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Foreword to the Second Edition

Since the publication of the first edition in 2009, quite a substantial amount of new 
insights in the pathobiology of acute heart failure have been gained. This second 
edition incorporates these new findings and integrates them into the “big puzzle” 
and concept of acute heart failure syndromes. Indeed, we have not only discovered 
more details about this syndrome but this new knowledge substantially helps us to 
understand the overall context of this malady. The new views may hopefully open 
ways to develop new and better therapeutic strategies, particularly for patients with 
heart failure and preserved ejection fraction where a scientifically based effective 
treatment could not yet be established.

Aarau, Switzerland Wolfgang Krüger
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SV(I) Stroke volume (index)
SvO2 Mixed venous oxygen saturation (pulmonary artery)
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SVR(I/i) Systemic vascular resistance (index)
SV-V Stroke volume variation
SW(I) Stroke work (index)
TGF Tubuloglomerular feedback
TNFα Tumor necrosis factor α
TPG Transpulmonary pressure gradient
TPR Total peripheral resistance (which is the same as SVR)
UO Urinary output
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VT Ventricular tachycardia
WU Wood unit (dyn s cm−2)
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1Cardiac Physiology and Acute Heart 
Failure Syndromes

1.1  Cardiac Performance

Cardiac performance depends on a wide variety of factors, of which preload, after-
load, heart rate, and contractility are the best recognised (Fig. 1.1). However, other 
factors play important roles but are less acknowledged. The diastolic ventricular inter-
action (DVI) and its impact on preload, the preload recruitable stroke-work, 

Fig. 1.1 The modified diagram by Gould and Reddy, “Vasodilator Therapy for Cardiac Disorders”, 
Futura, Mount Kisco, New York, 1979, pp 1-6, illustrates the complex interplay of factors affecting 
cardiac  performance. With permission
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ventriculo- arterial coupling and other vascular and ventricular properties, through 
their interaction at end-systole, all have significant influence on cardiac performance.

1.2  The Fundamental Equation of the Circulation

 
MAP=CO×SVR Pressure Flow Resistance= ´( )  [1, 2] 

The fundamental equation of the circulatory system expresses the basic function 
of the heart: to generate flow and pressure in order to ensure appropriate perfusion 
of the body [3, 4].

The systemic peripheral resistance, difficult to determine directly in practice, can 
be calculated by using the measurable parameters of MAP and CO. However the 
SVR is not determined by them, SVR and CO are independent, the MAP is the 
dependent variable [5].

Poiseuille’s law offers three ways to change blood pressure [6, 7]:

• alter flow,
• alter resistance,
• alter both.

Thus, increased blood flow and/or an increased ratio of resistance/blood flow 
(SVR/CO) can alter the MAP [8]. If CO and SVR change reciprocally and pro-
portionately, only then will the MAP be unchanged. If CO increases but with a 
reduction of SVR due to peripheral vasodilatation, MAP will increase if the 
increase in CO is proportionately higher than the reduction of SVR. In the case of 
volume loading, increasing CO will lead to an increase in MAP if SVR remains 
unchanged [5].

Kumar showed that volume loading in healthy hearts increases contractility, 
stroke work, systolic blood pressure, and MAP [9]. However, in the heart with 
compromised contractility, blood pressure might not increase. Michard [10] showed 
that the increase in SV (flow) depends critically on the contractile abilities of the 
heart. Thus, if volume loading does not lead to an increase in SV, we should be 
suspicious of significant heart failure. Furthermore, we should keep in mind that, in 
heart failure syndromes, the LV afterload is the decisive determinant of cardiac 
performance [11–14]. Therefore, a reduction in afterload by vasodilators is the 
treatment of choice [15, 16].

As a rule, in daily clinical practice in acute heart failure when lowering periph-
eral resistance, the LV end-systolic wall stress will be reduced and the SV will 
increase, but the MAP will be maintained or will even increase [17–19]. If, under 
these conditions, the MAP does not increase or at least cannot be maintained, the 
following circumstances have to be considered:

• severe mitral regurgitation [20–22],
• inappropriate filling of the LV due to DVI [23–25],

1 Cardiac Physiology and Acute Heart Failure Syndromes
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• ventriculo-arterial coupling mismatch [26, 27],
• inadequate intravascular volume (relative hypovolaemia) [28, 29]—(seldom).

1.3  Preload

1.3.1  Definition

Preload is defined by Braunwald and Ross [30] as “the force acting to stretch the 
left ventricular muscle fibres at the end of diastole and determining the resting 
length of the sarcomeres”.

Returning venous blood fills the ventricle, exerting force on the heart muscle, 
stretching the myofibrils [30] and is one of the main determinants of cardiac perfor-
mance [31–33].

The end-diastolic ventricular volume, or preload, is well reflected by the end- 
diastolic wall stress (preload ~ end-diastolic wall stress) [34].

1.3.2  The Frank–Starling Mechanism

Transmural LVEDP accurately reflects the effective distending pressure responsi-
ble for the length of myocardial fibres [35].

Otto Frank [36] and Ernest Starling [37] obtained a relationship between the end- 
diastolic fibre length and the force of contraction:

With increasing fibre length the force of contraction increases and thus the 
LV or RV stroke volume (SV) [36, 37] increases or, more accurately, the stroke 
work (SW) increases:

 
LV-SW = SV LVESP LVEDP´ -( )  [38, 39] 

The diastolic ventricular filling is limited by the acutely non-distensible pericar-
dium constraining the filling ventricles and by the cytoskeleton [40–42], thus pre-
venting the ventricles from fluid overload [43, 44] (physiological protective 
mechanism) as well as from pathological dilatation [41].

With an increase in resting fibre length the velocity of fibre muscle shortening 
increases as well [45].

Frank [36] established a linear relationship between the left ventricular end- 
diastolic volume (LVEDV) as a correlate of the fibre length and the force of ven-
tricular contraction [30, 36, 37, 43].

 LV-SV correlates well with LVEDV: SV ~ LVEDV  [46] 

Starling [37] reported an increase in the contraction force with increasing 
atrial pressures. Starling’s result is similar to that described by Frank, as long as 
the increase in LVEDP rep-resents a roportional increase in LVEDV (linear rela-
tionship between LVEDP and LVEDV).This is true in most healthy persons as 
long as the LVEDP remains within normal ranges, but in the case of high LV 
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filling pressures and in certain pathological circumstances the rise in LVEDP is 
often disproportionately high in comparison to the increase in LVEDV [23, 24, 
47–49].

The LVEDP may even rise without any increase in LV filling volume, producing 
no increase in preload, which is essential to recruit a higher SV [23, 39, 42]. 
Therefore, although the LVEDP rises, there may be no adequate increase in SV; in 
fact, there may even be a fall corresponding with the ‘descending limb’ of the 
Starling curve [35, 37, 39, 50]. This descending limb described by Starling is, how-
ever, an artefact of his experimental conditions.

When using the effective distending pressure rather than the intra-cavitary 
pressure the relation between fibre stretch and force of contraction is described 
adequately and corresponds to Frank’s findings and the statement:

The effective distending pressure or ‘transmural’ LVEDP is the intracavitary 
LVEDP (commonly just called LVEDP) minus the surrounding pressure(s) 
[35].

Katz, in 1965, already assumed that intracavitary and transmural end-diastolic 
left ventricular pressures were only equal when the pressure surrounding the left 
ventricular heart muscle was negligible [35]. Otherwise the external pressure must 
be subtracted from the intracavitary LVEDP to calculate the effective distending or 
transmural pressure.

 Transmural LVEDP LVEDP surrounding pressure = -  [35] 

Usually, the surrounding pressure has contributions of one-third by the RVEDP 
and two-thirds by the pericardial pressure [51, 52]:

Transmural LVEDP = intracavitary LVEDP − (2/3 pericardial pressure + 1/3 
RVEDP) Under normal conditions, RAP and pericardial pressure (PP) are nearly 
equal [53–55] and further changes in pericardial pressure are very closely reflected 
by RA pressure changes [53, 56, 57].

The close relation between changes in RA pressure and pericardial pressures 
allows us to give a reasonable estimate of transmural pressure by subtracting RAP 
from pulmonary capillary wedge pressure (PCWP) [23, 53, 56]:

 Transmural LVEDP PCWP RAP PCWP CVP = - » -  

with CVP reflecting the ‘surrounding pressure’ [23, 53, 56, 58, 59].
There is substantial evidence that PCWP reflects LVEDP [60–62]. CVP is mea-

sured where the vena cava leads into the right atrium [58] and, as such, equals the 
RAP [58, 59]. Due to the very close relations between RAP and PP (r = 0.95, 
p < 0.005) [63] and RAP and changes in PP [53, 56, 57] respectively, CVP is a good 
estimate of PP [53–55, 58, 59, 63] in daily practice. Furthermore, both, CVP and 
RAP reflect the RVEDP [44, 59, 63]. Over a wide range, pericardial pressure, RAP 
and RVEDP are literally equal [64]. Tyberg [53] demonstrated that RVEDP well 
represents PP in ranges between 4 and 20 mmHg. However, in case of right 
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ventricular hypertrophy when the RV is stiffened [65] and in cor pulmonale or pul-
monary hypertension, RAP and RVEDP are much higher than PP. RV-failure 
always cause a rise in CVP [58].

In healthy persons the surrounding pressure is low (nearly zero) and an increase 
in preload will increase the LVEDP more than the surrounding pressure [23, 41]. 
Hence, the transmural LVEDP will rise along with LVEDV [23, 43, 66], increasing 
the preload recruitable stroke volume (work) and thus SV, as described by Frank 
and Starling.

In conditions where the surrounding pressure rises substantially, external con-
straint increases more than LVEDP [23, 24, 47, 48, 67, 68]. Transmural LVEDP and 
intracavitary LVEDP will differ considerably and will change in opposite directions 
with a fall in transmural LVEDP, lowering the preload and, consequently, the pre-
load recruitable stroke volume (work) will decrease.

The intraventricular pressures (intracavitary LVEDP and RVEDP) are influenced 
by:

• LV-compliance [69],
• alteration in lung anatomy and physiology-inducing changes in the intrathoracic 

pressure [47] and the pressures in the pulmonary circulation [70],
• intra-abdominal pressure [71].

The LV compliance describes the diastolic properties of the heart muscle and can 
be depicted by the relation between LVEDP and LVEDV [51, 72] (relation between 
pressure and volume).

With this in mind, the discrepancies between transmural LVEDP and intra-
cavitary LVEDP can be related, at least partly, to the ventricular compliance 
[73].

The ventricular compliance varies almost continuously in the critically ill, pro-
ducing changes in the intracavitary LVEDP but without any corresponding change 
in LVEDV [69, 74, 75]. Kumar [76], however, established evidence that continuous 
change in the ventricular compliance is a physiological phenomenon present in 
healthy persons as well as in those who are unwell.

In heart failure, the compliance of the LV is almost always reduced [50], hence, 
increases in filling volumes cause a higher rise in LVEDP compared to a healthy 
heart.

The compliance is determined by factors such as muscle mass, tissue composi-
tion, elastic properties, ventricular interactions and extramyocardial conditions 
including pericardial structure and intra-thoracic properties [77–80].

Raised intrathoracic pressure due to pneumonia, ARDS, pulmonary oedema, 
etc., as well as raised intra-abdominal pressure will increase constraint, in par-
ticular on the thin-walled RV, affecting the RVEDP and PP more than the LVEDP 
[47].

1.3 Preload
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Furthermore, the higher the LVEDP the greater the amount of external force act-
ing on the LV, thus impeding the LV-filling, the preload, and preload recruitable SV 
(SW) [24, 25].

Examples of situations which alter the surrounding pressures or produce signifi-
cant external pericardial constraint are:

• increased lung water due to congestive HF [81],
• mechanical ventilation and PEEP: Both induce a rise in intrathoracic pressure 

(surroundingpressure) and an increase in RV-afterload [82]. The normally low 
RVEDP and PP will rise markedly in case of mechanical positive pressure venti-
lation and/or PEEP application, pneumonia, ARDS, etc., and so contribute essen-
tially to an increase in the surrounding pressure [56];

• In heart failure patients we expect a marked external constraint to be present in 
the majority of patients, compromising LV-filling and becoming significant if 
LVEDP > 10(12)–15 mmHg [24, 25, 83]. Physiological external constraint, 
mainly due to PP, contributes up to 30–40% of the LVEDP [25]. In heart failure 
the contribution to LVEDP by the external constraint is as high as 50–80% [23];

• acute pulmonary embolism: ↑ RVEDP and thus ↑ in PP [47], hence a rise in the 
surrounding pressure inducing no change [47] or even ↓ in the transmural 
LVEDP [39].

In the case of external constraint, LVEDP markedly overestimates effective dis-
tending pressure [42].

Changes in opposite directions (transmural LVEDP ↓ and intracavitary LVEDP ↑) 
are explainable now, and only an increase in transmural LVEDP is consistent with an 
increase in LVEDV and vice versa [23, 39, 42].

Numerous publications have established that haemodynamic monitoring by 
PA-catheterisation measuring intracavitary (filling-) pressures fails to be an accu-
rate guide of the preload because filling pressures do not adequately reflect the 
myocardial fibre length at end-diastole and, hence, the LVEDV [36, 84–86]. If the 
transmural pressure is used instead, then changes in the preload are accurately 
reflected [35].

However, the filling pressures are still one of the most important components in 
assessment and treatment decision-making processes in heart failure. The heart 
always tries to generate an adequate CO on the lowest possible LVEDP [73, 86, 87]. 
In heart failure patients, a therapeutic reduction of the LVEDP is correlated with 
improved outcome [15, 88]; hence, unloading the left ventricle and reducing the 
LVEDP is the therapeutic maxim that adheres to the physiology/pathophysiology of 
the situation [23, 24, 36, 37, 50] and improves outcome [13, 15, 24, 88]. Thus, we 
might do much better in our patients with severe heart failure and cardiogenic shock 
using the transmural LVEDP to make our therapeutic decisions.

There is, of course, a physiological optimum and maximum of fibre distension 
and concomitant force development (see Fig. 1.2) [89].

1 Cardiac Physiology and Acute Heart Failure Syndromes
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Furthermore, in the situation of (acute) heart failure the Frank–Starling mecha-
nism is markedly diminished [50] and thus, in the failing heart, an increase in fibre 
stretch (ventricular filling) is not accompanied by the same increase in the force of 
contraction as in healthy persons [90].

In the failing heart the SV depends substantially on the contractility [10, 75, 91, 
92] and the afterload [3, 12, 46, 93, 94].

1.3.3  Venous Return and CVP in Daily Practice

SV is determined by venous return (responsible for the preload) and cardiac perfor-
mance (con- tractility, afterload and heart rate) [31–33].

Guyton et al. [32] evaluated the relationship between total cardiac function (con-
tractility and total peripheral resistance) and venous return:

“The actual cardiac output changes with changes in cardiac function (CF), but 
with changes in venous return as well”.

Indeed, as increasing ventricular filling and (thus) ventricular stretch will lead to 
an increase in SV, is SV basically a function of end-diastolic filling volume [95], 
and as such (up to an upper limit—sarcomere length of 2.2 μm) in some aspects of 
the amount of venous return.

Guyton plotted the relationships (total cardiac function and venous return) on 
one graph (see Fig. 1.3) [32].

Under most physiological conditions, changes occur simultaneously in these 
relationships, although one effect will be dominant [31], for example:

Fig. 1.2 ∆p: Change in pressure; ∆SV: Change in SV; with increasing transmural pressure 
and thus preload, the recruited SV becomes less (modified from Michard [10], with permission)

1.3 Preload



8

• If CO rises with a fall in right atrial pressure (central venous pressure), the domi-
nant effect is improvement in cardiac function (increase in contractility and/or 
reduction in afterload);

• If CO rises with an increase in RAP the dominant effect is an increase in volume, 
and a decrease in venous compliance or venous capacity, resulting in a higher 
venous flow for any pressure in the right atrium.

As such, the special interrelationship between CVP and CO has to be considered 
when interpreting hemodynamic conditions: Both, CVP and CO are determined by the 
interaction of the two functions, the cardiac function and the venous return [32, 96, 97]. 
RAP/CVP is not an independent determinant ascertaining CO, and “depends on CO as 
much as it determines it” [98]. Accordingly, CVP can be low in a person with low blood 
volume and normal cardiac function, but it can also be low in cases of normal volume 
and good cardiac function [31]. CVP can be high in cases of normal filling with impaired 
cardiac function, but also in cases of normal function but with fluid overload [31].

Venous return depends on mean systemic filling pressure, right atrial pressure, and 
vascular resistance, particularly venous tone [98]. A rise in venus tone precipitates a 
progression in venous return. The pressure difference between the pressure in the 
periphery (systemic filling pressure which is largely represented by the pressure of the 
extrathoracic veins [99]) and the pressure within the right atrium (central venous pres-
sure), is usually 7–10 mmHg whereupon RA-P is normally 0 mmHg, and determines 
the amount of venous return [100]. Spontaneous breathing, creating negative intra-tho-
racic pressures, increases this pressure gradient facilitating venous return [101]. On the 
other hand, increases in RAP and particulary elevated RAPs oppose venous return [98].

As the level of the right atrial pressure is decisively affected by extracardiac, 
intrathoracic conditions, any rise in pericardial pressure (displaying pericardial 
constraint, as found in case of pericardial effusion or tamponade, positive pressure 

Fig. 1.3 The upper cardiac 
function curve depicts a 
supra-normal performance 
(i.e. ↑ sympathetic tone) 
while the lower curve 
represents the situation in 
H.F. Venous return: 
High – normal – low (adapted 
from Mohrman, DE and 
Heller, LJ Cardiovascular 
Physiology, 4th ed. McGraw-
Hill Comp., 1997, chapter 9, 
p. 147), with permission
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ventilation and pleural effusions via heart–lung interaction) will enhance RAP 
[102, 103]. This rise in RAP is not accompanied by, or due to, an increase in filling 
volume, however it will further blunt venous return [98]. Increases in ventricular 
afterload and myocardial ischemia affecting diastolic myocardial properties 
(diminishing myocardial compliance) subsequently alter ventricular filling pres-
sures and hence RAP (LAP respectively) [95, 104]. Accordingly, no relationship 
exists between RAP and SV in case extracardiac, intrathoracic pressures are ele-
vated [103, 105].

As such, the level of the right atrial pressure is determined by the pressure with 
which the blood distends the atrium and by the pressure effects of the pericardial, 
thoracic, and pulmonary adjacent structures [103, 105].

Anyway, a high CVP may be related to (a) elevated extracardiac/intrathoracic 
features, or may (b) indicate RV-dysfunction and/or RV outflow obstruction (namely 
pulmonary hypertension PH) with blood welling up in the RA, or reflects (c) both a 
and b. In any case, differential diagnostic considerations are implicitly required as 
different causes will inevitably entail different therapeutic measures [98].

While in the arterial system the pressure depends on, and is determined by, the 
flow and the arterial resistance (MAP = SV × SVR) [1], the venous blood flow is 
determined by considering volume and venous capacitance [106]:

 
Total venous pressure CVP volume fluid venous capacitanc  /( ) = ´( ) ee  

It is the venous capacitance which dominates the venous behaviour and the 
central venous pressure is determined, essentially, by the venous capacity [107, 
108]. It is not the venous return (as a flow), but the volume that predominantly con-
trols basic RAP/CVP [106].

During exercise, sympathetic activity, stimulated by the reduced activity from 
arterial and atrial receptors, will increase venous tone and decrease venous capaci-
tance [109]. This will increase the venous return to the heart [110] and, in case of a 
recruitable preload reserve (this depends on CF [10–12, 75, 91, 94]), SV will 
increase [36, 37]. The immediate effect of a decrease in venous capacitance is an 
increase in all pressures [106], including transmural RVEDP and thus RV filling, 
enabling the RV to increase its systolic performance [36, 37].

Fluid infusion leads to an increase in venous capacitance, lowering the central 
venous pressure [108, 110, 111]. A high CVP always has consequences and will 
limit the venous return [49].

In patients with septic shock, Stephan [112] found that, despite vasodilatation of 
both the arterial and venous systems [113, 114], volume loading increased the 
venous tone and thus the CVP significantly and to high values (>10 mmHg). This is 
due to a marked reduction in the compliance of the venous system secondary to 
stiffening of the vein walls by several sepsis-induced mechanisms [112]. 
Furthermore, drastic increases in CVP indicte that the ability to accommodate in 
case venous return has reached its limit and that blood is welling up [98].

CVP is normally 0 mmHg at rest and might increase to 2–4 mmHg during exer-
cise [115]. The CVP is only elevated in disease states [116, 117], a CVP > 10 mmHg 
often reflects an elevated RV-afterload [116].

1.3 Preload
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In critically ill humans [4, 69, 93, 118, 119] as well as in healthy persons [76] we 
know that no correlation at all exists between CVP and preload or change in 
CVP and change in preload. The lack of a relationship is due to the fact that, in 
humans, the compliance of the atria and, in particular, of the ventricles is highly 
variable [76]. Furthermore, preload is not the same as fluid responsiveness [120, 
121], and CVP and its change poorly (do not [122]) predict fluid responsiveness 
[10, 75, 123, 124].

Thus, in daily practice the absolute value of the CVP and even dynamic changes 
in its value are very difficult to interpret and cannot be used as a valid indicator of 
fluid management at all [117].

In general, a CVP ≥ 10–12 mmHg has to be considered high, and most patients 
within this range will not respond to volume administration [44]. Bafaqueeh [125] 
found that 40% of patients with a CVP < 6 mmHg did not respond to further fluid 
administration.

Pericardial constraint accounts for 96% of the RAP, if CVP > 10 mmHg [71]: A 
CVP ≥ 5 mmHg [126], and particularly when exceeding 9–10 mmHg, will exert 
substantial constraint on (left) ventricular filling [63, 127].

Thus, an elevated CVP > 9–10 mm Hg is always pathological [116, 117], sig-
nalling that fluid administration is unlikely to be successful [125], and that diastolic 
ventricular interaction (DVI) [63, 127] may be present or will occur if the CVP 
increases further (see part 8 of this chapter).

1.4  Hemodynamic Monitoring

1.4.1  Assessment and Monitoring of Fluid Status

Haemodynamic monitoring is a cornerstone in the management of critically ill 
patients [117]. It helps identify pathological states [13, 128] and complications of 
circulatory failure [13, 117] and aids restoration of normal haemodynamic param-
eters to prevent tissue and organ injury, to restore organ failure/dysfunction and 
hence to reduce mortality [117].

When faced with a compromised circulation, volume expansion is very fre-
quently the first therapeutic measure used to improve haemodynamic status [129]. 
Unfortunately, only 40–70% of all patients with acute circulatory failure respond to 
fluid administration (SV/CO ↑) [75], which means that 30–60% of patients are not 
fluid responsive and volume administration may be harmful [117, 130–132]. Both, 
acute and chronic right heart failure [47] as well as acute left heart failure [23, 24] 
may deteriorate with volume loading.

Therefore a rational approach to fluid administration is needed, where the thera-
peutic decision is based on correctly assessed effective intravascular volume (pre-
load) and the probable response to increased volume [117, 133]. However, the 
clinical tools available to evaluate the patient’s fluid status and specifically the 
intravascular/intraventricular filling (preload), such as jugular venous disten-
sion, crackles on auscultation, peripheral oedema, etc., are of minimal value and 
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very poor indicators of the volume status, particularly in the critically ill patient 
with (cardiogenic) shock: They cannot be validated as a useful tool or basis for 
treatment decisions [134–138]. The only relevant clinical sign which, although still 
non-specific, may indicate a possible volume deficit is the heart rate. Volume defi-
cits are usually compensated by an increase in heart rate (>90 bpm) to maintain 
CO in case of low SV [92, 139, 140].

In acute heart failure patients a two-minute bedside assessment [88, 141, 142] is 
extremely helpful to allocate the patient to one specific haemodynamic profile (wet 
or dry and cold or warm) with corresponding treatment regimes [88, 142–144] 
(see detailed information in Chap. 2). This evaluation, however, does not provide 
any usable information about the patient’s actual intravascular fluid status (to 
classify the patient as normo-, hypo-, or hypervolaemic) or whether a cold, and thus 
hypoperfused, patient will respond and benefit from fluids or not [28].

Hence, in addition to this useful bedside assessment, a proper assessment of the 
patient’s intra-vascular volume status must be carried out to clarify whether a ben-
efit (positive fluid responsiveness) can be expected from volume expansion before 
fluids are given. Blind administration of intravenous fluid may be harmful through 
an increase in LVEDP [130], as the elevation of the LVEDP predominantly causes 
the patient’s symptoms to worsen [15] and, with increasing LVEDP, the patient’s 
prognosis [15, 16, 88].

In case of central hypovolaemia, volume administration will induce a significant 
increase in SV (flow) as long as a preload reserve can be recruited [130, 131, 
145]. Thus, it is important to predict in a haemodynamically unstable patient 
whether this patient will increase his/her systemic blood flow (SV) in response to 
volume expansion or not [131].

Kumar [9] showed that, in healthy individuals, volume loading increases the 
systolic BP/LVESV ratio and the LV-SW by:

• an increase in LV-SV due to a reduction in LVESV while the LVEDV remains 
unchanged and

• an increase in contractility.

The contribution of the Frank–Starling mechanism is only mild to moderate, the 
contractility is the main component [9]. Kumar examined healthy volunteers and 
confirmed the findings of animal studies conducted in the 1960–70s [146–148]. 
Flow represented by SV is the original, central, and decisive parameter to be 
assessed when defining fluid responsiveness [75, 76, 121, 131, 145, 149].

 Fluid loading must increaseLV SV if the heart is preload re   -      ssponsive   
                                  [75, 131, 145]

In heart failure, although the LVEDV may be in the normal range, fluid adminis-
tration can fail to increase the SV due to a significant reduction in contractility  
[10, 75, 91, 92]. Furthermore, we know that the Frank–Starling mechanism is 
impaired in heart failure [50, 90] and hence volume expansion may well be harmful 
and worsen the haemodynamic situation [117, 130–132].

1.4 Hemodynamic Monitoring
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Braunwald [91], and recently Michard [10, 75] have established proof that the 
increase in SV due to increased LVEDV depends on the contractility and pre- 
infusion preload (initial end-diastolic fibre length in respect to the Frank–Starling 
mechanism), particularly in the case of compromised cardiac function [10, 
75, 91] (see Fig. 1.4).

In those patients with intermediate pre-infusion preload (normovolemia), the 
effect of volume loading depends exclusively on the contractility and, in the case of 
a compromised heart function (lower curve) in ‘intermediate preloaded’ patients, 
the effect of volume loading in order to increase SV, and thus CO and/or BP, is mini-
mal and clinically not relevant [10].

Nevertheless, even in cases of cardiogenic or other types of shock, fluid admin-
istration may initially be helpful. Up to 70% of all patients in shock show a positive 
response (increase of blood pressure, increasing the perfusion of vital organs) when 
fluids are administered [150]. In non-responders we most often find that 
RV-dysfunction/failure with sepsis is the main underlying reason [150].

The physiological and pathophysiological facts described above demonstrate 
and emphasize that preload and fluid responsiveness are not the same, and this has 
been stressed in many published studies [117, 120, 121, 130, 151]. Therefore, as 
prerequisites to a positive response to fluid administration, there must exist both a 
recruitable contractile reserve (myocardial reserve) and an absolute or relatively 
hypovolaemic central vascular and cardiac system to provide a filling reserve.

An increase in SV by ≥15% due to volume administration is the most accepted 
benchmark confirming a positive fluid response [123, 152–154], although others 
define a positive response if SV increases secondary to volume expansion by ≥10% 
[155–158].

1.4.2  Prediction of Fluid Responsiveness

1.4.2.1  Pressure Measurements
Cardiac filling pressures such as CVP and LVEDP/PCWP have failed to predict 
either preload or fluid responsiveness. The relationship (if there is any) between the 
intravascular/intraventricular volume and the CVP/PCWP is, as already mentioned, 

Fig. 1.4 Δp: Change in 
pressure; ΔSV: change in 
SV; upper curve: normal 
heart function, lower 
curve; impaired heart 
function (modified from 
Michard, F [10], with 
permission)
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very poor in both ill patients [4, 69, 118, 119, 159] and healthy volunteers [76]. 
Even in sedated and mechanically ventilated patients, CVP and PCWP have been 
shown to be unreliable parameters to reflect the preload or to predict fluid respon-
siveness [10, 75, 76, 124, 160]. Osman [122] states that, “fluid responsiveness is 
documented to be unrelated to CVP/RAP and PCWP/LVEDP, respectively”.

1.4.2.2  Volumetric Measurements
Volumetric measurements (RVEDV, ITBV or GEDV) and ventricular areas 
(LVEDA or LVEDD) have been shown to be useful in assessing the preload and 
seem to be better than cardiac filling pressures in guiding volume therapy [75, 76, 
161, 162] but, unfortunately, they are still not great at predicting fluid responsive-
ness [123, 163, 164].

In particular, it was hoped that GEDV(I), reflecting central blood volume [165, 
166], and the direct measurement of the RVEDV would overcome the mentioned 
difficulties. However, the indirectly measured volumetric parameter GEDV failed 
to provide additional prediction in terms of the patient’s response to volume expan-
sion [9, 161, 162, 167]. The direct measurement of the absolute value of the RVEDV 
allows a definitive assessment of volume status, however unfortunately whilst SV 
increased with volume loading there was no change in the measured RVEDV [9].

Furthermore, Reuter found only a poor correlation between SV and LVEDA 
(from echocardiography) [156], and Slama showed that changes in LVEDD are also 
dependent on LV stiffness [168]. Several other authors followed by confirming the 
poor correlation between LVEDD and SV/CO [123, 153, 159].

Thus, filling pressures such as CVP/RAP, PCWP, or areas/geometric dimensions 
of the LV, such as LVEDA or LVEDD, are unable to predict fluid responsiveness [75, 
117], nor can direct [9] or indirect measurements of end-diastolic volumes (over-
view by [75]) predict the patient’s response to volume expansion [161, 162, 167].

Preload is simplynot the sameaspreload responsiveness      [121, 171, 130, 151].

Osman concludes that, in the assessment of preload responsiveness, parameters 
other than pressures and ventricular volumes need to be measured [122].

1.4.2.3  Dynamic Parameters
In contrast to the static parameters discussed above for assessing the filling pres-
sures, filling volumes, and left ventricular areas, we have the dynamic parameters, 
which comprise stroke volume variation (SV-V), pulse pressure variation (PP-V), 
systolic blood pressure variation (SP-V) and aortic blood flow changes, which pro-
vide substantial information and are valuable tools in predicting fluid responsive-
ness [123, 140, 152, 153, 162, 169].

The dynamic parameters reflect changes in LV-SV due to heart-lung interactions 
induced by mechanical ventilation [123, 139, 167, 170, 171] and several studies 
have documented that variations in LV-SV associated with mechanical ventilation 
are highly predictive of preload responsiveness [152, 153, 156, 158, 168].

The alterations in cardiac preload, and hence variations in LV-SV associated with 
respiration, are referred as to SV-V and are defined by the maximum to minimum 
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SV values during a period of three breaths, or over a time interval of 20–30 s [153, 
158, 168]. SV-V is validated in several studies for deeply sedated, mechanically 
ventilated patients with a tidal volume of 6 mL/kg without any spontaneous breath-
ing effort. A SV-V ≥ 10% predicts an increase in CO of ≥15% for a 500  mL fluid 
bolus [157, 158, 168].

Positive pressure ventilation with its cyclic increases in intrathoracic pres-
sure and lung volume [172, 173] induces intermittent variations in cardiac pre-
load (heart–lung interaction) [156, 174–176]. This is predominantly due to a 
reduction in venous return secondary to the increase in RA pressure during 
mechanical inspiration [174, 177–179]; hence, the RV filling is reduced (↓ 
RVEDV) [174, 180–182]. In accordance with the Frank–Starling mechanism 
this produces a reduction in RV-SV [36, 37, 183]. An additional effect that is at 
least partly responsible for the reduction in RV-SV is exerted by the increase in 
RV-outflow impedance [184, 185] and thus a rise in RV-afterload with consecu-
tive impaired RV ejection secondary to positive pressure ventilation [176, 
186–188].

However, this inspiratory reduction in RV-SV affects the LV-filling after a few 
heart beats, producing a ↓ LVEDV [175, 189, 190]. Consequently, the LV-SV is 
reduced [175, 176, 189, 190] and this takes effect during expiration. Thus, 
ventilation- dependent variations in RV-filling will induce cyclic variations in 
LV-filling with a concomitant reduction in LV-SV, and thus arterial blood pressure, 
if both RV and LV are fluid responsive [117, 176, 183, 189].

Conversely, during inspiration the opposite occurs; increased LV-filling will result 
in a higher LVEDV and hence higher LV-SV and arterial pressure [117, 176, 189].

The influence of positive pressure ventilation on the cyclic haemodynamic 
changes is greater when central blood volume is low rather than when it is normal 
or high [75, 135, 153].

The dynamic parameters will lose their validity if tidal volumes vary from breath 
to breath, as with (assisted) spontaneous breathing [131, 155, 191] or in case of 
marked arrhythmias inducing variations in LV-SV [135]. Exaggerated values of 
SV-V were found with large tidal volumes, reduced chest wall compliance and air 
trapping [156]. Furthermore, a moderately elevated intra-abdominal pressure (up to 
20 cm H2O) affects cyclic circulatory changes by inducing a progressive increase in 
intrathoracic pressure enhancing the pleural pressure swings and thus may feign 
fluid responsiveness [192]; if the intra-abdominal pressure is higher than 20 cm 
H2O, less influence is seen [192].

Nevertheless, the dynamic parameters have shown themselves to be far better 
than the static parameters in predicting fluid responsiveness and are currently the 
approach of choice in sedated and ventilated patients [117, 135, 152, 153, 155, 156].

The dynamic swing in LV-SV is the current gold standard [145, 152] in predict-
ing response to fluid administration—but SV-V, although affected by preload, pre-
dominantly also seems to reflect the myocardial response to volume loading [156]. 
This is consistent with our knowledge that SV predominantly depends on 
LV-function (mainly the contractility [10, 75, 91, 92] and, in heart failure, on after-
load as well [11, 12, 46, 94]) rather than on pre-infusion preload [10, 75, 91]. Kumar 
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[9] showed that, in healthy volunteers, the increase in SV due to volume loading is 
predominantly a result of an increase in contractility rather than an increase in fill-
ing volume, and thus a larger fibre stretch as described by Frank and Starling.

Besides the assessment of SV-V during positive pressure mechanical ventilation 
[191], surrogates of SV such as aortic flow [153, 157], systolic BP (SP-V) [189, 
193], and pulse pressure (PP-V) [145, 183] have turned out to be reliable and valu-
able indices by which to check central blood volume and the response to fluid 
administration.

Descending Aortic Blood Flow as a Direct Correlate of SV/CO
Descending aortic blood flow represents the majority of CO [194, 195] and is 
accepted as a clinically realistic estimate of SV and or CO [196–198]. Aortic 
Doppler flow velocity measurements can determine the SV, calculated with the help 
of the product of the velocity-time interval in the ascending (estimated by echocar-
diography [151]) or descending aorta (oesophageal Doppler measurement) [197, 
199, 200] and a measured [151] or estimated aortic diameter using the nomogram 
by Boulnois [195]. These flow velocity measurements have been reported to predict 
fluid responsiveness accurately [153, 168, 197].

Systolic Pressure Variation (SP-V)
Systolic pressure variation (SP-V) is probably the easiest way to assess fluid respon-
siveness and is defined as an ‘increase or decrease in systolic arterial pressure with 
each mechanical breath relative to the systolic pressure during the short apnoea 
phase’ [193, 201]. Numerous studies have shown its value as a sensitive parameter 
in predicting preload responsiveness in patients who are mechanically ventilated 
without any spontaneous breathing [123, 153, 156, 167, 169, 202]. The sensitivity 
of this method is not as high as that of PP-V because it does not quantify the varying 
diastolic arterial pressure components [183].

Pulse Pressure Variation (PP-V)
Pulse pressure variation (PP-V) may be the most robust and sensitive indirect indi-
cator of volume status [75, 183]. The variation of the aortic pulse pressure (aortic 
pulse pressure ~ LV-SV [203, 204]) is established as an evidence-based index with 
which to assess and predict the response to fluid administration in mechanically 
ventilated patients [75]. A cyclic variation of the aortic pulse pressure due to varying 
LV-SV during a respiratory cycle of more than 13% (r2 = 0.85, p < 0.001) [75] 
implies a very high likelihood (85%) that the patient will benefit from fluid admin-
istration with a significant increase in SV and thus in blood pressure (positive pre-
dictive value of 94%, negative predictive value of 96%) [75, 190, 205].

Calculation of PP-V during one respiratory cycle:

 

Ppmax: maximal systolic pressure maximal diastolic pressur- ee
Ppmin: minimal systolic pressure minimal diastolic pres

,
- ssure.

/ / .PPV % Ppmax Ppmin Ppmax Ppmin 2 100( ) = -( ) +( )éë ùû´  
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Passive Leg Raising (PLR), An Autotransfusion of Fluids
Several studies recently published have given encouraging evidence that prediction 
of fluid response is feasible in spontaneously breathing as well as ventilated patients 
[130, 151].

Raising the legs to approximately 30 or 45° is called passive leg raising (PLR) 
and will increase the aortic flow in case of a recruitable preload reserve 15–60 s 
after the legs have been raised [131, 145, 149, 151] and this will persist for 30–90 s 
[206] (Pinsky [117] up to 3 min).

Clinical studies have proven that the volume of blood transferred to the heart 
by PLR is sufficient to increase the left ventricular filling volume [131, 145, 207, 
208]. While the predictive value of the transient changes in SV is only fair if SV 
or its surrogates, SP-V and PP-V, are estimated from a peripheral pulse pres-
sure curve [129, 131]—due to the influence of the arterial compliance and the 
vasomotor tone [145, 204]—high sensitivities were achieved when measuring 
variations in SV centrally, i.e. by oesophageal Doppler [131], echocardiogra-
phy [151] or by femoral artery access, which is considered to be central [209, 
210]: Monnet [131] found a sensitivity of 97% and a specificity of 94% to 
achieve an increase of ≥15% in aortic blood flow in response to volume admin-
istration if, during PLR, the aortic blood flow increased by ≥10%. Lamia [151] 
showed a similar specificity (100%) but with a slightly worse (but still good) 
sensitivity of 77%.

Thus, an increase in aortic blood flow (SV/CO) by ≥10% [131, 145] or 12.5% 
[151] during PLR is reliably predictive of central hypovolaemia and a positive 
response to volume expansion [130, 131, 145, 151] in either mechanically venti-
lated patients or those breathing spontaneously. In the absence of central hypovo-
laemia and/or in the presence of an unresponsive RV and/or LV (compromised 
function, mainly impaired contractility) SV/CO will not increase by the PLR 
manoeuvre [131, 145].

As no external fluids are administered, the hazards of unnecessary volume load-
ing can be avoided [44, 87, 162, 211–213] and hence the measurement of central 
blood flow (aortic blood flow normally represented by SV or CO) in response to 
PLR is more robust and probably superior to PP-V when evaluating the patients’ 
fluid response, even in spontaneously breathing patients [121, 130, 131, 151]. 
Furthermore, this approach is more independent of varying tidal volumes and 
arrhythmias than a peripheral one [130, 131, 151]. The central measurement of 
blood flow avoids the relevant influences of arterial compliance and vasomotor tone 
[204] and the complex changes in pulse wave propagation and reflection along the 
arterial vessel system [214], both of which may change during PLR with a concomi-
tant change in SV.

1.4.2.4  Fluid Challenge
A fluid challenge is still advocated as a tool to evaluate the need for further fluid 
administration if strictly monitored and the response observed closely [133, 215], 
but the dynamic parameters described above are clearly superior and blind volume 
administration should be avoided if at all possible [130].
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A fluid challenge does not mean fluid resuscitation; it merely identifies those 
patients who are likely to show a beneficial response to (further) fluid administra-
tion [216]. To minimise the amount of fluid needed to assess responsiveness, the 
fluid should be given quickly [44] and some authors require an increase in CVP of 
at least 2 mmHg [217, 218] to confirm that a sufficient amount of fluid has been 
given. Rapid bolus administration of 250  mL in 5–7 min or 500  mL in 10 min [44] 
of fluid or PLR is expected to show an appropriate haemodynamic response if ben-
eficial for the patient [116, 217]. If a recruitable preload reserve is available, the SV 
must increase [217].

Although no definition as to what comprises an adequate fluid challenge is gen-
erally agreed upon, most studies do agree that a positive response is indicated by 
improving circulatory status as suggested by ↑ BP, heart rate unchanged or ↓, with 
accompanying SV ↑, and an improved effective blood flow documented by ScvO2/
SvO2 ↑, and lactate ↓ [116].

It is always worth remembering that a fluid challenge should only be performed 
if an indication is obvious, i.e. within the context of hypoperfusion [219] and that 
there is only a very poor correlation between change in BP and CO [44]. If no posi-
tive effect is achieved, fluid administration is useless, potentially harmful, and must 
be stopped immediately [44, 87, 162, 211–213].

Despite uncertainty, even in life-threatening situations such as cardiogenic shock, 
the administration of moderate amounts of fluid (about 3  mL/kg, hence ~ 250–300  mL) 
as a fluid challenge under close monitoring is appropriate and may stabilize the acute 
situation temporarily [220].

Appropriate and immediate fluid resuscitation in critically ill patients, if ade-
quate, will improve outcome [221]. McConachie [222] states that a fluid challenge 
is appropriate in virtually all critically ill patients in shock situations with blood 
pressure ‘too’ low and/or hypoperfusion due to low cardiac output, unless obviously 
suffering from gross congestive cardiac failure.

On the other hand, it must be emphasised that, although a patient responds to 
volume administration, this does not automatically mean that the patient requires 
volume, as healthy subjects will respond as well [44, 216].

Vincent and Weil have recently proposed the following algorithm as being the 
proper approach to performing a fluid challenge [133]. In hypotensive patients with 
circulatory compromise administer 250–500  mL colloidal fluid (~3–5  mL/kg) over 
15–20 min in order to stabilize the patient haemodynamically (at least temporarily), 
to improve organ and tissue perfusion, and to ‘test the system’ as to whether or not 
they are likely to respond positively to further fluid administration.

Criteria suggestive of effective volume loading [10, 31, 133, 183, 219]:

• increase in SV by ≥10% and/or increase in systolic blood pressure by ≥10%,
• heart rate unchanged or reduced,
• CVP increase ≤ 2–5 mmHg (if >5, no further administration, be cautious already 

if increase >2),
• no clinical signs of fluid overload,
• additional parameters, if monitored:

1.4 Hemodynamic Monitoring



18

 – PCWP increase ≤ 3–7 mmHg; stop fluids if increase >7 mmHg,
 – EVLWI prior and post fluids ≤ 7–10  mL/kg,
 – ↓ lactate, positive result by OPS (see below),
 – increase in urinary output.

Stop fluid challenge during or after infusion if [10, 31, 133, 183, 219]:

• SV/blood pressure does not increase appropriately (<10%) [92, 139, 140];
• Hypoperfusion does not improve (clinically, no ↑ UO, no ↓ lactate / no ↑ SaO2, 

no change in capnography/OPS evidence of improved tissue perfusion);
• CVP increase > 5 mmHg due to volume administration, be cautious if 

increase > 2: ↑ risk for DVI;
• High risk of DVI if CVP > 9–10 mmHg [116, 117, 127, 223] and particularly if 

SV/BP falls during volume administration.
• Additional parameters, if monitored:

 – EVLWI > 10  mL/kg [200, 224–226],
 – PCWP-increase > 7 mmHg.

An International Consensus Conference [218] from 2006 suggested ‘a rise in 
CVP of at least 2 mmHg either by 250  mL fluid administration within 10–15 min, 
or leg raising’ as a sign of sufficient fluid administration—defining a positive 
response if cardiac function and tissue perfusion improve. However, bear in mind 
that this recommendation is non-specific and expert opinion only.

As we know, CVP does not reflect preload or changes in preload, either in healthy 
or critically ill patients [69, 76, 119, 144, 159]. Thus, CVP cannot be used as a predic-
tor of RV-filling and cannot be used to assess the effect of volume loading. A change 
in the magnitude of the CVP of at least 2 mmHg is the minimum necessary for detec-
tion with confidence on most currently used monitors [44] and therefore seems to be 
an arbitrary figure. Remember, in patients with good cardiac function, the CVP may 
even fall despite the fluid challenge being successful [76] and, if using the PLR method, 
central monitoring is essential and peripheral monitoring is not adequate [129].

1.4.2.5  PiCCO-Monitoring (Pulse-Induced Continuous Cardiac 
Output)

PiCCO is a method of haemodynamic monitoring which combines transpulmonary 
thermodilution and continuous arterial pulse contour analysis (see overview by 
Pfeiffer [227]).

This method allows the measurement of volumes [34, 160, 228] such as intra- 
thoracic blood volume (ITBV) representing the intra-vascular volume status, the 
global end-diastolic volume GEDV (of all four chambers) and, of most importance, 
the extra-vascular lung water (EVLW) [224, 229].

These volumetric measurements are performed semi-invasively and are supe-
rior to the common pressure measurements, CVP and PCWP, when assessing the 
patient’s intravascular volume status and the cardiac preload [84, 85, 119, 230]. 
Unfortunately, these parameters (ITBV and GEDV) do not allow any prediction of 
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the response of the circulatory system to fluid administration [75, 161, 162] (see 
above). However, the PiCCO-method fulfils all the requirements to evaluate 
response from PLR [131, 151, 231].

EVLW is an extremely informative parameter, proven as being an accurate mea-
surement of the real amount of fluid in the lung tissue [225, 229, 232], the EVLW 
value provides substantial information about patient prognosis [211, 224, 232]. 
Currently, it is the only method able to diagnose ‘developing’ pulmonary oedema 
earlier than all other available methods, including clinical examination, chest X-ray 
and pressure measurement via PA-catheter (PCWP) [119, 233–236]. Furthermore, 
it is able to guide investigation of the pathologically high lung water: cardiac or 
extra-cardiac causes [213, 229, 237].

Two-thirds of all HF patients with a mean PCWP of <18 mmHg (18 mmHg is the 
generally accepted upper limit in case of a failing heart, probably providing the 
maximum preload recruitable SV) show a significantly increased EVLW/EVLWI 
[238], although it is not detect- able by auscultation or on X-ray [239, 240]. On the 
other hand, the PCWP is measured to be normal (≤12 mmHg) in some cases of 
cardiogenic shock, particularly in previously healthy patients with acute myocardial 
infarction, but the EVLW is already elevated and thus pulmonary oedema is present 
[28, 241, 242]. An increased EVLW/EVLWI signals increased mortality [211, 232, 
243] and in the case of an elevated EVLW, any fluid reduction will lead to an 
increase in CO [234] (Fig. 1.5).

EVLW is valuable in indicating fluid overload [225, 235, 236] and its value (nor-
mal range EVLWI 3–7  mL/kg) should influence your therapeutic decision. If the 
EVLWI exceeds 10  mL/kg, the mortality increases exponentially and further fluid 
administration is not advisable [212, 226, 232, 243].

The permeability index PVPI (PVPI = EVLW/pulmonary blood volume (PBV) 
with PBV = ITBV − GEDV) reflects, if elevated (>3), an increased capillary perme-
ability (capillary leakage resulting in non-cardiogenic oedema) [213, 229, 237], 
while an index <3 in combination of elevated EVLW/I is suggestive for a cardio-
genic oedema.

Fig. 1.5 This diagram 
shows the mortality rate 
depending on the amount 
of extravascular lung 
water. The graph is of 
special value because it is 
validated by post mortem 
analysis of lung water, 
confirming the accuracy of 
the clinical measurement 
(adapted from Sturm et al. 
[232]), with permission
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1.4.2.6  Echocardiography
Echocardiography is essential to help diagnose the underlying pathology in circu-
latory failure and/or cardiac dysfunction [244, 245]. Heidenreich [246] success-
fully improved diagnostic accuracy by identifying a further 28% of the underlying 
aetiologies in unexplained hypotension when examining patients by transoesopha-
geal echocardiography (TOE) in addition to the other obtained hemodynamic 
parameters. Thus, he showed that TOE adds significant information to invasively 
acquired haemodynamic data. Echocardiography has the ability to rapidly diag-
nose and aid decisive therapeutic decisions in cases of cardiac tamponade [247] 
and aortic dissection [248], confirming the clinically suggested diagnosis of endo-
carditis [249], to reveal evidence of haemodynamically significant pulmonary 
embolism [250], and is, of course, extremely helpful in assessing the heart’s per-
formance [251].

The assessment and evaluation of SV/CO, probably the main determinant of 
sufficient organ perfusion, is relatively easy to obtain by flow measurement in 
the descending aorta [200]. Laupland [199] gave proof that this is easy, quick 
to learn, and simply done in daily practice. However, this method does have 
some limitations. It is assumed that about 70% of the total CO will reach the 
descending aorta [195] and, furthermore, instead of measuring the diameter of 
the LVOT needed for the calculation of CO, a nomogram by Boulnois [195] is 
used. Thus, this method provides a rough estimate of the CO and the correla-
tions with invasive measurements are weak when compared with 
PA-catheterisation or PiCCO [243, 252, 253]. If estimating the CO with PA 
catheterisation, as recommended by the ESC and AHA, advanced skills and 
training are necessary [254].

There have been 11 large studies evaluating the use of echocardiography as a 
continuous monitoring method in critically ill patients, most of them using the tran-
soesophageal technique. No final conclusion can be made as to whether or not echo-
cardiography should be recommended as equal to the established methods in 
continuous haemodynamic monitoring.

Echocardiography is time consuming, requires advanced physician training in 
acquisition and interpretation, and it is not realistic to establish this technology on a 
24 h basis worldwide [176, 255, 256]. The usefulness of echocardiography lies in its 
diagnostic capacity and there is a consensus that an echocardiogram is absolutely 
essential in the initial assessment of all patients suffering from (cardiogenic) shock 
and should be performed as early as possible [244, 245, 257, 258]. Echocardiography 
(especially TOE) frequently depicts abnormalities overlooked by catheter-based 
invasive assessment tools such as LVOT obstruction, diastolic ventricular interac-
tion, RV-dysfunction/failure, LV diastolic dysfunction, valve disease, cardiac com-
pression, etc. [246, 259]. Furthermore, it has a great impact on therapeutic 
considerations, with 60% [260] of planned treatments altered following echocar-
diography [261–264].

Echocardiography can be a life saving tool; in cardiac failure patients, echocar-
diography is far easier and faster than PA-catheterisation and provides key haemo-
dynamic information [265].
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1.4.3  Arterial Blood Pressure

1.4.3.1  BP and Autoregulation
Adequate organ perfusion is essential to avoid the development of shock [266]. 
Although the mean arterial pressure (MAP) is the best estimate of organ perfusion 
pressure [116], there is no known threshold pressure defining adequate perfusion 
pressure amongst different organs, between patients, or in a patient over time [267]. 
The autoregulation of most organs maintains a constant organ-specific blood flow 
over a broad range of varying BPs and changes in metabolic rates, but hypotension 
is always pathological [116, 117].

Most authors define hypotension as systolic BP < 90 mmHg [268, 269], 
MAP ≤ 65 [267, 270] to 70 mmHg [271, 272], although in known hypertensive 
patients this may be altered to a MAP ≤ 85 mmHg and, in known hypotensive 
patients, ≤50–60 mmHg. In patients with IHD a MAP of ≤75–80 mmHg [267, 
273–275] is commonly used.

Hypotension impairs autoregulated blood flow distribution [276, 277], and the 
MAP needed to maintain autoregulation varies from organ to organ and depends on 
clinical conditions (i.e. known arteriosclerotic disease or not).

Kidneys
A constant renal blood flow is maintained by autoregulation, which acts in a range 
of MAPs between 80–180 mmHg [278–280]. Iglesias [281] demands a 
MAP > 70 mmHg in order to prevent acute renal failure, or if acute kidney injury 
has already developed, in order to re-establish adequate renal perfusion. Esson 
[282] stresses that adequate renal perfusion pressure is a cornerstone of care in acute 
renal failure.

Brain
Autoregulation works within MAPs of 60–160 mmHg [283], the recommendations 
for an adequate cerebral perfusion pressure in critical illness vary from at least 
60 mm Hg [284, 285] to ≥70 mmHg [283, 286–288].

 
Cerebral perfusion pressure MAP Intra cerebral pressure CV   = - +- PP( )  

(In case of brain injury even higher pressures may be desirable).

Heart
A coronary perfusion pressure (CPP) is determined by:

 CPP diastolic blood pressure LVEDP= -   [289]

Coronary autoregulation functions from (50 [273]) 60 mmHg up to 140 mmHg 
[273, 274]. This means that in the case of an elevated LVEDP (>15 mmHg), a mini-
mal diastolic pressure of > 65 mmHg is essential. In coronary artery disease, even 
higher pressures are required in order to prevent further deterioration due to pro-
gressive ischaemia [267, 273–275].
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Septic Shock
In septic shock, a MAP between ≥ 65 mmHg [260, 270, 275, 290] and 75 mmHg 
(in patients with known occlusive arterial disease, peripheral arteriosclerosis or long 
standing hypertension) [275] is recommended. A study by LeDoux showed that a 
MAP between 65 mmHg and 85 mmHg was not associated with significant differ-
ences in organ perfusion [267].

This was confirmed by Bourgoin [291] who showed that an increase in MAP 
from 65 mmHg to 85 mmHg with an infusion of noradrenaline did not improve 
renal function. The key point is that, as long as autoregulation is not substantially 
disturbed, a MAP of ≥65 mmHg is sufficient. But in case of a breakdown of auto-
regulation, however, higher MAPs are necessary to re-install it [270].

However, even a BP generally considered normal does not necessarily reflect 
haemodynamic stability and adequate organ perfusion [292]. Blood pressure is an 
inadequate indicator of incipient shock in a patient [293]. It is therefore essential to 
make an assessment of tissue perfusion.

1.4.3.2  Assessment of Tissue Perfusion
Organ perfusion essentially depends on blood flow and thus cardiac function [200]. 
Circulatory shock is known to cause tissue hypoperfusion [117] and inadequate tis-
sue perfusion is associated with elevated morbidity and mortality [221, 294–298].

Compared to the difficult task of evaluating the vascular fluid status and the 
patient’s likely response to volume expansion, tissue hypoperfusion can be assessed 
fairly well by clinical examination [257, 269, 299]. Clinical signs suggestive of tis-
sue hypoperfusion are [129, 130, 151]:

• tachycardia,
• hypotension (sBP < 90 mmHg, MAP < 70 (60) mm Hg, or BP-drop > 40 mmHg),
• oligo-/anuria,
• clinical or biological signs of extracellular fluid depletion (ketoacidosis, vomit-

ing, diarrhoea),
• delayed capillary refill,
• mottled skin,
• altered level of consciousness.

Menon [257] strongly recommends a diagnosis of cardiogenic shock (CS) in all 
patients exhibiting signs of inadequate tissue perfusion in the setting of severe 
cardiac dysfunction irrespective of the BP.

SvO2 (mixed venous oxygen saturation) reflects the balance between oxygen 
delivery and oxygen consumption [291, 300]. Pinsky [117] and Reinhart [301] state 
that a decrease in SvO2 to <70% represents increased oxygen extraction by the tis-
sues [117, 301] suggestive of hypoperfusion [302]. A persistent SvO2 < 30% is 
associated with severe tissue ischaemia [303].

Plasma lactate levels, although non-specific, are still a reasonable surrogate for 
inadequate tissue perfusion [304, 305]. A reduction of an initially elevated value 
signals improvement of perfusion [306].
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Thus, ↑ plasma lactate levels and ↓ SvO2 [307, 308] coupled with a suggestive 
clinical examination may help support the earlier diagnosis of tissue hypoxia.

Ander [309] found that monitoring of ScvO2 and lactate in patients with severe 
heart failure (patients with known cardiomyopathy being admitted with acute 
decompensation) is superior to assessment and monitoring clinical vital signs for 
the recognition of occult cardiogenic shock. If both parameters are abnormal (lac-
tate > 2 mmol/L, ScvO2 < 60%), occult/pre-cardiogenic shock requiring a special 
therapeutic approach could be clearly identified, whilst this was not possible from 
the vital signs [309].

Newer developments such as sublingual capnography [310], orthogonal polar-
ization spectral spectroscopy (OPS) [311, 312] and near-infrared spectroscopy 
(NIRS) attempt to measure local tissue blood flow and oxygen utilization [287, 313] 
and evaluate any improvement due to therapeutic intervention.

Due to the fact that the use of ‘the conventional global haemodynamic and oxy-
genation approach’ may fail to provide adequate information on tissue perfusion, 
non-invasive monitoring of peripheral perfusion could become complementary in 
acting to warn of imminent global tissue hypoxia [314].

It must be remembered that the rationale for haemodynamic monitoring is to 
restore normal haemodynamic parameters in order to prevent organ injury and 
restore organ dysfunction [117], however this may not be valid in all cases. 
Haemodynamic monitoring usually assesses the global circulatory status, not 
organ function or microcirculation [288, 315–319], and does not address the mech-
anisms by which disease occurs [320, 321]. Therefore, we have to be careful in 
drawing therapeutic conclusions from the results of monitoring the macrocircula-
tion, improvement of macrocirculation may compromise the microcirculation even 
further [322].

1.5  Afterload

1.5.1  Definition

The force opposing myocardial fibre shortening during ventricular ejection is called 
afterload [30, 323–325].

1.5.2  Vascular Properties, Effective Arterial Elastance, Wall 
Stress and the Law of LaPlace

Braunwald [30] states: “the load opposing LV ejection, in its simplest sense, is 
reflected by the systolic blood pressure”. However, the physiology is much more 
complex and systolic blood pressure has turned out to be a very poor reflection of 
afterload. Indeed, the arterial system imposes a hydraulic load on the heart, and a 
higher arterial load requires higher energy to eject a given amount of blood. This 
vascular, hydraulic load, opposing ventricular ejection is most completely described 
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and reflected by aortic input impedance1 (respectively pulmonary artery input 
impedance) [326–329].

The main parameters characterizing arterial input impedance are peripheral vas-
cular resistance, total arterial compliance, and aortic characteristic impedance [326, 
329, 331]. While peripheral vascular resistance specifies steady state conditions, the 
pulsatile load (pulsatile load is complex and time varying [332]) components are 
represented by:

 1. The total arterial compliance, reflects, by quantifying the pressure-volume–rela-
tion, the overall structural behaviour of the arterial system as a whole [327, 333–
335], but specifically represents properties related to pulse wave propagation and 
reflection [327, 336–338], which affects the loading conditions, as intensity and 
timing of the pressure wave reflections are influenced by inertial forces, and 
oppose LV ejection [339], and

 2. Aortic characteristic impedance [326, 340], contributing up to 80% to the total 
compliance [341].

The characteristic impedance outlines physical properties, such as viscoelasticity 
and dimensions of the large central, proximal arterial vessels (aorta, respectively pulmo-
nary artery), and thus the contribution of elastic vascular properties to total load [327, 
328, 340, 342, 343]. “Pulsatile afterload” largely includes characteristic impedance and 
pulse wave reflections [326, 340, 344], directly opposing ventricular ejection.

In fact, special attention has to be paid to the impact of the pulsatile elements on 
the total vascular load, as the intensity and the timing of reflected pressure waves 
change according to the elastic vascular properties (largely proximal aorta), and thus 
may exert a substantial impact on the vascular load the ventricle is facing [338, 345, 
346]. In case of arterial vascular stiffening, as occurring with (physiological) ageing 
[347–349] or in hypertensive individuals [317, 350, 351], the wave velocity increases, 
and reflected waves return and sum up with incident forward waves, augmenting net 
pressure [318] and reaching the ventricle (already) in late systole, after- loading the 
ventricle [319, 338]. Concomitantly, aortic input impedance considerably increases 
[317, 319, 352, 353]. Accordingly, reflected pressure waves are shown to exhibit a 
substantial impact on systolic load imposed on the heart [345], and arterial stiffening 
is recognized to afterload the ventricle [317, 319, 354], by elevating (late) systolic 
load, thereby increasing systolic ventricular elastance, compromising ventricular 
filling, and influencing diastolic properties with raising filling pressures [347, 355]. 
Indeed, it has to be emphasized, that diastolic cardiac function is affected if arterial 
compliance decreases as in arterial stiffening [356]. Therefore, central vascular stiff-
ening and pulse wave reflections determine late systolic arterial loading [338, 346].

The impact of pulsatile load, particular wave reflections, is even more relevant in 
the pulmonary circulation [341, 357]: In contrast to systemic circulation, resistance 

1 The term impedance means to transfer and to apply physico-electrical and—mechanical concepts 
to biological issues, to explain how and under which conditions power is transmitted from one part 
of a system to another part, under varying circumstances [330].
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and compliance of the pulmonary vasculature are inversely releated to each other, 
and are evenly distributed over the complete vessel tree [358, 359]. Accordingly, an 
elevated pulmonary capillary wedge pressure, by decreasing pulmonary vascular 
resistance, enhances net RV afterload, due to increasing pulsatile load relative to the 
resistive one [357].

However, it is hard to obtain aortic (pulmonary artery) input impedance, as a 
frequency domain analysis (by Fourier method) of simultaneously measured pres-
sures and flows is required [328, 360, 361] in order to describe the relation 
between arterial pressure and flow within a vessel/vessel system [327]. This is a 
technical challenge [360, 361] and additionally, it would be quite complicated to 
apply the derived frequency domain factors to daily clinical concepts and routines 
[330]. Sunagawa [362] made vascular properties (evaluated in the frequency 
domain) comparable with ventricular properties (expressed in the time domain), 
by lumping principal elements of vascular load (peripheral vascular resistance 
and total arterial compliance, characteristic impedance, and systolic and diastolic 
time intervals) together in (effective) arterial elastance (Ea), and as such, consti-
tutes a close approximation of arterial load [363]. Effective arterial elastance 
characterizes aortic input impedance, and thus arterial load that is imposed on the 
ventricle [362]. This “simple measure”, which lumps together static and dynamic 
components of impedance, has been shown to perform well in experimental stud-
ies [362, 364]. Although dominated by the non-pulsatile load component (SVR), 
Ea is also altered by artery stiffening due to increased pulsatile load [365]. Ea is 
the most complete, and also reasonably applicable, delineation of aortic input 
impedance [330].

Operationally, Ea is numerically defined as the ratio of end-systolic ventricular 
pressure to stroke volume, and is directly related to heart rate and peripheral vascu-
lar resistance, and is inversely related to total arterial compliance (which is deter-
mined, in large parts, by the central elastic arteries) [366]:

 
Ea SVR TPR , Ea HR, and Ea 1/arterial compliance~ ~ ~( )   

[366, 367].

However, practically, Ea is derived from the pressure-volume relation, defined as 
the ratio of left ventricular end-systolic pressure (LVEDSP) to left ventricular stroke 
volume (LV-SV ) [362, 363]:

 Ea LVESP/LV SV= - .  

This equation can be further simplified: If LVESP equals systolic arterial pres-
sure (sBP), corrected by 0.9 [363], Ea may be calculated as: Ea = LVESP/
LV-SV = sBP × 0.9/LV-SV.

Normal Ea values are around 2.0 mmHg/mL [347, 363, 368, 369].
Regarding the right ventricular—pulmonary vessel system interaction, Ea-Pulm 

is reported to be a reliable measure of the load faced by the RV during systole, and 
accounts for pulmonary vascular resistance, compliance, and impedance, thus 
including pulsatile components of arterial load [341, 370, 371].
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However, the tension the ventricular wall sarcomeres must overcome during sys-
tole in order to shorten is related to:

 (a) characteristics of the arterial system [331, 372, 373]
 (b) LV cavity size/dimensions [331, 374]
 (c) Pumping performance of the LV [331, 372]

Accordingly, aside from the vascular properties opposing and affecting ejection, 
there are specific cardiac properties contributing to, and participating in, afterload 
characterization. As such, myocardial wall stress during contraction represents 
“true” afterload, because wall stress reflects both central aortic and peripheral, vas-
cular loading conditions and intrinsic heart muscle properties, such as LV geometry, 
LV size and intra-cavitary pressure [324, 375–377].

The relation between afterload and systolic ventricular wall stress can be for-
mally defined by the law of Laplace [329, 378–381]: ơ = p x r/2h

at which the ratio r/h is a main determinant of wall stress [5, 329, 374].
(ơ represents wall stress, p = ventricular pressure, r = LV or RV radius and 

h = wall thickness).
(The law of LaPlace applies to spherical figures, thus its transposition and appli-

cation on the right ventricle with its varying regional internal radius may be prob-
lematic [380]).

Thus, directly applied:

 

Wall stress tension LV RV pressure LV RV diameter/
LV RV

( ) = ( ) ´ ( )
´ (2 )) wall thickness [382]

Dilatation will induce an increase in LV(RV) diameter and generally in LV (RV) 
filling pressure, and as such leads to a rise in wall stress. An increase in wall thick-
ness (in the case of hypertrophy) reduces the wall stress.

 LV dilatation increasing wall stress/tension® [382, 383].

Determinants of the LV wall stress mediated by LaPlace’s law are continuously 
changing during systole, producing varying measurements of LV wall stress depend-
ing on the phase of the cardiac cycle. Peak wall stress occurs within the first third of 
ejection, and wall stress then declines to its end-systolic value, which is less than 
50% of the peak value. At the same time, the total systolic wall stress (estimated by 
the stress time integral), predicts myocardial oxygen consumption [384].

All measures show a significant difference and the choice of index depends on 
the question being asked [384]:

• total stress reflects myocardial oxygen consumption,
• peak stress correlates closely with the progress of hypertrophy, and
• end-systolic wall stress represents most accurately the afterload.

The very good correlation between end-systolic wall stress and myocardial fibre 
length at end-systole [69], as well as between end-systolic wall stress and 
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end- systolic ventricular volume (ESV) [385–387], underlines the fact that the end- 
systolic wall stress is literally the (after)load that limits the ejection [388, 389].

Afterload end systolic wall stressand end systolic volume~ ~- - [382, 385–387].

