values of l � n, the clas-
sical path is an ellipse with large eccentricity and the
Rydberg electron submerges deep into the core where it
experiences the deviation from the Coulomb potential.

In the quantum mechanical language the deviation
of the potential for a Rydberg electron from the pure
Coulomb potential of a one-electron atom depends on
the spatial overlap of the wave functions of the Rydberg
electron with those of the core electrons. These wave
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functions depend on the quantum numbers n and l (see
Fig. 5.7).

The energies of Rydberg levels in multielectron
atoms is therefore shifted against the energy

En =−Ry∗/n2 (6.47)

of hydrogen like atoms. This energy shift can be expres-
sed by the so-called quantum defect δnl . The Rydberg
formula (6.47) is then generalized to

En,l =− Ry∗

(n− δn,l)2
=− Ry∗

n2
eff

, (6.48)

where the quantum defect δnl depends on n and l (Ta-
ble 6.4). Often, the effective principal quantum number
neff = n− δnl is introduced, which deviates from an in-
teger. This allows one to use a similar Rydberg formula
for all atoms [6.5]. From the equation

En,l − En = Ry∗
(

1

(n− δ)2 −
1

n2

)
≈ 2δ

n3

the quantum defect can be calculated. For n � δ the
difference between observed level energies En,l and
those, calculated for a Coulomb potential decreases as
1/n3.

6.6.5 Planetary Atoms

When two valence electrons are excited into different
high lying Rydberg states (n, l) and (n′, l′) (Fig. 6.42)
the total excitation energy is way above the ioniza-
tion limit (Fig. 6.43) and autoionization can occur (see
Sect. 6.6.2). Since the radii of Rydberg orbits scale
with n2 the mean distance between the two excited
electrons is large for n 	= n′ and their mutual interac-
tion becomes small for large values of n. This decreases
the probability of autoionization and the lifetime of such
doubly excited Rydberg states may be much longer than
those for doubly excited lower states. This allows the
observation and spectroscopic characterization of such
unusual atoms called planetary atoms, because the two
electrons circle around the inner atomic core like planets
around the sun [6.6].

If the two electrons come close to each other, the
mutual interaction increases and one electron can trans-
fer its excitation energy onto the other electron, which

Fig. 6.42. Classical model of a planetary atom with two
excited electrons

can then leave the core (autoionization, Fig. 6.43). The
ionic state resulting from the autoionization can be de-
tected by measuring the kinetic energy of the ejected
electron or by photoionization of the excited ion state
into a doubly ionized atom A++, which can be mo-
nitored by mass spectrometry. Measurements of the
decay times and their dependence on the quantum num-
bers (n, l, s) and (n′, l′, s′) gives much information on
the correlation energy between two electrons in de-
fined states, which are nearly unaffected by the core
electrons.

One example is the investigation of planetary ba-
rium atoms (Fig. 6.43). By simultaneous absorption of
two photons hν1 from a pulsed laser L1 one electron
is excited from the ground state 6s2 into the 1 D2 state
with the electron configuration 6snd. Further excitation
by absorption of two other photons hν2 from a second
laser L2 brings the other 6s electron from the 6snd
configuration into the 9dn′d configuration which corre-
spond to a doubly excited high-lying Rydberg state with
an energy above the ionization limit. This state can the-
refore decay into an excited state of the Ba+ ion, which
can be detected by further ionization into Ba++ by ab-
sorption of another photon hν2 from the second laser.
The Ba++ ions are detected with time resolved tech-
niques. This gives information on the lifetime of the
doubly excited state [6.7].
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Fig. 6.43. Level scheme, excitation and autoionization of
a planetary atom for the example of the Ba atom

6.7 Exotic Atoms

Up to now we have assumed that the spatial exten-
sion of the atomic nucleus can be neglected and the
nucleus can be treated as a point-like charge. This
assumption is justified as long as the mean nuclear
radius (rN ≈ 10−15 m) is very small compared to the
mean distance 〈r〉 between electron and nucleus, which
can be estimated by the Bohr radius (r1 ≈ 10−10 m)
of the electrons for the lowest electron state with
n = 1.

In Sects. 5.1 and 5.7 we have already discussed that
for 1S states with l = 0 the electron wave function has
its maximum at r = 0 at the position of the nucleus.
The energy of the 1S states should therefore be affec-
ted by the spatial distribution of the nuclear charge, in
particular for atoms with a high nuclear charge Ze.
Measurements with high spectral resolution can in-
deed detect energy shifts caused by the deviation of
the nucleus from a point charge, which are part of the
hyperfine shifts (Sect. 5.6).

Much larger shifts are observed in exotic atoms
where one atomic electron is replaced by a heavier par-
ticle with negative charge and mass mx � me, such
as a myon µ−, a τ lepton τ−, a π− meson or an
antiproton p−. The Bohr-radii (see (3.85))

rn = 4πε0�
2n2

Ze2µ
(6.49)

of these particles, which scale inversely proportional to
the reduced mass

µ= mx MN

mx +MN

are much smaller than for the corresponding orbits of
an electron in the Coulomb field of the nucleus with
charge Ze. The influence of the spatial distribution of
the nuclear charge on the energy levels of such exotic
atoms is therefore much more pronounced. Measure-
ments of these energy shifts give detailed information
on the spatial charge distribution and the mass distri-
bution within the nucleus and their dependence on the
nuclear spin.

Unfortunately the elementary particles µ−, π−
or τ− are not stable. They decay within 10−6 s to 10−8 s
into other particles. Therefore the exotic atoms only
exist for a short time. This makes their spectrosco-
pic characterization difficult. Nevertheless it has been
possible in recent years to produce sufficient numbers
of exotic atoms and to perform accurate spectroscopic
measurements of their energy states and transition pro-
babilities [6.8, 9, 10]. This will be illustrated by some
examples.

6.7.1 Myonic Atoms

A myonic atom consists of the atomic nucleus, a ne-
gatively charged myon µ− and the electron shell with
(Z− p) electrons. When the myon is captured by the
neutral atom with Z electrons, the released energy (ki-
netic energy and binding energy of the myon) can
be transferred to the electron shell and p electrons
(p = 1, 2, 3, . . . ) can leave the atom due to the Au-
ger effect (see Sect. 6.6.3). Because of the large myon
mass mµ = 206.76 me the lowest possible Bohr orbit
(n = 1) of the myon is for a nuclear charge Ze with
Z = 30 according to (6.49) only

r1(µ
−)= 7.7×10−15 m ,

which is of the same order of magnitude as the nuclear
radius (Fig. 6.44). This means that the myon experi-
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Fig. 6.44a,b. A myonic atom. (a) Comparison of radial charge
density for the myon µ− and the electron e− in the 1s state.
(b) Bohr-radius of levels with principle quantum number n
for exotic atoms, where the electron is replaced by different
myons or mesons

ences the unshielded nuclear Coulomb field and the
energies En of the myonic atom levels are very much in-
fluenced by the spatial distribution of the nuclear charge,
while the other electrons have a much smaller effect on
the myon, because their average distance from the myon
is much larger.

Measuring the wavelength of the radiation emitted
when the myon jumps from level Ei into the lower
level Ek allows the determination of the energy dif-
ferences ∆Eik = Ei − Ek and therefore the deviations
of the level energies from those in a pure Cou-
lomb potential. These deviations are caused by the
spatial charge distribution within the nucleus. The
potential experienced by the myon can be expan-
ded into a power series of r−n , where the different
terms represent the monopole potential, the quadru-
pole, octopole, etc., potential. A model calculation
yields that nuclear charge distribution which fits best
the measured term energies [6.9]. For myonic lead
atoms (Z = 82) the photon energies are in the MeV
range.

Since the mean lifetime of µ− is 2.2 µs myonic
atoms are unstable even in their ground state. For light

Fig. 6.45. Generation of exotic atoms and their detection by
X-ray spectroscopy

atoms (Z < 10) the µ− decays according to the scheme

µ− → e−+νe+νµ (6.50)

into an electron, an electron antineutrino and a myon
neutrino. For heavy atoms (Z > 10) the lowestµ− orbit
is already within the nucleus. In this case the myon
induces the nuclear reaction

µ−+ p → n+νµ , (6.51)

where a proton in the nucleus is converted into a neu-
tron. The probability of this reaction is high for the
lowest myon level and the mean lifetime of the myon
is therefore much smaller than for lighter atoms where
the myon orbit is outside the nucleus.

A possible experimental arrangement for the spec-
troscopy of myonic atoms is shown in Fig. 6.45. Fast
protons from a proton synchrotron collide with a target
producing an intense beam of π− mesons, which de-
cay during their flight within 2.2×10−8 s into µ−+νµ
forming a fast beam of µ−. The fast myons are slowed
down in a graphite block and are completely stopped
in two crossed thin sheets of a specific material. Here
they are captured by the atoms in the sheets forming
myonic atoms or ions in high lying levels from where
they can cascade down into lower levels. The X-ray ra-
diation, emitted during this cascading is measured with
a germanium semiconductor detector with high energy
resolution.

Meanwhile even the fine structure of energy levels
in myonic atoms and Zeeman splittings have been resol-
ved. The fine structure splittings are here much larger
than in normal atoms and amount to several eV. Transiti-
ons between fine structure components can therefore be
induced with visible lasers. These measurements yield
very accurate absolute values of mass and magnetic
moment of the µ− myon [6.11, 12].
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6.7.2 Pionic and Kaonic Atoms

Instead of the myon, a negative π− meson can also
be captured by a neutral atom. The energy released by
this capture process is sufficient to eject one or several
electrons from the atomic electron shell (Fig. 6.46). For
aπ− meson in atomic orbits with n < 17 the Bohr radius
is already sufficiently small to make the interaction of
the π− with the electrons of the atom negligibly small.

The nucleons (protons and neutrons) in the atomic
nucleus interact with the π− meson not only through
Coulomb forces but also through the short range, but
much stronger, nuclear force. A comparison of the
energy levels in the myonic and the pionic atoms gives
information about the nuclear forces and their radial
dependence (because the lepton µ− does not feel the
strong nuclear force contrary to the π− meson).

Exotic atoms with heavier negative mesons (K−,
η−) allows probing of charge and mass distribution at
even smaller distances from the center of the nucleus.
They can give information on deviations of these distri-
butions from a spherical symmetry. Since the lifetime
of the K− mesons is only 12 ns, measurements of the
spectra of these exotic atoms becomes more and more
difficult [6.13].

Instead of leptons or mesons, an electron in the ato-
mic shell can also be replaced by negatively charged
hadrons such as the antiproton p− or the Σ− particle
which have a larger mass and therefore even smaller
Bohr radii [6.14].

In Table 6.10 some characteristic properties of
different exotic atoms are compiled.

Table 6.10. Characteristic features of exotic atoms

Particle e− µ− π− K−

m/me 1 207 273 967

Bohr radius r1 in fm
5.3

Z
·104 256

Z

194

Z

54.8

Z

Term energy for n = 1, Z = 1 −13.6 eV −2.79 keV −3.69 keV −13.1 keV

∆E(n = 2 → 1) for Z = 20 4.1 keV 837 keV 1.1 MeV 3.9 MeV

Mean lifetime ∞ 2.2 ·10−6 2.6 ·10−8 1.2 ·10−8

of free particle τ / s

Fine structure splitting 22 P 6.6 eV 1.3 keV 1.8 keV 6.4 keV
for Z = 20, n = 2

n = 2

n = 3

Auger
effect

Cascade transitions

Coulomb
potential

e−

π− µ−

n = 1

150 keV

Fig. 6.46. Capture of aµ− myon or aπ− meson with following
cascading transitions into the final ground state

6.7.3 Anti-hydrogen Atoms and Other Anti-atoms

If the proton and electron in the hydrogen atom are
both replaced by their anti-particles, the anti-proton
p− and the anti-electron= positron e+, the exotic
bound system (p−e+) of the two anti-particles can
be formed, which is called anti-hydrogen. Its pro-
duction is by no means trivial but recently the first
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anti-hydrogen atoms have been observed [6.15]. Their
detailed spectroscopy and the comparison of the energy
levels with those of the H-atom provide a stringent
test of possible differences between the absolute va-
lues of positive and negative charges, of the masses
and the magnetic moments of elementary particles and
anti-particles.

In particle accelerators a large number of anti-
protons p− can be produced by high energy collisions of
protons p+ with protons. Positrons can be obtained from
radioactive β+-emitters and are subsequently accelera-
ted. Both anti-particles are stored and accumulated in
storage rings where they circulate with high energies.
However, only a tiny fraction of these high energy anti-
particles can be slowed down to thermal energies, where
they can be captured in special magnetic traps in order
to enhance the formation of anti-hydrogen. This is a dif-
ficult task, since on one hand a large number of slow
antiparticles is needed in order to produce a sufficient
number of anti-hydrogen atoms. On the other hand col-
lisions between antiprotons p− and protons p+ from
the residual background gas in the trap or between po-
sitrons e+ and electrons e− will immediately annihilate
these particles by the reactions

p++ p− → 2γ ; e++ e− → 2γ .

After an extremely good vacuum could be achieved
in the trap anti-protons could be captured and sto-
red for several weeks in specially designed magnetic
traps (Fig. 6.47). This long storage time has allowed
the researchers to obtain precise spectroscopic data
about the charge and the magnetic moment of the anti-
proton [6.16]. The result of these measurements was
that the relative mass difference ∆m/m = [m(p+)−
m(p−)]/m(p+) and the relative charge difference
|∆q/q| are both smaller than 10−8.

Recently a research collaboration at the European
high energy center CERN also reported that anti-
hydrogen atoms had been observed, which could be
stored in a sophisticated trap design that can store both
particles simultaneously for a short time. In order to
perform precision measurements, a larger number and
longer storage time of both anti-particles is needed. Ex-
periments for improving the situation are underway and
first results are expected in the near future.

Slowing down anti-protons p− in a hydrogen target
at low temperatures, protonium (p+ p−), a bound sy-
stem of a proton and an anti-proton has been observed.

Fig. 6.47. Magnetic trap for anti-protons p̄ and positrons
e+ to form anti-hydrogen ( p̄e+) (www.Atrap Collaboration,
CERN)

Its reduced mass is

µ= 1/2mp = 469 MeV/c2 .

The radius of the first Bohr orbit is 57×10−15 m, photon
energies for transitions between different energy levels
are in the range of keV. For instance the photons of the
Balmer α-line emitted on the transition 3p → 2s have
the energy hν = 1.7 keV.

The capture of anti-protons p− by heavy atoms
has a higher probability than capturing by light atoms.
Recently, the Lyman spectrum of the exotic atom of
anti-protonic argon was observed. This system consists
of an argon nucleus with 18 protons and 22 neutrons, but
instead of 18 electrons in the atomic shell one electron
is replaced by an anti-proton. The antiproton has a much
smaller Bohr radius than the electrons and the Coulomb-
interaction between the electrons and the anti-proton is
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therefore small. Transitions between excited energy le-
vels and the lowest level of the anti-proton produce
the Lyman series with energies of the emitted pho-
tons in the range between 20−200 keV. These energies
can be measured with high accuracy using germanium
semiconductor detectors [6.15]. They give valuable in-
formation about the interaction of the anti-proton with
the protons and neutrons in the atomic nucleus.

6.7.4 Positronium and Myonium

Positronium is a hydrogen-like system consisting of an
electron e− and a positron e+. Its investigation gives
very interesting information about a pure leptonic sy-
stem of two light particles with equal masses, which
have opposite charges and magnetic moments. Since
the reduced mass µ= 1/2me is only about half of that
in the hydrogen atom the radii of the Bohr orbits are
twice as large. Both particles circulate around the cen-
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Fig. 6.48. (a) Generation of a positronium e+e−. (b) Level
scheme of e+e−

ter of mass, which is located in the middle between the
two particles. The sum of kinetic and potential energy
is about one-half of that in the hydrogen atom. Accurate
measurements of the spectral lines emitted from exci-
ted states of the system allow one to prove whether the
electron is indeed a point-like charge [6.16].

The positronium can be produced by recombina-
tion of slow positrons and electrons. Fast positrons
from a radioactive 58Co source (β+-emitter) are mo-
nochromatized by Bragg reflection at the (110)-surface
of a tungsten single crystal and are then slowed down by
an electric bias field. The slow positrons can be stored in
a magnetic bottle (Fig. 6.48a), where positive voltages

Fig. 6.49. Two-photon spectroscopy of the 1S-2S-transition in
muonium µ+e−. After photoionization the ionized µ+ is ac-
celerated, energy selected and detected by the decay products
e+ from µ+ → e++ν [6.18]
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at both ends of the bottle prevent the positrons from es-
caping the bottle. By high negative voltage pulses they
can be extracted and impinge as a positron pulse onto
an aluminum foil. Here they can capture electrons to
form positronium. By heating the foil, the positronium
can evaporate from the foil and pass through a pulsed
laser beam, where it can be optically excited into va-
rious levels if the laser wavelength λ is tuned to the
corresponding transition wavelength λik.

Positronium is one of the few systems where the
lifetime of the ground state is smaller than that of excited
states, because in the 1S state the wave functions of the
two particles overlap and therefore the particles can
come into contact and annihilate by the process

e++ e− → 2γ .

Since the center of mass of the positronium is nearly
at rest, the two γ -quanta with the energy hν = 0.5 MeV
are emitted into opposite directions and are detected by
a germanium detector.

Since the magnetic moments of electron and po-
sitron have the same magnitude but opposite sign, the
magnetic interaction between the two particles is much
larger than the hyperfine interaction in the hydrogen
atom, where the small nuclear magnetic moment only

causes a small splitting of the energy levels. The ma-
gnetic interaction can therefore no longer be treated
as a small perturbation and the theoretical treatment
of the positronium can not be based on the Schrödin-
ger equation, but has to use the framework of quantum
electrodynamics.

Meanwhile a series of accurate spectroscopic mea-
surements of positronium have been performed that
allow a precise test of predictions of quantum electro-
dynamics [6.16]. Here, nuclear size effects, which are
important for precise interpretations of very high reso-
lution spectroscopy of the hydrogen atom (see Sect. 5.7)
are completely absent and the measurements give infor-
mation on a pure leptonic system, where, besides the
Coulomb interaction, only magnetic and weak forces
play a role.

Another leptonic system is myonium (µ+e−), which
consists of a positive myon µ+ and a negative elec-
tron e−. The µ+ leptons are produced by irradiating
beryllium with 500 MeV protons (Fig. 6.49). They are
then slowed down in a target of SiO2-powder, where
they can capture an electron. The neutral system µ+e−
can diffuse out of the target into the interaction region
with a laser beam where it is excited in a similar way as
the positronium [6.17].

• The theoretical treatment of atoms with more than
one electron has to take into account the interac-
tion between the different electrons. The potential
is no longer spherically symmetric and the atomic
wave function cannot be separated into functions
of only one variable.

• The total wave function has to be antisymme-
tric with respect to the exchange of two arbitrary
atomic electrons (Pauli principle). If the total
wavefunction is written as a product of spa-
tial wavefunction and spin-function symmetric
spatial functions can be only combined with
antisymmetric spin functions and vice versa.

• Another formulation of the Pauli-principle is: An
atomic state (n, l,ml,ms), characterized by the
four quantum numbers n (principal quantum num-
ber), l (orbital angular momentum quantum num-
ber), ml (projection quantum number of orbital

angular momentum) and ms (electron spin projec-
tion quantum number) can only be occupied by at
most one electron.

• The Pauli principle and the principle of minimum
energy govern the building-up of the electron
shells of all atoms. The shell structure of atomic
electrons resulting from these principles, explains
the arrangement of all chemical elements in the
periodic system of elements.

• The dependence of atomic volumes and ioniza-
tion energies on the number Z of atomic electrons
reflect the shell structure of the electron arran-
gement in atoms. Alkali atoms have the smallest
ionization energy and the largest atomic volume
of all elements in the same row of the periodic ta-
ble. Noble gas atoms have the highest ionization
energy and the smallest atomic volume in their
row.

S U M M A R Y
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• Alkali atoms are hydrogen-like. They have only
one electron in the highest occupied shell. The
potential for this electron is spherically symme-
tric but deviates from a Coulomb potential. The
Rydberg term energies can be described by a Ryd-
berg formula in the same way as for the H atom if
the integer principal quantum number n is repla-
ced by a non-integer effective principal quantum
number neff = n− δn,l , where the quantum defect
δn,l depends on the quantum numbers n and l.

• The spatial charge distribution and the term ener-
gies of multi-electron atoms with Z electrons can
be approximately calculated with the Hartree me-
thod, which is an iterative optimization procedure
based on the assumption that each electron mo-
ves in an effective spherical symmetric potential
produced by the atomic nucleus and the average
charge distribution of all other electrons.

• The total wave function ψ(r1, r2, r3, . . . , rZ) of
these multielectron atoms can be written as the lin-
ear combination of products of one-electron func-
tionsφ(ri) (Slater determinant), which is antisym-
metric with respect to an exchange of two arbitrary
electrons, thus obeying the Pauli principle.

• The vector coupling of the angular momenta of
the different electrons depends on the energetic
order of the different interactions. For light atoms
(small Z) the interaction aiklilk between the orbital
angular momenta li, lk of the different electrons
and biksisk between their spins si , sk is stronger
than the interaction ciilisi between li and si . The
different li couple to

L =
∑

li .

And the si to

S=
∑

si .

The total electronic angular momentum is

L+ S= J

(L-S coupling is dominant). The spectra of atoms
obeying L-S coupling show narrow fine structure
multiplets.

• For closed shells is L = S = J = 0.
• For heavy atoms (large Z) the j- j coupling is do-

minant. The interaction energy cii li si is larger than
the interaction aiklilk between the different li , lk.

Here the coupling scheme is:

li + si = ji and J =
∑

ji . (6.52)

• The quantum numbers L and S are no longer
“good” quantum numbers, i.e., they are not well-
defined. The different components of a spin-orbit
multiplet do not form a fine structure pattern in the
spectrum, but are so widely separated that com-
ponents from different multiplets may overlap.

• For medium size atoms (medium values of Z)
an intermediate coupling scheme between L-S
coupling and j- j coupling is observed.

• In excited states of multielectron atoms each
electron configuration (n, l) and (n′, l′) of two
electrons can give rise to many atomic states with
different energies, due to the different coupling
possibilities of the angular momenta of the two
electrons.

• Rydberg states of atoms are excited states, where
one electron is brought into a state with large prin-
cipal quantum number n. This electron has a large
Bohr radius rn = a0n2 and moves in a nearly sphe-
rical potential formed by the atomic nucleus and
the residual electron core. The ionization energy
of these Rydberg states is Eion = Ry∗Z2

eff/n
2.

• In planetary atoms, two electrons are exci-
ted into different Rydberg states. They decay
preferentially by auto-ionization.

• Exotic atoms are formed by replacing one of the
atomic electrons by a heavier negative elementary
particle. For the myonic atoms, this is aµ− myon,
for pionic atoms a π− meson. Such exotic atoms
are not stable, because the elementary particles
have a short lifetime. Their Bohr radii rn ∝ 1/m
are much smaller than those of ordinary atoms.
The spectroscopy of these exotic atoms probes the
charge and mass distribution in the atomic nucleus.

• Positronium is a system consisting of an elec-
tron e− and a positron e+. Its lifetime ranges
between 1 ns and 1 µs, depending on the energy
state of the system. The ground state has the
smallest lifetime.

• Antimatter is formed by atoms consisting of
antiprotons and anti-electrons = positrons. The
anti-hydrogen atom has been experimentally
formed by recombination of antiprotons and
positrons in a special trap.
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1. When the first electron in the He atom is descri-
bed by the 1s wave function, what is the potential
for the second electron? (In this model the interac-
tion between the two electrons is only indirectly
taken into account by the time-averaged charge
distribution of the first electron.)

2. Derive (6.28y) for the potential of the 2s electron
in the Li-atom, assuming that the two 1s-electrons
can be described by hydrogenic 1s-wavefunctions
for Zeff = 2.

3. A system of Na atoms with number density n
is cooled down to the temperature T . What
is the critical temperature, where the de Bro-
glie wavelength of the Na atoms becomes equal
to their mean distance. Numerical example:
n = 1010 /cm3.

4. In a classical model of the He atom, the two elec-
trons move around the nucleus on a circle with
radius r = 0.025 nm. What is the minimum poten-
tial energy where the two electrons are at opposite
locations on the circle, and what is the kinetic
energy of the two electrons? Compare this with
the measured energy of the 1s2 ground state of the
He atom and discuss the difference.

5. How large would be the energy difference bet-
ween the 1s2s and the 1s3s states of the helium
atom for the potential of Problem 6.1. Compare
this with the measured energy difference∆E, ob-
tained from Fig. 6.9 (or more accurately from CH.
Moores Tables of Atomic Energy Levels, NBS
monograph).

6. Give a simple vivid explanation for Hund’s rule
that the lowest level of a multielectron atom is rea-
lized by the maximum electron spin compatible
with the Pauli principle.

7. What is the relation between the shielding con-
stant S and the quantum defect δn,l of a Rydberg

state (n, l) with large principal quantum num-
ber n and maximum angular momentum quantum
number l = n−1 in an alkali atom?

8. What is the photon energy for a transition
n = 2 → n = 1 in a myonic atom with a mass of
140 AMU and a nuclear charge number Z = 60?
For which principal quantum number n has the
Bohr radius rn of the myon the same value as the
lowest radius r1 for an electron in this atom?

9. Why is the energy of the 3P term in the Na atom
higher than that of the 3S term?

10. The negative H− ion is a two-electron system like
the He atom. How large is the binding energy
of the second electron according to a similar
calculation as in Problem 6.1?

11. The energy of the ground state 2S in the Li
atom is E =−5.39 eV, that of the Rydberg state
with n = 20 is E = −0.034 eV. How large is
the effective charge Zeffe, the mean Bohr ra-
dius rn and the quantum defect δ = n−neff of
the valence-electron in the two states?

12. The absolute value of the binding energy of the al-
kali atoms decreases with increasing atomic size
as EB(Li) = −5.395 eV; EB(Na) = −5.142 eV;
EB(K)=−4.34 eV; EB(Rb)=−4.17 eV; EB(Cs)
=−3.90 eV .Give a qualitative explanation for
this sequence. How would you determine these
values of EB experimentally and how can one
calculate them?

13. How large is the maximum of the potential barrier
and at which value of x is it located, if a hydro-
gen atom is placed in a homogeneous electric field
E =−E0x with E0 = 3×104 V/m. Determine the
critical principal quantum number nc where field
ionization (without a tunnel effect) starts. Calcu-
late the field-ionization probability for the levels
with nc−1, possible through the tunnel effect.

P R O B L E M S



7. Emission and Absorption
of Electromagnetic Radiation by Atoms

We have so far discussed primarily stationary atomic
states that are described by a stationary wave function
Ψn,l,ml,ms or by the corresponding quantum numbers
n, l,ml,ms, which give all angular momenta l, s and
j = l+ s of single electron atoms and the energies Ei

of the states 〈i|, where the index i stands for all four
quantum numbers. The spatial parts of the wave functi-
ons are obtained by solving the stationary Schrödinger
equation and the spin is described by the corresponding
spin function.

For atoms with more than one electron the couplings
of the different angular momenta depends on the coup-
ling strength between them and only those states are
realized that obey the Pauli principle, which demands
that the total wave function (including the spin part)
has to be antisymmetric with regard to the exchange of
two electrons. The wave functions that fulfill this de-
mand can be written as linear combination of Slater
determinants (see Sect. 6.4).

When discussing Bohr’s atomic model we men-
tioned that atoms can undergo transitions between
different states with energies Ei and Ek, when a photon
with energy

�ω= Ek − Ei (7.1)

is emitted or absorbed.
Experiments show, however, that the absorption or

emission spectrum of an atom does not contain all pos-
sible frequencies ω according to (7.1). There must be
certain “selection rules” that select from all possible
combinations Ei and Ek only those between which
a radiative transition can take place. Furthermore, the
intensity of the spectral lines can vary by many or-
ders of magnitude, which means that the probability of
a transition generally depends strongly on the specific
combination of the two atomic states in (7.1).

Besides the energy conservation expressed by (7.1)
also the total angular momentum of the system (atom+

photon) has to be conserved. The transition probability
therefore depends on the polarization of the emitted or
absorbed electromagnetic radiation.

In this chapter we will discuss how such transition
probabilities can be calculated from the wave functions
of the states involved in the transition (Sect. 7.1). Also,
experimental methods for measuring such transition
probabilities are presented.

The selection rules are then discussed in Sect. 7.2
and the problem of measuring and calculating lifetimes
of emitting atomic states is covered in Sect. 7.3.

For transitions of an electron in an outer shell of the
atom the energy difference in (7.1) amounts to a few
electron volts. The transition frequency then falls into
the spectral region between the near infrared to the
near ultraviolet (1 eV corresponds to a wavelength λ
of 1.234 µm= near infrared, while 3 eV corresponds to
λ= 478 nm = blue spectral region). Since these tran-
sitions mostly give rise to emission of visible light,
the electron in the outer atomic shell is often referred
to the German word “Leucht-Elektron”, which means
“light-emitting electron.”

If an electron in an inner atomic shell is excited
into higher unoccupied states, its excitation energy can
be several keV. When it returns to its initial state, ra-
diation with short wavelengths (X-rays) are emitted.
The emission or absorption spectrum corresponding
to transitions of inner shell electrons therefore fall
between the far ultraviolet and X-ray region with wave-
lengths between 0.01−50 nm (a wavelength of 0.01 nm
corresponds to an energy of about 120 keV). The gene-
ration, absorption and detection of X-rays is discussed
in Sect. 7.4.

When measuring the frequency dependence of the
emitted or absorbed radiation intensity I(ω), it turns
out that discrete spectra are found where the intensity
peaks around certain frequencies ωik, which obeys the
energy relation (7.1), but also continuous spectra where
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the intensity I(ω) is a smooth function of ω. However,
even for discrete spectra, the intensity I(ω) of a spectral
line is not a delta function, but has an intensity profile
with a halfwidth ∆ω, which depends on the lifetime of
the states involved, on the temperature of the atomic
sample and on its pressure. This subject of line profiles
and line broadening will be treated in Sect. 7.5.

7.1 Transition Probabilities

In this section we will discuss what a transition proba-
bility means and how it depends on the wave functions
of the atomic states involved in a specific transition
between these states. Some techniques for measuring
transition probabilities are presented.

7.1.1 Induced and Spontaneous Transitions,
Einstein Coefficients

If an atom in the state 〈k|with energy Ek is brought into
an electromagnetic radiation field with spectral energy
density wν(ν) (this is the field energy per unit volume
and unit frequency interval ∆ν = 1 s−1) it can absorb
a photon hν, which brings the atom into a state with
higher energy Ei = Ek +hν.

The probability per second for such an absorbing
transition

dP abs
ki

dt
= Bkiwν(ν) (7.2)

is proportional to the spectral energy density wν(ν)=
n(ν)hν of the radiation field (where n(ν) is the number
of photons hν per unit volume within the frequency
interval ∆ν = 1 s−1). The proportionality factor Bki is
the Einstein coefficient for absorption. Each absorption
takes one photon from a specific mode of the radiation
field (see Sect. 3.1) and therefore decreases the number
of photons in this mode by one.

The radiation field can also induce atoms in an ex-
cited state with energy Ei to emit a photon with energy
hν = Ei − Ek into a specific mode of the radiation field
and to go into the lower state Ek. This process is called
induced (or stimulated) emission. It increases by one
the number of photons in this mode from which the in-
ducing photon came. Since the two photons are in the
same mode, they have identical propagation directions.
The energy of the atom is reduced by ∆E and that of

the mode of the radiation field is increased by the same
amount ∆E = hν.

The probability per second for the induced emission
is analogous to (7.2) given by

dP ind. em
ik

dt
= Bikwν(ν) . (7.3)

The factor Bik is the Einstein coefficient for induced
emission.

An excited atom can also give away its excita-
tion energy spontaneously without an external radiation
field. This process is called spontaneous emission.
Different from the induced emission, the spontaneous
photon can be emitted into an arbitrary direction, i.e.,
into any one of the modes of the radiation field. The
probability per second for such a spontaneous emission
is

dP
sp. em.
ik

dt
= Aik . (7.4)

The factor Aik is the Einstein coefficient for sponta-
neous emission. It is solely dependent on the wave
functions of the states 〈i| and 〈k| but independent of
the radiation field. In Fig. 7.1 all three processes are
depicted schematically.

We will now look for relations between the three
Einstein coefficients.

Consider Ni atoms in state Ei and Nk atoms in
state Ek within the unit volume inside a radiation field
with spectral energy density w(ν). Under stationary
conditions the number densitiesNi and Nk do not vary
with time, i.e., they are constant. This means that the
absorption rate must be equal to the total emission rate:

Bkiwν(ν)Nk = (Bikwν(ν)+ Aik) Ni . (7.5)

EEk

Ei

Ei

Ek

h ⋅ ν h ⋅ ν
2 hν

Aik

Ni

Nk

N E( )

a) b)

w Bkiν ⋅ w Bikν ⋅

Fig. 7.1. (a) Absorption, induced emission and spontaneous
emission in a two-level system. (b) Thermal population
distribution N(E)
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At thermal equilibrium, the ratio Ni/Nk follows the
Boltzmann distribution (Fig. 7.1b)

Ni

Nk
= gi

gk
e(Ei−Ek)/kT = gi

gk
e−hν/kT , (7.6)

where g= 2J+1 is the statistical weight (i.e., the num-
ber of possible realizations) of a state with energy E
and total angular momentum quantum number J . This
state has 2J+1 possible orientations of the angular mo-
mentum vector J, which all have (without an external
magnetic field) the same energy; they are energetically
degenerate.

Inserting (7.6) into (7.5) and solving forw(ν) yields

wν(ν)= Aik/Bik

(gi/gk)(Bik/Bki)
(

ehν/kT −1
) . (7.7)

The spectral energy density of the thermal radiation
field is, on the other side, given by Planck’s formula
(see Sect. 3.1)

wν = 8πhν3

c3

1

ehν/kT −1
. (7.8)

Since the two equations (7.7) and (7.8) describe the
same radiation field for all frequencies ν and at arbitrary
temperatures T , we get for the nominator in (7.7):

Aik/Bik = 8πhν3

c3
(7.9a)

and for the constant factor in the denominator

gi Bik/(gk Bki)= 1 . (7.9b)

This yields the relations between the Einstein
coefficients:

Bik = gk

gi
Bki (7.10a)

Aik = 8πhν3

c3
Bik . (7.10b)

These important relations give us a deeper in-
sight into the three processes of induced emission and
absorption and spontaneous emission:

If both states have equal statistical weights
(gi = gk) the Einstein coefficients for induced
absorption and emission are equal.

Since 8πν2/c3 gives the number of modes within
the unit frequency interval ∆ν = 1 s−1 (see Sect. 3.1)
the ratio Aik/(8πν2/c3) gives the probability per se-
cond that a spontaneous photon is emitted by an atom
into one mode of the radiation field. On the other hand,
the product Bikhν gives the probability per second that
induced emission is induced by one photon, i.e., that
an induced photon is emitted into a mode of the radia-
tion field, which had contained one inducing photon.
Rearranging (7.10b) into

Aik

8πν2/c3
= Bikhν (7.10c)

shows that the spontaneous emission probability into
one mode equals the induced emission probability if
this mode contains just one photon (after the induced
emission it contains two photons). In other words:

Spontaneous and induced emission rates are equal
in a radiation field that contains, on average, one
photon per mode.

If the radiation field contains, on average, n pho-
tons per mode then the ratio of induced to spontaneous
emission rates is

Pind. em
ik

Psp. em
ik

= Biknhν

Aikc3/(8πν2)
= n . (7.10d)

The ratio of induced to spontaneous emission rates
into one mode of the radiation field equals the
number of photons in this mode.

Figure 7.2 illustrates the average number of pho-
tons per mode of a thermal radiation field as a function
of frequency ν for different temperatures T . It demon-
strates that in thermal radiation fields at temperatures
T< 103 K the average photon number n in the visible
spectral range is small compared to one. In this case the
spontaneous emission in the visible range exceeds by
far the induced emission.

In order to enhance the induced emission beyond
the spontaneous emission, non-thermal radiation fields
have to be realized, where the photon number n is not
equally distributed among all modes but is concentrated
into one or a few modes. In these modes, n � 1 and
then the induced emission rate becomes much larger
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Fig. 7.2. Mean photon number n per mode of the thermal
radiation field as a function of frequency ν and temperature T

than the spontaneous one. This situation is realized in
lasers, which will be discussed in Chap. 8.

EXAMPLES

1. At a distance of 10 cm away from the filament of
a 100 W light bulb, the average photon number per
mode at λ= 500 nm is about 10−8. For atoms in
this radiation field the spontaneous emission rate
exceeds by far the induced rate.

2. In the brightest spot of a high-pressure mercury
lamp in the maximum of the intense mercury emis-
sion line at λ= 253.7 nm the photon number per
mode is about 10−2. Even here the induced emission
plays a minor role compared with the spontaneous
emission.

3. Within the optical resonator of a helium-neon laser
(output power 1 mW through the output mirror with
transmittance of 1%), which oscillates in a single
mode, the photon number in this mode is about 107!
Here, the spontaneous emission into this mode is
completely negligible. Note, however, that the total
spontaneous emission within the Doppler-width of
the neon transition at λ= 632.3 nm, which is dis-
tributed over 3×108 modes of the active volume of
1 cm3 and is emitted into all directions exceeds 1 W
and is therefore stronger than the induced emission.

Note:

When using the angular frequency ω= 2πν instead
of ν, the unit frequency interval dω= 2π dν is lar-
ger by a factor of 2π. Since w(ν) dν must be equal to
w(ω) dω, the spectral energy density

wω(ω)= �ω
3

π2c3

1

e ω/kT −1
=wν(ν)/2π

of the radiation field is then smaller by this factor. The
ratio of the Einstein coefficients

Aik/B(ω)ik = �ω
3

π2c3

is then also smaller by the factor 2π. However, the ratio

Aik/
(

B(ω)ik wω(ω)
)
= Aik/

(
B(ν)ik wν(ν)

)
of spontaneous to induced emission rates remains the
same.

7.1.2 Transition Probabilities and Matrix elements

The relation between transition probabilities and the
quantum mechanical description by matrix elements
can be illustrated in a simple way by a comparison with
classical oscillators emitting electromagnetic radiation.

A classical oscillating electric dipole (Hertzian
dipole) with electric dipole moment

p = qr = p0 sinωt

emits the average power, integrated over all directions ϑ
against the dipole axis (Fig. 7.3a) [5.2]

P = 2

3

p2ω4

4πε0c3
with p2 = 1

2
p2

0 . (7.11)

In the quantum mechanical description, the average 〈p〉
of the electric dipole moment of an atomic electron in
state (n, l,ml,ms)= i with stationary wave functionψi

is given by the expectation value

〈p〉 = e 〈r〉 = e
∫
ψ∗

i rψi dτ . (7.12)

The vector r is the radius vector of the electron from
the origin at the atomic nucleus (Fig. 7.3b).

The integration extends over the three spa-
tial coordinates of the electron. The volume ele-
ment is dτ = dx dy dz in Cartesian coordinates or
dτ = r2 dr sinϑ dϑ dϕ in spherical coordinates.
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Fig. 7.3. (a) Spatial radiation characteristics of a classi-
cal oscillating electric dipole. (b) The expectation value
〈pk〉 = −e〈rk〉 of the quantum mechanical dipole moment in
level |k〉, determined by its wave function ψk

For a transition Ei → Ek the wave functions of both
states have to be taken into account, because the tran-
sition probability depends on both wave functions ψi

and ψk. We therefore define the expectation value of
the so-called transition dipole moment Mik = 〈pik〉 as
the integral

Mik = e
∫
ψ∗

i rψk dτ , (7.13)

where the two indices i = (ni , li,mli ,msi ) and
k = (nk, lk,mlk ,msk ) are abbreviations for the four
quantum numbers of each state.

Replacing the classical average p2 in (7.12) by the
quantum mechanical expression

1

2
(|Mik|+ |Mki |)2 = 2 |Mik| 2 (7.14)

(see [7.1]), we obtain the average radiation power, emit-
ted by an atom in level 〈i| on the transition 〈i| → 〈k|
as

〈Pik〉 = 4

3

ω4
ik

4πε0c3
|Mik| 2 , (7.15)

which is equivalent to the classical expression (7.11)
for the radiation power of the Hertzian dipole, if the
average p2 is replaced by 2|Mik|2.

Ni atoms in level 〈i| emit the average radiation
power 〈P〉 = Ni〈Pik〉 on the transition 〈i| → 〈k| with
frequency ωik.

Using the Einstein coefficient Aik for spontaneous
emission, which gives the probability per second that

E0

Ei
Ni

Fluorescence
P N A hi ik ik= ⋅ ⋅ ⋅ ν

Ek

Excitation

Fig. 7.4. Mean radiation power 〈pik〉 emitted by Ni excited
atoms as fluorescence on the transition |i〉 → |k〉

one atom emits a photon on the transition 〈i| → 〈k| the
average power emitted by Ni atoms (Fig. 7.4) is

〈P〉 = Ni Aikhνik = Ni Aik�ωik . (7.16)

The comparison of (7.15) with (7.16) yields the relation

Aik = 2

3

ω3
ik

ε0hc3
|Mik|2 (7.17a)

between the Einstein coefficient Aik and the transition
moment Mik. The relation between Bik and Mik is then,
according to (7.10b):

Bik = 2π2

3ε0h2
|Mik| 2 . (7.17b)

If the wave functions ψi , ψk of the two states in-
volved in the transition, are known, the spontaneous
transition probability Aik can be calculated from (7.17)
and therefore the total radiation power emitted by Ni

atoms in level 〈i| on the transition 〈i| → 〈k| can also be
calculated.

The expectation values Mik for all possible transiti-
ons between arbitrary levels i, k = 1, 2, . . . , n can be
arranged in an n×n matrix. The Mik are therefore cal-
led Matrix elements. If some of the matrix elements are
zero, the corresponding transition does not occur. One
says that this transition is “not allowed” but “forbid-
den.” The absolute square |Mik|2 of the matrix element
is directly proportional to the probability of the transi-
tion 〈i| → 〈k|, i.e., of the intensity of the corresponding
line in the atomic spectrum.

Note:

Equation (7.17), called the dipole approximation (see
appendix) is only valid, when the wavelength λ of the
radiation is large compared to the dimensions of the
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dipole. This is completely analogous to the classical
case of the Hertzian dipole.

For visible light this is readily fulfilled since λ≈
500 nm is very large compared to the average size r ≈
0.5 nm of the emitting atomic dipole. This means that
r/λ≈ 10−3. However, the dipole approximation is no
longer valid for X-rays when the wavelength becomes
smaller than 1 nm.

The experimental arrangement for measuring the
emitted radiation power is depicted in Fig. 7.5. The ra-
diation, emitted from the atoms is collected by a lens
and imaged onto the entrance slit of a spectrograph,
which has the transmission T(ω). A detector behind the
spectrograph receives the signal

S(ω)= Ni 〈Pik〉 ε dΩ T(ω)η(ω) , (7.18)

where Ni is the number of emitting atoms in level 〈i|,
〈Pik〉 is the average power emitted by a single atom
into the solid angle 4π, dΩ is the solid angle accep-
ted by the spectrograph, ε is the fractional area of the
image of the light source that passes through the ent-
rance slit of the spectrograph, T(ω) is the transmission
of the spectrograph and η is the spectral efficiency of
the detector.

Spectrograph

Transmission
T(ω)

SpectrographT(ω)

Lens

Detector

η(ω)Light
source

η(ω) Detector

dΩ

dΩ Optical
fiber bundle

a)

b)

Entrance slit

Fig. 7.5a,b. Experimental setup for measuring the radiation
power emitted by the source S on the transition |i〉 → |k〉.
(a) Conventional arrangement. (b) Use of an optical fiber
bundle for increasing the collection efficiency

S

λ

ω⋅⋅= hANP

)()(TPS λη⋅λ⋅=

Fig. 7.6. Measure-
ment of the relative
line strengths of two
spectral lines

Generally, the image of the light source is larger
than the width of the entrance slit, which implies that
ε < 1. Here, an optical fiber bundle can be used to incre-
ase the total light collection efficiency (Fig. 7.5b). The
light source is imaged onto the circular entrance cross
section of the fiber bundle. The exit cross section of the
bundle can be formed into a narrow rectangular area,
that matches the entrance slit of the spectrograph and
makes ε= 1.

The ratio Sik/Snm of the measured signals for two
spectral lines at frequencies ωik and ωnm is then,
according to (7.18) and (7.16),

Sik

Snm
= Ni Aikωik

Nm Anmωnm

T(ωik)η(ωik)

T(ωnm)η(ωnm)
, (7.19)

where Ni and Nn are the numbers of emitting atoms in
levels 〈i| and 〈n| (Fig. 7.6), respectively.

7.1.3 Transition Probabilities
for Absorption and Induced Emission

While the transition probabilities of spontaneous emis-
sion are independent of an external radiation field and
solely depend on the wave functions of the atomic states,
the induced processes do depend on the spectral energy
density wω(ω) of the inducing radiation field, as was
already discussed in Sect. 7.1.1.

We describe the electromagnetic wave incident on
the atom with its nucleus at r = 0 by

E = E0 ei(k·r−ωt) , (7.20)

where k is the wave vector of the electromagnetic
wave with the wavenumber k = |k| = 2π/λ. The quan-
tum mechanical treatment gives the probability per
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sec

dPni

dt
= πe2

�2

∣∣∣∣∫ ψ∗
n E0 ·r eik·rψi dτ

∣∣∣∣2 (7.21)

for absorbing a photon hω, which induces the atomic
transition 〈n| → 〈i|. We have here selected a transi-
tion from a level 〈n| instead of 〈k| in order to avoid
confusion with the wavenumber k. For k · r � 1 (this
means that the wavelength λ is much larger than the
size of the atom) we obtain the dipole approximation
with eikr ≈ 1

dPni

dt
= πe2

h2
E2

0

∣∣∣∣∫ ψ∗
nε ·rψi dτ

∣∣∣∣2 , (7.22)

where ε= E0/|E0| is the unit vector in the direction of
the electric field E of the wave.

Equation (7.22) shows that the transition probabi-
lity Pni depends on the scalar product E0 ·r, i.e, on the
relative orientation of electric field vector E of the light
wave and atomic dipole moment p = er.

When the radiation field is isotropic (for example,
the thermal radiation field discussed in Sect. 3.1) the
scalar product can be averaged over all directions. Be-
cause all mixed scalar products (εi · j), i, j = x, y, z are
zero for i 	= j and 〈|εx x|2〉 = 〈|εy y|2〉 = 〈|εzz|2〉 = 1

3 〈|ε·
r|2〉, the averaged dipole moment in the electric field E
is 〈|Mik| 2〉∝ 〈|ε ·r| 2〉= 1

3
|r| 2 . (7.23)

Using the relation w= ε0|E|2 between the spectral
energy density w and the electric field E of the ra-
diation field, we can write (7.22) for isotropic radiation
fields as

dPki

dt
= πe2

3ε0h2

∣∣∣∣∫ ψkrψi dτ

∣∣∣∣2wν(ν) , (7.24)

where we have replaced the index n by k and the total
energy densityw is related to the spectral energy density
by w= ∫

wν(ν) dν.
Comparing this result with (7.2) we obtain for the

Einstein coefficient Bki for absorption

Bki = 2

3

π2e2

ε0h2

∣∣∣∣∫ ψ∗
k rψi dτ

∣∣∣∣2 . (7.25)

A comparison of (7.25) and (7.17) again yields the
relation (7.9b) between the Einstein coefficients Aik

and Bik.

7.2 Selection Rules

Not every transition possible according to the energy
conservation rule (7.1) is actually observed in ato-
mic spectra. The reason for this is that besides
energy conservation, the conservation of angular mo-
mentum and certain symmetry rules must also be
obeyed. This is all included in the transition matrix
elements. From (7.16) it follows that for the sponta-
nously emitted radiation only those transitions 〈i|→ 〈k|
are allowed for which the transition dipole matrix
element

Mik = e
∫
ψ∗

i rψk dτ (7.26)

is not zero. This means that at least one of the
components

(Mik)x = e
∫
ψ∗

i xψk dτ

(Mik)y = e
∫
ψ∗

i yψk dτ (7.27)

(Mik)z = e
∫
ψ∗

i zψk dτ

must be different from zero.
We will illustrate this for the hydrogen atom.

In order to make the calculation not too compli-
cated we will disregard the electron spin and only
deal with the spatial part of the wave function,
since in the matrix elements discussed so far we
have only used the spatial part of the wave functi-
ons and the integration extends only over the spatial
coordinates.

The hydrogenic wave functions are, according to
Sect. 5.1.3:

ψn,l,ml =
1√
2π

Rn,l(r)Θ
l
m(ϑ)e

imlϕ . (7.28)

When a light wave is interacting with the atom
(induced absorption or emission) we must consider
instead of (7.26) the matrix-element (7.22). When
a linearly polarized wave with the electric field vec-
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tor E = {0, 0, E0} interacts with the atom, only the
z-component of the matrix element (7.27) is non-
zero, the other two vanish. We choose the z-axis as
quantization axis. With z = r cosϑ the z-component
becomes

(Mik)z = 1

2π

∞∫
r=0

Ri Rkr3 dr

×
π∫

ϑ=0

Θlk
mk
Θli

mi
sinϑ cosϑ dϑ

×
2π∫

ϕ=0

ei(mk−mi )ϕ dϕ . (7.29)

Only those transitions 〈i| → 〈k| appear in the
spectrum, for which all three factors are non-
zero.

For circularly polarized light travelling into the
z-direction the x- and y-components of Mik can
contribute to the transition probability. The elec-
tric field vector for circularly polarized σ+-light can
be written as E+ = Ex + iEy and for σ−-light is
E− = Ex − iEy. Inserting this into (7.23) gives for
the scalar product ε · r = εx x± iεy y. Therefore only
the x- and y-components of the matrix element (7.22)
contribute to the transitions induced by circularly pola-
rized light. Forming the linear combinations (Mik)x ±
i(Mik)y of the matrix elements gives for the tran-
sition probability the absolute square of the scalar
product

|E ·r|2 = ∣∣(Ex ± iEy)(x+ iy)
∣∣2 = E2(x2+ y2) .

With x = r sinϑ cosϕ and y = r sinϑ sinϕ we obtain

(Mik)x + i (Mik)y = 1

2π

∞∫
r=0

Ri Rkr3 dr

×
π∫

ϑ=0

Θli
mi
Θlk

mk
sin2 ϑ dϑ

×
2π∫

ϕ=0

ei(mk−mi+1)ϕ dϕ (7.30a)

(Mik)x − i (Mik)y = 1

2π

∞∫
r=0

Ri Rkr3 dr

×
π∫

ϑ=0

Θli
mi
Θlk

mk
sin2 ϑ dϑ

×
2π∫

ϕ=0

ei(mk−mi−1)ϕ dϕ .

(7.30b)

7.2.1 Selection Rules
for the Magnetic Quantum Number

The last factor in the matrix elements (7.29) for linearly
polarized light is always zero, except for mi =mk. This
gives the selection rule

(Mik)z 	= 0 only for ∆m = mi −mk = 0 .
(7.31)

The integrals in (7.30a) and (7.30b) for circular
polarized light show that (Mik)x + i(Mik)y 	= 0 only
for mk = mi −1 and (Mik)x − i(Mik)y 	= 0 only for
mk = mi +1 (Fig. 7.7).

In conclusion, we obtain for transitions Ei → Ek

the selection rules for the change ∆m = mi −mk

of the magnetic quantum number m

∆m =±1 for circularly polarized light
(7.32a)

∆m = 0 for linearly polarized light .
(7.32b)

Fig. 7.7. Transitions with∆m = 0 (emission of linearly polari-
zed light) and∆m =±1 (circular polarization). Quantization
axis is the z-axis
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Fig. 7.8. Linearly polarized light with average photon spin s =
0 zero as the superposition of σ+ and σ− light

This selection rule also follows from the conser-
vation of angular momentum for the system atom+
photon. For σ+ light, the photon spin is sz =+1�, poin-
ting in the +z direction. When the photon is absorbed,
the atom has to increase the z component of its angu-
lar momentum by the same amount (Fig. 7.7). For σ−
light, the photon spin is sz =−1�, giving rise to ato-
mic transitions with ∆m =−1. For linearly polarized
light the average spin of all photons in the incident light
beam is zero (because half of the photons have a spin
sz =+1�, the other half the spin sz =−1�) (Fig. 7.8).

2

1

0

–1

–2

+1

0

–1

σ+

σ−
∆m

0 +1= 1–

E
z

π light

Observation
in z direction

in y direction

σ+ σ−

π

m

Fig. 7.9. Possible transitions ∆m = ±1 of Zeeman com-
ponents for the normal Zeeman effect and the corresponding
polarization of the radiation for the observation parallel and
perpendicular to the magnetic field direction

Table 7.1. Change ∆m of the magnetic quantum number m
under absorption or emission of photons

Photon Absorption Emission

σ+: sphot ↑↑ k ∆m =+1 ∆m =−1
σ−: sphot ↓↑ k ∆m =−1 ∆m =+1
π: 〈sphot〉 = 0 ∆m = 0 ∆m = 0

For the emission of light Ei → Ek+hν, the angular
momentum mi� in the initial state must be equal to the
sum of angular momentum mk� in the final state and
the photon spin (Table 7.1).

When the atom is placed in an external static ma-
gnetic field B= {0, 0, Bz}, which causes the degenerate
magnetic sublevels to split into Zeeman components,
one observes for the light emitted into the field di-
rection, two circularly polarized components. In the
direction perpendicular to the magnetic field direc-
tion, one observes three linearly polarized components,
one polarized in the z direction, which is due to the
component (Mik)z with ∆m = 0, and two due to the
sum (Mx + iMy)+ (Mx − iMy)= 2Mx with ∆m =±1
(Fig. 7.9) (see also Sect. 5.2).

7.2.2 Parity Selection Rules

Even when the selection rules for the magnetic quan-
tum number are fulfilled (which implies that the third
integrals in (7.29) or (7.30) are nonzero, the second inte-
grals can still vanish, bringing the transition probability
to zero.

The somewhat lengthy calculation (see [7.1]) shows
that the integrals∫

Θlk
mk
Θli

mi
sinϑ cosϑ dϑ

and
∫
Θlk

mk
Θli

mi
sin2 ϑ dϑ

in (7.29) and (7.21) are nonzero only if lk − li =±1.

Only those transition are allowed for which the
quantum number l of the electronic orbital angular
momentum l obeys the selection rule

∆l = li − lk =±1 . (7.33)
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Also, this selection rule is a consequence of the
conservation of angular momentum. The absorbed or
emitted photon has the spin s =±1�. Since the total
angular momentum of the system atom plus photon has
to be constant when a photon is absorbed or emitted,
the atom must change its angular momentum during the
transition 〈i| → 〈k| by ±1�.

The selection rule (7.33) can be also derived from
symmetry arguments. We consider the matrix element

Mik =
∫
x

∫
y

∫
z

ψ∗
i (x, y, z)rψk(x, y, z) dx dy dz

in Cartesian coordinates. Since the integration ex-
tends from x, y, z =−∞ to +∞ the integrand has
to be an even function of the coordinates x, y, z,
otherwise the integral vanishes. Since r = {x, y, z} is
an odd function, the product ψ∗

i ψk must also be an
odd function in order to make the integrand an even
function.

The symmetry of a function with regard to a reflec-
tion of all coordinates at the origin is called its parity.
The function f(x, y, z) has even (or positive) parity if
f(x, y, z)=+ f(−x,−y,−z), it has odd (or negative)
parity, if f(x, y, z)=− f(−x,−y,−z).

The transition moment Mik can be only nonzero,
if the wave functions ψi and ψk of the two states
of the transition 〈i| → 〈k| have opposite parities.

The hydrogenic wave functions in Table 5.2 have
the parity (−1)l . This implies, that the quantum num-
ber l of the angular momentum has to change by an odd
number for an allowed dipole transition. Since the an-
gular momentum of the photon is±1�, this odd number
has to be ±1 for electric dipole transitions. This again
gives the selection rule (7.33).

7.2.3 Selection Rules
for the Spin Quantum Number

Up to now we have neglected the electron spin. For
atoms with only one electron the absolute value of the
spin is always |s| = √

3/4�, which does not change
under electric dipole transitions.

The same consideration applies for one-electron
transitions in multi-electron atoms with S=∑

si ,
where only one electron is involved in the transition.

This gives the selection rule

∆S = Si − Sk =
(

S∗i +
1

2

)
−
(

S∗k +
1

2

)
= 0 ,

(7.34)

where S∗ is the total spin quantum number of all other
electrons, not involved in the transition. Since their spin
quantum number S∗ does not change, we obtain S∗i = S∗k
and therefore ∆S = 0.

For atoms with two electrons where each of the two
could interact with the light wave the wave functions de-
pend on the spatial coordinates (r1, r2) of both electrons.
The transition dipole matrix element now becomes

Mik = e
∫
ψ∗

i (r1, r2)(r1+r2)ψk(r1, r2) dτ1 dτ2 ,

(7.35)

where the integration extends over all six coordinates
of the two electrons. Because the two electrons are in-
distinguishable, Mik should not change under exchange
of the two electrons.

For a singlet state, the spatial part ψ(r1, r2) of the
wave function is symmetric under electron exchange
(see Sect. 6.1), for a triplet state it is antisymmetric.
The matrix element (7.35) is only independent of an
electron exchange, if both wave functions ψi and ψk

are either symmetric or both are antisymmetric with
regard to an electron exchange. This means, that both
states have to be either singlet or triplet states.

Transitions between singlet and triplet states are
forbidden. The selection rule is

∆S = 0 . (7.36)

Note:

This selection rule is not as strict as the parity selection
rule. It only holds if the spin-orbit coupling is small,
which means that the spin quantum number is well
defined. One says in this case that it is a “good quantum
number.” The total wave function can then be separated
into a product of spatial part and spin function.

In heavier atoms the spin-orbit coupling increases
strongly with the nuclear charge Ze (see Sect. 6.4). The
separation into a spatial and a spin part is no longer pos-
sible and S is no longer a good quantum number. In such
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cases, one observes transitions between different mul-
tiplet systems with∆S =±1, called “intercombination
lines.” Their intensity is still much weaker than that of
the allowed transitions with ∆S = 0. One example is
the intercombination line of Hg atoms at λ= 253.7 nm,
which is emitted on the transition 63 P → 61S.

Although the absolute value |S| of the total spin of
the electron shell does not change for an allowed electric
dipole transition, the orientation of the spin S relative to
the electronic orbital angular momentum can change.

For the quantum number J of the total angular
momentum J = L+ S we obtain the general selection
rule

∆J = 0,±1 , but J = 0� J = 0 .

(7.37)

For∆S= 0 the necessary change∆L =±1 can be com-
pensated by the opposite change∆MS =∓1 in order to
obtain ∆J = 0 (Fig. 7.10).

There is, for instance the allowed transition
2 P3/2(l = 1,ms = +1/2)→2 D3/2(l = 2,ms = −1/2)
in alkali atoms.

In Table 7.2 all selection rules are compiled.

Table 7.2. Selection rules for electric dipole transitions

Selection rule Remark

∆l =±1 Strictly valid
for one-electron systems

∆L =±1 Gerade levels are
for multi electron systems solely combined with
with L-S-coupling ungerade levels

∆M = 0,±1 ∆M = 0: linear
polarized light

∆M =±1: σ+ or σ−
circularly polarized light

∆S = 0 Valid for light atoms.
Exceptions for heavy
atoms with large spin-
orbit coupling (weak
Intercombination
lines)

∆J = 0,±1 J = 0 → J = 0
is forbidden
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Fig. 7.10. Example for the conservation of electron spin S
for transitions in atoms with L-S-coupling, illustrated by the

transition 2D1/2
hν↔ 2P1/2

7.2.4 Higher Order Multipole Transitions

Besides the electric dipole transitions with transition
probability (7.17) given by the absolute square of the
transition dipole matrix element (7.26) there are also
electric quadrupole transitions and magnetic dipole
transitions that have transition probabilities which are
smaller by several orders of magnitude. They become
important for cases where the electric dipole transitions
are forbidden.

Electric quadrupole transitions are emitted by a qua-
drupole moment that changes in time. Analogously to
the derivation of the radiation emitted by an oscillating
electric dipole moment in Sect. 7.1.2, the amplitude of
the quadrupole radiation is proportional to the second
time derivative of the oscillating electric quadrupole
moment.

With the spatial extension ac of the electric charge
distribution and the wavelength λ of the emitted ra-
diation the amplitude ratio of quadrupole to dipole
radiation is on the order ac/λ and the intensity ratio
therefore about (ac/λ)

2.

EXAMPLE

ac = 10−10 m, λ = 500 nm = 5×10−7 m ⇒ IQ/ID =
4×10−8.

This illustrates that in the visible spectral range,
electric quadrupole transitions can be only detected on
transitions for which electric dipole transitions are for-
bidden. Otherwise they would be completely masked
by the much stronger dipole transitions.
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The electric quadrupole moment QM of a distribu-
tion of charges qi(x, y, z) can be written in the form of
a matrix (QM is in fact a second rank tensor)

QM =
⎛⎜⎝QMxx QMxy QMxz

QMyx QMyy QMyz

QMzx QMzy QMzz

⎞⎟⎠ . (7.38a)

The components are

QMxx =
∑

qi(3x2
i −r2

i ) ;
QMyy =

∑
qi(3y2

i −r2
i ) ;

QMzz =
∑

qi(3z2
i −r2

i ) ;
QMxy = QMyx = 3

∑
qi xi yi ;

QMxz = QMzx = 3
∑

qi xi zi ;
QMyz = QMzy = 3

∑
qi yi zi ,

where ri = (x2
i + y2

i + z2
i )

1/2 . (7.38b)

All components depend on the product of two coordi-
nates or on the square of coordinates. Under reflection
of all coordinates at the origin, the components are the-
refore not changed. This means that the quadrupole
moment has positive parity, contrary to the electric di-
pole moment, which has negative parity. The two wave
functions of the two states of a quadrupole transition
therefore must have the same parity. Since the parity of
the wave function is determined by (−1)l , we obtain
the following result.

The selection rule for the orbital angular momen-
tum quantum number l on quadrupole transitions
is

∆l = 0,±2 . (7.39)

The same result holds for the quantum number L
of multielectron atoms.

For the quantum number J of the total angu-
lar momentum J = L+ S the selection rules are
∆J = 0,±1,±2, where the transition J = 0 → 0 is
again forbidden.

The different selection rules for electric dipole
and electric quadrupole transitions are illustrated in
Fig. 7.11.

Fig. 7.11. Possible changes∆J = J ′ − J of the quantum num-
ber J of total angular momentum for electric dipole transitions
|∆J | = and electric quadrupole transitions |∆J | = n
(n = 0, 1, 2)

EXAMPLES

The transitions 2S1/2 →2 D3/2 and 23 P0 → 33 P2 are
both allowed quadrupole transitions.

7.2.5 Magnetic dipole transitions

Magnetic dipole transitions appear when the amount
or the direction of the atomic magnetic dipole moment
changes for a transition. Examples are transitions with
∆m =±1 between the Zeeman components of an ato-
mic level, or between the fine structure components
of an atomic state (n, l,ml,ms), e.g., for the transition
3P3/2 → 3P1/2 of the Na (3P) state.

The square of the magnetic dipole matrix element is
about 2–3 orders of magnitude smaller than that of an
electric dipole transition. In addition, the following fact
further drastically diminishes the intensity of magnetic
dipole transitions. Most of these transitions occur bet-
ween levels with a small energy separation ∆E. The
frequency ν =∆E/h is therefore smaller by several
orders of magnitude compared with optical transitions.
Since the spontaneous transition probability scales with
ν3

ik the emitted or absorbed line intensity is indeed very



7.3. Lifetimes of Excited States 253

small compared with lines in the optical range, unless
the latter belong to forbidden transitions.

7.2.6 Two-Photon-Transitions

By “simultaneous” absorption of two photons two-
photon transitions with ∆L = 0,±2 become possible.
However, they demand high light intensities, which are
only achievable with lasers, because the two photons
both have to be present within the absorption volume of
the atom within the time interval ∆t of the transition.

The transition probability of a two-photon transition
between the initial level 〈i| and the final level 〈 f |

dPi f

dt
(2ω)∝

∣∣∣∣∣∑
k

Mikê1 Mk f ê2

ωki −ω1−vk1

+
∑

k

Mikê2 Mk f ê1

ωki −ω2−vk2

∣∣∣∣∣
2

(7.40)

is given by products of one-photon transition proba-
bilities for transitions between the initial level and an
intermediate level 〈v| at the energy Ei +hν for the first
photon �ω1 and 〈v| → 〈 f | for the second photon �ω2.
The energy of the level 〈v| may not coincide with a real
atomic level, which means that the first absorbed photon
excites the atom far off-resonance with a real level 〈k|. In
order to simplify the diagrams, the level 〈v| is often cal-
led a “virtual level” (Fig. 7.12). The sums extend over all
real atomic levels 〈k| that are connected by allowed one-
photon transitions with the initial level 〈i|. The two terms

Fig. 7.12. Two-photon transition with two equal or two
different photons

in (7.40) take account of the fact that either the first pho-
ton withω1 can be absorbed on the first step i → k or the
second photon with ω2. Since both possibilities are not
distinguishable the total transition amplitude has to be
the same of the two individual amplitudes (see Sect. 3.5).
The denominator describes the detuning of the photon
frequency ωi from the frequency ωik of the one photon
transition to the real level Ek including theDoppler-shift.

Examples for observed two-photon transitions are
the 11S0 → 21S0 transition in the H atom with ∆L = 0
or the 32S1/2 → 42 D3/2,5/2 transition in the Na atom
with ∆L = 2 [7.3, 4].

7.3 Lifetimes of Excited States

If an atom is excited (for instance by absorption of a pho-
ton, or by collisions with electrons) into a state with
energy Ei above that of the ground state, it can spon-
taneously relax back into a lower state with energy E j

by emitting a photon hν = Ei − E j . This spontaneous
emission is called fluorescence. This lower state E j

may be still above the ground state Ek. In this case it can
further relax into the ground state by photon emission
or by a collision-induced transition.

The probability per second for the fluorescence tran-
sition per atom is (see Sect. 7.2) given by the Einstein
coefficient Aij . If Ni atoms are in the energy state Ei ,
the emission rate on the transition 〈i| → 〈 j| is

dNi =−Aij Ni dt . (7.41a)

If the state Ei can relax into several lower states E j < Ei

(Fig. 7.13), we obtain for the total rate

dNi =−Ai Ni dt with Ai =
∑

j

Aij . (7.41b)

Integration of (7.41b) gives the time dependent
population density

Ni(t)= Ni(0)e
−Ai t . (7.41c)

The population of the excited state Ei decreases ex-
ponentially from its initial value Ni(0) at time zero to
Ni(∞)= 0 (Fig. 7.14).

The constant τi = 1/Ai is the mean lifetime of the
state Ei . This can be seen as follows. The mean lifetime
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Ei

E0

E1

E2

Ai2

Ai1

Ai0

Excitation

A Ai ij
j

= ∑

Fig. 7.13. Spontan-
eous radiative decay
(fluorescence) from
the excited level Ei
into several lower le-
vels E j

is defined as

〈ti〉 = 1

N0

0∫
N0

t · dNi(t)

=−
∞∫

0

tAi e−Ai t dt = 1

Ai
= τi , (7.42)

where (1/N0)dNi(t) dt is the probability of a decay of
an atom within the time interval between t and t+ dt.

After the mean lifetime 〈ti〉 = τi the initial
population Ni(t = 0) has decreased to Ni(0)/e.

Measurements of the mean lifetime of a level with
energy Ei allows the determination of the total transition
probability Ai =∑

Ain = 1/τi . The specific transition
probabilities Ain can be inferred from measurements of
the relative line intensities of the individual transitions
Ei → En using the relation

Ain = Ai
Iin/(hνin)∑
n Iin/(hνin)

. (7.43)

This yields, with (7.17), the transition matrix ele-
ments Mik [7.5].

τi
t

iN

)0(Ni

e
)0(Ni

Fig. 7.14. Experimental decay curve of the population Ni of
an excited level Ei with mean lifetime τi

If other relaxation processes (for example collisi-
ons) add with the probability Ri per second to the
deactivation of level Ei (Fig. 7.15), (7.41b) must be
modified to

dNi =−(Ai + Ri)Ni dt . (7.44)

We then obtain the time dependent population density

Ni(t)= Ni(0)e
−(Ai+Ri )t (7.45)

and the effective lifetime τeff becomes

τeff
i = 1

Ai + Ri
. (7.46)

If level Ei of atom A is depopulated by inelastic col-
lisions with other atoms B, the collision-induced rate
becomes

Ri = nBvABσ
inel
i , (7.47)

where nB = NB/V is the number density of atoms B
and

vAB =
√

8kT

πµ
with µ= MA MB

MA+MB
(7.48)

is the mean relative velocity of the two collision partners
with reduced mass µ in a gas cell at temperature T .

Plotting the inverse effective lifetime

1

τeff
i

= 1

τ
spont
i

+nBvABσ
inel
i (7.49)

as a function of the product nBvAB (Stern–Vollmer plot
(Fig. 7.16)) one obtains a straight line with the slope
equal to the inelastic collision cross section σ inel

i .
The intersection of this straight line with the axis

nB = 0 yields the inverse spontaneous lifetime 1/τ spont
i .

From the general equation of state

pV = NkT

Ei

E0

Ej

EmAij
Excitation

Rim

Inelastic
collisions

Fluorescence
Fig. 7.15. Inelastic
collisions can con-
tribute to the depo-
pulation of level Ei
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Fig. 7.16. Inverse effective lifetime 1/τeff as a function of the
density nB of collision partners B (Stern–Volmer plot)

the number density nB = N/V = p/kT can be expres-
sed by the pressure p and the temperature T , which
can be determined experimentally much easier than the
number density nB. This yields the relation

1

τeff
i

= 1

τ
spont
i

+σ inel
i

√
8

πµkT
p (7.50)

between effective lifetime τeff of an excited state and
the pressure p of the collision partners B [7.6, 7].

7.4 Line Profiles of Spectral Lines

The absorption or emission of radiation on an atomic
transition

∆E = Ei − Ek = hνik

does not result in a strictly monochromatic spectral line,
but rather in a frequency distribution around the cen-
tral frequency ν0. This gives a line profile I(ν−ν0)

with a full-width at half-maximum δν, which not only
depends on the spectral resolution of the measuring ap-
paratus but also on basic physical properties, such as
the lifetimes of the atomic states involved in the transi-
tion, the velocity distribution of the moving atoms and
the pressure of the gaseous sample.

The linewidth in frequency units is defined as the in-
terval δν = ν2−ν1 between the frequencies ν1 < ν0 and
ν2 > ν0 on both sides of the central frequency ν0, where
the intensity I(ν1)= I(ν2)= 1

2 I(ν0) of the spectral line
profile has dropped to half its maximum value at the
line center (full width half maximum FWHM). Often
the linewidth is given in units of the circular frequency
ω= 2πν⇒ δω= 2πδν or in units of the wavelength λ.

P /20

P0

P(ν)

δν

ν1 ν2ν0
ν

Line kernel

Line wing

Fig. 7.17. Line profile of a spectral line

Because λ= c/ν⇒
δλ=−(c/ν2)δν =−(λ/ν)δν . (7.51)

The relative half-widths are equal in all these notations,
because from (7.51) it follows that∣∣∣∣δλλ

∣∣∣∣= ∣∣∣∣δνν
∣∣∣∣= ∣∣∣∣δωω

∣∣∣∣ . (7.52)

The spectral interval inside the full half-width is cal-
led the line kernel, the ranges outside the line wings
(Fig. 7.17).

There are several reasons for the finite linewidths of
spectral lines:

• The energy levels of the atoms have an energy uncer-
tainty δE = h/τ related to their finite lifetime τ . The
frequency width of a spectral line corresponding to
a transition between levels Ei and Ek is

δνik = (δEi + δEk)/h

(natural linewidth, see Sect. 7.4.1).
• Atoms in a gas move with a mean velocity v, de-

pending on their mass and on the temperature of the
gas. This leads to a Doppler shift of their emitted
or absorbed radiation. The statistical distribution of
the velocities of many atoms in a gas results in stati-
stically distributed Doppler shifts, which gives rise
to a Gaussian line profile (Doppler broadening, see
Sect. 7.4.2).

• Every atom in a gas interacts with other neighbo-
ring atoms. This results in a shift of the atomic
energy levels. Since the interaction decreases with
increasing distance between the interacting atoms
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the level shifts and with it the line-shifts increase
with the density or pressure of the gas, resulting in
a pressure broadening and shift of the spectral lines
(Sect. 7.4.3).

We will now discuss these effects in more detail.

7.4.1 Natural Linewidth

An excited atom can deliver its excitation energy in
the form of spontaneous emission. We will describe
the excited electron by the classical model of a dam-
ped harmonic oscillator with mass m, spring constant D
and eigenfrequencyω0 =√

D/m (Hertzian dipole). The
time dependent amplitude of its oscillation can be
obtained from the equation of motion

ẍ+γ ẋ+ω2
0x = 0 , (7.53)

where γ is the damping constant. The real solution
of (7.53) is:

x(t)= x0 e−(γ/2)t [cosωt+ (γ/2ω) sinωt] . (7.54a)

Note that the frequency ω=
√
ω2

0− (γ/2)2 of the dam-
ped oscillator is slightly lower than ω0 of the undamped
oscillator. However, we will see that for excited atoms
the damping constant γ is in most cases much smal-
ler than ω0. We can therefore neglect the second term
and approximate ω by ω0. The solution of (7.53) then
becomes

x(t)≈ x0 e−(γ/2)t cosω0t . (7.54b)

Because of the time dependent amplitude x(t) the fre-
quency of the emitted radiation will no longer be strictly
monochromatic, as would be the case for an infinitely
long undamped oscillation. The Fourier transforma-
tion of x(t) yields the frequency distribution of the
amplitudes

A(ω)= 1√
2π

+∞∫
−∞

x(t)e−iωt dt

= 1√
2π

+∞∫
0

x0 e−(γ/2)t cosω0t e−iωt dt ,

(7.55a)

where we have assumed that the excitation of the atom
occurs at t = 0, which means that the oscillation starts
at t = 0, giving x(t< 0)= 0 (Fig. 7.18a).

x0

t

x

e
t− γ

2

a)

b)

1

0,5

ω0

ω

γ

( )A ω 2

Fig. 7.18. (a) Damped oscillation. (b) Lorentzian line profile
|A(ω)|2 as Fourier transform of a damped oscillation

The elementary integration of (7.55a) yields the
complex amplitudes

A(ω)= x0√
8π

[
1

i(ω0−ω)+γ/2
+ 1

i(ω0+ω)+γ/2
]
. (7.55b)

In the vicinity of the resonance frequency ω0 is |ω−
ω0| � ω0. We can therefore neglect the second term
in (7.55b).

The amplitude A(ω) is proportional to the Fourier
component E(ω) of the electric field of the emitted radi-
ation. Therefore the spectral radiation power density
Pω(ω) is

Pω(ω)∝ A(ω)A∗(ω) .

In the vicinity of the central eigenfrequency ω0 we then
obtain the spectral profile of the radiation power density

Pω(ω)= C

(ω−ω0)2+ (γ/2)2 . (7.56)

The constant C is chosen in such a way that the total
power becomes

∞∫
0

Pω(ω) dω= P0 . (7.57a)
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The substitution ω′ = ω−ω0 transforms the integral
into

∞∫
0

Pω(ω) dω≈
+∞∫

−∞
Pω(ω

′) dω′ = P0 . (7.57b)

The integration of this integral yields C = P0γ/2π.
The normalized line profile

Pω(ω)= P0
γ/2π

(ω−ω0)2+ (γ/2)2 (7.58a)

is called the Lorentzian profile (Fig. 7.18b). The full-
width at half-maximum (FWHM) is derived from (7.58)
as

δωn = γ ⇒ δνn = γ/2π . (7.59)

This half-width is called the natural linewidth, because
it is caused by the spontaneous emission of the atom,
without any external influences.

Note:

Sometimes one finds in the literature another normali-
zation where the constant C is chosen in such a way
that P0 = Pω(ω0) becomes the spectral power density
at the line center. This gives C = (γ/2)2 P0 and the line
profile becomes

Pω(ω)= P0

1+
(
ω−ω0
γ/2

)2 . (7.58b)

We can gain more physical insight into the energetic
conditions during the emission of radiation, when we
multiply both sides of (7.53) by mẋ, which gives

mẋẍ+mω2
0xẋ =−γmẋ2 . (7.60)

This can be written as
d

dt

[m

2
ẋ2+ m

2
ω2

0x2
]
= dW

dt
=−γmẋ2 . (7.61)

The expression in the brackets represents the total
energy W = Ekin+ Epot as the sum of kinetic and po-
tential energy. Inserting x(t) from (7.54b) into the left
side of (7.61) gives for γ � ω0 the radiation power

P = dW

dt
=−γmx2

0ω
2
0 e−γt sin2 ω0t . (7.62)

The average over one oscillation period becomes, with
〈sin2 ω0t〉 = 1/2,

P = dW

dt
=−1

2
γmx2

0ω
2
0 e−γt . (7.63)

Since the decrease of the oscillator energy equals the
radiation power, we can see from (7.63) that the radia-
tion power decreases exponentially and after the mean
lifetime τ = 1/γ it has only 1/e of its initial power
P(t = 0)= P0.

In Sect. 7.3 we have seen that the mean lifetime
τi = 1/Ai of an excited atomic state is related to the
Einstein coefficient Ai for spontaneous emission. This
means that when we replace the classical damping con-
stant γ by the Einstein coefficient Ai we can directly
adopt the formulas for a classical damped harmonic os-
cillator to describe the time dependence of spontaneous
emission of excited atoms. We then obtain for the natu-
ral linewidth of a transition from level |i〉 to the ground
state

δωn = Ai = 1

τi
⇒ δνn = Ai

2π
= 1

2πτi
. (7.64)

These equations can be also derived from Heisenberg’s
uncertainty relations. If an atomic state has a mean li-
fetime τ , its energy can be determined only within an
uncertainty ∆E = �/τ . The frequency uncertainty of
the emission from this state into the ground state (with

(∆ + ∆ )E E / hi k

E

Ei

Ek ∆Ek

∆Ei

)(P νν

Fig. 7.19. Natural linewidth caused by the energy uncertain-
ties∆Ei ,∆Ek of the atomic levels connected by the transition
hνik = Ei ↔ Ek
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τ0 =∞) is then

∆ν =∆E/h = 1

2πτ
⇒∆ν = δνn .

For a transition between two excited states Ek and Ei

with lifetimes τk and τi both energy uncertainties
contribute to the linewidth (Fig. 7.19), which yields

∆E =∆Ei +∆Ek ⇒ δνn = 1

2π

(
1

τi
+ 1

τk

)
.

(7.65)

EXAMPLES

1. The natural linewidth of the Na D-line, emit-
ted on the transition from the excited level 3P1/2

(τ = 16 ns) into the ground state 3S1/2 (τ =∞) is

δνn = 109

16 ·2π ≈ 107 s−1 = 10 MHz .

Since the frequency at the line center is ν0 = 5×
1014 s−1 the damping constant γ = 6.25×107 is
very small compared to ω0 = 2πν0. Only after
8×106 oscillation periods the amplitude has decre-
ased to 1/e of its initial value. This illustrates that
the approximation γ � ω0, made above, is indeed
well justified.

2. For metastable excited states, the lifetimes may be-
come very long, because there are no allowed spon-
taneous transitions to lower states. Examples are the
22S1/2 states of the H atom, or the 23S1 state of the
He atom. The excited 22S1/2 state of the hydrogen
atom can only undergo a two-photon transition into
the ground state. Its lifetime is about 0.14 s (!) and
its natural linewidth is accordingly δνn = 1.1 s−1.
Such a small linewidth can be measured only with
special techniques (see Chap. 11).

7.4.2 Doppler Broadening

If an excited atom moves with the velocity
v= {vx, vy, vz}, the center frequency of the radiation,
emitted into the direction of the wave vector k of the
wave appears for an observer at rest Doppler-shifted to

ωe = ω0+k ·v with |k| = 2π/λ (7.66)
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→

v
→

Fig. 7.20a–c. Doppler-broadening of spectral lines. (a) Doppler-
shift emitted. (b) Absorbed photons. (c) Gaussian line profile
caused by the thermal velocity distribution of absorbing or
emitting atoms

(Fig. 7.20a). Also, the absorption frequency ωa of an
atom, moving with the velocity v changes. If a plane
wave with wave vector k and frequency ω hits the mo-
ving atom, the frequencyω appears in the moving frame
of the atom shifted to ω′ = ω−k ·v. Since the absorp-
tion frequency of the atom in its rest frame is ω0, the
wave can only be absorbed if ω′ = ω0. The frequency
of the incident wave therefore has to be

ω= ωa = ω0+k ·v (7.67)

in order to be absorbed (i.e., coincide with the center
frequency ω0 of the atom in its rest frame).

If the wave travels in the z direction its wave vec-
tor is k= {0, 0, vz} ⇒ k ·v = kzvz and the absorption
frequency becomes

ωa = ω0+ kzvz = ω0(1+vz/c) (7.68)

(Fig. 7.20b).
At thermal equilibrium, the velocities of the atom

follow a Maxwell–Boltzmann distribution. The number
density ni(vz) dvz of atoms in the absorbing level |i〉
with velocity components vz within the interval from vz
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to vz + dvz is given by

ni(vz) dvz = Ni

vw
√
π

e−(vz/vw)
2

dvz , (7.69)

where vw = (2kBT/m)1/2 is the most probable velocity
component, kB is the Boltzmann constant and

Ni =
+∞∫

−∞
ni(vz) dvz

is the total number of all atoms in level Ei per unit
volume.

If vz and dvz in (7.69) are expressed by the fre-
quency ω and the frequency shift dω according to
the relations (7.68) we obtain vz = (c/ω0)(ω−ω0) and
dvz = (c/ω0) dω. Inserting this into (7.69) gives the
number of atoms

ni(ω) dω= cNi

ω0vw
√
π

e−[c(ω−ω0)/(ω0vw)]2 dω (7.70)

that absorb or emit radiation within the frequency in-
terval between ω and ω+ dω. Since the absorbed or
emitted spectral radiation power density is proportional
to n(ω) dω, the intensity profile of a Doppler-broadened
absorption or emission line becomes

Pω(ω)= Pω(ω0)e
−[c(ω−ω0)/(ω0vw)]2 . (7.71)

This a Gaussian function that is symmetric to the center
frequency ω0 (Fig. 7.20c). The full half-width is

δωD = |ω1−ω2|
with P(ω1)= P(ω2)= 1

2
P(ω0) .

Using the relation vw = (2kBT/m)1/2 converts this into

δωD = 2
√

ln 2ω0vw/c = (ω0/c)
√

8kBT ln 2/m .
(7.72a)

Because (4 ln 2)−1/2 ≈ 0.6 we can write (7.71) as

P(ω)= P(ω0)e
−[(ω−ω0)/0.6δωD]2 . (7.71b)

The Doppler-width δωD increases proportionally
with the frequency ω0, with T 1/2 and decreases
with increasing mass m of the atom as m−1/2.

With the Avogadro number NA, the molar mass
M = NAm and the gas constant R = NAkB we can
transform (7.72a) into the expression

δνD = 2ν0
c

√
(2RT/M) ln 2

= 7.16×10−7ν0
√

T/M s−1
, (7.72b)

which is more handy for fast calculations, where T is
given in K and M in g/mol.

EXAMPLES

1. The Lyman α-line of the transition 2P → 1S
in the hydrogen atom (M = 1 g/mol): λ =
121.6 nm ⇒ ν0 = 2.47×1015 s−1. At a temperature
of T = 1000 K in a hydrogen discharge the Doppler-
width becomes δνD = 5.6×1010 s−1 = 56 GHz,
δλD = 2.8×10−3 nm.

2. The Na D-line of the transition 3P1/2 → 3S1/2

in the sodium atom (M = 23 g/mol) has a wave-
length λ= 589.1 nm and a frequency ν0 = 5.1×
1014 s−1. At a temperature T = 500 K the Doppler-
width is δνD = 1.7×109 s−1 = 1.7 GHz⇒ δλ= 2×
10−3 nm.

3. The infrared transition in the CO2 molecule
(M = 44 g/mol) at λ≈ 10 µm (ν0 = 3×1013 s−1)
has, at room temperature T = 300 K, a Doppler
width δνD = 5.6×106 s−1 = 56 MHz⇒ δλ= 1.3×
10−3 nm.

These examples show that in the visible range the
Doppler width exceeds the natural linewidth by
about two orders of magnitude.
This is also true for vibrational transitions in the
infrared, where the lifetimes of the vibrational
levels are very long and the natural linewidths
accordingly small.

This implies that generally the natural linewidth is
completely masked by the much larger Doppler-width.
Without special experimental tricks (see Sect. 11.5.8) it
is therefore not possible to measure the natural linewidth
directly. It is, however, possible to determine it from
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measured spontaneous lifetimes of excited states (see
Sect. 7.3).

Note:

The Gaussian line profile of Doppler broadening de-
creases exponentially with increasing distance |ω−ω0|
from the line center ω0, (see (7.73)), while the Lorent-
zian line profile decreases only as (ω−ω0)

−2 (7.58).
Therefore, it is possible to extract from the extreme line
wings, information on the natural line profile in spite of
the much larger Doppler-width (Fig. 7.21).

More detailed consideration shows that a Doppler-
broadened spectral line cannot be strictly represented
by a pure Gaussian profile as has been assumed in the
foregoing discussion, since not all atoms with a de-
finite velocity component vz emit or absorb radiation
at the same frequency ω′ = ω0(1+vz/c). Because of
the finite lifetime of the atomic energy levels, the fre-
quency response of atoms with a velocity component vz

is represented by the Lorentzian profile (see Sect. 7.4.1)

L(ω−ω′)= γ/2π

(ω−ω′)2+ (γ/2)2 (7.73)

with a central frequency ω′ = ω0(1+vz/c) (Fig. 7.22).
Let n(ω′) dω′ = n(vz) dvz be the number of atoms

per unit volume with velocity components within the
interval vz to vz + dvz . The spectral intensity distribu-
tion I(ω) of the total absorption or emission of all atoms
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Fig. 7.21. Comparison between Lorentzian and Gaussian line
profiles with equal half-widths
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Fig. 7.22. Voigt profile as a convolution of Lorentzian line
shapes L(ω0−ω′) with ω′ = ω0(1+vz/c)

on the transition Ei → Ek is then

I(ω)= I0

∞∫
0

n(ω′)L(ω−ω′) dω′ . (7.74a)

Inserting (7.74a) for L(ω−ω′) dω′ and (7.70) for n(ω′)
we obtain

I(ω)= C

∞∫
0

e−[(c/vp)(ω0−ω′)/ω0]2

(ω−ω′)2+ (γ/2)2 dω′ (7.74b)

with

C = γNic

2vpπ3/2ω0
.

This intensity profile, which represents a convolution
of Lorentzian and Gaussian profiles (Fig. 7.22) is called
a Voigt profile. Such profiles play an important role for
the spectroscopy of stellar atmospheres, where accu-
rate measurements of line wings allow one to separate
the contributions of Doppler-broadening and natural
linewidths or collisional broadening. From such mea-
surements, the temperatures and the pressures of the
atmospheric layers of stars or planets from which the
radiation is emitted or where radiation from the inner
part of the star is absorbed can be deduced.

7.4.3 Collision Broadening

If an atom A, with energy levels Ei and Ek, approaches
another atom or molecule B, the interaction between A
and B shifts the energies of both levels. This energy
shift depends on the structure of the electron shell of
both partners A and B, on the specific energy levels and
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on the mutual distance R(A,B), which we define as the
distance between the centers of mass of A and B. The
energy shift generally differs for the different levels.
It may be positive (for repulsive potentials between A
and B) or negative (for attractive potentials). Plotting
the energies Ei(R) and Ek(R) of atom A as a function
of the distance R we obtain potential curves, such as
those schematically drawn in Fig. 7.23. The approach
of two particles to a distance Rc, where the interac-
tion energy becomes noticeable (this means that the
potential curves deviate noticeably from E(R =∞)),
is called a two-body collision and the system AB(R) is
called a collision pair. If the densities of A and B are not
too high, the probability that three collision partners ap-
proach each other simultaneously within R< Rc (three
body collision) is very small and we can neglect it.

The distance Rc where the interaction becomes no-
ticeable is the collision radius. If the relative velocity
of A and B is v, the duration of the collision (also called
the collision time) can be defined as τcoll = Rc/v.

Fig. 7.23a,b. Collision broadening. (a) Potential curves of
the collision pair AB and A∗B. (b) Shift and broadening of
a spectral line by collisions

EXAMPLE

At thermal velocities of v= 5×102 m/s and a typical
collision radius Rc = 1 nm the collision time beco-
mes τcoll = 2×10−12 s. This illustrates that the collision
times are very short.

Note, that one has to distinguish between the colli-
sion time and the mean time 〈τ〉 = n−1/3/v between two
collisions, which is proportional to the average distance
d = n−1/3 between two atoms and therefore depends on
the density n of the collision partners. At sufficiently
low pressures, 〈τ〉 is much longer than τcoll.

EXAMPLE

At a pressure of 1 mbar the density is about 3×
1022 m−3. With a relative velocity v= 5×102 m/s we
obtain 〈τ〉 ≈ 3×10−11 s.

The frequency

νik = |Ei(R)− Ek(R)| /h
of the radiation emitted or absorbed on the transition
Ei → Ek during a collision depends on the distance R
at which the transition takes place (we assume here
that the duration of the radiative transition is short
compared with the collision time, which means that
in Fig. 7.23a, the transition can be drawn as a vertical
line). In a gas mixture, the distances R show random
fluctuations with a distribution around a mean value Rm,
which depends on the pressure and temperature of the
gas. The frequencies of absorbed or emitted radiation
show a corresponding distribution around a most pro-
bable value νik(Rm), which may be shifted against the
center frequency ν0 of the unperturbed atom A. The
shift∆ν = ν0−νik(Rm) depends on how differently the
two energy levels Ei and Ek are shifted at a distance
Rm(A,B) where the transition probability for emission
or absorption has a maximum.

The intensity profile I(ω) of the collision broadened
emission line can be described by

I(ω)∝
∫

Aik(R)Pcoll(R)

× d

dR
[Ei(R)− Ek(R)] dR , (7.75)

where Aik(R) is the spontaneous transition probabi-
lity, which depends on R because the electronic wave
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functions of the collision pair (AB) depend on R. The
probability Pcoll(R) that the distance R lies between R
and R+ dR depends on the interaction potential, the
density and the temperature of the gas. It can be derived
in the following way:

The number of particles B in a spherical shell with
radius R around atom A is

NB(R) dR = n04πR2 dR e−Epot(R)/kT , (7.76)

where n0 is the average density of atoms B. The Boltz-
mann factor exp(−Epot/kT) takes into account that the
energy of the collision pair depends on the potential
interaction energy Epot(R). The probability P(R) is
(N(R)/n0). Inserting this into (7.75) gives the intensity
profile of the absorption line

I(ω) dω (7.77)

= C∗
[

R2 e−E(i)pot(R)/kT d

dR
(Ei(R)− Ek(R))

]
dR .

Measuring the line profile as a function of the
temperature gives

dI(ω, T)

dT
= E(i)pot(R)

kT 2
I(ω, T) . (7.78)

This allows the determination of the ground state
potential seperately!

From the temperature dependence of the line pro-
file, one can determine the interaction potential
for the two corresponding states separately, while
from measurements at constant temperature only
the difference ∆E(R) can be obtained.

Frequently, spherical model potentials are substitu-
ted into (7.77), such as the Lenard–Jones potential

Epot(R)= a

R12
− b

R6
. (7.79)

The coefficients a and b are adjusted for optimum
agreement between theory and experiment.

So far we have only discussed elastic collisions,
where the energy level of the atom A is only shifted du-
ring the collision, but returns to its initial value after the
collision, unless the atom has emitted a photon during
the collision. The shift of absorption or emission lines
caused by elastic collisions corresponds to an energy
shift ∆E = �∆ω between the excitation energy �ω0 of

the free atom A∗ and the energy �ω of the emitted pho-
ton. This energy difference is supplied from the kinetic
energy of the collision partners. In the case of positive
shifts (∆ω> 0), the kinetic energy is smaller after the
collision than before.

Besides these elastic collisions, inelastic collisions
may also occur in which the excitation energy of atom A
is either partly or completely transferred into internal
energy of the collision partner B, or into translational
energy of both partners A and B. Such inelastic col-
lisions are called quenching collisions, because they
decrease the number of excited atoms A in level Ei

and therefore quench the fluorescence intensity. The
total transition probability Ai for the depopulation of
level Ei is the sum of radiative and collision-induced
probabilities

Ai = Arad
i + Acoll

i with Acoll
i = nBσiv . (7.80)

Inserting the relations

v=
√

8kT

πµ
, µ= MA MB

MA+MB
,

and pB = nBkT

between the mean relative velocity v, the partial pres-
sure p of the particles B with number density nB and the
gas temperature T gives the total transition probability

Ai = 1

τ
spont
i

+apB with a = 2σik

√
2

πµkT
,

(7.81a)

which is identical to (7.50) for the lifetime dependence
on pressure.

It is evident from (7.64) that this pressure-dependent
transition probability causes a corresponding pressure
dependent linewidth δω, because it shortens the effec-
tive lifetime of the excited level. It can be written as the
sum of two damping terms

δω= δωn+ δωcoll = γn+γcoll = γn+apB . (7.81b)

The collision-induced additional line broadening apB

is therefore often called pressure broadening.
In a classical model, which describes the excited

atom A by a damped harmonic oscillator, the inela-
stic collisions decrease the amplitude of the oscillation.
Although the elastic collisions do not change the am-
plitude, they do change the phase of the oscillation
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(Fig. 7.24). Because the energy difference between the
corresponding states of the atom A changes during the
elastic collision time, the frequency ω of the emitted
or absorbed radiation changes by ∆ω(R). This change
depends on the interaction potential between A and B.
Although after the collision the frequency again takes
its initial value, the phase-change is (Fig. 7.24)

∆ϕ =
∞∫

0

∆ω(t) dt . (7.82)

Elastic collisions are therefore called phase-changing
collisions. Since the frequency differences∆ω differ for
collisions with different distances R(AB), the ensemble
of atoms A has suffered random phase changes. The
Fourier transform of the radiation gives a Lorentzian
line profile, which is broadened and shows a shift of its
line center (Fig. 7.23).

The line profile caused by elastic and inela-
stic collisions is obtained after a somewhat lengthy
calculation [7.8] as

I(ω)=
(
γn+γinel

2 + Nvσb
)2

(ω−ω0− Nvσs)2+
(
γn+γinel

2 + Nvσb
)2 .

(7.83a)

Fig. 7.24a–c. Elastic collisions as phase perturbers. (a) Clas-
sical path of the collision partner B. (b) Frequency shift of A
during the collision. (c) Resulting phase shift

Table 7.3. Line broadening δνB and line shift ∆νS (in
MHz/Pa) for some transitions in alkali atoms colliding with
noble gas atoms

Collision partner
Atomic He Ar Xe
Transition δνb ∆νs δνb ∆νs δνb ∆νs

Na:
3S1/2 ↔ 3P1/2 0.07 0.0 0.1 −0.05 0.13 −0.07
λ= 589.6 nm

K:
4S1/2 ↔ 4P1/2 0.06 0.02 0.1 −0.09 0.12 −0.07
λ= 589.6 nm

Cs:
6S1/2 ↔ 6P1/2 0.08 0.05 0.08 −0.07 0.09 −0.06
λ= 589.6 nm

The cross sections

σb = 2π

∞∫
0

(1− cosϕ(R))R dR (7.83b)

σs = 2π

∞∫
0

sinϕ(R))R dR (7.83c)

are a measure for the line broadening (σb) and the line
shift (σs) by elastic collisions.

Both elastic and inelastic collisions result in the
broadening of spectral lines. Elastic collisions
cause, in addition, a shift of the line center.

The classical models of pressure broadening and
shifts can be extended to a more general quantum me-
chanical treatment [7.9, 10]. This, however, exceeds the
scope of this textbook.

7.5 X-Rays

In the year 1895, in the German city of Würzburg,
Wilhelm Conrad Röntgen (1845–1923) (Fig. 7.25) dis-
covered, while experimenting with gas discharge tubes
developed by Phillip Lenard, that radiation was emit-
ted from these tubes that could penetrate materials such
as glass, wood or human tissue. Since he did not know
much about the nature of this radiation, he called it
X-ray radiation.
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Fig. 7.25. Wilhelm Conrad Röntgen (From E. Bragge; Die
Nobelpreisträger, Heinz-Moos-Verlag, München 1964)

In the following years, the importance of these
X-rays for material inspection and in particular for me-
dical diagnostics, soon became evident and in 1903
Röntgen was the first physicist to receive the Nobel
Prize. In the following 100 years the applications of
X-rays have vastly increased [7.11], ranging from ma-
terial sciences, sterilization of food, numerous medical
applications culminating in the development of X-ray
tomographs to discoveries of new phenomena in the
universe using X-ray astronomy [7.12, 13, 14].

The basic principle of an X-ray tube is shown in
Fig. 7.26. Electrons are emitted from a heated cathode,
accelerated by a voltage U and impinge onto an an-

Vacuum
Anode

UH

Cathode

Window

U
− +

e−

ν⋅h

Fig. 7.26. Schematic illustration of an X-ray tube

ode. In the anode material (for example tungsten) the
electrons are stopped and part of their energy eU is
converted into radiation with short wavelengths. These
X-rays leave the tube through a window and can be
collimated by proper apertures.

X-rays are produced by two different effects:

1. By decelerating energetic electrons (ranging
from keV to MeV) bremsstrahlung is produced with
a continuous spectral intensity distribution I(λ),
which depends on the energy of the electrons.

2. The energetic electrons can excite inner shell tran-
sitions in the atoms of the anode. The excited
states Ei emit X-rays as spectral lines on transiti-
ons Ei → Ek with wavelengths λik, characteristic
for the anode material. These X-rays are therefore
called characteristic X-ray radiation.

We will now discuss both effects in more detail.

7.5.1 Bremsstrahlung

Energetic electrons passing through a material with high
nuclear charge numbers Z, are deflected in the Cou-
lomb field of the positive nuclear charge (Fig. 7.27a).
Since, according to electrodynamics, every accelerated
or decelerated charge emits radiation with a radiation
power proportional to the square of the acceleration,
these electrons emit a broad radiation continuum with
an intensity distribution depending on the initial elec-
tron energy (Fig. 7.28). The high energy limit of this

Electron
shell

e−

a)

e−
E E Ekin B= ∆ −

b)

ν⋅heZ ⋅

)Ue(e ⋅−

)EUe(e ∆−⋅−

Fig. 7.27a,b. The origin of the continuous X-ray radiation
(bremsstrahlung). (a) Deflection of an incident electron in the
Coulomb field of the nucleus of target atoms. (b) Inelastic
collision of an incident electron with an electron in the shell
of a target atom
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Fig. 7.28. Spectral distribution of the bremsstrahlung in
a tungsten target for different voltages U

continuum is reached when the total energy Ekin = eU
of the incident electrons is converted into radiation. This
gives the condition

hν ≤ hνmax = eU ⇒ λ≥ λmin = hc

eU
. (7.84)

Inserting the quantitative values for h, c and e into (7.84)
yields the more readily calculable form

λmin = 1234.5(U[V])−1 nm . (7.85)

EXAMPLE

U = 10 kV⇒ λmin = 0.12 nm, or νmax = 2.5×1018 s−1.
U = 50 kV ⇒ λmin = 0.024 nm, or νmax = 1.25×
1019 s−1.

Of course, the incident electrons can also collide
with the electrons in the atomic shells of the anode

material (Fig. 7.27b). The outer electrons with a small
binding energy are kicked away by collisions with the
high energy incident electrons, they collide further with
electrons of other atoms and finally convert their energy
into heat. Collisions with more tightly bound inner elec-
trons lead to excitations into higher, but still bound,
atomic states. This excitation energy is transferred to the
characteristic X-ray fluorescence emitted by the excited
atoms.

Both contributions represent electromagnetic radia-
tion as was first proved by the English physicist Charles
Glover Barkla (1877–1944, Nobel Prize 1917), who
measured the polarization of the X-radiation. Further
convincing proofs were given by the German physi-
cist Max von Laue and his assistants W. Friedrich and
P. Knipping and later by the English physicists Wil-
liam Henry Bragg (1862–1942) (Fig. 7.29) and his son
William Lawrence Bragg (1890–1971) who together

Fig. 7.29. William Henry Bragg (From E. Bragge; Die Nobel-
preisträger der Physik, Heinz Moos-Verlag, München 1964)
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received the Nobel Prize in 1915. They measured in-
terference and diffraction patterns when single crystals
were illuminated by X-rays, which demonstrated that
X-rays were electromagnetic waves.

7.5.2 Characteristic X-Ray-Radiation

The spectral lines of the characteristic X-ray radiation
appear only if the energy of the electrons, incident on
the anode, is sufficiently high to excite atomic inner
shell electrons into higher unoccupied levels (Fig. 7.30)
according to the scheme

e−(Ekin)+A(Ek)⇒ A∗(Ei)+ e−(E ′
kin) (7.86a)

with Ekin− E ′
kin = Ei − Ek

A∗(Ei)⇒ A(Ek)+hνik (7.86b)

with hνik = Ei − Ek .

EXAMPLE

Ek(Cu(1s))=−8978 eV (binding energy of an electron
in the 1s level of the K-shell); Ei(Cu(6p))=−4 eV. The
incident electrons can therefore only excite electrons in
the K-shell into the level Ei , which emits the Cu-K-
radiation, if their kinetic energy is above 8974 eV.

The characteristic X-ray radiation appears as
sharp lines superimposed on the continuous spectral
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E
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Ionization
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h nk⋅ ν
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Fig. 7.30. Level scheme for the explanation of the characteri-
stic X-ray emission from the anode atoms

Tungsten anode
U = 100 kV
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Fig. 7.31. (a) Continuous X-ray radiation, superimposed by
the characteristic lines of tungsten. (b) Ratio η= Pchar/Pcont
of emitted characteristic and continuous X-ray radiation
power from a tungsten anode as a function of applied
voltage U

background of the bremsstrahlung (Fig. 7.31). With in-
creasing voltage U between the cathode and anode, the
ratio η= Pchar/Pcont of the emitted powers of charac-
teristic to continuous radiation increases (Fig. 7.31b).
However, even at a voltage U = 250 kV it is only
about 0.1 for a tungsten anode.

7.5.3 Scattering and Absorption of X-Rays

When a parallel X-ray beam passes through a sample in
x direction (Fig. 7.32) the transmitted radiation power
P(x) decreases after the pathlength dx by

dP =−µP dx . (7.87a)
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P0 Pdx

dP P P Pdx= − = − ⋅0 µ

Fig. 7.32. Absorption and
scattering of X-rays in
matter

The constant factor µ, which depends on the material
of the sample is the attenuation coefficient. Integration
over a sample thickness x gives

P(x)= P0 e−µx . (7.87b)

The attenuation has two reasons: scattering and absorp-
tion, which may be both simultaneously effective. The
attenuation coefficient can therefore be written as the
sum

µ= µs+α
of scattering coefficient µs and absorption coeffi-
cient α.

The scattering is produced by the atomic electrons
of the sample. In a classical model, each electron can
be regarded as a harmonic oscillator induced to forced
oscillations under the influence of the incident electro-
magnetic wave with frequency ω (Hertzian oscillating
dipole). Assume that the electric field vector of the inci-
dent wave points in the y direction. Then the oscillating
dipole is described by y = y0 sinωt. The amplitude A
of the radiation emitted by the oscillator is proportional
to the acceleration

ÿ =−ω2 y0 sinωt =−ω2 y . (7.87c)

The emitted power, which is proportional to the absolute
square of the amplitude, scales therefore with ω4! In
electrodynamics it is shown that the power emitted by
an oscillating dipole is

Ps(ϑ)= e2 y2
0ω

4

32π2ε0c3
sin2 ϑ , (7.87d)

where ϑ is the angle between the dipole axis (in our
example the y direction) and the direction of observa-
tion. The total scattered power emitted by N scatterers
in a solid sample where all atoms stay at their po-
sitions, depends on the ratio of wavelength λ to the

diameter d of the scattering region. If d � λ, the pha-
ses of the waves scattered by the different atoms differ
only by an amount ∆ϕ� 2π. All waves interfere co-
herently and the total amplitude of the scattered wave
is proportional to N , which implies that the scattered
power is proportional to N2! (coherent scattering). If
the diameter d is comparable or larger than λ, con-
structive and destructive interference occurs and for
a non-periodical random arrangement of the scatterers,
the total scattered power only scales with N (incoherent
scattering).

The scattering can be described by a scattering cross
section σs, which defines the area around a scattering
atom through which an incident photon has to pass in
order to be scattered. If the number density of scat-
terers is N the scattering coefficient µs is related to the
scattering cross section σs by

µs = Nσs , (7.87e)

with a thickness t of the scattering sample and an
incident power P0 the scattered power is

Ps = P0
(
1− e−µst)≈ P0 ·µs · t for µs · t � 1 .

(7.87f)

The scattering cross section scales withω4 or λ−4.
It is therefore much larger in the X-ray region than
in the visible range.

EXAMPLE

When visible radiation with λ= 500 nm passes through
clear water it is attenuated by scattering to 1/e of its in-
itial intensity only after a path length of 1 km, while the
intensity of X-rays with λ= 0.1 nm is already reduced
to 1/e after a 5 mm path length!

Besides elastic scattering where the wavelength of
the scattered radiation is the same as that of the incident
radiation, also inelastic scattering can occur (Compton
effect, see Sect. 3.1.6). Here the scattered photon with
ν′ < ν may be either scattered again or it may be absor-
bed. This leads to a complete absorption of the incident
power, if the thickness of the sample is sufficiently large.

The absorption of X-rays strongly depends on the
absorbing material. It is caused by three different
effects.
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Fig. 7.33. The
photoeffect

Photoeffect: The X-ray quantum hν is absorbed by
an atom in the sample in the state Ek. This leads to
photoionization of an inner shell electron (Fig. 7.33)
and can be written as

hν+A(Ek)→ A+(Eion)+ e−(Ekin) . (7.88)

Energy conservation demands the relation

Ekin(e
−)= hν− (Eion− Ek) . (7.89)

Compton effect: The X-ray quantum hν “collides” with
a “nearly free” electron, which has a binding energy
Eb � hν (see Sect. 3.1.6), transfers only part of its
energy onto the electron, and is inelastically scattered
according to the scheme:

hν+ e− → hν′ + e−(Ekin) . (7.90)

With h(ν−ν′)= Ekin(e−)+ Ebind (Fig. 7.34a). The in-
elastically scattered photon hν′ can be absorbed by other
atoms of the sample (photoeffect).

e−

( )E hkin = ⋅ −ν ν'

e−

e+

h m c Ee kin⋅ = +ν 2 22

a)

b)

h ⋅ ν'h ⋅ ν

h ⋅ ν

Fig. 7.34. (a) The Compton effect. (b) Pair formation

Pair formation: For sufficiently high energies hν >
1 MeV the X-ray quantum can produce in the material
an electron positron pair (Fig. 7.34b)

hν→ e−+ e++2Ekin (7.91)

with hν = 2mec2+ Ekin(e−)+ Ekin(e+). Each of the
two particles must have the same kinetic energy because
they have equal masses. This follows immediately from
the conservation of momentum.

The relative share of the three processes to the ab-
sorption of X-rays strongly depends on the energy hν.
In Fig. 7.35 the contributions of the three processes
are plotted as a function of the photon energy. This
illustrates that for lead the photoeffect is the domi-
nant absorption process for energies hν < 500 keV, but
decreases sharply with increasing photon energy. The
total absorption cross section has a minimum at photon
energies around 3 MeV.

The absorption coefficient

α= nσa (7.92)

is the product of particle density n and absorption
cross section σa. Often the attenuation of incident X-
rays is related to the mass of the absorbing material
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Fig. 7.35. Contributions of the photoeffect, the Compton ef-
fect and pair formation on the absorption coefficient of X-rays
in lead and their dependence on the photon energy
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Table 7.4. Mass absorption coefficient κ/(m2/kg) of different
absorbing materials for X-rays with photon energies hν/eV
and wavelengths λ/pm

h ·ν λ Air H2O Al Cu W Pb

5 246 2 2.0 25 24 70 100
10 123 0.5 0.52 2.6 22.4 9.53 13.7
50 25 0.02 0.92 0.04 0.26 0.6 0.8

100 12 0.015 0.017 0.02 0.05 0.4 0.6

rather than to its thickness. With a mass density ρ
the product ρx gives the mass per unit area that is
traversed by the photon along the pathlength x. The
equation

e−αx = e−(α/ρ)ρx = e−κa·ρ·x (7.93)

relates the absorption coefficient α with the mass-
absorption coefficient

κa = α
ρ
; [κa] = 1

m2

kg
.

The ratio xe = 1/(κa ·ρ) gives the pathlength xe af-
ter which the intensity of the X-rays has decreased
to 1/e, while 1/κa gives that mass per cm2 area per-
pendicular to the X-ray direction that decreases the
incident intensity to 1/e. The mass attenuation coef-
ficient κa depends on the material and on the photon
energy hν.

EXAMPLE

Lead has a density ρ = 11.3×103 kg/m3. For X-rays
with λ= 0.1 nm (≈ 12 keV) the mass-absorption coef-
ficient is κa = 7.5 m2/kg. One therefore needs a mass
area density of 0.61 kg/m2 in order to attenuate the in-
cident X-rays down to 1% = e−4.6. This corresponds
to a thickness t = 54 µm of a lead sheet. For X-
rays with λ= 0.01 nm (≈ 120 keV) is κa = 0.5 m2/kg.
Now a thickness of t = 0.8 mm is necessary for the
attenuation down to 1%.

The mass-absorption coefficient of a sample with n
atoms per m3 can be written as the ratio

κa = α
ρ
= nσa

ρ
= σa

ma
(7.94)

of absorption cross section σa and atomic mass ma =
ρ/n, where the absorption cross section

σa = CZ4λ3 (7.95)

strongly depends on the number Z of electrons of each
atom and the wavelength λ.

Experiments show that the absorption cross sec-
tion σa is proportional to the fourth power of
the nuclear charge Z and the third power of the
wavelength λ.

The constant C depends on the absorbing material,
e.g., the packing density of the absorbing atoms and the
number of electrons per atom. For absorbing molecular
samples the absorption cross sections of the molecules
is the sum of the atomic cross sections σa

σam =
∑
σai .

Lead (Z = 82) attenuates X-rays, because of the Z4-
dependence, about 1580 times more than an equal path
length in aluminum (Z = 13), and still 100 times more
than iron (Z = 26). The mass absorption coefficients,
however, are only proportional to Z3, because the ato-
mic masses scale with Z. It is: n · Z ≈ 1

2 n · A ∝ n ·
ma ⇒ κa ∝ σa/Z. For equal masses per irradiation
area lead attenuates about 30 times more than iron.