Furthermore, several authors have confirmed the excellent correlation between 
end-systolic wall stress and LV afterload in daily practice [323, 376, 386, 387, 
390].

During systole, the LV-chamber size will decrease while the ventricle contracts, 
and thus the wall tension will fall. When the afterload increases, a greater rise in 
pressure is necessary for any given reduction in chamber size, and therefore, wall 
tension during systole is higher. The pressure increase has to be even greater, of 
course, in a primarily dilated LV [19].

By the way, there are two echocardiographic methods described by Reichek 
[378] (M-mode assessment, meridional wall stress) and Greim [391] (2D-assessment, 
circumferential wall stress), which directly assess the end-systolic wall stress. Both 
are time consuming, require advanced skills, and Greim [391] expresses concerns 
about the ability of the M-mode method to recognize acute changes in afterload in 
patients during cardiothoracic surgery.

To summarize, two alternative biophysical concepts may describe and character-
ize afterload [329]. Ross and co-workers [392] gave evidence, that the level of wall 
stress, rather than input resistance or pulsatile impedance, determine ventricular 
performance, favouring wall stress as the most exact feature representing “true” 
afterload. Furthermore, arterial input impedance specifically refers to vascular 
properties, while more or less neglecting cardiac properties. As such, while wall 
stress integrates the forces that oppose ventricular ejection, Ea is a measure of the 
hydraulic load faced by the ventricle [380, 393]. Wall stress is considered to be the 
most accurate feature to describe ventricular afterload [329]. However, while wall 
stress estimation has not gained any clinically feasible relevance in daily practice, 
Ea may be obtained with reasonable effort.

1.5.3  Afterload Mismatch and Acute Heart Failure Syndromes

In order to perform well, heart performance and afterload have to match, leading to 
the concept of afterload mismatch [329]: Basically, “a mismatch can be induced 
acutely in a normal heart if end-diastolic volume is not allowed to compensate for 
the increase in afterload” [394]. Subsequently, SV, EF and ventricular circumfer-
ence will fall [329]. Examples include: volume depletion in the presence of rapid 
and substantial rise in systemic pressure, and increases in afterload in a ventricle 
already having utilized the maximal preload reserve with average sarcomere length 
exceeding 2.2 μm, indicating maximal stretch (limited by pericardial constraint, and 
as such explaining why there is no descending limb of the Starling curve). Imposing 
an extra load on such a ventricle will cause a sharp drop in SV, unless the contractil-
ity can be increased intrinsically or by applying inotropic agents [395].
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1.5.4  Concluding Remarks

Afterload can be defined as the forces that oppose ventricular muscle fibre shorten-
ing [329, 396]. Features opposing comprise:

 (a) load imposed by the vascular tree and the properties of the blood within those 
vessels [331, 358, 372, 373], and

 (b) ventricular properties, which oppose contraction such as valves, and muscle 
fibre tension [372, 374, 396].

Systolic wall stress integrates the forces opposing ventricular ejection, accord-
ingly, wall stress may be considered the most accurately feature characterizing the 
load faced by the ventricle during systole [324, 332, 375–377, 397].

However, the clinical feasibility to apply the one, or the other, method assessing 
the highly complex relationship between ventricular contraction, arterial system 
and blood flow at bedside is nearly impossible [329]. Furthermore, that one single 
parameter can fully encompass all aspects cannot be expected [329]. To simultane-
ously measure pressures, wall thickness and radius in a constantly changing system, 
in order to determine wall stress, is currently not feasible. Therefore, simplified 
derivations are necessary and as such, effective arterial elastance has gained high 
acceptance and is widely used, at least in medical research, to evaluate the discussed 
relationships, and thus get insights into pathophysiological and pathogenetic pro-
cesses, interrelations, and sequences [329].

In daily clinical practice, the systemic (peripheral) vascular resistance (SVR) is 
the most common parameter used to describe the actual afterload, and often, SVR 
is used synonymously with after- load.

SVR however, only reflects the non-pulsatile component of the peripheral load 
under steady state conditions [398]. It does not comprise the impact of wave reflec-
tions, arterial impedance, or ventricular properties. Each of these phenomena affect 
LV-afterload independently of peripheral vascular resistance or arterial pressure 
[376]. Ageing, hypertension, and aortic stiffening contribute considerably to the 
pulsatile component of the afterload, and thus, this component becomes more prom-
inent under those conditions [399, 400]. Lang [401] showed in his investigation that 
the measurement of SVR substantially underestimates the change in afterload when 
LV afterload alone was decreased, increased, or remained unchanged, but with a 
simultaneous increase in contractility. These findings are not surprising, because 
from the peripheral pressure-flow relationship, the systemic peripheral resistance is 
not seen by the LV [378]. Nevertheless, SVR accounts for 90% of the resistance to 
ejection (arterial resistance is the dominant component of impedance load [402]) 
[403] and thus is justified as being the most commonly used parameter to clinically 
estimate afterload [222]. Furthermore, SVR may be very helpful in clarifying the 
diagnosis [13, 128, 222], particularly in hypotensive patients, and in heart failure 
syndromes, as shown by Cotter [13].

The fundamental pathophysiological alteration in acute heart failure syndromes 
is a substantially and inappropriately elevated afterload, with a markedly elevated 
systemic resistance/markedly increased LV outflow impedance, exerting a high 
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(end-)systolic load on the LV during ventricular ejection [11, 19, 394]. This is 
referred to as afterload mismatch, defined by “a fall in SV due to inappropriately 
high afterload” [329, 394, 404]. In heart failure syndromes, the LV afterload becomes 
the decisive determinant of cardiac performance [11, 12, 14]. As early as 1977, 
Cohn and Franciosa published their impressive diagram showing the correlation 
between afterload and cardiac performance/cardiac output (SV) (see Fig. 1.6) [11].

SV depends decisively on the magnitude of the afterload [3, 46, 93]. Furthermore, 
an elevated (after)load causes an increase in the LV filling pressure [405], and thus 
affects the already compromised diastolic properties of the heart, resulting in a fur-
ther reduction of the LV filling rate [406, 407]. Afterload is inversely proportional 
to the stroke volume, SV ~1/afterload [394], and therefore an increase in afterload 
should result in a fall in SV and ejection fraction (EF) [378, 408]. However, in 
healthy hearts, despite an increase in wall tension due to the increased afterload, 
normal fibre shortening is accomplished by a compensatory increase in contractility 
[9, 93]. In the case of impaired LV function the increase in afterload is not tolerated, 
fibre length shortening is impaired, and a decrease in EF results [19].

Finally, remember the following [382, 383]:

• afterload ↑ → LVEDP ↑ [355, 406, 407, 409],
• afterload ↑ → LVESV ↑ [410] and SV ↓ [410] (in healthy persons SV may be 

maintained due to an increase in contractility),
• afterload ↓ → LVEDP ↓ [17, 18, 411] and LVEDD ↓ [17, 18, 93, 410, 411].
 Due to the law of LaPlace:
• afterload ↓ → LVEDP ↓ → diastolic wall stress ↓ → O2–requirement ↓ [20, 410] 

→ LVEDD ↓ [17, 18, 93, 411],
• LV dilatation → wall stress /tension ↑ → afterload ↑ [382, 383],
• ↓ LVEDP → ↓ afterload [91, 411] (implication is inevitable & in accord with the 

law of LaPlace),
• ↓ aortic impedance (ventricular afterload) → ↓ systolic wall stress, and vice 

versa [412]

Fig. 1.6 Relation between 
SV (SW) and outflow 
resistance/impedance 
(adapted from Cohn, J. N. 
and Franciosa, J. A. [11], 
with permission)
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1.6  Contractility

1.6.1  Definition

Contractility is defined as the inherent capacity of the myocardium to contract 
independently of changes in pre- and afterload [413]. This capacity of Intrinsic 
Force of contraction is called Contractility or Inotropy [414, 415].

Braunwald writes, “Changes in cardiac performance independent of alterations 
in pre- and afterload are caused by ‘contractility’. It has to be separated from 
changes in the performance due to a change in loading conditions” [413].

The sympathetic tone plays an important role in the regulation of contractility. The 
positive inotropic effect of increased sympathetic tone enables the heart, without a 
change in diastolic filling (without a change in the preload), to eject a higher SV or to 
maintain SV in case of increased afterload or increased resistance to ejection [416]. 
Kumar [9] found in healthy volunteers that the increase in SV due to volume loading 
is predominantly caused by an increase in contractility and only in minor part by the 
Frank-Starling mechanism, hence confirming previous results [146, 147]. Due to the 
increase in ‘intrinsic’ contractility, the end-systolic volume will decrease [9].

1.6.2  Measurement and Quantification

It is very difficult to measure and to express contractility as a single, independent 
parameter. At the sarcomere level, contractility and load are interrelated; thus, they 
are not independent variables [417, 418]. Any parameter attempting to characterise 
‘true’ contractility has to be independent of changes in pre- and afterload, LV-size 
and geometry and LV-pressure [419].

The rate of LV intraventricular pressure rise dp/dt, an index of the isovolumetric 
phase of the contraction [420], correlates well with the LV contractility [421]. The 
highest dp/dt, called dp/dtmax, throughout systole is expected to be proportional to 
the contractility [421]. Dp/dtmax, is sensitive of preload, but not of afterload 
because it is measured before the aortic valve opens [421].

Dp/dtmax shows reasonably good sensitivity to detect and express changes in 
the ‘true’ inotropic status (intrinsic contractility) [422, 423]. It is the most valuable 
parameter to measure and express inotropy [422–425] and is currently the gold 
standard in representing the ‘true’ (intrinsic) contractility [426].

The contractile conditions of the ventricle are influenced by intrinsic properties of 
the ventricle at end-systole, the chamber elastance (Ees). These contractile properties 
of the ventricle can be quantified by the relationship between end-systolic left ventricu-
lar pressure (LVESP) and the end-systolic left ventricular volume (LVESV) [388, 427].

The ventricular pressure-volume relationship at end-systole is linear (at least 
under physiological conditions [428]) and its slope, Ees, quantifies the ventricular 
(systolic) contractile properties [388, 428, 429] (read more in part 1.9.3 of this 
chapter) (Fig. 1.7).
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Ees is defined as LVESP divided by LVESV, thus

 Ees LVESP LVESV= = ´/ /LVESVsBP 0 9.  [430]

Ees is roughly load-independent [388], and Kass [431] found that over a wide 
range of load, Ees is a powerful index of true LV-contractility [432–435].

When describing the systolic properties of the heart, we must differentiate 
between indices referring to the ‘true’ contractility and to other parameters describ-
ing the systolic function of the heart muscle or the heart performance. The latter two 
are less independent than the other indices and haracterise the heart function in a 
more ‘global’ way. (For an overview see Baicu [368]).

LV systolic performance is characterised by the stroke work, taking into account 
that the heart has to generate pressure and flow (SV) [4, 93]:

 

LV SW LV SV LVESP LVEDP
0 0136 LV SV MAP 0 0136

- = - ´ -( )´
= - ´ ´. .  [39, 436] 

Normal values: 58–104 gm−1 m2 [437]

Fig. 1.7 The diagram 
depicts the effect of an 
increase in true 
contractility: The slope of 
Ees becomes steeper, SV 
increases (SV2) and 
LVESV gets smaller 
(LVESV2). Thus the 
improvement in 
contractility is reflected by 
a larger SV ejected, 
leading to a smaller 
LVESV while the LVEDV 
remains unchanged
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The systolic performance is influenced by load and ventricular configuration 
[438]; thus, it is not the same as contractility. Hence, abnormal performance may be 
present although contractility is normal (i.e. in case of high afterload) and vice 
versa, performance may be normal although the contractility is impaired (i.e. sepsis, 
MR) [438].

Whilst cardiac work describes the transferral of energy from the cardiac con-
traction to the de- velopment of blood flow [128], cardiac power output (CPO) 
describes the amount of energy generated by the heart that the whole systemic vas-
culature receives at the level of the aortic root [128]. Thus, it characterises the 
recruitable reserve still available in case of acute failure or shock in order to main-
tain the perfusion of the vital organs and hence reflects the severity of the patient’s 
illness [132]. CPO has shown substantial prognostic power [128, 439] across the 
broad spectrum of acute heart failure syndromes and, in particular, in cardiogenic 
shock [128]. CPO is defined [128] as

 
CPO MAP CO 451= ´ ( )/ Watts  

and follows the physical rules of fluids. Reflecting the essential task of the heart (to 
generate pressure and flow) [3, 4] CPO is a measure of cardiac pumping by coupling 
both pressure and flow domains [440].

Furthermore, CPO and its index, CPI, have shown superiority in determining the 
exact diagnosis of the actual heart failure syndrome compared to CI, BP, PCWP and 
their combination [13, 128]. Whilst the traditional haemodynamic measures and 
their presumed target values used in treatment protocols have been misleading 
[441], they have also failed to show any relevant effect when therapy was titrated 
upon reaching these values [442].

CPO appears to be a better parameter than CPI for predicting outcome. 
Adjustment of CPO for body size, yielding CPI, showed a weaker association with 
mortality [443, 444]. A CPO ≤ 0.53 most accurately predicts a high likelihood of 
in-hospital mortality [128, 439].

Conventionally SVI and SWI were used as powerful predictors of short term 
mortality in cardiogenic shock complicating AMI [445], but the use of CPO is now 
thought preferable.

The LV systolic function of the heart can be described in a number of ways 
but, ejection fraction (EF, %) is still the most frequently used parameter. EF is 
determined by the interaction of arterial and ventricular properties and is 
dependent on the afterload, and thus it is not exclusively governed by the LV 
[347, 368, 446].

 
EF LVEDV LVESV LVEDV 100% [ ) / ;= -( ]´  

 EF SV LVEDV% /=  [447, 448]. 

However,

 afterload EF and vice versa↑® ¯   [378, 408]. 
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As such, EF may, by all means, be considered as a good coupling parameter, 
describing fundamental aspects of ventriculo-arterial coupling [449, 450] rather 
than contractility.

EF is thus far from being an ideal parameter to assess contractility. EF depends 
on afterload as well as on preload and heart volume or mass [394, 423, 451, 452].

EF will fail to report:

• excess afterload (EF reduced although the contractility is normal) [453],
• in case of augmented preload (i.e. MR), EF will overestimate the systolic func-

tion, missing myocardial dysfunction [454, 455],
• in concentric LV-H, EF measurement signals normal systolic function, although 

substantial dysfunction may be present [456].

Normal values EF > 55% [447, 448, 457–461]; an EF > 40% is considered rea-
sonable [457–462].

Despite its shortcomings, Braunwald [438] and Gillebert [463] state that EF is 
the best parameter to describe overall contractility in comparison to all others cur-
rently in use.

‘True’ LV-contractility is best expressed by:

• v dp/dtmax (mmHg/s), normal values 1400–2200 [398]
• Ees (mmHg/mL), normal value about 2.0 [347, 356].

Ees <1 mmHg/mL is found in dilated and failing hearts [464], in case of hypertro-
phy there will be a significant increase—up to 4 mmHg/mL [465].

It has to be stressed that CI is not an index of contractility, but rather a measure 
of cardiovascular flow: CI is affected by contractility, vascular stiffness and resis-
tance, intravascular volume and filling pressures [128]. Furthermore, there is no 
normal CO/CI, since metabolic demands can vary widely [117].

1.6.3  Inotropic Medications

Medications able to increase the myocardial contractility are called inotropes. In 
recent years the administration of inotropic drugs has been overshadowed by clear 
and growing evidence of adverse events and increased mortality [143, 466–470], 
particularly when given in patients with reasonably preserved left ventricular func-
tion (EF > 40%) [471, 472]. Conners [473] and Sandham [474] found a signifi-
cantly increased mortality when clinically stable patients were treated with 
conventional inotropic agents secondary to numerically low cardiac output. Only 
patients who absolutely require inotropic support secondary to low output as result 
of severely impaired contractility and who are resistant to other treatments should 
be treated by such drugs [462, 475].

The European Society of Cardiology (ESC) recommends inotropic agents in 
heart failure syndromes if the illness has deteriorated to become life-threatening and 
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the situation has become critically dependent on the haemodynamics: “Inotropic 
agents are indicated in the presence of peripheral hypoperfusion with or without 
congestion or pulmonary oedema refractory to diuretics and vasodilators at optimal 
dosages” [462].

1.7  Heart Rate and Contractility

At the end of the 19th century Bowditch published his observation that the force of 
heart con- traction increases—up to a limit—with an increase in heart rate [414].

The peak isometric force increases with increasing heart rate [414, 476]. This is 
due to the fact that calcium will accumulate within the myocytes when diastole short-
ens [477] (which happens with increasing heart rate). In the case of a compromised or 
failing heart this effect is attenuated, or even the opposite may happen—with increas-
ing heart rate the force of contraction will decrease [476, 478]. When the tachycardia 
exceeds 130/min, the severity of myocardial impairment correlates with the extent of 
tachycardia [479]. Furthermore, tachycardia will always precede a fall in BP [293].

Thus, in the case of tachycardia in a compromised heart the reduction in heart 
rate will increase the cardiac contraction and hence SV (MAP and organ 
perfusion):

 Heart rate EF¯ ® ↑  [480] 

In heart failure patients developing or suffering from atrial fibrillation, a heart 
rate of 100–110/min is acceptable [481].

1.8  Diastolic Ventricular Interaction/Interdependence (DVI)

1.8.1  Definition

The right and the left ventricle are anatomically and functionally closely inter-
related, since they share the interventricular septum (IVS), the pericardium, and 
(by their continuity) parts of myocardial fibres [482]. Ventricular interdepen-
dence characterizes the “response of one ventricle to the changes in pressure 
and volume of the other” state Elzinga et al. [483]. However, the interactions 
include even more features as they refer to the changes in size (volume), shape, 
pressure, and (concomitantly) compliance of one ventricle due to direct, pre-
dominant mechanical (independent of neurohormonal and circulatory effects ), 
impact on the other [482], and further to a systolic contribution of the LV to RV 
contractile performance [393, 484]. Accordingly, diastolic ventricular interac-
tion largely refers to the competition of the two ventricles for space within the 
non-distensible pericardial sack, namely when RV dilates, and systolic ventric-
ular interaction applies to the contribution of LV to RV systolic performance 
(read more about this issue in Chap. 4) [393]. The impact may be even dramatic 
in case of acute changes in RV size and pressure [24, 41, 47, 485].
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These diastolic interactions are mediated via the shared structures of the two 
ventricles, the interventricular septum and the pericardium. The pericardium has 
constraining effects on ventricular filling due to its poor distensibility and its pres-
sure transmitting effects [47, 486]. The interaction mediated by the septum and the 
pericardium is called ‘direct’ interaction, compared to the so called ‘series’ interac-
tion which refers simply to the physical relation between the two ventricles and 
their outputs: The two ventricles are coupled in a row, one after the other and thus 
their output necessarily has to be equal over time [31, 41].

1.8.2  Septum and Trans-septal Pressure

The shape of the septum, under physiological conditions, is concave when viewed 
from the LV side. There is no difference during systole and diastole, due to the fact 
that the LVEDP always remains higher than the RVEDP and increases proportion-
ately during systole [41]. Kingma established proof that the position of the septum 
is determined by the end-diastolic pressure gradient between LV and RV [487]:

 Transseptal pressure gradient LVEDP RVEDP= -  [487]. 

In disease, the position of the septum can change markedly due to changes in the 
pressure gradient, which will alter the end-diastolic volumes substantially [47, 48, 119, 
487, 488]. In acute RV pressure or volume overload Kingma showed that the interven-
tricular septum becomes flattened or even convex at end-diastole due to RV dilatation 
and raised RVEDP, diminishing the transseptal pressure gradient and pushing the sep-
tum towards the left ventricle [487]. Numerous publications confirm the change in the 
septum position in different diseases such as acute and chronic pulmonary hyperten-
sion [47, 48, 489], congestive heart failure [23, 24], and mechanical ventilation [119].

This leftward shift of the septum contributes significantly to the reduction in 
LV-filling; thus, total LV-volume and end-diastolic volume are reduced and the SV 
will fall as a consequence.

The very poorly distensible pericardium supports this process by exerting con-
straint, restricting the total heart volume from changing [478, 490].

1.8.3  Pericardium

All cardiac chambers (except the posterior part of the LA where the pulmonary 
veins enter) are enclosed by the pericardium. It works as a tight, unyielding band 
around the minor axis of the heart, fixing the cross sectional area of the heart and 
causing direct ventricular interaction [491].

Thus, an increase in the cross-sectional area of one ventricle, e.g. due to vol-
ume loading or enlargement, necessarily reduces the area of the opposite ventri-
cle with less filling potential, causing an increase in the pericardial pressure, and 
altering the transmural pressure [23, 491]. The total cardiac volume remains 
unchanged [488, 490].
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Increasing pressures in the pericardial space will exert a progressive restraining 
effect on ventricular filling, termed pericardial constraint [488]. When the peri-
cardium becomes stretched due to enlargement of the ventricles, such as in chronic 
heart failure or due to volume loading, the filling—in particular the left ventricular 
filling—becomes significantly restrained [23, 127]. With further stretch the pericar-
dium is even less distensible [486] and, especially in cases of acute change, the 
pericardium, with its constraining effect, plays a key role in loading conditions [85, 
492–494]. Under those conditions the pericardial pressure (PP) will increase pro-
gressively and will significantly constrain the filling. PP rises in an exponential 
manner [491] and once the pericardium becomes ‘overstretched’, an exponential 
increase in LVEDP is seen [83, 495].

Raised intra-thoracic pressure, e.g. due to raised intra-abdominal pressure, chest 
infection, etc., will affect, secondary to an increased constraint on the thin walled 
RV, the RVEDP more than the LVEDP (rise in RVEDP > rise in LVEDP) [47, 48]. 
Hence, the transmural LVEDP (= LVEDP − RAP/CVP) will decrease with less 
LVEDV and less LV end-diastolic fibre stretch, and a reduced SV will result.

Ventricular interaction due to pericardial constraint is diminished as long as the PP 
is <5 mmHg [126]; when exceeding 9–10 mmHg the pericardium will exert a signifi-
cant constraint on ventricular filling [63, 127]. Furthermore, when intraventricular 
LVEDP exceeds 10(12)–15 mmHg, the LVEDP-LVEDV relation becomes much 
steeper and the pericardium limits further increases in LV volume [83, 133, 495].

1.8.4  Pulmonary Hypertension and the Risk of DVI

In pulmonary hypertension fluid administration is shown to increase RVEDP 
more than LVEDP [47, 48]. The concomitant (along with RVEDP) increase in peri-
cardial pressure will exceed the rise of the LVEDP (due to a higher increase of 
RVEDP compared with LVEDP), thus transmural LVEDP and therefore LV-preload 
will be reduced due to pericardial constraint [23, 51] (Fig. 1.8).

Fluid administration in pulmonary hypertension
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RVEDP LVEDP more constraint on RV and
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(An additional effect will be exerted by the leftward shift of the septum, reducing 
the LV-area and thus the LVEDV [47, 48, 489]).

1.8.5  Acutely Exacerbated Chronic Congestive (Left-Sided or 
Biventricular) Heart Failure

An acute exacerbation of chronic congestive heart failure is often crucial in the 
disease’s course and may be the final point in a critical illness [496, 497]. In this 
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situation, DVI may have a substantial impact on the haemodynamics and has to be 
taken into the therapeutic considerations [47, 48, 498, 499].

A sudden rise in RV-afterload/increase in RV-outflow impedance, e.g. pulmonary 
embolism, PE, and/or a loss in contractility, e.g. due to acute RV myocardial infarc-
tion [500, 501], will always induce RV dilatation [502, 503], a fall in RV-EF [502, 
503] and a substantial increase in RVEDP [69, 382, 504]. This implies a considerable 
rise in PP and a leftward shift of the septum, which compromises LV filling [23, 39, 
42, 44, 54, 56, 63, 487, 488, 490].

Fig. 1.8 Effect of DVI in pulmonary embolism and consecutive fluid loading. Modified from I. 

Belenkie [41, 47], with permission
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Atherton [24] showed that, in patients with chronic congestive heart failure and 
high LVEDP (causing pulmonary venous hypertension), LV-filling was markedly 
impeded due to direct diastolic ventricular interaction via the septum and from the 
stretched pericardium (pericardial constraint): Volume unloading resulted, as expected, 
in reduction of the RVEDV, but LVEDV “paradoxically” increased (see Fig. 1.9).

In nearly 50% of all patients suffering from congestive HF, pericardial constraint 
plays a marked role [24] and unloading leads to an improvement in cardiac perfor-
mance. Even if there is less pericardial constraint present, as in the other 50% of 
patients studied by Atherton, the reduction in LVEDV secondary to volume unload-
ing did not significantly compromise the haemodynamic situation.

These results are consistent with the findings by Dupuis, who showed that a 
reduction in PCWP in patients with congestive HF resulted in an increased SV and 
SW even though LVEDP fell [49]. Stevenson established in 1986 that volume 
unloading in patients with severe congestive heart failure and high filling pressures 
showed clear beneficial results, with an improvement in clinical short and long term 
outcome [67].

Moore explored the underlying pathophysiological mechanisms and estab-
lished our current therapeutic approach [23]. In patients with congestive HF, and 
thus secondary pulmonary hypertension, direct diastolic ventricular interaction 
plays a substantial role in the LV-dysfunction responsible for the reduced 
LV-SV. The common approach of administering volume to a patient with low 
blood pressure will, in acutely decompensated chronic heart failure, worsen the 
haemodynamic and clinical situation [23]. Volume unloading will stabilise the 
situation (Fig. 1.9).

Pathophysiology of chronic congestive HF:

 

LVis enlarged LVEDP often high RVEDP
RVEDV/RVEDD
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The elevation of the RVEDP is due to pericardial constraint [23, 24] follow-
ing the rule of total cardiac volume [488, 490] and/or due to (chronically) ↑ 
RV-afterload (pulmonary hypertension caused by ↑ LVEDP) [502, 505–507]. 
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Furthermore, an elevated RV-afterload/elevated RV outflow impedance, as found in 
pulmonary hypertension due to a raised LVEDP, will always induce RV enlarge-
ment, hence ↑ RVEDD and ↑ RVEDV [502, 503, 505].

Thus: ↑ - ↑ ↑ ↑ in RVEDP, and the ↑-↑ ↑ ↑ in RVEDD and RVEDV → parallel ↑-↑ ↑ ↑ 
PP [44, 56, 57, 63].

However, as a result of the volume and pressure changes, the interventricular 
septum will take a position somewhere in the middle between the ventricles and 
thus more to left as physiologically.

If volume is given in this situation:
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 2. due to a parallel rise of PP with RVEDP [44, 56, 57, 59, 63], the pericardial con-
straint will increasingly impede LV filling:
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Unloading is the treatment of choice (GTN, diuretics):
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Although the heart is unloaded, the SV increases: This is often called the ‘para-
doxical ↑’ in SV.

(As you can see, the term” LV-SV ↑ [36; 37] “is always on the far right side and 
always one below the other)

A simplified summary of the unloading process [27]:

 

RV preload RVEDV RVEDD LVEDD LVEDV
LV SV BP
-

-
¯® ¯® ¯® ®

®
↑ ↑

↑ ↑/  

It is important to remember that evidence of haemodynamically significant DVI 
was found in 50% of all patients with congestive HF, and even if a relevant DVI is 
not present, unloading reduced the LVEDV only marginally and did not compro-
mise the haemodynamic situation (no fall in blood pressure) [23–25, 42, 49]. Hence, 
all patients with acutely decompensated chronic congestive heart failure should be 
treated by volume unloading.

Fig. 1.9 Diagram to show 
the position of the 
interventricular septum in 
different loading 
conditions due to DVI 
effects in patients with 
bi-ventricular heart failure
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1.8.6  Conclusions

Ventricular interaction has a considerable impact on the haemodynamic situation, 
particularly in critically ill patients with circulatory compromise [39, 47, 171, 508]. 
Circumstances suggestive of significant DVI are the combination of pulmonary 
hypertension (PH) and elevated CVP, especially in right-sided heart dysfunction/
failure, which always implies increased PP [39].

Examples are:

• acute pulmonary embolism [47],
• acute right HF (RV-AMI, ARDS, sepsis) [42, 176, 506],
• exacerbation of chronic RV-dysfunction (COPD with acute exacerbation) [48],
• acutely exacerbated chronic congestive HF [23, 24, 49, 506, 507] with 

enlarged LV, particularly in cases where the LVEDP is high [23, 24, 49],
• intubation and mechanical ventilation, in particular in patients with acute/

chronic pulmonary hypertension [48, 119],
• PEEP effects the heart in the same way as (cardiac) tamponade [177]; when 

PEEP >12 mm H2O, an RV-pressure load (RVEDP ↑) and a septum shift was 
found [509],

• other causes of a considerably increased intra-thoracic pressure [70] such as 
severe chest infection, tension pneumothorax [56] and increased intra- 
abdominal pressure [71] as in severe abdominal infection, ascites or abdominal 
compartment syndrome.

All of the above will have an impact on the potential therapy and consideration 
of these should change our daily practice markedly [23, 25, 42, 47, 485, 510].

Volume loading can no longer be recommended in acute RV dysfunction/
RV-failure [47, 83, 126, 496, 511, 512] and volume loading due to low blood pres-
sure in acutely decompensated congestive heart failure carries a very high risk of 
worsening the situation and, as such, unloading is the approach of choice [23, 24, 
42, 49, 143, 513, 514].

1.9  Ventriculo-Arterial Coupling

1.9.1  Definition

Ventricular-arterial coupling refers to as the interaction between ventricular and 
arterial system and describes the transmission of the ventricular performance to the 
systemic circulation [515]. V- a-coupling is a major determinant of net cardiovascu-
lar performance [342] and cardiac energetics [516].

Starling demands that the evaluation of the LV performance should only be done in 
the context of its interaction with the systemic arterial system [516]—a requirement 
proposed elsewhere as well [11, 13, 513, 517]. The systolic function can only be evalu-
ated in light of the afterload which the ventricle faces during systole [13, 128, 368, 462].

1.9 Ventriculo-Arterial Coupling
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The heart has to generate flow and pressure to ensure an adequate output [4, 93]. 
The net flow and pressure output developed by the heart as a pump depends upon [93]:

• intrinsic properties of the heart (end-diastolic and end-systolic chamber 
stiffness),

• properties of the blood—contribute to the arterial load,
• arterial properties (arterial load) comprising arterial compliance, characteristic 

aortic impedance, SVR, and the pulsatile component (in particular wave reflec-
tions) of the vessel system.

Vascular and ventricular properties have to match in order to achieve a maximal, 
efficient transfer of mechanical energy aiming for maximal SW [427, 516, 518–520].

Studies by Piene [521] and by Piene and Sund [223] have established that the 
work of the heart and the interaction of the ventricle with the arterial system can be 
calculated from the ventricular pressure-volume – time relationship and the load 
impedance [223, 521].

1.9.2  Arterial Elastance

The characterisation of the vascular load faced by the ventricle during systole is 
commonly described by the effective arterial elastance (Ea ) [362, 363, 520]. It was 
Sunagawa [362] who ‘distilled’ the vascular impedance into the ‘effective’ arterial 
elastance (characterising the arterial pressure measured in the arterial system at any 
given ejected SV [402] which can easily be coupled with ventricular pressure- 
volume loops and relations [522]). The effective arterial elastance incorporates the 
principle elements of the vascular load [427] as:

• peripheral resistance,
• total lumped vascular compliance,
• characteristic impedance, and
• systolic and diastolic time intervals.

The assessment of the arterial load that opposes left ventricular ejection is per-
formed by applying the Fourier method analyzing the aortic input impedance spectra 
derived from simultaneously measured aortic pressure and flow conditions [336]. 
Sunagawa [362] made it possible to compare vascular properties (evaluated in the 
frequency domain) with ventricular properties (expressed in the time domain) by 
lumping principal elements of vascular load (peripheral vascular resistance, and total 
arterial compliance, and characteristic impedance) in consideration of systolic and 
diastolic time intervals, together in arterial elastance, Ea, which can be easily com-
pared with ventricular elastance, Ees. Ea is directly related to peripheral resistance 
and inversely to vascular compliance [366], the latter a stiffness component (change 
in pressure in relation to change in volume—which exactly is compliance) [450].

Hence, “Ea combines various aspects of the total arterial input impedance into 
effective stiffness” dominated by arterial resistance as the primary component of 

1 Cardiac Physiology and Acute Heart Failure Syndromes



43

impedance load [402]. The advantage of impedance as a descriptor of hydraulic 
load (vascular load) is that it characterizes the properties of the vessel bed indepen-
dently from cardiac output [523, 524]. Furthermore, Ea has been shown to reflect 
aspects of the ventricular-arterial interaction [372, 523] and, insofar, is a coupling 
parameter as well [372].

1.9.3  Ventricular Elastance

The mechanical energy of ventricular contraction is transferred to the blood within 
the chamber, providing it with hydraulic energy [525, 526] to face the impedance of 
the vascular system (the arterial load) and enabling the heart to overcome those 
afterloaded forces [13, 327, 368].

The power of output and the stroke work generated depend on:

• preload (preload dependent recruitable SW/SV—described by the law of Frank 
[36] and Starling [37]),

• input impedance of the arterial system, Ea [327, 362, 519],
• intrinsic properties of the ventricle at end-systole, the so-called chamber 

elastance (Ees) [428, 429, 527].

The intrinsic ventricular properties at end-systole are scientifically 
depicted by the pressure- volume relation [388, 427]. The slope of ventricular 
pressure- volume relationship at end- systole, Ees, quantifies the ventricu-
lar contractile properties [388, 428, 429]. The ventricular compliance is the 
inverse of elastance [374].

Ees is widely regarded as a load-independent index of LV contractility [428, 
528]. However, it is also influenced by the geometric and biochemical properties 
(including stiffness/compliance of myocytes, composition of muscle, fibrosis, col-
lagen in the LV wall [529]) that underlie left ventricular end-systolic stiffness [365]. 
Still, is very likely that acute changes in Ees reflect acute alterations in LV contrac-
tility, whereas baseline values of Ees represent an index that integrates intrinsic LV 
contractility as well as the modulating effects of geometric, structural, and func-
tional properties of the LV [402]. Accordingly, caution is advisable when interpret-
ing Ees, as an increase may be due to changes in ventricular properties (stiffening) 
or may signalize an (ture) increase in contractility [529]. Particularly, if other 
parameters indicative for systolic function are unchanged and normal, the increase 
in Ees reflects changes in geometric or biochemical properties, e.g. ventricular stiff-
ening, rather than an enhanced contractility [529].

An Ees (= LVESP/LVESV [430], normal value ~2.0 mmHg/ mL [347, 356]) of 
<1.0 mmHg/ mL is found in dilated and failing hearts [464] whereas an 
Ees > 3–4 mmHg/ mL is found in hypertrophied hearts [465].

Abnormal end-systolic ventricular stiffness is a characteristic finding in dia-
stolic dysfunction [530–533] and increased left ventricular stiffness makes the 
patient vulnerable to developing pulmonary oedema [533].

1.9 Ventriculo-Arterial Coupling
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1.9.4  Ventriculo-Arterial coupling

It is exactly ventriculo-arterial coupling which specifically refers to the relationship 
between ventricular contractility and afterload [534].

The Ea /Ees ratio describes the coupling of the ventricular and arterial system. Ea 
/Ees is a predictor of the efficiency of the energy transfer from the ventricle to the 
vascular system [535] and reflects the matching of cardiac systolic and arterial prop-
erties [464]. The Ea/Ees ratio is further a useful parameter in order to characterise 
the LV-pump function under varying loading and inotropic conditions [427, 516, 
536]—LV performance can only be assessed in the face of loading conditions 
[11, 13, 513, 516, 517].

The Ea /Ees ratio provides information about:

• overall systolic LV-function,
• max. LV-SV (SW), and
• mechanical efficiency of the LV-pump [516, 537]

Transmission of power from one part to another part of the system is maximized 
when output impedance of the power producing part and the input impedance of the 
power receiving part of the same system are equal as we have learned from electri-
cal and mechanical systems [330]. As such, maximal external ventricular work gen-
eration for a given load applies if Ea and Ees are exactely equal. However, the 
normal, physiological ratio of Ea /Ees in humans ranges between 0.6 and 1.2 [395, 
538, 539]. This is owed to a better efficiency defined as the ratio between work 
generated by the heart during ejection and the heart’s oxygen consumption [536, 
540]. Certainly, maximal work generated does not match with maximal efficiency 
at a given loading condition [541]. The heart always intends to maximize effi-
ciency—thus to cautiously handle oxygen and energy resources and to achieve opti-
mal energetic efficiency [347, 348, 365, 537]. Thus, physiologically, Ees may be 
double as high as Ea indicative for optimized efficiency, and normal coupling allows 
for adequate flow output at the lowest energy cost [542]. In moderate heart failure, 
Ees and Ea may roughly equal affording maximal stroke work from a given load at 
the cost of efficiency [530, 543].

Uncoupling is an issue in acute heart failure [544], moreover, heart failure may 
be considered as a coupling malady since progressively blunted coupling is seen in 
heart failure patients [545].

As a rule, a decrease in Ea will lead to an increase in Ees [546] and vice versa 
[515]. Furthermore,

 Ea Ees 1 EF/ /~  [537] 

(assuming the intercept volume (Vo) is zero or nearly zero, which is not the case in 
dilated hearts [372]).

An Ea/Ees ≥ 2 reflects, in general, a depressed LV inotropic state (Ees ↓) coupled 
with high vascular resistance (Ea ↑) [464, 530].

As such, Ea/Ees is an important determinant of net cardiac performance [342] and 
cardiac energetics [516]. Appropriate matching between LV and the arterial system 
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at rest results in an optimal transfer of blood from the LV to the periphery without 
excessive changes in pressure, an optimal or near-optimal stroke work and energetic 
efficiency [365].

Ea/Ees is inversely related to EF and the advantage of Ea/Ees over EF is that examin-
ing the components of Ea/Ees allows us to evaluate whether alterations in Ea/Ees are due 
to alterations in arterial properties, left ventricular properties, or both [345] (Fig. 1.10).

1.9.5  Deranged Coupling

With aging and in diseases such as hypertension, Ea increases [347, 356, 547, 548]. 
An increase in Ea is accompanied by an increase in Ees due to a rise in ventricular 
stiffness [347, 356, 549, 550]: The diastolic cardiac function is affected by the arte-
rial compliance and an increase in vascular stiffness will lead to a concomitant 
reduction in ventricular compliance [356]. As described above, Ea and Ees have to 
match in order to achieve optimal energy transfer and mechanical efficiency, thus, 
the increase in Ees may be seen as a necessary adaption in order to match the vas-
cular properties [347, 516, 530].

On the other hand, Ees is known to be pathologically high in diastolic dysfunc-
tion [356, 530–533, 551] and specific myocardial diseases such as amyloidosis 
[552].

However, these circumstances may lead to adverse or deranged coupling, 
where Ea and Ees do not match and the transfer of energy from myocardium to 
vasculature becomes inefficient. In the case of impaired LV compliance, as in 
diastolic dysfunction, adverse coupling may allow a rise in afterload (i.e. 
increasing blood pressure, increase in circulating volume) to cause a dispro-
portionate increase in Ees and Ea (increase Ees > increase Ea) [347, 356]. 
Furthermore, LV stiffness in the presence of vascular stiffening is shown to 
amplify the impact of even small increases in LV-filling on cardiac workload 
and arterial pressure reflected by a disproportional increase in sBP for any 

Fig. 1.10 This diagram 
depicts Ea and Ees in the 
PV-relationship of the 
venticle, modified from 
Kass [342] with permission
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relative change in LVEDV [347, 427]. Severe consequences may result: Najjer 
[553] concluded that an acute rise in Ea, but with an otherwise normal arterial 
elastance, might induce a substantial increase in LVEDP in the elderly with 
higher Ees (age-related). Hundley showed that a reduced aortic distensibility 
(Ea ↑) can cause (acute) heart failure [547] and Kawaguchi [356] established 
further substantial evidence that arterial stiffening when combined with ven-
tricular stiffness (attributed to age, hypertension and/or diastolic dysfunction) 
can lead to pulmonary oedema [538, 554] (see Fig. 1.11). This condition can 
occur when deranged coupling causes a marked rise in the systolic LV-load 
secondary to acutely altered afterload [356]. The increase in systolic load 
induces a prolongation of the diastolic LV-relaxation [355, 555] and compro-
mises LV-filling [355], the latter both induce a substantial increase in LVEDP 
[355, 530] which may lead to decompensation and pulmonary oedema [538, 
554].

Therefore, acute changes in afterload along with deranged ventriculo-arterial 
coupling producing a disproportionate transmission of vascular stiffening onto the 
ventricle [323] can increase the LVEDP markedly [311, 324, 513]. Hence, flash 
pulmonary oedema may be seen as a vascular, rather than a purely cardiac disorder 
[323, 513].

(This pathophysiology is quite different from that underlying pulmonary oedema 
in chronic congestive heart failure, where it usually develops relatively ‘slowly’ due 
to (severe) fluid overload [556]).

1.10  Myocardial and Chamber Stiffness

Myocardial stiffness describes the passive, diastolic elastic properties of the 
myocardial tissue (and as such provides insights into the specific cellular and 
tissue structure and composition (material properties)), but also reflects func-
tional features such as elastic recoil, a passive mechanical force stored during 
contraction, of the myocardium as well [85, 557, 558].

 Fig. 1.11 Secondary to a 
rise in afterload (BP ↑), Ees 
of 5.6 measured in HFNEF 
increased by 145% 
(compared to normal 
controls) while the Ea 
increased by just 33% 
(adapted from Kawaguchi 
[356]) with permission
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Myocardial stiffness is derived by relating stress (which is measured in 
force per area) to strain (which is calculated as a percentage of distension) [85], 
raising muscle stretch implies increased stiffness [559]. While myocardial 
stiffness basically refers to “material properties”, the so-called intrinsic proper-
ties (of the cardiomyocytes and of the extracellular matrix [560]), chamber 
stiffness delineates and integrates myocardial stiffness with ventricular geo-
metric issues, as well as with “extrinsic”, external forces (such as pleural pres-
sure, right ventricular loading conditions, pericardial pressure, atrial 
contraction, coronary vascular volume all influencing the chamber characteris-
tics) [25, 85, 557, 558].

Thus, myocardial stiffness and chamber stiffness need to be thoroughly distin-
guished [558].

Accordingly, chamber stiffness is determined by:

 (a) myocardial stiffness,
 (b) external forces (mechanical RV loading conditions / pulmonary-cardiac inter-

action, pneumo- pleural issues, especially pleural pressure, pericardial pressure, 
atrial contraction, diastolic suction, and coronary vascular volume), and

 (c) LV geometry (chamber size, shape of heart, wall thickness, fibre orientation) 
[80, 85, 558].

Most impact can be expected from (a) diastolic relaxation and the associated 
diastolic suction in early diastole, and (b) the ventricular interdependence 
modulated by the pericardium in late diastole [80]. If diastolic suction (in 
healthy persons, LV effectively “pulls” blood to fill in early diastole, called 
diastolic suction [561, 562]) is blunted as in PH, left-sided filling pressures 
increase [561, 563–565].

LV diastolic chamber stiffness is the inverse of chamber compliance [557, 558].
The diastolic pressure-volume curve (PV-curve) reflects all three determi-

nants, ventricular geometry, extrinsic features and the passive myocardial stiff-
ness of the heart [85, 557]. “The slope of the tangent to this mono-exponential, 
curvilinear shaped function defines chamber stiffness at each level of filling 
pressure” [558].

As altered chamber stiffness can be attributed to changes in intrinsic, geometric 
and/or extrinsic features, or a combination, changes in the characteristics of the 
PV-curve may be helpful to distinguish between different reasons. Indeed, an increase 
in intrinsic diastolic stiffness will cause a steeper slope, with an increase in the cur-
vature of the PV-relation at the same level of filling pressure, reflected by a leftward 
and upward shift of the PV-curve [533, 565–567] (see Fig. 1.12). Differently, paral-
lel upward shifts, with no change of the slope at the same pressure level—denot-
ing similar LV “intrinsic” diastolic properties (unchanged cardio-myocyte stiffness 
and extracellular matrix composition [568])—in general indicate “extrinsic” forces 
and altered “external” conditions, paticularly altered right ventricular loading 
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conditions, pneumo-pleural and pericardial effects [539] impacting the position of 
the PV-curve [85, 569] (see Fig. 1.13).

As such, Alderman and Glantz [85] demonstrated parallel PV-curve shifts, pro-
voked by acute hemodynamic manipulations, without any change in diastolic stiff-
ness. This was largely caused by the predominant influence of RVEDP and 
pericardial constraint (angiotensin exerts restrictive forces on the pericardium [495, 
570]), associated with DVI, resulting in a parallel upward (angiotensin), or parallel 
downward (nitroprusside), shift of the relation and of the amount of LVEDP [85] 
(see Fig. 1.13).

Acute changes in chamber stiffness are largely caused by external forces and 
their associated effects [85], and are generally not able to alter intrinsic diastolic 
myocardial properties of normally oxygenated myocardium [85, 559].

As such, acute volume loading shows a sizable influence (mediated by pericar-
dial constraint and associated DVI, as acute volume loading leads to an increase in 
RA-P and RVEDP, and thus, will exert stress on the pericardium) on the level of the 
LVEDP—a parallel upward shift of the PV-relation [571]. Even in healthy volun-
teers, transient noticeable, but significant increases in LV filling pressures, with 
parallel upward shifted PV-relations during rapid volume loading (attributed to RV 
loading and its interaction with the pericardium), have been demonstrated [572]. 
This pericardial impact on LV filling pressures is reported to become clearly active 

Steep slope indicating
altered diastolic properties

Flat slope indicating normal
diastolic properties

25

20

15

10

5

20 40 60 80 100 120 140 160

LV volume (ml)

L
V

E
D

P
 (

m
m

H
g

)

healthy heart

altered diastolic properties, e.g. HFpEF

Fig. 1.12 Diastolic pressure–volume (P-V) relation—observe the different gradients of the slopes 
of the respective curves. Adapted from Borlaug BA. Circ Heart Fail 2014; 7: 2–4 [577], with 
permission
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at LV filling pressures above 10 mmHg as pericardial stiffness substantially 
increases at this level [493, 573–575].

Dauterman reported that extrinsic forces, primarily attributed to the filling of the 
right ventricle and the constraining effects of the pericardium, contribute 30–40% to 
the total diastolic filling pressures under physiological conditions [25].

Accordingly, acute increases in filling volumes result in higher filling pressures 
[85], shifting the PV-curve upward in parallel. Reductions in RV filling due to 
venous vasodilation, e.g. vasoactive agents such as GTN or nitroprusside, lowering 
RVEDP are shown to result in parallel downward shifts of the diastolic pressure 
volume curve [85, 576].

For our daily practice, a single measurement of the LVEDP can indeed show if 
the LVEDP is elevated or not. However, it cannot tell us if “the slope” has changed 
or not. To find this, several measurements with different conditions would be neces-
sary to determine the PV-relation.
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Fig. 1.13 Acute volume loading, but also acute increases in afterload, e.g. raised systolic blood 
pressure, may lead to a parallel upward shift of the p-v relation (the blue curve of a healthy person 
is shifted upward in parallel, dotted black curve) as they alter extrinsic conditions [85], while varia-
tions in the steepness of the slope represent true changes in intrinsic diastolic properties. Adapted 
from Borlaug BA. Circ Heart fail 2014; 7: 2–4 [577], with permission
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“Myocardial stiffness and relaxation largely determine ventricular diastolic function” 
[578], and therefore ventricular chamber stiffness [560]. Diastolic chamber stiffening is 
basically attributed to diastolic dysfunction caused by myocardial stiffness [365]. Altered 
myocardial properties include myocyte size, intra- sarcomeric protein composition, cyto-
solic distensibility, and/or extracellular matrix composition. However, functional abnor-
malities such as fibrillary cross-linking, elastic recoil, and particular compromised 
diastolic relaxation (as an active process being decisively dependent on adequate energy 
situation, specifically the phosphorylation state) are contributing as well [365, 557]). 
Nevertheless, in some clinical syndromes, ventricular chamber stiffness may be pre-
dominantly assigned to external features, e.g. in case of pulmonary hypertension [25, 
539], denoting position and curvature of the diastolic PV-relationship [51].

The transition from compensated diastolic dysfunction to overt HFpEF is associ-
ated with worsening diastolic function, as Yamamoto and Masuyama have estab-
lished, and is basically due to progressive myocardial stiffening, and not the 
progression of relaxation abnormalities [579, 580].

1.11  Evaluation and Assessment of the Cardiac Performance

As described previously the heart has to generate pressure and flow in order to 
pump the blood into the vasculature and hence ensure sufficient circulation [93, 
581, 582]. Parameters currently used to measure cardiac (systolic) performance are 
the CPO and SW (see part 6 of this chapter) [128, 436, 437, 445]. Both parameters 
integrate the fundamental cardiac functions [4, 13, 93, 128, 445]. In comparison to 
SW, CPO characterises the recruitable reserve still available in cases of acute failure 
and in shock, which may be utilised to maintain the perfusion of the vital organs and 
hence reflects the severity of the patient’s illness [128].

It should be noted that SV/SVI or even CO/CI do not reflect the cardiac pump 
function. They do not incorporate the pressure generation, nor are they an index of 
contractility. SVI/CI is affected by contractility, vascular stiffness and resistance, 
intravascular volume, and filling pressures [128]. CI is insufficient for accurate diag-
nosis and treatment titration in acute heart failure [220, 442, 583, 584]. Furthermore, 
there is no normal range for CO/CI, since metabolic demands can vary widely [119].

Flow represented by SV(CO) is dependent on afterload [3, 46]. In particular, in 
acutely compromised heart function (either due to impaired contractility and/or due 
to abnormal loading conditions) there is plenty of evidence that afterload is the most 
important determinate of pump function [11–14]. Cotter [13] established proof that 
the accurate diagnosis of the different heart failure syndromes can only be made 
when coupling both cardiac pumping abilities and afterload. He provided strong 
evidence that the cardiac pump ability can only be assessed correctly if related to the 
afterload present at the same moment as the pump function is measured [13].

Cotter’s results have been validated and confirmed in several large studies cover-
ing a broad spectrum of primary cardiac diseases [128, 439]. Additionally, CPO 
(CPI) has substantial evidence supporting it as a powerful and robust prognostic 
parameter [13, 128, 439] (see part 6 of this chapter).

1 Cardiac Physiology and Acute Heart Failure Syndromes



51

The relationship between (simultaneously) measured/calculated CPI and 
afterload (represented by SVRI) has been shown to provide pivotal information 
about the actual haemodynamic situation (appropriate SVRI or inappropriately 
high/low [13]) and gives decisive information on the best management strategy 
[13, 128, 445].

In the special case of septic shock, an inverse correlation between cardiac perfor-
mance and afterload has been demonstrated [585]. Furthermore, Müller-Werdan 
[586] demonstrated that septic cardiomyopathy is characterised by a significantly 
reduced cardiac performance which is relative to the effective afterload. Again, the 
actual cardiac pump function in relation to the afterload present provides strong 
prognostic information as well as clues on how to treat the patient (e.g. the timing 
of when inotropic support may be indicated) [587].

Although quite clearly having disadvantages and limitations in sensitivity and 
accuracy of reflecting the LV load at end-systole, the afterload [378, 401] is still 
well represented by the SVR/SVRI, which accounts for roughly 90% of the resis-
tance to ejection (arterial resistance is the dominant component of impedance load) 
[402]. Furthermore, SVR may be very helpful in clarifying the diagnosis [13, 128], 
particularly in hypotensive patients [13, 128].

In summary, cardiac pump function can (and should) only be accurately and reli-
ably evaluated in relation to the actual afterload [11–13, 128, 258, 271, 439, 586–
589]. At the sarcomere level, contractility and load are interrelated and thus not 
independent variables [417, 418]. Furthermore, the consideration of the pump func-
tion in the light of the afterload will give substantial information about the severity 
of the patient’s situation, the mortality, and the appropriate therapeutic approach 
[13, 128, 439, 586, 587]. Figure 1.14 depicts the fundamental relationship between 
cardiac pump function and afterload in various clinical conditions—a very practical 
approach to classify and diagnose patients as well as adding substantial information 
to the prognosis and therapy.

Fig. 1.14 Relationship 
between cardiac pump 
function and afterload in 
various clinical conditions. 
Abbreviations: CHF acute 
heart failure, HTN crisis 
hypertensive crisis, CPI 
cardiac power index. 
CPI = MAP × CI × 0.0022; 
SVRI systemic vascular 
resistance index; 
SVRI = (MAP-RA): CI); 
(adapted from Cotter [13]) 
with permission
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1.12  Summary Key Physiology and Pathophysiology

1.12.1  Frank-Starling-Mechanism

Frank [36] and Starling [37] established proof that, with increasing fibre length, the 
force of contraction will increase and so will the ventricular stroke volume. The 
pressure exerted on the myocardial fibres, the so-called effective distending pres-
sure or ‘transmural’ LVEDP, is the intra-cavitary LVEDP (commonly shortened to 
LVEDP) minus the surrounding pressure(s) [35]:

Transmural LVEDP = LVEDP − surrounding pressure ≈ PCWP – RA = 
PCWP − CVP (with CVP reflecting the surrounding pressure [23, 53, 56, 58, 59]).

An increase in SV subsequent to an increase in preload (higher LVEDV) 
depends not only on the change in the left ventricular filling, but on the contrac-
tile capabilities (myocardial responsiveness) as well [9], particularly in the case 
of compromised cardiac function [10, 75, 91]. SV is determined by venous return 
and cardiac performance (afterload, heart rate and in particular contractility) 
[31–33].

Cardiac (pump) function, represented by CPO/CPI or SW, can only be evaluated 
in relation to afterload [12, 13, 128, 271, 439, 588] and the original diagram by 
Cotter [13] gives a good approach to diagnosis, therapy, and treatment in daily 
practice.

1.12.2  Afterload

The forces which oppose myocardial contraction (myocardial fibre shortening) dur-
ing ventricular ejection are called afterload [30, 323–325]. Both, vascular and spe-
cific cardiac properties (LV size and dimension, contratile capability, LV pressure) 
determine these forces [329, 331, 372, 373].

Since myocardial wall stress reflects both, central aortic and peripheral vascular 
loading conditions (vascular features), as well intrinsic heart muscle properties, 
wall stress represents the “true” afterload [324, 373, 375, 376].

However, as the assignment of both, wall stress and arterial elastance (which is 
shown to properly reflect the arterial, hydraulic load as the main component of after-
load [330, 362, 364]) are not feasible measures in daily practice, we still use the 
peripheral resistance as the best approximation of afterload [329]. SVR is not bad at 
all, since it is responsible for up to 90% of the total resistance to ejection [403].

The fundamental pathophysiological alteration of acute heart failure syndromes is 
an afterload mismatch with a markedly elevated resistance (SVR)/high input imped-
ance (high end-systolic wall stress) during ventricular ejection [11, 19, 394]. In the 
failing heart, LV afterload becomes the decisive determinant of cardiac performance 
[11, 12, 14], and SV becomes dependent on the afterload [3, 46, 93], with SV ∼ 1/after-
load [30, 394]. Thus, cardiac performance can only be assessed in light of the actual 
afterload [13, 128], and afterload reduction is a fundamental therapeutic approach.

1 Cardiac Physiology and Acute Heart Failure Syndromes



53

1.12.3  Systolic Function

EF, as an index of the global systolic function [388, 399], is the most frequently 
used parameter to estimate systolic performance, and gives an impression of con-
tractility. However, afterload ↑ → EF ↓ and vice versa [369, 406]. Therefore, EF 
may be considered as a resilient coupling parameter rather than an index of myocar-
dial contractility [449, 450]. However, the heart and vessel system have to be under-
stood as a unit, and ventriculo-arterial coupling is a key determinant of cardiovascular 
performance [342, 516, 534]—insofar EF indeed well reflects the cardiovascular 
performance.

Note, EF may overestimate the systolic function in cases of excess afterload (EF 
reduced although the contractility is normal) [453] and augmented preload (i.e. MR). 
EF may miss myocardial dysfunction [454, 455] in concentric LV-hypertrophy as EF 
may signal normal systolic function, although substantial dysfunction may be pres-
ent [456].

1.12.4  Volume Status

It is crucial to evaluate the actual fluid status of the central cardiovascular system 
and the most likely response to volume expansion. An assessment of the dynamic 
indices such as LV stroke volume variation (SV-V) [10, 183], peripherally or cen-
trally, systolic BP-variation (SP-V) [193], or pulse pressure variation (PP-V) [183], 
is highly advisable [123, 140, 152, 153, 162, 168, 169]. The dynamic parameters 
reflect changes in LV-SV due to heart-lung interactions induced by mechanical ven-
tilation [139, 170, 171, 183].

Blind volume administration [130], with its potential risk of fluid overload, may 
increase patient mortality [211, 212, 232, 243]. However, in life-threatening situa-
tions with severe hypotension and tissue hypoperfusion, even without basic moni-
toring or central blood flow measurements, a fluid challenge as described by Vincent 
and Weil [133] is justifiable [220].

Use the CVP as:
• an index of PP [53, 56–59] and indicator of possible DVI [39], particularly when 

CVP is > 9–10 mmHg [44, 63, 126] or if it increases by >5 mmHg due to volume 
loading [133],

• a marker of cardiovascular dysfunction if elevated (>7–8 mmHg) [117], espe-
cially as an indicator of right heart dysfunction/failure [116], if clinically sus-
pected and CVP ≥ 9–10 mmHg [39].

Use EVLW(I) as:
• an index of fluid overload [225, 235, 236] and to guide fluid therapy [224–226],
• an indicator of (early) cardiogenic (hydrostatic) pulmonary oedema [225, 239, 

240],
• a very strong prognostic index indicating, as a rule, absolute fluid restriction if 

elevated (EVLWI > 10  mL/kg) [211, 224, 232, 243].
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The derived PVPI is a very helpful tool to differentiate non-cardiogenic pulmo-
nary oedema (PVPI ≥ 3 [213]) from cardiogenic pulmonary oedema (PVPI 1–3) 
[211, 229] and/or to identify a significant capillary leakage (PVPI = EVLW/PBV) 
[213, 229, 237].

1.12.5  Ventriculo-Arterial Coupling

Ventricular-arterial coupling is recognized as being a key determinant of cardiovas-
cular performance [516, 590]. Proper v-a-coupling, achieved by matched left (right) 
ventricular and aortic-vascular (pulmonary-vascular) features, is essential for the 
circulation: Circulatory adequacy and stability can only be guaranteed and main-
tained by matched ventricular and vascular properties, allowing for efficient cardiac 
work and efficacious energy transfer and thus appropriate blood flow and circula-
tion [345, 365].

Acute changes in afterload, along with deranged ventriculo-arterial coupling, 
may produce a disproportionate transmission of vascular stiffening onto the ventri-
cle [356], which can increase the LVEDP markedly [347, 355, 551]. Consecutively, 
flash pulmonary oedema may occur despite normal systolic function [356, 547, 
551] and may be regarded as a vascular, rather than a (purely) cardiac disorder dis-
playing AHF [13, 591].

1.12.6  DVI

DVI has a considerable impact on the haemodynamics. Significant DVI is sug-
gested by a combination of PH and elevated CVP, especially in case of 
RV-dysfunction/failure [42, 47–49, 70, 71, 177]. In acute exacerbations of chronic 
congestive heart failure, in particular if LVEDP is elevated, due to DVI, volume 
unloading will lead to a ‘paradoxial’ increase in LV-SV and is thus the treatment 
of choice [23, 24, 49, 67]. Even if the patient is not fluid overloaded, there will be 
no haemodynamic compromise when unloading in this setting as Atherton 
showed [24].

1.12.7  Myocardial and Chamber Stiffness

While myocardial stiffness basically refers to the intrinsic, “material” properties 
(cardiomyocytes and ECM) of the heart muscle [560], the chamber stiffness charac-
terizes the “overall” compliance of the ventricle by integrating the intrinsic myocar-
dial properties, the chamber geometry, and extrinsic features contributing to 
ventricular stiffness [25, 85, 557, 558].

Diastolic function is largely determined by myocardial stiffness and diastolic relax-
ation [578]. While changes in myocardial stiffness altering diastolic function (causing 
diastolic dysfunction) are largely attributed to cardiomyocyte stiffening [592, 593], 
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the chamber stiffness may also change due to modified extrinsic features like acute 
volume loading [571, 572] or other hemodynamic variations like altered afterload [85, 
495, 570]. Acute changes in chamber stiffness are, in any case, in the vast majority of 
circumstances related to acutely altered extrinsic conditions [85], in which pericar-
dial constraint and DVI affect ventricular interdependence [85, 495, 570].

Changes in chamber stiffness due to extrinsic issues are reflected by parallel 
upward shifts of the P-V-relationship [85, 539, 569], while alterations in myocardial 
properties lead to an upward and leftward shifted curve, indicating modified intrin-
sic diastolic properties [533, 565].

1.12.8  Cardiac Power Output/Index

As the heart has to generate both, pressure and flow [4, 594], the CPO/CPI may be, 
compared to CO/CI, the more appropriate parameter in the assessment of cardiac 
performance as it integrates both, power generation (BP), and flow (CO).

Moreover, together with its relation to SVR, this index has substantiated its diag-
nostic value in daily practice [13].

1.12.9  Echocardiography

An early (immediate) assessment by echocardiogram may be pivotal due to the 
superior functional and diagnostic capability of this method [244–249, 259, 588].
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2Acute Heart Failure Syndromes

2.1  Definition

As yet, no definition of heart failure is universally accepted, however, heart failure 
may be defined as “the inability of the heart to supply the bodies’ tissues sufficiently 
and suitably with blood meeting their metabolic demand or do so only at the cost of 
elevated filling pressures” [1–3].

The European Society of Cardiology (ESC) defined acute heart failure in 2005 as 
“the rapid onset of symptoms and signs secondary to abnormal cardiac function. It 
may be occur with and without previous cardiac disease” [4]. In their 2012 guide-
lines, the ESC modifies and states heart failure to be subject to “an abnormality of 
cardiac structure or function leading to failure of the heart to deliver oxygen at a rate 
commensurate with the requirements of the metabolizing tissues, despite normal 
filling pressures (or only at the expense of increased filling pressures)” [5], confirm-
ing a definition developed by a joint expert group consisting of the ESC Heart 
Failure Working Group and the European Society of Intensive Care Medicine 
(ESICM) [6].

The ACCF/AHA Practice Guideline from 2013 defines, “heart failure is a com-
plex clinical syndrome that results from any structural or functional impairment of 
ventricular filling or ejection of blood” [7].

However, elevated left-ventricular end-diastolic pressures (LVEDPs) are charac-
teristic and essentially a general finding in all heart failure patients [2, 8–10].

2.2  Classification of Acute Heart Failure Syndromes (AHFS)

Acute heart failure may occur as an acute de novo event without previously known 
cardiac malfunction or as an acute decompensation of chronic heart failure [4].

The ESC Task Force Group has classified acute heart failure into six distinct 
pictures. This is based on the clinical condition at presentation and the hemody-
namic characteristics described by Forrester [11], Killipp [12] and more recently by 
Cotter [13], along with a report and explanation by Adams [14] and in accordance 
with a publication by Gheorghiade [15]. This, in 2005 introduced classification, is 
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still widely used [16–20], although some authors replaced high output failure, 
ESC-5 (due to its imprecise specification with the various underlying entities, ahead 
of all septic shock), by acute heart failure complicating acute coronary syndrome 
(ACS) which requires a especial treatment (immediate coronary angiography and 
intervention) [19, 21].

Classification based on Nieminen [4] and Gheorghiade [15], modified and 
replenished by Joseph [16].

• ESC-1: Acute Decompensated Heart Failure (AD-HF)
De novo or decompensated chronic HF.
Signs and symptoms of acute HF are generally mild and do not fullfil criteria for 
cardiogenic shock (CS), pulmonary oedema, or hypertensive crisis (HTN).The 
onset is gradual, peripheral edema often significant, while pulmonary congestion 
may be really discrete.

• ESC-2: Hypertensive Acute Heart Failure (hypertensive AHF)
Characteristic signs and symptoms of HF are accompanied by high blood pres-
sure (BP) and a chest radiograph which is consistent with acute pulmonary con-
gestion, while left-ventricular systolic function is relatively preserved or even 
normal. Often rapid onset, marked dyspnea, altered mental status, and oliguria/
anuria are possible (Table 2.1).

• ESC-3: Pulmonary oedema
Symptoms and signs compatible with pulmonary oedema, normally accompa-
nied by severe respiratory distress with SaO2 usually <90% on room air prior to 
treatment, and a chest X-ray showing pulmonary oedema.

• ESC-4: Cardiogenic Shock (CS)
The patient exhibits evidence of tissue hypoperfusion induced by HF although 
pre-load is appropriate or has been properly corrected. There is no clear  definition 

Table 2.1 Hemodynamic profiles

ESC-1 ESC-2 ESC-3 ESC-4 ESC- 5 ESC-6

Heart rate = ↑ ↑ ↑ ↑ ↓/↑
Systolic BP N/↑/↓ ↑/↑ ↑ ↑ Low N/↑ N/↓–↓ ↓ ↓ N/↓/↑ ↓/↓ ↓
Cardiac index  
[l/min/m²]

Low N/↓/↑ N/↑/↓ ↓ <1.8–2.2–↓ ↓ ↓ ↓↓/N <2.2/↓↓

PCWP [mmHg] ↑, ≥12–16 ↑, >18 ↑, >16 ↑↑, >16–18 N/↑↑ ↓, <12

Congestion +/+ + +/+ + + + + + +/+ + −/++ None

Urine output −/+ −/+ + Low/None +/− Low/None

End organ 
hypoperfusion

−/+ −/+ −/+ + +/+ + + −/+ + −/+

Forrester [4, 11, 
15, 16]

II II–III II/IV III/IV I–II I–III

2 Acute Heart Failure Syndromes
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of hemodynamic parameters, but CS is usually characterized by reduced BP 
(systolic BP < 90 mmHg or a drop of mean arterial pressure of >30 mmHg), and/
or low urine output (<0.5 mL/kg/h) with a pulse rate of >60/min, with or without 
evidence of organ congestion.
There is a continuum from low cardiac output syndrome (hypoperfusion, oligu-
ria, and hemodynamically a low normal sBP, a CI < 2.2 L/min/m2, and a PCWP 
>16–18 mmHg) to CS (marked hypoperfusion, oliguria/anuria, hemodynami-
cally a sBP < 90 mmHg, a CI < 1.8 L/min/m2, and a PCWP > 18 mmHg).

• ESC-5: AHF complicating acute coronary syndrome (ACS) (has replaced high 
output failure)
May clinically impress with pulmonary edema (ESC-3), pre-shock or manifest 
shock or as a cold and dry type (ESC-6). Life saving measure is immediate angi-
ography and revascularization (evidence level A, class I recommendation) 
[22–26].

• ESC-6: Right Heart Failure (RV-HF)
Characterized as low output syndrome with ↑ jugular venous pressure, increased 
liver size, and hypotension, often poor perfusion, but clear lungs.

2.3  Aetiology and Epidemiology [4, 14, 27–30]

The main causes of acute heart failure syndromes are:

• Coronary (ischaemic) heart disease/ischemic cardiomyopathy;
• Valvular heart disease;
• Dilated cardiomyopathy;
• Hypertension/hypertensive crisis and hypertrophic cardiomyopathy;
• Acute arrhythmias;
• Acute endocarditis;
• Restrictive cardiomyopathy;
• Acute pericarditis/cardiac tamponade;
• Acute (peri) myocarditis;
• Aortic dissection;
• Extracardiac diseases:

 – Broncho-pulmonary diseases, particularly those producing hypoxic states, 
e.g., acute exacerbation of COPD or severe pneumonia;

 – Anaemia;
 – Hyper/hypothyroidism, and other endocrine diseases;
 – Fluid overload;
 – Drug-induced heart failure;
 – Metabolic/toxic reasons;
 – Infectious diseases (particularly sepsis as high output heart failure);
 – Neuromuscular diseases such as the myopathies;
 – Trauma.

2.3 Aetiology and Epidemiology 
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Coronary artery disease (CAD) is the underlying cause of heart failure syn-
dromes in the majority of cases [16, 26, 31]. Rudiger [12] conducted a European 
survey showing that CAD was the underlying disease in 62% of cases. Other studies 
have confirmed this result showing CAD as the main aetiology of acute heart failure 
in 60–70% of all cases [28, 29, 31, 32]. Valvular heart disease is reported in up to 
44% (seems very high!), dilated cardiomyopathy is prevalent in 25% [33].

Up to 70% of all heart failure patients admitted, suffer from arterial hypertension 
[14, 28], diabetes mellitus is found in 40%, and impaired kidney function was pres-
ent in 20–30% [16, 31]. Atrial fibrillation/atrial flutter is seen in 30–40% of patients 
[16, 31].

The vast majority of all patients admitted with acute heart failure (approximately 
75% [14, 16]) suffer from an acute decompensation of chronic heart failure, often 
decompensated due to systemic infection, treatment with cardio-depressive drugs, 
reduction of the patient’s cardio-specific medication, pulmonary embolism, or inap-
propriate physical stress [14, 28]. About 50% of all AHFS suffer from HFpEF [14, 
34–36].

The main reason for acute HF in patients with ‘preserved systolic’ function, 
HFpEF, (EF > 50%) [37–39]) is an acute increase in systolic blood pressure [40, 
41], but new onset of atrial fibrillation (AF) is a frequent reason as well [42].

Less than 10% have advanced heart failure [16].
Acute heart failure is the discharge diagnosis in about one million patients of all 

ages each year [43]. The overall in-hospital mortality is as high as 5% [44], the 
30-day one is 10–12% [45]. 33% will die within the first year following their first 
admission [46]. The 5-year mortality rate remains high, around 50% [47, 48].

The prognosis may be even worse as a recently published survey by Zinnad [49] 
revealed: In contrary to other surveys, this French survey included not only patients 
suffering from acute heart failure admitted to general and cardiology wards, but also 
severely ill patients requiring CCU or ITU admission. The number of patients with 
pulmonary oedema (82%) and cardiogenic shock (29%) was substantially higher 
than reported in previous studies [28–30]. The mortality in this study was as high as 
27% at 4 weeks and 62.5% after 1 year.

2.4  Pathophysiology

2.4.1  General Remarks

Since the majority of patients admitted to an emergency department with heart fail-
ure display acutely worsened heart failure symptoms, acute heart failure (AHF) has 
recently been referred to as “an increase in the severity of chronic heart failure 
symptoms that requires an escalation of therapy and hospitalization” [50].

Both, acutely decompensated chronic heart failure and newly arisen, “de novo” 
cases without prior history are perceived as AHF, respectively known as acute 
decompensated heart failure (ADHF) or acute heart failure syndromes (AHFS) [6, 
51, 52].

2 Acute Heart Failure Syndromes
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The pathogenesis of acute heart failure syndromes is complex and of multifactorial 
origin, however it is basically attributed to the interplay and interconnection between 
essentially cardiac disorders (e.g. altered diastolic and/or systolic features including 
ischemic or hypertrophic cardiomyopathies) with systemic afflictions, mainly altered 
vascular properties affecting loading conditions (as arising in hypertension, inflamma-
tion and infections, metabolic maladies, and as a consequence of modifications of adap-
tive measures in neuro-endocrine activity (NH)) [5, 7, 17, 50, 53, 54].

Changes in total body fluid content (fluid retention and accumulation) and fluid 
shifts within the body’s compartments (central fluid redistribution) [53, 54], impact-
ing LV and RV preload, are essential elements of the pathogenetic processes  
[53, 54]. Furthermore, typical comorbidities frequently seen in heart failure patients 
including pulmonary maladies like COPD, sleep-distorted breathing disorders, and 
renal dysfunction/worsening renal function, directly influencing cardiac and myo-
cardial characteristics and likewise afterloading conditions [53], are well embedded 
in the pathobiology [5, 7, 17, 53, 54].

Typical, classic features precipitating acute decompensations and being 
responsible for the AHF incidence in more than 80% of all cases include:

• Ischemia/acute coronary syndromes;
• Systemic infections, notably respiratory tractus infections;
• Poorly controlled co-morbidities, such as exacerbated COPD with and without 

pneumonia;
• Uncontrolled hypertension/acute hypertensive dysregulations;
• Arrhythmias (atrial/ventricular arrhythmias);
• Nonadherence to medication;
• Renal failure/worsening renal function;
• Nonadherence to diet/inappropriate salt intake;
• Inappropriate physical stress

[14, 28, 55–60].

Some special notes:
Ischemia: Ischemic injury diminishes LV compliance, hence causes an increase 

in ventricular stiffness [61], subsequently LVEDP rises [62, 63]. Backward trans-
mission of the elevated filling pressures puts the lung at risk for congestion or even 
pulmonary edema [64–67].

Furthermore, any rise in filling pressures bears the risk for (further) ischemia, as 
elevated intra-cavitary pressures may compromise endocardial perfusion, particu-
larly in cases of coronary artery disease and already poor perfusion pressure as in 
hypotensive states [66, 68].

Around 60% of patients with ADHF definitely suffer from coronary artery disease 
[69], while myocardial ischemic events are more common in de novo AHF [26, 33].

Comorbidities such as obesity, diabetes, hypertension and COPD promote inflam-
mation, moreover they may be seen as low grade inflammatory maladies [70, 71]. 
Increased levels of inflammation are independently associated with asymptomatic 

2.4 Pathophysiology
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diastolic dysfunction [72], and all these maladies have been verified to be indepen-
dently associated with early development of diastolic LV dysfunction [73–75]. 
Moreover, systemic inflammatory conditions are predictive of incident HFpEF [70]. 
As such, by affecting diastolic function leading to increases in filling pressures [41, 
76–79], these comorbidities are acknowledged to decisively contribute to or even 
cause heart failure [80]. Acute worsening of diastolic properties are well recognized 
to precipitate AHF [81, 82]. Read more on this issue in Chap. 5, HFpEF !

Arrhythmias: Atrial fibrillation or flutter (AF) is prevalent in 30–45% of patients 
admitted with ADHF [83–85]. AF in the presence of AHF is associated with a wors-
ened prognosis and an increased rate of mortality [86, 87]. Both, systolic and dia-
stolic dysfunction are associated with the risk for incipient AF [88]. Atrial 
fibrillation/flutter and heart failure interact in a deleterious way and fast heart rates 
due to AF may initiate de novo AHF, or may substantially worsen chronic heart 
failure [89, 90]. AF affects relevantly hemodynamics and left ventricular function 
[91] due to the loss of both atrial contraction, which is essential for sufficient ven-
tricular filling, and the tachycardia itself [92]. Thus, diastolic filling is limited due 
to the high heart rate and the loss of atrial contraction, and that, in the presence of 
an already compromised cardiac performance, is one of the mechanisms able to 
cause ADHF [93]. Furthermore, the tachycardic heart rate may display tachycardia-
induced cardiomyopathic effects [94]. Accompanying further activation/accentua-
tion of the already stimulated (as in chronic heart failure) NH contributes to the 
detrimental events [95]. Patients with diastolic dysfunction and HFpEF are espe-
cially affected due to their subjection on a proper atrial contraction to assure a suit-
able LV filling [94].

Renal dysfunction/worsening renal function: A cross-talk between the heart and 
the kidneys, affecting function and performance of each other, is well established 
[96–98]. In the setting of heart failure, venous congestion, neurohormonal activity, 
inflammation as well as endothelial dysfunction are the main trigger and contribu-
tors to baseline renal dysfunction, by altering intrarenal and intraglomerular hemo-
dynamics [97, 99, 100]. However, in contrast to traditional views, venous congestion 
rather than compromised cardiac output decisively contributes to worsening renal 
function (WRF) in most cases [101, 102].

Elevated filling pressures, enhanced peripheral resistance (more precisely 
increased aortic input impedance which best reflects and represents systemic after-
load to cardiac pump as a whole [103]), diminished natriuresis, and often (generally 
in case of HFrEF), but by far not always, a reduced CO are the hemodynamic 
hallmarks of heart failure [5, 6, 104, 105].

However, the clinical picture presented by patients suffering from AHF always 
look very alike and is characterized by signs and symptoms related to pulmonary 
and peripheral congestion, regardless whether suffering from HFrEF or HFpEF [5, 
17, 50, 106]. Bedside physical examination, lab-tests, and X-ray are not able to 
distinguish between both entities [106, 107]. However, history and response to ther-
apy provide considerable clues as to which type is probably underlying: HFpEF 
patients are generally older, are significantly more likely to be obese and have a 
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high(er) BMI, moreover, 85% suffer from the metabolic syndrome, hypertension 
and AF are considerably more often seen in HFpEF than in HFrEF, and HFpEF 
patients less often have a history of coronary and valvular heart disease [47, 108, 
109]. Iron deficiency is more often found in HFpEF [109]. BNP levels are generally 
significantly elevated and higher in decompensated HFrEF compared to those dem-
onstrated in HFpEF, moreover, 1/3 of HFpEF patients do not show noteworthy ele-
vated BNP levels at all, although acutely decompensated [110, 111]. This 
circumstance is explained by the lower end-diastolic wall stress triggering produc-
tion and release of BNP, emerging in HFpEF due to remodelling processes, e.g. 
hypertrophy [110].

Since patients with HFpEF are considerably sensitive to changes in BP, their 
pressure may significantly fall in case of application of diuretics or vasodilators 
[112, 113], a phenomenon not found in HFrEF patients who generally benefit symp-
tomatically from administering vasodilators or diuretics as long as a sufficient BP 
(systolic ≥100–120 mmHg) is measured before these are given [112].

2.4.2  Special Pathophysiological Issues

2.4.2.1  LVEDP and Congestion
The main factor and source causing AHF symptoms is congestion rather than low 
CO [14, 28, 114, 115]. Only a minority of patients (clearly less than 10%) admitted 
with AHF feature signs and symptoms of clinically relevant, significantly compro-
mised peripheral circulation, hypoperfusion, and/or clinically meaningful hypoten-
sion [116–118]. As such, both entities (HFpEF and HFrEF) share one of the main 
pathophysiological issues indicating and promoting acute heart failure: acutely 
and substantially elevated left, and generally subsequent right [15, 119–121], 
ventricular filling pressures, which are associated with pulmonary and systemic 
venous congestion (with and without low CO) [14, 15, 122–124]. Left- and right- 
sided filling pressure is largely determined by (a) the amount of blood flow (venous 
return) to the heart and (b) by the diastolic cardiac properties, e.g. chamber and 
myocardial stiffness [125]. Accordingly, a considerable high blood volume flow to 
the heart (preload) alone may precipitate pulmonary edema as seen in completely 
normal hearts of patients suffering from acute glomerulonephritis, causing acute, 
oligo/anuric kidney disease [125]. On the other hand, worsening diastolic dysfunc-
tion (DD) is shown to provoke pulmonary edema even in the absence of relevant 
volume retention [113, 126, 127].

Backward transmission of the elevated left-sided filling pressures, causing pul-
monary venous hypertension augmenting RV afterload [4, 128–130] and diastolic 
ventricular interaction [131, 132], decisively affect and, in turn, lead to marked 
increases in RVEDPs consecutively displaying systemic (peripheral) congestion 
[133, 134]. As such, congestion attributed to high LVEDP is responsible for and 
causes the foremost clinical symptoms, dyspnoea (acute dyspnoea at rest, orthop-
noea or paroxysmal nocturnal dyspnoea, breathlessness on exertion), and signs and 
symptoms associated with peripheral edema development, like swollen legs, 

2.4 Pathophysiology



88

ascites, renal dysfunction and gut discomfort [17, 30, 49, 50, 69]. Considerable 
evidence indicates that elevated, high LVEDPs causally underlie the development 
and presence of congestion [123]. Moreover, every relevant acute rise in LVEDP 
may precipitate pulmonary congestion or even flash pulmonary edema [67, 135]. 
Patients suffering from diastolic dysfunction are particularly at risk to develop pul-
monary congestion or edema as any (additional) pathological effect affecting the 
heart muscle potentially worsens diastolic stiffness [126]. Typical conditions are 
acute ischemic episodes [136] and abrupt increases in BP [4, 113, 127, 137]. 
Ischemia causes (further) ventricular diastolic stiffening [138, 139] as acute myo-
cardial ischemia slows ventricular relaxation and increases myocardial wall stiff-
ness [140–142], consequently LVEDP increases [62, 63, 142]. Rising BP is, in any 
case, associated with elevated sympathetic tone, augmented afterload, increases in 
LVEDP, and may result in fluid redistribution and further neurohormonal activation 
[15, 143, 144]. Increases in afterload generally cause a rise in LVEDP [113, 127, 
145, 146]. As such, HFpEF patients, found to be highly sensitive to changes in load-
ing conditions (volume and pressure load) [113, 147, 148], are especially predis-
posed to develop pulmonary congestion or actually flash pulmonary edema [67, 
113, 127, 149]. This is even true in the case of only mild, acute increases in BP [67, 
113, 127, 149] or yet undetectable volume expansions [148]. In a rigid heart cham-
ber, which is unable to properly accommodate to increasing blood flows and intra-
cardiac volumes [150], already small increases in end-diastolic filling volume are 
accompanied by substantial, exponential (the diastolic pressure-volume relation-
ship follows an exponential equation) increases in LVEDP [150]. Indeed, rising and 
elevated BPs or increasing LV filling volumes may lead, in the setting of combined 
ventriculo-arterial stiffening, to further increases in ventricular stiffness [113, 148, 
151], thereby worsen diastolic dysfunction [152] which will result in disproportion-
ate rises in LVEDP [113, 148]. Worsening diastolic function due to hypertensive 
dysregulations, uncontrolled hypertension, and myocardial ischemia, but hypergly-
cemia as well, are predominant causes for AHF development in HFpEF patients and 
in diabetic patients with diabetic cardiomyopathy [40, 41, 152]. However, new 
onset of atrial fibrillation (AF) is, as well, a frequent trigger [42]. As a result of the 
loss of atrial function, a compensatory increase in LVEDP in order to maintain end-
diastolic filling volume and thus CO (via Frank-Starling mechanism) is reported. 
Subsequently the neurohormonal systems will be activated [152]. Both, reduced 
diastolic filling and abnormal left atrial function, may result in neurohormonal stim-
ulation [152]. Increases in LVEDP are demonstrated to happen more rapidly in 
HFpEF than in HFrEF, attributed to the blunted diastolic distensibility, a typical 
property of HFpEF (in contrary, HFrEF patients show an increased diastolic disten-
sibility) [123].

Accordingly, elevated LVEDPs causing central, pulmonary and systemic con-
gestion are in the vast majority of AHFS the critical underlying pathology and the 
reason for presentation [5, 122, 153, 154]. Remarkably, central and peripheral con-
gestion usually arise concurrently [155, 156].

Enhanced levels of left ventricular filling pressures unfortunately display a 
range of adverse effects, including enhanced myocardial oxygen demand, 
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compromised coronary perfusion with concomitant risk of angina, global 
and subendocardial ischemia [157–159], progressive mitral [15] and often tri-
cuspid regurgitation, activation of the adrenergic and the renin-angiotensin-
aldosterone system, thus activating the neurohormonal systems (NHs), and 
stimulate the cytokine system [160]. As such, high LVEDPs may evoke and 
contribute to disease progression [104, 161–164]. Indeed, features typically 
associated with and characteristic of AHF are neurohormonal activation [165–
168], stimulated inflammation [169–172] and activated endothelial function, 
commonly termed endothelial dysfunction (ED) [173, 174]. Inflammation and 
ED generally accompany each other as they are closely interrelated and inter-
connected [175–177] and go along with enhanced levels of oxidative stress 
(ROS) [178, 179].

It should be noted that acute severe left heat failure may occasionally, in indi-
vidual cases, not be accompanied by high filling pressures (markedly dilated ven-
tricles, often with severely impaired systolic function) featuring a normal or even 
low LVEDP and no pulmonary edema, although they do suffer from severe acute 
left heart failure [180–182]—this is the so-called ! “forward failure” as described by 
the ESC [4].

2.4.2.2  Neurohormonal Systems, Endothelial Dysfunction 
and Inflammation

The neurohormonal systems, NHs, perform necessary and pivotal control and mod-
ulating functions and exert a substantial integrative impact on cardio-circulatory 
physiology [183–185]. Neuro- hormones carry hemodynamic and biological effects 
on the heart and the vascular system [186]: Augmented sympathetic discharge is not 
only exerting vasoconstrictive, positive inotropic and chronotropic effects, but is 
going along with blunted parasympathetic drive causing abnormal cardiopulmonary 
reflex control, including attenuated baroreflex and boosted peripheral and central 
chemoreflexes [168]. As such, autonomic imbalance (excess sympathetic discharge 
and coexisting withdrawal of parasympathetic tone) is a characteristic feature in 
heart failure [187]. Stimulated renin-angiotensin-aldosterone system [165] and aug-
mented non-osmotic release of arginine-vasopressin, promote other than systemic 
and local vasoconstrictive effects, especially renal functional changes, namely 
declined ultrafiltration and retained sodium and H2O, thus facilitate fluid accumula-
tion [166, 186]. Endothelin-1 causes marked vasoconstriction (enhancing vascular 
tone) [188], while elevated concentrations of natriuretic peptides especially coun-
teract the vasoconstrictive (show venodilative and peripheral arterial resistance 
lowering effects) and the fluid retaining effects of the NH mediators and hormones 
[167, 189–191]. However, their ameliorating effects on the sympathetic and RAAS 
discharge appear to be clinically of minor potency in acute heart failure [164, 192], 
and their clinical importance is attached to their diagnostic and prognostic power  
[193–195]. Of special note, elevated A II and aldosterone levels contribute (aside 
from their well-known and characteristic vasoconstrictive effects, which directly 
augment the systemic vascular resistance and as such the afterload [196], and their 
sodium and water retaining impact [197–199]), through endothelial activation and 
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enhanced ROS generation,1 to the considerably diminished NO bioavailability  
[202–206], typically emerging in AHF [174, 206]. As such, A II promotes endothe-
lial dysfunction and augmented ROS generation, and thereby a markedly diminished 
NO bioavailability ensues [161, 202, 206]. This results in significantly impaired 
endothelial NO dependent vasodilatation causing increased vascular tone (vasocon-
striction) and disturbed regulation of ventricular function: “NO dependent regulation 
of ventricular function and vascular tone determines hemodynamics in AHF” [174]. 
The important NO-cGMP-PKG signalling pathway (NO is a pivotal paracrine and 
autocrine signalling molecule [207]), is a universal cascade of cellular communica-
tion regulating, via protein phosphorylation, gene expressions [208–210]. This sig-
nalling pathway will be affected resulting in (a) altered smooth muscle cell relaxation 
which concomitantly impacts local and systemic blood flows and blood pressure 
[211], causing vascular dysfunction, and (b), related to an afflicted cardiac endothe-
lium, disturbed titin phosphorylation within the cardiomyocytes [208–210]. Titin 
hypophosphorylation leads to cardiomyocyte stiffening and thus precipitates dia-
stolic dysfunction [78, 112, 210, 212]. Hence, vascular compliance (namely of the 
central larger vessels) is diminished (vasoconstriction in arteriolar vessels reduces 
arterial compliance [213]) causing increased vascular stiffness and subsequently 
enhanced LV (RV)-afterload thereby also facilitating diastolic dysfunction [147, 148, 
174, 214–216]. Furthermore, a rise in systolic ventricular elastance is induced and as 
such augmented ventricular (end-)systolic stiffness [214, 217] impairing systolic 
performance/reducing systolic reserve capacity [199, 218]. Indeed, augmented arte-
rial stiffness is associated with both, systolic and diastolic dysfunction [219–221], 
and moreover, considerably impaired NO bioavailability and worsening endothelial 
dysfunction are even suggested to propagate the development and/or progression of 
heart failure [175, 222, 223].

Without doubt, in the early phase of AHF, enhanced neurohormonal activity 
allows stabilization of the compromised hemodynamic conditions and disrupted 
homeostasis jeopardizing suitable tissue and organ nutrient and oxygen supply 
[224]. Ventricular filling pressures increase with increasing sympathetic tone [225] 
and thereby may assure appropriate ventricular filling volume in order to maintain 
CO in the failing heart. On the other hand, they may contribute and provoke pulmo-
nary congestion or edema [226]. Over time, the effects of the NHs, if persistent and 
chronically activated, are considered and appraised to be maladaptive, deleterious 
for the circulation, and leading to disease progression [54, 118, 164, 192, 224, 227].

Moreover, very recent publications suggest that the stimulated neuro-endocrine 
hormonal systems are even “over-activated” and are overwhelming the counter-
regulatory cascades, decisively contributing to, mediating, and maybe even 
precipitating acute heart failure [60, 162–164, 183, 186, 227, 228] as they consider-
ably modulate myocardio-mechanical properties [229].

1 Reactive oxygen species (ROS) are subsequently associated with “functional” NO deficiency: 
Due to a chemical reaction between NO and ROS in case of augmented levels of ROS, NO is uti-
lized. Furthermore, peroxynitrate is formed, a toxic reactive molecule [200], which is also involved 
in cardiovascular pathology [201].
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Endothelial activation (EA)/dysfunction (ED) being present in AHF is evi-
denced by elevated levels of biomarkers indicative for EA including vascular adhe-
sion molecules (VCAM-1) and intercellular adhesion molecules ICAM-1 [230–232], 
cytokines such as IL-6 and IL-1β, and tumor necrosis factor TNFα [233–235]. ED 
is meanwhile acknowledged taking a central and crucial role in the pathophysiology 
and pathogenesis of acute and chronic heart failure [175, 223]. Endothelial factors 
and mediators, whereupon endothelial relaxing factor (NO) activity represents a 
hallmark of endothelial function [236], contribute via para-, auto- and endocrine 
pathways to organize pivotal homeostasis and co-modulate cardiac and renal assign-
ments and vascular properties in order to assure appropriate blood volume, cardiac 
output, perfusion pressure and blood distribution to the tissues and organs meeting 
cellular and tissue metabolic demands [192, 236].

Altered endothelial function, endothelial dysfunction (“should more appropri-
ately considered as endothelial activation” [237]), implies a disturbed NO bio-
availability, among other issues (ED displays pro-inflammatory, pro-coagulatory, 
and vasoconstrictive conditions [238]), as probably its most relevant pathobiologi-
cal consequence. A disturbed NO bioavailability critically contributes to an imbal-
ance of local (and potentially systemic as the endothelium is present in the whole 
body) vasoactive substances [239–241], precipitating significantly increased vas-
cular tone, resulting in deranged (local) blood flow distribution and autoregulation 
[242]. The restricted bioavailability of NO is not only associated with vasocon-
striction but causes increased stiffness in the systemic and pulmonary circulation 
and hence augments LV and RV systolic load [174]. Shortage of NO availability 
further favours ET-1 related vasoconstriction [243], increases sympathetic dis-
charge including raised release of catecholamines [244], and contributes to dimin-
ished sodium excretion [245]. Dysfunctional cardiac microvascular endothelium 
may affect, via paracrine paths, diastolic LV properties [206] whereupon the 
already mentioned NO signalling pathway, considerably affected by ED, precipi-
tates compromised endothelial cross-talk and disrupted phosphorylation paths 
[246, 247], including the cardiomyocyte NO-cGMP-PKG pathway leading to titin 
hypophosphorylation and thus acute cardiomyocyte stiffening [210, 218]. 
Accordingly, the effects of ED relevantly contribute to the clinical-hemodynamic 
profile characteristic in heart failure [248]. Moreover, ED is related to heart failure 
initiation and thus AHF [249]. ED is associated with adverse outcome in acute and 
chronic heart failure [250–252], correspondingly improvement of endothelial 
function is affiliated with a better outcome [253]. The worse ED the more severe 
the heart failure stage present and the more severe the functional limitation [254, 
255]. ED independently predicts mortality risk [249, 251, 256] and major cardio-
vascular events [252]. Hence, there is no doubt that ED has a major and crucial role 
in heart failure malady in both acute and chronic conditions, integrates the multi-
facet signals arising [176], triggers, modulates and even perpetuates the cascades 
activated [257–259]. Indeed it orchestrates the adaptive and potentially morbid 
processes, and unquestionably causally contributes to initiate and to display acute 
heart failure [174, 260]. Notably, dysfunctional vascular endothelium is a recog-
nized hallmark of human diseases in general [261].
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Inflammation as evidenced by elevated serum levels of TNFα, IL-1, IL-6, and 
ST-2, an activated complement system and adhesion molecules verified in AHFS is 
part of the pathobiology [170, 171]. Inflammation per se is a protective response to 
injury of any kind, ensues and applies by interactions between cell surfaces, extra-
cellular matrix, and pro-inflammatory mediators [262], and may basically be 
regarded as a vascular response to any threat or injury [263–265]. As such, 
vascular stretch as present in acute and chronic pressure or volume load exerts bio-
mechanical stress on the mechanoreceptors of the endothelial cells, and thus initi-
ates an at least mild inflammatory response [266–268]. Even physiological adaptions 
in vascular tone and tension are principally regulated and mediated by the same 
molecules, agents, and hormones involved in inflammatory processes [17] and in 
endothelial functions and effects. The endothelium is substantially involved in the 
innate [269–271] and adaptive [272]) immune response to injury, processes associ-
ated with inflammation, and as such is surely a fundamental feature in cardiovascu-
lar disease processes and may be considered as “linking” inflammation and 
cardiovascular diseases [174, 175, 206]. Indeed, a distinct correlation between 
inflammation and endothelial dysfunction is well established [273], confirming that 
inflammation and endothelial cells are closely intertwined and interconnected [273, 
274]. Furthermore, since being characterized and accompanied by an increase in 
inflammatory markers including CRP, cytokines, adhesion molecules, and acute 
phase proteins, a more substantial and chronic inflammation has to be considered as 
a systemic process rather than “purely” a local reaction [275]. Accordingly, inflam-
mation is recognized as taking a central position in the pathophysiology of cardio-
vascular diseases and hypertension [276]. As such, inflammation may, by causing 
endothelial dysfunction [277, 278], promote hypertension due to impaired endothe-
lium-dependent vasodilation favouring vasoconstriction following an imbalance 
between vasoconstrictor and vasodilator mediator production and release [279], 
namely an impaired NO bioavailability [280, 281].

Especially remarkable and important to understand is that systemic inflammation 
such as severe infections, especially sepsis, may cause acute cardiac decompensa-
tions: The set of cardio-vascular responses associated with inflammatory activation 
may include a dissociated reply with enhanced peripheral vasodilation (due to 
reduced peripheral vascular resistance caused by vasodilative mediators). Although 
occurring in the presence of limited NO bioavailability, which implicates impaired 
NO-related vasodilation, and coexisting with enhanced arterial stiffness, which con-
secutively causes increased afterload [282, 283], the net result is a potential drop in 
blood pressure (largely determined by the resistance vessels), LV afterload is aug-
mented [174, 219, 284, 285] and systolic LV-function is blunted [174, 219, 286].

To resume this issue, beside the tight and intertwined relation between ED and 
inflammation [273, 274], a close interrelation and interaction between the NHs, 
namely the autonomic nervous system and the AII effects, and endothelial func-
tion/dysfunction is quite evident [287–289], whereupon NO constitutes the deci-
sive link [272]. Enhanced sympathetic drive induces shear stress on the vessel 
walls [290], even in case of minor discharge [291]. Shear stress is associated with 
ED [292–294]. On the other hand, (activated) endothelial cells may trigger NHs 
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[287, 295]: Physiological and pathological (as e.g. in case of venous congestion) 
biomechanical forces affect the endothelial mechanoreceptors and subsequently 
stimulate endothelial cells and consecutively activate NHs [201, 261, 296]. 
Endothelial stretch (activating endothelial cells) [201, 261, 297], and as such even 
increasing ventricular filling pressures and myocardial stretch [160], directly evoke 
activation of the NHs, in case of SNS by altered autonomic reflexes [297]. Actually, 
elevated filling pressures and myocardial stretch are acknowledged as being among 
the most powerful impulses activating NHs [160]. Accordingly, NHs activation and 
endothelial dysfunction may be considered being a common path of the causative 
features contributing to incipient heart failure [186]. Furthermore, the tight interre-
lations and interconnections of the features and systems inevitably hold the risk to 
end up and to constitute a vicious cycle, potentially amplifying and perpetuating 
each other and as such facilitating disease progression [60, 104, 259, 297, 298].

2.4.2.3  Vascular Properties, AV-Coupling, Afterload Mismatch 
and the Dual Pathway Concept by Cotter

Vascular properties and “function play a central role in the development and pro-
gression of heart failure” [174]. Albeit the elevated left-sided (and mostly right- 
sided as well) filling pressures, which are associated with central pulmonary and 
peripheral congestion [14, 15, 122, 123, 153], coin the clinical picture and give rise 
for hospital admission in the vast majority of acute heart failure cases [17, 30, 49, 
50, 69], acute marked alterations in vascular tone, vasoconstrictions (affecting 
LV and RV loading conditions) are actually often the direct cause of incipient 
AHF [13, 113, 127, 137]. Indeed, AHF may be considered as a disorder of “patho-
logic vasoconstriction” [299]. AHF is almost always associated with both, ele-
vated LVEDPs and generally (in cardiogenic shock as the most severe form of 
AHF, the SVR may be even abased - read more about this phenomenon in Chap. 3) 
substantially increased afterload, in daily practice usually indicated by aug-
mented peripheral vascular resistance (SVR), whereupon CI/CO is indefinite [300].

The often considerable increase in afterload (respectively SVR as part of total 
afterload) in the presence of deficient systolic and/or diastolic myocardial properties 
[300] cannot be compensated, as the cardiac properties are neither capable of allowing 
compensation by increasing preload (at least not at the cost of still reasonable increases 
in filling pressures below the threshold of pulmonary congestion/edema formation) 
and consecutively applied  Frank-Starling-mechanism nor by subsequent sufficient 
increase in contractility following and adapting to the rapid increase in aortic pressure 
(afterload), known and referred to as Anrep’s effect [301, 302]): This condition (a 
substantial rise in afterload  in the presence of compromised systolic and/or diastolic 
capabilities) is referred to as afterload mismatch [303, 304]. Afterload mismatch 
causes a vicious cycle with secondary mitral regurgitation, reduced SV and increasing 
and elevated LVEDPs, and as the latter are being transmitted backward, pulmonary 
congestion/edema ensues [67, 305]. Notably, as a matter of fact, venoconstriction is 
part of the “generalized “vasoconstrictive transaction [60, 306, 307].

Cotter demonstrated that almost always systemic vascular resistance is enhanced 
in acute heart failure syndromes (AHFS) [13, 137] and argues that most episodes of 
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AHF (about 70%) are attributed to increased aortic input impedance [308], which 
denotes enhanced afterload, with consecutively increased end-systolic LV-stiffness 
and reduced diastolic compliance [151], resulting in a noticeable rise in LVEDP 
[113, 127, 145, 146]. This opinion is agreed by Metra and co-workers [160] and 
supported by several facts, particularly:

(1) Relatively high systolic BPs are frequently seen in AHF patients [15, 69], at 
least 50% of all patients admitted with AHF are “hypertensive”—systolic 
BP > 140 mmHg [69, 309]. However, patients with systolic BPs of 140 mmHg or 
less may very well suffer from augmented afterload as in the setting of systemic 
inflammation/infection with increased central aortic stiffness and thus increased 
systolic LV-load [13, 282].

(2) Furthermore, AHF often develops rapidly, typically within hours [17] and 
without much previous complaints [4, 137], and as such is associated with acute 
alterations in arterial loading conditions directly affecting cardiac properties and 
function [160, 308]: “ LV performance is influenced by arterial load [284] (since 
systolic wall stress reflects afterload as defined by the law of LaPlace [310, 311]), 
and arterial properties are, in turn, influenced by LV performance” [284, 312]. 
Consequently, vascular properties (specifically vascular tone) play an essential role 
in the development and progression of HF [174]. Moreover, (worsening) vascular 
failure is considered to be a precipitant for AHF [313].

As evident from the above depicted setting, altered vascular properties are deci-
sively causally responsible for incipient AHF, accordingly, this type of AHF is 
referred to as “vascular failure” or “vascular type of AHF” in contrast to “cardiac 
failure” [308]. The latter, in which predominantly the cardiac performance and/or 
the myocardial efficiency is/are considerably compromised, may further deterio-
rate (e.g. due to ischemia with hibernating or stunning myocardium and thus (fur-
ther) afflicted contractile properties [314], a common reason in de novo AHFS [26, 
33]), and consecutively provoke AHF [308]. Of prominent concern are elevated 
troponin levels indicating myocardial damage, found in about 50% of all patients 
admitted with AHFS [315]. These elevations are suggested to be largely attributed 
to improper and disproportionate myocardial perfusion provoking ischemia (suben-
docardial ischemia due to high filling pressures, dysregulated cardiac/myocardial 
autoregulation (altered microcirculation), metabolic imbalances, hypotension, 
application of vasodilatory substances treating AHF, etc.) [26, 66, 68, 316–318], 
and will, in any case, (further) weaken myocardial performance [319]. Characteristic 
for the cardiac pathway (cardiac failure) is a marked de novo fluid accumulation, 
developed often over weeks, and relevantly involved cardio-renal features [17, 54, 
164, 308, 320].

The concept by Cotter takes into account that (A) the heart and the vessel system 
have to be acknowledged as a functional unit, an absolutely essential view for under-
standing and interpreting the basic physiological and pathophysiological features, 
affecting each other and are together responsible for sufficient cardio- vascular perfor-
mance [147, 312, 321–325], and that (B) both, an afflicted heart and altered vascular 
properties are present in acute heart failure. However, while one part of the unit may 
predominantly malfunction in the acute condition, the unit as a whole precipitates the 
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failure [326]. Metra emphasizes, it is even “essential for understanding and treatment 
of heart failure” to distinguish between both pathways, although they may be dis-
rupted concomitantly and thus contribute equally at the same time to acute decompen-
sation [160]. Further details of this new fundamental concept on AHFS by Cotter, 
meanwhile recognized and even endorsed by the ESC [5] are depicted in Fig. 2.1.

The vascular pathway is related to increased vascular stiffness/resistance with 
acute afterload mismatch and exacerbated filling pressures in the setting of activated 
NHs, resulting in (further) impaired systolic performance and redistribution of flu-
ids from systemic (predominantly splanchnic veins, see below) to pulmonary circu-
lation, rather than from general fluid accumulation. The cardiac pathway implies 
largely myocardial issues (due to acute ischemia, acute myocardial infarction, or 
acute myocarditis, but also due to sepsis and other threats affecting myocardium) in 
the setting of stimulated NHs (further) blunting and deteriorating systolic perfor-
mance, to primarily responsible for the AHFS and is essentially associated with de 
novo fluid accumulation and cardiorenal dysfunction [104, 126, 154, 308].

Characteristic for the “vascular profile” of AHF development are rapid onset of 
clinical symptons and central fluid redistribution causing pulmonary congestion or 
edema rather than fluid accumulation, thus no or only marginal weight gain prior to 
AHF is seen, furthermore, most patients have preserved EF, suffer from diastolic 
dysfunction, and present with normal (sBP 100–140 mmHg) or elevated 
(sBP > 140 mmHg) blood pressure [17, 308]. Of course, especially affected are in 
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general patients with pre-existing combined v-a stiffening, demonstrating amplified 
changes for any alteration in loading conditions [147], and ADHF arises due to tem-
porary exacerbated/worsened diastolic dysfunction [127]. As such, acute increases in 
afterload (e.g. due to an increase in vascular resistance and / or in vascular stiffness) 
have a markedly unique impact on blood pressure and consecutively on filling pres-
sures [145, 146] since blood pressure feeds back into (further) impairment of dia-
stolic properties [151], potentially inducing pulmonary congestion [112, 327, 328]. 
Petrie established an inverse relationship between diastolic relaxation and afterload 
in hypertensive and non-hypertensive humans indicating cross-talk between arterial 
afterload and diastolic LV function [329]. Clinical pulmonary congestion (compared 
to hemodynamic congestion which is reflected by elevated LVEDPs but without 
clinical symptoms [153]) or even edema may apply in case of acutely increased 
LVEDPs already at relative low filling pressures, and consecutively, relatively lower 
pulmonary pressures than found in chronically elevated LVEDPs, as pulmonary lym-
phatics drain excess lung fluids in case of chronic overfilling more rapidly and effi-
cient than in case of abruptly enhanced fluid onset [192, 330].

However, in conclusion, the classical vascular pathway relates to acutely altered 
vascular arterial impedance (due to increased vascular stiffness and/or resistance) 
associated with an acute afterload mismatch as the change in loading conditions 
cannot be compensated by adjusting cardiac performance, the latter in general due 
to compromised systolic cardiac performance or limited systolic reserve, further 
affecting systolic properties, and is accompanied by fluid redistribution (due to neu-
rohormonal drive, read below) rather than by fluid retention [117, 154, 308, 331].

2.4.2.4  Fluid Redistribution, Splanchnic Veins and the Venocentric 
Input

Highly remarkable, very recent study results provide evidence that even subtly altered 
hemodynamic conditions may provoke AHF from vascular type in predisposed sub-
jects with abnormal cardio-vascular function, whereupon acute sympathetic discharge 
mediates acute changes in vascular properties with subsequently modified loading 
conditions thereby leading to acute heart failure [60, 123, 126, 332]. The neurohor-
monal systems are, as described above, decisively controlling and modulating cardio-
circulatory function [183, 184], and may acutely affect cardiovascular conditions and 
function [164, 186]. Particularly the sympathetic nervous system (SNS) is reported to 
be able to instantaneously affect cardiopulmonary and arterial baroreflexes [333, 334], 
and to acutely release vasoactive agents such as noradrenaline into the circulation and 
thus mediate and induce rapidly changes in vascular arterial and venous resistance and 
compliance [60, 335]. As such, abruptly enhanced sympathetic drive is demonstrated 
to critically influence the pathogenesis and onset of AHFS [60, 126, 165, 224, 226]: 
Study results and considerations by Fallick and colleagues address sympathetically-
mediated central fluid redistributions from the splanchnic venous blood reservoir, 
caused by acutely elevated sympathetic discharge resulting in ADHF [60]. More than 
70% of total body blood volume is mainly residing in the veins and not involved in 
effective circulation, since the venous system is substantially more compliant (about 
30 times) than the arteries [335]. Of which, the splanchnic veins are even more 
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compliant than the other veins and are furthermore particularly densely equipped with 
α1 and α2 receptors [335]. These anatomic facilities translate into physiological conse-
quences, displaying better storage abilities (reservoir veins) than other veins and a 
significant stronger degree of vasomotor response in case of sympathetic activation 
[336], which predominantly reduces venous compliance and as such diminishes the 
vessels’ capacitance [60]. Hence, even minor sympathetic discharges prevailing, 
translate into constriction of the splanchnic veins while there is no, or only a negligi-
ble, effect to be seen in the other veins and hardly any in the arteries. Furthermore, the 
amount of fluids shifted in case of constriction of the splanchnic veins is compara-
tively greater as with an equal strong constriction in other venous areas.

Moreover, while the capacitance of the peripheral veins is reported to be normal 
in heart failure patients [337], it is suggested that splanchnic veins behave dysfunc-
tional in that patient group unable to properly buffer changes in effective circulating 
volume [60]: The inhibitory control mechanisms, in particular reflex control, atten-
uate and modulate SNS discharge and cause its effects to not properly apply [338–
341]. Adamson provided evidence that imbalanced autonomic activities prefer 
sympathetic over parasympathetic activity [342], and as such result in sustained 
sympathetic influence and activism.

Accordingly, sympathetically-mediated and initiated reduction in splanchnic 
venous capacitance may provoke relevant fluid shifts from the venous reservoir into 
the effective circulating blood stream, subsequently increasing preload and consecu-
tively enhancing LVEDPs: Indeed, pulmonary diastolic pressures are demonstrated 
to fluctuate markedly during the day, apparently attributed to sympathetic discharges 
in response to in principal physiologic matters like upright posture and exercise 
[332]. While many of these sympathetic discharges are uncritical, some may initiate 
a vicious cycle ending up in acute heart failure in susceptible persons [60]. Patients 
suffering from chronic heart failure show chronic endothelial dysfunction and low 
grade inflammation [80, 175, 261, 343, 344] and as such are predisposed to decom-
pensate—the vast majority (about 75%) of patients with AHFS are acute decompen-
sations of chronic heart failure [345, 346]—in case of a further threat/threats (e.g. 
temporary ischemia—cardiac pathway) or even minor alterations in loading condi-
tions (vascular pathway) [297]. Accordingly, Fallick and co-authors suppose that 
acute (and maybe even “physiological“) sympathetic discharge, at least in the setting 
of dysfunctional splanchnic veins as found in (chronic) cardiac/cardiovascular dys-
function, alone has the potential to provoke AHF [60]. The concept is well consistent 
with other study results: Autonomic imbalance and elevated filling pressures become 
evident already days and weeks before acute decompensations turn into a clinically 
overt malady (display clinical congestion) [123, 342]. Furthermore, elevated pulmo-
nary pressures are suspected to promote sympathetic excitation through pulmonary 
afferents [347], thereby amplifying sympathetic drive and thus may intensify veno-
constriction and consecutively a fluid shift. The results from the COMPASS-HF 
study suggest, providing clinical evidence, that fluid shifts from the extracellular 
space into the effective circulation (expanding effective circulating volume) may 
underlie the development of AHF [348]. Moreover, the authors’ concept also explains 
very well why patients without weight gain (weight gain is acknowledged to indicate 
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fluid accumulation in heart failure patients, although this is a relatively insensitive 
(and nonspecific) marker of fluid agglomeration with several limitation and restricted 
accuracy [160, 349–352]) may well develop AHFS without typical precipitants due 
to minor, elusory or even not comprehensible occasions initiating incipient acute 
heart [60, 126]. This pathogenesis explicates that the majority of patients presenting 
with AHF do not suffer from clinically comprehensible fluid accumulation and 
weight gain (inducing acute decompensations and AHF [123, 134, 353]), rather, fluid 
redistribution from peripheral, namely splanchnic venous, to central circulation is 
definitely an established pathway in AHF pathobiology [60, 126, 160, 308].

Furthermore, this approach broadens Cotter’s concept who attributed fluid 
redistribution to increased vascular resistance and stiffness, thereby referring vas-
cular failure to altered arterial properties. Obviously, changes in venous tone and 
hence venous capacitance (namely in the compliance of the splanchnic veins 
reducing their capacitance due to acutely increased sympathetic drive) foremost 
apply, and are able to shift within seconds up to 800 mL of blood into the circula-
tion [335], thereby augmenting effective circulating blood volume and concomi-
tantly increasing preload, and thus cause acute heart failure [60, 126]. In summary, 
sympathetically–mediated veno-constriction, predominantly affecting the 
splanchnic veins, with subsequent considerable blood shift into the effective cir-
culation and hence increased preload causing (further) elevations in filling and 
concomitantly pulmonary pressures, inducing pulmonary venous congestion, has 
to be considered primarily as a vascular pathway with fluid redistribution follow-
ing Cotter’s concept.

2.4.2.5  Fluid Accumulation, Venous Congestion and the Link 
Between Cardiac and Vascular Pathway

Expansions, even very mild ones, of the effective circulating blood volume, inevi-
tably increasing the preload, are in the setting of heart failure in any case accompa-
nied by appreciable increases in filling pressures, actually even exponentially 
increases may be seen [354]. This condition is referred to as hemodynamic conges-
tion [153]. As such, acute increases in venous return, due to reduced venous capaci-
tance of the venous reservoir following sympathetic activation, are able to provoke 
(occasionally substantial) enhancements in LVEDP and RVEDP [60]. If the increase 
in cardiac filling and intravenous pressures (elevated left-sided pressures are usually 
responsible for increased systemic venous pressures [124, 355, 356]) become clini-
cally obvious by precipitating acute pulmonary congestion/edema [60, 226] and 
systemic peripheral edema (the latter traditionally known and referred to as venous 
congestion [134, 139]), clinical congestion applies [153]. “Central (pulmonary and 
intrathoracic) and peripheral (venous) congestion usually exist together” [126, 155, 
156]: Pulmonary and systemic congestion caused by elevated left- and right-heart 
filling pressures is almost a universal finding in AHFS [15].

Congestion is almost always associated with excess extracellular fluid and blood 
volume [60], whereupon most of the excess fluid will be located in the venous sys-
tem [335]. However, increased intravascular fluid volume does not always reflect 
fluid accumulation or retention rather may be due to altered fluid distribution, 
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redistribution, as described by Fallick and coworkers [60] and as conceptualized for 
AHFS by Cotter [308]. Indeed, elevations in filling pressures following fluid shifts 
from the venous reservoir may result in a failing heart in hemodynamic or even 
clinical congestion without any relevant (at least for us recognizable) supplemen-
tary retention of salt and water [357]. Consistent, weeks before overt AHF ensues, 
autonomic imbalance and elevated filling pressures are demonstrated [123, 342]. As 
such, inappropriate autonomic regulation of the vascular, namely of the venous 
tone, and the physiological fluctuations in SNS drive, may induce (repetitively) 
some degree of fluid shift especially from the splanchnic reservoir to the effective 
circulation thereby potentially provoking incipient AHF [297, 357].

Accordingly, although in the majority of AHFSs (acute) central fluid redistribution, 
rather than fluid accumulation, is the recognized flash point leading to acute clinically 
relevant and overt malady [126, 160, 308], at least some degree of fluid excess, often 
beyond clinical comprehensibleness, is universally present in all AHF patients [35, 
126, 358, 359] and a “basic and fundamental mechanism of decompensation” [160]: 
(1) Sympathetic excitation is reported to facilitate sodium retention and as such may 
contribute to decompensation [60]—enhanced sympathetic drive is an acknowledged 
issue in heart failure [227]. (2) Diminished natriuresis is a hallmark of heart failure and 
thus fluid retention has to be anticipated in heart failure patients [104, 105]. Threats, 
often minor ones, or even intense physiological fluctuations in the concentrations of 
(circulating) neurohormones are demonstrated to promote fluid retention in patients 
suffering from chronic heart failure [55, 59], and may launch acute decompensations—
remember, the vast majority (75% and more) are acute decompensations of chronic 
heart failure cases [346]. (3) Arginine- vasopressin- mediated reabsorption of free 
water is reported to be present in heart failure [224, 349]. (4) Not only Silva Androne 
could verify that intravascular volume indeed is elevated in patients with “stabile” 
chronic heart failure [360]. (5) Furthermore, renal dysfunction is common in heart 
failure resulting in salt and water retention [224, 349] and may contribute to fluid over-
load. Actually, in a large majority of heart failure patients, a shortened kidney function 
has to be recognized [35, 353, 361]. The complex pathophysiology of kidney dysfunc-
tion associated with heart failure, the cardio-renal-syndrome (CRS), is largely attrib-
uted to a decrease in renal perfusion pressure, altered intrarenal hemodynamics, and 
elevated renal venous pressures [362], basically a result of the effect of activated neu-
rohormonal systems (SNS and AII !) and associated fluid retention [199, 363], and 
deficient/overwhelmed counter-regulatory systems and effects [186, 224]. Furthermore 
the signalling pathways of the natriuretic hormones must be affected in heart failure, 
since in case of increased natriuretic levels, physiologically an accelerated natriuresis 
applies [364]. Thus, in heart failure, salt excretion in general is disturbed [126]. (6) 
Moreover, in the setting of an increased vascular tone which is accompanied by a 
diminished (foremost splanchnic) venous capacitance [60, 335], the hemodynamic 
effect of sodium and (consecutively) water retention may be amplified [365, 366]. (7) 
Especially to be noted, “fluid redistribution can only happen on the basis of an existing 
elevated blood volume” [126]. Thus some degree of fluid accumulation is necessary for 
the concepts of Fallick and Cotter to work, explaining very well the pathophysiology in 
absolute consistency with the clinical findings and presentations.
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Nonetheless, fluid accumulation as the typical, classical feature characterizing 
the cardiac pathway of AHFS following the concept by Cotter [308], applies pre-
dominantly in case of relevantly compromised cardiac function [308]. In the setting 
of markedly impaired, prevailing cardiac performance, progressive fluid accumula-
tion occurs as the result of cardiac failure. The ensuing, often persisting and 
thereby maladaptive, compensatory mechanisms, including activated neurohor-
monal cascades and endothelial—inflammatory programs, affect salt and water bal-
ance and renal function, clinically manifesting in a more gradual increase in total 
body volume, with concomitant enhanced body weight and in the front peripheral 
edema, jugular venous congestion, hepatomegaly, and gut discomfort [5, 17, 50, 
308]. As the renal dysfunction and the modified fluid—salt balance component are 
relevantly involved [124], some authors talk about a cardio-renal pathway (instead 
of cardiac pathway) [54, 164, 297]. This “slow” decompensation over days and 
often weeks [134, 342] has been traditionally attributed to non-adherence in diet 
(improper high salt and fluid intake) and medication, as well decreasing contractil-
ity due to ongoing myocardial injury (mainly ischemia) [17, 55, 308]. This pathway 
is related to largely altered systolic, myocardial properties while changes in, and the 
impact of, the vascular conditions are seen in these circumstances in the background 
[308, 311].

Increased intravascular, thus particularly intravenous fluid content exerts biome-
chanical stress on the vessel walls [259, 367, 368]: Biomechanical forces including 
shear and circumferential wall stress as well as increased intravascular fluid content 
precipitating hydrostatic pressure display endothelial stretch, sensed by the mecha-
noreceptors located on the surface of the endothelial cells [296, 369–371]. 
Consecutively, the endothelial cells will be activated and hence switch phenotypi-
cally, altering their synthetic profile, and as such, physiologically deploy a signal-
ling cascade resulting in a minor degree of vasoconstrictive, pro-coagulatory and 
pro-inflammatory condition [296, 369–371]. The reaction may be somewhat more 
pronounced in case of already enhanced vascular tone as typically present in “com-
pensated” chronic heart failure [183, 184, 227]. Moreover, excessive and sustained 
activation is in any case crucial for disease progression [183]. As such, environmen-
tal cues may cause apparent or subtle, unrecognizable biomechanical stress which 
is associated with endothelial and neurohormonal activation and concomitant gen-
eration of oxidative stress. Oxidative degradation of the ROS’s quenches NO (the 
key molecule of vasodilatation) activity despite elevated NO production and thus 
results in blunted NO bioavailability. This then affects vascular tone, causing (and 
amplifying) vasoconstriction [201, 261]. The vasoconstriction may be more distinct 
and amplified by other neurohormones modulated and released following vascular 
stretch, notably the renin-angiotensin-aldosterone—system with angiotensin II 
[259, 297] as its biologically most active representative, which, in turn, directly and 
indirectly promotes vasoconstriction [372]. Especially to be recognized, peripheral 
rather than central, cardio-pulmonary triggers are reported to be the decisive source 
of activating endothelial cells to generate and release vaso- and bioactive mediators 
[307, 373]. However, that is not surprising and absolutely consistent with the natural 
physiological conditions as most of the accumulated or retained excess fluids are 
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“stored” within the venous system [335]. Accordingly, systemic, particularly local 
venous hemodynamic and finally clinical congestion (venous congestion, mainly 
a result of the activated compensatory mechanisms and cascades, is associated with 
circumferential stretch [259]) causally accompanies and potentially facilitates acute 
heart failure evolution [54, 164, 174, 186, 192], as congestion is considered to play 
a crucial role in provoking endothelial and neurohormonal activation [374, 375]: 
“Systemic venous congestion is sufficient to cause endothelial and neurohormonal 
activation” [297]. However, as Hayashi [307] could demonstrate in a human study 
model of patients with systolic heart failure (HFrEF), local venous congestion is 
also, by all means, able to “promote endothelial and neurohormonal activation, even 
exerting systemic effects, as evidenced by an increase in plasma ET-1, IL-6, and 
VCAM-1 in this patient population” [297]. The special input from venous conges-
tion in the acute and chronic heart failure pathobiology is further supported by the 
fact that venous congestion commences, and can be observed, days and even weeks 
before clinically overt heart failure ensues [133]. Hence, venous congestion has to 
be considered as being itself a primary contributor and hemodynamic, pro-oxida-
tive, and pro-inflammatory stimulator of acute decompensation, rather than an epi-
phenomenon and merely a consequence of poor cardiac performance [133, 297]. 
Accordingly, there is substantial evidence that venous endothelial stretch, associ-
ated with and caused by local (and systemic) venous congestion following fluid 
retention and accumulation [259, 297, 307], is able to activate particularly the local, 
peripheral venous endothelial cells to subsequently produce and release, in a para-
crine/endocrine manner, a number of vaso- and bioactive mediators and substances 
including vasoactive and inflammatory neurohormones and cytokines [259, 297, 
374, 375] in a composition compatible with results typically demonstrated in 
AHFSs [374, 376]: “The peripheral release of vasoactive and pro- inflammatory 
neurohormones and substances from stretched endothelial cells and perivascular 
congested tissues may offset the physiologic adaptive state and may promote further 
fluid retention (fluid accumulation) inducing a vicious cycle resulting in overt 
decompensation” [375].

Thus, in consequence of the extended and elevated intravascular, namely intra-
venous, fluid amount, a rise in filling pressures of both the right and the left ventricle 
ensues. Subsequently progressive central pulmonary and peripheral local and sys-
temic venous congestion will be displayed [104, 117, 126, 377]. Pulmonary (left- 
sided) and systemic venous (right-sided) congestion are related to elevated 
left- respectively right- sided filling pressures [15], whereupon the elevated LVEDP 
is the characteristic consequence of the systolic and/or diastolic cardiac dysfunction 
causally present in heart failure syndromes [378]. Elevated right-sided filling pres-
sures are the result of (a) the elevated LVEDP being transmitted backward to the 
pulmonary vessel network, causing pulmonary venous hypertension, consecutively 
increasing RV-afterload [379, 380], (b) the increased RV preload and (c) of diastolic 
ventricular interaction applying in the presence of (acute) heart failure and typically 
if intravascular fluids distinctly accumulate as in cardiac malfunction [131, 132]: In 
circumstances with relatively preserved RV function, the failing left ventricle, 
unable to properly accommodate with any accessory fluid without a rise in LVEDP 
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[354], responds with a further (often inappropriate high) increase in LVEDP, even if 
the fluid amount offered by the RV is small [117, 125, 354] affecting markedly RV 
afterload and filling characteristics [380]. Accordingly, besides the enhanced right 
ventricular filling “inherently” promoting an increase in RVEDP [381, 382], and the 
backward transmission of elevated LVEDP first and foremost contributing to an 
enhancement of RVEDP [67, 383, 384], DVI will contribute to a recognizable, 
sometimes marked increase in RVEDP [132, 385, 386]. In case RV function is also 
altered, the increase in REVDP will be accentuated [385–387] and is typically 
higher than the rise in LVEDP [385, 386], as notably diastolic ventricular interde-
pendence will decisively influence the filling pressures [131, 388, 389]. Accordingly, 
in most cases (≫80%), the increase in LVEDP is accompanied by a noticeably 
substantially elevated RV-filling pressure [121]. Indeed, Gheorghiade found that 
nearly all patients suffering from acute heart failure present with both, systemic and 
pulmonary congestion [153]. Anyhow, subsequently RV function [390, 391] as well 
as diastolic [392] and systolic [393–395]) LV properties will be further 
compromised.

Hence, a considerable increase in LVEDP following enhanced intravascular vol-
ume arises, potentially causing clinical pulmonary congestion or even provoking 
pulmonary edema [125, 396–399]. Pulmonary congestion is associated with reduced 
oxygen saturation and myocardial ischemia potentially arises if oxygen saturation is 
less than 90%, furthermore circulatory insufficiency results in metabolic acidosis 
which jeopardizes the heart [137].

In addition, venous congestion (which is affected by the amount of intravenous 
fluid volume, changes in venous tone and sympathetic activation [60, 400]) is dem-
onstrated to impair cardiac function [125, 126, 401] (another hint that venous con-
gestion is a contributor rather than simply an epiphenomenon of AHF), and increases 
in LV end-diastolic filling themselves inherently augment ventricular stiffness (and 
thus afterload) and decrease EF [126].

Hemodynamic congestion may be seen as fluid retention and occurs early in the 
course but is clinically imminent [153]. However, local peripheral venous disten-
sion and local tissue edema, both attributed to enhanced fluid content, result in 
venoconstriction, since endothelial stretch initiates local (but accompanied by sys-
temic) neurohormonal and endothelial activation, where particularly A II, ET-1 and 
sympathetic discharge are responsible for the local venous venoconstriction [174, 
261, 297, 402, 403]. This will precipitate further fluid influx, preferentially from the 
splanchnic veins, enhancing effective circulating blood volume [60] and promoting 
a further increase in venous return and thus preload, but as well amplifying venous 
congestion. As a matter of fact, there will arise a somewhat worsened/affected arte-
rial stiffness due to the inflammatory effects displayed [282]. Both effects, venocon-
striction with associated fluid shift and the (more) stiffened arteries (further) alter 
loading conditions and effect systolic and diastolic ventricular properties translating 
in a further increase in LVEDP (RVEDP respectively) and compromised LV and RV 
function [15, 60, 134, 153, 284, 285, 297, 354].

Very remarkable, these considerations are not only indicative for a vicious 
cycle being established and applied leading to acute decompensations and 
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disease progression, but are rather well suggestive of a link between fluid accu-
mulation and vasoconstriction, notably venoconstriction, the latter affiliated 
with fluid redistribution. Hence a link between the vascular and the cardio-renal 
pathway [297]: Venoconstriction due to neurohormonal, namely sympathetic 
discharge by reducing the venous capacitance [60, 335, 404], induces a fluid 
shift, preferentially from the splanchnic venous reservoir, into the effective 
blood circulation, hence central fluid redistribution applies. Subsequently a rise 
in preload and inevitably an, often marked, increase in filling pressures ensues, 
facilitating further venous congestion through fluid accumulation [60, 153, 
297, 374]. On the other hand, fluid accumulation, primarily due to impaired 
(and during the course progressively worsening) cardiac performance, leads to 
(further) endothelial and neurohormonal activation, ending up in a pro-inflam-
matory, pro-coagulative and vasoconstrictive milieu, fostering vaso-, especially 
splanchnic venous, constriction. The splanchnic veins are shown to be excep-
tionally sensitive to even discrete sympathetic discharge, and as such shift and 
redistribute blood from the venous reservoir into the effective circulating 
stream. Augmented preload and concomitantly filling pressures result [60, 133, 
297] (Fig. 2.2).

With these remarks it becomes obvious, that even mild, primarily natural and 
reasonable modifications, adaptations (e.g. to upright position) within the physio-
logical range may offset (“just”) compensated conditions initiating a vicious cycle 
in which (further) sympathetic discharge and other regulatory cascades lead to and 
provoke acute heart failure [126, 297]. Furthermore, Fallick’s [60] and Colombo’s 
[297] considerations add a new aspect to the existing views and concepts, namely a 
special venocentric approach (in addition to cardiocentric, nephrocentric and arte-
riocentric): Venous congestion contributes (via triggering local and systemic endo-
thelial-inflammatory response and compensatory mechanisms) to the heart failure 

Vascular Pathway
(Vascoconstriction & fluid redistribution)

Fluid Accumulation Pathway
(Cardiorenal failure)

Pre-& Afterload ADHF
Mismatch

Cardiac function

•  Endothelin-1
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Arterial Stiffness
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Fig. 2.2 Adapted from Colombo PC (Curr Heart Fail Rep 2015; 12: 215–222) [297], with permis-
sion. Depicted is the suggested link between fluid redistribution and fluid accumulation, both 
effective in acute heart failure pathobiology, independent of the threat primarily launching the 
decompensation. The pathways are linked and affect each other. The finding that venous constric-
tion may also precipitate central fluid redistribution broadens Cotter’s concept [308], and explains 
well that even minor (repetitive) sympathetic discharges may lead to acute decompensations—and 
that without noticeable fluid accumulation
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pathobiology by promoting (further) increases in effective circulation blood volume 
with consecutively increased preload, filling pressures, aggravated congestion and 
additional fluid accumulation.

2.4.2.6  (Self)-Amplification and Vicious Cycles
Furthermore, as exemplarily demonstrated by the link between the vascular (vaso-
constriction and fluid redistribution) and cardiac/cardiorenal (fluid accumulation 
and venous congestion) pathway, and as demonstrated by the interconnections of 
the neurohormonal and endothelial-inflammatory features and systems involved, 
this condition bears a considerable potential of self-amplification and perpetuation 
of a vicious cycle driving the heart failure malady [186, 297]. As such, elevated, 
high LVEDPs and myocardial stretch, typically present in acute (and chronic) heart 
failure, are known to be very powerful biomechanical incentives. They cause neuro-
hormonal activation including the adrenergic and cytokine pathways and the RAAS, 
[104, 160, 405], provoke subendocardial ischemia (further affecting the cardiac 
properties) [66, 68] and reduce coronary perfusion (potentially causing ischemia) 
[160], not at least facilitate changes in LV-shape and thus functional mitral regurgi-
tation (affecting hemodynamics) [36, 406, 407]. Furthermore, simply ordinary 
stress may induce an increase in LAP/LVEDP causing further distress in predis-
posed patients with neurohormonal activation, and in consequence facilitate con-
gestion [297]. Moreover, in the setting of an increased vascular tone which is 
accompanied by a diminished venous, foremost splanchnic, capacitance [60, 335, 
404], the hemodynamic effect of sodium and (consecutively) water retention may 
be amplified [365, 366].

2.4.3  Summary

“The syndrome of heart failure is the result of complex interactions among molecu-
lar, endocrine, and biodynamic systems” [408]. The intricate pathophysiology is of 
multifactorial and multi-facet nature, however appears to be largely related to the 
complex interplay between neurohormonal activation and adaptive remodelling 
efforts with the mechanical-hemodynamic disorders [288, 409]. Typically charac-
teristic for ADHF is “a mismatch between loading (pre- and/or afterload) conditions 
and the afflicted, impaired cardiac function” [160, 297, 308]. Indeed, the communi-
cation, the cross-talk, between vascular and cardiac properties considerably deter-
mines the circulatory conditions [53, 54, 410, 411] of this systemic disease 
[412–414], which may affect over time several organs, preferentially the kidneys 
[98, 400, 415].

Two mainstream pathophysiological pathways applying and leading to AHF 
were recently introduced by Cotter allowing for integration and harmonization of 
the clinical pictures with the pathophysiological concepts [308]: Vascular failure 
precipitating and ending up in AHF describes alterations in vascular properties 
modifying systolic and/or diastolic loading conditions, evoking an acute mismatch 
as the systolic and/or diastolic cardiac capacities and capabilities are primarily 
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impaired or limited and thus not able to properly meet the altered conditions [60, 
126, 153, 297, 308, 357]. This path is associated with central, pulmonary fluid redis-
tribution rather than with fluid accumulation and has been originally related to pre-
dominantly (acutely) increased arterial vascular stiffness/resistance causing an 
acute afterload mismatch [117, 160, 308]. As such, it applies particularly to patients 
with diastolic dysfunction and HFpEF [112, 113, 127, 148, 214, 322]. However, this 
vascular failure path has been broadened and modified as even subtle hemodynamic 
changes, often affecting primarily preload conditions, may already precipitate AHF 
[126]: Sympathetically-mediated vasoconstrictions, preferably due to the anatomic 
circumstances, may be exclusive to the splanchnic veins (and thus a vascular path), 
and are shown to shift relevant amounts of the their stored blood into the effective 
circulation, subsequently increasing cardiac preload [60]. As the compromised left 
(and often right) ventricle cannot accommodate any increase in filling volume with-
out often marked rises in filling pressures [354], consecutively clinical pulmonary 
and venous congestion arise and overt acute heart failure ensues [67, 104, 117, 126, 
135, 153]. In predisposed patients (patients with chronic heart failure and chroni-
cally augmented NHs drive) minor sympathetic discharges, even physiological ones 
due to mild exercise or posture, upright positioning [332] may, particularly if repeti-
tive with repeated blood volume shifts into the effective circulation [123], (ulti-
mately) provoke AHF—this scenario, which may also apply in case of 
decompensations without evidence for classical precipitants, explains well that the 
majority of patients with AHF do not show any or only marginal weight gain prior 
to decompensation [60, 126, 357].