Plotting the cubic root of the absorption cross sec-
tion σ1/3

a as a function of λ over a large wavelength
range (Fig. 7.36) one finds a straight line as predicted by
the relation (7.95). However, at certain wavelengths λk,
characteristic for the absorbing atoms, the absorption
coefficient jumps suddenly and then follows a straight
line again. This shows that below these wavelength λk,
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Fig. 7.37. Energy level diagram for the explanation of the
absorption edges

called the absorption edges, a new absorption channel
is opened. The explanation of this behavior is given by
Fig. 7.37, which shows schematically the energy level
diagram for absorbing transitions of an atom with io-
nization energy EI. For photon energies hνk < EI− Ek

electrons in atomic shells with principal quantum num-
bers n > k can be ionized. These electrons can all
contribute to the absorption cross section. When the
photon energy exceeds the value hνk the electrons in
shell n = k can be additionally ionized and therefore
add to the absorption cross section, which means that
a new absorption channel is opened. According to the
new electron shell accessible to absorption of the X-
ray quanta, the absorption edges are called K-, L-, or
M-edges. Equation (7.95) can be adapted to the real wa-
velength dependence of the absorption cross section by
fitting the constants C for each section between two ab-
sorption edges. This yields different values of C for the
different sections.

Plotting the square root ν̄1/2
k of the reciprocal wave-

length ν̄k = 1/λk against the nuclear charge number Z
(Fig. 7.38) yields the approximate relation

νk = Kn(Z− S)2 ⇒ νk = cKn(Z− S)2 , (7.96)

where Kn is a constant depending on the principal
quantum number n, and S is the shielding factor of
the nuclear charge Z · e (see Sect. 6.1.1). These rela-
tions, discovered empirically by Henry G.J. Moseley
(1887–1915), can be immediately explained by the term
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Fig. 7.38. Moseley diagram of the Z-dependence of the K-
absorption edges

energies of the two corresponding levels with n = k and
n = i of the absorbing transition

hνik = (Z− S)2 Ryhc

(
1

n2
k

− 1

n2
i

)
(7.97a)

⇒ ν̄ik = (Z− S)2 Ry

(
1

n2
k

− 1

n2
i

)
. (7.97b)

Here Zeffe = (Z− S)e is the effective nuclear charge,
which is the real charge Ze, partly shielded by the in-
ner electrons, described by the shielding factor S (see
Sect. 6.1). If the upper level is above the ionization
energy (ni =∞) (7.97) simplifies to

νk = Ry

n2
k

(Z− S)2 (7.97c)

and the K-edge with nk = 1 appears at the wavenumber

ν(k)= Ry(Z− S)2 . (7.97d)

Measuring the wavelengths λn of the different edges gi-
ves the shielding factor S for the corresponding electron
shells.

EXAMPLE

For lead (Z = 82) the wavelength at the K-edge is
λk = 14.8 pm, which yields the effective nuclear charge
number Zeff = 80.4, corresponding to a shielding con-
stant S = 1.61. The large shielding factor S> 1 shows
that besides the remaining 1s electron, which gives the
main contribution to the shielding, electrons from higher
shells also contribute, since their wave functions ψ(r)
have a non-negligible value for r < 〈r(1s)〉.
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Moseley used his measurements of K absorption
edges to determine the nuclear charge numbers of many
elements, where he assumed the shielding factor to be
S = 1.

Measuring the spectral intervals around the absorp-
tion edges with higher resolution reveals a substructure.
The edges consist of several closely spaced peaks
(Fig. 7.39). The reason for this is the following.

For levels n with an angular momentum J> 0, the
energy levels En split due to two effects. Firstly, le-
vels with the same principal quantum number n, but
different orbital angular momentum quantum num-
bers L are degenerate only in the Coulomb potential
but have different energies in the real potential of many-
electron atoms. Secondly, atoms with an electron spin
S 	= 0 split, due to spin-orbit interaction (see Sect. 5.5)
into fine-structure components with the same principal
quantum number n, but different values of J = L+ S
(see Fig. 7.37). Therefore, the absorption edges also
show these splittings.

The K-shell with n = 1 shows no splitting be-
cause the angular momentum quantum numbers of
the absorbing electron have to be l = 0 and s = 0.
The levels with n = 2 in the L-shell have three sub-
levels (l = 0; l = 1, j = 1/2; and l = 1, j = 3/2).
Since the fine-structure splittings increase with Z4

they can reach values of several keV for heavy
elements.
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Fig. 7.39. Fine structure of the L-absorption edge in the X-ray
absorption spectrum of lead

7.5.4 X-ray Fluorescence

If an inner-shell electron is excited from a level Ek into
a higher unoccupied level Ei by electron impact or by
absorption of X-rays, a vacancy is produced in this inner
shell. One of the electrons from higher levels En > Ek

can fall down into the vacancy while a fluorescence
photon hνnk = En − Ek is emitted, if the transition is
allowed (Fig. 7.31).

For a definite excitation energy En , one therefore
generally observes in the fluorescence spectrum many
lines with frequencies νik corresponding to all allowed
transitions from levels Ei > Ek into the vacancy in le-
vel Ek (Fig. 7.40). The whole spectrum can be described
by(7.97),which is similar to theRydberg formula (3.91).

Measurements of the wavelengths λik = c/νik of
these lines allows the determination of the energies of
levels in inner shells, which are more difficult to cal-
culate because of strong electron correlation and of the
shielding factors S, which in turn gives information
on the spatial distribution of the wave functions of the
electrons involved (see Sect. 6.4).

Fig. 7.40. The L-fluorescence series of the characteristic X-
ray emission of tungsten (from Finkelnburg: Einführung in
die Atomphysik, Springer, Berlin, Heidelberg 1967)

7.5.5 Measurements of X-Ray Wavelengths

Since the wavelength of X-rays is much smaller than
that of visible light, new techniques had to be developed
for their measurement. One of these methods uses op-
tical gratings where the X-rays are incident under very
small angles against the grating surface (Fig. 7.41). If ϑ
is the angle between the direction of the incident paral-
lel X-ray beam and the plane of the grating, the effective
grating constant (i.e., the effective groove separation) is
the projection

deff = d sinϑ ≈ d ·ϑ (7.98)

of the groove distance d onto the incidence direction.
For accurate measurements of the wavelength λ the
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Fig. 7.41a,b. Measurement of X-ray wavelengths (a) with
grazing incidence onto an optical grating with effective gra-
ting constant d sinϑ and (b) the conditions for the different
diffraction orders

effective grating constant deff has to be of the same
order of magnitude than λ.

EXAMPLE

A grating with 1200 grooves per mm has a gra-
ting constant d = 0.83 µm. For ϑ = 10′ ⇒ sinϑ = 3×
10−3 ⇒ deff = 2.5 nm. A wavelength λ= 2.5 nm cor-
responds to a photon energy of hν = 0.5 keV.
Wavelengths down to 0.2 nm can be measured this way
with sufficient accuracy.

For a given angle of incidence α= 90◦ −ϑ against
the grating normal the diffraction angle β is determined
by the grating equation

d(sinα− sinβ)= mλ . (7.99)

This means that in the directionβ against the grating nor-
mal the path difference between partial beams diffracted
by adjacent grooves is mλ and therefore a construc-
tive interference occurs in this direction (Fig. 7.42). For
very small anglesϑ = 90◦ −α and γ = 90◦ −β the large
angles α and β can only be measured with less accuracy
than ϑ and γ . Inserting ϑ and γ into (7.99) gives

d[cosϑ− cos(ϑ+γ)] = mλ . (7.100)

Grating normal
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β β
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(a) (b)

Fig. 7.42. (a) Illustration of the grating equation (7.99).
(b) Blaze angle θ and direction of maximum reflection

The mth interference order is observed at the angle
δ= ϑ+γ against the grating plane. The total deflection
of the diffracted beam against the incident beam is∆=
ϑ+ δ= 2ϑ+γ . This yields with cosϑ ≈ cos γ ≈ 1 for
the wavelength λ the relation

mλ= 2d sin
∆

2
sin
γ

2
≈ d

2
∆ ·γ . (7.101)

Measuring the total deflection angle ∆= 2ϑ+γ and
the angle γ between the 0th diffraction order (regular
reflection) and the mth order allows the determination of
the X-ray wavelength according to (7.101). The grating
constant d is calibrated by diffraction of visible light
with known wavelength.

EXAMPLE

d = 0.83 µm, λ = 1 Å = 10−10 m, ϑ = 10′ = 2.8×
10−3 rad. The first interference order (m = 1) appears
at the angle δ= 1.5×10−2 rad against the grating plane
and under the angle ∆= 1.8×10−2 rad against the
direction of the incident beam.

At such small angles total reflection of the X-rays
occurs, because the refractive index n of materials can
be smaller than that of the vacuum with n = 1. This can
be seen as follows.

The real part n′ of the complex refractive index n =
n′ − iκ is given by (see Problem 7.14)

n2 = 1+
∑

i

NZe2

ε0me(ω
2
i −ω2)

, (7.102)
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where N is the atom number density, ωi are the eigen-
frequencies of absorbing transitions of the atoms in the
sample and me is the mass of the electron. The largest
contribution to the sum comes from the transition with
the highest frequency ωi .

If the frequency ω of the X-rays is higher than all
eigenfrequencies (this implies that λ is smaller than
the K-edge in Fig. 7.36) all terms of the sum in (7.102)
become negative and n2 < 1. This means that the sample
has a smaller refractive index than the vacuum or the
air and the X-rays are totally reflected if their angle of
incidence α becomes larger than the critical angle αc of
total reflection defined by

sinαc = nsample/nair .

EXAMPLE

With λ= 10−10 m ⇒ ω≈ 2×1019 s−1. For copper, the
highest eigenfrequency is ω0 = 1×1019 s−1, which
gives n′ = 1−1.3×10−5. The critical angle for total re-
flection is then sinαc = sin(90◦ −ϑc)= nsample/nair =
0.999987, which gives ϑc = 0.3◦ = 5×10−3 rad.

For all angles α > αc ⇒ ϑ < ϑc total reflection of
the incident X-rays is observed.

This means that the total incident intensity is re-
flected and distributed among the different diffraction
orders.

For spectral regions with n′ < 1 no collecting
lenses, based on refraction, are possible. Any X-
ray optics, therefore, must use the reflection by
collimating mirrors, or Fresnel lenses, based on
diffraction and interference.

The most important method for measuring X-ray
wavelengths is Bragg diffraction by single crystals (see
Sect. 2.4.3).

If a plane electromagnetic wave with wavelength λ
falls onto a crystal under an angle ϑ against a crystal
plane (Fig. 7.43) all atoms of the crystal can scatter
the wave. The partial waves from the different atoms
interfere constructively, if the path difference between
them is an integer of λ. This gives the Bragg condition

2dc sinϑ = mλ (m = 1, 2, . . . ) , (7.103)
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Fig. 7.43. (a) X-ray spectrometer with rotating crystal.
(b) Condition for Bragg reflection at parallel crystal planes

where dc is the distance between adjacent parallel
crystal planes.

The distance dc is calibrated by illuminating the
crystal with X-rays of known wavelength, measured
with the technique, discussed above. When the same
crystal is now irradiated with X-rays of unknown wa-
velengths, they can be determined from measurements
of the angle ϑ, where the maximum diffraction occurs.
In practice, one measures the angle 2ϑ of the deviation
from the incident beam direction.

7.6 Continuous Absorption
and Emission Spectra

Transitions between two bound states of atoms or mole-
cules always result in line spectra (see Sect. 3.4) where
only discrete frequencies appear in the spectra, which
are determined by energy conservation

hνik = Ei − Ek .

If at least one of the two states is not bound (e.g., if
it lies above the ionization limit of the atom or above
the dissociation energy of the molecule) the emitted or
absorbed radiation shows a continuous spectrum.
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EXAMPLES

1. Photoionization of atoms: Here the photon energy
hν is larger than the binding energy EB of the atomic
electron. The electron can then leave the atom with
a kinetic energy

Ekin = hν− EB (7.104)

Varying the frequency ν changes the kinetic energy
accordingly (Fig. 7.44). Every frequency ν results in
an allowed transition and one obtains a continuous
absorption spectrum.

2. The inverse process is the radiative recombination,
where a free electron with kinetic energy Ekin re-
combines with an ion, which ends up in an excited
bound state with binding energy EB, and a photon
with energy

hν = Ekin+ EB (7.105)

is emitted (Fig. 7.45) This results in a continuous
emission spectrum.

3. Bremsstrahlung, discussed in the previous section,
is an example for transitions between two unbound
states. A free electron with kinetic energy Ekin = eU
in the X-ray tube is decelerated in the Coulomb field
of the nucleus of an atom in the anode and looses
the energy ∆E = eU − E ′

kin, where E ′
kin is the final

energy of the electron after the deceleration.
A second example of bremsstrahlung is the syn-
chrotron radiation emitted by high energy electrons
circulating on a curved path in a magnetic field.

Ionization
limit

Ekin
Ekin

Ei

Ek

e−

e−

Fig. 7.44. Photoionization
of an atom in its ground-
state Ek or in an excited
state Ei

h E Eν = +kin i

−Ei

e E− + kin Fig. 7.45. Illustration
of radiative recombi-
nation

We will now discuss such continuous spectra in
more detail.

7.6.1 Photoionization

Measuring the absorption spectrum of an atom in
a bound state Ek with binding energy EB one observes
with increasing photon energy a series of absorption
lines with frequencies (see Sect. 6.6.4)

νik = Ek/h− c · Ry

(ni − δi)2
, (7.106)

which become increasingly dense with increasing prin-
cipal quantum number n. They are caused by transitions
from level Ek into bound Rydberg levels. The se-
ries converges for n →∞ towards the ionization
limit hνc = EB of the atom. For ν > νc the conti-
nuous part of the spectrum appears where the atom
is photoionized.

The ions can be collected on the detector with an
efficiency of 100% by a small electric field. The num-
ber of collected ions is a measure for the number of
absorbed photons.

For a density na of absorbing atoms the measured
ion rate is

Ṅion = na ṄphσPIVion , (7.107)

where σPI is the photoionization cross section, Ṅph is the
incident photon flux per cm2 and Vion is the ionization
volume. In Fig. 7.46a the experimental arrangement for
the measurements of absorption spectra is shown and
Fig. 7.46b illustrates schematically the absorption cross
section around the transition range from the discrete to
the continuous part of the spectrum.

The absorption coefficient passes smoothly from the
increasingly dense absorption lines into the continuum.
Its value in the continuum is given by the square of the
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Fig. 7.46a–c. Rydberg absorption spectrum with adjacent ion-
ization continuum. (a) Experimental setup. (b) Frequency de-
pendence of absorption coefficient α(µ). (c) Photoionization
cross section σPI(ν)

matrix element

MiE =
∫
ψ∗

i rψc(E) dτ (7.108)

for transitions from a bound state with wave functionψi

into a continuum state with wave function ψc(E) and
energy E. For E → Eion the matrix element converges
towards the matrix element for bound-bound transitions
into Rydberg levels with n →∞.

The following experimental effect, however, pre-
tends a jump of the absorption coefficient.

Because of the long lifetime τn of Rydberg levels En ,
which increases with n3, the natural linewidths of high
Rydberg levels ∆νn = 1/τn becomes very small. The
resolvable spectral interval ∆νexp of the spectrograph
in Fig. 7.46a is generally much larger than ∆νn . The
measured transmitted intensity for small absorptions is
for a monochromatic incident radiation

It(ν)= I0 e−α(ν)L ⇒∆I(ν)= I0− It ≈ α(ν)L I0 ,

(7.109)

while for radiation with a spectral continuum the
absorbed intensity is

∆Ieff = 1

∆νexp

∫
∆I(ν) dν

= L

∆νexp

ν0+∆νn/2∫
ν0−∆νn/2

I0α(ν) dν . (7.110)

Since for continuous radiation the intensity I0 barely
depends on ν within a limited spectral interval, we can
drag I0 out of the integral in (7.110) and obtain for
transitions into Rydberg levels where the absorption co-
efficient has only noticeable values within the linewidth
∆νn

∆Ieff ≈ L I0α(ν0)
∆νn

∆νexp
,

while for transitions into the continuum, all incident
frequencies can be absorbed.

Introducing an effective absorption coefficient αeff,
which reflects the true measured absorption

αeff =∆Ieff/(I0L) ,

one obtains from (7.110) for the discrete spectra an
effective absorption coefficient

αeff = α(ν0)
∆νn

∆νexp
, (7.111)

which is smaller than the real absorption coeffi-
cient α(νn) at the line center by a factor

∆νn/∆νexp � 1 .

EXAMPLE

∆νn = 1 MHz, ∆νexp = 1 GHz = 103 MHz ⇒ αeff =
10−3α(νn).

Because of the finite spectral resolution of the spec-
trograph the different lines of the Rydberg spectrum
can no longer be resolved for large values of the prin-
cipal quantum number n. In this case, one measures
a superposition of several Rydberg transitions and the
apparent spectrum seems to be continuous. This shifts
the experimentally observed ionization limit to smaller
frequencies.
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A way out of this deficiency is the measurement of
the photo ions instead of the transmitted intensity. Ano-
ther solution is provided by laser spectroscopy where
the natural linewidth can be resolved (see Sect. 10.5).

For transitions into the true continuum is
∆νn =∆νexp, because all frequencies contribute to the
absorption and the above-mentioned problem does not
arise.

For doubly excited atoms where two electrons are in
excited states (e.g., ns, 2p for the helium atom, where
one electron is in Rydberg levels ns and the other in the
2p state), the ionization limit for one of the two excited
electrons appears at a higher total energy than for singly
excited atoms (Fig. 7.47). The difference is just the ex-
citation energy of the second electron. For our example,
the ionization limit is shifted upwards by the excitation
energy of the 2p electron. For the He atom doubly ex-
cited states (ns, 2p) are already for n = 4 above the
ionization limit of singly excited He atoms (ns, 1s).
These doubly excited states can decay by autoioniza-
tion (see Sect. 6.5), where, due to a correlation between
the two electron the electron in the 2p state transfers its
energy to the Rydberg electron, which can then leave
the atom while the 2p-electron falls back into the 1s
ground state.

Measuring the absorption spectrum of an atom
above its ionization limit, one observes resonances at
the energies of doubly excited states that are superimpo-
sed on the continuum. They are due to autoionization.
The line profiles of these resonances have been studied
and explained theoretically by U. Fano and are therefore

1s2p

1s2

E
Auto

ionization
ν e−

e−

Fig. 7.47. Auto-ionization of a double-excited atomic state

called Fano profiles (Fig. 7.48). They can be understood
from the following consideration:

The absorption of a photon reaches two states at
the same energy E: the doubly excited discrete state
with a level width ∆E and the interval ∆E around E
in the continuum. The wave function of these superim-
posed states is written for our He example as the linear
combination

ψ = c1ψk(ns, 2p)+ c2ψc(E) . (7.112)

The absorption coefficient for the transition from the
initial level Ei to the energy E around the autoionization
resonance, which is proportional to the square of the
matrix element

MiE =
∫
ψ∗

i (Ei)r [c1ψ(ns, 2p)+ c2ψc(E)] dτ

(7.113)

contains the interference term

2c1ψ(ns, 2p)c2ψc(E) ,

which depends on the energy difference ∆E = Econt−
E(ns, 2p). While the phase of the continuous wave
function depends only weakly on the energy, that of
the doubly excited state depends strongly on ∆E, be-
cause it changes byπ, when tuning across the resonance
profile. If both wave functions are in phase, the ab-
sorption cross section becomes maximal, if they have

Fig. 7.48. Absorption profile of an autoionization line (Fano
profile)
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opposite phases the interference is destructively and the
absorption becomes minimal.

Fano and Cooper [7.15, 16] have shown that the
energy dependence of the absorption cross section
around an autoionization resonance can be described
by

σ(E)= σa
(ε+q)2

1+ε2
+σb , (7.114)

where ε=∆E/(Γ/2)= (E− Er)/(Γ/2) is the energy
difference in units of the halfwidthΓ/2 of the resonance,
σa is the absorption cross section for the absorption by
the doubly excited state (unperturbed by autoioniza-
tion) and σb is the background absorption of the direct
excitation into the continuum (Fano profile Fig. 7.49).

The Fano parameter q stands for the ratio

q =− D2
1

D2 R12

of the squared transition amplitude D1 to the bound
state and the product D1 R12 of the transition ampli-
tude to the continuum and the coupling R12 between
both states. In fact, this product gives the transition am-
plitude for reaching the continuum state via the bound
state. If the transition moments for the two different path
ways from the ground state to the continuum state have
equal amplitudes but opposite phases, the two contribu-
tions cancel each other and the absorption cross section
becomes zero.

The width Γ = 1/τ (full width at half maximum)
is determined by the lifetime τ of the doubly excited

Doubly excited
states

Ionization
continuum

rE
12R

iE

1D

2D

E

Fig. 7.49. Level scheme for the explanation of Fano profiles

state. Since radiative transitions into lower bound states
of the atom have a small probability, the lifetime of
autoionizing states is mainly limited by the fast auto
ionization process. Typical values for atoms range from
τ = 10−12−10−14 s.

7.6.2 Recombination Radiation

A free electron with velocity v can be captured by an
atom or ion into a bound state with binding energy EB.
The energy released at this process can be converted
into radiation with a photon energy

hν = Ekin− Ei = me

2
v2− Ei (Ei < 0) . (7.115)

This process is called two-body recombination or
radiative recombination, contrary to three-body re-
combination, where the excess energy can be
transferred to a third particle, which also takes care of
momentum conservation. The three-body recombina-
tion, where no radiation is emitted, becomes significant
at higher densities of electrons and atoms or ions, be-
cause three collision partners have to meet at the same
time. The inverse process of autoionization is the diel-
ectronic recombination. Here a free electron is captured
by an atom and the recombination energy is not emitted
as radiation but transformed to another bound electron
of the atom which is promoted into a bigger bound
energy level.

The radiative recombination plays an important role
in gas discharges and in other low density plasmas such
as in stellar atmospheres. The cross section for electron
capture into an atomic state Ei depends on the relative
velocity of the two collision partners.

We will consider as an example a low density plasma
at local thermal equilibrium with ion density Na and
electron density Ne. The electron density within the
velocity interval between v and v+ dv is ne(v), where

Ne =
∫

ne(v) dv .

The recombination rate is

ṄR = Na

∫
ne(v)σR(v)v dv (7.116)

and one photon is emitted per recombination event.
In a plasma the velocity distribution of the elec-

trons depends on the electron temperature Te, which is
generally higher than the ion temperature Tion.
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Fig. 7.50. Logarithmic plot of two-body recombination rate
vσi versus the logarithm of the electron temperature Te for
two different electron densities

In Fig. 7.50 the dependence of the recombination
cross section on the electron temperature is plotted on
a logarithmic scale for two different electron densi-
ties. For low densities the recombination rate is low
and nearly independent of temperature, while for high
electron densities it falls drastically with increasing
temperature.

In a plasma at thermal equilibrium the recombina-
tion radiation is isotropic. The radiation power emitted
into the solid angle∆Ω = 1 Sterad within the frequency
interval dν is then

P(ν) dν = hν

4π
Nane(v)vσR dν . (7.117)

From the energy conservation

hν = (me/2)v
2− Ei (Ei < 0!) ,

the velocity of the recombining electron is

v=
[

2

me
(hν+ Ei)

]1/2

. (7.118)

Inserting this into the Maxwellian distribution

ne(v) dv= Ne
4v2

v3
p
√
π
, e−(v/vp)

2
dv (7.119)

with the most probable velocity

vp = (2kT/me)
1/2 ,

we obtain with (7.117) the intensity distribution of the
recombination radiation as

Pν dν = Na NeσR(v)
h2vν

meπ3/2v3
p

e−((ν−ν0)/ν0)
2

dν ,

(7.120)
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Fig. 7.51. Continuous spectrum of radiative recombination
in a hydrogen plasma with low electron concentration
at T = 6000 K. (1) = H+ e− → H−+ hν. (2) = H++
e− → H+hν

with an intensity maximum at the frequency

ν0 =
(

1

2
mev

2
p− Ei

)
/h (7.121)

shown schematically in Fig. 7.51 by the black curve for
the recombination in a hydrogen plasma

H++ e−(Ekin)→ H+hν (7.122a)

of electrons with protons, which occurs in the
atmosphere of hot stars.

The continuous emission spectrum of our sun,
represented by the Planck distribution (3.15) with a tem-
perature of about 5800 K, is an important example for
a recombination continuum. The visible part of it is
mainly due to the recombination of neutral hydrogen
atoms and electrons, according to the scheme

H+ e−(Ekin)→H−+hν , (7.122b)

where negative H− ions are formed. These H− ions
loose their electron by collisions with electrons

H−+ e− → H∗ +2e− ,

which replenishes the supply of neutral H atoms, used
again for the recombination process (7.122).

Besides the process (7.122), the recombination of
protons and electrons is also present

H++ e−(Ekin)→ H∗ +hν . (7.122c)

The recombination radiation from this process mainly
contributes to the UV part of the continuous spectrum
of our sun.



Summary 279

• The frequencies νik absorbed or emitted by atoms

νik = (Ei − Eκ) /h

are determined by the energies Ei , Ek of the
atomic states connected by the radiative transition.

• The relation between the probability wνBik of
absorption by an atom in a radiation field with
spectral energy density wν and wνBki of induced
emission is gk Bki = gi Bik, where gi and gk are
the statistical weights of the levels, i.e., the num-
ber of different wave functions representing this
level.
If the total angular momentum quantum number
is J the statistical weight is g = (2J +1).

• The relation between the Einstein coefficients Bik

and Aik is Aik = (8πν3/c3)Bik.
In a radiation field with one photon per mode
the spontaneous radiation probability equals the
induced emission probability. In thermal radia-
tion fields at achievable temperatures, the number
of photons per mode n � 1 is very small in the
range from near infrared to UV. Here, the spon-
taneous emission is therefore by far the dominant
emission.

• The radiation power absorbed or emitted on a tran-
sition Ei → Ek is proportional to the absolute
square of the transition dipole matrix element

Mik = e
∫
ψ∗

i rψk dτ ,

which depends on the wave functions ψi, ψk of
the corresponding atomic states. Mik represents
the quantum mechanical average of the classical
dipole moment in the two atomic states.

• An electric dipole transition is only allowed, if
the selection rules ∆L =±1, ∆ML = 0,±1, and
∆J = 0±1 are obeyed, but J = 0 → J = 0 is
forbidden. Here L is the orbital angular momen-
tum quantum number ML its projection and J
the quantum number of total angular momentum
J = L+ S.

• For all light atoms (small Z) only transitions
occur, where the spin quantum number S does
not change (∆S = 0). For atoms with large Z
spin-orbit coupling allows weak transitions with
∆S 	= 0.

• Besides electric dipole transitions, higher order
transitions, such as electric quadrupole transiti-
ons or magnetic dipole transitions, can also occur,
but with probabilities that are smaller by several
orders of magnitude.

• The mean lifetime τi = 1/Ai of an excited atomic
level 〈i| with energy Ei is given by the inverse
Einstein coefficient Ai of spontaneous emission
on allowed transitions from 〈i| into all other le-
vels 〈 j| with energies E j < Ei . Measurements of
level lifetimes therefore allow the determination
of transition probabilities and matrix elements.
They represent a crucial test of the accuracy of
calculated wave functions.

• The effective lifetimes are determined by the
sum of radiative decay and inelastic collision
probabilities. Inelastic collisions shorten the na-
tural lifetime of an atomic level. Elastic collisions
perturb the level energies of the emitting atom.

• The linewidths of spectral lines are determined
by: a) The natural linewidth

δνn = 1

2π

(
1

τi
+ 1

τk

)
b) The generally much larger Doppler-width

δνD = 7.16×10−7νik

√
T/M

(M = molar mass)

c) Collisions of the emitting or absorbing
atom with other atoms or molecules (pressure
broadening)

• X-rays are electromagnetic waves with wave-
lengths in the range of 10 nm to 0.1 nm. The
measurement of these wavelengths can be achie-
ved by Bragg reflection or diffraction in single
crystals or with optical diffraction gratings under
gracing incidence.

• X-rays are produced:
By decelerating electrons with energies in the
keV range (continuous emission of bremsstrah-
lung)
By transitions of atomic electrons from hig-
her energy states in vacant inner shell states
(characteristic X-ray emission)

S U M M A R Y
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• X-rays are absorbed by:
The photo-effect A+hν→ A∗
The Compton effect hν+ e− → hν′ + e−+ Ekin

Pair formation hν→ e−+ e+.
The relative probabilities of these processes
depend on the energy hν of the X-ray photons.

• Continuous absorption spectra of atoms are obser-
ved for the photoionization of atoms. Continuous
emission spectra are generated by radiative re-
combination of free electrons with ions or neutral
atoms. Another source of continuous radiation
is produced when free electrons are decelerated

either in the Coulomb field of atoms (bremsstrah-
lung) or when high energy electrons (MeV –GeV)
are forced, using a magnetic field, onto circular
paths (synchrotron radiation).

• The continuous spectrum of our sun in the vi-
sible and infrared part is produced by radiative
recombination

H+ e− → H−+h ·ν ,
while the UV part is due to the process

H++ e− → H+hν .

1. 108 sodium atoms are excited into the 32 P3/2 level
(τ = 16 ns) by absorption of light that is linearly
polarized in the x direction and propagating into
the z direction. The emitted fluorescence follows
the angular distribution I(ϑ)= I0 sin2 ϑ where ϑ
is the angle against the x direction.
a) What is the total fluorescence power?
b) Which fraction of this power is emitted into the
solid angle dΩ = 0.1 sterad around ϑ = 90◦?

2. a) What is the Doppler width of the Lyman-α line
of the H atom at a temperature of T = 300 K?
b) A collimated beam of H atoms (the nozzle
diameter is 50 µm, the distance between nozzle
and collimating slit is d = 10 cm, the width of
the slit is b = 1 mm) is perpendicularly crossed
behind the slit by a parallel beam of a laser tuned
across the absorption profile of the Lyman-α line.
What is the residual Doppler width?
c) Compare this width with the natural linewidth
(τ(2p)= 1.2 ns).
d) Is it possible to resolve the hyperfine structure
of the 12S1/2 ground state?

3. The spectral width of a line can be limited by
the finite interaction time of the atom with the
radiation field. What is the minimum interaction
time of a calcium atom needed in order to achieve
a linewidth of 3 kHz for the transition 1S0 →3 P1

(λ= 657.46 nm) with a lifetime τ = 0.39 ms of
the upper level? What is the minimum interaction

zone of Ca atoms in a collimated beam for an oven
temperature of T = 900 K?

4. Metastable He atoms in the 21S0 state in a gas
discharge at T = 1000 K absorb light on the
transition 21S0 → 31 P1. The term values of
the corresponding levels are 166,272 cm−1 and
186,204 cm−1, the lifetimes are τ(31 P1)= 1.4 ns,
τ(21S0)= 1 ms. a) What is the wavelength of the
transition?
b) What is its natural linewidth?
c) What is the Doppler-width?

5. How large is the absorption of a monochroma-
tic wave on the transition in Problem 7.4 relative
to the absorption at the line center for an absorp-
tion frequency ν that is 0.1 nm, 0.1δνD, 1δνD and
10δνD away from the line center ν0? Consider
the answer for a Gaussian profile and a Lorent-
zian profile. For which frequency difference is
the absorption equal for both profiles?

6. Calculate the velocity and kinetic energy of
photoelectrons released from the K shell of mo-
lybdenum by the absorption of Kα radiation from
silver atoms?

7. What is the recoil energy and recoil velocity of H
atoms, initially at rest, when a photon is emitted or
absorbed on the transition n = 2 ↔ n = 1? What
is the shift of the absorption frequency against the
emission frequency? Compare this shift with the
natural linewidth and the Doppler-width at 300 K.

P R O B L E M S
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8. The quenching cross section for inelastic col-
lisions of excited Na atoms (32 P1/2) with N2

molecules is σq = 4×10−19 m2. What is the
effective lifetime of the Na (32 P1/2) level
with τrad = 16 ns for N2 pressures of 1 mbar,
10 mbar and 100 mbar at a temperature of T =
500 K?

9. Na atoms in a collimated atomic beam with a mean
beam velocity of 800 m/s are excited by a per-
pendicular beam of a tunable laser. What is the
minimum collimation ratio: a) In order to resolve
the hyperfine structure (∆ν = 190 MHz) of the
32 P1/2 level?
b) In order to make the residual Doppler-
width smaller than the natural linewidth of the
3S1/2 → 3P1/2 transition?

10. Compare natural linewidth, Dopplerwidth and
collisional broadening of the Lyman-α-line (1s-
2p) and the 21 cm line (hyperfine transition
1 2S1/2, F = 1 ↔ F = 0) with Aik(α)= 109 s−1

and Aik(21 cm)= 2.9×10−15 s−1 under the fol-
lowing conditions:
a) Starlight passes through an interstellar
cloud of H-atoms with a density N = 106 /m3

(1 Atom/cm3), temperature T = 10 K, ab-
sorption path length L = 1 pc = 3×1016 m,
σcoll = 10−19 m2.

b) What is the absorption of the two lines with
an absorption cross section σ(Lyman α)= 1×
10−15 m2, σ(21 cm)= 3×10−26 m2.
c) A laser beam with 10 mW power atλ= 3.39 µm
and a beam diameter of 1 cm passes through an
absorption cell filled with methane CH4 molecu-
les at a pressure of 0.1 mbar and a temperature
T = 300 K. What are the ratios of natural line-
width, transit-time broadening, saturation broade-
ning and Doppler-width of the transition 〈k| → 〈i|
with lifetimes τi = 20 ms and τk =∞?

11. Show, by calculating the integral, that the tran-
sition dipole matrix element

∫
ψ∗

1srψ2s dτ of the
transition 1S → 2S in the H atom is zero. Use the
wave function of Table 5.2.

12. What is the value of the transition probability of
the transition 1S → 2P?

13. What are the transition probability and the natural
linewidth of the transition 3s → 2p in the H atom?
The lifetimes are τ(3s)= 23 ns, τ(2p)= 2.1 ns.
Compare the natural linewidth with the Doppler-
width of this transition at T = 300 K and T =
1000 K.

14. Derive (7.102) for small refraction indices (n−
1 � 1). Is for n < 1 the velocity of an electroma-
gnetic wave larger than the velocity c in vacuum?
Doesthiscontradict thespecial theoryofrelativity?



8. Lasers

Laser is an acronym for Light Amplification by Stimu-
lated Emission of Radiation that describes the basic
physical principle of its operation. Gordon, Zeiger and
Townes [8.1] showed for the first time in 1955 that a mi-
crowave could be amplified by NH3 molecules on the
inversion transition at λ= 1.26 cm (Fig. 4.13) if these
molecules were prepared in such a way that the upper
level of the transition had a larger population than the
lower one. With such inverted NH3 molecules inside
a microwave cavity, the first “maser” (microwave am-
plification by stimulated emission of radiation) could
be operated.

Schawlow and Townes published a paper in 1958
with detailed discussions of how the maser principle
might be extended into the visible spectral range [8.2].
The first experimental realization of a laser was de-
monstrated in 1960 by Maiman, who built a ruby laser,
which was pumped by a helical flashlamp and emitted
coherent radiation at λ= 694 nm [8.3].

Since then, lasers have been developed spanning the
whole spectral range from the far infrared down to the
vacuum ultraviolet region. They have proved to be va-
luable tools not only for the solution of many scientific
problems but also for numerous technical applications.

In this chapter we will discuss the basic physical
principles of lasers, the most important classes of lasers
and some interesting novel applications. More detailed
discussions can be found in the vast literature on lasers
[8.4, 5, 6].

8.1 Physical Principles

A laser basically consists of three components
(Fig. 8.1):

1. The active medium where an inverted popula-
tion N(E) is created by selective energy transfer.

Mirror

Laser

beam

Energy pump
Mirror

d

Active medium
L

Resonator

Fig. 8.1. Schematic setup of a laser

This population distribution N(E) deviates stron-
gly from a thermal Boltzmann distribution (Fig. 8.2)
in such a way that N(Ei) > N(Ek) for Ei > Ek,
contrary to a thermal population

N(E)∝ e−E/kT .

2. The energy pump, (flashlamp, gas discharge, elec-
tric current or another laser) that generates the
population inversion.

3. The optical resonator that stores the fluorescence
emitted by the active medium in a few modes of the
radiation field (see below). In these modes the pho-
ton number becomes Nphot � 1. Therefore, in these
modes, the induced emission becomes much lar-
ger than the spontaneous emission (see Sect. 7.1.1).

Thermal population
distribution

Population
inversion

N E( )

N E( )i

N E( )k

Ek Ei
E

Fig. 8.2. Selective population inversion (Ni > Nk) in spite of
Ei > Ek , deviating from a thermal population distribution (red
dashed curve)
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The optical resonator furthermore reflects the in-
duced emission back into the active medium and
allows many paths back and forth through the me-
dium, thus realizing a long amplification path. This
converts the light amplifier into a light oscillator if
the total amplification exceeds the total losses.

8.1.1 Threshold Condition

When an electromagnetic wave with frequency ν tra-
vels in the z direction through a medium (Fig. 8.3) its
intensity changes according to Beer’s absorption law

I(ν, z)= I(ν, 0) · e−α(ν)·z . (8.1)

The frequency-dependent absorption coefficient

α(ν)= [Nk − (gk/gi)Ni]σ(ν) (8.2)

is determined by the absorption cross section σ(ν) of the
transition Nk → Ni , the population densities Ni , Nk, of
the levels with energies Ei , Ek with ∆E = Ei − Ek =
hν, and their statistical weights gi , gk (the statistical
weight of a level with total angular momentum quantum
number J is g = 2J +1). For

Ni > (gi/gk)Nk ⇒ α(ν) < 0 (8.2a)

this means that the transmitted wave will be ampli-
fied instead of attenuated. Such a deviation (8.2a) from
a thermal equilibrium population is called inversion and
the medium where this inversion is realized is called the
active medium.

When the active medium with length L is placed
between two parallel mirrors (Fig. 8.1) the light wave is
reflected back and forth and passes through the active
medium many times, where it is amplified each time by
the factor

G(ν)= I(ν, 2L)

I(ν, 0)
= e−2α(ν)·L , (8.3)

which is larger than 1 for α(ν) < 0.
Unfortunately there are also losses that attenuate the

wave. These are reflection, diffraction, absorption, and
scattering losses.

Reflection losses. A mirror with reflection coefficient R
only reflects the fraction R< 1 of the incident intensity.
If absorption losses of the mirror can be neglected, the
fraction (1− R) of the incident intensity is transmitted
through the mirror.

L

( ) ( )α ν σ ν= −⎛
⎝

⎞
⎠ ⋅N

g
g Nk

k

i
i ik

I(ν) ( ) ( )I L I e L= ⋅ − ⋅
0

α ν

Fig. 8.3. Attenuation (α> 0) or amplification (α< 0) of a light
wave passing through a medium

Absorption and scattering losses. In case of gas lasers,
the windows of the tube containing the active medium
may absorb and scatter some of the transmitted light.
For solid lasers the end surfaces of the laser rod may
scatter and reflect some light. Also, the active medium
might not have a spatially uniform inversion, leaving
locations with α > 0. Finally, the mirror surfaces are
not perfect. They can scatter light and the reflecting
layers can also show small absorptions.

Diffraction losses. Depending on the parameters of the
optical resonator (aperture diameter a, mirror separa-
tion d and radius of curvature r of the mirrors) the wave
being reflected back and forth shows an angular spread
due to diffraction (see below). This means that only
part of the intensity is reflected back into the active me-
dium, which represents a diffraction loss per roundtrip
through the resonator.

We will describe the sum of all these losses per roundtrip
by the loss factor γ . The intensity after one roundtrip has
decreased (without amplification by the active medium)
by the factor e−γ :

I(2d)

I(0)
= e−γ with γ = γr+γsc+γdif . (8.4)

Taking into account the amplification by the active
medium we obtain the gain factor

G(ν)= I(ν, 2d)

I(ν, 0)
= e−(2α(ν)·L+γ) . (8.5)

For G(ν) > 1 the amplification overcomes the losses
and the light amplifier becomes a light oscillator. Ac-
cording to (8.2) and (8.5) the threshold condition for
starting the self-sustained oscillation (i. e., the laser
oscillator) is

2α(ν) · L+γ ≤ 0 . (8.5a)

Inserting (8.2) this gives

2[Nk − (gk/gi)Ni] ·σ(ν) · L+γ ≤ 0 . (8.5b)
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Fig. 8.4. Illustration of the losses in a laser resonator

The minimum inversion ∆N = Ni(gk/gi)− Nk for
lasing must therefore fulfill the threshold condition

∆N = Ni(gk/gi)− Nk ≥∆Nthr

= γ(ν)

2σ(ν) · L
. (8.6)

If the energy transfer from the pump into the active me-
dium is sufficiently strong to achieve ∆N>∆Nthreshold

the light will be amplified for each roundtrip, because
the amplification exceeds all losses.

The laser oscillation for a continuous laser with
time-independent pump power builds up in the
following way.

Fluorescence photons, spontaneously emitted by the
upper level Ei into the direction of the resonator axis
are reflected back into the active medium, where they
are amplified, reflected back into the medium by the
rear mirror, etc. This results in a photon avalanche
with increasing photon number after each roundtrip, if

|k〉

| i 〉

hν

Emission

Absorption

Fig. 8.5. Photon avalanche generated by a photon passing
through the active medium due to induced emission

G(ν) > 1 (Fig. 8.5). Part of this radiation power, circu-
lating between the two resonator mirrors is transmitted
by one of the mirrors. With increasing photon number
the probability of induced emission increases, which
decreases the population inversion until it is depleted
down to the threshold value. Here, gain and losses are
just equal and the laser has reached its stationary state,
where the emission is constant. The emitted laser power
depends on the pump power and the pumping efficiency.

For pulsed lasers the pump power is time-dependent.
After a certain pumping time the threshold inversion has
been reached. Now laser oscillation starts, which de-
pletes the inversion due to induced emission. The time
dependence of the laser output power depends on the re-
lative rates +dNi/dt of pumping and −d(Ni − Nk)/dt
of inversion depletion by induced emission. For suffi-
ciently strong pumping the laser output power follows
the time-dependent pump power and a laser pulse is
emitted that is shorter than the pump pulse because it
only starts after inversion has been reached and ends
when the pump power falls below the threshold value
(Fig. 8.6).

In cases of strong depletion by stimulated emission
the inversion drops below the threshold already during
the pump pulse and the laser emission stops, until the
pump has again built up sufficient inversion. Now the
laser emission starts again. In such cases (e. g., for the
ruby laser) the laser output consists of more or less
irregular spikes with short durations, which are emitted
while the pump power is above threshold (Fig. 8.7).

γ=α

∆T
T

t

∆NLP P,P

∆N(t)

Pump
pulse

Laser

)t(PP

)t(PL

∆N(t)

Treshold

Fig. 8.6. Pump-pulse power PP(t), laser power PL(t), thres-
hold inversion α= γ and time-dependent inversion∆N(t) for
a pulsed laser



286 8. Lasers
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Fig. 8.7. Schematic illustration of spikes in the output of
a flashlamp-pumped solid-state laser with long relaxation
times τi , τk

M1 M2

Resonator axis

Small

Large
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Fig. 8.8. The net gain depends on the effective path length
through the active medium

The amplification factor is largest for photons with
the longest path through the active medium. These are
those photons that travel along the resonator axis. Pho-
tons emitted into directions inclined to the axis, are not
reflected back into the active medium and are therefore
less amplified (Fig. 8.8). If their amplification does not
reach the threshold value, they cannot contribute to the
laser oscillation. Depending on the geometric dimensi-
ons of the active medium and the limiting apertures of
the optical resonator the laser oscillation is restricted to
a small angular divergence around the resonator axis.
This results in a laser beam, transmitted through one
of the resonator mirrors, which has a small divergence
and appears in many cases as nearly parallel light beam
with a small diameter.

8.1.2 Generation of Population Inversion

The minimum inversion, required for laser oscillation,
can be achieved by a selective pump process, that po-
pulates the upper level Ei of the laser transition more
strongly than the lower level Ek. The pump energy can
be transferred either as a pulse (e. g., by flashlamps)

or continuously (e. g., by electron impact in a stationary
gas discharge). In the first case, laser emission occurs as
a pulse, in the second case it occurs continuously (cw =
continuous wave operation). We will provide examples
of both cases.

The flashlamp-pumped ruby laser historically re-
presents the first demonstration of pulsed laser
operation. Its active medium is a cylindrical rod consi-
sting of an Al2O3 crystal, that is doped with about 1%
Cr+++ ions. The level scheme of these Cr+++ ions is
shown in Fig. 8.9. By absorption of light from the flash-
lamp the ions are pumped from the ground state E0

into the levels E1 and E2, which are strongly broade-
ned by interaction with the host crystal. The resulting
broad absorption lines overlap with the maximum of
the spectral continuum emitted by the flashlamp filled
with xenon and can therefore be effectively pumped.
The two upper levels transfer part of their excitation
energy in a very short time (10−10−10−11 s) to vibra-
tional energy of the crystal due to a strong interaction
with their surroundings. This loss of excitation energy
results in fast radiationless transitions into a sharp lower
level Ei , which is the upper level of the laser transition
Ei → E0 at λ= 694 nm.

In order to achieve population inversion, the number
of Cr+++ ions in the level Ei must be larger than that
in the ground state E0. A direct pumping of level Ei on
a transition E0 → Ei could not achieve inversion, be-
cause as soon as the populations of both levels become
equal, the absorption of the pump light on the laser
transition becomes zero and the pump can no longer
populate level Ei . The intermediate levels E1 and E2

are therefore essential for the realization of laser oscil-
lation. One needs at least three levels, as indicated in

Radiationless
transitions

Laser
emission

Pump
light

E1

E2

Ei

E0 Ground state

2

1

3

Fig. 8.9. Level scheme of the ruby laser
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Fig. 8.9 by the encircled numbers (where E1 and E2

have been combined into a single level). Such a level
scheme for laser operation is called a three level system.
The ruby laser is therefore a three level laser.

Note:

Under special conditions it is also possible to achieve
inversion for a short time in a two-level system, if the
pumping time is short compared to all relaxation times
of the system and even shorter than the Rabi oscilla-
tion time TR = π ·h/(Mik · E(νik)), where Mik is the
matrix element for the transition i → k and E is the
electric field vector of the pump wave. These conditi-
ons, however, apply only to very few real systems that
are specially designed.

There are several possible experimental configura-
tions of the ruby laser using linear or helical flashlamps
(Fig. 8.10). While Maiman used the helical design for

Cylindrical
reflector with

elliptical cross section

Mirror

Switch Capacitor

Ruby crystal

Mirror

5–10 cm

a)

Flash lamp

b) Flash lamp
Diffuse reflector
for pump light

Ruby
crystal

Laser
beam

Fig. 8.10a,b. Two possible configurations for a pulsed ruby
laser. (a) Linear flashlamp with cylindrical reflector cavity
with elliptical cross section (b) Helical flashlamp, originally
used by Maiman for his first ruby laser

his first laser, nowadays the linear configuration is
preferred. Here the cylindrical ruby rod and the li-
near flashlamp are placed along the two focal lines
of a cylindrical reflector with elliptical cross section
(Fig. 8.10a). The light emitted by the flashlamp is focu-
sed into the ruby rod from all sides, due to the imaging
characteristics of the pump light reflector with ellip-
tical cross section. The mirror surface is coated with
dielectric layers with maximum reflection at those wa-
velengths preferentially absorbed by the Cr+++ ions
on the transitions E0 → E1, E2. The parallel end faces
of the ruby rod are polished and one end face is coa-
ted with a highly reflecting layer, the other endface for
the laser output with a partially transmitting layer. The
flashlamp is fired by discharging a high voltage capa-
citor through the lamp. While the pump pulse lasts for
approximately 1−3 ms, the laser output is a pulse of ty-
pically 0.2−0.4 ms, generally consisting of many short
(≈ 1 µs) spikes.

Our second example is the He-Ne-laser, which re-
presents the most commonly used cw gas laser. This
laser is based on a four-level system and the pumping
is achieved by inelastic collisions of electrons with he-
lium and neon atoms in a stationary gas discharge in
a glass tube. Its principle design is shown in Fig. 8.11.
A gas discharge is initiated by a high voltage between
a cylindrical anode and an aluminum cathode surroun-
ding a glass or quartz capillary (1−4 mm diameter).
The power supply for a He-Ne laser has a typical out-
put of 5−10 mA at a voltage of 1 kV. The whole tube
is filled with a mixture of about 88% He and 12%
Ne at a total pressure of 1−5 mbar. In this discharge
(in particular in the narrow capillary, where the cur-
rent density is high), He and Ne atoms are excited
into many high lying energy levels. Most of these le-
vels have a short lifetime and decay by spontaneous
emission. In the helium atom there are two metastable

Fig. 8.11. Design of a He-Ne laser
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states with long lifetimes (see Sect. 6.2). These are the
2 3S1(τ = 20 ms) state and the 2 1S0 state (τ � 600 s),
which cannot decay by allowed dipole transitions into
lower states. They are populated not only by electron
impact but also by cascading spontaneous emissions
from higher levels (Fig. 8.12). In the discharge, the-
refore, a high concentration of He-atoms in these
states is built up. The electron configuration of excited
states in neon is 1s2 2s2 2p5 n′l′, with n′ = 3, 4, 5, . . . .
In “Paschen-notation” (L-S-coupling) the sublevels
of each configuration are numbered with decrea-
sing energy. For example the 2p5 3p configuration
has ten sublevels 2S+1 L J , which are (with decre-
asing energy) 1S0,

3 P1,
3 P0,

3 P2,
1 P1,

1 D2,
3 D1,

3 D2,
3 D3

and 3S1 numbered by 1, 2, . . . 10.
Both metastable He states are in close energy reso-

nance with excited neon levels. By collisions between
excited He atoms and ground state Ne atoms this energy
resonance results in large cross sections for the colli-
sional transfer of the excitation energy from the He to
the Ne atoms (near resonance collisions of the second

Fig. 8.12. Level scheme of the He-Ne laser with three possible
laser transitions

kind) according to the scheme:

He∗(2 1S0)+Ne(2 1S0)→He(1 1S0)+Ne∗(5s)
(8.7)

He∗(2 3S1)+Ne(11S0)→He(1 1S0)+Ne∗(4s)

This energy transfer results in a selective excitation
of the neon levels 4s and 5s , which achieve a higher
population than the lower levels 4p and 5p, resulting
in a population inversion on the transitions 5s → 5p
(λ= 3.39 µm), 4s → 4p (λ= 1.15 µm) and 5s → 4p
(λ= 633 nm). Such a system, where the laser transition
occurs between two excited states, and four levels are
involved (the He ground state, a metastable He state and
the two Ne levels) is called a four-level system.

Since the population of the lower laser levels is very
small, only a small percentage (≈ 10−5) of all He atoms
needs to be excited into the metastable states, contrary
to the three level system of the ruby laser where more
than 50% of all Cr+++-ions had to be pumped into the
upper laser level. Therefore only about 10−6 of all neon
atoms occupy the upper levels of the laser transitions.

The level scheme shows that laser oscillation is pos-
sible for several transitions with different wavelengths.
However, only those transitions can reach laser thres-
hold, for which the gain exceeds the losses. The losses
can be selected by a proper choice of the resonator mir-
rors. If the reflection of these mirrors is high for one
wavelength but low for the others, laser oscillation can
only occur at this favored wavelength.

The gain on the transition 5s → 4p (λ= 633 nm)
reaches only a few percent for a length of 20 cm in
the active medium. Therefore the losses have to be
correspondingly low and laser operation could only
be achieved after high reflecting dielectric mirrors had
been designed with reflectivities of 99.99% for one mir-
ror and 98% for the transmitting mirror. The gain can
be increased by using the isotope 3He instead of 4He,
because here the energy resonance between the meta-
stable He levels and the excited Ne levels is even closer
than in 4He and therefore the cross section for energy
transfer from He to Ne is larger.

8.1.3 The Frequency Spectrum
of Induced Emission

Both the gain −α(ν) · L and the losses γ(ν) depend on
the frequency ν of the light wave. When the pump pro-
cess starts, the laser reaches the threshold first for those
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frequencies where the threshold inversion ∆Nthr is mi-
nimum. The frequency dependence of the gain depends
on the active medium. For gaseous media (He-Ne-laser,
Ar+-laser) the spectral lines are Doppler-broadened,
showing a Gaussian line profile with a width of several
GHz (109 Hz). For solid state lasers or liquid lasers the
line width is mainly determined by interaction of the la-
ser atoms, ions or molecules with their surroundings. It
is generally much broader than in gases.

The loss factor γ mainly depends on the charac-
teristics of the optical resonator. It has minima at the
resonance frequencies of the resonator. Therefore la-
sing starts at those resonator resonances that lie within
the spectral gain profile of the active medium. If the
spacing between resonator modes is smaller than the
spectral width of the gain profile, the laser oscillates on
several wavelengths simultaneously. This deteriorates
the coherence properties of the laser emission. If os-
cillation on a single wavelength is required, additional
wavelength selecting elements have to be introduced.
This can be realized either by a special resonator de-
sign or by prisms or optical gratings inside or outside
the resonator.

Since the laser resonator plays a central role for the
spectral characteristics of laser emission, we will first
discuss optical resonators.

8.2 Optical Resonators

In Sect. 3.1.2 it was shown that inside a closed resonator
a radiation field can exist with an energy density wν(ν)
that is equally distributed over all resonances or modes
of the cavity. In the optical spectral range where the
wavelength λ is small compared to the dimensions of
the cavity, the number of modes within the frequency
interval dν is (see (3.10b))

n(ν) dν = 8π(ν2/c3) dν .

For ν = 5×1014 s−1 (λ = 600 nm) the number of
modes within a Doppler broadened spectral line
(∆ν = 109 s−1) is n(ν)∆ν = 2.5×1014 m−3. This im-
plies that the spontaneous emission from excited atoms
inside a closed cavity is distributed over many mo-
des, which means that the average photon number per
mode is very small. In such a closed cavity the induced
emission, started by spontaneous photon avalanches, is
spread out over many modes. Because the total power

emitted by spontaneous and induced emission has to be
supplied by the pump energy, one needs an exceedingly
high pump power in order to achieve laser oscillation
on all these modes. The laser emission would then be
distributed over many directions into the solid angle 4π
and the directionality of laser emission would be lost.

Closed cavities, which are used for the realization
of masers in the microwave region, where λ is
comparable with the cavity dimensions, are not
suitable for optical lasers.

8.2.1 The Quality Factor of Resonators

Assume that the kth resonator mode contains the ra-
diation energy Wk(t). If no energy is fed from external
sources into this mode, its stored energy will decrease
as

dWk

dt
=−βk ·Wk , (8.8)

which yields the time-dependent stored energy

Wk(t)= Wk(0) · e−βkt (8.9)

with the loss factor βk. After the time τ = 1/βk the
energy stored in the kth mode has decayed to 1/e of its
initial value at t = 0. This time can be regarded as the
mean lifetime of a photon stored in this resonator mode.
We define the quality factor Qk of the kth resonator
mode as 2π times the ratio of the energy, stored in this
mode to the energy loss per oscillation period T = 1/ν
of the radiation with frequency ν:

Qk =−2πν ·Wk

dWk/dt
. (8.10)

Inserting (8.8) and (8.9) gives the relation between the
loss factor βk and the quality factor Qk:

Qk =−2πν/βk . (8.11)

The loss factor γ per roundtrip is then

γk = βk · (2d/c) . (8.12)

Even if at t = 0 the radiation energy, supplied by sponta-
neous emission, is the same for all modes, those modes
with a high Q-factor will store this energy for a longer
time while those with a low Q-factor loose their energy
after a short time.
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8.2.2 Open Optical Resonators

In order to concentrate the induced emission onto a few
modes, the Q-factor of the resonator must be large for
these modes (i. e., the losses must be small), while it
should be sufficiently small for all other modes, so
that for a given pump power the threshold for laser
oscillation is not reached for these modes.

Open resonators, consisting of a suitable arrange-
ment of optical mirrors can fulfill this condition. We
will illustrate this by the example of two plane-parallel
mirrors M1 and M2 with reflectivity R1 and R2 and with
diameters 2a, which are separated by the distance d
(Fig. 8.4). This represents, in fact, a Fabry-Perot inter-
ferometer (FPI) used in spectroscopy as a spectral filter
with high resolution. There is, however, an essential
difference from conventional FPI, where the mirror se-
paration d is small compared to the diameter 2a of
the mirrors. For this laser resonator the situation is
the opposite: here d � 2a. This makes a large diffe-
rence with respect to diffraction, which is negligible in
a conventional FPI, but essential in a laser resonator.

We will first regard the reflection losses.
A light wave reflected back and forth between

the mirrors suffers reflection losses and its intensity
decreases per roundtrip according to

I(2d)= I0 R1 R2 = I0 · e−γr . (8.13)

The reflection loss factor γr is defined as

γr =− ln(R1 R2) . (8.14)

Since the transit time for one roundtrip is T = 2d/c, the
mean lifetime τ of a photon stored in the resonator and
traveling along the resonator axis is

τ = 2d

c · ln(R1 R2)
(8.15)

if no other losses were present.

EXAMPLE

R1 = 1, R2 = 0.98, d = 0.5 m ⇒ γr = 0.02 and τ =
1.5×10−7 s.

We will now discuss the diffraction losses of open
resonators.

Because of the finite diameter 2a � d of the mir-
rors diffraction losses are generally not negligible.
This is illustrated by Fig. 8.13c. A plane wave tra-
veling from below onto the mirror M1 is no longer

Fig. 8.13. (a) Plane waves as stationary field solutions in a cu-
bic closed resonator compared with curved wave fronts in an
open resonator with diffraction losses. (b) Diffraction pattern
of a plane wave behind a circular aperture with diameter 2a,
compared in (c) to a similar pattern after reflection by a plane
mirror of size 2a

reflected as a plane wave but becomes divergent be-
cause of diffraction. This is completely analogous to
a plane wave passing through an aperture with diame-
ter 2a (Fig. 8.13b). Here the transmitted wave shows an
intensity profile

I(Θ)= I0

(
2J1(x)

x

)2

with x = 2πa

λ
sinΘ

(8.16)

with a central maximum and higher diffraction orders
(see textbooks on optics). The central diffraction maxi-
mum has an angular width between the first two nodes of
the Bessel function J1(x) on both sides of the maximum
at x = 0, which gives

sinΘ = 1.2λ/(2a)⇒Θ ≈ λ/(1.7a) . (8.17a)
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Fig. 8.14. (a) Fresnel zones on mirror M1,
as seen from the center A of the other mir-
ror M2. (b) The three regions of d/a with the
Fresnel number N > 1, N = 1, and N < 1

Light with larger diffraction angles does not hit the
mirror M2 in Fig. 8.13c and is therefore lost. If the total
light power included in the 0th diffraction order, should
be reflected by M2 the diffraction angle Θ has to obey
the relation

tanΘ ·d ≈Θ ·d ≤ a .

Inserting (8.17a) yields

1.7
a2

λ ·d ≥ 1 . (8.17b)

The ratio

NF = a2/(λd) (8.18)

is called the Fresnel number of the resonator. It gives the
number of Fresnel zones on the surface of M1, which
can be seen from the center A of M2 (Fig. 8.14).

A more detailed calculation shows [8.7, 8] that for
NF � 1 the diffraction loss factor is γd ≈ 1/N . This
meansthatinaresonatorwithFresnelnumber NF thelight
power drops after one roundtrip by a factor exp(−1/N)
if only diffraction losses were present. When the light
wave makes m roundtrips, the Fresnel number should be
NF >m ·γR if the diffraction losses are to be smaller than
the reflection losses.

EXAMPLE

For a FPI with a = 2 cm and d = 1 cm, typically for
spectroscopic applications, the Fresnel number for
λ= 500 nm is NF = 8×104. The diffraction loss factor
is γd = 1.2×10−5 and diffraction losses are therefore
negligible. The phase fronts of a wave inside the FPI
are planes and the mirror surfaces are nodes of the stan-
ding wave. These dimensions are, however, not suitable
for a laser resonator.

The resonator of a gas laser with plane mirrors (dia-
meter 2a = 0.2 cm and a separation of d = 50 cm) has

for λ= 500 nm a Fresnel number NF = 4. The diffrac-
tion losses per roundtrip amount already to 25% and
a He-Ne-laser with such a resonator would not reach
threshold.

8.2.3 Modes of Open Resonators

While the modes of closed cavities can be described
as a superposition of plane waves (see Sect. 3.1.2) with
amplitudes and phases that are constant on planes per-
pendicular to the wave vector k, in open resonators both
quantities are changing across these planes because the
diffraction causes a curvature of the wave fronts. Pos-
sible modes of open resonators are therefore not plane
waves!

The amplitude and phase distribution A(x, y) and
ϕ(x, y) of modes in an open resonator with the resonator
axis in z-direction can be determined in the following
way.

The light wave being reflected back and forth
between the two resonator mirrors corresponds to, re-
garding the diffraction effects, a wave passing through
a series of equidistant apertures with the same size as
the mirrors (Fig. 8.15). This is shown in optics by Ba-
binet’s theorem. When a plane wave passes through
the first aperture in the plane z = 0 the amplitude dis-
tribution A(x, y) will change due to diffraction. The
amplitude will at first decrease more at the edges than
in the center, until the diffraction losses are equal for
all values of x and y. We assume that after having
passed the nth aperture, the diffracted wave will have
reached a stationary state, where the relative amplitude
distribution A(x, y)will no longer change, although the
absolute total amplitude may still decrease. This implies
the relation:

An(x, y)= C · An−1(x, y) (8.19)



292 8. Lasers
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Fig. 8.15. The diffraction of a wave traveling back and forth
between two mirrors M1 and M2 is equivalent to that of a wave
passing through a series of equidistant apertures

where the constant C with |C|< 1 does not depend on
x and y.

The amplitude distribution An(x, y) across the
nth aperture can be calculated from the distribution
An−1(x′, y′) across the foregoing aperture, using Kirch-
hoff’s diffraction theory. The light emitted by every
point (x′, y′) contributes to the amplitude A(x, y) in the
nth aperture. From Fig. 8.16 we obtain the relation

An(x, y)=− i

2λ

∫
x′

∫
y′

An−1(x
′, y′)

1

�
e−ik�

× (1+ cosϑ) dx′ dy′ . (8.20)

Inserting (8.19) gives an integral equation for the am-
plitude A(x, y), which can be generally solved only
numerical, except for special cases where analytical so-
lutions are possible. The constant factor C in (8.19) is
found to be

C = (1−γd)
1/2 · eiϕ (8.21)

cos d/ϑ = ρ

P x,y( )

P x',y'( )

z

ϑ
ρ

ρ = + ( − ) + ( − )2 2 2 2d x x' y y'

dn 1− n

a d >>a

Fig. 8.16. Illustration of Eq. (8.20)
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Fig. 8.17. One-dimensional electric field distribution in the x
direction for some resonator modes

where γB is the diffraction factor, and ϕ is the phase
shift, caused by the curvature of the wave fronts, due to
diffraction.

Some solutions of the integral equation (8.20) are
illustrated in Fig. 8.17. They correspond to stationary
solutions as standing waves between the two resona-
tor mirrors and are called transverse electromagnetic
(TEM) modes of the open resonator. They are labe-
led by three indices, which give the number of nodes
of the standing wave in the x-, y-, and z-directions
(Fig. 8.18). The TEM0,0,q modes with no nodes in x-
and y-direction are called fundamental modes. Their

TEM00

TEM00

Cartesian
coordinates: x,y

TEM10

TEM01

TEM20

TEM02

TEM01

TEM10

TEM11

TEM11

TEM22

TEM12

Cylindrical
coordinates: r,ϑ

y

x

ϑ

r

a)

b)

Fig. 8.18a,b. Schematic representation of electric field distri-
bution in the xy-plane inside the resonator (a) In Cartesian
coordinates (b) In cylindric coordinates
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k-vector points into the ±z-direction and they have q
nodes along the z-axis. Their electric field amplitude
distribution E(x, y) shows a Gaussian profile.

Generally, mirrors of circular size are used and
the active medium also has a circular cross section.
Because of this cylindrical symmetry, cylinder coordi-
nates (r, ϕ, z) are better suited for the description of the
amplitude distribution of the modes. The fundamental
modes are then described by the radial field amplitude
distribution

E(r, ϕ, z)= E0 e−(r/w)
2
,

where w is the beam waist, i.e. for r =w the amplitude
has decreased to E0/e. Because the intensity is related
to the electric field amplitude by

I = cε0 E2

we obtain the intensity distribution of the fundamental
modes

I(r, z)= I0 e−2(r/w(z))2 (8.22)

where the beam waist r =w(z), for which the intensity
has dropped to I(w)= I(0)/e2 can depend on the z-
coordinate (Fig. 8.19).

The higher transverse modes TEMn,m,q with n,m >
0 correspond to standing waves with k-vectors that are
inclined by a small angle α against the resonator axis
(Fig. 8.20). The path length between the two mirrors is

s = d+ (λ/2)(m2+n2)1/2 . (8.23a)

Fig. 8.19. Radial intensity profiles I(r, z) and beam waists
ws(z) in a confocal resonator
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Fig. 8.20. Direction of the wave vector kmn of a transverse
mode TEMm,n,q against the resonator axis

The inclination angle is

tanα= [
(λ/d) · (m2+n2)1/2

]1/2
. (8.23b)

EXAMPLE

d = 50 cm, λ = 500 nm, m = n = 1 ⇒ tanα = 1.2×
10−3 ⇒ α= 0.07◦ = 4.2′.

Resonators with plane mirrors are often not the best
choice for two reasons. They have large diffraction los-
ses and they are very critical regarding alignment. A tilt
by an angle ε changes the direction of the reflected
beam by 2ε, and the reflected beam might not pass back
through the active medium (Fig. 8.21a).

EXAMPLE

d = 1 m and a = 2 mm. If the laser beam should pass
50 times through the active medium, the deviation from
the correct alignment of the mirrors should not be larger
than
ε= 2×10−3/50= 4×10−5 rad= (

2.4×10−3
)◦= 8.5′′.

Resonator with
plane mirrors

Confocal resonator
r     r     d1 2= =

a) b)

ε

2ε

ε

Fig. 8.21a,b. Different sensitivities against misalignment for
resonators with plane mirrors (a) compared to confocal
resonators with curved mirrors (b)
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Fig. 8.22. Phase
fronts at diffe-
rent locations z
in a confocal re-
sonator with the
mirrors at z =
±d/2

Spherical mirrors are less critical with respect to
alignment, as is shown in Fig. 8.21b for the example
of a confocal resonator, where the mirrors with radius
of curvature r are separated by the distance d = r. The
focal points of both mirrors coincide.

Resonators with spherical mirrors have lower dif-
fraction losses, because they refocus the divergent
diffracted beam and therefore decrease the beam spot
size on the mirrors, if their radius of curvature r and
their distance d is chosen properly.

In Fig. 8.19 the beam profile for the fundamental
modes are shown for a confocal resonator with two
spherical mirrors with equal radii of curvature r. The
smallest spot size appears in the middle of the resonator
at z = 0 when the mirrors are at z =±d/2. In Fig. 8.22
the phase fronts of the fundamental mode in a confocal
resonator are illustrated. At z = 0 in the middle of the
resonator they are plane, at the mirrors they coincide
with the mirror surfaces.

8.2.4 Diffraction Losses of Open Resonators

The diffraction losses of a standing wave inside a re-
sonator depend on the radial intensity distribution I(r).
The larger the intensity at the edges of the mirrors or
of limiting apertures inside the resonator, the larger are
the diffraction losses. This implies, that the fundamen-
tal modes TEM00q have the lowest diffraction losses
while the higher transverse modes with n,m > 0 suf-
fer larger losses. In Fig. 8.23 the diffraction losses for
the fundamental and for some transverse modes are
plotted as a function of the Fresnel number NF for re-
sonators with plane mirrors and for confocal resonators
with curved mirrors. This illustrates that for confocal
resonators diffraction losses are much lower. In fact,

Fig. 8.23. Diffraction losses of some modes in resonators with
plane and with curved confocal mirrors, as a function of the
Fresnel number F

a He-Ne-laser can only operate with curved mirrors,
because otherwise the diffraction losses would be too
high for the small gain achievable in a discharge with
only 10−15 cm length.

These diffraction losses offer the possibility to eli-
minate higher transverse modes and to achieve laser
oscillation solely on fundamental modes. The resona-
tor configuration has to be chosen in such a way, that
the transverse modes suffer sufficiently high losses, to
prevent them from reaching the oscillation threshold.

EXAMPLE

When the gain of the active medium per roundtrip
is 10% (G(ν)= 1.1 in (8.3), the Fresnel number of
a confocal resonator has to be NF < 0.8, according to
Fig. 8.23, in order to prevent all transverse modes from
oscillation. For a wavelength λ= 600 nm and a mirror
separation d = 50 cm the limiting aperture must have
a diameter of 2a = 2(NFλd)1/2 < 10−4 m ≈ 1 mm.

8.2.5 The Frequency Spectrum
of Optical Resonators

For the fundamental modes with m = n = 0 a standing
wave can build up in a resonator with plane mirrors if
an integer multiple of the half-wavelength fits between
the mirrors:

d = qλ/2 ⇒ νr = qc/(2d) . (8.24a)

The resonance frequencies νr of neighboring fundamen-
tal modes are separated by

δνr = νr(q)−νr(q−1)= c/(2d) . (8.24b)
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The spacing δνr is called the free spectral range of the
resonantor.

For the transverse modes TEMnmq the resonance
frequencies are obtained from the solutions of the inte-
gral equation (8.20), which can be solved analytically
for the confocal resonator [8.9]. One obtains

νr = c

2d

(
q+ 1

2 (m+n+1)
)
, (8.24c)

which converts to (8.24a) for m = n = 0, if q is repla-
ced by q∗ = q+ 1

2 . When m+n is an odd integer, the
eigenfrequencies of the transverse modes are just in the
mid between two fundamental (also called longitudinal)
modes.

Standing TEMnmq waves with these eigenfrequen-
cies have minimum losses. They are stored inside the
resonator for a much longer time then waves with non-
resonant frequencies. The total losses can be described
by the sum

γ = γr+γsc+γdiffr

of the loss factors for reflection losses, scattering and
diffraction losses, where γdiffr sharply increases with m
and n.

The threshold condition

−2α(ν)L−γ(ν) > 0

is only fulfilled for those resonance frequencies which
lie within the spectral gain profile of the amplifying
transition of the active medium (Fig. 8.24). The laser
emission consists of all these frequencies and the total

Resonator modes

Spectral
gain profileNet gain

Treshold
gain

0.5

1.0

1.5

2.0

2.5

ν1 ν2ν0 ν

G

∆ν

M1 M2

d

γ

∆ν = ( )c / 2ndL

0L2 =γ−⋅α−

Fig. 8.24. Net gain G(ν) for resonator modes within the gain
profile of the active medium. The vertical black lines give
the frequencies of a multimode laser oscillating only on
fundamental modes TEM0,0,q

bandwidth of the laser emission depends on the width
of the gain profile above the threshold line −2αL = γ
in Fig. 8.24.

EXAMPLES

1. He-Ne Laser: d = 50 cm⇒ δνr = c/2d = 300 MHz.
Within the gainprofile with∆νD = 1.5 GHz are Five
longitudinal modes. If the discharge tube diameter
is 2a< 1 mm, the diffraction losses are too high for
transverse modes and the laser oscillates solely on
these five fundamental modes.

2. Ruby laser: d = 10 cm ⇒ δνr = 1.5 GHz. With
2a = 6 mm the diffraction losses are smaller than
the high gain even for higher transverse modes.
The width of the gain profile is about 30 GHz. This
means that besides about 20 fundamental modes
many transverse modes are present in the emission
of the ruby laser.

8.3 Single Mode Lasers

In order to achieve laser oscillation on a single
fundamental mode several measures can be taken.

The simplest one is the shortening of the resona-
tor length d below a value where the mode spacing
δνr = c/(2d) becomes larger than one-half of the spec-
tral width of the gain profile at the threshold line. This,
however, generally reduces the gain for gas lasers and
only small output powers can be achieved. For solid
state lasers with a large gain per centimeter, this might
be a solution, but the spectral gain profile of these la-
sers is generally very broad and even short cavities still
might result in multimode operation.

The better, and most commonly used method for
achieving single mode operation is the insertion of addi-
tional frequency selective optical elements into the laser
resonator. Such an element can be, for instance, a tilta-
ble plane parallel glass plate with reflecting surfaces on
both sides (Fig. 8.25a), which represents a Fabry-Perot
etalon. As shown in textbooks on optics, the transmis-
sion of this etalon with reflectivity R on both sides is
given by

T = 1

1+ F · sin2(δ/2)
(8.25)
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Fig. 8.25a–d. Selection of a single resonator mode (a) Expe-
rimental setup (b) Resonator modes within the gain profile of
the active medium (c) Transmission T(ν) of the etalon (d) Net
gain of the laser with the etalon inside the resonator

with

F = 4R

(1− R)2
.

The phase shift δ= 2π∆s/λ between two adjacent inter-
fering partial beams with angles of incidence α against
the normal to the plate surfaces (Fig. 8.26) is determined
by the optical path difference

∆s = 2t
√

n2− sin2 α . (8.26)

From (8.25) it follows that T = 1 for δ= 2m ·π. This
is fulfilled for all wavelengths λm =∆s/m i. e. for all
frequencies νm = c/λm = (c/∆s) ·m, m = 1, 2, 3, . . . .

Adjusting the tilting angle α correctly, one of the
frequencies νm can coincide with a resonator eigen-
frequency inside the gain profile (Fig. 8.25c). Only for

Fig. 8.26. Path difference in a plane parallel glas plate

this frequency are the total losses small, for all other
resonator eigenfrequencies the transmission of the eta-
lon is small and if the reflectivity R of the etalon is
sufficiently high the total losses for these frequencies
are larger than the gain and they do not reach oscilla-
tion threshold (Fig. 8.25d). The laser then oscillates on
a single fundamental mode if the transverse modes are
eliminated by high diffraction losses.

The mean line width of such a single mode laser is
mainly determined by technical fluctuations of the opti-
cal resonator length n ·d, where n is the refractive index
between the resonator mirrors. Since the laser frequency
is given by the eigenfrequency of the resonator

νL = νr = q · c/(2nd)

fluctuations ∆n of the refractive index or ∆d of the
resonator length result in corrsponding fluctuations of
the laser frequency

−∆νL

νL
= ∆n

n
+ ∆d

d
. (8.27)

EXAMPLES

1. If the mirror separation d = 50 cm changes by 1 nm,
this results in a relative frequency change ∆ν/ν =
2×10−9. At a laser frequency of ν = 5×1014 s−1

we obtain ∆νL = 1 MHz!
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2. If the air pressure between the mirrors changes by
1 mbar, this results in a change ∆n/n = 2.5×10−7

of the refractive index, which means a frequency
shift of 125 MHz at ν = 5×1014 s−1

Such technical fluctuations can be partly compen-
sated, if one of the resonator mirrors is mounted on
a piezocrystal (Fig. 8.27). This consists of a material,
that changes its length under an external voltage ap-
plied to its end faces. If part of the laser output is
sent through a very stable Fabry-Perot (Fig. 8.28), the
transmitted intensity changes when the laser frequency
changes. A photodiode behind the FPI gives an output
voltage that reflects this intensity change. The output is
compared with a reference voltage and the difference is
amplified and applied to the piezocrystal, which chan-
ges the resonator length and brings the laser frequency
back to its wanted value. Such a feedback control system
can stabilize the laser frequency within about 1 Hz! New
very sophisticated devices can even reach a stability of
1 mHz = 10−3 Hz.

The physical limitation to the line width of the laser
is due to the following effect.

The laser emission starts with avalanches of photons
induced by spontaneous emission. Since the sponta-
neous photons are randomly emitted, the amplitudes
and phases of these avalanches are random. The to-
tal laser output consists of a superposition of such
avalanches. This results in amplitude- and phase fluc-
tuations of the laser wave. The amplitude fluctuations
are compensated by a feedback mechanism of the active
medium: A positive peak in the amplitude reduces the

Fig. 8.27. (a) Piezocylinders and their (ex-
aggerated) change of length with applied
voltage (b) Laser mirror epoxide on a pie-
zocylinder (c) Mirror plus piezomount on a
single-mode tunable argon laser
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Fig. 8.28. Laser wavelength stabilization onto the slope of the
transmission T(λ) of a stable reference FPI

inversion and thus the amplification, while a negative
deviation from the average amplitude increases the am-
plification. Such a feedback mechanism does not work
for phase fluctuations, which lead to a finite line width
(Sect. 7.4.3). A quantitative derivation gives the famous
Schawlow–Townes formula [8.2] for the lower limit of
the line width of a single mode laser:

∆νL = πhνL

PL
·∆ν2

r . (8.28)

Here ∆νr is the width of a resonator resonance for
an empty resonator, and PL is the output power of
the single mode laser. In Fig. 8.29 the resulting laser
profile is plotted on a logarithmic scale, together with
the Doppler-broadened background of the spontaneous
emission.

The theoretical limit, which gives for PL = 1 W and
∆νN = 1 MHz a line width of 10−6 Hz has never been
realized in a practical experiment due to the technical
perturbations mentioned above. With normal expen-
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Fig. 8.29. Spectral profile of laser emission for an idealized
laser without technical perturbations, plotted on a logarithmic
scale

diture, a line width of about 100 kHz–1 MHz can be
achieved.

Note:

A laser width a line width ∆νL = 1 MHz has a cohe-
rence length of ∆sc = c/∆νL = 300 m! However, for
a multimode argon laser with a bandwidth of 5 GHz the
coherence length is only ∆νc = 6 cm, which is compa-
rable to that of a normal discharge lamp, where a single
emission line has been selected.

8.4 Different Types of Lasers

The different experimental realizations of lasers can be
divided into three main groups according to their active
medium:

• Solid-state lasers
• Liquid lasers
• Gas lasers

Each of these types can be operated in a pulsed mode or
continuously (cw operation). Depending on the kind of
energy transfer from the pump into the active medium
we distinguish between optically pumped lasers (e. g.,
the ruby laser and other solid-state lasers, such as the
neodymium laser or the titanium-sapphire laser, and the

liquid-dye laser), and electrically pumped lasers (the
semiconductor laser and most gas lasers pumped by an
electric discharge).

Many types of lasers emit on fixed frequencies,
corresponding to discrete transitions in atoms or mole-
cules. Their wavelengths can be changed only slightly
within a narrow gain profile of the atomic or mole-
cular transition. We will call them “fixed-frequency
lasers.”

For spectroscopic applications “tunable lasers” are
of particular importance, where the laser wavelength
can be tuned over a broader spectral range. These lasers
have a broad gain profile and the laser wavelength can
be selected within this range by wavelength-selecting
optical elements (prism, optical grating or interferome-
ter) inside the laser resonator. Tuning the transmission
peak of these elements allows a continuous tuning of
the laser wavelength over the whole gain profile. Such
single-mode tunable lasers represent an intense, narrow-
band coherent wavelength-tunable light source, which
has proved to be of invaluable advantage for numerous
spectroscopic problems.
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Fig. 8.30. (a) Schematic arrangement of a free-electron laser
(b) Radiation of a dipole at rest (ν = 0) and a moving dipole
with ν � c (c) Phase-matching condition
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A completely different concept of tunable lasers uses
high energy relativistic electrons from an accelerator as
active medium. These electrons are forced onto oscil-
latory paths in a periodically changing magnetic field,
where the electrons emit radiation. With a properly cho-
sen period length of the alternating magnetic field, the
contributionsof theradiationfromthedifferentsegments
of theperiodicstructuresuperimpose inphaseandaddup
to an intense wave in the forward direction of the average
electron path (Fig. 8.30). The wavelength of the cohe-
rent emission depends on the energy of the electrons and
can extend from the far infrared into the far ultraviolet.
With high energy accelerators even the X-ray region can
be reached. Such lasers are called free-electron lasers
because their active medium consists of free electrons.

In the following sections we will discuss the most
commonly used laser types.

8.4.1 Solid-state Lasers

The active medium of solid-state lasers are cylindrical
rods of glass or single crystals, which are doped with
special atoms, ions or molecules that can be optically
pumped into excited states. The doping concentration
varies between 0.1% to about 3%, depending on the kind
of host material. In Table 8.1 some examples of solid-
state lasers are compiled with their characteristic data.

All these solid-state lasers are optically pumped. Of-
ten pulsed flashlamps are used as pump sources, which
results in a pulsed laser output. Although ruby lasers
were the first lasers, these are being replaced more and
more by neodymium lasers, which consist of a glass
rod doped with Nd+++ ions emitting laser radiation
at λ= 1.06 µm. The advantage of the Nd lasers is ba-
sed on the fact that it represents a four-level system
(Fig. 8.31), which needs less inversion and therefore
less pump power than the three-level ruby laser. Its in-
frared emission can be converted by optical frequency
doubling (see Sect. 8.5) into the visible range.

The laser threshold can be further lowered by re-
placing the glass in the Nd-glass laser by a crystal of
yttrium-aluminum-garnet (YAG), which has a higher
heat conductivity and can therefore more effectively
transfer the excess energy N(hνp−hνL) (produced as
heat in the rod when N photons are emitted) to the
cooling system.

The pulse durations of these solid-state lasers range
from microseconds to milliseconds and the output pulse

Table 8.1. Examples of solid-state lasers that can be operated
in a pulsed and a cw mode

Laser type Active Host crystal Laser-wave-
Atom length
or Ion (µm)

Ruby laser Cr+++ Al2O3 0.6943
(Saphir)

Neodynium- Nd+++ Glass 1.06
Glass-laser

Neodynium- Nd+++ Y3Al5O12, 1.06
YAG-Laser CaF2, CaF3 0.9−1.1

Titanium- Ti+++ Al2O3 0.65−1.1
Sapphire

Alexandrit Cr+++ BeAl2O4 0.7−0.83

Cobalt- Co++ MgF2 1.5−2.1
laser

Holmium- Ho+++ YAG 2.06
laser

Erbium- Er+++ YAG 2.9
laser

Colour- vacancies alkali- 0.8−3.5
center of alkali halogenid- depending
laser ions crystal on the

crystal

Fig. 8.31. Level scheme of the Nd:glas laser
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energies from 1 mJ to about 1 J, which gives peak
powers from the kW range to many MW.

In order to achieve higher output powers, the output
of the laser oscillator is sent through an optical ampli-
fier, consisting of one or several optically pumped rods,
where inversion is achieved (Fig. 8.32). These laser am-
plifiers have a similar setup as the laser oscillator, but
without the mirrors, to prevent self-starting laser os-
cillation in these stages. The oscillator and amplifier
are separated by an optical isolator in order to prevent
feedback into the oscillator.

All lasers compiled in Table 8.1 can also be pumped
by continuous pump sources, e. g., with continuous la-
sers. They then emit cw radiation with a wavelength λ
that can be tuned within the gain profile of the active
medium. Some of these media have a very broad gain
profile, such as the Ti:Al2O3 (titanium-sapphire) laser
(Fig. 8.33). The reason for this broad tuning range is
as follows. The optically pumped excited states relax
in a very short time into a lower level, due to interac-
tions with the vibrating atoms of the host crystal. This
level represents the upper laser level. The optical transi-
tions from this level (Fig. 8.34) can terminate on many
“vibronic levels” within a low-lying electronic state,
corresponding to vibrations of the host crystal Al2O3

(phonons). These phonons relax very fast into lower le-
vels, thus repopulating the initial state from which the
pump process starts.

Oscillator AmplifierM1 M2

R 1= R 1<

Pumplight Pumplight

Optical
isolator

Fig. 8.32. Amplification of the laser output power by an optical
amplifier
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Fig. 8.33. Tuning ranges of some solid-state lasers (cw
operation: black, pulsed operation red)
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Fig. 8.34. Level scheme of vibronic solid-state lasers

Another important class of tunable solid-state lasers
are color-center lasers, which consist of alkali-halide
crystals (e. g., NaCl or KBr), which are transparent in
the visible. If defects (a missing negative halide ion)
are produced in such a crystal by X-ray irradiation, the
vacancy spot acts as a potential well for the remaining
electron (Fig. 8.35a). The energy levels of this elec-
tron can be excited by absorption of visible photons,
thus making the crystal appear colored. Therefore these
vacancies are called color centers.

When the electron is excited, the forces on the sur-
rounding ions change. This changes their arrangements
around the color center and the energy of the initially
excited states |1〉 decreases to level |k〉. (Fig. 8.35b),
which acts as an upper laser level. Similarly to vibronic
lasers, the laser emission terminates on many vibronic
levels |i〉 which relax into the initial level |0〉.

In Fig. 8.35c the tuning ranges of different color
center lasers are illustrated.

8.4.2 Semiconductor Lasers

The active medium of semiconductor lasers (often cal-
led diode lasers) is a p-n semiconductor diode. An
electric current is sent in the forward direction through
the diode, which transports electrons from the n-into the
p-section and holes from the p- into the n-section. At
the n-p-junction the electrons and holes can recombine
(i. e., the electrons fall from an energetically higher state
in the conduction band into a lower hole state in the va-
lence band) and may emit their recombination energy in
the form of electromagnetic radiation (Fig. 8.36). The
emitted radiation can be amplified when passing along
the p-n-junction (stimulated recombination). Since the
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electron density is very high, the amplification is cor-
respondingly large and a path length through the active
medium of less than 1 mm is sufficient to reach laser
threshold.

The uncoated polished or cleaved end faces of the
semiconductor crystal can serve as resonator mirrors.
The refractive index of semiconductor materials is very
large. For example for the GaAs (gallium-arsenide) la-
ser emitting at λ= 850 nm is n = 3.5. The reflectivity
for vertical incidence is

R =
(

n−1

n+1

)2

≈ 0.30 . (8.29)

Because of the high gain, this reflection is sufficient to
surpass the laser threshold in spite of reflection losses
of 0.7 per one-half roundtrip.

Fig. 8.36a,b. Simplified principle of a semiconductor laser.
(a) Structure of the laser diode (b) Level scheme with valence
and conduction band and radiative recombination of electrons
with holes

Typical output powers of cw semiconductor lasers
are 10−50 mW, when they are pumped by an electric
current of 100−300 mA. Special arrays of many simul-
taneously pumped diodes deliver output powers of more
than 100 W! The plug-in efficiency of radiation output
power to electric input power, defined as the ratio

η= Pout
L /Pin

el ≈ 0.25 ,

reaches 25−30%, which is the highest efficiency of all
lasers developed so far.

Diode lasers are more and more used for pumping
other solid state lasers. Using different semiconduc-
tor materials, wide tuning ranges for the diode laser
wavelengths can be achieved.

8.4.3 Dye lasers

The most important representatives of liquid lasers are
dye lasers with various designs, which can be operated
in a pulsed as well as in a cw mode. The active media are
large dye molecules dissolved in a liquid (e. g., ethylene
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glycol). These molecules have many vibration-rotation
levels in the electronic ground state (singlet S0) and in
excited states (Si or triplet states Ti). The energy le-
vel scheme is schematically depicted in Fig. 8.37. The
strong interaction of the dye molecules with the liquid
solvent results in a broadening of the transitions, which
is larger than the average spacings between the different
rotational-vibrational transitions. Instead of many dis-
crete lines broad absorption and emission bands appear
(Fig. 8.37b).

The pump source (a flashlamp or a pulsed or cw la-
ser) excites the dye molecules from the ground state S0

into many vibration-rotation-levels of the S1 state. Due
to the strong interaction with the solvent, the excited
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Fig. 8.37a,b. Dye laser. (a) Level scheme (b) Structure of
dye molecule rhodamin 590 and absorption fluorescence
spectrum

molecules relax within a short time (10−10−10−12 s)
into the lowest levels |2〉 of the S1 state, from where they
emit fluorescence on radiative transitions into many
vibration-rotation-levels |3〉 of the S0 state. Since these
levels with energies E > kT are not thermally popula-
ted at room temperature, population inversion can be
reached between these levels |2〉 and the levels |3〉, if
the former are sufficiently populated by optical pum-
ping. The active medium of the dye laser is therefore
a four-level system.

Since the absorption starts from the lower levels |1〉
and reaches higher levels in S1 while the emission
starts from the lowest levels |2〉 in S1 and terminates
on the higher levels |3〉 in S0, the emission spectrum
is red-shifted towards longer wavelengths against the
absorption spectrum (Fig. 8.37b).

The dye laser can oscillate on those transitions
where the threshold is reached. From the broad emis-
sion line profile a specific wavelength can be selected
by wavelength-selecting elements inside the laser reso-
nator. Tuning the transmission peaks of these elements
results in a corresponding tuning of the laser wave-
length. In Fig. 8.38 the tuning ranges for different dyes
are shown. This figure illustrates that with different
dyes the whole spectral range from 1 µm down to about
400 nm can be covered.

In Fig. 8.39 the experimental design of a flashlamp-
pumped dye laser is shown. It is similar to that of the
ruby laser in Fig. 8.10, but the solid rod is replaced
by a glas tube through which the dye solution is pum-
ped, producing a steady flow of dye molecules through
the region pumped by the flashlamp. Because of the
broad gain profile a prism is placed inside the reso-
nator in order to select the wanted wavelength. Only
that wavelength λ can oscillate, for which the laser
beam hits the end mirror M2 vertically. All other wa-
velengths are reflected back under an angle inclined
against the resonator axis and do not reach the gain
medium again. Wavelength tuning is accomplished by
tilting the mirror M2.

In Fig. 8.40 the arrangement is shown for a dye laser,
pumped by another pulsed laser (e. g., a nitrogen-laser
or an excimer laser (see below)). The pump beam is
focused by a cylindrical lens into the dye cell, forming
a line focus where inversion is achieved. The narrow dye
laser beam is enlarged by telescope optics and falls onto
an optical Littrow grating, where the first order diffrac-
tion is reflected back into the incident direction. This
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Fig. 8.39. Flashlamp-pumped dye laser

can be realized with a grating with groove distance d, if
the incidence angle α is equal to the diffraction angle β,
which gives the grating equation

m ·λ= d(sinα+ sinβ)= 2d · sinα (8.30)

with m = 1 .

The spectral resolution of the grating

λ/∆λ= m · N (8.31)

is proportional to the number N of illuminated grooves
and the diffraction order m. Therefore it is necessary to
enlarge the dye laser beam to cover a large number of
grooves N . Tilting the grating results in a continuous
tuning of the laser wavelength.

Littrow
grating

Beam expanding
telescope

Cylindric
lens

Dye cell

Pump laser
(e.g. excimer laser)

M

λ   + ∆λD

λD

Fig. 8.40. Excimer-laser-pumped dye laser

Since the spectral width ∆ν of pulsed lasers with
pulse duration ∆t is principally limited by the Fou-
rier limitation ∆ν = 1/∆t, cw lasers are demanded for
really high resolution in the MHz range. In Fig. 8.41
a commercial version of such a single mode cw dye
laser is shown.

The active medium is a thin (≈ 0.5 mm) liquid jet
of the dye solution, which is pumped by an argon laser
beam, focused by a spherical mirror into the dye jet. Dif-
ferently from the previously discussed resonators, four
mirrors form a ring-resonator, where no standing laser
wave is produced but a wave running only in one direc-
tion. This has the advantage that no nodes are present as
in a standing wave and the whole inversion of the active
medium can contribute to the laser amplification. In or-
der to avoid laser waves in both directions the losses for
one direction must be higher than for the other direction.
This can be achieved with an optical diode (unidirec-
tional device), consisting of a birefringent crystal and
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Fig. 8.41. Commercial version of a single-mode cw ring dye laser (Spectra-Physics)

a Faraday polarization rotator, which turns the birefrin-
gent rotation back to the input polarization for the wave
incident in one direction, but increases the rotation for
the other direction. Waves with the wrong polarization
suffer large losses at the many Brewster surfaces in the
resonator and therefore do not reach the threshold.

Wavelength selection is achieved with a birefringent
filter and two Fabry–Perot-etalons with different thick-
nesses t. If the transmission peaks of all these elements
are tuned to the same wavelength λ, the laser will oscil-
late at this wavelength as a single mode laser. The laser
wavelength can be continuously tuned, if all elements
and the resonator length are tuned synchronously. This
can be realized with special feedback control systems.
For details of these devices see [8.10].

8.4.4 Gas Lasers

Nearly all gas lasers use gas discharges as active me-
dium. Besides the He-Ne laser already discussed in
Sect. 8.1.2 the most important gas lasers are compi-
led in Table 8.2. Here, we will only briefly discuss the
physical principles of their operation.

The argon laser oscillates on transitions between
different excited levels of argon ions Ar+. It there-
fore needs a high current discharge (5−50 A with
70−700 A/cm2 current density), where the degree of
ionization is high. The excitation of the upper laser
levels occurs in two steps:

Ar+ e− → Ar++2e− (8.32a)

Ar++ e− →Ar+∗(4p, 4s)+ e− . (8.32b)

In a capillary of ceramic (length ≈ 1 m, diameter
≈ 3 mm) current densities of more than 700 A/cm2 are
reached at a total discharge current of 50 A. The gas
discharge is confined by a longitudinal magnetic field
in order to prevent the ions to reach the wall of the ca-
pillary where they could damage it by sputtering. The
ceramic tube is cooled by a water flow between the
tube and an outer cylinder on which the electric wires
for the magnetic field are wound. A heated helical ca-
thode supplies the large electron current necessary to
maintain the discharge (Fig. 8.42). An elegant techni-
cal solution for the transfer of heat (≈ 20−30 KW) to
the cooling water is shown in Fig. 8.42b. The discharge
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Table 8.2. Characteristic data of some important types of gas lasers

Laser type Laser wavelengths Output power

He-Ne-Laser about 10 transitions 0.1−100 mW
with λ= 0.54−3.39 µm

Argon laser about 20 transitions 1 W–1 kW
with λ= 0.35−0.53 µm

CO2-He-N2-laser about 200 transitions cw: 1 W−10 kW
with λ= 9.5−10.3 µm pulsed: ≤ 1 MW

CO-laser about 300 transitions cw: several watts
λ= 4.5−6 µm

Excimer-laser XeCl: 308 nm Pulse energies
KrF: 248 nm 1−400 mJ/pulse
ArF: 193 nm
H2: 150 µm repet. rate: ≤ 200 Hz

Chemical lasers HF, DF: 2−3 µm several kW
and 10−20 µm

Far infrared several hundred transitions pulsed: mW–W
lasers pumped with λ= 50−350 µm
by CO2-lasers
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Fig. 8.42a,b. Argon ion laser. (a) Experimental setup (b) De-
tails of the discharge path through holes drilled into tungsten
discs and the heat transfer to the water-cooled envelope

runs through small holes (3 mm diameter) in tungsten
discs, which are heated by the dissipated power to tem-
peratures up to 1000 K. These hot discs transfer their
energy by radiation to the wall of a ceramic tube with
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Fig. 8.43. (a) Laser line selection on a specific transition in
argon. (b) Level scheme

about 40 mm diameter, which is again cooled by wa-
ter. The larger surface of this tube facilitates the heat
transfer.

Since several upper levels in the Ar+ ions are
excited, the laser can reach oscillation threshold for
several transitions and therefore oscillates on several
wavelengths. A specific wavelength can be selected by
a prism inside the resonator (Fig. 8.43). By tilting the
mirror M2 the desired wavelength can be chosen.
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The efficiency of the argon laser

η= PL/Pelectr ≈ 0.1%

is very low. In order to produce 1 W laser output power,
more than 10 kW electrical input power are necessary.
Most of the power (99.9%), put into the discharge,
is converted into heat transferred to the walls of the
discharge and has to be taken away by the cooling water.

The CO2 laser has the highest efficiency of all gas
lasers (≈ 10−20%) and for cw operation the highest
output power. The active medium is a gas discharge
in a mixture of He, N2 and CO2. By electron im-
pact in the discharge excited vibrational levels in the
electronic ground states of N2 and CO2 are populated
(Fig. 8.44). The vibrational levels v= 1 in the N2 mole-
cule and (ν1, ν2, ν3)= (0001) in the CO2 molecule (see
Sect. 10.4) are near-resonant and energy transfer from
the N2 molecule to the CO2 molecule becomes very
efficient. This populates the (0001) level in CO2 prefe-
rentially, creates inversion between the (0001) and the
(0200) levels, and allows laser oscillations on many ro-
tational transitions between these two vibrational states
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Fig. 8.44. (a) Level scheme and the three normal vibrational
modes of the CO2 molecule. (b) CO2 laser with a Littrow-
grating for line selection

in the wavelength range 9.6−10.6 µm. A single line
can be selected by a Littrow-grating, forming one of the
resonator end mirrors.

Note:

The linear CO2 molecule has three normal modes of vi-
bration, labeled ν1, ν2 and ν3, and depicted in the upper
part of Fig. 8.44a (see also Sect. 10.3). The vibratio-
nal state of the molecule is described by the number of
vibrational quanta in these modes. A state with 1 quan-
tum in ν1, 2 quanta in ν2 and 0 quanta in ν3 is labeled
as (120). The bending vibrational mode is twofold de-
generate and can have a vibrational angular momentum
along the CO2 axis. The number of quanta nh of this
vibrational angular momentum is stated as an upper in-
dex to the vibrational ν2 quanta. The upper laser level
(0001) has zero vibrational angular momentum and 1
vibrational quantum in the ν3 mode.

A powerful gas laser in the UV is the excimer la-
ser, where specific diatomic molecules, called excimers,
form the active medium. These excimers (excited di-
mers), are stable in an electronically excited state but
unstable in their ground state (Fig. 8.45). Examples are
the noble gas halides, such as XeCL, KrCL or ArF. If the
stable upper state AB∗ of the excimer AB is populated,
(e. g., by electron excitation of the atom A and recom-
bination A∗ +B → (AB∗), inversion is automatically
produced because the lower state is always comple-
tely emptied by fast dissociation on a time scale of
10−13 s, if it is populated by fluorescence from the upper
level.
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Excimers are therefore ideal candidates for an active
laser medium. They have the additional advantage that
the emission from the bound upper level terminates on
a repulsive potential curve on the dissociative ground
state and therefore forms a broad emission continuum.
This results in a broad gain profile and the wavelength
of the excimer laser can be tuned over a relatively large
range.

8.5 Nonlinear Optics

The optical frequency of lasers can be doubled in non-
linear optical crystals, thus considerably extending the
wavelength range where coherent radiation can be ge-
nerated. In this section we will briefly discuss the
physical principles of optical frequency doubling or
mixing under the heading nonlinear optics.

When an optical wave passes through a crystal, it
induces the atomic electrons to forced oscillations. For
sufficiently small electric field amplitudes E of the wave
the elongations of the oscillating electrons are small and
the restoring forces are proportional to the elongation
(linear range). The induced dipole moments p = α · E
are proportional to the field amplitude and the com-
ponents Pi of the dielectric polarization of the medium
induced by the light wave

Pi = ε0

∑
j

χij E j (i, j = x, y, z) (8.33)

are linearly dependent on E, where χij are the com-
ponents of the tensor χ of the electric susceptibility.
This is the realm of linear optics.

EXAMPLE

The field amplitude of the sunlight reaching the earth
at λ= 500 nm within a bandwidth of 1 nm is about
E ≈ 3 V/m. On the other side the electric field from the
Coulomb force, binding the electron to the nucleus is,
for a binding energy of 10 eV, about

EB =− 10 V

10−10 m
= 1011 V/m . (8.34)

Therefore, the elongation of the electrons induced by
the sunlight (for example, for the Rayleigh scattering)
is very small compared with its mean distance from
the nucleus and the restoring force within this small
elongation is linear to a good approximation.

For much larger light intensities, as can be realized
with focused beams of lasers, the nonlinear range of
electron elongations can be readily reached. Instead of
(8.33) the dielectric polarization has to be written as the
expansion

Pi = ε0

[∑
j

χ
(1)
ij E j (8.35)

+
∑

j

∑
k

χ
(2)
ijk E j Ek

+
∑

j

∑
k

∑
l

χ
(3)
ijkl E j Ek El + . . .

]
where χ(n) is the nth order susceptibility, which is re-
presented by a tensor of rank (n+1). The quantities
χ(n) decrease rapidly with increasing n. However, for
sufficiently high field amplitudes E the higher order
terms in (8.35) can be no longer neglected. They form
the basis of nonlinear optical phenomena.

When a monochromatic light wave

E = E0 cos(ωt− kz) (8.36)

passes through the medium, the frequency spectrum of
the induced polarization P also contains (because of
the higher powers n of the field amplitudes En), be-
sides the fundamental frequency ω, higher harmonics
mω (m = 2, 3, 4 . . . ). This implies: The induced oscil-
lating dipoles emit radiation not only on the frequencyω
(Rayleigh scattering), but also on higher harmonics
(Fig. 8.46). The amplitudes A(mω) of these emitted wa-
ves depends on the magnitude of the coefficients χ(n)

2ω
ω 2ω

2ω3ω

z

)kzt(i
0 eEE −ω⋅=

Fig. 8.46. Schematic illustration of the generation of optical
harmonies under the influence of a strong electromagnetic
wave
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and in a nonlinear way on the amplitude E0 of the
incident light wave.

8.5.1 Optical Frequency Doubling

If the light wave (8.36) passes through an isotropic
medium we obtain from (8.35), for the location z = 0,
the x-component of the dielectric polarization

Px = ε
(
χ(1)xx E0x cosωt+χ(2)xxx E2

0x cos2 ωt+ . . . )
(8.37)

when we neglect all higher order terms χ(n) with
n > 2. Similar equations are obtained for the y- and z-
components. Using the relation cos2 x = 1

2 (1+ cos 2x)
we can write (8.37) as

Px = ε0
( 1

2χ
(2)E2

0x +χ(1)E0x cosωt

+ 1
2χ
(2)E2

0x cos 2ωt
)
. (8.38)

The dielectric polarization contains a constant term
1
2ε0χ

(2)E2
0x , a linear term with frequency ω and the

nonlinear term with 2ω. This means that each of the
atoms hit by the incident wave radiates a scattered wave
that contains the frequency ω (Rayleigh scattering) and
a second harmonic wave with the frequency 2ω.

The amplitude of the second harmonic wave is
proportional to the square of the amplitude of the inci-
dent wave. This means that the intensity I(2ω) is also
proportional to I2(ω).

The microscopic second harmonic waves, emitted
by the different atoms, can only add up to a macroscopic
wave if they are all in phase for all location in the
crystal. Since the phase velocity generally depends on
the frequency (dispersion), special crystals have to be
used in order to match the velocities of the fundamental
and the second harmonic wave.

8.5.2 Phase Matching

When a plane wave (8.36) passes through the crystal,
it generates in each plane z = z0 dipoles with oscilla-
tion phases that depend on the phase of the inducing
fundamental wave at z = z0. In a neighboring plane,
z = z0+∆z, the same phase difference exists between
the incident wave and the induced dipoles.

The waves at frequency ω, radiated by the atoms
in the plane z = z0 reach the next plane z = z0+∆z
after the same time interval as the incident wave. They

therefore superimpose the microscopic waves emitted
from atoms in that plane in phase and add up to twice
their individual amplitude.

This is, however, not true for the second harmonic
waves, because their phase velocity vph(2ω)= c/n(2ω)
differs from that of the incident wave vph(ω)= c/n(ω)
if the refractive index n(2ω) 	= n(ω), which is gene-
rally the case. The second harmonic wave generated by
atoms in the plane z = z0 therefore reaches the plane
z = z0+∆z with another time delay than the incident
wave and a phase difference arises between the mi-
croscopic second harmonic waves generated in the two
planes. After a distance

∆z = (λ/2)/[n(ω)−n(2ω)] (8.39)

the second harmonic wave generated in the plane z = z0

arrives at the plane z+∆z with the opposite phase as
the second harmonic waves generated in this plane and
therefore the two contributions interferes destructively
(Fig. 8.47).

In summary: In isotropic homogeneous media the
second harmonic waves generated in the diffe-
rent planes do not superimpose in phase. Summed
over the whole crystal all phase differences bet-
ween 0 and 2π occur and the total wave remains
very small due to destructive interference of the
different microscopic contributions.

A solution to this dilemma is provided by uniaxial
birefringent crystals, where the incident light wave is

Fundamental wave

ω

2ω

2ω

z

z

z

z1

z2

a)

b)

c)

∆z

Fig. 8.47. Phase shift of π between the two harmonic waves
with 2ω, generated at a point z1 and a point z2 = z1+∆z
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Fig. 8.48. Phase matching between fundamental wave with
frequency ω and second harmonics with 2ω in birefringent
optical crystals

split into an ordinary wave for which the refractive in-
dex n = n0 does not depend on the direction, and an
extraordinary wave where n = ne(Θ) depends on the
angle Θ between the optical axis of the crystal and the
propagation direction (Fig. 8.48). At a certain angleΘP,
called the phase matching angle, the ordinary refractive
index n0(ω) for the fundamental wave at frequency ω
equals the extraordinary index ne(2ω) for the second
harmonic wave. In this direction, phase matching is
possible for a selected frequency ω. The condition for
phase matching can be written as

ne(2ω)= n0(ω)⇒ vph(ω)= vph(2ω)

⇒ k(2ω)= 2k(ω) . (8.40)

Fundamental

input
Harmonic

output

Doubling crystal

X
M1 M2

PZT

P

Fig. 8.49. Low-loss ring resonator with
astigmatic compensation and wide tuning
range for optical frequency doubling

If the angle Θ is changed, phase matching is achieved
for another frequency ω, i. e., another wavelength λ.
Therefore the phase matched wavelength can be tu-
ned by tilting the crystal. All microscopic secondary
waves at 2ω emitted into the direction Θ from the di-
poles induced by the incident fundamental wave are in
phase with the fundamental wave along the whole path
through the crystal. Now a macroscopic second harmo-
nic wave can build up, traveling in the same direction
as the fundamental wave.

For instance, the red ruby laser emission at
λ = 690 nm is partly converted into UV light
at λ = 345 nm in a properly phase-matched KDP
(potassium-dihydrogen phosphate) crystal. With suf-
ficiently large nonlinear coefficients χ(2) of the
doubling crystal and with pulsed incident lasers
of high peak powers conversion efficiencies up to
η= P(2ω)/P(ω)= 40% can be achieved.

With cw lasers the output power is much less
and therefore the conversion efficiency η= χ(2) I(ω)
is smaller. One can either focus the laser beam onto the
crystal to increase I(ω) at a given power P(ω), or the
doubling crystal is placed inside an enhancement reso-
nator with highly reflecting mirrors (Fig. 8.49), where
the power of the fundamental wave is enhanced by a fac-
tor up to 100. With this technique a UV power of more
than 50 mW can be achieved for an input power of
500 mW.

8.5.3 Optical Frequency Mixing

When two light waves

E1 = E01êx cos(ω1t−k1r)

E2 = E02êx cos(ω2t−k2r)

are superimposed in a nonlinear optical medium, the
total electric field amplitude E = E1+ E2 induces
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a polarization with a nonlinear contribution

P(2)(ω)= ε0χ
(2)[E2

01 cos2 ω1t+ E2
02 cos2 ω2t

+2E01 E02 cosω1t · cosω2t
]

= 1
2ε0χ

(2)[ (E2
01+ E2

02

)
(8.41)

+ (E2
01 cos 2ω1t+ E2

02 cos 2ω2t
)

+2E01 E02(cos(ω1+ω2)t

+ cos(ω1−ω2)t)
]
.

Besides the second harmonics at frequencies 2ω1

and 2ω2 also waves are generated with the sum fre-
quency ω1+ω2 and the difference frequency ω1−ω2,
if the phase matching condition can be properly chosen
for each of these different contributions. For exam-
ple, the phase-matching condition for the macroscopic
generation of the sum frequency ω3 = ω1+ω2 is

k(ω1+ω2)= k1(ω1)+k2(ω2)⇒ (8.42a)

n2ω3 = n1ω1+n2ω2 with ni = n(ωi) . (8.42b)

This condition is generally more readily fulfilled than
that for the second harmonic generation, because the
directions of the two incident waves (and therefore their
wave vectors) can be freely chosen within certain limits,
which imposes less restrictions to the selection of the
nonlinear crystal.

The possibility of optical frequency mixing has
greatly increased the spectral ranges covered by intense
coherent light sources. With difference-frequency gene-
ration, using two visible lasers, the mid-infrared region
can be covered, while sum-frequency generation gives
access to the UV range down to λ= 200 nm. The spec-
tral limitations are given by the spectral regions where
the absorption of the nonlinear crystal becomes large.

8.6 Generation of Short Laser Pulses

The investigation of fast processes induced by the ab-
sorption of photons, demand a high time resolution of
the detection technique. Examples for such fast proces-
ses are the decay of excited states with a short lifetime,
the dissociation of molecules or the rearrangement of
molecular structure after excitation into higher energy
states. This latter process plays an important role in the
visual process, where the primarily excited rhodopsin
molecules in the retina of the eye undergo many energy

transfer process before the excitation energy is trans-
ferred into an electrical signal reaching our brain. Such
processes could only be studied in detail after the de-
velopment of ultrashort laser pulses with pulse widths
down to about five femtoseconds (1 fs= 10−15 s).

In this section we will briefly discuss some expe-
rimental techniques for the generation of short laser
pulses.

8.6.1 Q-Switched Lasers

The inversion threshold for obtaining laser oscillation
depends on the total losses (see Sect. 8.1.1), which can
be expressed by the quality factor (Q-factor) of the laser
resonator.

The Q-value of the kth resonator mode is defined as

Qk =− 2πνWk

dWk/dt
=+ ω

γk
TR (8.43)

and can be expressed by the total loss factor γk of this
mode and the roundtrip time TR = 2d/c.

The Q-switching technique uses the following trick:
During the pump process the Q-value of the laser re-
sonator is kept so low (i. e., the losses are so high)
that the laser threshold is not reached in spite of the
growing inversion. At a selected time t = ts, Q is sud-
denly switched to a maximum value (Fig. 8.50). This
prevents laser oscillation for t< ts and allows the po-
pulation inversion to reach a large value, because it is
not depleted by induced emission. When the losses are
suddenly switched to a minimum value at t = ts the in-
version is way above threshold and the amplification of
the spontaneous emission starting the photon avalanche
is accordingly high. This leads to a fast rising “giant

Pump power

Population
inversion

N t∆ ( )

PL

Threshold

P , P , NP L ∆

tS
t

Losses γ

Fig. 8.50. Pump power PP(t), laser output power PL(t), and
cavity losses γ(t) for a Q-switched laser
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pulse”, which depletes the inversion within a short time
and therefore terminates itself.

In Fig. 8.51 two possible experimental realizations
of Q-switched lasers are shown. A fast spinning resona-
tor mirror spoils the Q-value for all times, except for the
short time span where the mirror surface is perpendicu-
lar to the resonator axis. The light from a light-emitting
diode is reflected by the backside of the spinning mir-
ror onto a photodetector. Its output signal triggers the
discharge of the flashlamp, pumping the laser. An elec-
tronic delay of the trigger signal can select the time
delay between trigger time and vertical position of the
spinning mirror.