The cardiac or cardiorenal pathway represents the classical pathomechanism of 
AHF [308]. Related to considerably impaired cardiac performance (and thus systolic 
dysfunction, HFrEF), the hemodynamic alterations and associated, the activated, basi-
cally compensatory systems, lead to substantial fluid accumulation [5, 17, 50, 308], 
often developing slowly and gradually [123, 342]. Fluid accumulation, is, at least to 
some degree (including in the predominantly vascular failure path), in general part of 
the heart failure pathology [35, 126, 358, 359], although definitely quite often not 
obvious for us, as it is not measurable by methods applicable in daily practice (as it 
may be without relevant weight gain) [160, 349–352]. However, increasing intravas-
cular fluid volume precipitates an increase in preload and venous congestion, the latter 
meanwhile verified to be an active contributor to heart failure pathobiology [133, 
297], and furthermore challenges even more the neurohormonal (namely sympathetic 
and A II discharge) and the endothelial-inflammatory paths [297]. Again, the increase 
in filling volume, preload, and consecutively pulmonary and systemic pressures lead 
to overt clinical heart failure [104, 117, 124, 126, 135, 153, 355, 356]—an increase in 
LVEDP may be due to fluid redistribution and/or due to fluid accumulation [117]. 
Furthermore, venous congestion is demonstrated to (further) impair cardiac function 
[125, 126, 404] and to foster (further) fluid accumulation [60, 153, 298, 377].

Accordingly, both pathways are linked and interrelated [297], moreover their 
interaction “may promote a vicious cycle as fluid accumulation causes vasocon-
striction”, more precisely predominantly venoconstriction, “while vasoconstriction 
causes an increase in filling pressures” (via increased preload due to blood shift 
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from the splanchnic veins) “and thus promotes (further) venous congestion through 
(further) fluid accumulation” [297].

The described modifications, adaptions, reactions, and altered conditions are 
partly due to, but in any case largely mediated, coordinated and integrated by the 
activated NHs and endothelial—inflammatory paths [165–169, 173, 174, 416], both 
with substantial impact on the cardio-circulatory system [183, 186], and with the 
endothelium playing a central role in the pathobiology of acute and chronic heart 
failure, “orchestrating” the processes [173, 175, 223, 416] .

The central feature related to the underlying primary pathologies and the incor-
porated multifactorial patho-biological processes, markedly elevated left- and gen-
erally right-sided filling pressures, which are affiliated and associated with 
pulmonary and systemic venous congestion (independent whether CO is low or not) 
[14, 15, 122–124, 153], are displayed [14, 122, 153, 154, 214, 378]. These elevated 
pressures may be the pivotal position in the pathophysiology and are decisively 
determining and coining the clinical picture [5, 17, 50, 106].
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Fig. 2.3 Fig. 2.3 summarizes the central pathobiology of acute heart failure syndromes. It is 
mainly based on the publications by Cotter [308], Paulus [37], Fallick [60], Metra [147], Borlaug 
[147], and Colombo [297]. Modifying Cotter`s fundamental concept, it integrates the most recent 
pathophysiological findings contributing to and co-determing acute heart failure. It depicts that 
indeed one of the basic malfunctions/insults (altered loading conditions or impaired systolic per-
formance) predominantly activates and launches certain pathobiological processes, but highlights 
the close interactions between the two paths and their potential to amplify each other, and thus 
facilitate the evolution of AHF
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2.5  Diagnosis, Symptoms, Presentation, Important Clinical 
and Prognostic Data

2.5.1 Symptoms and Diagnosis

The diagnosis of acute heart failure is generally based on clinical symptoms (dys-
pnoea, orthopnoea, shortness of breath on) and signs (crackles on pulmonary aus-
cultation, peripheral edema) suggestive for heart failure [14, 417] in the context 
of clinical history, physical examination and other findings [6, 418, 419]. 
Dyspnoea is the most common symptom, however it is non-specific. On presenta-
tion [14, 28, 44, 49]:

up to 89% Suffer from Any dyspnoea

up to 34% Dyspnoea at rest

up to 32% Fatigue

up to 68% Rales on examination

up to 66% Peripheral oedema

up to 75% (60–90% [49]) X-ray congestion

Symptoms and signs like paroxysmal nocturnal dyspnoea attacks, jugular venous 
distension, and third heart sound S 3 are quite frequently seen as having a specificity 
of 70–90%, but a really low sensitivity 11–55% [420].

Thus, symptoms are dominated by those related to pulmonary congestion, 
reflecting the elevated LVEDP [14, 69].

Insofar the pulmonary affliction attributed to the left heart disease may contrib-
ute to the patient’s symptoms and the clinical picture: The pulmonary mechanics 
are affected leading to a reduction in lung volume and a diminished lung compli-
ance, thus displaying a restrictive lung physiology [421, 422]. Furthermore, gas 
exchange is hindered [421, 422]. While fluid removal improves lung mechanics, a 
dysfunction of the alveolar membrane diffusion capacity will persist in the first 
instance [423, 424].

Blood pressure on admission both provides information on prognosis, and 
smooths the way of therapeutic measures [5, 35, 425].

Blood pressure ranges on admission are distributed as follows [14, 28, 33,  
44, 69]:

sBP > 140 mmHg 50% of all admissions (approximately 25% have a 
sBP > 160 mmHg)

sBP 90–140 mmHg 45% of all admissions

sBP < 90 mmHg 5% of all admissionsa

aTaking other study results into account, we see 5–8% of AHF admissions who present hypoten-
sively, to be in general defined as a sBP <90 mmHg [426, 427]
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However, high BP on admission may be due to sympathetic stimulation rather 
than established hypertension [69].

• Dominant clinical conditions on admission to hospital in the Euro Heart Survey 
[28] (see ESC classification [4]):
 – 66% presented with the picture of acute decompensated/exacerbated chronic 

HF;
 – 17% showed pulmonary oedema as the dominating clinical condition;
 – 10% were admitted due to HF and arterial hypertension;
 – 4% with cardiogenic shock;
 – 3% were admitted due to an acute right heart problem.

As mentioned, the French survey [49] published in 2006 included the very sick-
est patients as well and recognised pulmonary oedema in 82% and cardiogenic 
shock in 29%.

2.5.2  Prognostic Indicators

The main predictors of prognosis signalizing high mortality are low systolic blood 
pressure (sBP) and elevated BUN at admission [35, 49, 425].

• Blood pressure:
An analysis from the Optimize-Study by Gheorghiade [69] is shown in Table 2.2.
 – In the analysis of the ADHERE study data, a cut-off level of systolic 

125 mmHg indicating a significantly worse prognosis was identified [35];
 – In the French survey [49], a sBP > 120 mmHg promised a better short term 

(4 weeks) prognosis [49].

Thus, a systolic blood pressure (sBP) ≤ 120–125 mmHg should give cause for 
concern, and admission to a coronary care unit or high dependency unit should be 
considered.

Only 9.5% of all patients in the Optimize-HF study had a sBP < 104 mmHg on 
admission [69]

Table 2.2 Optimize-study by Gheorghiade [69]

sBP at admission (mmHg) In-hospital mortality (%) 60–90 days mortality (%)

≤119 7.2 14.0

120–139 3.6 8.4

140–160 2.5 6.0

≥161 1.7 5.4
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• Blood urea nitrogen:
BUN blood concentration >37 mg/dL [35] (urea > 13.2 mmol/L), > 43 mg/dL 
[425] (urea > 15.35 mmol/L) is the other strong predictor of significantly 
increased mortality.

• Other factors of concern but with less impact on the mortality are [35]:
 – Low serum sodium concentration;
 – Elevated serum creatinine;
 – Advanced age;
 – Dyspnoea at rest;
 – Chronic β-blocker use;
 – congestion at admission [428].

2.5.3  Initial Clinical Assessment, Diagnostic Measures 
and Considerations

The cornerstones in making the diagnosis are the patient’s history and the clinical 
examination, read above [4, 6, 419, 429–431].

Patients admitted with symptoms generally suggestive for heart failure and a typi-
cal history should be subject to a 2-min bedside clinical-hemodynamic examination 
[158, 431, 432] (see Fig. 2.4). Furthermore, potential conditions triggering acute 
cardiovascular decompensations have to be identified whenever feasible [431].

2.5.3.1  Hemodynamic Profiles on Admission
A clinical-hemodynamic, widely used in daily practice, and easy to perform assess-
ment tool for patients with acute heart failure syndromes, allowing for a meaningful 
and crucial distinction of those patients [224], has been introduced by Nohria and 
Stevenson [158, 426] (see Fig. 2.4). It takes into consideration the most prominent 
clinical features and basic pathophysiological issues characterizing the nature of 
AHF, gives a clue about the severity of the actual situation and possible complica-
tions the physician may be faced with, like potentially ensuing shock, and provides 
hints to select therapeutic measures [16, 17, 433, 434].

Accordingly, most patients can be classified during that 2-min bedside assess-
ment [158, 432, 435] into a hemodynamic profile with a corresponding treatment 
regimen [158]. The main hemodynamic abnormalities are related to filling pressure 
and peripheral perfusion. In the presence of elevated filling pressures the patient is 
said to be ‘wet’, in their absence ‘dry’; if the perfusion of the peripheries is ade-
quate, the patient is ‘warm’, if critically reduced ‘cold’. Note that the assessment 
concerning a ‘cold’ patient due to hypoperfusion should be made by assessing the 
legs and forearms rather than the feet and the hands [435] (Fig. 2.4).

Haemodynamic profiles are:

• Profile 1: Warm and dry → will not be seen in emergency admission unit. 
Requires therapy along standard chronic heart failure guidelines.

• Profile 2: Warm and wet (67% of all patients [436]) → main step is the applica-
tion of diuretics (or the increase the dosage of their diuretic medication), but 
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initially nitroglycerin sublingual may make sense as well as long as sBP is >100–
110 mmHg [5, 7, 35].

• Profile 3: Wet and cold (28% of all patients [436]) → warm the patient by either 
using vasodilators (nitroglycerin or nitroprusside) in case of sufficient blood 
pressure and signs of vasoconstriction, otherwise inotropes and/or vasopressors 
are required; when this is achieved, dry them with the aid of diuretics.

• Profile 4: Cold and dry → they seem often surprisingly stable, but may collapse 
unexpectedly; therapeutic measures depend on the underlying reasons and con-
ditions and may include diuretics in case of predominant or isolated right heart 
failure (with DVI) as long as BP is sufficient, or inotropes and/or vasopressors; 
but sometimes just fluid may be needed.

Clinical symptoms and signs of congestion (wet) include: Pulmonary congestion 
(crackles and rales), jugular venous distension, peripheral oedema, hepatomegaly, 
orthopnoea, paroxysmal nocturnal dyspnea, gut congestion and ascites, hepatojugu-
lar reflux [4, 30].

Congestion
H

yp
op

er
fu

si
on

Pulmonary congestion
Orthopnoea/paroxysmal nocturnal dyspnoea
Peripheral (bilateral) oedema
Jugular venous dilation
Congested hepatomegaly
Gut congestion, ascites
Hepatojugular reflux

Cold sweated extremities
Oliguria
Mental confusion
Dizziness
Narrow pulse pressure

WARM-DRY

COLD-DRY COLD-WET

WARM-WET

Fig. 2.4 The 2-min bedside assessment by Nohria and Stevenson [158, 426, 432] allows for a 
clinical—hemodynamic assessment and classification of AHF patients and furthermore provides 
therapeutic and prognostic hints. This figure is adopted from the ESC guideline [431]. Depicted are 
the four different profiles most patients can be assigned to. On the right upper (wet and warm), the 
patient is predominantly wet and signs and symptoms associated with increased filling pressures 
and congestion are dominating. Beyond, right lower (cold and wet), hypoperfusion is the dominat-
ing clinical impression indicated by the features described
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Clinical signs of hypoperfusion/shock (cold) comprise the following [158, 437, 
438]: Altered level of consciousness (confused, quiet, apathetic, dizzy), cold periph-
eries (forearms, lower leg), moist and clammy skin, mottled extremities, ↓ toe tip 
temperature, oliguria (renal dysfunction), narrow pulse pressure, ↓ MAP, hepatic 
dysfunction, low serum sodium.

Patients classified into profile 3 are reported to have a 6-month mortality rate up 
to 40% [16, 426].

2.5.3.2  Identification of Precipitants of AHFS
Typical features precipitating acute decompensations may include:

• Ischemia/acute coronary syndromes;
• Systemic infections, notably respiratory tractus infections;
• Poorly controlled co-morbidities, such as exacerbated COPD with and without 

pneumonia;
• Uncontrolled hypertension/acute hypertensive dysregulations;
• Arrhythmias (atrial/ventricular arrhythmias);
• Nonadherence to medication;
• Renal failure/worsening renal function;
• Nonadherence to diet/inappropriate salt intake;
• Inappropriate physical stress;
• Drugs like NSAID’s, corticosteroids, chemotherapeutics;
• Pulmonary embolism;
• Enhanced sympathetic discharge as in Takotsubo cardiomyopathy

[138, 139, 158, 159, 431, 439].

To identify an acute coronary syndrome is of critical importance as immediate 
coronary intervention is acknowledged to significantly reduce complications and 
mortality [437, 440, 441].

2.5.3.3  Other Diagnostic Measures
Echocardiography, considered the “gold standard” for the detection of LV dysfunc-
tion [442], is an essential tool which should be performed to evaluate LV-function, 
structure, and any alterations to this; confirmation of the diagnosis (acute) heart 
failure is essential as well as identifying potentially reversible causes [4, 443]. 
However, an immediate echocardiographic examination is “only” imperative in 
patients with hemodynamic instability and in case life threatening conditions are 
suggested [431]. In de novo AHF, heart ultrasound is recommended to be performed 
in otherwise stable patients within 48 h [431].

Of note, ultrasound of the lungs to identify congestion and pulmonary edema 
(and their severity), substantiate [156, 444–446] or even diagnose AHF [447–449] 
in case the diagnosis is uncertain, may be of great value as recent publications 
revealed [444, 445].
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The chest radiograph will aid diagnosis of congestion and/or pulmonary oedema 
[42, 82], and may identify cardiomegaly. However, in up to 20% of cases, the chest 
X-ray in AHF patients may be nearly normal [119].

The electrocardiogram (ECG) will help to identify a precipitating ischemic 
event or the new onset of atrial fibrillation inducing the AHFS [4, 429]. A normal 
ECG in a clinically suggested case of acute heart failure virtually rules out this 
diagnosis [429].

As the symptoms of acute heart failure may be non-specific and as the physical 
findings are sometimes not particularly sensitive [432, 450], the Natriuretic Peptides, 
ANP and BNP, may be helpful in the diagnostic and differential diagnostic consid-
erations, particularly in the emergency department [194, 451–453].

It is in particular the excellent negative predictive value of BNP which can be 
used to exclude heart failure and to differentiate potential cardiac failure from other 
underlying diseases [454]. On the other hand, elevated levels do not automatically 
confirm the diagnosis of AHF, as natriuretic peptide serum levels may be enhanced 
in quite a number of other cardiac (LV hypertrophy, myocarditis, tachyarrhythmias, 
pulmonary hypertension) and non-cardiac reasons including advanced age, cardio-
metabolic disorders, severe infections, anemia, renal and liver dysfunction, isch-
emic stroke and subarachnoid bleed, and in the paraneoplastic syndrome 
[455–457].

Troponin T and I are highly sensitive and specific parameters, allowing identifi-
cation of myocardial injury and play a well-established key role in diagnosing acute 
coronary syndromes (ACS) [458], as well as in the risk stratification and manage-
ment of patients suffering from ACS [459–462].

An elevation of cardiac troponin is found in about 40% of all patients with acute 
decompensated heart failure [463, 464], is associated with a low LV-EF [465, 466], 
and is said to predict a poor short term prognosis [465, 467].

You [468] has shown that troponin I is a strong predictor of all-cause mortality 
in patients with acute decompensated heart failure. The study shows an independent 
‘dose’-response relationship between cardiac troponins and mortality in AHFS- 
patients. Thus, an association between elevated cardiac troponins and poor outcome 
in acute heart failure seems to be established [465, 467].

2.5.3.4  Special Remark: Non-invasive Estimation of Cardiac Index
Cardiac output and cardiac index are undoubtedly the parameters widely used in 
daily practice. In 1989, Stevenson published a method remarkably reliable, able to 
estimate CI non-invasively: If the ratio [sBP–dBP]/sBP < 25% then CI is highly 
likely to be less than 2.2 L/min/m2. This prediction shows a sensitivity of 91%, its 
specificity is 83% [432] (Table 2.3).
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2.6  Therapy [4, 5, 7, 431, 432, 437, 469–474]

2.6.1  Therapeutic Principles and Goals

Peripheral, namely pulmonary congestion, or even pulmonary edema, associated 
with elevated filling pressures decisively coin the clinical picture and dominate the 
patient’s discomfort and symptoms. Elevated afterload and pulmonary conges-
tion are a key clinical-pathophysiologic features in AHFS [5, 14, 50, 106, 114, 115, 
122, 123].

Accordingly, the immediate goals of managing emergency cases of AHF are 
[157, 158, 432]:

• symptom relief;
• reversal of the haemodynamic abnormalities, in particular:

 – reduction of the elevated LVEDP (determines the outcome [157, 158, 475]), 
and

 – significant reduction of the increased afterload [13, 439];
• rapid stabilisation

To address the acute malady picture and pathophysiology dominating features, 
the administration of loop diuretics remain the cornerstone measure [5, 7, 16, 359, 
476, 477].

In the ADHERE registry, 88% of all AHFS patients received intravenous (i.v.) 
diuretics as a first line measure [478]. Since diuretics lead to a very rapid symptom 
relief and further address the patho-physiological features (fluid overload and ele-
vated filling pressures, both closely related to the clinical pictures), they have gained 
universal acceptance and priority in AHF treatment. However, no randomized 
placebo- controlled trials assessing diuretic use in AHFS exist [479]. Moreover, a 
number of study results even advise against diuretic use, particularly in high dos-
ages, as diuretics may be accompanied by a number of adverse effects and even an 
increase in mortality cannot be excluded [480–483]. Especially dreaded are induc-
tion of vasoconstriction [484] and (relative) hypovolemia due to diuretic application 
[485, 486], associated with increased mortality rates [482, 487, 488].

Early on, diuretics exhibit vasodilatory effects, thereby causing transient venodi-
lation, immediately lowering right atrial and pulmonary capillary wedge pressure, 
consequently left-sided filling pressure, thereby mitigating dyspnoea prior to the 
onset of diuresis [484, 489]. Further on, urinary output increases by excretion of 
fluid and sodium [433], reducing filling volume and filling pressures, and as such 
dilute peripheral and pulmonary congestion/edema [490]. Finally, extracellular 
fluid volume drops and the patients forfeits body weight. Thus diuretics given suf-
ficiently early reduce intravascular volume and filling pressures, as well as periph-
eral and pulmonary congestion [490].

Even in case of no obvious relevant weight gain prior to decompensation, patients 
with acute heart failure are basically somewhat volume overloaded, thus diuretic therapy 
is required and absolutely indicated [35, 126, 358, 359]. Furthermore, in advanced heart 
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failure, with sometimes low normal blood pressures, the application of diuretics has 
been shown to be pretty safe, as Atherton demonstrated [131]: In advanced heart failure, 
roughly 50% of the patients suffer from clinically relevant right heart dysfunction/fail-
ure. Hence, diastolic ventricular interaction and pericardial constraint apply, affecting 
the pathobiology [131, 491]. Accordingly, even in case of relatively low pressures (<80–
90 mmHg), diuretics are the drugs of choice to improve volume distribution between the 
ventricles and subsequently hemodynamics, leading to a substantial increase in 
BP. However, even in case relevant pericardial constraint and DVI are not effective in 
patients with advanced heart failure, no significant and clinically meaningful side effects 
have been observed if diuretics were applied [131]. However, keep in mind, patients 
suffering from HFpEF are exquisitely sensitive to volume and pressure changes and 
may reply to the effects of diuretic agents with substantial pressure drops [112, 113].

The administration of diuretics is validated and conceded to be a class I, level B 
evidence of the American ACCF/AHA [7, 319], while the European (ESC) soci-
ety’s recommendation discloses to apply diuretics as class I, level C [431].

Vasodilators, namely nitroglycerin (GTN), although exerting a direct lowering effect 
on elevated filling pressures and on the enhanced afterload, provide a ‘physiological’ 
therapeutic approach [157, 480], but have not gained as universal an implementation 
and acceptance as the diuretics [5, 7]. Vasodilators promote a rapid normalization of 
the altered hemodynamics [157, 492], as afterload reduction implies that LVEDP 
will drop: ↓ afterload → LVEDP ↓ [493]. Furthermore, the failing heart is exquisitely 
sensitive to afterload [494, 495] and hence a reduction in the LV outflow impedance 
(afterload) hampering the ejection by pharmacological vasodilatation will improve 
the LV ejection, and as such will significantly increase the LV-forward output [496, 
497]. In addition, they will substantially reduce the regurgitant orifice and the grade 
of the mitral regurgitation, very often accompanying LV dysfunction [498, 499].

Thus, afterload ↓ → LVEDP ↓ [500, 501] → diastolic wall stress 
↓ → O2-requirement ↓ [502] → LVEDD ↓ [500–502], subsequently, afterload ↓ → 
SV/CO ↑ [439].

Accordingly, the application of vasodilators are a rational and a clinically validated 
approach to acute left heart failure treatment [5, 7, 431, 503]. However, they do not 
address fluid accumulation and are associated with an increased risk and incidence of 
hypotension [84, 504]. Hypotension may jeopardize myocardial perfusion, and by 
blunting autoregulated cardiac/myocardial blood flow disturbs blood distribution, con-
secutively myocardial ischemia ensues (or is aggravated), which subsequently dilutes 
contractility and cardiac performance and that in the presence of an already compro-
mised myocardial function as in heart failure [315, 316, 319, 505]. Furthermore, vaso-
dilators unfortunately could neither provide substantial evidence that they ameliorate 
symptoms nor that they improve outcome, namely reduce mortality rates [316, 433, 
481, 504, 506–508]. Probably therefore, the recommendations to use vasodilators are 
inconsistent and differ from society to society. As such the American societies ACCF/
AHA recommend to use vasodilators “just” as an adjunct to diuretic therapy (class IIb, 
level A recommendation) [7], while the ESC validates nitrates as a class IIa, evidence 
level B measure, particularly to be administered in hypertensive patients [5, 431].
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Applying the clinical-hemodynamic assessment results using the 2 min bedside tool 
by Nohria and Stevenson, the treatment of the “warm and wet patient” will need 
sufficient dosages of diuretics, furthermore hypertensive patients and those with a 
sBP above 110 mmHg may benefit from additional vasodilators (ESC types 1–3 and 
5) [5, 7, 50, 308, 479]. In hypertensive AHF, vasodilators, e.g. GTN, may be ini-
tially be preferred [431, 481, 509].

Type ESC-1 may be warm and wet, but could be cold and wet as well. As such, 
sBP is in general normal, hence those patients will basically be treated solely with 
diuretics as typically considerably fluid overloaded when acutely decompensated 
[5, 7, 50, 308, 479].

The “cold and wet patients” are a risky group as they are in, or may 
develop, cardiogenic pre- and manifest shock. Thus, those patients require 
thorough monitoring and besides diuretics either vasodilators (if sBP is well 
above 110 mmHg) or non-vasodilating inotropes (or a combination of nor-
adrenaline and dobutamine) in order to improve perfusion. In case of manifest 
cardiogenic shock, vasopressor application may be required as the very first 
measure.

In any case, (further) coronary hypoperfusion needs to be avoided completely, 
otherwise a progressive detrimental loop resulting in cardio-circulatory collapse 
and multiorgan dysfunction may ensue. Typically within this class profile ESC-4, 
ESC-5 (with peripheral edema but clear lungs), but ESC-1 may fit as well [5, 7, 50, 
308, 479].

The “cold and dry patient” is rare (typically ESC-6, may be ESC-1, 4 and 5), 
but difficult to treat. Aside from isolated or predominantly acute right heart fail-
ure patients (ESC-6), ESC-1 patients with significant impaired contractile func-
tion, markedly dilated heart chambers, and significant dynamic mitral 
regurgitation with diminished BP and a low tendency to retain fluids, may pres-
ent “cold and dry”. These patients will probably need inotropes, maybe vasopres-
sors as well, due to hypoperfusion and hypotension, as usually BP will be low 
rather than high. Treatment of hypoperfusion is essential, diuretics are here sec-
ond line to those with enlarged hearts [5, 7, 50, 308, 479]. However, if a predomi-
nant or isolated right heart failure (ESC-6) is the reason of concern, diuretics 
(possibly in combination with vasopressors and or inotropes) may be absolutely 
indicated as, due to acute RV dilation and pericardial constraint, diastolic ven-
tricular interaction is present and effective (overview by Harjola [510])—read 
more about this issue in Chap. 4.

Patients with ACS complicated by acute heart failure (ESC-5) may show a 
warm and dry picture, however usually a “warm and wet profile”, sometimes a 
pre- shock or cardiogenic shock constellation. They represent in any case a high 
risk group and immediate (<than 2 h after admission) invasive coronary interven-
tion for both, ST elevation myocardial infarction and non–ST-elevation myocar-
dial infarction is mandatory [25, 431, 511, 512]. As up to 70–80% of the patients 
suffer from multi-vessel (stenosis/occlusion >1 vessel) disease [13, 513–515] 
even CABG may be necessary. For further details regarding this issue, please read 
Chap. 3, cardiogenic shock.
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2.6.2  Initial Therapeutic Approach

2.6.2.1  Treatment of Underlying Diseases [25, 470, 471, 511, 512, 514]
• Primary angioplasty or thrombolysis of acute ST- and non-ST elevation myocar-

dial infarction;
• Percutaneous coronary intervention (PCI) in patients suffering from refractory 

myocardial ischaemia;
• Antibiotic treatment for patients with endocarditis;
• Pericardiocentesis in order to relieve cardiac tamponade caused by trauma, acute 

pericarditis, malignancy or other cause;
• Treatment of acute arrhythmias (i.e. pacemaker, antiarrhythmic drugs, acute 

ablation);
• Urgent surgical intervention on complications of myocardial infarction or aortic 

dissection;
• Antibiotic treatment for systemic infectious diseases with heart failure as a 

complication.

2.6.2.2  Common Basic Measures
The patient should also be assessed according to the ABC (airway, breathing, circu-
lation) method of resuscitation, which tends to be standard but with emphasis on 
particular areas:

The patient should sit upright;

• If peripheral O2-saturation is <90% (paO2 < 60 mmHg (8.0 kPa) [5, 431, 516] 
(an ESC class I level C recommendation [5]). A saturation of <90% is an impor-
tant sign that the patient most probably has pulmonary oedema [481]—these 
patients should be classified as ‘wet’ [158, 408, 432, 436]. Note: Oxygenation of 
non-hypoxic patients or even hyperoxygenation can be associated with reduced 
coronary blood flow, increased systemic resistance (vasoconstriction), reduced 
cardiac output and shows a trend to higher mortality [517, 518] and should there-
fore be restricted to hypoxemic patients [431].

• Morphine sulphate: 1–3 mg IV, may be given to very anxious and distressed 
patients, can be repeated several times. Class II a recommendation, Evidence 
level C [5].

However, some trials expressed concerns, morphine may show adverse effects 
[519–521].

2.6.2.3  Typical and Specific Measures

Diuretics and Ultrafiltration
Loop diuretics are first-line therapy of AHFS [5, 16, 359, 476]. They should, due to 
usually peripheral congestion, be given preferably intravenously (i.v.) [5, 490].

Diuretics directly reduce excess levels of extracellular fluid [157]. They indi-
rectly exert hemodynamic effects and reduce the LVEDP by venodilation [489], 
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hence promote the relief of symptoms caused by congestion [145, 157]. Loop 
diuretics given i.v. commence their diuretic effect after approximately 30 min with 
the venodilating effects commencing already 15 min after administration, and both 
actions last up to 2 h [506]. Diuretics are indicated in basically all patients with 
acute left heart failure who show symptoms secondary to congestion and fluid reten-
tion/fluid overload [4, 145, 478, 480].

A class I, level B recommendation of the ACCF/AHA [7] and a class I, level C 
by the latest ESC recommendation from 2016 [431].

Diuretics may produce complications due to reduction of glomerular filtration rate 
(GFR) [522] and a further activation of the neurohumoral systems [482, 493, 523] with 
amplification of vasoconstriction, hence a (further) decrease in SV may apply [480]. 
Unfortunately, there have even been hints that higher dosages of diuretics may increase 
in-hospital and overall mortality [480–483]. However, by reducing intravascular volume 
and filling pressures, as well as peripheral and pulmonary congestion [490], diuretics 
may even blunt neurohormonal activation [484]. The most relevant undesired side effect 
that diuretics may induce in the acute setting clearly is vasoconstriction [484].

Dosage of furosemide: Start with 20–40 mg i.v. [145, 431, 504], 80 mg if serum 
creatinine >200 μmol/L [471].

Avoid higher dose boluses (>1 mg/kg) which may induce reflex vasoconstriction 
[484] and worsen the vascular resistance.

Dosing is still a matter of debate [524, 525]: A Cochrane analysis by Salvador [526] 
established clues that a continuous infusion of loop diuretics provides a larger diuresis 
and greater safety than intermittent bolus doses. In contrast, the DOSE- study (Diuretic 
Optimalization Strategies Evaluation) evaluating i.v. bolus vs. continuous infusion 
application of loop-diuretics, as well as high dosages (2.5 times the patient’s dose prior 
to admission, on average 773 mg within 72 h, usually roughly 130 mg every 12 h) vs. 
low dosages (the same dose the patient was on prior to admission, mean 358 mg within 
72 h, usually every 12 h 60 mg) found no superiority of the continuous infusion in 
either group, but an earlier symptom relieve in the high dose group was seen, probably 
at cost of a transiently worsened renal function recorded [359]. Furthermore, a number 
of secondary end points were in favour of a high dose application.

Progressive edema development despite sufficient increased oral or i.v. dosages 
of diuretics is referred to as diuretic resistance [527]. 20% to 30% of patients with 
severe LV dysfunction develop diuretic resistance [527]. Therapy-resistance implies 
a poorer prognosis [528].

To overcome, higher dosages and/or combinations of diuretics, and the avoidance 
of nephrotoxic agents like NSAID’s are recommended [5, 7, 16]: As such, in patients 
resistant to diuretic therapy, higher dosages [16, 195, 359] or a combination of diuret-
ics [529–531]) are indicated. The ACCF/AHA suggests a combination of loop-
diuretic and another, preferably thiazide, a class IIa, level B evidence [7]. The ESC 
valuates the combination therapy as a class IIb, level C recommendation [431].

Of proved value in daily practice is a combination of furosemide plus metolazone 
[530, 532].
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Torasemide (a typical loop diuretic agent [7, 533]) has shown a better functional 
improvement, a lower incidence of hypokalaemia and a lower mortality [533] when 
compared to furosemide and other loop diuretics [534]. It produces a lower transcar-
diac aldosterone gradient due to mineralocorticoid receptor blocking effects [535].

Continuous renal replacement therapy (precisely continuous ultrafiltration—UF) 
has initially been considered to start up early on in patients with acute severe heart 
failure, who are fluid overloaded, in order to mitigate symptoms attributed to fluid 
overload, or who show an inadequate response to diuretic therapy, are oligo- anuric 
[536–538] and/or have deteriorating renal failure as described by Mehta [482] and oth-
ers [537, 539]. The Unload Trial (Ultrafiltration vs. Diuretics for Patients Hospitalised 
for Acute Decompensated Chronic Heart Failure) [539] was the first study showing a 
superiority in clinical outcomes of the ultrafiltration group compared to the diuretic 
agent group. Furthermore, very progressively, peripheral venous access and new, small 
sized ultrafiltration equipment was used. Two further small trials confirmed those 
results, stating that using peripheral ultrafiltration, more fluid was removed and renal 
function was not further compromised compared to diuretic therapy [538–540].

Applying UF, the negative effects of diuretic drugs can be avoided [472, 482]. 
Furthermore, it should be stressed that continuous UF exhibited, in fluid overloaded 
patients, if any at all, only a minimal effect on MAP [537, 539, 541].

Meanwhile, the initial encouraging aspects could not be substantiated and a 
recently published larger trial did not find UF to be more effective than medical 
therapy [542, 543]. However, creatinine elevation in itself should not be perceived 
as a principally worse sign and hint of unfavorable prognosis in ADHF [544], and 
as such, the big cardiological societies have become far more restrictive and recom-
mend to consider UF only in case of refractory congestion due to diuretic—resistant 
cases [539, 542, 545] (ACCF/AHA II b, level C [7], ESC class II b, level B [431]) 
and in severely fluid overloaded patients to cope symptoms [539, 542, 545], rated as 
a class II b level B by both, the ACCF/AHA [7, 539, 545] and by the ESC [5, 431].

Vasodilators
Nitroglycerin (GTN) may be added to diuretics in all patients as long as the systolic 
BP > 110 mmHg [5, 7, 546], MAP >60–70 mmHg [481, 536], however may be 
applied as first line drug in hypertensive individuals [5]. The ESC [431] even recom-
mends vasodilators to be considered as initial therapeutic measure in hypertensive 
(sBP > 140 mmHg) AHF in accordance to several study results [481, 504, 509, 547], 
as well a class II a, level B evidence [5, 7, 431, 481].

Namely if applied early on, the ADHERE register found a significant lower in- 
hospital mortality rate and a shorter length of stay in patients who received vasodi-
lating drugs within the first 6 h after admission compared to those who received 
them later—indeed, most of them in addition to diuretics [195, 548].

Dosage: 20 μg/min up to 200 μg/min [4, 5, 7]. GTN-resistance can be remedied 
by increasing doses [549].

In case of phosphodiesterase 5-inhibitor treatment, GTN is contraindicated [550].
Note that even very low doses (<0.5 μg/kg/min) of GTN will decrease the LV 

wall stress (end-diastolic and end-systolic) with reductions of the aortic (central) 
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blood pressure (direct afterload faced by the ventricle), but without a detectable 
drop of systemic pressure or perfusion in the periphery (tissue perfusion)—a very 
welcome and desirable effect [551, 552].

Nitroglycerin, although never evaluated in prospective randomized AHF trails 
[318], definitely displays, compared to diuretics, a few beneficial effects which 
potentially should favour GTN to be used as first-line approach: Cotter found a 
greater effectiveness in controlling severe pulmonary oedema [481], nitrates exhibit 
a more balanced hemodynamic profile [157, 480] with faster reduction in wall stress 
and LVEDP without reducing the CO [553], very low dosages diminish ventricular 
load without the risk of systemic blood pressure drop [551, 552], and there are no 
significant side effects (predominantly only headache) to be expected [504]. However, 
unfortunately the beneficial properties GTN shows do not translate into a clinical 
benefit which has lowered its usage and rating [316, 433, 481, 504, 506–508].

Cause of concern is especially that vasodilators may induce hypotension [84, 
504] which is associated with several adverse effects, most important myocardial 
ischemia [68, 554]. However, a reduction in afterload will, as a rule, lead to an 
increase in flow (SV/CO), preventing the development of hypotension, thus the 
MAP will be maintained or may increase but at least should not fall [555–557]. In 
daily clinical practice, when the peripheral resistance (afterload) is lowered by 
administration of vasodilating agents, the LV wall stress (end-diastolic and end- 
systolic) will be reduced [500, 501]. Simultaneously the SV will increase due to the 
reduction in afterload [407, 439] with an increase in forward flow [496, 497, 556]. 
Furthermore, particularly in severe dilated heart failure, the reduction in LV outflow 
resistance and filling pressures leads to a concomitant substantial decrease in mitral 
regurgitation potentially increasing in SV/CO [131, 493, 496, 497, 502].

However, if, with this approach, the blood pressure cannot be maintained and 
there is no increase in SV/CO, one of the following circumstances should be con-
sidered and treated:

• Severe mitral regurgitation [15, 499, 502, 558];
• Inappropriate filling volume (LVEDV) [131, 399, 502];
• Disrupted ventriculo-arterial coupling [559] (see Chap. 1, paragraph 9);
• Relatively low intravascular volume (relative hypovolaemia) [560]—seldom.

Nevertheless, if vasodilators are applied, there is some justified risk for blood pres-
sure drops which may have serious adverse effects: Several recently published large 
studies [30, 35, 49] have all found that a sBP < 120 mmHg is a strong indicator of poor 
(short term) outcome. Hypotension impairs autoregulation [505, 561–563] and, if per-
sistent, will aggravate any myocardial perfusion deficit [554] and will play a part in a 
vicious cycle leading to a more and more severe ischaemic myocardium [68], worsen-
ing the situation. Therefore caution is recommended in initiating vasodilator therapy or 
drugs with vasodilative effects (i.e. Dobutamine, Levosimendan) if sBP < 120 mmHg.

As such, although somewhat arbitrary, most authors recommend not to use 
vasodilators if sBP is below (100-) 110 mmHg [5, 21, 433, 546, 564]. Just to 
reiterate, the ECS sets sBP lower than 90 mmHg as the limit [431] which is 
really surprising and not consistent with the literature results, e.g. in the French 
survey, a sBP of ≥120 mmHg showed a better (short-term—long-term has not 
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been studied) outcome [49], the OPTIMISE—study revealed a significant 
higher mortality if the sBP was below 120 mmHg [69].

Nitroprusside is a potent venous and arterial vasodilator [565] and is extremely 
effective in reducing the afterload as well as reducing the pre-load, and thus lower-
ing end-systolic and end-diastolic wall stress [497]. It decreases the neurohumoral 
activation markedly [566]. In patients where the systolic BP exceeds 120 mmHg, 
and particularly in hypertensive crises underlying pulmonary edema, the use of 
nitroprusside should be seriously considered [137], as some authors recommend [4, 
565]. A further important indication is severe mitral regurgitation [498, 499].

Dosage 0.3 μg/kg/min to 5.0 μg/kg/min. [5, 7, 431] (Class II b recommendation, 
evidence level B [5, 431]).

Nitroprusside has substantial dose dependent arterial dilating effects which, in 
the case of fixed arterial narrowing, may cause a significant reduction in blood flow 
distal to the stenotic area, a so-called ‘steal-phenomenon’ [565]. Hence, it may 
cause a regional decrease in coronary flow [533, 567] in patients with CAD. In acute 
myocardial infarction, nitroprusside should not be used because ischaemia may be 
worsened, inducing or exacerbating left sided heart failure [568].

A novel approach in the treatment of acute left heart failure is nesiritide. It is chemi-
cally identical to human BNP, acting via cGMP to produce a balanced (arterio- 
venous) vasodilatation, precipitating a pre- and afterload/wall stress (end-diastolic 
and end-systolic) reduction [569, 570]. There is an increase in SV/CO without 
direct inotropic effect [571, 572], enhanced sodium excretion and suppression of the 
renin-angiotensin-aldosterone axis as well as of the sympathetic nervous system [4, 
193, 504, 549, 571]. A beneficial effect on renal function [573] and an enhanced 
diuresis has been demonstrated [504, 571].

Dosage: Initial 2 μg/kg bolus, followed by 0.01 μg/kg/min infusion [504, 574].
Nesiritide is thought to be safe; its use does not require ICU admission or inva-

sive monitoring and it is associated with a low incidence of tachycardia and arrhyth-
mias [571, 575, 576].

The initial studies using nesiritide as a first line drug in acute heart failure treat-
ment have been very encouraging [193, 472, 504, 577] and, in Japan, it is the pre-
ferred drug in acute heart failure therapy [218]. Compared to the classical inotropic 
drugs, particularly to dobutamine, nesiritide shows fewer arrhythmias and a better 
outcome [472, 575–577].

In comparison to nitroglycerin the hemodynamic improvements (reduction 
of LVEDP and thus pulmonary hypertension) [504, 549] of nesiritide are even 
more intensive and the relief of the patients’ dyspnoea is more rapid [193, 504]. 
There are even fewer side effects, although this did not translate into better 
mortality outcomes [472, 504]. Unfortunately moreover, a recently published 
meta-analysis by Sackner-Bernstein described a trend to a higher mortality in 
the group treated with nesiritide compared to standard therapy (GTN and 
diuretics) [578]. Not at least, in the large, over 7000 patients encompassing 
ASCEND-HF-study, nesiritide, compared to placebo, could not give evidence 
for reduced mortality, symptom improvement or diminished re-hospitalizations 
within the first 30 days [84].
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Accordingly, nesiritide may be recommended as therapy in cases complicated by 
renal failure and for patients with signs of congestion but with adequate perfusion 
[573]. Thus, in ‘warm’ patients without shock, nesiritide may be used, and was 
formerly rated as a class II b, level B recommendation (by both, the ESC and the 
ACCF/AHA) [5, 84, 193]. However, there is no re-appraisal and rating provided in 
most recent, up-dated guidelines [7, 431].

Inotropic Drugs
Inotropic drugs are traditionally used to increase CO (SV) and improve peripheral 
and organ perfusion [145, 573] in cases of low output, hypoperfusion and in life 
threatening situations [13, 498].

In recent years the use of inotropic drugs has been overshadowed by growing, 
clear evidence of adverse clinical outcome and increased mortality [469, 472, 577, 
579, 580], particularly in patients with reasonably [4] preserved left ventricular 
function (LV-EF > 40%) [472, 478, 579, 581, 582]. Conners [583] and Sandham 
[584] found a significantly increased mortality when clinically stable patients were 
treated with conventional inotropic agents due to numerically low cardiac output. 
The ADHERE register [472] revealed that the use of dobutamine or milrinone com-
pared to GTN led to a significantly higher mortality in the treatment of AHFS.

[472, 585].
Inotropes definitely do not improve outcome [472, 579, 586–588]. The potential 

danger of catecholamines is due to their effect of increasing the myocardial oxygen 
requirement and overloading the myocytes with calcium [589].

Accordingly, only patients who absolutely require inotropic support due to hypo-
perfusion secondary to low output as the result of a severely reduced contractility, 
and who are resistant to other treatment attempts, should be treated by such agents 
[35, 300, 478].

Therefore, the ESC notes and emphasizes, “inotropic agents may be considered 
in patients with hypotension (sBP <90 mmHg), and/or signs and/or symptoms of 
hypoperfusion despite adequate filling status, to increase cardiac output and blood 
pressure, to improve peripheral perfusion and to maintain end-organ function” 
[431]—a class II b, level C recommendation. The ACCF/AHA states, a short-term 
application of inotropes may be reasonable in AHF patients with documented 
severely impaired systolic function “who present with low blood pressure and sig-
nificantly depressed cardiac output to maintain systemic perfusion and preserve 
end-organ performance”—class II b, level B evidence [7].

Thus, dobutamine can be considered in case of hypoperfusion and/or hypotension 
due to a markedly reduced contractility. These circumstances should be present 
despite optimized pre-and afterload. As dobutamine displays peripheral vasodila-
tory effects, most authors request a blood pressure limit of not less than 80 mmHg 
(sBP) as a prerequisite to commencing dobutamine, otherwise the blood pressure 
may (further) drop and hypoperfusion may deteriorate [4, 66, 590, 591]. However 
as long as the patient is euvolaemic, a blood pressure drop due to the peripheral 
vasodilatory effects of dobutamine is reported to be rare because the peripheral 
vasodilation will generally be compensated for by the increase in CI/SV (forward 
flow) [496, 497, 592, 593].
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Dobutamine has positive inotropic and chronotropic effects [594, 595]. It 
decreases the sympathetic tone producing reduced peripheral resistance [596] (↓ 
wall stress, i.e. ↓ afterload) without a significant drop in MAP due to compensatory 
increase in SV/CI [4]. Dobutamine is associated with an increased risk of arrhyth-
mia [574] and it may worsen the splanchnic tissue perfusion [597].

At low dosages up to 5 μg/kg/min, dobutamine is reported to lower pulmonary 
vascular resistance and PAP, may slightly diminish MAP while there is a slight increase 
in CO [598]. With higher dosing (reported are dosages up to 20 μg/kg/min), BP may 
increase (due to vasoconstrictive effects [206]), but also heart rate and the risk for 
arrhythmias [599]. Furthermore, although it usually decreases pulmonary wedge pres-
sure (PCWP) there are patients in whom PCWP remains unchanged or even increases 
[470], as higher dosages of dobutamine will cause vasoconstriction [567].

Dosage: 2–20 μg/kg/min, usually initiated at 2–3 μg/kg/min [4].
After 24–48 h of use patients develop tolerance with partial loss of haemody-

namic effects [470].

Phosphodiesterase inhibitors are indicated in cases of peripheral hypoperfusion with or 
without congestion, refractory to diuretics or fluids and vasodilators at optimal dose 
(choice the appropriate measure), if the systolic blood pressure is >80–85 mmHg) [4, 
66, 590, 591]. They show positive inotropic, lusiotropic as well as vasodilatory effects 
with improvement of SV/CO and reduction of the systemic (afterload) and pulmonary 
resistance [600]. Due to their site of action (via intra- cellular inhibition of type III phos-
phodiesterase, thus increasing cardiac cAMP concentration, the second messenger used 
for intracellular signal transduction [601]) they may be administered even if the patient 
is on β-blockers [602, 603]. Unfortunately, there is growing evidence that phosphodies-
terase-inhibitors increase mortality and complications when compared with other treat-
ment regimen (vasodilators, diuretics, levosimendan) [472, 579, 588, 604, 605].

Dosage of milrinone: 25 μg/kg bolus over 10–20 min, followed by an infusion of 
0.375–0.75 μg/kg/min [4].

Levosimendan is a relatively recently developed agent acting as a calcium- 
sensitiser which may be an alternative in the treatment of hypoperfusion due to 
‘symptomatic low cardiac output and left heart failure secondary to severe systolic 
dysfunction’ [4].

Myocardial contractility is ultimately determined by the effects of calcium on the 
actin-myosin complex. Calcium-sensitisers, ‘sensitise’ the actin-myosin complex to 
the effect of calcium [606].

Levosimendan will increase the contractility of the heart by increasing the stability of 
the calcium-troponin-complex in the cardiac myocyte, without increasing the intracel-
lular ionized calcium concentration (as catecholamines and phosphodiesterase inhibi-
tors do) [607, 608]. Levosimendan has vasodilatory effects with peripheral vasodilation, 
producing a reduction in afterload and of end-systolic all stress, which is beneficial in 
terms of the underlying patho-physiology [609]. Levosimendan also exerts positive 
effects on the diastolic properties [610, 611]. Therefore, in comparison to catechol-
amines and phosphodiesterase-inhibitors, levosimendan does not impair diastolic relax-
ation, thus avoiding an increase in myocardial stiffness with consecutively impaired LV 
compliance, lowering the filling pressure, LVEDP, rather than enhancing it [612–614].
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Several studies [605, 615–618] underline the favourable effects of levosimendan 
in the treatment of acute left heart failure syndromes, particularly in patients with 
post-myocardial infarction left heart failure and acute decompensated chronic heart 
failure: The ‘CASINO’-study showed that patients who were treated by levosimen-
dan experienced a significantly lower mortality rate compared to those treated with 
dobutamine, milrinone or to the placebo-group [619].

Results and the reevaluations from the REVIVE I &II [620] and SURVIVE 
[621] studies—although not as convincing as expected—are not contradictory inso-
far as the mortality rates in the levosimendan groups are significantly lower com-
pared with dobutamine or phosphodiesterase-inhibitors, if the “correct” patient and 
indication is taken into consideration: The most recent ESC guideline recommends 
to prefer levosimendan in case hypoperfusion is associated with and/or contributed 
by β-blocker therapy. [622]. However, we think levosimendan may also be consid-
ered in case acute heart failure is complicating AMI [535, 617, 621]. Furthermore, 
levosimendan is shown to be applicable in combination with noradrenaline in case 
of cardiogenic shock [623–626] or on top of a combination of NA and DOB not 
effective enough [627, 628]. Current evidence validates levosimendan as a level C, 
class IIb recommendation if given in case of cardiogenic shock, if patients are on 
β-blockers, or on top of the combination NA plus DOB [5, 431].

Most authors recommend an sBP of at least 85 mmHg in otherwise stable patients 
(in particular if the peripheral vascular resistance is normal or low) as a necessary 
prerequisite to commencing levosimendan in order to avoid a BP drop due to its 
vasodilative abilities [4, 629, 630]. The potential for a blood pressure drop can be 
diminished by avoiding hypovolaemia prior to starting the infusion of levosimendan 
[625].

Dosage [629]: Loading dose 12 μg/kg–24 μg/kg administered over 10 min fol-
lowed by a continuous infusion of 0.05–0.1 μg/kg/min, up titrated to max. 0.2 μg/
kg/min for 6–24 h. If there are concerns of inducing a blood pressure drop, levosi-
mendan may be initiated without a loading dose.

Levosimendan LEVO 0.1 μg/kg/min (0.05–0.2 μg/kg/min), bolus (optional) of 
12 μg/kg over 10 min, if appropriate initial BP, iv.

2.6.2.4  Essential, Permanent Medication in the Acute Phase
ACE-inhibitors should not be initiated in the early phase (first 24 h) [433], but as 
soon as possible and may be continued (preferably at a lower dosage in case of 
hypotension) if administered prior to acute decompensation [586]. Of course, they 
are indicated in case of hypertension [433].

The same approach is principally suggested for β-blockers [631, 632], but should 
be initiated as soon as possible after stabilization [5].

There is no place to initiate calciumantagonists (dihydropyridine) therapy early 
on [586].

2.6.2.5  Arrhythmias and Heart Failure
There is an increased incidence of ventricular [633] and supraventricular arrhyth-
mias, particularly atrial fibrillation and flutter [634] in chronic congestive heart fail-
ure. Ventricular arrhythmias are associated with an elevated risk of sudden death 
and non-arrhythmic death [635, 636].

2 Acute Heart Failure Syndromes
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The new onset of an arrhythmia during the exacerbation of chronic heart failure 
characterizes a high-risk patient group with increased morbidity and mortality in the 
short and long-term [537]. While the severity of heart failure does not predict the 
likelihood of the development of new arrhythmias, there is a strong relation between 
the use of inotropic drugs and the onset of new arrhythmias [637].

Roughly 40% of all new arrhythmias are atrial fibrillation (AF) [637]. New onset of 
AF is associated with a significant clinical and hemodynamic deterioration [638], 
increased risk of death [639, 640] and conversion to sinus rhythm lowers the mortality 
rate [640]. Amiodarone is shown to be beneficial because of its effectiveness and only 
mild negative inotropic side effects in heart failure patients with arrhythmias [641–
643]. Amiodarone application is rated as a class IIb, level B evidence by the ESC [431].

Interestingly, the most recent guideline of the European Society of Cardiology rec-
ommends alternatively digoxin to be applied i.v. (0.25–0.5 mg, 0.0625–0.125 mg if used 
by the patient already daily) in case of AF—a class IIa, level C recommendation [431].

2.6.2.6  Continuous Positive Airway Pressure (CPAP) and Non- 
invasive (positive pressure) Ventilatory Support (NIPPV)

CPAP may be indicated in acute heart failure patients who, despite oxygen deliv-
ered via face mask and drug therapy, are still de-saturated (SaO2 < 90%) [4] and 
where the patient is exhausted from the high respiratory workload required due to 
pulmonary congestion/edema [547, 644, 645]. By decreasing the left-ventricular 
afterload and the respiratory work, CPAP improves oxygenation, decreases symp-
toms and significantly reduces the need for endotracheal intubation and mechanical 
ventilation [646–650]. A statistically significant reduction of mortality has not been 
shown as of yet, probably due to the small populations studied. However, a system-
atic review has found a trend towards decreased in-hospital mortality [645, 651].

NIPPV is more helpful in hypercapnic pulmonary oedema, where there is failure 
of respiratory musculature as well. A recent study found that NIPPV was at least as 
effective as CPAP, but the effect of unloading the respiratory muscles led neither to 
a lower rate of endotracheal intubation nor to a shortened recovery time [652].

CPAP/NIPPV are, based on study results by Gray [653], recommended by the 
ESC “to be considered in a dyspnoic patient with pulmonary edema and a respira-
tory rate above 20/min in order to improve breathlessness and reduce hypercapnia 
and acidosis” a class II a, level B evidence [5]. ACCF/AHA do not include any 
discussion about non-invasive ventilator support in their most recent guidelines [7].

2.6.2.7  Anticoagulation
Prophylactic anticoagulation with low molecular weight heparin (LMWH) or 
unfractionated heparin is strongly recommended in order to prevent thrombo- 
embolic complications, and is, based on study results by Guyatt [654], Alikhan 
[655], Tebbe [656], and Dentali [657, 658] as a class I, level B recommendation by 
both ACCF/AHA [7, 448].

Dosage: 40 mg enoxaparin (or equivalent) s. c. [658] or 5000 Units unfraction-
ated Heparin s. c. × 3 daily [659, 660].

Table 2.4 summarizes the initial medical approach in AHFS (see Table 2.4).

2.6 Therapy 
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2.7  Valvular Heart Diseases Presenting as Heart Failure 
Overview [661, 662]

Acute heart failure due to valvular disease is found in 4% [663] to 24% [30] of all 
patients admitted with the clinical picture of an AHFS.

2.7.1  Mitral Regurgitation

Acute MR is a serious emergency situation, as flash pulmonary oedema may occur 
[662]. The main causes of acute MR are rupture or insufficiency of a papillary 
muscle (mostly posterior) due to acute myocardial infarction (AMI) or rupture of 
the chordae tendinae as a complication of AMI, endocarditis, chest trauma and 
myxomatous degeneration of the valve [664].

Main pathophysiology:
Acute pressure increase in the non-adapted LA due to regurgitation leads to an 

increased pressure in the pulmonary circulation and thus pulmonary congestion/
oedema [67, 665].

The left ventricular ejection is bidirectional [666, 667], the regurgitation area is 
often dynamic and depends on the dimension of the LV [666]. The increased dia-
stolic volume induces, via the Frank-Starling mechanism, an increase in SV, but due 
to the bidirectional ejection the effective SV (forward output) will be reduced [662].

In case of chronic MR, where the heart and in particular the LA are adapted, the 
acute decompensation is most often due to muscle failure, triggered by acute arterial 
hypertension, acute myocardial ischaemia and arrhythmias such as the new onset of 
uncontrolled AF [662].

Special therapeutic aspects:

• In acute MR, nitroprusside is the most effective drug and may reduce MR by up 
to 50% [498]. GTN is also strongly recommended [662, 668];

• Control of fast AF/cardioversion in case of new onset AF [662];
• Chronic MR: Diuretics and ACE-inhibitors [661]. Quinapril improves the clini-

cal situation and reduces the volume of regurgitation [669]. It has not been clari-
fied whether this is a class effect (all available ACE-inhibitors) or not.

2.7.2  Mitral Stenosis

MS does not develop acutely [662]. The main cause is rheumatic endocarditis. 
Vegetations are rare in cases of acute endocarditis. Myxoma of the atrium involving 
the valve (prolapsing into the valve area) or severe calcification of the annulus and 
the leaflets may provoke MS [662].

Main pathophysiology:
The pressure in the LA increases substantially [662]. There is left atrial hypertro-

phy and dilatation [661]. The filling of the LV depends increasingly on the active 
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atrial contraction (active filling component of the LA). Each increase in heart rate 
with shortening of the diastole will lead to a further rise in left atrial pressure [661] 
and accompanying risk of pulmonary congestion or oedema [67, 662]. In the vast 
majority of cases a marked increase in heart rate (physical stress) and, in particular, 
new onset of AF will cause an acute decompensation [662].

Special therapeutic aspects:

• Primary therapeutic aim is a reduction of the heart rate:
Lengthening of diastole leads to:
 – Increase in LA filling volume with consecutive increase in LV-filling and thus 

SV,
 – A substantial decrease in pulmonary pressure [662].

Administer β-blockers or a Calcium-channel blocker such as Verapamil in 
order to slow down the heart rate, aim for a heart rate of 60–70 bpm [661, 
662]. In certain conditions (duration of AF, size of LA, etc) cardioversion 
should be considered.

• Diuretics and/or nitrates will reduce left atrial pressure and will therefore relieve 
the symptoms of pulmonary congestion. However, caution should be used and 
low doses are preferred as diuretics or nitrates may reduce LV filling causing the 
CO/SV to drop [661].

2.7.3  Aortic Regurgitation

The main causes of acute AR are acute bacterial endocarditis, chest trauma and 
aortic dissection.

[670, 671].
Main pathophysiology [662]:
In acute AR the LV is confronted by a rapid and substantial increase in filling 

volume causing a rapid rise in diastolic ventricular pressure. This pressure rise leads 
to an abnormally fast equalisation of the LV- and LA-pressure and premature clo-
sure of the mitral valve. Both effects may result in the development of pulmonary 
congestion/oedema [662] and the effective SV is reduced [662].

The determinants of the regurgitation volume are the opening area (mostly fixed 
aortic valve), the duration of diastole (the longer the higher the regurgitation vol-
ume) and the diastolic transvalvular gradient [666]. Additionally, due to compensa-
tory mechanisms the peripheral vascular resistance will increase (afterload ↑), 
causing the regurgitant volume to increase further (ejection into the lower pressure 
compartment) [662]. Therefore, aim to avoid bradycardia and arterial hypertension 
[661, 662].

Special therapeutic aspects:
Vasodilators of the arterial vessels will reduce AR and enhance forward flow 

with redistribution of SV.
Nitroprusside is the drug of choice in acute decompensated states [672, 673].
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Good results can be achieved if using nifedipine [674] or ACE-inhibitors [675] 
in clinically stable situations. Vasodilators which affect mainly the venous system 
as well as diuretics will reduce preload, left-ventricular end-diastolic pressure, and 
end-diastolic volume [672, 676]. Their effect is of symptom relief until valve 
replacement, which is needed in most cases, can be performed.

2.7.4  Aortic Stenosis

Currently the main cause of AS is gradual valve calcification and degeneration, 
whereas previously a rheumatic background was common [677].

Main pathophysiology:
The fixed obstruction of the LVOT (due to AS) limits the output. The pressure 

burden leads to LV hypertrophy and consecutively to an elevation of the LVEDP. Over 
time the contractility will be affected and LV dilatation will occur [662]. 
Psychological and physical stress may precipitate hypotension and syncope [661].

Khot [678] recently suggested that, aside from the fixed valvular obstruction, the 
effective afterload affecting the LV exerts a systemic component as well: “Since the 
resistances in series are additive, the total resistance seen by the left ventricle is the 
sum of the resistance across the aortic valve plus the systemic vascular resistance. 
Therefore, increasing or decreasing systemic vascular resistance directly leads to 
proportional changes in the effective afterload of the left ventricle, even when there 
is severe aortic stenosis [679, 680]”—just as it is in conventional heart failure.

Special therapeutic aspects:
The conservative treatment options are very limited and all therapeutic measures 

run the risk of inducing haemodynamic deterioration [662]. Each therapeutic inter-
vention should be initiated with caution.

• In case of acute decompensation and evidence of LV-dysfunction (as a compo-
nent of ↑ ↑ ↑ afterload) vasodilators are indicated: Nitroprusside can be consid-
ered but GTN is probably referable as it reduces afterload and blood pressure less 
aggressively than nitroprusside [678].
Classically GTN and other vasodilators have been avoided in the treatment of 
acute heart failure due to decompensated severe aortic stenosis, but, as men-
tioned above, Khot [678] showed improved outcomes of the GTN group (reduces 
the increased filling pressures and so will relieve dyspnoea in cases of pulmonary 
congestion or oedema [661, 662]). Diuretics (in low dosage) improve the symp-
toms of pulmonary congestion, but can induce hypovolaemia with a further drop 
in CO [681].

• Of special importance is the maintenance of sinus rhythm in order to retain the 
atrial component of LV filling, which now plays an important role in haemody-
namic stability [663, 682]. Cardioversion should be considered in cases of new 
onset AF [662]. β-blockers or calcium-channel blockers should be titrated cau-
tiously, aiming to lower the heart rate to at least 110 bpm or less [661, 662].
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2.8  Summary

AHF is acknowledged as a systemic disease [412–414] of complex and multi-facet 
pathogenesis [17, 53, 54]. The most common underlying disorder is CAD, followed 
in Europe by hypertension and valvular heart disease [28–30, 49]. The clinical pic-
ture is coined by signs and symptoms related to elevated ventricular filling pressures 
[17, 50, 54, 106], a universal finding in heart failure [8–10], causing central and 
normally peripheral congestion [14, 15, 122, 123, 153]. The pathophysiology is 
basically characterized by an imbalance between altered (impaired) cardiac capa-
bilities and actual loading conditions, namely afterload and consequently vascular 
properties [325, 683–685], referred to as afterload mismatch [54, 160, 299, 300, 
303, 304, 308, 683]. In fact, the circulatory conditions are considerably determined 
by the cross-talk between cardiac and vascular features [53, 54, 410, 411]. These 
findings are consistent with the complex and multi-facet pathobiology of AHFS, 
however are largely related to the effects precipitated by the mechanical- 
hemodynamic disorder, the primarily adaptive and compensatory efforts of the neu-
rohormonal systems, and of the endothelial-inflammatory reaction caused by the 
circulatory malfunction, and the intricate interrelation between these [54, 162–164, 
227, 228, 288, 409]. Cotter translated these insights into a new concept describing 
two principal pathways, a vascular and cardiac one, of which one of them will be the 
predominant, leading to acute heart failure [308]. He thereby stressed that fluid 
redistribution rather than fluid accumulation may be the final precipitant. Meanwhile, 
this new paradigm could be broadened, substantiating Cotter’s concept, as results 
by Fallick describe that even physiological trigger may induce sympathetically–
mediated fluid redistributions from the venous reservoir (namely splanchnic veins) 
into the effective circulation and thus provoke acute decompensations in patients 
with otherwise missing flash points [60]. Furthermore, Colombo could establish 
that the vascular and cardiac pathways are closely linked, as vasoconstriction and 
fluid redistribution may foster fluid accumulation and vice versa [297].

The diagnosis of AHFS is based on the patient’s history and clinical examination 
[14, 417–419]. However, to diagnose acute heart failure may be difficult as the 
symptoms and physical findings are non-specific and insensitive [432, 686, 687]. 
Echocardiography is, for sure, the most valuable tool to underline the diagnosis, if 
uncertain, and may furthermore identify underlying valvular and other, especially 
mechanical reasons [156, 431, 446, 449].

All patient admitted with AHF should undergo a 2-min bedside assessment, clin-
ically–hemodynamically classifying the patients, providing prognostic hints and 
seminal for the general therapeutic approach [426, 427, 431]. BP on admission is as 
well an easy to assess but quite robust and well-evidenced feature in prognostic and 
therapeutic perspective: sBP < 120 mmHg should give raise of concern [14, 35] and 
the application of vasodilators, mainly GTN, should be considered, if at all, thor-
oughly if sBP < 110 mmHg [5, 92, 564].

Diuretics stay a cornerstone and first line medication in treatment of AHFS [5, 7, 
359, 476], vasodilators may be added in case the blood pressure is above 110 mmHg 
[5, 92, 433, 564], but can even be applied as first line drug in hypertensive AHF.
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Inotropic support should be avoided whenever possible due to potentially harm-
ful effects and a confirmed negative impact on the patient’s outcome. This is par-
ticularly true in case where the systolic function is reasonably preserved (EF > 40%) 
and in clinically stable conditions [469, 472, 478, 577, 579–582, 584]. Inotropic 
agents are only indicated in patients with significantly impaired systolic function, 
impending cardiogenic shock refractory to other measures, and in life threatening 
situations with tissue and organ hypoperfusion [13, 35, 300, 472, 478, 482, 498]. In 
such circumstances, usually a combination with vasopressor substances is neces-
sary and advisable, in order to ensure sufficient myocardial perfusion pressure with 
maintained or re-established autoregulation, avoiding incipient ischemia [68, 554, 
688, 689].
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3Cardiogenic Shock

3.1  Definition

Shock is defined as the maximal variant of dysregulation of the sophisticated regula-
tory systems of the organism due to a harmful event [1]. Central to this description we 
find a systemic derangement in perfusion (hypoperfusion), secondary to the critical 
decrease in cardiac output (CO): There is an inadequate CO in respect to the patient’s 
requirements, with disturbed microcirculation and insufficient supply to the tissues and 
organ systems causing widespread cellular hypoxia and vital organ dysfunction [1].

Cardiogenic shock (CS) [2] describes a severe primarily myocardial dysfunction 
with systemic hypocirculation and inadequate tissue perfusion (global tissue 
hypoxia) in the setting of adequate vascular volume [3]—and cellular, as well as 
multi-organ dysfunction or failure [2, 4].

The US shock trial defines cardiogenic shock as [5]:

Hypotension with a systolic blood pressure < 90 mmHg lasting ≥ 30 min

or

the necessity for catecholamines and/or rather IABP in order to maintain sufficient
circulation with a sBP ≥ 90 mmHg

and

hypoperfusion of the end organs due to the severely impaired cardiac perfor-
mance, clinically characterised by cold peripheries (forearms and/or lower legs [6, 7]), 
disturbance of consciousness (altered mental status [8]) and oliguria (<30 mLs/h),

hemodynamically

described by CI ≤ 2.2 L/min/m2 as well as PCWP ≥ 15 mmHg (or pulmonary 
congestion on chest X-ray). 
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Menon [3] strongly recommends diagnosing CS in all patients exhibiting signs 
of inadequate tissue perfusion in the setting of severe cardiac dysfunction, irrespec-
tive of the BP, non-hypotensive [9] or pre-shock [3, 10].

3.2  Epidemiology

Studies from unselected populations report an overall incidence of CS of 7.1% [11].
In the vast majority of cases, CS develops secondary to myocardial ischaemia 

(and its complications such as mitral regurgitation) [11–14] either due to chronic [1, 
15, 16] or acute [17–21] coronary artery disease. In 70–80% of cases the patients 
suffer from an acute coronary syndrome [5, 14, 22, 23], most of them with 
ST-elevation, acute myocardial infarction and multivessel (stenosis/occlusion in 
more than 1 vessel) disease [5, 14, 23].