The optimum time delay depends on the duration of
the pump pulse and on the lifetime τ of the upper laser
level. The time delay must be smaller than the lifetime τ ,
because otherwise one looses too much of the upper
state population necessary for the amplification of the
giant pulse.

Another more commonly employed technique uses
a Pockels cell inside the laser resonator for Q-switching.
A Pockels cell consists of a birefringent crystal that
changes its birefringence with an applied electric field.
If the crystal is biased in such a way that it rotates
the plane of polarization by 45◦ for one transit, the light

Fig. 8.51a,b. Possible realizations of cavity Q-switching
(a) With a rotating resonator mirror (b) With an electro-optic
switch (Pockels cell) inside the laser resonator

transmitting the crystal a second time after reflection by
mirror M2 has its plane of polarization turned by 90◦.
A polarization beam splitter then reflects the beam out
of the laser resonator (Fig. 8.51b). At the Q-switching
time ts, a high voltage pulse is suddenly applied to the
crystal that changes the birefringence and brings the
rotation angle per transit to 90◦ and for the reflected
beam to 180◦. The beam is now transmitted by the
polarization beam splitter and reaches the laser rod.

These techniques generate giant laser pulses with
durations of a few ns and peak powers of 105−109 W,
depending on the laser type.

8.6.2 Mode-Locking of Lasers

Much shorter pulses can be achieved with the mode-
locking technique, which is based on the following
principle.

If a light wave with optical frequency ν0 pas-
ses through an optical modulator with a modulation
frequency f (e. g., a Pockels cell or an ultrasonic modu-
lator), the transmitted amplitude intensity is modulated
according to

It = I0[1+a cos(2π ft)] cos2(2πν0t) . (8.44)

The degree of modulation a< 1 depends on the voltage
applied to the modulation cell. The Fourier analysis of
such a modulated light wave gives a frequency spectrum
that consists of the carrier frequency ν0 and sidebands
at frequencies ν0±n · f .

Inserting the modulator inside the laser resonator
(Fig. 8.52) and choosing the modulation frequency f to
be equal to the frequency separation

δν = c/2d = f

of the longitudinal resonator modes, makes all side-
bands resonant with resonator modes. This means that
the sidebands can participate in laser oscillation as long
as their frequencies lie within the gain profile of the ac-
tive medium. This leads to a coupling of all resonator
modes within the gain profile because the phases of the
sidebands are coupled to that of the carrier by the phase
of the modulation.

If the modulator has the time dependent transmis-
sion

T = T0
[
1−a sin2(Ω/2)t

]
(8.45)
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Fig. 8.52a–c. Mode-locking of lasers. (a) Experimental setup
with an ultrasonic modulator (b) Laser frequency ν0 and the
two neighboring side-bands (c) Laser output pulses with width
∆t ≈ 1/∆ν and repetition frequency f = 1/T = c/2d

with the modulation frequency f =Ω/2π and the mo-
dulation amplitude a< 1, the amplitude ot the kth mode
becomes

Ak(t)= TAki cosωkt (8.46)

= T0 Ak0
[
1−a sin2(Ω/2)t

]
cosωkt .

This can be written as

Ak(t)= T0 Ak0

[(
1− a

2

)
cosωkt (8.47)

+ a

4

[
cos(ωk +Ω)t+ cos(ωk −Ω)t

]]
.

The total amplitude of N = 2m+1 coupled modes is
then

A(t)=
+m∑

k=−m

Ak cos(ωk + k ·Ω)t

For equal amplitudes Ak = A0 the total time-dependent
intensity becomes

I(t)∝ A2
0

sin2
(

1
2 NΩt

)
sin2

(
1
2Ωt

) cos2 ω0t . (8.48)

For cw lasers the amplitude A0 is constant in time
and (8.48) represents an equidistant sequence of pulses
(Fig. 8.53) with a pulse separation

T = 2d

c
= 1

∆ν
, (8.49)

∆ δνT = 1/

N = 5
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Fig. 8.53. Mode-locked pulses, where N modes have been
locked. Note the different ordinate scales

which equals the roundtrip time through the laser
resonator. The pulse width

∆T = 2π

(2m+1)/Ω
= 2π

NΩ
= 1

δν
(8.50)

is determined by the number N of phase locked mo-
des within the gain profile with spectral width δν
and is therefore inversely proportional to the spectral
bandwidth δν of the gain profile above threshold.

The peak power of the pulses is proportional to N2.
The pulse energy is proportional to N2∆T ∝ N . In
between two succesive main pulses (N −2) small ma-
xima appear, which decrease in intensity as N increases
(Fig. 8.53).

Contrary to a normal multimode laser that can os-
cillate simultaneously on many modes with, however,
random phases, the mode-locked laser oscillates on
many phase-coupled modes, because the modulator en-
forces a definite phase relation between the oscillating
modes.

EXAMPLES

1. The gain profile of the He-Ne laser has a width
of about ∆ν = 2 GHz. Mode-locking therefore
achieves pulses with a minimum duration of
∆τ = 500 ps.
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2. The argon laser has a larger spectral width ∆ν =
6 GHz of its gain profile and allows mode-locked
pulses with widths down to ∆τ = 170 ps.

3. The dye laser has a very large spectral band-
width of about∆ν = 3×1013 s−1. Therefore, pulses
down to ∆τ = 3×10−14 s should be possible. The
experimental realization only reaches ∆τ = 3×
10−12 s = 3 ps. This corresponds to the transit time
∆t =∆x/c of the light through the modulator with
length ∆x.

Not only cw lasers, but also pulsed lasers, can be
mode-locked. The pulse amplitude is no longer constant
but follows the time profile of the gain. In Fig. 8.54 the
pulse sequence within one pulse envelope of a mode-
locked neodymium-glass laser is shown for illustration.

The shortest laser pulses, obtained so far are genera-
ted by a nonlinear effect, called Kerr lens mode-locking.
Its basic principle is illustrated in Fig. 8.55.

For sufficiently high intensities, the refractive index
is affected by the nonlinear interaction of the light wave
with the medium. It can be written as a sum

n(ω, I)= n0(ω)+n2(ω) · I (8.51)

where n0(ω) is the normal refractive index and n2(ω)�
n0(ω). The intensity-dependent change of the refractive
index is caused by the nonlinear polarization of the
atomic electron shells induced by the electric field of

I Laser intensity

before after

Aperture

Aperture

Self-focusing

Active medium n(r)

Gaussian
profile

Time Time Fig. 8.55. Kerr-lens mode-locking

Fig. 8.54. Periodic pulse sequence from a pulsed mode-locked
Nd:glass laser (W. Rudolf, F.B. Physik, Univ. Kaiserslautern)

the optical wave and is therefore called the optical Kerr
effect.

When a laser beam with a Gaussian radial intensity
profile I(r) passes through a medium, the refractive
index shows a radial gradient with a maximum value of
n at the central axis at r = 0. The medium then acts like
a lens and leads to a focusing of the incident laser beam,
where the focal length depends on the laser intensity.

When a laser pulse with the time profile I(t) passes
through the medium, the central part of the pulse around
its maximum generates the largest gradient of n(r) and
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therefore the shortest focal length fmin of the Kerr lens.
If an aperture is placed at a distance fmin behind the
Kerr lens, only that part of the pulse I(t) around its ma-
ximum at t = t0 is fully transmitted through the aperture.
All other parts before and after the maximum produce
a longer focal length and therefore have a larger spot
size at the aperture and only the central part of the radial
beam profile is transmitted through the aperture. These
parts of the pulse therefore suffer larger losses and are
attenuated. This happens for every roundtrip inside the
resonator and leads to a shortening of the pulse duration.

EXAMPLE

For sapphire Al2O3 n2 = 3×10−16 cm2/W. For the in-
tensity I = 1014 W/cm2 the refractive index changes by
∆n = 3×10−2 n0 with n0 = 1.76. For a laser pulse with
a wavelength λ= 1 µm this leads to an additional phase
shift of the optical phase by ∆ϕ = (2π/λ)∆n = 2π×
300 ·1.76 after a pathlength of 1 cm through the Kerr
lens material, which results in a radius of curvature R =
4 cm of the wavefront of the light wave. For a Gaussian
beam profile with peak intensity I(0)= 1014 W/cm2

which would be a plane wave without the Kerr lens, the
focal length of the Kerr lens is then f = 4 cm.

This Kerr lens mode-locking has been successfully
applied to the generation of ultrashort light pulses from
a Ti:sapphire laser, which has a very broad gain profile
and is therefore well suited to allow such short pulses. In
Fig. 8.56 a possible experimental realization is shown.
The Kerr medium is the Ti:sapphire crystal, which acts
simultaneously as active laser medium, and the limi-
ting aperture is placed in front of mirror M4. The Kerr
lens changes the focal length and therefore the imaging

M1
Ti:S

M2
Pump

OC

Aperture

M4
M3

Fig. 8.56. Experimental setup for a Kerr-lens mode-locked
Ti:sapphire laser (OC = optical compensator)

Fig. 8.57. Schematic representation of an ultrashort light pulse
containing only three optical cycles of the light intensity. The
envelope has a half-width of∆τ = 6 fs and a spatial extension
∆z = c×∆τ ≈ 2 µm

characteristics of the laser resonator in such a way that
for the maximum of the laser pulse the focus lies in the
center of the aperture.

With such a device, pulses down to 4 fs have been
achieved. For these short pulses the spectral width is
very large and any dispersion effects in the laser resona-
tor must be carefully compensated for. For instance, the
dielectric mirrors with many reflecting layers generally
have a wavelength- dependent phase shift, which would
lead to a broadening of the pulse. Therefore special
dispersion-compensated mirrors have been designed
that avoid this problem.

For an optical wave at λ = 600 nm (ν = 5×
1014 s−1), the optical cycle time is Topt = 1/ν = 2 fs.
A light pulse of 6 fs half-width therefore contains only
three optical cycles (Fig. 8.57).

8.6.3 Optical Pulse Compression

When a short optical pulse is sent through an optical fi-
ber with a core diameter of 5 µm, the intensity becomes
so high that the refractive index

n(ω)= n0(ω)+n2× I(t)

is changed by the nonlinear interaction of the medium
with the laser pulse. It becomes time-dependent. The
nonlinear term n2 can be positive as well as negative,
depending on the material and the laser wavelength.

A short pulse of duration ∆T can be described by
the wave packet

I(t)=
+∆ω/2∫

−∆ω/2
I(ω)ei(ωt−kz) dω . (8.52)
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This represents a superposition of many fre-
quency components within the frequency interval
∆ν = 1/∆T =∆ω/2π where I(ω) gives the envelope
of the spectral profile.

The linear part n0(ω) of the refractive index causes,
for normal dispersion (dn0/dλ < 0), a larger phase ve-
locity for the red components in the pulse than for the
blue components. The red components will therefore
be at the leading edge and the blue components at the
trailing edge of the pulse. This results in spatial- and
time-broadening of the pulse.

The nonlinear part n2 I(t) causes a frequency shift
dependent on the intensity. This can be seen as follows.
The phase of the wave E = E0 cos(ω0t− kz)

ϕ = ω0t− kz = ω0t−ωnz/c (8.53)

= ω0 · (t−n0z/c)− A · I(t) ; A = n2ωz/c

depends on I(t). Since the frequency

ω= dϕ/dt = ω0− A · dI/dt (8.54)

is the time derivative of the phase ϕ, it is evident from
(8.53) that with A> 0 the frequency at the leading edge
of the pulse (dI/dt> 0) is decreased and at the trai-
ling edge (dI/dt< 0) is increased. This phenomenon
is called a chirp of the optical pulse, where the optical
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Fig. 8.58a,b. Spatial and spectral broadening of a pulse in a medium with normal linear (a) and nonlinear (b) refractive index
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Fig. 8.59. Optical pulse compression by a grating pair

frequency changes from small to high frequencies over
the pulse profile I(t) (Fig. 8.58).

In summary, when passing through an optical
medium the optical pulse I(t) becomes broader,
caused by the dispersion n0(ω), and its spectral
profile I(ω) becomes broader due to the chirp
induced by the nonlinear part n2 · I(t) of the
refractive index.

When such a spectrally broadened pulse is sent
through a pair of parallel optical gratings (Fig. 8.59),
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Fig. 8.60. Experimental arrangement for the generation of femtosecond pulses by self-phase modulation with subsequent pulse
compression by a grating pair [8.11]

the red components of the pulse are diffracted into ano-
ther angle β than the blue ones. From Fig. 8.59 one can
infer the path difference S between the plane phase front
of the incident wave at point A and the phase plane at
point B as

S = S1+ S2 = D

cosβ
+ D sin γ

cosβ
, (8.55)

where D is the distance between the two parallel
gratings. From the grating equation

d(sinα− sinβ)= λ (8.56)

for a grating with groove separation α we obtain, after
some calculations,

dS

dλ
= dS

dβ
· dβ

dλ
= −D ·λ

d2[1−λ/d− sin2 α]3/2 . (8.57)

Optical
frequency
doubler

M1 M2

∆x
Retro-
reflection
prism

Filter Detector
)t(I1

)t(I2 L

)2/(I λ

c/xt ∆=∆

Fig. 8.61. Optical interferometry with
translation-retroreflecting prism and se-
cond harmonic generation for measuring
the width of ultrashort pulses

This shows that the optical path length through the
grating pair increases with increasing wavelength.
Choosing the grating separation D sufficiently large,
the broadening of the pulse due to the linear dispersion
in the optical fiber can be overcompensated for by the
grating pair and leads to a shortening of the duration∆T
of the pulse I(t). The experimental arrangement for the
compression of optical pulses after they pass through
the fiber is shown in Fig. 8.60.

8.6.4 Measurements of Ultrashort Optical Pulses

Since the time resolution even for fast optical detec-
tors is limited to about 100 ps (except for the streak
camera, which reaches 1 ps) the measurement of such
short pulses can no longer be performed with conven-
tional devices, but demands new ideas. One method
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Fig. 8.62. Measured femtosecond pulse with only five optical
periods of T = 2.5 fs within the full half-width of the envelope

is based on optical interferometry (Fig. 8.61). The la-
ser beam is split into two parts that are recombined
after having traveled along two different paths with
slightly different path lengths. The superposition of the
two parts with variable time delay τ and intensities
I1(t)= |A1(t)|2 and I2(t+ τ)= |A2(t+ τ)|2 gives the
total intensity

I(τ)= |A1(t)+ A2(t+ τ)| 2 (8.58)

= I1(t)+ I2(t)+2A1(t) · A2(t+ τ) ,

which depends on the relative phase between the two
optical waves, i. e., on the time delay τ . Although the
detector cannot follow the fast optical waves, it mea-
sures the time dependent interference pattern I(τ), if
the change of the time delay τ is sufficiently slow. If
the spectral width of the short pulse is large, it con-
tains a superposition of many monochromatic carrier
waves with a nearly continuous frequency spectrum. In
this case there will be no clear interference pattern and
the detector would measure the sum of the two inten-
sities I1+ I2, independent on their separation. Here the
frequency-doubling of the fundamental wavelength in
a nonlinear crystal is a good solution. The intensity

I(2ω)∝ |I1(t)+ I2(t+ τ)| 2

= I
2
1+ I

2
2+2I1(t) · I2(t+ τ)

of the second harmonics does depend on the time de-
lay τ . Even if the time constant of the detector is long
compared to the pulse width and the detector measu-
res the time average of the pulses, it still gives the true
pulse profile I(t).

In Fig. 8.62 an actual experimental result is shown
for a pulse with 7.5 fs duration (half-width at half-
maximum), which shows the optical cycles with 2.5 fs
period, monitored with a detector with a time constant
of about 1 ns.

Some applications of these ultrashort pulses are
discussed in Chap. 12.
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• Laser stands for “Light Amplification by
Stimulated Emission of Radiation”.

• A laser consists essentially of three components:
The energy pump, which produces inversion in
a medium by selective energy transfer into the
medium.
The active medium with a population inversion
for selected transitions where an electromagnetic
wave passing through the active medium is am-
plified instead of attenuated.
The optical resonator, which stores the radiation
power emitted by the active medium in a few re-
sonator modes. In these modes, the number of
photons should be large. This ensures that in these
modes the induced emission is much stronger than
the spontaneous emission.

• Laser oscillation starts at a threshold power deli-
vered by the pump into the active medium, which
depends on the critical inversion and the total los-
ses of the lasing modes. At threshold the losses
are just compensated by the gain of the active
medium.

• The oscillation frequencies of the laser emission
are limited by the spectral range where the active
medium has sufficient gain. Within the gain profile
of the active medium the lasing frequencies are
determined by the eigenresonances of the optical
resonator.

• The divergence of the emitted laser beam depends
on the number of transverse modes participating
in laser oscillation. If only fundamental modes
contribute to laser emission, the laser beam profile

is Gaussian and its divergence is only limited by
diffraction effects.

• Single mode lasers, oscillating on a single funda-
mental mode, can be realized by additional mode
selecting elements inside the laser resonator.

• A synchronous tuning of all frequency-selecting
elements allows the realization of a single mode
laser with a single wavelength tunable across the
spectral gain profile of the active medium.

• The active medium can be a solid, a liquid or
a gas. Broad gain profiles are provided by semi-
conductor materials, by dye solutions, by doped
crystals with color centers and by vibronic solid
state lasers consisting of an insulator, doped by
metal ions.

• For some types of lasers, threshold inversion can
only be achieved with pulsed pumps (e.g., pulsed
Nd:glass lasers or excimer lasers), while most la-
sers can be operated in a continuous wave mode
(cw lasers) as well as in a pulsed mode.

• The time profile of the laser output is limited by
the duration of the pump power above threshold.

• By fast switching of the resonator quality factor,
short laser pulses in the nanosecond range can be
realized (Q-switched lasers).

• Coupling of many lasing resonator modes (mode
locking) results in even shorter pulses down to
about 1 picosecond.

• By pulse compression in optical fibers or by
nonlinear gain manipulation inside the laser ca-
vity (Kerr lens mode locking) femtosecond laser
pulses have been obtained.

S U M M A R Y

1. a) What is the population ratio Ni/Nk for atoms
in a gas for thermal equilibrium at T = 300 K,
if the wavelength of the transition Ei → Ek is
λ= 500 nm and the angular momentum quantum
numbers are Ji = 1 and Jk = 0?
b) What is relative absorption of a monochromatic
light wave per cm path length through a gas, if the
transition probability Aik = 1×108 s−1, the gas
pressure p = 1 mbar and 10−6 of all atoms are in
the lower state Ek of the transition?

c) What is the threshold inversion Nk − Ni ,
if the total losses per roundtrip of 10%
should be compensated for by the gain over
a path length of 20 cm in the active me-
dium?

2. a) Calculate the Doppler-width of the neon line
at λ= 633 nm in a gas discharge with a tempera-
ture of T = 600 K.
b) How many resonator modes TEM0,0,q for
a resonator length of 1 m can oscillate, if the laser

P R O B L E M S
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threshold is at 50% of its maximum value at the
line center?

3. An argon laser with a resonator length d = 1 m,
oscillating at a wavelength λ= 488 nm can be
forced to oscillate on a single mode by inserting
a Fabry-Perot etalon inside its resonator.
a) What is the thickness t of the solid fused quartz
etalon with a refractive index n = 1.5, if only one
etalon transmission maximum should lie within
the Doppler broadened gain profile of the argon
transition at a discharge plasma temperature of
T = 5000 K?
b) What is the reflectivity R of the two coated
planes of the etalon, if the transmission T of the
etalon for the neighboring laser resonator modes
should decrease to T = 1/3 of that for the selected
mode with T = 1 at the maximum of the etalon
transmission?

4. Assume that the two end mirrors of a laser re-
sonator are connected by invar steel rods with
a length d = 1 m and a thermal expansion coeffi-
cient α= 12×10−6 K−1.
a) How much does the laser frequency ν shift for
a temperature change ∆T = 1 K?
b) If the laser wave inside the resonator passes
through 40 cm air at atmospheric pressure, what
is the frequency shift for a pressure change of
10 mbar? c) Is the dependence of the cavity’s geo-
metric length on the pressure change significant?
Give an estimation of this change, using Hooke’s
law, for the invar rods (the elastic modulus of in-
var is E = 107 N/m2, the diameter of the rods is
1 cm).

5. The nearly parallel beam of a laser with wave-
length λ= 10 µm and output power of P = 10 W
has a beam diameter of d = 3 cm. It is focused by
a lens with f = 20 cm.
a) How large is the beam waist w0 in the focal
plane?
b) The intensity distribution in this plane is

I(r)= I0× exp[−(r/w0)
2] .

What is the value of I0?
c) Assume that 10% of the laser power can be
used for evaporating material from a steel sheet
with thickness t = 1 mm placed in the focal plane.
How long will it take for the laser beam to produce
a hole through the steel sheet, if the evaporation
heat is 6×106 J/Kg?

6. A short Fourier-limited laser pulse (∆t = 10 fs)
passes through a medium with refractive in-
dex n = 1.5 and a dispersion of dn/dλ= 4.4×
104 m−1.
a) What is the minimum spectral width of the
pulse?
b) After which path length has the width∆t of the
pulse doubled due to the linear dispersion of the
medium?
c) How large must the intensity be in order to
compensate for the pulse spread caused by the li-
near dispersion if the nonlinear refractive index is
n2 = 10−10 cm2/W?

7. a) What is the quality factor Q of a laser cavity
with mirror separation d = 1 m, mirror reflec-
tivities R1 = R2 = 0.99 at a frequency ν = 5×
1014 s−1, if all other losses (apart from reflection
losses) are 2% per roundtrip?
b) After how much time does the energy stored in
the cavity reduce to 1/e, if at time t = 0 the am-
plification by the active medium suddenly drops
to one?
c) What are the separations∆ν and the half-widths
δν of the longitudinal cavity resonances?

8. Assume the laser oscillation in a cavity mode with
ν = 4.53×1015 s−1 starts with one photon in this
mode. How long does it take until the laser output
power in this mode has reached 1 mW, for a net
gain g per roundtrip of 5%, a resonator length
of d = 1 m and mirror transmissions R1 = 0 and
R2 = 0.02 if
a) the net gain g =−α0 is independent of the
intensity?
b) the gain saturation is essential andα= α0+a×
P with a = 0.4 W−1 m−1 or a = 0.55 W−1 m−1?



9. Diatomic Molecules

In the next two chapters we will discuss the basic phy-
sics of molecules. In particular, the following questions
shall be addressed and answered:

• Why can neutral atoms combine to form stable mol-
ecules, i. e., what is the nature of molecular binding
forces?

• What is the internal energy structure of molecules,
which not only depends on the distribution of elec-
trons in atoms, but also on the location and motion
of atomic nuclei?

• How can chemical reactions, and therefore bio-
logical processes, be explained on a molecular
level?

First we will discuss diatomic molecules, because their
treatment is simpler than that of polyatomic molecules.
From the didactical point of view, they provide a good
understanding of many problems, which are relevant
not only to diatomics but also to polyatomic mol-
ecules. In particular, the interaction between two neutral
atoms and its dependence on their distance R from
each other will give us better insight into the na-
ture of chemical bonds. Also, the model of atomic
orbitals, which give an intuitive picture of the spa-
tial electron distribution and play an important role in
chemistry, can be explained more readily for diatomic
molecules.

Similarly to the situation for atoms, transitions bet-
ween different molecular levels can be induced by
absorption or emission of radiation. Since the energy
levels of molecules are not only determined by electro-
nic excitation but also by vibrations of the nuclei or the
rotation of the whole molecule around an axis through
its center of mass, the spectra of molecules are much
more complex than those of atoms, but on the other hand
they also give more detailed information about the in-
ternal structure and dynamics of molecules. We will
discuss the spectra of diatomic molecules in Sect. 9.6,

while Chap. 10 deals with the structure, the spectra and
dynamics of polyatomic molecules.

We will start with the simplified model of rigid mol-
ecules, where the nuclei are clamped at a given position.
For diatomic molecules this means that the internuclear
distance is fixed and we neglect their vibration . For
any arbitrary, but constant, value of R the energy of the
molecule is calculated. This yields the potential energy
curves E(R) for the different electronic states of the
molecule. Later on we will then extend our model to
include molecular vibration and rotation.

9.1 The H+
2 Molecular Ion

The simplest of all molecules is the H+
2 ion, consi-

sting of two identical nuclei (protons) and one electron
(Fig. 9.1). The interaction potential Epot between the
three particles is

Epot =− e2

4πε0

(
1

rA
+ 1

rB
− 1

R

)
. (9.1)

S

A B

R

RA

→
RB

→

rA
→

r
→

rB
→

e+ e+

e−

Fig. 9.1. H+
2 molecular ion
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When we chose the center of mass of the two protons
as the origin of our coordinate system (because of its
small mass the electron does not noticeably change the
center of mass) we obtain from Fig. 9.1 the relations

r = RA+rA = RB+rB ⇒ r = 1

2
(rA+rB)

because RA = −RB. With R= rA− rB we can re-
place rA and rB by:

rA = r+ 1

2
R ; rB = r− 1

2
R . (9.2)

The Schrödinger equation for this three body problem
is:

ĤΦ = EΦ (9.3a)

with

Ĥ =− �
2

2M
(∆A(RA)+∆B(RB))

− �
2

2m
∆e(r)+ Epot(r, R) (9.3b)

where the first two terms represent the kinetic energy of
the nuclei, and the third term that of the electron. The
nuclei and the electron move in the potential Epot(r, R).

9.1.1 The Exact Solution
for the Rigid H+

2 Molecule

Differing from the situation for the H atom, the
Schrödinger equation (9.3) cannot be solved analyti-
cally. One must therefore use approximations. Because
of the much larger mass of the nuclei (M/m ≈ 1836)
their velocities v and their kinetic energy Ekin = p2/2M
is much smaller than that of the electron. In a first ap-
proximation we can neglect it. In this approximation
the two nuclei are clamped at a given distance R (ri-
gid nuclear frame). The nuclear distance R = |R| can
be regarded as a freely chosen parameter. This means
that (9.3) is solved for all relevant values of R. This gi-
ves the wave function and the energy of the electron
(Ekin+ Epot) plus the repulsive potential energy bet-
ween the two nuclei for each chosen value of R, i. e., as
a function of the parameter R.

In this approximation of the rigid H+
2 the

Schrödinger equation (9.2) with the potential (9.1)
becomes:[

− �
2

2m
∆e(r)− e2

4πε0

(
1

rA
+ 1

rB
− 1

R

)]
×Φ(rA, rB, R)= E(R)Φ(rA, rB, R) (9.4)

where rA and rB depend on the coordinates both of the
electron and of the two nuclei.

Equation (9.4) can be solved analytically in a similar
way as (5.1) for the H atom. Since the potential energy
is no longer spherically symmetric but has cylindrical
symmetry, it is convenient to use elliptical coordinates:

µ= rA+rB

R
; ν = rA−rB

R
;

ϕ = arctan
( y

x

)
(9.5)

where the location of the two nuclei are the focal points
of the ellipsoid with cylindric symmerty and the z-axis
as symmetry axis is chosen to coincide with the line
between the two nuclei (Fig. 9.2). In elliptical coordi-
nates the wave function, which is dependant on three
coordinates, is separable into the product

Φ(rA, rB, R)= M(µ)× N(ν)×φ(ϕ) (9.6)

x

y

z

A B

R

z
BA

Rotational symmetric
ellipsoid

R
rr BA +=µ

R
rr BA −=ν

x/ytg =ϕ

Plane 0ν=

Plane 0ϕ=

µ = const

µ = =1 z axis

ϕ

rA rB

e−

Fig. 9.2. Elliptical coordinates and their physical interpreta-
tion
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of three functions, where each function depends on only
one coordinate. The condition Φ(µ, ν, ϕ)= 0 is fulfil-
led on a surface in the three-dimensional space. The
function Φ becomes zero if at least one of the three
factors is zero. The first factor M(µ) becomes zero
for rA+ rB = 0. This is fulfilled on the surface of an
ellipsoid with rotational symmetry around the z-axis
(Fig. 9.2b). The second factor N(ν) is zero for rA = rB.
This is the symmetry plane z = 0, perpendicular to the
z-axis. The third factor is zero for ϕ = 0 which gives
the x-z-plane.

Similar to the separation of the hydrogen atomic
wave function, we obtain three equations for the func-
tions M(µ), N(ν) and φ(ϕ), which are analytically
solvable. Since the solutions have to be unambiguous
and normalized, this imposes restrictions on the wave
functions and leads to definite wave functions and
discrete energy eigenvalues En(R), which, however,
depend on the internuclear separation R (Fig. 9.3).

The spatial part Φ(r, R) of the wave function
is called a molecular orbital. Its absolute square
−e×|Φ(r)|2 gives the spatial distribution of the
electron charge, for any given value of the nuclear
distance R.

The functions E(R) can monotonously decrease
with increasing R (repulsive instable energy states) or
they can show minima at a certain value of R (stable
energy states).

)R(E4

)R(E3

)R(E2

)R(E1 R

E

Fig. 9.3. Schema-
tic representation
of potential cur-
ves E(R) corre-
sponding to bound
states and repulsive
unstable states

These curves

E(R)= 〈
Ekin(e

−)
〉+ e2

4πε0

(
1

R
−
〈

1

rA
+ 1

rB

〉)
(9.7)

are called potential energy curves, although they also
include, besides the potential energy, the time-averaged
kinetic energy of the electron. They describe the poten-
tial in which the nuclei can vibrate, if we go beyond the
approximation of the clamped nuclei.

Since the potential is not spherically symmetric,
the angular momentum l of the electron is no lon-
ger constant in time. The vector l precesses around
the internuclear axis. Its absolute value |l| depends
generally on the internuclear separation R, but its pro-
jection onto the z-axis has a well-defined expectation
value

〈lz〉 = m ·� , (9.8a)

which is determined by the integer m = 0, ±1, ±2, . . .
±l (Fig. 9.4) and is, for a given potential curve E(R)
independent of R. The reason for this is that the operator

l̂z = (�/i)∂/∂ϕ (9.8b)

depends solely on ϕ and not on R. If it is applied to the
function (9.6) it acts only on the last factor φ(ϕ) and
yields the eigenvalue m ·�. This is completely analo-
gous to the case of the hydrogen atom in an external
magnetic field, where the spherical symmetry is broken
and only cylindrical symmetry is left and the vector l
precesses around the field axis.

The difference is, however, that in the axial electric
field of a nonrotating diatomic molecule the energy of
a level does not depend on the direction of the field. This
means, that levels with 〈lz〉 = ±m ·� have the same

BA -λh
z

l
→

Fig. 9.4. The precessing orbital angular momentum l of the
electron and its constant projection lz = λ
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energy. Therefore the molecular levels are described
by the quantum number λ= |m|. Instead of (9.8a) we
write

〈lz〉 = λ� . (9.8c)

Analogous to the nomenclature in atoms, electrons in
diatomic molecules are called σ-electrons for λ= 0; π-
electrons for λ= 1 and δ-electrons for λ= 2 etc. The
Latin letters used in atoms are just replaced by Greek
letters for molecules.

Due to the precession of the electron around the
internuclear axis for λ > 0 a magnetic field in z-
direction is produced. If we take into account the
electron spin s, the magnetic moment µs can have two
different orientations in this field, similar to the situa-
tion for atoms in the Stern–Gerlach experiment (see
Sect. 5.5). The electron spin precesses around the ma-
gnetic field direction (which is the z-direction) and only
its z-component

〈sz〉 = ms ·�=± 1
2� (9.8d)

has definite eigenvalues (Fig. 9.5).

The energy state E(R) of the electron in the
clamped nuclei model for a given nuclear di-
stance R is completely defined by the principal
quantum number n, the quantum number λ of
the z-projection of l and ms of s. This state
E(n, λ,ms) can therefore be characterized by the
three quantum numbers n, λ,ms.

-

- -

-

s
→

l
→

A B
z

m hsλh

ω λh m hs= +( )

Fig. 9.5. The projections 〈lz〉 = λ of the orbital angular mo-
mentum l and 〈sz〉 = ms of the electron spin s adds up to
the total projection ω = (λ+ms)

Note:

In the literature the spin projection quantum number ms

is often labeled as σ . In order to avoid confusion with
the state with λ= 0, which is also called a σ-state, we
will use ms instead of σ in this book.

In Fig. 9.6 the spatial distribution of some molecular
orbitals are shown. They are characterized by the three
quantum numbers n, l and λ as nlλ, where n is a number
that labels the electronic states according to increasing
energy (analogous to the principal quantum number n
in atoms), l is the quantum number of the orbital an-
gular momentum l which is, however, only defined for
large R, and λ the projection quantum number. As in
atoms the states with different l-values for R →∞ are
labeled with Latin letters (s for l = 0, p for l = 1 . . . ).
A molecular orbital with n = 1, l = 0, λ= 0 is named

y

z

x

y

x

y

y

z

1sσ 2sσ

2pπ

2pπ

Fig. 9.6. Some examples of molecular orbitals of the H+
2 ion.

In the blue regions Φ> 0, in the grey ones Φ< 0. The solid
lines give the location of Φ = 0
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Table 9.1. Quantum numbers and term nomenclature of a mo-
lecular electron with principal quantum number n, angular
momentum quantum number l, projection quantum number
λ= |ml |

Quantum numbers term
n l λ nomenclature

1 0 0 1sσ
2 0 0 2sσ
2 1 0 2pσ
2 1 1 2pπ
3 3 1 3dπ
3 3 2 3dδ

1sσ and with n = 2, l = 1, λ= 1 is a 2pπ orbital (see
Table 9.1).

9.1.2 Molecular Orbitals
and LCAO Approximations

Although the rigid H+
2 molecule can be treated ri-

gorously, it is instructive to apply some important
approximation methods to the description of this sim-
ple molecule and to compare the results with the exact
solutions. We can then learn more about the advan-
tages and deficiencies of these methods when they
are applied to larger molecules, that cannot be treated
exactly.

One of these methods is the LCAO approximation,
where the molecular wave function is composed of li-
near combinations of atomic orbitals of the atoms that
form the molecule. The coefficients of the atomic or-
bitals in this linear combination are optimized in such
a way, that the energy, calculated with this molecular
wave function becomes a minimum. This optimization
procedure is based on the fact that the correct wave func-
tion always yields lower energies than the approximate
functions [9.1].

Since the absolute square |Φ(x, y, z)|2 of the wave
function Φ represents the spatial probability den-
sity distribution of the electron, which corresponds
to the classical orbitals of the electron in the mol-
ecule, the molecular wave function is called a molecular
orbital.

The H+
2 molecular ion can be composed of an H

atom and an H+-ion (= proton) (Fig. 9.7). For the lowest
energy state of H+

2 , the H atom is in its 1s ground state.
The atomic orbital of the electron in the H atom is then

RA AB BR

rA rB

e−e−

H + H+ H+=

=

+ H

Fig. 9.7. Equivalence of the two configurations HA+H+
B and

H+
A +HB

(see Table 5.2):

φA(rA)= 1√
πa3

0

e−rA/a0 . (9.9)

The electron can be found around either nucleus A or B.
Both possibilities lead to the H+

2 ion when the two
nuclei are brought to the proper distance R = Re. Since
we cannot distinguish between the two possibilities we
have to take both into account. We therefore choose the
molecular wave function as the linear combination

Φ(r, R)= c1φA(rA)+ c2φB(rB) (9.10)

where rA = r+ R/2 and rB = r− R/2 can be substitu-
ted by the nuclear separation R and the distance r = |r|
of the electron from the center of mass (Fig. 9.1).

The wave function should be normalized for
arbitrary values of R. This demands∫

Φ2 dr = c2
1

∫
|φA(rA)| 2 drA+ c2

2

∫
|φB(rB)| 2 drB

+2c1c2

∫
φAφB d3r

!= 1 (9.11)

where the integration is performed over the coordinates
of the electron.

Since the atomic orbitals are already normalized, the
first two integrals have the value 1. From (9.11) we ob-
tain the condition for the coefficients of the normalized
molecular wave function:

c2
1+ c2

2+2c1c2SAB = 1 (9.12)

where the integral

SAB =
∫
φA(rA)φB(rB)dτ (9.13)

depends on the spatial overlap of the two atomic wave
functions and is therefore called an overlap integral. Its
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value depends on the internuclear separation R, because
the integration occurs over the electron coordinates r =
{x, y, z} which depend on R according to (9.2).

Because of symmetry arguments, we have the con-
dition |c1|2 = |c2|2 = |c|2. Furthermore, the molecular
wave function has to be either symmetric or antisym-
metric with respect to the exchange of the two atomic
orbitals (which is equivalent to the exchange of the elec-
tron between nucleus A and B). This demands c1 =±c2

and yields the normalized molecular wave functions
(Fig. 9.8):

ΦS = 1√
2+2SAB

(φA+φB) and (9.14a)

Φa = 1√
2−2SAB

(φA−φB) . (9.14b)

The expectation value for the energy is

〈E〉 =
∫
Φ ĤΦdτ (9.15)

where Ĥ is the Hamiltonian in the Schrödinger equation
(9.4)

ĤΦ = EΦ

of the rigid molecule.

A B

A B

a)

b)

s�

a�

a�

s�|    |
2

|    |2

Fig. 9.8a,b. Cut through the surfaces with cylindrical
symmetry (a) ψs and ψa (b) |Φs|2 and |Φa|2

Inserting (9.15) with (9.14) into (9.16) gives two
energies

ES(R)= HAA+HAB

1+ SAB
and

Ea(R)= HAA−HA0

1− SAB
(9.16)

which depend on the nuclear separation R, because the
integrals

HAA =
∫
φA ĤφA dτel

HBB =
∫
φB ĤφB dτel

HAB =
∫
φA ĤφB dτel and

SAB =
∫
φAφB dτel (9.17)

depend on R.

Note:

The variables rA and rB in the atomic orbitals (9.9) gi-
ves the distance between the electron and the nucleus
A or B, respectively. The integrals (9.17), therefore, re-
present two-center integrals, since the atomic orbitals
are expressed in coordinates with two different centers.
When evaluating the integrals over the electron coordi-
nates dτel = r2 sinϑ dr dϑ dϕ, the variables rA and rB

in the atomic orbitals have to be transformed into a coor-
dinate system with a common origin (see Problem 9.1)

The curves Es(R) and Ea(R) are shown in Fig. 9.9.
They are called potential curves. While Es(R) has a mi-
nimum and corresponds to a bound state, Ea(R) is
a monotonic function, falling with increasing R. It re-
presents a repulsive potential and corresponds to an
unstable molecular state.

It is interesting to investigate the reasons for the bin-
ding of H++H in the ground state of H+

2 represented by
the wavefunctionΦs. The energy E(R) is the sum of the
kinetic energy of the electron and its potential energy in
the attractive force field of the two positively charged
nuclei. In addition, the repulsive energy between the
two nuclei has to be considered. In Fig. 9.10, both con-
tributions Ekin(R) and Epot(R) are plotted together with
the total energy E(R) in units of the ionization energy
EI(H)= 13.6 eV = 0.5 a.u. of the hydrogen atom. The
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2.5

E

1.76 eV

)R(Ea

)R(Es

0a/R

Fig. 9.9. Potential curves Es(R) for the symmetric charge dis-
tribution |Φs|2 and Ea(R) for the antisymmetric distribution
|Φa|2 in the LCAO approximation

comparison between the results of the simple LCAO
approximation and those of the exact calculation gives
the following insight:

The LCAO approximation in its simplest form
is not in good agreement with the correct solutions.
This can be seen, for instance, from the fact that this
approximation gives for the limit

lim
R→0

E(R)→−3EA

(without the nuclear repulsion),

as can be seen from the calculation of the integrals
(9.17). Since for R → 0 a nucleus with a charge Ze with
Z = 2 is formed, the energy should be−Z2 EA =−4EA.

Two different effects contribute to the binding:

a) The lowering of the potential energy at the equili-
brium distance Re, where the total energy E(R) has
its minimum. The electron charge distribution, with
its maximum in the middle between the two nuclei
(Fig. 9.8b), pulls the two nuclei towards each other,
due to the Coulomb force between electrons and pro-
tons. It acts like a glue that keeps the nuclei together.
This is the largest contribution to the binding.

b) The molecular wave functionΦs has a larger spatial
extension than the atomic 1s orbitals. The spatial
uncertainty for the electron is increased and its mo-
mentum uncertainty is therefore smaller than for the
H-atom, which means that its mean kinetic energy
〈Ekin〉 = 〈p2〉/2m is decreased.

1 2 3

)H(E/E I

4.0

3.0

0

1.0
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Fig. 9.10. Comparison of Epot(R), 〈Ekin(R)〉 and E(R) for
the simple LCAO approximation (black curves) and the ex-
act solutions (blue curves) (with the kind permission of
Prof. Kutzelnigg [9.2])

Both effects contribute to the binding in the H+
2

ion. However, their relative magnitude is not correctly
described by the LCAO approximation, as can be seen
from Fig. 9.10 [9.2].

9.1.3 Improvements to the LCAO ansatz

The simple LCAO approximation can be essentially
improved if instead of the unperturbed atomic orbitals
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(9.9) modified functions

φA = C(1+λz)e−η(R)rA/a0 (9.18)

are used, where the two parameters λ and η(R) are
optimized for each nuclear separation R to bring the
energy E(R) to a minimum.

The parameter λ in the function (9.18) takes into
account, that the charge distribution of the electron is
no longer spherically symmetric in the force field of the
two protons, but shows a deformation in the z-direction,
which reduces the symmetry to cylindrical symme-
try. Furthermore, the radial distributions |Φ(rA)|2 and
|Φ(rB)|2 will depend on the nuclear separation, which is
described by the parameter η(R). For η > 1 the orbitals
ΦA and ΦB are contracted, which causes a lowering of
the energy because the electron charge becomes more
concentrated between the two nuclei.

The change of the kinetic energy due to the con-
traction of the atomic orbitals is due to two opposite
effects. The contraction of the orbitals gives the elec-
tron less space in the x- and y-directions. This leads to
an increase of the mean kinetic energy〈

E⊥
kin

〉= 1
2

〈
(v2

x +v2
y)
〉

due to the uncertainty relation. However, the mole-
cular wave function becomes more expanded in the
z-direction, because the contraction parameter depends
on z. This decreases the kinetic energy〈

Ekin‖
〉= 1

2 m 〈vz〉 2 . (9.19)

A detailed calculation of both effects shows that a small
net decrease of the kinetic energy is obtained for the im-
proved LCAO approximation, which is, however, small
compared to the decrease of the potential energy due to
the contraction of the electron distribution between the
nuclei.

The physical reasons for the molecular binding can
be summarized as follows:

When the molecule is formed, the atomic orbitals
are deformed in such a way, that the decrease of
Epot(Re) at the equilibrium separation Re and the
decrease of Ekin(Re) overcompensates the energy
necessary for the contraction and deformation of
the atomic orbitals. This gives an energy mini-
mum at R = Re below the energy of the separated
fragments H+H+.

In Table 9.2 the different contributions to the energy
of H+

2 are compiled in atomic units (1 au = 1 Hartree
= 2 ·13.6 eV) for the different approximations and for
the exact solution.

The total binding energy of H+
2 is defined as

EB(H
+
2 )= Eel(H

+
2 )− Eel(H)+ Epot(p−p) .

The different steps for improving the LCAO approxima-
tion yield the results for the binding energy (in atomic
units) and the equilibrium distance Re at the minimum
energy (in units of the Bohr radius a0) compiled in Ta-
ble 9.3. In Fig. 9.11 the corresponding potential curves
illustrate the progress in approaching the exact curves
with an increasing number of optimized parameters in
the LCAO functions. The best calculated potential cur-
ves have been obtained by James and Coolidge [9.3]
who used linear combination of 50 basis functions.

The binding energy

EB(H
+
2 )= E(H, 1s)− E(H+

2 , 1σg, R = Re)

of the H+
2 ion can be described as the difference between

the electronic energy of the atomic 1s state and of the
molecular H+

2 state at the equilibrium nuclear distance

Table 9.2. Mean kinetic and potential energy of the electron
in the H+

2 molecule, given in units of the ionization energy
Eion = 13.6 eV of the H atom for the different approximations

Method 1
2 mv2⊥

1
2 mv2

z E
el
kin Epot E

LCAO 0.60 0.18 0.78 −1.9 −1.12
H+

2 (R = Re)
LCAO 0.92 0.28 1.20 −2.4 −1.2
with η= 1.25
Exact 0.95 0.30 1.25 −2.5 −1.25
calculation
H+H+ 0.67 0.33 1.0 −2.0 −1.0
(R =∞)

Table 9.3. Comparison of binding energy EB and equilibrium
distance Re/a0 of H+

2 for the different approximations

Wavefunction Φs EB/eV Re/a0

simple LCAO 1.76 2.5
LCAO with optimized η(R) 2.25 2.0
but λ= 0
Inclusion of polarization 2.65 2.0
(η 	= 0, λ 	= 0)
Exact calculation 2.79 2.0
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Fig. 9.11. Comparison of potential curves E(R) for H+
2 for

the different approximations and experimental values (blue
curve). 1 = simple LCAO, 2 = LCAO with optimized pa-
rameter η(R), 3 = inclusion of polarization effects by the
parameter λ, 4 = calculations by James and Coolidge

R = Re. This binding energy amounts to only about 1/5
of the binding energy of the electron in the H atom.

9.2 The H2 Molecule

The H2 molecule consists of two protons as nuclei and
two electrons (Fig. 9.12). We therefore have to take
into account the interaction between the two electrons.
This has the consequence (similar to the situation in the
He-atom), that we can no longer separate the wave func-
tion into a product of one-dimensional functions, as we
could for the H+

2 ion and no exact analytical solution
is possible, even for the approximation of the clamped
nuclei. We therefore have to use approximation pro-
cedures. Furthermore, because two electrons with the

BA
R

1e 2e12r

A1r

r B1r B2rA2

Fig. 9.12. H2 molecule

same spatial wave functions are nondistinguishable the
Pauli principle has to be obeyed. This means that the to-
tal wave function has to be antisymmetric with respect
to an exchange of the two electrons.

We will here introduce the two most commonly used
approximations: The molecular orbital (MO) approxi-
mation and the valence method of Heitler and London,
because they provide good insight into the approximate
calculation of electronic states of molecules and their
physical motivation. Although the two methods seem at
first to be quite different, they prove to be equivalent in
their improved versions.

9.2.1 Molecular Orbital Approximation

The ground state of the H2 molecule dissociates for
R →∞ into two H atoms in the 1s state. We there-
fore choose, similarly to the H+

2 ion, the normalized
symmetric linear combination (9.14a)

Φs = 1√
2+2SAB

(φA+φB) (9.20a)

of the two 1s atomic wave functions φA and φB, where
the electrons are labeled 1 and 2 and the nuclei A and B.
If both electrons are in the molecular ground state the
approximate total wave function

Φ(r1, r2)=Φs(r1) ·Φs(r1) (9.20b)

can be written as the product of the two molecular or-
bitals (9.20a). In this approximation the change of the
spatial distribution of the molecular orbitals due to the
mutual interaction between the two electrons has been
neglected.

The ansatz (9.20b) is symmetric with respect to an
exchange of the two electrons. Since the Pauli principle
demands an antisymmetric total wave function the spin
function must be antisymmetric. In this approximation
the total wave function, including the spin function, is
then

Φ(r1, r2, s1, s2)=Φs(r1) ·Φs(r2) (9.21a)

×[χ+(1)χ−(2)−χ+(2)χ−(1)] .
We introduce the abbreviations

χ+ = α , χ− = β , φA(i)= a(i) , φB(i)= b(i) ,

where α(1) means: ms(1)=+ 1
2 , β(1) means ms(1)=

− 1
2 .
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This gives the shorthand notation of the spatial part
(9.20b) as:

Φ(r1, r2)= 1

2+2SAB
[a(1)+b(1)]× [a(2)+b(2)]

(9.20c)

while the total wave function (9.21a) including the
electron spin can be written as the Slater determinant

Φ(r1, r2, s1, s2)=
∣∣∣∣∣Φs(1)α(1) Φs(2)α(2)

Φs(1)β(1) Φs(2)β(2)

∣∣∣∣∣ (9.21b)

as can be immediately proved by evaluating the
determinant.

The total energy of the two electrons in the rigid H2

molecule is

E =ΣEkin(i)+ Epot .

The Hamiltonian for the rigid H2 molecule with
clamped nuclei is

Ĥ =− �
2

2m
(∇2

1 +∇2
2 ) (9.22)

+ e2

4πε0

(
− 1

rA1
− 1

rB1
− 1

rA2
− 1

rB2
+ 1

r12
+ 1

R

)
.

With the abrevation

Ĥi = �
2

2m
∇2

i +
e2

4πε0

(
− 1

rAi
− 1

rBi
+ 1

R

)
(9.23)

We can separate this expression into three parts:

Ĥ = Ĥ1+ Ĥ2+ e2

4πε0

(
1

r12
− 1

R

)
= 2Ĥ(H+

2 )+∆E . (9.24)

The first two parts both represent the energy of the
H+

2 ion, which has only one electron i = 1, 2. They
have already been discussed in the previous section. The
third term in (9.23) describes the Coulomb-repulsion
between the two electrons and the two protons. This
last term for the nuclear repulsion is subtracted here,
because it is already included twice in Ĥ1 and Ĥ2.

The energy E(R) of the ground state is given in this
approximation as twice the energy of the H+

2 ion plus the
energy of electron repulsion minus nuclear repulsion.
The corresponding potential curve E(R) has a mini-
mum at R = Re (Fig. 9.13). The detailed calculation
shows that the two contributions of electron and nuclear
repulsion in the third term of (9.24) nearly cancel for

R / Å
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Fig. 9.13. Comparison of the potential curves of H+
2 and H2

and the third term in (9.24) (with the kind permission of
Prof. Kutzelnigg [9.2])

R = Re. They give only a small positive contribution
to the total energy. In this simple molecular orbital ap-
proximation the energy of the H2 molecule is slightly
smaller than twice the binding energy of the H+

2 ion in
the LCAO approximation. The binding energy of H2

becomes

EB(H2)= 2EB(H
+
2 )+∆E =−2.7 eV ,

compared with the experimental value EB =
−4.7 eV.

A serious drawback of this approximation is the
wrong behavior of E(R) for R →∞. As can be
seen from a detailled calculation one obtains E(∞)=
(22/16)EB(H) instead of the correct value 2EB(H). This
approximation therefore has to be improved.

Note:

In the MO approximation the electron repulsion is in-
cluded in the Hamiltonian, but not in the molecular
orbital ansatz for the wave function!

Before we look for improvements of our appro-
ximate wave function (9.21), we will discuss another
approximation method: the valence bond approxima-
tion, developed by Walter Heitler (1904–1981) and
Fritz London (1900–1954) which is therefore called the
Heitler–London approximation [9.4].
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9.2.2 The Heitler–London Method

This method also starts with a molecular orbital an-
satz. The ground state molecular orbital with the
lowest energy can be populated, according to the Pauli
principle, by two electrons with opposite spins. The
corresponding wave function

Φ1 = c1φA(1) ·φB(2) (9.25a)

gives the probability amplitude that electron 1 is at
nucleus A and can therefore be described by its atomic
orbital φA(1), while electron 2 is at nucleus B and is de-
scribed by the atomic wave function φB(2). However,
since the two electrons are undistinguishable,

Φ2 = c2φA(2)×φB(1) (9.25b)

must be also a wave function, leading to the same charge
distribution.

According to the Pauli principle the spatial part of
the wave function must be either symmetric or antisym-
metric with respect to an electron exchange. Therefore
the total spatial part of the normalized wave function
can be written as the linear combination of (9.25a) and
(9.25b) with c1 = c =±c2

Φs,a =Φ1±Φ2 (9.26a)

= c[φA(1)φB(2)±φA(2)φB(1)] .
Since the atomic wave functions φA and φB are already
normalized, we obtain, analogous to the consideration
for (9.14), the coefficient

c = [2(1± S2)]−1/2

and the wave function

ΦH,L
s,a = 1√

2(1± S2
AB)

(9.26b)

× [a(1)b(2)±a(2)b(1)] .

9.2.3 Comparison Between
the Two Approximations

The difference between the molecular orbital approxi-
mation and the Heitler–London ansatz is the following.
In the former method a MO ansatz was made for one
electron, which can be found in the volume covered by
φA as well as by φB. The total wave function is the-
refore the linear combination (9.14a) of φA and φB.

For the occupation with two electrons the product an-
satz (9.21) for the two molecular orbitals is used. In
the Heitler–London method both electrons are regarded
from the beginning and the molecular orbital is written
as the product of the two atomic orbitals. The final wave
function is the linear combination of the two products.

More physical insight into this difference between
the wave functions (9.21) and (9.26) can be gained if the
multiplication of the two brackets in (9.20c) is explicitly
performed. This gives:

ΦMO
s = 1

2+2SAB
(9.27)

× [a(1)a(2)+b(1)b(2)+a(1)b(2)+a(2)b(1)] .

By comparing with (9.26b) this explicit expression of
the MO ansatz illustrates that in the Heitler–London
ansatz (9.26b) the first two terms are missing. They
describe the situation where both electrons are simul-
taneously at nucleus A or nucleus B, respectively, i. e.,
where the ion H+H− is formed. In the molecular orbi-
tal ansatz this configuration has the same weight as the
much more likely configurations a(1)b(2) or a(2)b(1)
(Fig. 9.14). It is therefore overestimated, while the io-
nic form is completely neglected in the Heitler–London
ansatz.

In order to compare the molecular binding energy
obtained from the two methods we rearrange the
Hamiltonian (9.22) into

Ĥ =
(−�2

2m
∇2

1 −
e2

4πε0rA1

)
+
(−�

2m
∇2

2 −
e2

4πε0rB2

)
− e2

4πε0

(
1

rA2
+ 1

rB1
− 1

r12
− 1

R

)
= ĤA+ ĤB− ĤAB . (9.28a)

Here the division into the different contributions differs
from those in (9.24), because Ĥ is written as the sum of
the atomic Hamiltonians ĤA and ĤB and a third term

−A +B

1e

2e
A B

1e

2e

− + +

Fig. 9.14. The two configurations included in the MO
approximation with equal weights
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HAB, which contains the attraction of electron 2 by
nucleus A and electron 1 by B and the mutual repulsion
between the electrons and between the nuclei.

Inserting this Hamiltonian into the Schrödinger
equation

HΦ = EΦ

of the rigid H2 molecule yields the total energy

E = E(A)+ E(B)+∆EB (9.28b)

where the first two terms give the energies of the two
separated atoms A and B and the third term the binding
energy of the molecule. A stable molecule is formed
only if the energy ∆EB of the third term is negative,
which means that the total energy of the molecular state
is lower than the sum of the ground state energies of
the separated atoms. For ∆EB > 0 the potential curve
becomes repulsive. For R →∞ the binding energy
∆EB(R)→ 0.

Inserting the symmetric Heitler–London wave
function (9.26) into the Hamiltonian (9.28a) the energy

E(R)=
∫
Φ∗

s (r, R) ĤΦs(r, R) dτ (9.29a)

can be calculated and gives the binding energy

∆E(R = Re)=−3.14 eV , (9.29b)

which is already closer to the experimental value EB =
−4.7 eV than the result obtained with the simple MO-
LCAO approximation, where the ionic configuration
was overemphasized.

9.2.4 Improvements to the Approximations

The real share of the ionic configuration a(1)a(2)+
b(1)b(2) in the wave function (9.27) can be better
quantified if a variable parameter λ with 0< λ < 1 is
introduced, changing the wave function (9.27) into

Φs(r1, r1)= c3[a(1)b(2)+a(2)b(1)

+λ[a(1)a(2)+b(1)b(2)]] (9.30)

with the normalization constant c3. If λ is varied in
such a way, that for each internuclear distance R the
total energy becomes minimum, a binding energy of
EB =−4.02 eV is obtained, a remarkable improvement
compared with the simple MO-LCAO approximation.

Of course, the ionic contribution can be also in-
troduced with the weight factor λ in an improved
Heitler–London version. This gives, instead of (9.26),
the same wave function (9.30) as for the improved
MO approximation, which means that at this state of
improvement, both methods are identical.

The results for the potential curve and the binding
energy are still away from the experimental values,
which implies that further improvements are neces-
sary. Up to now we have used linear combinations of
undistorted atomic 1s wave functions with spherical
symmetry. However, when the two atoms approach each
other, the electron charge distribution will be distorted
due to the interaction between the two electrons and bet-
ween an electron and the nucleus of the other atom. It
will no longer be spherically symmetric but is deformed
and also contracted. In order to take this deformation
into account, we compose the molecular orbital (9.14a)
not only of two 1s atomic orbitals, but also of many
atomic orbitals including nonspherical ones, and write:

Φ(ri)=
N∑

k=1

ckφk . (9.31)

In this sum, all atomic orbitals are included that can best
reproduce the contraction and deformation of the 1s ato-
mic orbitals. The molecular orbital for two electrons can
now be written either as the product

Φ(r1, r2)=Φ(r1)Φ(r2) (9.32a)

(MO-LCAO approximation), or as the sum of products
of atomic orbitals

Φ(r1, r2)=
∑
i,k

ciφi(1)φk(2) (9.32b)

(Heitler–London approximation).
In both cases the coefficients ci , which give the re-

lative contributions of the atomic orbitals to the total
molecular wavefunction, are optimized in such a way
that the total energy E(R) becomes a minimum for each
selected internuclear distance R. This can be achieved
by solving the equation

∂

∂ci

[ ∫
Φ∗ ĤΦ dτ

]
= 0 (9.33)

which gives for N coefficients ci also N equations.
Here the energy E(ci) is regarded as a function of the
coefficients ci , since the nuclear separation R is fixed to
a selected constant value.
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Fig. 9.15. Potential curves of the H2 ground state obtained
from different approximations. EB = 0 is the energy of the
separated ground state H atoms

Calculations including 13 functions φi gave a bin-
ding energy EB(Re)=−4.69 eV at the minimum of
the potential curve, which already approaches the
experimental value very closely.

The most accurate calculations to date were perfor-
med by Kolos et al. [9.5, 6], who used 50 functions in
the expansion (9.31) resulting in a binding energy of
EB =−4.7467 eV, which agrees with the experimental
result within the error bars of the experimental value
Eexp

B =−4.7470±0.0003 eV.
The results of the different steps in the approxima-

tion calculations are illustrated in Fig. 9.15.
The discussion in this section has illustrated that

even for the simplest neutral molecule H2, accurate cal-
culations are tedious and demand large computers. The
improvements of the simple approximations were gui-
ded by physical reasoning and also the selection of
proper basis functions in the expansion (9.31) using
physical intuition can reduce the number of functions
considerably.

9.3 Electronic States
of Diatomic Molecules

Up to now we have only discussed the electronic ground
state of the two molecules H+

2 and H2 and have obtained
the potential energy curve E(R) by approximate calcu-

lation methods. A similar concept is pursued for larger
diatomic molecules with nuclear charges ZAe, ZBe and
N = (ZA+ ZB) electrons. The molecular wave function

Φ(r1, . . . rN , R)=Σcnφn (9.34)

is always written as a linear combination of many basis
functions φn , which might be atomic orbitals with coor-
dinates centered at the corresponding nucleus A or B,
but can also be other functions, such as Gaussian functi-
ons or Slater orbitals. They are chosen either by physical
intuition to optimize Φ with as few basis functions
as possible, or by computational reasoning aimed at
minimizing the computational expenditure.

All of these computations are based on the model of
rigid molecules. Their results give the potential energies
Ek(R) for the different electronic states and their mini-
mum values Ek(Rek), which are arranged in a sequence
according to increasing energy.

The different electronic states can be assigned by
several criteria:

a) By their energetic order
b) By the symmetry properties of their molecular wave

function
c) By the angular momenta of the atomic states for-

ming the molecular state and by the projection of
these angular momenta onto the internuclear axis

d) By the vector sum of their electron spins
e) By the atomic states into which they dissociate for

R →∞
Each of these criteria on its own does not allow the

unambiguous characterization of a molecular state. For
instance there are several different electronic states with
the same projection Λ� of the orbital angular momen-
tum but different energies or different spins. For a given
configuration of the two atoms forming a molecule
for decreasing internuclear distance R, many different
molecular states are possible.

9.3.1 The Energetic Order of Electronic States

The different electronic states Ei(R) of diatomics can
be characterized by the index i, which stands for the
various quantum numbers (principal quantum number,
angular momentum and spin quantum numbers). While
for atoms the principal quantum number n gives the
energetic order of the electronic states, this is not gene-
rally true for molecules. Only for higher Rydberg states
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Fig. 9.16. Two potential curves of Rydberg states in a diatomic
molecule

that dissociate into a ground state atom A and a Rydberg
atom B, does the energy monotonically increase with
increasing principal quantum number n (Fig. 9.16). For
lower states the energy difference between states with
different angular momenta might be larger than between
states with different principal quantum numbers. In this
case it is no longer meaningful to use the principal quan-
tum number for the characterization of electronic states.

The historical assignment of molecular electro-
nic states comes from spectroscopic experiments. The
ground state is always named the X-state, the next hig-
hest state, accessible from the ground state by absorption
of photons, is called the A-state, the next one the B-state,
etc. If the ground state is a singlet state, only singlet states
combinebyabsorptionof radiationwith thegroundstate.
The triplet states are named by small Latin letters, a, b, c
according to their energetic order. Unfortunately, some
new electronic states have been discovered only after the
assignment of the known states. They are then labeled
as A′, B′, . . . states. This nomenclature brings some
confusion into the scheme, but is still in use.

9.3.2 Symmetry Properties of Electronic States

Geometric operations, such as reflections of the mole-
cular electron cloud on a plane through the nuclei or at

Fig. 9.17. (a) Reflection of all electron coordinates at
a plane through the two nuclei. (b) Inversion of all electron
coordinates at the origin

the origin (chosen as the center of charge) and rotati-
ons of the molecule around an axis through the origin,
are called symmetry operations if the nuclear frame and
the charge distribution are not changed by these operati-
ons. This means that |Φ|2 is invariant against symmetry
operations.

We will describe the reflection at a plane through
the nuclei by the reflection operator σ . Since a dou-
ble reflection brings the molecule back into its original
state (Fig. 9.17a) we obtain for the wave functionΦ the
relation

σ(σΦ)= σ2Φ =+Φ⇒ σΦ =±Φ . (9.35a)

We define the symmetry of a wave function Φ as
positive, if

σΦ+ = +Φ+ . (9.35b)

The wave function has negative symmetry if

σΦ− = −Φ− . (9.35c)

The symmetry of a molecular state equals the symmetry
of its wave function. It is defined by the symmetries of
the two atomic states that form the molecular state.

For homonuclear diatomic molecules with ZA = ZB

the inversion of all coordinates at the origin is ano-
ther symmetry operation which defines the parity of
a molecular state (Fig. 9.17b). We can write this as

I |Φ(r)| 2 = |Φ(−r)| 2

⇒ I Φ(r)=±Φ(−r) . (9.36)

We can distinguish between two classes of wave functi-
ons. They are historically named by the German words
gerade (for even) and ungerade (for odd). The gerade
functions have even parity, i. e., I Φg(r)=+Φg(−r),
while for ungerade functions I Φu(r)=−Φu(−r) the
parity is odd.
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Note that this parity property is only present for
diatomics with equal nuclear charges.

9.3.3 Electronic Angular Momenta

Each electron in a molecule has an orbital angular
momentum li and a spin si . Because the potential, in
which the electron moves has no spherical symmetry,
the orbital angular momentum is not constant in time
but precesses in a nonrotating molecule around the
symmetry axis of the molecule. For states with wave
functions of cylindrical symmetry, this is the space-
fixed internuclear axis, which we choose as the z-axis.
We characterize the projection

lz = λ� (9.37)

by the projection quantum number λ= |ml|.
We will at first discuss molecules with only one

electron, such as H+
2 , or with one electron outside the

closed shell, such as Li+2 (see Sect. 9.1.1).
The precessing electron produces a magnetic field

in the z-direction. For molecules with small nuclear
charge numbers Z the interaction between the magne-
tic moments of li and si (l-s-coupling) is weaker than the
coupling of s to this magnetic field in the z-direction. In
this case both li and si precess independently around
the internuclear axis. The projection of s is called
sz = σ�, where σ is the spin projection quantum num-
ber (Fig. 9.18). The molecular electronic state is then
characterized by the quantum numbers λ, σ and s.

For molecules with more than one electron the coup-
ling order of the different angular momenta depends
on the strength of the different interactions. Similar to

Fig. 9.18. Separate precession of l and s around the z-axis for
weak spin-orbit coupling
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Fig. 9.19. (a) Separate precession of L =∑
li and S=∑

si
around the internuclear axis z for small spin-orbit coupling.
(b) Strong spin-orbit coupling with L+S= J and J precesses
around the z-axis with Jz =Ω

the situation in atoms (see Sect. 6.5) different coupling
schemes can be realized.

If the interaction between the different orbital an-
gular momenta li is larger than the coupling between li

and si (weak spin orbit coupling), than the total orbital
momentum

L =
∑

li (9.38a)

and the total electron spin

S=
∑

si (9.38b)

precess independently around the internuclear axis,
forming the constant projections

Lz =Λ ·� and Sz =Σ ·� (9.38c)

(Fig. 9.19a).
Electronic states with Λ= 0 are called Σ-states,

those withΛ= 1 areΠ-states, withΛ= 2 are∆-states,
etc.

Note:

Unfortunately the Greek letter Σ stands for states with
Λ= 0, but also for the projection number |MS|.
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For large spin-orbit coupling, L and S form the
resultant angular momentum

J = L+ S , (9.39a)

which precesses around the internuclear axis with the
projection

Jz =Ω ·h (9.39b)

(Fig. 9.19b). In these cases the quantum numbersΛ and
Σ are not well defined, but onlyΩ.

If the two atomic states into which the molecular
state dissociates for R →∞, have orbital angular mo-
menta LA and LB with projections (ML)A and (ML)B
onto the internuclear axis, the resultant projection Λ of
the molecular state can take the values

Λ= |MLA+MLB| . (9.40)

Since (ML)A can take the (2LA +1) values −LA �
MLA �+LA and (ML)B can also take 2LB+1 values,
the total possible number of molecular states with diffe-
rent values of Λ, composed of two given atomic states,
canbequite large.Someexamplesaregiven inTable9.4.

EXAMPLE

The combination of an atomic P state with L = 1 and
a D-state with L = 2 results in 15 molecular states with
Λ= 0, 1, 2, 3. For (ML)A =−(ML)B there are three
Σ-states with Λ= 0. These form the combinations

|−(ML)A+ (ML)B| = 0 ; |+(ML)A− (ML)B| = 0

and

(ML)A = (ML)B = 0 .

There are six combinations that lead to Λ= 1, four
combinations for Λ= 2 and two for Λ= 3.

Table 9.4. Quantum numbers Λ of molecular states formed
by the combination of P (L = 1) and D (L = 2) atomic states

(ML )A (ML )B Λ Molecular Term

0 0 0 Σ(1)
0 ±1 1 Π(2)

±1 0 1 Π(2)
±1 ∓1 0 Σ+,Σ−
±1 ∓2 1 Π(2)

0 ±2 2 ∆(2)
±1 ±1 2 ∆(2)
±1 ±2 3 Φ(2)

9.3.4 Electron Spins, Multiplicity
and Fine Structure Splittings

Similar to the coupling of orbital angular momenta the
spins SA and SB of the atomic states A and B define the
spin

S= SA+ SB (9.41)

of the molecular state formed by combination of the two
atomic states as the vector sum of the atomic spins. As
for atoms, the multiplicity of a molecular state is given
by the number (2S+1) of possible projections Σ of S
onto the internuclear axis.

For example, the two H atoms in their 12S1/2

ground state can form singlet molecular states of the
H2 molecule with a symmetric spatial wave function
and opposite spins or triplet states with an antisymme-
tric spatial part and parallel spins of the two electrons.
In both cases the total wave function always has to
be antisymmetric with respect to the exchange of two
electrons.

Note:

This symmetry is defined with respect to the exchange
of any two of the electrons and should not be confused
with the geometrical symmetry property with respect to
reflection at a plane through the nuclei. While the ex-
change symmetry is labeled “s” for symmetric and “a”
for antisymmetric, the reflection symmetry is labeled as
“+” for symmetric and “−” for antisymmetric.

The interaction energy of the electron spin with the
molecular magnetic field B is the scalar product

W =−S · B . (9.42a)

Since B is proportional to the projection Λ�, the spin-
orbit interaction energy can be written as

W = AΛΣ , (9.42b)

where the constant A, which depends on the specific
molecular state, is called the molecular fine structure
constant. Each molecular electronic state composed of
atomic states with angular momenta LA and LB and
withΛ 	= 0 and S 	= 0 splits into (2S+1) fine structure
components, which differ in their spin projection quan-
tum numberΣ. They are labeled by the total projection
quantum number Ω =Λ+Σ = |(ML)A+ (ML)B)|+
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Fig. 9.20. Fine struc-
ture splitting of a mo-
lecular state with Λ=
2 and Σ = 1 into
the 2S+1ΛΩ equidi-
stant components

Σ (Fig. 9.20). The term values of these fine structure
components are

T(Λ,Σ)= T0+ AΛΣ . (9.43)

Note:

Contrary to the situation in atoms the fine structure
components are equidistant and are separated byΛ · A.

For Λ<Σ fine structure components that differ
only in the sign of Ω are degenerate in the nonrotating
molecule.

The complete labeling of a fine structure component
is

2S+1ΛΩ

(see Fig. 9.20).

9.3.5 Electron Configurations
and Molecular Ground States

In order to calculate the different electronic states of
diatomic molecules with N electrons, the molecular
orbitals are determined by using wave functions of the
type (9.34). These orbitals are arranged according to
increasing energy. For the molecular ground state, each
of these orbitals is occupied with two electrons with
opposite spins until all electrons are put into the lowest
N/2 (for even N) or N/2+1 (for odd N) orbitals. For
excited electronic states one of the electrons is brought
from an occupied into a higher unoccupied orbital.

The molecular orbitals are characterized by the in-
dex n = 1, 2, 3, labeling the energetic order, the orbital
angular momentum quantum number l of the electron,
and its projection quantum number λ.

The calculations give the following energetic order
of the orbitals ψ(n, l, λ) with the nomenclature shown
in Table 9.1:

1sσ, 2sσ, 2pσ, 2pπ, 3sσ, 3pσ, 3pπ, 3dσ,

3dπ, 3dδ, 4sσ, . . . ,

where the Latin letter indicates the atomic orbital, which
gives the major contribution to the molecular orbital.

For homonuclear diatomics each of these orbitals
can be realized with gerade as well as with ungerade
symmetry. For these molecules there are therefore twice
as many orbitals as for heteronuclear molecules.

For the characterization of a molecular state all oc-
cupied molecular orbitals are written with an exponent
1 or 2, indicating the number of electrons in this orbital.
For example the ground state of the lithium molecule
Li2 with six electrons, formed by two Li-atoms in their
2s-ground states is

Li2 11Σ
+
g : (1sσg)

2(1sσu)
2(2sσg)

2 .

This composition of a molecular state by the orbi-
tals of the different electrons is called the electron
configuration.

Since the lowest fully occupied atomic 1s orbitals
do not contribute much to the molecular binding (they
are localized in the atomic K -shell around their atomic
nucleus) they are often abbreviated by K , and the above
electron configuration is written as

Li2 11Σ+
g (KK(2σg)

2) .

In Table 9.5 the electron configurations, the internuclear
distances Re at the minimum energy and the binding
energies for the ground states of some homonuclear
molecules are listed together with the spin orientati-
ons, and in Table 9.6 the same quantities for some
heteronuclear molecules are compiled.

As we have discussed for the H+
2 and H2 mol-

ecules the σg orbitals lead to a negative binding energy,
i. e., to bound molecules, while the σu orbitals result
in repulsive potential curves and therefore to unstable
molecules. The σg orbitals are therefore called bonding
orbitals, and the σu orbitals called antibonding.

In the H2 molecule both electrons are in the bon-
ding 1σg orbital. Without the repulsion between the two
electrons the binding energy EB(Re) of H2 should be
twice as large as for H+

2 . The positive repulsion energy
decreases the binding energy slightly. The equilibrium
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Table 9.5. Electron configuration in the ground states of some
homonuclear diatomic molecules

configuration state Re/nm EB/eV

H2 (1sσg)
2 ↑↓ 1Σ+

g 0.074 4.476
He+2 (1sσg)

2 (1sσu) ↑ 2Σ+
u 0.108 2.6

He2 (1sσg)
2 (1sσu)

2 ↑↓ 1Σ+
g – 0

Li2 K K (2sσg)
2 ↑↓ 1Σ+

g 0.267 1.03
B2 K K (2sσg)

2 (2sσu)
2 3Σ−

g 0.159 3.6
(2pπu)

2 ↑↑
C2 K K (2sσg)

2 ↑↓ (2sσu)
2 3Π−

u 3.6
or: (2pπu)

3 (2pσu 3Σ−
u 3.6

N2 K K (2sσg)
2 (2sσu)

2 1Σ+
g 0.110 7.37

(2pπu)
4 (2pσg)

2 ↑↓
O2 K K (2sσg)

2 (2sσu)
2

(2pσu)
2 (2pπu)

4 3Σ−
g 0.121 5.08

(2pπg)
2 ↑↓

Table 9.6. Electron configurations, equilibrium distances Re
and binding energies of the ground states of some
heteronuclear diatomic molecules

Molecule Configuration State Re/nm EB/eV

LiH (1σ )2(2σ )2 1Σ+ 0.160 2.52
CH (1σ )2(2σ )2 2Π 0.112 3.65

(3σ )21π
HF (1σ )2(2σ )2 1Σ+ 0.092 6.11

(3σ )21π
CO K K (3σ )2(4σ )2 1Σ+ 0.128 11.09

(1π)4(5σ )2

NO K K (3σ )2(4σ )2 2Π 0.115 6.50
(1π)4(2π)

distance Re is slightly smaller than for H+
2 , because the

larger negative charge of the two electrons between the
two nuclei decreases the nuclear repulsion and shifts Re

towards a lower value than for H+
2 .

For He+2 with three electrons, the third electron
has to occupy the next higher orbital 1σu, which is
antibonding. Therefore, the binding energy of He+2 is
smaller than that of H2 and its equilibrium distance Re

is larger.
For the neutral He2 molecule the binding contribu-

tion of the two electrons in the 1σg orbital are nearly
cancelled by the antibonding energy of the 1σu orbital
and the binding energy of He2 is with EB = 0.00001 eV
extremely small. For temperatures T> 1 K the He2

molecule in its ground state is unstable [9.7].
The Li2-molecule has, in addition to the He2 con-

figuration, two electrons in the bonding 2sσg orbital

2p

2s

1s

2p

2s

1s

g1σ

u1σ

u2σ

g2σ

u1π
−Σg

3

g
1

g
1 , ∆Σ+

Fig. 9.21. Electron configurations for the ground state 3Σ−
g

and excited singlet states of the Bor molecule B2

which contribute to the binding energy. The ground
state of Li2 is therefore stable and has a binding energy
of EB =−1 eV.

The electron configuration in the ground state of the
B2 molecule is (Fig. 9.21)

B2(KK(2sσg)
2(2sσu)

2(2pπu)
2 .

This configuration can lead to the three molecular states
3Σ−

g , 1∆g and 1Σ+
g where the 3Σ−

g state has the lowest
energy. Similarly to the situation in atoms (see Sect. 6.2)
this is due to Hund’s rule that the state with the highest
multiplicity has the lowest energy.

The 1∆g state is the first excited state where the two
electrons are still in the 2pπu state but have antiparallel
spins.

For heteronuclear molecules the distinction between
gerade and ungerade states is dropped and there are only
half as many orbitals than in homonuclear molecules.

9.3.6 Excited Molecular States

If one of the electrons in the occupied orbitals of
the ground state is excited into an orbital with higher
energy, excited electronic states are formed with ener-
gies En(R), that depend on the internuclear distance R.
Within the model of the rigid molecule, we obtain for
each of these states a potential energy curve E(R),
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Fig. 9.22. Potential curves for the 10 lowest energy states of
the H+

2 molecular ion

which converges for R →∞ towards the dissociation
into the separated atoms A + B∗ or A∗ +B, i. e., into
a ground state atom and an excited atom. In Fig. 9.22
some of these potential curves are shown for the mole-
cular ion H+

2 . The principle quantum number is counted
for each symmetry type separately, i.e. the lowest σu

state is numbered as 1σu, the lowest πu state also as
1πu, etc. The figure illustrates that for this system all
excited states are unstable and dissociate into the frag-
ments H++H∗. The reason for this is that the wave
functions for the excited states are spatially spread out
and therefore the remaining electron charge distribution
between the two protons is too small to compensate for
the Coulomb repulsion between the two protons.

For molecules with more electrons there are gene-
rally many bound excited states. For illustration, the
potential curves of the Li2 are shown in Fig. 9.23. Besi-
des the singly excited states, doubly excited states can
also be found where two electrons are excited into hig-
her orbitals. These states dissociate for R →∞ into two
excited Li-atoms. For all these states the core electrons
in the 1s atomic shells are barely affected by the excita-
tion of one or two electrons from the outer 2sσ orbital
into higher unoccupied orbitals. They do not contribute
to the molecular binding.

For the formation of molecules from two atoms
with closed inner shells the electrons in these inner

Å

Doubly excited
states

Term value / 10    cm−3 −1

∞=R

gΠ

Fig. 9.23. Some potential curves of the Li2 molecule up to the
ionization limit, including some doubly excited states (black
dashed curves)

shells barely contribute to the molecular binding energy.
They stay concentrated around “their” nucleus when
the molecule is formed, while the electrons from the
atomic valence shell are rearranged into molecular or-
bitals covering the volume around the two nuclei. The
molecular binding energy is therefore mainly caused
by these valence electrons. Their spatial rearrange-
ment leads to a minimization of the total energy at
a certain distance Re between the nuclei, which is the
reason for the binding of the two atoms into a stable
molecule.
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9.3.7 Excimers

We have seen in Sect. 9.3.5 that two helium atoms in
their ground states can not form a stable molecule, be-
cause the electrons are so tightly bound to their nucleus,
that their wave functions can not form a spatially ex-
tended binding orbital. The situation is different for
excited He∗ atoms, where the binding energy of the ex-
cited electron is only about 1

4 of that in the ground state.
The electron can then be more readily removed from
its nucleus and brought into a binding orbital between
the two atoms when another atom approaches the He∗.
Indeed He∗2 dimers have a potential curve E(R) with
a minimum (Fig. 9.24). This is also true for other noble
gases that form, for example, Ar∗2 or Xe∗2 dimers or mi-
xed excited molecules such as Ar∗Kr, Ar∗Xe or Kr∗Xe.

Such molecules, with binding potential curves in
excited electronic states but repulsive curves in their
ground state, are called excimers (excited dimers).

Interesting examples of excimers are combinations
of noble gas atoms with halogen atoms that have one
missing electron in their otherwise filled valence shell.
If such a halogen atom approaches an excited noble gas
atom, the excited electron of the noble gas atom can
gain energy if it fills the hole in the valence shell of the
halogen atom. This leads to a potential curve E(R)with
a minimum.

The fluorescence emitted by these excimers from
levels in the stable energy state Ei into the unstable
ground state has a broad continuous spectrum, because

R1 R2 R

Fig. 9.24. Two potential curves of an excimer showing the
continuous emission spectrum

it terminates on the repulsive potential of the ground
state. The photon energy hν = Ei − Eg(R) depends on
the internuclear distance at which the emission takes
place and covers the range ∆E(R1)−∆E(R2) when
the excited molecule vibrates back and forth between
R1 and R2 (Fig. 9.24).

Such excimers are ideal candidates for active laser
media. If the upper state can be populated, for instance
by collisions A∗ +B between excited noble gas atoms
A∗ and halogen atoms B, inversion is automatically
achieved because the lower state is depopulated by dis-
sociation within less than 10−12 s. A possible excitation
scheme is for example

Xe+ e− → Xe∗ + e−

Xe∗ +Cl2 → XeCl∗ +Cl (9.44)

Xe∗ +HCl → XeCl∗ +H .

9.3.8 Correlation Diagrams

The molecular states can be correlated to the correspon-
ding states of the separated atoms (R →∞) and also
to the states of a fictive united atom for R → 0 where
all electrons form a shell around a nucleus with charge
(ZA+ ZB)e. Since the symmetry and the parity of the
electronic states of the system AB must be independent
of the distance R, only selected states of the separa-
ted atoms can combine with molecular states of given
symmetry and parity and with such states of the uni-
ted atom. This means that gerade states of the united
atom correlate with gerade states of the molecule and
ungerade with ungerade.

Such correlation diagrams (Fig. 9.25), which com-
bine the corresponding states as a function of R by the
curves

En(R)=
∫
Φ∗

n(r, R) ĤΦn(r, R) dτ (9.45)

are very useful for the correct energy ordering of the
molecular states, because the energetic order of the
atomic states is not necessarily the same as that of
the corresponding molecular states. The strength of
the spin-orbit interaction, for example, generally va-
ries with R. This has the consequence that the coupling
order of the angular momenta li si , L =Σli and S=Σsi

and the splittings of the fine structure components can
change from the united atom (R = 0) to the separated
atoms (R =∞) (Fig. 9.26). Furthermore, the molecule
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Fig. 9.25. Correlation diagram of a homonuclear diatomic
molecule. On the right side one of the atoms is always in
the 1s state, to obtain singly excited molecular states

can not only dissociate into neutral atoms, but also into
the ion pair A++B−.

Here a noncrossing rule, postulated by Eugene Wig-
ner, is very helpful. It states that curves E(R) of the

Energy

S1

D1

P3

1s  2s   2p2 2 2

(1s )σ (2s )   (2p )σ π2 2 2
Doubly excited states

(1s )σ (2s )   (2p )σ σ (2p )π2 2
Singly excited states

(1s )σ (2s )   (2p )σ σ2 2 2
Ground state

∆1

Σ1 +

Σ3 −

Π1

Π3

Σ1 +

BeH molecule
United
C atom

Fig. 9.26. Correlation diagram between the united carbon
atom and the BeH molecule, which both have six electrons

same symmetry or parity never cross each other. This
rule can be proved by quantum mechanical considera-
tions. According to this rule the curve for the σu(1s)
orbital can cross that of the 2sσg orbital but not of the
2sσu orbital.

If the internuclear distances Re at the minimum
of the potential curve E(R) for the different molecu-
lar states are known, the correlation diagram gives the
correct energetic order of these states.

On the left side of Fig. 9.25 the energy levels of the
united atom are shown and on the right side the energies
of the separated atoms, where for singly excited mole-
cular states one of the atoms is always in its ground state.

9.4 The Physical Reasons
for Molecular Binding

In this section we will answer the question: “Why can
two neutral atoms combine to form a stable molecule?”.
We will see that depending on the internuclear di-
stance R several reasons exist for the molecular binding
(Fig. 9.27).

9.4.1 The Chemical Bond

During the discussion of the H2 molecule, we learned
that essentially two effects contribute to the binding
energy of the molecule at the equilibrium distance Re.

The first is the spatial rearrangement of the charge
distribution of atomic valence electrons. The electron
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Fig. 9.27. Chemical binding with overlap of atomic orbitals
is important for R < Rc. For R > Rc multipole interaction
dominates

density becomes larger between the two nuclei. This re-
sults in an electrostatic attraction between the positive
cores of the two atoms (for H2 these are the two protons)
and the negative electron charge distribution between
them. This effect is emphasized in the valence bond
model used in chemistry. In the chemically bound mol-
ecule both atoms share one or more valence electrons in
a common molecular orbital. This is also described in
the LCAO approximation where the molecular orbital is
represented by a linear combination of atomic orbitals.

The second reason is of quantum mechanically na-
ture and cannot be explained by a classical model.
The molecular orbital has a larger spatial extension
then the atomic orbitals. This increases the spatial
uncertainty for the electrons and therefore decreases
their average momentum 〈|p|〉 and their kinetic energy
〈Ekin〉 = 〈p2〉/2m, according to Heisenberg’s uncer-
tainty relation. The combination of both effects leads
to a minimum in the potential curve E(R), since the po-
tential energy E(R) contains the average kinetic energy
of the electrons (see Sect. 9.1). This second contribution
to the molecular binding is called the exchange inter-
action, because the two electrons in the atomic orbitals
of the LCAO can be exchanged since they cannot be
distinguished in their common molecular orbital.

Both effects are important at internuclear distances
R � 〈rA〉+〈rB〉 that are smaller than the sum of the

Separated atoms

Valence bond

Fig. 9.28. Valence
bond as increased
electron charge bet-
ween the two nuclei

mean atomic radii 〈rA〉 and 〈rB〉, which give the ex-
tension of the electron clouds in the separated atoms.
For distances smaller than this sum, the orbitals of
the two atoms can overlap forming molecular orbitals
and sharing electrons (Fig. 9.28). Molecular bonds that
are formed due to this effect are called covalent or
homopolar.

One can also describe the chemical binding by
energy conservation. If the energy increase ne-
cessary to deform the atomic orbitals when the
two atoms approach each other is smaller than
the decrease of the total energy (potential energy
and mean kinetic energy of the electrons) in the
rearranged molecular charge distribution, a stable
molecule is formed. The nuclear distance Re and
the electron charge distribution always arrange
themselves in such a way that the total energy
becomes a minimum.

9.4.2 Multipole Interaction

For larger internuclear distances R> 〈rA〉+〈rB〉, where
the electron clouds of the two atoms no longer overlap,
the chemical binding based on the two effects discus-
sed above looses its importance. Nevertheless stable
molecules are possible with such large internuclear di-
stances R, although their binding energy is smaller. The
correct treatment of the effects responsible for these
interactions at large distances is based on quantum
mechanics. However, good physical insight is already
provided by the classical model, which starts from the
multipole expansion of an arbitrary charge distribu-
tion ρ(r) for an observer at a point P at a distance R
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Fig. 9.29. Illustration of multipole expansion in (9.46) and
(9.47)

from the center of the charge distribution, which is large
compared to the extension of ρ(r) (Fig. 9.29). We will
discuss this model shortly.

The potential φ(R) at the point P(R) generated by
a distribution of charges qi(ri) at the locations ri is

φ(R)= 1

4πε0

∑ qi(ri)

|R−ri | . (9.46)

If we choose the origin of our coordinate system to
coincide with the nucleus of atom A, the positive charge
q(ri = 0)=+ZA ·e is the nuclear charge of atom A and
q(ri)=−e gives the charge of the ith electron in the
electron shell. For R � r we can expand (9.46) into
the Taylor series and obtain for the potential at a point
P(X,Y, Z)

R= {X,Y, Z} and r = {x, y, z}

φ(P)= 1

4πε0 R

{∑
i

qi + 1

R

[
X

R

∑
qi xi (9.47)

+Y

R

∑
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∑
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Fig. 9.30. Deforma-
tion and shift of
electron charge dis-
tribution of atom A
by the interaction
with atom B

The first term φM represents the monopole contribution,
which is zero for neutral atoms where

∑
qi = 0. For

ions it gives the main contribution.
The second term φD describes the potential of an

electric dipole with a dipole moment p =∑
qi · ri ,

which is the vector sum of the dipole moments pi = eiri

formed by the different electrons and the nucleus at
r = 0.

The third term φQM gives the contribution of the
quadrupole moment to the potential, the next terms the
higher moments, such as the octopole or hexadecapole
which are here neglected.

If another atom B with total charge qB, electric
dipole moment pB and quadrupole moment QMB is
placed at the position P(R), the potential energy of the
interaction between A and B can be written as the sum

Epot(A,B)= Epot(qB)+ Epot(pB) (9.48)

+ Epot(Q̃MB)+ . . .
where

Epot(qB)= qB ·φ(p) ,
Epot(pB)=+pB ·gradφ(p) , (9.49)

Epot(QMB)= Q̃MB ·grad EA .

The vector gradient grad EA of the electric field EA,
produced by atom A is the tensor

grad E =
{
∂E
∂x
,
∂E
∂y
,
∂E
∂z

}
. (9.50)

From the expression (9.49) we obtain the following
contributions to the interaction energy between A and B.

Two ions with charge qA and qB have long-range
interactions

Epot(qA, qB, R)= 1

4πε0

qA ·qB

R
(9.51)

which decrease only with 1/R.
An ion with charge qA and a neutral atom or mol-

ecule with a permanent dipole moment pB, pointing in
a direction with an angle ϑ against the z-axis through
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Fig. 9.31. Interaction between a charge qA and an electric
dipole moment pB

A and B (Fig. 9.31) experience the interaction energy

Epot(pA, pB, R)= 1

4πε0

qA pB cosϑ

R2
. (9.52)

The interaction potential between an ion and
a neutral atom with permanent dipole moment p
is proportional to 1/R2 and is zero in the direction
perpendicular to the dipole axis.

Two permanent dipoles pA and pB with angles ϑA

and ϑB against the z-axis and angles ϕA and ϕB against
the x-axis (Fig. 9.33) have the interaction energy

Epot(pA, pB, R)=−pA · E(pB)=−pB · E(pA)

(9.53)
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Fig. 9.32. Electric field of a dipole. It has axial symmetry
around the dipole axis

Fig. 9.33. Interaction between two dipoles

where

E(pB)= 1

4πε0 R3
(3pB · R̂ · cosϑp− pB) (9.54)

is the electric field generated by the dipole pB

(Fig. 9.32). The interaction energy then becomes

Epot(pA, pB, R) (9.55)

=− 1

4πε0 R3
[3pA pB cosϑA cosϑB− pA · pB]

= − pA · pB

4πε0 R3
[2 cosϑA cosϑB

− sinϑA sinϑB · cos(ϕA−ϕB)] .

The interaction energy between two permanent
electric dipoles is proportional to the product of
the two dipole moments and depends on their
relative orientation. It decreases as 1/R3 with
increasing distance much faster than the 1/R
Coulomb interaction between two charges.

9.4.3 Induced Dipole Moments
and van der Waals Potential

If a neutral atom without permanent dipole moment
is placed in an electric field, the opposite forces on
the negative electrons and the positive nucleus shift
the electron charge distribution into the opposite direc-
tion than the nucleus. The centers of the positive and
the negative charges no longer coincide as in a neutral
atom without permanent dipole moment, and a dipole
moment

pind
A = αA E (9.56a)

is induced by the electric field , which is proportional
to the field (Fig. 9.34). The constant αA is the electric
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Aq+

R

B

BP
→

Fig. 9.34. The charge qA produces an induced dipole
moment pB

polarizability of atom A and is a measure of the resto-
ring forces in the atom against the displacement and
deformation of the electron shell. If the electric field is
produced by an ion with charge qB, the induced dipole
moment of A becomes

pind
A = αAqB

4πε0 R2
R̂ (9.56b)

where R̂ is the unit vector pointing into the direction
from B to A.

The potential energy of a neutral atom without
permanent dipole moment in an electric field E is

Epot =−pind
A · E =−(αA E) · E . (9.57)

If the electric field is produced by an ion with charge qB,
the potential becomes

Epot =− αAq2
B

(4πε0)2 R4
(9.58)

If the field is generated by an atom B with permanent
dipole moment pB we obtain from (9.54) and (9.57) the
potential energy

Epot =− αA p2
B

(4πε0 R3)2
(3 cos2 ϑB+1) . (9.59)

In molecular physics the interaction between two neu-
tral atoms is of particular importance. For a charge
distribution on the electron shell that is spherically sym-
metric on the time average (e. g., for 1s electrons in the
H atom) the time averaged dipole moment has to be
zero. However, there still exists a momentary dipole
moment (Fig. 9.35) that produces according to (9.54)
a momentary electric field

EA = 1

4πε0 R2
(3pA R̂ cosϑA− pA) , (9.60)

which is statistically pointing in all directions and has
a time average of zero. However, if we place another

−e

+

r(t)
→

)t(re)t(pA ⋅=
→

0pA =→

Fig. 9.35. Momentary dipole
moment of an atom with
spherically symmetric charge
distribution

atom B in the vicinity of A, this field induces a dipole
moment in atom B

pind
B =+αB EA , (9.61)

which in turn generates an electric field at atom A in-
ducing a dipole moment in A. Now the time average of
p or E is no longer zero, because the interaction energy
between the two induced dipoles depend on their rela-
tive orientation and the positions with minimum energy
have a larger probability than those with higher ener-
gies. This leads to an attraction between A and B which
is called a van der Waals interaction and is an inter-
action between two induced dipoles. We will now treat
this more quantitatively.

According to (9.55) the negative interaction energy
between the two dipoles is a maximum when the two di-
poles are either parallel (ϑA = ϑB = 180◦) (Fig. 9.36a)
with their dipole moments pointing into the −z-
direction, or antiparallel (ϑ = 90◦, ϑ = 270◦), pointing
in a direction perpendicular to the z-axis (Fig. 9.33).
In the case of induced dipole-dipole interactions both
dipole moments are directed along the axis through
the two nuclei, which we choose as z-axis. This means
that cosϑA = cosϑB = 180◦ and p ‖ R. From (9.60) we
obtain

EA = 2pA

4πε0 R3
R̂ , EB = 2pB

4πε0 R3
R̂ . (9.62)

The potential energy of the interaction between the two
induced dipole moments pind

A and pind
B is then

Epot(R)=−pind
B · EA =−pind

A · EB . (9.63)

With pA = αA · EB and pB = αB · EA we get from (9.62)

Epot(R)∝−pind
A · pind

B =−αA ·αB · |E| 2 , (9.64)
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Fig. 9.36a,b. Possible orientations of two attraction-induced
dipoles with (a) parallel (b) antiparallel orientation

which can be written as

Epot(R)=−C1
αAαB

R6
=−C6

R6
, (9.65)

with C1 = 1
(4πε0)2

and C0 = αA·αB
(4πε0)2

.
This is the van der Waals interaction potential bet-

ween two neutral atoms with the polarizabilities αA and
αB. The constant C6, which is proportional to the pro-
duct αA ·αB of the atomic polarizabilities, is called the
van der Waals constant.

The interaction potential between two neutral
atoms scales for large separations R as R−6. The
attraction is much weaker than between charged
particles.

Note that the interaction is attractive (because of the
negative sign) and decreases as 1/R6 with increasing di-
stance R. It is therefore a short range interaction compa-
red with the Coulomb-interaction that is∝ 1/R, but has
a longer range than the interaction of the chemical bond,
which falls of exponentially with increasing R. The

interaction energy is also negative if the two induced di-
poles are orientated antiparallel but both perpendicular
to the z-axis through their centers (Fig. 9.36b).

The quantum mechanical treatment of the van der
Waals interaction is based on the calculations of the
atomic charge distributions, perturbed by the mutual
interaction between A and B. Since only this perturba-
tion leads to an attraction between the two atoms one
needs a perturbation calculation of second order [9.8, 9],
which is beyond the scope of this book.

If higher order terms in the multipole expansion are
taken into account, the interaction energy between two
atoms includes terms with 1/R8, 1/R10, 1/R12, . . . for
the induced quadrupole or octupole interactions. For
homonuclear molecules only even powers n of 1/Rn

can appear for symmetry reasons.

The multipole interaction between two neutral
atoms is only important for internuclear distan-
ces R > 〈rA〉+ 〈rB〉. For smaller values of R
the overlap of the electron shells of A and B
has to be taken into account, which results in
the above-mentioned exchange interaction and
the electrostatic interaction due to the increased
electron density between the two nuclei.

The total range of R-values can, however, be covered
by the empirical Lenard–Jones potential

ELJ
pot(R)=

a

R12
− b

R6
(9.66)

potE

612pot
R

b

R

a
)R(E −=

12R−∝

R

0R

a2
b

E
2

B =
6R−∝

Fig. 9.37. Lenard–
Jones potential



9.4. The Physical Reasons for Molecular Binding 347

where a and b are two parameters that depend on the
two atoms A and B and which are adapted to fit best
the potential curve obtained either experimentally or by
accurate and extensive calculations (Fig. 9.37).

From (9.66) it follows that Epot(R) = 0 for
R = (a/b)1/6. The minimum of Epot(R) is obtained for
dE/dR = 0. This gives the distance

Re = 2(a/b)1/6 = 21/6 R0 (9.67)

for the minimum. The binding energy at Re is then

EB =−Epot(Re)= b2/2a . (9.68)

9.4.4 General Expansion
of the Interaction Potential

The potential energy Epot(R) of a diatomic molecule
can be expanded for |R− Re|/Re < 1 into a Taylor se-
ries around the equilibrium distance Re of the potential
minimum:

Epot(R)=
∞∑

n=0

1

n!
(
∂n Epot

∂Rn

)
Re

(R− Re)
n . (9.69a)

Because (∂0 E/∂R0)Re = Epot(Re) and (∂E/∂R)Re = 0,
this gives

Epot(R)= Epot(Re)+ 1

2

(
∂2 Epot

∂R2

)
Re

(9.69b)

× (R− Re)
2+ . . . .

In molecular physics the minimum of the ground
state potential is generally chosen as Epot(Re)= 0.
Instead of the negative binding energy EB (which
is used if the zero point is chosen as the energy
of the separated ground state atoms) the positive
energy ED = −EB is now used, which gives the
energy necessary to dissociate the molecule from its
energy minimum at R = Re to the separated atoms at
R =∞.

For |R− Re|/Re � 1 the higher order terms with
n > 2 can be neglected and we obtain a parabolic
potential in the vicinity of the potential minimum.

The potential energy of a diatomic molecule can
be approximated in the vicinity of the potential
minimum by a parabolic potential (Fig. 9.38).

Fig. 9.38. Comparison of parabolic and Morse potentials with
the real (experimental) potential

9.4.5 The Morse Potential

In 1929 P.M. Morse had already proposed an empirical
potential form

Epot(R)= ED
[
1− e−a(R−Re)

]2
, (9.70)

which represents the attractive part of the potential
with a much better approximation to the experimen-
tal values than the parabolic potential. This potential
converges for R →∞ correctly towards the dis-
sociation energy ED, while the parabolic potential
goes to infinity for R →∞ (Fig. 9.38). The repul-
sive part of the potential for R < Re deviates more
severely from the experimental data. We obtain from
(9.70)

lim
R→0

Epot(R)= ED
[
1− e+aRe

]2
(9.71)

while the experimental potential must converge to-
wards the energy levels of the united atom (see
Fig. 9.25).

The Morse potential has the great advantage that
the Schrödinger equation of two atoms vibrating in this
potential can be solved exactly (see Sect. 9.6).
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9.4.6 Different Binding Types

Depending on the specific atoms of a diatomic molecule
and on the internuclear distance, we distinguish between
the following different binding types.

Covalent binding, caused by the exchange of
electrons in overlapping atomic orbitals. The
redistribution of the electron charge distribu-
tion leads to an increase in negative charge
between the two positive nuclear charges. It
is only important for internuclear distances
R< rA+rB.

Ionic binding between positive and negative ions
occurs if the electron exchange between two atoms
A and B leads to an increased electron density at atom
A and a decreased density at B (Fig. 9.39). Typical ex-
amples of ionic binding are combinations of atoms in
the first column of the periodic table (with only one
electron in the valence shell) with atoms in the seventh
column (with one missing electron in the valence shell).
Examples are

H+Cl →H+Cl− and Na+ I =Na+I− . (9.72)

1,4 eV

Na + Cl (covalent)

0

−1

−2

−3

−4

0.2 0.4 0.6 0.8 R / nm

Experimental

Na  + Cl   (ionic)+ −

E /eVB

Fig. 9.39. Different causes for the binding energy of NaCl,
dependent on the internuclear distance R

The interaction energy of the ionic bond falls off
with 1/R and is therefore a long-range interaction.

The van der Waals interaction between two neu-
tral polarized atoms with a large equilibrium
distance Re is weak and falls off with 1/R6. It
is therefore a short-range interaction compared to
ionic interactions.

For molecules with more than two atoms, another
interaction can play an important role, in particular
for biological molecules. This is hydrogen bonding,
where two atoms are attracted by a H+ ion (i. e., a pro-
ton), between the two atoms (Fig. 9.40a). The proton
polarizes the two atoms resulting in an attractive in-
teraction with a binding energy that lies between the
weak van der Waals energy and the strong valence
bond.

Examples of hydrogen bonds are water dimers
(H2O)2 (Fig. 9.40b), which can exist in different con-
formations. The structure of large biomolecules such as
DNA is essentially based on hydrogen bonding.

Fig. 9.40a,b. Binding by a hydrogen bridge: (a) (HF2)
−

(b) Two conformations of the water dimer (H2O)2



9.5. Rotation and Vibration of Diatomic Molecules 349

9.5 Rotation and Vibration
of Diatomic Molecules

Up to now we have discussed the electronic states of ri-
gid molecules, where the nuclei are clamped to a fixed
position. In this section we will improve our model of
molecules and include the rotation and vibration of dia-
tomic molecules. This means, that we have to take into
account the kinetic energy of the nuclei in the Schrö-
dinger equation Ĥψ = Eψ, which has been omitted in
the foregoing sections. We then obtain the Hamiltonian

Ĥ =−�
2

2

2∑
k=1

1

Mk
∇2

k −
�

2

2me

N∑
i=1

∇2
i

+ e2

4πε0

⎡⎣Z1 Z2

R
+
∑
i, j

1

ri, j
−
∑

i

(
1

ri1
+ 1

ri2

)⎤⎦
= Ênucl

kin + Eel
kin+ E0

pot = T̂k+ Ĥ0 (9.73)

where the first term represents the kinetic energy of the
nuclei, the second term that of the electrons, the third
represents the potential energy of nuclear repulsion, the
fourth that of the electron repulsion and the last term
the attraction between the electrons and the nuclei.

9.5.1 The Adiabatic Approximation

Because of their much larger mass, the nuclei in a mol-
ecule move much slower than electrons. This implies
that the electrons can nearly immediately adjust their
positions to the new nuclear configuration when the
nuclei move. Although the electronic wave functions
ψ(r, R) depend parametrically on the internuclear di-
stance R they are barely affected by the velocity of the
moving nuclei. The kinetic energy of the nuclear motion
Ekin = 1

2 Mv2 is small compared to that of the electrons.
We therefore write the total Hamiltonian H in (9.73) as
the sum

H = H0+Tk

of the Hamiltonian H0 of the rigid molecule and Tk of
the kinetic energy of the nuclei. Since the latter is small
compared to the total energy of rigid molecule we can
regard Tk as a small perturbation of H . In this case the
total wave function

ψ(ri, Rk)= χ(Rk) ·Φ(ri, Rk) (9.74)

Fig. 9.41. Energy Eel
n (R) of the rigid molecule and total

energy E of the nonrigid vibrating and rotating molecule

can be written as the product of the molecular wave
function χ(Rk) (which depends on the positions Rk of
the nuclei), and the electronic wave function Φ(ri, Rk)

of the rigid molecule at arbitrary but fixed nuclear po-
sitions Rk, where the electron coordinates ri are the
variables and Rk can be regarded as a fixed parameter.
This implies that nuclear motion and electronic motion
are independent and the coupling between both is ne-
glected. The total energy E is the sum of the energy
Eel

n (R) of the rigid molecule in the nth electronic state,
which is represented by the potential curve in Fig. 9.41
and the kinetic energy (Evib+ Erot) of the nuclei.

Note that the total energy is independent of R!

Inserting this product into the Schrödinger equation
(9.73) gives the two equations (see Problem 9.4)

Ĥ0Φ
el
n (r, Rk)= E(0)n ·Φel

n (r, Rk) (9.75a)(
T̂k+ E(0)n

)
χn,m(R)= En,mχn,m(R) . (9.75b)

The first equation describes the electronic wave func-
tion Φ of the rigid molecule in the electronic state
(n, L,Λ) and E(0)n is the total electronic energy of this
state without the kinetic energy Tk of the nuclei.

The second equation determines the motion of the
nuclei in the potential

E(o)n = 〈
Eel

kin

〉+ Epot(ri , Rk) , (9.76)
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which consists of the time average of the kinetic
energy of the electrons and the total potential energy
of electrons and nuclei. The total energy

En,k = Enuc
kin + E(o)n (9.77)

of the nonrigid molecule is the sum of the kinetic energy
of the nuclei and the total energy of the rigid molecule.
Equation (9.75b) is explicitly written as[( −�2

2MA
∆A− −�2

2MB
∆B

)
+ E(n)pot(Rk)

]
χn,m(Rk)

= En,mχn,m(Rk) . (9.78)

In the center of the mass system this translates to[−�2

2M
∆+ E(n)pot(R)

]
χn,m(R)= En,mχn,m(R)

(9.79)

where M = MA MB/(MA+MB) is the reduced mass of
the two nuclei and the index m gives the mth quantum
state of the nuclear movement (vibrational-rotational
state).

The important result of this equation is:

The potential energy for the nuclear motion in
the electronic state (n, L,Λ) depends only on the
nuclear distance R, not on the angles ϑ and ϕ, i. e.,
it is independent of the orientation of the mol-
ecule in space. It is spherically symmetric. The
wave functionsχ = χ(R, ϑ, ϕ), however, may still
depend on all three variables R, ϑ, and ϕ.

Because of the spherically symmetric potential
equation (9.77) is mathematically equivalent to the
Schrödinger equation of the hydrogen atom. The diffe-
rence lies only in the different radial dependence of the
potential. Analogous to the treatment in Sect. 4.3.2 we
can separate the wave functions χ(R, ϑ, ϕ) into a radial
part depending solely on R and an angular part, depen-
ding solely on the angles ϑ and ϕ. We therefore try the
product ansatz

χ(R, ϑ, ϕ)= S(R) ·Y(ϑ, ϕ) .
The radial function S(R) depends on the radial form
of the potential, while the spherical surface harmo-
nics Y(ϑ, ϕ) are solutions for all spherically symmetric
potentials, independent of their radial form.

Inserting the product (9.80) into (9.79) gives, as
has been already shown in Sect. 4.3.2, the following
equation for the radial function S(R):

1

R2

d

dR

(
R2 dS

dR

)
(9.80)

+ 2M

�2

[
E− Epot(R)− J(J +1)�2

2MR2

]
S = 0 .

For the spherical surface harmonics Y(ϑ, ϕ) we obtain
the Eq. (4.88), already treated in Sect. 4.4.2:

1

sinϑ

∂

∂ϑ

(
sinϑ

∂Y

∂ϑ

)
+ 1

sin2 ϑ

∂2Y

∂ϕ2
(9.81)

+ J(J +1)Y = 0 .

While the first Eq. (9.80) describes the vibration of the
diatomic molecule, (9.81) determines its rotation.

9.5.2 The Rigid Rotor

A diatomic molecule with the atomic masses MA and
MB can rotate around any axis through the center
of mass with the angular velocity ω (Fig. 9.42). Its
rotational energy is then

Erot = 1
2 Iω2 = J2/(2I) . (9.82)

Here I = MA R2
A+MB R2

B = MR2 where M = MA MB/

(MA+MB) is the moment of inertia of the molecule
with respect to the rotational axis and |J | = Iω is its
rotational angular momentum. Since the square of the
angular momentum

|J | 2 = J(J +1)h2

can take only discrete values that are determined by
the rotational quantum number J , the rotational ener-
gies of a molecule in its equilibrium position with an
internuclear distance Re are represented by a series of

R

S

RA RB

MA MB

A
B

Fig. 9.42. Diatomic molecule as a rigid rotor
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discrete values

Erot = J(J +1)�2

2MR2
e

. (9.83)

The energy separation between the rotational levels J
and J +1

∆Erot = Erot(J +1)− Erot(J)= (J +1)�2

2MR2
e

(9.84)

increases linearly with J (Fig. 9.43).
This result can also be directly obtained from (9.80).

For a fixed nuclear distance R the first term in (9.80)
is zero. Therefore the second term must also be zero,
because the sum of the two terms is zero. The kinetic
energy of a rigid rotor, which does not vibrate, is Ekin =
Erot = E−Epot, where E is the total energy. The bracket
of the second term in (9.80) then becomes for R = Re

equal to (9.83).
In the spectroscopic literature, the rotational term

values F(J)= E(J)/hc are used instead of the energies.
Instead of (9.83) we write

Frot(J)= J(J +1)�2

2hcMR2
e
= Be J(J +1) (9.85)
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Fig. 9.43. (a) Energy levels of the rigid rotor (b) Separati-
ons ∆Erot = Erot(J +1)− Erot(J) (c) Schematic rotational
spectrum

with the rotational constant

Be = �

4πcMR2
e
, (9.86)

which is determined by the reduced mass M and the
equilibrium nuclear distance Re. For historical reasons
one writes Be in units of cm−1 instead of m−1.

EXAMPLES

1. The H2 molecule has a reduced mass M = 0.5MH =
8.35×10−28 kg, and the equilibrium distance Re =
0.742×10−10 m⇒ I = 4.60×10−48 kg m2. The ro-
tational energies are

Erot(J)= 1.2×10−21 J(J +1) Joule

= 7J(J +1)meV .

The rotational constant is Be = 60.80 cm−1.
2. For the HCl molecule the figures are M =

0.97 AMU = 1.61×10−27 kg, Re = 1.27×10−10 m
⇒ Erot = 2.1×10−22 J(J+1) Joule= 1.21 J(J+1)
meV, Be = 10.59 cm−1.

In Table 9.7 the equilibrium distances Re and the
rotational constants are listed for some diatomic mol-
ecules. The figures show that the rotational energies are
within the range of

Erot = (10−6−10−2) J(J +1) eV .

For a rotational angular momentum J the rotational
period becomes

Trot = 2πI/�√
J(J +1)

. (9.87)

Depending on the rotational constant Be they range from
Trot = 10−14 s to 10−10 s. For Be = 1 cm−1 one obtains
Trot = 1.6×10−11/

√
J(J +1) s. If an electro-magnetic

wave falls onto a sample of molecules it can be ab-
sorbed on rotational transitions J → J +1 resulting in
absorption lines with frequencies

νrot(J)= [E(J +1)]− E(J)]/� (9.88a)

or, in wavenumber units cm−1,

νrot(J)= 2Be(J +1) . (9.88b)

The rotational transitions between levels J and
J +1 fall into the spectral range with frequencies
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Molecule Re/pm Be De αe ωe ωexe

H2 74.16 60.8 1.6×10−2 3.06 4401 121.3
Li2 267.3 0.673 9.9×10−6 0.007 351.4 2.6
N2 109.4 2.01 5.8×10−6 0.017 2359.0 14.3
O2 120.7 1.45 4.8×10−6 0.016 1580.0 12.0
I2 266.6 0.037 4.2×10−9 0.0001 214 0.61
H35Cl 127.4 10.59 5.3×10−4 0.31 2990 52.8
D35Cl 127.4 5.45 1.4×10−4 0.11 2145 27.2
ICl 232.1 0.114 4.0×10−8 0.0005 384 1.50
CO 112.8 1.931 6×10−6 0.017 2170 13.29
NO 115.1 1.705 0.5×10−6 0.017 1904 14.08

Table 9.7. Equilibrium di-
stances and rotational and
vibrational constants in
units of cm−1 for some
diatomic molecules

ν = 109−1013 Hz, i. e., in the Gigahertz–Terrahertz
range with wavelengths between λ= 10−5−10−1 m.
This spectral region is called the microwave range.