The incidence of CS complicating acute myocardial infarction (AMI) is reported 
as between 5% and 10% [11, 17–21, 24]. LV-dysfunction is the main reason for the 
development of cardiogenic shock also in patients not suffering from CAD and thus 
not a result of ischaemia [25, 26].

The shock register and trial [27, 28] revealed that (in any aetiology)

74.5% CS was due to predominant LV-heart failure,

8.3% due to acute MR,

4.6% due to ventricular septal rupture,

3.4% were isolated right heart shock situations,

1.7% were induced by tamponade or cardiac rupture,

3.0% due to other reasons.

The overall in-hospital mortality of patients with CS attributed to AMI is still 
high: between 40 and 50% as recent studies verified [14, 22, 29].

CS is more likely to develop in the elderly [21, 30–32], diabetic [21, 30–32] 
patients suffering from acute anterior myocardial infarction [21, 27, 28, 31, 32], 
patients with a history of previous infarction(s) [21, 32], patients with peripheral 
vascular disease [21, 32] and patients with cerebrovascular disease [21, 32].

CS often develops over hours, the shock trial [27], as well as other publications 
[20, 33, 34] found that 75% of all shock states developed within 24 h of presenta-
tion, and in the GUSTO-study [17, 35] it was even higher at 89%.

3.3  Aetiology

The most common causes of cardiogenic shock are [12, 36–38]:

• acute impairment of myocardial pump function from:
 – acute myocardial infarction and associated complications, including rupture 

of a papillary muscle or septum, severe MR and pericardial tamponade,
 – acute myocarditis,
 – intoxication with negatively inotropic drugs,

3 Cardiogenic Shock
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 – myocardial contusion,
 – sepsis and septic shock.

• acute valvular disease (AR or MR due to endocarditis, aortic dissection or chor-
dae rupture)/acute exacerbation of a chronic valvular disease,

• acute decompensated chronic heart failure, particularly end-stage cardiomyopathy,
• acute right heart failure (right ventricular myocardial infarction; acute, severe 

broncho-pulmonary diseases),
• persistent severe rhythm disturbances (e.g. tachycardiomyopathy),
• acute decompensation of hypertrophic cardiomyopathy (i.e. due to acute atrial 

fibrillation),
• left atrial myxoma

3.4  Pathophysiological Aspects and Special Features

3.4.1  Classical Pathophysiology and New CS Paradigm

In cardiogenic shock, the overwhelming majority of cases are caused by an 
abrupt depression and/or loss of contractility (intrinsic performance) of the 
heart irrespective of loading conditions with a subsequent significant fall in SV/
CO [1, 2, 5, 37].

This occurs most often due to a critical loss of contractile tissue/mass [37] sec-
ondary to acute myocardial infarction [17–19, 24], resulting in acute loss of total 
pump force [39] and altered diastolic properties (diminished relaxation and compli-
ance) [5, 37, 39]. Hence, in CS both systolic and diastolic function are considerably 
failing [40, 41]. Traditionally, CS is seen as a mechanical problem [37] with corre-
sponding neurohormonal (namely enhanced sympathetic discharge and activation 
of the renin-angiotensin-aldosterone-system, RAAS) activation and response [40, 
42]; this paradigm is summarized in the diagram (see Fig. 3.1).

Severe myocardial dysfunction, as in the case of CS, leads directly to both 
decreased SV and an increase in LVEDP [37, 40, 41]. Subsequently, the marked 
reduction in SV causes hypotension [37] and systemic hypoperfusion [37], compro-
mising the coronary perfusion, causing myocardial ischaemia or aggravating existing 
myocardial ischaemia [5, 40, 42, 43] leading to progressive impairment of myocar-
dial function [5, 40, 42, 43]. Furthermore, as depicted by the diagram by Antman 
[42] (see Fig. 3.1), in response to the considerable impairment of the cardiac contrac-
tility [16, 37, 43, 44], a compensatory systemic vasoconstriction [37, 40, 42–44] 
secondary to neuroendocrine [37, 43–45], in particular sympathetic activation [37, 
40, 42–44], occurs. The neurohormonal—mediated systemic vasoconstriction exerts 
additional substantially adverse loading conditions (enhanced pre- and afterload) 
[42–44, 46] onto the already compromised myocardial function. Vasoconstriction, of 
course, includes the venous system and it is particularly the splanchnic venous con-
striction which directly provokes, due to considerable fluid redistribution, acute car-
diac volume loading [47–49]. However, it is namely the increase in afterload due to 
arterial vasoconstriction which has substantial detrimental effects as the left ventricle 
is highly afterload-sensitive [43, 44, 46, 50]. Renal sodium and water retention 
(attributed to non-osmotic arginine vasopressin effects and to the actions of the 
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activated RAAS) aggravates the overfilling by fluid accumulation [45, 51] and thus 
contributes, in the presence of already elevated filling pressures, to the precipitation 
of pulmonary congestion or even pulmonary edema [52].

However, obviously a severely diminished contractility alone does not precipi-
tate CS [53–55]:

LV-EF is found to be on average 30% in patients with CS and thus lies absolutely 
within the range many stable post-AMI patients display [5, 56, 57]. Furthermore, 
LV-EF stays the same 2–3 weeks after CS when functional circulatory conditions 
are markedly, if not completely, different [58]. Even patients with low normal EF 
and without severe mitral regurgitation may present or develop CS in the acute set-
ting [59]. Furthermore, several studies on cardiogenic shock [5, 54, 60–63] have 
revealed a fundamentally different hemodynamic profile than expected and previ-
ously established: Although the contractility is severely impaired with a marked fall 
in SV and a compromised diastolic function, the peripheral systemic resistance is 
often only marginally to moderately elevated (see Fig. 3.2 by Cotter [62]).

Moreover, this “inappropriate” vasoconstriction (inappropriate low systemic 
vascular resistance) in relation to the severity of the myocardial depression, and the 
consecutive circulatory implications, first and foremost hypoperfusion, is found in 
the majority of patients [62–65]. Thus, CS affects the integral circulatory system 

Fig. 3.1 Classic shock 
paradigm, mechanical and 
neurohumoral aspects 
(modified by Antman [42], 
who confirmed work by 
Califf [40] with 
permission)
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[55, 66] and has to be considered to be a systemic rather than a solely cardiac disor-
der [67–69]. Indeed, the considerable myocardial dysfunction initiates CS develop-
ment [55] at which the primarily underlying myocardial dysfunction directly leads 
to both, reduced SV (and thus diminished CO) resulting in global tissue and cellular 
hypoperfusion and thus oxygen and nutrient undersupply [70–74], and to elevated 
filling pressures [64, 75]. The latter potentially provokes pulmonary congestion/
edema [37, 40, 76]. Consecutively, compensatory, mainly neurohormonal, response 
is launched [37, 40, 42, 55], intending to stabilize preferentially cardio-circulatory 
and cerebral functions by diverting the blood flow to “vital” organs via several com-
plex and interconnected neuroendocrine pathways [49, 55]. Accordingly, CS obvi-
ously is a systemic affliction and an integrative malfunction of the circulatory 
system applies [55, 66, 68].

In fact, CS is a so–called central shock characterized by scarce peripheral and 
organ perfusion attributed to substantial pump failure and therefore organ derange-
ment right from the onset of the disorder [77]. The “unexpected and surprising” 
hemodynamic profile predominantly featuring inappropriately and functionally 
insufficient vasoconstriction in the presence of a, by all means, “comparably” not 
too bad LV-EF of around 30% (however remember, EF is a coupling indicator and 
is inversely related to afterload [78–81], therefore an EF of 30% in the presence 
of low SVR as in CS is absolutely not comparable with an EF of 30% in the pres-
ence of normal or high SVR as in stable heart failure patients!) is consistent with 
and reflects the systemic inflammatory response (SIR) applying in CS [5, 12, 54, 
55, 61, 65]: Hypoperfusion, a hallmark of CS [55], restauration of blood pressure 
by neuro- endocrine activation as well ischemia and reperfusion precipitate a 
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Fig. 3.2 By Cotter et al. [62] with permission. The level of peripheral resistance in CS swings in 
a wide range and may be in single patients as low as found in sepsis. On average, SVRi is compa-
rable with that found in acutely decompensated chronic heart failure, but clearly lower than in 
pulmonary oedema or decompensation following hypertensive dysregulation. Likewise, cardiac 
index in CS is, on the first glance, not that bad and ranges, besides single cases, on average at the 
same level found in patients with pulmonary edema. Furthermore, CI is not substantially lower 
than in acutely decompensated chronic heart failure. However, the combination of both, relatively 
low SVRi and CI is hemodynamically unfavourable and indicates circulatory disaster. CS cardio-
genic shock, Pul. oedema pulmonary edema, HTN hypertensive crisis, Dec. CHF decompensated 
chronic heart failure, SS septic shock
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systemic inflammatory response [5, 49, 55, 82] and thus are coining a clinical-
hemodynamic picture quite similar to that in sepsis [65].

Namely the ischemia—reperfusion conditions are associated with the generation 
and the release of vasodilative acting mediators [83–85]: First and foremost high 
concentrations of NO and peroxy-nitrites (mediators with vasodilative effects) off-
set and counteract the neurohormonal mediated compensatory vasoconstriction, 
and, in fact, lead to an inappropriate circulatory response with potentially net vaso-
dilation [5, 9, 62–64, 83, 84]. Indeed, elevated plasma levels of inflammatory mark-
ers and cytokines including TNF alpha and IL-6, indicating activated systemic 
inflammatory cascades, are demonstrated in CS [55, 61, 86, 87], while procalcitonin 
concentrations stay low reflecting the absence of a microbial infection underlying 
this setting [86]. Kohsaka [65] detected high levels of inducible NO-synthetase 
(iNOS) subsequent to the release of inflammatory mediators in patients with acute 
myocardial infarction. In fact, substantial evidence suggests that high levels of 
iNOS are expressed, attributed to the inflammatory response arising in the setting of 
AMI which is attended by and intrinsically tied to ischemia-reperfusion issues [83, 
84]. This implies inadequate high levels of NO, potentially contributing to vasodila-
tion, and of peroxynitrite, the latter with not only vasodilative [88] but also cardio-
toxic and negative inotropic effects [82]. Elevated iNOS levels are per se associated 
with myocardial dysfunction [89, 90]. Raised, high levels of iNOS and NO are 
found after trauma and as a result of exposure of cells, particularly endothelial cells 
and cardiomyocytes, to inflammatory mediators, inducing the cells to express iNOS 
in unphysiological high ranges [84]. This has been specifically observed in experi-
mental models of AMI and subsequent reperfusion [85]. Cytokine levels are 
reported to even increase after reperfusion following PCI applied in the setting of 
AMI [83]. Unphysiologically high levels of NO and iNOS and the subsequent gen-
eration of NO-derived species like peroxynitrite are reported to exhibit several del-
eterious effects: (a) to directly inhibit myocardial contractility, (b) to display 
pro- inflammatory effects, (c) to induce systemic vasodilation (d) to suppress mito-
chondrial respiration in non-ischemic myocardium, (e) to reduce catecholamine 
responsivity [54, 91–93], and (f) to mediate myocardial stunning [54]. iNOS 
induced NO production is found to be particularly deleterious during ischemia- 
reperfusion episodes [91, 92]. Accordingly, the effect of the compensatory released 
vasoconstrictive mediators (catecholamines, angiotensin II, endothelin-1) attaining 
intermittent stabilization and/or even improvement of coronary and peripheral per-
fusion [82] will be markedly attenuated and may be even off-reverted by the vaso-
dilative effects of those agents generated in general in the setting of systemic 
inflammation but specifically in the wake of ischemia-reperfusion issues associated 
with AMI [67, 82]. This particularly occurs if the hemodynamic alterations and the 
compensatory response persist [82] and Rudiger strongly recommends to reverse 
CS within hours [66]].

As such, CS is also a result of the mismatch arising from substantially impaired 
myocardial performance and disproportionate, inadequate peripheral vascular dila-
tion [63, 64].

Nontheless, additional “infectieous” features may trigger and aggravate the 
inflammatory cascades: Disrupted intestinal mucosal barrier function due to gut 
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hypoperfusion may allow for translocation of bacteria or bacterial material like tox-
ins [49, 82]. In the shock trial, 18% of all patients with CS were suspected of suffer-
ing from sepsis, and indeed, of those 18%, 74% had positive blood cultures (that 
means, in total about 14% of all CS patients showed a bacterial infection/bacterial- 
associated inflammation) [65] which, in turn, fuels the inflammatory cascades.

Moreover, systemic inflammation is further reported to stiffen large, elastic arter-
ies like the aorta while simultaneously the medium-sized and small peripheral ves-
sels dilate [94]. Large artery stiffening arises most likely due to altered NO 
bioavailability as acute inflammation is shown to impair normal endothelial perfor-
mance and reduces NO bio-availability, possibly through the cytokine cascade [95–
98]. Arterial stiffening is recognized to increase the vascular load imposed on the 
left ventricle [99, 100] and to directly affect ventricular arterial coupling [101]. 
However, as reduced wave reflections (pulsatile load) due to peripheral vascular 
dilatation are noticed and total peripheral resistance is measured lower under these 
inflammatory conditions [94], net LV afterload may not increase. Reduced periph-
eral resistance (resulting from peripheral vasodilation) and concomitantly blunted 
wave reflections will diminish the afterload. However, in total, LV afterload is sup-
posed to increase in inflammatory conditions since (1) peripheral vascular resis-
tance is generally only mild to moderately reduced in CS [62], (2) the changes in 
vascular resistance precipitate just minor changes on ventricular wall stress (which 
reflects “true” afterload) [102], and (3) central vascular stiffening directly alters 
ventricular–arterial coupling (uncoupling) [101]. This suggestion is supported by 
the fact that peripheral vascular resistance is not really seen by the heart [78]. 
Unfortunately, studies systematically evaluating this issue are missing. Increased 
pulse wave velocities and a raised augmentation index as demonstrated in SIRS 
[94], are independently associated with systolic and diastolic dysfunction [103–
105] and hence inflammation, in fact, impacts on disease course and is markedly 
involved in CS pathobiology.

SIRS may result in further troublesome hemodynamic effects contributing to CS 
disorder: CS, as the other shock types, features and suffers from microcirculatory 
dysfunction being part of the pathobiology [106]. Increasing heart failure severity is 
associated with NO imbalance and endothelial dysfunction (ED) [107, 108]. Low 
peripheral resistance predisposes patients to endothelial damage [65], and inflamma-
tory agents like TNF alpha induce endothelial dysfunction [109]. Hypoxic/ischemic 
injury affiliated with hypo- and/or malperfusion is demonstrated to insult endothelial 
cells causing ED [110–113]. Hence, as the vascular endothelium takes a crucial role 
in regulating and is central to functions of microcirculation [114, 115], there is no 
doubt that microhemodynamics are altered in AHFS, particularly in severe AHF and 
CS [108, 116–118]. ED is meanwhile a widely recognized and an acknowledged fea-
ture in circulatory shock pathobiology [119, 120], where the endothelial cells are 
ascertained to be both target but also contributor to the disease development and pro-
gression [112, 121]. Indeed, endothelial cells are considered to take a central and 
crucial role in the pathophysiology and pathogenesis of acute and chronic heart failure 
[122–125].

Furthermore, since autoregulation is a hallmark and a critical issue in the physi-
ology of microcirculation [108, 113, 114], a compromised autoregulation (which 
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inevitably ensues in case of hypoperfusion and hypotension [126, 127]) contributes 
to, and is part of, the microcirculatory alterations found in CS [39].

Microcirculatory alterations display as their most deleterious impact heteroge-
nous blood flows [108, 128], a hallmark of shock [108, 129], and as such generate 
hypoxic and non-hypoxic areas in close vicinity, called dysoxic tissue regions [130, 
131]. Heterogenous microvascular perfusion has been demonstrated in patients with 
CS [108]. Heterogenous perfusion is associated with disturbed oxygen extraction 
[70] and thus may lead to further cellular injury [132] in the heart as well as in dis-
tant organs [68, 108, 114, 119, 133].

Noteworthy for therapeutic management, in contrary to septic shock, where at 
least in advanced disease states micro- and macrocirculation are dissociated (which 
means that a successfully recuscitated macrocirculation will not subsequently trans-
late into an improved or even normalized microcirculation [134, 135]), a close cor-
relation between macro- and microcirculation seems to exist in cardiogenic shock 
states and thus microcirculatory alteration will usually improve when marcocircula-
tion can be restored [136, 137].

As such, altered microcirculation has to be seen as an essential element in the 
pathobiology of shock states [77, 108] and the aberrations are basically referred to 
as a loss of regulation of the peripheral vasomotor tone, associated with endothelial 
cell dysfunction [138], eliciting heterogenous and maldistributed blood flows creat-
ing dysoxic tissue regions [72, 139].

In conclusion, the systemic inflammatory reaction contributes substantially to 
the pathogenesis and the course of CS [52, 54, 55, 61, 65, 82]: The mismatch 
between marked myocardial depression caused by loss of contractile mass [24, 
37, 40, 54], ischemia-reperfusion injury [42, 49, 65, 82–85], cardiodepressent 
substances [82, 89, 90, 109], and the inappropriate vasodilation may result in 
CS [63, 64]. Incipient CS leads to profound, persistent, and refractory vasodila-
tation and hypotension [1, 54, 83, 84] and to the development of MODS/MOF 
[5, 54, 61] with its deleterious outcome, if not treated adequately and in time 
[54, 55, 66].

Hence, the pathogenesis of CS is largely determined by

 1. the initial substantial myocardial damage, generally of ischemic genesis with 
consecutively marked systolic and diastolic cardiac dysfunction,

 2. the consecutively precipitated compensatory, mainly neuro-endocrine reply, and
 3. the associated systemic inflammatory response,

the latter with inherent vasodilatory properties, thereby altering macro- but 
also microcirculatory hemodynamics [52, 54, 55, 61, 65, 82, 86, 87, 108]. The 
‘only’ marginal to moderate, disproportionate increase in peripheral resistance 
(SVR/SVRI) has gained pathognomonic meaning for CS: The relatively low SVR/
SVRI is essentially caused by the vasodilative mediators (largely NO, peroxyni-
trite), which are generated in the context of the inflammatory reaction and the 
ischemic- reperfusion issues that apply in the setting of CS complicating AMI. This 
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vasodilative capability basically offsets the vasoconstrictive effects (mainly) 
launched by the neurohormonal-based compensatory mechanisms precipitated in 
response to the loss of pump function [54, 60–62, 65].

It has to be noted that a small group of patients in the SHOCK registry and trial 
[5, 27, 28] were clinically normotensive, or only mildly hypotensive, but still diag-
nosed as cardiogenic shock: They were systemically hypoperfused with low CO and 
elevated left ventricular filling pressures but with an “elevated” SVR and therefore 
able to maintain a reasonable blood pressure [9]. These patients should have been 
classified as being in a pre-shock state [3], where the systemic inflammatory 
response is not (yet) significantly active/activated.

There is quite a wide range of intensity and impact of the inflammatory response 
reported, afflicting some patients severely and some more marginally, as such, the 
violence of SIRS decisively impacts on the malady course [54, 140, 141].

Hochman [54] suggested a new cardiogenic shock paradigm, having integrated 
the newer pathophysiological aspects [61, 62, 65, 82] within the older existing con-
cepts [42], as depicted in Fig. 3.3.

Fig. 3.3 Right side: classic shock paradigm, mechanical and neurohumoral aspects; left side and 
in italics: influence of the inflammatory response syndrome: New cardiogenic shock paradigm by 
Hochman [54], with permission. NO: nitirc oxide; iNOS: inducible NO-synthase
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3.4.2  The Role and Impact of Hypotension in CS

Myocardial perfusion is compromised by hypotension [5, 43] and may induce isch-
aemia or exacerbate existing ischemia [37]. The decreased coronary perfusion pres-
sure (especially in multi-vessel coronary disease [40]) secondary to the decrease in 
MAP, caused by the poor cardiac performance/contractility and vasodilatation, may 
lead to a critically low BP [5, 40, 42, 61]. Critical hypoperfusion itself aggravates 
the myocardial perfusion deficit [142], exacerbating the myocardial ischemia and 
implementing a vicious cycle leading to a more and more severely ischemic myo-
cardium [40, 42]. This is seen even in shock states not initially caused by impaired 
myocardial contractility [1, 2], but when the blood pressure is so low that the perfu-
sion of the end-organs [1, 13] (especially the heart [13, 143–145]) becomes criti-
cally dependent on the hemodynamics [5, 40, 145].

The compensatory neuroendocrine response may also contribute to this delete-
rious development, thus showing to be maladaptive: Initial vasoconstriction and 
fluid retention increase pre- and afterload, thereby enhance ventricular wall stress 
and consecutively myocardial oxygen demand, as does the tachycardia often 
resulting from the catecholamine release within the compensatory features [52, 
55, 146].

Accordingly, “ischemia causes myocardial dysfunction which, in turn worsens 
ischema” [37]. Topalian [52] expresses this as “ischemia begets ischemia” and 
Hollenberg [37] strongly advises against the incidence of a vicious cycle arising 
consisting of ischemia, deterioration of myocardial function, and shock.

3.4.3  Myocardial Ischemia and LV-Compliance

The compliance, a diastolic property, of the left ventricle will be reduced by myo-
cardial ischemia, and subsequently the LVEDP will rise [147–151], as will the pul-
monary capillary pressure, putting the patient at risk of developing pulmonary 
congestion / edema [76, 149–152]. Additionally, LV end-diastolic filling increases 
in situations of severely impaired systolic LV-function in order to maintain SV (via 
Frank- Starling- mechanism) [37, 40, 153]; this will augment the LVEDP further, 
putting the patients at even higher risk of pulmonary congestion/oedema [40, 76] 
and further ischemia [37, 40].

Thus, both, altered systolic and diastolic properties contribute to the increase in 
LVEDP [40, 76].

However, LVEDP reflects the compliance of the left ventricle [153], and 
abnormally high LVEDPs indicate enhanced LV-stiffness [154]. Since the com-
pliance of the heart chambers is demonstrated to continuously vary, particularly 
in critically ill patients [155, 156], but even in healthy persons [157], changes in 
LVEDP may not correlate with changes in left ventricular filling volume at all. 
As such, some patients with CS will definitely show normal or even low filling 
pressures [9, 158, 159]. Hence, caution is advised in interpretation of LVEDPs 
as the value, and even changes, may not correctly indicate LV- preload and 
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intravascular volume conditions [156, 157, 160]. Anyway, essentially and typi-
cally, LVEDP is elevated and CO low in CS [40].

3.4.4  The Right Ventricle in CS

Sharing the interventricular septum and being enclosed by “one” (the) pericardium, 
interactions between left and right ventricle occur [161–164]. As such, RV function 
may be affected by a dysfunctional LV, and may contribute to CS [55].

Foremost, the increased left-sided filling pressures being transmitted back, pre-
cipitating pulmonary hypertension [165, 166], acutely afterload the RV [152, 
165–170]. Consecutively, as the right ventricle can poorly tolerate and adapt to 
pressure loading [171, 172], an immediate dilatation of the right chamber (with an 
increase in RVEDV) occurs in order to compensate for the elevated load imposed 
on RV [172–174]. Concomitantly with that increase in RV filling volume 
(RVEDV), both RVEDP (increase due to (a) the rise in filling volume [174, 175] 
and due to (b) pericardial constraint following the rule of constant total cardiac 
volume [161, 163, 176, 177]) and LVEDP increase (pericardial constraint associ-
ated with diastolic ventricular interdependence [178–181]). Attributed to the 
stronger impact of the pericardial constraint on the thin-walled right heart, the rise 
of RVEDP is disproportionally higher than the rise of LVEDP [178, 179]. 
RV-dilatation and the marked increase in RVEDP may result in deleterious conse-
quences, since, due to diastolic ventricular interdependence [178–180, 182], the 
shift of the IVS towards the cavity of the left ventricle will impair the net space 
for LV filling volume, (further) compromising LV–SV and LV performance [163, 
182–185]. Moreover, up to 40% (Diamino allocates up to 66% of RV pressure 
generation and up to 80% of the RV flow to LV contraction/LV assistance [186]) 
of RV contractility force, due to anatomical arrangement of myofibres [182], is 
generated by LV-contraction, referred to as systolic ventricular interdependence 
[164, 187, 188]. Therefore, an impaired LV contraction may markedly affect RV 
systolic performance and reduce RV-SV, subsequently supplying the LV with an 
even more inappropriately low filling volume [189, 190]: Thus, only a sufficient 
RV pump ensures appropriate LV preload and consecutively guarantees LV output 
[191, 192], hence prevents (further) LV pump failure—a series effect as the two 
ventricles are arranged in a row [191–193].

Moreover, RV may be involved in the ischemic process, although a predominant 
RV—infarction and associated shock is a rare event: In only 5% of patients predomi-
nant RV—infarctions are reported [194], however, acute RV myocardial involvement 
is complicating 50% of all inferior AMIs [195]. As such, if ischemia involves the RV, 
any additional threat (e.g. RV afterloading) may cause fatal consequences.

The haemodynamic alterations and the severity of circulatory compromise in 
predominantly RV- AMI are determined by the damage to the RV itself (extent 
of RV ischaemia and the subsequent RV-dysfunction), the ventricular interac-
tion (mediated by the septum and by the restraining pericardium [196] affecting 
the LV-function), and the involvement of the LV in the ischemic injury [194]. 
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Since RV contractility considerably depends on systolic LV-function, particu-
larly on the contraction of the helical fibres of the IVS [197–199], a loss of 
systolic LV support (e.g. due to LV infarction—the perfusion of the IVS may be 
provided to a considerable amount by a big right coronary artery!) may result in 
deleterious hemodynamic consequences [197–201] and early onset of hypoten-
sion and shock [202].

Accordingly, a predominant RV-infarction, or a relevant ischemic involve-
ment of the right ventricle in LV-AMI requires special attention and a sophisti-
cated therapeutic approach: The traditional and common practice of aggressive 
volume loading [55, 163] may be erroneous and disastrous, as volume loading 
in the presence of elevated RVEDPs and/or a dilated RV (and thus relevant peri-
cardial constraint) may, due to DVI, further impede LV-filling and hence mark-
edly diminish LV-SV [163, 177, 179, 183, 184]. In addition to the altered 
LV-geometry following the septal shift towards the left chamber cavity, LV sys-
tolic function is affected as well [203]. Thus, fluid application may end up in 
full-blown circulatory failure [55]—thus, in contrary, volume unloading is nec-
essary and the appropriate way!

3.4.5  Other Acute Causes of a Substantial Impairment 
in Contractility

• Transient acute myocardial ischemia [1, 15, 16] on a background of chronic 
CAD and the accompanying diastolic dysfunction [204–206] is able to induce an 
abrupt impairment of the contractility of viable myocardial tissue;

• Considerable regurgitant flow [1] from acute mitral insufficiency (acute MR) as 
a mechanical complication of acute myocardial infarction [12, 37], ischemic MR 
[207–210], and mitral valve insufficiency subsequent to transient hypo-perfusion 
(ischemia) in case of chronic CAD [211] can be responsible for a sudden decrease 
in SV/CO;

• Acute AR is most commonly caused by infective endocarditis [212]. The rapid-
ity of occurrence of the regurgitant flow does not allow the establishment of any 
specific compensatory mechanisms (i.e. LV-dilatation) [213, 214]. Consequently 
the SV/CO (forward stroke volume) will significantly diminish as well as the 
LVEDP increasing [1];

• Myocarditis sometimes causes markedly impaired contractility and hence 
reduced forward flow [215, 216];

• Drugs may have negative inotropic potential and the ability to initiate the pro-
duction and release of pro-inflammatory mediators from cardiomyocytes and 
other (hematological) cells which can promote the inflammatory process and be 
directly cardio-depressive [205, 217]. Even catecholamines (released as part of 
the compensatory mechanisms or administered as therapeutic agents) may 
induce the production of pro-inflammatory cytokines (i.e. Inter-leukin IL-6) and 
thus provide a further direct depression of contractility [205, 218, 219].
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• Since the vast majority of patients (roughly 75%) develop CS after presenta-
tion [20, 220], it has been supposed that our medication may contribute to 
ensuing CS [37, 55]. The whole spectrum of cardiac drugs usually used in AMI 
including β-blockers, angiotensin-converting enzyme inhibitors, morphine and 
diuretics potentially display deleterious effects affecting disease course and 
thus contribute to CS [221–224]. Timing for applications may play a decisively 
role [37, 55].

3.5  Clinical Features and Diagnostic Remarks

3.5.1  Hypoperfusion

In the vast majority the diagnosis of CS is established by clinical signs of hypoper-
fusion, ischemic chest pain, enzymatic analysis and ECG [37, 49, 55, 225, 226]. A 
normal ECG virtually excludes the possibility of CS caused by myocardial infarc-
tion [40]. In addition, an echocardiogram is absolutely essential in the initial assess-
ment of all patients suffering from (cardiogenic) shock [3, 37, 227–229] and should 
be performed as early as possible.

The crucial aspect in the diagnosis of CS is the identification of hypoperfusion in 
the setting of considerable cardiac dysfunction [1, 3, 5, 37, 40]. The following signs 
and features are suggestive of organ/tissue hypoperfusion [3, 5, 225, 230, 231]:

• pallor, ashen grey or cyanotic skin,
• cold peripheries (forearms and/or lower legs [7]), cold skin, moist and clammy, 

mottled extremities,
• altered mental status [8]: quiet, apathetic patient, sometimes restless, apprehen-

sive or confused,
• reduced urine production/oliguria, <30 mL/h or <0.5 mL/kg/h for ≥2 h [230],
• thready pulse of poor quality,
• arterial hypotension.

CS should be considered in all patients presenting with unexplained hypotension 
and/or low cardiac output, unexplained impairment of mental function and unex-
plained pulmonary congestion [5, 13, 37]. In fact Menon [3, 9, 10] strongly recom-
mends diagnosing CS in all patients exhibiting signs of inadequate tissue perfusion 
in the setting of severe cardiac dysfunction irrespective of the BP.

“CS is diagnosed after documentation of myocardial dysfunction and exclu-
sion of alternative causes of hypotension like hypovolaemia, haemorrhage, sepsis, 
pulmonary embolism, tam- ponade, aortic dissection and pre-existing valvular 
disease” [37].

Ander [232] expresses doubts that clinical signs are sensitive enough to 
detect occult cardiogenic shock, particularly in patients with congestive heart 
failure because clinical signs may fail to diagnose inadequate oxygen delivery 
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[233–236]; thus, the measurement of ScvO2 and serum lactate are recommended 
[232, 237]:

A lactate > 2 mmol/L together with a ScvO2 < 60% (SvO2 < 65%) suggests 
occult shock [232].

64% of all patients included in the US shock register presented with hypotension, 
evidence of ineffective CO/hypoperfusion and pulmonary congestion [8], but 28% 
had evidence of peripheral hypoperfusion and hypotension and did not suffer from 
pulmonary congestion [8]. Thus, clear lungs may still be present even with elevated 
PCWP and CS [8]. This phenomenon (elevated PCWP but no clinical or radiologi-
cal signs of pulmonary congestion) has been described previously [238]; it deserves 
emphasis because administration of large amounts of fluid will be deleterious [8, 
239]. Do not treat these patients with large boluses of fluid [3, 239].

The timely identification of patients in a pre-shock [3, 10] or non-hypotensive 
shock [9] state is of special value to allow therapeutic intervention and prevent 
decline. Clinical signs of hypoperfusion (in particular cold, clammy skin and oligu-
ria) are strongly associated with increased mortality, independent of blood pressure 
and other haemodynamic parameters [240]. Hypoperfusion may be a marker of 
impending haemodynamic collapse [9] and tachycardia in this setting (HR > 90/
min) should be interpreted as a pre-shock symptom and not as a response to low 
cardiac output and subsequent increased sympathetic tone [3]. Take care particu-
larly in patients with anterior AMI and keep in mind that up to 30% of patients with 
AMI develop cardiogenic shock late (day 5) in their disease course—and with a 
very poor prognosis [241].

In this situation the choice of medication should be made carefully. The use of 
β-blockers, in general indicated and life-saving in AMI [242, 243], may precipitate 
shock development in these patients [3, 12, 143, 244]. Additionally, the possible life 
saving compensatory activation of the renin-angiotensin system should not be coun-
teracted by administration of ACE-inhibitors [245, 246].

3.5.2  Right Ventricular Infarction

A significant infarction of the right ventricle (RV-AMI) complicates 50% of all 
inferior myocardial infarctions [195]. On an ECG, ST-elevation in VR3 and/or VR4 
(right praecordial leads) in patients with inferior ST-elevation, acute myocardial 
infarction is specific for RV-ischaemia due to a proximal RCA-lesion [196]. 
Predominantly the inferior and posterior parts of the RV are involved [194]. In this 
case, RV may be the crucial component in the disease process, responsible for the 
development for CS [178].

The recognition of this special issue is important due to a three-fold risk to 
develop ventricular arrhythmias and AV-nodal block [247, 248] and due to the spe-
cial treatment needs: well-balanced and monitored fluid administration, fluid restric-
tion in case of manifest RV-failure, and CS [178, 184, 249], preservation of 
AV-synchrony, and reduction of increased RV-afterload [250–252]. On the other 
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hand, RV is reported to be highly resilient and may recover soon completely, pos-
sibly indicating that RV-dysfunction is probably due to stunning myocardium rather 
than true myocardial necrosis [253].

3.5.3  The LVEDP in Cardiogenic Shock

The LVEDP and its measurement in the definition and diagnosis of cardiogenic 
shock should be assessed critically; an elevated LVEDP may not be a sensitive or 
specific parameter with which to diagnose CS:

• Acute severe heart failure is not necessarily accompanied by high LV-filling 
pressures. Some patients will definitely have normal or even low LVEDP’s [8, 
159, 254, 255];

• The LVEDP (PCWP) does not reflect the amount of extravascular lung water 
[256–258] due to cardiac dysfunction in a uniform way [159, 256–258];

• An abnormally high LVEDP (≥15 mmHg as described in the definition) 
may only reflect an abnormal stiffness of the LV [259] (impaired 
LV-compliance, i.e. due to ischaemia [147, 148]). It is well known that, par-
ticularly in critically ill patients, the compliance of the ventricles continu-
ously varies, contributing to the heterogeneous response and changes of the 
LVEDP value [155, 156, 260, 261]. Even in healthy persons absolutely no 
correlation was found between changes in ventricular filling and the change 
in value of LVEDP [157];

• The PCWP (as well as the CVP) does not adequately represent the pre-load or 
intravascular volume status and its changes in volume loading or unloading, 
either in healthy subjects [157] or in the critically ill [156, 160].

Thus, no reasonable correlation between LVEDV and LVEDP could ever be 
established [156, 157, 160] and in preference, the transmural LVEDP may be help-
ful to guide and monitor disease and therapeutic measures [262]. For further details 
see Chap. 1, paragraph 3b.

3.5.4  Important Differential Diagnosis of Cardiogenic  
Shock [3, 40, 225]

• hypovolaemic shock,
• dissection of the aorta,
• pulmonary embolism,
• bacteraemia and septic shock,
• neurogenic shock,
• anaphylactic shock,
• Takotsubo syndrome [263, 264].
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3.6  Therapy

A substantial number of publications have addressed the best therapeutic approach 
to CS complicating AMI – the most likely scenario in the vast majority of patients 
with CS [5, 143, 265–271].

Both retrospective [143, 265–268] and prospective randomized controlled tri-
als [5, 269, 270] have produced considerable evidence that an invasive approach 
(emergency revascularization by PCI/operation with and without prior thrombo-
lytic therapy) is definitely beneficial. Although in the SHOCK-trail [5], the land-
mark study on the treatment of AMI complicated by CS, the primary endpoint, 
30-days mortality rate, showed “only” a non-significant reduction in mortality 
compared to medical treatment alone, did the secondary endpoints demonstrating 
an absolute reduction in mortality after 6-month and 12 months of 13% definitely 
satisfy [5, 269]. This result equals a number needed-to-treat ratio (NNT) of less 
than 8, which means, that for to save 1 life, less than 8 patients need to be treated 
with this approach [82]. Even the 6 years mortality rate is significant better if 
early PCI is provided [271].

The effect was similar for both manifest CS at admission and in the event of 
delayed onset of cardiogenic shock [220]. The hospital mortality could be reduced 
from 75% (occluded vessel) to 33% (re-opened vessel by PCI) [220, 271–273].

3.6.1  Main Therapeutic Strategies

• Coronary intervention in acute coronary syndromes [5, 54, 265–271, 274].
This comprises PCI or emergency CABG: a class I, level B evidence rated by the 
ESC [275, 276] as well by the AHA/ACCF [277]. The time frame covers ideally 
the first 6 h after symptom onset [5], but is still quite effective within the first 
12 h after symptoms arose in STEMI patients [278]—a class I, level A AHA/
ACCF recommendation [277].
70–80% of the patients suffering from CS complicating AMI suffer from multi-
vessel (stenosis/occlusion > 1 vessel) disease [5, 14, 23, 279].
This vast majority has a grim prognosis (higher mortality) [279]. Although no 
substantial and conclusive data are available [67] and the optimal strategy is 
unclear [280], guidelines encourage for PCI on additional non-culprit lesions in 
that patient group, a class IIa level B ESC recommendation, based on patho-
physiological considerations [276]. However, standard and accepted practice is 
to intervene only on the culprit lesion [67], and although until now all but one 
study did not report of increased mortality in case of an multi-vessel PCI 
approach [23, 281–284], individual decisions should be made (morphology of 
lesion, hemodynamic state, etc.) [82].
Fibrinolysis is clearly less effective and thus reserved for patients not able to 
undergo early intervention, e.g. delays in transport [285], admitted to a non-PCI 
capable hospital and transport will exceed 120 min [286, 287]—class I B AHA/
ACCF recommendation [277].
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If thrombolysis is needed and considered, it should be applied within 30 min after 
hospital admission [288, 289], a class I level B AHA/ACCF recommendation [277].

• Emergency operation for mechanical complications following acute myocardial 
infarction include rupture of the free wall, acute MR [276, 290], ventricular sep-
tal defect, the latter is treated by intra-aortic ballon pump followed by early sur-
gical repair [291]. Patients with free wall rupture require immediate pericardial 
drainage and prompt surgical intervention [276], however, even than may not 
benefit from the surgical approach [292].

• Emergency valve replacement/repair in case of acute/acutely decompensated AR 
or MR [293, 294],

• Emergency operation for acute ascending aortic dissection [293, 294],
• Pericardial puncture/drainage if pericardial tamponade (traumatic or inflamma-

tory) is the reason for shock [293, 294],
• Thrombolysis/thrombus fragmentation/operation in case of acute fulminant pul-

monary embolism [293, 294],
• Adequate treatment of rhythm disturbances if they are the main reason for shock: 

Temporary pacemaker in bradycardia [295], DC cardioversion, emergency abla-
tion or anti-arrhythmic medication (Amiodarone) in case of sustained VT [293, 
294], magnesium in case of torsade de pointe tachycardia [296–298].

• Immediate pleural drainage in tension pneumothorax [299].
• the aim and the target for “initial medical therapy in cardiogenic shock is to 

maintain arterial pressure adequate for tissue perfusion and to increase tissue 
perfusion” [300].

3.6.2  Adjunctive Treatment

3.6.2.1  Maintaining or Re-establishing Appropriate Coronary 
and Systemic Perfusion

Critical hypoperfusion reduces the myocardial perfusion or aggravates an already 
present myocardial perfusion deficit [142]. Persistent myocardial ischaemia and 
hypoperfusion will cause a vicious cycle leading to an increasingly ischaemic myo-
cardium [40, 42]. The perfusion of the end-organs [1, 13] (especially the heart [13, 
143–145]) becomes critically dependent on the haemodynamics [5, 145, 301].

In order to provide an appropriate coronary perfusion pressure in patients with isch-
emic heart disease, avoiding (further) ischaemia, and preventing the intact myocardium 
from hypoperfusion, a MAP ≥ 70(75) – 80 mmHg [302–305] should be sufficient. In 
patients with other reasons than ACS for CS, such as acute myocarditis, a MAP ≥ 65 mmHg 
may suffice [306, 307]. Guidelines recommend keeping the sBP ≥ 100 mmHg in case of 
CS, but no studies are available to substantially support this value.

Furthermore, although a higher perfusion pressure does not automatically 
improve tissue perfusion, in the case of the heart there is evidence that an increase 
in systemic and hence coronary perfusion pressure indeed means an improvement 
in the tissue perfusion (coupled macro- and microcirculation) [136, 137]. Both, 
Vlahakes [304] and Di Giantomasso [305] found a significant increase in myocar-
dial tissue perfusion while administering noradrenaline to treat hypotension, 
increasing the systemic as well as the coronary perfusion pressure.
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Autoregulation has turned out and can be considered being a decisive feature 
and mechanism to provide for adequate blood distribution and thus appropriate 
tissue oxygen and nutrient supply [113]. Furthermore, GFR and hence basic kid-
ney excretion function seems to be assured as long as autoregulatory capacity is 
secured and uninterrupted [308–310]. Accordingly, if autoregulation is compro-
mised, the expansion of myocardial ischemia is highly likely and disease imma-
nent in coronary artery disease, particularly in AMI [37]. Thus this expansion may 
be critically and crucially hampered by maintaining and/or re-establishing (as 
soon as possible) working cardiac autoregulation, thereby allowing for sufficient 
oxygen supply of the “healthy” myocardial mass [136–138]. To do so, coronary 
perfusion pressure is not allowed to fall below the autoregulatory threshold at all. 
As such, early and resolute initiation of noradrenaline, NA [311] application aim-
ing for a MAP between 70 and 80 mmHg seems to be an essential and life saving 
measure [302, 303, 306] even if this implies that LV afterload increases in a situ-
ation where the systolic LV function is already markedly compromised. However, 
ongoing and dispersing ischemia, especially ensuing in the setting of AMI, affect-
ing with ongoing hypoperfusion also primarily healthy myocardial regions, will 
inevitably lead to complete cardiac collapse as there will be not enough myocar-
dium left for contraction at all if ischemia spreads. As such, securing coronary 
perfusion keeping auto-regulation working is paramount.

3.6.2.2  Fluid Administration
In life-threatening situations with severe hypotension and tissue hypoperfusion, a 
fluid challenge as described by Vincent and Weil [312] is justifiable, even in cases 
of cardiogenic shock [8, 313]. But remember that only 10–15% of all patients with 
CS suffer from a relative or absolute volume deficit and thus are in need of fluid 
loading [314]. Although, understandably, Hunt [313] demands that a confirmed vol-
ume deficit has to be treated before commencing any other measures. However, as 
Michard has shown, in the case of severely impaired contractility no significant 
increase in SV and blood pressure can be expected by volume loading [160].

As such, a monitored bolus of 250–500 mL crystalloid in case of hypoperfusion/
hypotension seems to be reasonable [8, 226, 315] and is an endorsed first-line mea-
sure, as long as no signs fluid overload are present, a class I, level C ESC recom-
mendation [315]. Nevertheless, a sustained effect on BP increase cannot be expected 
[316]. Accordingly, close monitoring and a careful assessment are essentials in 
order to avoid volume overloading with its harmful consequences [317].

3.6.2.3  Vasopressor Administration
In critical hypoptension (usually defined as sBP < 90(85) mmHg or 
MAP < 65(60) mmHg) in the setting of AHF/CS [276, 315, 318–320]) nor-
adrenaline (NA) is by now the preferred vasopressor drug: Compared to dopa-
mine, NA shows an improvement of renal and myocardial tissue perfusion [304, 
305, 321, 322], and within reasonable dose ranges no unfavourable effects on 
renal, mucosa/gut or thyroid perfusion [301, 323–325] have to be expected. 
Particularly the study by De Backer substantially supports to use NA as first-
line vasopressor in shock states [311] and confirms results by Sakr who found 
that the administration of dopamine or adrenaline was associated with a 
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significantly higher mortality when compared to dobutamine and noradrenaline 
[326]. A subgroup analysis even found a lower mortality rate in those patients 
treated with NA and dobutamine [311].

Accordingly, the most recent ESC guideline (finally) recommends NA being the 
preferred vasopressor in case CS conditions persist, “despite treatment with another 
inotrope, to increase blood pressure and vital organ perfusion” [315], a class IIb, 
level B evidence [311]

The main effects of the catecholamines usually applied in daily practice are sum-
marized in the following table, adapted from Ellender and Skinner [327] and from 
Van Thielen [328]. (Table 3.2)

3.6.2.4  Inotropic Medication
As mentioned in Chap. 2, inotropic drugs are traditionally used to increase CO (SV) 
and to improve peripheral and vital organ perfusion [334, 335] in low output situa-
tions which may be life threatening [62, 144, 301, 336].

As such, inotropic drugs may be considered in conditions of persistent organ 
hypoperfusion and/or hypotension associated with low output after carefully moni-
tored and well balanced volume therapy [276, 315, 319, 337]. In the event of a 
reasonable BP (Ryan [301] and others [276, 315, 319, 320] suggest a sBP ≥ 90 
(85) mmHg) or in pre-shock situations, dobutamine is still validated as the first 
choice drug when aiming to support and improve the contractility, to increase BP, 
CO and thus tissue perfusion [1, 40, 300, 301, 318, 329, 336]. However, as BP may 
further decrease under dobutamine infusion or does not increase, and as further 
ischemic threats definitely have to be avoided, a combination of NA and dobuta-
mine is often indicated [300, 311]. The combination of NA and DOB (compared 
with other catcholamines like dopamine, adrenaline/epinephrine) has turned out to 
probably be the most reliable and safest strategy in those circumstances [300]. 
Further, DOB may be added to NA in patients with pre-shock/shock, once a systolic 
blood pressure > 90 mmHg is achieved and maintained [145, 197].

However, as mentioned, there is growing and clear evidence of adverse events 
and increased mortality when using inotropic agents [75, 338–340], and catechol-
amine application should be as short as possible and the doses used as low as 
possible [67].

Table 3.2 Main effects of catecholamines (adapted from Ellender and Skinner [327] and Van 
Thielen [328], with permission)

Drug Main receptor activity Clinical/hemodynamic effects

α1 α2 β1 β2 CO dp/dt HR SVR PVR PCWP MVO2

NA 4+ 3+ 3+ 0(+) ↑ ↑ ± ↑↑ ± ± ↑
DOB 0(+) 0(+) 4+ 3+ ↑↑↑ ↑ ↑↑ ↓ ↓ ↓/± ↑

α1 - adrenergic receptor
α2 - adrenergic receptor
β1 - adrenergic receptor
β2 - adrenergic receptor

3 Cardiogenic Shock

http://dx.doi.org/10.1007/978-3-319-54973-6_2


183

Phosphodiesterase-inhibitors do not have any benefits when compared to dobuta-
mine, with the exception that they are effective in patients who are on regular β-blocker 
medication, and patients do not develop tolerance as with dobutamine [341, 342]. Further, 
they may be an alternative in patients with CS of non-ischemic reason [343, 344].

Levosimendan, a calcium sensitizing agent, has shown very encouraging results 
in the treatment of severe heart failure [345–349]. Some studies found a signifi-
cantly lower mortality when compared to dobutamine in patients treated for AHFS 
[346–350]. Levosimendan not only has favourable effects on systolic function but, 
in contrast to dobutamine, the diastolic function substantially improves as well (no 
adverse influence on relaxation) [351–354]. Furthermore, there is a considerable 
beneficial impact on the failing right ventricle [355–358]. The RUSSLAN-study 
also found a substantial benefit for patients with heart failure as a complication of 
AMI when treated with levosimendan rather than with dobutamine [347]. In refrac-
tory shock, levosimendan was shown to be not inferior to DOB (there was even a 
trend to be better), and superior to enoximone [359]. However, unfortunately, the 
recently published Revive I & II [360] and SURVIVE-study [361] could not dem-
onstrate substantial favourable effects, particularly not a better outcome when com-
paring levosimendan with dobutamine.

Nevertheless, in case AHF/CS is associated with β-blocker treatment contribut-
ing to and/or even causing AHF [275, 362], levosimendan may be the preferred 
drug, as recommended in the most recent guidelines of the ESC, a class II b, level C 
evidence [315]. Furthermore, levosimendan may be applied in CS complicating 
AMI [347, 363] on top of an already administered combination of dobutamine and 
NA, if required to stabilize the patient [359, 364].

As mentioned previously, an aggravation of hypotension and hypoperfusion may 
be fatal and should be avoided [37, 40, 42, 142–144, 301], and as such, levosimen-
dan should not be commenced if systolic blood pressure is less than 85 mmHg [355, 
365, 366]. Restoration of normovolaemia and omitting the loading dose are mea-
sures which will avoid BP drops and hypoperfusion secondary to levosimendan 
administration [145, 365, 366].

In the US, levosimendan, due to the fact of not showing a better outcome com-
pared with dobutamine in the SURVIVE- and REVEIVE studies, has not been 
approved [361].

Dosing of NA and inotropic drugs [145, 315, 327–329]

Noradrenaline NA 0.2–1.0 μg/kg/min, (ranges reported vary between 0.2 and 5.0 μg/kg/min,  
however, most intensivists do not increase NA-dosage above 1.2 μg/kg/min 
[300, 311, 330–332])

Dobutamine DOB 2–20 μg/kg/min; tolerance to be effective after 24–48 h with partial 
loss of hemodynamic effects [329]
low dose (up to 5 μg/kg/min), DOB lowers PVR and PAP, thus is 
important in case of RV failure due to pulmonary hypertension [333]

Levosimendan LEVO 0.1 μg/kg/min (0.05–0.2 μg/kg/min), bolus (optional) of 12 μg/kg 
over 10 min if appropriate initial BP [315]

Enoximone 5–20 μg/kg/min; bolus of 0.5–1.0 μg/kg over 10–20 min. [315]
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3.6.2.5  Intra-Aortic Balloon Counter Pulsation (IABP)
IABP has for a long time been a standard component in the therapy of CS [40, 285, 
367]. IABP provides effective haemodynamic support and, of extreme importance, 
increases the coronary blood flow. In particular, IABP is efficient in the initial sta-
bilisation of patients suffering from CS [368–372]. IABP improves outcome [369–
371] and shows at least a trend towards lower mortality even when used as a single 
treatment tool [17, 27, 372].

However, since early coronary intervention (PCI or surgical revascularization) 
has provided impressive and substantial evidence of being the most favourable and 
effective initial approach [5], the effect of IABP is pulverized and IABP has lost its 
special position: As a biphasic recent high-quality study (IABP-SHOCK II) by 
Thiele and coworkers revealed, there is no additional beneficial effect of IABP ther-
apy if patients with AMI complicated by CS have undergone successful coronary 
intervention [14, 373].

Accordingly, IABP application is not for standard use any longer, but may be 
considered in selective patients, particularly in those with mechanical complication 
of the infarction such as acute ventricular septal defect, a class II a, level C recom-
mendation [276, 315]. IABP may be also valuable if the patients do not stabilize 
quickly after coronary intervention and applied medical measures [33, 374, 375], a 
class IIa, level B recommendation by the AHA/ACCF [277].

3.6.2.6  Renal Function
Renal dysfunction is known to accompany acute heart failure syndromes in a sub-
stantial number of cases [376–378]. If present, the patient`s prognosis is poor [376, 
379]. Primary disorders of heart function affecting the kidney function and vice 
versa are termed cardiorenal syndrome [380], and “acute worsening or de novo 
afflicted heart function leading to acute kidney injury” is referred to as cardiorenal 
syndrome type 1 [381]. The CRS type 1 pathophysiology basically includes hemo-
dynamic features such as diminished renal blood flow and deficient renal perfusion 
pressure, increased intra-renal vascular resistance and enhanced renal venous pres-
sure (with concomitant renal venous congestion) [309], the latter being identified as 
“the major driver of acute cardiorenal syndrome” in CSR type 1 [382–386]. As 
such, altered renal perfusion in the setting of acute heart failure is attributed to and 
may be the result of impaired CO, combined pre-glomerular vasoconstriction and 
renal venous congestion [387]. In CS, renal dysfunction has traditionally been 
attributed to renal hypoperfusion following low cardiac output [380, 388–391], 
however, other pathophysiological features contribute, in particular attenuated or 
even disrupted renal autoregulation [384]—further details, please see Chap. 7 on 
cardiorenal syndrome.

Therefore, shortly following restoration of an appropriate circulation, attention 
should be directed to the renal function [392, 393]. The main prerequisites are eu/
normovolaemia and an adequate perfusion pressure (MAP ≥ 70–80 mmHg) [322, 
392, 394].
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If an adequate diuresis does not commence spontaneously after volume status 
and blood pressure are optimized, one attempt to induce diuresis by administration 
of diuretics (bolus application) appears to be reasonable [392, 395]. If this is inef-
fective and there is persistent oligo/anuria or increasing (>1.5–2.0 of baseline level) 
serum creatinine levels signalling acute kidney injury [396] and a poor prognosis 
[397], combinations of diuretics, e.g. furosemide and metolazone, may be indicated 
[398, 399]. However, recurrent unsuccessful attempts with diuretics are likely to be 
harmful [400–402].

So, in the face of ongoing oligo/anuria, early consideration should be made of 
CRRT, continuous renal replacement therapy. CRRT has a ‘neutral haemodynamic 
behaviour’ with only a minimal effect on MAP [393, 394], which is essential, espe-
cially in the case of fluid overload [393]. Continuous renal replacement therapy also 
eliminates cardiopulmonary toxic substances and, most relevantly, myocardial 
depressant factors [403].

3.6.2.7  Compensation of Acidosis
In shock states, metabolic acidosis occurs due to elevated serum lactate in 
response to peripheral hypoperfusion [404]. Buffering should only be considered 
if the pH < 7.1, or if it is evident that the vasopressor or inotropic medication is 
not effective due to the low pH. In that setting, one should aim to raise the pH 
only moderately, not exceeding a target pH of 7.2–7.25. The decision to use buf-
fer agents is controversial [405–408] and some authors refuse to do so [409]. 
There exists very little evidence as to beneficial effects of buffer agents [410], 
however if buffering is necessary, on current evidence tromethamine should be 
the preferred drug [411, 412], as it has less side effects than bicarbonate 
solutions.

In mechanically ventilated patients, mild hyperventilation is a nimble tool to 
remove excess acid in the form of carbon dioxide [413].

3.6.2.8  Anticoagulation therapy
Patients with cardiogenic shock essentially need thromboembolic prophylaxis and 
should be on low molecular weight heparin or equivalent drugs and doses, a class I  
level B recommendation [315].

Medical patients in general should be prophylactically anticoagulated in 
order to avoid disseminated intra- vascular coagulation (DIC) or thromboem-
bolic events [414–418]. Although lacking definite studies, in case of CS, intra-
venous (to avoid inadequate absorption in peripheral hypoperfusion) 
administration of 500–800 IU/h unfractionated heparin is recommended [414]. 
Otherwise, prophylaxis of thromboembolism may be achieved either by 5000 IU 
of unfractionated heparin three times a day, or an adequate dose of low molecu-
lar weight heparin [417, 419].

Dosage: 40 mg enoxaparin [420, 421] (or equivalent) s. c. or 5000 units unfrac-
tionated Heparin s. c. × 3 daily [2, 422].
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3.7  Summary

Cardiogenic shock is characterized by global tissue hypoxia and vital organ dys-
function secondary to severe, in general myocardial dysfunction with systemic 
hypocirculation [1, 2]. Accordingly, CS affects the complete circulatory system [55, 
66], and has to be understood as a systemic rather than solely cardiac disorder [67–
69]. As a central shock type, CS displays scarce peripheral and organ perfusion 
right from the beginning [77].

Characteristic clinical signs of hypoperfusion are cold, mottled, and clammy 
peripheries [6, 7], altered mental status [8], oliguria (<30 mL/h) and pulmonary 
congestion. Arterial hypotension (sBP < 90 mmHg) although a criterion of CS [5], 
is not a decisive parameter and a sBP ≥ 90 mmHg will not exclude the presence of 
non- hypotensive or pre-shock [3, 9, 10]. CS should be considered in all patients 
exhibiting signs of inadequate tissue perfusion in the setting of severe (systolic) 
cardiac dysfunction irrespective of the BP [3, 9, 10].

Acute or chronic myocardial ischemia is the underlying aetiology [11–13, 37] in 
the vast majority (70–80%) of CS cases. 5–10% of the patients with AMI develop 
CS [11, 17–20, 24, 35]. Other underlying aetiologies are valvular heart diseases, 
drugs with negative inotropic effects, and infections like acute myocarditis and sep-
sis [12, 36, 37].

Pathophysiologically both, systolic (due to the acute loss in pump force [37, 40]) 
and diastolic properties (abnormal stiffness [154], mainly related to impaired com-
pliance [147, 148]) are acutely markedly altered [5, 37, 55, 75, 148]. Traditionally, 
a marked neuro-endocrine [37, 43–45], namely sympathetic [37, 40, 42, 43, 62] 
activation inducing compensatory fluid retention [43, 45] and systemic vasocon-
striction [37, 40, 42–44] applies, also attended by fluid redistribution largely form 
the venous reservoir resulting from the sympathetically-mediated, generalized 
vaso- and thereby as well venoconstriction [47–49].

However, in the vast majority of patients [62–65], a considerably different 
hemodynamic profile can be observed characterized by an “inappropriate vaso-
constriction” (inappropriate low systemic vascular resistance/inappropriate com-
pensation) in relation to the severity of the myocardial depression /
cardio-circulatory disorder [5, 54, 55, 61–65]. This reflects and is attributed to a 
systemic inflammatory reaction (SIRS) present in CS [5, 9, 12, 54, 60, 61, 83, 84]: 
Global tissue and cellular hypoperfusion (resulting from substantially reduced 
SV/CO following the severely impaired contractile capabilities ) [71–73], neuro-
endocrine activation and ischemia- reperfusion issues precipitate a systemic 
inflammatory response [5, 49, 55, 82] coining a clinical- hemodynamic picture 
which, in several aspects, is alike that of sepsis/septic shock [65]. Consecutively, 
the effects of the initial cardio-circulatory disorder, of SIRS, and of the usual 
compensatory reaction interfere with each other, resulting in this diverse hemody-
namic profile with an ‘only’ marginal to moderate compensatory increase in sys-
temic vascular resistance, consequently pathognomonic for CS [5, 54, 60–62]. 
Particularly NO, generated following high expression of iNOS in the setting of 
inflammation and ischemia-reperfusion conditions [84, 85, 91, 92], and its 
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derivates offset the vasoconstrictive neurohormonal effects and bring about net 
insufficient vasoconstriction or even, in a few cases, net vasodilation [5, 62–64, 
83, 84]. Associated with and in consequence of peripheral vasodilation (predis-
poses for endothelial dysfunction [65]), inflammation and hypoperfusion, and 
endothelial dysfunction will ensue [109–113]. Subsequently, the microcirculation 
will be even more decisively affected [108, 116–118], inclusively autoregulatory 
capabilities [126, 127], displaying heterogenous blood distribution [108, 128] 
thereby substantiating and aggravating the hypoperfusion induced, and the altered 
and poor tissue and cellular oxygen and nutrient supply [132] in the heart but as 
well in distant organs [68, 108, 114, 119, 133].

As such, CS pathobiology is largely determined by an acute, substantial loss of 
myocardial performance and the associated systemic inflammatory reaction 
with vasodilatory impact counteracting the neurohormonal compensatory reply 
thereby decisively altering macro- and microhemodynamics [52, 54, 55, 61, 65, 82, 
86, 87, 108].

In spite of all therapeutic improvements, the overall in-hospital mortality remains 
high at 40–50% [14, 22, 29] .

Fundamental to therapeutic efforts are reperfusion procedures in case of AMI 
[5, 143, 271]. The hospital mortality can be reduced from 75% to 33% by 
addressing the culprit lesion via PCI [271–273], and the longer term (6 months, 
12 months and 6 years) survival benefit of this invasive approach is impressively 
[5, 269, 271].

Critical hypoperfusion must be avoided and restoration of sufficient coronary 
perfusion is of vital importance [5, 40, 42, 142]. The use of vasopressor medication 
(in which NA should clearly be the preferred drug [300, 311, 321]) aiming for a 
MAP between 70(75) and 80 mmHg [302, 303, 306], thereby maintaining or re- 
establishing cardiac autoregulation [309, 310, 423, 424], may be an essential, life 
saving measure [144, 301, 326].

Inotropic drugs (in the first line DOB) may be indicated in life threatening cir-
cumstances [62, 144, 301, 334–336], and conditions of (persisting) organ hypoper-
fusion and/or critical hypotension in euvolemic patients [276, 315, 319, 337]. They 
may also be considered to be added to NA, when blood and perfusion pressure have 
stabilized [300, 311], in order to (further) improve LV contractility intending to sup-
port restoration and/or maintenance of a suitable tissue perfusion [144, 301, 310, 
334]. However, inotropes (including NA which, of course, has inotropic effects) are 
associated with increased mortality and should be avoided whenever possible [75, 
338–340].
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4Acute Right Heart Failure

4.1  Definitions

Right ventricular failure (RV-F) is a complex, heterogeneous clinical syndrome, 
characterized by dyspnea—fatigue complaints and normally systemic congestion, 
which “can result from any structural or functional cardiovascular disorder that 
impairs the ability of the RV to fill or to eject blood” [1–3].

Thus, and in analogy to the definition of left ventricular (heart) failure, RV-F may 
be defined as:

“Inability of the RV to generate adequate forward flow with normal central 
venous pressure” [4].

A definition which has been endorsed by the fifth World Symposium on 
Pulmonary Hypertension in 2013 is set somewhat broader, but contains the same 
basic and essential pathological elements of heart failure, altered RV properties and 
performance, and the presence of increased filling pressures [5, 6]: “RV failure is a 
dyspnea fatigue syndrome with eventual systemic venous congestion, caused by 
the inability of the right ventricle to maintain flow output in response to meta-
bolic demand without heterometric adaption, and consequent increase in right 
ventricular filling pressures” [7].

This definition outlines a wide range of clinical scenarios ranging from clinically 
a- or oligo-symptomatic and compensated conditions even under stress, which may 
be referred to as RV-D, however functional compensation is largely achieved by RV 
hypertrophy and in any way at the cost of elevated filling pressures, and ending with 
clinically overt malady with low output states and imminent circulatory collapse [3].

As such, right ventricular dysfunction (RV-D) is referred to as “abnormalities of 
RV-filling or RV-contraction without signs and symptoms of heart failure” [1].

4.2  Epidemiology and Aetiology

Right heart dysfunction/failure has a quite remarkable incidence, affecting approxi-
mately 5% of the US population [8] with the outcome largely depending on the 
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underlying cause [9]. Three to nine percent of all admissions with acute heart failure 
syndromes (AHFS) are related predominantly to RV-F, with an in-hospital mortality 
rate being as high as 5–17% [10–13].

A wide variety of reasons altering right ventricular loading conditions, as occur-
ring in case of pulmonary hypertension, or primarily diminished RV myocardial 
contractility as found in ischemia, cardiomyopathy, and arrhythmias, may lead to 
and provoke RV-D/RV-F [1, 2, 14].

Pulmonary hypertension (PH) actually is the most frequent pathogenetic feature 
causally involved in and contributing to RV-F genesis [14, 15]. Increases in pulmo-
nary pressures, mostly due to and associated with an elevated pulmonary vascular 
resistance as the predominant underlying alteration in any setting [16], precipitate 
an increase in the input impedance1 of the pulmonary artery and thereby on the 
RV-outflow tract, thus afterload the right ventricle [14, 19–23]. RV failure is the 
potential consequence of this increased RV afterload [14].

RV pressure overload is usually associated with and due to LV-dysfunction [24]. 
The most evident and determining implication of LV failure is indeed a rise in LV 
intra-cardiac filling pressure, implying elevated downstream pulmonary pressures 
[25], causing pulmonary venous hypertension [26]. A diseased left heart, LHD, is 
the most common cause of PH at all [27, 28], and accounts for 65–80% of all PH 
cases [15, 28, 29].

Further, acute RV-D/RV-F due to acute pulmonary hypertension is a common 
condition in the ITU setting (overview by [21, 30–33]):

 (a) Acute respiratory failure per se leads to an increase in pulmonary vascular resis-
tance [34] and to a change in pulmonary compliance inducing an increase in 
RV-afterload [35]. Hypoventilation of the alveoli, hypoxia and/or hypercapnia 
from respiratory insufficiency (type I and type II) cause an increase in pulmo-
nary pressure and thus promote PH [36–38]. ARDS is frequently associated 
with PH due to an increase in pulmonary vascular resistance (PVR) [34]. 
Pulmonary vascular resistance (PVR) may be elevated by an increase in lung 
volume (emphysema) and by any decrease in functional residual capacity, and 
so lead to RV-D/F [29]. It is well established that acute respiratory failure leads 
to an increase in pulmonary vascular resistance, an increase in RV-afterload and 
reduced RV-function [39–41].

 (b) Mechanical ventilation (positive pressure ventilation) compromises the pulmo-
nary (micro) circulation through an increase in transpulmonary pressure caus-
ing an increase in the systolic load of the RV (↑ RV-afterload) [33, 42–44]. With 
progressively increasing tidal volumes the RV has to generate a higher and 
higher pressure to open the pulmonary valve and to eject blood into the pulmo-
nary vasculature [42, 45]. PEEP induces a rise in the intrathoracic pressure 

1 Impedance may be the most complete description of the vascular load imposed on the ventricle 
[17, 18].

4 Acute Right Heart Failure
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[46–50] and, at the very least, higher levels of PEEP (>8–10 cm H2O) will sub-
stantially increase the RV-afterload [46, 51, 52]. Thus, a protective ventilatory 
approach keeping the plateau pressure within the airways below 27 cm H2O, 
adapting pCO2 to less than 8 kPa (60 mmHg) and PEEP-levels as low as possi-
ble is required [53].

 (c) “Aggressive” volume loading, not being unusual in intensive care units, 
increases RV preload, and may in already stressed but until then compen-
sated RV conditions precipitate acute RV-D or even RV-F [54, 55]—animal 
studies demonstrated that chronically volume overloaded right ventricles are 
compensated and show normal contractility, but decompensate in case they 
are faced with any additional burden like sepsis or mechanical respiratory 
support [56, 57].