In Sect. 9.6.2 we will see, that only molecules with
a permanent electric dipole moment can absorb or
emit radiation on rotational transitions (except for
very weak quadrupole transitions). Therefore ho-
monuclear diatomic molecules show no rotational
absorption or emission spectra!

9.5.3 Centrifugal Distortion

A real molecule is not rigid. When it rotates, the
centrifugal force acts on the atoms and the inter-
nuclear distance widens to a value R where this force
Fc =−Mω2 R is compensated by the restoring force
Fr =−dEpot(R)/dR holding the two atoms together,
which depends on the slope of the potential energy
function Epot(R) (Fig. 9.44).

In the vicinity of the equilibrium distance Re the
potential can be approximated by a parabolic function
(see Sect. 9.4.4). This leads to a linear restoring force

Fr =−k(R− Re)R̂ . (9.89)

From the relation J2 = I2ω2 = M2 R4ω2 we obtain:

Mω2 R = J(J +1)�2

MR3

!= k(R− Re)

⇒ R = Re+ J(J +1)�2

MkR3
, (9.90)

which means that the internuclear distance R is wi-
dened by the molecular rotation. Since the potential

E

ReR

rF
→

zF
→

)R(Epot

Fig. 9.44. Compensation of centrifugal and restoring force in
the nonrigid rotating molecule

energy Epot(R) is, for R> Re, larger than Epot(Re) we
have to include the additional energy ∆Epot = 1

2 k(R−
Re)

2 in the rotational energy of the nonrigid rotor. The
total energy of the nonrigid rotor is then

Erot = J(J +1)�2

2MR2
+ 1

2
k(R− Re)

2 . (9.91)

If we express R on the right side of (9.90) by Re and k
with the help of (9.89) we obtain

R = Re

(
1+ J(J +1)�2

MkR4
e

)
= Re(1+ x)

with x � 1. This allows us to expand 1/R2 into the
power series

1

R2
= 1

R2
e

[
1− 2J(J +1)�2

MkR4
e

(9.92)

+ 3J2(J +1)2�4

M2kR8
e

∓ . . .
]
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and the rotational energy becomes

Erot = J(J +1)�2

2MR2
e

− J2(J +1)2�4

2M2kR6
e

(9.93)

+ 3J3(J +1)3�6

2M3k2 R10
e

± . . . .

For a given value of the rotational quantum
number J the centrifugal widening makes the mo-
ment of inertia larger and therefore the rotational
energy smaller. This effect overcompensates for
the increase in potential energy.

Using the term-values instead of the energies, (9.94)
becomes

Frot(J) = Be J(J +1)−De J2(J +1)2

+He J3(J +1)3− . . .
(9.94)

with the rotational constants

Be = �

4πcMR2
e
, De = �

3

4πckM2 R6
e
, (9.95)

He = 3�5

4πck2 M3 R10
e
.

The spectroscopic accuracy is nowadays sufficiently
high to measure even the higher order constant H .
When fitting spectroscopic data by (9.95) this constant,
therefore, has to be taken into account.

9.5.4 The Influence of the Electron Motion

Up to now we have neglected the influence of the elec-
tron motion on the rotation of molecules. In the axial
symmetric electrostatic field of the two nuclei in the
nonrotating molecule, the electrons precess around the
space-fixed molecular z-axis. The angular momentum
L(R)=Σli(R) of the electron shell, which depends on
the separation R of the nuclei, has, however, a constant
projection

〈Lz〉 =Λh (9.96a)

independent of R. For molecular states with electron
spin S 	= 0 in atoms with weak spin-orbit coupling the

spin S precesses independently around the z-axis with
a projection

〈Sz〉 = Msh . (9.96b)

Both projections add to the total value

Ωh = (Λ+Ms)h . (9.96c)

In the case of strong spin-orbit coupling L and S couple
to Jel = L+ S with the projection〈

Jel
z

〉=Ω×h

(see Sect. 9.3.3).
The total angular momentum J of the rotating mol-

ecule is now composed of the angular momentum N of
the molecular rotation and the projectionΛh orΩh. For
Ω 	= 0 the total angular momentum J of the molecule
is no longer perpendicular to the z-axis (Fig. 9.45).

Since the total angular momentum of a free mol-
ecule without external fields is constant in time,
the molecule rotates around the space-fixed direc-
tion of J and for Λ 	= 0 the rotational axis is no
longer perpendicular to the molecular z-axis.

In a simple model, the whole electron shell can be re-
garded as a rigid charge distribution that rotates around
the z-axis. The rotating molecule can then be described
as a symmetric top with two different moments of in-
ertia: 1.) The moment I1 of the electron shell rotating
around the z-axis and 2.) the moment I2 of the molecule

N
J

L

BA

R

Λh z

Λ

→

→

→

Fig. 9.45. Angular momenta of the rotating molecule
including the electronic contribution
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(nuclei and electrons) rotating around an axis perpendi-
cular to the z-axis. Because the electron masses are very
small compared with the nuclear masses, it follows that
I1 � I2.

The rotational energy of this symmetric top is

Erot = J2
x

2Ix
+ J2

y

2Iy
+ J2

z

2Iz
(9.97)

with Ix = Iy = I1 	= Iz = I2 .

From Fig. 9.45 the following relations can be obtained:

J2
z =Ω2

�
2

J2
x + J2

y = N2
�

2 = J2− J2
z (9.98)

= [
J(J +1)−Ω2]

�
2 .

Inserting this into (9.97) gives the term values F(J)=
Erot(J)/hc of the rotational levels

F(J,Ω)= Be
[
J(J +1)−Ω2]+ AΩ2 (9.99)

with the two rotational constants

A = �

4πcI1
� Be = �

4πcI2
. (9.100)

The term AΩ2, which does not depend on J , is generally
added to the electronic energy Te of the molecular state,
since it is constant for all rotational levels of a given
electronic state with quantum numberΩ. It is therefore
also not influenced by the centrifugal distortion.

The ground states of the majority of diatomic mol-
ecules are 1Σ-states with Λ=Ω = 0. For these cases
A = 0 and (9.99) is identical to (9.94).

9.5.5 Vibrations of Diatomic Molecules

For a nonrotating molecule, the rotational quantum
number J in (9.80) is zero. The solutions S(R) of (9.80)
are then the vibrational wave functions of the diatomic
molecule. For J = 0 they solely depend on the radial
form of the potential energy Epot(R). For a parabolic
potential, the vibrating molecule is a harmonic oscilla-
tor, which has been already treated in Sect. 4.2.5. The
result obtained there was the quantization of the energy
levels.

The energy levels of the harmonic oscillator

E(v)= (v+ 1
2 )hω (9.101)

depend on the integer vibrational quantum number v=
0, 1, 2, . . . .

They are equally spaced by ∆E = �ω. The
frequency ω = √

kr/M depends on the constant
kr = (d2 Epot/dR2)Re in the parabolic potential and on
the reduced mass M of the molecule. The lowest vibra-
tional level is not E = 0 but E = 1

2�ω. The solutions
of (9.80) with a parabolic potential are the vibrational
eigenfunctions

S(R)= ψvib(R, v)= e−πMω/h R ·Hv(R) (9.102)

where the functions Hv(R) are the Hermitian polyno-
mials. Some of these vibrational eigenfunctions of the
harmonic oscillator are compiled in Table 4.1 and are
illustrated in Fig. 4.20.

Although the real potential of a diatomic molecule
can be well approximated by a parabolic potential in the
vicinity of the potential minimum at R = Re, it deviates
more and more for larger |R− Re| (see Fig. 9.38). This
figure also illustrates that the Morse potential is a much
better approximation. Inserting the Morse potential

Epot(R)= ED
[
1− e−a(R−Re)

]2
(9.103)

into the radial part (9.80) of the Schrödinger equation
allows its exact analytical solution (see Problem 9.5).
The energy eigenvalues are now:

Evib(v)= �ω0

(
v+ 1

2

)
− �

2ω2
0

4ED

(
v+ 1

2

)2

(9.104)

with energy separations

∆E(v)= Evib(v+1)− Evib(v) (9.105a)

= �ω
[

1− �ω
2ED

(v+1)

]
,

where ED is the dissociation energy of the rigid mol-
ecule. The vibrational levels are no longer equidistant
but separations decrease with increasing vibrational
quantum number v, in accordance with experimental
observations.

The term-values Tv = Ev/hc are

Tvib(v)= ωe(v+ 1
2 )−ωexe(v+ 1

2 ) (9.105b)

with the vibrational constants

ωe = ω0

2πc
, ωexe = �ω2

0

8πcED
= ω2

e
hc

4ED
.

(9.105c)
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The vibrational frequency

ω0 = a
√

2ED/M (9.106)

corresponds to that of a classical oscillator with the
restoring force constant kr = 2a2 ED. From measure-
ments of kr (for instance from the centrifugal distortion
of rotational levels) and the dissociation energy ED the
constant a in the Morse potential can be determined.

With the more general expansion of the potential

Epot(R)=
∑

n

1

n!
(
∂n Epot

∂Rn

)
Re

(R− Re)
n (9.107)

the Schrödinger equation can only be solved numeri-
cally. We will, however, see in Sect. 9.5.7 that the real
potential can be very accurately determined from the
measured term values of the rotational and vibrational
levels.

Note:

• The distance between vibrational levels decreases
with increasing v, but stays finite up to the disso-
ciation energy. This means that only a finite number
of vibrational levels fit into the potential well of
a bound molecular state. This is in contrast to the
infinite number of electronic states in an atom such
as the H atom. Here the distance between Ryd-
berg levels converges with n →∞ towards zero
(see (3.88)). This different behavior stems from the
different radial dependence of the potentials in the
two cases.

• One has to distinguish between the experimen-
tally determined dissociation energy Eexp

D , where
the molecule is dissociated from its lowest vibration
level, and the binding energy EB of the potential
well, which is measured from the minimum of the
potential (Fig. 9.41). The difference is

Eexp
D = EB− 1

2�ω .

9.5.6 Interaction Between Rotation
and Vibration

Up to now we have looked at the rotation of a non-
vibrating molecule and the vibration of a nonrotating
molecule. Of course a real molecule can simul-
taneously rotate and vibrate. Since the vibrational

R(t)

S

eR

Fig. 9.46. Vibrating rotor

frequency is higher than the rotational frequency by
one to two orders of magnitude, the molecule un-
dergoes many vibrations (typically 5−100) during
one rotational period (Fig. 9.46). This means that the
nuclear distance changes periodically during one full
rotation.

EXAMPLES

1. For the H2 molecule, ωe = 1.3×1014 s−1 ⇒ Tvib =
4.8×10−14 s, while Trot = 2.7×10−13√J(J +1) s.

2. For the Na molecule, ωe = 4.5×1012 s−1 ⇒ Tvib =
1.4×10−12 s, while Trot = 1.1×10−10√J(J +1) s.

Since the total angular momentum J = I ·ω of
a freely rotating molecule has to be constant in time,
but the moment of inertia I periodically changes,
the rotational frequency ω has to change accor-
dingly with a period Tvib. Therefore the rotational
energy

Erot = J(J +1)�2

2m R2

also varies periodically with a period Tvib.

Because the total energy E = Erot+ Evib+ Epot

has to be constant, there is a periodic exchange of
rotational, vibrational and potential energy in the
vibrating rotor (Fig. 9.47).

The rotational energy, considered separately, is
the time average over a vibrational period. This time
average can be calculated as follows:

The probability to find the nuclei within the interval
dR around the distance R is

P(R)dR = |ψvib(R)| 2 dR .



356 9. Diatomic Molecules

rotE

vibE

potE

t

E

Fig. 9.47. Exchange between rotational, vibrational and
potential energy during a vibrational period

The quantum mechanical expectation values of R and
1/R2 are then

〈R〉 =
∫
ψ∗

vib Rψvib dR , and (9.108)〈
1/R2〉= ∫

ψ∗
vib

1

R2
ψvib dR .

This gives the mean rotational energy, averaged over
one vibrational period

〈Erot(v)〉 = J(J +1)�2

2M

∫
ψ∗

vib(v)
1

R2
ψvib(v) dR .

(9.109)

Note:

Even for a harmonic potential the expectation value of
1/R2 depends on the vibrational quantum number v. It
increases with v although 〈R〉 is independent of v and

v 4=

3

2

1

0

a) b)ReR

= 〈 〉R = 〈 〉R

v 6=

4

3

2

1

0

b a

0.8 1 1.2

e

v
2

2
e B

B

R

1
R =

5

ReR

Fig. 9.48. Mean internuclear distance 〈R〉
and rotational constant Bv ∝ 〈1/R2〉 for the
harmonic (a)and anharmonic (b)potential

always equal to Re (Fig. 9.48). Therefore, the rotatio-
nal constant Bv of the rotating harmonic oscillator also
depends on v. For the more realistic anharmonic poten-
tial, both 〈R〉 as well as 〈1/R2〉 change with v. While
〈R〉 increases 〈1/R2〉 decreases with increasing v.

In order to express the rotational term values by
a rotational constant similar to (9.86) or (9.95) we
introduce, instead of Be, the rotational constant

Bv = �

4πcM

∫
ψ∗

vib(v, R)
1

R2
ψvib(v, R)dR

(9.110a)

averaged over the vibrational motion. It depends on the
vibrational quantum number v.

For a Morse potential we then obtain

Bv = Be−αe(v+ 1
2 ) (9.111a)

where αe � Be. In a similar way an average centrifugal
constant

Dv = �
3

4πckM2

∫
ψ∗

vib
1

R6
ψvib dR (9.110b)

can be defined, which is related to De by

Dv = De−βe(v+ 1
2 ) with βe � De . (9.111b)

For a general potential, higher order constants have to
be introduced and one writes

Bv = βe−αe(v+ 1
2 )+γe(v+ 1

2 )
2+ . . . (9.112a)

Dv = De+βe(v+ 1
2 )+ δe(v+ 1

2 )
2+ . . . . (9.112b)
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The term value of a rotational-vibrational level can then
be expressed as the power series

T(v, J)= Te+
[
ωe(v+ 1

2 )−ωexe(v+ 1
2 )

2

+ ωe ye(v+ 1
2 )

3+ωeze(v+ 1
2 )

4+ . . . ]
+ [Bv J(J +1)−Dv J2(J +1)2

+ Hv J3(J +1)3∓ . . . ] . (9.113a)

For a Morse potential this series is reduced to

T Morse(v, J)= Te+ωe(v+ 1
2 ) (9.113b)

−ωexe(v+ 1
2 )

2+ Bv J(J +1)

−Dv J2(J +1)2

where only five constants describe the energies of all
levels (v, J) up to energies where the Morse potential
is still a good approximation.

9.5.7 The Dunham Expansion

In order to also reproduce the rotational-vibrational
term values T(v, J) of a rotating molecule for a more
general potential (9.107)

Epot(R)=
∑

n

an(R− Re)
n , (9.114)

with

an = 1

n!
(
∂n Epot

∂Rn

)
Re

.

Dunham introduced the expansion

T(v, J)=
∑

i

∑
k

Yik(v+ 1
2 )

i [J · (J +1)−Λ2]k

(9.115)

where the Dunham coefficients Yik are fit parameters
chosen such that the term values T(v, J) best repro-
duce the measured term values of rotational levels in
vibrational states of the molecule.

With (9.115) the energies of all vibrational-
rotational levels of a molecule can be described by
a set of molecular constants. These constants are re-
lated to the coefficients in the expansion (9.113a) by
the relations

Y10 ≈ ωe , Y20 ≈−ωexe , Y30 ≈ ωe ye

Y01 ≈ Be , Y02 ≈ De , Y03 ≈ He

Y11 ≈−αe , Y12 ≈ βe , Y21 ≈ γe

(9.116)

and also to the coefficients an in the general potential
expansion (9.114) [9.10].

9.5.8 Rotational Barrier

The effective potential for a rotating molecule (see
(9.80))

Eeff
pot(R)= E(v)pot(R)+ J(J +1)�2

2MR2
(9.117)

includes, besides the potential Epot(R) of the nonrota-
ting molecule, a centrifugal term that depends on the
rotational quantum number J and falls of with R as
1/R2 (Fig. 9.49). For a bound electronic state this leads
to a maximum of Eeff

pot(R) at a distance Rm, which can
be obtained by setting the first derivative of (9.117) to
zero. This distance

Rm =
[

J(J +1)�2

M(dEpot/dR)

]1/3

(9.118)

depends on the rotational quantum number J and on the
slope of the rotationless potential.

The minimum of the potential is shifted by the ro-
tation of the molecule from Re to larger distances and
the dissociation energy becomes smaller.

Energy levels E(v, J) above the dissociation energy
ED can be still stable, if they are below the maximum of

Predissociation9,000
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hc
E

Fig. 9.49. Effective potential curves of the rotating Na2
molecule for different rotational quantum number J
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Fig. 9.50. Predissociation of a molecule through the rotational
barrier

the potential barrier. However, due to the tunnel effect
(Sect. 4.2.3) molecules in these levels can dissociate by
tunneling through the barrier (Fig. 9.50). This effect is
called predissociation by tunneling. The tunnel proba-
bility depends exponentially on the width of the barrier
and on the energy gap between the maximum of the
barrier and the level energy.

The predissociation rate can be determined by mea-
suring the width δE = h/τ of levels with a lifetime τ . If
the predissociation rate is large compared to the radia-
tive decay of a level, the lifetime τ is mainly determined
by predissociation. Measuring τ(v) for all levels above
the dissociation limit gives information on the form and
heights of the potential barrier.

The dissociating fragments have a kinetic energy

Ekin = E(v, J)− ED(J = 0) ,

which is shared by the two fragments according to their
masses.

9.6 Spectra of Diatomic Molecules

When a molecule undergoes a transition

Ei(ni ,Λi , vi, Ji)↔ Ek(nk,Λk, vk, Jk)

between two molecular states |i〉 and |k〉, electromagne-
tic radiation can be absorbed or emitted with a frequency
ν =∆E/h. Whether this transition really occurs de-
pends on its transition probability, which is proportional
to the absolute square of the dipole matrix element Mik

(see Sect. 7.1). The relative intensities of spectral lines
can therefore be determined if the matrix elements of
the transitions can be calculated. Because of the larger

variety of molecular states, with energies depending on
the electronic, the rotational and vibrational structure
of the molecule, the matrix elements of molecules are
more complicated than those of atoms. In this section
we will discuss their structure and the molecular spectra
derived from them.

For spontaneous emission (fluorescence spectra) the
emission probability of a transition |i〉 → |k〉 is given
by the Einstein coefficient Aik. According to (7.17) Aik

is related to the transition dipole matrix element MiK by

Aik = 2

3

ω3
ik

ε0c3�
|Mik|2 . (9.119a)

For the absorption or stimulated emission of radiation
the transition probability Pik = Bikw(νik) is proportio-
nal to the spectral energy density w(ν) of the radiation
field. In Sect. 7.2 it was shown that Pik is given by

Pik = π

2�2
E2

0

∣∣ψ∗
k ε · pψi dτ

∣∣ 2 (9.119b)

where ε= E/|E| is the unit vector in the direction of
the electric field E of the electromagnetic wave, incident
onto the molecules. The transition probability therefore
depends on the scalar product ε· p of electric field vector
and electric transition dipole of the molecule.

9.6.1 Transition Matrix Elements

The dipole matrix element for a transition between two
molecular states with wave functions ψi and ψk is

Mik =
∫∫

ψ∗
i pψk dτel dτN . (9.119c)

Fig. 9.51. Illustration of nuclear and electronic contributions
to the molecular dipole moment
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The integration extends over all 3(ZA+ ZB) electronic
coordinates and over the six nuclear coordinates. Often
only one of the electrons is involved in the transition. In
this case the integration over dτel only needs to be perfor-
med over the coordinates of this electron. The vector p
is the dipole operator, which depends on the coordina-
tes of the electrons, involved in the transition and on the
nuclear coordinates. In Fig. 9.51 it can be seen that

p =−e
∑

i

ri + e(ZA RA+ ZB RB)= pel+ pN

(9.120)

where pel is the contribution of the electrons and pN

that of the nuclei.

Note that for homonuclear molecules ZA = ZB but
RA =−RB. Therefore pN = 0!

Within the adiabatic approximation we can separate
the total wave function ψ(r, R) into the product

ψ(r, R)=Φ(r, R)×χN(R) (9.121)

of electronic wave function Φ(r, R) of the rigid mol-
ecule at a fixed nuclear distance R and the nuclear wave

nE

)R(Eel
2

)R(Eel
1

3'v =
2'v =

1'v =
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Rotational
levels E'(J')

D'E

Vibrational
states E'(v')

Rotational
levels E''(J'')

3''v =
2''v =

1''v =
0''v =

Vibrational
states E''(v'')

R'Re''Re

el
1

el
2 EE −

'Re

D''E

Fig. 9.52. Rotational and vibrational le-
vels in two different electronic states of
a diatomic molecule

function χ(R); which only depends on the nuclear coor-
dinates. Inserting (9.120, 9.121) into (9.119) the matrix
elements is written as

Mik =
∫∫

Φ∗
i χ

∗
N,i(pel+ pN)Φkχ

∗
N,k dτel dτN .

(9.122a)

Rearranging the different terms gives

Mik =
∫
χ∗i

[∫
Φ∗

i pelΦk dτel

]
χk dτN (9.122b)

+
∫
χ∗1 pN

[∫
Φ∗

i Φk dτel

]
χk dτN .

We distinguish between two different cases (Fig. 9.52):

• The two levels |i〉 and |k〉 belong to the same elec-
tronic state (Φi =Φk). This means that the dipole
transition occurs between two vibrational-rotational
levels in the same electronic state Φi . In this case
the first term in the sum (9.122b) is zero because the
integrand r|Φi |2 is an ungerade function of the elec-
tron coordinates r = {x, y, z}. The integration from
−∞ to +∞ therefore gives zero.
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Since the electronic wave functions Φ are
orthonormal, i. e.,∫

Φ∗
i φk dτel = δik (9.123)

the integral over the electronic coordinates in the
second term in the sum (9.122b) is equal to one.
The matrix element then becomes

Mik =
∫
χi,N pNχk,N dτN . (9.124)

The integrand solely depends on the nuclear
coordinates, not on the electronic coordinates!

• Transitions between levels in two different electro-
nic states. In this case the integral over the electronic
coordinates in the second term of (9.122b) is zero be-
cause the Φi , Φk are orthonormal. The second term
is therefore zero and the matrix element becomes

Mik =
∫
χ∗i

[∫
Φ∗

i pelΦk dτel

]
χk dτN

= χ∗i Mel
ik(R)χk dτN . (9.125)

We will now discuss both cases separately.

9.6.2 Vibrational-Rotational Transitions

All allowed transitions (vi, Ji)↔ (vk, Jk) between two
rotational-vibrational levels in the same electronic state
form for vi 	= vk the vibrational-rotational spectrum of
the molecule in the infrared spectral region between
λ= 2−20 µm. For vi = vk we have pure rotational
transitions between rotational levels within the same
vibrational state, which form the rotational spectrum
in the microwave region with wavelengths in the range
0.1−10cm.

The dipole matrix element for these transitions is
according to (9.120) and (9.124)

Mrot vib
ik = e

∫
χ∗i (ZA RA+ ZB RB)χk dτN . (9.126)

For homonuclear diatomic molecules with ZA = ZB

and MA = MB is RA =−RB and therefore the integrand
is zero ⇒ Mrot vib

ik = 0.

Homonuclear diatomic molecules have no dipole-
allowed vibrational-rotational spectra. This
means they do not absorb or emit radiation on
transitions within the same electronic state. They
may have very weak quadrupole transitions.

Note:

The molecules N2 and O2, which represent the major
constituents of our atmosphere, cannot absorb the in-
frared radiation emitted by the earth. Other molecules,
such as CO2, H2O, NH3 and CH4 do have an electric
dipole moment and absorb infrared radiation on their
numerous vibrational-rotational transitions. Although
they are present in our atmosphere only in small concen-
trations they can seriously perturb the delicate energy
balance between absorbed incident sun radiation and
the energy radiated back into space by the earth (green-
house effect). If their concentration is increased by only
small amounts this can increase the temperature of the
atmosphere at the earth’s surface (greenhouse effect).

The structure of the vibration-rotation-spectrum and
the pure rotation spectrum can be determined as follows.

Since the interaction potential between the two
atoms is spherically symmetric, we choose spherical
coordinates for the description of the nuclear wave
function χN(R, ϑ, ϕ).

If the interaction between rotation and vibration is
sufficiently weak we can write χN as the product

χN(R, ϑ, ϕ)= S(R)Y M
J (ϑ, ϕ) (9.127)

of the vibrational wave function S(R) in (9.102) and the
rotational wave function Y M

J (ϑ, ϕ) for a rotational level
with angular momentum J and its projection M ·� onto
the quantization axis, which is a preferential direction
in the laboratory coordinate system. For absorbing tran-
sition the quantization axis is, for instance, the direction
of the incident electromagnetic wave, or the direction
of its E-vector.

With R = |RA − RB| and RA/RB = MB/MA

(Figs. 9.42 and 9.51) and p̂= p/|p| the dipole moment
can be written as

pN = p̂ · |pN| = e
MB · ZA−MA · ZB

MA+MB
· R · p̂

= CR p̂ . (9.128)
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The volume element in spherical coordinates is

dτN = R2 dR sinϑ dϑ dϕ .

This gives the matrix element

Mik = C ·
∫
R

S∗vi
(R)Svk (R)R

3 dR (9.129)

×
∫
ϑ,ϕ

Y Mi
Ji

Y Mk
Jk

p̂ sinϑ dϑ dϕ .

The first factor describes the vibrational transition vi ↔
vk. If the harmonic oscillator functions are used for
the vibrational functions S(R) the calculations of the
integral shows that the integral is zero, unless

∆v= vi −vk = 0 or ±1 . (9.130)

The + sign stands for absorbing, the minus sign for
emitting transitions. Transitions with ∆v= 0 are pure
rotational transitions within the same vibrational level.

This selection rule means that for the harmo-
nic oscillator only transitions between neighboring
vibrational levels are allowed.

For anharmonic potentials, such as the Morse po-
tential, higher order transitions with ∆v=±2, ±3, . . .
are also observed. Such overtone-transitions are, howe-
ver, much weaker than the fundamental transitions with
∆v=±1.

The second integral in (9.129) describes the rota-
tional transitions. It depends on the orientation of the
molecular dipole moment p in space.

The amplitude of the radiation emitted into the di-
rection k in space is proportional to the scalar product
of k · p and the intensity is the square of this amplitude.
For absorbing transitions it is proportional to the scalar
product E · p of electric field amplitude and molecular
dipole moment p.

With the orientation angles Θ and φ of p̂ = p/|p|
against the space-fixed axis X;Y ; Z we obtain the
relation (Fig. 9.53)

ε̂ · p = p(εx sinΘ cosφ+εy sinΘ sinφ+εz cosΘ)
(9.131a)

where εi is the ith component of ε̂= E/|E| against
the space fixed axis i = X,Y, Z. The angles can be
expressed by the spherical surface harmonics Y M

J :√
4π

3
Y 0

1 = cosΘ ;
√

8π

3
Y±1

1 =∓ sinΘ · e±iφ

(9.131b)

x
y

z

θ

φ
xp

yp

zp

p
→

Fig. 9.53. Orienta-
tion of molecular
dipole moment p in
a space-fixed coor-
dinate system

which gives

ε̂ · p = (9.131c)

p

√
4π

3

(
εzY

0
1 +

−εx + iεy√
2

Y 1
1 +

εx + iεy√
2

Y−1
1

)
.

Inserting this into the second integral in (9.129) and
extracting the components of the space fixed unit vec-
tor ε out of the integral gives for the angular part of the
transition probability integrals of the form∫

Y Mi
Ji

Y∆M
1 Y Mk

Jk
dΩ with ∆M = 0,±1

with the result that these integrals are always zero,
except for ∆J = Ji − Jk =±1.

This selection rule is readily understandable, be-
cause the absorbed or emitted photon has the spin
s =±1h and the total angular momentum of the system
photon + molecule has to be conserved.

For the projection quantum number M the selection
rules are analogue to that for atoms:
∆M = 0 for linear polarization of the radiation and

∆M =±1 for circular polarization.

Note:

The angle ϑ is measured against the molecular axis in
the molecular coordinate system, whileΘ and φ are the
angles between the molecular dipole moment and the
space fixed quantization axis (see above).

In order to save indices in spectroscopic literature
the upper state (vk, Jk) is always labeled with a prime as
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(v′, J ′), whereas the lower state (vi, Ji) is labeled with
a double prime as (v′′, J ′′). Transitions with

∆J = J ′ − J ′′ = +1

are called R-transitions, those with

∆J = J ′ − J ′′ = −1

are P-transitions.
All allowed rotational transitions appear in the spec-

trum as absorption- or emission lines (Fig. 9.54). All
rotational lines of a vibrational transition form a vi-
brational band. Its rotational structure is given by the
wavenumbers of all rotational lines

ν(v′, J ↔ v′′, J ′′) (9.132)

= ν0+ B′
v J ′(J ′ +1)−D′

v J ′2(J ′ +1)2

− [
B′′
v J ′′(J ′′ +1)−D′′

v J ′′2(J ′′ +1)2
]

where ν0 is the band origin. It gives the position of
a fictious Q-line with J ′ = J ′′ = 0. Since this line does
not exist in rotational-vibrational spectras of diatomic
molecules, there is a missing line at ν = ν0 (Fig. 9.54).

Since the rotational constant Bv = Be−αe(v+ 1
2 )

generally decreases with increasing v (αe > 0 for most
molecules) it follows that B′

v < B′′
v . Plotting ν(J = J ′′)

for P- and R transitions as a function of ν gives the
Fortrat-diagram shown in Fig. 9.55. The R-lines are on
the high frequency side of the band origin ν0 while

E
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1
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Fig. 9.54. P and R rota-
tional transitions between
the vibrational levels v′′ =
0 and v′ = 0
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P branch
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Fig. 9.55. Fortrat diagram of the P- and R-branch of
vibrational-rotational transitions

2,700 2,800 2,900 3,000

Fig. 9.56. Vibrational-rotational absorption of the H35Cl
and H37Cl isotopomers in the infrared region between
λ= 3.3−3.7 µm

the P lines are on the low frequency side. In Fig. 9.56
the vibration-rotation spectrum of HCl is shown with
the P- and R-branch. The lines are split into two
components, because the absorbing gas was a mixture
of the two isotopomers of HCl with the two atomic
isotopes 35Cl and 37Cl. Since the rotational and vibra-
tional constants depend on the reduced mass M the
lines of different isotopomers are shifted against each
other.

9.6.3 The Structure of Electronic Transitions

We will now evaluate the matrix element (9.125) for
electronic transitions. The electronic part Mel

ik(R) de-
pends on the internuclear distance R, because the
electronic wave functions Φ depend parametrically
on R. In many cases the dependence on R is weak
and we can expand Mel

ik(R) into a Taylor series

Mel
ik(R)= Mik(Re)+

(
dMel

ik

dR

)
Re

(R− Re)+ . . . .
(9.133)

In a first approximation only the first term, independent
of R, is considered, which can be regarded as an average
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of Mik(R) over the range of R-values covered by the
vibrating molecule. In this case the constant Mik(Re)

can be put before the integral over the nuclear coor-
dinates. Using the normalized nuclear wave functions
χN = S(R) ·Y(ϑ, ϕ) and the vibrational wave functions
ψvib = R · S(R) the matrix element becomes

Mik = Mel
ik

∫
ψ∗

vib(vi)ψvib(vk) dR (9.134)

·
∫

Y Mi
Ji

Y Mk
Jk

sinϑ dϑ dϕ

where Mh is the projection of the rotational angular
momentum J onto a selected axis (for instance, in the
direction of the E-vector or the k-vector of the incident
electromagnetic wave for absorbing transitions, or in the
direction from the emitting molecule to the observer for
fluorescent transitions).

Note:

This approximation of an electric transition dipole mo-
ment independent of R is, for many molecules with
a strong dependence Mel

ik(R), too crude (Fig. 9.57). In
such cases the second term in the expansion (9.133) has
to be taken into account.

Since the probability of spontaneous emission is
proportional to the square |Mik|2, the intensity of
a spectral emission line

I(ni, vi, Ji ↔ nk, vk, Jk)∝
∣∣Mel

ik

∣∣ 2 (9.135)

· FCF(vi , vk) ·HL(Ji , Jk)

is determined by three factors.
The electronic part |Mel

ik|2 gives the probability of
an electron jump from the electronic state |i〉 to |k〉. It
depends on the overlap of the electronic wave functions
Φi and Φk and their symmetries.

The Franck–Condon factor

FCF(vi, vk)=
∣∣∣∣∫ ψvib(vi) ·ψvib(vk) dR

∣∣∣∣2 (9.136)

is determined by the square of the overlap integral of
the vibrational wave functions ψvib(vi) and ψvib(vk) in
the upper and lower electronic state.

The Hönl–London factor

HL(Ji, Jk)=
∣∣∣∣∫ Y Mi

Ji
Y Mk

Jk
sinϑ dϑ dϕ

∣∣∣∣2 (9.137)
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Fig. 9.57. Dependence of electronic transition dipole on in-
ternuclear distance R for several transitions of the Na2
molecule

depends on the rotational angular momenta and their
orientation in space. This factor determines the spatial
distribution of the emitted radiation.

An electric dipole transition in fluorescence can only
take place if none of these three factors is zero.

The probability of absorbing transitions depends
according to (9.119b) on the scalar product of the
electric field vector E and the dipole moment p

Pik ∝ |E ·Mik| 2 .

Since only the last factor in (9.135) depends on the
orientation of the molecule in space, i. e., the direc-
tion of Mik against the electric field vector E, only the
Hönl–London factor differs for spontaneous emission
and absorbing transitions. For the intensity I = ε0 E2

of the incident electromagnetic wave we obtain with
E = ε · |E| the transition probability

Pik = ε0 E2 · ∣∣Mel
ik(Re)

∣∣ 2×
∣∣∣∣∫ ψvi

vib ·ψvk
vib · dR

∣∣∣∣2
×
∣∣∣∣∫ Y Mi

Ji
ε̂ · p̂Y Mk

Jk
sinϑ dϑ dϕ

∣∣∣∣2 . (9.138)

a) The General Structure
of Electronic Transitions

Molecular electronic spectra have structures as shown
in (Fig. 9.58).
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Fig. 9.58. Schematic representation of the structure of
molecular transitions

All allowed transitions J ′′i ←→ J ′k between the ro-
tational levels J ′k of a given vibrational level v′ in the
upper electronic state and J ′′i of v′′ in the lower elec-
tronic state form a band. In absorption or fluorescence
spectra such a band consists of many rotational lines.

Transitions with ∆J = 0 form the Q-branch, those
with ∆J = J ′k − J ′′i = +1 the R-branch and with
∆J =−1 the P-branch. Q-branches are only present
in transitions where the electronic angular momentum
changes by 1h, (e. g., forΣ↔Π transitions) in order to
compensate for the spin of the absorbed or emitted pho-
ton. Electronic transitions with ∆Λ= 0 (e.g., between
two Σ-states) have only P and R branches.

The total system of all vibrational bands of this
electronic transition is called a band system. The total
number of lines in such a band system depends not only
on the transition probabilities but also on the number of
populated levels in the lower or upper electronic state.

The intensities of the lines in the emission spectrum
are proportional to the population of the emitting upper
levels and to the transition probability Aik:

I em
ik = gk Nk Aik (9.139a)

where gk = (2Jk +1) is the statistical weight of the
level. The number of emitting levels depends on the

excitation mechanism. Generally, the energy of the up-
per electronic state is for T = 300 K large compared to
the thermal energy kT . Therefore the thermal popula-
tion is negligible. Optical pumping with lasers allows
the population of single selected levels. In this case the
fluorescence spectrum becomes very simple because it
is emitted from a single upper level. In gas discharges,
many upper levels are excited by electron impact and
the number of lines in the emission spectrum becomes
very large.

The absorption spectrum consists of all allowed
transitions from populated lower levels.

Their intensity, as given in Sect. 7.2, is given by

I abs
ik = gi Niw(ν)Bik . (9.139b)

At thermal equilibrium the population distribution
follows a Boltzmann distribution

Ni = gi e−Ei/kT . (9.140)

b) The Rotational Structure
of Electronic Transitions

The wavenumnber of a rotational line in the electro-
nic spectrum of a diatomic molecule corresponding to
a transition (ni , vi , Ji) ↔ (nk, vk, Jk) is

νik = (T ′
e −T ′′

e )+
(
Tvib(v

′)−Tvib(v
′′)
)

(9.141)

+ (Trot(J
′)−Trot(J

′′)
)

where Te gives the minimum of the potential curves
Epot(R) of the electronic states |i〉 or |k〉, Tvib is the
term value of the vibrational state for J = 0 and Trot(J)
the pure rotational term value.

The rotational structure of a vibrational band is
then (similarly to the situation for vibrational–rotational
transitions within the same electronic state) given by

νik = ν0(ni, nk, vi , vk)+ B′
v J ′(J ′ +1) (9.142)

−D′
v J ′2(J ′ +1)2

− [B′′
v J ′′(J ′′ +1)−D′′

v J ′′2(J ′′ +1)2
]
.

In contrast to (9.132), the rotational constant B′
v in the

upper state can now either be larger or smaller than B′′
v in

the lower electronic state. This depends on the binding
energies and the equilibrium distances Re in the two
states. The Fortrat-Diagrams shown in Fig. 9.59 has
a different structure for each of the two cases.
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At those J-values where the curve ν(J) becomes
vertical, the density of rotational lines within a given
spectral interval has a maximum. The derivative dν/dJ
changes its sign. For the case B′′

v > B′
v the positions ν(J)

of the rotational lines increase for R-lines before the
maximum and then decrease again (Fig. 9.59a). The po-
sition νh of this line pileup is called the band head. For
B′′
v > B′

v the R-lines show a band head at the high fre-
quency side of the band, while for B′′

v < B′
v the P-lines

accumulate in a band head at the low frequency side
(Fig. 9.59b). The line density may become so high, that
even with very high spectral resolution the different li-
nes cannot be resolved. This is illustrated by Fig. 9.60,
which shows the rotational lines in the electronic tran-
sition of the Cs2 molecule around the band head, taken
with sub-Doppler resolution.

In molecular electronic spectra taken with photogra-
phic detection and medium resolution where only part
of the rotational lines are resolved, a sudden jump of the
blackening on the photoplate appears at the band head

Fig. 9.59a,b. Fortrat-diagram for P, Q and R branches in
electronic transitions: (a) B′′v > B′v (b) B′′v < B′v

1GHz

Fig. 9.60. Band head of the vibrational band v′ = 9 ← v′′ =
14 of the electronic transition C 1Πu ← X 1Σ+

g of the Cs2
molecule, recorded with sub-Doppler-resolution

while the line density gradually decreases with incre-
asing distance from the band head. The band appears
shadowed (Fig. 9.61) to the opposite frequency side of
the band head. For B′′

v > B′
v the band is red-shadowed

and the band head is on the blue side of the band, while
for B′′

v < B′
v the band is blue-shadowed and the band

head appears on the red side.
In cases where the electronic transition allows Q-

lines, their spectral density is higher than that of the
P- and R-lines. For B′

v = B′′
v all Q-lines Q(J) have the

same position. For B′
v > B′′

v their positions ν(J) increase
with increasing J (Fig. 9.59a) while for B′

v < B′′
v they

decrease (Fig. 9.59b).
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Fig. 9.61. Photographic recording of the band structure in
the electronic transition 3Πg ← 3Πu of the N2 molecule.
The wavelengths of the band heads are given in Å = 0.1 nm
above the spectrum (with the kind permission of the late
Prof. G. Herzberg [G. Herzberg: Molecular Spectra and
Molecular Structure Vol. I (van Nostrand, New York, 1964)])
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c) The Vibrational Structure
and the Franck–Condon Principle

The vibrational structure of electronic transitions is go-
verned by the Franck–Condon factor (9.136), which in
turn depends on the overlap of the vibrational wave
functions in the two electronic states. In a classical
model, which gives intuitive insight into electronic tran-
sitions, the absorption or emission of a photon occurs
within a time interval that is short compared to the vi-
brational period Tvib of the molecule. In a potential
diagram (Fig. 9.62) the electronic transitions between
the two states can be then represented by vertical ar-
rows. This means, that the internuclear distance R is
the same for the starting point and the final point of the
transition. Since the momentum p= hν/c of the absor-
bed or emitted photon is very small compared to that of
the vibrating nuclei, the momentum p of the nuclei is
conserved during the electronic transition. Also, the ki-
netic energy Ekin = p2/2M does not change. From the
energy balance

hv= E ′(v′)− E ′′(v′′)
= E ′

pot(R)+ E ′
kin(R)−[E ′′

pot(R)+ E ′′
kin(R)]

= E ′
pot(R

∗)− E ′′
pot(R

∗) (9.143)

0v >∆

Fig. 9.62. Illustration of the Franck-Condon principle for
vertical transitions with ∆v= 0 (a) and ∆v > 0 in case of
potential curves with R′′e = R′e and R′e > R′′e

it follows that the electronic transition takes place at
a nuclear distance R∗ where the kinetic energies of the
vibrating nuclei in the upper and lower state are equal,
i. e., E ′

kin(R
∗) = E ′′

kin(R
∗). This can be graphically

illustrated by the difference potential

U(R)= E ′′
pot(R)− E ′

pot(R)+ E(v′) (9.144)

introduced by Mulliken (Fig. 9.63). The electron jump
from one electronic state into the other takes place at
such a value R∗, where Mulliken’s difference potential
intersects the horizontal energy line E = E(v′′), where

U(R∗)= E(v′′) .

In the quantum mechanical model, the probability
for a transition v′ ↔ v′′ is given by the Franck–Condon
factor (9.136). The ratio

P (R) dR = ψ ′
vib(R)ψ

′′
vib(R) dR∫

ψ ′
vib(R)ψ

′′
vib(R) dR

(9.145)

gives the probability that the transition takes place in the
interval dR around R. It has a maximum for R = R∗.

If the two potential curves E ′
pot(R) and E ′′

pot(R)
have a similar R-dependence and equilibrium distan-
ces R′

e ≈ R′′
e the FCF for transitions with ∆v= 0 are

maximum and for ∆v 	= 0 they are small (Fig. 9.62a).

''

'

U(R) difference
potential

Fig. 9.63. Illustration of the Mulliken-difference potential
V(R)= E′′

pot(R)− E′
pot(R)+ E(v′)
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The larger the shift ∆R = R′
e− R′′

e the larger becomes
the difference ∆v for maximum FCF (Fig. 9.62b).

9.6.4 Continuous Spectra

If absorption transitions lead to energies in the upper
electronic state above its dissociation energy, unbound
states are reached with non-quantized energies. The ab-
sorption spectrum then no longer consists of discrete
lines but shows a continuous intensity distribution I(ν).
A similar situation arises, if the energy of the upper
state is above the ionization energy of the molecule,
similarly to atoms (see Sect. 7.6).

In the molecular spectra the ionization continuum is,
however, superimposed by many discrete lines that cor-
respond to transitions into higher vibrational-rotational
levels of bound Rydberg states in the neutral elec-
tron. Although the electronic energy of these Rydberg
states is still below the ionization limit, the additio-
nal vibrational-rotational energy brings the total energy
above the ionization energy of the non-vibrating and
non-rotating molecule (Fig. 9.64).

Such states can decay by autoionization into a lower
state of the molecular ion, where part of the kinetic
energy of the vibrating and rotating molecular core is

Fig. 9.64. Excitation (1) of a bound Rydberg level in the
neutral molecule and (2) of a bound level in the molecular
ion M+

transferred to the Rydberg electron, which then gains
sufficient energy to leave the molecule (Fig. 9.65). The
situation is similar to that in doubly excited Rydberg
atoms where the energy can be transferred from one ex-
cited electron to the Rydberg electron (see Sect. 6.6.2).
However, while this process in atoms takes place wi-
thin 10−13−10−15 s, due to the strong electron-electron
interaction, in molecules it is generally very slow (bet-
ween 10−6−10−10 s), because the coupling between
the motion of the nuclei and the electron is weak.
In fact, within the adiabatic approximation it would
be zero! The vibrational or rotational autoionization
of molecules represent a breakdown of the Born–
Oppenheimer approximation. The decay of these levels
by autoionization is slow and the lines appear sharp.
In Fig. 9.65 an example of the excitation scheme of
autoionizing Rydberg levels is shown. The Rydberg le-
vels are generally excited in a two-step process from
the ground state |g〉 to level |i〉 by absorption of a pho-
ton from a laser and the further excitation |i〉→ |k〉 by
a photon from another laser. The autoionization of the
Rydberg level |k〉 is monitored by observation of the
resultant molecular ions. A section of the autoioniza-
tion spectrum of the Li2-molecule with sharp lines and
a weak continuous background, caused by direct pho-
toionization, is shown in Fig. 9.66. The lines have an
asymmetric line profile called a Fano-profile [9.11].
The reason for this asymmetry is an interference effect
between two possible excitation paths to the energy E∗
in the ionization continuum, as illustrated in Fig. 9.67:

neutral

|k〉

|i〉

|g〉

|f〉

Auto ionizationM*

)e(E)f(M)k(*M kin
−+ +→

+M

ion

Fig. 9.65. Two-step excitation of a molecular Rydberg le-
vel |k〉, which transfers by auto ionization into a lower level | f 〉
of the molecular ion. The difference energy is given to the free
electron
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Fig. 9.66. Section of the auto ioniza-
tion spectrum of the Li2 molecule

1. The excitation of the Rydberg level |k〉 of the neu-
tral molecule from level |i〉 with the probability
amplitude D1 with subsequent autoionization,

2. The direct photoionization from level |i〉 with the
probability amplitude D2.

When the frequency of the excitation lasers is tu-
ned, the phase of the transition matrix element does not
change much for path 2, but much more for path 1, be-
cause the frequency is tuned over the narrow resonance
of a discrete transition. The total transition probability

Pif = |D1+D2| 2

therefore changes with the frequency of the excitation
laser because the interference is on one side of the re-

a) b)

1 2

|i〉

|k〉 E*
σ

ε

1D 2D

12D

dσ

q−1/q

Fig. 9.67. (a) Interference of two possible excitation pathways
to the energy E∗ in the ionization continuum (b) Resultant
Fano-profile with asymmetric line shape. σd is the absorption
crosssection for direct photoionization

sonance destructive on the other constructive, resulting
in an asymmetric line profile.

Continuous spectra can also appear in emission, if
a bound upper level is excited that emits fluorescence
into a repulsive lower state. Such a situation is seen in
excimers, which have stable excited upper states but an
unstable ground state (Fig. 9.68). For illustration, the
emission spectrum of an excited state of the NaK alkali
molecule is shown in Fig. 9.69. This state is a mixture of

Continuous
fluorescence

Discrete
lines

Laser excitation

E

R

Π1D

Π3

+Σ3

Σ1X

Fig. 9.68. Level scheme of the NaK molecule with excitation
and discrete and continuous emission spectrum
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Fig. 9.69. (a) Vibrational overlap and Franck-Condon factor for the continuous emission (b) Measured emission spectrum of
the NaK molecule

a singlet and a triplet state, due to strong spin-orbit coup-
ling. Therefore transitions from this mixed state into
lower singlet as well as triplet states becomes allowed.
While the emission into the stable singlet ground state
X 1Σ shows discrete lines, the emission into the weakly
bound lowest triplet state 3 3Σ shows, on the short wave-
length side, a section of discrete lines terminating at
bound vibrational-rotational levels in the shallow poten-
tial well of the a 3Σ state and, on the long wavelength
side, a modulated continuum terminating on energies
above the dissociation limit of the a 3Σ state. The inten-
sity modulation reflects the FCF, i. e., the square of the

overlap integral between the vibrational wave function
of the bound level in the upper electronic state with
the function of the unstable level in the repulsive po-
tential above the dissociation energy of the lower state
which can be described by an Airy function. The fre-
quency ν= E ′(R)− E ′′(R) and the wavelength λ= c/ν
of the emission depends on the internuclear distance R
because the emission terminates on the Mulliken po-
tential of the repulsive lower state (dashed blue curve
in Fig. 9.69). The number q = v′ −1 of nodes in the
fluorescence spectrum gives the vibrational quantum
number v′ of the emitting level.
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• For the simplified model of a rigid diatomic
molecule, the electronic wave functions ψ(r, R)
and the energy eigenvalues E(R) can be ap-
proximately calculated as a function of the
internuclear distance R. The wave functions are
written as a linear combination of atomic orbitals
(LCAO approximation) or of other suitable basis
functions.

• In a rotating and vibrating molecule the kinetic
energy of the nuclei is generally small compa-
red to the total energy of a molecular state. This
allows the separation of the total wave func-
tion ψ(r, R)= χN(R)Φel(r, R) into a product of
a nuclear wave function χ(R) and an electro-
nic function Φel(r, R), which depends on the
electronic coordinates r and only contains R as
a free parameter. This approximation, called the
adiabatic or Born–Oppenheimer approximation,
neglects the coupling between nuclear and elec-
tron motion. The potential equals that of the rigid
molecule and the vibration and rotation takes
place in this potential.

• Within this approximation the total energy of
a molecular level can be written as the sum
E = Eel+ Evib+ Erot of electronic, vibrational
and rotational energy. This sum is independent
of the nuclear distance R.

• The electronic state of a diatomic molecule is
characterized by its symmetry properties, its to-
tal energy E and by the angular momentum and
spin quantum numbers. For one-electron systems
these are the quantum numbers λ = lz/h and
σ = sz/h of the projections lz of the electronic
orbital angular momentum and sz of the spin s
onto the internuclear z-axis. For multi-electron
systems L =Σli , S =Σsi ,Λ= Lz/h =Σλi , and
Ms =Σσi = Sz/h. Although the vector L might
depend on R, the projection Lz does not.

• The potential curves Epot(R) are the sum of mean
kinetic energy 〈Ekin〉 of the electrons, their po-
tential energy and the potential energy of the
nuclear repulsion. If these potential curves have
a minimum at R = Re, the molecular state is sta-
ble. The molecule vibrates around the equilibrium
distance Re. If Epot(R) has no minimum, but

monotonically decreases with increasing R the
state is unstable and it dissociates.

• The vibration of a diatomic molecule can be de-
scribed as the oscillation of one particle with
reduced mass M = MA MB/(MA+MB) in the
potential Epot(R). In the vicinity of Re the po-
tential is nearly parabolic and the vibrations can
be well-approximated by a harmonic oscillator.
The allowed energy eigenvalues, defined by the
vibrational quantum number v, are equidistant
with a separation ∆E = �ω. For higher vibratio-
nal energies the molecular potential deviates from
a harmonic potential. The distances between vi-
brational levels decrease with increasing energy.
A good approximation to the real potential is the
Morse-potential, where ∆Evib decreases linearly
with energy. Each bound electronic state has only
a finite number of vibrational levels.

• The rotational energy of a diatomic molecule
Erot = J(J +1)h2/2I is characterized by the ro-
tational quantum number J and the moment
of inertia I = MR2. Due to the centrifugal
force Fc the distance R increases slightly
with J until Fc is compensated by the resto-
ring force Fr =−dEpot/dR and the rotational
energy becomes smaller than that of a rigid
molecule.

• The absorption or emission spectra of a diatomic
molecule consists of:
a) Pure rotational transitions within the same vi-
brational level in the microwave region
b) Vibrational-rotational transitions within the
same electronic state in the infrared region
c) Electronic transitions in the visible and UV
region

• The intensity of a spectral line is proportional to
the product N · |Mik|2 of the population density N
in the absorbing or emitting level and the square
of the matrix element Mik.

• Homonuclear diatomic molecules have neither
a pure rotational spectrum nor a vibrational-
rotational spectrum. They therefore do not absorb
in the microwave and the mid-infrared region, un-
less transitions between close electronic states fall
into this region.

S U M M A R Y
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• The electronic spectrum consists of a system
of vibrational bands. Each vibrational band
includes many rotational lines. Only rotatio-
nal transitions with ∆J = 0; ±1 are allowed.
The intensity of a rotational transition de-
pends on the Hönl-London factor and those
of the different vibrational bands are determi-
ned by the Franck-Condon factors, which are

equal to the square of the vibrational overlap
integral.

• Continuous absorption spectra arise for transi-
tions into energy states above the dissociation
energy or above the ionization energy. Continuous
emission spectra are observed for transitions
from bound upper states into a lower state with
a repulsive potential.

1. How large is the Coulomb repulsion of the nuclei
in the H+

2 ion and the potential energy of the
electron with wave function Φ+(r, R) at the
equilibrium distance Re = 2a0? First calculate
the overlap integral SAB(R) in (9.13) with the
wave function (9.9). What is the mean kinetic
energy of the electron, if the binding energy is
Epot(Re)=−2.65 eV? Compare the results with
the corresponding quantities for the H atom.

2. How large is the electronic energy of the H2 mol-
ecule (without nuclear repulsion) for R = Re and
for the limiting case R = 0 of the united atom?

3. a) Calculate the total electronic energy of the H2

molecule as the sum of the atomic energies of
the two H atoms minus the binding energy of H2.
b) Compare the vibrational and rotational energy
of H2 at a temperature T = 300 K with the energy
of the first excited electronic state of H2.

4. Prove that the two separated equations (9.75)
are obtained when the product ansatz (9.74) is
inserted into the Schrödinger equation (9.73).

5. Show that the energy eigenvalues (9.104) are
obtained when the Morse potential (9.103) is
inserted into the Schrödinger equation (9.80).

6. What is the ionization energy of the H2 mol-
ecule when the binding energies of H2 and H+

2
are EB(H2)=−4.48 eV and EB(H

+
2 )=−2.65 eV

and the ionization energy of the H atom
EIo = 13.6 eV?

7. Calculate the frequencies and wavelengths for
the rotational transition J = 0 → J = 1 and
J = 4 → J = 5 for the HCl molecule. The in-
ternuclear distance is Re = 0.12745 nm. What is
the frequency shift between the two isotopomers
H35Cl and H37Cl for the two transitions? What is
the rotational energy for J = 5?

8. If the potential of the HCl molecule around Re

is approximated by a parabolic potential Epot =
k(R− Re)

2 a vibrational frequency ν0 = 9×
1013 s−1 is obtained. What is the restoring force
constant k? How large is the vibrational amplitude
for v= 1?

P R O B L E M S



10. Polyatomic Molecules

With an increasing number of atoms in a molecule, the
complexity of the molecular structure and the many pos-
sibilities for different isomeric configurations of these
atoms make investigations of polyatomic molecules
a challenging task. Because of the larger number of
degrees of freedom f = 3q−3 for the internal motions
(vibrations and rotations) of the q atoms in the molecule,
the dynamics of such a system of q nuclei and N =∑

Zi

electrons plays a more important role than in diatomics.
The potential energy can no longer be described by a po-
tential curve as in diatomics but by an n-dimensional
energy surface in an (n+1)-dimensional space of the
nuclear coordinates. The dimension n (n = 3q−7 for li-
near, n = 3q−6 for planar and n = 3q−5 for nonplanar
molecules) depends on the number q ≥ 3 of atoms.

We will start our discussion with molecules com-
posed of three atoms, where many of the features of
polyatomic molecules are already present but the over-
all complexity is smaller than for larger molecules. The
extension of the methods developed here to larger mo-
lecules is often straight forward. As in the previous
chapter we will begin with a model of rigid molecu-
les and discuss the electronic states of these molecules,
independent of vibrations and rotations, which will be
treated later in separate sections.

10.1 Electronic States
of Polyatomic Molecules

The molecular orbital model introduced in Sect. 9.3
provides good access to the electronic structure and
geometrical arrangement of polyatomic molecules. The
molecular orbitals are chosen as linear combinations
of atomic orbitals of the atoms forming the molecule.
Since the atomic valence electrons give the main con-
tribution to the chemical bond and the inner atomic

electrons are not significantly affected by the formation
of the molecule, the number of atomic orbitals in the
linear combination can be restricted to these valence or-
bitals. A measure of the strength of a chemical bond is
the overlap integral∫

AB

Sab dτel =
∫
ϕ∗A ·ϕB dτel (10.1)

of the atomic orbitals contributing to the binding energy.
This will be illustrated by the following examples.

10.1.1 The H2O Molecule

For the formation of the H2O molecule we have to
consider the two 1s orbitals of the two H atoms and the
four valence orbitals 2s , 2px , 2py, 2pz of the oxygen
atom, since the two 1s electrons in the inner shell of the
O atom do not contribute much to the binding energy.
The electron configuration of the O atom in the valence
shell is 2s2, 2px , 2py, (2pz)

2 (Fig. 10.1a).
As a first approximation only the two unpaired elec-

trons in the 2px and 2py atomic orbitals are used to
form molecular orbitals with the two 1s atomic orbitals

H(1s)

a)

z

x

y

2 electrons

1electron

b)

y

x

H(1s)
y

x

p

p

Fig. 10.1. (a) The atomic orbitals of the valence electrons
of the O atom. (b) Formation of the H2O molecule without
hybridization
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of the two H atoms, where each of the two molecular
orbitals contains one electron from the H atom and one
from the O atom (Fig. 10.1b). This increases the elec-
tron density between the O atom and the two H atoms
and therefore leads to an attraction between the atoms
which implies that the total energy decreases. The over-
lap integral and the binding energy become large. The
two electrons must have opposite spins since they are
in the same molecular orbital.

In this approximation the binding molecular orbitals
are the linear combinations

Φ1 = c1φ(1sH)+ c2φ(2px) , (10.2a)

Φ2 = c3φ(1sH+ c4φ(2py) . (10.2b)

Each of them is occupied with two electrons. Accor-
ding to this model we expect a bent structure of the
H2O with a binding angle of α= 90◦. The experimen-
tal value is α = 105◦. The reason for this (relatively
small) discrepancy is the following:

Due to the interaction between the electrons of the
H atoms and those of the O atom, the electron shell of
the O atom is slightly deformed (see the discussion in

+        +       –                       +         =      –               +

p

s

ps )(
2

1

ϕ

ϕ

φ+φ=φ

a)

b)

h

hps
2

1=φ⇒φ+φ ps )( φ+φ

Fig. 10.2. (a) Deformation of a pz orbital, described by a linear
combination of s and pz orbitals. (b) Shift of the charge
distribution by the linear combination of s and p functions

105°

O

H

1s

1s H

y

x

p2s+2

p2s+2

Fig. 10.3. Change of H2O geometry by hybridization of the
atomic orbitals of the O atom

Sect. 9.1.3). Therefore the 2s orbital in the O atom is no
longer spherically symmetric but is better described by
the linear combination (see (Fig. 10.2a))

φh = c21φ(2s)+ c12φ(2p) . (10.3)

This combination of s and p orbitals leads to a shift of
the center of the charge distribution (Fig. 10.2b), which
results in a better overlap of the oxygen atomic wave
function φh with the 1s orbital of the H atom and there-
fore to an increase of the binding energy for each of the
two bonds. Therefore the terms c2φ(2px) and c4φ(2py)

should be replaced by the orbitals (10.3). The optimum
contribution of the p-function in the linear combination
(10.3) can be obtained by varying the coefficients c2i

until the binding energy becomes maximum and the to-
tal energy minimum. The chemical bonds obtained with
such “hybrid orbitals” are no longer orthogonal to each
other. Taking into account all polarization and exchange
effects, the experimental value α= 105◦ of the binding
angle can be indeed verified by a quantum mechanical
calculation (Fig. 10.3).

10.1.2 Hybridization

The deformation of the atomic orbitals by the interac-
tion between the atoms of a molecule results in a spatial
distribution of these orbitals that can no longer be des-
cribed by a single unperturbed atomic orbital but needs
a linear combination of at least two atomic orbitals. This
“mixture” of atomic orbitals is called “hybridization”.
We will illustrate this by the example of the carbon atom
and its combination with other atoms.
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Fig. 10.4a,b. sp hybridization of atomic orbitals for the va-
lence electrons of the C atom. (a) 2px , 2py and 2s atomic
orbitals of the O atom (b) The hybrid functions

The electron configuration in the electronic ground
state of the C atom is

(1s)2(2s)2(2px)(2py) .

The C atom has two unpaired electrons in the 2px and
2py atomic orbitals. The simple LCAO model would
predict two directional valence bonds of these orbitals
combined with atomic orbitals of atoms attached to
the C atom, with a binding angle α= 90◦ (Fig. 10.4a)
between the two valence bonds analogous to the case
for H2O before hybrid orbitals had been introduced.

In many cases it is energetically favorable if also one
of the 2s electrons contributes to the binding, because
the linear combination 2s +2p of the atomic orbitals
can result (similarly to the case of the H2O molecule)
in a larger overlap with the atomic orbital of the atom
attached to the C atom. If the energy, necessary to bring
one 2s electron into the hybrid atomic orbital, is over-
compensated by the gain in binding energy (i. e., by
the decrease of the total energy) then the hybridization
is favorable for the molecule by minimizing its total
energy.

The combination of s and p atomic orbitals is called
s p hybridization, which we will now discuss. For the
optimum binding to other atoms each carbon valence
orbital should be occupied by one electron. Since the
px and py orbitals are already occupied by one electron
each from the C-atom, only the 2pz-orbital is free to
form the hybrid-orbital. We consider the two atomic
hybrid functions

φ1 = c1φ(s)+ c2φ(pz) ,

φ2 = c3φ(s)+ c4φ(pz) , (10.4)

which can be composed from the 2s and the 2pz atomic
orbitals. The two functions have to be normalized and
they are orthogonal to each other, which means that∫

φiφk dτel = δik with δik =
⎧⎨⎩1 for i = k

0 for i 	= k
.

(10.5)

Inserting the s p-hybrid orbitals (10.4) into the integral
yields the conditions

c1 = c2 = c3 = 1√
2
, c4 =− 1√

2

for the coefficients ci . The two sp-hybrid orbitals then
become

φ1 = 1√
2

[φ(s)+φ(pz)] , (10.6)

φ2 = 1√
2

[φ(s)−φ(pz)] .

If we assume, that φ(s) and φ(p) can be described by
the hydrogen 2s and 2pz functions (see Table 4.2) the
angular part becomes

φ1,2(ϑ)= 1

2
√

2π
[1±√3 cosϑ] , (10.7)

where ϑ is the angle against the z-axis. This shows that
|φ1|2 becomes maximum forϑ = 0◦, |φ2|2 forϑ = 180◦.

sp hybridization leads to two directional bonds
pointing in opposite directions. This results in the
formation of linear molecules if no other bonds
are present.

This spz hybridization gives the C atom two addi-
tional free bonds and, including the px and py orbitals
with their unpaired electrons, altogether four bonds are
available for bonding to other atoms.

For instance, when two O atoms are attached to
the C atom, the largest overlap of atomic orbitals of
the C atom with those of the O atoms is achieved by
the spz hybridization, which yields two strong bonds in
opposite directions. The CO2 molecule O=C=O should
therefore be linear, which agrees with the experimental
results.

Another example is the acetylene molecule C2H2

where each of the two C atoms has two bonds in opposite
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directions formed by spz hybrid orbitals. One of the
bonds is for an H atom and one is for the other C atom
giving the linear structure H−C≡C−H. The third bond
between the two C atoms is formed by the other 2s
electrons of the C-atoms. For the linear molecules CO2

or C2H2 the 2px and 2py orbitals are not involved in the
bonds along the±z-axis. The sp-hybridization includes
only the pz-orbital.

For some molecules including a C atom it is energe-
tically more favorable if one of the 2s electrons in the
C atom forms a hybrid function with two p electrons.
For this sp2 hybridization we have to form three atomic
hybrid orbitals as linear combinations of 2s , 2px and
2py functions. Analogously to the discussion above on
sp hybridization we obtain for the sp2 hybridization,
when we take into account the normalization and the
orthogonality of the three functions, the three hybrid
orbitals

φ1(sp2)= 1√
3
φ(s)+

√
2

3
φ(px) (10.8)

φ2(sp2)= 1√
3
φ(s)− 1√

6
φ(px)+

1√
2
φ(py)

φ3(sp2)= 1√
3
φ(s)− 1√

6
φ(px)−

1√
2
φ(py)

-

3

2
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φ
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Fig. 10.5. sp2 hybridization with the three hybrid orbitals
pointing into the directions ϕ = 0◦, 120◦ and 240◦ from the
x-axis

with angular parts

φ1(ϕ)= 1

2
√
π

[
1√
3
+√2 cosϕ

]
(10.9)

φ2(ϕ)= 1

2
√
π

[
1√
3
− 1√

2
cosϕ+

√
3

2
sinϕ

]

φ3(ϕ)= 1

2
√
π

[
1√
3
− 1√

2
cosϕ−

√
3

2
sinϕ

]
.

Here ϕ is the angle against the positive x-axis
(Fig. 10.5). The three functions have their maxima at
ϕ= 0 for φ1, ϕ= 120◦ for φ2 and ϕ= 240◦ (or −120◦)
for φ3.

The sp2 hybridization results in three bonds in
directions ϕ= 0◦, 120◦ and 240◦ from the x-axis,
which are all in the xy-plane.

Finally we will discuss sp3 hybridization, which ex-
plains the structure of the methane molecule CH4. Here
we have to combine the 2s orbital with all three p orbi-
tals px , py and pz . The four normalized and orthogonal
hybrid functions composed of linear combinations of

Fig. 10.6. The four hybrid functions for the sp3 hybridization
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these four atomic orbitals are

φ1 = 1

2
φ(s)+ 1

2

√
3φ(pz) (10.10)

φ2 = 1

2
φ(s)+

√
2

3
φ(px)−

1

2
√

3
φ(pz)

φ3 = 1

2
φ(s)− 1√

6
φ(px)+

1√
2
φ(py)−

1

2
√

3
φ(pz)

φ4 = 1

2
φ(s)− 1√

6
φ(px)−

1√
2
φ(py)−

1

2
√

3
φ(pz) .

Inserting the angular parts of these functions, we
obtain for the sp3 hybridization, four hybrid or-
bitals that point into the corners of a tetrahedron
(Fig. 10.6).

Besides the composition of s and p orbitals, hy-
brid orbitals can also be formed by linear combinations
including d orbitals if these orbitals are occupied in
the atoms involved in the molecular binding. They re-
present directional bonds, which can result in different
geometrical structures of molecules. For instance, sp2d
hybridization leads to four bonds, all in the same plane,
directed toward the corners of a square. The geometric
structure depends on the number of valence electrons
involved in the hybridization. For example, molecu-
les AB4 (A, B = arbitrary atoms) with eight valence
electrons show a tetrahedral geometry while those with
ten valence electrons form a bipyramidal structure, and
those with 12 valence electrons have a planar quadratic
structure. In Table 10.1 some examples are compiled.

These simple considerations show that it is pos-
sible to predict the geometric structure of many (but
not all!) molecules from the atomic orbitals involved

Table 10.1. The different types of hybridization with the
number of hybrid orbitals and the resultant molecular
geometries

Hybrid type Number Geomety Example

sp 2 linear C2H2
sp2 3 plane, 120◦ C2H4
sp3 4 tetrahedron CH4
sp2d 4 planar aquare XeF4
sp3d 5 triangular SF4

bypyramid
sp3d2 6 octohedron SF6

in the bonds between the atoms. The binding mo-
lecular orbitals are those that maximize the electron
density between adjacent atoms and give a minimum
total energy.

The basic principle of hybridization is the mini-
mization of the total energy and the optimization
of the negative binding energy. This is achieved
by optimization of the overlap integral between
two atoms.

In Fig. 10.7 the value of the overlap integral S of
two hybrid atomic orbitals

φi = 1√
1+λ2

[φ(s)+λφ(p)] i = 1, 2 . (10.11)

forming a C−C bond is plotted as a function of the re-
lative share |φ(s)|2/|φ|2 of the φ(s) part of the hybrid
function. The plot shows that for the sp hybridization
the optimum share between φ(s) and φ(p) is 50%.
The hybridization increases the value of the overlap
integral S from S = 0.3 without hybridization (λ= 0)
to S = 0.82 for λ= 1. For sp2 hybridization λ=√

2,

S
0.9

0.7

0.5

0.3

0             0.2           0.4           0.6           0.8

spspsp 23 22
s φφ

Fig. 10.7. Value of the overlap integral S of the hybrid atomic
orbitals for the C−C bond as a function of |φ(s)|2/|φ|2 for
a C−C-distance of (4/3)a0
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while for the optimum sp3 hybridization we obtain the
optimum value λ=√

3.
The energy necessary to lift the s electron into the

hybrid orbital is overcompensated by the increase of the
binding energy .

All molecules in their electronic ground states
have a geometry where the total energy has
a minimum.

10.1.3 The CO2 Molecule

The molecular orbitals of the CO2 molecule are obtai-
ned by taking into account the 4 ·3= 12 atomic valence
orbitals: 2s , 2px , 2py and 2pz for each of the three atoms
(Fig. 10.8). The normalized and orthogonal linear com-
binations of these 12 atomic orbitals are 12 molecular
orbitals with energies En . They are ordered with in-
creasing energy and can be occupied by two electrons
in each orbital. Since there are only 16 valence elec-
trons for the ground state of CO2 (four from the C atom
and 6 from each O atom), only the eight lowest orbitals
are filled with electrons. The coefficients in the linear
combinations have to be optimized in such a way that
the overlap of the electron wavefunctions between two
atoms becomes maximum and the total energy of the
molecule becomes a minimum.

In the C atom the 2s orbital is occupied by two
electrons, and each of the 2px and 2py orbitals have
one electron. In the O atom one 2p orbital has two
electrons and the other two have one electron each.
Without hybridization only two p orbitals of the C
atom and two 2p orbitals for each O atom would be
available. A larger overlap is obtained by sp hybridi-
zation, where one 2s and one 2p orbital from each
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Fig. 10.8. The unperturbed atomic orbitals for the valence
electrons of O and C atoms

of the three atoms combine to form six atomic hybrid
orbitals. From these atomic hybrid orbitals molecular
orbitals are formed which allow a better overlap of the
atomic orbitals of two neighbouring atoms. Calculating
the energies of these molecular hybrid orbitals with op-
timized coefficients gives the energetic order shown in
Fig. 10.9.

The main contribution to the binding energy comes
from those molecular orbitals that are formed as linear
combinations of the spz hybrid orbitals from the O atom
and the s or pz orbitals from the C atom. Since the
maxima for this molecular orbital are along the z-axis,
they favor a linear configuration of the CO2 molecule.
Atomic orbitals that do not contribute to the binding
(e. g., the orbitals in Fig. 10.8 pointing in the x or y
direction) are called “lone pairs.”

For linear molecules, the electronic states can be
classified according to the projection Λ�=∑

λi� of
the electronic angular momentum L =∑

li , analo-
gously to the nomenclature for diatomics. Since for
the four lowest orbitals λ= 0, they are σ orbitals. Their
symmetry with respect to an inversion at the centre of
charge can be “gerade” or “ungerade.” The four lowest
orbitals are then 1σ+g , 1σ+u , 2σ+g , 2σ+u (see Sect. 9.3).
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Fig. 10.9. Energetic order of the CO2 molecular orbitals
formed by sp-hybrid atomic orbitals
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10.1.4 Walsh Diagrams

The binding angle of triatomic molecules can be esti-
mated from a diagram first proposed by Walsh [10.1]. In
this diagram the energy dependence E(α) on the binding
angle α is plotted for all occupied molecular orbitals.
We will illustrate this for the case of dihydrides AH2

(A stands for an arbitrary atom). In Fig. 10.10 the lowest
orbitals of AH2 molecules and their energetic order are
shown for the case where A is an atom of the second
period in the periodic system. Figure 10.11 illustrates
the dependence E(α) of the energy of these orbitals on
the binding angle α. The lowest 1σg orbital is not in-
cluded in Fig. 10.11 because it does not contribute to
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Fig. 10.10. Energy levels and orbitals of the AH2 molecule

the binding. One can see that the σg and the σu orbitals
have their minimum energy for α = 180◦, they there-
fore favor the linear configuration. The π orbitals, on
the other hand, have their minimum energy for α= 90◦.
They tend to a bent molecule. If the sum

∑
ni Ei(α) of

the energies of all occupied orbitals weighted with the
electron occupation number n = 1 or 2 is calculated, the
real binding angle of the molecule in its ground state
is that angle where the sum becomes a minimum. For
instance, in the H2O molecule with eight valence elec-
trons, the four lowest orbitals are occupied with two
electrons each. The total energy for the ground state of
H2O has a minimum when α= 105◦.

If one of the electrons is excited into a higher un-
occupied orbital φk, the angle α can change depending
on the slope of Ek(α). If the energy of the excited or-
bital decreases with decreasing angle α, the binding
angle in the excited state becomes smaller than in the
ground state. If it increases, α becomes larger. For in-
stance, if an electron is removed from the 1πu orbital
with the energy dependence dEπ/dα > 0 the binding
angle must increase. Indeed the molecular ion H2O+
has a binding angle of α= 110◦ compared to 105◦ for
the neutral molecule.

For the NH2 radical with seven valence electrons the
two σ orbitals 2σg and 1σu and the lowest 1πu orbital
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Fig. 10.11. Walsh diagram for AH2 molecules
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Fig. 10.12. Walsh diagram for XY2 molecules

are occupied with two electrons each and the upper 1πu
orbital with an energy E that does not depend on α, has
only one electron. We therefore expect for NH2 a bin-
ding angle α close to that for H2O. The experimental
value is α= 103.4◦, which is indeed close to α= 105◦
for the H2O molecule.

Similar Walsh diagrams can be constructed for other
triatomic molecules, XY2, where X and Y are arbitrary
atoms (Fig. 10.12). Examples are CO2, NO2, SO2, CS2

and CF2. If the occupied molecular orbitals and their
dependence E(α) are known, such diagrams can imme-
diately show the molecular geometry, for example, that
CO2 is linear in its ground state but NO2 is bent with
a binding angle α= 134◦ [10.2, 3].

10.2 Molecules
with more than Three Atoms

While all triatomic molecules have a planar structure,
the geometry of molecules with more atoms can be li-
near, planar or nonplanar, i. e., three-dimensional. This
gives more possibilities for isomers (these are mole-
cules with the same atoms but different arrangements

of these atoms and therefore with different geome-
tric structure). The geometry depends on the electronic
structure of the molecule and it can be different for
excited electronic states from that of the ground state.

For nonlinear molecules there is no electronic angu-
larmomentum,becausethereisnosymmetryaxisaround
which the electrons could precess. Therefore the electro-
nicstatesofnonlinearmoleculescannotbecharacterized
by a quantum numberΛ. They are specified by possible
symmetry operations that bring the nuclear frame from
an initial position into identical positions. It turns out
that all such symmetry operations form the elements of
asymmetrygroupcharacteristicof thespecificmolecule.
All molecules can be classified according to their sym-
metry group and there is a big advantage in doing so.
The mathematical tools of group theory can be applied
to the description of molecular structure and transiti-
ons between molecular states. This allows the decision
to be made whether a transition is allowed or forbidden
without actually calculating the matrix elements.

The full group theoretical treatment is, however,
beyond the scope of this textbook and the reader is
referred to the literature [10.4, 5, 6].

In the following sections we will illustrate the basic
features of electronic states of polyatomic molecules
and their treatment within the framework of molecular
orbitals and we will illustrate this by some examples.

10.2.1 The NH3 Molecule

The N atom has three unpaired electrons in the three px ,
py and pz orbitals (see Fig. 10.13). We therefore expect
three directed bonds with the 1s orbitals of the three
H atoms, which should be perpendicular to each other.
The overlap between the 1s orbitals of the H atoms
and the atomic orbitals of the N atom becomes larger
when sp-hybrid atomic orbitals are formed instead of

H
H

H

N

Fig. 10.13. sp-hybrid orbitals of the valence electrons of the
N atom, optimizing the bonding energy of the NH3 molecule
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the pure p orbitals of the N atom. The hybridization en-
larges the angles between the bonds from 90◦ to 107.3◦.
The structure of the nonplanar NH3 molecule is that of
a pyramid with an equilateral triangle as basis plane
and three triangles as side planes (Fig. 4.14). The asym-
metric charge distribution generates an electric dipole
moment p= 5×10−30 C m= 1.5 Debye directed along
the pyramid axis from the N atom towards the center of
the basis triangle of the three H atoms.

The potential energy E(h) as a function of the
heights h of the N atom above the plane of the three
H atoms has a maximum for h = 0 (Fig. 10.14) and two
minima for h =±h0, because the N atom can be above
or below the plane of the H atoms. The two mirror
image configurations are not distinguishable. When the
molecule vibrates (see Sect. 10.3) the N atom can tunnel
through the potential barrier, where the tunnel frequency
is small compared with the vibrational frequency. This
is illustrated by a classical model in Fig. 10.15.

In order to obtain the energy eigenvalues of the
vibrating and tunneling molecule the two nondistin-
guishable configurations with the N atom above and
below the plane of the H atoms have to be taken into
account. The vibrational wave function ψvib therefore
has to be a linear combination of the two possibilities
ψ1 and ψ2. We can form a normalized symmetric and
an antisymmetric combination

ψs = N(ψ1+ψ2) , ψa = N(ψ1−ψ2) (10.12)

of harmonic oscillator functions, which lead to vibra-
tional sublevels with slightly different energies. The
normalization factor N is chosen such, that∫

|ψs| 2 dτvib =
∫
|ψa| 2 dτvib = 1 .

The splitting increases with increasing vibrational energy
but is still small compared to the vibrational energy.

Maser
transition

Tunneling s

a

h0 00

pot

hh

E

−

Fig. 10.14. Double minimum potential Epot(h) of NH3 with
tunneling splitting of vibrational levels

t

h

Fig. 10.15. Classical model of the vibration of the N atom
against the plane h = 0 of the three H atoms

This inversion splitting of the vibrational levels of
NH3 has become famous, since the first maser, develo-
ped in 1955 by C.H. Townes and A.L. Schawlow, was
based on a transition between two inversion levels of
NH3 in the microwave region.

10.2.2 Formaldehyde
and Other H2AB Molecules

The formaldehyde molecule H2C = O has a planar geo-
metry in its electronic ground state where all four atoms

Fig. 10.16a–c. Geometry of the formaldehyde molecule.
(a) Ground state geometry. (b) Nonplanar geometry of the
first excited state. (c) Energetic order of the molecular orbitals
for H2AB molecules
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are in the yz-plane (Fig. 10.16a). In its first excited
state, however, it shows a nonplanar pyramidal struc-
ture, where the two H atoms are above and below the
yz-plane (Fig. 10.16b). The molecule has 12 valence
electrons, which occupy the six lowest molecular or-
bitals, where the four lowest are σ type orbitals while
the next two are π type orbitals (Fig. 10.16c). One of
these π orbitals contributes to the bonding between the
C and the O atom, the other π orbital is nonbonding.
If an electron is excited from the nonbonding orbital
into a higher bonding orbital the bonding energy of this
excited state is larger than in the ground state. The po-
tential energy in the first excited state has, similarly to
NH3, two minima separated by a potential barrier. The
two H atoms can tunnel through this barrier with a tun-
nel frequency that is higher than in NH3, because of the
smaller masses of the H atoms compared to that of the
N atom in NH3.

A similar molecular orbital scheme as in Fig. 10.16c
applies to all other H2AB molecules, although there are
not many stable molecules of this type. The H2O2 or
H2C2 molecules are examples of H2AB molecules with
A = B.

C C C C

C C C C

C C C C

C C C C
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+
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1ψ

ψ 4ψ

2ψ

Fig. 10.18. Schematic illustration of the π orbitals for the four lowest energy states of butadiene

10.2.3 Aromatic Molecules
and π-Electron Systems

In the foregoing sections we have discussed localized
bonds in molecules. Here the spatial distribution of the
charge of valence electrons contributing to the bon-
ding is restricted to a narrow volume between the two
bonding atoms.

There is an important class of molecules, called
conjugated or aromatic molecules, where delocalized
electrons play an essential role. One example is the
butadiene molecule C4H6 (Fig. 10.17), where alterna-
ting single and double bonds between the C atoms
occur. The electrical conductivity of these molecules

c

c

c

c

H

H

H

H

H

H
Fig. 10.17. Butadiene
molecule
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along the direction of the carbon chain is much larger
than in molecules with localized bonds. This hints al-
ready to easily moving delocalized electrons. It turns out
that these delocalized electrons belong to overlapping
atomic p orbitals, which result in molecular π orbitals.
The spatial distribution of the electron charge e|Φ|2 is
determined by the molecular orbitalΦ. In Fig. 10.18 the
wave functionsΦ for the four lowest molecular orbitals
are schematically shown. The bent chain of the four C
atoms is here approximated as a straight line. This fi-
gure illustrates again that the energy increases with the
number of nodes of the wave function. The larger the
delocalization of the wave function (i.e. the smaller the
number of nodes) the lower is the energy.

We will now discuss this using the benzene molecule
C6H6 as an example (Fig. 10.19).

Spectroscopic experiments have shown that benzene
has a planar structure in its electronic ground state. The
six C atoms form a hexagon with bond angles α= 120◦
between the C−C bonds. As has been discussed in
Sect. 10.1.2 this bond angle suggests an sp2 hybridi-
zation of the atomic orbitals of the C atoms. We can
therefore conclude that localized σ-type bonding bet-
ween neighboring C atoms and between C and H atoms
are present, where one valence electron of the C atom is
involved in each of these bonds. This takes three elec-
trons from each C atom and one electron from each H
atom (Fig. 10.19a).

There is still one valence electron per C atom left
over in the pz orbital, altogether six electrons that are not

H H

HH

H

C

H

C

CC

CC

x

y

c)

d)a) σ-bond

b)

π-bond

Fig. 10.19a–d. The benzene molecule C6H6. (a) σ-type mole-
cular orbitals formed with sp2-hybrid atomic orbitals from the
C atoms (b) π-type orbitals (c), (d) two nondistinguishable
π -orbital configurations

involved in the sp2 hybridization. These pz orbitals are
directed perpendicular to the xy-plane of the molecule
(Fig. 10.19b). They can be used for another bonding
type that is not localized. This can be understood as fol-
lows. There are two nondistinguishable possibilities for
how two electrons from neighboring pz orbitals with
opposite spins can contribute to the bonding, which
are illustrated in Fig. 10.19c,d. For all six pz electrons
this gives six different combinations. The total elec-
tronic wave function for these pz electrons is a linear
combination

Φ =
∑

ciφi (10.13)

of the pz orbitals of the six C atoms, forming a molecular
π orbital.

This linear combination spreads the wave function
over all C atoms in the hexagon. We therefore call it
“delocalized.” The delocalized electrons are uniformly
spread out around the ring of the C atoms and they
contribute to the stability of the planar structure. The
spatial distribution of the wave functions for the π-
electron system are shown for the six lowest states of
C6H6 in Fig. 10.20.

In a simple model, electrons that have equal proba-
bilities to be found anywhere along an interval L (in
our case L is the circumference of the hexagon) can be
treated like electrons in a potential box (see Sect. 4.2.4).
They have discrete energy levels

En = n2h2

2meL2
; n = 1, 2, 3, . . . , (10.14)

which are defined by the condition L = nλDB = n ·h/p
and Ekin = p2/2m.
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Fig. 10.20. Delocalized π orbitals of the six lowest energy
states of the benzene molecule C6H6
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For our benzene molecule example the C−C
distance is 140 pm ⇒ L = 6×140 pm = 840 pm.

Transitions between energy levels n = 1 → n = 2
have the energy

hν =∆E = h2(2n+1)

2me L2
. (10.15)

Inserting the numerical values gives ∆E = 1×
10−18 J ⇒ ν = 1.5×1015 s−1 ⇒ λ= 200 nm.

Excitation of the π electrons of benzene therefore
results in absorption bands in the UV region around
λ= 200 nm.

The results of this crude model agree fairly well with
the observed absorption wavelength of λ= 220 nm.
The difference stems from the fact that the interaction
between the electrons has been neglected in this model.

The bonding in aromatic molecules is based on
two effects:
Localized bonding between neighboring C atoms
and the C and H atoms, which are brought about
by sp2-hybrid atomic orbitals of the C atoms, and
delocalized π orbitals, which extend along all C
atoms (for benzene, over all six C atoms in the
ring).

10.3 Rotation of Polyatomic Molecules

While for diatomic and linear polyatomic molecules
rotation is only possible around an axis through the
center of mass perpendicular to the molecular symme-
try axis, for nonlinear polyatomic molecules there are
more possibilities. A free three-dimensional rotor can
rotate around any axis ω through the centre of mass S
(Fig. 10.21). The moment of inertia depends on the ori-
entation of the rotation axis in the molecular coordinate
system (x, y, z), which is generally chosen in such a way
that the main symmetry axis of the molecule coincides
with the z-axis.

Although in principle rotations around arbitrary
axes through the center of mass are possible, not all of
these rotations are stable. The rotation axis can change
its orientation against the axes of the molecular coor-
dinate system and of the laboratory coordinate system.

S

x y

z

i

i

i
r

v

m∆

ω
→

→

→

Fig. 10.21. Rotation of a rigid body around an arbitrary axis
through the center of mass

However, the total angular momentum J of a free mo-
lecule without external torque is always constant. The
molecule therefore rotates around a momentary rotatio-
nal axis ω that nutates around the space fixed direction
of the angular momentum (Fig. 10.22).

The moment of inertia I with respect to the rotation
axis depends on the orientation of this axis in the mole-
cular coordinate system. It can be described by a tensor.

Symmetry
axis

z

S

x y

J

ω→

→

Fig. 10.22. The momentary rotation axis ω and the mole-
cular symmetry axis nutate around the space fixed angular
momentum J
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This can be seen for the example of a rigid rotating body
as follows (Fig. 10.21).

The angular momentum Li of a mass element ∆mi

with a distance ri from the rotation axis is

Li =∆mi(ri ×vi)=∆mi(ri × (ωi ×ri)) . (10.16a)

This can be rearranged to

Li =∆mi
[
(r2

i ω)− (ri ·ω)ri
]
. (10.16b)

The angular momentum of the whole rotating body is
then

L =
∫ [

r2ω− (r ·ω)r] dm . (10.17a)

This vector equation corresponds to the three equations
for the components

Lx = Ixxωx + Ixyωy + Ixzωz ,

L y = Iyxωx + Iyyωy + Iyzωz , (10.17b)

Lz = Izxωx + Izyωy + Izzωz ,

where the coefficients Iik are abbreviations for the
expressions

Ixx =
∫ (

r2− x2) dm , Iyy =
∫ (

r2− y2) dm ,

Izz =
∫ (

r2− z2) dm ,

Ixy = Iyx =−
∫

xy dm , Iyz = Izy =−
∫

yz dm ,

Ixz = Izx =
∫

xz dm (10.18)

as can be seen by inserting Iik into (10.17a) and using
the relations r2 = x2+ y2+ z2 and r ·ω= xωx + yωy+
zωz . The components Iik can be arranged in a matrix
and (10.17b) can then be written as⎛⎜⎝Lx

L y

Lz

⎞⎟⎠=
⎛⎜⎝Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

⎞⎟⎠ ·
⎛⎜⎝ωx

ωy

ωz

⎞⎟⎠ (10.19a)

or in the abbreviated form as

L = Ĩ ·ω .
Mathematically Ĩ is a tensor. The scalar product of this
tensor with the vector ω gives the vector L.

Plotting 1/
√

I as a function of the direction against
the coordinate axes gives an ellipsoid with its center at
the origin (Fig. 10.23).
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Fig. 10.23a,b. Moment of inertia ellipsoid for a symmetric
top. (a) Prolate top, (b) oblate top

When choosing the axis of the molecular coordinate
system in such a way that two of the axes coincide with
the smallest and the largest moment of inertia, the inertia
tensor can be transformed into a diagonal form. The
three terms Ia, Ib, and Ic in the diagonal are called the
principal moments of inertia around the principal axes a,
b and c. If two of these moments are equal, the system
is called a symmetric rotor, if all three are different,
we have an asymmetric rotor. All rigid bodies with
a rotational symmetry axis are symmetric rotors. For

Fig. 10.24. The three principal axes of inertia for a rigid
rotating body and the momentary rotation axis ω
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Ia < Ib = Ic the moment of inertia for a rotation around
the symmetry axis is smaller than the other two. We
call this a prolate symmetric top (Fig. 10.23a). For Ia >

Ib = Ic we have an oblate symmetric top (Fig. 10.23b).
Note that the body can rotate around any arbitrary

axis ω through the center of mass (Fig. 10.24).
In Fig. 10.25 the principal axes are shown for the

rotation of the methyl iodide molecule ICH3, which
is a symmetric rotor. The moments around the b- and
c-axis are equal but different from that around the a-
axis, which is the symmetry axis. Both the momentary
rotation axis and the molecular symmetry axis precess
around the space fixed direction of the rotational angular
momentum J (Fig. 10.25b).

Any rotation around an arbitrary rotation axis
through the centre of mass can always be composed
of rotations around the principal axes of the molecule.

If the angular momentum J is written as

J = {Ja, Jb, Jc} = {ωa Ia, ωb Ib, ωc Ic} . (10.20)

The rotational energy Erot = 1
2 Iω2 is

Erot = 1

2

(
ω2

a Ia +ω2
b Ib+ω2

c Ic
)

(10.21)

= J2
a

2Ia
+ J2

b

2Ib
+ J2

c

2Ic
.

Since the principal axes are precessing around the space
fixed rotational angular momentum J , the components

H
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ω→

Fig. 10.25. (a) Principle axes of inertia for the methyl iodide
molecule ICH3 which is a prolate symmetric top with the a-
axis as the symmetry axis. (b) Momentary rotation axis ωa
and symmetry axis of a symmetric top both precessing around
the space-fixed direction of the angular momentum J

Ja, Jb and Jc are generally not constant in time although
the vector J and the rotational energy Erot are both
constant.

10.3.1 Rotation of Symmetric Top Molecules

The description of the rotation of polyatomic molecules
is greatly simplified for symmetric top molecules where
two of the principal moments of inertia are equal. The
symmetry axis of the molecule precesses around the
space fixed rotational momentum J , unless J and ω
coincide with the symmetry axis (Fig. 10.25b).

We assume the a-axis as the symmetry axis of the
symmetric top. Then Ia 	= Ib = Ic and (10.21) can be
simplified to

Erot = J2
a

2Ia
+ J2

b + J2
c

2Ib
= J2− J2

a

2Ib
+ J2

a

2Ia
(10.22)

= J2

2Ib
+ J2

a

(
1

2Ia
− 1

2Ib

)
.

In the quantum mechanical description the angular
momentum and one of its components can be simul-
taneously measured. We choose the symmetry axis as
the quantization axis and as the z-axis of the molecular
coordinate system. We then obtain the eigenvalues〈

Ĵ2
〉
= J(J +1)�2 ;

〈
Ĵa

〉
= K� (10.23)

where K� is the projection of J onto the symmetry axis
of the symmetric top. The projection quantum num-
ber K can take all (2J +1) values −J � K �+J . The
rotational energy of a symmetric top molecule is then

Erot = J(J +1)�2

2Ib
+K 2

�
2
(

1

2Ia
− 1

2Ib

)
.

(10.24)

We introduce, similarly to the situation for diatomic
molecules in Sect. 9.5.2, the rotational constants

A = �

4πcIa
, B = �

4πcIb
= C = �

4πcIc
(10.25)

and obtain for the rotational term values Frot = Erot/hc

Frot = BJ(J +1)+ (A− B)K 2 . (10.26a)
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Different from the case of diatomic molecules we obtain
not a single rotational term ladder but (2J +1) lad-
ders, one for each K value. Since J cannot be smaller
than K , each rotational term ladder starts with a J value
Jmin = K .

Note:

1. The rotational energies depend on K 2. Therefore
each rotational level is twofold degenerate, because
terms with +K have the same energy as those
with −K .

2. In the literature the principal axis are labelled in
such a way, that A ≥ B ≥ C. In this nomenclature
a prolate symmetric top is described by A > B = C
with the a-axis as symmetry axis, while for the ob-
late top A = B>C the c-axis is chosen as symmetry
axis (Fig. 10.23). The rotational term values of an
oblate symmetric top are:

Frot = B · J(J +1)+ (C− B)K 2 .

(10.26b)
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Fig. 10.26a,b. Rotational energy levels E(J, K) (a) for a prolate, (b) for an oblate symmetric top

The energetic order of the rotational term values
depends on the relative magnitude of the rotational
constants A and B. For A > B (prolate symmetric
top) the energies for a given value of J increase with
increasing K ((10.24) and Fig. 10.26a). For C < B
(oblate symmetric top) they decrease ((10.26b) and
Fig. 10.26b).

Examples for symmetric top molecules are all li-
near molecules, such as CO2, NCO or HCN, but also
a large group of planar molecules with a symmetry
axis perpendicular to the molecular plane, such as Na3,
and nonplanar molecules with a symmetry axis such as
methyl iodide (Fig. 10.21a).

The intensity of a rotational line in absorption is
proportional to the power

∆P(J1, K1 → J2, K2)= [N(J1, K1)− N2(J2, K2)]
× B12wν(ν12)hν12 (10.27)

absorbed in the transition (J1, K1)→ (J2, K2) in
a radiation field with spectral energy density wν(ν12).

The population density N(J, K) of a rotational le-
vels at thermal equilibrium is given by the Boltzmann
distribution

N(J, K)= N

Z
2(2J +1)e−Erot/kT , (10.28)
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where N =∑
N(J, K) is the total population in all

rotational levels and

Z =
∑
(2J +1)× e−Erot/kT

is the partition function, which acts as a normalization
factor such that

∑
N(J, K)= N .

At room temperature the energy difference∆E bet-
ween two rotational levels is generally small compared
with kT . We can therefore write (10.27) with hν =∆E
as

∆P = B12wνhν · N1
(
1− e∆E/kT ) (10.29)

≈ B12wνN1
(∆E)2

kT
.

This shows that the intensity of a rotational tran-
sition is proportional to the population density N1

of the absorbing level and to the ratio (∆E)2/kT .

The wavenumber of a rotational transition is

νrot = F(J2, K2)− F(J1, K1)= 2B(J +1) (10.30)

for∆J =±1 , ∆K = 0

νrot = 2B(J +1)± (A− B)(2K +1)

for∆K =±1 .

10.3.2 Asymmetric Rotor Molecules

For most polyatomic molecules, all three rotational con-
stants are different. There is no symmetry axis for the
definition of the quantization axis and therefore the pro-
jection K� is not defined. The theoretical treatment of
such molecules is more complicated and exceeds the
level of this textbook.

Often, two of the principal moments of inertia are
not very different and the molecule can be regarded as
a “near symmetric top.” In such cases the asymmetric
top molecule can be characterized by its two limiting ca-
ses Ia < Ib = Ic ⇒ A> B = C (prolate symmetric top)
and Ic > Ia = Ib ⇒ C< A = B (oblate symmetric top).
The projection of the rotational angular momentum J
onto the symmetry a-axis of the prolate top is labe-
led Ka and that onto the c-axis of the oblate top by Kc.
The rotational level of the asymmetric top is characte-
rized by the two numbers Ka and Kc as JKa,Kc . Note,
however, that Ka and Kc are not real quantum numbers,

since for the asymmetric rotor they are not eigenvalues
of the rotational Hamiltonian. For each rotational quan-
tum number J , several sublevels (Ka, Kc) exist, where
all combinations of Ka and Kc are allowed for which
Ka +Kc � J or � J +1, depending on the symmetry
properties of the rotational level.

10.4 Vibrations
of Polyatomic Molecules

In a molecule with N atoms each atom has three degrees
of freedom for its motions. The molecule therefore has
3N degrees of freedom. The motion of the center of
mass in the three-dimensional space has three degrees
of freedom. Nonlinear molecules have another three ro-
tational degrees of freedom for the rotation around three
independent axes. Therefore 3N−6 degrees of freedom
are left for the molecular vibrations (for linear molecu-
les 3N−5, because there are only rotations around two
axes perpendicular to the molecular axis). All vibrations
of the molecule can therefore be composed of 3N −6
(or 3N −5 for linear molecules) vibrational modes.

10.4.1 Normal Vibrations

If the nuclei of a molecule are removed from their
equilibrium positions, where the potential energy has
a minimum, restoring forces try to bring the nuclei back
to their positions of minimum energy. As long as the
displacements are sufficiently small, the potential is har-
monic and the restoring forces are linear functions of
the displacements, resulting in harmonic oscillations of
the nuclei. For sufficiently small vibrational amplitudes
all possible vibrations of a molecule can be composed
as linear combinations of so-called “normal vibrations.”
These are vibrations where all nuclei move at the same
time through their equilibrium position. They therefore
move either in phase or with opposite phases.

All vibrations of a molecule at rest must have a total
momentum P = 0. Otherwise the center of mass of the
molecule would move and we would have a translation.
Also, the total angular momentum J of the vibrating,
nonrotating molecule must be zero. The 3N−6 normal
vibrations of a nonlinear molecule can be found by
looking for all simultaneous displacements of the nuclei
(in phase or with opposite phases), that fulfill the two
conditions P = 0 and J = 0.
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Fig. 10.27a,b. Normal vibrations for two triatomic molecules.
(a) Nonlinear molecule H2O, (b) linear molecule CO2

In Fig. 10.27 the normal vibrations of a nonlinear
and a linear triatomic molecule are illustrated. The
nonlinear molecule has 3N −6 = 9−6 = 3 normal vi-
brations, the linear molecule 3N −5 = 4, where two of
the vibrations (the bending vibrations ν2 in the x and
in y directions, i. e., in the plane of the figure and per-
pendicular to it) have the same energy because of the
cylindrical symmetry of the potential.

10.4.2 Quantitative Treatment

We will now discuss the normal vibrations of a molecule
more quantitatively.

The 3N coordinates of the N nuclei in the molecular
frame are xi , yi , zi (i = 1, 2, . . . N) and their equilibrium
positions are xi0, yi0, zi0. We define the displacements
during a vibration as

ξ1 = x1− x10 , ξ2 = y1− y10 , (10.31)

ξ3 = z1− z10 , ξ4 = x2− x20 . . . ξ3N = zN − zN0 ,

with indices running from 1 to 3N (Fig. 10.28).
The potential Epot(ξ1 . . . ξ3N) of the vibrating nuclei

depends on the displacements ξi . For sufficiently small
values of ξ we can expand the potential into a Taylor
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Fig. 10.28. Coordinates (x, y, z) of equilibrium positions and
mass-weighted displacements ξi of the nuclei in a vibrating
molecule

series

Epot = E0+
∑

1

(
∂Epot

∂ξi

)
0
ξi (10.32)

+ 1

2

∑
i, j

(
∂2 Epot

∂ξi∂ξ j

)
0

ξiξ j + . . .

where we neglect all higher order terms beyond the
quadratic term.

If we choose the energy of the minimum of the po-
tential at ξ = 0 as Epot(ξ = 0)= 0 and take into account
that for the minimum ∂Epot/∂ξi)0 = 0 we obtain

Epot (ξ1 . . . ξ2)= 1

2

∑
i, j

bijξiξ j (10.33)

with bij =
(
∂2 Epot

∂ξi ∂ξ j

)
0

.

The components of the restoring force are

Fi =−∂Epot/∂ξi . (10.34)

The equations of motion for the vibrating nuclei are
therefore

Fi = m1
d2ξi

dt2
. (10.35)

With the introduction of mass-weighted coordinates

qi =√
mkξi ,
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where mk is the mass of the nucleus involved in the
oscillation qi , we obtain from (10.33–10.35) a system
of 3N homogeneous differential equations

q̈i +
3N∑
j=1

bijqi = 0 . (10.36)

This is a coupled system of equations because the co-
efficients bij couple the motion of the ith nucleus with
that of the jth nucleus. It describes the motions of N
coupled harmonic oscillators with the time dependent
mass-weighted displacements

ai = di cos(ωi t+ϕi) (10.37)

from their equilibrium positions. These oscillators have
the oscillation amplitudes ai , the frequencies ωi and
the phases ϕi . Inserting (10.37) into (10.36) gives the
relationship between the frequencies ωi and the po-
tential parameters bij . Generally the restoring force
for the displacement qi will be affected by the other
displacements qk because the nondiagonal potential
parameters bij cause couplings between the different
oscillations. Only for certain initial conditions can all
nuclei oscillate with the same frequency and the same
phase. Such selected vibrations of the molecule are cal-
led normal vibrations. They can be obtained in the
following way.

Equation (10.36) can be written as the vector
equation

q̈+ B̃ ·q = 0 , (10.38)

where B̃ = (bij) is the matrix with the components
bij and q = {q1, q2, . . . q3N} is the mass-weighted dis-
placement vector of all N nuclei. If B̃ is a diagonal
matrix

B̃ = λ · Ẽ

with Ẽ =

⎛⎜⎜⎜⎜⎝
1 0 0 . . .

0 1
... 1

0 1

⎞⎟⎟⎟⎟⎠
where Ẽ is the diagonal unity matrix, the system
of equations (10.38) would become 3N uncoupled
equations for the displacements qi with the solutions

qi = Ai cosωt , i = 1, 2, . . . 3N , (10.39)

where all nuclei move with the same frequency ωi =√
λi and pass through their equilibrium positions qi = 0

at the same time. In order to meet this situation we
have to find a coordinate system in which the matrix B
becomes diagonal.

This leads to the equation

B̃ ·q = λẼ ·q ⇒ (
B̃−λẼ

)
q = 0 , (10.40)

which has nontrivial solutions only, if the determinant

det
∣∣B̃−λẼ

∣∣= 0 (10.41)

is zero. For each solution λi of (10.41) one obtains
from (10.40) a set of 3N values qki(t) (k = 1, 2, . . . 3N),
which represent the displacements of all N nuclei as
a function of time. For a given value of k all qki can be
regarded as the components of a vector

Qk = Ak cos(ωkt+ϕk) with ωk =
√
λk , (10.42)

which describes the simultaneous mass weighted dis-
placements of all N nuclei for the kth vibrational mode.
The vector Qk is called the normal coordinate of the
kth normal vibration with frequency ωk =√

λk.
With these normal coordinates the coupled equati-

ons (10.38) become uncoupled:

Q̈k +ω2
k Qk = 0 (k = 1, 2, 3, . . . 3N) . (10.43)

The physical reason for this uncoupling is the fact that
all nuclei oscillate in phase with the same frequency,
i. e., the whole molecule oscillates on the frequency of
one of the normal vibrations. The mathematical rea-
son is that the potential and kinetic energy written in
these normal coordinates become pure quadratic forms
without nondiagonal coupling terms

T = 1

2

∑
k

Qk = 0 ; Epot = 1

2

∑
k

λk Q2
k (10.44)

if in the expansion (10.32) of the potential energy higher
order terms are neglected.

The solutions of (10.43) are the normal vibrations
(10.42).

In the quantum mechanical representation, the diffe-
rent normal vibrations of the molecule can be described
like vibrations of a linear harmonic oscillator with the
energy

E(v)= �ω (vi + 1
2

)
, (10.45)

where vi is the number of vibrational quanta in this
normal vibration.
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Within the approximation of a harmonic potential
any arbitrary vibration of a polyatomic mole-
cule can be composed as a linear combination
of normal vibrations with the total energy

Evib =
∑

k

�ωk

(
vk + dk

2

)
, (10.46)

where dk gives the degree of degeneracy of the kth nor-
mal vibration. For doubly degenerate vibrations d = 2.

In Fig. 10.29 the vibrational energy levels of the CO2

molecule and their composition of the three normal vi-
brations are illustrated. The nomenclature is (ν1, ν

l
2, ν3),

where ν1 is the symmetric stretch vibration, ν2 is the
bending vibration and ν3 is the asymmetric stretch vi-
bration (see Fig. 10.27). The assignment (1 0 2) means
that the vibration is composed of one vibrational quan-
tum of ν1, no quantum of the bending vibration ν2 and
two quanta of the asymmetric stretch vibration ν3.

The degenerate bending vibrations have a peculia-
rity. They can be composed of two linear bending vibra-
tions in the xz- and yz-plane, which both have the same
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Fig. 10.29. The vibrational energy levels of the CO2 molecule
as linear combinations of the normal vibrations (ν1, ν2, ν3)
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Fig. 10.30. Vibrational angular momentum of two degenerate
bending vibrations ν2 with a phase difference π/2

vibrational energy. If these two vibrations are superim-
posed with a phase difference ofπ/2, the nuclei perform
circular motions around the z-axis (Fig. 10.30). This re-
sults in an angular momentum l� in the z direction,
which is called the vibrational angular momentum.
The quantum number l is written as an exponent of
the number v2 of vibrational quanta in the bending vi-
bration ν2. The nomenclature (1 31 0) in Fig. 10.29, for
instance, means v1 = 1, v2 = 3, l = 1 and v3 = 0.

In the system of normal coordinates the nuclei
perform harmonic oscillations in a parabolic po-
tential, where all nuclei vibrate with the same
frequency and with either the same or the op-
posite phase.
For sufficiently small vibrational amplitudes
any arbitrary vibration of the molecule can be
composed of normal vibrations.

For higher vibrational energies the approximation
of the harmonic potential is no longer valid and higher
order terms in the potential expansion (10.32) have to
be taken into account. Now, the total vibrational energy
is no longer the sum of the energies of the normal vibra-
tions, but coupling terms arise, and instead of (10.46)
we obtain

Evib(v1, v2 . . . v3N−6) (10.47)

=
∑
�ωk

(
vk + dk

2

)
+
∑
i,k

xik

(
vi + dk

2

)(
vk + dk

2

)
+ . . . .

This implies that the displacement of a nucleus during
its vibration affects the restoring force for the other
nuclei, and therefore their vibrational energy.
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10.4.3 Couplings Between Vibrations
and Rotations

Similar to the situation in diatomic molecules the vibra-
tions of polyatomic molecules change the moments of
inertia and therefore the rotational constants. Further-
more the rotations lead to a centrifugal stretching of the
molecule, which changes the mean distances between
the atoms. Like in diatomics the dependence of the
rotational constants on the vibrational quantum num-
bers can be written in the approximation of a parabolic
potential:

Avk = A0−
∑
α
(A)
k

(
vk + dk

2

)
,

Bvk = B0−
∑
α
(B)
k

(
vk + dk

2

)
, (10.48)

cvk = C0−
∑
α
(C)
k

(
vk + dk

2

)
.

For polyatomic molecules, however, a new coupling
between rotation and vibration can occur, which is cau-
sed by Coriolis forces in the rotating and vibrating
molecule and can mix different normal vibrations. This
is illustrated in Fig. 10.31, where the molecule rotates
around an axis ω in the y direction perpendicular to
the drawing xz-plane. For the symmetric stretch vibra-
tion ν1 the Coriolis forces try to decrease or increase
the rotational energy, depending on the phase of the vi-
bration. Here we therefore have a rotational-vibrational
coupling. The Coriolis force can, however, also couple
two different vibrations. For example, if the nuclei per-
form a bending vibration ν2 their velocities are directed
in the ±x direction. Therefore a Coriolis force

F = 2m(v×ω) (10.49)

acts in the z direction on the nucleus with mass m and
velocity v. This force moves nuclei 1 and 3 into the
−z direction, nucleus 2 into the +z direction, and the-
refore induces the asymmetric stretch vibration of the
molecule. The rotation of the molecule therefore coup-
les via the Coriolis force two normal vibrations. This
coupling also affects the frequency of the bending vi-
bration because the total restoring force including the
Coriolis force has changed.

For the other component of the bending vibrations,
where the velocities of the nuclei are parallel to the rota-
tional axis, the Coriolis force is zero. This component is
therefore not affected and its frequency is not changed.

a)

b)

c) 23

3

32

2

3

1c

1

v

v

v

F

v

ν→ν

ν→ν

ω

ν

2

c

v

F

cF

cF

1v
ω

cF

cF

3v

1v

cF cF

z

x

y

→

→

→

→

→ →

→

→

→

→

→

Fig. 10.31. (a) Coupling of rotation and normal vibration ν1 by
Coriolis forces. (b), (c) Coupling between ν2 and ν3 vibrations
by Coriolis forces in the rotating molecule

We see that the molecular rotation lifts the degene-
racy of the two bending vibrational modes. The dege-
nerate level in the nonrotating molecule splits into two
components in the rotating molecule. For more informa-
tion on vibrations of polyatomic molecules see [10.4, 5].

10.5 Spectra
of Polyatomic Molecules

Because of the larger manifold of molecular levels the
spectra of polyatomic molecules are more complex than
those of diatomics. The larger possibilities of coup-
lings between vibrations of the nuclei and motions of
the electrons often cause a breakdown of the Born–
Oppenheimer approximation and the separation of the
total wave function into an electronic part and a nuclear
part is in many cases not possible.

However, the general selection rule still holds
that only those transitions between molecular levels
|i〉 and |k〉 are allowed, for which at least one of the
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components of the dipole matrix element

Mik =
∫
ψ∗

i pψk dτel dτN (10.50)

is different from zero. This means that the integrand has
to be totally symmetric with respect to all symmetry
operations of the molecule in question.

Besides these electric dipole transitions, much wea-
ker magnetic dipole transitions or electric quadrupole
transitions are possible, just like in diatomic molecules.

The wavenumber of a transition between the level
|i〉 = (n′′, v′′1, v′′2 . . . v′′3N−6, J ′′, K ′′) in the lower electro-
nic state and level |k〉 = (n′, v′1, v′2 . . . v′3N−6, J ′, K ′) in
the upper electronic state (where n stands for all electro-
nic quantum numbers), is given by the term difference

ν = (T ′
e −T ′′

e )+G ′(v′1, v
′
2 . . . v

′
3N−6)

−G ′′(v′′1, v
′′
2 . . . v

′′
3N−6)

+ F ′(J ′, K ′)− F ′′(J ′′, K ′′) . (10.51)

where Te is the electronic term value at the minimum
of the potential energy, G the vibrational and F the
totational term values. All transitions between given
vibrational levels in the upper and lower state form
a vibrational band consisting of all allowed rotational
lines in this band. All different bands of an electronic
transition make up a band system. The pure electronic
transition frequency νe = T ′

e −T ′′
e is called the origin of

the band system.
As for diatomic molecules we can again distin-

guish between pure rotational spectra (in the microwave
range), vibrational-rotational transitions (in the mid-
infrared) and electronic transitions, ranging from the
near infrared to the far ultraviolet region.

The total dipole moment of the molecule can be
written as the sum of an electronic and a nuclear part

p = pe+ pN . (10.52)

Inserting this into the matrix element (10.50) we obtain
within the adiabatic approximation

ψ =Φel ·ψvib ·ψrot =Φel ·χN (10.53)

for the matrix element the sum of two terms (see
Sect. 9.6)

Mik =
∫
Φel

i pelΦ
el
k dτel×

∫
χNiχNk dτN

+
∫
Φel

i Φ
el
k dτel×

∫
χNi pNχNk dτN .

(10.54)

For transitions within the same electronic state, the first
summand is zero, because |Φel|2 is totally symmetric
and the integrand in the first integral has the symmetry
of the vector pel. The integral over all electronic coordi-
nates therefore vanishes. We need only to consider the
second line in (10.54), which can be written, because∫
Φel

i Φ
el
k dτel = δik, as

(Mik)vib rot =
∫
(ψvibψrot)i p(ψvibψrot)k dτN .