Factors contributing to an increase in pulmonary vascular resistance are 
[58, 59]:

• Lung parenchymal destruction,
• Airway collapse,
• Microthrombi in the pulmonary vessels,
• Excessive pulmonary vasoconstriction,
• Hypercapnia,
• General and local release of pulmonary vasoconstricting mediators.

These features underlying cellular and molecular pathways are characterized by 
an imbalance between endogenous vasoconstrictors (in particular endothelin-1) and 
vasodilators (in particular nitric oxide and prostaglandins) produced and secreted by 
the pulmonary endothelium leading to an increase in pulmonary vascular resistance 
and an elevated RV outflow impedance [15, 60–62]. As such, haemostatic imbal-
ances, secondary to pulmonary endothelial dysfunction and/or injury considerably 
contribute to the rise in PVR [63].

Failure of the right ventricle is often the final and crucial point in acute critical 
illness [9, 64]. This is not at least because acute right heart failure substantially 
influences the LV performance in these conditions [65, 66]. In cases where cardio-
pulmonary resuscitation is necessary patients with moderate or severe pulmonary 
hypertension are unlikely to survive [67].

Accordingly, acute/acutely decompensated left heart failure, acute respiratory 
failure conditions including mechanical ventilation, acute coronary syndromes 
causing myocardial ischemia, particular if involving the RV, sepsis and other severe 
infections, and acute pulmonary embolism represent the vast majority of maladies 
underlying acute RV-D/RV-F [68–70].

Table 4.1 lists a range of reasons causing RV-F (adapted from predominantly 
Harjola [2], and others [19, 71]:

4.2 Epidemiology and Aetiology
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4.3  Physiology and Pathophysiology

4.3.1  General Physiological and Pathophysiological Issues

The main functions the right heart has to comply with are to accommodate the entire 
venous return and to transmit the blood into the pulmonary circulation for gas 
exchange [89, 90], thereby maintaining low right atrial (RA) and pulmonary pres-
sures and optimizing varying amounts of venous return [15, 17, 83]. In order to do 
so, the right ventricle function has to integrate preload, afterload, contractility, peri-
cardial constraint, interaction with the left ventricle, and cardiac rhythm [1, 3, 91].

The pressure difference between the pressure in the periphery (systemic filling 
pressure) and the right atrium (central venous pressure) determines the amount of 
venous return and ranges usually between 7 and 10 mmHg at which the RA-P is 
normally 0 mmHg [92]. In healthy persons, only a very low isovolumetric contrac-
tion pressure is needed to be generated by the RV [93, 94] in order to eject blood 
into the low-resistance, high-compliance and low-impedance pulmonary vessel sys-
tem [95–97]. Thus, in healthy individuals with notable physiological LA filling 
pressures and pulmonary vascular resistance, a negligible RV contractile contribu-
tion is required to allocate adequate CO [17]: Simply the negative pleural pressures 
physiologically produced by normal breathing promote blood flow through the pul-
monary circulation [97].

Indeed, the anatomical conditions of the right ventricle (thin-walled, crescent 
shaped in a cross sectional view, but triangular in a side view [98], and particularly 
the direct geometry of the RV) allow not only to adapt to large increases in right 
ventricular filling volumes due to high venous return [99, 100], but also, despite 

Table 4.1 Causes of RV-F and differential aetiological and diagnostic considerations

•  Acute left heart failure [1, 
14, 71, 72]

• Right ventricular ischemia/infarction [70, 73, 74]

•  Acute pulmonary 
embolism [1, 2, 31]

• Acute respiratory failure [33] due to

   –  Acute exacerbations of chronic broncho-pulmonary 
diseases with and without hypoxic/hypercapnic 
pulmonary vasoconstriction [75–77]

   –  Hypoxia to varies reasons like obesity 
hypoventilation syndrome [78] or obstructive sleep 
apnoea [79, 80]

   – ARDS [53, 81, 82]

•  Mechanical ventilation [1, 
83, 84]

• Sepsis [9, 85–88] • Pericardial disease (tamponade)

• Cardiomyopathies • Valvulopathies

• Arrhythmias • Congential heart disease

•  Pulmonary hypertension due to hematological, e.g. sickle cell disease, infectious, e.g. HIV, 
and miscellaneous systemic and vascular diseases e.g. sarcoidosis

4 Acute Right Heart Failure
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often dramatic varying amounts of venous return, to definitely maintain a more or 
less constant CO [101, 102]. This crescent shape with a concave free wall and a 
convex septum [99] means that the RV has a markedly lower volume to surface ratio 
in comparison to the left ventricle and thus a much higher compliance [103]. 
However, these anatomical features and physiological properties of both the RV 
(high compliance, increasing not declining wall stress during systole [17, 104]) and 
the pulmonary vascular tree (low-resistance, high-compliance and low-impedance), 
predispose the RV to significant chamber dilatation in case of acute after-loading 
[19, 103, 105–107], and imply that the right chamber can very poorly (even worse 
than the LV [108])—see Fig. 4.1—adapt to acute increases in PA input impedance 
[16, 19, 20, 109]. As such, in case RV afterload acutely increases, the until then 
healthy RV is found to be unable to generate mean pulmonary artery pressures of 
more than 40 mmHg [110].

Acutely elevated pulmonary pressure is the most frequent cause of acute right 
heart failure [14, 27–29]. It is predominantly an increased pulmonary vascular resis-
tance (PVR) which leads to PH in any setting [16]. PH generally results from 
increases in pulmonary vascular resistance, pulmonary blood flow, pulmonary 
venous pressure, or a combination of these features [6, 111, 112]. Vasoconstriction 
(e.g. hypoxic alveolar vasoconstriction via direct pressor effects or due to mediators), 
thrombosis, and vascular remodelling may all cause PH [113], and are generally 
associated with increases in PVR [3, 15, 27, 41, 60, 114–117]. An elevated PVR 
indicates functional and/or structural pulmonary vasculopathy [115, 118–121].

Elevated left heart filling pressures, a hallmark of (left-sided) heart failure [111, 122], 
are recognized to cause pulmonary venous hypertension (PvH) [123] irrespective of 
LV-EF [124]. This is attributed to a backward, downstream transmission of the elevated 
left-sided filling pressures, precipitating a rise in pulmonary venous pressure [6, 115, 118, 
122]. An elevation of the pulmonary venous pressure directly elicits higher intrapulmo-
nary vascular pressures, particularly of the PAP, and a decrease in pulmonary vascular 
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Fig. 4.1 Illustrates the high 
sensitivity to afterload of both 
ventricles. Any increase in 
afterload affects the systolic 
performance, indicated by 
stroke volume, of the right 
ventricle markedly stronger 
than the left ventricle. The 
reduction in stroke volume is 
considerably higher in RV 
compared to LV for any 
increase in ventricular load 
imposed. Adapted from 
Greyson CR. The right 
ventricle and pulmonary 
circulation: basic concepts. 
Rev Esp Cardiol. 2010;63: 
81–95 [17] with permission

4.3 Physiology and Pathophysiology



214

compliance, hence stiffens the pulmonary artery(ies) [25, 98, 100]. Consecutively, RV 
afterload and RV systolic wall stress increase, potentially compromising RV function 
[25]. However, in early stages, PvH is not found to exhibit abnormal high pulmonary 
vascular resistance and thus does not cause  pulmonary vasculopathy [96, 125].

As such, LHD: ↑ in LVEDP → ↑ LA-P → ↑ downstream pulmonary venous 
p → ↑ pulmonary p and ↓ pulmonary vascular compliance (respective PA stiffen-
ing) → ↑ PAP [14, 25, 98, 125].

Finally, high flow conditions may be associated with PH, but show a normal PVR 
[120, 126].

Accordingly, although in most circumstances enhancements of the pulmonary 
artery pressure, PAP, are related to an increase in PVR, an increase in pulmonary 
pressures, namely mean PAP, and thus PH is not inevitably coupled with an increase 
in PVR [25, 125]. PH simply stands for elevated pressures in the pulmonary circula-
tion rather than explicitly indicating pulmonary vascular alterations which are 
reflected by an elevated PVR [112, 118, 121]. However, PH may lead to increased 
PVR and to decreased pulmonary artery compliance [127]. A reduction in vascular 
compliance means an increase in vascular stiffness, which will cause a rise in vas-
cular load on the upstream ventricle [96, 128–130]. RV-afterload is determined by 
the dynamic interplay between (1) pulmonary vascular resistance, (2) pulmonary 
vessel compliance, and (3) wave reflections [127], where PVR reflects the resistive 
RV-load component, and vascular compliance the pulsatile one [7]). Hence, PA 
stiffening also increases RV work load [127].

If PH is accompanied by a pathologic increase in PVR, adverse prognostic impli-
cations apply [131, 132].2

Anyhow, pathologically elevated pulmonary pressures, defined as a mean pulmo-
nary arterial pressure ≥25 mmHg at rest, measured invasively by right heart cath-
eterization [71, 126, 134], will impose an un-physiological pressure load (largely 
due to altered vascular properties) on the RV, provoking adaptive measures to face 
this burden potentially leading to right heart failure [14, 19, 20, 22, 23].

Physiologically, beat-to-beat variations in RV preload or afterload are addressed by 
adaption in right chamber dimension, applying Frank-Starling’s law of the heart: 
Abrupt, beat to-beat, increases in pre- or afterload are met with a mild rise in RV 
size, the so-called heterometric dimension adaptation (a diastolic effect), known as 
and described by Frank and Starling’s law of the heart [3, 135]. However, within a 
couple of minutes, starting already 20–30 s after the heterometric adaption applies, 
an increase in RV contractility, and as such a systolic adaptive effect, will firstly 
supplement but quickly completely replace the initial heterometric adjustment [3, 
135]. This so-called homeometric reply, which does not require any pre-existing 
muscle or cellular hypertrophy [136], is referred to as “Anrep’s law of the heart 

2 Since an elevation of the mean PAP is coupled to a decrease in systolic function [133], and RV 
afterload literally determines RV systolic function [14], PAP reflects RV afterload and an elevated 
mean PAP indicates an increased RV afterload [14].
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[137]. It has been G von Anrep who demonstrated more than 100 years ago an 
intrinsically mediated increase in LV contractility in response to a raised LV after-
load [137]. This reaction affecting the strength of contraction occurs independent of 
end-diastolic fibre length (the Frank–Starling–mechanism relies upon fibre stretch) 
or other extrinsic issues, like neuro-endocrine stimulation [138].

It has been challenged that the homeometric autoregulatory effect applies in vivo in 
the setting of a rapidly raised afterload since this mechanism has originally been dem-
onstrated “only” in isolated muscle strips [139]. However, homeometric adaptation to 
afterload has been reported to apply in case the RV is exposed to pulmonary constriction 
if coronary perfusion is held constant [140]. Furthermore, some recent evidence even 
suggests that homeometric autoregulation may be the primary mechanism launched 
already for “initial” response and adaptation to brisk RV pressure load [141, 142].

However, physiologically, homeometric adaption replaces the heterometric 
adjustment after a few minutes as indicated by the chamber dimension, which 
returns to baseline after a few minutes, demonstrating the predominant role of 
homeometric (that is without chamber dilation), systolic function adaption in both 
acutely increased pre- and/or afterload [136].

Anyhow, up to 40% of RV systolic function, that means 2/3 of pressure and 80% of 
flow generation under healthy terms [143, 144], is derived from the LV systolic perfor-
mance, largely from the septal oblique/helical orientated muscle fibre contraction, a 
feature referred to as systolic ventricular interdependence [14, 145, 146]. Of special 
note, these septal fibres, originating in the LV, reach up to the right ventricular outflow 
tract [147]. These bundles of muscle fibres functionally link RV and LV together and 
directly transmit contractile force generated by the LV to the RV [147, 148].

Oblique orientated myocardial muscle fibres are demonstrated to develop clearly 
more contractile power than transverse orientated ones [149], the latter typically 
found in the right ventricle [14]. RV dilatation, due to volume loading, increasing 
preload, or particularly due RV filling overload, as typically resulting from tricuspid 
regurgitation/insufficiency following RV dilatation, leads to a change in septal mus-
cle fibre orientation, and the more transverse configuration implies loss of muscle 
strength [14]. This phenomenon is especially evident in LV systolic dysfunction 
where the naturally oblique orientated muscle fibres of the LV, and thus of the sep-
tum, take a gradually more and more transverse position, losing part of their power 
generation capacity, consecutively affecting RV systolic function as well [14].  
On the other hand, an enhancement of the LV systolic function in the setting of a 
compromised RV function displays beneficial effects on RV performance [150].

Any rapid rise in pulmonary pressure (increase in PA input impedance) due to 
altered pulmonary vascular load, after-loading the right ventricle and/or a loss of 
RV contractility (altered myocardial properties, e.g. acute myocardial ischemia) 
causes an immediate increase in RV size, RV dilation, and concomitantly a rise in 
RV-end-diastolic filling volume (RVEDV) ensues [1, 3, 7, 16, 105–107]. However, 
RV adaption to PH is acknowledged to be decisively depend on the ventricle’s abil-
ity to adjust contractility in order to match the increased afterload the ventricle is 
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facing in case of increased pulmonary vascular load [151, 152]. Accordingly, if the 
homeometric adaption is too short or even fails and cannot (fully) compensate for 
altered RV loading conditions, and/or if systolic RV (and/or LV) capabilities (con-
tractile power) are suddenly lost (e.g. due to acute myocardial ischemia/infarction) 
[70, 74, 153, 154], heterometric measures persist or apply in addition, potentially 
able to meet (by applying the effects of the Frank-Starling-mechanism) the chal-
lenge imposed, although certainly at the cost of considerably increased RV dimen-
sions (↑↑ RVEDV) [138, 155, 156]. This increase in RV size and filling is inevitably 
attended by increased right ventricular filling pressures (RVEDP) [23, 157–159].

If the RV dilates, it becomes a more cylindrical shape and thus the efficacy of the 
Frank-Starling-mechanism increases [141, 142]. However, under those circum-
stances, RV contractility is compromised (e.g. septal muscle fibre orientation, RV 
free wall performance) [14, 17, 133, 160], RV-EF impaired [31, 84, 161, 162], and 
RV pump failure and even cardiogenic shock may promptly ensue [89] if the com-
pensatory mechanisms (most notably the increase in RV contractility as the pre-
dominant and physiological adaptive feature and alternative to match and face the 
elevated pressure load [135, 151, 152]) are insufficient and afterload mismatch per-
sists [7]. As such, RV afterload has to be acknowledged as the major determinant of 
RV systolic function, and RV failure is commonly the result of increased RV after-
load [14]. RV systolic function is much more than LV performance literally and 
crucially dependent on afterload [19, 163] (see Fig. 4.1).

Tricuspid regurgitation following RV enlargement may compound the condi-
tions [1, 7], although they may also disclose a path to reduce RV afterload by offer-
ing a less restrictive way for the blood stream [164–166]. Furthermore, diastolic 
ventricular interaction (DVI) applies compromising left ventricular filling and 
thereby worsens global cardiac function and systemic circulation even more [83, 
167, 168]. In any way, ventricular interactions (the ventricles are even more directly 
intertwined in malady [101]) play an important and critical role in RV-F pathobiol-
ogy by taking a crucial impact on left heart and subsequently systemic cardiovascu-
lar function [145]. DVI, mediated by the pericardium and the interventricular 
septum (IVS) [1–3]), restricts left ventricular filling due to a leftward shift of the 
IVS in the presence of elevated pericardial constraint [1, 167, 169], thereby chang-
ing LV geometry [1, 170] resulting in impaired LV-contractility [3, 83]. Furthermore, 
due to the enhanced pericardial constraint resulting from RV-dilation, LV distensi-
bility decreases, consecutively (as well) impeding LV filling, ultimately diminishing 
LV-SV [1, 3]. Subsequently, the compromised LV contractility may display consid-
erable deleterious effects on RV systolic performance, systolic ventricular interac-
tion, as about 1/3 (20–40%) of systolic RV pressure generation and up to 80% of RV 
flow generation [143, 144] results from LV contraction [145, 146, 171].

It is exactly ventriculo-arterial coupling which specifically refers to the relation-
ship between ventricular contractility and afterload, in this case between the right 
ventricle and the pulmonary vascular tree [7]. As such, assessment of RV-PA cou-
pling is a physiologic approach to this interrelated system [172]. Disrupted RV-PA-
coupling is considered to contribute to progressive RV-malfunction [17]. 
RV-PA-uncoupling ensues as RV contractility does not match afterload [107, 173, 
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174]. Altered coupling may affect the efficiency of power transmission and thus 
dilutes blood flow output from RV to and within the pulmonary vessels, diminishing 
LV preload [22]. Indeed, recent studies report a reduced RV-PA coupling efficiency 
in different forms of PH [151, 175, 176]. In experimental tachycardiomyopathy 
RV-PA-uncoupling has been observed related to lack of a sufficient adaptive increase 
in RV contractility [177]. In a sepsis model with endotoxic-induced elevated PVR, 
initial preservation of RV-PA-coupling could not be maintained as the incipiently 
adaption in contractility did not persist [178]. On the other hand, several studies 
demonstrated preserved RV-PA-coupling in patients and animals with acute hypoxia 
related pulmonary vascular constriction (displaying acute RV pressure load), when 
RV contractility increased, matching the pulmonary artery input impedance [173, 
174, 179, 180]. Accordingly, adaption of RV systolic function to increased pulmo-
nary vascular load, causing PH, is necessary to maintain proper RV-PA-coupling. 
Uncoupling occurs in case of inflammation, long-lasting PH and left heart failure 
resulting in deficient RV contractile adaption (systolic ventricular interaction) [3].

The results consistently confirm the crucial role of homeometric adaption (incre-
mental contractility) in case the RV is faced with a rapid or substantially raised 
afterload [151, 152]. RV-PA uncoupling is related to the onset of RV-failure and can 
be seen as an early sign of maladaption [181]. Deterioration of RV-PA coupling is 
associated with increased RVEDV [135], while the absence of increased RVEDV in 
the presence of raised pulmonary pressure indicates sufficient coupling [135].

As the hemodynamic aspects of the pathobiology of RV-F are decisively characterized 
by the alterations in RV pressures and volumes and the interventricular interactions it is 
worth and necessary to further discuss in depth volumes and pressures issues:

Both, brisk increases in RV afterload (e.g. a sudden rise in pulmonary pressures 
inducing PH, but substantial and/or prolonged enhancements in RV vascular load-
ing conditions as well) and rapid and/or particularly considerable boosts in RV 
preload (e.g. quick volume loading) [7, 98] lead to a marked RV-dilation [1, 3, 7, 
19, 23, 31, 106, 107] with increased right ventricular filling volumes (RVEDVs) [1, 
3, 7, 19, 23, 31, 106, 107]. An increase in ventricular filling volume is in any case 
attended by a rise in filling pressure: “Acute increases in filling volumes yield higher 
filling pressures” [157]-a parallel upward shift of the PV-relation (see Chap. 1, Sect. 
1.10). Acute volume loading of the RV or in case the RV dilates due to (abruptly) 
augmented RV afterload, both changes are enhancing RVEDV, and will thereby 
exert stress on the acutely literally indispensable pericardium which consecutively 
results in increased pericardial pressure and a noticeable parallel upward shift of the 
PV-relation, indicating that a higher absolute RV filling pressure is necessary to 
achieve a given RV filling volume [182]. As such, the increase in afterload itself 
exerts some impact on the position (parallel and upward) of the PV-relation. Hence, 
changes in vascular loading conditions result in parallel shifts of the diastolic 
PV-relation [157, 183] indicating alterations in pericardial and filling pressures (see 
chapter 1, section 1.10, extracardiac forces). Moreover, pericardial constraint will 
affect the thin-walled RV more than the LV, subsequently the increase in RVEDP is 
disproportionally higher than that in LVEDP [168, 184]. However, increasing 
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pericardial constraint, as with increasing RV enlargement, results in less RV free 
wall stretch, limiting the effect of the Frank-Starling-mechanism [17].

Furthermore, the markedly enlarged RV size is accompanied by altered diastolic 
RV properties, shifting the RV diastolic pressure-volume-relation to a steeper pro-
portion of the curve (leftward and upward shift) as changes in systolic load affect 
diastolic properties as well [17, 156, 185–189]. This denotes RV stiffening, and as 
such, PH stiffens the RV [190]. RV stiffness dilutes the RV free wall stretch, con-
secutively blunting the Frank-Starling-effect [17], increasing RVEDPs and central 
venous pressures [1, 83]. RV diastolic dysfunction and elevated RV filling pressures 
induce renal fluid retention (arginine vasopressin effect) [1]. Thus, several effects 
are contributing to the quite substantial increase in RVEDP when suddenly after 
loading the right ventricle.

Sudden RV-afterload due to PH RV-size (RV-dilation ) =

RVEDV RVEDP

(a)
 

  The increase in RV-size has, due to the acutely literally nondistensible pericar-
dium [191, 192], an impact on the LV [1, 2]:
 1. LVEDP will firstly increase due to the increase in pericardial constraint, as 

described.
 2. RV-enlargement leads, due to the restrictive properties (actually literally not 

distensible) of the pericardium and the limited space within the pericardial 
sack, to a competition of the two chambers for space resulting in a reduction 
in LV-preload [135]. This reduces LV-filling, a series effect as the two cham-
bers are arranged in a row [169, 193, 194].

 3. The compromised RV systolic properties ejecting a lesser extent of blood 
into the pulmonary circulation [14, 17, 133, 160] and RV-PA-uncoupling 
losing further energy, resulting in a loss of flow output [107, 173, 174] are 
both contributing to the shorted LV preload. Both issues may be interpret 
within the scope of and referred to as series effects.

 4. Due to largely diastolic ventricular interaction, mediated by the shared struc-
tures of the ventricles (pericardium and the interventricular septum (IVS) 
[159, 191, 192]), the IVS will be shifted in the presence of increased pericar-
dial constraint towards the LV cavity thereby changing LV geometry [1], 
compressing the left chamber subsequently impairing LV filling, and leading 
to impaired LV contraction [1–3]—and consecutively also to diluted RV 
contractile power. DVI, coming in general and particularly into effect with 
increasing RVEDP [72, 169], essentially contributes to acute right heart fail-
ure pathobiology and makes a crucial hemodynamic impact on right and left 
heart and subsequently systemic cardiovascular function [1, 145, 169].

 5. LV diastolic properties are altered, largely an effect of DVI [195] and due to the 
increasing RV size and RVEDP, causing LV diastolic dysfunction: The LV 
becomes stiffer (reduced LV compliance) [185, 195–199], resulting in an increase 
in LVEDP (leftward and upward shift of the LV PV-relation) and may cause a 
reduction of LV-filling and consecutively diluted LV-SV [1, 3, 185, 197, 198].
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Hence in summary, LV size will substantially decline (LVEDV ↓↓) while LVEDP 
will increase (LVEDP ↑↑)3 and LV systolic capabilities will be diminished, as 
depicted by the following causal chain.

(b)
pericardial constraint, DVI and series-effect

RV-dilation and concomitant  RVEDP        LVEDV  and  LVEDP
series – effect LV-SV

RV contractile  LVEDV  (LV preload)
power               ↓↓ systolic performance

(a) and (b) in total

Sudden  RV-afterload due to PH  RV-size (RV-dilation) = RVEDV with  RVEDP

  LVEDV, LVEDP, and LV-SV/contractility  /  MAP Hypoperfusion

RV contractile power potentially  myocardial  distant organ
ischemia dysfunction

pressure–overload associated 
non-ischemic features    LV contractile power  

Noteworthy, RV accommodates much better and quicker to changes in preload 
(e.g. volume load) compared to the very poor tolerance of sudden (and/or substan-
tial and/or prolonged) increases in afterload (pressure load) [19, 20, 100, 200]. In 
contrast to pressure overload, the right ventricle tolerates primary volume overload 
conditions over a long period quite well as evidenced by the clinical courses of 
patients suffering from intracardiac shunts (e.g. Eisenmenger’s syndrome), and tri-
cuspid or pulmonary regurgitation [15, 17]. This may be due to:

 (I) RV volume overload does not relevantly impair contractile dysfunction [57],
 (II) The RV is preconditioned to tolerate volume loading in the foetal period, and in case 

of congenital abnormalities, foetal right ventricular phenotype properties may persist 
[201, 202]. Furthermore, patients with Eisenmenger’s syndrome decompensate if 
pulmonary vasculopathy and thus an afterload burden develop or shunt reverses [15].

Insofar, even acute volume loading alone will not induce predominantly acute 
right heart failure in otherwise reasonably normal hemodynamic conditions. 
However, acute and rapid or extensive volume loading, in particular over a certain 
limit [198] is reported to potentially cause transient RV-dilation in special circum-
stances [199, 203]. Volume loading should always be referred to as “pre-loading” 
the ventricle: In this respect, pre-load may be defined as the combination of all fac-
tors contributing to passive end-diastolic ventricular wall stress [7]. RV preload is 
determined by volume and pressure prior to contraction. Respiratory alterations 
affect the RV filling and the pericardium constrains the thinner, low-pressure RV 
more than the high-pressure LV [98].

3 Again a hint that LVEDP may not represent LVEDV, since increasing LVEDP may not translate 
and indicate increasing filling volume.
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Aside the more specific hemodynamic factors and features, further issues are dem-
onstrated to significantly influence and contribute to the pathobiology of acute right 
heart failure:

A markedly enhanced activation of the neuro-endocrine and the immunologic/
inflammatory-endothelial cascades displays a variety of functional alterations, 
particularly endothelial dysfunction (ED): Adrenaline and noradrenaline, angioten-
sin II (the most bioactive representative of the renin-angiotensin-aldosteron- system), 
cytokines, endothelin-1 in the presence of an altered NO metabolism and availabil-
ity (a constellation typically indicative for ED), and natriuretic peptides (with their 
potential to counterbalance to some degree the effects of the aforementioned agents), 
are released and secreted, offering compensatory input, and as such are involved in 
and contributing to the pathophysiology of acute RV-D/RV-F [1, 83, 91, 204–211]. 
The release and discharge of adrenergic substances with positive inotropic and 
chronotropic effects may facilitate the contractile efforts [106], however, net con-
tractility may be acutely even reduced [107].

These compensatory mechanisms applied with their predominantly pulmonary 
and systemic vasoconstrictive properties improve pulmonary blood flow and may 
temporarily stabilize the pulmonary and systemic hemodynamics [212], but are 
gradually maladaptive [27, 213, 214]. However, the increase in RV size and pres-
sures lead to increased wall tension and cardiomyocyte stretch [106], consecutively 
the coronary perfusion is affected and a higher oxygen demand and consumption is 
displayed, potentially leading to RV ischemia [107, 215], at least if no effective 
reduction of RV afterload can be achieved [216]. In case of acute pulmonary embo-
lism, causally responsible for the abrupt rise in afterload, RV ischemia is demon-
strated to be of pathophysiological significance in the acute phase [217, 218]. 
Elevated RVEDPs and considerably diminished blood pressure not matching the 
metabolic demands may cause RV ischemia and compromised RV contractility 
[219]. Nevertheless, study results are inconsistent in regard to what degree ischemia 
is responsible for and contributes to RV contractile malfunction [220–222]. 
Moreover, myocardial stunning (even in case of RV-AMI) rather than true cardio-
myocyte loss is suggested to underlie progressive contractile impairment [195].

Furthermore, there is some evidence suggesting that “just” pressure over-
load itself may down-regulate RV contractility [22, 223, 224]. In the absence 
of ischemia, activation of intracellular paths affecting the contraction sequence 
and procedure [225, 226], activation of apoptosis [227, 228] or even disturbed 
NO-pathways due to endothelial dysfunction may be involved.

As RV contraction will be prolonged (since myocytes prolong under stress 
contraction time action potential duration [7]) in case of RV strain, blood is still 
ejected into the pulmonary vessel system while the left ventricle already resides 
in diastole, the interventricular septum shifts to the left side in the late systole 
[229, 230] restricting and reducing LV-space [106, 107, 216]. This desynchroni-
zation of both ventricles will aggravate RV malfunction [7]. Dys-synchrony is 
reported to arise early on during the adaptive process, intended to support systolic 
function of the RV, however, this implies that LV-filling is blunted already early in 
the course [2].
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If the hemodynamic compromise cannot be stabilized, as both, the (supplementary) 
heterometric efforts and especially the RV contractile power (homeometric adaption) 
are together not able to generate the performance necessary to match the acute 
increase in PA-input impedance (and/or the exposure of the RV to acute afterload 
mismatch persists), acute RV failure applies and may rapidly end up catastrophic 
with a circulatory collapse [95, 96, 135]. The progressive RV-dilatation and the 
accompanying, considerably elevated (and further rising) right ventricular filling 
pressure, reflecting and indicating RV-dysfunction/failure [25], may induce a vicious 
cycle ending up in circulatory collapse [135]. Even a mild acute elevation in pulmo-
nary pressure eliciting mild PH may cause a substantial drop in RV-SV [231, 232]. 
Blunted RV-SV and thus reduced LV preload delivery (due to diminished SV gener-
ated by the weak RV [169, 194, 233] and due to RV-PA-uncoupling [107], both 
effects may be referred as to series-effects [169, 194, 233]), the excessive LV com-
pression (largely due to DVI [135]), and the LV diastolic dysfunction (and therefore 
impeded LV distensibility) [81, 234], result in a marked LV underfilling [2, 3, 83] 
and a considerably impaired LV systolic function [2, 3, 83, 197, 198, 235].The com-
bination of LV underfilling and compromised LV systolic function may inevitably 
precipitate hypotension and systemic hypoperfusion (adapted from Zochios, [93]). 
This will result in even less contractile support for the RV, while hypotension poten-
tially dilutes right and left coronary perfusion contributing to circulatory collapse 
[107, 216, 236]. However, as discussed above, other, non-ischemic issues may con-
tribute to the now progressively deteriorating RV systolic properties [22, 223, 224, 
226, 228]. Though, “RV failure begets RV failure” leading into a progressive down-
ward spiral of worsening myocardial dysfunction and incipient shock [93].

Once systemic pressure, e.g. MAP, begins to fall, hemodynamic collapse will 
ensue rapidly. As depicted in Fig. 4.2, a work by Guyton [89], the hemodynamic 
range within the disastrous malady course develops may be very narrow. Patients, 
of course with symptoms and signs of RV-F, although appearing to be in a clini-
cally reasonable and stable condition with acceptable BP, but with no obvious 
evidence of relevant hypoperfusion, and only mild to moderately elevated CVP, 
may decompensate immediately and unexpected: Compensatory mechanisms 
may be already exhausted, but this is not recognized as clinical and hemodynamic 
features are still tolerable. Furthermore, no additional features (such as ischemia), 
typically aggravating the malady, may be observable. Nevertheless, issues includ-
ing non-ischemic related paths [225, 227, 228], stunning myocardium [195] or 
RV-pressure overload associated, the contractile forces down-regulating mecha-
nisms [22, 223, 237], and, hopefully not, therapeutic measures such as very cau-
tious volume application (assuming a still available preload reserve in order to 
ameliorate rather than to destabilize the situation) may be the trigger of the disas-
ter by initiating MAP to fall. Insofar, circulatory collapse may insert abrupt and 
quite unexpected in otherwise hemodynamically stable appearing patients.

In case of a gradual increase in PAP and/or PVR as usual in LHD, the so-called 
homeometric contractility adapation to afterload according to Anrep’s law [137] 
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may ensue [135]. The homeometric adaption and remodelling is characterized by an 
increase in ventricular systolic function (e.g. contractility) without chamber dilata-
tion in order to meet the load the ventricle is facing [138]: The right ventricle adapts 
to the increased afterload by increasing its wall thickness and contractility [7]. 
Homeometric adaption is shown to be the predominant feature of RV to face and to 
adapt to increased afterload and to ensure preserved RV-PA-coupling [3, 135].

Indeed, in case of gradual increases of pulmonary pressures or due to mild/
moderately but chronically increased pulmonary pressures, RV develops a hyper-
trophy and thus concomitantly adapts [96, 151]. The initially enlarged RV end-
diastolic volume triggers the development of RV hypertrophy enhancing 
contractile capabilities and thus adapts to the new challenge, maintaining RV-SV 
by increased contractile force [216]. In animal models, hypertrophy is recog-
nized already 96 h after the onset of increased afterload [238]. This is principally 
confirmed by studies in humans suffering from ARDS where already after 2 days 
of PH (ARDS and mechanical ventilation cause an increase in transpulmonary 
pressure which correlates with the magnitude of RV afterload [95]), a moderate 
thickness of the free RV wall could be demonstrated [31]. Hypertrophy will 
reduce wall tension (LaPlace), and the interventricular septum, initially bulging 
to the left (D-shaping), flattens [216]. Notably, although the RV elastance may 
rise two-to three-fold during the acute phase, no acute systolic RV dysfunction 
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has been reported [141, 142]—accordingly the enhanced RV–elastance indicates 
true augmentation in contractility. Moreover, some degree of RV-dilation estab-
lishing heterometric, dimensional adaptation via Frank-Starling-mechanism will 
be implemented as well [2].

However, if the load rises further, becoming too high for a too long period, 
or if these compensatory mechanisms are insufficient to match the load 
imposed, RV-PA uncoupling associated with (further) increased RVEDV occurs 
[135, 138], a heterometric adaptive mechanism, indicating RV dysfunction [7], 
or even RV-failure [3, 135]. Severe inflammatory conditions (e.g. septicaemia), 
long-term increase in PVR or advanced heart failure are disorders predisposed 
for RV-PA uncoupling and RV-dysfunction [3, 135]. Furthermore, even the 
described remodelling may, after many years of compensation, progress to 
chamber dilatation, consecutive tricuspid insufficiency, and frank RV-failure 
[172]. It may be speculated that pressure overload downregulates RV contrac-
tility [22, 223, 224] and thus later in the course, heterometric compensation 
will become necessary due to decelerating contractility. This is in line with 
recent study results, showing that patients with long-standing volume overload 
conditions, although compensated and most often only marginally symptom-
atic over many years, nevertheless carry an increased risk for cardiac morbidity 
and mortality [239, 240]. Other precipitating factors discussed include isch-
emia, as RV hypertrophy potentially decreases RV subendocardial perfusion, 
while the arising RV-dilatation entails increased wall stress and thus a higher 
oxygen demand [96] and neurohormonal/inflammatory issues [241–245].

Acute and chronic RV failure, being attended by enhanced neurohormonal dis-
charge and sodium and water retention, is thereby consecutively accompanied by 
elevated CVPs [1, 24] which may exert deleterious effects: Increased CVP impairs 
lung lymphatic drainage, leading to interstitial pulmonary fluid accumulation 
causing shortened lung compliance, impaired gas exchange, and promotes the 
development of pleural effusion [5, 246]. Renal venous pressure is subsequently 
increased and provokes cardiorenal syndrome [5, 247, 248]. Hepatic and intesti-
nal congestion occurs facilitating cholestasis and ascites development [1, 5], 
impairs gut absorption and may allow for translocation of gut microbes into the 
blood stream [96].

4.3.1.1  To Sum Up (see Fig. 4.3)
Acute right heart failure is a complex, heterogeneous clinical syndrome of miscel-
laneous aetiologies [1, 2, 93, 96]. LHD is by far the most common reason causing 
acute RV-F [27, 28]. Any acute (rapid) increase in pulmonary vascular pressures 
imposing a (additional) load on the RV, precipitating an afterload mismatch, may 
provoke acute RV-F [14, 27–29, 95, 96, 135], and even mild increases in PAP are 
reported to potentially trigger acute right heart failure [231, 232].

Acute RV failure is characterized by RV dilatation [1, 3, 7, 19, 105–107], gener-
ally attended by increased right ventricular filling pressures [157–159, 186], and 
impaired RV contractile properties [2, 3, 14, 17, 160, 197] in the presence of clinical 
signs, foremost dyspnoea and fatigue, as well usually fluid accumulation and edema 
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formation, of RV dysfunction, furthermore evidenced by elevated CVP (RA-P/
RVEDP) [1–3, 5, 7, 24, 25, 246, 247], often accompanied by organ, particularly 
renal, dysfunction [5, 24, 123, 246–248].

Acute RV-F arises if the load imposed on the RV, generally after-loading (but 
pre-loading principally may affect the RV as well) the right ventricle, cannot be met 
and counterbalanced by an appropriate increase in RV contractile power [95, 96, 
135], referred to as homeometric adaption [137, 138]. Deficient RV systolic perfor-
mance may be subject to impaired RV and/or LV contractile capabilities [3, 7, 16, 
83, 105, 106, 143, 144], but is usually attributed to the brisk (and/or substantial) rise 
in afterload [1, 7, 14, 15] hitting a ventricle which is anatomically and functionally 
not designed and not evolved to deal with high pressure loads [19, 105–107, 200] 
and whose performance is literally crucially dependent on afterload [19, 163]. 
Adaption to pressure load can only succeed if the ventricle is able to strengthen its 
contractile capabilities [151, 152].

Neuro-endocrine and inflammatory-endothelial measures and replies support 
and govern in a sense the compensatory activities [1, 83, 91, 204, 206–211], but 
may turn to be maladaptive over time (e.g. fluid retention) [213, 214].

Anyway, in the case the homeometric adaptive efforts are too little or fail, sub-
stantial RV enlargement, accompanied by elevated RVEDP, immediately ensues [1, 
3, 7, 16, 19, 105–107, 200]. This enlargement is an attempt to improve RV perfor-
mance by applying the Frank-Starling-mechanism, facilitating blood ejection, output 
and blood flow [172, 173]. However, this approach has transpired to induce a series 
of potentially deleterious, although basically compensatory, measures and reactions, 
which are largely related to ventricular interactions [14, 72, 107, 145, 167–169, 173, 
174]. These arrangements will substantially affect the LV resulting in diminished LV 
size, and LV diastolic and LV systolic malfunction [2, 3, 81, 83, 156, 196–199, 234]. 
Subsequently, hypotension, a jeopardized systemic circulation with lurking organ 
and tissue hypoperfusion and an even more compromised RV function are to follow, 
potentially ending up in circulatory collapse and shock [93, 95, 96, 135].

Of note, some correlations, relationships, interrelations and causative interconnections

  (a)  PVR is calculated by the ratio of the transpulmonary pressure to the transpulmonary 
flow [249]:

           PVR = PAPmean/SV × HR(SV × HR = CO)

  (b) (Sudden) ↑ in pressure (volume) load of the RV causing PH [21, 32, 33, 59]  →
        ↑RV - afterload/RV outflow impedance [21–23, 31, 161]

                   ↓
     • RV-dilatation (↑ RVEDV/RVEDD) [3, 7, 12, 21, 23, 103, 105–107, 161]

         (acute and rapid/or extensive volume loading, in particular over a certain 
limit [198] primarily causes RV-dilatation [156, 199, 203]),

     • ↓ RV-EF [21, 31, 133, 161],

     • ↓ RV contractility [22, 133, 160],

     •  ↑ Heart Rate (often the first attempt to compensate acute RV pressure and/or 
volume load [250])
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4.3.2  Special Pathophysiological Issues

4.3.2.1  Diastolic Ventricular Interaction
The global hemodynamic consequences of RV-D are dependent on the critical inter-
action between the two ventricles [251, 252]. Under physiological conditions we 
will find similar end-diastolic volumes in RV and LV [31, 253]. The heart chambers 
are enclosed by the pericardium and share the interventricular septum and, as such, 
ventricular interactions occur [171, 254, 255].

“Diastolic ventricular interaction (DVI) refers to competition for space 
within the non-distensible pericardial sack when RV dilates” [135]. Changes 
(particularly sudden changes [168, 171, 254, 256]) in the end-diastolic volume 
(and intraventricular pressure) of one ventricle will directly influence the vol-
ume and intraventricular pressure and thus compliance [256] of the other ven-
tricle [168, 169, 254].

RV volume loading

PH

RV pressure loading

overcharged / compromised
systolic RV-function

further deteriorating systolic
RV function

RV- dilatation

inadequate homeometric adaption

ischemia

ischemia lurking

non-ischemic features

RV afterload

RVEDP

(    wall stress)
TI

series effect

DVIRV- output

LV – preload     ,

LV – SV

BP

systemic hypoperfusion

Shock

(LVEDV    )

 although LVEDP

LV-CO- -

Fig. 4.3 Overview of the pathophysiology of right heart decompensation and failure: the diagram 
summarizes the most relevant pathobiological and pathophysiological features and sequences of 
acute right heart failure. It is based on publications by Price [16], Schwartz [14], Naeije [3], Vonk- 
Noordergraaf [7], Teichman SCCM 34th congress 15–19th Jan 2005, and Kucher Acute Cardiac 
Care Meeting of the Esc Prague 23rd Oct 2006. TI tricuspid insufficiency, BP blood pressure, DVI 
diastolic ventricular interaction, PH pulmonary hypertension
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These diastolic interactions are mediated via the shared structures of the ventri-
cles, the interventricular septum and the pericardium with its constraining effects on 
ventricular filling through poor distensibility [159, 191, 192]. Thus, an increase in 
the cross-sectional area of one ventricle, i.e. due to volume loading or enlargement, 
necessarily reduces the area of the opposite ventricle (resulting in less filling vol-
ume), and may simultaneously affect the pericardial pressure (PP) [72, 159]. The 
total cardiac volume (filling) remains unchanged [159, 257]. Therefore the pericar-
dium plays a key role in the loading conditions [157, 258] and this is particularly 
seen in the acute situation.

The increase in RVEDV, which is accompanied by a rise in RVEDP and PP, 
shifts the interventricular septum towards the LV cavity. This occurs subject to the 
restrictions imposed by the acutely non distensible pericardium on the RV as the 
RV-cavity size increases [9, 196].

Furthermore, Kingma showed that in acute RV pressure or volume load 
(increased RV preload [7, 98]) the interventricular septum becomes flattened or 
even concave at end-diastole due to RV dilatation and raised RVEDP, diminish-
ing the trans-septal pressure gradient (trans-septal pressure gradi-
ent = LVEDP − RVEDP [259]) and pushing the septum towards the left ventricle 
[259]. Numerous publications confirm the change in the septum position in dif-
ferent conditions such as acute and chronic pulmonary hypertension [168, 184], 
congestive heart failure [72, 254] and mechanical ventilation [260]. The left-
ward shift of the septum and the constraining effects of the pericardium com-
press the LV with a resultant decrease in LV-size and in end- diastolic LV-filling 
(reduced LVEDV) [9, 196, 261], producing a reduction in LV-SV [262, 263]. 
Furthermore, the LV diastolic properties are affected as well, and the reduction 
in LV compliance in so far contributes to the compromised LV-filling and, hence, 
the reduction in LV-SV [9, 196, 199, 264]: This is due to the flattening of the 
septum as RV dilates and as the RVEDP rises, subsequently affecting LV com-
pliance [9, 197, 199], and thus resulting in altered LV diastolic function, dia-
stolic dysfunction,  with abnormal LV relaxation and reduced LV compliance [9, 
196, 197, 199].

RV-afterload RVEDD/RVEDV LVEDD/LVEDV LV-SV

[23, 199, 265 - 267]

LV-compliance [9, 158, 199, 200, 202] LV-SV

 

Remember, systolic interactions between the two ventricles basically refer to the 
LV contribution to RV performance [14, 143–146], as described above.

4.3.2.2  The Role of the Pericardium in Diastolic-Ventricular 
Interaction

The constraining effect of the pericardium not only limits the LV-filling but also 
the dilatation and filling of the RV: Under normal conditions RVEDP and PP are 
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low, with the natural pericardium contributing by 30–40% to the total RV end-
diastolic filling pressure [268]. But in cases of raised intra-thoracic pressures 
[10, 42–44, 103, 153, 154] and/or (otherwise) altered pulmonary hemodynamics 
[9, 30, 156, 159, 198, 257, 269, 270], features typically associated with changes 
in RV loading conditions [21, 120, 251, 252, 269, 271, 272], “external” pressure 
is exerted on the heart [46, 273–275], exhibiting a noticeable constraining effect 
by the pericardium particularly on the thin walled RV [168, 184]. Both RVEDP 
and LVEDP will rise, but the rise affects the RVEDP more than the LVEDP 
(↑ RVEDP > ↑ LVEDP) [46, 168, 184]. In regard to DVI, changes in filling pres-
sure are more pronounced in the RV than in the LV and thus volume loading 
would increase RVEDP more than LVEDP, whilst for unloading the fall in 
RVEDP exceeds the fall in LVEDP [72, 168, 254, 271]. Right-sided HF always 
implies an increased PP [276] and thus constraint should always be considered in 
case  elevated PPs are commonly  present.

Ventricular interaction due to pericardial constraint is diminished as long as 
the PP is <5 mm Hg [277]. In the thin walled RV, if RVEDP ≥ 4 mm Hg, PP will 
increase in a parallel fashion [278]. A PP exceeding 9–10 mm Hg will exert 
substantial constraint on ventricular filling [273, 278]. When LVEDP exceeds 
10–15 mm Hg, the LVEDP-LVEDV relation becomes much steeper and the 
pericardium limits further increases in LV end-diastolic volume [279, 280].

As discussed in Chap. 1, the CVP reflects the pericardial pressure [281, 282], and 
pericardial constraint accounts for 96% of the RA pressure, if CVP > 10 mm Hg 
[273]. The ability to maintain an adequate RV-SV by RV-dilatation is very limited. 
RV-SV decreases almost linearly with an abrupt increase in afterload as soon as 
pulmonary hypertension (mean PAP ≥ 25 mm Hg) occurs, despite all compensatory 
attempts (RV-dilatation) [283]. Very soon the constraint exerted by the pericardium 
will restrict the dilatation and further fluid administration in order to increase 
RVEDV and thus ensure a proper RV-SV is, if at all, only of marginal help. Contrary 
to previous belief, fluid administration will be harmful because any further dilation 
of the RV cannot correct the LV-filling deficit and may reduce LV-filling even more 
[66, 168, 169, 184, 284–286]. If RV-D occurs, no further fluid administration is 
advisable, volume loading will be harmful [287, 288] in the failing RV: In case of 
increased RV filling pressures above 10–15 mmHg, fluid loading should be avoided 
because volume application may worsen the hemodynamic situation by enhanced 
pericardial constraint including a further shift of the interventricular septum towards 
the left ventricle [7]. Conversely, volume unloading will be beneficial and allows for 
an increase in SV/CO [287, 288].

As such, the pericardium plays a relevant role in acute RV-F pathobiology [9, 
269].

Furthermore, compensated RV-D/RV-F quickly deteriorates (to end-stage) [9] 
through a vicious cycle of auto-aggravation which is unique to the RV [9].

4.3.2.3  Auto-aggravation
RV-dilatation (RVEDV ↑) and the alteration of the RV-geometry secondary to the 
increased RV-afterload or substantial volume loading leads to a tricuspid annulus 
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dilatation and functional tricuspid insufficiency (TR) [289–291] which is further 
aggravated by the increased RVEDP [9, 289]. The tricuspid regurgitation leads to 
congestion in the hepatic and renal vascular bed and to a fall in RV-SV [9, 289] 
which is, as per definition, RV-F. Less blood volume will be ejected into the pulmo-
nary vasculature due to the fact that the PA-pressure is higher than that on the venous 
side and, due to the TR, ejection into the low pressure conduit is easier. The reduced 
RV-SV implicates a further (additional to the reduction of LV filling secondary to 
the DVI effect) reduction in LV preload via the so called series effect [194, 292].

4.3.2.4  Series Effect
The two ventricles are coupled in a row (series), one after the other, and thus their 
output necessarily is equal over time [169, 193]. Therefore, a reduction in right 
ventricular output results in less blood (volume) being transported to the LV [194, 
292]. Less filling of the LV (less LV-pre-load) will result in a fall in LV-SV as per 
the Frank-Starling mechanism [262, 263]. ‘The performance of the RV determines 
LV-preload’ [193].

Due to systemic vasoconstriction the systemic arterial BP is usually maintained in 
the initial phase of acute RHF [293]; however, with a further, substantial decrease in 
LV preload causing considerable loss of LV-SV, a BP drop is inevitable [289, 294, 
295]. RV-F is often accompanied by hypotension [251, 296]. Kerbaul [22, 160] and 
Bellamy [297] showed that, unfortunately in this situation, we cannot expect an 
increase in contractility to maintain or increase the RV-SV.

The combination of autoaggravation and the series effect can be summarized 
below:

       Compensated RV-D with ↑ RVEDD/RVEDV and ↑ RVEDP (due to DVI)

                    ↓ Autoaggravation
               TR → ↓ RV-SV and thus RV-F

                    ↓ Series effect
               ↓ ↓ LVEDV (↓ ↓ LV-preload)

                    ↓
                   ↓ ↓ ↓ LV-SV

                    ↓
                  ↓ ↓ ↓ systemic BP

              [9, 30, 194, 251, 262, 263, 269, 272, 289, 292, 294–296]

4.3.2.5  Pulmonary Hypertension and Ischemia
An elevated PA-pressure puts the RV at risk of myocardial ischemia [33, 133, 298], 
with or without pre-existing coronary artery disease [299, 300] and RV-F may occur 
as a result of the ischemia [301]. RV-dilatation increases the likelihood that isch-
emia will develop because, at a certain point, a critical increase in wall tension and 
stress (secondary to RV enlargement) occurs, producing a significant mismatch 
between oxygen supply and demand [289].
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With an increase in RV-afterload, the isovolumetric contraction phase and ejec-
tion time are prolonged and an increase in RV myocardial oxygen consumption 
results [9, 161, 221]. An increased oxygen demand would normally be compen-
sated by a substantial increase in RCA-perfusion [221], but, in cases of low RCA 
perfusion, there is a risk that incipient RV myocardial ischaemia will further 
worsen the RV-function [221, 251, 284, 294]. As RV-F is often accompanied by 
hypotension, predominantly secondary to the reduction in LV-SV as described 
above, resulting in a marked reduction in myocardial perfusion [221, 296, 301, 
302] a worst case scenario may occur, the combination of PH and ischaemia [221, 
284, 294, 303].

However, recent study results fundamentally challenge the described role of 
ischemia in the context of PH and (acute) right heart failure, rather conceding isch-
emic cell destruction being the last and decisive step in the deleterious disease 
course only in special cases such as acute pulmonary embolism [304, 305]: The 
results are suggestive of myocardial stunning rather than true cardiomyocyte loss 
causing progressive contractile impairment [306]. Moreover, progressive contrac-
tile dysfunction may be even caused by non-ischemic issues as some authors sus-
pect [81, 307, 308]. Moreover, it is not at least the RV pressure overload itself which 
is suggested to down-regulate and thus to contribute to the progressive deterioration 
of RV contractility [81, 307, 309].

Hence, the development of an ischemic right ventricular myocardium [30, 33, 
284, 294, 301, 302] may be in some conditions, e.g. pulmonary embolism [304], the 
final step in the pathophysiological cascade of RV-F where life threatening heart 
failure will almost inevitably develop [30, 284, 294, 303].

Ischemia of the right ventricular myocardium occurs when RCA-perfusion 
pressure <25–30 mm Hg [301, 302]; in the case of PH, the RCA-perfusion pressure 
has to be >45 mm Hg in order to avoid ischemia [302] and, if a significant RCA 
stenosis is present, an even higher perfusion pressure is required [30, 236, 301].

4.3.2.6  The Interventricular Septum and the Apex
In critical situations such as acute RV pressure or volume load, and particularly 
when RV ischemia develops, the interventricular septum (IVS) ‘behaves’ as a func-
tional part of the RV [310, 311]. In case of acute RV pressure or volume load, the 
IVS moves during systole towards the RV in a ‘paradoxical’ fashion. This ‘para-
doxical’ septal movement is an active process of the interventricular septum at the 
end of systole allowing prolongation of the RV contraction phase, whilst the LV 
starts to relax [31], moving towards the RV-cavity and increasing the RV contractile 
force [31, 312]. The loss of the contractility of the septum under such conditions 
will markedly worsen the haemodynamic situation [251], but inotropic drugs in this 
situation may augment the RV systolic function by improving the contractility of 
the IVS [311, 313, 314].

Furthermore, the contraction of the apex of the heart contributes in cases of 
RV-D/RV-F to the net contractility of the right ventricle as well [311, 315].

Therefore if either the septum or apex fails, e.g., myocardial infarction, the 
decrease in LV contractility may result in RV-F [316].
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The functional behaviour described above is in accordance with the anatomy. 
The shared pericardium and septum, the mutually encircling epicardial fibres, and 
the attachment of the RV free wall to the anterior and posterior parts of the septum 
allow the apex and the septum to make a contribution to systolic RV function [15].

4.3.2.7  The Left Ventricle
As described, the left and right ventricles are inter-related. LV dysfunction/failure 
affects RV-function, leading to RV-D/RV-F in several ways. LV-dysfunction may 
increase the RV-afterload due to pulmonary congestion [15], and/or because of a 
reduced MAP, the RCA perfusion may decrease, leading to RV-ischaemia [317]. 
However, LV-dysfunction also exerts an influence on lung mechanics and gas 
exchange [318], with a reduction in lung volume and lung compliance [319, 320], 
consecutively potentially affecting RV pre- and/or afterload [321].

Conversely, RV pressure overload may affect LV properties such that pulmonary 
congestion/edema, indicating LV dysfunction, may arise in a primary normal LV 
[32].

4.3.2.8  Mechanical Ventilation
Mechanical (positive pressure) ventilation [33, 42–44, 322, 323] and the applica-
tion of PEEP [35–38, 47–50, 52, 324, 325] increase the intrathoracic pressure 
(pleural pressure). Artucio [326] and Brienza [327] demonstrated that the appli-
cation of PEEP and/or positive pressure ventilation may lead to a rise in transpul-
monary pressure and an increase in RV-outflow impedance [42–44]. Increasing 
tidal volumes raises intrathoracic pressure [42, 45] resulting in a marked eleva-
tion of the transpulmonary pressure with the potential risk to cause an acute cor 
pulmonale as found in a substantial number of patients [328]. Transpulmonary 
pressure directly correlates with RV-afterload [45] and since transpulmonary 
pressure rises in positive pressure ventilation and PEEP use, RV-outflow imped-
ance will increase [46, 320, 329], which may promote the development of RV-D.

RV-function may also be compromised via another mechanism:
With increasing pleural (intrathoracic) pressure, we find an impairment of 

LV- and RV-compliance: RV-compliance decreases markedly with only small 
increases in pleural pressure whilst the LV-compliance decreases a significant 
amount only with higher increases in pleural pressure [46, 51]. As a conse-
quence, the steep rise in RVEDP associated with only very small increases in 
RV end-diastolic filling [46] is accompanied by a parallel rise in PP with the 
potential to cause DVI (see Sect. 1.8 of Chap. 1 and DVI of this Chapter).

Pleural pressure is directly transmitted to the pericardial space [330] and so an 
increase in pleural pressure will increase the PP. Therefore, the normally low 
RVEDP and PP will rise markedly in mechanical ventilation, pneumonia, ARDS, 
etc. and so will contribute to an ↑ in the pressure surrounding the heart [331]. Any 
rise in pleural pressure will, via a concomitant rise in PP, limit the distending 
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capacity of the cardiac cavities and will exert a constraining effect on both RV and, 
to a lesser extent, on the LV [51].

Furthermore, with mechanical ventilation the venous return is compromised, 
reducing the RV-filling and function and will hence reduce the RV-SV [332].

However, positive pressure ventilation and PEEP are not always detrimental. 
There is evidence that relatively low PEEP levels (≤8–10 cm H2O) have beneficial 
effects on the pulmonary haemodynamics and do not increase the RV-afterload sig-
nificantly, even though the pleural pressure and thus the transpulmonary pressure 
are elevated [52]. Schmitt [333] found that the use of a low PEEP improved the 
blood flow through the pulmonary vessel bed, reducing the RV-afterload and the 
risk of RV-D. The reasons behind these beneficial effects are:

• Air (gas) trapping is often present in respiratory failure due to chest infection or 
ARDS and increases the pleural pressure, the trans-pulmonary pressure, and the 
pulmonary vascular resistance. Gas trapping is relieved by (low) PEEP, hence 
reducing transpulmonary pressure and improving blood flow through a reduction 
in pulmonary vascular resistance [51, 334];

• (Low) PEEP is beneficial in diseased and stiff lungs/lung compartments as it 
improves blood flow in the pulmonary vascular bed [51, 333–335]. Interestingly 
the PEEP-levels mentioned above, which are beneficial for pulmonary haemody-
namics, correspond to those called ‘best PEEP’ described by Sutter in 1975 
[335]. He found PEEP levels around 8 ± 4 cm H2O resulted in optimal oxygen-
ation transport in ARDS patients. So, these PEEP levels seem to be beneficial for 
both the treatment of the respiratory failure and the maintenance of a sufficient 
cardiac function. There is no doubt, however, that PEEP levels >10–12 cm H2O 
exert a significant RV pressure load (increased RV-afterload) and cause a left-
ward shift of the interventricular septum [51];

• PEEP will decrease LV-afterload which will, in the situation of LV-failure 
through mechanisms described previously, have a beneficial effect on RV func-
tion [336–338]:

PEEP intrathoracic pressure transmural LVEDP

wall stress

® ¯ ®↑ ®
¯LV ®® ¯LV afterload

 [51, 323, 339]

However, it has to be stressed that, in case of pre-existing and/or manifest RV-D/
RV-F, PEEP was found to increase RV-afterload in every case and may worsen the 
hemodynamic situation by its net effect [40].

Meanwhile, a balanced lung- and “heart” protective approach has been proposed, 
essentially limiting the plateau pressure within the airways to <27 cm H2O, best 
complying with the necessary requirements [81, 340–343]. If needed, mechanical 
ventilation with low tidal volumes (6(−8) mL/kg predicted body weight [344–347]) 
and relatively low PEEP (8–12 cm H2O) is appropriate in patients with pulmonary 
hypertension [21, 348].
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4.4  Diagnostic Aspects

4.4.1  Clinical Features

Cardinal clinical manifestations of RHF are exercise limitation and fluid 
retention [7]. Exercise limitation is the earliest sign of RHF and is a strong 
predictor of survival [349–351]. Exercise limitation is related to a decrease in 
flow reserve during physical stress [352–354]. Further, a reduction in periph-
eral blood flow can increase lactate production, contributing to muscle fatigue. 
Supraventricular tachycardia may contribute as well [355]. Syncope is a less 
common symptom often indicating severe limitation in flow reserve. RV fail-
ure may further lead to chronic kidney disease and hyopnatremia [356]. 
Congestive hepathopathy is often observed in patients with RHF and PAH, 
cirrhosis is a late complication.

Hemodynamically, acute RV decompensation is characterized by enlarged RV 
size with enhanced end-diastolic filling volume attended by an increase in RVEDP 
(acute increases in filling volumes yielded higher filling pressures [157]), RV dia-
stolic dysfunction [156, 185], and diminished and falling CO [185]. Some patients 
with severe and progressive RV-F may even expire normal pulmonary pressures due 
to marked reduction in CO [1].Thus, the interpretation of PAP has to consider CO 
and severity of heart failure.

Patients presenting with acute decompensations of chronic PH can often clini-
cally be barely distinguished from those with acute RV-F attributed to acute PE, as 
clinical presentations are very similar [1].

As such, although there are a lack of specific clinical signs in acute right heart 
dysfunction or failure [357] but, nevertheless, the following features are suggestive 
of acute RHF and may be present [9]:

• Neck vein distension • Hepato-/hepato-splenomegaly

• Positive hepato-jugular reflex • Abdominal discomfort

• Renal impairment with oligo-anuria • Hypotension

• Tachypnoea is present in up to 80% [358] • Peripheral oedemaa

• Atrial and ventricular arrhythimas [1, 93]

•  Evated lactate, disturbed coagulation and raised liver enzymes may by an expression of 
liver dysfunction due to hepatic congestion [357]

aPeripheral oedema is not unique to RV-D/RV-F, it is secondary to hyperaldosteronism induced by hyper-
capnic acidosis, hypoxaemia and renal insufficiency [100, 359], and chronic venous insufficiency

The clinical presentation is furthermore markedly influenced and determined by 
the underlying source precipitating RV-F and existing comorbidities [83, 144].

To conclude, acknowledged clinical cardinal signs of RV-F include [1]

 (a) Fluid retention potentially causing peripheral edema, ascites and anasarca,
 (b) Limited systolic reserve or low cardiac output leading to and provoking exer-

cise intolerance and fatigue,
 (c) Atrial and ventricular arrhythmias.
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4.4.2  Serum Biomarkers

BNP has a strong, positive correlation to PVR and RVEDP in patients suffering 
from primary pulmonary hypertension [360, 361]. BNP rises gradually with increas-
ing severity of RV-D/RV-F [306, 362, 363]. However, the thresholds of when to 
diagnose RV-D (RV-F) are still in discussion and vary from between >50 pg/mL 
[364] and >100 pg/mL [365]. Furthermore, elevated BNP levels may be present in 
chronic RV-D and chronic PH [208, 361, 366].

Troponin I > 0.1 μg/L (pathologically elevated) was found only in severe RV-D 
caused by pulmonary embolism [364]. Its occurrence is associated with early mor-
tality [367, 368]. In the case of pulmonary embolism, patients with a negative serum 
troponin and normal ECG are at the lowest risk [369].

Both, Troponin and BNP have excellent negative predictive value and tend to 
exclude a complicated hospital stay when negative on admission [370, 371].

However, as both cardiac markers are not specific for right ventricular issues at all, 
the interpretation of their results can only be done in the clinical context they occur [2].

4.4.3  Electrocardiography

ECG ST-elevation (>0.1 mV) in VR3 and/or VR4 in patients with inferior 
ST-elevation acute myocardial infarction is highly specific for RV-ischaemia due to 
a proximal RCA-lesion (sensitivity 83%, specificity 77%) [64, 74]. Involvement of 
the RV, as a complication of acute inferior myocardial infarction (ST-elevation in II, 
III, aVF [372]) is to be expected in approximately 50% [70].

4.4.4  Echocardiography

Direct pressure and volume measurements can be made using a Swan-Ganz- 
conductance catheter [373]. Although right heart catheterisation has previously 
been the method of choice, echocardiography, due to favourable comparisons to the 
catheter results and as the less invasive method, is now widely used [374]. An echo-
cardiographic assessment is essential in establishing the diagnosis of RV-D/RV-F [2, 
31, 365, 375–378]. Vieillard-Baron [379] requires only the finding of RV-dilatation 
with a leftward shift of the septum in order to make a diagnosis of RV-D; however, 
there are many other echocardiographic features of RV-D/RV-F which can be used 
to confirm the diagnosis:

• The RV is clearly dilated when the RV size ≥ LV size [358, 375, 376, 380]. The 
most common criteria with which to diagnose RV-dilatation is the RV/LV-ratio 
(assessed in the four-chamber view), but there is disagreement about the thresh-
olds indicative of significant RV-dilatation, ranging from a ratio of 0.6–1.0 [381–
383]; recent publications definitely assume the RV being dilated if RV basic 
diameter, measured in the 4-chamber-view at the RV base, exceeds 41 mm, or if 
the ratio RVEDD/LVEDD > 1.0 [2, 384].
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• The IVS becomes flat and bows towards the left ventricle in end-systole in case 
of predominantly pressure (over) load, thus, the right ventricle becomes circular 
at end-systole while the LV becomes eccentric in shape [31, 375, 376]. In end- 
diastole a countermotion is found [385]. This dyskinetic/paradoxical IVS move-
ment, which is an effect of ventricular interdependence [2, 385], is indicative for 
RV pressure overload [2, 365, 384, 385]. Paradoxical septal movements may 
generally be a sign of an acute increase in RV-afterload [304]. In case of RV 
volume overload, a constant flattening of the IVS is seen leading to the so-called 
D shaped LV configuration [384, 385].

• The tricuspid annular plane systolic excursion (TAPSE) is an easy to use and 
very valuable parameter in assessing right heart function [305, 386]. It is merely 
the AV-displacement of the tricuspid valve.

TAPSE shows a good inverse correlation to the pulmonary vascular resistance 
(TAPSE ~ 1/PVR) representing pulmonary hypertension in cases of elevated resis-
tance [305]. TAPSE is afterload dependent and pathological values indicate an ele-
vated RV-afterload [305]. It is an excellent measure of the systolic RV-function 
[387–389] as it has a direct correlation with RV-EF (TAPSE ~ RV-EF) [307, 309, 
386, 388]. TAPSE is a highly sensitive and specific parameter of depressed RV-SV 
[390] as RV-SV indirectly correlates with PVR [391].

Additionally, a good correlation is established between the severity of the 
tricuspid regurgitation (TR) and TAPSE (TAPSE ~ 1/TR) [305]. A normal 
TAPSE value is >22 mm [305, 392, 393], while 15–19 mm excursion indicates 
a moderate depression of TAPSE [305] and when < 15 mm the outcome is very 
poor [305]. However, TAPSE < 17 mm indicates a RV-LV disproportion reflect-
ing the series and interdependent (DVI) effects of the failing RV on the 
LV-filling [2, 170];

• Hypokinesis of the free RV wall [365];
• A TR-jet velocity of >2.8 m/s is suggestive of pulmonary hypertension [2];
• Inferior vena-cava diameter (sub-costal view) > 21 mm during maximal) expira-

tion (in spontaneously breathing patients) provides evidence for pathology [2]; if 
the amount of collapse is <50%, a pathologically high pressure is present, indi-
cating pressure and/or volume (over)load [2, 394]. In mechanically ventilated 
patients the venous flow to the right heart is markedly reduced during inspiration 
secondary to the positive intrathoracic pressure reducing the amount of vena 
cava and hepatic vein collapse [395];

• Furthermore, the newer Doppler-tissue imaging derived parameters such as tri-
cuspid annulus S′ velocity or longitudinal strain of the free RV wall may be used 
for assessment [2, 384]

• The pulmonary vascular resistance (PVR) may be calculated using echocardio-
graphic parameters. PVR is calculated by the ratio of transpulmonary pressure 
(Δp) to transpulmonary flow (Qp):

PVR = Δp/Qp;
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 – TR (maximal tricuspid regurgitant velocity) and TVIRVOT (time-velocity 
interval of the right ventricular outflow tract) can be used as a correlate to Δp 
(TR) and Qp (TVIRVOT) [396, 397]:

 – PVR = TR/TVIRVOT.
 – Due to the Bernoulli equation, TR will increase as systolic PA pressure 

increases [396, 398, 399];
 – Abbas [308] found a very good correlation between PVRcath (measured inva-

sively) and TR/TVIRVOT with a correlation coefficient r = 0.93, CI 
0.87–0.96:

 – TR/TVIRVOT < 0.2 is most likely to be normal with PVR < 150 dyn × s × cm 
(80 dyn × s × cm−5 equals one Wood unit [400]):

• The combination of a small and well contracting LV and a big, dilated and 
poorly contracting RV is pathognomonic for ‘acute’ right heart failure 
[401];

• Interestingly, McConnell [304] has described severe hypokinesia of the mid free 
wall of the RV, but with a normally contracting apex, as pathognomonic of pul-
monary embolism.