(10.55)

For electronic transitions between two different
electronic states the first line in (10.54) becomes

Mik = Mel
ik × (FCF)×H , (10.56)

where FCF is the Franck-Condon factor and H the
Hönl–London factor.

The situation is quite similar to that for diatomic
molecules (see Sect. 9.6). The difference lies in the lar-
ger manifold of vibrational and rotational levels for
polyatomic molecules.

We will first discuss transitions between levels
within the same electronic state.

10.5.1 Vibrational Transitions
within the Same Electronic State

These transitions represent the infrared spectrum of
the molecule. Generally the dipole moment of a mo-
lecule depends on the molecular displacements during
a vibration. We can write

pN(Q)= pN(0)+
3N−6∑
n=1

(
∂pN

∂Qn

)
0

Qn , (10.57)

where the normal coordinate Qn represents the displa-
cement vector of the nuclei for the nth normal vibration.
Inserting this into (10.55) gives the transition dipole
matrix elements

(Mik)vib = pN(0)
∫
ψvib

i ψ
vib
k dτvib (10.58a)

+
3N−6∑
n=1

(
∂ pN

∂Qi

)
0

∫
ψvib

i Qnψ
vib
k dτvib .

For transitions between different vibrational levels the
first integral vanishes because the vibrational wave
functionsψvib are orthonormal. We therefore obtain the
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matrix elements for vibrational transitions within the
same electronic state

(Mik)vib =
3N6∑
n=1

(
∂ pN

∂Qn

)
0

∫
ψvib

i Qnψ
vib
k dτvib .

(10.58b)

Vibrational transitions of polyatomic molecules
within the same electronic state do not depend
on a possible permanent dipole moment, but on
the change of the dipole moment with the vibra-
tional displacement of the nuclei for the normal
vibration.

In Fig. 10.32 the dependence of the dipole moment
on the normal coordinate Q is shown for the three
normal vibrations of the CO2 molecule. While for the
symmetric stretch vibration ν1 the dipole moment does
not depend on Q, it changes with Q for the other
two normal vibrations. Therefore, infrared absorption
of CO2 is only possible for the ν2 and ν3 normal vi-
brations. They are called infrared-active, while ν1 is
infrared-inactive.

The dipole moment vector can not only change its
amount with Q but also its direction with respect to
the molecular axes. This is illustrated in Fig. 10.33 for
the H2O molecule. Here the dipole moment changes its
amount for the ν1 and ν2 vibrations and its direction for
the ν3 vibration. Therefore all three normal vibrations
are infrared-active.

The transitions into the first excited vibrational le-
vels (e. g., the transition (0 0 0)→ (0 1 0) for CO2),
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Fig. 10.32. Dependence of the electric dipole moment p on
the vibrational displacement from the equilibrium position for
the three normal vibrations of CO2
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Fig. 10.33. Dependence of nuclear dipole moment on the
nuclear displacements for the three normal vibrations of H2O

are called fundamental bands. There are also tran-
sitions possible into higher vibrational levels (e. g.,
(0 0 0)→ (0 0 3) or (0 3 0)). They are called “overtone
transitions,” with transition probabilities that are smal-
ler by several orders of magnitude than for the
fundamental bands.

It is also possible to excite several vibrational modes
simultaneously (Fig. 10.34), e. g., on the combination
transition (0 0 0)→ (1 1 3). If the energy of these hig-
her vibrational states is above 1.6 eV the absorption
wavelengths are below λ= 700 nm and therefore fall
into the visible range.

Infrared absorption of molecules only occurs on
those vibrational transitions where the electric
dipole moment changes. While the fundamental
transitions fall into the infrared region, overtone
transitions can contribute to the visible absorption
of molecules.

Combination
transition

Fundamental
transition

3

2

1

0

3

2

1

0 0

1st overtone

2nd overtone

kiki

ki

11 ν⋅+ν⋅νν

ν+ν
1 1

Fig. 10.34. Fundamental, overtone, and combination transiti-
ons
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10.5.2 Rotational Structure
of Vibrational Bands

Because of the larger manifold of rotational levels the
rotational structure of polyatomic molecules is more
complex than that of diatomics.

The greatest similarity to diatomic spectra can be
found for linear polyatomic molecules, which can only
rotate around an axis perpendicular to the molecular
axis. They are described like diatomics by a single ro-
tational constant B and the rotational structure of the
spectra is quite analogous to that of diatomics. They can
be regarded as special symmetric tops with the top axis
along the molecular axis, where the projection quantum
number K is always zero, because the rotational angular
momentum is perpendicular to the top axis, if we neglect
the electronic orbital momentum (see Sect. 9.5.4).

True symmetric top molecules with K � 0 have
rotational levels (J, K ) that depend on two quantum
numbers J and K .

The selection rules for rotational transitions within
a vibrational band depend on the direction of the tran-
sition dipole moment Mik against the symmetric top
axis z. If Mik ‖ z only transitions with ∆K = 0 are
allowed (parallel bands) and the selection rules are:

∆K = 0 , ∆J =±1 for K = 0 , (10.59)

∆J =±1, 0 for K 	= 0 .

When the transition moment is perpendicular to the
top axis we speak of perpendicular bands with the
selection rules

∆K =±1 , ∆J = 0,±1 . (10.60)

For molecules with inversion symmetry a further sym-
metry selection rule holds for transitions between two
rotational levels in different vibrational states:

+↔− , +�+ , −�− . (10.61)

The intensity

I(J, K)= FCF×HJK × NJK gJK × e−E(J,K)/kT

(10.62)

of a rotational line depends on the Franck–Condon
factor FCF, the Hönl–London–factor HJK and the po-
pulation NJK of the absorbing level (J, K ) with the
statistical weight factor gJK . The Hönl–London factor,
which gives the relative intensities of rotational lines
within a vibrational band, is slightly different for P,

Q and R lines (see Sect. 9.6.3). For parallel bands with
∆K = 0 one obtains:

∆J =−1 (P-branch)

HK J = J2−K 2

J(2J +1)
(10.63a)

∆J = 0 (Q-branch)

HK J = K 2

J(J +1)
(10.63b)

∆J =+1 (R-branch)

HK J = (J +1)2−K 2

(J +1)(2J +1)
. (10.63c)

Note that there are no Q transitions for K = 0.

For perpendicular bands with ∆K =±1 the Hönl–
London factors are

∆J =−1

HK J = (J −1∓K)(J ∓K)

J(2J +1)
(10.64a)

∆J = 0

HK J = (J +1±K)(J ∓K)

J(J +1)
(10.64b)

∆J =+1

HK J = (J +2±K)(J +1±K)

(J +1)(2J +1)
.

(10.64c)

The spectra of asymmetric tops where each rotatio-
nal level (J, Ka, Kc) is characterized by the rotational
quantum number J and two indices Ka and Kc follow
selection rules that are mainly based on the symmetry
properties of the rotational levels [10.5, 6, 7, 8].

10.5.3 Electronic Transitions

A single vibrational band of transitions between a given
vibrational level in the lower and in the upper electro-
nic states consists of many sub-bands: For each K value
a rotational P, Q and R branch is possible. The rotatio-
nal lines with different K values may overlap, resulting
in a spectrum with a complex structure (Fig. 10.35).

The intensity of the different vibrational bands de-
pends, as for diatomic molecules, on the overlap of the
vibrational wave functions in the upper and lower state.
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Fig. 10.35. Calculated spectrum of a perpendicular band of
a symmetric top with A′ ≈ A′′ and B′ ≈ B′′. The rotational

lines of the Q branches are not resolved [with kind permission
of the late Prof. Herzberg]

However, the vibrational levels can have different sym-
metries, different from the case of diatomics. Due to
symmetry selection rules only transitions between those
vibrational levels are allowed for which the integrand
in (10.50) is totally symmetric. Since the ground state
(electronic and vibrational ground state) is generally to-
tally symmetric, the total symmetry of the upper level,
determined by the symmetries of the electronic state, the
vibrational and rotational level must be the same as that
of one of the three components of the dipole moment.

Only those vibrational bands are allowed for
which the product Φel×ψvib in the upper state
has the same symmetry as one of the components
of the dipole moment.

If the coupling between the electronic wave function
and the vibrational wave function cannot be neglected,
the distinction between the vibrational and electronic
part is no longer possible. The energy levels characteri-
zed by the product Φel ×ψvib are called vibronic levels
(vibrational-electronic levels) [10.9].

This coupling makes electronic transitions allowed,
even if the electronic part of the matrix element is

zero, as long as the product function fulfills the con-
dition that it has the same symmetry as one of the
components of the dipole moment. Such vibronically
allowed electronic transition can be found in many
molecules.

The relative intensities of the rotational transition
follow the same formulas (10.60) as for transitions
between rotational-vibrational levels within the same
electronic state. The difference is, however, that now
the electronic part pe of the dipole moment instead of
the nuclear part pN is responsible for the transitions.

The symmetry selection rules for the different mo-
lecules can be derived with the help of group theory,
which will not be discussed here (see [10.6, 7, 8]).

10.6 Clusters

Clusters are aggregates of N atoms or molecules. The
number N ranges from N = 3−100 for small clusters
to N = 106 for large clusters. They can be weakly
bound (e. g., the van der Waals clusters HeN or ArN ,
(Fig. 10.36), but can be also strongly bound by valence
forces, e. g., silicon clusters SiN or carbon clusters CN
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Fig. 10.36. Noble gas cluster Ar105

(Fig. 10.37). The large clusters with 106 atoms have
a spherical geometry, a diameter of about 40 nm and are
therefore still small compared to dust particles or partic-
les in cigarette smoke. Clusters represent the transition
range from molecules to solid particles or liquid drops.

Fig. 10.37. Carbon cluster C60, called “fullerene”, or “buckey-
ball”

The study of their properties can give much informa-
tion on the processes of condensation and evaporation,
or more generally on the physics of phase transitions on
a molecular level. Therefore the studies of clusters have
been greatly intensified in recent years and nowadays
many laboratories are investigating their properties with
different experimental techniques (see Chap. 11).

We can classify clusters by their constituents in ato-
mic clusters (e. g., CN ) or molecular clusters, such as
(H2O)N . Another classification scheme is based on the
binding strength. There are van der Waals clusters (no-
ble gas clusters), clusters with hydrogen bonding (for
example, (H2O)N (Fig. 10.38)), valence bond clusters
such as SiN or CN and clusters with ionic bonds such as
(NaCl)N . The form of the clusters can be nearly spheri-
cal, cubic or rhombohedral. In Fig. 10.39 the calculated
structures of (NaCl)N clusters are shown for increasing
cluster size.

For small clusters, most of the atoms are at the sur-
face. With an increasing number of atoms the relative

52

42

32

)OH(

)OH(

)OH(

Fig. 10.38. Small water clusters
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Fig. 10.39. Calculated structures of
(NaCl)N clusters with increasing num-
ber N of NaCl molecules [10.10]

Table 10.2. Mean radius of a spherical cluster and ratio Ns/N
of surface atoms as a function of total number N of cluster
atoms, assuming spherical atoms with an atomic radius rat =
0.22 nm

N R/nm Ns/N

10 1
102 1.03 0.8
103 2.2 0.4
104 4.8 0.23
105 10.0 0.08
106 21.5 0.02
1010 480 0.002

share of the surface atoms decreases (Table 10.2), which
implies that the influence of surface effects becomes
smaller with increasing cluster size.

10.6.1 Production of Clusters

Clusters can be produced in many ways. The most com-
monly used techniques are the condensation of atoms
or molecules in a supersaturated vapor, or the formation
of clusters during the adiabatic expansion of a superso-

nic jet from a vapor reservoir at high pressure, where
the vapor is mixed with a noble gas, through a small
nozzle into a vacuum chamber (Fig. 10.40). During the
adiabatic expansion the atoms cool down because their
relative kinetic energy is transferred into directional
flow energy. This means that all particles move with
nearly the same velocity and the relative velocity be-
comes very small. If two atoms approach each other
during the expansion of the jet, they can recombine
(Fig. 10.41) if their small energy Ekin of relative mo-
tion can be transferred to a third collision partner M,
which can be either a noble gas atom or the wall of

Fig. 10.40. Generation of metal clusters by adiabatic
expansion of a mixture of noble gas and metal vapor
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Fig. 10.41. Recom-
bination of two
atoms with the ki-
netic energy Ekin
of their relative
motion by colli-
sion with a third
partner M that
takes away the
energy∆E > Ekin

the nozzle. This collision process forms a diatomic mo-
lecule, which can again collide with another atom to
form a triatomic molecule, etc. If the number of pos-
sible cluster-forming collisions during the expansion is
sufficiently large, this can result in large cluster sizes.

10.6.2 Physical Properties of Clusters

The cluster size, i. e., the number N can be inferred from
mass spectrometric measurements. The neutral clusters

Fig. 10.42. Mass spec-
trum of Na+N clu-
sters, showing the ma-
gic numbers N = 8, 20,
40, 58

are injected into the ion source of a mass spectrometer
(Sect. 2.7) and are ionized either by photoionization or
by electron impact. The mass selected cluster ions are
detected and their abundance is measured as a function
of N . This mass distribution of cluster ions, illustrated
in Fig. 10.42 for Na+N cluster ions, gives the wanted dis-
tribution of the neutral cluster only if the ionization does
not result in fragmentation. Ionization with photons of
selected energy hν, which is only slightly higher than
the ionization energy of the selected cluster, fulfills this
condition fairly well.

From Fig. 10.42 it is obvious that the abundance
of Na clusters with certain N values (magic numbers
N = 8, 20, 40) is particularly high. This favors the as-
sumption that these cluster sizes are more stable than
the others and has lead to a shell-structure model of
clusters where the atoms in a cluster arrange them-
selves in shells around the inner clusters in order to
form a densely packed structure. This model seems to
be correct for noble gas clusters. However, for metal
clusters, it turns out that the electron structure of the
atomic valence electrons is responsible for the stability
of the clusters with magic atom numbers. In a “jellium
model” of metal clusters, where the valence electrons
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can freely move within the cluster, the electrons can
be treated as particles in a three-dimensional box with
the same size as the cluster. Different from the one-
dimensional box in Sect. 4.2.4 the levels are not only
characterized by the quantum number n, but also by
the angular momentum quantum number L. These le-
vels are now filled according to the Pauli principle. The
highest stability is reached for completely filled levels.
The experimentally found magic numbers are indeed
identical with the number of valence electrons up to
a closed shell, i. e., a completely filled level (n, L) in
the three-dimensional potential box, which corroborates
the jellium model.

The ionization energy Eion(N) depends on the
number N of atoms but does not show a smooth
convergence towards the work function of the bulk
metal for N →∞. It has maxima for certain values
of N , again reflecting the shell structure of the elec-
tron cloud according to the jellium model. The same
behavior is found for the binding energy of clusters
(Fig. 10.43).

A very interesting question is the dependence of
the melting temperature of a cluster on the cluster
size. At this temperature the cluster switches from
having a solid-like behavior with a geometrically well-
defined structure to a liquid microdroplet with spherical
size [10.11]. Since the atoms at the surface of the cluster
have a different energy than those inside the cluster, the
fraction NS/N of surface atoms will certainly influence
the melting temperature.

How can the temperature of a cluster be determi-
ned? One method used for large cold helium clusters is
the following. The He clusters are sent through a gas
of molecules, where some clusters pick up a molecule,
which can either be attached to the cluster surface or
enclosed in the middle of the cluster where it adapts to
the temperature of the cluster. The spectroscopy of the
rotational structure of the molecule allows the determi-
nation of the temperature from the intensity distribution
of the rotational lines [10.12].

It turns out that for some clusters the melting tem-
perature differs from the freezing temperature, i. e., it
makes a difference whether the phase transition is ap-
proached from higher temperatures or from lower ones.
The study of this effect will improve our understanding,
on a microscopic scale, of superheating or supercooling
phenomena, observed for bulk materials such as glass
or water.
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Fig. 10.43. (a) Dissociation energy of sodium and potassium
clusters. (b) Ionization potentials IP(N) for sodium clusters
(Na)N

Another interesting phenomena is connected with
the photographic process in the emulsion of a photoplate
exposed to light, where chemical reactions of silver
halide are responsible for the blackening of the photo-
plate. Detailed studies have shown that silver clusters
AgN with N � 4 start the nucleation for the formation
of silver halide grains.

The optical properties of metal clusters have re-
ceived much attention because the clusters form an
intermediate range between molecules with transitions
between discrete electronic states and bulk metal with
broad transitions between the valence and the conduc-
tion band. The question of whether broad resonances
in the optical range found for alkali clusters are due
to surface plasmons or are just unresolved absorption
spectra between a dense manifold of discrete states is
still unsettled.

The colorful church windows produced in the
middle age gain their brilliant colors from gold clusters
imbedded in the glass.
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10.7 Chemical Reactions

Chemical reactions are based on collisions between
atoms or molecules. In order to understand the dyna-
mics and the energy balance of such a reaction one has
to know the interaction potentials between the reacting
molecules and the bonding energies of reaction part-
ners and reaction products. Therefore spectroscopy is
a very valuable tool for studying chemical reactions on
a molecular level.

We consider the chemical reaction

m ·A+n ·B → AmBn , (10.65)

where m atoms or molecules A react with n partners B to
form the product AmBn . This reaction may proceed di-
rectly or via intermediate steps. Sometimes catalysts are
necessary to start the reaction. Not all molecules A or
their partners B in the gas container where the reaction
takes place may participate in the reaction.

With the concentrations nA and nB of the reaction
partners (number of particles per volume) the reaction
rate (number of reactions per volume and time) of the
reaction (10.65) is

R = kR ·nm
A ·nn

B . (10.66)

The factor kR is the reaction constant or rate constant.
The sum m+n of the exponents m and n is called the
order of the reaction, because it gives the number of
reaction partners necessary for the formation of one
molecule of the reaction product.

10.7.1 First Order Reactions

Assume that only one species of molecules A is pre-
sent, which can decay into products X when energy
is transferred to A (for instance by photon absorption
or by increasing the temperature of the gas of partic-
les A, i. e., by increasing the relative kinetic energy of
the colliding species A). The reaction rate

R =−dnA/dt = k(1)R ·nA (10.67)

is proportional to the concentration nA. This implies
that (10.67) represents a first order reaction. The first
order reaction constant k(1) has the unit [k(1)] = 1 s−1.
Integration of (10.67) gives (Fig. 10.44)

nA(t)= nA(0) · e−k(1)R t = nA(0)e
−t/τ . (10.68)
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Fig. 10.44. Decay na(t) for a first-order reaction

The mean lifetime τ = 1/k(1)R , after which the
concentration nA has decayed to 1/e of its in-
itial value nA(0) due to the reaction (10.67), is
independent of the concentration nA.

Examples are the thermal decomposition of molecu-
les with a low dissociation energy, or the photo-induced
dissociation of molecules, such as I2+hν→ I+ I.

10.7.2 Second Order Reactions

Often two equal species A (atoms or molecules) can
recombine to a molecule A2. This can, however, only
happen if the excess energy, due to the kinetic energy
of their relative motion , is taken away by a third
collision partner (Fig. 10.41), which can be another
molecule M (Fig. 10.45) or the wall of the reac-
tion chamber. Otherwise the molecule A2 can not be
stabilized.

The reaction rate is now

R =− dnA

dt
= k(2)R n2

A . (10.69)

This is a second order reaction, because the reaction
rate is proportional to the square of the concentra-
tion nA. The dimension of the second order reaction
rate constant is [k(2)R ] =m3 s−1.
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M

BA

B A

Fig. 10.45. Schematic representation of the recombination
collision A+B+M → (AB)+M+ Ekin

Integration of (10.69) yields∫
dnA

n2
A

=−
∫

k(2)R dt

⇒ nA(t)= nA(0)

1+ k(2)R nA(0)t
. (10.70)

The concentration nA(t) decays as a hyperbolic
function. After a time

t = τ(2)1/2 =
1

k(2)R nA(0)
(10.71)

the concentration has decayed to one half of its initial
value n A(0).

Note that the for a second order reaction the decay
time of the concentration depends on the initial
concentration!

Another type of second order reactions is the
reaction

A+B → AB

(Fig. 10.45), where two different species A and B are
present in the reaction chamber. Their reaction rate is
given by the equation

dnA

dt
= dnB

dt
=−k(2)R nAnB . (10.72)

For equal initial concentrations nA(0) = nB(0) we
obtain equations analogous to (10.70) for nA(t)
and nB(t).

For nA(0) 	= nB(t) we can use the substitutions

nA(t)= nA(0)− x(t)

nB(t)= nB(0)− x(t) .

Inserting this into (10.72), integration gives the ratio

nA(t)

nB(t)
= nA(0)

nB(0)
e−k(2)R [nB(0)−nA(0)]t . (10.73)

For nA(0)= nB(0) the ratio does not change with time,
while for nA(0) < nB(0) it decays exponentially with
time, which means that nA(t)/nA(0) decays faster than
nB(t)/nB(0).

10.7.3 Exothermic and Endothermic Reactions

When a reaction

AB+CD →AC+BD

proceeds during a collision between the reaction part-
ners, chemical bonds have to be broken (in our example
the bonds A−B and C−D) and new bonds are formed.

This can only happen if the electron clouds of the
reaction partners overlap during the collision in order to
rearrange the electron distribution for the formation of
new bonds. The collision partners have to approach each
other sufficiently close. This rearrangement of the elec-
trons needs energy. Therefore, energy must generally
be fed into the colliding system during the approach
of the two reaction partners. This energy may be sup-
plied by the kinetic energy of the collision partners or
by photo excitation. When the reaction products are
formed, energy is released, because the energy of the
molecules AC and BD is smaller than the energy of the
free atoms A, B, C and D by the amount of the bonding
energies of AC and BD.

The reaction can be formally divided into two steps
by introducing the concept of the collision complex. At
first the two collision partners AB and CD form with
a rate constant k1 the collision complex K= (ABCD)∗,
which then can decompose with the rate constant k2 into
the reaction products AC and BD (Fig. 10.46).

AB+CD →K∗ → AC+BD . (10.74)

The collision complex cannot only decompose into the
end products AC + BD, but can also decay back into
the intial reactants AB + CD. If the reaction probability
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AC+BD(ABCD)*CDAB →⇒+

⇒+

Fig. 10.46. The concept of collision complex in the reaction
AB+CD → AC+BD

for the former is κ, it is (1−κ) for the latter. The total
reaction rate for the reaction (10.74) is therefore

k = κ× k1× k2 (10.75)

and for the backward reaction A+B → K∗ → AB+
BC it is

k = k1× (1−κ) . (10.76)

Both reactions can be illustrated by a schematic reac-
tion diagram (Fig. 10.47), where the potential energy
during the reaction is plotted as a function of the reac-
tion coordinate, which symbolizes the progress of the
reaction over time. During the collision the distance bet-
ween the reaction partners at first decreases and after the
formation of the collision complex it increases again.
The reaction coordinate is therefore not a geometrical
coordinate, but rather represents a time sequence.

If the energy necessary to form the collision
complex is smaller than the energy released by its

Reactants

Reactants

Collision
complex

Collision
complex

Reaction
products

Reaction
products

Exothermic

Endothermic

Reaction coordinate

Reaction coordinate

potE

E∆

E∆

potE

a)

b)

Fig. 10.47a,b. Potential energy as a function of the reaction
coordinate for an (a) exothermic and (b) endothermic reaction

decay into the reaction products the reaction is cal-
led exothermic. Exothermic reactions release more
energy to the surroundings than they need for their
initiation. For endothermic reactions the energy ne-
cessary for the formation of the reaction complex is
larger than the energy released at its decay. Endother-
mic reactions therefore need net energy fed into the
system.

For the two examples shown in Fig. 10.47 a potential
barrier has to be overcome during the reaction. It gives
the energy necessary to form the collision complex. The
energy difference∆E is released to the surroundings for
exothermic reactions and has to be fed into the system
for endothermic reactions.

For exothermic reactions, the energy excess ∆E is
transferred into kinetic energy of the reaction products.
This leads to a temperature increase of the gas in the
reaction chamber. The reaction products can be also in
excited states and can release their excitation energy
by emission of photons or by transferring this energy
during further collisions into kinetic energy.

The inverse reaction of an exothermic reaction must
be endothermic:

AB+CD
exothermic−−−−−−−→←−−−−−−−

endothermic

AC+BD . (10.77)

This implies that the inverse reaction is always possible,
if the reaction partners get sufficient energy to overcome
the reaction barrier.

In a gas at thermal equilibrium, both directions in
Eq. (10.77) are possible. The exothermic reaction has,
however, a higher probability than the inverse endother-
mic reaction. Under stationary conditions in a gas of
reacting molecules there will be an equilibrium con-
centration of reactants and reaction products, which
depends on the temperature of the gas, on the energy dif-
ference∆E and on the statistical weights of the particles
on the two sides of (10.77).

The goal of the kinetic theory of chemical reactions
is the determination of absolute rate constants for both
directions of reactions like (10.77), based on the proper-
ties of reactants and reaction products, such as bonding
energies, interaction potentials and number of degrees
of freedom, that can be activated at a given temperature.
This allows one to calculate the temperature-dependent
ratio of reactants to reaction products under thermal
equilibrium at a temperature T .
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10.7.4 Determination
of Absolute Reaction Rates

We will discuss the determination of absolute reaction
rates for two examples.

The most thoroughly measured and calculated reac-
tion is the exchange reaction for collisions of hydrogen
atoms H with molecules H2, according to the scheme

Ha +HbHc (v= 0, 1)→ HaHb (v= 0, 1)+Hc .

(10.78a)

In order to be able to distinguish between the atoms
Ha, Hb and Hc in the actual experiment, the isotope
deuterium D is used, and the reaction is then modified
to

D+H2 (v= 0, 1)→HD (v= 0, 1)+H ,
(10.78b)

where the reaction products HD can be readily distin-
guished by their different mass from the H2 molecule.
Since the vibrational energy of the H2 and HD mo-
lecules significantly differs for the two isotopomers,
the influence of vibrational excitation of one reactant
on the reaction rate and the probability of internal
energy of the reaction product can be accurately de-
termined. The relevant energy diagram is shown in
Fig. 10.48. The reaction barrier for the reaction (10.78b)
has a height of 0.12 eV. The vibrational energy of H2

with Evib(v= 1)= 0.5 eV is much larger than the bar-
rier. This implies that the reaction probability for v= 1
should be much larger than for v= 0 [10.13].
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Fig. 10.48. Reaction barrier for the exchange reaction H2+
D → HD+H

The experiments yield reaction coefficients

k(2)R (H2 (v= 1))≥ 10−5 m3/s

while

k(2)R (H2 (v= 0))≈ 2.5×10−10 m3/s

is about 4×104 times smaller. This result agrees with
quantum mechanical calculations.

The second example, taken from [10.14], is the
reaction

CH4+Cl∗ → CH3+HCl . (10.79a)

When the chlorine atom Cl approaches the CH4 mo-
lecule, one C−H-bond has to be broken in order to
initiate the reaction (10.79a). We will assume that the
other three C−H bonds will not be significantly affec-
ted. In the model of the reaction complex the reaction
is written as

CH4+Cl∗ → [CH4Cl]∗ = [CH3−H• +Cl•]
→ CH3+HCl , (10.79b)

where the star means excited species and the dots on the
H and Cl atoms act like radicals with a free chemical
bond.

Reaction coordinate

Å/R

Å/R

ClH

H3CH

−

−

Å7.0

CLHClH

HCHHCH 33

−→+
+→−

••

••

2.4

2.2

2.0

1.8

1.6

1.4

1.2

4,20

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

4.204.33

4.54  4.46   4.37

4.4

4.6

4.8

4.284.28 4.46
4.374.33

4.20

4.54

eV/Epot−
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Epot(RC−H, RCH3−H) for the reaction CH4Cl+Cl → CH3+
HCl



10.8. Molecular Dynamics and Wave packets 405

In order to determine the time-dependent potential
during the reaction we have to calculate the energy of the
complex as a function of the distances between the three
particles CH3, H and Cl. This can be achieved with the
help of ab initio quantum chemical calculations, dis-
cussed in Sect. 9.2. The result of such calculations is
plotted in Fig. 10.49 in a two-dimensional diagram of
equipotential energy curves Epot(RCH3,H, RH,Cl)= con-
stant, which depend on the distances RCH3,H between
CH3 and H and RH,Cl between H and Cl. The ordinate of
this diagram gives the distance between the nuclei of the
reaction product HCl and the abscissa the distance bet-
ween the H atom and the radical CH3. The reaction path
is represented by the blue dotted curve. The reactants
approach each other from the upper left part of the dia-
gram where the Cl atom is still far away from the CH4

molecule. The reaction barrier is reached in the lower
left part and the reaction products leave to the lower
right part with a kinetic energy that equals the energy
difference ∆E of the potential energy at the maximum
and at infinite distance R between the reaction products.

10.8 Molecular Dynamics
and Wave packets

Up to now we have only discussed stationary states of
molecules, where the energies of molecular levels is
determined by the stationary wave functions obtained
from the time-independent Schrödinger equation.

Often the situation arises that energy is fed into
the molecule at time t = 0 (for instance, by absorption
of a photon or by electron impact or by a collision
with another atom or molecule). The question now
is, how and how fast the energy is redistributed wi-
thin the molecule or is given away by emission of
photons or by inelastic collisions. The time depen-
dent fate of the molecule after its excitation is of
great importance for all chemical reactions (see fo-
regoing section). Molecular dynamics is the essential
feature of life. Stationary molecules cannot induce
any processes and the study of the stationary energy
states is mainly of interest because it is an essential
help for the understanding of molecular dynamics (see
Sect. 12.2).

The description of time-dependent processes in mo-
lecules demands time-dependent wave functions as

solutions of the time-dependent Schrödinger equation.
We have already discussed in Sect. 3.3 that moving lo-
calized particles have to be described by wave packets
instead of stationary wave functions. This wave packets
best describe the classical movement of particles be-
cause the classical velocity is represented by the group
velocity of the wave packet.

The wave packet description also builds a bridge
between the quantum mechanical and the classical mo-
del for the vibration and rotation of molecules. We
will here discuss this for the example of diatomic mo-
lecules, although it is also applicable to polyatomic
molecules.

If the motion of the vibrating atoms in a molecule
shall be described with sufficient spatial resolution,
the still resolvable time interval ∆t must be small
compared to the vibrational period Tvib = 1/νvib of mo-
lecules vibrating with the frequency νvib. Because of the
uncertainty relation

∆E ·∆t � h (10.80)

we obtain for the minimum still resolvable energy
interval

∆E � h ·νvib = �ωvib . (10.81)

This implies that single vibrational levels cannot be
resolved (as in stationary spectroscopy with sufficient
spectral resolution), but only a superposition of neigh-
boring vibrational levels within the energy interval∆E
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∆ Stationary levels
Wave packets

Fig. 10.50. Wave packet representation of a vibrating diatomic
molecule
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which can be described by the wave packet

ψ(x, t)=
∑

n

φn(x)e
−i[(En/ )t−kn x] . (10.82)

The wave packet moves within the potential of the vi-
brating diatomic molecule (Fig. 10.50) with the group
velocity

vG = ∂ω
∂k

= 1

�

∂E

∂k
(10.83)

between the two turning points R1 and R2. The form of
the wave packet periodically changes during its mo-
tion within the potential, because its kinetic energy
Ekin = E− Epot(R) changes periodically and therefore
the phase velocities

vph(ω)= ω
k
= 1

�

Ekin

k
(10.84)

= 1

�k

(
E− Epot(R)

)

of the partial wavesφn also change. At the turning points
R1 and R2 of the potential is E = Epot and the kinetic
energy becomes zero.

This motion of the wave packet can be experimen-
tally monitored by pump and probe experiments using
femtosecond laser pulses (see Sect. 12.2). It can be also
calculated if the potential is know, and with modern
computer programs it can be visualized on a computer
screen where the motion can be viewed in a slow motion
version, where the real velocity is slowed by a factor
of 1014 (also see Table 1 in the Appendix, where the
computer simulation of the motion of a wave packet
in a one-dimensional potential box is shown in an x-t
two-dimensional diagram).

Since the potential surfaces of polyatomic molecu-
les can nowadays be calculated with sufficient accuracy,
the motion of the atoms in vibrating polyatomic molecu-
les can be visualized and gives a more vivid impression
of the dynamics of vibrating molecules.

• For polyatomic molecules with q atoms the po-
tential energy Epot(R) as a function of the nuclear
geometry is represented by an (n−1)-dimensio-
nal surface in an (n−1)-dimensional space. For
planar molecules is n = 3q−6, for non-planar
molecules is n = 3q−5. The nuclei vibrate on
this surface and the restoring force for a displace-
ment of the nuclei from the equilibrium position at
the minimum of the surface is given by the slope
grad Epot of the surface.

• The localized bonding between two atoms of the
molecule is described by the spatial overlap of
atomic valence orbitals. Often the hybridization
(linear combination of atomic orbitals involved in
the chemical bond) increases the bonding energy.
The kind of hybridization determines the geo-
metrical direction of the localized bonds: sp
hybridization leads to a linear geometry, sp2 leads
to three bonds with angles of 120◦ between the
bond directions.

• For aromatic molecules, delocalizedπ orbitals are
essential for the bonding and geometrical struc-
ture of the molecules. The energy levels of π
orbitals depend on the spatial extension of the

orbitals and can be approximately calculated as
for a particle in a potential box.

• The rotation of nonlinear molecules is possible
around any axis through the center of mass. It can
be described by the space fixed rotational angular
momentum J and the three principal moments of
inertia. The rotation axis is generally not constant
in time but changes its direction in the molecular
frame unless it points into the direction of one of
the principal axes.

• For a symmetric top, two of the principal mo-
ments of inertia are equal. The rotational energy
of a symmetric top is determined by the two
differing moments of inertia, by the angular mo-
mentum J and its projection K� onto the top
axis.

• Any vibration of a molecule can be described
as a superposition of some of the (3q−6) nor-
mal vibrations (3q−5 for linear molecules), as
long as the vibrational amplitudes are sufficiently
small to stay within the parabolic part of the po-
tential. The total vibrational energy is the sum
of all vibrational quanta in the normal vibrations
involved.

S U M M A R Y

�
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• For higher vibrational energies the increasing an-
harmonicity of the potential leads to nonlinear
couplings between the different normal vibrati-
ons and the total vibrational energy is no longer
the sum of the energies of the normal vibrations
but contains coupling terms.

• The spectra of polyatomic molecules consist
of pure rotational transitions in the micro-
wave region, vibrational-rotational transitions
within the same electronic state in the mid-
infrared region and electronic transitions in the
range from the near infrared to the ultraviolet
region.

• Infrared vibrational transitions are allowed if
the nuclear dipole moment p depends on the
nuclear displacements. Normal vibrations Q
where dp/dQ 	= 0 are called infrared active,
those with dp/dQ = 0 are infrared inactive.
The absorption probability for infrared inactive
transitions vanishes.

• The rotational structure of vibrational and of elec-
tronic transitions of linear molecules is similar to
that of diatomic molecules. For symmetric tops it
consists of K subbands. For any given K value
when K 	= 0 P, Q and R transitions are possible,
for K = 0 no Q-lines appear.

• Electronic transitions are allowed, if the integrand
of the transition dipole moment is symmetric for
all symmetry operations of the molecule. Often
the wave functions cannot be separated into an
electronic and a nuclear part. The symmetry se-
lection rule is, however, still valid for the total
wave function.

• Clusters are aggregates of many like (homo-
nuclear) or different (heteronuclear) atoms or
molecules. They represent a transition regime bet-
ween molecules and solid microparticles or liquid
microdrops. They can be classified, according

to their size, into small clusters (N = 3−100),
medium-sized clusters (N = 100−1000) and
large clusters N > 103. They can also be clas-
sified by the type of atoms into noble gas clusters,
metal clusters, covalent atom clusters or molecu-
lar clusters.
With respect to the strength of their bonding we
distinguish between van der Waals clusters, ionic
clusters, covalent clusters and metal clusters with
delocalized electrons.

• Chemical reactions are based on collisions bet-
ween atoms or molecules where the atomic
composition of the collision partners changes.
The order of a chemical reaction is determined by
the number of reactants. The velocity of a reac-
tion is described by rate constants, which depend
on the potential energy as a function of the re-
action coordinate, and on the kinetic and internal
energy of the reactants.

• Many reactions show a potential barrier, which
has to be overcome by the reactants in order for the
reaction to happen. Reactions where the final kine-
tic energy of all reaction products is larger than the
initial energy of the reactants are called exother-
mic. If it is smaller the reactions are endothermic.
The energy released in exothermic reactions is
converted into translational energy and leads to
a temperature increase of the reaction product in
the reaction chamber. For endothermic reactions,
energy has to be fed into the system in order to
realize the reaction.

• For the description of molecular dynamics wave
packets, instead of stationary wave functions,
have to be used. The energy resolution ∆E
is restricted by the wanted time resolution ∆t
according to the uncertainty relation

∆E∆t � h .
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1. The nuclear geometry of the Na3 molecule is
an acute angled triangle with the apex angle
α= 80◦ and the side-length s = 0.324 nm. What
are the three principal moments of inertia and the
three rotational constants A, B and C. Prove that
1/A+1/B = 1/C. Is this true for any planar mol-
ecule?

2. The rotational constants of the NO2 mole-
cule are A = 8.00 cm−1, B = 0.4336 cm−1 and
C = 1.193 cm−1. Determine the geometry of the
molecule.

3. Determine the normal vibrations of the linear
acetylene molecule C2H2 by drawing the arrows
for the atomic displacements. Which of these
vibrations are infrared active?

4. The frequencies of the normal vibrations of
the linear CO2 molecule are ν1 = 1388 cm−1,
ν21 = 667 cm−1 and ν3 = 2349 cm−1. Calculate
the restoring forces between the C and the O
atoms.

5. With the Walsh diagrams as a guide, determine the
electronic configurations and molecular orbitals
for the ground state and the first three excited
states of the BH2 molecule.

6. The vibrational constants in the excited A
state of the Na2 molecule are ωe = 159 cm−1,
ω2xe = 1.2 cm−1. A short laser pulse of duration
130 fs excites vibrational levels around v′ = 15.
How many levels are excited? What is the period T
for a full oscillation of the wave packet?

P R O B L E M S



11. Experimental Techniques in Atomic and Molecular Physics

The goals of all experimental investigations in atomic
and molecular physics are:

1. To gain information about the structure of atoms and
molecules and their mutual interactions.

2. To determine the bonding and ionization ener-
gies and to investigate electric and magnetic
moments and their influence on the interaction
energy

3. To acquire more details about time dependent pro-
cesses in atoms and molecules, i. e., about the
molecular dynamics, which govern all atomic and
molecular processes, such as chemical reactions and
the interactions of photons with matter. They are the
basis for all biological processes and therefore for
life on earth.

In order to reach these goals, a large variety of dif-
ferent experimental techniques have been developed.
They can be classified into three categories:

a) Spectroscopic techniques
b) Measurements of collision cross sections
c) Investigations of macroscopic phenomena.

Spectroscopic Techniques. Here the absorption or
emission of electromagnetic radiation by free atoms
or molecules is observed. From measurements of the
wavelengths of spectral lines the energy levels can be
determined. The intensities of spectral lines give in-
formation about transition probabilities, which in turn
depend on the wave functions of the energy levels and
on their symmetries. The knowledge of wavelengths
and intensities allows one to set up a model of the struc-
ture of the molecule and its potential energy surface.
Measurements of fine and hyperfine splittings can deter-
mine magnetic moments and their interactions and Stark
splittings in external electric fields give information on
electric dipole moments.

Couplings between different electronic states or bet-
ween vibrational and electronic states cause deviations
of the line positions from their expected values, which
are called perturbations. The investigations of such per-
turbations give information on the type and strength of
these couplings.

Measurements of collision-induced line broade-
nings and energy transfer by inelastic collisions are
ways to learn about the interaction potential between
the collision partners.

Essential for the power of such spectroscopic mea-
surements are the achievable spectral resolution and the
sensitivity.

In cases where spectroscopy can be applied this
technique represents the most powerful and most
accurate of the three categories.

Measurements of Collision Cross Sections. Collisions
can be also investigated without spectroscopic techni-
ques by observing the scattered particles after elastic
or inelastic collisions have occurred. Here the integral
or differential cross sections are measured which, simi-
larly to the measurements of collisional line broadening,
give information on the interaction potential between
the collision partners. Measurements of inelastic colli-
sions allow one to follow the energy transfer between
the partners from which the internal structure of the part-
ners can often be inferred. Reactive collisions represent
the primary processes of chemical reactions.

Investigations of Macroscopic Phenomena. The
transport characteristics of molecular gases, such as
diffusion, heat conduction or viscosity, also give in-
formation about the interactions between molecules or
atoms. Here the properties of single molecules are not
directly studied, but are inferred from the average ef-
fects of a large number of molecules (N > 1020). In
the same category belong measurements of relation-
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ships between thermodynamic properties (pressure p,
volume V and temperature T ) of real gases, such as
those given by the van der Waals equation or the virial
expansion of the general gas equation (see Sect. 2.2).
Although such macroscopic measurements are easier
and less expensive, the information about molecular
properties are not as detailed as in the former measure-
ment category because the results are average velocities
and orientations based on a large number of molecules.
Details like the deviation of the molecular shape from
spherical symmetry can therefore only be indirectly
inferred.

The information obtained from the different expe-
rimental techniques often supplement each other.
Spectroscopic techniques mainly give informa-
tion on bound states of molecules or atoms not far
from the equilibrium geometry. Collision experi-
ments, on the other hand, probe the long-range
part of the interaction potential.

During recent years, the introduction of laser
spectroscopy has allowed several novel experimental
techniques that combine scattering experiments with
spectroscopic preparation of the collision partners with
internal state selection and spectroscopic detection of
the scattered particles. This combination gives much
more detailed information than could be obtained from
one of the two methods alone.

Of particular importance for the study of molecular
dynamics was the development of ultrashort laser pulses
that allow the experimenter to follow in real-time fast
relaxation processes, the dissociation of molecules and
the formation of new bonds in chemical reactions.

In this chapter the most important experimental
techniques, including new developments, are presented.
This should give the reader more detailed information
on the way our knowledge about molecular structure
and dynamics is obtained from experimental results
[11.1, 2].

11.1 Basic Principles
of Spectroscopic Techniques

An important criterion of a spectroscopic techniques is
its sensitivity, which is defined as the minimum number

of photons absorbed during a transition that can be still
detected. This is also a measure of the minimum number
of atoms or molecules that can be still monitored. The
ultimate sensitivity is reached when single atoms or
molecules can be detected.

The sensitivity of absorption spectroscopy can also
be defined by the minimum absorption coefficient α(ν)
that can still be measured.

When an electromagnetic wave with frequency ν
and intensity I0 passes through an absorbing sample m,
the transmitted intensity is (Fig. 11.1)

It(ν)= I0 e−α(ν)x . (11.1)

The spectral absorption coefficient α(νik) of a transi-
tion Ek → Ei is determined by the absorption cross
section σik, the difference Nk − Ni of the populations
densities and the ratio gk/gi of the statistical weights:

α(νki)= [Nk − (gk/gi)Ni]σ(νki) . (11.2)

The statistical weights g = (2J +1) give the number of
possible orientations of the total angular momentum J
of the levels. The absorption coefficient σik is related to
the Einstein coefficient Bik by

Bki = c

hνki

∞∫
ν=0

σ(ν) dν , (11.3)

where the integration extends over all frequencies, al-
though it is mainly only the interval ∆ν within the
absorption line profile that contributes to the absorption.

For small absorptions the exponential function in
(11.1) can be expanded into

It(ν)≈ I0(1−α(ν)x) .
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Fig. 11.1. Absorption of a monochromatic wave by a sample
of molecules with level densities Nk , Ni
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We then obtain from (11.2) for an absorption length L

∆I

I0
= I0− It

I0
≈ α(ν)L (11.4)

= [Nk − (gk/gi)Ni] σ(νik)L

=∆Nik ·σ(νik)L .

The minimum detectable intensity change ∆I mainly
depends on possible fluctuations of the incident inten-
sity I0 and on other noise sources such as detector noise.
We summarize all noise contributions to a total noise
∆Inoise. Absorptions ∆I = I0αL <∆Inoise need spe-
cial electronic devices to still be detectable. For the
intensity change ∆I the detector gives an output si-
gnal S ∝∆I , while the noise contributes the amount
δS ∝∆Inoise. A measure for the sensitivity is the achie-
vable signal-to-noise ratio S/δS. From the condition
S ≥ δS ⇒∆I ≥∆Inoise we obtain with (11.2)–(11.4)
the minimum detectable number density of absorbing
molecules as

∆N ≥ 1

σ(νki)L(S/δS)
. (11.5)

This shows that for a high sensitivity the path length L
should be as long as possible, the signal-to-noise ratio as
large as possible and transitions with a large absorption
cross section should be selected. We will later see how
this demand can be met experimentally.

For all spectroscopic techniques the spectral re-
solving power R plays an essential role. It is defined
as

R = λ/∆λmin , (11.6)

where∆λmin is the minimal spectral interval that can be
still resolved, i. e., two spectral lines separated by∆λ>
∆λmin can be recognized as two separated lines. This
minimal interval ∆λmin depends on the profile of the
spectral lines. A criterion postulated by Lord Rayleigh
is the following (Fig. 11.2). Two spectral lines can be
regarded as resolved, when the two partly overlapping
line profiles have a dip between the two maxima with
intensity Imax, which does not exceed 0.8Imax.

The spectral resolving power depends on the spec-
troscopic instrument used for the separation of different
wavelengths of absorbing or emitting transitions. These
can either be spectrometers or interferometers. We will
briefly discuss both types of instruments.

8/π2

I(x)

x

1
I(x)

I(λ1) λ2)

λ1) λ2)x(x(

I(

Fig. 11.2. Rayleigh definition of the resolution of two spectral
lines

11.2 Spectroscopic Instruments

We will here present two different kinds of spectrosco-
pic instruments:

• Wavelength selectors (monochromators, spectro-
graphs and interferometers)

• Radiation detectors (thermopiles, photodiodes,
photomultipliers and CCD devices)

11.2.1 Spectrometers

All spectrometers are instruments that allow the spa-
tial dispersion of different wavelengths. This dispersion
can be reached by refracting prisms (prism spectrome-
ter, Fig. 11.3) or by diffraction (grating spectrometers,
Fig. 11.4). The incident radiation is focused onto the
entrance slit S1, which is imaged by two lenses
L1 and L2 or by two spherical mirrors M1 and M2

onto the detection plane. The dispersing element
in the parallel part of the radiation bundle causes
a wavelength-dependent change∆Θ = (dΘ/dλ)∆λ of

L2

x

S2(λ1)

Ω
L1

L0LQ
B

f
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S2(λ2)
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Fig. 11.3. Prism spectrograph
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Fig. 11.4. Grating monochromator (Ph.D.= photodetector, G
= optical grating)

the propagation direction and thus a shift∆x of the posi-
tion of the slit image in the observation plane (Fig. 11.5).
The angular dispersion dΘ/dλ depends on the disper-
sion of the prism material or on the separation of the
grooves in a diffraction grating.

With a focal length f2 of L2 or M2 the linear
dispersion of the spectrometer is

dx/dλ= f2 dΘ/dλ . (11.7)

Two spectral lines with wavelengths λ1 and λ2 are
separated in the observation plane by

∆x = (dx/dλ)∆λ= f2(dΘ/dλ)∆λ , (11.8)

where ∆λ= λ1−λ2.

Fig. 11.5. Angular dispersion dθ/dλ and linear dispersion
dx/dλ of a dispersing element

When an exit slit with variable width δx2 is mounted
in the observation plane, a spectral interval

∆λ= δx2/(dx/dλ) (11.9)

is transmitted. The central wavelength of this interval
can be tuned by turning the grating in Fig. 11.4 or by til-
ting the observation arm behind L2 in Fig. 11.3. Instead
of the exit slit S2 modern spectrometers often use a CCD
array with 500−2000 pixels, a pixel width of about
δx = 10−20 µm and a total width D = 10−40 mm.
With this device a spectral interval of∆λ= D/(dx/dλ)
can be covered simultaneously with a spectral resolution
δλ= δx/(dx/dλ).

The width δx2 of the slit image is related to the
width δx1 of the entrance slit by

δx2 = ( f2/ f1)δx1 .

The minimum resolvable spectral interval

∆λmin = δx2/( f2 dΘ/dλ)= δx1/( f1 dΘ/dλ)
(11.10)

is generally limited by the width δx1 of the entrance
slit or by the width of one pixel of the CCD array.
With decreasing width δx1 the spectral resolution λ/∆λ
increases. However, this is only true down to a mini-
mum slit width δxmin, where diffraction starts to play
the dominant role. One has to distinguish between two
different effects of diffraction:

1. The diffraction by the limiting aperture a in the
spectrometer (Fig. 11.6) given by the diameter of
the lenses or mirrors or by the grating or prism. This
diffraction leads to a broadening of the image of
the entrance slit. Instead of the geometrical image,
a diffraction pattern is observed with a central
maximum, which has a full width δx2 ≈ 2 f2λ/a
between the first two minima at both sides of the
central maximum. The spectral resolution is not
further increased when the entrance slit width is de-
creased below δxmin = 2( f1/ f2)δx2 = 2 f1λ/a. The
minimum resolvable spectral interval is then

δλ≥ 2(λ/a)/(dΘ/dλ) . (11.11)

2. The much larger diffraction by the narrow entrance
slit δx1 � a. This, however, does not influence the
spectral resolution, but leads to a decrease of the
transmitted radiation power if the diffraction an-
gle∆α= λ/δx1 becomes larger than the acceptance
angle α= a/ f1 of the instrument (Fig. 11.7).
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Fig. 11.7. The diffraction at the entrance slit results in
increasing intensity losses if 2(λ/b) > a/ f1

EXAMPLE

For a spectrometer with f1 = f2 = 1 m and a limiting
aperture with diameter a = 10 cm, the full width of the
central diffraction maximum is δx2 = 20λ. For a wave-
length of λ= 500 nm this would be, without diffraction,
the geometrical image of an entrance slit with 12 µm slit
width. The minimum resolvable spectral interval is then,
with the condition (dx/dλ) ·∆λ > δxmin according to
(11.11), ∆λ≥ (10−6/10−1)/(dΘ/dλ). For an angular
dispersion dΘ/dλ= 10−4 nm−1 this gives the princi-
pal lower limit for the resolvable spectral interval∆λ≥
10−1 nm. The resolving power is then λ/∆λ= 5×103.

a) Prism Spectrometer

If a parallel light beam falls under an angle α onto
a prism (Fig. 11.8) it is refracted twice and the deflec-
tion angle Θ depends on the index of refraction n on
the angle of incidence α and on the apex angle ε of the
prism. The minimum deflection is observed when the
light beam passes the prism parallel to the base g (sym-
metrical case with α1 = α2). From geometrical optics
one can derive the relation

sin(Θ+ε)
2

= n sin(ε/2) . (11.12)

The angular dispersion dΘ/dλ can be written as

dΘ

dλ
= ( dn

dΘ
)−1 · dn

dλ
(11.13a)

= 2 sin(ε/2)√
1−n2 sin2(ε/2)

dn

dλ
.

This shows that the angular dispersion does not depend
on the size of the prism but on the apex angle ε!

a

n > 1

g

ε

θαα
21

Fig. 11.8. Refraction of light by a prism at minimum deviation
where α1 = α2 = α and θ = 2α− ε
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Fig. 11.9. Limiting aperture a in a prism spectrograph,
determined by the size of the prism

For ε= 60◦ (11.13a) becomes

dθ

dλ
= dn/dλ√

1− (n/2)2 . (11.13b)

However, if the size of the prism is the limiting aper-
ture in the spectrometer, it is important for diffraction
effects (Fig. 11.9). With the maximum beam diame-
ter a = g cosα1, the diffraction-limited resolving power
is, according to (11.11) for ε= 60◦ and symmetrical
arrangement,

λ

∆λ
= g

dn

dλ
. (11.14)

The principal limit for the resolving power is gi-
ven by the base length g of the prism and the
dispersion dn/dλ of the prism material.

EXAMPLE

A glass prism with g = 5 cm has for λ= 400 nm the va-
lues n = 1.53 and dn/dλ= 1×10−4 nm−1. This gives
a limit λ/∆λ= 5×10−2×1×105 = 5×103.

b) Grating Spectrometers

An optical grating consists of many narrow grooves
(0.5−10 µm width) cut into a glass or fused quartz
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α

λ≈∆

β

Fig. 11.10. (a) Reflection of incident light from a single
groove into the diffraction angle ∆r = λ/d around the spe-
cular reflection angle r >= i. (b) Illustration of the grating
Equation (11.15)

plate, which are separated by a distance d (Fig. 11.10a).
The grooves are covered with a reflecting layer. Due
to the narrow width of the grooves the reflected light
has a diffraction-limited angular distribution around the
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geometrical reflection angle r, which equals the incident
angle i.

The basic design of a grating spectrometer in shown
in Fig. 11.4. The parallel radiation striking the grating
with an angle α against the normal to the grating plane
is reflected by each of the grooves into an angular cone
defined by diffraction. The interference between the
different rays is constructive if the phase difference
between neighboring partial waves is ∆ϕ = m ·2π.
According to Fig. 11.10b the path difference between
neighboring partial waves is

∆s = d(sinα− sinβ) (11.15a)

for ∆ϕ = m2π⇒∆s =mλ.
We therefore obtain, as a condition for constructive

interference of all reflected partial waves, the grating
equation

d(sinα± sinβ)= mλ , (11.15b)

where the positive sign must be used if the reflected
beam is on the same side of the grating normal as the in-
cident beam and the negative sign if they are on opposite
sides.

EXAMPLE

For d = 1.5 µm, λ= 500 nm, m = 1 and α = 30◦ the
reflected light is observed at β = 9.6◦.

The angular intensity distribution of the reflected
light can be obtained when all interfering partial wa-
ves reflected by the different grooves are added with
their appropriate phases. The phase difference between
neighboring beams is

∆ϕ = 2π

λ
·d(sinα± sinβ) . (11.16)

If we choose the phase of the partial wave reflected from
the first groove as φ0 = 0 than the superposition of all
partial amplitudes gives the total amplitude

AR =
√

R
N−1∑
m=0

Ag eimφ , (11.17)

where R(β) is the reflectivity of the grating surface and
Ag is the amplitude of the wave incident on one of the
grooves.

The total intensity I = ε0cAR A∗
R is then

IR = I0 R
sin2(Nφ/2)

sin2(φ/2)
. (11.18)

This intensity distribution I(φ) is plotted in Fig. 11.11
for two different numbers of grooves N . It consists of
sharp principal maxima for φ=m ·2π and N−2 small
side maxima between the two principal maxima with
amplitudes that decrease with increasing N .

Optical gratings have about N = 106−107 groo-
ves. This implies that for a given angle α of incidence
and a given wavelength λ, the diffracted light is only
reflected onto a very narrow angular interval ∆β
around βm .

The intensity profile of the principal maxima
around βm can be obtained as follows.

With β = βm +ε (ε� β) we can write

sin(βm +ε)≈ sinβm +ε · cosβm .
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Fig. 11.11a,b. Intensity distribution of light reflected by N
grooves as a function of the phase difference φ = (2π/λ)×
d(sinα± sinβ) between neighboring partial waves. Note the
different scales in (a) and (b)
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Inserting (11.16) into (11.18) we obtain

IR = I0 R
sin2(Nδ/2)

sin2(δ/2)
(11.19)

≈ R · I0 N2 sin2(Nδ/2)

(Nδ/2)2

with δ= (2πd/λ)ε cosβm � 1. This is the same inten-
sity distribution as that of an illuminated slit with width
D = N ·d.

The first minima on both sides of the principal
maximum occur for

Nδ= 2π⇒ ε1,2 =±λ/(Nd cosβm . (11.20)

The distribution with the maximum at βm , therefore,
has a full width between the first two minima I = 0 on
both sides of βm

∆β = λ

Nd cosβm
. (11.21)

The angular dispersion for a given angle α is obtained
by taking the derivative of (11.15b).

This gives
dβ

dλ
= m

d cosβ
= sinα± sinβ

λ cosβ
, (11.22)

which illustrates that the angular dispersion is determi-
ned solely by the angles α and β and not by the number
of grooves.

The resolving power can be immediately derived
from (11.22) and the width∆β in (11.21) of the princi-
pal diffraction maximum. Since two spectral lines with
wavelengths λ and λ+∆λ are just resolved if the maxi-
mum of I(λ) falls into the first minimum of I(λ+∆λ)
(Fig. 11.2), this gives the condition

dβ

dλ
·∆λ≥ λ

Nd cosβ
(11.23a)

or
sinα± sinβ

λ cosβ
∆λ≥ λ

Nd cosβ
. (11.23b)

This reduces with (11.15) to

λ

∆λ
≥ N ·m . (11.24)

The theoretical resolving power of a diffraction
grating is the product of the interference order m
and the total number N of illuminated grooves.

Since

Nd(sinα± sinβ)=∆sm

is the maximum path difference between the partial
waves reflected from the first and the nth groove, we
can also write Eq. (11.24) as

λ

∆λ
= ∆sm

λ
. (11.25)

The spectral resolution of any spectrometer is
equal to the maximum path difference in the
instrument, measured in units of the wavelengthλ.

EXAMPLE

A grating with a ruled area of 10×10 cm2 and 103 groo-
ves per mm allows in second order (m = 2) a spectral
resolving power of R = 2×105 if all grooves are illu-
minated. Two spectral lines at λ= 500 nm, which are
separated by∆λ= 2.5×10−3 nm, should be resolvable.
However, because of diffraction at the limiting aper-
ture a (given by the size of the grating) the practically
achievable resolution is only about 1×105.

The linear dispersion dx/dλ is for α = β = 30◦
and f1 = f2 = 1 m : dx/dλ= 2 mm/nm. For an ent-
rance slit width d = 50 µm, a spectral resolution
∆λ= 0.025 nm can be achieved.

Modern grating spectrometers are often developed
without the two mirrors in Fig. 11.4. A concave gra-
ting images the entrance slit onto the detector plane,

CCD array Grating

Entrance slit

Fig. 11.12. Spectrometer with concave grating and CCD
detector array
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where a CCD array monitors a large spectral range si-
multaneously (Fig. 11.12). With an entrance slit width
d = 10 µm matched to the width of one pixel (size
10×40 µm2) in the CCD array (size 40 µm×30 mm)
and a linear dispersion of dx/dλ= 0.2 mm/nm, a spec-
tral resolution of ∆λ = 0.05 nm is reached with
a simultaneous detection of a spectral range of 200 nm.
For more detailled information see [11.3, 4]

11.2.2 Interferometers

Interferometers are based on the interference of two
or more coherent partial waves. The principle of two-
beam interference is illustrated in Fig. 11.13. The wave,
emitted from a source S is split by a beam splitter BS1

into two partial beams that travel different path lengths
s1 and s2 before they are again superimposed at beam
splitter BS2. The total amplitude E = E1+ E2 depends
on the phase difference

∆ϕ = (2π/λ)(s2− s1) (11.26)

and therefore on the path difference ∆s = s2− s1 and
on the wavelength λ.

The total transmitted intensity is

It = cε0 |E1+ E2| 2 . (11.27a)

With E1 = E0 cos(ωt+ϕ1) and E2 = E0 cos(ωt+ϕ2)

we obtain for the transmitted intensity, averaged over
a period of the optical wave (because detectors can
not follow the optical cycle and monitor the time
average 〈I(t)〉 (Fig. 11.14), which is for E1 = E2 = E:

〈I(t)〉 = I(∆s)= cε0 E2(1+ cos(∆ϕ))

= 2I0 cos2(∆ϕ/2) . (11.27b)

E1 + E2

S

∆ϕ = 2π
λ

∆s

E1 + E2

s1

s2

E2

E1

∆s = s2 – s1

P

BS

22

2BS1

Fig. 11.13. Principle of two-beam interference
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Fig. 11.14. Transmitted intensity for a two-beam interfero-
meter as a function of the phase difference between the two
interfering beams

From the measured period ∆ϕ = 2π⇒∆s = λ bet-
ween two maxima of I(∆s) the wavelength λ can be
determined [11.5, 6].

a) Michelson Interferometer

A possible experimental realization of the two-beam in-
terference is the Michelson interferometer (Fig. 11.15),
where the incoming parallel beam is split by a beam
splitter into two partial beams, which are reflected by
the mirrors M1 and M2 and are again superimposed
at BS before they reach the detector D in the obser-
vation plane B. If M2 is translated by ∆x, the path
difference between the two interfering beams changes
by ∆s = 2∆x.

Fig. 11.15. Michelson interferometer
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If the maxima for the transmitted intensity are coun-
ted for a measured translation L =mλ of mirror M2 the
wavelength λ can be determined.

EXAMPLE

For L = 10 cm and λ= 500 nm the number of counts m
is m =∆s/λ= 2L/λ= 2×10−1/(5×10−7)= 4×105.
If L can be measured within 1 µm the relative error of
the wavelength measurement is ∆λ/λ= 10−5. Gene-
rally the length L is measured interferometrically with
a known wavelength λR and an accuracy of 10 nm,
which gives a relative uncertainty of 10−8 for the
wavelength determination.

b) Fabry–Perot Interferometer

If many partial waves interfere we speak of multiple-
beam interference. We will illustrate this by interference
at a plane-parallel glass plate (Fig. 11.16).

If the plane wave

E = A0 ei(ωt−kr)

falls onto such a glass plate with an angle α against
the surface normal the wave is split into a reflected
part with amplitude

√
R · A0 and a transmitted part with

amplitude A0
√

1− R. The transmitted part is partly re-
flected at the lower surface and partly transmitted. We
obtain for the amplitudes of the different partial waves

A1 A2 A3 A4

A0

B1 B2 B3 B4

C1 C2 C3

D1 D2 D3 D4

α

d

Fig. 11.16. Multiple beam interference at a plane-parallel
glass plate, covered with reflecting surfaces

in Fig. 11.16 the following relations:

|A1| =
√

R |A0| , |B1| =
√

1− R |A0| ,
|C1| =

√
1− R |A0| , |D1| = (1− R) |A0| ,

|A2| =
√

1− R |C1| = (1− R)
√

R |A0| , (11.28)

|B2| =
√

R |C1| = R ·√(1− R) |A0| ,
|A3| =

√
1− R |C2| = R3/2(1− R) |A0| . . . , etc.

This gives the general equation for the amplitudes Ai

of the reflected waves

|Ai+1| = R |Ai | for i ≥ 2 (11.29a)

and for the transmitted amplitudes

|Di+1| = R |Di | for i ≥ 1 . (11.29b)

The path difference between two reflected waves
i and i+1 is, according to Fig. 11.17,

∆s = n(AB+BC)−AD

= 2nd

cosβ
−2d tanβ sinα

with sinα/ sinβ = n this gives

∆s = 2d
√

n2− sin2 α , (11.30)

which results in a phase difference

∆ϕ = 2π∆s/λ+ δϕ ,
where δϕ accounts for possible phase shifts at the
reflection which depend on the polarization of the wave.

a)

A

∆s= s2– s1

α

β

C

D

nd

B

2
1

α

b)
2

1

∆s

β
nd

Fig. 11.17a,b. Path difference between two beams (a) re-
flected by (b) transmitted through a plane-parallel glass
plate



11.2. Spectroscopic Instruments 419

The total amplitude of the reflected wave is

A =
p∑

m=1

Am ei(m−1)∆ϕ (11.31)

=±A0

√
R

· [1− (1− R)ei∆ϕ− R(1− R)e−2i∆ϕ+ . . . ]
=±A0

√
R

[
1− (1− R)ei∆ϕ

p−2∑
m=0

Rm eim∆ϕ

]
.

In the case of highly reflecting surfaces the number p of
reflections is large. For p→∞ the sum of the geometric
series is

p∑
m=1

Am eim∆ϕ = 1

1− R ei∆ϕ

and the total reflected amplitude becomes

A =±√RA0
1− ei∆ϕ

1− R ei∆ϕ
. (11.32)

The intensity of the reflected wave is therefore

IR = cε0 |A| 2 = I0 R
2−2 cos∆ϕ

1+ R2−2R cos∆ϕ
,

(11.33a)

which can be written with 1− cos x = 2 sin2(x/2) as

IR = I0
4R sin2(∆ϕ/2)

(1− R)2+4R sin2(∆ϕ/2)
. (11.33b)

In a similar way, one finds for the intensity of the
transmitted wave

It = I0
(1− R)2

(1− R)2+4R sin2(∆/2)
. (11.34)

These are called Airy formulas. With the abbreviation

F = 4R/(1− R)2 (11.35)

we can write the Airy formulas as

IR = I0 F sin2(∆ϕ/2)/1+ F sin2(∆ϕ/2)

It ≈ I01/1+ F sin2(∆ϕ/2)
.

(11.36)

The reflected and the transmitted intensities depend
on the phase differences ∆ϕ = 2π∆s/λ and there-
fore on the wavelength λ. For ∆ϕ = 2mπ⇒∆s = mλ

the transmitted intensity It(2π) = I0 becomes ma-
ximum, i. e., the transmission of the interferometer
becomes 100% and the reflected intensity is zero. For
∆ϕ = (2m+1)π the transmitted intensity has minima

Imin
t =

(
1− R

1+ R

)2

I0 . (11.37)

In Fig. 11.18 the transmittance T = It/I0 is plotted for
different values of the reflection coefficient R as a func-
tion of∆ϕ. For a given thickness d of the plane-parallel
plate and a given angle α of incidence ∆s is fixed and
∆ϕ solely depends on λ. The abscissa in Fig. 11.18 can
then also be scaled in units of frequency ν = c/λ. The
frequency separation of two neighboring maxima with
∆ϕ1 = 2mπ and ∆ϕ2 = 2(m+1)π is the free spectral
range

δν = c

∆s
= c

2d
√

n2− sin2 α
. (11.38a)

For vertical incidence (α= 0) this reduces to

δν(α= 0)= c

2nd
. (11.38b)

The multiple-beam interference is used in the Fabry–
Perot interferometer (FPI) for accurate wavelength
measurements. The technical realization uses either
a plane-parallel plate of fused quartz covered with re-
flecting layers on both sides (Fig. 11.19a) or two plates
with one reflecting and one antireflecting layer that are
aligned in such a way that between the reflecting surfa-
ces a plane parallel air layer is formed (Fig. 11.19b). The

T

1

0.5

83.0R
)1m(2m2

)nd2(c11

≈

ε

φ
π⋅+π

δν
ν

+νν

1.0R

55.0R ≈

ε

F* = 15

F* = 5

F* = 50

F* = 1

Fig. 11.18. Transmittance of an absorption-free multiple-
beam interferometer as a function of the phase difference φ
for different values of the finesse F∗
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Reflection
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Reflection
coatings

Quartz
Antireflection

coatingsa) b)

n              d

α

Fig. 11.19a,b. Two possible realizations of a Fabry–Perot in-
terferometer: (a) solid etalon, (b) air-spaced plane-parallel
reflecting surfaces

advantage of the first version is that no further alignment
is necessary, but the fabrication of such a plate with a par-
allelism of better than λ/100 over the whole surface is
expensive. In the second version the plate separation and
therefore thefreespectral rangecanbechosenarbitrarily,
but the two plates have to be aligned very carefully.

If the FPI is illuminated with divergent monochro-
matic light, only those angles α are transmitted for
which ∆s = 2mπ. Behind the FPI, a system of bright
rings is observed on a dark background (Fig. 11.20).
The diameters of these rings are a measure of the
wavelength λ, and are described as follows.

The anglesβm of the transmitted rays inside the plate
with refractive index n are given according to (11.30)
by the condition

mλ= 2nd cosβm , (11.39)

Extended
source F.P.I. z x

y

21 LL

Fig. 11.20. Light from an extended monochromatic source
forms a ring system after transmission through a Fabry–Perot
interferometer

where m is the integral order of the interference. If the
inner ring has the order m0 the pth ring has the order
m = m0− p (note that with increasing β the order m
decreases). For small angles β we can approximate
cosβ ≈ 1−β2/2 and obtain from (11.39):

(m0− p)λ= 2nd
(
1−β2

p/2
)

(11.40)

= 2nd

[
1− 1

2

(αp

n

)2
]
.

When the interference pattern is imaged by the lens L2

with focal length f2, the ring diameter Dp of the pth
ring is Dp = 2 f2αp. Inserting this into (11.40) gives

D2
p =

8n2 f 2

2nd
[2nd− (m0− p)λ] . (11.41)

For the smallest ring with p = 0, (11.40) becomes

m0λ= 2nd

(
1− α2

0

2n2

)
, (11.42)

which can be also written as

(m0+ε)λ= 2nd .

The excess

ε= dα2
0

nλ
(11.43)

with ε < 1 is the fractional interference order, which
depends on the wavelength λ and the separation d of
the two plane-parallel surfaces. For ε= 0 the inner ring
diameter becomes D0 = 0 and the optical path length
nd equals an integer multiple m0 of the wavelength λ.
With the excess ε, Eq. (11.41) becomes

D2
p =

8n2 f 2

(m0+ε) (p+ε) . (11.44)

A linear fit of the measured values D2
p versus the ring

number p yields a straight line, which intersects the
ordinate axis at p+ε= 0 and allows the determination
of ε and therefore of λ. If λ changes by one free spectral
range the integer m0 changes by one, which cannot
directly be noticed from the ring system.

Note that with a Fabry–Perot interferometer
the wavelength can only be determined modulo
a free spectral range δλ, because two wavelengths
λ and λ+ δλ have the same ring system. For the
unambiguous determination of λ the wavelength
has to be known beforehand within at least one
free spectral range.
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The dispersion of FPI is obtained from (11.39) as

dD

dλ
= f

dβ

dλ
= f

λm sinβ
. (11.45)

The half-width of the transmission peaks can be
calculated from (11.36) with F = 4R/(1− R)2 as

∆ν = c(1− R)

2ndπ
√

R
= 2δν

π
√

F
. (11.46)

Introducing the finesse F∗ of the FPI

F∗ = π
√

R

1− R
= π

2

√
F , (11.47)

which is a measure for the number of interfering beams
in the FPI, the half-width ∆ν can be expressed by

∆ν = 1

F∗ δν . (11.48a)

This gives the spectral resolution

∆ν

ν
= 1

F∗
δν

ν
. (11.48b)

EXAMPLE

Assume an FPI as a plane-parallel glass plate
with n = 1.5, d = 1 cm and reflectivities R = 0.98
for both surfaces. We then obtain F = 9800 and
a finesse F∗ = 155.5. The free spectral range is
δν = 1010 s−1 and the half-width of the transmission
peaks is ∆ν = δν/F∗ = 64 MHz. The spectral reso-
lution for a wavelength λ = 500 nm ⇒ ν = 6×1014

is ν/∆ν = 9×106. It can be also expressed as the
maximum path difference ∆s = F∗ ·2nd = 155.5 ·3 =
466 cm in units of the wavelength λ= 500 nm. This
gives λ/∆λ=∆s/λ= 9×106, which must, of course,
agree with the value for ν/∆ν.

Comparing the spectral resolution of the prism
spectrograph, grating spectrometer and Fabry–Perot in-
terferometer shows that the prism instrument has the
lowest and the FPI the highest spectral resolution.
However, there are also drawbacks for the different
instruments.

While the wavelength determination with a prism
spectrometer is not as accurate but unambiguous, the

grating spectrometer has to know the interference or-
der m in Eq. (11.15). A spectral line with wavelength λ1

appears for m = 1 at the same position in the de-
tector plane as a line with λ2 = λ1/2, measured in
second order with m = 2. Since m can only take
small numbers (usually m = 1 or 2) a broadband spec-
tral filter in front of the spectrometer can solve this
ambiguity.

For a Fabry–Perot interferometer the interference
order is much higher (for our example above m = 6×
106 and it is much harder to determine the actual in-
teger value of m. One has to measure the wavelength
within one free spectral range beforehand using other
instruments in order to determine the absolute value
of m [11.7].

11.2.3 Detectors

The sensitive detection of electromagnetic radiation is
of fundamental importance for spectroscopic measure-
ments. Therefore, the optimum selection of a detector
can be essential for the success of the experiment.
The choice of a detector depends on the wavelength
to be monitored. We will here present only a few ty-
pes of detectors with their spectral response and their
time behavior. The following features are important for
choosing the best detector:

• The spectral response, which determines the
wavelength range the detector can be used for.

• The absolute sensitivity S(λ)= VS/P, defined as
the ratio of the output signal VS and the inci-
dent radiation power P. If the output signal is
a voltage (e. g., for thermo-elements or for photo-
voltaic devices) the sensitivity S(λ) is expressed in
units of volts per watt. For output currents (e. g.,
for photomultipliers) S(λ) is given in amperes per
watt. With the sensitive area A of the detector,
the power received by the detector can be written
as the product P = A · I , where I is the incident
intensity.

• The noise figure of the detector, expressed by the
noise equivalent input power NEP, means an inci-
dent radiation power that generates the same output
signal as the detector noise itself. Although the
signal-to-noise ratio S/N is in most cases limited
by the noise of the incident radiation, the detector
noise might further reduce it [11.8, 9].
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a) Thermal Detectors

Thermal detectors measure the input power of the inci-
dent radiation independent of the wavelength λ. They
can therefore be used within the whole spectral range
from microwaves to UV radiation. The absorbed ra-
diation power results in an increase of the detector
temperature, which depends on the heat capacity H and
the heat conductivity G for heat transfer from the de-
tector to the surroundings. All characteristic features of
the detector that depend on its temperature can be used
for monitoring the incident radiation power. In most ca-
ses the temperature-dependent electrical conductivity is
utilized as a monitor [11.10].

If the fraction β of the incident radiation power P
is absorbed by the detector, its temperature increase is
determined from the energy balance

βP = H
dT

dt
+G(T −TS) , (11.49)

where TS is the temperature of the surroundings.
If the time-independent incident power P0 is swit-

ched on at time t = 0, the integration of (11.49)
gives

T = TS+ βP0

G

(
1− e−(G/H)t) . (11.50)

The temperature rises from the initial value TS at t = 0
to the temperature T = TS+∆T for t =∞ (Fig. 11.21).
The temperature rise

∆T = βP0

G
(11.51)
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Fig. 11.22a–c. Thermal detectors and their circuits. (a) Ther-
mopile, consisting of many thermoelements in series.
(b) Thermistor with electrical resistance R. The change of

electrical resistance ∆R(T) with temperature results in a vol-
tage change ∆U . (c) Balanced bridge circuit for sensitive
detection of ∆R

Fig. 11.21. Thermal detector and its temperature T when at
t = 0 a constant power βP0 is absorbed by the detector

is inversely proportional to the thermal losses G and
does not depend on the heat capacity H .

Small values of G make the detector sensitive, but
also slow.

With time-dependent radiation power

P = P0(1+a cosΩt) |a| ≤ 1

one obtains from (11.49) a detector temperature

T(Ω)= TS+∆T(1+ cos(Ωt+φ) (11.52)

that depends on the modulation frequencyΩ and which
has a phase lag φ against the phase of the radiation
determined by

tanφ =ΩH/G . (11.53)

The modulation amplitude

∆T = aβP0G√
G2+Ω2 H2

(11.54)
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decreases with Ω. At the frequency Ωg = G/H the
amplitude ∆T has dropped by a factor of

√
2 from its

DC value forΩ = 0.
We define as the time constant of the detector the

value

τ = 1/Ωg = H/G . (11.55)

A fast and sensitive detector should have a small heat
capacity H and a small heat conductivity G.

In Fig. 11.22 some thermal detectors are shown. The
first one is a thermopile that consists of many thermo-
elements in a series, where one end is in thermal contact
with the backside of a thin metal sheet and the other is
connected to a heat sink kept at constant temperature.
If the radiation is incident on the blackened surface
of the sheet, its temperature rises and the tempera-
ture difference to the heat sink is monitored by the
thermo-elements. The output signal equals the sum of
the thermovoltages of the different thermocouples.

The second example in Fig. 11.22b is a bolometer,
where the voltage U = RI across the bolometer with
electrical resistance R is measured when a constant
current I is sent through it.

The temperature change ∆T of the bolometer
induced by the absorbed incident radiation causes
a resistance change

∆R = (dR/dT)∆T (11.56)

and therefore an output signal

∆U = I∆R .

Inserting (11.51) gives the relation between the ab-
sorbed radiation energy β · P0 and the output signal
∆U:

∆U = I(dR/dT)βP0/G . (11.57)

The sensitivity of the bolometer depends on the
derivative dR/dT , which becomes very large for se-
miconductor materials at low temperatures, where the
electrical resistance R decreases very steeply with
increasing T . Therefore, sensitive bolometers are ge-
nerally made of doped semiconductors and are used at
temperatures below 4 K.

EXAMPLE

At T = 1.5 K the electric resistance of a doped silicon
semiconductor bolometer is R = 10 kΩ. With a cur-
rent of 100 µA the voltage across the bolometer is

U = 1 V. The derivative dR/dT at T = 1.5 K is about
10−4 V/K. With β = 0.9 and G = 10−15 W/K a radia-
tion power of P0 = 10−12 W generates an output signal
∆U = 10−5 V = 10 µV. This is readily detectable be-
cause the detector noise at these low temperatures is
below this value [11.11].

A particularly large derivative dR/dT is obtained at
the critical temperature of superconductivity, where the
system jumps within a very narrow interval∆T from the
normal to the superconducting state. If the device can
be maintained at this temperature by feedback control,
the incident radiation power can be inferred from the
feedback control signal.

b) Photodiodes

Photodiodes are doped semiconductor radiation detec-
tors that can be used either as photoconductive or as
photovoltaic devices. When the semiconductor diode is
irradiated, electrons are excited from the valence into
the conduction band (Fig. 11.23). This produces free
charge carriers and increases the conductivity of the di-
ode. If an external voltage is applied in the forward
direction, the electrical resistance R of the diode decre-
ases and with it the voltage drop across the diode. The
output signal is

∆U = I∆R = aP0 . (11.58)

These photoconductive devices require an external
voltage U0.

The photovoltaic semiconductor detectors on the
other hand generate the output voltage without an ex-
ternal supply. They are based on the following principle,
which is illustrated in Fig. 11.24.
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Fig. 11.23. (a) Excitation of electrons from the valence into
the conduction band by photoabsorption. (b) Measuring the
resistance change ∆R(P0) as a voltage change ∆U
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Fig. 11.24a–c. Photovoltaic semiconductor detector. (a) Schematic structure, (b) band energies around the p-n junction without
illumination, (c) with illumination

In the non-illuminated p-n junction of the diode,
the diffusion of the electrons from the n-region into the
p-region and of the holes into the opposite direction
produces a charge separation and therefore a diffusion
voltage VD across the junction. This diffusion voltage
cannot be detected by an external voltmeter because it
is just compensated by the opposite contact potentials
between the connections to the voltmeter and the n- or
p-part at both end faces of the diode.

If the p-n junction is illuminated, electron-hole pairs
are created by photon absorption. The electrons are dri-
ven by the diffusion voltage into the n-region and the
holes into the p-region. This leads to a decrease∆VD of
the diffusion voltage, which appears as the photovoltage

Vphoto =∆VD (11.59a)

across the open electrodes of the diode.
If these electrodes are connected through an

amperemeter, the photocurrent

iphoto =−ηeφA (11.59b)

is measured. Here η is the quantum efficiency of the
detector, φ = I0/hν the incident photon flux density
(number of photons per cm2 per s) and A is the sensitive
area of the detector.

The illuminated p-n photodetector can be used eit-
her as a photocurrent generator or as a voltage source,
depending on the external resistor R between the elec-
trodes. The output voltage can, however, never exceed
the diffusion voltage VD (Fig. 11.25).
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Fig. 11.25. Output voltage ∆VPh of photodiode with open
ends and photocurrent IPh of a photodiode with shortened
output

c) Photomultipliers

Photomultipliers are very sensitive detectors for low-
level radiation from the near-infrared to the ultraviolet
region. They consist of a photocathode and a number
of amplifying dynodes in an evacuated glass cylin-
der (Fig. 2.42). The spectral response depends on the
materials used for the photocathode. Some spectral sen-
sitivity curves of typical photocathodes are shown in
Fig. 11.26.
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The photoelectrons, generated under illumination
of the photocathode, are accelerated and focused by
a voltage of around 100 V between the cathode and
the first dynode onto the first dynode with a cop-
per beryllium surface. Here they produce, by electron
impact secondary electrons, which are again accelera-
ted to the second dynode. If each electron impinging
onto a dynode generates q> 1 secondary electrons, one
photoelectron produces at the Nth dynode an electron
avalanche of qN electrons, which are imaged onto the
anode. Here the electron avalanche pulse, induced by
a single photoelectron, charges the output capacitance C
up to a voltage Vout = qN e/C.

In the case of continuous illumination one obtains
a continuous photocurrent. For n photons/s impinging
on the photocathode with a quantum efficiency η, the
photocurrent emitted by the cathode is nphotηe and the
anode current is ia = nphotηeqN . Across the resistor R
between the anode and ground, a dc voltage V = Ria is
measured [11.12].

EXAMPLE

With a quantum efficiency η = 0.2 of the pho-
tocathode and the amplification factor q = 4 the
photocurrent at the anode of a photomultiplier
with N = 10 dynodes is ia = nphot ·0.2 ·1.6×10−19 ·
410 A. With illumination radiation λ = 500 nm and
P0 = 10−15 W ⇒ nphot = 6500/s we obtain a photo-
current emitted from the cathode of ic = 6500 ·η ·
e/s = 2.1×10−16 A and at the anode of ia = 2.1×
10−10 A.

A single photoelectron generates an electron pulse
with the charge Q = e ·410 = 1.7×10−13 C. With a ca-
pacitance of 10 pF at the photomultiplier output, this
gives a voltage pulse of U = Q/C = 17 mV.

11.3 Microwave Spectroscopy

Transitions between molecular rotational levels in the
same vibrational state fall into the microwave range.
Accurate measurement of rotational absorption lines
allows the determination of the moments of inertia
and therefore of the geometry of the molecule. Also,
transitions between atomic or molecular hyperfine le-
vels or Stark splittings can be induced by microwaves,
which gives information on nuclear spins and electric
or magnetic moments of molecules.

Microwave spectroscopy is the most accurate me-
thod for the determination of molecular structure in the
electronic ground state or for measuring electric and
magnetic dipole moments.

For polyatomic molecules, the microwave spectrum
generally consists of many lines and it is not always
straight forward to assign all lines unambiguously to the
correct transitions. Here, the substitution of one or more
atoms in the molecule by their isotopes is helpful and
the comparison of the microwave spectra of different
isotopomers generally allows the unambiguous deter-
mination of the rotational constants and the molecular
structure [11.13].

A possible experimental arrangement for micro-
wave absorption spectroscopy is shown in Fig. 11.27.
Microwaves are generated by microwave oscillators
(klystron, carcinotron or gun oscillator), are focused
by a Teflon lens transparent to microwaves, and are
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Fig. 11.27. Possible experimental arrangement for microwave
spectroscopy in a Stark-cell where the voltage of the central
electrode against the outer electrodes at ground potential is
modulated

sent through a long microwave guide that contains the
absorbing gas at the temperature T .

At thermal equilibrium the population density
of molecular levels follows a Maxwell–Boltzmann
distribution

Ni

Nk
= gi

gk
e−∆E/kT . (11.60)

Inserting this into (11.2) gives the absorption coefficient

α(νki)= Nk
(
1− e−∆E/kT ) σ(νki) . (11.61)

At room temperature T = 300 K the thermal energy kT
is much larger than the photon energy hν.

For example, for ν= 3 GHz, hν= 2×10−24 J, while
for T = 300 K, kT = 4×10−21 J, i. e., 2000 times lar-
ger. Therefore, hν/kT � 1 and we can expand the
exponential to obtain

α(νki)≈ Nk(∆E/kT)σ(νki) (11.62)

= Nk(hν/kT)σ(νki) .

Although the density of molecules in the absorbing le-
vel might be large, the difference between the lower
and upper state population is small and therefore the
absorption rate is only slightly larger than the stimula-
ted emission rate. The net absorption can be expressed
by an effective density Neff of absorbing molecules,
which is smaller than the real number density Nk by a
factor hν/kT , i. e., Neff = Nk(hν/kT).

EXAMPLE

At a gas pressure of 10 mbar the total molecular density
N =∑

Ni at T = 300 K is about N = 3×1023/m3. The
population distributes over many rotational-vibrational

levels. We assume that 1% of all molecules are in the ab-
sorbing level with energy Ek and that the ratio hν/kT is
about 10−3. The effective net absorption coefficient then
becomes α= 3×1018σ(νik)m2/m3. With the absorption
cross section σ = 10−23 m2 the relative absorption for
1m absorption path length becomes ∆I/I0 = 3×10−5.
In order to detect this small absorption the fluctuations
of the microwave intensity I0 should not be larger than
this value.

The sensitivity can be greatly enhanced by fre-
quency modulation of the microwave. The frequency
of the incident wave

I(t)= I0 cos2[2πνm(1+a cos(2π ft)t] (11.63)

oscillates around the central frequency νm. When νm

is tuned across an absorption line, the absorption co-
efficient α(ν) and therefore the detected signal are
modulated at the frequency f (Fig. 11.28). The trans-
mitted intensity can be expanded into the Taylor
series

It(ν)= It(νm)+
∑ an

n!
(

dn It

dνn

)
νm

νn
m cosn(2π ft) .

(11.64)

If the phase-sensitive detector (lock-in amplifier) only
transmits the part of the signal that is modulated at

Fig. 11.28. (a) Absorption α(t) for frequency-modulated
radiation. (b) Derivative dα/dν of the absorption coefficient
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frequency f , the detected signal

It(νm)− It(ν)=∆It =−a ·νm ·
(

dIt

dν

)
νm

cos(2π ft)

(11.65)

is proportional to the first derivative dIt/dν of the
transmitted intensity and to the modulation index a.

The fluctuations of the incident microwave inten-
sity I0 are generally distributed over a broad frequency
range, depending on the kind of noise, influencing I0.
The phase sensitive detector suppresses most of the
noise because it only transmits the contributions within
a small frequency interval δν around the frequency f .
The width δν = 1/τ depends on the time constant τ of
the detector. This can also be illustrated in the follo-
wing way. The detector always measures the difference
∆It( f)= (I0− It)| f at the frequency f . If I0 fluctua-
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tes so too does It. Because generally (I0− It)� I0,
the fluctuations are mostly cancelled by measuring the
difference ∆I .

Instead of modulating the microwave frequency, the
absorption frequency can be modulated, which has the
same effect on the reduction of noise. This absorption
modulation can be achieved by an external ac electric
field, which causes a Stark shift of the molecular levels
(if the molecule possesses an electric dipole moment)
The shift depends on the rotational quantum number J
and is therefore different for the two levels 〈J | and 〈J+
1| of a rotational transition J → J+1. The frequency ν0

of the transition is shifted and split into the different
Stark components (Fig. 11.29).

The electric field is generated between two long
parallel electrodes in the absorption cell (Fig. 11.27),
which are separated by the distance d and are charged
to the voltages +U0 and −U0. With U0 = 10 kV and
d = 4 mm the electric field is E = 25 kV/cm. Another
technical alternative is to use only one charged thin me-
tal sheet in the middle of the absorption cell, where the
electric field between this electrode and the grounded
walls of the cell has opposite directions in the upper and
lower half of the cell.

To illustrate the high spectral resolution, a section
of the microwave absorption spectrum of the CO mole-
cule is shown in Fig. 11.30. As was outlined in Sect. 9.5,
the frequencies of the rotational lines increases linearly
with the rotational quantum number J and the lines
are therefore equidistant. The frequency difference de-
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Fig. 11.30. Microwave absorption spectrum of 12CO (intense
lines) and the rare isotopomer 13CO (weak lines) showing
some absorption lines of pure rotational transitions J → J +
1 [11.14]
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pends on the rotational constant and differs for the two
isotopomers 12CO und 13CO.

11.4 Infrared Spectroscopy

The vibrational-rotational transitions of most mole-
cules, and also many electronic transitions between
excited electronic states of atoms and molecules, fall
into the infrared spectral region. Since the vibrational
bands are characteristic for each molecule, this spectral
range is also called the fingerprint region of molecular
spectroscopy [11.14, 15].

Several different techniques have been developed
for accurate and sensitive infrared spectroscopy. They
can also be used in the visible and UV region.

11.4.1 Infrared Spectrometers

In Fig. 11.31 the basic experimental setup is shown for
classical infrared absorption spectroscopy. The radia-
tion source is a high-pressure mercury lamp or a hot
tungsten pin. Both sources emit a spectral continuum,
where the hot tungsten pin (globar) with a temperature
T emits the continuous blackbody thermal radiation
with a maximum at λmax ∝ 1/T (see Sect. 3.1). For
T = 1000 K the maximum of the intensity distribu-
tion is at λmax = 3 µm. The radiation is collimated by
the mirror M1 and is sent as a parallel beam through
the absorption cell with length L, before it is focu-
sed by M2 onto the entrance slit of a spectrometer,

Radiation
source

Rotating
segmented mirror

Sample cell BS

Reference
beam

Lock-InComputer

Empty cell
D

MM

1M

2M

Fig. 11.31. Classical infrared spectrometer with reference,
rotating segmented mirror and lock-in detection

which disperses the spectral continuum and transmits
the desired wavelengths. A detector behind the spec-
trometer monitors the transmitted intensity It(ν). The
spectral resolution is limited by the resolving power of
the spectrometer.

To increase the sensitivity, a difference method is
used: A rotating segmented mirror sends the parallel
beam alternately through the sample cell and through
an identical reference cell, which is, however, empty.
The difference

∆I(ν)= IR− It(ν)= α(ν) · L · I0 (11.66a)

between the reference intensity IR and the intensity It

of the signal beam transmitted through the absorption
cell is measured.

Dividing the measured signal∆I(ν) by the incident
intensity I0 gives

∆I/I0 = α(ν) · L , (11.66b)

which shows that for the detection of the relative ab-
sorption by measuring the ratio ∆I/I0, the fluctuations
of the incident intensity I0 are eliminated.

11.4.2 Fourier Transform Spectroscopy

Fourier transform spectroscopy has many advantages
compared to conventional absorption spectroscopy. It
is based on interferometry with a Michelson interfero-
meter (Sect. 11.2.2), where the path length L2 of one
of the arms is continuously and uniformly changed by
mirror M2 moving with constant speed v (Fig. 11.15).
Assume the radiation source emits a monochromatic
wave with amplitude

E(ω)= A0 cosω0t

and intensity

I(ω)= cε0 E2 = cε0 A2
0 cos2 ω0t

= I0 cos2 ω0t . (11.67)

The two interfering partial beams have the amplitudes

Ai =
√

RT A0 ,

where R and T are the reflectivity and transmittance of
the beam splitter BS. Because of the different optical
path lengths s1 and s2, the interference intensity at the
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detector plane

It = cε0 RTA2
0 (11.68)

× [cos(ω0t+ ks1)+ cos(ωot+ ks2)]
2

= RTI0
[

cos2(ω0t+ ks1)+ cos2(ω0t+ ks2)

+ cos (2ω0t+ k(s1+ s2))+ cos (k(s1− s2))
]

depends on the path difference ∆s = s1− s2.
The detector can not follow the fast optical os-

cillations with frequency ω0. The detector signal
is therefore proportional to the time average 〈I(t)〉.
With 〈cosω0t〉 = 0 and 〈cos2 ω0t〉 = 1

2 we obtain from
(11.68), with s2 = s1+vt and k = ω0/c,

S(t)∝ 〈I(t)〉 = RTI0

[
1+ cos

(
ω0
v

c
t
)]
. (11.69)

Instead of the frequency ω0, the detector measures the
much lower frequency Ω = ω0v/c for the transmit-
ted intensity averaged over the time constant τ of the
detector.

In the Michelson interferometer, with one uni-
formly moving mirror, the optical frequency ω0

of the radiation source it transformed to the much
smaller frequency ω0v/c of the output signal.

EXAMPLE

v= 3 cm/s, ω0 = 1014/s ⇒ (v/c)ω0 = 104/s

In Fig. 11.32a the signal 〈I(t)〉 is plotted for mo-
nochromatic incident radiation as a function of the
phase difference δ=ω0(v/c)t depending on the product
v · t. The maxima occur if the path difference ∆s = vt
becomes an integer multiple of the wavelength λ.

Mathematically, the spectrum I(ω) of the radiation
source can be obtained through a Fourier transformation
of the measured signal S(t) ∝ 〈I(t)〉, because (11.69)
can be written in the form

I(ω)= lim
τ→∞

τ∫
t=0

S(t) cos
(
ω
v

c
t
)

dt (11.70)

as can be proved by inserting (11.69) into the integral.
If the radiation source emits two frequencies ω1 and

ω2, the two partial beams with frequencyω1 and the two
beams with ω2 interfere with each other independently.
The interference between ω1 and ω2 averages to zero,

⎟⎟⎠
⎞

⎜⎜⎝
⎛ ⋅⋅ω+ω

⋅ωπ

δππ

c
tv

2
cos

tv/c2

642

21
⎟⎟⎠
⎞

⎜⎜⎝
⎛ ⋅⋅ω−ω

c
tv

2
cos 21

I/I 0t

I/I 0t

π λ

a)

⋅ tvb)

1

0.5

0

0 ω∆
⋅π

ω∆
⋅π c2c

Fig. 11.32a,b. Normalized intensity It(t)/I0 transmitted
through a Michelson interferometer with moving mirror as
a function of v · t. (a) for monochromatic incident intensity.
(b) for a superposition I01(ω1)+ I02(ω2)

because the phase difference between two beams with
different frequencies periodically changes between 0
and 2π. If the detector time constant τ is larger than
2π/(ω1−ω2) it cannot follow these rapid changes. The
measured intensity averaged over a time period τ is then

〈It(t)〉 = 〈I1〉+〈I2〉 .
The interferogram is simply the superposition of the
interferograms of two monochromatic waves with fre-
quenciesω1 andω2. This is illustrated in Fig. 11.32b) for
the case of equal amplitudes of the two waves. Inserting
I0 = I1 cos(ω1t)+ I2 cos(ω2t) into (11.69) gives

S(t)∝ 〈IT(t)〉 (11.71a)

= RT I0

[
1+ cos

(
ω1
v

c
t
)
+ cos

(
ω2
v

c
t
)]
.

With the frequencies

ω1 = ω1+ω2

2
+ ω1−ω2

2
(11.72a)

ω2 = ω1+ω2

2
− ω1−ω2

2
(11.72b)
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this converts to

S(t)∝ RT I0

[
1+2 cos

(
ω1−ω2

2

v

c
t

)
(11.71b)

× cos

(
ω1+ω2

2

v

c
t

)]
.

From Fig. 11.32b we can obtain a vivid illustration of
the spectral resolving power of Fourier spectroscopy.
In order to find the frequencies ω1 and ω2 from the
measured signal S(t), the path s2(t)= vt traveled by
the moving mirror during the measurement has to be
sufficiently large to include at least one beat period T =
(2πc/v)/(ω1−ω2). The minimum frequency interval
δω= (ω1−ω2) is related to the minimum time ∆t =
∆s/v for the measurement by

v

t
δω≥ 2π

∆t
⇒ δω≥ 2πc

∆s
. (11.73a)

This can be stated in other words. The minimum path
difference∆s = v∆t between the two interfering partial
waves, measured in units of the wavelength λ gives the
resolving power ω/δω of the interferometer, because

ω

δω
= 2πν

δω
= 2πc∆s

λ ·2πc
= ∆s

λ
. (11.73b)

If the radiation source emits radiation on many fre-
quencies, the detector signal S(t) becomes more
complicated [11.16]. In any case, however, the relation

S(t)= a

∞∫
0

I0(ω)
[
1+ cos

(
ω
v

c
t
)]

dω (11.74a)

holds and the Fourier transform of the signal S(t), mea-
sured during the time interval∆t = τ , yields the spectral
intensity spectrum

I(ω)= lim
τ→∞

b

τ

τ∫
0

S(t) cos
(
ω
v

c
t
)

dt (11.74b)

of the radiation source [11.16].
Mathematically, the Fourier transform requires that

the limits of the integral extend from 0 to ∞. Expe-
rimentally only a finite maximum value ∆smax can be
realized, depending on the construction of the inter-
ferometer. This deficiency can be taken into account
by introducing a gate function G(t), which is multi-
plied with the signal S(t). This can be, for instance,

a rectangular function

G(t)=
{

1 for 0 ≤ t ≤ tmax

0 for t> tmax

with tmax =∆smax/v .

The spectrum of the source is now expressed by the
Fourier transform

I(ω)=
∞∫

0

S(t)G(t) cos
(
ω
v

c
t
)

dt . (11.75)

The Fourier transform of a rectangular function f(x) is
(analogously to the diffraction-limited intensity, trans-
mitted through a rectangular slit) given by the function
(sin x/x)2, which has a principal maximum for x = 0
and many small side maxima for x = (2m+1)π/2. The-
refore, the Fourier transform (11.76) gives, for each line
in the spectrum, a diffraction-like structure. This is per-
turbing for a dense spectrum, because the side maxima
of a strong line might overlap with the principal ma-
xima of adjacent weak lines. Therefore a Gaussian gate
function that does not produce these diffraction-like
features is used instead of the rectangular function. The
optimum choice for such a gate function allows one to
reproduce the source spectrum without severe pertur-
bations (the use of such an optimized gate function is
called apodization) [11.17].

For measuring absorption spectra, a radiation source
with continuous emission spectrum is used and the
radiation passes through the absorption cell before it
reaches the detector. In order to enhance the sensitivity,
a special mirror configuration lets the radiation pass
through the absorption cell several times, thus increa-
sing the absorption path length L. The basic operation
of a Fourier interferometer is explained in Fig. 11.33.
The incident radiation to be measured comes from the
right. The signal S(t) is measured by the detector D1,
while the mirror M2 is uniformly moving. The reali-
zed increase in path difference for the moving mirror is
from a few centimeters up to some meters depending
on the construction of the instrument.

Since the path difference∆s has to be measured very
accurately it is determined by optical interferometry.
The parallel beam of a He-Ne laser is sent into the left
part of the instrument, which forms a second Michel-
son with the same moving mirror M2. The detector D2

measures the interferogram of the monochromatic laser
radiation, which gives the pattern shown in Fig. 11.32a
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Fig. 11.33. Schematic design of a Fourier spectrometer

and serves as an accurate time base, because the wave-
length of the He-Ne laser is known very precisely. In
order to fix the time t = 0, where both arms of the inter-
ferometer have equal path lengths and therefore∆s = 0,
a broad spectral continuum is sent to the interferome-
ter and its interferogram, which gives approximately
a delta-function at t = 0 is detected by D3. A commer-
cially developed Fourier interferometer is depicted in
Fig. 11.34. For illustration of the attainable sensitivity
and spectral resolution the Fourier spectrum of very
weak overtone band in acetylene C2H2 with rotational
resolution is shown in Fig. 11.35.

The big advantages of Fourier spectroscopy are
the attainable large spectral resolving power and
the better signal-to-noise ratio at measuring ti-
mes that are much less than in conventional
spectroscopy with spectrometers.

The reason for this is that all frequency components
of the spectrum are measured simultaneously, while,
for instance, in microwave spectroscopy the radiation
source has to be tuned over the course of time over all
spectral intervals. If the total measured spectral interval
∆ω is divided into N sections δω (∆ω= Nδω), where
δω is the smallest resolvable spectral interval, the si-
gnal S for a given measuring time is N times larger than
in conventional spectroscopy. The achievable signal-to-
noise ratio is then

√
N times larger. The improvement

in spectral resolution and S/N-ratio is illustrated by the
OCS-spectra in Fig. 11.36
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Fig. 11.34. Fourier spectrometer (Polytec FIR 30)
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Fig. 11.35. Section of the Fourier spectrum of a weak overtone
band (10100)← (00000) of acetylene C2H2. (Platz T., PhD
thesis, Kaiserslautern)
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Fig. 11.36. Section of the OCS absorption spectrum. Compari-
son between classical infrared spectroscopy (upper trace) and
Fourier spectroscopy with a 1-m maximum path difference
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EXAMPLE

For a measured spectral interval ∆ν = 1000 cm−1

⇒∆ω = 2π×3×1012 s−1. If the smallest resolva-
ble interval is δν = 0.1 cm−1 ⇒ N = 104. In order to
achieve the same signal-to-noise ratio as in conventional
spectroscopy one needs only 1% of the measuring time
that is necessary when a monochromator with spectral
resolution δν is tuned over the whole spectral interval.

11.5 Laser Spectroscopy

The introduction of lasers to spectroscopy has enlar-
ged the possibilities of spectroscopic investigations
enormously regarding spectral resolution and sensiti-
vity, which has been enhanced by several orders of
magnitude.

We will briefly discuss in this section some techni-
ques that exemplify the high sensitivity attainable and
the special techniques with exceedingly high spectral
resolution where the Doppler width of the absorp-
tion lines can be overcome and “Doppler-free” spectral
resolution is possible.

Of particular interest is the investigation of ultrafast
phenomena in atoms and molecules, which can nowa-
days be studied with ultrashort laser pulses with a time
resolution of about 1 fs(10−15 s).

For a more detailed representation the reader is
referred to specialist literature [11.18, 19].

11.5.1 Laser-Absorption Spectroscopy

Absorption spectroscopy with monochromatic wave-
length-tunable lasers resembles, in many aspects,
microwave spectroscopy (see Sect. 11.2). The advan-
tage of lasers is, however, their large tuning range,
which exceeds that of clystrons by far, and furthermore
their possible application in many spectral regions from
the far infrared to the extreme ultraviolet [11.20].

A typical experimental setup is shown in Fig. 11.37.
The output beam of a tunable laser is split by a 50%
beam splitter BS2 into a reference beam and a signal
beam that passes through the absorption cell. Another
beam splitter BS1 directs a small fraction of the la-
ser beam into a long Fabry–Perot interferometer with
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Fig. 11.37. Schematic experimental setup for laser absorption
spectroscopy with reference beam and frequency marker FPI

mirror separation d, which gives equidistant frequency
markers separated by ∆ν = c/2d.

The advantages of this arrangement compared
with conventional spectroscopy without lasers can be
summarized as follows:

• There is no need for a spectrometer with wavelength
dispersion because the tunable laser is already mo-
nochromatic and the absorption lines appear as dips
in the transmitted laser intensity when the laser is
scanned through the spectrum.

• The spectral resolution is not limited by any instru-
ment, but solely by the width of the absorption lines,
which is generally given by their Doppler width (see
Sect. 7.4.2). With Doppler-free techniques even this
limitation can be overcome.

• Because of the good collimation of the parallel laser
beam a long path length L through the absorp-
tion cell can be realized, for instance, by multipath
arrangements with spherical mirrors (see below).
This enhances the sensitivity (since the absorp-
tion ∆I = I0αL is proportional to the absorption
length L) and allows the detection of weak transiti-
ons or of tiny densities of absorbing molecules.

• If the spectral width δνL of the laser radiation is
smaller than the absorption line width ∆νa (which
is the case for single-mode lasers) the measured
difference∆I = I0− IT = I0αL is larger than in the
case δν > ∆νa where ∆I = I0αL(∆νa/δν).

The latter advantage is often neglected. It shall be
illustrated by the following example.

In conventional spectroscopy the grating spectrome-
ter may have a resolution of δν = 0.5 cm−1, while the
Doppler width of the absorption lines in the visible is



11.5. Laser Spectroscopy 433

typical about∆νa = 0.03 cm−1. This gives for the same
absorption αL at the center of an absorption line an in-
tensity change ∆I that is 16 times smaller resulting in
a sensitivity that is also 16 times smaller than for ab-
sorption spectroscopy with a laser that has a bandwidth
∆νL �∆νa.

The sensitivity can be further enhanced by modula-
tion of the laser frequency, similarly to the situation in
microwave spectroscopy. Here we will, however, con-
sider the case where the frequency modulation is larger
than the line width of the absorbing transitions.

When the laser beam from a tunable diode laser
passes through an electro-optic modulator (this is a cry-
stal that changes its refractive index proportional to the
voltage applied to electrodes on opposite sides of the
crystal) the optical path length periodically changes and
with it the phase of the optical wave. This phase mo-
dulation results in a frequency modulation because the
frequency ω= dϕ/dt is the derivative of the phase ϕ.
The modulation of the optical carrier frequency ω crea-
tes sidebands at frequencies ω±Ω, where Ω is the
modulation frequency. Differently from pure frequency
modulation, the phases of the two sidebands are op-
posite (Fig. 11.38). If the transmitted intensity (this is
the sum of the intensities of carrier and sidebands) is
detected by a phase-sensitive detector (lock-in) tuned
to the modulation frequency Ω, the measured signal
is zero if there is no absorption, because the detector
measures the two differences Ic− I+ and Ic− I− of the
intensities Ic of the carrier and I± of the two sidebands,
which have opposite signs and therefore cancel each
other. If, however, one of the sidebands coincides with
an absorption line, this sideband is attenuated and the
balance is lost. Fluctuations of the incident intensity
appears in the carrier and the sidebands and therefore
cancel for the difference measurement. The schematic
arrangement for absorption spectroscopy with a tunable
diode laser is shown in Fig. 11.39.

Absorption profile

a) b)

Ω+ω ωω
Ω−ω

0

Ω−ω
Ω+ωω

Fig. 11.38a,b. Principle of phase-modulated absorption
spectroscopy

Fig. 11.39. Absorption spectroscopy with a tunable single
mode diode laser with phase-modulation

The enhanced sensitivity is illustrated in Fig. 11.40,
which compares the absorption measurement of a weak
overtone absorption line of the H2O molecule with
a non-modulated diode laser and the signal obtained
with the modulation technique. The signal-to-noise
ratio is enhanced by two orders of magnitude.
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Fig. 11.40a,b. Rotational absorption line of a vibrational over-
tone transition (1, 2, 1)← (0, 0, 0) for the water molecule
H2O (a) measured without modulation (b) measured with
phase modulation of the laser beam
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11.5.2 Optoacoustic Spectroscopy

An absorption cell with volume V may contain N
absorbing molecules, which can be excited into the
energy level Ei = Ek +hν by absorption of a photon
hν (Fig. 11.41). If the excited molecule collides with
other atoms or molecules in the cell, it can transfer its
excitation energy into translational energy. If N1 mo-
lecules are excited, the kinetic energy Ekin = 3

2 NkT of
the species, and therefore the temperature T of the gas,
increases by

∆T = N1hν
3
2 Nk

. (11.76)

For a closed cell, the total number of molecules N is
constant. A temperature rise therefore increases the gas
pressure p = nkT with n = N/V by ∆p = nk∆T .

The energy of the absorbed photons is converted
into kinetic energy resulting in a pressure increase.

So far we have neglected the radiative decay of the
excited level. If the emitted photons are not absorbed wi-
thin the cell, their energy is not converted into a pressure
increase. The transferred energy is now

∆E = N1hν
1

1+ τcoll/τrad
.

The conversion becomes more efficient as the ratio of
radiative lifetime to the collisional deactivation time of
the excited level (τrad/τcoll) increases.

If the exciting laser beam is chopped at a fre-
quency f , which is smaller than the inverse energy
transfer time (1/τcoll+1/τrad) the pressure in the cell
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Fig. 11.41a,b. Photoacoustic spectroscopy: (a) level scheme, (b) schematic experimental arrangement

P branch R branch

15,560 15,580 15,600 15,620 –1cm/ν

Fig. 11.42. Optoacoustic spectrum of the overtone band of
acetylene around ν̄ = 15,600 cm−1

is modulated at the frequency f . A sensitive micro-
phone in the side wall of the cell detects these pressure
changes, which represent acoustic waves. When the
chopping frequency is chosen to coincide with one
of the acoustical eigenresonances of the cell, stan-
ding acoustic waves are generated with amplitudes that
are dependent on the acoustic quality factor Q of the
cell and are much higher than for the nonresonant
case.

The technique is quite sensitive, because the acou-
stic resonator acts as an amplifier and stores the energy
converted from the excited molecules into standing
acoustic waves for a time τ ∝ Q. When the laser wave-
length is tuned across a molecular absorption spectrum
one obtains for each absorption line an acoustic si-
gnal and altogether an optoacoustic spectrum. As an
illustration Fig. 11.42 shows the optoacoustic spec-
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Fig. 11.43. Acoustic resonance cell inside an optical multipass
cell. All measures are in mm

trum of a very weak overtone band in acetylene, with
the different rotational lines. Since the absorbed op-
tical photon energy is converted into acoustic energy
the method is named optoacoustic or photoacoustic
spectroscopy [11.21, 22].

The sensitivity can be further enhanced when the
acoustic cell is placed inside an optical multiple pass
cell (Fig. 11.43). The laser beams inside this cell with
spherical mirrors form a hyperboloid with cylindrical
symmetry and excite acoustic standing waves on the
locations in the acoustic cell where the standing acoustic
waves have maximum amplitude. This optimizes the
conversion efficiency for the energy transfer into the
acoustic mode.

11.5.3 Optogalvanic Spectroscopy

For the spectroscopy of high-lying atomic, molecular
or ionic levels, gas discharges are convenient because
many of these levels are populated by electron impact,
in particular, metastable levels with long lifetimes. The
discharge impedance depends on the number of elec-
trically charged carriers, i. e., electrons and ions, which
are created by electron impact ionization from excited
levels of the neutral species. If the population of these
excited levels is changed, for instance by absorption
of photons, the electron density will change and there-
fore the impedance of the discharge. If the discharge is
fed through a ballast resistor R by a power supply with
constant voltage, the impedance change causes a corre-
sponding change of the discharge current and therefore
a voltage change across resistor R. This forms the basis
for optogalvanic spectroscopy.

The experimental arrangement is shown in
Fig. 11.44. The discharge tube (which might be a hol-

Hollow cathode
lamp
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Fig. 11.44. Experimental arrangement of optogalvanic spec-
troscopy in a hollow cathode discharge

low cathode discharge or a tube used for the He-Ne laser
or the argon ion laser) is irradiated by the chopped out-
put beam of a tunable laser (dye laser or semiconductor
laser). When the laser wavelength coincides with an
absorption line of species in the discharge, this causes
a modulation of the discharge current at the chopping
frequency and a corresponding voltage modulation∆U
across the ballast resistor R, which is coupled through
a capacitance C into a lock-in amplifier and recorded by
a computer. If the laser wavelength is tuned to a transi-
tion Ei → Ek the population of the two levels changes
due to laser-induced transitions by

∆Ni = Ni0− NiL =−∆Nk .

The corresponding voltage change is then

∆U = R∆I (11.77)

= a[∆Ni PI(Ei)−∆Nk PI(Ek)] ,
where PI(Ei) is the ionization probability of level Ei .

The optogalvanic signals might be positive or
negative, depending on the difference of ionization
probabilities of the levels Ei and Ek.

Most gas discharge tubes are filled with noble gases.
However, if the noble gas is mixed with other vola-
tile components their spectra can be also measured by
this technique. Even molecules can be inserted into the
discharge. Since some molecules might be fragmented
by electron impact, the spectra of the mother molecules
and their fragments overlap and the assignment might
be difficult.