Features indicating possible de-compensation of RV-F are [15]:

• Rising RVEDP;
• Worsening diastolic RV-dysfunction [185] (becoming obvious by an inadequate 

increase in RVEDP);
• ↓ LV-SV and markedly LV diastolic dysfunction (induced by an ↑ in RV-size and 

↑ RVEDP [197, 198]).

Special clinical settings and their echocradiographic correlates [2]:

 (a) Acute decompensation of chronic PH

  • RV hypertrophy   •  RV dilatation, spherical 
shape

  •  Paradoxical septal movement, systolic/diastolic 
septal shift

  • RA enlargement

  • Peak systolic velocity of tricuspid regurgitation >3.5 m/s

(b) RV-AMI

  • RV enlargement   •  Global and/or regional hypokinesis

  • Abnormal septal motion   • TAPSE ↓
  • Congested (dilated) V. cava (even if RV-pressures are normal or low)
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(c) Acute pulmonary embolism

  • RVEDD/LVEDD ratio >1 (>0.9 [402])   • McConnell’s sign

  •  Tricuspid regurgitation velocities of 
2.8–3.5 m/s

  •  Thrombi in the central pulm 
vessels

  • Systolic/diastolic spetal shifts: paradoxical septal movement; LV D-shaping

4.4.5  Invasive Hemodynamic Assessments

Invasive hemodynamic assessments (and monitoring) are recommended in case the 
diagnosis is unclear or in therapy-resistant patients [2].

At rest, CVP normally equals 0 mmHg [403], and the CVP/RA-P are only elevated 
in disease states [404, 405]. Elevated (>8–10 mmHg) right atrial pressure/CVP is 
highly suggestive for acute right heart failure in a typical clinical setting [93]. A 
CVP ≥ 10–12 mmHg has already to be considered high, and will exert considerable 
constraint on LV filling [273, 278]. Thus, RA-P/CVP pressures ≥9–10 mmHg are 
always pathological and indicate that fluid application is highly unlikely to be suc-
cessful [406] and that DVI will relevantly impact left ventricular filling, RV and LV 
filling pressures and the overall hemodynamic situation [273, 278].

4.5  Therapy

It has been emphasized that RV-afterload (PH) and altered myocardial perfusion/
ischaemia are decisive factors in precipitating RV-F and the ability to therapeuti-
cally ameliorate these factors will determine the prognosis [1, 2, 27–30, 33, 135, 
251, 284, 294, 301]. Thus, reduction of the elevated RV-afterload and avoidance or 
reversal of RCA-hypoperfusion are essential issues which therapy must address [1, 
2, 133, 251, 407–410]:

• Critical reduction of the increased RV-afterload
• Avoidance/treatment of right ventricular myocardial hypoperfusion/ischaemia

Acute RV-F/acute exacerbation of RV-D/RV-F are reversible if the cause of the 
increased afterload can be treated [9, 33].
Furthermore, the hemodynamic consequences of RV-D/RV-F are the result of a

• Critical interaction between both ventricles [72, 167, 168, 251, 252, 254] which 
has to be addressed thoroughly.

Other crucial targets are:

• Treatment of underlying disease [1, 2, 9, 33]
• Improvement of RV contractility to overcome critical acute situations [143, 173, 

174, 179, 410, 411]
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4.5.1  Specific Measures (Overview by [1–4, 9, 16, 20, 30, 33, 93, 98, 
106, 107])

• Thrombolytic therapy/PCI in case of acute coronary syndrome [412–417]
• Thrombolytic therapy/catheter fractioning or embolectomy in pulmonary embo-

lism [106, 107, 418–420]
• Specific treatment of broncho-pulmonary diseases
• Treatment of systemic sepsis
• ARDS: Therapy of underlying disease
• Correction of valvular heart disease, and left heart failure

In acute myocardial infarction with involvement of the RV early reperfusion by 
primary PCI is essential [412–417]; read more about this issue in Chap. 3, cardio-
genic shock.

Right heart dysfunction/failure and pulmonary embolism:
RV-F is the most common cause of death within 30 days following PE [110, 421] 

and RV dys-function is known to cause an increased mortality [110, 422, 423].
50% of all patients with pulmonary embolism present as clinically stable, with-

out hypotension or circulatory failure, although suffering from RV-D [110, 365, 
424]. They are at high risk of haemodynamic instability or even death during the 
first days after admission [425, 426].

The Shock Index is a sensitive parameter which can easily be used in daily practice 
in order to assess the potential outcome of patients with pulmonary embolism [289].

 Shock Index mortality= ³ ® + +HR sBP/ 1  

Thus, patients with a positive (≥1) shock index should be treated by thromboly-
sis (Evidence level A, Class I) [427–431].

Although not all studies give convincing evidence about the predictive and prognos-
tic value of RV dysfunction [422, 423], Kucher [424] established that RV dysfunction is 
an independent prognostic predictor by analysing the data of the famous ICOPER  
study [110]. Patients with a systoli blood pressure ≥90 mm Hg (and thus classified as 
being hemodynamically stable/with preserved BP) but with RV-dysfunction had almost 
double the risk of death (16.3%) in comparison to those without RV-dysfunction (9.4%) 
over the first 30 days. Thus, although initially haemodynamically stable, all patients 
with RV dysfunction are at a high risk of death [424]. These results are consistent with 
those reported by Figulla [256], who found a 5–8% mortality rate in patients with nor-
mal BP but with RV dysfunction, while the prognosis of all patients without RV dys-
function was excellent (mortality rate 0–1%). It should be noted that the level of blood 
pressure taken as normal (sBP of >90 mm Hg versus >120 mm Hg respectively) was 
different in both studies and that the blood pressure on admission has a substantial 
impact on the patient’s prognosis [422] (see Table 4.2).

Not all studies have concluded that thrombolytic therapy reduces the mortality 
significantly when administered to clinically stable patients with RV-D but preserved 
BP [422, 423]. Nevertheless, the haemodynamic situation clearly improved and 
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stabilised immediately after the patients received thrombolytic agents [110, 423, 426, 
432–434]. Furthermore, the first prospective study assessing the long term outcome 
after first-time ‘submassive’ pulmonary embolism in previously healthy patients 
treated by heparin and warfarin found 41% of the patients either with persistent or 
subsequently (weeks to months after PE) developed RV abnormalities or functional 
limitations [435]. The authors suggest that first-time pulmonary embolism is able to 
cause persistent right heart damage or to initiate a process which damages the RV over 
time. The main pathological mechanisms involved appear initially to be ischaemia of 
the RV subendocardium followed by an inflammatory response [303, 436, 437].

The results by Kucher [424], Figulla [422] and Woods [289] suggest that patients 
in shock and those with hypotension need thrombolytic treatment, but it would also 
seem more than wise—based on the current evidence—to consider patients with 
established proof of RV-dysfunction on an individual basis for thrombolysis as well.

More recent studies and trials still demonstrate roughly 7% hospital and 32% overall 
mortality in hemodynamically unstable patients with PE [438]. Even RV-D and ele-
vated cardiac biomarkers are indicative for increased risk of in-hospital death and 
clinical deterioration [439]. All studies and metanalysis substantially support the 
application of thrombolytic therapy in hemodynamic unstable patients with massive 
PE (defined as hypotensive patients or patients presenting with syncope, cardiogenic 
shock, cardiac arrest, or respiratory failure due to acute PE [215, 420, 440]). On the 
contrary, hemodynamically stable patients with submassive PE (defined as patients 
with acute PE being normotensive but with signs of RV dysfunction [441]), there still 
is an ongoing controversial discussion whether a clinically significant benefit can be 
achieved by thrombolysis [440–442], even though those patients also suffer from an 
increased risk of early mortality and adverse outcome [441]: The largest study on 
systemic thrombolytic therapy in patients with submassive PE in fact revealed that 
thrombolysis in that condition is preventive for circulatory decompensations, but at 
the expense of an increased ratio of intracranial bleedings [440]. Marti et al. found in 
their metanalytic study a reduced overall mortality and PE recurrence rate, and fur-
ther a reduction of PE associated death, if thrombolytic therapy was given to patients 
with acute PE. However, in hemodynamically stable patients the benefit was statisti-
cally insignificant. Moreover, thrombolysis in PE was in general associated with a 
considerable risk of major intracranial bleedings [420], and the mortality reduction 
found resulting from thrombolysis is basically offset by the risk of fatal, particularly 
intracranial bleedings in hemodynamically stable patients with submassive PE [420]. 
Thus in hemodynamically stable patients with submassive PE, initiation of throm-
bolysis has furthermore to be based on thoroughly individual evaluation.

Table 4.2 Impact of blood pressure on patient’s prognosis

Clinical scenario Mortality during hospital stay (%)

Normal BP, without RV-dysfunction 0–1

Normal BP, with RV-dysfunction 5–8

Hypotension, without signs of shock 15

Hypotension and shock Up to 35
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4.5.2  Adjunctive Therapy [2, 9, 33, 358, 443]

4.5.2.1  Fluid Management and Optimization of Preload, Diuretics
The recommendations regarding fluid management in acute RV-D and RV-F 
have completely changed in recent years following a large amount of discussion 
[9, 193, 391, 443, 444]. RV filling above the physiological limit is accompanied 
by RV-dilatation [445].Thus, although some patients with RV-failure may 
respond to volume loading, fluid administration in acute right heart failure bears 
a high risk of further RV dilation/RV-chamber “overdistension” with its delete-
rious effects of increased RV wall stress, ensuing or worsening DVI, and reduced 
RV systolic power, diminished systolic LV support, the onset of tricuspid regur-
gitation or worsened TR, reduced LV filling and finally compromised CO and 
ischemia [446]. On its own, fluid administration in case of acute or acutely 
exacerbated right heart failure should basically be avoided because a beneficial 
effect of volume expansion can generally not be expected, even if there is a low 
LV-preload [193, 288, 290]. This is in particular the case if CVP exceeds 
10–12 mmHg [406, 446]. Volume administration in this situation will not 
increase RV-SV and hence CO; in a depressed RV or in manifest RV-F only 
volume unloading will increase CO [287, 288]. Therefore, in the vast majority 
of patients suffering from acute RV-D/RV-F, volume loading has no benefit at all 
[9, 72, 168, 169, 193, 290, 391, 444].

On the contrary, diuretics are often the therapy of choice, since RV failure is usu-
ally associated with or even caused by RV volume overload, and diuretics may be 
safely applied in patients with venous congestion as long as the arterial blood pres-
sures are maintained [2].

Diuretics are indicated in volume overloaded patients who have a dilated RV 
with leftward shifted septum and DVI following initial stabilization (maintenance 
of appropriate BP) of the circulation [348, 447]. Diuretics may induce metabolic 
alkalosis and thus aggravate hypoventilation and hypercapnia and, as such, should 
be used judiciously [448]. Moderate peripheral oedema should be tolerated in com-
pensated chronic states [449, 450].

However, there are some exceptions to this rule. In the (few) cases of RV-F with 
normal PVR volume loading may be beneficial and increase preload, leading to an 
increase in RV-SV and LV-SV [444]. A well monitored (by CVP) and cautious vol-
ume loading may be further appropriate in case of systemic hypotension in the pres-
ence of normal right-sided filling pressures [2, 451–455]. Moreover, probably also 
patients suffering from acute myocardial infarction with significant involvement of 
the right ventricle are the group who will benefit most from controlled and balanced 
volume loading [251].

Ideally in daily practice, an echocardiogram to clarify the diagnosis, to assess the 
hemodynamic situation, and to guide therapy should be performed as soon as RV-D/
RV-F and/or biventricular failure are suspected. However, as an emergency measure 
in shock or in haemodynamic instability [451–453, 456], as long as no clinical signs 
of fluid overload are present, a careful and well monitored fluid challenge is 
acknowledged to be always appropriate [451–455].
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4.5.2.2  Vasopressors: Treatment and Avoidance of Ischaemia
Vasopressors directly increase the systemic blood pressure and thus improve the 
perfusion pressure of the RCA [301, 457–460]. Ghignone [461] and others [212] 
were first to establish that vasopressors may be the critical element in the treatment 
of acute right heart failure, as the administration of vasopressor drugs can break the 
pathological vicious cycle and avoid the manifestation of RV myocardial ischaemia 
[30, 212, 284, 294, 461].

Agents that increase the aortic pressure are able to reverse RV ischaemia and 
actually improve RV function. Vlahakes [301] demonstrated that an increase in 
RCA coronary perfusion pressure will directly increase the net perfusion of the 
myocardium, certainly for the right ventricle [301, 462] and probably for the LV 
myocardium as well [462]. As mentioned in Chap. 2, noradrenaline is the vasopres-
sor of choice, as it is in hypotensive, life-threatening situations where vasopressor 
administration is essential [410, 463–468], not only restoring arterial pressure but 
improving RV-contractility as well [251].

For practical purposes, the coronary perfusion pressure (CPP) is determined for 
the left ventricle by the eq. [469]:

 CPP = diastolic blood pressure LVEDP–  

The right ventricle under physiological conditions is perfused continuously 
throughout systole and diastole. In PH the CPP depends on the difference between 
diastolic blood pressure and RVEDP [357]:

 CPP = diastolic blood pressure RVEDP or– ,  

 CPP = diastolic blood pressure CVP–  

Ischaemia is known to occur in healthy persons if the CCP in the RCA is as low 
as ≤25–30 mm Hg [301, 302]. In PH, a CCP > 45 mm Hg is necessary to avoid isch-
aemia [302], but generally a CPP > 50 mm Hg is essential in order to provide basic 
perfusion of the myocardium [470], and coronary autoregulation functions from 
approximately 60 mm Hg to 140 mm Hg MAP [471, 472]. This means that in PH, 
and if the CVP > 10 mm Hg, a diastolic blood pressure >55–60 mm Hg is required 
and, in order to maintain coronary artery autoregulation, a MAP > 65–70 mmHg is 
essential. However, a MAP ≥75 mmHg in case of AMI in order to more or less guar-
antee a sufficient perfusion of the left ventricular myocardium and hence potentially 
preserved LV contractile performance, the latter being critical for RV systolic perfor-
mance [14] is typically recommended [471–473].

4.5.2.3  Critical RV-Afterload Reduction
The reduction of the pulmonary vascular resistance (RV-afterload) is, alongside 
avoidance and reversal of ischaemia, the central aim of therapy in patients suffer-
ing from pulmonary hyper-tension and RV-dysfunction/failure [133, 135, 251, 
407, 409, 410]. A reduction in RV-afterload will reduce RV O2 consumption and 
will reverse the pathophysiological processes described, breaking the vicious 
cycle [9].
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It is the norm to treat the underlying disease and to attenuate pulmonary hyper-
tension in patients suffering from COPD, in order to reduce airway resistance and 
vasoconstriction of pulmonary vessels (as well as v-a-shunts) [474–476]. Therefore 
a combination of β-agonist and anticholinergic agents (bronchodilator therapy), 
preferably in nebulized form, is strongly recommended [474–476]. In patients with 
COPD, methylxanthines (e.g. aminophylline) are effective in reducing the pulmo-
nary vascular resistance, increasing RV-EF and RV-contractility [477, 478]. 
However, they are not recommended to be routinely added to the bronchodilator 
therapy [475, 476, 479, 480] (and some regard them obsolete [391]) due to the fre-
quent and often severe side-effects, potentially causing deterioration of the overall 
cardiac function, malignant rhythm disturbances, worsening a-v-shunting (produc-
ing a further reduction in arterial oxygen content) and tachycardia increasing O2 
consumption, risking ventricular ischaemia, and exacerbating the final step in the 
vicious cycle [479, 480]. They should only be considered in patients with an exac-
erbation of COPD [479, 480] who are RV-F resistant to all other therapeutic mea-
sures and where it seems reasonable to continue in patients who were taking them 
prior to the exacerbation [475].

In severe asthma, magnesium has a synergistic beneficial effect with β-agonists 
and should be considered [481].

Symptomatic Treatment of PH: Vasodilators
Systemic vasodilators are highly unselective and, unfortunately, will worsen the 
ventilation-perfusion mismatch resulting in reduced arterial oxygen saturation, as 
well as reducing RCA perfusion (by lowering the systemic blood pressure), result-
ing in or worsening RV myocardial ischaemia [482, 483]. Thus, although vasodila-
tors such as GTN or nitroprusside may reduce the resistance of the pulmonary 
vasculature [9], they should normally only play an adjunctive role in therapy, but 
may be considered in normotensive patients who are fluid overloaded [30].

Inhaled pulmonary vasodilators exert highly specific and local effects: 
Prostaglandins (e.g. Iloprost, a synthetic prostaglandin I2) and their analogues such 
as nitric oxide (NO) show vasodilating effects selectively on the pulmonary vascu-
lature [484–487], thus NO and Iloprost are very effective in reducing PVR [488]. 
Nebulized prostaglandins exert beneficial effects in patients with primarily pulmo-
nary hypertension (PPH/PAH) and acute right heart failure [489] as well as other 
situations with secondary pulmonary hypertension and acute RV-failure [490–492]. 
No significant toxic effects of prostaglandins are known and they lower the pulmo-
nary arterial pressure more effectively than NO [493, 494]. Unfortunately a con-
comitant reduction of mortality rate when administered in acute cases has not yet 
been established [492]. In desperate, life-threatening situations prostaglandins 
should be considered, although they are currently not licensed in Europe, due to 
cases of acute RV-failure due to secondary pulmonary hypertension [495].

Inhalation of NO will only reach vasodilatation in ventilated areas. The reflex 
hypoxic pulmonary vasoconstriction (Euler-Liljestrand reflex) will act and thus an 
increase in v-a shunt volume will be avoided [495, 496]. Administration of NO 
improves RV-pump function and reduces RV-dilatation in patients with COPD and 
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ARDS [82]. Importantly however, NO exhibits a rebound phenomenon after stop-
ping its administration [497]. Although currently only licensed for use in primary 
pulmonary hypertension (PPH) of the newborn, it may be considered in cases of 
severe acute RV failure refractory to conservative treatment strategies [31]. 
Exhibiting less side effects prostacyclin is used in many centers as first-line selec-
tive pulmonary vasodilator in acute right heart failure conditions [446].

Sildenafil (a specific phosphodiesterase-5 inhibitor, PDE-5-inhibitor) exerts beneficial 
acute and chronic haemodynamic effects by lowering the pulmonary pressure in patients 
with pulmonary hypertension [498–500]. It has been shown to reduce PA pressure and to 
increase CO alone, or in combination with nitric oxide in stable patients [501, 502]. The 
effect commences soon after administration, with peak haemodynamic effects occurring 
within 1 h and lasting 3–4 h. Sildenafil has the potential to lower systemic blood pressure, 
causing hypotension, and so caution is warranted in critically ill patients [348].

Although not investigated intensively in the acute setting, PDE-5-inhibitors may 
protect against rebound phenomena [503], and smaller studies revealed their benefi-
cial effects (besides the established role in the treatment of idiopathic pulmonary 
hypertension, PAH) also in acute and chronic LHD caused and associated heart 
failure conditions [504, 505].

4.5.2.4  Improvement of RV Systolic Function/Contractility
As previously described, the contractile power of the LV and in particular of 
the IVS [14, 145, 171, 310, 311] (and the apex [163, 167]) plays a direct and 
significant, in disease states decisive [14, 150, 506, 507], role in maintaining 
RV function. The LV substantially contributes to RV performance directly by 
improving the contraction of the LV and thus the IVS [314] and indirectly due 
to its ‘wringing’ action [508, 509]. Poor LV systolic function may result in 
RV-F [316].

The RV contractility may be compromised [22, 23, 133, 159, 251] by a number 
of different conditions, including AMI involving the right ventricle [66, 251] and 
PH from PE [23, 31, 168], sepsis [153, 288], acute respiratory failure [39–41], and, 
of course, by left heart diseases [27–29].

Thus, in life threatening situations and particularly where initial therapy is unsuc-
cessful [410, 451–455] the use of inotropic drugs must be considered.

Dobutamine has been (maybe, still is) the agent of choice [348, 407], since it is 
able to improve right (explicitly via promoted left) ventricular contractility [14, 96] 
and right ventricular compliance [510], which will subsequently reduce RVEDP 
and RV wall stress. “Low” dose dobutamine (up to 5 μg/kg/min [511]) reduces the 
pulmonary resistance and thus RV-afterload [512, 513]. However, it is important to 
keep in mind the possible harmful effects with potentially unfavourable outcomes 
of dobutamine as mentioned in Chap. 2 [514–517].

Levosimendan has recently been shown to be effective in the treatment of 
RV-F and seems to be superior to dobutamine [160]. Kerbaul showed a signifi-
cant reduction in PVR, in mean and diastolic PA-pressure, PCWP, as well as a 
significant improvement of SV, CI and RV/LV-SWI. The main beneficial 
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mechanism identified was an unloading of the RV through pulmonary vasodi-
latation [160, 411]. Morelli [411] investigated the treatment of RV-F with levo-
simendan in patients suffering from ARDS and also showed that levosimendan 
induces a substantial dilatation of the pulmonary vasculature [518, 519], reduc-
ing the pulmonary pressure and hence the RV-afterload. Levosimendan also 
appears to be able to improve RV contractility [518, 520, 521] (aside from 
improving LV contractility) without increasing the myocardial oxygen demand 
and without impairing myocardial relaxation [522, 523]. Furthermore, there 
are two other beneficial effects that may have contributed to the favourable 
outcomes seen in the studies by Kerbaul [160] and Morelli [411]. Levosimendan 
improves the ventriculo-arterial coupling of RV and the pulmonary artery. The 
Ea-pul/Ees-RV ratio of the RV to the pulmonary artery was normalised [160]. 
Levosimendan seems to be preferable also because it does not compromise (RV 
or LV) diastolic function, and in fact beneficial effects on relaxation have been 
found [524]. As such, by combining pulmonary vasodilatory and positive ino-
tropic effects, levosimendan is found to favourably address the RV-pulmonary 
arterial unit [3, 411, 446] thereby substantially improving RV function.

Milrinone, a phosphodiesterase 3 inhibitor (PDE-3-inhibitor) enhances contrac-
tility while simultaneously lowering pulmonary vascular tone. Some authors assign 
milrinone first-line status in patients suffering from elevated pulmonary afterload 
and consecutively RV-F due to groups II–V PH, as long as mean arterial pressure is 
preserved [446, 525, 526].

However, if inotropic support is necessary, levosimendan would appear to be the 
preferable drug in RV-F, but it is important to reiterate that, due to its vasodilative 
effects, normovolaemia [527] and a sufficient blood pressure to guarantee a proper 
RCA perfusion are prerequisites before commencing levosimendan administration. 
If necessary, a combination with noradrenaline will be required [527–529].

4.5.2.5  Intra-Aortic Balloon Pump
One of the main benefits of intra-aortic balloon counter pulsation is the increase in 
diastolic perfusion pressure and coronary blood flow [530–532] which plays a key 
role in the therapy of RV-F [212, 301, 408, 457, 461–463, 465, 533].

Jacobs [251] states that the IABP is known to be beneficial in the treatment of 
RV-F but, unfortunately, the IABP is underused in this issue and should be used 
more frequently in cases of RV-F [410].

4.5.2.6  Hypercapnia and Acidosis
Hypercapnia and acidosis always induce an increase in pulmonary vascular resis-
tance [534, 535] and thus affect the RV-function through an increase in RV-afterload 
[536, 537]:

Hypercapnia acidosis concomitant
              PA-p

/ ®↑ ↑PVR and
rressure RV-afterload®↑
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Respiratory balancing with the use of mild hyperventilation is an effective mea-
sure to protect the RV from high afterload [536, 538]. A reduction of pCO2 from 
50 mm Hg (6.66 kPa) to 30 mm Hg (4.0 kPa) will reduce the PVR and thus the 
RV-afterload from 700 dyn × s × cm−5 to 400 dyn × s × cm−5 [536].

4.5.2.7  Oxygen Therapy
Regardless of the underlying pathology, oxygen administration reduces pulmonary 
pressure and increases CO in patients with pulmonary hypertension [539]. It is 
widely accepted that alveolar and systemic arterial hypoxaemia contribute signifi-
cantly to vasoconstriction of the pulmonary vasculature, particularly in diseases 
such as COPD, ARDS, interstitial pulmonary diseases, pulmonary embolism and 
extensive pneumonia [37, 540] which result in an increased RV-afterload. Under 
conditions of systemic arterial hypoxaemia, oxygen administration will lead to 
vasodilatation of the pulmonary vessels, and as long as there is no manifest fixed 
pulmonary hypertension, a lower RV-afterload will significantly [75, 541] improve 
RV-function [75, 542]. Continuous application of oxygen is the only measure to 
have been shown to reduce mortality in this situation [75].

4.5.2.8  AV Sequential Stimulation
In order to optimise RV-filling (and RVEDP), maintaining or even improving 
RV-function, AV-synchronous stimulation is essential [310, 543, 544]. Therefore, it 
is pivotal to maintain or to restore sinus rhythm (cardioversion, Amiodarone, tem-
porary two-chamber pacemaker), as a normal (physiological) atrial function is 
essential to optimise RV filling [544].

Furthermore, persistent bradycardia will have a negative effect on both LV and 
RV filling and, as such, atropine or temporary pacing should be used to prevent this 
[310].

4.5.2.9  Mechanical Ventilation
Mechanical positive pressure ventilation contributes to an increase in RV-afterload 
[46, 326, 329, 545] due to an increase in transpulmonary pressures [33, 42–44, 322, 
323], potentially leading to a deterioration in RV-function [328, 484] (as described 
above). Mechanical positive pressure ventilation also increases the risk of DVI by 
raising the pleural and thus the pericardial pressure (PP) [331]. Therefore, intuba-
tion and ventilation with positive pressure support should be avoided in patients 
with RVD/RV-F, if possible [546]. If mechanical ventilation is essential, then the 
levels of the applied pressures need to be controlled. PEEP up to a certain level 
(~10 cm H2O), although causing an increase in transpulmonary pressure [35, 47–50, 
325] and thus a rise in RV-afterload [326, 327], may improve the blood flow through 
the pulmonary vasculature [51, 333–335], resulting in a net reduction of the 
RV-afterload [333], at least as long as RV-F is not manifest [40]. Hence, appropriate 
PEEP application may display, net beneficial effects, but has to be integrated into 
the overall ventilatory strategy: A balanced lung- and “heart” protective approach is 
essential, hence limiting plateau pressure within the airways to < 27 cm H2O has 
turned out to best comply with these requirements [81, 340, 342]. If needed, 
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mechanical ventilation with low tidal volumes (6(−8) mL/kg predicted body weight 
[344–347]) and relatively low PEEP (8–12 cm H2O) is appropriate in patients with 
pulmonary hypertension [21, 348]. However, Groeneveld [547] suggests that using 
high frequency oscillator ventilation avoids the problem of increasing afterload due 
to positive pressure.

4.5.2.10  Anticoagulation
In pulmonary hypertension, hypercoagulation in the pulmonary vasculature tree 
will always be present [548–550] and the development of micro-thrombi is highly 
likely [483]. Therefore, the use of heparin or LWMH, or oral anticoagulants in 
therapeutic dosage is indicated in general in pulmonary hypertension [549–553], 
and oral anticoagulants for long term treatment. The frequently present arrhythmias 
are a supplementary factor to anticoagulated [554].

4.5.2.11  Digoxin
Digoxin is potentially detrimental in two ways: inducing vasoconstriction in the 
pulmonary arterial system and altering venous return to the disadvantage of RV-SV 
[450], and therefore is not indicated in the treatment of RV-D/RV-F [555, 556].

4.6  Summary

(After-)loading the right ventricle will provoke immediate RV dilatation in case the 
homeometric adaption is deficient or even fails [1, 3, 107]. Particularly acute 
increases in RV afterload causing an acute afterload mismatch are predisposed to 
cause acute RV dysfunction or even failure [14, 27, 96, 135]. RV dilatation is 
accompanied by disproportionate increases in RVEDP [157, 159] and will substan-
tially affect LV—size (and hence LV filling) and function [195, 197–199], predomi-
nantly attributed to pericardial constraint and DVI [1, 14, 72, 135, 167, 169, 170, 
192], and series effects [193, 194]. Secondary, due to the affected LV systolic func-
tion, RV contractile performance (further) suffers [135, 145, 171].

RV dilatation and the attended, basically compensatory measures and reactions 
including neuro-hormonal and inflammatory-endothelial activation [1, 83, 91, 205, 
207, 211] may, however, induce a series of potentially deleterious aftereffects sub-
sequently leading to hypotension, a jeopardized systemic circulation with lurking 
organ and tissue hypoperfusion, and an even more compromised RV function, end-
ing up with circulatory collapse and shock [93, 95, 96, 135]. While, until recently, 
accompanying and induced ischemic complications have been considered to be the 
decisive component in the (often abrupt [89]) final RV deterioration [107, 215, 217, 
218], meanwhile other, non-ischemic features, like the excessive LV compression 
[2, 3, 83, 93], RV-PA-uncoupling [107], RV-LV dyssynchrony [7], myocardial stun-
ning [215], and the “self amplification” of the RV malfunction by the pressure over-
load considerably affecting RV contractility [22, 223, 224], are recognized factors 
relevantly involved in the progressive deterioration of RV function [22, 93, 223, 
224, 226, 228].

4.6 Summary
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RV-dysfunction or even failure (decompensated state), most commonly caused 
by LHD [27–29], is clinically characterized by exercise intolerance and signs and 
symptoms related to fluid accumulation and oedema formation [2, 7, 24, 25, 246, 
247], the latter often accompanied by organ, particularly renal, dysfunction [5, 24, 
123, 246–248]. Hemodynamically, an elevated RVEDP (≥9–10 mmHg) indicates 
RV-dysfunction [25].

Essential therapeutic issues include treatment of underlying malady [1, 2, 9, 33], 
reduction in afterload and reversal/avoidance of hypoperfusion [1, 2, 251, 407–410], 
improvement of contractility [143, 410, 411], and the correction of malfunctional 
ventricular interaction [167, 168, 251]. As such, the following overview by Naeije 
and Manes [135] (see Fig 4.4) summarizes the measures constituting the essential 
therapeutic armamentarium:

 (1) Coronary intervention in patients with acute myocardial infarction affecting the 
RV (culprit lesion of the RCA or RCX) [412–417],

 (2) Thrombolysis in case of pulmonary embolism [106, 107, 418–420],
 (3) Diuretics rather than fluids [193, 391, 444] to treat RV dilation and pericardial 

constraint/DVI effects [348, 447],
 (4) Oxygen in case of pulmonary embolism and states of relative low SaO2 < 

90–92% potentially inducing hypoxic pulmonary vasoconstriction [539],
 (5) Selective pulmonary vasodilators to reduce RV-afterload [489–493],
 (6) Lung and heart protective ventilation strategy in mechanically ventilated 

patients [340–343],
 (7) Noradrenaline if hypoperfusion and/or hypotension are present [457–470], and
 (8) Intropic agents to improve RV contractility (via enhanced LV performance) 

[143, 173, 174, 179, 410, 411].

correction of hypoxia, optimized mechanical ventilator settings
(e.g. mean  < 27 cm H20 ), “selective” pulmonary vasodilators
(e.g. iloprost, bosentan, sildenafil, inhaled NO), thrombolysis

RV contractility                       inotropes,e.g. dobutamine, levosimendan

RVEDP DVI decreased    LV-SV
diuretics

further impaired systolic interaction hypotension

noradrenaline

ischemia

Pulmonary hypertension

Fig. 4.4 Overview of treatment options, figure by Naeije and Manes [135] with permission
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5Heart Failure with Normal Left 
Ventricular Ejection Fraction (HFNEF)

5.1  Definition and General Remarks

To diagnose heart failure with preserved ejection fraction (HFpEF), the following 
three criteria have to be fulfilled [1–8]:

 1. Signs and symptoms generally present in heart failure, and
 2. Preserved left ventricular ejection fraction, defined as LV-EF ≥ 50%, in the 

presence of a normal LV end-diastolic volume (LVEDV), defined as <97 mL/m2 
[1, 7, 9] and,

 3. Evidence of diastolic dysfunction and/or relevant structural cardiac 
alterations

(To fulfill criteon 3, the European Society of Cardiology asks for the following two to be 
present: elevated natriuretic peptides and either (I) proof of a relevant structural cardiac 
abnormlity (indicated by an enhanced LA size, LALVI, or a left ventricular muscle mass, 
LVMI,  above the normal range), or/and (II) proof of abnormal diastolic properties, dia-
stolic dysfunction [3]).

The criteria defining the syndrome used by authors based on the latest ACCP/
AHA [4] and ESC guideline [3] have merged closer together, particularly the range 
of LV-EF. However, in the most recent, 2016 guideline, the ESC definition demands 
increased natriuretic peptide serum levels in addition to either diastolic dysfunction 
and/or signs of a structural heart disease [3], thus strengthening and appreciating the 
importance of biomarkers and structural abnormalities.

HFrEF (heart failure with reduced ejection fraction) is indicated by signs and symp-
toms typically present and constituting heart failure, and a LV-EF < 40% [2–4].

Furthermore, recently both the AHA/ACCP and the ESC introduced a mid-range 
(HFmEF) [3] or borderline [4] type, a group with a LV-EF between 40 and 49% 
(41–49% ACCP/AHA) but otherwise featuring all other HFpEF criteria.
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Specific diagnostic criteria (read below, Sect. 5.5) delineate exactly the findings 
and parameters indicative for a structural heart disease and/or suggestive for dia-
stolic dysfunction.

HFpEF is a considerably complex malady [8, 10, 11] of broad phenotypic het-
erogeneity [12, 13], and multi-facet pathophysiology [9, 13–15], may potentially 
afflict various organs [13, 15], and mostly goes without a specific etiology but with 
miscellaneous pathogenetic underlying causes [13, 16–18]. Its clinical spectrum 
typically varies from dyspnea on exertion to even acute pulmonary edema [19–21]. 
Since diastolic dysfunction (DD) is a dominant, if not the dominant [9] feature of 
this disorder [11, 22–24], taking a key role in HFpEF pathophysiology [22, 25, 26], 
HFpEF has frequently been referred to as “diastolic heart failure” (in contrast to 
“systolic heart failure” or HFrEF) in the past [8, 27]. Indeed, more than 2/3 of all 
patients with HFpEF display DD at rest [28–30], during stress even up to 80–90% 
are found to develop abnormal diastolic properties [31]. Hemodynamically, DD 
impairs ventricular filling [32, 33] with a higher LVEDP for any given end-diastolic 
volume [34].

However, meanwhile it is quite clear that DD is not a unique finding in patients 
previously classified suffering from diastolic heart failure, but also occurs in patients 
with “systolic” heart failure (heart failure where the ejection fraction is reduced) [2, 
33, 35, 36], is present in many asymptomatic elderly (60–80%) suffering from 
hypertension [37–40], and even more, altered diastolic properties are a very com-
mon and arguably physiological observation in elderly individuals associated with 
the aging process [37–39, 41–44]. Consequently, HFpEF is known to predominantly 
afflict older hypertensive patients [45].

Traditionally, DD has been considered to be an important intermediate step in 
the development of HFpEF, notifying, if displayed, that hypertension (HTN)/
hypertensive heart disease (HHD) may progress to heart failure with preserved 
ejection fraction [46, 47], and chronic hypertension was thought to potentially turn 
into HFpEF [48, 49]. Meanwhile, “hypertension is neither necessary nor sufficient 
for HFpEF development” as Desai writes [48]. Many clinical conditions, myocar-
dial as well as non- myocardial ones, are known to be associated with and may 
predominantly cause (acute) heart failure with normal ejection fraction, including 
valvular heart diseases, congenital heart disease, pericardial disease and primary 
(isolated) right heart failure with basically normal systolic LV function [50–52], 
whereupon abnormal diastolic function is the most common pathophysiology 
applying in these cases [51, 52].

Also, quite a number of other features have been acknowledged to be present and 
contribute to the pathobiology of HFpEF such as impaired LA-function [53], chro-
notropic incompetence [54, 55], right ventricular dysfunction and pulmonary hyper-
tension [56–58], and even limitations in LV systolic capabilities are present in 
patients with HFpEF [59, 60]. Moreover, modifications and abnormalities of “extra-
cardiac” features may arise in HFpEF patients being crucially involved, including 
altered vascular properties affecting LV afterload and ventricular—vascular 
 coupling conditions [53, 54, 61–63], changes in preload circumstances 
 (circulatory volume overload) [64], neuroendocrine activation [65], as well 

5 Heart Failure with Normal Left Ventricular Ejection Fraction (HFNEF)



275

 inflammation/endothelial dysfunction [66, 67], and impaired peripheral vasodilator 
reserve [54, 68, 69].

As such, a very heterogeneous group of patients with different etiological fea-
tures and several pathophysiological mechanisms applying and contributing may 
display the syndrome of HFpEF [70]. Consequently, recent findings and facts, rec-
ognizing that diastolic dysfunction is not the only underlying abnormality in this 
syndrome, have led to change the term diastolic heart failure, which implies a single 
operating pathophysiology [71].

Moreover, the initial consideration, HFpEF may be a precursor of HFrEF, being 
part of the same disease process, which may potentially step forward to HFrEF, and 
in which HFpEF and HFrEF indicate the two extremes within a continuum of a 
single disease [72, 73], has been abandoned due to a lack of evidence [9, 13, 15, 33, 
74–76]. Of course, there may be overlaps as some patients with HFpEF are shown 
to lose up to 5.8% of their EF per year finally ending up with an EF < 50% (40%), 
while those with reduced EF may show improvements [74]. It is assumed and very 
likely that a transition from HFpEF to HFrEF may, in turn, occur due to additional 
adverse events, particularly intercurrent myocardial ischemia and infarctions caus-
ing loss of cardiomyocytes [77].

Nevertheless, all available evidence strongly suggests to consider HFpEF as a 
separate, distinct entity which has to be distinguished from HFrEF: The two syn-
dromes differ in elementary issues of the pathogenesis and pathophysiology, in their 
etiologies, clinical and demographic characteristics, structural (cardiomyocyte 
hypertrophy [78] and myocardial fibrosis of varying degree [79]) and functional 
(cardiomyocyte stiffness [78, 80]) features, time to clinically overt malady, neuro-
endocrine response and biochemical parameters, associated co-morbidities and, of 
great importance, in their response to therapy [11, 14, 27, 66, 78, 81–84]. While 
HFpEF is basically attributed to endothelial dysfunction, HFrEF has to be consid-
ered as a disorder of the cardiomyocytes [27].

5.2  Epidemiolgy and Aetiology

At least 50% of all patients presenting signs and symptoms of heart failure have a 
normal or only minimally impaired global systolic LV function, thus suffer from 
HFpEF [34, 81, 85–89]. Moreover, Owan recognized that the occurence of HFpEF 
in all heart failure cases (HFpEF and HFrEF) increased from 38% to 54% within the 
last two decades [81]. Indeed, compared to HFrEF, the relative prevalence of HFpEF 
is increasing by 10% per decade [8, 81, 87, 90, 91], and the “true” prevalence of 
HFpEF in the general population is estimated at 1–5.5% [92].

HFpEF surely is a disorder of the elderly as its proportion is increasingly found 
with older ages [81, 85, 86, 88]. Although elderly women seem to be more afflicted 
in US [18] and Euopean surveys [93, 94], internationally a more balanced sex dis-
tribution appears to exist [95–97]. Comorbidities typically and highly prevalent in 
and associated with HFpEF (though also related to increasing age) include hyper-
tension (60–80%), obesity (41–46%), diabetes mellitus (13–76%), coronary artery 
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disease (20–76%), atrial fibrillation (15–41%), impaired renal function (40–55%), 
and hyperlipidemia (16–77%) [81, 85–87, 91, 98–101].

Readmission rates add up to nearly 30% within 60–90 days after discharge [102] 
and to roughly 50% within 1 year [103].

Mortality rates recently reported in the literature describe in short term (30–90 
days) 5–9.5% deaths [86, 87] , 29% deceased patients after 1 year since diagnosed 
and 68% (55–74%) after 5 years [87, 88, 91]. As such, the prognosis of HFpEF is 
definitely similar to, and as grim as, those found in patients with HFrEF (32% after 
1 and 68% after 5 years) [85–88, 104]. However, in contrary to patients with HFrEF, 
the reasons of mortality in HFpEF are more often due to non-heart failure cardiovas-
cular issues [18, 105, 106], reaching 40% of the causes of death [107, 108].

Consequently, in the majority of patients with HFpEF, a specific etiology cannot 
be determined [9, 13, 16, 83], rather, “HFpEF occurs most commonly in the elderly 
who have one or more co-morbidities like hypertension, obesity, diabetes, meta-
bolic syndrome, chronic kidney disease, atrial fibrillation, and/or anemia” [109]. As 
such, the co-morbidities exert a considerable impact on the pathogenesis of HFpEF 
[9, 13, 17, 42], and HFpEF may be considered to be the “identical” clinical result of 
different diseases with diverse and miscellaneous underlying pathophysiologies [7]. 
Nevertheless, in some cases a (more) specific cause, usually provoking diastolic 
dysfunction and concomitant/consecutively HFpEF, may be identified as in case of 
hypertrophic, restrictive, infiltrative, or genetically determined cardiomyopathies as 
well constrictive pericarditis or cardiac fibroelastosis [50, 51, 83].

5.3  Aetiopathogenesis and Basic Pathophysiological Issues 
and Considerations

Heart failure with preserved ejection fraction, accounting for more than 50% of all 
heart failure cases [81, 89], is henceforth recognized as a separate and discrete clini-
cal syndrome rather than a “milder form” and/or precursor of HFrEF as growing 
evidence clearly indicates [73].

Exercise intolerance with often severe dyspnoea on exertion and acute pulmo-
nary edema are the key clinical pictures HFpEF patients present [19–21]. 2/3 of all 
HFpEF patients feature LV diastolic dysfunction at rest [28, 110], however up to 
80–90% may display abnormal diastolic properties during stress [31]. Accordingly, 
LV diastolic dysfunction, as a central factor in the pathobiology and a patho- 
physiological hallmark of HFpEF [22, 24, 25], evokes, either alone or in combina-
tion with other pathophysiological features [1, 22, 25], the phenotypic, clinical 
appearances and the elevated filling pressures (a general finding in any kind of heart 
failure [111]) present in this syndrome [22]. The other features include combined 
ventricular-vascular stiffening (notably enhanced central aortic stiffening and (con-
secutively) blunted ventriculo–arterial coupling) [55, 61, 62, 68], impaired systemic 
vasodilator reserve [24, 54], systolic limitations [49, 112, 113], and extra- cardial 
causes like volume overload [114] and pulmonary hypertension [56, 58, 115] with 
subsequent ventricular, mostly diastolic interactions [41].
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LV diastolic dysfunction underlying HFpEF is, in the absence of pericardial and 
endocardial disease [116], attributed to abnormal diastolic myocardial stiffness [8, 
116, 117]. Diastolic myocardial stiffness is determined by (a) the composition, 
functional status and the amount of the extracellular matrix (ECM) and by (b) the 
cardiomyocytes, accurately the cardiomyocyte tension, respectively the cardiomyo-
cyte stiffness which is largely defined by the functional and structural properties of 
the cytoskeletal giant protein titin [8, 118]. While originally the diastolic passive 
myocardial and the overall diastolic chamber stiffness have primarily been assigned 
to be predominantly determined by the collagen quantity and quality of the ECM 
[14] and by collagen crosslinking [119, 120], most recent study results revealed that 
cardiomyocyte stiffness alone has the capability to induce HFpEF without any 
involvement of the ECM [121]. This is in line with data demonstrating that 1/3 of 
HFpEF show normal collagen volume fraction although similar LV stiffness and 
end-systolic wall stress [80]. Meanwhile, several studies on HFpEF patients clearly 
relate enhanced diastolic LV stiffness to elevated cardiomyocyte stiffness 
[122–124].

Cardiomyocyte tension and stiffness are largely modulated by titin [125]. 
Changes in cardiomyocyte properties are reported to possibly occur in the acute 
setting attributed to alterations in phosphorylation status of titin (relative hypo- 
phosphorylation) and intramolecular disulfide bridging (both energy-consuming 
processes), associated and in conjunction with acute energy deficits [55]. As a 
result, an acute increase in passive LV diastolic stiffness ensues [126] causing acute 
cardiac failure [127]. In contrast, the collagen turnover and thus modification may 
take considerably longer with a known collagen half-life of 80–120 days [128]. 
Accordingly, increased myocardial stiffness and tension, predominantly caused by 
cardiomyocyte properties, may arise acutely, whereas alterations of the ECM indi-
cate long-term and chronic changes.

The majority of individuals with DD will never develop symptoms [129], how-
ever, worsening diastolic function is identified to decisively contribute to the onset 
of clinical heart failure symptoms [130]. The transition from compensated condi-
tions to overt HFpEF is reported to be related to profound myocardial stiffening 
[131, 132]. Drazner [133] recently illustrated in his paper on “the progression of 
hypertensive heart disease”, that both, (a) the progressive and adverse change of 
ECM composition and amount [106, 134, 135] enhancing myocardial stiffness 
[136] in patients suffering from hypertensive heart disease and (b) the (accompa-
nying) increase in LV filling pressures [53, 130, 137], are causally responsible for 
the transition from HHD to HFpEF—indeed, ventricular passive stiffness substan-
tially impacts LV filling pressures [22, 25]. However, other factors affecting 
LV-filling pressure such as PH and (subsequently influencing) ventricular interde-
pendence, (consecutive) atrial dysfunction and vascular components, notably 
enhanced central aortic stiffness [21, 48, 62], may decisively contribute as well 
[56, 62, 138].

Intermittent or permanent increases in LVEDP potentially facilitating left-atrial 
dilatation and atrial fibrillation (thus atrial dysfunction) [138], and elevated pulmo-
nary pressures are indicative for clinically relevant DD [31].
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Traditionally, DD has been considered to be an important intermediate step in the 
development of HFpEF, occurring in patients with hypertension/hypertensive heart 
disease developing heart failure [46, 47], and chronic HTN was supposed to poten-
tially turn into HFpEF [48, 49]: Hypertension has been viewed as being the “pre-
dominant factor in the development and the progression to and of HFpEF” [139]. 
HTN is found to be present in 60–80% of all patients diagnosed with HFpEF [81, 
98]. Cellular and extracellular structural and functional changes as well as adaptions 
are demonstrated in the myocardial tissues and in cardiac function of HTN patients 
subsequently developing DD [78, 140] and HFpEF [98, 141, 142]. Even mild hyper-
tension can result in DD [143]. As such, chronic pressure overload (e.g. HTN) is 
recognized to be a leading risk factor and cause of DD [92, 144] and of HFpEF 
[141, 145].

This prevailing mechanistic view of the syndrome of HFpEF based on classical, 
traditional knowledge and perceptions (mechanical/neuroendocrine model of heart 
failure [146]) received even more support by recent analyses and study results enlarg-
ing the existing concept by, notably, central and peripheral vascular and v-a- coupling 
issues (“HFpEF is recognized as a disease of abnormal v-a-coupling” [147]), consecu-
tive and associated PH and ventricular interactions, all potentially influencing and con-
tributing to the pathophysiology and pathobiology of acute heart failure [14, 21, 41, 
56, 61, 148]. Furthermore, these features fit very well into the recently provided con-
cept by Cotter, assigning acute heart failure either to a predominantly acute vascular or 
to a prevailing cardiac, acutely decompensating disorder [149, 150]. However, often 
both conditions are contributing with only one prevailing [149, 150]. These findings 
emphasize that the pathophysiology of heart failure is heterogeneous, the syndrome of 
acute heart failure complex and the disorder obviously of systemic dimension [18].

Anyhow, in recent years, a bundle of considerable evidence, strongly linking 
HFpEF to systemic inflammation, has been established [66, 67, 151, 152]. 
Significantly elevated, high levels of pro-inflammatory cytokines and other markers 
of activated inflammation including tumor necrosis factor alpha (TNFα), several 
interleukins such as IL-1, IL-6, monocyte chemotactic/chemoattractant protein 1 
(MCP1), adhesion molecules such as intercellular adhesion molecule-1 (ICAM1) 
and vascular cell adhesion molecule-1 (VCAM1), and CRP, at least hsCRP (high 
sensity), released by immune-competent cells (neutrophil granulocytes, monocytes, 
macrophages, T cells), but endothelial cells and even vascular smooth muscle cells 
as well [141], are consistently laboratory-confirmed assured in blood samples (and 
thus within the systemic, peripheral circulation) of heart failure patients [153–156]. 
Being further of substantial prognostic relevance, these inflammatory mediators, 
and thus inflammation as such, are considered as being crucially implicated in the 
disease process [152]. Indeed, increased levels of inflammatory features are inde-
pendently associated with asymptomatic diastolic dysfunction [157], and repetitive 
and progressive inflammatory episodes are demonstrated to be strongly associated 
with the progression of ventricular diastolic dysfunction to HFpEF [154, 158]. 
Furthermore, a recently published study provides distinct evidence that systemic 
inflammatory conditions are predictive of incident HFpEF [151], a strong sign of a 
causal impact of inflammation on the aetiopathogenesis of HFpEF [141, 159].
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Moreover, HFpEF, a disease of the elderly [89, 144], is typically accompanied 
by a range of comorbidities including arterial hypertension, obesity, diabetes (as a 
rule type II), metabolic syndrome, coronary artery disease, chronic kidney disease, 
and COPD [85, 86, 142, 160]. All these disorders have been identified as being risk 
factors for, and precursors of, incident heart failure [161–164]. Furthermore, these 
maladies are independently associated with early development of diastolic LV dys-
function [165–168]. All these pathologies deploy low grade systemic inflammation 
[66, 141, 151, 169, 170]. “HFpEF is, compared to asymptomatic patients although 
as well suffering from obesity, diabetes, HTN, etc., characterized by an increase in 
cardiac inflammation” [66]. Moreover, metabolic risk factors are not only strongly 
associated with inflammation, but also with endothelial dysfunction, oxidative 
stress, impaired myocardial energetics, abnormal cardiomyocyte Ca-handling, 
reduced NO bioavailability, and maladaptive cardiac remodelling [171–173].

Inflammation per se is a protective response to physiological and unphysiological 
stimuli, injuries and insults of any kind, e.g. infection, and applies by interactions 
between cell surfaces, extracellular matrix, and pro-inflammatory mediators [174]. It 
is basically a vascular answer to any stimulation or threat [175, 176]. Although tradi-
tionally considered to be a local process, inflammation may potentially enlarge to a 
systemic condition [177]. Janeway and Travers state: “The inflammatory response has 
to be recognized as a systemic process rather than “purely” a local reaction” [178].

Inflammation is inevitably associated with endothelial activation and dysfunc-
tion: Endothelial cells are recognized to considerably participate in the initiation, 
maintenance, and amplification of inflammatory processes [179, 180] and as such, 
endothelial cells are an integral component of the early innate immune response 
(conditional innate immune cells) to injury of any kind [181]. The distinct and very 
close correlation between inflammation and endothelial dysfunction is well estab-
lished [182]. Inflammation causes endothelial dysfunction [112, 183, 184], subse-
quently, the dysfunctional endothelial cells display a number of features contributing 
to and, in turn, amplifying the inflammatory process [181].

Endothelial dysfunction (ED) refers to an “activated” endothelium denoting a 
maladaptive response to pathological stimuli [185]. Thus, systemic inflammation 
potentially affects the whole body, more accurately is likely to activate the endothe-
lium of the whole body including the coronary microvasculature and central cardiac 
endothelium, e.g. endomyocardium [66, 146].

Indeed, cumulating evidence indicates that the inflammatory condition and the 
endothelial dysfunction [182, 186] must be central and crucial features in the 
pathobiology of HFpEF [24, 66, 67]. Endothelial dysfunction is associated with 
cardiovascular diseases, e.g. coronary artery disease, hypertension, diabetes, chronic 
renal disease, and noticed as a systemic disorder [187–190]. As a result of accumu-
lated co-morbidities, the unifying affection acknowledged and with considerable 
implication in the pathobiology of HFpEF is endothelial dysfunction (ED) [48]: 
Comorbidities present in HFpEF lead to ED [117].

Compared to age-matched controls, patients with HFpEF display ED, and ED is 
related to adverse outcome [67]. Thus, the endothelium takes a central position in 
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the (inflammatory) response, coordinating and “orchestrating” the reply and the 
reactions to the metabolic, biomechanical, and chemical threats provoked by the 
co-morbidities [179, 180, 191].

The cardiac endothelial tissue encompasses the endocardium, the intramyo-
cardial capillaries, and the endothelial cells of the coronary microvasculature 
[117]. The central endothelium, comprising the vessel network of heart and the 
pulmonary blood flow path, constitutes the largest endothelial surface of the 
body [192], decisively contributing to the development of heart failure with pre-
served EF [192]. Endothelial cells are capable to communicate bidirectionally 
[193, 194]. The cardiac endothelium is demonstrated to modulate cardiac perfor-
mance [195] since it affects, by autocrine/paracrine signalling (by releasing fac-
tors such as NO, ET-1, and natriuretic peptides), the contractile properties [196]. 
The acute cardiomyocyte function decisively depends on cardiac endothelial cell 
condition and function [195, 196]. Accordingly, the influence of the endothelial 
cells on different cardiac cells emphasizes the importance of ED in and the 
impact of ED on the pathobiology of HFpEF [192, 197]. The “systemic” ED and 
especially the coronary microvascular endothelial inflammation (see below the 
new concept by Paulus and Tschoepe, see Fig. 5.4) are not only important 
bystanders of HFpEF, but play a pathophysiologic relevant and causative role in 
that syndrome [159, 192].

Hence, the comorbidities commonly seen in patients suffering from HFpEF 
induce a systemic inflammatory state and as such will afflict the central endothe-
lial cells of the coronary microvasculature and of the endocardium causing ED as 
clearly evidenced by histologic-bioptical studies [66, 123]: The systemic inflam-
mation is suggested to gradually affect (inflame) the cardiac microvasculature 
[66], causing ED [197, 198] and subsequently impacts on the interaction between 
cardiac endothelium and the cardio-myocytes [66, 117, 199, 200], so that finally 
the myocardium may be inflamed [66, 199]. The expression of adhesion mole-
cules [66] facilitates the recruitment, activation, and transendothelial migration of 
inflammatory cells into the vessel walls and the myocardium [66]. The conversion 
of fibroblasts into myofibroblasts, which significantly affect ECM composition, 
collagen synthesis and collagen deposition in the interstitial cardiac tissues, pro-
moting myocardial fibrosis, is stimulated [201] and accompanied by DD [202, 
203]. The amount of cardiac ECM and the collagen quantity and composition 
influence and co- determine chamber stiffness [103], and a correlation between 
both, myocardial collagen and the amount of inflammatory cells, and diastolic 
dysfunction could be established [66]. Activated myofibroblasts, for their part, 
provoke and maintain inflammation by producing chemokines and cytokines 
stimulating the inflammatory cell recruitment and ED, thus contribute to establish 
a vicious cycle maintaining and even fuelling the inflammatory and associated 
processes [204].

The most important biological consequence of ED certainly is the impaired NO 
bioavailability [117, 159]. Particularly caused by oxidative stress, hyperglycemia 
following insulin resistance (IR), components of the activated RAAS (namely A II) 
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and by TNFα [117, 205], the limited NO availability will lead to substantial conse-
quences: The dysfunctional endothelial cells can offer the adjacent cardiomyocytes 
only a markedly diminished NO supply, this results in disrupted NO-cGMP-PKG 
signalling (more detailed in the paragraph on pathophysiology), leaving titin hypo-
phosphorylated [78, 122, 205, 206] and facilitates disulfide bridging within the titin 
molecule [207]. Histologic-bioptic samples of patients suffering from HFpEF 
revealed reduced PKG activity and low cGMP concentrations in their myocardial 
tissues, associated with markedly enhanced cardiomyocyte stiffness [205]. Titin 
decisively determines the elastic properties of the heart [78]: Myocardial and 
chamber passive diastolic stiffness, crucially determining LVEDP, are largely 
shaped and assigned to the properties of the giant sacromeric cytoskeleton pro-
tein titin [125, 208], notably in normal sized heart chambers as typical in HFpEF 
[121, 209–211]. Elevated diastolic LV stiffness causing DD is basically attributed to 
elevated intrinsic cardiomyocyte stiffness as numerous studies reported [80, 122–
124, 212]. We have substantial evidence indicating that “stiffened” titin alone is able 
to induce DD and HFpEF [210, 213], independent of ECM and thus myocardial 
fibrotic state [210].

As such, acutely altered titin stiffness as in energy deficit [55] following acute 
(myocardial) ischemia with subsequent increase in LVEDP [53, 126, 130, 137] 
causing acute cardiac failure [127], may be likewise understood as a (predomi-
nantly) cardiac reason for acute heart failure in terms of Cotter’s concept [149, 
150]. On the other hand, acute elevations of blood pressure predominantly acting on 
loading conditions [61, 62, 214] and consecutive (sometimes disproportionate) 
increases in LVEDP [61–63] may also precipitate acute heart failure, but as a result 
of primarily acutely changed vascular properties provoking an acute afterload mis-
match [61, 149, 150].

Reduced NO bioavailability and disrupted NO-mediated signalling pathways 
and the increased formation of oxidative stress associated with the features acti-
vated, are well implicated in the pathobiology of heart failure [215, 216]. Oxidative 
stress of the coronary microvasculature reduces NO bioavailability, cGMP content, 
and PKG activity in the adjacent cardiomyocytes [17].

The metabolic syndrome, a cluster of metabolic factors, notably obesity, but even 
the principally physiologic aging process [217] are all strongly related to insulin 
resistance (IR) and enhanced oxidative stress, provoking adverse synergistic effects 
on myocardial structure and function [218]. Obesity, diabetes (type II), and IR are 
all reported to exert direct adverse effects on the myocardium independently of 
confounders like HTN or coronary artery disease [171–173]. These co-morbidities 
present in HFpEF are independently associated with early DD [165–168] and have 
been prospectively identified as precursors of incident heart failure [161–164]. 
Hence, metabolic disorders may contribute via enhanced myocardial inflammation, 
oxidative stress, downregulated NO bioavailability affecting the very important sig-
nalling NO-cGMP-PKG pathway, and limited bioenergetics to DD and HFpEF 
development [55, 127].
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The joint detection of soluble ST21 and PTX3
2 within the blood stream, indicative 

for a systemic vascular inflammation in the presence of myocardial wall stress, is 
reported to correlate well with DD and HFpEF, hence substantiating that indeed 
inflammation is potentially a causal feature of HFpEF [221].

The association between the soluble TNFα type 1 receptor, a marker of sys-
temic inflammation, and incident HFpEF found in elderly individuals further con-
tributes to assume a causal role of inflammation in that type of heart failure [222]. 
High grade evidence comes from a study by Kalegeropoulos [151] since the 
results verify that systemic inflammation, induced by the co-morbidities observed 
in HFpEF, reflected by high levels of inflammatory markers in the circulation 
including the classical agents TNFα and IL-6, is predictive for incident HFpEF 
(but not for HFrEF and as such likewise indicating that both disorders are differ-
ent entities). As the correlation demonstrated persists even after correcting for 
known heart failure risk factors (co-morbidities, etc.), these study findings are 
highly suggestive for a direct, causal role of inflammation in the pathogenesis of 
HFpEF [151].

Hence, it has been inevitably and necessary that Paulus and Tschoepe imple-
mented a novel paradigm of the pathobiology of HFpEF: Their concept applies 
systemic inflammation as fundamental in the pathophysiology of HFpEF [159, 
199]. The common co-morbidities including HTN, diabetes, and obesity associ-
ated and observed with HFpEF, cause a marked systemic inflammatory state, 
thereby also severely affecting the endothelial layers of the cardiac vessel sys-
tem and even the endocardium, and thus provoke coronary microvascular, endo-
cardial and (consecutively) myocardial inflammation and dysfunction [66, 123]. 
ED ensues and as a result of inflammation [123, 180, 197, 198], cardiomyocyte 
stiffening with subsequent DD develops [80, 123, 126, 210, 213] and ECM 
remodelling arises, leading to myocardial fibrosis, accompanied by DD [66, 120, 
202, 203]. Accordingly, ED and microvascular, especially coronary microvascu-
lar disease are not only important bystanders of HFpEF but play a pathophysio-
logic relevant and causative role [159]. For further details of this concept, please 
see paragraph on special pathophysiology. The results of several animal studies 
nicely fit and support this new view of inflammation-induced HFpEF [223, 224].

However, HFpEF is not merely a conglumerate of co-morbidities [75, 225]. A 
study by Mohammed revealed that HFpEF patients, compared to healthy and 
hypertensive controls, feature more cardiovascular abnormalities than the individu-
als in either control group (healthy individuals and hypertensive persons), even 
after adjusting for comorbidities, sex and age [75], a result which is comprehensible 
and coherent. Furthermore, the outcome of HFpEF is demonstrated to be worse 

1 Soluble ST2 is an inhibitor of the ST 2 receptor (suppression of tumorigenicity 2 receptor), a 
receptor for IL-33, which is markedly induced in cardiomyocytes and released into the blood 
stream in case of mechanical cardiac stress/overload [219].
2 PTX3 , pentraxin-related protein, is a strong marker of vascular pathology and notably expressed 
and released by several cells including fibroblasts, smooth muscle cells, and endothelial cells in 
case of inflammation [220].
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compared to patients with various comorbidities but with no evidence for heart 
failure: The mortality rates in the HFpEF group added up to 53–76 per 1000 patient-
years while in the matched (correcting for age, sex and comorbidity allocation) 
control groups without HF, the mortality rate ranged between 11 and 47 per 1000 
patient- years [226]. However, that difference was present although the burden of 
co- morbidities was lower in the HFpEF cohort [226]. Hence, those findings strongly 
suggest that HFpEF is not simply a collection of co-morbidities, but rather an inde-
pendent entity [82]. Moreover, the transition to and deterioration in symptomatic 
HFpEF is related to additional pathobiological issues affecting the functional and 
structural myocardial status, including v-a-coupling disorders, neuroendorine acti-
vation, energy deficits (deficits of high energy phosphates), PH and ventricular 
interaction, and likewise ischemia [14, 41, 55, 147, 227, 228]. Ischemia caused by 
coronary ED potentially causes angina symptoms and may affect systolic and dia-
stolic heart function [228, 229].

The development of HFpEF is strongly influenced by aging, a systemic, basi-
cally physiological process principally affecting all organs [230, 231]. LV diastolic 
stiffness rises with increasing age, even when BP and LV-mass are in physiological 
ranges [232–234]. With aging, diastolic relaxation is blunted attenuating the effect 
of diastolic suction [235, 236] and subsequently potentially increases 
LVEDP. NO-dependent vasodilation is compromised [237, 238], and low–grade 
systemic inflammation with associated impaired NO bioavailability [199] poten-
tially provoking myocardial fibrosis are typical findings. Chronotropic incompe-
tence, limited systolic function, and shortened cardiac output response to exercise 
[239, 240] further characterize normal aging. Accordingly, aging predisposes for 
HFpEF, and comorbidities present substantially aggravate the typical “abnormali-
ties” ensuing with increasing age [68]. Aging and hypertension are considered to 
be the main risk factors for the development of HFpEF [38, 103], as they are a 
sufficient cause of HFpEF [48, 75]. Moreover, the presence of HTN/HHD was 
until recently thought to be inevitable for transitioning from asymptomatic DD to 
HFpEF [139, 199]. Indeed, HFpEF may, in some cases, “simply” reflect predomi-
nantly synergistic effects of the risk factors of elderly individuals [48]. As such, if 
diabetes and HTN coexist, cardiac abnormalities are demonstrated to be more 
severe and profound than characteristic for and typically seen in each disorder 
alone [241]. However, obesity, diabetes, HTN, and chronic kidney disease are each 
associated with unique structural and functional alterations in the heart and vascu-
lature of HFpEF patients [75]. Metabolic disorders like obesity, diabetes, and insu-
lin resistance directly display adverse effects on myocardial structure and function 
and this independently of confounders like HTN or CAD, referred to as “obesity” 
[171], “diabetic” [173], and “insulin-resistant” [172] cardiomyopathy. In HFpEF 
related to diabetes, increased LV diastolic stiffness is reported to be primarily 
attributed to enhanced cardiomyocyte stiffness and to the hypertrophy of cardio-
myocytes [123, 126]. As those diabetic patients did not suffer from HTN, cardio-
myocyte hypertrophy was definitely not due to pressure overload, but rather a 
specific effect of the diabetes [146]. In diabetes and insulin resistance, oxidative 
stress, generated via several pathways including the accumulation of advanced 
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glycation end products (AGE), is markedly enhanced [146], further coupled with 
reduced oxidative defence, thus, an inflammatory milieu ensues [242]. Subsequently, 
NO bioavailability is substantially diminished (AGEs quench NO [243]) and endo-
thelial function will be considerably afflicted and microvascular inflammation of 
the coronary vessel network and the endocardium occurs [159]. As a consequence 
of the critically limited NO bioavailability, hypophosphorylation of titin arises as 
Heerebeek demonstrated, displaying and/or contributing to cardiomyocyte stiffen-
ing [123] and cardiomyocyte hypertrophy—the latter typically eccentric [244]. 
Comparatively, in chronic pressure overload as in HTN and HHD, myocardial 
abnormalities, typically including concentric hypertrophy [133, 245], and exces-
sive forms of collagen deposition, which will result in a marked increase in myo-
cardial stiffness, are contributing to DD [136]. In obesity, the relative thickness of 
cardiomyocytes, indicative for concentric hypertrophy, increases [246].