In a hollow cathode discharge, the ions impinge on
the inner walls of the hollow cathode release atoms and
ions of the wall material by sputtering processes. With
higher discharge currents the spectra of these sputtered
materials become more and more prominent. This is
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Fig. 11.45a,b. Optogalvanic spectrum (a) of a neon discharge
(1 mA, p= 1 mbar), generated with a broadband cw dye laser

[11.23], (b) of Al, Cu, and Fe vapor sputtered in a hollow
cathode that was illuminated with a pulsed dye laser [11.24]

illustrated in Fig. 11.45, where the optogalvanic spec-
trum of aluminum, copper and iron obtained in a hollow
cathode discharge is shown.

Investigations of intensity and time behavior of
optogalvanic signals give information on radiative de-
cay constants of highly excited levels and on collision
cross sections for electron impact excitation and ioniza-
tion. These parameters are important for understanding
plasma characteristics [11.23].

11.5.4 Cavity-Ringdown Spectroscopy

A very sensitive technique for detecting small absorpti-
ons is cavity-ringdown spectroscopy, which is based on
measurements of the decay time of optical resonators
filled with an absorbing gas [11.25]. Its basic principle
can be understood as follows.

When a short laser pulse with power P0 is sent
through the optical resonator of length L with two
highly reflecting mirrors (reflectivities R1 = R2 = R)
and total absorption losses A (scattering, diffraction
and mirror absorption, but excluding the absorption by
the gas) the transmission

T = 1− R− A � 1

is very small. The pulse will be reflected back and forth
between the two mirrors (Fig. 11.46), while for each
roundtrip a small fraction will be transmitted through
the end mirror and can reach the detector. The detector

Fig. 11.46. Principle of cavity ring-down spectroscopy with
pulsed lasers

receives a series of pulses separated by the roundtrip
time T = 2L/c with decreasing power from pulse to
pulse.

The power of the first transmitted pulse is

P1 = T 2 e−αL P0 , (11.78a)

where α is the absorption coefficient of the gas in the
resonator. After each roundtrip the pulse power de-
creases by an additional factor R2 · exp(−2αL). After
m roundtrips the power has decreased to

Pm = (
R e−αL)2m

P1 (11.78b)

= [
(1−T − A)e−αL]2m

P1 ,

which can be written as

Pm = P1 e2m[ln R−αL] ≈ P1 e−2m[T+A+αL] . (11.78c)

If the detector time constant is large compared to the
pulse width it just detects the envelope of the pulse
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amplitudes and records an exponential decay with the
decay time

τ1 = L/c

T + A+αL
. (11.79a)

Without absorbing gas in the resonator (α = 0) the decay
time will be lengthened to

τ2 = L/c

T + A
. (11.79b)

From the difference

∆τ = τ2− τ1 = αL2/c

(T + A)(T + A+αL)

= αL2/c

(1− R)(1− R+αL)
, (11.80)

the product

αL = (1− R)∆τ/τ1 (11.81)

of the absorption coefficient α and cavity length L can
be determined as a function of the laser wavelength λ.
The minimum detectable absorption is limited by the
reflectivity R, the unavoidable losses A of the resonator
and by the accuracy of measuring the decay times τ1

and τ2. This accuracy is limited by the attainable signal-
to-noise ratio.

The physical reason for the large sensitivity is the
long effective absorption path, which is

Leff = L/(1− R+ A) . (11.82)

EXAMPLE

For L = 1 m, R = 0.999, A = 0.001 ⇒ Leff = 500 m.

The experimental setup is shown in Fig. 11.47. The
incoming laser beam has to be mode-matched to the
fundamental TEM00q resonator mode. Otherwise trans-
verse modes are excited, which have much higher
diffraction losses (see Sect. 8.2). A careful alignment of
the system is required to obtain optimum results. When
the laser wavelength is tuned across the absorption spec-
trum the maxima of the absorption coefficient α at
the center of the absorption lines lead to decay time
minima and a computer program converts these mea-
sured minima into the absorption coefficient α(λ). In
Fig. 11.48 the rotational spectrum of the overtone tran-
sition in the HCN molecule, measured by Romanini

Tunable pulsed
laser

Detector

Ringdown-
resonator

Mode matching

12 MM

Fig. 11.47. Experimental setup with mode-matching optics

and Lehman [11.26] is shown, illustrating the good
signal-to-noise ratio.

The following conditions should be met to realize
the high sensitivity and spectral resolution:

1. Due to the spectral bandwidth of the laser pulse
many fundamental resonator modes within the
bandwidth δωR can be excited. In order to resolve
the absorption lines with spectral width δωa the
laser bandwidth δωL should be smaller than the
absorption line width.

2. The relaxation time of the resonator must be longer
than that of the excited molecules. This demands
high reflection coatings of the cavity mirrors (R>
0.999) and careful alignment.

EXAMPLE

With a resonator length L = 0.5 m, a mirror re-
flectivity R = 0.998, resonator losses per roundtrip
A = 0.001 and mirror transmission T = 0.0001 per
mirror, the decay time of the empty resonator is
τ2 = 0.5/(3×108 ×0.002) = 8.33×10−7 s. With an
absorption coefficient α= 10−6/cm = 10−4/m the ab-

19,440 19,460 19,480 19,500 19,520

0.4

0.2

0.0

–0.2

I

1cm/ −

Fig. 11.48. Section of the rotational lines on the overtone
band (2, 0, 5)← (0, 0, 0) of the HCN molecule, measured
with CRDS [11.26]
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sorption per path is αL = 5×10−5 and the decay
time τ2 of the filled resonator becomes τ2 = 0.5/(3×
108×0.00205) = 8.13×10−7 s. The relative change
of τ is only ∆τ/τ = 0.024 = 2.4%. With a laser
pulse duration ∆tL = 10 ns the laser bandwidth is
δωL = 108 s−1 ⇒ δνL = 16 MHz, which is small com-
pared to the Doppler width of about 1 GHz of the
absorption lines.

11.5.5 Laser-Induced Fluorescence Spectroscopy

So far we have mainly discussed different techniques
of absorption spectroscopy. Laser-induced fluorescence
spectroscopy is based on selective excitation of one or
a few levels in the upper state of atoms or molecules.
The fluorescence spectrum, emitted by this excited le-
vel, is dispersed by a spectrometer and the dispersed
fluorescence lines are recorded by a photomultiplier or
a CCD array (Fig. 11.49). If the fluorescence is emit-
ted from a single upper rotational-vibrational level of
a molecule the allowed transitions represent a relatively
simple spectrum compared to an emission spectrum
from a gas discharge, where many upper levels are po-
pulated and the total fluorescence is the superposition
of all fluorescence series emitted by the different upper
levels.

The wavenumbers of the fluorescence lines are equal
to the differences between the term values of the up-
per level and the terminating lower levels. If the upper
level is the same for all lines the separations of the fluo-
rescence lines just give the energy differences between
the levels in the lower state (Fig. 11.50). If the Franck–
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C om puter
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Fig. 11.49. Schematic setup for measuring the dispersed laser-
induced fluorescence spectrum. The calibration lamp (thorium
hollow cathode) provides spectral lines for wavelength
calibration
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Fig. 11.50a,b. Laser-induced fluorescence. (a) Level scheme.
(b) Fluorescence spectrum of the Na2 molecule, emitted from
the selectively excited level B1Πu (v′ = 6, J ′ = 27)

Condon factors for transitions into high vibrational
levels of the electronic ground state are sufficiently
large (this depends on the excited upper vibrational le-
vel), the vibrational levels in the electronic ground state
can be measured up to the dissociation energy. This
allows a very accurate determination of the potential
curve [11.27].

The total fluorescence intensity (without dispersion
by a spectrometer) can be measured as a function of the
wavelength of the exciting laser (Fig. 11.51). In this case
it is just used for monitoring the absorption, because
each absorbed photon creates a fluorescence photon
if other deactivation processes of the excited level (for
instance collision-induced radiationless transitions) can
be neglected. This excitation spectroscopy is a very
sensitive version of absorption spectroscopy, as can be
seen from the following estimation:
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Fig. 11.51. Level scheme and experimental arrangement for
fluorescence excitation spectroscopy

Assume that ṅa photons per s are absorbed. The
fluorescence photons, imaged onto the cathode of
a photomultiplier, create ṅpe photoelectrons per se-
cond. With the quantum efficiency of the photocathode
ηph = ṅpe/ṅfl, the rate of absorbed laser photons ṅa,
the fluorescence quantum yield ηfl = ṅfl/ṅa, the geo-
metrical collection efficiency δ of the fluorescence
photons onto the photocathode, the measured rate of
photoelectrons is given by the signal

S = ṅpe = ṅaηflηphδ . (11.83)

The absorption rate

ṅa = NkσkinL∆x (11.84)

depends on the number density Nk of molecules in the
absorbing level 〈k|, the absorption cross section σki , the
number nL of laser photons incident per s and cm2 onto
the sample and the absorption path length ∆x.

EXAMPLE

With a quantum efficiency ηph = 0.2 of the multiplier
photocathode, a collection efficiency of δ= 0.1, which
demands a collection optics for the fluorescence that
covers a solid angle of 0.4π, a fluorescence yield ηk = 1
for the excited level 〈k| and a laser photon flux of NL =
3×1018/s that corresponds to a laser power of 1 W
at λ= 500 nm, an absorption rate na = 104/s (which
means a relative absorption of the laser of ∆IL/IL =
3×10−15) gives a photoelectron rate of npe = 200/s.
If the dark current of the photomultiplier is npe(0)=
50, this gives a signal to background ratio of 4, which
demonstrates that relative absorptions of less than 10−15

can still be detected. This represents a much higher
sensitivity than any direct absorption measurement!

Fig. 11.52. Efficient collecting system for laser-induced fluo-
rescence, consisting of an elliptical mirror in the upper half
and a spherical mirror in the lower half of the plane

The collection efficiency for fluorescence photons
can be enlarged by an elliptical mirror arrangement
(Fig. 11.52). If the intersection A of laser and molecular
beams is placed in one focal point of the ellipsoid, the
fluorescence is imaged into the second focal point B
where an optical fiber bundle transmits it either di-
rectly to the photomultiplier or to the entrance slit of
the spectrometer.

11.5.6 Ionization Spectroscopy

The most sensitive detection technique is ionization
spectroscopy. Here a laser is tuned through the spec-
trum of interest and excites for each absorbing transition
a selected upper level. Differently from fluorescence-
excitation spectroscopy, here not the fluorescence is
monitored, but the molecule in the excited level is io-
nized by a second laser (Fig. 11.53). If this laser is
sufficiently intense, the ionizing transition can be sa-
turated, which means that every excited molecule is
ionized before it can emit a fluorescence photon or
can be deactivated by collisions. The ions are col-
lected by electric fields, accelerated and imaged onto
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Fig. 11.53a,b. Ionization spectroscopy. (a) Level scheme for
resonant twp-photon ionization. (b) Experimental setup for
photo-ionization in a molecular beam

the cathode of an open ion multiplier. This is a de-
vice that is quite similar to a photomultiplier. Only
the photocathode is replaced by a metal cathode,
where the ions, impinging with energies of a few keV,
produce electrons by ion bombardment. These elec-
trons are further accelerated and multiplied like in
a photomultiplier.

With an optimum ion collecting system design, each
ion produced through photoionization, can be imaged
onto the ion multiplier and produces a voltage pulse at
the multiplier output that can be counted.

If the first laser with wavelength λ1 is tuned through
the spectral region of interest and the second laser has
a fixed wavelength λ2, the measured ion rate Nion(λ1)

essentially gives the absorption spectrum α(λ1) of tran-
sitions from the absorbing levels in the electronic
ground state to the levels excited by laser L1. The sen-
sitivity of this method is, however, higher by several
orders of magnitude than in absorption spectroscopy,
where the attenuation of the transmitted laser intensity
is monitored.

In favorable cases, single atoms or molecules can be
detected [11.28].

The number of ions produced per second is
determined similarly to (11.84) by

Ṅion = Niσi I ṄL2 , (11.85)

where Ni is the stationary population of the excited level
〈i| and d(NL)/dt is the photon flux of laser L2 incident
on the molecules in level 〈i|.

The stationary density Ni of molecules in level 〈i| is
determined from the balance between the excitation and
depopulation processes. If Ri is the total relaxation pro-
bability of the excited level 〈i| (besides the ionization

probability PiI = σi I NL2), we obtain

dNi

dt
= Nkσki ṄL1− Ni(Ri +σi I ṄL2)= 0

⇒ Ni = Nk
σki · ṄL1

Ri +σi I ṄL2
. (11.86)

For a stationary population Ni of molecules in the ab-
sorbing level 〈k| the refilling rate must be equal to the
excitation rate ṅa. This can be achieved either by the
relaxation processes of other levels into level 〈k| or by
a flow of molecules into the excitation volume.

This gives for the measured ion rate

Ṅion = Nk
σki ṄL1

1+ Ri/(σi I ṄL2)
. (11.87a)

For (σi I ṄL2)� Ri the ion rate becomes

Ṅion = Nkσki ṄL1 = ṅa (11.87b)

and the measured signal

S = Ṅionδη (11.87c)

becomes for δ = η= 1 equal to the rate ṅa of ab-
sorbed photons on the transition k → i. Here δ is the
collection efficiency of the ions onto the multiplier ca-
thode and η the detection efficiency of the multiplier for
one impinging ion.

With proper ion collecting optics, δ= 1 can be re-
ached. For ions with kinetic energies of several keV
the multiplier efficiency is η= 1. If the second laser is
sufficiently intense, PiI � Ri . Then (11.87c) gives for
δ= η= 1 : SI = ṅa. This means that every photon of the
first laser, absorbed on the transition k → i is converted
into a signal pulse.

Under favorable conditions every absorbed pho-
ton can result in a signal count. With sufficiently
large laser intensities this implies that single
atoms or molecules can be detected.

EXAMPLE

Assuming an absorption cross section σki = 10−14 cm2,
a stationary density N = 109 cm−3 (corresponding to
a gas pressure of 10−7 mbar). If 0.1% of all mo-
lecules are in the absorbing level 〈k| the density
of absorbing molecules is Nk = 106 cm−3 and the
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path length is ∆x = 1 cm, the absorption coefficient
is α = Nkσki = 10−8/cm, which means that 10−8 of
all incident photons are absorbed. When the number
of photons per s of the first laser is ṄL1 = 3×1016

(10 mW), we obtain na = 3×108 s−1. Under stationary
conditions this absorption rate must be compensated for
by an equal refilling rate. In a gas at room temperature
the mean molecular velocity is about 500 m/s = 5×
104 cm/s. At a density of 106 cm−3 absorbing mo-
lecules, the refilling rate could even compensate
a depopulation rate of 1010 s−1 in a volume of 1 cm3.

11.5.7 Laser Spectroscopy in Molecular Beams

In many cases, spectral resolution is limited by the
Doppler width of the absorption lines. This limitation
often prevents the recognition of finer details in the
spectrum, such as hyperfine splittings, Zeeman split-
tings in weak external fields or the rotational structure
in molecular spectra. Doppler-free techniques that can
overcome the limitations set by the Doppler width
are then demanded for getting the full information
from atomic or molecular spectra. We will discuss
in the following sections some of these Doppler-free
techniques.

An elegant way to reduce the Doppler width
is the reduction of the velocity distribution of
atoms or molecules in collimated molecular beams
(Fig. 11.54).

Molecules effusing from a reservoir through a small
hole A into a vacuum chamber have to pass through
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Fig. 11.54. Laser spectroscopy in a collimated molecular
beam

a narrow slit with width b at a distance d from A down-
stream in the molecular beam in order to reach the
interaction region with the laser beam. If we choose the
molecular beam axis as the z-axis and place the slit in the
y direction, the vx component of the molecules passing
through the slit is reduced by the geometrical factor

vx ≤ (b/2d)v= vz tan ε , (11.88)

where v= (8kT/πm)1/2 is the mean velocity of partic-
les with mass m, when the temperature of the reservoir
is T , vz is the velocity component parallel to the beam
axis and ε with tan ε= b/2d is the collimation angle.

If the beam of a tunable single mode laser crosses
the molecular beam in x direction (i. e., perpendicular to
the molecular beam axis) behind the slit, only molecu-
les within the narrow interval vx ≤ (b/2d)v contribute
to the absorption, which means that the width ∆ν of
the absorption line is reduced compared to its Doppler
width in a gas at thermal equilibrium (Fig. 11.54).

EXAMPLE

With b = 1 mm, d = 100 mm ⇒ tan ε= 5×10−3. In-
stead of a typical Doppler width of∆νD = 1 GHz in the
optical range, the line width is now reduced by a factor
of 200 to ∆νred

D = 5 MHz. This is already in the range
of the natural line width (see Sect. 7.4.1).

The quantitative treatment starts with the density
of molecules in the beam with velocities v within the
interval dv

n(v, r, θ)= C
cos θ

r2
nv2 e−v/vp)

2
dv , (11.89)

where the normalization factor C = (4/√π)/v3
p assures

that the total density n of the molecules is

n =
∫

n(v) dv

and vp = (2kT/m)1/2 is the most probable velocity. The
angle θ is measured against the z-axis. The spectral
profile of the absorption coefficient is

α(ω, x)=
∫

n(vx, x)σ(ω, vx) dvx . (11.90)

With vx = (x/r)v⇒ dvx = (x/r)dv and cosΘ = z/r
(Fig. 11.55) we derive from (11.89) for the molecular
density

n(vx, x)dvx = C ·n z

x3
v2

x e−[(rvx/xvp)
2] dvx . (11.91)
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Fig. 11.55. Sub-Doppler laser
spectroscopy in a collimated mo-
lecular beam, where the total fluo-
rescence is measured by PM 1 and
the dispersed fluorescence spec-
trum by PM 2. The two photon-
induced ions are mass selected by
the quadrupole mass spectrome-
ter QMS and are detected by an
ion-multiplier

The absorption cross section σ(ω, vx) is a Lorentzian
profile, Doppler-shifted by k ·vx (see Sect. 7.4.2)

σ(ω, vx)= σ0
(γ/2)2

(ω−ω0− kvx)2+ (γ/2)2 . (11.92)

Inserting (11.91) and (11.92) into (11.90) gives, with
dvx = dω/k, the spectral profile of the absorption
coefficient

α(ω)= a
∫

e
−
[

c(ω−ω′0)
vp sin εω′0

]2

(ω−ω′0)2+ (γ/2)2
dω′0 (11.93)

with ω′0 = ω0(1+vx/c).
This is the convolution of a Lorentzian and a Gaus-

sian line profile, which is called a Voigt profile
(Fig. 7.22). The Gaussian profile has a width

∆ωred
D · sin ε ,

reduced by a factor sin ε against the Doppler width∆ωD

in a gas at thermal equilibrium.
High resolution absorption spectra can be measured

by monitoring the total fluorescence Ifl(λL) as a func-
tion of the laser wavelength (excitation spectroscopy)
or by resonant two-photon ionization, where the ions
are extracted by an electric field from the intersec-
tion volume of molecular and laser beams onto the ion
multiplier. In Fig. 11.55, PM1 measures the total fluore-
scence, while PM2 behind a monochromator monitors
the dispersed fluorescence at a fixed laser wavelength.

(I,M)

(3,–2)

(3,–1)
(3,0) (3,1)

(3,2)

(3,–3)

(3,3)

(1,–1) (1,0) (1,1)

63 MHz

Fig. 11.56. The hyperfine components of the rotational line
R(23) in the system a3Π0 ← X1Σg of the Na2 molecule,
measured in a collimated molecular beam. The components
are labelled by the nuclear spin quantum number I and the
spin projection quantum number M [11.29]

If the two-photon ionization occurs in the ion source
of a mass spectrometer the ions can be mass selected.
This is very helpful for the assignment if many diffe-
rent masses (e. g., isotopes or different cluster sizes in
a cluster beam) are present.
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As an illustration of the attainable spectral re-
solution Fig. 11.56 shows the hyperfine structure of
a rotational transition of the Na2 molecule in the elec-
tronic transition from the X1Σg ground state into the
mixed A1Σu−a3Πu upper state, where the two states
are mixed by spin-orbit coupling. For symmetry reasons
only components with nuclear spin quantum number
I = 1 and 3 are possible in a rotational level with even
rotational quantum number J ′ = 24.

11.5.8 Nonlinear Laser Spectroscopy

Several spectroscopic techniques that achieve sub-
Doppler resolution are based on the nonlinear
interaction of molecules with the laser radiation. When
a plane electromagnetic wave passes in x direction
through an absorbing gas, we saw in Sect. 11.1 that
the attenuation dI of the intensity is related to the
absorption coefficient α by

dI =−αI dx . (11.94)

The absorption coefficient

α(ω)= [Nk − (gk/gi)Ni]σ(ω)=∆N ·σ(ω)
(11.95)

is determined by the population difference ∆N and the
absorption cross section σ . This gives for (11.94) the
relation

dI =−∆N ·σ(ω) · I · dx . (11.96)

For sufficiently small intensities I the population den-
sities Ni and Nk are not much affected by absorption
transitions, because relaxation processes can refill the
population Nk of the absorbing level (Fig. 11.57a). In
this case the absorption coefficient α is independent of
the intensity I and integration of (11.94) yields Beer’s
law of linear absorption

I = I0 e−αx = I0 e−∆Nσx . (11.97)

For larger intensities the absorption rate can exceed the
relaxation rates refilling the absorbing level 〈k|. This
means that the population Nk decreases with increasing
intensity I and therefore the absorption coefficient also
decreases. Instead of (11.96) we have to write

dI =−∆N(I) · I ·σ · dx . (11.98)

The change dI of the intensity and therefore the absor-
bed power depends in a nonlinear way on the incident
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Fig. 11.57a–d. Saturation of a molecular transition. (a) Level
scheme (b) Population difference ∆N . Intensity of laser-
induced fluorescence (c) as a function of laser intensity
(d) measuring IFl(IL)

intensity. We can write the intensity dependent po-
pulation of the absorbing level 〈k| as a power series

Nk = Nk0+ dNk

dI
I + 1

2

d2 Nk

dI2
I2+ . . . (11.99a)

and a corresponding relation for the upper level 〈i|,
where dNk/dI< 0 and dNi/dI> 0.

For the population difference we obtain (Fig. 11.57b):

∆N(I)=∆N0+ d(∆N)

dI
I + 1

2

d2(∆N)

dI2
I2+ . . . .

(11.99b)

Inserting this into (11.98) gives

dI =−[∆N0σI + d

dI
(∆N)I2σ + . . . ] dx .

(11.100)

The first term describes the linear absorption, the second
term is quadratically dependent on I and diminishes the
absorption because d(∆N)/dI< 0.

The nonlinear absorption can be demonstrated by
measuring the intensity of the laser-induced fluore-
scence Ifl(IL) as a function of the laser intensity
(Fig. 11.57c). One can see that at first Ifl increases
linearly with IL, but for higher laser intensities the
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increase is less than linear, because the absorption coef-
ficient decreases and therefore the relative absorption of
the laser intensity dIL/IL. For large laser intensities the
fluorescence intensity approaches a constant value (sa-
turation), which is limited by the rate of the relaxation
processes refilling the absorbing level 〈k|.

This saturation of the absorption can be used for
Doppler-free spectroscopy, as will be outlined in the
next section.

11.5.9 Saturation Spectroscopy

We consider a sample of atoms or molecules in the
gas phase with a Doppler-broadened absorption profile
around the center frequency ω0. When a monochro-
matic laser beam with frequency ω passes in the x
direction through the sample, only those molecules that
are Doppler-shifted into resonance with the laser fre-
quency can absorb the laser photons. Since the Doppler
shift is ∆ω= kvx , these molecules must have velocity
components vx that satisfy the relation

ω= ω0(1+ kvx) . (11.101)

Because of saturation, the population Nk in the absor-
bing level of these molecules decreases and Ni increases
accordingly. In the velocity distribution Nk(vx) of all
molecules, a narrow dip is burnt while a corresponding
peak appears in the distribution Ni(vx) of molecules in
the upper level (Fig. 11.58a).
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Fig. 11.58. (a) Velocity-selective saturation. (b) Dips in the
population difference ∆N(vx) for ωL 	= ω0 (c) Lamb-dip
at ω= ω0 of the Doppler-broadened absorption profile of
molecules in a standing laser wave

If the laser beam is reflected by a mirror back into
the sample, its k-vector is reversed and molecules with
opposite velocity components interact with the reflec-
ted beam (Fig. 11.58b). Now for ωL 	= ω0 two holes
are burnt into the velocity distribution of the inversion
∆N(vx), i. e., two different velocity classes interact with
the two laser beams.

When the laser frequency ωL is tuned over the
Doppler-broadened absorption profile the two holes
move towards each other when ωL approaches the
center frequency ω0 of the molecular transition. For
ωL = ω0, only one velocity class in the interval dvx

around vx = 0 interacts with both laser beams. The mo-
lecules experience the double intensity and therefore
the population inversion ∆N will be more decreased
for ωL = ω0 than for ωL 	= ω0. The absorption coeffi-
cient α(ω) with a Doppler-broadened profile, therefore
has a dip around the center frequency ω0 (Fig. 11.58c).
This dip, caused by saturation of the population, is cal-
led a Lamb dip after Willis Lamb (Nobel Prize, 1955),
who explained this saturation effect quantitatively.

The width of the Lamb dip equals the natural line
width of the molecular transition, broadened by
saturation and collisions. It is about two orders of
magnitude smaller than the Doppler width.

This narrow Lamb dip is used for Doppler-free spec-
troscopy (called saturation or Lamb dip spectroscopy).
Assume two transitions from a common level 〈c| into
two slightly split levels 〈a| and 〈b|. If the splitting
is smaller than the Doppler width, the two Doppler-
broadened spectral lines cannot be resolved. However,
the two Lamb dips of these transitions are well separated
(Fig. 11.59).

A possible experimental arrangement is shown in
Fig. 11.60). The beam of a wavelength-tunable laser
is split by beam splitter BS into a strong pump beam
and a weak probe beam that pass into opposite direc-
tions through the sample cell. The detector measures
the transmitted probe beam intensity as a function of
the laser frequency ωL. Each time the laser frequency
coincides with the center frequency of a molecular tran-
sition, a Lamb peak appears in the transmitted intensity,
because the absorption exhibits a dip at this frequency.

If the absorbed laser power is measured instead
of the transmitted intensity (for instance by monito-
ring the laser-induced fluorescence) the Lamb dips
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Fig. 11.59. Overlapping Doppler profiles of two close
transitions with a clear separation of their Lamb dips

can be immediately seen. This is demonstrated in
Fig. 11.61a, which shows the unresolved Doppler-
broadened profiles of 15 hyperfine components of
a rotational transition in the visible absorption spectrum
of the iodine molecule I2 with well-resolved Lamb dips.

The Doppler-broadened background can be elimi-
nated when the pump beam is periodically chopped.
Now a lock-in detector measures the difference of the
transmitted probe intensity with the pump beam on and
off. The result is a Doppler-free spectrum (Fig. 11.61b)
with a better signal-to-noise ratio.

Even with low-power lasers, saturation spectros-
copy can be performed when the sample is placed

Fig. 11.60. Possible experimental setup for saturation
spectroscopy
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Fig. 11.61a,b. Saturation spectrum of the hyperfine com-
ponents of a rotational transitions of the I2 molecule.
(a) Doppler-broadened overlapping absorption profiles with
small Lamb dips. (b) Elimination of the Doppler-broadened
background by chopping the pump beam

inside the laser resonator where the intensity is much
higher than outside the resonator (Fig. 11.62). The stan-
ding wave inside the resonator can be composed of
a back and forth traveling wave. Therefore the con-
ditions for producing a Lamb dip are automatically
fulfilled. Either the laser-induced fluorescence from
the sample molecules can be monitored, which exhi-
bits the Lamb dips, or the laser intensity transmitted
through one of the resonator mirrors is measured, which
shows corresponding narrow peaks in the laser output
power at the center frequencies of the absorption li-
nes of the sample molecules. If the resonator length is
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Fig. 11.62. Saturation spectroscopy inside the laser resonator
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Fig. 11.63. Derivative saturation spectrum of the iodine tran-
sition B3Πu (v

′ = 58, J ′ = 99)← X1Σg (v
′′ = 1, J ′′ = 98)

with 21 hfs components

R29 F1(2) 100 kHz

R29 F2(1)
ν

Fig. 11.64. Hyperfine and super hyperfine structures of
a rotational-vibrational transition in SF6 [11.30]

modulated while the laser wavelength is scanned, the
first derivative of the Lamb dips or peaks is measu-
red with a lock-in, tuned to the modulation frequency.
In Fig. 11.63 such a derivative spectrum of the rota-
tional transition B3Πu (v

′ = 58, J ′ = 99) ← X1Σ+
g

(v′′ = 1, J ′′ = 98) in the I2 molecule is shown with its
21 hyperfine components.

The attainable high spectral resolution is demon-
strated in Fig. 11.64, which shows two hyperfine
components F1 and F2 in the spectrum of SF6, where
each of the two components is further split into “super-
hyperfine components,” due to Coriolis effects and
spin-rotation couplings in the rotating molecule. The
spectral resolution is here better than 3 kHz [11.30]!

11.5.10 Doppler-Free Two-Photon Spectroscopy

For sufficiently strong laser intensities, an atom or
molecule can simultaneously absorb two photons �ω1

and �ω2 from two lasers, or two photons �ω1 from
the same laser. Depending on the relative orientati-
ons of the two-photon spins, optical transitions with
∆L = 0 or ∆L =±2 are induced. Two-photon transi-
tions are weaker by several orders of magnitude than
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Fig. 11.65a–c. Two-photon absorption (a) with different pho-
ton energies, (b) with ω2 = ω1. (c) Resonant two photon
transitions with a real intermediate level Em

allowed one-photon transitions. Therefore, lasers with
sufficiently high intensities are demanded for their ob-
servation. The probability of two-photon absorption is
greatly enhanced if a molecular level Em is close to the
energy Ek +�ω1 or Ek +�ω2 (Fig. 11.65).

For a two-photon transition from the initial lower
level 〈k| to the final level 〈 f | in a molecule at rest, the
energy conservation demands

E f − Ek = �(ω1+ω2) . (11.102)

When the molecule moves with velocity v, the
frequency ω of the light wave is shifted in the mole-
cular frame to ω′ = ω−k ·v. The resonance condition
(11.102) now becomes

E f − Ek = �(ω1+ω2)−�v(k1+k2) . (11.103)

If the two photons come from two beams of the same
laser traveling in opposite directions, we have the
situation that ω1 = ω2 and k1 =−k2. This has the con-
sequence that the last term in (11.103) containing the
velocity of the molecule becomes zero.

The two-photon absorption becomes, in this case,
independent of the molecular velocity, meaning
that all molecules within the velocity distribution
contribute to the two-photon absorption, which is
now Doppler-free.

The experimental arrangement is shown in
Fig. 11.66. The sample is irradiated by the focus-
sed beam of tunable dye laser and by the focussed
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Fig. 11.66. Experimental arrangement for Doppler-free two-
photon absorption with fluorescence detection

beam reflected by the spherical mirror M. The two-
photon transition is monitored by the laser-induced
fluorescence and emitted from the upper level E f into
intermediate levels Em that are connected to 〈 f | by al-
lowed one-photon transitions. A Faraday-rotator acts as
an optical diode and prevents the reflected beam from
passing back into the laser, because this could cause
instabilities to the laser.

When the laser frequency ω is tuned over the two-
photon resonance, the signal consists of a narrow peak
(produced by two photons with opposite k vectors)
and a Doppler-broadened background, produced by two
photons from the same beam with parallel k vectors
(Fig. 11.67). The Doppler width is twice as large as
that of a one-photon transition with frequency ω. The
probability that the two photons come from opposite
beams is twice as large as that for two photons from the
same beam. This implies that twice as many molecules
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Fig. 11.67. Doppler-free line profile of two-photon absorption
with Doppler-broadened background, which has here been
exaggerated
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Fig. 11.68. Measurement of the isotope shift of the
stable lead isotopes measured with Doppler-free two-
photon spectroscopy at λexc = 450 nm and monitored via
fluorescence [11.31]

contribute to the narrow peak than to the broad back-
ground. The narrow peak is therefore 2×∆ωD/∆ωn

times as high as the background. Since the Doppler
width ∆ωD is about two orders of magnitude larger
than the natural line width ∆ωn the background can be
neglected.

In Fig. 11.68 the Doppler-free spectrum of
lead atoms on the transition 7p3P0 ← 6p23P0 at
λ= 450.4 nm illustrates the high spectral resolution
allowing the measurement of the isotope shifts [11.31].

More extensive representation of two-photon
spectroscopy can be found in [11.32].

11.6 Raman Spectroscopy

Raman spectroscopy has proved to be a powerful tool
for investigating the vibrational structure of molecules
in their electronic ground state. We will see that this
method is often complementary to infrared spectros-
copy. It has seen a great renaissance since lasers have
been used as intense light sources, which have vastly
increased its possibilities.

11.6.1 Basic Principles

Raman spectroscopy is based on the inelastic scatte-
ring of light by molecules and was first discovered by
Chandrasekhara Raman in 1928 (Nobel Prize 1930).
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In the context of photons we can describe it as fol-
lows. A photon �ω0 collides with a molecule in level
Ei (Fig. 11.69a), transfers part of its energy to the inter-
nal energy of the molecule, which is excited to the final
level Ef, and the scattered photon �ωs has less energy,
i. e., its frequency has decreased:

�ω0+M(Ek)→ M∗(Ef)+�ωs (11.104)

with �(ω0−ωs)= Ef− Ei > 0 .

The energy difference ∆E = Ef− Ei may appear as
vibrational, rotational or electronic energy of the mo-
lecule (Fig. 11.69b). The inelastic scattered radiation is
called Stokes radiation.

If the photon �ω0 is scattered by an excited mo-
lecule, super-elastic scattering may occur, where the
excitation energy is transferred to the scattered photon,
which now has a higher energy than the incident photon
(Fig. 11.69c). This super-elastically scattered radiation
is called anti-Stokes radiation.

In the energy level scheme of Fig. 11.69 the interme-
diate state Ev = Ei +�ωi during the scattering process
is often formally described as a virtual state, which, ho-
wever, is not a real stationary eigenstate of the molecule.
If this virtual state coincides with one of the molecu-
lar eigenstates one speaks of the “resonance Raman
effect”.

In the spectrum of the scattered light, different fre-
quencies may appear: the elastically scattered radiation,
called Rayleigh-scattering, the inelastic Stokes contri-

Stokes Anti-
Stokes

Rayleigh

0ν ν

Fig. 11.70. Schematic spectrum of elastic Rayleigh scattering
and Raman scattering with Stokes and anti-Stokes lines

bution of the Raman scattering and the super-elastic
anti-Stokes lines (Fig. 11.70).

The classical description of the Raman effect starts
with the electric dipole moment

p(E)= p0+ α̃E , (11.105)

written as the sum of an eventual permanent moment p0

and a field-dependent contribution pind = α̃E, where α̃
is the electric polarizability, which is a tensor of rank
two with components αij .

The dipole moment and the polarizability can both
depend on the nuclear displacements qn of the vibrating
molecule. For small displacements from the equilibrium
position we can expand the two quantities into the
Taylor series

p(q)= p(0)+
Q∑

n=1

(
∂ p
∂q

)
0

qn + . . . (11.106a)

αij(q)= αij(0)+
Q∑

n=1

(
∂αij

∂qn

)
0

qn , (11.106b)

where Q = 3N −6 (or 3N −5 for linear molecules) is
the number of normal vibrational modes and p(0) and
α(0) represent dipole moment and polarizability at the
equilibrium position q = 0.

If we describe the nth normal vibration with

qn(t)= qn0 cos(ωnt) (11.107a)

and the electric field amplitude as

E(t)= E0 cosωt . (11.107b)
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We can insert (11.106–11.107) into (11.105) and obtain
for the oscillating dipole moment

p(t)= p0+
Q∑

n=1

(
∂ p
∂qn

)
0

qn0 cos(ωnt) (11.108)

+αij(0)E0 cosωt

+ 1

2
E0

Q∑
n=1

(
∂αij

∂qn

)
0

qn0[cos(ω+ωn)t

+ cos(ω−ωn)t] .
The first term represents the permanent dipole moment
of the molecule. The second term is responsible for the
infrared spectrum, where the intensities of the transiti-
ons depend on the derivatives ∂p/∂qn (see Sect. 9.5.1).
The third term is responsible for the elastic Rayleigh
scattering, while the last term describes the Raman
scattering, where the intensities of the Raman lines de-
pend on the derivatives ∂α/∂qn of the polarizability.
In Fig. 11.71 the dependences ∂p/∂q and ∂α/∂q are
shown for the three normal vibrations of the linear CO2

molecule. The change of the dipole moment with the vi-
brational displacements is only nonzero for the bending
vibration ν2 and for the asymmetric stretch vibration
ν3. These normal modes are therefore called infrared
active. On the other hand the polarizability α changes
for the symmetric stretch vibration ν1, which is cal-
led Raman active. This shows that infrared and Raman
spectroscopy supplement each other.

There are many molecules with vibrational modes
that are infrared as well as Raman active. However,
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Fig. 11.71. Dependence ∂µ/∂q of dipole moment and ∂α/∂q
of polarizability on the normal vibrations of the CO2 molecule

there are always vibrations that are only either infrared
or Raman active.

11.6.2 Coherent Anti-Stokes Raman Spectroscopy

Even with strong pump beams the intensity of spon-
taneously scattered Raman light is often very weak.
Here a new technique is useful, which is based on
the coherent amplification of molecular vibrations by
interaction with two incident laser waves. The fre-
quencies ω1 and ω2 of the two lasers are chosen in
such a way that ω1−ω2 equals the vibrational fre-
quency ωvib of a Raman active normal vibration of
the molecule. This technique is called coherent anti-
Stokes Raman spectroscopy (CARS). Its principle is
illustrated in Fig. 11.72. Instead of the spontaneously
scattered Stokes radiation induced by the pump wave
with ω1, the downward transition from the virtual le-
vel 〈v| to the excited vibrational level Ef is now caused
by stimulated emission induced by the second laser with
ω2 = ω1− Ef/�. This produces a much larger popula-
tion in level Ef than could be achieved with spontaneous
Stokes radiation. Starting from level Ef a second photon
�ω1 from laser L1 induces the anti-Stokes radiation with
frequencyωa = 2ω1−ω2 withω2 =ωs. The anti-Stokes
wave is emitted as a coherent wave if the three waves
are in phase. This can be achieved if the phase-matching
condition

ka = 2kL1−ks (11.109)
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is fulfilled (Fig. 11.72b). This condition represents the
conservation of momentum for the four participating
photons. In gases, where the dispersion is small, all vec-
tors have to be parallel, while in liquids or solids, where
dispersion cannot be neglected, the phase-matching
condition requires the angle α between the pump beam
and the anti-Stokes wave. The two incident laser beams
are also not collinear, but have different directions with
an angle β between them.

A possible experimental arrangement for CARS
is shown in Fig. 11.73. The sample cell is placed in-
side the resonator of a single-mode argon ion laser,
which delivers the pump beam with ω1. The output
beam of a tunable dye laser is coupled collinearly to
the beam from L1 into the sample cell by the prism.
The CARS signal is emitted through the resonator
mirror M2 and a spectral filter suppresses all other
frequencies.

CARS spectroscopy is finding more and more app-
lications in molecular spectroscopy, in environmental
sciences and also for the solution of technical pro-
blems. First of all it gives information about the
vibrational-rotational structure of molecules for vi-
brational modes that are not accessible for infrared
spectroscopy (Fig. 11.74). Secondly the population dis-
tribution N(v, J) of vibrational-rotational levels can be
inferred from the intensities of the CARS signals. This
allows the determination of the temperature of a gas
with high spatial resolution. One example is the spatial
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Fig. 11.73. Schematic arrangement of a cw CARS spectrome-
ter with intracavity excitation of the sample [11.33]
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temperature distribution in flames, which is an indica-
tor of the efficiency of chemical reactions in the flame.
Its knowledge can serve for the optimization of the bur-
ning process and the minimization of the emission of
pollutant gases.

The advantages of CARS can be summarized as
follows:

• The intensity of the anti-Stokes signal is by far larger
than in spontaneous Raman spectroscopy.

• The spectral resolution is only limited by the band-
width of the two incident lasers. If these are single
mode lasers the resolution is at least two orders
of magnitude higher the for the Doppler-limited
spontaneous Raman spectroscopy.

• Since the magnitude of the CARS signal is propor-
tional to the product of the intensities of the two
incident lasers the spatial resolution can be opti-
mized by focusing the two laser beams into the
sample.
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• The anti-Stokes wave forms a highly collimated
beam and the detector can therefore be far away from
the interaction region where the sample is placed.
This diminishes spontaneous background, which is
particularly important if spectroscopy in hot gases
(e. g., furnaces) is performed, where the strong con-
tinuous black body radiation overlaps the signal.
The intensity of this background radiation decrea-
ses with the square of the distance from the sample
contrary to the collimated CARS beam.

The disadvantage of CARS is the necessarily large ex-
perimental expenditure with two lasers, which must be
single mode, if the spectral resolution should be in the
sub-Doppler region.

With pulsed lasers time dependent processes in
molecules and their influence on the change of level
populations can be studied by CARS. One example is
the vibrational distribution and its change with time in
biological molecules after excitation by photons, where
the pathway of energy transfer and isomerization of the
initially excited species can be followed with pico- to
femtosecond resolution. The investigation of these pro-
cesses is, for instance, important for the understanding
of photosynthesis or of the visual process in our eyes
and of the different steps of energy transfer from the
photoexcitation of the antenna molecules in retina cells
to the electrical pulse transmitted to the brain [11.35].

11.7 Spectroscopy
with Synchrotron Radiation

Most processes induced by visible light involve excita-
tion of valence electrons of atoms or molecules. In order
to excite inner shell electrons into free places in outer
shells, ultraviolet or even X-ray photons are necessary.
This inner shell excitation of molecules often results
in fragmentation of the molecules. The investigation of
the different fragments and their energies as a function
of the excitation energy gives valuable information on
the coupling between inner shell electrons (which ge-
nerally do not contribute to the molecular binding) and
electrons in binding orbitals.

In atomic physics the calculations of electron ener-
gies in inner shells require relativistic corrections and
correlation effects are much more dominant than in
valence shells.

For a long time, intense radiation sources were mis-
sing in this spectral range. With the development of
synchrotrons and storage rings this deficiency has been
removed and the number of experiments in atomic and
molecular physics using synchrotron radiation sources
has vastly increased.

The basic physics of synchrotron radiation can be
explained by relativistic electrodynamics. Every accele-
rated charged particle emits radiation (see Sect. 7.5.1).
In a synchrotron, electrons are accelerated to energies of
several GeV (109 eV) and circulate with velocities close
to the velocity of light (v≈ c) in an evacuated ring stabi-
lized by a magnetic field. The intensity and the spectral
distribution of the synchrotron radiation depend on the
number of circulating electrons, their energy and the ra-
dius of curvature of their path. In Fig. 11.75 the spectral
distributions for the synchrotron radiation of a single
electron are given for different energies of the electron
and for a radius R = 31.7 m (which is the radius of the
storage ring DORIS in Hamburg). This demonstrates
that, e. g., for electron energies of 4 GeV the maximum
of the spectral distribution lies at λ= 0.1 nm, i. e., in
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Fig. 11.76a,b. Schematic il-
lustration of emission and
polarization characteristics
of synchrotron radiation.
(a) View from above the
plane of the electron path.
(b) Intensities of the pola-
rization components parallel
and perpendicular to this
plane as a function of the
emission angle ψ against
this plane

the X-ray region, but extends from 0.02−100 nm. The
synchrotron radiation covers the whole region from the
extreme UV into the near UV and even up to the visible
range.

Typical currents in storage rings are about 1A,
which corresponds to 6×1018 electrons passing through
a cross section of the ring per second.

At these highly relativistic energies the synchro-
tron radiation is emitted from any point along the ring
into a small solid angle around the tangent to the ring
(Fig. 11.76). It is concentrated in the plane of the ring
and is mainly polarized parallel to this plane, while
a weaker component emitted under a small angle ψ
against the plane, is polarized perpendicular to the plane.

For most experiments the broad spectral continuum
of the synchrotron radiation has to be dispersed by
a monochromator. The narrow beam of the synchro-
tron radiation is focused by a torodial mirror onto the
entrance lit of the monochromator (Fig. 11.77). A sphe-
rical grating (Rowland grating) acts as a wavelength
disperser and focusses the desired wavelength of the
diffracted radiation onto the exit slit. Turning the gra-
ting tunes the wavelength that is imaged onto the exit
slit. Most experiments (e. g., absorption or excitation
spectroscopy) are performed with this monochromized
radiation behind the primary monochromator.

Synchrotron

Electron path

Synchrotron radiation

Vacuum valve

Torodial
mirror

Needle
valve

Gas
inlet

Rowland
grating

Primary
monochromator

Exit slit

Secondary
monochromator
for dispersion
of fluorescence

Photomultiplier
PM2

To vacuum pump

Photomultiplier PM1
for transmitted radiation

Sample
cell

Entrance
slit

Fig. 11.77. Experimental setup for spectroscopy with mono-
chromatic synchrotron radiation with tunable wavelength for
absorption and fluorescence spectroscopy
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11.8 Electron Spectroscopy

Detailed investigations of collisions between electrons
and atoms provide important information about the
energy levels of atoms and the basic mechanisms in
gas discharges or in stellar atmospheres where such
collisions play a major role. In fact, one of the first ex-
periments to prove the quantum-theoretical model of
discrete energy eigenstates of atoms was the Franck–
Hertz experiment (Sect. 3.4.4). Studies of collisions
between electrons and molecules serve to measure
the electron distribution in molecules and to prove
orbital models of theoretical chemistry. In particular,
exchange effects and the correlation between elec-
trons can be tested when spin-polarized electrons are
used as collision partners. Furthermore polarization
effects in the electron shell of atoms and molecules
due to the interaction between the incident electron
and the atomic electrons can be determined by such
experiments.

11.8.1 Experiments on Electron Scattering

When an electron collides with an atom, it can be ela-
stically scattered or it can loose energy by inelastic
collisions or through electron impact ionization.

In elastic collisions only the direction of the elec-
tron momentum p is changed, its amount |p| remains
constant. The momentum transfer depends on the in-
teraction potential between electron and atom (see
Sect. 2.8). If the impact parameter b is larger than the
radius of the atomic electron shell, the interaction po-
tential is that between an induced dipole moment (due
to the polarization of the electron cloud) and a negative
charge (Fig. 11.78) and is therefore proportional to R−4

(Sect. 9.4). For smaller impact parameters, the interac-
tion potential is more complicated and depends on the
radial electron distribution in the atom.

For inelastic collisions, atoms or molecules are ex-
cited into higher energy levels. This excitation can
be determined by measuring the energy loss of the
colliding electron or by detecting the fluorescence emit-
ted from the excited levels (Franck–Hertz experiment).
For sufficiently high energies of the incident electrons,
single or even double ionization can occur:

e−+A → A++2e− , (11.110)

e−+A → A+++3e− .
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Fig. 11.78. Shift of negative electron cloud by the electric
field of a negative charge −q, generating the induced dipole
moment pind = (Q ·d)R̂

The most detailed information can be obtained when
the highest possible energy resolution is achieved. This
demands, that all incident electrons have the same
energy.

Since electrons emitted from a hot cathode have
a thermal velocity distribution they have to be mo-
nochromized. This can be performed by a cylindrical
electrostatic energy selector (Sect. 2.6.3).

All electrons passing through a slit behind the
energy selector (Fig. 11.79), where the two condensor
plates have radii of curvatures R1 and R2 have a kinetic
energy

E0
kin =

1

2
eU/ ln(R1/R2) , (11.111)

which can be varied with the voltage U between the two
electrodes of the cylindrical selector.

The experimental arrangement for electron scat-
tering experiments is illustrated in Fig. 11.80. The

+
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1

S

S

U

R

K

M
127°

Fig. 11.79. Monochromizing electrons, emitted from a ca-
thode K, by a 127◦ electrostatic cylinder condensator



454 11. Experimental Techniques in Atomic and Molecular Physics

Fig. 11.80. Apparatus for measuring inelastic and ionizing
collisions between electrons and atoms with coincidence
detection of scattered and ionized electrons

fluorescence, emitted from the excited atoms, which
cross the electron beam in an atomic beam per-
pendicular to the scattering plane, is monitored by
a photomultiplier. The monochromized incident elec-
trons, scattered by an angle ϑ1, enter the entrance slit
of a second energy selector and are detected by D1.
Measuring the rate of electrons with a defined energy
loss

∆E = E0
kin− E1 ,

and scattered by the angle ϑ1 as a function of the kinetic
energy of the incident electrons, yields the differential
cross section for inelastic collisions that have lead to
the excitation of a defined energy level in the atom.
Varying the voltage U1 at the second energy analyzer
allows one to measure elastic collisions (E1 = E0

kin) as
well as inelastic collisions with any energy loss ∆E.

For ionizing collisions

e−+A → A++2e− ,

a third energy selector is installed that monitors the se-
cond electron scattered by the angle ϑ2 and its kinetic
energy E(2)kin. The two electrons are measured coinci-
dentally. This means that both detectors give an output
signal only if the two signals appear at the same time,
i. e., in a time interval∆t around a time t0. The energy E2

of the second electron is determined by the ionization
energy Eion of the atom and by the energies E0 of the
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Fig. 11.81. Angular distribution N(ϑ2) of electrons in
the process e−+He → He++ e−1 + e−2 with E0 = 100 eV,
E1 = 70 eV, E2 = 5.4 eV, ϑ1 = 15◦ [11.37]

incident electron and E1 of the other scattered electron.
Energy conservation demands that

E0 = Eion+ E1+ E2 . (11.112)

Such coincidence experiments with energy selec-
tion and angular resolution allow the determi-
nation of a threefold differential cross section
d3σ/(dE1 dΩ1 dΩ2). They are experimentally very dif-
ficult but give, on the other hand, the most detailed
information on the ionization process, because they
show at which impact parameter the ionization pro-
bability becomes maximum and what influence the
electrostatic interaction between the two electrons after
the collision has on the angular distribution of the two
electrons. For illustration, the measured angular distri-
butions N1(E1, ϑ1) and N2(E2, ϑ2) of the two electrons
for the electron impact ionization of helium atoms is
shown in Fig. 11.81. The two electrons are detected
in nearly opposite directions (partly due to the post-
collision Coulomb interaction). The angular width of
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the distributions give information on the momentum
distribution of the atomic electron before the collision.

11.8.2 Photoelectron Spectroscopy

When atoms or molecules are irradiated with mono-
chromatic light of frequency ν, a photoelectron can
be emitted if the photon energy hν is larger than the
ionization energy

hν+M → M++ e−(Ekin) (11.113)

with kinetic energy

Ekin = hν− (Eion+ E(M+∗) . (11.114)

The ion M+ can be in its ground state or in bound exci-
ted states M+∗(Ei) (Fig. 11.82). Measuring the kinetic
energy of the photoelectron produced by the known
photon energy hν allows the determination of discrete
energy levels of the ion M+. The rate of photoelectrons
with kinetic energy Ekin gives information on the pro-
bability of exciting these levels and on its photon energy
dependence.
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Fig. 11.82a–c. Photoionisation (a) of an electron in the va-
lence shell of an atom (b) of an inner shell electron with
X-rays (c) of a molecule, where the molecular ion remains in
an excited state
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Fig. 11.83. Experimental arrangement for photoelectron
spectroscopy of solids

As an example of photoelectron spectroscopy of so-
lid metal surfaces, a schematic experimental setup is
shown in Fig. 11.83. The photoelectrons, emitted under
the angle ϑ against the surface normal, are detected af-
ter their energy analysis by a cylindrical electrostatic
energy analyzer. Such measurements give the energy
distribution of the electrons in the metal before the
photon releases them.

In Fig. 11.84 the photoelectron spectrum obtained
after photoionization of CS2 molecules by the He re-
sonance line at λ= 50.8 nm is shown. It illustrates the
excitation of a progression of the bending vibration ν2 in
the CS+2 ion. From the energy loss∆E = hν− E(v2) of
the electrons, the vibrational energies in the molecular

0 2 4 6 8 10

12.5 13.0 13.5 14.0 14.5

∑∑ ∑∑∑∑

2v

Fig. 11.84. Photo electron spectrum obtained after the pho-
toionization of CS2 molecules by photons from a helium
resonance lamp at λ= 50.8 nm [11.38]
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Fig. 11.85. Photoelectron spec-
troscopy in a molecular beam
with monochromized UV radia-
tion and energy analyzer for
the electrons. The atomic beam
is vertical. The nozzle is at
the lower part of the vacuum
chamber

Fig. 11.86. Stepwise ionization of K atoms in an atomic
potassium beam by two lasers and mass selective detection of

the anions M− produced by detachment of the photoelectron
to molecules M in a crossed beam arrangement [11.39]

ion can be inferred. The energy distribution Npe(∆E)
also gives information on the transition probability for
populating the different vibrational levels |v2〉 in the
process.

CS2+hν→ CS+2 (v2)+ e−(Ekin) .

For electron spectroscopy of atoms or molecules in
the gas phase, collimated molecular beams that are cros-
sed perpendicularly by the photon beam are generally
used. The photon energy from a helium discharge lamp
that emits a spectral continuum is selected using a con-
cave grating. In Fig. 11.85 the arrangement is shown for
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measuring threshold photoelectrons of atoms and mole-
cules in a collimated beam. These electrons, with very
small kinetic energies are produced by photons with
energy hν, just at the ionization threshold.

Higher energy resolution can be achieved if la-
sers are used for photoionization. Since cw lasers in
the far UV for one-photon ionization are not availa-
ble (unless frequency doubling of UV-lasers is used),
a two-step excitation is utilized, where an intermediate
atomic or molecular level is excited by the first la-
ser and then ionization is achieved by a second laser.
In Fig. 11.86 a modern apparatus for such photoelec-
tron experiments with two-step excitation is shown
[11.39]. The level scheme explains the situation for po-
tassium atoms. The slow photoelectrons can attach to
other molecules with a large electron affinity and the
resulting negative ions M− are selected through a qua-
drupole mass spectrometer and are imaged onto the
detector.

11.8.3 ZEKE Spectroscopy

Over the last years, a modification of photoelectron
spectroscopy has been developed, where a tunable laser
excites levels in the molecular ion, but only photoelec-
trons with nearly zero kinetic energy are selected for
detection [11.40]. If the photoexcitation is performed
in a collimated molecular beam the slow photoelectrons
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Fig. 11.87. ZEKE spectrum of ND4 with rotational resolution.
Upper trace: experimental spectrum. Lower trace: simulation
[11.41] (Merkt, J.C.P. 106, 1 1997)

can be collected by a weak electric field and imaged onto
the electron detector. This field is only switched on with
a delay time∆t after the pulsed excitation at t = 0. The-
refore the levels of the molecular ion are excited under
field-free conditions and do not suffer a Stark shift. The
fast photoelectrons have already left the excitation re-
gion during the delay time ∆t, but the slow electrons
have not moved far and can be collected with high effi-
ciency. The energy resolution is mainly limited by the
spectral bandwidth of the pulsed laser.

In Fig. 11.87 the ZEKE spectrum of ND4 is shown
as a function of the wavenumber of the exciting laser.
The peaks correspond to photoexcitations starting from
different rotational levels in the ground state of the neu-
tral ND4 and reaching the level v′ = 0 J ′ = 0 in the ND+

4
ion electronic ground state.

11.9 Measurements of Electric
and Magnetic Moments
in Atoms and Molecules

Many molecules posses a magnetic dipole moment pm

due to the orbital angular momenta or the spins of their
electrons or due to nuclear spins. They experience in an
external magnetic field B a torque

D = pm× B (11.115)

which tries to orient the molecules in such a way, that
pm is parallel to B, because then the potential energy

Wpot =−pm · B (11.116)

has a minimum. In the molecular frame the magnetic
dipole moment has a well defined direction determined
by the total electronic angular momentum. For the free
rotating molecule the vector pm, precesses around the
rotational axis, defined by the rotational angular mo-
mentum J and only the average moment 〈pm〉 = pm · J
which equals the projection of pm onto J is observed
(Fig. 11.88). In an external magnetic field 〈pm〉 pre-
cesses around the field axis and therefore the average
magnetic potential energy of the molecule is given by〈

Wpot
〉=− (pm · J) · (J · B)

J2
. (11.117)

At temperatures T> 0 the orientation of the average
magnetic moment is partly destroyed by the thermal
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Fig. 11.88. Average magnetic dipole moment in a rotating
molecule and its projection onto the direction of an external
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movement of the molecules which try to establish
thermal equilibrium, where all orientation are equally
probable. The mean magnetisation

〈Mm〉 = N · 〈pm〉 (11.118)

of N molecules in the gas phase is proportional to the
ratio

〈Mm〉 ∝ 〈Wpot〉
3
2 kT

(11.119)

of mean magnetic to mean kinetic energy of the
molecules.

If the centres of charge of the nuclear charges and
the electron charges do not coincide, the molecule pos-
sesses an electric dipole moment pel. Examples are the
molecules HCl. H2O of NaCl, which have either ionic
binding or a strong electric polarisability, which leads
to a charge transfer and a separation of the two centres
of charge.

In an external homogeneous electric field E a torque

D = pel× E (11.120)

acts on these molecules resulting in a potential energy

Wpot =−pel · E . (11.121)

In inhomogeneous magnetic or electric fields additional
forces

Fm = pm ·grad B and Fel = pel ·grad E
(11.122)

are present, which try to pull the molecules into the
direction of either strong or weak fields, depending on
the Zeeman- or Stark levels (J,M) of the molecule.

These magnetic or electric moments of molecules
have great importance for scientific and technical ap-
plications. Examples are the orientation of molecules
in liquid crystals which influences the optical transmis-

sion or reflection of these devices, the nuclear magnetic
resonance spectroscopy and its application in biology
and medicine, or the adiabatic demagnetisation used for
reaching extremely low temperatures. It is therefore of
great interest to study these moments in more detail.

11.9.1 The Rabi-Method
of Radio-Frequency Spectroscopy

Isidor Isaac Rabi (1898–1988) developed a molecular
beam method for the precision measurements of ma-
gnetic or electric moments or of hyperfine splittings in
atoms or molecules [11.42]. He received for this inge-
nious technique the Nobel prize in 1944. The principle
of his technique is represented in Fig. 11.89. The atoms
or molecules effuse from the reservoir R through a small
hole H into the vacuum chamber. After they have been
collimated by the slit S1 they pass through an inhomoge-
neous magnetic field A where they are deflected by the
force F = pm ·grad B. In the following homogeneous
field C they do not experience a force but the projec-
tion (pm)z of their magnetic moment is quantized, i.e.
it can only take discrete values M · pm B (see Sect. 5.2).
The Zeeman energies of the molecules in this field are

EM = E0+M · |pm| · |B| . (11.123)

In the following inhomogeneous magnetic field B,
which is opposite to the field in A the molecules ex-
perience the opposite force as in A and are deflected
back onto the detector behind a slit S2.

Now a radio-frequency is fed through a hole into the
region of the homogeneous field C. If its frequency ν
matches the Zeeman splitting∆ν = |pm| · |B|/h, it indu-
ces transitions between the Zeeman-components which
changes their population. This results in a different
deflection in the inhomogeneous field B because the de-
flecting force F depends on the magnitude and the direc-
tion of the magnetic moment which are different for the
different M-levels. The molecules cannot pass through
the slit S2 and the signal decreases (Fig. 11.89b).

A modern version of the Rabi-method replaces the
two inhomogeneous fields A and B by two laser beams
(Fig. 11.89c), which cross the molecular beam perpen-
dicular [11.43]. The laser frequency is tuned to the
wanted transition 〈k| → 〈i|. For sufficiently high laser
intensities the transition can be readily saturated, i.e.
the population of the absorbing level decreases (only
a few milliwatts, focussed into the molecular beam,
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Fig. 11.89a–d. Rabi method. (a) Experimental setup. (b) De-
tector signal as a function of the radio frequency νrf.

(c) Modern laser version of Rabi method. (d) Level scheme
for optical pumping and radio frequency transitions

are sufficient). This saturation causes a decrease of the
absorption of the second laser beam from the same
laser and the laser-induced fluorescence in the cros-
sing point 2 decreases. If the molecules are irradiated
between the two crossing points by a radio-or micro-
wave, which induces transitions from other levels into
the depleted level, its population increases again and
the signal in point 2 becomes larger. Measuring the si-
gnal as a function of the radio-frequency allows the
determination of levels splittings between hyperfine-
levels or rotational levels with a very high accuracy.
The linewidth of these signals is mainly limited by the
interaction time of the molecules with the rf-field, ie.
by their transit time through the rf-field region.

The Rabi-Method is the basis of the cesium ato-
mic clock (Fig. 11.90). Here a transition between the
hyperfine components F = 3 and F = 4 in the 2S1/2

state of the cesium atom is induced at a frequency of
ν = 1.92 GHz. The homogeneous field C is replaced
by a microwave resonator which is resonant with the
microwave frequency. Since the magnetic moment is

different for the two hfs-levels the deflection in the
B-field changes when a transition took place in the mi-
crowave cavity. A feedback signal delivered from the
detector keeps the microwave frequency always at the
centre of the hyperfine-transition. Both, the classical
and its laser version are used and are compared with re-
gard to the optimum frequncy stability. Up to now this
cesium atomic clock provides the primary frequency
and time standard. It might be, however, soon replaced
by more stable laser devices.

11.9.2 Stark-Spectroscopy

The levels of atoms or molecules with a permanent
electric dipole moment split in an electric field into
(2J+1) Stark-components, where J is the total angular
momentum quantum number of the level.

Without external field the total angular momentum J
has a constant magnitude and a constant orientation. If
the direction of pel does not coincide with the direc-
tion of J , the electric dipole moment pel processes in
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Fig. 11.91. (a) Average electric dipole moment in the rotating
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on the electric field direction and Stark shift ∆E

the rotating molecule around J and the time-averaged
component is, according to Fig. 11.91

〈pel〉 = |pel| · cos γ = |pel| · K√
J(J +1)

, (11.124)

where K · h is the projection of J onto the direc-
tion of pel. In an external electric field E the dipole
moment pel precesses around the field direction and
therefore also J precesses with a constant projection
M ·h onto the field direction.

The energy shift of a level

∆E =−〈pel〉 · E = |pel| · |E| · K ·M

J(J +1)
(11.125)

is proportional to the electric field E (linear Stark-
effect).

For a diatomic molecule the electric dipole moment
points into the direction of the internuclear axis. Without
electronic angular momentum the rotational angular
momentum J is perpendicular to this axis, which means
that K = 0 and therefore 〈pel〉 = 0.
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For diatomic molecules in 1Σ states there is no
linear Stark-shift, even if they posses a permanent
electric dipole moment.

There is, however, a second order effect. When the
electric dipole rotates in the electric field, its poten-
tial energy is periodically changing and therefore the
rotation is no longer uniform. The rotation is slower
for positions where the potential energy is maximum.
Therefore the average energy differs from that of the
field-free case. There is a Stark-shift of second order
which is proportional to the square E2 of the electric
field.

Even without a permanent electric dipole moment
the electric field can polarise the charge distribution in
the molecule which results for a non-rotating molecule
in an induced electric moment

pind
el = α̃ · E , (11.126)

where α̃ is the tensor of the molecular polarizability,
which is a measure of the displacements of the charges
from their equilibrium positions and generally depends
on the direction against the molecular frame. Therefore
pind

el generally does not point into the same direction as
the electric field, but forms the angle β against E and
processes around the field direction.

Now the energy shift is

∆E =−pind
el · E =−(α̃ · E) · E =

∑
i, j

αij Ei E j

(11.127)

which means that the Stark-shift is proportional to the
square of the electric field E (quadratic Stark-effect).

In Fig. 11.92 the quadratic Stark-shift is illustrated
by the example of the excited levels 3 2P3/2, 3 2P1/2

and the ground state level 3 2S1/2 in the sodium atom.
The components with a projection ±M have the same
energy, because for the quadratic Stark-effect the energy
does not depend on the sign of M but only on the
amount |M|. Therefore only the level P3/2 splits into
two Stark components, while the other two levels with
J = 1/2 are only shifted but do not split.

Measurements of the line-shifts as a function of E2

give a straight line (Fig. 11.92b), which proves the qua-
dratic Stark-effect. Since the Stark-shift is smaller in
the 2S1/2 state as in the P-states. The Stark-components
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Fig. 11.92. Quadratic Stark effect of the three Stark
components of the sodium resonance lines 2S1/2 →2 P1/2,3/2

of the transitions are therefore shifted towards smaller
frequencies.

From the measurement of the Stark shifts the pola-
risability α can be obtained according to (11.127). As
was outlined in Sect. 9.4.3 α is responsible for the van-
der-Waals binding of molecules at large internuclear
distances and influences many macroscopic properties
of matter, such as the melting temperature of van-der
Waals-solids or the viscosity of noble gases.

The experimental arrangement can be that of the
Rabi-method where the magnetic fields are replaced
by electric fields [11.44]. For Doppler-limited spectros-
copy also absorption cells can be used with electrodes
on the side-walls for producing the electric field.

Instead of tuning the laser frequency across the tran-
sitions between Stark-components the laser frequency
can be kept constant and the Stark field is tuned un-
til the the laser frequency is in Resonance between an
optical transition between the Stark-components in the
lower and upper level [11.45].

11.10 Investigations of Atomic
and Molecular Collisions

Detailed studies of elastic, inelastic and reactive col-
lisions between atoms and molecules have made an
important contribution to our understanding of the
structure of atoms and molecules, the interaction
potential between the collision partners and of the mi-
croscopic process of chemical reactions. One example
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is the development of the Rutherford model of the
atom (Sect. 2.8), which was derived from the results
of experiments on scattering α particles by gold atoms.
These experiments proved for the first time that most
of the atomic mass is concentrated in the very small
volume of the atomic nucleus. Another example is the
study of inelastic collisions of electrons with atoms in
the Franck–Hertz experiment (Sect. 3.4.4), which pro-
ved the discrete level structure of atoms and confirmed
Bohr’s atomic model.

Because of their importance for basic physics and in
applications, an essential part of experimental efforts in
atomic and molecular physics has been devoted to the
investigation of collision processes. This can be seen
from the fact that there are several important biannual
international conference series on atomic and molecular
collisions [11.46].

11.10.1 Elastic Scattering

When a parallel beam of particles A with particle flux
NA (number of particles per cm2 per second) passes
into the x direction through a volume V filled with
particles B of density nB (Fig. 11.93) the flux NA has
decreased after a path length x = d through the volume
filled with particles B to

NA(x = d)= NA(x = 0)e−nB·σint·d (11.128)

(see Sect. 2.8.1). The quantity σint is the integral ela-
stic collision cross section. The ratio of σint to the cross
section q of the incident parallel beam describes the
probability that a particle A is scattered by one par-

Fig. 11.93. Attenuation of a parallel beam of particles A after
passing through a scattering volume with particle density nB

ticle B out of the beam, i. e., that it is deflected by an
angle ϑ > ϑmin and cannot reach the detector behind
the aperture S2. This illustrates that the measured in-
tegral scattering cross section not only depends on the
interaction potential, but also on the angular resolution
ϑmin of the apparatus. Forϑmin = 0, the classical integral
cross section σint would become infinite because colli-
sions with zero scattering angles, i. e., infinite impact
parameters b would contribute to it.

In the quantum mechanical model ϑmin cannot
become zero and therefore the maximum impact pa-
rameter bmax(ϑmin) remains finite. This can be seen as
follows.

In the center-of-mass system the two colliding par-
ticles can be replaced by one particle with the reduced
mass µ moving in the spherically symmetric potential
that equals the interaction potential between the two par-
ticles (Sect. 2.8.2). For elastic collisions the momentum
does not change its amount but only its direction. For
small deflection angles we have the relation (Fig. 11.94)

ϑ = ∆p

p
= b∆p

bp
= |∆L|

|L| , (11.129)

where |L| = bµv = n� is the orbital angular momen-
tum of the particle with mass µ, velocity v and impact
parameter b, which has to be an integer multiple of �.
Therefore the minimum value of∆L is∆Lmin = �. This
gives the minimum deflection angle

ϑmin = �

bmaxµv
= λdB

2πbmax
, (11.130)

whereλDB = h/(µv) is the de Broglie wavelength. With
ϑmin > 0 a maximum impact parameter bmax is determi-
ned and the integral cross section σint = πb2

max remains
finite.

p
p

b

p
A

∆

ϑ

β

→

→

Fig. 11.94. For small deflection angles ϑ and large impact
parameters b is tanϑ ≈∆p/p
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The smallest scattering angle is therefore determi-
ned by the ratio of the de Broglie wavelength λDB

to the maximum impact parameter bmax.

In Equation (2.109) a relation between scattering
angle ϑ and potential interaction energy Epot(R) was
given. For large impact parameters the path of the par-
ticle is only slightly bent and we can approximate the
closest distance rmin by rmin = b. Under these conditi-
ons the interaction energy Epot is very small compared
to the initial kinetic energy Ekin(∞)= E0. When we ex-
pand for Epot/E0 � 1 the square root under the integral
in (2.142) we obtain the result

ϑmin(bmax)= λDB

bmax
∝ Epot(bmax)

E0
. (11.131)

For an attractive potential Epot =−Cn/rn this gives

h

µvbmax
∝ Cn

bn
maxµv

2
. (11.132)

Measuring the velocity-dependent integral cross section

σint = πb2
max ∝

(
Cn

hv

)2/(n−1)

(11.133)

one can therefore derive the constant Cn and the
exponent n of the interaction potential.

The measurements can be done with the appara-
tus shown in Fig. 11.95, where two beams of particles
A and B cross each other perpendicularly. The scatte-
ring volume V is defined by the overlap region of the
two beams. The minimum scattering angle of particle A
is determined by the distance d between scattering vo-
lume and aperture B2 and the slit width b2 of B2 in front
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Fig. 11.95. Measurement of integral cross section with
velocity-selected molecules
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Fig. 11.96. Principle of a mechanical velocity selector

of the detector. The velocity v of the relative movement
can be varied with the rotational speed of the velocity
selector, which consists of a series of cogs mounted on
the same axis. The principle of the velocity selector can
be illustrated by Fig. 11.96, which shows the simplified
version consisting of two discs with radius R and slits
of width s in a distance a. If the angular displacement
of the two slits is ϕ and the rotational angular speed
of the discs is ω, only particles are transmitted through
both slits of the rotating discs for which the flight time
T = a/v equals the time Rϕ/(Rω)= ϕ/ω. The velocity
of these particles is then

v= a ·ω/ϕ . (11.134a)

The width ∆v of the transmitted velocity interval is
given by the angular width ∆ϕ of the two slits

∆v= v(∆ϕ/ϕ) . (11.134b)

Collimating
aperture

Crossing
volume

A

Aperture

B

Molecular
beams

Detector

ϑ

ϑ∆

∆Ω

Fig. 11.97. Measurement of differential cross section for
collisions in crossed molecular beams
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More information about the interaction potential at
smaller distances is obtained from measurements of
differential cross sections as was already outlined for
the Rutherford scattering in Sect. 2.8.6.

Similarly to Fig. 11.95, two crossed molecular be-
ams are used (Fig. 11.97). The difference is that now
only molecules scattered into the solid angle ∆Ω
around the deflection angle ϑ are received by the detec-
tor, while in measurements of the integral cross section
the attenuation of the incident beam is determined,
which is a measure for the total number of scattered
particles integrated over all scattering angles from ϑmin

to ϑ = 180◦.
There is a problem for nonmonotonic potentials,

such as the Lenard–Jones potential (9.67), where diffe-
rent impact parameters b1 and b2 can lead to the same
scattering angle ϑ. This is illustrated in Fig. 11.98.
At the internuclear distances r1 and r2 the slopes of
the potential have equal magnitude but opposite sign.
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Fig. 11.98. Interference effects for scattering in a nonmono-
tonic potential where different impact parameters b can lead
to identical deflection angles ϑ

The forces F =− grad Epot are therefore equal in ma-
gnitude, but F1 is repulsive and F2 is attractive. Two
particles A with impact parameters b1 and b2 approa-
ching on opposite sides of the line b = 0 are scattered
into the same direction ϑ.

In such cases it can not be decided which of the two
impact parameters has contributed to the measured si-
gnal and therefore the superposition of the probability
amplitudes has to be considered (see Sect. 3.5.2). This
leads to interference effects because the two possibili-
ties correspond to two different paths of the particles
through the potential and their de Broglie wavelengths
are therefore shifted in a different way, which results in
different phase shifts ϕn .

The intensity of the de Broglie wave scattered by
the deflection angle ϑ is

I(ϑ)∝ |A1(b1, ϕ1)+ A2(b2, ϕ2)| 2 , (11.135)

where the Ai are the amplitudes of the scattered waves.
The intensity I(ϑ) shows interference maxima and

minima, which are produced in a similar way as the
refraction and reflection of light by raindrops resulting
in the observation of the rainbow.

Therefore the interference effects in the differential
cross section are called rainbow scattering.

In Fig. 11.99 the deflection function ϑ(b) for a non-
monotonic potential is illustrated, showing three impact
parameters b1, b2, and b3 leading to the same values of
|ϑ|. Since the scattering is symmetric around the axis
b= 0, the differential cross sectionsσ(ϑ)= σ(−ϑ)must
be equal.

According to (2.147) the differential cross section is
proportional to db/dϑ = (dϑ/db)−1, i. e., to the inverse
slope of the deflection function ϑ(b). In the classical
model dσ/dΩ should become infinite for b = br and
b= 0. In the quantum mechanical treatment, the impact
parameters are only defined with an uncertainty that
equals the de Broglie wavelength. Therefore there are
only maxima instead of infinite poles in the scattering
cross section (Fig. 11.99c).

The measurements of the positions and heights of
these rainbow maxima and their dependence on the
energy of the incident particles (i. e., on their de Bro-
glie wavelength) gives very detailed information of the
radial dependence of the interaction potential, because
the phase differences are very sensitive against changes
of Epot(r) [11.47].
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11.10.2 Inelastic Scattering

During the inelastic collision of a particle A with a par-
ticle B part of the kinetic energy of A is transferred into
internal energy of B. If B is an atom, this is electronic
excitation energy, if B is a molecule, the internal energy
may be rotational, vibrational or electronic energy

A(Ekin)+B(Ei)→ A+B(Ef)+∆Ekin . (11.136)

The collision induces in the target particle B a transition
from the initial internal energy Ei to a final state with
energy Ef, where we have assumed that the internal
state of A has not changed.

The probability for this inelastic process depends on
the interaction potential between A and B, on the im-
pact parameter b and on the relative kinetic energy of
the collision partners. If all of these parameters should

Fig. 11.100. Measuring state selective differential cross secti-
ons by laser excitation before and after the collision [11.43]

be included in the experimental investigation , one has
to know the initial kinetic energy, the initial and final
internal energies Ei and Ef of particle B and the impact
parameter, i. e., the scattering angle ϑ. Such a scattering
experiment can be called an ideal experiment, because
is allows the determination of all wanted details [11.49].
A possible experimental arrangement for such a detai-
led experiment, which combines the method of laser
spectroscopy with molecular beam techniques [11.50]
is shown in Fig. 11.100.

The molecules A pass before the collision region
through the beam of laser L1 (pump laser), which indu-
ces a transition 〈i| → 〈k| in the molecule. Already with
moderate laser powers the transition can be saturated
and the initial level 〈i| can be nearly completely de-
populated. The molecules are scattered in the crossing
volume with a beam of particles B. Those molecules A,
deflected by the angle ϑ which is defined by an aper-
ture in front of the detector, are excited by a second
laser L2 on the transition 〈 f | → 〈 j|. The laser-induced
fluorescence is collected with carefully designed optics
and imaged by a fiber bundle onto a photomultiplier.
The photomultiplier output signal S is a measure for
the population Nf of the scattered particles.

If the pump laser L1 is periodically chopped the
population Ni is modulated at the chopping frequency.
The probe laser L2 now measures the difference ∆S =
S(L1 on)− S(L1 off). The difference of the signals gives
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the rate of those molecules that are deflected by the
angle ϑ and have been transferred during the collision
from level 〈i| to level 〈 f |.

Measuring the dependence∆S(ϑ) gives direct infor-
mation on the dependence of the inelastic cross section
on the impact parameter and tells us which part of
the potential has the largest influence on inducing the
transition. They teach us, for instance, which impact
parameters mainly contribute to rotational or vibratio-
nal energy transfer, or how the initial internal energy
of one collision partner influences the probability of
a collision-induced transition [11.50].

11.10.3 Reactive Scattering

In Sect. 10.7 chemical reactions were described by
rate equations, which give the macroscopic picture of
these reactions averaged over a large number of reac-
tion partners. On the molecular scale, these reactions
are the result of many individual molecular collisions,
e. g.,

AB+C → AC+B (11.137)

AB+BC → AC+CD .

The probability of such reactive collisions depends on
the relative kinetic energy, on the internal energy of the
reactants (for instance the vibrational energy of AB)
and on the interaction potential. Since the interaction
potential is generally not spherically symmetric, steric
effects may play an essential role, i. e., the reaction pro-
bability may strongly depend on the relative orientation
of the reacting molecules.

Often a reaction takes place only if the kinetic energy
exceeds a threshold (reaction barrier), which in turn can
depend on the internal energy of the reactants.

For the experimental investigation of reactive colli-
sions the rate of reaction products B or AC, scattered
by the angle ϑ, are measured as a function of the in-
itial relative kinetic energy of the reactants. This gives
the differential reaction cross section dσ/dΩ. The in-
tegration over all scattering angles yields the integral
cross section σtotal(v) as a function of the relative ve-
locity of the collision partners. The velocity-dependent
rate coefficients are related to the integral cross sections
by

kR(v)= vσtotal(v) .

The average reaction rates

〈kR(v)〉 = 1

〈v〉
∞∫

v=0

kR(v) dv= 1

〈v〉
∫
v ·σ(v) dv

(11.138)

introduced in Sect. 10.7 for reactions in gas cells are
mean values, averaged over the thermal distribution of
the relative velocity of the reaction partners. They can
be calculated from the measured cross sections.

The experimental technique used for the investi-
gation of reactive collisions depends on the kind of
reaction partners. In early experiments, reactions invol-
ving alkali atoms were mostly studied because they can
be readily and efficiently detected by Langmuir–Taylor
detectors. These are heated tungsten wires that have an
electron work function which is higher than the ioniza-
tion energy of the alkali atoms. If an alkali atom hits the
wire it becomes ionized because the electron gains more
energy when it is captured in the conduction band than
is necessary to remove it from the alkali atom. The alkali
ions evaporate from the hot wire and are accelerated by
an electric field onto a Faraday cup or an electron mul-
tiplier. Meanwhile the detection techniques have been
improved, using laser-induced fluorescence for state-
specific detection of atoms or molecules. Therefore
reactive scattering experiments in crossed beams have
been extended to a larger variety of different collision
parameters [11.51]

11.11 Time-Resolved Measurements
of Atoms and Molecules

While free atoms or molecules are stable in their
ground states, they decay in higher energy states either
by emission of fluorescence (radiative transitions) or
by collision-induced deactivation processes (radiation-
less transitions). If collisions transfer the atom into its
ground state, the fluorescence intensity is diminished
and the collisions are called quenching collisions.

In molecules, the excitation energy can be transfer-
red even in the absence of collisions to other excited
levels (for instance, high-lying vibrational levels in the
electronic ground state) if these levels are coupled to
the initially-excited level. Such an internal energy trans-
fer can result in isomerization or fragmentation of the
molecule.
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All these time-dependent processes fit into the area
of molecular dynamics. For experimental investigati-
ons, time-resolving techniques are demanded, where
the necessary time resolution ranges from milliseconds
down to femtoseconds.

We will present here some techniques that have
already been used for quite some time. The latest ex-
perimental developments of producing and measuring
ultrafast laser pulses and their applications to molecular
dynamics will be left to the next chapter.

11.11.1 Lifetime Measurements

If atoms or molecules are excited by a short pulse (light
pulse or electron pulse) into an energetically higher
state Ei , the population Ni(t) decays due to emission of
radiation or to inelastic collisions. In Sect. 7.3 we saw
that the time-dependent population is given by

Ni(t)= Ni(0) · e−t/τeff . (11.139)

The effective lifetime is determined by

1

τeff
= 1

τspont
+nBvABσ

inel
i = Ai + Ri (11.140)

with the spontaneous transition probability Ai =∑
Aik

written as the sum over the probabilities Aik of transi-
tions from level 〈i| into all accessible lower levels 〈k|
plus the collision-induced depopulation probability

Ri = nBvABσ
inel
i . (11.141)

Since the total fluorescence power Pfl = Ni Ai is propor-
tional to the population Ni , its time dependence follows
the same equation as (11.139), and the measurement of
the time-dependent fluorescence yields the effective li-
fetime τeff of level 〈i|. Its dependence on the density nB

of collision partners allows the determination of the in-
elastic total cross section. The extrapolation to nB = 0
gives the spontaneous lifetime τspont of level 〈i|.

The short light pulses for the excitation of level 〈i|
in the spectral range from 400−2000 nm are delivered
by pulsed lasers, where the UV range with λ < 400 nm
is generally covered by optical frequency doubling of
visible lasers. In the spectral range below 200 nm, pulses
of synchrotron radiation from storage rings are available
with pulse widths of a few picoseconds.

The experimental technique for measuring lifetimes
depends on the desired time resolution and the wanted
repetition rate of the excitation pulses.

Fig. 11.101. Excitation of levels with a pulsed laser (pulse pro-
file monitored by PD 2) and measurement of the decay curve
of the laser-induced fluorescence with a photomultiplier PM

For a time resolution∆t> 10−10 s and a pulse repe-
tition rate f < 103 s−1 the apparatus required is shown
schematically in Fig. 11.101. A pulsed laser excites the
molecules in a cell and the laser-induced fluorescence
is imaged onto the photomultiplier. The output pulse of
the photomultiplier is amplified and delivered to a fast
oscilloscope, where it can be directly viewed.

Another technique uses a gated integrator. Here, se-
veral time intervals tn +∆t with∆t � τ are selected by
controllable electronic gates (Fig. 11.102). The output
signal of the n-th gate is proportional to the intensity of
the fluorescence

I(t,∆t)= 1

∆t

tn+∆t∫
tn

I(t) dt (11.142)

integrated over the gate width ∆t. For an exponential
decay of the fluorescence, the ratio

I(t1,∆t)

I(t2,∆t)
= e−(t2−t1)/τ (11.143)

⇒ ln
I(t1,∆t)

I(t2,∆t)
=−1

τ
(t2− t1)

allows the determination of the lifetime τ .
A more accurate technique (Fig. 11.104) uses cw

radiation for excitation, modulated at the frequency Ω.
The incident intensity is then

IL(t)= 1
2 I0(1+a sin2Ωt) cos2 ωikt . (11.144)
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The time-dependent population of the excited level is
obtained from

dNi

dt
=+Nk BkiwL− Ni(Ai + Ri + BikwL) ,

(11.145)

where the depopulation by induced emission has been
included. The energy density wL of the radiation is
related to its intensity by IL = c ·wL(t).

Inserting (11.139) and (11.144) into (11.145) gives
the fluorescence power

PFl = Ni Aihν (11.146)

= b

[
1+ a sin(Ωt+ϕ)[

1+ (Ωτeff)2
]1/2

]
cos2 ωikt ,

where the constant b ∝ N0σ0i ILV depends on the den-
sity N0 of molecules in the absorbing level 〈0|, the
absorption cross section σ0i , the laser intensity IL and
the excitation volume V , seen by the fluorescence
detector.

Equation (11.146) shows that the emitted fluore-
scence is modulated at the same frequency Ω as the
exciting laser radiation but has a phase shift ϕ that is
related to the lifetime τ by

tan ϕ = ωτ . (11.147)

The mathematically equivalent problem is represented
by the electronic circuit in Fig. 11.104b, where an ac
input voltage U0 · cosΩt generates an output voltage
U · cos(Ωt−ϕ). The output voltage has the same ma-
thematical form as the fluorescence intensity if one
substitutes the mean lifetime τ by the time constant RC
with R = R1 R2/(R1+ R2) and the laser intensity I(t)
by the input current I(t)= (U0−U)/R1.

With a cw mode-locked laser, pulse widths of a few
picoseconds can be achieved with repetition rates of
several MHz. The energy of each pulse is small, in par-
ticular, if optical frequency doubling has to be used in
order to obtain wavelengths in the UV region. There-
fore only a few molecules are excited per pulse and the
detection probability for a fluorescence photon per exci-
tation pulse is small compared to one. In such a case the
single photon counting technique, shown in Fig. 11.103,
is preferable. The photomultiplier detects single fluore-
scence photons, which produce electric output pulses
that are amplified and fed into a time-to-amplitude
converter. This device generates a fast voltage ramp
U(t)=U0(t− t0) that is started by the excitation pulse
at time t0 and stopped by the fluorescence pulse at time
t = t1. The output voltage U(t1)=U0(t1− t0) is formed
into a pulse with amplitude U(t1), which is stored in
a multichannel analyzer where the different pulses are
sorted into different channels according to their am-
plitude. Each channel corresponds to a definite time
difference ∆t = t1− t0. The number of pulses stored in
channel n is proportional to the fluorescence intensity
at time tn , because the probability P(t)∆t that a fluore-
scence photon from a single atom is emitted during the
time interval from t to t+∆t,

P(t)∆t = I(t)∆t/

∞∫
0

I(t) dt (11.148)

= Nph(t)∆t/

⎡⎣ ∞∫
0

Nph(t) dt

⎤⎦
is proportional to the number of fluorescence photons
emitted in the same time interval by many atoms that
have all been excited at the same time. The amplitude
distribution of the pulses in the multichannel analyzer

N(U)∆U = ae−t/τeff (11.149)

directly gives the decay curve of the excited molecules.
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Fig. 11.104. Schematic diagram for lifetime measurements
using single photon counting with a time-to-pulse height
converter and a multichannel analyzer

The technique is called single photon counting with
delayed coincidence, because for each exciting laser
pulse the corresponding fluorescence photon, delayed
by the time t, is detected coincidentally [11.51].

For very high time resolution in the pico- and femto-
second range, electronic detectors are not fast enough.
Here a pump-probe techniques can be used. A short
pump pulse at time t = 0 excites the sample into a defi-
nite level 〈i|, which decays over the course of time.
A second weak probe pulse with variable delay ∆t
against the pump pulse interrogates the population of
the decaying level (Fig. 11.105). This can be realized
in different ways. If the probe pulse can ionize the
molecules in the excited level 〈i|, the number of de-
tected ions as a function of the delay time∆t is directly
proportional to the number Ni(∆t). Another way of mo-
nitoring the time-dependent population Ni(t) uses the
total fluorescence emitted from a level 〈 j|, excited by
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Fig. 11.105. Pump-and-probe technique

the probe laser on the transition 〈i| → 〈 j|. Its intensity
Ifl(∆t) measured as a function of the delay time ∆t is
again proportional to the population Ni . In many ca-
ses the stimulated emission induced by the probe pulse
on a downward transition from 〈i| to lover levels 〈m|,
which is proportional to (Ni(∆t)− Nm) can be utilized
as a monitor. If Nm = 0, the intensity of stimulated emis-
sion is again proportional to Ni(∆t). With these pump
and probe techniques, a time resolution in the femtose-
cond range can be achieved, even when the detector has
a much lower time constant.

11.11.2 Fast Relaxation Processes
in Atoms and Molecules

The time resolved nonradiative relaxation of a level
caused by collisions can be used for the determination
of collision cross sections and reaction rates. Here the
pump and probe techniques can be also applied to levels
in the electronic ground state, where no fluorescence is
emitted and therefore some of the other techniques do
not work. In Fig. 11.106 the principle is shown for mea-
suring the relaxation of vibrational levels in the electro-
nic ground state of molecules. A short pulse from the

Fig. 11.106. Level scheme and time-dependent level popula-
tions when a short pump laser pulses depletes level |k〉, which
is refilled by collisional transfer from other levels

pump laser tuned to a transition 〈k| → 〈i| depletes the
lower level 〈k| of molecules in a gas cell. Collisions with
other atoms or molecules refill it again, because they try
to reestablish thermal equilibrium. The fluorescence in-
tensity Ifl(∆t), induced by the pulse of the probe laser
on a transition 〈k| → 〈 j| is measured as a function of
the delay time between pump and probe pulse. This
intensity is proportional to the population Ni(∆t). It
is a measure for the total inelastic collision rates for
energy transfer from all other levels into level 〈i|.

The individual contributions of collision rates for
population transfer from a specific level 〈m| into le-
vel 〈k| can also be measured with a slight modification.
Now the probe laser is tuned to a transition 〈m| → 〈 j|.
The fluorescence Ifl gives the time-dependent popula-
tion of level 〈m|. The ratio of ∆Nm/∆Nk yields the
relative contribution of the specific collision-induced
transition 〈m|→ 〈k| to the total refilling rate of level 〈k|.

The pump-probe technique with ultrashort pulses
from femtosecond lasers has an increasing number of
applications. Some of them will be discussed in the next
chapter.
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• There are three principal methods for the
investigation of the structure and dynamics of
atoms, molecules and their intermolecular in-
teractions. These are:

– Spectroscopic techniques

– Scattering experiments

– Investigation of macroscopic phenomena,
such as transport properties of gases, and
measurements of the virial coefficients in the
equation of state for real gases

• In spectroscopic experiments the sources of infor-
mation are wavelengths, intensities, polarization
properties and spectral profiles of absorption and
emission lines, which allow the determination of
energy term values, transition probabilities and
interaction potentials.

• Spectra of rotational transitions and of fine
or hyperfine splittings can be measured with
microwave spectroscopy.

• Molecular vibrations are mainly detected using
infrared and Raman spectroscopy, where the
two methods supplement each other. Transiti-
ons where the electric dipole moment changes
are infrared active, those where the polarizability
changes are Raman active.

• The spectral resolution of classical spectroscopy
is generally limited by the resolving power of
spectrographs. In Fourier spectroscopy it is limi-
ted by the maximum path difference between the
two interfering beams. Laser spectroscopic tech-
niques allow the resolution of the real line profiles
of atomic or molecular transitions.

• Sub-Doppler spectroscopy is possible in collima-
ted molecular beams or by nonlinear techniques
that are based on the velocity selective saturation
of molecular transitions.

• Magnetic and electric moments can be deter-
mined with radio frequency spectroscopy of
molecular beams in combination with the deflec-
tion of molecules in inhomogeneous fields (Rabi
method)

• Photoelectron spectroscopy measures energy and
angular distribution of photoelectrons produced
by photoionization of atoms or molecules. It gives
information on the energies and wave functions
of inner-shell electrons and their influence on
molecular structure and binding energies.

• Elastic, inelastic and ionizing collisions of
electrons with atoms or molecules allow the de-
termination of excitation and ionization cross
sections as a function of the electron energy and
give information on correlation effects between
bound electrons in atoms and molecules.

• Measurements of elastic and inelastic collision
between atoms and molecules allow the determi-
nation of interaction potentials. The most detailed
information is obtained from differential cross
sections, from which in some cases, one can also
determine nonspherical symmetric potentials.

• In the ideal scattering experiment, differential
cross sections are measured for selected inela-
stic transitions where the initial and the final state
of one collision partner is determined together
with the scattering angle. This opens the possibi-
lity of studying chemical reactions in detail on the
molecular level.

• The investigation of collision processes by laser
spectroscopic techniques allows the determina-
tion of integral collision cross sections in cells
and of differential cross section in crossed mo-
lecular beams. The preparation of selected states
before the collision and the analysis of states after
the collision yields cross sections for individual
collision-induced state-to-state transitions.

• Time-resolved measurements can follow up dy-
namical processes in atoms and molecules, such
as radiative decay, collision-induced transitions or
isomerization and dissociation of molecules.
Experimental techniques include excitation with
intensity-modulated light, single-photon counting
with delayed coincidence or fast pump-and-probe
techniques. The time resolution is currently a few
femtoseconds.

S U M M A R Y
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1. A microwave passes through HCl gas at a pressure
of p= 1 mbar. What is the relative absorption for
a pathlength of 1 m on the transition J = 1 →
J = 2 in the vibrational ground state, when the
absorption cross section is σki = 10−18 m2

a) at the temperature T = 100 K,
b) for T = 300 K?
Use the data of Table 9.7.

2. Show that I(ω) in (11.70) is the Fourier transform
of the signal S(t).

3. An optical diffraction grating with 1200 grooves
per mm is illuminated with the yellow sodium line
with incidence angleα= 30◦. What is the distance
between the two fine structure components atλ1 =
588.9 nm and λ2 = 589.5 nm in the detector plane
of the spectrograph with a focal length f = 1 m
of the imaging mirror?

4. a) An absorption cell filled with hydrogen gas H2

is illuminated by the output beam of the argon ion
laser at λ= 488 nm. Where is the Stokes line for
∆v= 1 and ∆J = 0?
b) What is the minimum resolving power of
the spectrograph, if the rotational Raman line
J ′′ = 0 → J ′ = 1 have to be separated from the
Rayleigh line?

5. A laser beam with 100 mW power passes through
a cell filled with a gas with absorption coefficient
α= 10−6 cm−1. How many fluorescence photons
with h ·ν = 2.48 eV are emitted per cm of path
length of the laser beam if each absorbed laser
photon produces a fluorescence photon?
What is the output current of a photodetector, if all
fluorescence photons in a solid angle of 0.2 sterad

are collected, the photocathode has a quantum
efficiency of 20% and the current amplification of
the detector is 106?

6. The collimation angle of a sodium atomic beam is
ε= 2◦. What is the residual Doppler width when
a laser beam perpendicular to the atomic beam ex-
cites the atoms into the 3P state?
What is the maximum value of ε, when the hy-
perfine structure of the levels below should be
resolved.
a) The 32 P1/2 level (∆νHFS = 190 MHz)
b) The 32 P3/2 level (∆νHFS = 16 MHz, 34 MHz,
59 MHz)

7. a) How large should be the gradient of a 20-
cm long magnetic field in order to deflect sodium
atoms in the 32S1/2 state by an angle of 3◦ when
the atoms fly with a velocity v= 600 m/s in the
z-direction through a Rabi molecular beam appa-
ratus?
b) How many photons must every atom absorb
from a laser beam perpendicular to the atomic
beam, in order to achieve the same deflection by
photon recoil?

8. The quenching cross section of the deactivation
of excited sodium atoms Na(3P1/2) for collisions
with N2-molecules is σq = 10−15 cm2. At which
pressure in a cell with a Na-N2-mixture (nNa �
nN2) has the effective lifetime τeff decreased to
0.5 τspont (τspont = 16 ns) at a temperature 400 K?

9. Explain, how the energy transfer cross section for
the collision-induced transition Em → Ei can be
obtained from the measurement of the stationary
populations Nm and Ni?

P R O B L E M S
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Over the last few years, several very interesting new
developments in atomic and molecular physics were
initiated that have considerably widened our understan-
ding of the interaction of light with matter and opened
new possibilities for many applications. In this chap-
ter we will briefly discuss some of the experiments that
have pushed forward these developments.

12.1 Optical Cooling
and Trapping of Atoms

For many investigations of atoms, their thermal velocity
limits the spectral resolution. Although the Doppler-
free techniques presented in the previous chapter can
overcome the Doppler-limit, atoms with velocity v only
spend a limited time ∆t = d/v inside the interaction
region with a laser beam of diameter d and therefore
the “time-of-flight” broadening ∆ν = 1/∆t of spectral
lines still presents a principal limit to the resolution.

In particular, for precision measurements it is de-
sirable to keep atoms inside the observation region as
long as possible, free from interactions with other par-
ticles or with the wall of the vacuum chamber. In order
to reach this goal, one has to reduce the atom velocity
and trap the atoms for a sufficiently long time in a small
and well-defined volume away from any walls of the
vacuum vessel.

This has become possible by new techniques of op-
tical cooling and trapping, which allows one to reduce
the temperature of an atomic gas down to below 1 µK,
without condensation taking place.

12.1.1 Photon Recoil

Assume an atom with mass m is moving with the ve-
locity v into the z direction. When a photon hν with
momentum�k traveling into the opposite−z direction is

h ⋅ ν

∆ p
→

∆pe
→

∆ ptotal
→

∆pa
→

h ⋅ ν

∆ p h k
→ →

=Absorption

Atom

Emission

b) c)

a)

Fig. 12.1a–c. Momentum transfer by recoil effect by (a) ab-
sorption of a photon, (b) emission of a photon, and (c) total
transfer for one absorption-emission cycle

absorbed by the atom, the total momentum p =mv+�k
must be conserved (Fig. 12.1). After photon absorption,
the atom has a lower velocity

v′ = v−�k/m .
The velocity change |∆v| = |v′ − v| = |�k/m| =
hν/(mc) is, however, very small.

EXAMPLE

Sodium atoms with m = 23 AMU = 3.8×10−26 kg ab-
sorb, on their resonance transition 3S → 3P1/2, light
with wavelength λ= 589 nm. The photon energy is
hν = 2 eV⇒∆v= hν/(mc)= 3 cm/s. If the initial ve-
locity is v = 600 m/s the deceleration down to v = 0
requires the absorption of 2×104 photons.

The excited atom emits a fluorescence photon,
which also causes a recoil and therefore a transfer of
momentum to the atom. However, the direction of the
emitted fluorescence photons is randomly distributed



474 12. Modern Developments in Atomic and Molecular Physics

Atom beam Laser beam

Vmp ⋅= kNp ⋅=
→ → →

h

Fluorescence

Fig. 12.2. For many absorption-emission cycles, the ave-
rage recoil of the fluorescence photons is zero and the net
momentum transfer for N absorbed photons is ∆p = N k

over the whole solid angle. If the atom undergoes many
absorption-emission cycles during its interaction time
with a laser beam, the time average over the momentum
transfer by the emission becomes zero (Fig. 12.2).

How many absorption-emission cycles can be
realized?

If we choose a true two-level system, where the ab-
sorption takes place on the transition 〈1| → 〈2| and the
fluorescence from the excited level 〈2| terminates only
on the initial level 〈1| we have a closed system, where
the atom is never transferred to levels other than 〈1|
or 〈2|. After excitation of level 〈2| with a mean life-
time τ2 by a laser photon at time t the fluorescence
photon is emitted with an average delay time τ2. This
means that the initial level 〈1| is only populated again
at the time t+ τ2. The next laser photon can therefore
excite the same atom no earlier than at time t+ τ2. The
fluorescence rate is N2 A2 = N2/τ2. Since the popula-
tion N2 cannot be larger than N1 (otherwise, stimulated
emission will bring the atoms back to level 〈1|) the ab-
sorption rate cannot be larger than the fluorescence rate
and the maximum rate of absorption emission cycles is
Ra = 1/(2τ2) [12.1].

EXAMPLES

a) For sodium atoms, the lifetime of the upper 32 P1/2

level is τ2 = 16 ns. The maximum number of absor-
bed photons per second is then Nph = 6.3×107 /s.
With an initial velocity of v0 = 600 m/s it takes
2×104 absorbed photons in order to bring the atom
to rest with v= 0. This takes only 3×10−4 s. The

deceleration a =−dv/dt =−2×106 m/s2 is about
200,000 times larger than the earth’s acceleration
g = 9.8 m/s2!

b) For magnesium atoms, with m = 24 AMU, which
absorb on the resonance singlet transition at λ=
285.2 nm, the deceleration is even larger because of
the higher photon energy hν= 3.7 eV and the shorter
lifetime τ = 2 ns of the upper level. The result is
that ∆v =−6 cm/s per absorbed photon and the
required number of absorbed photons to completely
stop the atoms is 1.3×104. This gives a minimum
stopping time of 3×10−5 s. During the deceleration
time, the atoms travel along a path length of about
1 cm, if their velocity was initially v0 = 600 m/s.

How can such a true two-level system be realized?
In Fig. 12.3 the level scheme of the sodium transition

3S1/2 → 3P3/2 is shown with the hyperfine components
characterized by the quantum number F of the total
angular momentum F = s+ L+ I of electron spin s,
orbital angular momentum L and nuclear spin I . If
the excitation laser is tuned to the transition F ′′ = 2 →
F ′ = 3, the only allowed fluorescence transition is F ′ =
3 → F ′′ = 2 because ∆F = 0,±1. With this selective
excitation a true two-level system is realized.

32
3 2P /

3 2
1 2S /

E

Laser Fluorescence

F = 3

F = 2

F = 1

F = 0

F = 2

F = 1

Fig. 12.3. Realization of a true two-level system
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Fig. 12.4. Simplified experimental realization for the decele-
ration in a collimated beam by photon recoil

The experimental arrangement for decelerating
atoms in a collimated atomic beam is shown in Fig. 12.4.
The pump-laser beam is directed along the molecular
beam axis opposite to the velocity of the atoms. The final
velocity of the atoms is monitored by a weak probe la-
ser crossing the molecular beam with an angle α against
the beam axis. The absorption of the probe laser is
Doppler-shifted against the resonance frequency ω0 by
the amount∆ω= v ·k= vk cosα⇒∆ν = (v/λ) cosα.

During the deceleration process the following
problem arises. Because of the Doppler-shift the fre-
quency ω of the pump laser has to be tuned to
ω= ω0− kv= ω0− kvz, which changes in time while
the velocity decreases. Two solutions have been found.
Either the laser frequency or the absorption frequency

PM

Magnetic coil

with field gradient

Na
oven

10
cm

110 cm 40
cm

Probe
laser

Chopper

Pump
laser

Fluorescence
detection

ω

1'm,3'F F ==

0''m,2''F F ==
h

Fig. 12.5. Laser cooling of atoms in a collimated beam with
a fixed laser frequency and Zeeman tuning of the atomic
absorption frequency

of the atoms must be tuned such that they are synchroni-
zed with the changing Doppler-shift. When using diode
lasers, the laser frequency can be shifted with the elec-
tric current through the diode. The absorption frequency
of the atoms can be shifted by Zeeman tuning in a ma-
gnetic field B(z), which decreases with increasing z in
such a way that the Zeeman transition always stays in
resonance with the fixed laser frequency (Fig. 12.5).

12.1.2 Optical Cooling of Atoms

In the previous section, “one-dimensional cooling” was
discussed, where only one velocity component of the
atoms was decelerated. The final goal is the deceleration
of all three velocity components resulting in a real three-
dimensional cooling and a corresponding reduction of
the gas temperature.

When atoms in a gas cell are irradiated from six la-
ser beams pointing into the ±x,±y,±z directions
(Fig. 12.6) the atoms suffer a recoil if they absorb
photons from the six beams. The absorption proba-
bility depends on the detuning from the resonance
frequency ω0. An atom with a velociy v can absorb
laser photons in the frequency range ω= ω0+k ·v±γ ,
where γ is the homogeneous line width (natural line

Optical
molasses

+z

+y

+x

−z

−y

−x

Fig. 12.6. Optical molasses with six pair-wise counterpropa-
gating laser beams
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width + pressure broadening + saturation broadening
of the absorbing transition) with the probability (see
Sect. 7.3)

P(ω)= P0(γ/2)2

(ωL−ω0−k ·v)2+ (γ/2)2 . (12.1)

Due to the thermal velocity distribution of the atoms the
total absorption profile is a Doppler-broadened Gaus-
sian profile. The absorption frequencies of the two laser
beams pointing into the opposite direction have opposite
Doppler shifts (Fig. 12.7). The frequency dependence of
the absorption rates for photons from two opposite laser
beams is then

R±(v)= R0

1+
(
ωL−ω0±kv

γ/2

)2 . (12.2)

The total net recoil force component Fi (i = x, y, z) is

Fi =
[
R+(vi)− R−(vi)

]
�k . (12.3)

Inserting (12.2) into (12.3) gives with δ= ωL−ω0

Fi =− 16R0δkv�k

γ 2

[
1+ 8

γ 2

(
δ2+ (kv)2)+( δ2−(kv)2

γ 2

)2
] .

(12.4a)

For kv� ωL−ω0 = δ the net force becomes

Fi =−avi with a = 16δ�k2 R0

γ 2
[
1+ (2δ/γ)2]2 ,

(12.4b)

which is proportional to the atomic velocity. Its
dependence on the detuning δ is illustrated in Fig. 12.8.
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Fig. 12.7. For ω < ω0, the absorption probability is larger for
k ·v< 0 than for k ·v> 0

Fig. 12.8. Frictional force in an optical molasses (solid curve)
for a red detuning δ =−γ . The dotted curve shows the ab-
sorption profiles by a single atom moving with vx =±γ/k for
a single laser beam propagating in the x direction

When the laser frequency ωL is slightly smaller
than the resonance frequency ω0 (δ < 0) atoms
moving towards a laser beam have a larger pro-
bability to absorb a photon than those atoms that
move in the direction of the beam. Therefore in
this case the atoms are pushed towards the overlap
region of the six laser beams [12.2].

An atom with mass M, moving inside the overlap
region of the six laser beams experience a force with
the three components Fi(vi)=−avi (i = x, y, z), that
damps its velocity. From the relation

dv/dt = F/M ⇒ dv/v=− a

M
dt

we obtain the time-dependent velocity components

vi = vi0 e−(a/M)t . (12.5)

The velocity of an atom that experiences pho-
ton recoil in the overlap region of six laser
beams in ±x,±y and ±z directions, decreases
exponentially with the damping time tD = M/a.

The ensemble of atoms under the influence of these
frictional forces is called optical molasses.

EXAMPLE

For Na atoms one obtains, for a detuning δ= 2γ and
with the data of the example in the previous section,
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the constant a = 1×10−20 Ns/m and a damping time
tD = 2.3 µs. The atoms move in this overlap region like
particles in a viscous molasses.

What are the lowest temperatures that can be
reached by optical cooling?

The smaller the velocity of the atoms become,
the smaller is their Doppler-shift and the closer the
laser frequency ωL must approach the center fre-
quency ω0 of the atomic transition in order to stay in
resonance. If the velocity v of the atoms has decre-
ased to v < γ/k, the detuning δ = ωL−ω0 has to be
smaller than the homogeneous width γ of the atomic
transition. The cooling efficiency decreases with decre-
asing δ and for ωL = ω0 the net cooling force becomes
zero.

Because of the recoil effect during the absorption
or emission of photons each atom performs a ran-
dom motion comparable to the Brownian motion (see
Sect. 2.3.1). Although the time average 〈v〉 of the atomic
velocities is zero, the mean square value 〈v2〉 increases
by the random recoil forces, which means that the tem-
perature increases. This increase has to be compensated
by the cooling force which only acts for δ < 0. The
minimum temperature Tmin is reached when even for
δ < γ the energy ∆E < hγ taken away from the atom
by optical cooling can just compensate for the thermal
energy kBT , added to the atom by the random recoil
momentum. This gives for the minimum temperature

Tmin = hγ/kB . (12.6)

EXAMPLE

For a natural linewidth γ = 10 MHz the minimum
temperature is Tmin = 72 µK.

Experiments have shown, however, that even lower
temperatures below 1 µK can be reached. Therefore
another cooling effect has to be present, which is related
to the shift of atomic energy levels in the field of the
standing laser waves. The optical transition probability
depends on the electric field strength in the standing
laser wave and leads to the effect, that on the average the
absorbed photon has a smaller energy than the emitted
fluorescence photon, thus taking away energy from the
atom (Sisyphus cooling) [12.3, 4].

12.1.3 Optical Trapping of Atoms

Although optical cooling decreases the volume of an
atomic cloud in the velocity space, it does not concen-
trate them in real space. This can be achieved with
a device called a magneto-optical trap (MOT), illu-
strated in Fig. 12.9. The MOT consists of a pair of
anti-Helmholtz coils through which a current is sent
into opposite directions. With the z-axis as the symme-
try axis, the magnetic field produced by the coils in the
vicinity of the trap center at z = 0 is

B(z)= bz . (12.7)
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Fig. 12.9. Principal arrangement of the magneto-optical trap
MOT
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The magnetic field is zero at the center z = 0 and incre-
ases linearly with increasing distance from the center.
The field lines are indicated as red curves in Fig. 12.9.

In the magnetic field the atomic energy levels ex-
perience a splitting into Zeeman components with the
energies

Ei =−pm · B= gFµBmF |B| . (12.8)

Where µB is the Bohr-magneton, F is the quantum
number of the total angular momentum (including
nuclear spin) and MF the magnetic quantum number
−F ≤ mF ≤ F.

In Fig. 12.10b the z-dependence of the Zeeman
energy is plotted for the two levels with F = 0 and
F = 1.

The six laser beams passing through the MOT are
circularly polarized (Fig. 12.10a). They induce tran-
sitions with ∆mF =±1. If the laser frequency ωL

is below the resonance frequency ω0, atoms in the
region z > 0 absorb preferentially σ−-light inducing
∆mF =−1 transitions, while for z < 0 mainly σ+-light
is absorbed. For z = 0 the absorption rates for σ+ and
for σ− light are equal. This pushes all atoms moving
outwards back towards the center. The gas of cold mole-
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Fig. 12.10. (a) Generation of two counter propagation σ+
and σ− polarized laser beams. (b) Zeeman levels in the MOT.
(c) Trap potential

cules is therefore compressed into a dense cloud around
the center of the MOT.

The z-dependent force acting on the atoms is similar
to the discussion in the previous section

Fz(z)= Rσ+(z)�kσ+ + Rσ−(z)�kσ− , (12.9)

determined by the difference of the transferred momen-
tum per second (note, that kσ+ and kσ− are antiparallel).
For a Lorentzian absorption profile with halfwidth γ the
absorption rates become

Rσ± = R0

1+
[
ωL−ω0±pmbz/

γ/2

]2 . (12.10)

In the vicinity of z = 0 we can expand the bracket
in (12.10) and obtain for the restoring force acting on
the atoms

Fz =−Dz with D = R0 pmb
16kδ

γ 2(1+4δ2/γ 2)2
.

(12.11)

This is a force that linearly increases with z. Be-
cause Fz =−∂Epot/∂z we can attribute to the MOT
a harmonic potential

Epot(z)= 1

2
Dz2 , (12.12)

which stabilizes the atoms around z = 0.
Including the velocity-dependent force, discussed in

the previous section, the total force acting on the atoms
is

Fz =−Dz−avz (12.13)

resulting in a damped oscillation of the atoms with
mass M around the trap center with a frequency

Ω =√
D/M (12.14)

and the damping constant

β = a/M . (12.15)

EXAMPLE

For Rubidium atoms with M = 1.4×10−25 kg the ab-
sorption wavelength is λ= 785 nm⇒ k = 8×106 m−1.
With a laser detuning δ = γ and an absorption rate
R0 = γ/2 one obtains a = 4×10−21 Ns/m. With a ma-
gnetic field gradient b = 0.1 T/m and the magnetic
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moment pm ≈ µB the constant D = 2.37×10−18 can
be calculated. This gives the oscillation frequency
ω= 4100 s−1 and the damping constant β = 1.2×10−2.
The atoms relax with a time constant of 12 ms after
about 50 oscillation periods against the trap center.

Up to now we have only regarded the movement of
the atoms in the z direction.

For the x and y directions, similar considerations
hold. The magnetic field of the anti-Helmholtz coils is
a quadrupole field. From Maxwell’s equation divB = 0
follow the relations

∂Bx

∂x
= ∂By

∂y
=−1

2

∂Bz

∂z
. (12.16)

The restoring forces in the x and y directions are
therefore one half of that in the z direction.

Note:

Besides these restoring forces due to the recoil by pho-
ton absorption, there is, of course,, also the magnetic
force

Fm =−pm ·grad B . (12.17)

Inserting the relevant figures for the experimentally rea-
lized field gradients, it turns out that this force is much
smaller then the recoil force.

For more detailled information on magneto-optical
traps see [12.5, 6].

12.1.4 Bose–Einstein Condensation

If the density n of cold atoms becomes so large, that the
mean distance d between atoms is smaller than the de
Broglie wavelength

d< λDB = h

mv
⇒ n <

1

λ3
dB

(12.18a)

the different atoms can no longer be distinguished, be-
cause each atom can be only localized within its de
Broglie wavelength. More detailed calculations show
that above a critical density

nc = 2.612

λ3
DB

(12.18b)

the properties of the gas drastically change. Since the
average kinetic energy is

1

2
m
〈
v2〉= 3

2
kBT

we can express the de Broglie wavelength by

λDB = h√
3mkBT

(12.19)

and obtain for the critical density the expression

nc = 13.57(mkBT)3/2/h3 , (12.20)

which depends on the temperature T of the atomic gas.
Below a critical temperature Tc a phase transition takes
place for a gas of bosonic atoms from a classical gas
to a degenerate gas of indistinguishable atoms. Bosonic
atoms have an integer total spin quantum number and
each energy level can be occupied by many atoms, dif-
ferent from Fermonic atoms with a spin of 1/2, where
each energy level can be occupied by at most two partic-
les. At a sufficiently low temperature, all bosonic atoms
occupy the lowest possible energy state. Such an atomic
ensemble represents a degenerate gas, which is cal-
led a Bose–Einstein condensate (BEC) after the Indian
mathematician Satyendra Nath Bose, who in 1922 deve-
loped the concept of indistinguishable photons and gave
a mathematical proof of Planck’s radiation formula. He
sent his ideas to Albert Einstein who generalized Bo-
se’s model to include not only photons but all particles
with integer spin quantum numbers. They predicted the
behavior of Bosons for transitions from a classical to
a degenerate gas. Both authors published the results in
1924 in a common paper [12.7].

EXAMPLE

The Na atom has an electron spin of 1/2 and a nuclear
spin of 3/2. The total spin quantum number in the 2S1/2

ground state is F = 1 or F = 2. The sodium atom is
therefore a bosonic atom. The Li atom has the two
isotopes 6Li and 7Li with nuclear spins I = 1 and I =
3/2. Together with the electron spin s = 1/2 the total
spin quantum number for 6Li is odd (it is a Fermion)
and for 7Li it is even (it is a boson).

Inserting the relevant figures into equation (12.20), it
turns out that the temperature reached by optical cooling
is still not low enough to reach the critical temperature
for BEC. Therefore, additional cooling techniques have
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to be applied. One of these methods is based on evapo-
ration cooling. It is in principle the same technique one
uses for cooling a hot cup of coffee by blowing over
the liquid surface. This removes the fastest molecules
in the vapor phase above the surface and decreases the
average kinetic energy, i.e., the temperature of the re-
maining molecules. The basic principle applied to the
molecules in the MOT is the following:

At first the cold atoms are transferred from a MOT
to a pure magnetic trap that has no cooling lasers,
by pushing them with a laser beam into the wanted
direction. In this trap that is formed by an inhomoge-
neous magnetic field, they are kept not by the recoil
forces of lasers like in the MOT, but by the ma-
gnetic force F =−pm grad B due to their magnetic
moment pm, (Fig. 12.11a,b). Although this force is
much smaller than the recoil force, the atoms, which
are now already very cold, can be trapped since their
kinetic energy is small. Here they have the potential
energy Epot =−pm B. Due to the distribution of their
thermal energy they fill the trap potential up to the
energy Emax.

Now the trap is irradiated by a radio-frequency that
induces flips of the electron spin s, when its frequency
νrf =∆E/h matches the energy difference∆E = E↑−
E↓ = gsµB ·2 = 2µB B (see Sect. 5.6).

The atoms that have suffered a spin flip are
automatically pushed out of the trap because their po-
tential is now repulsive (Fig. 12.11b). Choosing the
frequency in such a way that only the hottest atoms
can make a spin flip, results in a decrease of the
mean energy of the trapped atoms. During the eva-
poration of atoms, the temperature drops below the
critical temperature. The radial density profile of the
atoms becomes very narrow because all atoms con-
dense into the lowest potential energy state of the
magnetic trap. This can be monitored by sending
a widened weak laser beam through the conden-
sate, which is partly absorbed (Fig. 12.12). With
a CCD-array, the transmitted intensity is detected,
which is a measure of the spatial dependence of
the absorption and thus of the density of atoms
(Fig. 12.12a–d).

By this technique the first experimental proof of
Bose–Einstein condensation was reported in 1996 by
E. Cornell and C. Wieman in Boulder, Colorado [12.8]
and independently by W. Ketterle and his group at MIT
in Boston [12.9]. Both groups received the Nobel Prize
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Fig. 12.11a–f. Evaporation cooling in a magnetic trap.
(a) Atomic cloud in the MOT. (b) Potential of the pure ma-
gnetic trap. (c) Forces in the magnetic trap. (d) Velocity
distribution of atoms. The shadowed area is released from
the trap. (e) Radiofrequency induced spin flips. (f) Velocity
distribution of cooled atoms

in Physics in 2001 for this pioneering work. Recently,
even Bose–Einstein condensation for molecules has
been achieved [12.10].

The BEC behaves in many aspects like a supra-
liquid with zero viscosity. Spectroscopy of atoms in
a Bose–Einstein condensate gives a lot of information
on collective effects of many atoms, which are all in
the same state [12.11]. One of the fascinating effects
is the release of a coherent beam of atoms out of the
BEC. Such a coherent beam represents a large flux of
atoms that all have nearly the same energy. Because of
its resemblance to a coherent beam of photons, which
is a laser beam, it is called an atom laser. Two beams
from the same BEC can interfere with each other if they
are spatially overlapping [12.12].
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Fig. 12.12a–d. Monitoring BEC by the spatial absorption pro-
file of the transmitted probe laser. Density profiles of atomic
cloud with T = 1.2 µK (a), 310 nK (b), 170 nK (c), and below
the critical temperature of BEC (d) [12.8]

These atom lasers can find applications in atom
interferometry [12.13] and in surface science for in-
specting surfaces with a spatial resolution in the
subnanometer range.

12.1.5 Molecular Spectroscopy in a MOT

Since the relative velocity of cold atoms in a MOT is
very small, they stay for a longer time together when
they approach each other. During this time the atom
pair can be excited by a laser into a stable molecular
state (Fig. 12.13). By a second laser stimulated emission

E

R

A + B

(AB)*

AB

2hν

1hν

Fig. 12.13. Formation of cloud molecules by photoassociation
of a pair A+B

can be induced terminating on levels of the electronic
ground state below the dissociation threshold. In this
way molecules can be formed by photo-association. If
both lasers are narrow band single mode lasers spec-
troscopy of levels close to the dissociation energy of
the diatomic molecule can be performed with ultrahigh
resolution.

For these high-lying levels, the mean distance bet-
ween the two atoms can become very large and several
small effects are significant for the small binding energy,
such as magnetic interactions between electron and
nuclear spins, or retardation effects due to the finite
time delay at which a change of the electron position at
one atom influences the second atom. Such effects can
even cause a second shallow minimum in the potential
curve of the diatomic molecule at internuclear distan-
ces of about 10−30 nm besides the deep minimum at
the equilibrium distance Re ≈ 0.2−0.3 nm [12.14].

The study of molecule formation at these extremely
low temperatures gives information on the velocity
dependence of reactive collisions and on the depen-
dence of collision cross sections on the relative spin
orientation.
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12.2 Time-resolved Spectroscopy
in the Femtosecond Range

With the development of femtosecond lasers, a whole
new area of research has begun. Now molecular vibrati-
ons or the formation and dissociation of molecules can
be observed in real-time. The old dream of photoche-
mists to be able to control chemical reactions by light
has, at least for some favorable examples, become true.

In this section we will discuss some exciting examp-
les regarding these new developments in the application
of femtosecond lasers.

12.2.1 Time-resolved Molecular Vibrations

Stationary spectroscopy measures time averages of mo-
lecular states. For example, the equilibrium internuclear
distance of diatomic molecules in the vibrational le-
vel 〈v| obtained from measurements of the rotational
constant Bv, is the time average over many vibrational
periods (see Sect. 9.5).

With femtosecond optical pulses the motion of the
vibrating nuclei can be made “visible” in a similar way
as fast periodic macroscopic motions can be visualized
by a stroboscopic technique where the body is made vi-
sible by pulsed illumination with a repetition frequency
that is adapted to that of the motion. We will illustrate
the technique using the Na2 molecule as an example
(Fig. 12.14).

A femtosecond laser pulse (pump-pulse) with time
duration ∆t excites the molecules from their ground
state into a superposition of vibrational levels v′ within
the energy interval∆E = h/∆t in an electronically ex-
cited state. The different vibrational levels are excited
coherently and form a wave packet |ψ(R, t)|2, which
moves in the (R, t) diagram of Fig. 12.15 periodically
between the minimum value Rmin and the maximum va-
lue Rmax in the potential of the upper state (which is,
for our example, the D1Σu state of Na2). If the excited
molecule is now further excited by a second laser pulse
it can be ionized. The ionization depends on the inter-
nuclear distance R at which the second pulse finds the
molecule. For R = Rmax the probe laser pulse can reach
the ionization limit for the dissociation

Na2
∗ +hν→ Na(3s)+Na+ ,

whereas for R = Rmin it cannot reach the repulsive
potential curve of the 1Σu potential but ends in a vir-
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Fig. 12.14. Level scheme for the pump and probe technique
applied to the Na2 molecule [12.15]

tual level of the system Na+2 + e−, which immediately
converts into a real bound level of the molecular ion
Na+2 because the photo-electron carries away the excess
energy as kinetic energy.
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Fig. 12.15. Motion of wave packet in a bound potential
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time ∆t between pump and probe pulse [12.16]

If the ratio N1(Na+)/N2(Na+2 ) is measured as
a function of the delay time between the pump-
and probe-pulse, the oscillatory curve of Fig. 12.16
is obtained, from which the vibrational period in the
intermediate level of the 1Σu state can be inferred.

12.2.2 Femtosecond Transition State Dynamics

With femtosecond laser pulses, short-lived transi-
ent states of molecular systems can be studied “in
real-time”. One example is the photo-dissociation of
a diatomic molecule, which has a bound ground
state 〈0|, but a repulsive potential in the excited state 〈k|
(Fig. 12.17). If the pump laser pulse reaches the exci-
ted state potential at an internuclear distance R1 the
fragments of the dissociated molecule have a kine-
tic energy Ekin(R)= Epot(R1)− Epot(R). If the probe
pulse has a delay ∆t, it excites the molecule further
into the state 〈i| at a separation R = R1+∆R with
∆R = ∫ ∆t

0 vdt. The excitation into the state 〈i| can be
detected by the fluorescence emitted from 〈i|. The ma-
ximum fluorescence is reached when the separation R
corresponding to the time delay∆t has a value for which
∆E(R)= Ei(R)− Ek(R)= hν2.

Varying the time delay ∆t one can map out the
difference ∆E(R) of the two potential curves.

EXAMPLE

The iodine atoms in the dissociating I2 molecule have
with Ekin = 15 meV a velocity v= 100 m/s. After a time
delay of ∆t = 10 ps their separation R has increased

L1

L2

E

v(R)

R1R

1h ν⋅

Fig. 12.17. Level scheme for probing molecular photodisso-
ciation on a femtosecond scale

by 1 nm. In order to map out the potential curve with
a resolution of 0.1 nm, a time resolution of 1 ps is
demanded.

A second example is the photodissociation of the
NaI molecule, which shows at the internuclear di-
stance Rc an avoided crossing of the ground state
potential, dissociating into Na++ I− and the excited
state potential, which converges towards the lower
energy of the neutral products Na+ I (Fig. 12.18a). If
the molecule is excited at the distance R1 into the repul-
sive part of the excited state potential, the wave packet
moves “downhill” towards larger separations R. At the
avoided crossing of the two potential curves part of the
wave packet is transmitted and forms neutral Na and
I atoms. The other part is reflected back towards small
R values, until it is again reflected at the inner part of the
repulsive potential. It reaches the crossing point again
where it is partly transmitted and partly reflected, etc.

When the wavelength λ2 of the probe laser is tuned
to the atomic Na transition, the laser-induced atomic
resonance fluorescence is a measure for the number of
Na atoms formed by the molecular excitation (curve (a)
in Fig. 12.18b). If the wavelength λ2 is tuned to the
energy difference ∆E(R < Rc) the probe laser maps



484 12. Modern Developments in Atomic and Molecular Physics

Time delay [ps]

–2 80 2 4 6

Internuclear separation [nm]

0 0.5 1.0 1.5 2.0

4

2

0

–2

–4

P
ot

en
tia

l e
ne

rg
y 

[e
V

]

Fluores-
cence

F
T

S
 s

ig
na

l [
ar

b.
un

its
]

a

b

a) b)

R2R1

V )R(0

)R(V1

INa +

I*Na +

1λ

INa ++

2λ∞

)R(2λ
E

)R(

Rc

)R(E 0p

)R(E 1p

)R(E 2p

Fig. 12.18. (a) Potential diagram of NaI with the pump
transition at λ1 and the tunable probe pulse at λ2(R). (b) Fluo-
rescence intensity IFl(∆t) as a function of the delay time ∆t

between pump and probe pulses with λ2 tuned to the atomic
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the oscillatory movement of the reflected part of the
wave packet (curve (b)).

12.2.3 Coherent Control

If a polyatomic molecule is excited into a dissociating
state, the dissociation products depend on the pre-
paration of the excited state by the excitation pulse
(Fig. 12.19). For example, when a molecule ABC is
excited, there are three different decay channels.

ABC+hν→ (ABC)∗
AB+C↗

→ ABC+hν

↘
A+BC

(12.21)

Which of the three channels is actually realized, de-
pends on the spatial distribution and on the phase
of the wave function ψ(r, t) in the excited state of
ABC, which in turn can be influenced by the wave-
lengths, the time profiles and the phase distribution of
the different wavelength-components in the excitation
pulse.

The coherent control technique tries to optimize
a wanted reaction channel and to minimize all unwan-
ted ones by a proper choice of these pulse parameters.

ABC

+ +

+

+

A

A C B

C

B
A B

A B C

C
?

?

?

ν⋅h

Fig. 12.19. Possible reaction channels for photo-excitation of
a triatomic molecule ABC

This is performed by a learning algorithm and works as
follows [12.18].

The pump pulse is sent onto an optical grating,
that diffracts the different wavelengths of the pulse
components into different directions (Fig. 12.20). A col-
limating lens forms a parallel beam where the different
wavelengths are spatially shifted against each other
due to the dispersion by the grating. The parallel
beam passes through a liquid crystal array consi-
sting of many pixels. When an electric voltage U is
applied to these pixels the molecules in the liquid cry-
stal between the electrodes are partly oriented and
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Fig. 12.20. (a) Optical arrangement for optimizing femtose-
cond laser pulses. (b) Orientation of the molecules in the

liquid of a single pixel. (c) Schematic illustration of the whole
mask with 120 pixels [12.20]

the index of refraction n changes, where ∆n ∝ U .
This causes a phase shift of the transmitted optical
wave. Since the voltage for each pixel can be cho-
sen separately the phase of each wavelength-component
passing through one of the pixels can be controlled
separately.

A second lens focuses the parallel beam onto a se-
cond grating, where the different wavelengths are again
superimposed and leave the system as a parallel out-
put beam. Because of the different phase shifts for the
different wavelengths the intensity distribution I(t) has
changed. The time profile of the output pulse and the
intensity distribution I(λ) of the different wavelength
components can be varied within certain ranges by
changing the voltages across the different pixels of the
liquid crystal.

In order to optimize a specific reaction the out-
put pulse is sent into the reaction chamber and the
wanted products are measured. The signal is fed into
a computer that controls the different voltages of the

pixels. These voltages are now changed and the compu-
ter checks whether the wanted signal has increased or
decreased. With a special learning algorithm (e.g., sur-
vival of the fittest) the output laser pulse is optimized in
such a way, that it produces the maximum wanted signal
of the investigated reaction (Fig. 12.21). For favorable
cases the selectivity of the reaction could be enhan-
ced by one order of magnitude through this optimized
coherent control system.

For more details see [12.19, 20, 21, 22].

12.3 Optical Metrology
with New Techniques

For many scientific and technical applications, accu-
rate measurements of wavelengths, frequencies and
time are essential. One example is the precise deter-
mination of fundamental physical constants, such as
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Fig. 12.21. Flow chart of coherent control of molecular reactions [12.20]

the fine structure constant, the Rydberg-constant, the
gravitational constant and their possible changes with
time. Such changes must be very small, since they
could not be detected up to now. On the other hand
they would severely influence cosmological models
and might lead to a revision of fundamental physical
principles.

A second example is the synchronization of the de-
tection systems in radio telescopes at different locations
on earth, which demands very accurate and stable fre-
quencies in order to perform radio interferometry with
high angular resolution of radio signals from distant
galaxies.

On the technical side, the accuracy of the global
positioning system (GPS) is limited by the frequency
stability of the signals superimposed from different
satellites.

It is therefore worthwhile to look for the optimum
method for generating ultrastable frequencies.

12.3.1 Frequency Comb

The frequency spectrum of a cw mode-locked laser,
emitting a regular train of short pulses, consists of
a comb of equally spaced frequency components that
represent the fundamental modes of the laser resonator
(see Sect. 8.5.2). The total spectral range∆ν = 1/∆t of
the frequency comb depends on the width∆t of the pul-
ses. With femtosecond pulses (∆t = 50 fs) the spectral
range extends over ∆ν = 2×1013 s−1 = 20 THz.

This spectral range can be greatly increased by fo-
cusing the laser beam into a special optical fiber, where
the spectrum is considerably broadened by self-phase
modulation. The index of refraction depends on the in-
tensity of the laser pulses and a temporal phase change
causes a frequency shift, since δν= (1/2π) · dϕ/dt (see
Sect. 8.5.3). With sufficiently intense laser pulses, a to-
tal spectral width of the frequency comb over more than
one decade (e.g., fromλ= 1064 nm to 500 nm) has been
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achieved, which corresponds to a frequency interval of
320 THz.

EXAMPLE

With a resonator length d = 50 cm the spacing between
the modes is ∆νm = 300 MHz. With a total spectral
width of 320 THz the frequency comb includes 1.07×
106 modes.

Measurements have proved that the spectral com-
ponents of the comb are precisely equidistant, even in
the far wings of the comb. This opens the possibility to
compare different frequency standards with very high
precision and to measure absolute optical frequencies.
The methods works as follows.

Presently, the cesium clock (Fig. 11.90) still repres-
ents the international frequency standard. The mode
spacing ∆νm of the frequncy comb is locked to the
frequency νCs in such a way that νCs = m∆νm. This
locking can be realized by tuning the length d of the
laser resonator (∆νm = c/2d), until the repetition rate
of the mode-locked pulses equals a subharmonic of the
cesium frequency.

The frequency difference N∆νm between the n-th
and the (n+ N)-th mode of the comb is now precisely
known.

In order to measure the absolute frequency of a sta-
bilized laser, the 4th harmonic of a He-Ne laser at
λ= 3.39 µm is compared with the frequency f1 of
the closest mode in the frequency comb (Fig. 12.22).
The beat frequency fc1 = 4νHe-Ne− f1 is smaller than
150 MHz and can be therefore counted with a fast
electronic counter.

Now the frequency νHe-Ne is mixed in a nonlinear
optical crystal with the doubled frequency 2 ·4νHe-Ne

and the difference frequency∆ν = 8νHe-Ne−1νHe-Ne =
7νHe-Ne is compared with the doubled frequency 2νD

of a tunable diode laser stabilized on a mode f2 of the
frequency comb, which is 584,498 modes away from
the mode f1 onto which 4νHe-Ne− fc1 is stabilized. The
difference frequency 7νHe-Ne−2νD = fc2 is counted.

We have now the equations:

f1− f2 = 584.498∆νm+ fc1

8 fHe-Ne−7 fHe-Ne = fHe-Ne = 2νD+ fc2

4 fHe-Ne−3.5 fHe-Ne = 584,498∆νm+ fc1+ fc2/2

= 584,498νCs/m+ fc1+ fc2/2 ,
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Fig. 12.22. Absolute frequency measurement of the He-Ne
laser at λ= 3.39 µm with the optical frequency comb [12.23]

which relates the cesium frequency νCs to the
frequency νHe-Ne of the He-Ne laser since the mat-
ching frequency fc1 is counted and known within
1 Hz [12.23].

In a similar way, the absolute frequency of the
1S → 2S transition in the hydrogen atom can be de-
termined with the help of the frequency comb. In order
to realize this, the frequency-doubled output of a dye-
laser with λ= 486 nm is stabilized onto the two-photon
transition 1S–2S of atomic hydrogen at λ= 121.5 nm,
which has a natural line width of only 1.3 Hz (!), be-
cause the lifetime of the metastable 2S level is about
0.13 s. Therefore the frequency of the laser can be
stabilized onto this narrow transition with a stability
of a few Hertz. The direct comparison of this optical
frequency with the microwave frequency of the ce-
sium standard can be performed with an accuracy of
∆ν/ν ≤ 5×10−16 [12.24, 25].

12.3.2 Atomic Clocks with Trapped Ions

Very accurate and stable frequencies can be generated if
the laser frequency is stabilized onto a narrow transition
of cold ions that are kept for a long time in an ion
trap [12.26]. This ion trap can be either a Penning trap
(Fig. 2.83) or an rf quadrupole trap (Fig. 12.23), called
a Paul trap after its inventor Wolfgang Paul (Nobelprize
1989).
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Here, a single ion can be trapped and optically
cooled in the trap. After it has reached its lowest
temperature, it oscillates with very small amplitudes
around the trap center. The ion is excited from its
ground state by two different lasers into two upper
states. This is illustrated in Fig. 12.24 for the mercury
ion Hg+ with the ground state 5d106s(2S1/2), which
can be excited by the pump laser with λ= 194 nm
into the short-lived upper level 5d106p(2 P1/2) with
τ = 2.3 ns.

The fluorescence, emitted from this level, serves as
a monitor for the excitation. With cw excitation the
fluorescence photon rate is about 2.2×108 /s.

A second laser, called the clock laser, is tuned to the
dipole forbidden, but quadrupole-allowed transition to
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Fig. 12.25. Experimental demonstration of quantum jumps of
a single ion [12.27]

the 2 D5/2 level with a lifetime of τ = 100 ms. This tran-
sition is very narrow (∆ν = 1.5 Hz!). If the clock laser
can be stabilized onto the center of this narrow transi-
tion, a very high frequency stability (ν/∆ν ≥ 1016) can
be achieved. Since the cold ion is kept within a small
volume around the center of the trap, where the electric
field is nearly zero, possible Stark-shifts are very small
and do not limit the absolute precision of the frequency
measurement.

With this system it is possible to observe single
quantum jumps. If only a single ion is present in the trap,
the ground state is empty for about 100 ms when a clock
transition has taken place before it is refilled by the
fluorescence photon from the 2 D5/2 level. During this
time, the pump laser cannot excite the UV fluorescence
and the signal is interrupted (Fig. 12.25). The rate of
these dark periods is a measure for the frequency of
the clock transition. The longer the dark periods, the
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Fig. 12.26. Photograph of a Wigner crystal of seven trapped
ions, taken with a microscope and an image intensifier. The
distance between the ions is about 20 µm [12.28]

closer is the clock laser frequency to the center of the
clock-transition [12.27].

When more than one ion is present in the trap, the
Coulomb repulsion between the ions pushes the ions
away from the center and their positions in the trap are
determined by the minimum total potential energy of
the trap potential plus the Coulomb repulsion. Below
a critical temperature Tc, the ions arrange themselves
in a geometrical structure like in a solid crystal, ho-
wever with distances between the ions, that are several
orders of magnitude larger than in the solid. Such an
arrangement is called a Wigner crystal (Fig. 12.26).

Such crystals, where the forces are well known,
are good candidates to study properties of solid cry-
stals, where the superposition of several effects often
masks the pure interaction between close neighboring
atoms [12.28, 29]

12.4 Squeezing

The electric field of a monochromatic light wave can be
represented by

E(t)= E0(t)[cos(ωt+k ·r+ϕ(t))] (12.22a)

or by

E(t)= E1(t) cos(ωt+k ·r)+ E2(t) sin(ωt+k ·r)
(12.22b)

with tanϕ =−E2/E1. The electric field amplitudes E1

and E2 are called the quadrature amplitudes.
Even when all technical noise has been elimina-

ted there are still small fluctuations of the amplitude
and the phase of the wave, because the wave consists
of N photons per second that are emitted in a random
way. Therefore the photon number N fluctuates within
the range N ±√N and also the time sequence of the
photons (which corresponds to the phase of the wave)
shows similar fluctuations. These fluctuations are cau-
sed by the quantum structure of light and they represent
principle limits, set by the uncertainty relation, which
generally cannot be overcome.

EXAMPLE

Assume an optical detector with the quantum efficiency
η < 1 is illuminated by N photons per sec. This leads
to a minimum relative fluctuation∆S/S of the signal S,
which for a bandwidth ∆ f is given by

∆S

S
=
√

Nη∆ f

Nη
=
√
∆ f

ηN
. (12.23)

For a radiation power of 1 mW at λ= 600 nm → N =
3×1015 s−1. With a bandwidth∆ f = 100 Hz (time con-
stant of 10 ms) and a quantum efficiency of 20% we
obtain a minimum fluctuation ∆S/S = 4×10−7. If the
output signal is a voltage of 1 V it fluctuates with
∆U = 0.4 µV.

In Fig. 12.27 the fluctuations are illustrated in two
different ways. In the E(t) diagram the fluctuation ran-
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δ 0E

a) b)

0r
0E

Fig. 12.27a,b. Amplitude and phase uncertainties of a laser
wave shown in an amplitude–time diagram (a)and in a polar
phase diagram (b)
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ges of amplitude and phase are indicated by the dotted
curves. In the E1-E2 diagram the uncertainty range, due
to the fluctuations δE1 and δE2, are marked by the area
of the red circle. It can be also characterized in a polar
vector diagram by the fluctuations δϕ of the direction
of the vector E0 and δE0 of its length.

Assume, the field amplitude in (12.22) repres-
ents the electric field of a single mode laser. If it is
normalized in such a way, that〈

E2〉= 〈
E2

1

〉+ 〈E2
2

〉= �ω

2ε0V
, (12.24)

where V is the volume of the mode and ε0 the dielectric
constant, the minimum uncertainty product can then be
written as

∆E1∆E2 ≥ 1 . (12.25)

A coherent state of the single mode laser (also called
a Glauber state), can be written as a linear superposi-
tion of states with photon occupation numbers Nk. This
describes a Poisson distribution for the probability of
finding Nk photons, with the maximum at the mean va-
lue N . For such a coherent state the uncertainties are
symmetric, i.e.,

∆E1 =∆E2 = 1 . (12.26)

Such a state has the minimum possible uncertainty.
The question is now whether it is possible to reduce

the amplitude noise below this limit. Since the uncer-
tainty relation cannot be violated, the phase fluctuations

Vacuum

fluctuations

Laser

Vacuum
fluctuations

Wedge
PD 2

PD 1

Sp. An.

BS2

E1

BS1

E 2

)0f,(〈 〉I =ϕ

0I0 =

ϕ2ππ

nρ

0ρ

0

I

Photon
noise limit

10 MHzf =

a) b)

Fig. 12.28. (a) Mach–Zehnder interferometer with va-
riable phase delay ϕ realized by an optical wedge.
(b) Detected mean intensity 〈I〉 measured at f = 0,

and phase-independent photon noise power density, mea-
sured at f = 10 MHz with and without input inten-
sity I0

then have to become larger. For certain experiments this
would still increase the signal-to-noise ratio. For other
experiments it might be desirable to reduce the phase
fluctuations at the cost of higher amplitude fluctuations.

In the diagram of Fig. 12.27b this decrease of the
fluctuations of one component at the cost of the other
means a squeezing of the uncertainty circle into an
ellipse. The techniques used to change the relations
between amplitude-and phase-fluctuations in favor of
the desired experimental results are therefore called
squeezing [12.30].

Coherent light shows phase-independent noise. This
can be experimentally demonstrated by the two-beam
Mach–Zehnder interferometer shown in Fig. 12.28.

The monochromatic laser beam is split by the beam
splitter BS1 into two partial beams with amplitudes E1

and E2, which are superimposed again by BS2. One of
the beams passes through an optical wedge, where the
optical path-length can be continuously varied, which
causes a variable phase shift∆ϕ between the two partial
waves. The two detectors PD1 and PD2 monitor the
mean intensities

〈
I1,2

〉= 1

2
cε0

[〈
E2

1

〉+ 〈E2
2

〉±2E1 E2 cosϕ
]

(12.27)

averaged over many cycles of the optical field with
frequencyω. For equal amplitudes E1 = E2 the detected
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intensities are

〈I1〉 = 〈I0〉 cos2(ϕ/2) , 〈I2〉 = 〈I0〉 sin2(ϕ/2) ,

⇒ 〈I1〉+〈I2〉 = 〈I0〉 . (12.28)

The two detectors in Fig. 12.28 measure the projection
of E in Fig. 12.27b onto the axes E1 and E2, respec-
tively. A variation of the phase ϕ in one arm of the
interferometer corresponds to a rotation of the vec-
tor E0. In Fig. 12.28b the intensity 〈I(ϕ)〉 is plotted
as a function of the phase-difference ϕ between the
two beams. By a proper choice of ϕ for the arrange-
ment in Fig. 12.28, one can measure the fluctuations
〈δE1〉 and 〈δE2〉 separately. If the frequency spectra of
the intensities I1( f) and I2( f) are measured by a spec-
trum analyzer, it turns out that at higher frequencies,
where the technical noise is negligible, the noise power
spectral density ρn( f) becomes independent of the fre-
quency f . The noise power densitiy ρn measured at
a frequency f = 10 MHz is independent of ϕ. This can
be understood as follows.

The intensity fluctuations are due to the random
emission of photons, which are uncorrelated in the two
interfering beams. Although the mean intensities 〈I1〉
and 〈I2〉 depend on ϕ, the fluctuations do not! The de-
tected noise power density ρn ∼

√
N ∼√

I0 shows the
same noise level for the minimum of I(ϕ) as for the
maximum.

If the incident laser beam in Fig. 12.28a is blocked,
the noise level does not go to zero, but has a lower li-
mit ρ0 that is attributed to the zero-point fluctuations of
the vacuum field, which is also present in a darkroom.
This noise adds to the detector noise. The interfero-
meter has two inputs: the coherent light field and the
vacuum field, which is also present without the light
field. Because the fluctuations of these two inputs are
not correlated, their noise power densities add. The
maximum achievable signal to noise ratio is then

S

ρn
∝ N√

N +ρ0
. (12.29)

In the phase diagram in Fig. 12.29, the circular un-
certainty area with radius

√
ρ0 around the origin

E1 = E2 = 0 corresponds to this vacuum noise power
density ρ0.

The preparation of squeezed states tries to minimize
the uncertainty of one of the two quantities δE or δϕ
at the expense of the increased uncertainty of the other.
The uncertainty area is then squeezed into an ellipse.

a

c

b

2E

1E

Fig. 12.29. Uncertainty areas for different squeezing conditi-
ons. a 〈E1〉 = 0,∆E2 is squeezed but∆ϕ is larger than in the
nonsqueezed case. b General case of squeezing of ∆E at the
expense of increasing ∆ϕ. c Uncertainty area of zero-point
fluctuations with 〈E1〉 = 〈E2〉 = 0

Although the area of this ellipse is slightly larger than
the circular area of the unsqueezed state, one may still
gain in the signal-to-noise ratio, if the minimized quan-
tity determines the noise level of the detected signal.

This can be achieved by starting with a normal
coherent state of the incoming wave and introducing
a correlation between the fluctuations of E1 and those
of E2, which means between amplitude and phase
fluctuations. How can this be achieved?

The experimental realization of squeezing is based
on the nonlinear interaction of an optical wave in a non-
linear medium. One example is illustrated in Fig. 12.30,
which shows a Mach–Zehnder interferometer similar
to that in Fig. 12.28. However, one of the light beams
with amplitude E1(t) passes through a medium with
a nonlinear index of refraction

n(E)= n0+n2 E2 (12.30)

that depends on the intensity of the light wave. Assume
that the incident wave with amplitude

Ein(t)= Ein1+ δa E(t)+ δph E(t) (12.31)

has amplitude fluctuations described by δa E(t) and
phase fluctuations represented by δph E(t). If the me-
dium has negligible absorption the amplitude of the
outgoing wave is the same as that of the incident wave.
The phase of the wave, however, is affected by the index
of refraction. We obtain, after a pathlength L through
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Fig. 12.30a,b. Schematic diagram of squeezing experi-
ments with a nonlinear medium in a Mach–Zehnder
interferometer. (a) Experimental arrangement, (b) Ho-

modyne signal ∆S = S1 − S2 ∝ ρn( f,∆ϕ) as a func-
tion of the phase difference ∆ϕ at a frequency
f = 10 MHz

the medium,

ϕout = ϕin+2πnL/λ

= ϕin+ 2πL

λ

[
n0+n2(E1+ δEa1)

2] . (12.32)

Inserting this into (12.22a) we obtain

Eout
1 = Ein

1 and δEout
a1 = δEin

a1(t) , (12.33)

which means that the amplitude and its fluctuation have
not changed for E1. For the phase fluctuations the
situation is different. With δEph = E1δϕ one obtains

δEout
ph = δEin

ph+
2πn0n2 L

λ

(
Ein

1

)2
δEin

a

= δEin
ph+2rKerrδE

in
a (t) , (12.34)

with the optical Kerr parameter

rKerr = 2πn0n2 L
(
Ein

1

)2

λ
.

The nonlinear medium couples the amplitude- and
phase fluctuations. The amplitude E1 changes the in-
dex of refraction, which in turn affects the phase. The
total noise has increased because the nonlinear medium
adds fluctuations to the phase. In the quadrature dia-
gram, based on (12.22b), each point in the upper part

Fig. 12.31. Effect of a medium with nonlinear refractive index
on the fluctuation of a light wave [12.28]

of Fig. 12.31 represents certain instantaneous fluctua-
tions δEa, δEph. If we look at the distribution of the
fluctuations we obtain the diagrams in Fig. 12.31, where
each dot represents the instantaneous value δEin

a (t),
δEin

ph(t) on the left side and δEout
a (t), δE

out
ph (t) on the

right side. The lower graphs show the corresponding
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histograms of the density of points. One can see that
the distribution of the amplitude fluctuations are nar-
rower for the outgoing wave than for the incident
wave, while for the phase distribution, the opposite is
true.

This shows, that the arrangement of Fig. 12.30
reduces the amplitude fluctuations at the expense
of increasing phase fluctuations.

Squeezing can be detected by the interferometer se-
tup shown in Fig. 12.30, where the nonlinear medium
is placed in one arm of the interferometer. The system
acts as heterodyne detector where the local oscillator
is the strong partial wave in the lower arm of the in-
terferometer, which interferes with the much weaker
squeezed light in the upper arm. The two detectors mea-
sure the two output signals Eout

1 and Eout
2 . The difference

∆S = S1− S2 of the corresponding detector signals is
fed into a spectrum analyzer, which is set to a fixed
frequency f . This gives a signal that represents the
fluctuations of the output signals at the frequency f ,
that is proportional to the noise power density ρn( f).
Now the phase of the local oscillator is continuously
changed by the optical wedge and the signal∆S(∆ϕ) is
measured as a function of the phase difference between
the two waves. The result is illustrated in Fig. 12.30b
and shows that for certain phase differences the fluctua-
tions decrease below the noise level of two beams with
uncorrelated fluctuations, which would be independent
of ∆ϕ.

Note the difference from Fig. 12.28, where the out-
put intensity 〈I(ϕ)〉 is plotted, while here the fluctuations
δI ∼ ρn(∆ϕ) are shown.

An interesting possible application of squeezing
might be the detection of gravitational waves by optical
interferometry. Such waves travel with the velocity of
light through space and cause a contraction or expan-
sion of space, depending on the amplitude and phase of
the wave. As predicted by Einstein, gravitational wa-
ves should be emitted from sources where large masses
are accelerated. Examples are supernovae explosions of
stars or close binary stars, which are two stars bound
by mutual gravitation that move around their common
center of mass. If the two components have a small
distance and therefore experience a large acceleration,
they can emit sufficiently intense gravitational waves
that might be strong enough to be detected on earth. The

GEO600
Compact binaries
of neutron stars

Frequency
10 100 1,000 10,000 Hz

Mpc1.5d,M4.1 =

10 23−

10 22−

10 21−

h

Supernova in
VIRGO-cluster

d = 22 Mpc

Fig. 12.32. Calculated amplitudes h( f) of gravitational waves,
emitted from two different sources, compared with the detec-
tion sensitivity of GEO 600, a gravitational wave detector
close to Hannover

amplitude of the gravitational wave depends on its fre-
quency. In Fig. 12.32, calculated amplitudes are shown
for some astronomical sources. Estimations show that
a supernova explosion in the Virgo cluster would ge-
nerate gravitational waves that cause a relative space
contraction on earth as small as 10−21! This means that
a length of 1 m is changed by 10−21 m, which is 1011

times smaller than the diameter of the hydrogen atom.
Up to now the sensitivity of gravitational wave de-

tectors has not been high enough to detect such small
effects, but new, large optical interferometers are under
construction that might reach the necessary sensiti-
vity for detecting gravitational waves from supernovae
explosions in nearby galaxies [12.31].
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Fig. 12.33. Improved Michelson-interferometer as gravitatio-
nal wave detector
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The basic arrangement of these optical gravita-
tional wave antennas shown in Fig. 12.33 consists of
a Michelson-type interferometer with two long arms
that are orthogonal to each other. The side lengths of
these devices range from 60 m to several kilometers.
With multi-pass arrangements using high reflectivity
mirrors the path length can be extended by a factor of
about 100. The beam of a well-stabilized laser (fre-
quency stability better than 1 Hz!) with the power P0

that delivers N = P0/hν photons per second is split by
the beam splitter into two partial beams with amplitu-
des A1 = A0

√
R ∼√

N1 and A2 = A0
√

1− R ∼√
N2,

which travel back and forth through the two orthogonal
long arms before they are again superimposed and in-
terfere with each other. The detector D1 measures the
interference intensity at the exits of the interferometer.
The detected mean power, averaged over the oscillation
period of the light

P̄ = 1

4
cε0 A2

0

[
1+2

√
R(1− R) cos∆ϕ

]
(12.35)

depends on the reflectivity R of the beam splitter and
on the phase difference∆ϕ between the two interfering
waves. The two polarizers P1 and P2 take care that the
two interfering waves are strictly linearly polarized and
the splitting ratio of the beam splitter, which depends
on the polarization state of the waves, remains constant.

If a gravitational wave arrives at the detector, the
arms of the interferometer are differently contracted
or expanded depending on the direction and on the
phase of the gravitational wave. Assume the gravita-
tional wave causes a change ∆L of one of the two long
arms resulting in a phase change ∆ϕg. Then the detec-
tor D1 with quantum efficiency η delivers for R = 0.5,
A1 = A2 = A0/2 the signal

S ∝ N

2
η
[
1+ cos(∆ϕ0+∆ϕg+ δϕn)

]
, (12.36)

where ∆ϕ0 is the phase difference without gravitatio-
nal wave and δϕn is the phase fluctuation due to noise.
The photon noise of the two interfering beams with
N/2 photons each is proportional to

√
N/2. The detec-

tors D2 and D3 measure the light powers and the noise
of the partial waves in the two arms before they inter-
fere. Part of the noise is due to random fluctuations
of the photon number N . All three detectors mea-
sure these fluctuations. However, the difference signal
∆S = S1− (S2− S3) does not depend on technical fluc-

tuations of the incident light power but is sensitive to
phase fluctuations.

It turns out that the highest sensitivity can be achie-
ved if the power at the exit of the interferometer is
minimum, i.e., the phase difference should be∆ϕ0 = π.
Then the average difference signal ∆S becomes

∆S ∼ (N/2) [1− cos(∆ϕg)
]= N sin2 (∆ϕg/2

)
.

(12.37)

It would be zero without a gravitational wave. The noise
power of the two beams at the detector adds quadra-
tically. It is mainly due to the fluctuations in photon
numbers Sn ∼√

N/2+ N/2=√
N , and the phase fluc-

tuations δϕn, because the other noise sources cancel for
the difference S2− S3.

The signal-to-noise ratio becomes with ∆ϕg =
2π∆L/λ= (2πh/λ)L with h =∆L/L

∆S

δS
= n sin2(∆ϕg/2)√

N + N sin2(δϕn/2)

=
√

N sin2(πhL/λ)

1+√N sin2(δϕn/2)
. (12.38)

Since h and δϕn are both very small, this can be written
as

∆S

δS
=

√
NπhL/λ

1+ (δϕn/2)2
. (12.39)

This is larger than unity for

h >
1+ (δϕn/2)2√

N(L/λ)
. (12.40)

The minimum detectable length change h =∆L/L, in-
duced by the gravitational wave is therefore limited by
the length L of the interferometer arms, the maximum
available photon flux N and the phase fluctuations δϕn.

If a beam of squeezed light is coupled into the se-
cond input port of the interferometer the phase noise
δϕn can be decreased (see above), which decreases the
noise level and increases the sensitivity.

There are definite plans to launch a huge interfero-
meter, called LISA (large interferometer space antenna)
into space. It will consist of three satellites at the corner
of an equilateral triangle with distances of 5×106 km
between the satellites (Fig. 12.34). The center of the tri-
angle moves 20◦ behind the earth on the earth’s path
around the sun. The plane of the triangle is inclined by
60◦ against the ecliptic plane of the earth’s path. It can
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Fig. 12.34. LISA concept. Six spacecraft in a triangle, with
a pair at each vertex. Only four are required for the basic
interferometry

be shown that for this configuration the three satellites
sit in stable local potential minima (Lagrange point),
caused by the superposition of the gravitational forces
from sun and earth [12.32].

The side arms of this huge interferometer have
to be stabilized within a micron, which is certainly
a challenge for the electronic stabilization system.

12.5 New Trends in Quantum Optics

The experimental progress achieved in the development
of lasers with better frequency stability and of high
sensitivity detection techniques has allowed the experi-
mental realization of ideas that could only be illustrated
in former times with “Gedanken experiments” and are
related to fundamental principles of quantum mecha-
nics. Examples are the “which way” experiments, the
“quantum non-demolishing” experiments, and “Schrö-
dinger’s cat”, which we will briefly discuss in this
section.

12.5.1 Which Way Experiments

Assume a light beam hits a 50% beam splitter
(Fig. 12.35a). The two detectors A and B then both
detect 50% of the incident intensity. If the intensity is
dropped to such a low value that only one photon is
ever on the way from the source to the detectors, then
either A or B is hit by the photon, because the photon
cannot split. Averaged over many measuring results the

A

b)a) BS 50%

?

? 2ν⋅h ν⋅h
B

A

B

Fig. 12.35. (a) The incoming photon hits either detector A or
detector B. (b) Depending on the path difference between 1
and 2 only detector A receives photons or only the detector B

number of counts will be, however, equal for A and B,
thus reproducing the classical result.

Now we supplement our device to the Mach–
Zehnder interferometer in Fig. 12.35b. The photon can
either travel along path 1 or path 2. One would again
expect that each of the two detectors A and B is hit
on the average by 50% of all incident photons. But the
experiment tells us that for a proper adjustment of the
two path lengths 1 and 2, only detector A receives pho-
tons but not B. For another adjustment the opposite is
true. If we, however, block one of the paths 1 or 2, both
detectors again receive 50% of all incident photons.

The photon apparently has information about both
paths 1 and 2.

In Sect. 3.5 we discussed Young’s double-slit ex-
periment with electrons and photons. The astonishing
result was that interference structures could be obser-
ved even if only one photon or one electron at a time
was passing through one of the slits. The essential point
was that we did not know through which of the two slits
the photon or electron had passed. When, in a Gedan-
ken experiment, the electron was illuminated behind the
slits by a photon, it could be decided through which of
the two slits the electron had passed. This knowledge
about “which way” the particle has taken destroyed the
interference pattern. Although the argument that the
momentum, transferred to the electron by absorption
of the photon, would smear out the interference struc-
ture, is convincing, this is not the real reason for the
disappearance of the interference.

This was experimentally confirmed by Rempe and
his group [12.33] in a “which way experiment” ba-
sed on an atom interferometer, which is explained in
Fig. 12.36. An incoming collimated beam of cold ru-
bidium atoms from a MOT (see Sect. 12.1) passes
through two separated standing light waves. The de-
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Fig. 12.36. Scheme of the atom interferometer. The incoming
atomic beam A is split into two beams. Beam C is transmitted
and beam B is Bragg-reflected from a standing light wave. The
beams are not exactly vertical, because a Bragg condition must
be fulfilled. After free propagation for a time tsep the beams
are displaced by a distance d. Then the beams are split again
with a second standing light wave. In the far field, a spatial
interference pattern is observed

tuning ∆ω= ωL−ω0 of the light frequency from the
atomic resonance ω0 is so large that spontaneous emis-
sion is negligible. When entering the standing light
field with intensity I = I0 cos2(kLz), the atoms expe-
rience a periodic potential U(z)=U0 cos2(kLz) with
U0 ∼ I0/∆ω and some of the atoms are Bragg reflected.
This splits the incoming atomic beam into two beams,
the Bragg reflected beam B and the transmitted beam C.
The angle between the two beams corresponds to the
relative transferred momentum.

When entering the second standing light field both
beams B and C are again split into a diffracted and
a transmitted beam. Far away from the two light fields,
the interference between beam D and E and between F
and G is observed.

Now a microwave with frequency ωmw ≈ 3 GHz is
added to the device, which induces transitions between

Microwave

Microwave

a) b)

lightω

MWω

|3〉

|2〉

|e〉
|2〉

|3 |2〉+ 〉

|3 |2〉 − 〉

|3 |2〉+ 〉

|2〉 |3〉

Fig. 12.37a,b. Storage of which way information. (a) Sim-
plified level scheme of 85Rb. The excited state (52 P3/2) is
labelled |e〉. The ground state (52S1/2) is split into two hy-
perfine sates with total angular momentum F = 2 and F = 3,
which are labeled |2〉 and |3〉, respectively. The standing light
wave with angular frequency ωlight induces a light shift for
both ground states which is drawn as a function of position.
(b) The beam splitter produces a phase shift that depends
on the internal and external degree of freedom. A Ramsey
scheme, consisting of two microwave π/2 pulses, converts
this phase shift into a population difference (see text)

the hyperfine components F = 2 and F = 3 in the 2S1/2

state of 85Rb (Fig. 12.37). The laser frequency is tu-
ned halfway between the |2〉 → |e〉 and the |3〉 → |e〉
transitions. The detuning then has equal magnitudes but
opposite signs.

The wave function of the atoms experience a phase
shift upon Bragg reflection, that depends on the internal
state of the atom. For atoms in state |2〉 the detuning is
negative, the atom sees a negative light shift potential
and suffers a phase jump of π upon reflection (which is
equivalent to the reflection of a light wave at an optically
thinner medium), while atoms in state |3〉 see a positive
light shift potential and do not suffer a phase shift.

This phase shift can be converted into a population
difference when the microwave represents a π/2-pulse
converting the internal state of the atom into a super-
position (|3〉+ |2〉)/√2. After having passed through
the first light field, the internal state of the Bragg-
reflected atoms is changed into (|3〉− |2〉)/√2, while
the transmitted atoms are still in the superposition state
(|3〉+ |2〉)/√2. Now the atoms are again exposed to
aπ/2-pulse of the second microwave field, which brings
the transmitted atoms back to state |3〉 and the reflec-
ted atoms to state |2〉. We can now distinguish between
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the reflected and the transmitted beam, because the two
beams contain atoms in different states.

The question is now, whether the “which way in-
formation” destroys the interference pattern behind the
second standing light field. The experiment proves that
indeed the interference fringes disappear.

The mere fact that the information is stored and
could be read out always destroys the interference,
even if this information is not really read out!
Also when it is read out, there is no interference
observed.

The novelty of this result is, that there is a negligible
recoil by the absorption of the microwave. Therefore
the smearing out of the interference structure by the
momentum transfer in the Gedanken experiment for
the modified Young’s two-slit interference is not the
real reason for the disappearance of the interference
structure, but the possible knowledge about the path the
atoms have taken instead.

The somehow strange state that describes the si-
tuation where a particle can go one way, as well as
the other, is called an entangled state. Such a state
does not appear in classical physics and it is a typical
quantum mechanical phenomenon. Its properties lead to
some surprising results, which have been the subject of
great concern. After a controversial discussion between
Einstein and Bohr about the consequences, Einstein,
together with Boris Podolsky and Nathan Rosen wrote
a seminal paper that intended to illustrate, by a paradox
situation called the Einstein–Podolsky–Rosen paradox,
that quantum mechanics is incomplete. We will explain
it with the following example [12.34].

12.5.2 The Einstein–Podolski–Rosen Paradox

We consider the emission of two photons hν1 and hν2

into opposite directions by an atom on a cascade tran-
sition from the upper state 1S via an intermediate state
1 P to the ground state 1S (Fig. 12.38). Since the angular
momentum of the atom before and after the emission
is L = 0, the two photons have to have opposite spin
orientations, i.e., one has σ+ the other σ− polarization.
But we do not know, which of the two photons is σ+
and which is σ− polarized.

If, however, the detector D1 measures the polariza-
tion state of the photon emitted to the left side, we can
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Fig. 12.38. Schematic illustration of the Einstein–Podolsky–
Rosen paradox

tell which polarization state of the photon emitted to
the right side is measured by D2. Even if the two detec-
tors are separated by a large distance, the measurement
of D2 is determined by the result of D1. For a long time
the controversial dispute was about the question, how
the information obtained by the measurement at D1 is
communicated to D2. The situation is even more asto-
nishing, when the polarizer in front of detector D1 is
switched to the other polarization state after the photon
has been emitted by the atom but before it reaches D1.
Even now the detector D2 measures the opposite state
of polarization as the new state of D1. Can informa-
tion between the detectors be transmitted with a speed
greater than the speed of light?

Einstein believed that quantum theory could not be
complete, that there might be “hidden parameters” that
had not yet been detected [12.34]. Theoretical proofs
given by J.S. Bell [12.35] and experiments performed
by A. Aspect [12.36], have shown, however, that there
are no hidden parameters. The paradox can be explai-
ned, if quantum theory is regarded as a nonlocal theory.
This means that the description of microparticles is not
bound to a specific location. The two photons repre-
sent an entangled state, where the physical parameters
of one photon are determined by those of the other.

The paradox can also be explained in the following
way. Two particles with spin up or down are emitted by
a source into two opposite directions. We know that the
total spin of the two particles must be zero, because the
emitting source has zero angular momentum. The wave
function of the system can be described as

|ψ〉 = 1√
2
(|↑〉 |↓〉+ |↓〉 |↑〉) . (12.41)
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After the particles are far apart and do not interact with
each other, we measure the spin of the particle emitted
to the right side. Then we know its spin and we can
predict the spin of the other particle. This means that its
spin is determined by the knowledge of the spin of the
other particle.

The situation of this paradox is similar to that of
Young’s two-slit experiment and can be explained in
the same way.

12.5.3 Schrödinger’s Cat

Erwin Schrödinger used an illustrative example to show
that quantum mechanics at this time still had some
unanswered questions about the validity of entangled
states.

Assume a cat is put in a black box where two swit-
ches can be activated by the cat. One switch does
nothing, the other opens a bottle with poisonous gas
that kills the cat immediately. There is no information
transferred from the inside to the outside of the box.
The observer from the outside only knows that one of
the switches has been opened by the cat, but he does
not know which of the two. He therefore does not know
whether the cat is dead or alive. From a quantum mecha-
nical point of view the cat is therefore in an entangled
state (12.46) and is simultaneously dead and alive. Our
common sense tells us that this is nonsense.

The question is, how far the concept of entangled
states can be transferred to the macroscopic world. We
remember that entangled states can only be formed from
a coherent superposition of states. The coherence is
destroyed by relaxation processes. The larger the num-
ber of atoms, the higher the probability of relaxation.
Therefore, systems with many atoms, which have been
coherently prepared at time t = 0 loose this coherence
within a time interval, which decreases rapidly with in-
creasing number of atoms. Haroche and coworkers have
shown that even for a system of three atoms, the cohe-
rence generated by simultaneous absorption of a pulse
laser lasted for less than a few microseconds [12.37].
Therefore entangled states for a cat with more than
1025 atoms cannot exist.

12.5.4 Entanglement and Quantum Bits

The which way experiments discussed in the pre-
vious section require the realization of a coherent

superposition

|ψ〉 = (|ψa〉+ |ψb〉) /
√

2 (12.42)

of quantum states, whereψa describes the quantum state
of the system when only path “a” is open and path “b”
is closed andψb the state when path “b” is open and “a”
is closed. This coherent superposition plays the possi-
bly essential role in quantum computers [12.38]. While
a classical computer operates with bits (this is a system
that allows two possible values 0 and 1), a quantum
computer is based on qubits, which are represented by
a two-level system that can be in the levels |0〉 and |1〉.
Unlike classical computers, the quantum systems have
the possibility of coherence and superposition of states.

The general state of the system can be described by
the qubit

|Q〉 = α |0〉+β |1〉 with |α| 2+|β| 2 = 1 ,
(12.43)

which is a coherent superposition of the two states |0〉
and |1〉. If we measure the qubit, we will find that it
has the value |0〉 with the probability |α|2 and the va-
lue |1〉 with the probability |β|2. This seems to bear an
uncertainty, but the important point is that for a cohe-
rent superposition one can always find a basis in which
the value of the qubit |Q〉 is well defined. This can be
illustrated by a simple example.

If we consider the specific state

|Q〉 = (|0〉+ |1〉) /√2 (12.44)

the qubit will be with 50% probability in state |0〉 and
with 50% in state |1〉. With the so-called Hadamar
transformation

H(0)→ 1√
2
(|0〉+ |1〉) , H(1)→ 1√

2
(|0〉− |1〉)

(12.45)

the qubit |Q〉 of (12.44) is transformed into the well
defined state |0〉 because H(Q)= |0〉.

Note:

This is only possible for a coherent superposition of
states. For an incoherent mixture, such a transformation
would not be possible because in this case there will
be a pure addition of probabilities α2 and β2 (not of
amplitudes α and β) without any interference.
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ter as optical example for
a Hadamar transformation

The Hadamar transformation can be physically rea-
lized using a 50% beam splitter (Fig. 12.39). We will
denote a particle above the beam splitter to be in the
state |0〉 and below with |1〉.

If α is the probability amplitude that the particle is
incident from above and β that for the particle incident
from below, the incident state can be characterized by
the superposition (the qubit)

|Q〉 in = α |0〉 in+β |1〉 in . (12.46)

With a 50% beamsplitter the reflected and the transmit-
ted amplitudes are Aout = Ain/

√
2. If the amplitude of

the particle wave incident from below suffers a phase
jump of π upon reflection, its sign is reversed. Now
(α+β) is the probability amplitude for finding the par-
ticle in the upper outgoing direction and (α−β) for the
lower direction. The output state is therefore

|Q〉 out = 1√
2

[(α+β) |0〉+ (α−β) |1〉]
= H |Q〉 in . (12.47)

This is exactly the result of the Hadamar transforma-
tion (12.45).

The Mach–Zehnder interferometer in Fig. 12.40
corresponds to a sequence of two Hadamar transfor-
mations

|Q〉 out = HH |Q〉 in . (12.48)

When the Hadamar transformations (12.45) are applied
to the general Qubit (12.42) one recognizes that

HH |Q〉 in = |Q〉 in . (12.49)

This means that a Mach–Zehnder interferometer
has an output state that is identical to the input
state.

1M

2M

2BS1BS

out
1

in
1

out
0in

0

Fig. 12.40. Mach–Zehnder interferometer as optical realiza-
tion of a sequence of two Hadamar transformations

Assume a source S emits a pair of photons with op-
posite momenta in such a way that one photon is emitted
to the right and the other in the opposite direction to the
left (Fig. 12.41). If the photon to the left is emitted into
the upper half space the photon to the right has to be
emitted into the lower half space, because both pho-
tons of a pair should be antiparallel, otherwise the total
momentum would not be zero. In our description by
qubits, the left photon, which we call photon 1 is in the
state |0〉1 if it is in the upper beam and in the state |1〉1
if it is in the lower beam. Photon 2, emitted to the right,
is in the corresponding states |0〉2 or |1〉2. Although we
do not know which of the two photons is in the upper
or in the lower beam, we do know that photon 1 is in
the upper beam if photon 2 is in the lower one and vice
versa. We can describe this situation by a two-particle
superposition state

|Q〉 e = 1√
2
(|0〉 1 |1〉 2+|1〉 1 |0〉 2) , (12.50)

which is an entangled state, as discussed above. It is
represented by a superposition of two qubits as product
states and has interesting properties. Neither of the two
qubits has a definite value. One cannot tell whether
qubit 1 is in the state “0′′ or in “1′′. The same is true
for qubit 2. However, as soon as the value of one of the

C

BS BS
S

A

B D

Fig. 12.41. Emission of two photon pairs in an entangled state
by the sequence S
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two qubits has been determined by a measurement, the
other one has to have the opposite value.

The concept of entangled states plays a key role
for quantum computers and quantum communication
and cryptography. For entangled states the informa-
tion received by the right detector in Fig. 12.41 could
be predicted if a measurement at the left detector was
performed, even if the two detectors were far apart.

For more details see [12.38, 39, 40].

12.5.5 Quantum Gates

Any computer needs gates for performing mathemati-
cal operations. These can be, for example,“not-gates”,
“and-gates”, “or-gates” or “nor gates”. Their basic prin-
ciple is illustrated in Fig. 12.43. The “not-gate” can be
realized by a simple inverter: There is only one input
channel and one output. If the input is 1, the output is 0
and vice versa. The other gates consist of devices with
two input channels and one output channel. The input
signals can be 1 or 0 realized by different voltage steps.
The input voltages can trigger a flip-flop circuit to pro-
duce the output voltage. For the “or-gate” the output
is 1, if at least one of the input channels has the input 1.
For the “and-gate” the output is 1 only if both input
channels are 1, otherwise it is 0. The “nor-gate” repres-
ents the inversion of the “or-gate”, i.e. the output is 1
only if both input channels are 0.
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Fig. 12.42. Different computer gates

The question is now how quantum gates can be
realized for quantum computers. There are several pro-
posals and we will here only mention one of them,
namely a linear array of ions, trapped in a linear Paul
trap (Fig. 12.43a). Such ions can interact with radiation
from two lasers tuned to specific wavelengths of a three
level scheme (Fig. 12.42b). The ground state |0〉 of the
ions is connected to an excited level |1〉 by a weak
transition, (e.g. a dipole forbidden transition), and to
another excited level |2〉 by a strong transition which
is used for cooling the ion and for detection of a quan-
tum jump from |0〉 to |1〉. The two levels |0〉 and |1〉
form a pair of entangled states and realize the qubit
|Q〉 = α|0〉+β|1〉 in (12.46). If a π/2-pulse is applied
to the transition |0〉 → |1〉 the two levels are equally
populated, while a π-pulse inverts the population. The
state of the qubit can be measured by the presence (the
ground state is occupied i.e. β = 0) or the absence (the
ground state is empty, i.e. α= 0) of fluorescence indu-
ced by the strong transition |0〉 → |1〉. How can such
a qubit be transferred to another ion?

The Coulomb interaction between neighbouring
ions in the linear trap is by far the strongest interac-
tion. It differs for the different states |0〉 or |1〉 of the ion.
The laser-cooled ions perform small oscillations around
their equilibrium positions. Since they are all trapped in
the harmonic trap potential, there are certain common
normal oscillations of all ions (see Sect. 10.4, where
normal vibrations of linear molecules are discussed).
Since the different ions are coupled by their Coulomb
interaction the excitation of one ion may change the in-
teraction with the neighbouring ions and therefore the
common normal oscillation mode of all ions in the trap.
If this change can be detected, the information has been
transferred from one qubit of an excited ion to the cen-
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Fig. 12.43. Realization of qubits and quantum gates by
interaction of laser radiation with ions in a linear trap
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tre of mass motion of the ions. From here it can be
further transferred to the internal state of another ion.
This would represent a coherent interaction between
two qubits realizing the construction of a quantum-gate.

If the laser beams are inclined against the axis of
the linear trap, the movement of the ion would cause
a definite Doppler-shift of its absorption frequency. The

normal oscillation modes of the ions cause sidebands in
the absorption spectrum.The frequencies of these side-
bands differ for the different normal modes If the laser
wavelength is tuned to such a sideband, it will only
interact with ions, oscillating in this specific mode.

As is shown in [12.41] a two qubit logic quantum
gate can be implemented with this device.

• Optical cooling of atoms means the reduction of
their velocity by momentum transfer from the ab-
sorbed photon to the counter-propagating atom.
Atoms in a gas are cooled in the three-dimensional
interaction region of six laser beams in the ±x,
±y, ±z directions, if the laser frequency is tuned
to the red side of the atomic absorption frequency.

• Atoms can be trapped in a magneto-optical trap
(MOT) which consists of an anti-Helmholtz pair
of coils, producing a cylindrical symmetric inho-
mogeneous magnetic field which causes a Zeeman
splitting of the absorption line that increase with
increasing distance from the trap centre. The trap-
ping is caused by atomic recoil, due to photon
absorption which depends on the distance from
the trap centre.

• The atomic ensemble inside the trap is called
optical molasses. The atoms in this molasses per-
form damped harmonic oscillations around the
trap centre.

• The lower limit Tmin = hγ/kB of the tempera-
ture, achieved with optical cooling is set by the
random recoil of spontaneously emitted photons.
It depends on the homogeneous linewidth γ of
the optical transition. Lower temperatures can be
reached by evaporation cooling.

• If the density of the cooled and trapped
atoms becomes so high, that the mean di-
stance between atoms becomes smaller than
their deBroglie wavelength, a phase transi-
tion to a new state of matter occurs, called
Bose–Einstein-condensation (BEC).

• Cold molecules can be produced by association
of two atoms with small relative velocity, achie-
ved by absorption of a photon by this atom pair
and subsequent stimulated emission into a stable

molecular state. Another technique uses reso-
nances with molecular bound states in a variable
magnetic field (Feshbach resonances).

• With femtosecond laser pulses online observa-
tions of dissociation of molecules are possible,
using a pump-and probe technique.

• Coherent control means controlled shaping of
amplitude E(t) and phases ϕ(t) of ultrashort
pulses by a thin mask of many liquid crystal pi-
xels, with refractive indices that are controlled
by external voltages. If these pulses are absor-
bed by molecules they can produce a wanted
coherent superposition of wave-functions in the
excited molecular state and can suppress unwan-
ted combinations. This favours wanted chemical
reactions.

• The output of a mode-locked laser consists of
many equidistant frequencies, called a frequency
comb. The separation of adjacent frequencies in
this comb equals the mode separation of the laser
cavity. The frequency comb can be used for ultra-
precise direct frequency-comparison between the
caesium clock in the microwave region with op-
tical frequencies and improves the measurements
of absolute optical frequencies by several orders
of magnitude.

• New and more precise atomic clocks can be rea-
lized with single ions, trapped in a Penning trap.
The very narrow forbidden transition in such ions
is used as the clock transition.

• Squeezing means the reduction of amplitude noise
or phase noise below the uncertainty limit. If
the amplitude noise is pushed below this li-
mit the phase noise increases accordingly and
vice versa. It can be experimentally realized by
Mach–Zehnder interferometers where a nonli-

S U M M A R Y
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near absorption medium is placed in one of the
interferometer arms.

• Which way-experiments investigate the loss of co-
herence in the superposition of two partial beams
of a light source, if the way of the photons through
the device is known.

• Entangled states represent a coherent superposi-
tion of atomic states. Such states are specific for
quantum mechanics. They do not exist in clas-
sical physics. If one of the components of an

entangled state is measured, the other is known,
even if the pair of states is separated by long di-
stances. This is proved by measurements of the
Einstein–Rosen–Podolsky paradoxon, which can
be only explained if it is assumed that quantum
mechanics is a nonlocal theory.

• Entangled states play an essential role in tele-
transportation of information and in quantum
computers, where they are used as q-bits instead
of bits in the classical computer.

1. Sodium atoms with a velocity v0 = 700 m/s in
a collimated atomic beam are decelerated by ab-
sorption of laser photons on the D2 line until they
come to rest. If the optimum absorption-emission-
cycle is assumed, what are the deceleration path
length, the deceleration time and the absolute
value of the deceleration?

2. What is the damping time of Na-atoms in an
optical molasses, when the laser frequency is red-
shifted by 10 MHz from the central absorption
frequency of the D2-line, if the absorption rate at
line centre is R0 = 106 s−1?

3. Calculate the restoring force acting on Na-atoms
in a MOT under the conditions of Problem 12.2
if the magnetic field gradient is b = 0.01 T/m.
What is the harmonic potential of the trap and at
which distance from the trap centre has the density
of atoms decreased to half of the density N(r =
0), if the temperature of the atoms is T = 1 µK.
What are the oscillation frequency and damping
constant of the atomic movements in the trap?

4. Calculate the mean distance between Na-atoms
in a gas with density 1013 cm−3. At which

temperature becomes the deBroglie wavelength
equal to the mean distance? What is the vo-
lume of the BEC at the critical temperature
in a magnetic trap with a field gradient of
b = 10−3 T/m?

5. How many vibrational levels around v = 20 are
coherently excited in the B-State of the Cs2 mo-
lecule by a laser pulse with Gaussian time profile
of half width ∆t = 20 fs, if the vibrational con-
stants are ωe = 30 cm−1 and ωexe = 0.04 cm−1?
What is the time period of the oscillating wave
packet? What is the distance between the two
turning points of the wave packet movement,
if a Morse potential is assumed? Which frac-
tion of this distance is the extension of the wave
packet?

6. Estimate, how stable the length of each of the
two arms in a Michelson-type gravitational wave
detector has to be, if the output intensity of the
two interfering laser beams should not change by
more than 10−8 I0, apart from fluctuations of I0.
Why can a length stability of much better than one
atomic diameter be realized?

P R O B L E M S



Chronological Table
for the Development of Atomic and Molecular Physics

≈ 440
BC

Empedocles assumes, that the whole world is
composed of 4 basic elements: Fire, Water, Air
and Soil.

≈ 400
BC

Leucippos and his disciple Democritus claim,
that the world consists of small indivisible
particles, called atoms, which are stable and
nondestructable.

≈ 360
BC

Plato attributes four regular regular geometric
structures composed of triangles and squa-
res (Platonic bodies) to the four elements and
postulates that these structures and their inter-
change represent the real building blocks of the
world.

≈ 340
BC

Aristotle contradicts the atomic theory and as-
sumes that the mater is continuous and does
not consist of particles.

300
BC

Epicurus revives the atomic model and assu-
mes that the atoms have weight and spatial
extension.

200 BC no real progress in atomic physics.
–1600 AC
1661 Robert Boyle fights in his book: “The Sceptical

Chemist” for the atomic model, which states,
that all matter consists of atoms which dif-
fer in size and form for the different elements.
He defines the terms “chemical element” and
“chemical compound”.

1738 Daniel Bernoulli assumes that heat can be ex-
plained as the movement of small particles. He
may be regarded as the father of the kinetic gas
theory.

1808 John Dalton supports in his book “A New
System of Chemical Philosophy” the atomic
hypothesis by describing his experiments on
careful weighing the masses of reactants and
reaction products of a chemical reaction. The
results of these experiments lead to the “law of

constant proportions”: Each chemical element
consists of equal atoms which form with sim-
ple number ratios molecules as building blocks
of chemical compounds.

1811 Amedeo Avogadro derives from the laws
of Gay-Lussac (∆p/p =∆T/T ) and Boyle-
Marriot (p ·V = constant for T = constant) the
conclusion that all gases contain under equal
conditions (pressure and temperature) the same
number of particles per volume.

1857 Rudolf J.E. Clausius develops further the
kinetic gas theory, founded by D. Bernoulli.

1860 Gustav Robert Kirchhoff and Robert Bunsen
create the foundations of spectral analysis of
the chemical elements.

1865 Joseph Lohschmidt calculates the absolute
number of molecules contained in 1 cm3 of
a gas under normal conditions (p = 1 atm,
T = 300 K).

1869 Lothar Meyer and D.I. Mendelejew esta-
blish (independent of each other) the Periodic
System of the Elements.

1869 Johann Wilhelm Hittorf discovers the cathode
rays in gas discharges.

1870 James Clark Maxwell gives the mathematical
foundations to the kinetic gas theory. He defi-
nes the atoms as “absolute and unchangeable
building blocks of matter”.

1884 Ludwig Boltzmann develops from statistical
grounds the distribution function for the energy
of a system of free atoms in a constant volume.
Together with the Austrian physicist Josef Ste-
fan he derives the Stefan–Boltzmann radiation
law.

1885 Johann Jakob Balmer finds the Balmer-
formula for the spectral lines of the hydrogen
atom.
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1886 Eugen Goldstein discovers the “Kanal-
Strahlen” (anode rays).

1886 Heinrich Hertz detects experimentally the elec-
tromagnetic waves predicted by Maxwell’s
theory and discovers 1887 the photo-electric
effect and performs first experiments on the
absorption of cathode rays.

1888 Phillip Lenard further investigates the absorp-
tion of the cathode rays

1895 Wilhelm Conrad Röntgen discovers, while wor-
king on the properties of cathode rays a new
kind of radiation which he called X-rays (first
Nobel Prize in Physics 1901).

1896 Henry Becquerel first discovers radioactivity
(Nobel prize 1903).

1898 Marie Curie separates different radioactive ele-
ments (Polonium and Radium) from minerals
(Nobel prizes for Physics 1903 and Chemistry
1911).

1900 Max Planck presents his new theory of black
body radiation, introducing the energy quanta
h · ν of the radiation field. This is nowadays
regarded as the birth year of quantum physics
(Nobel prize 1918).

1905 Albert Einstein develops his theory of Brow-
nian motion. He explains the photoelectric
effect using Planck’s light quantum hypothesis
(Nobel prize 1921).

1906 Charles Glover Barkla discovers the charac-
teristic X-rays of the elements (Nobel prize
1917).

1909 Robert Millikan measures the elementary
charge e with his oil-droplet experiment (Nobel
prize 1923).

1911 Ernest Rutherford and his coworkers inve-
stigate the scattering of α-particles by gold
nuclei and postulates his atomic model. This
can be regarded as the foundation of modern
atomic physics (Nobel prize for Chemistry
1908).

1912 Max von Laue (Nobelprize 1914) and his co-
workers demonstrate, that X-rays represent
electro-magnetic waves by observing the dif-
fraction of X-rays by crystals.
Shortly later William Henry Bragg (Nobelprize
1915) confirms this result and furthermore
shows that both the characteristic and the
continuum radiation could be polarized.

1913 Niels Bohr (Nobelprize 1922) develops his new
atomic model, based on the Rutherford model
and the quantum hypothesis of Planck.

1913 Henry Moseley finds periodic regularities for
the absorption frequencies of X-rays by diffe-
rent atoms and is able to determine the nuclear
charge number Z of the atoms from his mea-
surements of absorption edges.
James Franck and Gustav L. Hertz investigate
the inelastic collisions of electrons with atoms
(Franck–Hertz experiment). Nobel prize 1925.

1919 Arnold Sommerfeld comprises all known facts
and models of atoms in his famous textbook:
“Atombau und Spektrallinien” and refines the
atomic model of Bohr.

1921 Otto Stern and Walter Gerlach investigate
the deflection of atoms in an inhomogeneous
magnetic field and demonstrate the quantiza-
tion of the component of the atomic angular
momentum.

1923 Arthur Holly Compton (Nobel prize 1927) ex-
plains the inelastic scattering of X-rays by
electrons (Compton effect) using the model of
light quanta.

1924 Louis de Broglie (Nobel prize 1929) introduces
the concept of matter waves.

1925 S.A. Goudsmit and G.E. Uhlenbeck explain
the anomalous Zeeman effect by introducing
the electron spin, postulated theoretical already
1924 by W. Pauli.

1925 W. Pauli (Nobel prize 1945) introduces the ex-
clusion principle (Pauli-principle) which states
that every existing atomic state occupied by
more than on electron must be described by
a wavefunction (product of spatial part and spin
function) which is antisymmetric with respect
to the exchange of two electrons.

1925 Erwin Schrödinger (Nobel prize 1933) extends
the ideas of deBroglie about matter waves to
a general wave-mechanics which is based on
a special wave equation, called the Schrödinger
equation.

1927 Wolfgang Pauli gives a mathematical descrip-
tion of the electron spin in form of quadratic
“spin-matrices” with two rows and two co-
lumns. Werner Heisenberg (Nobel prize 1932)
develops together with Max Born (Nobel prize
1954) and Pascual Jordan the mathematical
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concept of quantum mechanics, represented by
matrices. He derives the uncertainty relations.

1928 J.C. Davisson (Nobel prize 1937) and L.H.
Germer prove experimentally the wave nature
of electrons by observing the diffraction pattern
of electrons passing through thin crystalline
foils.
Paul Dirac (Nobel prize 1933) develops a re-
lativistic theory of Quantum Mechanics.
Chandrasekhara Venkata Raman (Nobel prize
1930) discovers the inelastic scattering of light
by molecules (Raman-effect).

1932 E. Ruska (Nobel prize 1986) constructs the first
electron microscope.

1936 I. Rabi (Nobel prize 1944) demonstrates a new
techniques of radiofrequency spectroscopy in
molecular beams for the precise measurement
of magnet moments.

1944 G.Th. Seaborg (Nobelprize for Chemistry
1951) identifies the first tran-uranium ele-
ments.

1947 Polykarp Kusch (Nobel prize 1955): Measure-
ment of the magnetic moment of the electron.
Willis Lamb (Nobel prize 1955): Measurement
of the energy difference (Lamb-shift) between
the 2S1/2 and 2P1/2 levels in the hydrogen atom.

1947 John Bardeen develops together with W.H. Br-
attain and W. Shockley the transistor (Nobel
prize 1956).

1948 Felix Bloch and Edward Mills Purcell (Nobel
prize 1952) demonstrate the nuclear magnetic
resonance technique NMR.

1948 J. Schwinger, R.P. Feynman and S. Tomonaga
(Nobel prize 1965) Theoretical formulation of
quantum field theory (quantum Electrodyna-
mics).

1950 A. Kastler (Nobel prize 1966) and J. Brossel
demonstrate the experimental technique of op-
tical pumping using incoherent light sources
before the invention of the laser.

1953 F.H. Crick and J.D. Watson prove experimen-
tally by X-ray diffraction the double helix
structure of DNA (Nobel prize for medicine
1963).

1954 N.G. Basow, A.M. Prochorov and Ch. Tow-
nes (Nobel prize 1964) develop the theoretical
foundations of the maser principle, based on
Kastler‘s idea of optical pumping. First expe-

rimental verification of the NH3-maser by J.P.
Gordon, H.J. Zeiger and Ch. Townes.

1957 Explanation of supra-conductivity by John
Bardeen, Leon Cooper and J. Robert Schrieffer
(BCS theory) Nobel prize 1972.

1958 Rudolf Mößbauer: Recoil-free emission and
absorption of γ -quants by atomic nuclei
(Mößbauer effect) (Nobel prize 1972).

1959 Arthur Schawlow (Nobel prize 1995) and
Charles Townes give detailed description for
the extension of the maser principle to the
optical range.

1960 First experimental realization of an optical
maser (ruby laser) by Th. Maiman.

1961 The first He-Ne-laser is constructed by W.R.
Bennet and A. Javan, based on detailed inve-
stigations of atomic collision processes in gas
discharges.

1966 The dyelaser is developed indepently by F.P.
Schäfer and P.A. Sorokin.

1971 G. Herzberg receives the Nobel prize in Che-
mistry for his centennial work on molecular
spectroscopy.

1980 First proposals for optical cooling of atoms by
photon recoil by Th.W. Hänsch, A. Schawlow
and V. Letokhov.

1982 Development of tunnel microscopy by G. Bin-
ning and H. Rohrer, where single atoms on
surfaces can be observed (Nobel prize 1986).

1986 Discovery of high temperature supra conduc-
tivity by J. Bednarz and K.A. Müller (Nobel
prize 1986).

1988 Nobel prize to H. Michel, J. Deisenhofer and
R. Huber for the elucidation of the primary
process in the photosynthesis of green plants
using femtosecond laser spectroscopy.

1989 Nobel prize to Norman Ramsey, H. Dehmelt
and Wolfgang Paul for the experimental storage
and trapping of neutrons, ions and electrons in
electromagnetic traps.

1991 Pulse-Fourier-transform NMR spectroscopy:
Nobel prize to Richard Ernst.

1992 Manipulation of single atoms on surfaces using
the atomic force microscope.

1994 Optical cooling of free atoms in the gas phase;
observation of optical molasses.

1995 Realization of magneto-optical traps; cooling
of atoms below 1 µK by Sysiphos cooling,
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developed by C. Cohen-Tannoudji and cowor-
kers.
First realization of Bose–Einstein Condensa-
tion (BEC) by C. Wieman, E. Cornell and inde-
pently by W. Ketterle, using the combination of
opticalcoolingandevaporationcooling to reach
temperatures below 100 nK (Nobel prize 2001).

1998 First demonstration of a continuous coherent
beam of cold atoms from a BEC (atom laser)
by Th.W. Hänsch and coworkers.

2001 Production of very cold molecules by recom-
bination of atoms in a BEC.

2005 First observation of Bose Einstein Condensa-
tion of molecules.



Solutions to the Exercises

Chapter 2

1. a) The mean distance is

d = 3

√
1

2.6×1025
m

= 3×10−9 m ≈ 15 atom diameters .

b) The filling factor η is:

η= 4

3
πR3n = 4

3
π 10−30×2.6×1025

= 1.1×10−4 = 0.01% .

c) The mean free path length is

Λ= 1

nσ
√

2
σ = π(2r)2 = 4πR2 = 1.3×10−19 m2

n = 2.6×1025 m−3

⇒ Λ= 1√
2×3.3×106

m = 2.2×10−7 m

= 220 nm .

2. The mass density is:

�m = (0.78×28+0.21×32+0.01×40)

×nAMU

1 AMU = 1.66×10−27 kg, n = 2.6×1025/m3

⇒ �m = (21.8+6.72+0.4)

×2.6×1025×1.66×10−27 kg/m3

= 1.25 kg/m3

3. a) 1 g12C = 1

12
mol

⇒ N = 6×1023/12 = 5×1022 .

b) 1 cm3 He =̂ 10−3

22.4
VM

⇒ N = 6×1023×10−3

22.4
= 2.7×1019 .

c) 1 kg N2 =̂ 6×1023

28
×103 molecules

⇒ N = 4.3×1025 atoms .

d) 10 dm3 H2 at 106 Pa =̂ 100 dm3 at 105 Pa =
1 atm

⇒ ν = 100

22.4
≈ 4.5 moles

⇒ N = 4.5×6×1023 = 2.7×1024 molecules =
5.4×1024 H-atoms .

4. p = nkT ; n = 1 cm−3 = 106 m−3

⇒ p = 106×1.38×10−23×10 [Pa]
= 1.38×10−16 Pa ≈ 1.38×10−18 mbar .

Such low pressures cannot be obtained in laborato-
ries. Because of outgassing of the walls of a vacuum
chamber and backstreaming of gas through the va-
cuum pump the lowest achievable pressure in the
lab is around 10−10 Pa ≈ 10−12 mbar.

5. 100 ◦N =̂ 273 K ⇒ 1 ◦N =̂ 2.73 K. The mean en-
ergy per atom and degree of freedom for a fixed
temperature must be independent on the chosen
temperature scale. The new Boltzmann constant kN

is then obtained from:

⇒ 1

2
kBTK = 1

2
kNTN

⇒ kN = 1

2.73
kB = 5.1×10−24 J/◦N .
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The boiling point of water, measured in the new
temperature scale is:

TS =
(

100+ 100

2.73

)
◦N = 136.6 ◦N .

6. The sound velocity vPh in a gas at pressure p and
density � is

vPh =
√
κp/� with κ = Cp/CV

= f +2

f
,

where Cp is the molar specific heat at constant pres-
sure, CV at constant volume and f is the number
of degrees of freedom.

⇒ v2
Ph = κp/� .

From the general gas equation for a mole
volume VM

pVM = RT ⇒ R = pVM

T
= p

�

M

T
,

(M = mole mass)

we obatain:

v2
Ph = κRT/M .

For radial acoustic resonances the acoustic
wavelength is

nλ= r0 ⇒ vPh = νnλ= (νn/n)r0

The general gas constant R is then obtained as

R = v
2
Ph M

κT
= ν

2
nr2

0 M

n2κT

For argon κ = ( f +2)/ f = 5/3, M = 40 g/mole.
Measuring the frequencies νn for different values
of the integers n (n = 1, 2, 3, . . . ) yields the gas
constant R, because M, r0, κ, T are known.

7. The effective mass of the collodial particle is:

m∗ = m− 4

3
πr3�liquid = 4

3
πr3(�part−�liquid)

= 7.74×10−18 kg,

m = 4.0×10−17 kg .

The vertical distribution is

n(z)= n0 e−m∗gz/kT

⇒ n(h1)

n(h2)
= e−(m

∗g/kT)(h1−h2)

⇒ k = m∗g∆h

T ln(n1/n2)

= 7.7×10−18×9.81×6×10−5

290 ln(49/14)
= 1.25×10−23 J/K .

The best value accepted today is

k = 1.38×10−23 J/K .

NA = R/k = 8.3

1.25×10−23 mol
≈ 6.02×1023/mol

M = NAm = 6.02×1023×4.76×10−14 g/mol

= 3×1010 g/mol .

When a colloid molecule has an average mass num-
ber of 104 AMU the nanoparticle consists of about
3×106 molecules.

8. a) If the first diffraction order is at an angle β1 =
87◦, the incidence angle α can be obtained from the
grating equation (see Fig. S.1):

d(sinα− sinβ1)= λ⇒
sinα= λ

d
+ sinβ1

= 5×10−10

0.83×10−6
+0.99863

= 0.99923

⇒ α= 87.75◦ .

The second diffraction order appears at:

sinβ2 = sinα− 2λ

d
= 0.99803 ⇒ β2 = 86.40◦ .

The difference is ∆β = 0.6◦. For α = 88.94◦ we
would obtain: ∆β = 0.75◦.

Fig. S.1.
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Fig. S.2.

b) The Bragg condition is

2d sinα= λ
⇒ d = λ

2 sinα
= 2×10−10

2×0.358
m

= 2.79×10−10 m .

This is half the side length a of the elementary cell
of the cubic crystal (Fig. S.2).

⇒ a = 0.56 nm .

NaCl has a face-centered cubic (fcc) crystal struc-
ture. Each elementary cell is occupied by four NaCl
molecules. The molecular mass of NaCl is (23+
35)= 58 AMU. The number of molecules per m3

is:

N = 4

5.63×10−30
m3 = 2.5×1028 m−3 ,

The mass of one molecule NaCl is:

mNaCl = �

N
= 2.1×103

2.28×1028
kg = 9.2×10−26 kg .

In 1 mole of NaCl (= 58 g) are NA molecules.

⇒ NA = 5.8×10−2

9.2×10−26
mole−1= 6.3×1023 mole−1 .

c) From the Bragg condition

2d sinϑ = mλ

we obtain for m = 1 the side length a = 2d of the
elementary cell of the fcc crystal as

a = λ

sinϑ
= 6.6×10−10 m .

The radius r0 of the spheres is (according to
Sect. 2.4.3)

r0 = 1

4

√
2a = 2.33×10−10 m

⇒ Vsph = 4

3
πr3

0 = 5.3×10−29 m3 .

The filling factor is

η= 4× 4
3πr3

0

a3
= 16π×2

√
2

3.64
≈ 0.78 .

9. The van der Waals equation for 1 mole is:(
p+ a

V 2
M

)
(VM−b)= RT

(VM =mole volume).

⇒ pVM − pb+ a

VM
− ab

V 2
M

= RT .

⇒ pVM

(
1− b

VM
+ a/p

V 2
M

− ab/p

V 3
M

)
= RT .

This can be written as

pVM (1− x)= RT with (x � 1) .

With

1

1− x
≈ 1+ x

⇒ pVM = RT

(
1+ b

VM
− a/p

V 2
M

+ ab/p

V 3
M

)
.

Comparison with the virial equation (vires=
forces)

pVM = RT

(
1+ B(T )

VM
+ C(T )

V 2
M

)
gives the coefficients:
B(T ) = b = 4 times the eigenvolume of all
molecules in VM, and

C(T )=− a

p
,

The ratio pi = a/V 2
M is called the “internal pressu-

re”= pressure caused by the mutual attraction of
the molecules. The term C(T )/V 2

M gives the ratio
pi/p of “internal pressure” to external pressure.

10. a) If a parallel beam of atoms A per m2 per s
hits atoms B at rest, the scattering cross section is
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Fig. S.3.

(Fig. S.3) σ = π(r1+r2)
2. For equal atoms (A=B)

r1 = r2 ⇒ σ = 4πr2 = πD2 with D = 2r.
The number of particles scattered out of the beam
along the path dx through a gas of atoms B with
density nB is

dN =−NnBσ dx

⇒ N(x)= N0 e−nBσx .

The mean free path length for which N(x)= N0/e
is

Λ= 1

nBσ
.

b) In a gas with thermal equilibrium the particles
have an isotropic Maxwellian velocity distribution.
The mean time between two collisions is:

τ = 1

nσ |vr |
where the relative velocity is

vr = v1−v2

⇒ v2
r = v2

1+v2
2−2v1 ·v2

⇒ 〈
v2

r

〉= 〈
v2

1

〉+ 〈v2
2

〉
, because 〈v1 ·v2〉 = 0

for A = B is
〈
v2

1

〉= 〈
v2

2

〉= 〈
v2〉

⇒ 〈
v2

r

〉= 2
〈
v2〉 .

⇒ τ = 1√
2 nσ

√〈v2〉 ,

Λ= τ
√〈
v2
〉

= 1√
2 nσ

.

11. a) For a longitudinal magnetic field B with
a length L = 4 f , the time of flight between the
two aperatures in Fig. 2.67 is, according to (2.99b),

T = 2πm

eB
with T = L/vz . (1)

With an acceleration voltage U the velocity vz is
from

eU = m

2
v2

z ⇒ vz =
√

2eU/m . (2)

Inserting in (1) gives

L = 2πm

eB
vz ⇒ L2 = 4π2m2

e2 B2

2eU

m
e

m
= 8π2

L2

U

B2
,

⇒ δ(e/m)

e/m
≤
∣∣∣∣2δL

L

∣∣∣∣+ ∣∣∣∣2δB

B

∣∣∣∣+ ∣∣∣∣δUU
∣∣∣∣

= 4×10−3+2×10−4+1×10−4

= 4.3×10−3 .

In order to set L = 4 f one has to determine
the focal length f . This is achieved by shifting
the aperture A2 until maximum transmission is
reached.
Assume the maximum deviation of the electrons
from the axis is a = 5 mm;

with L = 100 mm we obtain

⇒ sinα≈ 5

25
= 0.2 rad

(Fig. S.4). If the position of the focus is shif-
ted by ∆L from its optimum value, the radius
of the convergent electron beam is enlarged by
∆L tanα from r0 to r0+∆L tanα. If the cur-
rent I of electrons flows through the aparture
with radius r0 = 0.5 mm (can be measured within
∆I/I = 10−3) the shift can be seen, if the area of

Fig. S.4.
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the aparture has increased to πr2
0

(
1+10−3

)
.

π
[
(r0+∆r)2−r2

0

]≤ 10−3πr2
0

⇒ ∆r � 10−3r0 = 2.5×10−4 mm ,

∆r =∆L tanα

⇒ ∆L ≤ 2.5×10−4 mm/0.2

= 1.25×10−3 mm ,

⇒ ∆L/L = 1.25×10−5 .

The geometrical uncertainty of∆L from the measu-
rement of L is therefore much larger than that of the
uncertainty of measuring the transmitted current.
The maximum relative error is therefore not affec-
ted by the uncertainty of optimising the transmitted
current but rather by the mechanical accuracy of
length measurement.
b) The maximum deflection from the straight path
is δx < 10−3b, because the current I ∝ b can be
measured within∆I/I = 10−3. The deviation from
the z-axis is

x = 1

2
a t2 with a = 1

m

(
eEx − evBy

)= 1

m
Fx .

With t = L/v and v2 = 2eU/m we obtain

x = 1

2m
Fx

L2

2eU

⇒ δx = ∂x

∂Fx
δFx + ∂x

∂L
δL+ ∂x

∂U
δU

⇒
∣∣∣∣δx

x

∣∣∣∣= ∣∣∣∣δFx

Fx

∣∣∣∣+2

∣∣∣∣δL

L

∣∣∣∣+ ∣∣∣∣δUU
∣∣∣∣ .

With δL/L = 1.25×10−5, δFx/Fx = δEx/Ex +
δBy/By = 2×10−4, δU/U = 10−4 we get

δx

x
= 3.3×10−4

⇒ δx = 3.3×10−5 mm

for x = b = 0.1 mm. The uncertainty δx < 10−3b
= 1×10−4 mm due to the uncertainty of measuring
the current I is larger here than in problem a) be-
cause of the uncertainties of measuring E, B and U .
The ratio e/m = E2/(2UB2) can then be measured
within
δ(e/m)

e/m
= 2

∣∣∣∣δE

E

∣∣∣∣+ ∣∣∣∣δUU
∣∣∣∣+2

∣∣∣∣δB

B

∣∣∣∣
≤
∣∣∣∣δxx

∣∣∣∣< 10−3 .

12. a) The vertical force is gravitation. If the flight
direction is the x-direction the flight time is:

tf = L

v
= 2

300
s = 6.7×10−3 s .

The vertical deflection is

∆1z = 1

2
gt2 = 1

2
·9.81 ·6.72 ·10−6 m

= 2.2×10−4 m = 0.22 mm .

The divergence of the beam is:

∆ϑ = b1+d0

2 · L
= 4×10−6

2
= 2×10−5 .

The width of the beam at a distance d2 = 200 cm
downstream of S1 is:

∆2z = d2 ·∆ϑ = 4×10−3 m .

The deflection by gravity therefore changes the
beam intensity, transmitted through a slit S2 by the
fraction 2.2×10−4/4×10−3 = 5.5×10−2 = 5.5%.
b) The deflection of atoms with mass M and charge
∆q is:

∆z = 1

2

E ·∆q

M
t2

= 1

2
·5×106 ·∆q ·6.72×10−6 m

= 1.1×102 · ∆q

M
[m] .

Assume M = 4 AMU= 6.7×10−27 kg (He-atoms)
and a sensitivity of ∆zmin = 10 µm than the mini-
mum value of ∆q is ∆qmin = 6×10−35 C = 3.8×
10−16 e.
c) The change ∆z of the deflection is 2∆z = 2.2×
102∆q/M [m]. The relative change of the intensity,
transmitted through S2 is, according to a)

∆I

I
= 2.2×102∆q/M

4×10−3
.

If a relative change of 10−4 can be still measured,
than the minimum charge difference

∆q = 10−4×4×10−3

2.2×102
·M

can be measured. Inserting M = 6.7×10−27 kg
gives

∆q = 1.2×10−35 C .
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13. From mv2/R = evB and f0 = R/ sinϕ one obtains

B = mv

eR
= mv

e f0 sinϕ
= 1

e f0 sinϕ

√
2meU .

With eU = 103 eV= 1.6×10−16 J, m = 40 AMU=
40×1.66×10−27 kg, sinϕ = sin 60◦ = 1

2

√
3, f0 =

0.8 m ⇒ B = 4.2×10−2 Tesla.
14. According to (2.100) the focal length f is:

f = 4
√
φ0

z0∫
0

2a dz√
φ0+az2

= 2
√
φ0/a

z0∫
z=0

dz√
(φ2

0/a)+z2

= 2
√
φ0/a

ln

(
z+

√
(φ2

0/a)+ z2

)∣∣∣∣z0

0

= 2
√
φ0/a

ln

(
z0+

√
φ2

0/a+z2
0√

φ2
0/a

) .
15. a) The potential of the cylindric condenser can be

obtained from the Laplace equation∆φ= 0, which
is written in cylindric coordinates (r, ϕ, z) as:

1

r

∂

∂r

(
r · ∂φ
∂r

)
= 0 ,

with the solution

φ = c1 ln r+ c2 .

The cylinder surfaces r = R1 and r = R2 are at the
fixed potentials φ1 and φ2. This gives:

c2 = φ1− c1 ln R1

c1 = φ2−φ1

ln(R2/R1)

⇒ φ(r)= φ1+ φ2−φ1

ln(R2/R1)
· ln(r/R1) .

The electric field E(r) is:

E(r)=−∂φ
∂r

= φ1−φ2

ln(R2/R1)
· 1

r
.

The optimum path of the ions through the center
R0 = (R1+ R2)/2 of the cylindric sector field is
obtained from:

mv2
0

R0
= e · E(R0)= 2e

R1+ R2

φ1−φ2

ln(R2/R1)
.

The optimum voltage is then:

U = φ2−φ1 = R1+ R2

2R0

m

e
v2

0 ln

(
R2

R1

)
= mv2

0

e
ln

(
R2

R1

)
= 2eV0

e
ln(R2/R1) .

b) Assume an ion enters the cylindrical field at
ϕ = 0 and r = R0 = (R1+ R2)/2 with the velo-
city v0. Assume it deviates at time t from its
optimum path r = R0 by δr. The equation of motion
F = m ·a than becomes for the radial motion:

mδr̈ =m · v
2

r
+ e · E(r+ δr) . (3)

Expansion of E into a Taylor series yields:

E(R0+ δr)= E(R0)+
(

dE

dr

)
R0

δr+ . . . . (4)

From a) we obtain:
dE

dr
= U

ln(R2/R1)
· 1

r2
. (5)

Inserting this into (4) and (3) gives:

δr̈− v
2
0

r3
R2

0+
v2

0

R0

(
1− δr

R0

)
= 0

1

r3
= 1

R3
0(1+ δr/R0)3

≈ 1

R3
0

− 3

R4
0

δr+ . . .

⇒ δr̈− v
2
0

R0

(
1−3

δr

R0
−1+ δr

R0

)
= 0

⇒ δr̈+ 2v2
0

R2
0

δr = 0 .

With ω0 = v0/R0 this becomes:

δr̈+2ω2
0δr = 0

⇒ δr = R0

(
sin

(√
2ω0 · t

))
.

Fig. S.5.
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After the time t = π/(√2ω0) ⇒ ϕ = π/√2 =
127◦. The deviation δr becomes zero. The cylin-
drical condenser with an angle ϕ = 127◦ therefore
acts as focussing device.

16. An ion produced at the location x travels a distance
s = 1

2 at2
1 with a = eE/m in the electric field E =

U/d to the grid 2 (Fig. S.5).

⇒ t1 =
√

2ms

eE

v1 = (eE/m) t1 =
√

2eEs

m
.

The drift time in the field-free region between grid 2
and 3, where the ion moves with constant velocity,
is:

t2 = L/v1 = L

√
m

2eEs
.

The total flight time is:

T = t1+ t2 =
√

m

eE

2s+ L√
2s

.

The time difference ∆T for ions of equal mass,
produced at s1 = (d+b)/2 and s2 = (d−b)/2 (i.e.,
at the opposite edges of the ionization volume) is

∆T1 =
√

m

eE

(
2s1+ L√

2s1
− 2s2+ L√

2s2

)
=
√

m

eE

(
d+b+ L√

d+b
− d−b+ L√

d−b

)
.

For m = 100 AMU = 1.66×10−25 kg, b = 2 mm,
d = 30 mm, L = 1 m one obtains:

∆T1 = 1.018×10−5(5.769−6.143)s

=−3.811 µs .

The ion with s = (d+b)/2 has a shorter flight time
than an ion starting from s = (d−b)/2, because it
is accelerated longer and has a larger velocity.
Two ions, with masses m1 and m2, both starting
from the middle of the ionization volume (s = d/2)
have the flight time difference:

∆T2 = d+ L√
edE

(√
m1−√m2

)
.

Inserting the numerical values for m1 = 110 AMU,
m2 = 100 AMU gives:

∆T2 = 1.49×108×2×10−14 s

≈ 3 µs .

Two masses can be separated if their flight time
difference ∆T2 is at least ∆T1 or larger. The mass
resolution of our example is only ∆m/m ≈ 10.
It can be greatly increased by the McLaren ar-
rangement with two different accelerating electric
fields.
b) The increase of mass resolution in the reflec-
tron can be seen as follows: Assume the lengths of
the two arms of the reflectron to be L1 = L2 = L.
Two ions, generated at two different locations have
velocities v1 and v2 with vi = (2eE · si/m)1/2.
Their flight time is: Ti = 2L/vi without penetra-
ting into the reflection field Er. Here they penetrate
a distance dr determined by the energy balance:

m

2
v2

i = e · Er ·dr ⇒ dr = mv2
i / (2eEr) .

The deceleration time is obtained from

dr = 1

2
e

Er

m
t2 .

Their time for penetration and reflection is therefore

t = 2 · (2dr ·m/eEr)
1/2 .

Inserting si = (d±b)/2 we obtain for the total flight
time of an ion through the reflectron:

Ti = 2L

vi
+2

mvi

eEr
.

Inserting si = (d±b)/2 ⇒ vi = [(2eE/m)(d±
b)/2]1/2.
We can calculate the maximum time difference for
ions generated at si = (d±b)/2 as:

∆T = 2L√
eE/m

(
1√

b−d
− 1√

b+d

)
+ 2m

eEr

√
eE

m

[√
d−b−√d+b

]
.

With d∆T/db = 0 one obtains the optimum re-
tarding field Er as

Er = E

L

d−b− (d2−b2)1/2

(d2−b2)1/2− (d−b)2(d2−b2)−1/2
.
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c) The width of the ion beam at the exit of the sector
field is (see Fig. 2.74a)

b2 = b1+ 2m

eB
∆v

mv2

R
= qvB ⇒ R = mv

qB

m

2
v2 = qU ⇒ R = 1

B

√
2Um

q

⇒ m = R2 B2q

2U
.

In order to seperate two masses m1 and m2, the
condition

2(R1− R2)≥ b2

has to be met. The mass resolution is then

m

∆m
= R2 B2q

2U

2U

B2q
(
R2

1− R2
2

)
= R2

R2
1− R2

2

≈ Rm

2(R1− R2)

with

Rm = 1

2
(R1+ R2) .

Since 2(R1− R2) > b2

⇒ m

∆m
≤ Rm

b2
.

Assuming Rm = 0.3 m, b2 = 1 mm

⇒ ∆m

m
≤ 300 .

This is better than our simple TOF spectrometer,
but worse than the reflectron.

17. The torque D on a particle with mass m is:

D = r× F ,

where F is the force acting on the particle at
a distance r from the center.
For centro-symmetric force fields is

F̂ = f(r) · r̂
⇒ D = f(r) ·r× r̂ = 0 .

The torque is the time derivative of the angular
momentum L = r× p = m ·r×v

dL
dt

= D .

Since D = 0 ⇒ L = const.
18. a) According to (2.163a) the impact parameter is

b = qZe

4πε0µv
2
0

cot(ϑ/2) , with

q = 2e , Z = 79 ,

ε0 = 8.85×10−12 A s/V m ,

cot 45◦ = 1 ,
µ

2
v2

0 = 5 MeV = 8×10−13 J

⇒ b = 2.27×10−14 m = 22.7 Fermi .

b) For the backwards-scattered particles (ϑ = 180◦)
we obtain the minimum distance rmin at the turning
point from the energy balance

µ

2
v2

0 =
qZe

4πε0rmin

⇒ rmin = qZe

2πε0µv
2
0

= 4.54×10−14 m .

c) For ϑ = 90◦ the impact parameter is b0 = 2.27×
10−14 m. All particles with b< b0 are scattered into
the angular range 90◦ < ϑ ≤ 180◦.
In order to estimate the maximum value of b (i.e.,
the smallest deflection angle ϑ) we assume bmax =
d/2, where d is the average distance between two
gold atoms in the scattering gold foil. In this case
the α-particle passes between two gold atoms and
experiences a net deflection force of zero.
The number density of gold atoms is

nV = �NA

M
= 6×1022/cm3

with the mass density �= 19.3 g/cm3; the Avo-
gadro number NA = 6×1023/mole and the molar
mass M = 197 g/mole.
The number density nF per cm2 of gold atoms in
the foil with thickness t = 5×10−6 m is nF = nV t =
3×1019/cm2. With bmax = 1

2 d = 1
2/
√

nF = 9.1×
10−11 cm = 9.1×10−13 m the scattering cross
section is

σ = πb2
max ≈ 2.6×10−20 cm2 .
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The fraction of atoms scattered into the angular
range ϑ ≥ 90◦ is

N(ϑ ≥ 90◦)
N(ϑ ≤ 180◦)

= πb2
0

πb2
max

=
(

2.27×10−14

9.1×10−13

)2

= 6×10−4 .

d) b(ϑ = 45◦) = a cot 22.5◦ = 2.71 a with a =
qZe/(4πε0µv

2
0)⇒ a = 2.27×10−14 m.

N(45◦ ≤ ϑ ≤ 90◦)
N(ϑ ≤ 180◦)

= π
[
(2.41)2a2−a2

]
πb2

max

= 4.8a2

b2
max

= 4.8×2.272×10−28

8×10−21

= 3.1×10−7 .

19. The rate N(ϑ) of particles scattered into the angular
range ϑ1 ≤ ϑ ≤ ϑ2 is for Rutherford scattering:

N(ϑ)∆ϑ ∝
ϑ2∫
ϑ1

sinϑ dϑ

sin4(ϑ/2)

=
ϑ2∫
ϑ1

2 cos(ϑ/2)

sin3(ϑ/2)
dϑ

=
[
− 2

sin2(ϑ/2)

]ϑ2

ϑ1

.

This allows the calculation of the ratio

N(1◦ ±0.5◦)
N(5◦ ±0.5◦)

= 46,689

214.4
= 218 .

For the Thomson model we obtain for a me-
dium scattering angle ϑ = 2×10−4 rad and an
average number m of scattering events in the gold
foil, according to the numerical value given in
Problem 2.18c:

m = nFσ = 3×1019×3×10−16 ≈ 104

⇒ 〈ϑ〉 = √
m ϑ = 2×10−4×102 rad ≈ 1.2◦

= 2×10−2 rad ≈ 1.2◦ ,

N(ϑ)∆ϑ ∝
ϑ2∫
ϑ1

sinϑ e−(ϑ/〈ϑ〉)
2

dϑ

≈
∫
ϑ e−(ϑ/〈ϑ〉)

2
dϑ

=
[ 〈ϑ〉2

2
e−(ϑ/〈ϑ〉)

2
]ϑ2

ϑ1

⇒ N(1◦ ±0.5◦)
N(5◦ ±0.5◦)

= e−0.17− e−1.56

e−14− e−21
≈ 7.5×105 .

This shows that the scattering rate decreases much
stronger with increasing ϑ than for the Rutherford
scattering.

20. a)

µv2
0

2
= Ze2

4πε0rmin
,

rmin = 5×10−15 m , Z = 29 ,

µ= 1×63

64
= 0.98 AMU

⇒ µ

2
v2

0 =
29×1.62×10−38

4π×8.85×10−12×5×10−15
J

= 1.33×10−12 J

⇒ m

2
v2

0 = 1.36×10−12 J = 8.5 MeV .

b) For ϑ < 180◦ is

rmin = b

[
1− Epot(rmin)

µ

2 v
2
0

]−1/2

.

With rmin = 5×10−15 m ⇒ b = 1.775×10−15 m

⇒ cot(ϑ/2)= b/a with a = Ze2

4πε0µv
2
0

⇒ ϑ ≥ 113.4◦ .

Chapter 3

1. With the de Broglie relation

λdB = h

p

⇒ v= h

mλ
= 6.63×10−34

10−10×1.67×10−27

m

s

= 3.97×103 m/s .
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Thermal neutrons have at T = 300 K a mean ve-
locity v = 2.2×103 m/s and a kinetic energy of
Ethermal

kin = 40 meV. Our neutron is slightly super
thermal. Its kinetic energy is

Ekin = m

2
v2 = 1.31×10−20 J = 82 meV .

2. The average energy per mode is

〈E〉 = 〈n〉 ·hν ,
where 〈n〉 is the average number of photons
in this mode. If Pn is the probability, that
a mode contains n photons, it follows for thermal
equilibrium

Pn = e−n·hν/kBT∑
n e−nhν/kBT

⇒
∞∑

n=0

Pn = 1 .

⇒ Pn+1

Pn
= e−hν/kBT = x .

The geometrical series
∑∞

n=0 xn has for x < 1 the
value∑

n

xn = 1

1− x
.

With the relation:
∞∑

n=0

n · xn = x · d

dx

(∑
xn
)
= x

(1− x)2

we obtain

〈n〉 =
∞∑

n=0

n · P(n)=
∑

n · xn∑
xn

= x

1− x

= 1

ehν/kBT −1
.

The mean energy per mode is then

〈E〉 = hν

ehν/kBT −1
.

3. Differentiation of S∗ν in (3.16) gives:

∂S∗ν
∂ν

= 6hν2

c2

1

ehν/kBT −1
− 2hν3

c2

ehν/kBT ·h/kBT

(ehν/kBT −1)2

= 0

⇒ 3− hν

kBT
ehν/kBT (ehν/kBT −1

)−1 = 0 .

With x = hν/kBT this gives

3 = x

1− e−x
⇒ x = 3

(
1− e−x) .

This equation can be only solved numerically. The
solution is:

xm = 2.8215

⇒ νm = 2.8215 kT/h = 5.873×1010 s−1 ·T [K] .
With λ= c/ν ⇒ dλ=−(c/ν2) dν we obtain in-
stead of (3.16) for S∗λ the expression

S∗λ =
2πhc2

λ5

1

ehc/(λkT )−1
.

With dS∗λ/dλ= 0 we obtain in a similar way

λm = 2.88×10−3 [m]
T [K] .

Note, that dλ/dν decreases with increasing fre-
quency ν. The distribution S∗λ, which gives the
radiation flux per constant interval dλ, therefore
differs from S∗ν which is given for constant interval
dν. The maximum of S∗ν at νm is not at νm = c/λm!

4. a) Energy conservation demands

hν =∆Eel
kin (1)

= m0c2

⎡⎣ 1√
1−v2

2/c
2
− 1√

1−v2
1/c

2

⎤⎦
The conservation of momentum requires:

�k= m0v2√
1−v2

2/c
2
− m0v1√

1−v2
1/c

2
(2)

�
2k2 = h2ν2

c2

= m2
0v

2
1

1−v2
1/c

2
+ m2

0v
2
2

1−v2
2/c

2
(3)

− 2m2
0v1 ·v2√(

1−v2
1/c

2
) (

1−v2
2/c

2
) .

Taking the square of (1) gives:

h2ν2 = m2
0c4

⎡⎣ 1

1−v2
1/c

2
+ 1

1−v2
2/c

2
(4)

− 2√(
1−v2

1/c
2
) (

1−v2
2/c

2
)
⎤⎦ .
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A comparison of (3) and (4) gives, after rearranging
the terms:(
c2−v2

1

) (
c2−v2

2

)= (
c2−v1 ·v2

)2

⇒ (v1−v2)= 0 ⇒ v1 = v2

⇒ ν = 0 !
This means that photoabsorption by a free electron
is not possible. The absorption can only take place
in the presence of an atom, which can compensate
the photon recoil. In the Compton effect the scat-
tered photon has the momentum �ks 	= �k and the
energy hνs < hν.
b) The momentum of the photon is:∣∣pphot

∣∣= hν

c
.

For hν = 0.1 eV = 1.6×10−20 J (λ= 12 µm)

⇒ pphot = 1.6×10−20

3×108

J s

m
= 5.3×10−29 N s

For hν = 2 eV (λ= 600 nm)

⇒ pphot = 1.07×10−27 N s

For hν = 2 MeV

⇒ pphot = 1.07×10−21 N s

The recoil velocity of a hydrogen atom with the
above momenta would be

v1 = p

m
= 3.2×10−2 m/s for hν = 0.1 eV ,

v2 = p

m
= 6.4×10−1 m/s for hν = 2 eV ,

v3 = p

m
= 6.4×105 m/s for hν = 2 MeV .

In the first case the atom would not be pushed
out of resonance for the Lyman α-line, for the last
case it would be completely Doppler-shifted out of
resonance.

5. The first diffraction minimum appears at the
diffraction angle α with

sinα= λ
b
= h

bp
= h

b
√

2mEkin
.

The full width between the two minima at both
sides of the central maximum is

B = 2D sinα= 2Dh

b
√

2mEkin
> b ,

which should be larger than the slit width b. This
gives the condition

b<

(
2Dh√
2mEkin

)1/2

.

For D = 1 m and Ekin = 1 keV = 1.6×10−16 J
we obtain:

bmax =
[

2×6.6×10−34

√
2×9.11×10−31×1.6×10−16

]1/2

m

= 8.81×10−6 m = 8.81 µm .

6. The radii of the Bohr orbitals are

rn = n2

Z
a0 .

a) For n = 1, Z = 1 ⇒ r1 = a0 = 5.29×10−11 m.
b) For n = 1, Z = 79 ⇒ r1 = 6.70×10−13 m.
The velocities of the electron are

v= h

2πmern
= Z�

mea0n2
.

a) Z = 1, n = 1:

⇒ v1 = 2.19×106 m/s = 7.3×10−3 c = c

137
.

b) Z = 79, n = 1:

v1 = 1.73×108 m/s = 0.577 c .

In case b) the relativistic effects become very large
and have to be taken into account. We can calculate
the relativistic velocity:

Ekin = (m−m0)c
2 = m0c2

(
1√

1−v2/c2
−1

)

=−En = Z2 Ry∗

n2
.

For n = 1 we obatain:

v= c

√
1−

(
m0c2

m0c2+ E1

)2

,

with m0c2 = 0.5 MeV we obtain:

E = 792×13.5

1
eV = 0.084 MeV

⇒ v= c

√
1−

(
0.5

0.584

)2

= 0.517 c .
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The relative error of the nonrelativistic calculation
is

∆v

v
= 0.06

0.517
c = 0.116 c = 11.6% .

c) The relativistic mass increase is

∆m = m−m0 = m0

(
1√

1−v2/c2
−1

)

= m0

(
1√

1−0.5172
−1

)
= 0.17 m0 .

The relativistic energy correction is (see Sect. 5.4)

∆Er(n = 1, Z = 1)= 9×10−4 eV .

For Z = 79 it is

∆Er(n = 1, Z = 79)= 5.6 eV .

7. After the mean life time τ the number of neutrons
have decayed to 1/e of the initial value and after
the time τ ln 2 to 1/2 of the initial value. During
this time they travel a distance x = vτ ln 2.
The velocity of the neutrons is

v= h

mλ
⇒ x = hτ ln 2

mλ

= 6.62×10−34×900×0.69

1.67×10−27×10−9
= 2.4×105 m .

The decay time of the neutrons could be measured
by trapping them in a magnetic quadrupole trap
with the geometry of a circle. With a radius r = 1 m,
they travel (2.4×105/2π)= 4×104 times around
the circle before they decay, if no other losses are
present.

8. The wavelength of the Lyman α-line can be
obtained from the relation

hν = hc

λ
= Ry∗

(
1− 1

4

)
⇒ λ= 4

3 Ry
with Ry = Ry∗/hc .

a)

Ry
(3H

)= Ry∞ · µ
me

with µ= memN

me+mN
,

where mN is the mass of the nucleus.

⇒ Ry
(3H

)= Ry∞
1

1+me/mN

≈ Ry∞
1

1+ 1
3·1836

= 0.999818Ry∞
= 1.0971738×107 m−1 .

The wavelength of Lyman α n = 2→ n = 1 is then:

λ= 4

3Ry
= 1.215×10−7 m = 121.5 nm .

b) For positronium (e+e−)

µ= me/2 ⇒ Ry(e− e+)= 1

2
Ry∞

⇒ λ= 243.0 nm .

9. At room temperature (T = 300 K) only the ground
state is populated. Therefore all absorbing transi-
tions start from the ground state with n = 1. The
photon energies are then

hνn = a

(
1− 1

n2

)
hνn+1 = a

(
1− 1

(n+1)2

)
with λ= c/ν we obtain

λ1

λ2
= νn+1

νn
= 1−1/(n+1)2

1−1/n2
.

With λ1 = 97.5 nm, λ2 = 102.8 nm ⇒ λ1/λ2 =
0.948. For n = 2 ⇒ λ1/λ2 = 0.843, for n = 3 ⇒
λ1/λ2 = 0.948.
The two lines therefore belong to n = 3 and n = 4.
The constant a can be determined from

νn = c

λn
= a

h

(
1− 1

n2

)
with λ3 = 102.8 nm we obtain

a = hc

λ3

1

1−1/32

= hc

λ3
· 9

8
= 2.177×10−18 J = Ry∗ .

The lines therefore belong to transitions in the
hydrogen atom with Z = 1, n = 3 and n = 4.
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10. Since the resolving power of the spectrograph is
assumed to be∣∣∣∣ λ∆λ

∣∣∣∣= ∣∣∣ ν
∆ν

∣∣∣= 5×105

the difference ∆ν of two adjacent lines in the
Balmer spectrum has to be ∆ν ≥ ν/(5×105). The
frequencies of the Balmer series are

νn = Ry∗

h

(
1

22
− 1

n2

)
n ≥ 3 .

The ratio ν/∆ν is then

ν

∆ν
= νn

νn+1−νn
=

1
4 − 1

n2

1
n2 − 1

(n+1)2

≤ 5×105

⇒ n2−4

4−4
(

n
n+1

)2 ≤ 5×105

⇒ n ≤ 158 .

Another way of solving this problem is as follows:

ν(n)= Ry∗

h

(
1

4
− 1

n2

)
.

For large n we can regard ν(n) as a continuous
function of n and obtain by differentiating:

dν

dn
= 2Ry∗

h

1

n3

⇒ ∆ν ≈ 2Ry∗

h

1

n3
∆n

with ∆n = 1 we get:

ν

∆ν
= 1

2

(
1

4
− 1

n2

)
n3 .

Since n2 � 4:

n3

8
≤ 5×105 ⇒ n3 ≤ 4×106

⇒ n ≤ 158 .

11. For the uncertainty ∆r = a the kinetic energy of
the electron is

Ekin ≥ �
2

2ma2
.

Its potential energy at a distance a from the nucleus
is

Epot =− 2e2

4πε0a
.

The total energy is then

E ≥ �
2

2ma2
− 2e2

4πεa
.

From the condition dE/da = 0 for the minimum
energy we obtain

amin = 2πε0�
2

me2
= a0

2

⇒ Epot(amin)=− 4e2

4πε0a0

=−4Epot(H, n = 1)

=−108 eV ,

Ekin =−1

2
Epot =+54 eV .

Chapter 4

1. Inserting the ansatz ψ(r, t)= g(t) · f(r) into the
time-dependent Schrödinger equation (4.7b) one
obtains, after division by f(r) · g(t),

i�
1

g(t)

∂g(t)

∂t
=− �

2

2m

1

f(r)
∆ f(r)= C .

Since the left side of this equation depends solely
on t, the right side solely on r, both sides have to
be constant, which we name C. The right side gives
the time-independent Schrödinger equation (4.6)
for C = E− Epot. Then the left side becomes

∂g(t)

∂t
= E− Epot

i�
g(t)

⇒ g(t)= g0 e−iEkin/ ·t .

For a free particle Epot = 0 ⇒ Ekin = E. The
function g(t) then represents the phase factor

g(t)= g0 e−i(E/ )t = g0 e−iωt

with E = �ω.
2. The reflectivity R = 1− T can be derived

from (4.26a) when we insert:

E

E0
= 0.4

0.5
= 0.8 ,

α= 1

�

√
2m(E0− E)
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= 2
√

1.67×10−27×0.1×1.6×10−22

1.05×10−34
m−1

= 2.2×109 m−1

with a = 1×10−9 m ⇒ α ·a = 2.2.

⇒ T = 0.2

0.2+0.3125× sinh2(2.20)
= 0.126 ,

i.e., 12.6% of all particles are transmitted, 87.4%
are reflected.

3. For the negative potential step the same derivation
can be used as for the positive step. The reflection
coefficient is

R = |B|2
|A|2 =

∣∣∣∣k− k′

k+ k′

∣∣∣∣2 .
We abbreviate:

k = 1

�

√
2mE ; k′ = 1

�

√
2m(E− E0)

with E0 < 0 and obtain

R = E− E0/2−√E(E− E0)

E− E0/2+√E(E− E0)
.

For E0 = 0 ⇒ R = 0, for E0 →−∞ ⇒ R = 1.
For E0 =−E the kintetic energy of the particle
becomes for x > 0 2Ekin(x < 0). The reflection
coefficient is then

R = 3−2
√

2

3+2
√

2
= 0.029 .

For E =− 1
2 E0 we obtain:

R = 2−√3

2+√3
= 0.072 .

This shows that with increasing step heights R
increases. This is completely analogous to the re-
flection of optical waves at a boundary between two
media with refractive indices n1 and n2, where

R =
∣∣∣∣n1−n2

n1+n2

∣∣∣∣2 = ∆n2

(2n)2

with n = 1
2 (n1+n2).

4. With

ψ1 = A eik1x + B e−ik1x ,

ψ2 = C eik2x +De−ik2x ,

ψ3 = A′ eik1x

k1 =
(
2mE/�2)1/2

,

k2 =
(
2m(E− E0)/�

2)1/2 = iα

we obtain from the boundary condition (4.25) the
relations:

A+ B = C+D ,

C eik2a +De−ik2a = A′ eik1a ,

k1(A− B)= k2(C−D) ,

k2
(
C eik2a −De−ik2a)= k1 A′ e−ik1a .

This set of equations yields the results:

A =
[

cos k2a− i
k2

1 + k2
2

2k1k2
sin k2a

]
eik1a A′ ,

B = i
k2

2− k2
1

2k1k2
sin k2aeik1a A′ .

The reflection coefficient with cos2 x = 1− sin2 x

R = |B|2
|A|2 =

(
k2

1− k2
2

)2
sin2 k2a

4k2
1k2

2+
(
k2

1− k2
2

)2
sin2 k2a

and the transmission coefficient is:

T = |A′|2
|A|2 = 4k2

1k2
2

4k2
1k2

2+
(
k2

1− k2
2

)2
sin2 k2a

.

One can readily prove that R+ T = 1. With
k2

1 = (2mE/�2) and k2
2 = 2m(E− E0)/�

2 the
transmission becomes

T = 4E(E− E0)

4E(E− E0)+ E2
0 sin2

[
a√2m(E− E0)

] .
(1)

Dividing the nominator and denominator by
(4EE0) and using the relation sin(ix)= i sinh x we
obtain for E > E0 the result (4.26a). For E > E0

the transmission becomes T = 1 for
a

�

√
2m(E− E0)= nπ

⇒ λ= h√
2m(E− E0)

= 2a

n
, n = 1, 2, 3 .
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For a potential well with depth E0 the potential
energy is Epot < 0 if we choose Epot = 0 outside
the well. In (4.26a) one has to change the sign
of E0. With the numerical data of Problem 4.2 (E =
0.4 eV, E0 =−0.5 meV, a = 1 nm) we then obtain
from (4.26a)

T = 1+0.8

1+0.8+0.31 sin2
(
a
√

2m×0.9 meV/�
)

= 1.8

1.8+0.31 sin2(6.46)
= 0.994 ,

where we have used sin ix = i sinh x.
5. For a potential well with infinitely high walls the

bound energy levels for a well with depth (−E0)

are

En = �
2

2m

π2

a2
n2 ≤ E0 .

Inserting the numerical values a = 0.7 nm, E0 =
10 eV gives:

En = 1.1×10−49 n2

m
J ≤ 1.6×10−18 J .

a) Electrons with mass m = 9.1×10−31 kg:

En = 1.2×10−19n2 J

⇒ n2 ≤ 1.6×10−18

1.2×10−19
= 12.9 ⇒ n ≤ 3 .

There are only three bound levels in the well.
b) Protons with mass m = 1.67×10−27 kg:

⇒ En = 5.59×10−23 J×n2

⇒ n2 ≤ 2.4×104

⇒ n ≤ 155 .

c) With the exact solution for the potential well
with finite wall heights the wave functions are no
longer zero for x = 0 and x = a, but they penetrate
a little bit into the wall regions (Fig. S.6). As was
discussed in Sects. 4.2.2 and 4.2.4 we now have the
wave functions

ψI = A1 eαx for x ≤ 0

with

α= 1

�

√
2m(E0− E) ;

ψII = A2 sin(kx+ϕ) for 0 ≤ x ≤ a ,

Fig. S.6.

where the phase ϕ determines the amplitude of ψII

for x = 0 and x = a.

ψIII = A3 e−αx for x ≥ a .

From the boundary conditions

ψIII(0)= ψII(0) ; ψII(a)= ψIII(a) (1)

we obtain:

A1 = A2 sinϕ , (2)

A3 = A2 sin(ka+ϕ)e−αa . (3)

From the continuity of the derivatives one obtains:

ψ ′
I(0)= ψ ′

II(0) ⇒ αA1 = kA2 cosϕ .

This gives with (2):

α= k cotϕ ⇒ ϕ = arctan(k/α) . (4)

From the condition
d(lnψII)

dx

∣∣∣∣
x=a

= d(lnψIII)

dx

∣∣∣∣
x=a

one obtains:

ϕ =−ka− arccot(k/α)+nπ . (5)

The comparison of (4) and (5) gives for k the
condition:

ka = nπ−2 arccot(k/α)

and the energy levels:

En = �
2k2

n

2m
= �

2

2ma2
[nπ−2 arccotg(k/α)]2 .
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For E0 =∞ ⇒ α=∞ and the arccotg becomes
zero. This gives the results

kn = nπ/a ⇒ En = �
2π2

2ma2
n2 ,

which was derived from the well with infinitely
high walls.

6. At the lowest energy (zero-point energy) the par-
ticle is restricted to the interval ∆x = x2− x1

between two points

x1,2 =±(2Epot/D)1/2 ,

which are the intersections of the energy level

E(v= 0)= 1

2
�
√

D/m .

With the parabolic potential

Epot = 1

2
Dx2

we obtain:

∆x = 2
(
�
√

D/m
/

D
)1/2

= 2
(
�

/√
D ·m

)1/2
.

7. The x-component of L̂ is

L̂ x =−i�

(
y
∂

∂z
− z

∂

∂y

)
∂

∂z
= ∂r
∂z

∂

∂r
+ ∂ϑ
∂z

∂

∂ϑ
+ ∂ϕ
∂z

∂

∂ϕ

⇒ L̂ x =−i�

[(
y
∂r

∂z
− z
∂r

∂y

)
∂

∂r

+
(

y
∂ϑ

∂z
− z
∂ϑ

∂y

)
∂

∂ϑ

+
(

y
∂ϕ

∂z
− z
∂ϕ

∂y

)
∂

∂ϕ

]
. (1)

with

r =
√

x2+ y2+ z2

⇒ ∂r

∂z
= z

r
,

∂r

∂y
= y

r
.

ϑ = arccos

(
z√

x2+ y2+ z2

)

⇒ ∂ϑ

∂z
=
(
z2/r2

)−1√
x2+ y2

∂ϑ

∂y
= zy/r2√

x2+ y2

ϕ = arctan
y

x
⇒ ∂ϕ

∂y
= x

x2+ y2
,

∂ϕ

∂z
= 0 .

Inserting these relations into (1) gives:

L̂ x =−i�

[
0
∂

∂r
− y√

x2+ y2

∂

∂ϑ

− zx

x2+ y2

∂

∂ϕ

]
=+i�

[
sinϕ

∂

∂ϑ
+ cotϑ cosϕ

∂

∂ϕ

]
.

The components L̂ y and L̂ z can be obtained in an
analogous way. In order to obtain L̂2 we use the
relation:

L̂2 = L̂2
x + L̂2

y + L̂2
z

and we have to calculate L̂2
x , L̂2

y and L̂2
z :

L̂2
x = −�2

(
sinϕ

∂

∂ϑ
+ cotϑ cosϕ

∂

∂ϕ

)
×
(

sinϕ
∂

∂ϑ
+ cotϑ cosϕ

∂

∂ϕ

)
.

The differential operators ∂/∂ϑ and ∂/∂ϕ act on all
functions, after multiplication of the two brackets,
stand behind these operators,
This yields the four terms:

sinϕ
∂

∂ϑ
sinϕ

∂

∂ϑ
= sin2 ϕ

∂2

∂ϑ2
;

sinϕ
∂

∂ϑ

(
cotϑ cosϕ

∂

∂ϕ

)
= sinϕ cosϕ

(
− 1

sin2 ϑ

∂

∂ϕ
+ cotϑ

∂

∂ϑ

∂

∂ϕ

)
;

cotϑ cosϕ
∂

∂ϕ

(
sinϕ

∂

∂ϑ

)
= cotϑ

(
cos2 ϕ

∂

∂ϑ
+ cosϕ sinϕ

∂

∂ϑ

∂

∂ϕ

)
;

cotϑ cosϕ
∂

∂ϕ

(
cotϑ cosϕ

∂

∂ϕ

)
= cot2ϑ

(
− cos ϕ sinϕ

∂

∂ϕ
+ cos2 ϕ

∂2

∂ϕ2

)
.
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Similar terms are obtained for L̂2
y and L̂2

z . The
addition finally gives (4.111) when the relation

cotϑ
∂

∂ϑ
+ ∂2

∂ϑ2
= 1

sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
is used.

8. The wave function within the range x< 0 and x> a
is for a penetration depth δx

ψ(δx)= C e(i/ )
√

2m(E0−E)δ x .

The probability of finding a particle in this range is
proportional to |ψ(δx)|2. It decreases to 1/e for

δx = �√
2m(E0− E)

.

Example: m = 9.1×10−31 kg (electron mass), E =
1
2 E0, E0 = 1 eV = 1.6×10−19 J

⇒ δx = 1.06×10−34

√
1.82×10−30×0.8×10−19

m

= 0.28 nm .

9. For E = 1
2 E0 we obtain from (4.26a):

T = 0.5

0.5+0.5 sinh2 2π
= 1.4×10−5 .

With the approximation (4.26b) we obtain for E =
0.5 E0:

T = 4e−4π = 1.395×10−5 ,

which is practical identically to the value of the
correct calculation.
For E = 1

3 E0:

T = 2/3

2/3+3/4 sinh2
(

2π
√

2
)

= 5.1×10−8 .

Maximum transmission T = 1 is reached for E >
E0 if sin2(iaα)= 0

⇒ a
√

2m(E− E0)= nπ�= n

2
h

⇒ a = n

2
λ ,

where

λ= h√
2m(E− E0)

is the de Broglie wavelength of the particle within
the range of the barrier.
b) E = 0.8 eV, E0 = 1 eV ⇒ E/E0 = 0.8, m =
9.1×10−31 kg.

α=√
2m(E− E0)/�

=
√

2×9.1×10−31(0.2×1.6×10−19)

1.06×10−34
m−1

= 2.28×109 m−1

a = 10−9 m ⇒ sinh2(αa)= 24.4

⇒ T = −0.2

0.2−0.28×24.4
≈ 0.03 .

For E = 1.2 eV

⇒ T = −0.2

−0.2−0.208 sinh2 2.28
= 0.625 .

10. The energy levels in the two-dimensional quadratic
potential well are, according to (4.66):

E
(
nx, ny

)= �2π2

2ma2

(
n2

x +n2
y

)≤ Emax . (2)

Inserting the numerical values

m = 9.1×10−31 kg ,

a = 10−8 m ,

Emax = 1 eV

gives the conditions(
n2

x +n2
y

)≤ 2.66×102

⇒ nx, ny ≤ 16 and n2
x +n2

y ≤ 266 .

All possible levels can be visualized as points in
a two-dimensional space with the axis nx and ny.
They fill a quarter of a circular area (π/4)(n2

x +n2
y)

because nx, ny ≥ 0. There are therefore approxi-
mately (π/4)×266 = 208 energy levels that obey
these conditions. Some of them are degenerate.
These are levels with the same value of n2

x +n2
y.

Examples are: nx = ny = 5 and nx = 1, ny = 7 and
nx = 7, ny = 1.

Chapter 5

1. The expectation value of r is defined as

〈r〉 =
∫
ψ ∗rψ dτ
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with dτ = r2 sinϑ dr dϑ dϕ. In the 1s state of the
H atom

ψ = 1√
πa3/2

0

e−r/a0

⇒ 〈r〉 = 1

πa3
0

4π

∞∫
0

e−2r/a0r3 dr

= 4

a3
0

3!
(2/a0)4

= 3

2
a0 .

The expectation value of r is therefore larger than
the Bohr radius a0! The expectation value of 1/r is〈

1

r

〉
= 1

πa3
0

4π

∞∫
0

e−2r/a0r dr

= 4

a3
0

a2
0

4
= 1

a0
.

For the 2s state the wave function is

ψ(2s)= 1

4
√

2πa3/2
0

(
2− r

a0

)
e−r/2a0

⇒ 〈r〉 = 4π

16×2πa3
0

∞∫
0

(
2− r

a0

)2

e−r/a0r3 dr

= 1

8a3
0

∞∫
0

[
4r3 e−r/a0 − 4r4

a0
e−r/a0

+ r5

a2
0

e−r/a0

]
dr

= 1

8a3
0

[
24a4

0 −96a4
0 +120a4

0

]= 6a0 .

A similar calculation for 〈1/r〉 yields〈
1

r

〉
= 1

4a0
.

2. The excitation energy of Ee = 13.3 eV can populate
the upper levels En with energies

En = IP− Ry∗

n2
≤ Ee

⇒ n2 ≤ Ry∗

IP− Ea
= 13.6

13.6−13.3
= 45.3

⇒ n ≤ 6 ,

where IP = 13.6 eV is the ionization potential.
Therefore all lines appear in the emission that start
from levels n ≤ 6. These are for n = 6

6s → 5p , 4p , 3p , 2p ,

6p → 5s , 4s , 3s , 2s , 1s ,

6d → 5p , 4p , 3p , 2p ,

6 f → 5d , 4d , 3d ,

6g → 5 f , 4 f ,

and similar expressions for n = 5, 4, 3, 2.
Since all terms with equal quantum number j =
l+ s are degenerate, many of these lines are
coincident in energy and are not separated.

3. a) For the ground state 1s of the H atom r = a0

according to Bohr’s model. (Note, however, that
〈r〉 = 3

2 a0, see Problem 5.1.)
The excitation energy of 12.09 eV reaches levels
with energies

En = IP− Ry∗

n2
= 12.09 eV

⇒ n2 = 13.599

13.599−12.09
= 9 ⇒ n = 3 .

Since r ∝ n2 the Bohr radius becomes r(n = 3)=
9a0.
b) For the excitation energy Ee = 13.387 eV we
obtain in a similar way

n2 = 13.599

0.212
= 64 ⇒ n = 8 .

r(n = 8)= 64a0.
4. In the classical model,

µe =−e/(2me)l ⇒ µe

l
=− e

2me

is constant and independent of the principal
quantum number n.
In the quantum-mechanical description the expec-
tation values:

〈µz〉 = −ml
e�

2me
, −l ≤ ml ≤+l ,

〈
µ2

e

〉= l(l+1)
e2
�

2

4m2
e
.

Although the number of possible components 〈µz〉
depend on l, the values are still independent of n.
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5. a) The velocity of the electron on the lowest Bohr
orbit is v1 = c/137. Its relative mass is then

m(v)= m0√
1−v2/c2

≈ m0

(
1+ 1

2

v2

c2

)
= m0

(
1+2.66×10−5) .

The mass increase ∆m1 = m−m0 = 2.66×
10−5m0. For n = 2, because of v ∝ 1/n, v(2s)=
3.65×10−3c

⇒ m(v)= m0
(
1+6.6×10−6)

⇒∆m2 = 6.6×10−6m0 .

The difference is:

δm =∆m1−∆m2

= 2.0×10−5m0 = 1.8×10−35 kg .

b) The energy difference is:

∆E = E(2s)− E(1s)= 10 eV = 1.6×10−18 J .

The potential energy Epot =−2Ekin. Since

E = Epot+ Ekin = 1

2
Epot ⇒ Epot = 2 · E .

The difference in potential energy corresponds to
a mass difference

∆m = m1−m2 = 2∆E/c2

=−3.6×10−35 kg .

Both effects are opposite in sign. Because the rela-
tive velocity effect mv(1s) >mv(2s) is only 1/2 of
the potential energy effect, the mass of the atom is
larger in the 2s state than in the 1s state.

6. a) The angular momentum of a spherical body,
rotating around an axis through its mass center is

|s| = Iω= 2

5
mer

2ω=√
3/4� .

The velocity at the equator is

vequator = rω= 5

2

√
0.75�/(mer) .

For r = 1.4×10−15 m, me = 9.1×10−31 kg we
obtain

v= 1.8×1011 m/s � c !
For r = 10−18 m ⇒ v = 2.5×1014 m/s. This is
a contradiction to the special theory of relativity

and shows that the model of a charged sphere for
the electron is not correct. The definition of the
electron spin as the angular momentum of a sphere
with mass me is wrong!
b) The rotational energy is:

Erot = 1

2
Iω2 = 1

5
mer

2ω2 = 1

5
mev

2
eq .

For r = 1.4×10−15 m ⇒ Erot = 6×10−9 J, while
the mass energy E0 = mec2 = 8×10−14 J is much
smaller. This shows again that the mechanical
model of the electron can not be correct.

7. The Zeeman splitting of the 22S1/2-state is,
according to (5.7),

∆Es = gjµB B ,

with gj = gs ≈ 2. For the 32 P1/2 state it is (see
Fig. S.7):

∆E p = gjµB B

with

gj = 1+
1
2

3
2 + 1

2
3
2 −1×2

2 1
2

3
2

= 2

3
.

The four Zeeman lines (Fig. S.7) appear as two
pairs, where the smaller distance is

∆ν1 = 2

3
µB B/h

and the larger distance is

∆ν2 = 4

3
µB B/h .

Fig. S.7.
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For B = 1 Tesla, µB = 9.27×10−24 J/T we obtain

∆ν1 = 9.3×109 s−1 ,

∆ν2 = 1.86×1010 s−1 .

a) In order to resolve these components with
a central frequency ν = 4.5×1014 s−1 the spectral
resolving power has to be∣∣∣ ν
∆ν

∣∣∣= ∣∣∣∣ λ∆λ
∣∣∣∣= 4.5×1014

9.3×109
= 4.8×104 .

The resolving power of a grating spectrograph is∣∣∣∣ λ∆λ
∣∣∣∣≤ mN ,

where m is the interference order and N the number
of illuminated grooves. For m = 2 we then obtain:

N ≥ 4.8×104

2
= 24,000 .

b) The Fabry–Perot interferometer with mirror
separation d = 1 cm has a free spectral range

δν = c

2d
= 3×108

2×10−2
s−1 = 1.5×1010 s−1 .

With a finesse

F∗ = π
√

R

1− R

the minimum separation of two resolvable lines is:

∆ν = δν/F∗ .

With R = 0.95 ⇒ F∗ = 61 and

∆ν = 1.5×1010

61
≈ 2.5×108 s−1 .

In order to resolve all four Zeeman lines, the
magnetic field has to be at least B ≥ 0.026 T.

8. The potential energy of a magnetic dipole in
a magnetic field is:

E =−µ · B .

The magnetic moment of the proton is

µp = 2.79µK .

The separation of the two hyperfine components
is ∆E = 5.58µK · B. The line with λ = 21 cm,

corresponding to the transition between the HFS
components has a frequency

ν = ∆E

h
= c

λ

with ∆E = 9.46×10−25 J. With µK = 5.05×
10−27 J/T the magnetic field is

B = ∆E

5.58µK
= 9.46×10−25

5.58×5.05×10−27
T

= 33.5 T .

The magnetic field produced by the electron in the
1s state of hydrogen at the location of the pro-
ton is therefore with 33.5 T much larger than fields
obtained in the lab.

9. The frequencies of the transitions are given by

hν = Ry∗
(

1

1
− 1

4

)
= 3

4
Ry∗ .

The Rydberg constant

Ry∗ = e4

8ε2
0h2
µ with µ= mnme

mn+me

depends on the mass mn of the nucleus. For the
H atom

µ= me
1

1+ 1
1836

= me ·0.999456 .

For the D = 2
1H isotope

µ= me
1

1+ 1
3672

= me ·0.999728 .

For the isotope T = 3
1H it is

µ= me ·0.999818 .

The wavenumber and frequency of the Lyman α-
lines are then:

ν
(1

1H
)= 82,258.2 cm−1

⇒ ν = 2.466039×1015 s−1 ,

ν
(2

1D
)= 1.00027ν

(1
1H
)= 82,280.6 cm−1 .

The difference is

∆ν1 = ν
(2

1D
)−ν (1

1H
)

= 22.4 cm−1

ν
(3

1T
)= 1.00036ν

(1
1H
)= 82,288.0 cm−1

∆ν2 = ν
(3

1T
)−ν (1

1H
)

= 29.8 cm−1 .
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The hyperfine-splittings are:
a) 1

1H: EHFS = ±µ · B ⇒ ∆E = 2|µ| · |B|
with B = 35 T (see Problem 5.8) and µ =
2.79µK ⇒ ∆E = 5.58 µK · B= 9.43×10−25 J =̂
5.9×10−6 eV.
b) 2

1D: The internal magnetic field is caused by
the electron and therefore the same for all three
isotopes. The two hyperfine components have the
energy

EHFS = A

2
· [F(F+1)− J(J +1)− I(I +1)] .

With F = 3/2, J = 1/2 we obtain

EHFS = A

2
.

With F = 1/2⇒ FHFS =−A. The splitting is then:
∆F = 3

2 A with

A = gIµK · BJ/
√

J(J +1)

= 2gIµK BJ/
√

3 .

c) 3
1T: Here is I = 3/2; ⇒ F = 2 and F = 1

E(F = 2)=+3

4
A ; E(F = 1)=−5

4
A

⇒ ∆E = 2A = 4gIµK BJ/
√

3 .

Chapter 6

1. The potential experienced by the second electron
in the He atom is (see Fig. S.8)

φ(r2)=− Ze

4πε0r2
+ e

4πε0

∫ |ψ1 s(r1)|2
r12

dτ ,

(1)

r2
12 = r2

1 +r2
2 −2r1r2 cosϑ

⇒ r12 dr12 = r1r2 sinϑ dϑ

Fig. S.8.

dτ = r2
1 dr1 sinϑ dϑ dϕ

ψ1 s = Z3/2

√
πa3/2

0

e−Zr1/a0 .

Inserting these relations with Z = 2, into the
integrand we obtain for the integral

I =
∫ |ψ1 s|2

r12
r2

1 sinϑ dr1 dϑ dϕ

= Z3π

πa3
0

⎡⎢⎣ r2∫
r1=0

e−Z2r1/a0r2
1

r1r2
dr1

r2+r1∫
r12=r2−r1

dr12

+
∞∫

r1=r2

e−Z2r1/a0r1

r2
dr1

r1+r2∫
r12=r1−r2

dr12

⎤⎦ .
(2)

For ϑ = 0 we have:

r12 =
⎧⎨⎩r2−r1 for r1 < r2 ,

r1−r2 for r1 > r2 .

For ϑ = 0 ⇒ r12 = r1+ r2. The integration of the
first term in (2) gives

I1 =
(
−r2a0

Z
− a2

0

Z2
− a3

0

2r2 Z3

)
e−2Zr2/a0

+ a3
0

2r2 Z3

and for the second term:

I2 =
(

a0r2

Z
+ a2

0

2Z2

)
e−2Zr2/a0 .

This gives, with r = r2, the total potential felt by
the second electron:

φ(r)=− (Z−1)e

4πε0r
− e

4πε0

(
Z

a0
+ 1

r

)
e−2Zr/a0

with Z = 2 for the He atom.
2. The charge density of the two 1s-electrons is

approximately

η=−2e ·ψ2(1s)=− 2e

b3 ·π e−2R/b

with b = a0/Zeff .
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Fig. S.9.

The potential, experienced by the 2s electrons in
the field of the nucleus and the two 1s-electrons is
(Fig. S.9):

φ =+ 3e

4πε0r0
− 1

4πε0

∫
η

r
dτ .

The integral can be solved as follows:∫
η

r
dτ

=− 2e

b3π

∞∫
R=0

π∫
ϑ=0

2π∫
ϕ=0

e−2R/b

r
R2 sinϑ dR dϑ dϕ

=− 2e

b3π
2π

∞∫
R=0

π∫
ϑ=0

R2 e−2R/b sinϑ dR dϑ√
R2+r2

0 −2Rr0 cosϑ
.

With r2 = R2+ r2
0 −2r0 R cosϑ ⇒ r dr = r0 R ·

sinϑ dϑ the integral then becomes:∫
η

r
dτ =−4e

b3

∞∫
R=0

∫
r

R

r0
e−2R/b dR dr .

Is the point A (location of 2s-electron) outside the
charge distribution of the 1s-electrons (r0 > R) the
integration over r extends from r0− R to r0+ R.
For r0 < R (2s-electron inside the core) it extends
from R−r0 to R+r0. This gives:∫
η

r
dV =−4e

b3

⎡⎢⎣ r0∫
R=0

r0+R∫
r=r0−R

R

r0
e−2R/b dR dr

+
∞∫

R=r0

R+r0∫
r=R−r0

R

r0
e−2R/b dR dr

⎤⎥⎦

=−4e

b3

⎡⎣ r0∫
R=0

2R2

r0
e−2R/b dR

+
∞∫

R=r0

2R · e−2R/b dR

⎤⎥⎦ .
The integral can be solved analytically∫
η

r
dτ =−2e

r0

[
1+ e−2r0/b

(
1+ r0

b

)]
.

The potential then becomes with b = a0/Zeff and
when we rename r0 → r:

φ(r)= e

4πε0r

[
1+2e−2Zeff·r/a0

(
1+ rZeff

a0

)]
.

3. The mean distance between the atoms is d = n−1/3.
The de Broglie-wavelength λdB becomes larger
than d for

h

mv
> d ⇒ v <

h

mn−1/3
.

The mean velocity is

v=
√

8kT

πm
.

This gives the condition for the temperature T :

T<
πh2n2/3

8k ·m .

Example: n = 1012/cm3 = 1018/m3 and m =
23 AMU = 23×1.66×10−27 kg

⇒ T< 3.3×10−7 K = 330 nK .

Below this temperature the particles are no lon-
ger distinguishable because their location can only
be defined within a volume λ3

dB. The atoms form
a Bose–Einstein condensate of identical particles.

4. The potential energy of the two electrons is
(Fig. S.10)

Epot =− 4e2

4πε0r1
+ e2

4πε0(2r1)

=−7

8

e2

πε0r1
=−7

4

e2

πε0a0
,

with r1 = a0/2 .
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Fig. S.10.

The kinetic energy of the two electrons is:

Ekin = 2mev
2

2
= mev

2 .

With

v= Zh

2πma0
= h

πma0

we obtain:

Ekin = h2

π2ma2
0

.

The total energy of the system is then:

E =−7

4

e2

πε0a0
+ h2

π2ma2
0

.

Inserting the numerical values yields

E =−1.30×10−17 J =−82 eV .

The experimental result is E =−78.9 eV. This
shows that our simple model approaches the real
situation quite well. The small difference comes
partly from the fact that we have neglected the
relativistic mass increase.

5. The expectation value of the potential energy e ·
φ(r) of an electron in the 2s state is〈
Epot

〉= e
∫
ψ∗

2φ(r)ψ2 dτ2 .

Assuming a spherically symmetric wave func-
tion ψ2(2s) as in the H atom (because the electron
moves in a potential that is essentially a Coulomb
potential with the effective charge Zeff = 1) we can
write:

|ψ2| 2 = 1

32πa3
0

(
2− r

a0

)2

e−r/a0

⇒ Epot = − e2

4πε0×32πa3
0

×
[∫ (

1

r
+
(

1

r
+ Z

a0

)
e−2Zr/a0

)
×
(

2− r

a0

)2

e−r/a0 dτ

]

∫
=

∞∫
r=0

[(
4

r
− 4

a0
+ r

a2
0

)
e−r/a0

+
(

4

r
+ 4(Z−1)

a0
− (4Z−1)r

a2
0

+ Zr2

a3
0

)

× e−(2Z+1) r/a0

]
r2 dr

π∫
ϑ=0

sinϑ dϑ

2π∫
0

dϕ

= 4π

∞∫
r=0

[(
4r− 4r2

a0
+ r3

a2
0

)
e−r/a0

+
(

4r+ 4r2

a0
− 7r3

a2
0

+ 2r4

a3
0

)
e−5r/a0

]
dr

= 4π

[
4a2

0 −8a2
0 +6a2

0 +
4

25
a2

0 +
8

125
a2

0

− 42

625
a2

0 +
48

3125
a2

0

]

= 4π
6788

3125
a2

0

⇒ Epot(2s)=− e2

4πε0a0
0.272

=−7.39 eV .

A similar calculation for the 3s state gives:

Epot(3s)=−3.19 eV

⇒ ∆Epot = 4.2 eV

because Ekin ≈− 1
2 Epot we obtain

∆E =∆Epot+∆Ekin

≈ 1

2
∆Epot ≈ 2.1 eV .

This agrees fairly well with the experimental value
∆Eexp = 2.3 eV, obtained from the difference of
the wavenumbers ν(3s ↔ 1s)−ν(2s ↔ 1s) of the
two-photon allowed transition.

6. The largest mean distance between the electrons
is realized if the total spin of all electrons has its
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maximum allowed value. Since for this case the
spin function is symmetric, the spatial part of the
wave function is antisymmetric with respect to ex-
changing two electrons. This means that the wave
function ψ(r1, r2) has nodes for r1 = r2. There-
fore the potential energy of the mutual repulsion
is minimized, which gives a minimum for the total
energy.

7. With the screening constant S, the potential energy
of a Rydberg electron can be written as

Epot =− (Z− S)e2

4πε0r
.

For the total energy (note that Ekin =− 1
2 Epot) we

obtain

E =− (Z− S)e2

8πε0r
= Ekin+ Epot .

According to the Rydberg formula (6.32) the
energy can be also expressed by

E =−−(Z− S)2 Ry∗

n2
=− Ry∗

(n− δ)2 .
The comparison yields the relation

S = Z− n

n− δ
between the screening constant S and the quantum
defect δ. For δ→ 0 we obtain S = Z−1, which
means a Coulomb potential with Zeff = Z− S = 1.

8. For the myonic atom the reduced mass is

µ= mµ ·mN

mµ+mN
.

With mµ = 206.76 me, mN = 140×1836 me we
obtain µ= 206.6 me.

⇒ Ry∗µ = 206.6 · Ry∗∞

⇒ En =−206.6Ry∗∞Z2

n2

The energy of the photon on a tansition n = 2 →
n = 1 is

hν = 206.6Ry∗∞Z2
(

1

1
− 1

4

)
= 3

4
602×206.6×13.6 eV

= 7.59×106 eV = 7.59 MeV .

The radius r µn of the myon is

r µn = n2

Z

a0

206.6
.

The smallest radius of the electron is rel
1 = a0/Z.

The condition rel
1 = r µn gives:

n2

206.6
= 1 ⇒ n ≈ 14 .

The radius r µ14 of the myon is about the same as the
lowest radius rel

1 of the electron orbit.
9. The potential energy of the electron with the wave

function ψ(r) is (see Problem 6.1)

Epot =+e
∫
|ψ(r)| 2φ(r) dr .

For the 3s electron the probability to find the elec-
tron inside the n = 2 shell is larger than for the
3p electron, because the 3p-functions has a node at
r = 0. Therefore the shielding of the nuclear charge
is smaller for the 3s electron than for the 3p elec-
tron. The potential energy is lower and therefore its
total energy.

10. The potential energy of the second electron in the
H− ion is

Epot(r2)=+eφ(r) ,

where the potential φ(r) has been calculated in
Problem 6.1 and where we have to insert Z = 1.

⇒ φ(r)=− e

4πε0

(
1

a0
+ 1

r

)
e−2r/a0 .

The wave functions of the second electron can be
approximated by the hydrogen wave function

ψ(r)= 1√
πa3/2

0

e−r/a0

when we neglect the repulsion between the two
electrons. The potential energy is then

Emin
pot =+e

∫
|ψ(1s)| 2φ(r) dτ

=− 4πe2

4πε0πa3
0

∞∫
0

(
1

a0
+ 1

r

)
e−4r/a0r2 dr

=− e2

πε0a3
0

3

32
a2

0 =−3

8

e2

4πε0a0

=−10.2 eV .
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The crude approximation gives a binding energy

EB = Epot+ Ekin =−5.1 eV

of the second electron. It is higher than the ex-
perimental value of −2.5 eV, because we have
neglected the repulsion between the two electrons.

11. The energy of the state with principal quantum
number n is

En =−Ry∗
Z2

eff

n2
⇒ Z2

eff =−n2 En

Ry∗
; En < 0 .

With Ry∗ = 13.6 eV one obtains:

Z2
eff(n = 2)= 4×5.39

13.6
= 1.58

⇒ Zeff = 1.26 .

The nuclear charge Ze with Z = 3 is screened by
the two 1s electrons by 1.74e.
For the Rydberg level with n = 20 we obtain:

Z2
eff(n = 20)= 400×0.034

13.6
≈ 1

⇒ Zeff = 1 .

For high Rydberg levels the screening of the
nuclear charge Ze is nearly complete by the (Z−1)
electrons of the atomic core.

12. For all alkali atoms there is a single electron in the
valence shell with principal quantum number n = 2
(Li), n = 3 (Na), n = 4 (K), n = 5 (Rb), n = 6 (Cs).
The larger the n is, the better the shielding of the
nuclear charge Ze by the Z−1 electrons in the core.
This implies that Zeff decreases with increasing n
and the binding energy of the valence electron (this
is the ionization energy of the atom) decreases with
increasing n.
The experimental technique for the determina-
tion of the binding energy is, for instance, the
photoionization of the atom.

A(En)+hν→ A++ e−(Ekin) .

One can measure the frequency νg, where

Ekin(e
−)= 0 ⇒ −En = hν .

The approximate calculation of the binding
energy is based on the Hartree method (see
Sect. 6.4.2), which converges rapidly because
the charge distribution of the core electrons,

which form closed shells is spherically symme-
tric. The valence electron moves in a spherical
potential, which is nearly a Coulomb potential
(∼ 1/r) for larger r, but deviates from it for
small r.

13. The potential energy of the electron is

Epot(x)=− e2

4πε0r
− eE0x

with x = r cosα .

In the x-direction α= 0 ⇒ cosα= 1. We than can
write:

dEpot

dr
= e2

4πε0r2
− eE0 .

The maximum of the potential barrier is at
dEpot/dr = 0

⇒ rm =
(

e

4πε0 E0

)1/2

⇒ Epot(rm)=−
√

e3 E0

πε0
.

Without the external field Epot(r) ⇒ 0 for
r →∞. The lowering of the ionization potential
is, therefore,

∆(IP)=−
√

e3 E0

πε0
.

Due to the tunnel effect, the effective decrease of
IP is even slightly larger.

Chapter 7

1. a) The total emitted energy is

WFl = N
(
32 P3/2

)
hν = 108×3.4×10−19 J

= 3.4×10−11 J .

The time dependent fluorescence power can be
calculated as

PFl = P0 e−t/τ ,

where excitation at t = 0 is assumed.
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The emitted energy is related to the power by

WFl =
∞∫

0

PFl dt = P0

∞∫
0

e−t/τ dt = τ · P0

⇒ P0 = 3.4×10−11 J/1.6×10−8 s

= 2.1×10−3 W .

b) The angular distribution is

W(ϑ)= W0 sin2 ϑ ,

Wtotal = W0

2π∫
ϕ=0

+π/2∫
ϑ=−π/2

sin2 ϑ dϑ dϕ

= 2πW0

[
1

2
ϑ− 1

4
sin 2ϑ

]+π/2
−π/2

= π2W0

⇒ W0 = Wtotal/π
2 .

Within the angular range ∆ϑ = 0.1 Sterad around
ϑ = 90◦ the energy

W(ϑ = π/2±∆ϑ/2, ϕ = 0±∆ϕ/2)

=∆ϕW0×
π/2+∆ϑ/2∫

ϑ=π/2−∆ϑ/2
sin2 ϑ dϑ

= W0 ·∆ϕ
(

1

2
∆ϑ+ 1

2
sin∆ϑ

)
is emitted. For ∆ϑ� 1 we have:

W = W0 ·∆ϕ∆ϑ .
The solid angle ∆Ω is

∆Ω =∆ϑ ∆ϕ = 0.1 Sterad

⇒ W = 0.1 W0 = 0.1

π2
Wtotal ≈ 0.01 Wtotal .

This means that 1% of the total energy is emitted
in a direction perpendicular to the dipole axis into
the solid angle ∆Ω = 0.1 Sterad.

2. a) The Doppler width is

δνD = 7.16×10−7ν0

√
T/M

[√
mol/(g K)

]
.

With T = 300 K, M = 1 g/mol, ν0 = 2.47×
1015 s−1 we obtain

δνD = 3.06×1010 s−1 = 30.6 GHz

⇒ |∆λD| = c

ν2
δνD = 1.5×10−3 nm .

Fig. S.11.

b) The collimation ratio of the atomic beam is
(Fig. S.11)

ε= b

2d
= 1

200
.

Since the nozzle diameter is small compared to b
we can regard the nozzle as a point-like source of
atoms. The transverse velocity distribution f(vx) is
determined by |vx |< v sin ε. The reduced Doppler
width is then:

(δνD)beam = δνD(v) sin ε .

With sin ε= 5×10−3 and δνD = 3.06×1010 s−1 we
obtain:

(δνD)beam = 1.5×108 s−1 = 150 MHz .

c) The natural line width is

δνn = 1

2πτ
= 109

2π 1.2
s−1 = 132 MHz .

The measured line width is

δνexp ≈
√
(δν)2beam+ (δνn)2 ≈ 200 MHz .

The hyperfine splitting is

δνHFS(1s)= 1.4×109 s−1 .

It can therefore be readily resolved.
3. The natural line width of the Ca transition is

δνn = 1

2πτ
= 104

2π 3.9
s−1 = 410 Hz

The interaction time ∆T should be longer than:

∆T ≥ 1

2π∆ν
= 1 s

2π 3×103
= 53 µs

in order to reach a line width of ∆ν = 3 kHz. The
natural line width is negligible compared with the
transit time broadening.
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The mean velocity of the Ca atoms is at an oven
temperature T = 900 K

v=
√

8kT

π m
=
√

8×1.38×10−23×9×102

π×40×1.66×10−27

m

s

= 690 m/s .

The minimum interaction zone is then

∆s = v∆T = 6.9×102×5.3×10−5 m

= 3.7×10−2 m = 37 mm .

4. a) The wavelength λ of a transition between energy
levels with term values Ti , Tk is

λik = 1

Ti −Tk
= 1

19,932
cm = 501.7 nm .

b) The natural line width is:

δνn ≤ 1

2πτi
+ 1

2πτk
= 109

2π 1.4
+ 103

2π
= 1.14×108 s−1 = 114 MHz .

c) The Doppler width is

δνD = 7.16×10−7 ν0

√
T/M[mol/(g K)]

ν0 = c

λ
= 3×108

5.017×10−7
s−1

= 5.98×1014 s−1

T = 103 K , M = 4 g/mol

⇒ δνD = 6.77×109 s−1 = 6.77 GHz .

5. a) The Lorentzian line profile with half-width δνn

is:

α(ν)= α(ν0)
(δνn/2)2

(ν−ν0)2+ (δνn/2)2
.

A wavelength difference∆λ= 0.1 nm corresponds
to a frequency difference

∆ν = (ν1−ν0)= c

λ2
∆λ= 1.2×1011 s−1

⇒ α(ν1)= α(ν0)

(
0.57×108

)2(
1.2×1011

)2+ (0.57×108
)2

= 2.25×10−7 α(ν0) .

For a Doppler-broadened absorption profile

α(ν)= α(ν0)e
−
[
(ν1−ν0)

2/(2δνD)
2
]

ln 2

we obtain with δνD = 6.77×109 s−1 for ν1−ν0 =
0.1 δνD:

α(ν1)= α(ν0)e
−0.028 ln 2

= 0.98α(ν0) .

For a Lorentzian profile with δνn = 1.14×108 s−1

we have:

ν1−ν0 = 0.1 δνD = 6.77×108 s−1

⇒ α(ν1)= α(ν0)

(
5.7×107

)2(
6.77×108

)2+ (5.7×107
)2

= 7×10−3 α(ν0) .

For ν1− ν0 = δνD we obtain for the Gaussian
profile:

α(ν1)= 0.146α(ν0)

and for the Lorentzian profile:

α(ν1)= 7×10−5 α(ν0) .

For ν1−ν0 = 10 δνD

⇒ α(ν1)= α(ν0)e
−278 = 2×10−120 α(ν0)

for the Gaussian profile and

α(ν1)= α(ν0)

(
5.7×107

)2(
6.77×1010

)2

= 7×10−7 α(ν0) .

for the Lorentzian profile.
Here the absorption by the Gaussian profile is negli-
gible compared to the absorption by the Lorentzian
profile.
b) The relative absorption at ν = ν1 of the two
profiles becomes equal for:

(δνn/2)2

(ν1−ν0)2+ (δνn/2)2
= e−[(ν1−ν0)/0.6 δνD]2

⇒ ln
[
(δνn/2)

2+ (ν1−ν0)
2]− ln (δνn/2)

2

= [(ν1−ν0)/0.6 δνD]2 .

The numerical solution (which can be obtained with
the program “Mathematica”) depends on the ratio
x = δνn/δν0. For x = 0.01 ⇒ ν1−ν0 = 439.6 δνn.
For x = 0.1 ⇒ ν1−ν0 = 27.8 δνn. For x = 1 ⇒
ν1−ν0 = 0.895 δνn.
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6. The frequency of the Kα lines of silver can be
estimated for an effective charge Zeff = Z−1 with
Z = 47 from the relation:

hν = Ry∗(Z−1)2
(

1

n2
1

− 1

n2
2

)
.

For n1 = 1, n2 = 2 and Ry∗ = 13.6 eV we obtain:

hν = 13.6×462× 3

4
eV = 21.6 keV

= 3.45×10−15 J

⇒ ν = 5.22×1018 s−1

λ= c

ν
= 5.75×10−11 m = 0.575 Å .

The experimental value is hν = 21.9 keV, λ =
0.562 Å. The ionization energy of molybdenum is
(see, e.g., the American Handbook of Physics)

IP
(42Mo

)= 20.0 keV .

The kinetic energy of the photoelectron is then

Ekin = hν− IP = (21.9−20.0) keV = 1.9 keV .

The velocity is

v=√
2Ekin/m e = 2.6×107 m/s = 8.6×10−2 c .

7. The recoil momentum is

p = �k with |k| = 2π

λ
.

The recoil energy is

Ekin = p2

2m
= �

2k2

2m
= (hν)

2

2mc2
= 1

2

E2
phot

mc2
.

For the transition n = 2 → n = 1 in the H atom is
hν = 10.2 eV and mc2(proton)= 938.8 MeV

⇒ Ekin = 1

2

10.22

938.8×106
eV = 5.5×10−8 eV .

The velocity of the H atom after emission of the
photon is:

v= p

m
= �k

m
= hν

mc2
c

= 10.2

9.38×108
×3×108 m/s = 3.3 m/s .

⇒ ∆νrecoil

ν
= v

c
= 1.09×10−8

⇒ ∆νrecoil = 1.09×10−8×2.47×1015 s−1

= 2.7×107 s−1 .

The natural line width of the Lyman α-line is

δνn = 1

2πτ(2p)
= 7.4×107 s−1

since τ(2p)= 2.1 ns.
The recoil shift is therefore only ∆νrecoil =
0.35 δνn. The Doppler width at T = 300 K is:

δνD = 3.06×1010 s−1 ⇒ ∆νrecoil � δνD .

8. The effective lifetime is determined by

1

τeff
= 1

τn
+nσvr ,

where vr is the mean relative velocity. From the re-
lation p = nkT we obtain for p = 1 mbar = 102 Pa

n = p

kT
= 102 Pa

1.38×10−23×500
m−3 .

⇒ n = 1.45×1022 m−3

vr =
√

8kT

πm

with

m = m1m2

m1+m2
= 0.55m(Na)= 2.1×10−26 kg

⇒ vr =
√

8×1.38×10−23×500

2.1π×10−26

m

s
= 915 m/s .

This gives

1

τeff
=
(

109

16
+1.45×1022×4×10−19×961

)
s−1

= 6.81×107 s−1

⇒ τeff = 14.7 ns .

The effective lifetime is smaller by a factor 14.7
16 =

0.919 than the natural lifetime τ = 16 ns. For p =
10 mbar the second term becomes

nσvr = 5.3×107 s−1

and the effective lifetime shortens to

τeff = 8.7 ns = 0.54 τn .

For p = 100 mbar ⇒ τeff = 1.7 ns = 0.11 τn.
9. The residual Doppler width in the collimated

atomic beam is
a) (δνD)res = sin ε δνD < 190 MHz .

With δνD = 7.16×10−7ν0
√

T/M mol/(g K)= 2×
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109 s−1 with ν0 = 5.09×1014 s−1, M = 23 g/mol,
T = 695 K, v= 800 m/s

⇒ sin ε≤ 190

2000
= 0.095 .

b) If the residual Doppler width should be equal to
the natural line width δνn = 10 MHz ⇒

sin ε= δνn

δνD
= 107

2×109
= 5×10−3 .

10. a) From the Einstein coefficient Aik = 3×
10−15 s−1 = 1

τ
we obtain the natural line width of

the HFS transition with λ= 21 cm

δνn = Aik

2π
= 5×10−16 s−1 .

The natural line width of the HFS transition is
therefore extremely narrow. The Doppler width is

δνD = 7.16×10−7 3×108

0.21

√
10 s−1 = 3.2 kHz .

The collision broadening is:

δνcoll = nσvr

2π
.

With vr =
√

8kT
πm = 460 m/s with m = m1m2

m1+m2

⇒ δνcoll = 7.3×10−20 s−1 .

The collisional broadening is therefore completely
negligible. For the Lyman α-line we obtain:

δνn = Aik

2π
= 1.6×108 s−1 ,

δνD = 5.6×109 s−1 ,

δνcoll = 7.3×10−13 s−1 .

The Doppler width is by far the prominent
broadening.
b) At a temperature T = 10 K the ratio of the
populations is

N(F = 1)

N(F = 0)
= 3 · e−hν/kT ≈ 3 ·0.994 .

The population difference is

∆N = N(F = 0)− 1

3
N(F = 1)

= 0.006 · N(F = 0) .

The absorption coefficient is

α= [N(F = 0)− 1

3
N(F = 1)] ·σabs

= 0.006 · N(F = 0) ·σabs .

With σabs = 3×10−26 m2, N = 106 m−3 and L =
3×1016 m we obtain

α · l = 5.4×10−6 .

The absorption of the 21 cm line is therefore ne-
gligible. For the Lyman α-line the situation is
different:

α= σ · N = 1×10−15 ·106 m−1 = 10−9 m−1 .

After 109 m the intensity has decreased to (1/e)I0.
The interstellar cloud with L = 3×1016 m is
therefore completely opague. Lyman-α-light is
completely absorbed.
c) The natural line width of the methane transition
is

δνn = 1

2π×2×10−2
s−1 = 7.96 s−1 .

This extremely small line width is used for stabi-
lizing the wavelength λ= 3.39 µm of the He-Ne
laser (see Chap. 8).

δνD = 7.16×10−7 c

λ

√
T/M(mol/(g K))

with λ= 3.39 µm, M = 16 g/mol, T = 300 K

⇒ δνD = 274 MHz .

The mean velocity of the CH4 molecules is

v=
√

8kT

πm
= 630 m/s .

⇒ Transit time

ttrans = 0.01 m

630 m/s
= 1.6×10−5 s

⇒ δνtrans = 1

2πttrans
≈ 104 s−1 .

The only way to reduce transit-time broadening
is the enlargement of the laser beam diameter or
a reduction of the velocity by cooling the gas.
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11. According to (7.13) the matrix element for the
transition 1s ↔ 2s is

Mik = e
∫
ψ(2s)rψ(1s) dτ

= 1

4π
√

2a3
0

×
∫ (

2− r

a0

)
e−r/(2a0)r e−r/a0 dτ

=C
∫
r

∫
ϑ

∫
ϕ

(
2− r

a0

)
e−3r/(2a0)r

×r2 sinϑ dr dϑ dϕ ,

(Mik)x =C
∫ +π/2∫
ϑ=−π/2

2π∫
ϕ=0

(
2− r

a0

)
e−3r/(2a0)

× xr2 sinϑ dr dϑ dϕ .

With x = r ·sinϑ cosϕ the integration overϕ yields

2π∫
ϕ=0

cos ϕ dϕ = 0 .

A similar result is obtained for (Mik)y with y =
r sinϑ sinϕ. For the third component (Mik)z we
obtain with z = r cosϑ
2π∫

0

dϕ = 2π

but
+π/2∫

ϑ=−π/2
sinϑ cosϑ dϑ = 1

2
sin2 ϑ

∣∣∣+π/2−π/2
= 0 .

12. The transition probability is, according to (7.17),

Aik(1s → 2p)

= 2

3

e2ω3
ik

ε0c3h

∣∣∣∣∫ ψ∗
i (2p)rψk(1s) dτ

∣∣∣∣ 2

The 2p level has three components with m = 0,±1
that are degenerate without external magnetic field.
There are therefore three degenerate transitions
with different polarizations on the 1s → 2p transi-
tion. If the quantization axis is chosen as the z-axis,
the matrix element Mx + iMy describes transitions

with ∆m =+1, Mx − iMy with ∆m =−1 and Mz

with ∆m = 0. The total transition probability is
proportional to

|Mik| 2 = |(Mik)x | 2+ (Mik)
2
y + (Mik)

2
z ,∣∣Mx + iMy

∣∣ 2 = M2
x +M2

y .

Using the wave functions of Table 5.2 we obtain:(
Mx + iMy

)= 1

8πa4
0

∫
r

∫
ϑ

∫
ϕ

e−r/a0(x+ iy)r

× e−r/2a0 sinϑ e−iϕr2 sinϑ dϕ dϑ dr .

With x = r sinϑ cosϕ; y = r sinϑ sinϕ one ob-
tains x+ iy = r sinϑ eiϕ

⇒ (
Mx + iMy

)= 1

8πa4
0

∞∫
r=0

r4 e−3r/(2a0) dr

×
π∫

ϑ=0

sin3 ϑ dϑ

2π∫
ϕ=0

dϕ .

The first integral has the value 256 a5
0/81, the se-

cond integral is 4/3 and the third is 2π. This
gives:

(Mx + iMy)
2 =

(
256

243
a0

)2

⇒ Aik(∆m =±1)= 2

3

e2ω3
ika2

0

ε0c3h

(
256

243

)2

.

With ωik = 2π 2.47×1015 s−1 the transition proba-
bility becomes:

Aik(∆m =±1)= 1.25×1010 s−1 .

An analogous calculation for Mz with z = r cosϑ
gives

Mz = 1

4π
√

2 a4
0

∞∫
r=0

r4 e−3r/(2a0) dr

×
π∫

ϑ=0

cos2 ϑ sinϑ dϑ

2π∫
ϕ=0

dϕ

= 1

4π
√

2 a4
0

256

81
a5

0
2

3
2π

= 256

243
√

2
a0

⇒ Aik(∆m = 0)= 1

2
Aik(∆m±1) .
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13. The 3s level can only decay into the 2p level. The-
refore the transition probability for the transition
3s → 2p is

Aik = 1

τ(3s)
= 109

23
s−1 = 4.3×107 s−1 .

The natural line width is

δνn = 1

2π

(
1

τ(3s)
+ 1

τ(2p)

)
= 1

2π

(
4.3×107+4.76×108) s−1

= 83 MHz .

The Doppler-width is

δνD = 7.16×10−7 ν0

√
T/M[mol/(g K)] .

With

ν0 = 1

h
Ry∗

(
1

22
− 1

32

)
= 4.57×1014 s−1 ,

M = 1 g/mol , T = 300 K ,

this gives

δνD = 5.67×109 s−1 = 5.67 GHz

⇒ δνn

δνD
= 0.014

for T = 300 K and 0.008 for T = 1000 K.
14. The incident wave E0 · ei(ωt−kz) induces the elec-

trons of the medium to forced oscillations. If the
amplitude of this oscillation is within the range of
linear optics (the restoring force is proportional to
the elongation of the atomic electron) we can des-
cribe the atomic electron by a harmonic oscillator.
Its equation of motion is:

mẍ+bẋ+Dx =−eE0 ei(ωt−kz) . (1)

With D/m = ω2
0, γ = b/m we can make the ansatz

x = x0 eiωt .

Inserting this into (1) gives

x0 =− eE0/m(
ω2

0−ω2
)+ iγω

. (2)

The induced dipole moment p= p0 · eiωt with p0 =
e · x0

⇒ p = e2 E

m
(
ω2

0−ω2+ iγω
) . (3)

Since p = α(ω) · E we obtain for the polarizability

α(ω)= e2

m
[(
ω2

0−ω2
)+ iγω

] (4)

The wave equation for a wave travelling through
a medium is:

∆E = µµ0εε0
∂2 E

∂t2
= 1

v2
ph

∂2 E

∂t2
, (5)

where

vph = 1√
µµ0εε0

= c√
µε

is the phase velocity of the wave. In dielectric media
is the magnetic susceptibility µ≈ 1 and we obtain:

vph = c√
ε
= c

n
⇒ n =√

ε . (6)

Inserting the relation: D = ε0 E+ P into (1) we
obtain the equation, equivalent to (5):

∆E = 1

c2

∂2 E

∂t2
+ 1

ε0c2

∂2 P

∂t2
. (7)

The dielectric polarization is for a wave with its
E-vector in x-direction (E = {Ex, 0, 0}):
Px = N ·α · Ex = N ·α · E0 · ei(ωt−kz) , (8)

where N is the number of oscillating dipoles per
m3 and α is the polarizability.
Inserting (8) into (7) gives:

−k2 Ex =−ω
2

c2
Ex − ω

2 Nα

ε0c2
Ex

⇒ k2 = ω
2

c2
(1+ Nα/ε0) (9)

with vph = c/n = ω/k ⇒ n = ck/ω, where n is the
refractive index.

⇒ n2 = 1+ Nα/ε0 . (10)

Inserting (4) into (10) yields

n2 = 1+ Ne2

m
[
ω2

0−ω2+ iγω
] .

with n = n′ − iκ ⇒ n2 = n′2−κ2−2in′κ, where
κ is the absorption coefficient and n′ the real part of
the complex index of refraction. For small dam-
ping (γω� ω2) the summation over all atomic
resonances gives the result (7.102).
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In order to transport a signal, the monochromatic
wave has to be modulated. The envelope of this
modulated wave represents a wave packet with the
group velocity vg = dω/dk.

Chapter 8

1. a) The ratio of the populations Ni , Nk is:

Ni

Nk
= gi

gk
e−hν/kT

gi = 2Ji +1 = 3 , gk = 2Jk +1 = 1

⇒ Ni

Nk
= 3e−(hc/λ)/kT = 3e−96 = 6.6×10−42 .

The thermal population of the upper level |i〉 is
therefore completely negligible.
b) The relative absorption of the incident wave with
intensity I0 is

A = I0− It

I0
, with

It = I0 e−αL ≈ (1−αL)I0 for αL � 1

⇒ A ≈ αL = Nkσki L .

The population density Nk = 10−6 N can be
obtained from the equation p = NkT

⇒ Nk = 10−6 p/kT .

For a pressure p = 102 Pa we obtain:

Nk = 10−6×102

1.38×10−23×300
m−3

= 1016 m−3 = 1010 cm−3 .

The absorption coefficient α is related to the Ein-
stein coefficient Bki as follows: The absorbed power
is:
dWki

dt
= Bkihν wν(ν) .

The spectral energy density wν(ν) is related to the
spectral intensity Iν(ν) by wν(ν)= Iν(ν)/c. The
power absorbed by one atom is

1

Nk

dWki

dt
= 1

Nk
I(ν)

∞∫
0

α(ν) dν

≈ 1

Nk
I(ν0)α0(ν0)δν ,

where δν is the full half-width of the absorption
profile. With αki = Nkσki we obtain:

σki = hν

c
Bki/δν = c2 Aik

8πν2δν
= λ

2 Aik

8πδν
.

Inserting the Doppler width δνD ≈ 109 s−1 we
obtain:

σki = 10−15 m2 = 10−11 cm2

⇒ A = 1010×10−11×1 = 0.1 .

This means that 10% of the incident light power is
absorbed.
c) For the compensation of 10% total losses the
condition −2αL ≥ 0.1 must be met.

⇒ (
(gk/gi)Ni − Nk

)
σki L ≥ 0.05 .

With gk = 1, gi = 3 and σki = 10−11 cm2 this gives:(
1

3
Ni − Nk

)
10−11×20 ≥ 0.05 .

With Nk = 1010/cm3 the upper state population
density then has to be

Ni ≥ 3.075×1010/cm3 .

For equal statistical weight factors gi = gk the
minimum population Ni would be

Ni ≥ 1.025 Nk = 1.025×1010 cm−3 .

This would require a population in the upper state,
which is 2.5% higher than in the lower state in order
to reach laser threshhold.

2. a) The Doppler width is

δνD = 7.16
c

λ

√
T/M10−7 s−1 .

With λ= 632.8 nm, T = 600 K, M = 20 g/mol this
gives:

δνD = 1.86×109 s−1 = 1.86 GHz .

b) The mode separation is

δν = c

2d
= 3×108

2×1
= 150 MHz .

The number of longitudinal modes within the full
half-width of the Doppler profile is then

m = 1.86×109

1.5×108
= 12 .
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3. a) The frequency separation of the transmission
maxima of the etalon is

δνE = c

2nt
.

If this should be larger than the Doppler width

δνD = 7.16×10−7 c

λ

√
5000

40
= 5×109 s−1

at λ= 488 nm, the thickness t of the etalon should
be

t = c

2nδνE
≤ c

2nδνD

= 3×108

2×1.5×5×109
m = 2×10−2 m = 2 cm .

b) The intensity Iz transmitted through the Fabry–
Perot interferometer is:

It = I0
1

1+ F sin2(π∆sν/c)

with F = 4R/(1− R)2. The finesse

F∗ = π
√

R

1− R
= π

√
F

2
= ∆νm

∆νE

equals the ratio of frequency separation ∆νm of
transmission maxima to the half-width ∆νE of the
transmission peaks. The transmission of the FPI has
decreased from the maximum It = I0 to It = 1

3 I0 for

F sin2(π∆sν/c)= 2

= F sin2
[
π∆s

c
(ν0+∆νL)

]
⇒ sin

(
π∆s

c
∆νL

)
=
√

2

F
.

If ν0 is the frequency of the transmission peak, the
condition

sin2(π∆sν0/c)= 0 ⇒ π∆sν0/c = m (integer)

must be met. For λ= 488 nm,∆s = 2nt = 6 cm ⇒
m = 122,950. The frequency condition ∆νL of
longitudinal modes is

∆νL = c

2d
= 125 MHz .

With

sin

(
π∆s

c
∆νL

)
= sin

(
6π

3×1010
1.25×108

)
= 0.078

we obtain√
2

F
= 0.075 ⇒ F∗ = π

√
F

2
= 28.5 .

The finesse F∗ must be at least 28.5 in or-
der to select a single longitudinal mode. With
F∗ = π√R/(1− R)we obtain for the reflectivity R
of the Fabry–Perot

R> 0.89 .

4. a) The frequencies νm of the resonator modes are

ν = c

λ
= m · c

2L
because L = mλ/2 .

With L = 1 m, ν = 5×1014 s−1 ⇒ m = 3.33×106,

L = L0(1+αT ) ,

∆L = L− L0 = L0α∆T

= 1×12×10−6×1 m

= 1.2×10−5 m ,
∆ν

ν
= ∆L

L
= 1.2×10−5

⇒ ∆ν = 1.2×10−5×5×1014 s−1

= 6×109 s−1 .

Since the mode distance is only ∆νL = 150 MHz
the laser frequency jumps during the temperature
change after a shift of about ∆ν/2 ≈ 75 MHz back
to the next mode. Temperature tuning alone does
not allow a continuous frequency shift of more than
75 MHz, unless the resonator contains additional
frequency selective optical elements.
b) The refractive index n can be written as

n = 1+aN ⇒ n−1 ∝ N ,

where N is the number density of air molecules. If
the air pressure changes by ∆p = 10 mbar = 1%,
the same relative change occurs for (n−1). For air
at atmospheric pressure is n−1 = 2.7×10−4. The
change for∆p= 1% is then∆(n−1)= 2.7×10−6.
The optical path length inside the resonator changes
then by

∆(nL)= 2.7×10−6×0.2 m = 5.4×10−7 m

⇒ ∆ν = ∆(nL)

L
ν0 = 2.7×108 s−1 .

Also in this case the laser frequency jumps back to
the next resonator mode, if ∆ν >∆νm/2.
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5. a) The classical diffraction theory yields for the
diffraction of a plane wave with wavelength λ by
a circular aperture with diameter d the angular
divergence of the central diffraction maximum

∆α= 1.2
λ

d
.

For a laser beam with a Gaussian intensity profile
with half-width w0 at the focusing lens with focal
length f we obtain for the half-width of the local
spot:

w0 = f
λ

πws
.

With ws = d/2 we obtain:

w0 = f
λ

πd/2
= 42 µm .

This differs from the result for a plane wave by the
factor 1.2π/2 ≈ 1.9.
b) The intensity is obtained from

P = 2π

∞∫
0

r · I(r) dr

= 2πI0 ·
∞∫

0

r · e−(r/r0)
2

dr = πw2
0 · I0

I0 = P

πw2
0

= 10×1012 W

π ·422 m2
= 1.8×109 W/m2 .

c) Only 10% = 1 W can be used for the evapo-
ration. The mass of the evaporated material with
thickness D is

M = � ·πw2
0 D

= 8×103 π×422×10−12×10−3 kg

= 4.4×10−11 kg .

The heat of evaporation is

We = 6×106 J/kg .

The necessary energy for evaporation is

W = We ·M = 2.6×10−4 J .

The time needed for the evaporation of the mass M
is:

t = W/P = 2.6×10−4 s = 0.26 ms .

Since a considerable fraction of the absorbed
energy is lost by heat conduction into the cold sur-
roundings, one needs, in fact, about ten times as
long, i.e. t = 2.6 ms.

6. a) The minimum spectral width is

∆ν ≥ 0.5/∆T .

With ∆T = 10−14 s ⇒ ∆ν ≥ 0.5×1014 s−1. For
a wavelength λ = 600 nm this corresponds to
a spectral width

∆λ= 6×10−8 m = 60 nm .

b) The spatial pulse length is in the beginning:

∆s0 = c∆T

n
= 2×10−6 m = 2 µm .

After passing through a dispersive medium with
length L, the pulse length has broadened. The
difference of optical path length for the different
wavelengths λ within the spectral pulse profile is

∆(nL)= L
dn

dλ
∆λ= L ·4.5×104×6×10−8

= 2.64×10−3 L .

In order to keep ∆s ≤ 4 µm, the condition

1

n
∆(nL)= (∆s−∆s0)≤ 2 µm

has to be fulfilled.

⇒ L = n 2.0×10−6 m

2.64×10−3
= 1.1×10−3 m

= 1.1 mm ,

for n = 1.5. This means that after the passage
through a 1.1-mm thick glass plate the pulse length
has already doubled from 2 to 4 µm.
c) Because of the nonlinear, intensity-dependent
part of the refractive index the wavelength λ is red-
hifted during the pulse rise time (dI/dt> 0). It is
blue-hifted at the trailing edge (dI/dt> 0).
If the material is chosen in such a way that the
linear part of n in the surrounding of λ0 (central
wavelength of the spectral pulse profile) shows an-
omalous dispersion (dn/dλ > 0), the red part is
delayed more than the blue part of the pulse. This
compensates the opposite effect of the nonlinear
part of n. Complete compensation demands

d

dλ
(n0(λ)+n2 I )= 0 .
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7. The resonator quality factor is defined as

Qk =−2πν
Wk

dWk/dt
,

where

Wk(t)= Wk(0)e
−γkt

is the energy stored in the kth mode of the resonator.
If γk are the losses per round trip, the power after
one round trip has decreased to

P = P(0)e−γL .

The loss factor γL is composed of reflection
losses and other losses (diffraction, scattering,
absorption). The reflection losses per round trip are

γR =− ln(R1 R2)= 0.02 .

If the other losses together are also 0.02, we obtain

γL = 0.04 .

Since the round trip time of a light wave in
a resonator with mirror separation d is

T = 2d

c

the losses per sec and are

γ = γL/T = c

2d
γL .

With d = 1 m ⇒ γ = 1.5×108×0.04 s−1 = 6×
106 s−1. The quality factor is then for a frequency
ν = 5×1014 s−1:

Qk = 2π 5×1014

6×106
= 5.2×108 .

Per oscillation period of the light the power
decreases by the fraction

η= 2π

5.2×108
= 1.2×10−8 .

It takes 1/γ ≈ 1.7×10−7 s until the power in the
resonator mode has decreased to 1/e of its initial
value.

8. After one round trip the power has increased by the
factor

P1

P0
= e−(2αd+γ) .

With a net gain −(2αd+γ)= 0.05 we obtain

P1

P0
= e0.05 = 1.05 .

The time T for a round trip is

T = 2d

c
= 2

3
10−8 s .

The time-dependent power then becomes:

P(t)= P0 exp

[
−2αd+γ

2d/c
t

]
.

With a mirror transmission T = 0.02 the output
power of 1 mW demands a power of 50 mW inside
the resonator. The initial power P(0) is given by
one photon, i.e.,

P(0)= hνc

2d
= 4.5×10−10 W .

a)

P

P0
= e0.05/(0.666×10−8 s)t

⇒ t = 1 s

7.5×106
ln

P

P0

= 1.3×10−7 ln
5×10−2

4.5×10−10
s

= 25×10−7 s = 2.5 µs .

b) If we take into account saturation effects, the gain
depends on the laser power inside the resonator. We
obtain:
dP(t)

dt
= gain per round trip

round trip time
P(t)

=− 1

T

[
(−2α0d+γ)−2adP(t)

]
P(t) .

With T = 2d/c, (−2α0d+γ)= 0.05 this gives

dP

dt
= 1

T
(0.05−2adP)P .

This is a nonlinear differential equation

ẏ− Ay+ By2 = 0

with

A = 0.05

T
, B = 2ad

T
.

Division by y2 gives:

ẏ

y2
− A

y
+ B = 0 .
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Substitution:

z(t)= 1

y(t)
⇒ ż =− 1

y2
ẏ ,

⇒ ż+ Az− B = 0 .

The solution of the homogeneous equation (B = 0)
gives:

z = C e−At .

The solution of the inhomogeneous equation
(B 	= 0) is:

z = C(t)e−At ⇒ ż = (
Ċ−CA

)
e−At .

Inserting this into the inhomogeneous equation
yields

Ċ−CA+ AC = B eAt

⇒ C = B

A
eAt +D

⇒ z = B

A
+De−At

⇒ y = 1

B/A+De−At

⇒ P(t)= 1

2ad/0.05+De−0.05t/T
.

For t = 0 ⇒ P = P0

⇒ D = 1

P0
−40ad

⇒ P(t)= P0

40adP0+ (1−40adP0)e−0.05t/T
.

With P(t1)= 50 mW ⇒ P(t1)/P0 ≈ 108 because
P0 = 4.5×10−10 W. The denominator therefore has
to be 10−8. With a = 0.4 W−1 m−1, d = 1 m we
obtain

40×0.4×4.5×10−10+ e−0.05t/T = 10−8

⇒ e−0.05t/T = 2.8×10−9

⇒ t =− T

0.05
ln 2.8×10−9

⇒ t =+ T

0.05
ln 3.57×108

= 20 T 19.7 = 394 T .

With T = 2
3 10−8 s ⇒ 263×10−8 s= 2.63 µs. With

a = 0.55 W−1 m−1 t increases to

t = 20 T ln 1010 s = 30.7 µs .

Chapter 9

1. The potential energy of the Coulomb repulsion of
the two protons is

Epot = e2

4πε0 ·2a0
= 2.3×10−18 J = 13.6 eV .

The potential energy of the electron in the state
|φ+〉 is

Epot =− e2

4πε0

∫ ∣∣φ+∣∣ 2
(

1

rA
+ 1

rB

)
dτ .

The wave function is

φ+ = φA+φB√
2+ SAB

Inserting φA and φB from (9.9) gives:∣∣φ+∣∣ 2= 1

2πa3
0

e−2rA/a0 + e−2rB/a0 +2e−(rA+rB)/a0

1+ SAB

Epot =− e2

8π2ε0a3
0(1+ SAB)∫ [

e−2rA/a0 + e−2rB/a0 +2e−(rA+rB)/a0

rA

+ e−2rA/a0 + e−2rB/a0 +2e−(rA+rB)/a0

rB

]
dτ .

With elliptical coordinates

µ= rA+rB

R
;

ν = rA−rB

R
;

ϕ = arctan (y/x)

where the two protons are sitting in the focal points.
With these coordinates and

dτ = R3

8

(
µ2−ν2) dµ dν dϕ ,

the integral can be solved analytically. With

rA = R

2
(µ+ν) ,

rB = R

2
(µ−ν) ,

the overlap integral SAB becomes:

SAB = 1

πa3
0

∫
e−(rA+rB)/a0 dτ
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= R3

8πa3
0

⎡⎢⎣ ∞∫
µ=1

µ2 · e−Rµ/a0 dµ

+1∫
ν=−1

dν ·
2π∫

ϕ=0

dϕ

−
∞∫

µ=1

e−Rµ/a0 dµ

1∫
ν=−1

ν2 dν

2π∫
ϕ=0

dϕ

⎤⎥⎦ .
The integration yields

SAB = e−R/a0

(
1+ R

a0
+ R2

3a2
0

)
.

This gives for the potential energy

Epot =−C · R2

2π

∫
µ

∫
ν

∫
ϕ

[
e−�(µ+ν)+ e−�(µ−ν)

+ e−�µ
]
µ dµ dν dϕ

with

C = e2

8πε0a3
0(1+ SAB)

; �= R/a0

⇒ Epot =−C · R2
∫
µ

∫
ν

µ
[

e−�(µ+ν)+ e−�(µ−ν)

+ e−�µ
]
µ dµ dν

=−C · R2

∞∫
µ=1

µe−�µ dµ

×
+1∫

ν=−1

(
e−�ν+ e+�ν+1

)
dν

=−2CR2
[

1+ 1

�

(
e�− e−�

)]

×
∞∫

1

µ · e−�µ dµ

=−2Ca2
0

[
1+ 1

�

(
e�− e−�

)]
× (�+1)e−�

=−2Ca2
0

[(
1+ 1

�

) (
1− e−2�)

+ (1+�)e−�
]
.

For �= 2 ⇒ SAB = 0.586 ⇒

2Ca2
0 =

e2

4πε0a0 ·1.586

⇒ Epot =−27.2 eV

1.586
·1.879 =−32.2 eV .

The kinetic energy of the electron can be obtained
from the energy relation

Ekin(e
−)+ Epot(e

−)+ Epot(protons)

= E(H)+ EB ,

where EB is the binding energy of H+
2 and E(H) is

the energy in the groundstate of the H-atom.

⇒ Ekin(e
−)=−13.6 eV−2.65 eV+32.2 eV

−13.6 eV

= 2.35 eV

This approximate method gives a too small va-
lue. The real value is Ekin = 12 eV, compared to
Ekin(H)= 13.6 eV.

2. For R → 0 the H2-molecules converge towards the
He-atom 2

2He. Therefore the energy of the electrons
has to converge towards the groundstate energy of
the He-atoms. (Note that the two missing neutrons
do not affect this energy.) This is, according to
Sect. 6.1:

E(He)=−78.9 eV .

This value can be composed of the energy

E1 =−2×4×13.6 eV =−108.8 eV

without repulsion between the two electrons, and
the Coulomb energy

E2 =+29.9 eV

of this repulsion.
The energy of the electron is:

Eel(H2, R = Re)= 2 · E(H)+ EB(H2)− e2

4πε0 Re
,

where E(H)=−13.6 eV is the electronic energy
of the H-atom, EB(H2)=−4.7 eV is the binding
energy of the H2-molecule and e2/(4πε0 Re) =
0.3×10−17 J = 19.4 eV is the nuclear Coulomb re-
pulsion at a distance Re = 0.074 nm between the
two protons. The result is:

Eel(H2, R = Re)=−51.1 eV .
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This energy is composed of negative potential
energy, due to electron–proton attraction, positive
potential energy of electron–electron repulsion and
positive kinetic energy of the two electrons.

3. a) The total energy of the rigid H2-molecule (inclu-
ding Coulomb repulsion between the two nuclei)
is, according to (9.2)

E(H2)= 2E(H)+ EB(H2)

=−27.2 eV−4.7 eV

= Eel(H2, Re)+ e2

4πε0 Re

⇒ Eel(H2, Re)=−19.4 eV−31.9 eV

=−51.3 eV .

In order to separate the H2-molecule into 2 elec-
trons and 2 protons one has to put the energy
E = Eel(H2, Re)−e2/(4πε0 Re)= 31.9 eV into the
molecule.
b) At a temperature of 300 K the mean vibrational
energy is: Evib = kT (potential + kinetic energy of
the vibrating nuclei). The rotational energy (2 de-
grees of freedom for rotations around two possible
axis perpendicular to the internuclear axis) is

Erot = 2 · 1

2
kT = kT

⇒ Evib+ Erot = 2kT .

The relation between kT and E is:

1 eV =̂ kT for T = 11,604 K .

⇒ at T = 300 K:

2kT =̂ 2 · 300

11.604
eV = 52 meV .

This is very small compared to the electronic energy
difference Eel ≈ 10 eV between the first excited
electronic state and the groundstate of H2.
The correct calculation of Evib and Erot has to take
into account the quantization of the energy levels.
The population of a level (v, J ) is:

N(v, J )= (2J +1)e−(Erot+Evib)/kT∑∞
v,J=0(2J +1)e−(Erot+Evib)/kT

and the vibrational-rotational energy is then

Evib, rot =
∞∑

v,J=0

N(v, J ) · E(v, J )

with Evib =
(

n+ 1

2

)
·�ωvib ;

Erot = J(J +1)hc · Brot .

The results do not differ much from the estimation
above.

4. In the product

ψ(r, R)= χ(R) ·ψel(r, R)

of nuclear wave functionsχ(R) and electronic wave
functionψel(r, R) the parameter R is not a variable.
The wave functionψ(r, R) is a function of r, which
can be calculated for any arbitrary but fixed value
of R.
The Schrödinger equation is:

− �
2

2M

2∑
k=1

∆k(χ ·ψel) (1)

− �
2

2me
∆e(χ ·ψel)+ Epot ·χ ·ψel = Eχψel .

Multiplying the equation with ψ∗
el and integrating

over the electron coordinates, gives with∫
ψ∗

elψel dτ = 1

the equation:

− �
2

2M

2∑
k=1

∆kχ−
(∫

ψ∗
el
�

2

2me
∆eψel dτel

)
·χ

+χ ·
∫
ψ∗

el Epotψel dτ = E ·χ
because the operator ∆k acts only upon χ and ∆e

only upon ψel.
The time-averaged potential energy of the nuclei,
averaged over the motion of the electron is〈
Epot(R)

〉= 〈
Eel

kin

〉+ 〈Eel
pot

〉
+
〈

e2

4πε0 R

〉
=−

∫
ψ∗

el
�

2

2me
∆eψe dτe

+
∫
ψ∗

el

(
Eel

pot+
e2

4πε0 R

)
ψel dτel

⇒ − �
2

2M

∑
k

∆kχ+
〈
Epot(R)

〉
χ = Eχ .
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The equation for the electrons in the rigid molecule
is obtained from (1) with

∑
k Enucl

kin = 0.
5. The Schrödinger equation (9.80) is for the non-

rotating molecule (J = 0), M = M1−M2/(M1+
M2):

1

R2

d

dR

(
R2 dS

dR

)
+ 2M

�2

[
E− Epot(R)

]
S = 0 . (2)

Introducing the function χ(R)= R · S(R) (2) be-
comes:

d2χ

dR2
+ 2M

�2

[
E− Epot(R)

]
χ = 0 .

With the relative elongation �= (R− Re)/Re of
the vibrating nuclei and the Morse-potential

Epot(R)= ED
(
1− e−a�)2

we obtain:

d2χ

dR2
+ 2M

�2

[
E− ED

(
1− e−a�)2

]
χ = 0 . (3)

With the trial solution:

χ = z A
√

1−ε e−z/2 ·u ,
z = 2A · e−a� ; ε= E

ED
,

A2 = 2ED ·MR2
e

�2a2

Equation (3) becomes the Laguerre differential
equation:

d2u

dz2
+ du

dz

(
2A
√

1−ε+1

z
−1

)

+u · A− 1
2 − A

√
1−ε

z
= 0 .

This equation has the eigenvalues (see text books
on differential equations)

ε= 1−
(

1− v+1/2

A

)2

= 2

A

(
v+ 1

2

)
− 1

A2

(
v+ 1

2

)2

,

where v = 0, 1, 2 is the vibrational quantum
number. With the vibrational frequency

ωe = 2ED

hc · A

of molecular vibrations around the equilibrium
distance Re we obtain:

E(v)= h · c ·ωe

(
v+ 1

2

)
− h2c2ω2

e

4ED

(
v+ 1

2

)2

.

For the harmonic oscillator the second term is zero.
This quadratic term has the consequence, that the
vibrational energy levels are no longer equidistant,
but the distance ∆E = E(v+1)− E(v) decreases
with increasing v.
For

hcωe

(
v+ 1

2

)
= 2ED

the dissociation limit is reached. The maximum
possible quantum number v is then:

vmax = 2ED

hcωe
− 1

2
.

6. The ionization energy of H2 is (Fig. S.12):

Eion(H2)= EB(H2)+ Eion(H)− EB
(
H+

2

)
= (4.48+13.6−2.65)eV

= 15.43 eV . (4)

The binding energies EB(H2) and EB(H
+
2 ) are de-

fined as the energies from the minimum of the
potential curve to the dissociation limit. The mea-
sured values of the dissociation energy refers to
the lowest vibrational level. In this case the energy
relation is:

Eion(H2, v= 0)= ED(H2, v= 0)+ Eion(H)

− ED
(
H+

2 , v= 0
)
, (5)

Fig. S.12.
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which differs from (4) by the difference of the zero-
point energies

∆EZP = Evib(H2, v= 0)− Evib
(
H+

2 , v
+ = 0

)
.

7. With Re = 1.2745 Å ⇒
Be = �

4πcµR2
e
,

µ= m1 ·m2

m1+m2

= 1 ·35

36
= 0.9722 AMU for H35Cl

= 1 ·37

38
= 0.9737 AMU for H37Cl

⇒ Be
(
H35Cl

)= 10.68 cm−1 ,

⇒ Be
(
H37Cl

)= 10.659 cm−1 .

For H35Cl we obtain:

νrot(J = 0 → J = 1)= 2cBe

= 6×1010 ·10.68 s−1 = 64.1×1010 s−1

= 641 GHz ,

νrot(J = 4 → J = 5)= 10cBe

= 3204 GHz = 3.204 THz .

For H37Cl we obtain:

νrot(J = 0 → J = 1)= 6×1010 ·10.66 s−1

= 639.6 GHz ⇒ λ= c/ν = 4.7 cm ,

∆νrot
(
H35Cl−H37Cl

)= 1.4 GHz

νrot(J = 4 → J = 5)= 3.198 THz

⇒ λ= 0.94 cm .

The rotational energy Erot(J = 5) is:

Erot/hc = J · (J +1) · Be = 30 Be

= 320.4 cm−1 ⇒ Erot = 39.7 meV for H35Cl

= 319.8 cm−1 ⇒ Erot = 39.6 meV for H37Cl

8. The vibrational frequency for the model of
a harmonic oscillator is:

ν = 1

2π

√
k/µ ⇒ k = 4π2ν2 ·µ .

For H35Cl is µ= 0.9722 AMU

⇒ k = 4π2 ·9×1013 ·0.9722 ·1.66×10−27 kg/s2

= 513 kg/s2 .

With Epot = k · (R− Re)
2

⇒ R− Re =
√

Epot/k .

The energy of the vibrational level v= 1 is

Evib = 3

2
h ·ν .

At the turning point is Ekin = 0 ⇒ Evib = Epot =
3
2 hν

⇒ k·(R− Re)
2 = 3

2
h ·ν

⇒ R− Re =
(

3

2
·6.6×10−34 ·9×1013

/
513

)1/2

= 1.32×10−11 m = 0.132 Å .

The vibrational amplitude in the level v = 1 is
therefore only about 10% of the internuclear
distance Re:

(R− Re)/Re � 0.104 .

Chapter 10

1. The three principal rotational axes are perpendi-
cular to each other and intersect in the center of
mass S (Fig. S.13), which divides the heights h of
the triangle in the ratio 2 : 1. If the sides of the tri-
angle are denoted as s we obtain the three moments
of inertia for rotations around the axis i:

Ia = I1 = 2m

(
h

3

)2

+m

(
2h

3

)2

= 2

3
mh2 = 2

3
ms2 cos2(α/2) ,

where m is the mass of the Na-atom.

Ib = I2 = 2mx2 = 2ms2 sin2(α/2)

Ic = I3 = 2mr2+m

(
2

3
h

)2

Fig. S.13.
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with r2 = x2+ ( h
3

)2
we obtain:

I3 = 2mx2+ 2

3
mh2

= 2ms2
(

sin2(α/2)+ 1

3
cos2(α/2)

)
.

For α= 80◦ this gives:

I1 = 0.39 m · s2 ; I2 = 0.83 m · s2

I3 = 1.22 m · s2

⇒ I3 = I1+ I2 .

The last equation is true for all planar molecules.
The Na3-molecule represents an asymmetric rotor
with I1 	= I2 	= I3 	= I1.
With m = 23× 1.66×10−27 kg; s = 3.24 Å =
3.24×10−10 m

⇒ Ia = 1.56×10−45 kg m2

Ib = 3.32×10−45 kg m2

Ic = 4.85×10−45 kg m2

The rotational constants are defined as:

A = �

4πc · Ia
= 17.85 m−1 = 0.1785 cm−1

B = �

4πc · Ib
= 8.388 m−1 = 0.0839 cm−1

C = �

4πc · Ic
= 5.742 m−1 = 0.0574 cm−1

One can prove, that within the accuracy of rounding
up and down the relation

1

A
= 1

B
= 1

C

is valid for the planar Na3-molecule. This is,
however, only strictly valid for the non-vibrating
molecule.

2. The values of the moments of inertia can be
obtained from the rotational constants.

Ia = �

4πc · A
and corresponding expressions for Ib, Ic. From
Fig. S.14 we find:

y1

y2
= m(N)

2m(=) =
14

32
= 0.438

y = y1+ y2 =
√

s2− x2

Fig. S.14.

x = s · sin(α/2)

Ia = 2m(0)y2
1 +m(N)y2

2

= y2
1

[
2m(O)+m(N)

(
32

14

)2
]

= (32+73)AMU · y2
1

= 105 AMU y2
1 = 1.74×10−25 kg · y2

1

Ib = 2m(O) · x2 = 2m(O) · s2 · sin2(α/2)

= 32 AMU · s2 sin2(α/2)

= 0.53×10−25 kg · s2 · sin2(α/2)

Ic =m(N) · y2
2 +2

(
x2+ y2

1

) ·m(O)
= 14y2

2 +32
(
x2+ y2

1

)
AMU ·m2 .

Replacing x by x = s · sin(α/2); y2 by y2 = y−
y1 = s ·cos(α/2)− y1 we have 3 equations for 3 un-
known parameters s, α and y1, since the moments of
inertia are known. They can be solved numerically
and give:

s = 0.119 nm

α= 134◦

y1 = 0.017 nm .

3. The linear molecule C2H2 with 4 atoms has 3 ·
4−5 = 7 normal vibrations, where the two vibra-
tions ν4 and ν5 are degenerate (Fig. S.15). There
are therefore 5 different vibrational frequencies
ν1, ν2, . . . , ν5. Transitions from the (0, 0, 0, 0, 0)-
vibrational ground state to excited vibrational states
are infrared active, if the dipole moment of the up-
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Fig. S.15.

per state is different from that of the ground state.
These are the vibrations ν3 and ν5.
The Raman active transitions are: ν1, ν2 and ν4

(Fig. S.15).
4. In the approximation of harmonic oscillations the

frequencies ν are related to the force constants k by

ν = 1

2π

√
k/µ ,

where µ is the reduced mass.
For the normal vibration ν1 the C-atom remains at
rest and the two O-atoms oscillate with opposite
phases (Fig. S.16). The restoring forces for the two
C−O bonds are equal with opposite directions. The
reduced mass is

µ= 2m(O) ·m(C)
2m(O)+m(C)

= 2 ·16 ·12

44
AMU

= 8.73 AMU .

The restoring force constant k1 is then:

k1 = 4π2ν2
1 ·µ= 4π2c2ν2

1µ

= 4π2 ·9×1020 ·13882×8.73 AMU

= 9.96×102 kg/s2 ≈ 1000 kg s−2 .

The restoring force Fr =−k · (R− Re) at the maxi-
mum elongation (R− Re)= 1.3×10−11 m is then

Fig. S.16.

Fig. S.17.

Fr =−1.3×10−8 N. For the bending vibration ν2

the amplitude ∆y of the C-atom is

∆y1(C)=−2m(O)

m(C)
·∆y2(O)=−32

12
∆y2 .

The time dependent distance d(t) between the C-
atom and one O-atom of the vibrating molecule is
(Fig. S.17):

d = [
d2

0 + (∆y1−∆y2)
2]1/2

= [
d2

0 + (1.375∆y1)
2]1/2

= d0

[
1+1.9

(
∆y1

d0

)2
]1/2

≈ d0

(
1+0.95

(
∆y1

d0

)2
)
.

The change (d−d0) during the bending vibration
is then

d−d0 = 0.95∆y2
1/d0 .

The restoring force is

F =−k2(d−d0)=−k2 ·0.95∆y2
1/d0 .

The energy is then

Evib = h ·ν = h ·ν · c = 2 · 1

2
· k2(d−d0)

2 .

On the other side is

k2 = 4π2c2ν2
2 ·µ= 231 kg s−2 .

This gives a change

d−d0 = (hν · c/k2)
1/2

= 7.6×10−10 m = 0.076 Å .
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This should be compared with the average distance
d0 ≈ 1.2 Å. The vibrational amplitude is therefore
only 6% of the C−O-distance.

5. a) The ground state configuration of BH2 is
. . . (2a1)

2(1b2)
2(3a1)

1 X2 A1. According to the
Walsh diagram in Fig. 10.11 the energy of the (2a1)-
orbital and of the (1b2)-orbital decreases from
α= 90◦ to α= 180◦, while that of the (3a1) stron-
gly increases. The total energy has a minimum
(from an estimation of the curves in Fig. 10.11)
at α≈ 125◦–135◦. The correct value is α= 131◦.
b) In the first excited state the electron in the
(3a1)-orbital is excited into the (1b1)-orbital.
The energy of this orbital is independent of α
and therefore the excited state leads to a li-
near configuration (α= 180◦) which is labelled as
(2σg)

2(2σu)
2(1πu)

1 A2πu.
6. In the approximation of the Morse-potential the

energy levels are

E(v)= h · c · [15.5ωe−ωexe(15.5)2
]

= hc
(
2176.2 cm−1)

= 4.3×10−20 J = 0.27 eV .

The energy difference between neighbouring
vibrational levels is:

∆E = E(v= 15)− E(v= 14)

= hc[ωe−30ωexe]
= hc

[
(159−36) cm−1]= hc · [123 cm−1]

= 0.015 eV .

The Fourier-limited frequency width of the 30 fs
laser pulse is

∆ν = 1

2π∆t
≈ 15.8×1012 s−1

⇒∆E = h ·∆ν = 11.5×10−21 J

= 6.3×10−2 eV = 0.063 eV .

Therefore about 4–5 vibrational levels are simulta-
nously excited. For v′ = 15 the nuclear vibrations
can be treated classically.

⇒ ∆E = h ·νvib = hc · [123 cm−1]
⇒ νvib = 3×1010 ·123 s−1

= 3.7×1012 s−1

⇒ Tvib = 1

νvib
= 2.7×10−13 s = 270 fs .

Chapter 11

1. The net absorption coefficient α is, according to
(11.2) given by

α= [
Nk − (gk/gi)Ni

]
σki . (1)

In our case is

gk = 2Jk +1 = 3 ; gi = 2Ji +1 = 5 .

The transition wave number is

ν = Be[Ji(Ji +1)− Jk(Jk +1)]
= 4Be = 42.36 cm−1 .

The frequency of the absorption line is:

ν = c ·ν = 1.27×1012 s−1 .

In this case is h ·ν� kT

⇒ Ni

gi
= Nk

gk
· e−hν/kT ≈ Nk

gk

(
1− hν

kT

)
⇒ α≈ Nk

hν

kT
σki . (2)

At a pressure p = NkT the density of molecules is
N = p/kT . With p = 1 mbar = 102 Pa

⇒ N = 102 m−3

1.38×10−23 ·T/K .

For T = 100 K ⇒ N = 7.25×1022 m−3. The po-
pulation density of the absorbing level Nk(Jk) is
then:

Nk(Jk)= (2Jk +1) · N

Z
· e−Erot/kT , (3)

where

Z =
∑

n

gn e−En/kT

is the partition function, which is a normalization
factor, that assures

∑
n Nn = N .

For

∆Erot = Erot(J +1)− Erot(J )� kT

we can approximate the partition function Z by the
integral over a continuous variable J :

Z ≈
∞∫

0

(2J +1)e−hc·Be J(J+1)/kT dJ = kT

hcBe
.
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For our example of the HCl-molecule is Jk = 1,
Be = 10.59 cm−1 and Z = 6.56×10−2 ·T/K. For
T = 100 K this becomes Z = 6.56 and the ratio

Nk

N
≈ 3

6.56
· e−0.3 ≈ 0.34 .

This means that 34% of all molecules are in the
level with Jk = 1.
Inserting (3) in (2) gives

α= (2Jk +1)h2cνBe

(kT)2
e−Erot/kT ·σ · N .

With the numerical values: N = 7.25×1018 m−3,
Be = 1059 m−1, Jk = 1, T = 100 K one abtains

α= 1.9×10−3 m−1 .

For T = 300 K the absorption coefficient becomes

α= 2.1×10−4 m−1 .

2. The two functions

f(t)= 1√
2π

+∞∫
−∞

g(ω) · e−iωt dω

g(ω)= 1√
2π

+∞∫
−∞

f(t) · e+iωt dt

form a Fourier-pair. With the relation

eiωt = cosωt+ i sinωt

the real cosinus-Fourier-transform of gc(ω) is

fc(t)=
√

2

π

∞∫
0

gc(ω) cosωt dω

gc(ω)=
√

2

π

∞∫
0

fc(t) cosωt dt .

The computer, used to perform these transformati-
ons in Fourier-Sepctroscopy subtracts the constant
background term in (11.74a), which is independent
of the time t. Substituting fc(t) by

√
π/2S(t) and

gc(ω) by Ī(ω ·v/c) one obtains

Ī(ω ·v/c)=
∞∫

0

S(t) cos(ω ·v/c) dt .

3. The grating equation is

d(sinα+ sinβ)= λ .
For our example is

d = 1

1200
mm = 0.833 µm ,

α= 30◦ ⇒ sinα= 1

2
,

sinβ1 =−1

2
+ 588.9

833.3
=+0.2067

⇒ β1 = 11.93◦ = 0.2082 rad ,

sinβ2 =−1

2
+ 589.5

833.3
= 0.2074 rad

⇒ β2 = 11.97◦ = 0.2089 rad .

The angular difference is

∆β = 0.04◦ = 7.36×10−4 rad .

In the focal plane of the imaging mirror with focal
length f = 1 m is the lateral distance between the
two spectral lines:

∆s = f ·∆β = 1 ·7.36×10−4 m = 0.736 mm .

With a slitwidth d< 360 µm of the entrance slit the
two lines can be separated.

4. a) The shift of the Raman line against the Rayleigh
line is for ∆v = 1, ∆J = 0 for the H2-molecule
∆ν = 4395 cm−1. The wave number of the argon-
ion laser line is

νL = 107

488
= 20,492 cm−1

⇒ νR = (20,492−4395)cm−1 = 16,097 cm−1

⇒ λR = 490.9 nm .

b) The term value of the rotational level J = 1 is
with Be = 60.8 cm−1

T(J = 1)= J · (J +1)Be = 121.6 cm−1 .

The difference between the Rayleigh and Raman
line is

∆ν = 121.6 cm−1 ⇒ ∆λ= λ2 ·∆ν = 2.9 nm .

The spectral resolving power of the spectrometer
should be at least

R ≥ λ

∆λ
= 488

2.9
= 168 ,
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which can be achieved already with a small grating
or prism spectrometer.

5. According to Beer’s absorption law the transmitted
laser power is

Pt = P0 · e−αx ≈ P0(1−αx) for αx � 1 .

The power, absorbed per cm path length is

∆P = α · P0 = 10−6 ·10−1 W = 10−7 W .

For a wavelength λ= 500 nm is

h ·ν = 2.48 eV = 3.97×10−19 W s .

The absorbed power ∆P corresponds to

N = ∆P

h ·ν =
10−7 W

3.97×10−19 W s
= 2.5×1011 absorbed photons/s

which generate 2.5×1011 fluorescence photons.
The photo detector receives

∆Ω

4π
· N = 0.2

4π
·2.5×1011 = 4×109 photons/s .

With a quantum efficiency η= 0.2 of the detector
this gives 0.2 ·4×109 = 8×108 photo-electrons/s.
If the amplification of the photomultiplier is G =
106 the output current is

IA = 8×108 ·1.6×10−19 ·106 = 0.13 mA .

6. With a collimation angle ε = 2◦ the residual
Doppler width of an absorption line is

∆νD(beam)= sin ε ·∆νD(cell) .

For a temperature T is

∆νD(cell)= 7.16×10−7ν0

√
T/M .

With T = 500 K, M = 23 g/Mol, ν0 = 5.09×
1014 s−1

⇒ ∆νD = 1.7×109 s−1

⇒ ∆νD(beam)= (sin 2◦) ·1.7×109 s−1

= 5.9×107 s−1 .

a) In order to resolve the hyperfine structure of the
3 2P1/2 level, the condition

∆νD(beam)= (
1.7×109 · sin ε

)
s−1 < 190 MHz

must be fullfilled. This gives

sin ε < 0.11 ⇒ ε < 6.4◦ .

b)

sin ε <
16

1700
= 9.4×10−3 ⇒ ε= 0.55◦ .

Here one has to take into account, that the natural
line width is already ∆νn = 10 MHz. The absorp-
tion profile is the convolution of Lorentzian and
Gaussian profiles and the total linewidth is

∆ν ≈
√
∆ν2

n + (∆νD sin ε)2

⇒ ∆νD · sin ε≤ (
(∆ν)2−∆ν2

n

)1/2
s−1

= 106 ·
√
(16)2+ (10)2 s−1

= 106 ·√156 s−1

≤ 12.5 MHz

⇒ sin ε≤ 12.5×106

1700×106
= 0.0074

⇒ ε≤ 0.43◦ .

7. a) The transverse force Fx acting on the atoms
flying into the z-direction is

Fx =− |pm ·grad B| .
The magnetic moment in the 2S1/2 state is mainly
due to the electron spin, i.e. pm = µB = 9.27×
10−24 J/Tesla. The deflection angle α of the sodium
atoms is

tanα= vx

vz
.

The velocity vx is after a flight time t = L/vz

vx = µB · |grad B| · t

m
= µB

m
|grad B| · L

vz

Forα= 3◦ ⇒ tanα= 0.052. With L = 0.2 m, vz =
600 m/s ⇒ vx = 0.052 ·600 m/s

⇒ grad B = m ·vx ·vz

µB · L
= m ·v2

z tanα

µB · L

= 23 ·1.66×10−27 ·36×104 ·0.052

9.3×10−24 ·0.2
= 3.8×102 T/m .

b) The photon transfers the momentum

∆p = h ·ν/c .
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The momentum of the sodium atoms in z-direction
is

pz = m ·vz .

The deflection angle for the absorption of one
photon is

tanα= ∆p

pz
= h ·ν

c ·m ·vz

with h ·ν = 2.1 eV .

For n absorbed photons it is:

tanα= n · h ·ν
c ·m ·vz

.

In order to reach a deflection of α= 3◦ one needs

n = c ·m ·vz

h ·ν · tanα

= 3×108 ·23 ·1.66×10−24 ·600

2.1 ·1.6×10−19

= 1×103 photons ,

With a laser beam diameter d = 1 cm the time of
flight of the atoms through the laser beam is

t = d/vz = 1.6×10−5 s .

The minimum absorption rate is then

Rabs = n/t = 103/
(
1.6×10−5)= 6.3×107 s−1 ,

which implies that the mean cycle time absorption-
fluorescence should be τc = 1/Rabs = 16 ns. The
spontaneous life time is τsp = 16 ns. Since the mi-
nimum mean cycle time is τc ≈ 2 τsp the maximum
rate can be only Rmax = 3.15×107 s−1. The la-
ser beam diameter therefore has to be enlarged to
d = 2 cm.

8. The effective life time is

1

τeff
= 1

τspont
+n ·σ ·vr .

If τeff = 1
2τspont we obtain

n ·σvr = 1

τspont
.

With p = n · k ·T ⇒
p ·σ ·vr

k ·T = 1

τspont
⇒ p = k ·T

σ ·vr · τspont
.

The mean relative velocity vr is

vr =
√

2 ·8 kT

π ·m
with m = m1 ·m2

m1+m2
= 23 ·28

51
= 12.6 AMU

⇒ p =
√
π ·m · kT

4σ · τspont

=
√
π ·12.6 ·1.66×10−24 ·1.38×10−23 ·400

4 ·10−19 ·1.6×10−8
Pa

= 0.93×105 Pa = 0.93 bar .

9. Assume the level Ei is selectively excited by a cw
laser with an excitation rate Rexc. If the total
deactivation rate is

D = Ni
(

Ai +n ·σq ·v
)
,

where n is the density of collision partners. We ob-
tain D = R under stationary conditions. This yields
the stationary population density

Ni = D

Ai +n ·σq ·v =
R

Ai +nσqv
,

where σq is the total deactivation cross section for
nonradiative transitions. The fluorescence power,
emitted by level Ei is

Pi = Ni · Ai .

If level Em is populated by collisional energy
transfer from level Ei we obtain:

dNm

dt
= ni ·n ·σi→m ·v− Nm · Am = 0

⇒ σi→m = Nm

Ni
· Am

n ·v
= Pm

Pi
· Ai

n ·v .
Measuring the relative total fluorescence powers
Pm/Pi yields σi→m , if Ai = 1/τi is known from
lifetime measurements of level Ei .

Chapter 12

1. The lifetime of the 3 2P3/2 level is τ = 16 ns,
the optimum absorption-emission cycle pe-
riod is 2τ = 32 ns, the absorption rate R =
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1/(2τ) = 109/64 ≈ 1.6×107 s−1. Each absorbed
photon transfers the momentum ∆p = h · ν/c
onto the Na-atom and decreases its velocity by
∆v=∆p/m = h ·ν/(m · c)≈ 3 cm/s.
The velocity decreases per s is then a = 3 ·1.6×
107 = 4.8×107 cm/s2 = 4.8×105 m/s2. In order to
bring the Na atom to rest, N = 700/0.03 = 23,333
absorptions are necessary. This takes a time

T = 23,333

1.6×107
≈ 1.5×10−3 s = 1.5 ms .

The deceleration path length is

∆z = v0T − 1

2
aT 2

= 1.5×10−3

×
(

700− 1

2
·4.8×105 ·1.5×10−3

)
m

= 1.5×10−3(700−360)m

= 0.51 m .

2. The net force on the atoms is

F =−a ·v with

a = 16δ�k2

γ 2
[
1+ (2δ/γ)2]2 .

With δ = 2π×107 s−1, k = 2π
λ
= 0.94×107 m−1,

γ = 1
τ
≈ 6×107 s−1, R0 = 106

⇒ a

= 16 ·2π ·107 ·1.06×10−34 ·0.942 ·1014 ·106

4π2 ·1014[1+ (4π/6)2]2

= 15×10−7

182×1014
= 8.2×10−23 N s/m .

⇒ a/M = 8.2×10−23

23×1.66×10−24
= 2.1×103 s−1

⇒ τdamp = M

a
= 0.48×10−3 s = 480 µs .

3. The restoring force in z-direction is

Fz =−D · z ,
where the force constant is

D = R0 · pm ·b · 16kδ

γ 2
(
1+4δ2/γ 2

)2 .

With

k = 2π

λ
= 0.94×107 m−1 ,

γ = 1

τ
= 6×107 s−1 ,

R0 = 106 s−1 and δ= 2π ·107 s−1 ,

pm ≈ µB = 9.28×10−24 J/T ,

b = 10−2 T/m

we obtain

D = 106 ·9.28×10−24 ·10−2

× 16 ·0.94×107 ·2π ·107

36×1014
(
1+16π2/36

)2 N/m

= 3.7×10−2 N/m .

The oscillation frequency is:

Ω =√
D/M

=
√

3.7×10−2/(23 ·1.66×10−24) s−1

= 3×1010 s−1 .

The damping constant is

β = a

M
= 2.1×103 s−1

⇒ τdamp = 480 µs .

The atoms perform 3×1010 ·4.8×10−4 = 1.4×107

oscillations, before the oscillation amplitude has
decreased to 1/e of its initial value.

4. The mean distance d is related to the density N by

d = N−1/3 ⇒ d = 3√
10−13 cm

= 0.46×10−4 cm = 4.6×10−7 m .

The de Broglie wavelength is

λdB = h√
3mkBTc

= d = 4.6×10−7 m

⇒ Tc = h

3mkBd
2

= 6.6×10−34

3 ·23×1.66×10−27·1.38×10−23·6.72×10−14

= 9.3×10−7 K = 930 nK .

BEC occurs under these conditions at Tc = 930 nK.
The atoms in the trap can reach a region, where the



554 Solutions to the Exercises

magnetic field energy EM =−µm · B equals their
kinetic energy Ekin = 1

2 mv2 with v2 = 3kT
m .

⇒ Ekin = 3

2
kT = 3

2
·1.38×10−23 ·9.3×10−7 J .

The magnetic field is

B = b ·r ⇒ r = B

b
= Em

µm ·b =
3
2 kT

µm ·b .

With µm
(
Na 2S1/2

)≈ µB = 9.27×10−24 J T−1

⇒ r = 1.5×1.38×10−23 ·9.3×10−7

9.27×10−24 ·10−3
m

= 2.08×10−3 m = 2.08 mm .

With a density of 1013 cm−3 there are N = 1013 ·
4
3πr3 = 3700 atoms in the trap.

5. The energy of a vibrational level with quantum
number v is:

E(v)= hc

[
ωe

(
v+ 1

2

)
−ωexe

(
v+ 1

2

)2
]
.

The energy width of the femtosecond pulse with
Gaussian time profile, for which∆ν ·∆T = 0.44 is

∆E = h ·∆v= 0.44h/∆T .

With ∆T = 2×10−14 s ⇒ ∆E = 1.5×10−20 J =
0.09 eV. The energy separation of the vibrational
levels is

∆E = 1

2
(E(v+1)− E(v−1))

= 1

2
hc [2ωe− (4v+2)ωexe] .

For v= 20 this gives with ωe = 30 cm−1, ωexe =
0.04 cm−1

∆E = 1

2
hc [2ωe−82ωexe]

= 5.61×10−22 J = 3.5×10−3 eV .

The laser pulse can therefore excite

n = 0.09

0.0035
= 26

vibrational levels of the Cs2-molecule.
6. The intensity at the output of the Michelson

interferometer is:

It = I0

2
· cos2(∆ϕ/2) ,

where ∆ϕ = 2π ·∆s/λ is the phase difference bet-
ween the two interfering beams. If ∆s changes by
δ ⇒ ∆ϕ changes by δϕ = 2πδ/λ. The intensity
change

It

(
∆ϕ+ δϕ

2

)
− It

(
∆ϕ

2

)
≤ 10−8 I0

should be smaller than 10−8 I0. With ∆ϕ = π ⇒
cos

(
∆ϕ+ δϕ

2

)
= cos

∆ϕ

2
cos

δϕ

2

− sin
∆ϕ

2
sin(δϕ/2)

=− sin(δϕ/2)≈−δϕ/2
⇒ It = I0

4
· δϕ ⇒ δϕ ≤ 4×10−8 rad .

The phase of a plane wave is sensitive to the position
of the plane mirror surface, averaged over the whole
surface. Deviations from an ideal plane, caused by
the atomic structure, are averaged out.
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