Worsening DD is clearly shown to be independently related to incipient 
HFpEF development [129, 247]. DD is a prominent manifestation of diabetes 
[248], and in asymptomatic diabetic patients developing overt HF, worsening dia-
stolic function was definitely related to subsequent incident HF [247]. Moreover, 
diabetic patients with DD have a significantly higher mortality rate [247]. The 
Relax-study results further emphasize the adverse role of diabetes in the progres-
sion to HFpEF [249].

Hence, HFpEF may be seen as a cardiometabolic disorder [146, 199]. Likewise, 
chronic pressure load as in HTN/HHD is associated with (1) substantial collagen 
deposition and changes in collagen composition of the ECM, stiffening the heart 
muscle [136], and (2) considerable enhanced passive cardiomyocyte tension, both 
verified in HTN patients who subsequently display DD [78, 140]. Further deterio-
rating diastolic function (which is usually associated with a (further) rise in 
LVEDP since abnormal diastolic properties require rising filling pressures to 
ensure appropriate LV filling [53, 137]) may lead to overt HF symptoms reflecting 
HFpEF [130, 133, 134]. Thus, various features are involved in the process with a 
transition from a asymptomatic pre-clinical condition (with likewise enhanced 
inflammatory markers including IL-6 and TNFα [130, 250, 251]) to overt HFpEF 
[49, 53, 130, 252].

As such, HTN and consecutively HHD have lost their accentuated role in the 
group of co-morbidities being necessarily present for the transition from asymp-
tomatic DD to overt HF [75, 199]: Paulus and Tschoepe [199] view HTN as 
“merely one of many comorbidities fuelling systemic inflammation, oxidative 
stress, and endothelial dysfunction in this syndrome”, and, “HTN is neither neces-
sary nor sufficient for HFpEF development” as Desai writes [48] interpreting 
Paulus and Tschoepe.

However, even this example underlines the prominent heterogeneity of aetio-
logic factors and patho-mechanisms able to contribute to or even to induce 
HFpEF. The strong association between HFpEF and systemic inflammatory mark-
ers is well explained by (a) the inflammation created and induced by the co- 
morbidities verified and (b) by the hemodynamic-mechanistic features related to 
increased LVEDP, both causing inflammatory discharge, and as such further 
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substantially supports the diversity of reasons and mechanisms (inflammation may 
be seen as a vascular response to any threat) found in and characteristic for this type 
of heart failure [151, 251, 253].

Thus, HFpEF is a very complex disorder with considerable phenotypic heterogeneity, 
multifactorial pathophysiological pathways, miscellaneous potential etiological factors 
and multiorgan involvement [13, 117]. Various features are involved in the process of 
transition from the asymptomatic pre-clinical condition (with likewise enhanced 
inflammatory markers including IL-6 and TNFα [250, 251]) to overt HFpEF [49, 53, 
130, 252]. Accordingly, a “simple” paradigm shift from the traditional mechanistic-
hemodynamic (namely afterload excess and vascular failure) approach, which is 
accompanied by neuroendocrine activation [48, 146], to an inflammatory cardiometa-
bolic disease as suggested by Paulus and Tschoepe [199] will not meet and represent 
all the facets present, typically assigned to and denoting the syndrome of HFpEF.

Correspondingly, Butler [83] and Tschoepe and vanLinthout [117] point out: 
HFpEF is a highly complex disorder caused by various etiological features, poten-
tially interacting each other, and as such involves multifactorial patho-physiologi-
cal pathways. Cardio-metabolic, inflammatory conditions (precipitated by 
physiological aging possibly amplified by a range of comorbidities commonly 
accompanying HFpEF) essentially go along with altered mechanical cardio-vascu-
lar properties, incited neuroendocrine activity, and altered pulmonary hemodynam-
ics, thereby predispose ensuing overt heart failure.

However, even Butler’s and Tschoepe’s and vanLinthout’s characterisation 
probably does not describe explicitly enough the wide spectrum of etiological and 
pathophysiological features verified to potentially contribute to the entity of HFpEF 
as their annotation does not literally refer to the most essential issue: Analyzing 
hemodynamic data at rest and when exposing patients with HFpEF to stress, 
HFpEF is precipitated by a bundle of cardiovascular disorders with heterogeneous 
underlying pathophysiologies [14, 25, 114]. These include diastolic dysfunction 
[22, 24, 25, 38] as the central and most common (but not exclusively [68]) patho-
physiological hallmark, altered structural and functional systolic myocardial 
(impaired contractile function, particularly limited contractile reserve) and vascu-
lar properties (vascular stiffening and consecutively modified v-a-coupling), 
blunted (peripheral) vasodilatory response (largely a result of endothelial dysfunc-
tion), chronotropic and lusiotropic abnormalities, and the (consecutively) affected 
pulmonary circulation/RV-PA-unit [14, 21, 25, 56, 58, 62, 78, 114, 117]. Altered 
LV filling mechanics are the characteristic pathophysiological feature present in all 
HFpEF patients [254, 255]. They are the result of both “intrinsic structural and 
molecular alterations” [254], on the one hand attributed to cardio- metabolic, inflam-
matory aberrations thereby stiffening the left ventricle (heart muscle), and on the 
other hand assigned to an “increased vascular load imposed by a stiffened arterial 
vessel system” [254]. A stiffened ventricle and/or an altered vascular load affect 
ventricular–arterial coupling, and since the pulmonary circulation/RV-PA-unit is 
generally also afflicted, mainly through the elevated left ventricular filling pressures 
[254], HFpEF may indeed be considered as a coupling malady [254] (Fig. 5.1).

5.3  Aetiopathogenesis and Basic Pathophysiological Issues and Considerations
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5.4  Special Pathophysiology

5.4.1  The Pressure-Volume Relation and the Filling Pressure 
(LVEDP) in HFpEF

Heart failure is basically associated with elevated LV filling pressures [256, 257], since 
it is defined as the inability of the heart to supply the bodies’ tissues suitably with blood 
in order to meet their metabolic demand, or to do so only at the cost of elevated filling 
pressures [258, 259]. Hence, elevated left-ventricular end-diastolic pressures (LVEDPs) 
are a general finding in all heart failure patients [82, 111, 259]. Accordingly, elevated 
filling pressures are universally seen, at least during (physical) exertion [20, 24], in the 
syndrome of HFpEF [22, 130, 252, 260]. These elevated LV filling pressures are essen-
tially attributed to diastolic dysfunction, the leading pathomechanism of HFpEF 
patients [22, 53, 78, 80, 130]. Diastolic dysfunction basically results from increased 
chamber and myocardial stiffness, subsequently displaying elevated filling pressures 
[25, 31, 130], the main physiologic consequence of diastolic dysfunction [261].

Diastolic dysfunction has been defined “as the inability to fill the ventricle to an 
adequate preload volume (end-diastolic volume, EDV) at acceptable low pres-
sures” [262]. Myocardial stiffness and relaxation largely determine ventricular 
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diastolic function [263] and therefore ventricular chamber stiffness [264]. In the 
vast majority of HFpEF patients, a considerable increase in chamber stiffness 
(impaired LV compliance due to altered cardio-myocyte stiffness and modified 
extracellular matrix composition) is evidenced [22, 25, 55, 78], furthermore, a 
delay in and hence an incompletion of myocardial relaxation [22, 25] may be 
seen. The latter will become particularly evident (a) during tachycardia (e.g. physi-
cal stress), as a shortening of the diastole and thus of the LV filling period results 
[7, 260, 265], and (b) in case of an acute increase in afterload (e.g. acute rise in 
blood pressure/hypertensive dysregulation [62, 266]) since active relaxation is 
reported to be slowed and consecutively prolonged by acute elevations in LV after-
load [266, 267]. Both conditions (shortened diastole and elevated afterload) are 
delaying and blunting the drop in LV-LA- pressure gradient during early diastole 
and thus impair diastolic suction [268] thereby contributing to the elevated filling 
pressures found in that syndrome [257].

However, it is mainly the LV stiffness as the predominant underlying abnormality, 
which induces and contributes to the elevated filling pressures [25, 130]. The increase 
in myocardial diastolic stiffness, reflected by a leftward and upward shift of the 
PV-relationship leading to a steeper slope [22, 260, 269, 270] (see Fig. 5.2), is largely 
attributed to cardiomyocyte stiffening (with an increase in cardiomyocyte stiffness as 
the disease inherent process), and, to a lesser extent, to an altered (active) diastolic 
relaxation [121, 209, 271, 272]: It is basically the giant elastic sarcomeric protein titin, 
regulating myocardial passive tension and stiffness [208], which determines 
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myocardial and LV chamber stiffness as numerous studies have shown [78, 80, 122, 
124]. Titin contributes roughly 80% to LV passive stiffness as long as sarcomere 
length ranges within the physiological band of 1.8–2.2 μm (as they indeed do in 
HFpEF), while the influence/contribution of ECM becomes more important in dilated 
sarcomeres of >2.2 μm [209, 211]—as in HFrEF. Furthermore, the impact of the influ-
ence of an altered relaxation on the magnitude and on the curvature of the relation has 
been challenged and significant increases in LVEDP resulting from slowed relaxation 
have never been clearly assured in studies and thus may be queried [121, 271, 272].

However, not all studies found a steeper slope (reflecting changes in diastolic 
properties) of the pressure-volume relationship underlying the increase in LA and 
LV filling pressures in patients with HFpEF [62, 114]. This is suggestive for reasons 
and mechanisms other than primarily altered (intrinsic) diastolic properties being 
responsible for, and/or contributing to, enhanced filling pressures consistently found 
in that patient group [262, 273]. Elevated filling pressures are verified to be caused 
also by parallel upward shifts of the P-V-relation (Fig. 5.3).

Parallel upward shifts of the P-V-relationship, but with no change in its slope 
and thus similar LV “intrinsic” diastolic properties (unchanged cardio-myocyte 
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stiffness and extracellular matrix composition [262, 275]), are in general attributed 
to “extrinsic” reasons and altered “extrinsic”conditions [275–277], namely 
altered right ventricular loading conditions and changes in pericardial constraint 
with consecutive perceptible and enhanced diastolic ventricular interaction (DVI) 
[256, 273, 274]. DVI is found to be notably present in case of elevations in pulmo-
nary pressures (PH) [278–280], potentially resulting from heart failure of any rea-
son [281, 282]. Pulmonary hypertension is an exceptionally common feature in 
patients suffering from HFpEF [115, 283, 284], and enhanced diastolic ventricular 
interaction is common in patients with left-sided HF and PH [285]. Other “extrin-
sic” features include volume overload [114], endocardial diseases [116] and, of 
special importance, altered ventriculo–arterial coupling [62]. As explained else-
where, changes in loading conditions may (subsequently) alter diastolic properties 
[38, 62, 114, 286, 287]. However, as already demonstrated by Alderman and Glantz, 
acute changes in chamber stiffness are largely caused by external forces and their 
associated effects [275], and are generally not able to alter intrinsic diastolic myo-
cardial properties of normally oxygenated myocardium [275, 288] (Fig. 5.3).

This diversity of possible (patho)mechanisms and circumstances does indeed 
explain the divergent study results and appreciate the mechanistic heterogeneity 
found in the pathobiology of HFpEF [25, 256, 274].

5.4.2  Pathomechanisms

5.4.2.1  Diastolic Dysfunction
Diastolic dysfunction (DD) is a hallmark and central in the pathophysiology of 
HFpEF [22, 24, 25]. The vast majority of patients suffering from HFpEF display 
DD [29, 30], at least during physical activity (80–90%) [31].

In the absence of endocardial or pericardial disease, diastolic LV dysfunction 
results from increased myocardial stiffness [8], which is regulated by extracellular 
matrix (ECM) and the cardiomyocytes [8]. Furthermore, a change in the stiffness 
within one compartment (intracellular–extracellular) is also transmitted to the other 
compartment via matrix cellular proteins [8].

Diastolic LV dysfunction consists of prolonged isovolumetric LV relaxation, 
slow LV filling, and increased diastolic myocardial stiffness [289–292], whereupon 
myocardial stiffness has turned out to be by far the predominant feature [257, 293]. 
Furthermore, 1/3 of all HFpEF patients are found to have normal myocardial col-
lagen volume fraction despite similar high LVEDPs compared to those with ele-
vated collagen ratios [80]. Accordingly, elevated (passive) diastolic LV stiffness is 
basically attributed to elevated “intrinsic” cardiomyocyte stiffness, meanwhile con-
firmed by numerous study results [80, 122–124].

ECM
In HFpEF, an elevated total amount of collagen with an excessive collagen type I deposi-
tion (due to exaggerated synthesis and a depressed degradation, thus collagen turnover 
[119, 294]) and an intensified collagen-cross linking [8, 136] are contributing to diastolic 
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dysfunction [120]. Fibroblasts will be stimulated, mediated by TGF-β (transforming 
growth factor, a cytokine), which is released by inflammatory cells, to transdifferentiate 
into myofibroblasts, decisively involved in ECM collagen production fascilitating fibros-
ing [66]. Furthermore, reduced NO bioavailability (details read below) attributed to endo-
thelial dysfunction contributes to the fibrosing of myocardium by affecting the 
cGMP-pathway, exerting direct fibrotic properties [295, 296]. NO deprivation promotes 
endothelial cells to transmit to mesenchymal cells which stimulate fibroblasts/myofibro-
blasts facilitating fibrosis [297]. Collagen per se is a stable molecule with a long turnover 
(80–120 days [298]), thus the fibrosing process is more a long term issue and not involved 
in acute disorders. Factors disrupting (myocardial) collagen balance include ischemia, 
enhanced wall stress, A II, and TGF-β, provoking altered collagen synthesis, composition 
and deposition leading to pathological tissue fibrosis [299], subsequently affecting cham-
ber stiffness which is related to the cardiac amount of ECM [103].

Both, hypertensive heart disease and HFpEF are associated with excessive col-
lagen volume, altered collagen composition and function, causing increased dia-
stolic stiffness [136]. However, 1/3 of HFpEF patients have normal collagen volume 
fraction [80]. Myocardial inflammation is demonstrated to contribute to changes in 
ECM and to diastolic dysfunction [66], albeit titin’s expression/composition (its 
isoform N2B) and titin’s phosphorylation status predominantly determine cardio-
myocyte tone and thus passive stiffness [122, 123, 209, 211].

Cardiomyocytes
Intrinsic cardiomyocyte stiffness has been found elevated in HFpEF patients [78, 
80, 123]. This stiffness has been referred to as the cytoskeletal protein titin [122, 
206, 209, 300–302]. Titin contributes to LV passive stiffness by roughly 80% as 
long as sarcomer length ranges within the physiological band of 1.8–2.2 μm, while 
the influence/contribution of ECM becomes more important in dilated sarcomeres 
of >2.2 μm [209, 211]—as in HfrEF. As such, elevated diastolic LV stiffness is 
largely/basically attributed to elevated intrinsic cardiomyocyte stiffness as numer-
ous studies have shown [80, 122–124].

Cardiomyocyte elasticity is titin-based adjusted, transcriptionally and post- 
translationally [127]. Transcriptionally, the stiffer N2B titin (titin is obviously expressed 
in two isoforms) isoform is, to the disadvantage of the N2BA (more compliant) isoform, 
stronger expressed in patients with HFpEF [208], thus the ratio (normal hearts 35:65 
[208]) of N2BA to N2B isoform is reported as having changed in favour of the stiffer 
N2B type [206, 209, 301, 302], causing elevated cardiomyocyte and LV stiffness [127]. 
Furthermore, post-translationally cardiomyocyte stiffening arises from alterations in the 
phosphorylation state of titin (stiffer if hypophosphorylated) [122, 206, 300], but may be 
further due to formation of disulfide bridges within the titin molecule, as the result of 
increased oxidative stress [207]. The phosphorylation is mediated by protein kinase A 
(PKA) and protein kinase G (PKG), both make titin more compliant while phosphory-
lating it, and hypophosphorylation of titin is reported as being the result of low PKG 
activity [9, 78, 127] in consequence of the deficient cGMP concentration [78]—cGMP 
activates as a second messenger intracellular kinases such as PKG and PKA [303]. This 
diminished cGMP content is attributed to the low NO bioavailability and the high per-
oxydinitrate level as both predispose a reduced cGMC production by soluble guanosine 
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cyclase [304]. The low NO availability is the result of endothelial dysfunction [192], in 
this case of the microvascular endothelium of the coronary vessels and intramyocardial 
capillaries, which have been afflicted as part of the vascular endothelial layers of the 
body by the systemic inflammation related to the “comorbidities” demonstrated in 
HFpEF patients such as hypertension, obesity, diabetes, metabolic syndrome, and 
COPD [75, 151, 199]. The, in that setting, released proinflammatory agents elicit endo-
thelial production of ROS (reactive oxygen species) which cause high nitrosative/oxida-
tive stress and subsequently limit NO bioavailability for the adjacent cardiomyocytes [9, 
78, 127], as well as NO-mediated signalling [215, 216].

NO is known to enhance LV relaxation and LV distensibility through a number of 
mechanisms, some are dependent on an intact NO-cGMP- PKG pathway, like reduc-
tion of myofilament Ca sensitivity by troponin I phosphorylation and by enhance-
ment of phospholamban—mediated sarcoplasmatic reticular Ca reuptake [305]. 
Moreover, as a result of the deficient NO-cGMP-PKG signalling pathway, vasodila-
tor response of the coronary mircovasculature is substantially reduced [197].

Figure 5.4 by Paulus and Tschoepe summarizes the pathobiological processes 
within the heart muscle causing diastolic dysfunction and potentially precipitating 
HFpEF. 

Furthermore, as the peripheral endothelium is, of course, afflicted as well (sys-
temic inflammation), a systemic deficient/compromised vasodilator response exists 
and, as several studies emphasize, contributes to (explaining) the reduced exercise 
tolerance typical for HFpEF [68, 306]. Moreover, peripheral endothelial dysfunc-
tion is verified to be an independent predictor of outcome [67], accordingly further 
substantiating the causal involvement of the endothelium (of a dysfunctional 
endothelium) in the pathobiology of HFpEF malady [192].

This blunted vasodilator response correlates with LV diastolic dysfunction [197].
The disrupted NO-cGMP-PKG pathway is able to explain the increased cardio-

myocyte stiffness (altered titin expression and hypophosphorylation of titin [300, 
301]), the interstitial fibrosis (increased collagen volume and deposition of type I 
collagen) [78, 120], and the development of concentric LV remodelling with hyper-
trophied (concentrically thickened) cardiomyocytes [78, 82].

For the sake of completeness, further disorders and malformations may modu-
late the titin-based cardiomyocyte stiffness [212]: (1) disordered and blunted cross 
bridge detachment, resulting in bonding of disulfide cross bridges within the titin 
molecule due to an energy deficit [55, 307], (2) compromised NO signalling [308, 
309], and (3) oxidative stress-induced formation of disulfide bridges within the titin 
molecule [212], leading to slowed relaxation [310].

The slowed relaxation as the second quality of diastole is related to persistent 
cross-bridging and diminished/altered sarcoplasmatic reticular Ca reuptake [310]. 
The compromised NO signalling pathway impedes through deficient cGMP content 
(cGMP reduces myofilamentary Ca sensitivity allowing cross-bridge detachment) 
cross-bridge detachment [308]. Furthermore, since detachment is an energy con-
suming process, the diminished ratio of ATP found in HFpEF patients may be a 
contributing factor [55, 311].
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As such, DD is basically caused by altered diastolic myocardial stiffness [8, 116, 117]. 
Increases in diastolic myocardial stiffness result in increased filling pressures (higher 
pressures for the same filling volume) [22, 25, 38, 130, 269, 312]: Increased filling 
pressures are the main physiologic consequence of diastolic dysfunction [261]. 
Since these elevated left-sided filling pressures are transmitted backward into the pul-
monary venule and venous network may pulmonary venous hypertension ensue [38].

Accordingly, ↑ diastolic myocardial stiffness → altered diastolic properties precipi-
tating diastolic dysfunction → ↑ LVEDP → pulmonary venous hypertension [38].

The main (patho)physiologic consequences of these altered ventricular filling 
conditions [32–34, 38, 312] include:

 (1) Ensuing pulmonary venous hypertension [38] and predisposition and facilita-
tion of the onset of pulmonary hypertension and (consecutively) right heart 
dysfunction [14, 56, 115, 313].
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Fig. 5.4 Adopted from Paulus and Tschoepe [199] with permission. A (low grade) inflammatory 
condition (reflected by elevated serum levels of (pro-) inflammatory mediators, e.g. interleukin 
(IL)-6, tumor necrosis factor (TNF)-a, soluble ST2 (sST2), and pentraxin 3), induced by several 
co-morbidities, afflicts the coronary endothelium and the endocardium, and precipitates endothe-
lial dysfunction (resulting largely in reduced NO bioavailability). Consecutively, cardiomyoyctes 
and the extracellular matrix (ECM) will be affected, precipitating alterations of cardiomyocyte 
stiffening (preferred expression of titin’s stiffer N2B isoform) and fibrosing (change in collagen 
type and amount) of the ECM. Various signalling pathways and miscellaneous mediators are 
involved, of special interest is the disturbance of NO-cGMP-PKG pathway causing cardiomyocyte 
hypertrophy and (further) stiffening (hypophosphorylation of titin). Legend: ROS reactive oxygen 
species, NO nitric oxide, VCAM vascular cell adhesion molecule, ONOO peroxynitrite, sGC solu-
ble guanylate cyclase, PKG protein kinase G, F passive cardiomyoyte resting tension, TGF-β 
transforming growth factor β
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↑ diastolic myocardial stiffness → altered diastolic properties precipitating 
diastolic dysfunction → ↑ LVEDP → pulmonary venous hypertension [38] → ↑ 
RV—afterload affecting RV-PA-coupling → acute right heart dysfunction [83].

 (2) Small changes in filling volume are going along with significant changes in 
diastolic pressures [103, 314]. The stiffened ventricle is unable to accommodate 
increasing filling volume without marked increases in filling pressures [22, 315] 
and as such, little or even unrecognizable increases in filling volumes are 
accompanied by considerable changes in filling pressures [21, 26].

 (3) A high vulnerability to acutely develop pulmonary congestion or edema [21, 
22, 312, 316].

 (4) Predisposition and facilitation of the onset of HFpEF, as worsening DD is 
clearly shown to be independently related to incident HFpEF development 
[129, 247].

 (5) Diastolic stiffening leads to fluid redistribution [61] facilitating the develop-
ment of fluid accumulation within the pulmonary vessel bed and tissue, causing 
pulmonary congestion/edema and, in general less clinically obvious, peripheral 
edema formation, thus incipient acute heart failure [317, 318].

However, other features than DD definitely contribute and may even be critical 
for acute decompensations [1, 14, 25, 61, 62, 114]: Chamber stiffness, and thus 
ventricular filling characteristics, although largely determined by myocardial stiff-
ness [8, 25] and indeed in the majority of cases altered by changes in diastolic 
myocardial properties, DD [8, 29, 116, 117], may also be substantially affected by 
external issues stiffening the chamber [8]. Changes in “extrinsic” features, namely 
alterations in loading conditions, are in several clinical conditions the predominant 
factor causing an acutely altered chamber compliance [38, 61, 62, 319, 320].3 
Acute changes in chamber stiffness are clearly demonstrated being generally caused 
by altered external circumstances [275].

5.4.2.2  Vascular Stiffening and AV-Coupling
Vascular properties substantially affect cardiac properties and performance [38, 43, 
61–63, 267, 322, 323]: “LV performance is influenced by arterial load [44] (since 
systolic wall stress reflects afterload as defined by the law of LaPlace [324, 325]), 
and arterial properties are in turn influenced by LV performance” [44, 326]. Vascular 
properties, specifically the vascular tone, play an essential role in the development 
and progression of HF [327]. Moreover, worsening vascular failure is considered to 
be a common precipitant for AHF [83].

Ventricular–vascular stiffening increases with aging, hypertension, and diabetes, 
and is abnormally pronounced in patients with HFpEF [53, 81]. This “increase in 
vascular stiffness has direct implications for the ventricular–arterial coupling” [287], 
and as such, HFpEF may also be seen as a disease of (altered) v-a-coupling [62, 147].

A physiological feature of aging is the increase in the stiffness of the arteries, 
particularly of the large elastic ones [39, 328, 329]. This age-associated rise in vas-
cular stiffness, reflected by an increase in arterial elastance Ea [42], poses an 

3 Compliance is the inverse of diastolic chamber stiffness [38, 320].
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enhanced load on the heart by increasing systolic wall stress [330]. In order to main-
tain a stable and matched v-a-coupling, ensuring that cardiac efficiency to transfer 
blood from the heart into the vasculature is maintained [331], the left ventricular 
elastance (ventricular end-systolic stiffness), Ees, has to rise proportionately in tan-
dem with Ea. [42, 43, 49, 130] Furthermore, an “optimized” chamber and coupling 
efficiency is inevitable and hence prioritized because only then proper and physio-
logical hemodynamic conditions are guaranteed [42, 43, 332]. Consequently, the 
ventriculo–arterial coupling ratio remains roughly unchanged [43, 57, 62], is some-
what lower but still within the range where external work and efficiency are proba-
bly not compromised [331], although, in the elderly, “a stiffer heart is coupled to the 
stiffer vascular system” [70].

Of special note, the higher resting Ees is reflecting a higher end-systolic ventricular 
stiffness, compensating for increased vascular load attributed to “normal” aging, rather 
than indicative for a better, increased, contractility [37, 61, 230]. In contrary, systolic 
performance, respectively the systolic reserve capacity is impaired [333, 334].

Furthermore, increased vascular stiffness with subsequently enhanced LV after-
load and concomitant elevated end-systolic ventricular stiffness also facilitates dia-
stolic dysfunction [38, 43, 61, 322, 327]: Indeed, an increase in systolic ventricular 
elastance is associated with both, enhanced ventricular end-systolic but also dia-
stolic stiffness [38, 43, 61, 335]. Petrie established an inverse relationship between 
diastolic relaxation and afterload in hypertensive and non-hypertensive humans 
indicating cross-talk between arterial load and diastolic LV function [336]. 
Moreover, an increase in arterial stiffness is associated with diastolic dysfunction 
[322, 337] and HFpEF [63, 338]. As such, augmented arterial stiffness is associated 
with both, systolic and diastolic dysfunction [335, 339, 340] at which increases in 
afterload generally cause a rise in LVEDP [21, 62, 341, 342].

Accordingly, vascular dysfunction definitely relevantly affects diastolic proper-
ties, implying diastolic dysfunction, augmenting LVEDP [22, 78, 130].

The clinically most important consequence is that patients with high Ees (steeper 
Ees slope) and Ea, due to combined systolic ventricular and arterial stiffening, 
show an enhanced systolic pressure sensitivity to changes in cardiac loading 
conditions (changes in LV-afterload and changes in LV filling volume, preload) 
[43, 62, 124, 343]. Increases in afterload (e.g. application of vasoconstrictors) 
may induce dramatic, exaggerated increases in systolic blood pressure and 
LVEDP [62], while acute decreases in afterload (e.g. application of vasodilators) 
may provoke a substantial, disproportionate drop in BP and mostly SV, the latter 
due to the uneven decline in LVEDP and thus LV filling volume [124]. Likewise, 
even small changes in volume may be translated by the stiffened ventriculo-
arterial system into amplified and disproportionate changes in systolic arterial 
pressure [43, 343]. Indeed, significant changes in filling pressure may even be 
seen with little or no detectable change in ventricular volume [21, 26]. In so far, 
diuretics given to those patients may result in significant blood pressure drops 
and may potentially induce hypotension and hemodynamic instability [37]. 
Conversely, application of only small amounts of fluids may provoke pulmonary 
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edema. The magnitude of the changes depends on the absolute values of Ees and 
Ea [256] and thereby are most pronounced in HFpEF patients since their absolute 
values of Ees and Ea are higher compared to healthy elderly and hypertensive 
patients/patients with HHD [130].

The enhanced systolic pressure sensitivity, characteristic of combined ventriculo- 
vascular stiffening, undoubtedly predisposes and is explicit co-responsible for the 
development of hypertensive pulmonary edema, the latter is, together with exercise 
intolerance, one of the two clinical key manifestations of HFpEF [13, 43, 62]. 
Gillebert [266] and Borlaug [344] report that “acute afterload elevation in the set-
ting of ventricular–vascular stiffening causes a significant and disproportionate 
increase in blood pressure which may then feedback to (further) impair diastolic 
relaxation leading to dramatic increases in filling pressure during exercise”. Indeed, 
every increase in afterload in the presence of ventriculo-vascular stiffening is con-
secutively attended by (1) a disproportionate upswing in end-systolic stiffness, Ees 
[38, 62] and (2) by a further diminishment of LV compliance [38], accordingly 
substantially enhanced LVEDPs ensue [38, 315].

Accordingly, for our daily practice with the elderly, hypertensive, and with 
patients suffering from HFpEF, the following consequences of the above described 
pathobiological alterations are of particular relevance:

 1. A stiffer heart-arterial system displays a higher load-sensitivity, even if the cou-
pling ratio is normal or near normal [70]. Accordingly, a clinically important 
effect of the combined increase in Ea and Ees is, due to the steeper slope of the 
end-systolic pressure volume relationship with a higher set point for any given 
volume [41, 70], a considerable lability in blood pressure with substantial fluc-
tuations following even mild alterations in afterload (e.g. increasing BP due to 
changed sympathetic discharge) and marginal changes in volume loading (pre-
load) [43, 62, 343], or mildest modifications in SV [62, 124].

HFpEF patients, found to be highly sensitive to changes in loading conditions 
(volume and pressure load) [43, 61, 62], are especially predisposed to develop 
pulmonary congestion or actually flash pulmonary edema even in case of only 
mild, acute increases in BP [21, 62, 345, 346] or yet undetectable volume expan-
sions [43].

 2. The “physiological” aging process of the vascular system with consecutive increase 
in LV systolic and diastolic stiffness [42, 43] may potentially precipitate clinical 
symptoms (due to impaired hemodynamic performance) in case typical maladies 
such as hypertension, diabetes, and metabolic syndrome develop on top [44].

 3. The systolic reserve capacity is limited in HFpEF patients since the resting Ees is 
already elevated [70]. Accordingly, net stroke work generation, and consecutively 
SV, increase only mildly during stress, thus blunting chamber emptying and leav-
ing LVESV high, thus limiting cardiovascular performance capacity [43, 68].

 4. Extended cyclic changes of arterial blood flow, resulting from enhanced pulse 
pressure attributed to arterial stiffening, cause larger pulsative pressures and may 
thereby affect microcirculation, subsequently provoking endothelial dysfunction 
which potentially spreads over the whole body facilitating end organ damage [37].
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 5. A heart which has to eject into a stiffened arterial system must generate higher end-
systolic pressures to achieve the same net stroke volume [347]. Hence, for any given 
level of ejected blood, a greater energy requirement is necessary [348, 349]. This 
may acutely provoke energy deficits precipitating hypophosphorylizations of titin 
and thus stiffens the cardiomyocytes (even further) affecting diastolic properties [55].

To summarize, arterial stiffening (↑ Ea) affects both, ventricular systolic and dia-
stolic properties [38, 322, 327, 335, 337, 339, 340]:

↑ Ea → concomitant, tandem increase in end-systolic ventricular stiffness, Ees [42, 43, 49, 130].

     →  patients work on an already higher end-systolic pressure volume relation with a 
higher set point for any given change in loading conditions [41, 70]

       →  limited systolic reserve capacity and the heart must generate higher 
end-systolic pressures for the same net stroke volume [347]. This necessitates 
a greater energy requirement for a given level of ejected flow [348]

   → affects diastolic properties by precipitating increased diastolic stiffness [322, 336, 337]:

     → ↑ LV stiffness → ↑filling pressures [38]

The presence of combined increased/elevated Ea and Ees allows for disproportionate increases in Ees

     →  in case of an acute increase in BP (and thus Ea), a concomitantly exaggerated rise 
in LVEDP may occur [21, 38, 62, 315]

        → this predisposes for acute hypertensive flash pulmonary edema development 
[62, 268]

     →  “dictates” high blood pressure lability [43, 62, 124, 343] and allows for  
dramatic blood pressure fluctuations for any given change in loading conditions 
or SV [62, 124].

5.4.2.3  Systolic Function and Cardiac Reserve
Study results assessing the systolic function of patients suffering from HFpEF have 
been controversial [24, 49, 60, 112, 269, 336, 350–352]. However, it depends on the 
method used to assess systolic properties and the question which feature and param-
eter really reflects systolic performance [49, 60, 112, 336, 353]. As such, although 
EF is widely used to characterize and to indicate systolic function [14, 60], it does, 
by far, not represent systolic properties: “EF is only a crude measure of LV systolic 
function as influenced by several factors beyond contractility per se including load-
ing conditions and chamber geometry” [354]. Indeed, EF is highly dependent on 
loading conditions and little sensitive to subtle abnormalities [14, 269, 355–357]. 
Hence, if afterload increases, EF will fall and vice versa (afterload ↑ → EF ↓ and vice 
versa) [358, 359]. Differently, EF represents ventriculo–arterial coupling conditions 
and as such is a coupling parameter rather than indicating systolic performance [49, 
262]. Nonetheless, by all means it makes absolutely sense that we use EF, as proper 
circulation and functioning of blood flow decisively depend on both balanced cardiac 
and vascular properties and their neat and smooth interaction [37, 61].

Meanwhile, due to overwhelming evidence, there is no doubt at all that patients 
with HFpEF display and show subtle altered, impaired systolic properties [57, 60, 
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112, 336, 351, 360, 361]. Applying load-independent parameters in tissue Doppler 
and strain based, as well as speckle-tracking echocardiographic and MR imaging, 
assessments clearly revealed a couple of systolic abnormalities, confirming dimin-
ished systolic performance and contractile power (the most specific feature of 
systolic function) in patients with HFpEF on the myocardial, but actually also on 
the chamber level [49, 60, 112, 269, 336, 352, 353, 361]. Particularly longitudinal 
and circumferential tissue fibre shortening are demonstratedly impaired [60, 353, 
361]. The left chamber is reported to thicken in radial layers while it shortens in 
longitudinal and circumferential plane during systole [362]. Indeed, myocardial 
contractility, and as such specific systolic properties, are truly indicated and 
reflected by circumferential midwall fractional fibre shortening [244, 363, 364], 
and longitudinal strain in particular allows to assess for myocardial deformation, 
a specific systolic issue [60, 113, 365]. Moreover, long axis function is reported to 
be affected early on in HFpEF as the longitudinal subendocardial fibre layout is 
predisposed to ischemia in case of elevated filling pressures and wall stress [366, 
367]. Most recently, although even more difficult to assess, subtle systolic issues 
such as torsion, twist and untwist [353, 368, 369] are found to be altered. 
Accordingly, substantial evidence clearly demonstrates impaired systolic longitu-
dinal and radial, and compromised twist function in HFpEF patients [49, 60, 351, 
353, 361, 370].

The gentle systolic abnormalities and deficiencies become clinically evident in 
most patients during stress conditions, e.g. physical exertion: The physiological and 
necessary increase in SV [20, 68, 258] and ejection fraction [68, 371] to adapt car-
diac performance during stress fails to appear properly, predominantly as a conse-
quence of the inability of the heart to empty the chamber appropriately (thus unable 
to reduce ESV,) rather than as the result of limited diastolic filling volumes [19, 68, 
258]. This persistently elevated ESV impairs early diastolic suction and thus pro-
motes LA-hypertension [336, 372] and consecutively pulmonary venous hyperten-
sion potentially precipitating pulmonary congestion or edema.

However, as Najjar states, “although impairments in contractility are verified, 
the deficit is only mild and diminished contractility is not the culprit lesion in the 
pathogenesis of HFpEF” [354].

5.4.2.4  PH and RV Dysfunction, DVI
Pulmonary hypertension is highly common in patients suffering from HFpEF; up to 
83% develop PH [56, 285]. Elevated left-sided filling pressures are demonstrated to 
be transmitted backwards, precipitating congestion in the pulmonary venous system 
by passively provoking an elevation of the pulmonary venous pressure [111, 281, 
373, 374]: Pulmonary venous or postcapillary pulmonary hypertension applies [56, 
281, 375, 376]. These elevated filling pressures are related to several features includ-
ing diastolic dysfunction [22, 25] and ventriculo-vascular stiffening [38, 61, 327, 
335, 337], and may even be exaggerated during physical stress or augmented NHs 
drive (e.g. increase in BP), since physiological processes like “suctioning” are 
blunted in HFpEF individuals, driving the LA pressure up [138, 260, 353]. Although 
this (altered) “behaviour” may in principle make sense as the stiff ventricle can only 
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fill at the expense of elevated LA pressures [20, 260], acute further increases in left- 
sided filling pressures will add up to pre-existing pulmonary pressures [24], and 
concomitantly further enhance pulmonary pressures definitely precipitating clinical 
symptoms [345, 377]. Elevated pulmonary pressures (consequently with the rise in 
pulmonary venous pressure, pulmonary artery pressure (PAP) increases [378]) 
always precipitate and display an increased systolic load on the right ventricle, 
after-loading the right heart chamber [379–382]. However, as elevated LA pressures 
predominantly affect the pulsatile load, pulmonary vascular compliance will be 
impaired, consecutively increasing pulmonary vascular resistance [383, 384]. Thus, 
aside from the passive component related to backward transmitted elevated LVEDPs 
and LA-Ps causing PvH, elevated PVR indicates and reflects altered pulmonary 
vascular properties [374, 385, 386], probably a more substantial and lasting effect 
and contribution to pulmonary vascular impedance [373, 387]. This is more serious 
as vascular alterations are less likely to be reversed and as increased pulmonary 
vascular resistance indicates “pulmonary vascular disease” [373, 374, 386–388]. 
Furthermore, the increase in pulmonary vascular resistance (and PAP as well) mark-
edly impacts on the impedance (rises) of the pulmonary artery and the RV outflow 
tractus, after-loading the right ventricle [379–382]. Particularly a rapid rise in PAP 
and/or PVR, causing acute pulmonary hypertension and concomitantly afterloading 
the right chamber enhancing RV wall tension, immediately leads to RV-dilatation 
[379, 389], which is accompanied by increases in RVEDV [380, 382, 389] and 
RVEDP [390, 391], compromised RV contractility [392, 393], and impaired RV-EF 
[389, 394]. Under these conditions, diastolic ventricular interaction (DVI) applies, 
compromising left ventricular filling and (thus even more) worsening global cardiac 
function and systemic circulation [41, 395, 396]. DVI, coming in general into effect 
with increasing RVEDP, as in case RV loading conditions change [273, 397], essen-
tially contributes to acute right heart failure pathobiology and makes a crucial 
hemodynamic impact on right heart and subsequently systemic cardiovascular func-
tion [398].

Passively backwards transmitted elevated left-sided pressures may precipitate 
ultrastructural abnormalities indicating acute alveolar-capillary stress failure. 
However, these aberrations are fully reversible if PvP and thus the capillary hydro-
static pressure returns to normal values after a more or less short spell [399, 400]. 
Accordingly, patients suffering from LHD and consecutively persistent venous 
pulmonary hypertension may, although the increased pulmonary pressures are 
basically of backward transmitted, passive nature, develop functional and struc-
tural modifications of the pre-capillary, namely of the arterioles and the small 
arteries of the pulmonary vessel system [373, 401, 402]. These alterations cause an 
increase in PVR and concomitantly a further considerable rise in (mean) pulmo-
nary pressure [373, 374, 387]. Indeed, vasoconstriction of functional nature and/or 
structural reductions in the area of the pulmonary arterioles and arteries inevitably 
provoke an “out of proportion” increase in the pulmonary pressures, hence display, 
in addition to the PvH, a pulmonary “arterial” constituent to the total PAP recog-
nized [385, 386, 403, 404]. Pulmonary vascular disease, characterized by elevated 
PVR and reduced pulmonary vascular compliance [405], indicated by an enhanced 
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transpulmonary gradient (see Chap. 6), confirms the pre-capillary component con-
tributing to PH in HFpEF [285, 406]. This ‘out of proportion PH’ is found in 
roughly 50% of all HFpEF patients [124, 285], necessitating further, different 
therapeutic measures.

5.4.2.5  Ventricular Dyssynchrony
Penicka et al. [407] demonstrated that significant LV dyssynchrony is able to evoke 
in hypertensive, so far clinically unremarkable patients, symptoms of heart failure. 
Considerable dyssynchrony is reported to be present in nearly up to 50% of patients 
with HFpEF [408–410]. Pathophysiologically, marked dyssynchrony impairs both, 
diastolic and systolic function [408]. However, there are conflicting results and opin-
ions regarding the potency of dyssynchrony as being an additional factor able to pro-
voke overt heart failure in the presence of relevant diastolic dysfunction [411, 412].

5.4.2.6  Left Atrial Dysfunction
The LA may be understood as a reservoir, conduit and pump, modulating LV filling 
[413, 414]. LA further complies with a kind of “watershed” function between LV 
and pulmonary circulation and as such buffers pressure and flow oscillations [415]. 
Its pump function is required even more in case of altered diastolic ventricular prop-
erties to maintain filling, and indeed its pump force has been demonstrated to 
increase in the presence of mild diastolic LV dysfunction, but unfortunately fails 
and even deteriorates if moderate or severe diastolic ventricular dysfunction apply 
[413, 414, 416]. As such, while in healthy individuals LV effectively “pulls” blood 
to fill in early diastole (suctioning) [372, 417], LV filling in HFpEF patients deci-
sively relies upon a high LA pressure which “pushes” blood into the “stiffened” 
chamber [20, 24]. However, increases in LA-pressure are augmenting pulmonary 
venous pressures promoting venous pulmonary hypertension [281, 373], and 
increase the pulsatile RV load, even acutely during exercise [418]. Accordingly, LA 
dysfunction is associated with pulmonary vascular disease, promoting pulmonary 
vascular remodelling and PH [418, 419], and, consecutively RV dysfunction/failure 
[56, 418, 420, 421]: Due to increased PVR and pulmonary artery stiffening (follow-
ing enhanced pulsatile load) the RV will be “afterloaded” [285]. Moreover, ensuing 
RV-dysfunction is affiliated with increased risk of death [57, 393].

Left atrial dysfunction is characterized by abnormal dimensions (dilatation), as 
well systolic (↓ systolic function) and diastolic (↑ stiffness) properties [415, 422–
424]. LA dimensions, area and volume, are considered to represent global func-
tional LA parameters [425], and LA dilatation is a marker of diastolic ventricular 
dysfunction [426]. Intermittent or permanent increases in LVEDP facilitate left-
atrial dilatation and atrial fibrillation (thus atrial dysfunction) [138]. LA enlarge-
ment is linked to occurrent symptoms [53, 138, 427, 428] and disease progression 
[429, 430]. Moreover, LA dysfunction may be the initial mechanism to develop 
symptoms [431].

As LV filling is reliant on atrial contraction in that patient group [432], atrial 
fibrillation is poorly tolerated [433]. Actually, LA dilatation is associated with a loss 
of normal electrical activity promoting the development of atrial fibrillation (AF) 
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[434]. Moreover, AF leads to even lower exercise tolerance [53, 138] (even in case 
of similar chronotropic reserve [435]), is associated with more severe RV dysfunc-
tion [57], and increased risk of death [436].

5.4.2.7  Peripheral Factors
The majority of patients suffer from exercise intolerance [26] and largely 
develop symptoms during exertion rather than at rest [436]. Recent study results 
are now clearly indicative for a reduced ventricular-vascular reserve with vascu-
lar and peripheral muscular issues substantially contributing, in addition to car-
diac limitations, to the clinical picture [54, 68, 258, 306, 438]. Namely, a 
considerably blunted peripheral vascular vasodilation is demonstrated to be a 
relevant issue and contributor to symptoms [54, 68, 371]: While in healthy per-
sons the arterial resistance decreases during exercise (to accommodate the large 
blood flow with only mild pressure increase) [61], patients with HFpEF show a 
blunted exercise-associated vasodilation [68, 353, 371].

This compromised vasomotor function with enhanced vascular tone during exer-
cise may be related to endothelial dysfunction [68], a well established feature in 
HFpEF pathophysiology [68, 439]. Also, an improvement in aortic distensibility, 
reducing aortic stiffness and subsequently attenuating afterload, is demonstrated to be 
missing [63, 315]. Thus, blunted vasodilation and missing improvement in aortic dis-
tensibility (as such an altered vasorelaxation in the presence of an attenuated contrac-
tile reserve) lead to dynamic limitations in ventriculo–arterial coupling during exercise 
[55, 61, 68, 371]. While in healthy humans the Ea/Ees ratio declines during exercise, 
since the increase in Ees (reflecting a true augmentation of contractility) exceeds the 
change in Ea [61], this drop in Ea/Ees ratio is markedly more blunted in HFpEF patients 
compared to hypertensive patients not suffering from HFpEF [55, 68].

Other peripheral issues suggested to contribute to the patients’ exercise disability 
include deranged muscle microcirculation [438], limited lean total and leg muscle 
mass, and altered muscle fibre composition [440, 441].

Cardiac features applying, disturbing, and restricting reserve function are chro-
notropic incompetence, depressed systolic function, and possibly diastolic filling 
abnormalities [15, 19, 20, 25, 442]. Patients with HFpEF show at least a limited 
peak chronotropic reserve [54, 55, 68], up to 50% even fulfil the criteria for chrono-
tropic incompetence while exposed to stress [443]. The contractile reserves are 
attenuated in persons with HFpEF [55, 68, 371]:

The contractile reserve is mitigated by a high basal Ees as typical in this patient 
group and a further increase in Ees, due to positive inotropic effects displayed dur-
ing exercise, will only gently augment net contractility [62]. The systolic restric-
tion may further be related to ischemia, oxidative stress, disturbed energetics, 
passive stiffening, and abnormal Ca handling [49, 55, 60, 272, 336, 351, 444]. 
Therefore it is important to note that the increase in end-systolic ventricular elas-
tance during exercise is highly likely to be mainly related to passive myocardial 
stiffening rather than indicating a true increase in contractility. This evidence is 
further supported by the trend that the increase of Ees in HFpEF patients is higher 
compared to hypertensive individuals (2.42 mmHg/mL vs. 2.3 mmHg/mL) [49].
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Although limited diastolic filling has, without a doubt, a significant impact on 
exercise intolerance, the study findings are quite controversial:

The preload reserve seems to be shortened as no relevant increase in LV end- 
diastolic filling (LVEDV) could be observed in HFpEF [26]. However, the study 
results are somewhat conflicting and a recent trial found a mild increase in LVEDV 
[61]. Other authors have demonstrated an attenuated preload reserve (diminished 
increase in diastolic filling despite marked elevations in filling pressures) [25, 445], 
while some did not find relevantly diminished diastolic filling volumes [54, 68] in 
HFpEF patients during stress. Anyway, end-diastolic left ventricular filling volume 
is obviously not the crucial factor of stress intolerance [19, 68, 258].

5.5  Diagnosis and Clinical Issues

5.5.1  Symptoms and Signs of Heart Failure

Dyspnoea on exertion and exercise intolerance, although being functional hall-
marks of heart failure in general, are together with acute pulmonary edema key 
clinical pictures HFpEF patients typically present [19–21, 446]. The typical 
patient suffering from HFNEF is the elderly woman [437, 447] with arterial 
hypertension (with or without LV-hypertrophy), and often additional co-morbidi-
ties commonly present in patients with HFpEF, particularly diabetes mellitus and 
obesity [5, 50, 85, 89, 276]. However, early on in the disease course, the symp-
toms of heart failure may be really discrete and signs of overt heart failure like 
fluid retention and/or edema formation may be missing [407, 448]. Accordingly, 
other causes (differential diagnosis) of exertional dyspnoea may be looked for 
[449]. Since in addition the signs and symptoms of heart failure are generally non-
specific, thus not really discriminating between HF and other causes [450–452], 
HFpEF may be an under-diagnosed disorder [6, 20]. Particularly in HFpEF the 
prevalences of typical symptoms and signs of heart failure are usually lower com-
pared to HFrEF [103]:

Prevalence of clinical feature
HFrEF/systolic heart 
failure (%)

HFpEF/diastolic heart 
failure (%)

Orthopnoea 73 60

Paroxysmal nocturnal dyspnoea 50 55

Peripheral edema 46 35

Jugular venous distension 96 85

Hepatomegaly 40 30

III. heart sound (S3) 65 45

Rales or crepitations 70 72

Chest X-ray consistent with

–  Pulmonary venous 
hypertension

80 75

– Cardiomegaly 96 90
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Breathlessness, orthopnoea, paroxysmal nocturnal dyspnoea, reduced exercise 
tolerance, fatigue, tiredness, increased time to recover after exercise, and ankle 
swelling are considered to be more typical symptoms and signs of heart failure, 
while elevated jugular venous pressure, positive hepato-jugular reflux, and the pres-
ence of a III. heart sound are probably more specific [452–454]. Rales, crepitations, 
III. heart sound, and peripheral edema may be more common in case of acute 
decompensation, but rarely found in chronic heart failure [455].

However, the diagnostic evaluation always commences with the history and the 
physical examination [446].

An ECG may reveal signs of LV hypertrophy or concomitant conditions like 
arrhythmias (particularly atrial fibrillation), however, a normal ECG in the setting of 
suspected acute heart failure virtually rules out this diagnosis [456], but not HFpEF 
[446]. An abnormal ECG simply increases the likelihood that heart failure exists, 
but its specificity is really low [454, 457, 458].

Differential diagnostic considerations (adapted from Wachter and Edelmann [7] 
and modified) include

– Pulmonary maladies:

  • Chronic obstructive lung disease

  • Pulmonary embolism

  • Pneumonia

  • Pulmonary fibrosis

  • Pneumothorax

  • Pleural effusion

  • Lung cancer

– Cardiovascular:

  • HFrEF

  • Pulmonary hypertension (for other reason than HFpEF)

  • Valvular heart disease

  • Constrictive pericarditis

  • Hypertension and hypertensive crisis

  • Arrhythmias

– Neuromuscular maladies

– Adipositas and obesity associated hypoventilation syndrome

– Varia: medication, anemia, deconditioning

5.5.2  Ejection Fraction

In order to assess the systolic function of the heart and thus the second criterion of 
the definition of HFpEF, in the vast majority of cases an echocardiogram will be 
performed. Echocardiography is anyway the main tool in the diagnostic work up [3, 
4, 449, 459], playing a pivotal role in the diagnostic process [3, 4, 449, 460].

5 Heart Failure with Normal Left Ventricular Ejection Fraction (HFNEF)



303

EF is the most common parameter used to assess the systolic function of the left 
and right ventricle [355]. EF succeeds due to its easy application, is well under-
stood, and its reliability to detect any abnormalities in contractility is at least reason-
able [355]. The level of EF that defines a normal systolic function is somewhat 
arbitrary [461], but, nevertheless, in the (joint) American and European echocar-
diography guidelines on the diagnosis of HFpEF [462–464] and the most recent 
European and American guidelines on HFpEF [3, 4], a LV-EF ≥ 50% determines a 
normal or only mildly impaired LV systolic function, as previously proposed by 
other authors [1, 5, 6, 293].

However, EF is far from an ideal parameter to assess the contractility, and a 
preserved EF does not automatically imply normal systolic function [62, 336, 
465]. Being dependent on afterload, preload and on heart volume and mass [356, 
357, 466], EF will fail to report excess afterload [467], in cases of augmented 
preload [468, 469] and when concentric LVH is present [470] (see Chap. 1, para-
graph 6).

As such, EF may be, by all means, seen as a coupling parameter, describing fun-
damental aspects of ventriculo–arterial coupling rather than truly reflecting contrac-
tility [471, 472]—for more information see Chap. 1, paragraph 6.

Often misinterpretation and a failure to detect an impaired systolic function can 
be avoided by assessing the longitudinal fibre shortening. The longitudinal shorten-
ing may be reduced but the EF appears to be normal, or nearly normal, secondary to 
an increase in the radial shortening, compensating the longitudinal weakness [46]. 
Thus, the longitudinal shortening must be assessed separately in order not to miss a 
compromised systolic function [46]. A decrease in longitudinal shortening is an 
early sign of LV (RV) systolic dysfunction [473, 474].

This can easily be done by assessing the systolic atrial-ventricular (AV) dis-
placement of the mitral valve (systolic mitral valve annulus displacement) [336] or 
tricuspid valve (TAPSE), respectively. AV displacement reflects systolic LV (mitral 
valve annulus) and systolic RV (tricuspid valve annulus) function [475, 476]. 
Assessing the motion of the mitral valve annulus, the subendocardial longitudinal 
muscle fibres are examined [477]. Unfortunately, this element of contraction is not 
assessed by examining the ventricle in the conventional way [478], measuring the 
overall (global) performance in M- or 2D-mode, expressed by EF (or FS) [479]. 
The contribution to the global systolic function of the longitudinal fibres is nor-
mally greater than that of the circumferential fibres, which are usually assessed 
[480, 481].

Yip [478] showed that a significant number of patients with a normal EF, and 
therefore classified as suffering from HFpEF (in his study termed diastolic dysfunc-
tion), indeed have a reduced systolic function when assessing the longitudinal fibres 
by the mitral valve annulus displacement method.

The measurement is not only technically easy but is shown to be markedly more 
sensitive than cardiac catheterisation and older echocardiographic parameters in 
detecting subtle systolic dysfunction [465], overview [336, 477, 482–484].
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Normal displacement amplitude of the mitral valve annulus is 12–14 mm [336, 
482, 484]. A displacement of <10 mm clearly indicates impaired systolic function 
(overview by [336]) as well as an unfavourable prognosis [482].

It should be mentioned that the velocity of the septal annulus site is usually lower 
than the one of the lateral site, thus an average value of the measurements of both sep-
tal and lateral displacement is recommended for evaluation and decision making [1].

It was previously recommended that all patients should undergo echocardiogra-
phy within 72 h after onset of symptoms [5] in order evaluate the systolic function, 
and in order to diagnose or exclude HFpEF because rapid improvement may be seen 
in a short time period. This appears redundant now as Ghandi [21] showed that no 
improvement of LV function can be expected in the days following hospitalisation, 
and thus there will be no change in systolic function on admission in comparison to 
a few days later. Expedient echocardiography is of course desirable for other rea-
sons previously defined.

5.5.3  Diastolic Dysfunction, Structural Changes 
and Bio-markers

The third criterion required to meet the definition of HFpEF is “diastolic dysfunc-
tion” which may be evaluated by echocardiography, more precisely Doppler- 
echocardiography, cardiac catheterization and/or by measurement of plasma 
natriuretic peptide concentration [89].

5.5.3.1  Natriuretic Peptides
The most recent ESC guideline [3] requires elevated levels of natriuretic peptides, 
defined as BNP > 35 pg/mL or NT-pro BNP > 125 pg/mL, as one “sub”-criterion of the 
third benchmark of the definition of HFpEF. In acute conditions, higher values 
(>100 pg/mL for BNP and >300 pg/mL for NTpro-BNP) should be used [3, 485]. The 
ACCP/AHA guidelines and most of the publications still use “older” BNP/NT-pro-
BNP cut-off levels of >220 pg/mL NTpro-BNP and >200 pg/mL BNP [1, 7, 449, 486].

Indeed, the release of BNP/pro-BNP will be induced by myocardial wall stress 
reflecting myocardial stretch and thus indirectly elevated filling pressures [449].

The importance the ESC attributes to the biomarkers is somewhat striking as up 
to 30% of all patients with HFpEF do not exhibit elevated BNP or pro-BNP serum 
levels, although filling pressures are elevated [487]. In HFpEF patients, BNP (and 
its biological inactive form pro-BNP) levels tend to be lower anyway, compared to 
patients suffering from HFrEF [487, 488]. This may be due to a lower BNP expres-
sion associated with obesity and insulin resistance [489–491], furthermore, concen-
tric remodeling (hypertrophy) reduces both systolic and diastolic wall stress 
following the law of LaPlace [492]. On the other hand, proBNP levels rise with age 
and are higher in women than in men [493], increase with deteriorating renal func-
tion (as soon as GFR < 60 mL/min) [494, 495], and in case of tachycardic 
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arrhythmias such as atrial fibrillation or in myocardial ischemia [496] and may be 
affected by comorbidities such as liver failure [497] and sepsis [498]. Accordingly, 
BNP, respectively pro-BNP plasma concentrations, are to some extent non-specific 
[496] and with limited sensitivity. This is at least of relevance in patients with milder 
forms of HFpEF who merely exhibit elevated filling pressures on exertion [407]. 
Furthermore, the natriuretic peptides may not reach the level as a stand-alone 
parameter providing sufficient evidence of functional and/or structural alterations 
satisfying criterion 3 of the definition.

Of note, a normal ECG and/or a BNP/pro-BNP level of <35 pg/mL respectively 
<125 pg/mL rules heart failure (HFrEF, HFmrEF, and HFpEF) actually out [3, 
129].

5.5.3.2  Functional and Structural Alterations
Confirmation of altered diastolic properties/function by tissue Doppler (TD) assess-
ment or invasive hemodynamic measurements gives by itself sufficient evidence to 
fulfil the third criterion [3, 4, 89, 446, 449]. As such, diastolic dysfunction (func-
tional alterations) may be indicated by the E/e′ ratio determined by tissue Doppler 
echocardiography, or by the invasively measured/calculated left ventricular filling 
pressure (pulmonary wedge pressure respectively), or by calculation of the relax-
ation constant τ, or the constant b of the pressure/volume slope [1]:

 1. An E/e′ ratio ≥13 [3, 16], respectively ≥154 [2, 4]
or

 2. A LVEDP >16 mmHg or a PCWP >12 mmHg, or a prolonged relaxation con-
stant τ > 48 ms or a pressure/volume constant of >0.27

  [1, 3, 4, 7, 8, 446, 462–464].

The ESC [3] further proposes in its most recent guideline that a mean velocity of 
e′ < 9 cm/s on septal and lateral mitral wall may be equally qualified as a stand-alone 
parameter to indicate abnormal relaxation and thus diastolic dysfunction, a proposi-
tion based on the results of echocardiographic assessments and research [462, 464, 
500, 501].

5.5.3.3  E/e′ Ratio
The E/e′-ratio is a marker of LVEDP and LV stiffness [7] and is considered to 
reflect LV-filling pressure [3, 8]. E represents the peak flow velocity of transmitral 
blood flow in early diastole, a well established element in the assessment of mitral 
blood flow profile [449]. A reduced early transmitral blood flow velocity, 

4 As the displacement velocities are greater at the lateral mitral annulus side than at the septal side, 
different cut-offs have to be chosen [498].
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characterized by the E-wave, indicates impaired relaxation [446] while an increased 
velocity may reflect a reduced compliance (e.g. due to increased LV stiffness) 
[446]. The tissue Doppler assessment of the velocity of the mitral annular longitu-
dinal myocardial fibre shortening and lengthening, characterized by the e-Wave 
and called e′, has been a big step forward in the assessment of the diastolic proper-
ties of the LV: e′ reflects the recoil and the active phase of diastolic relaxation, and 
is shown to correlate well with τ [502, 503]. The lengthening velocity of the lateral 
and septal mitral annulus myocardial fibres in early diastole is considered to be a 
sensitive and reliable parameter, reflecting diastolic properties [504, 505]. e′ is less 
influenced by loading conditions and other variables as compared to E [504, 506], 
and a reduction in e′ to <8.0 cm/s [504, 507] clearly indicates a slowed relaxation 
[508]. Again, the combination of E and e′ is of special value and their ratio is an 
even more accurate estimate of ventricular filling pressure (LVEDP) with good 
accuracy over a wide range of EFs [503, 509–511]. Thus, with the ratio of the 
velocities of the E-wave of the mitral inflow pattern to the velocity of the e′ wave 
of the tissue Doppler assessment of the myofibres of the mitral valve annulus 
region, we are able to estimate the end-diastolic intraventricular left ventricular 
pressure (LVEDP) [503]:

• E/e′ ratio > 15 → LVEDP > 15 mmHg, and thus clearly elevated [503]
• E/e′ ratio < 8 → LVEDP < 8 mmHg (normal LVEDP) [503]

It must be remembered that in cases of severe MR, the E/e′ ratio is not a reliable 
parameter with which to estimate LVEDP [512]. Furthermore, although ventricular 
compliance predominantly influences the LVEDP [513], extracardiac factors may 
affect the LVEDP as well:

• Pulmonary pathologies, such as pneumonia or malignancy, can change the intra-
thoracic pressure and/or pressure in the pulmonary vascular system [514].

• Rising intra-abdominal pressure will increase the intraventricular pressure as 
well [515].

Unfortunately, there is ongoing criticism and this parameter (E/e′) is again 
and again questioned, as the correlation with invasively determined PCWP in 
the setting of acute decompensations of patients suffering from HFrEF [516], 
or in symptomatic patients with hypertrophic cardiomyopathy [517], was found 
to be weak. Furthermore, the E/e′ ratio may not be sensitive enough to detect 
early stages of HFpEF, and as “only” roughly 25% of HFpEF patients fulfill the 
current definition, and a substantial number of controls (up to 40%) show bor-
derline values, hence specificity and sensitivity of the E/e′ ratio seems to be 
low [407].

However, the comparison of E/e′ directly with invasively measured filling pres-
sures (conductance catheter) in acutely decompensated patients revealed a really 
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good correlation between the two parameters as a 83% sensitivity, a 92% specificity 
and an area under the ROC curve of 0.907 for E/e′ > 8 [516] is in fact a more than 
reliable measure of high-stiffness modulus in HFpEF patients [518]. This finding 
may imply an E/e′-ratio > 8 could be considered as providing sufficient stand-alone 
evidence of diastolic dysfunction without the necessity of further additional or sur-
rogate parameters for all patients where the E/e′ ratio ranges between 8 and 15 
(8 < E/e′ < 15) [519]. The results would allow the use of the E/e′ ratio even in the 
current “gray” zone as a stand-alone parameter trustworthy indicating diastolic dys-
function if the ratio exceeds 8 [8].

5.5.3.4  Inconclusive E/e′ Ratio, Surrogate Markers
However, as long as the E/e′ ratio is inconclusive as defined by the range 
8 < E/e′ < 15, additional, surrogate or second line, minor parameters are demanded 
necessary in order to diagnose HFpEF [8, 129, 446]:

Surrogate markers indirectly suggestive for diastolic dysfunction include structural 
abnormalities such as LA enlargement or increased LV-mass, further atrial fibrillation, 
and elevated natriuretic peptide plasma levels (as BNP/NT-pro BNP plasma levels 
cannot stand alone so far!) [8].

However, the most recent ESC guideline requires the existence of at least one of the 
two predominant structural abnormalities (LA enlargement and LV-mass) in order to 
fulfil criterion 3 of the diagnostic requirements of HEpEF [3]. This denotes an upgrade 
of these two markers, as until now they are ranked as second line, or additional clue, by 
many authors [7, 32, 446, 449, 486], and are still further endorsed as second line indica-
tors by ACCP/AHA [4] and other societies [486]. Decisive structural abnormalities 
(indirectly providing evidence of diastolic dysfunction) may be indicated by:

 1. An enlarged left atrium, defined as LA-volume index LAVI > 34 mL/m2 [3, 16] 
determined by echocardiography (other authors including ACCP/AHA use an 
cut-off of LAVI > 40 ml/m2 [4, 7, 486])

and/or
 2. An increased LV-mass index (LVMI), defined as LVMI ≥ 115 g/m2 for males, 

≥95 g/m2 for females [3] determined by echocardiography (values currently 
widely used by the ACCP/AHA and other authors are LVMI > 149 g/m2 for men 
and >122 g/m2 for women [4, 7, 446, 449]) [1, 463, 464].

Enhanced left atrial volume (and thus enlargement of the LA) is considered to be 
a morphological marker of chronically increased diastolic filling pressures [28, 
520], but may occur in atrial fibrillation or mitral valve disease as well [276]. 
Accordingly, LA enlargement has to be interpreted in the context of the clinical 
condition present and the other echocardiographic findings [501].

Concentric remodeling is a quite common structural finding in patients with 
HFpEF [28, 521].
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Additional and supportive echocardiographic parameters suggestive for functional 
(diastolic) abnormalities are (1) the Ard-Ad difference (if >30 ms) and (2) the com-
bination of an E/A-ratio < 0.5 together with a deceleration time (DT) >280 ms. [1, 
4, 7, 522].

Ad (1) Difference between Ard time and Ad time
Diastolic dysfunction is suggested by abbreviated mitral inflow (A-) wave dura-

tion (Ad) (mitral inflow DT correlates well with PCWP when EF is reduced [523, 
524]) and a longer duration of the flow reversal in the pulmonary veins (Ard) [51, 
525, 526]. If the difference between Ard and Ad, is more than 30 ms, LV diastolic 
dysfunction can be reliably diagnosed [525–528].

Ad (2) the E/A ratio and deceleration time
The E/A ratio, a measurement of mitral valve filling velocities (early to late 

ventricular filling velocities), is directly dependent on the pressure gradient 
between left atrium and the left ventricle and is proposed to reflect both ven-
tricular filling and pressure properties [449]. The combination of a reduced E/A 
ratio plus a prolonged deceleration time is highly suggestive for an impaired 
relaxation of the LV chamber [446]. Evidence of impaired relaxation has to be 
acknowledged as a really solid marker of diastolic dysfunction and with clear 
clinical relevance as Zile found LV relaxation to be virtually impaired in all 
HFpEF patients [22].

Mitral deceleration time of early filling is a measure of LV compliance and filling 
[529] and is practically measured as the time from the maximum E-wave velocity 
flow pattern (as determined from the Dopler mitral inflow pattern) to the flow reach-
ing baseline.

As such, in case the E/e′ ratio is between 8 and 15 and thus inconclusive (as is 
still common sense), an additional parameter is necessary to fulfil criterion 3. An 
elevated BNP-level/pro-BNP-level requires additional evidence as well:

→  in case the E/e′ ratio is inconclusive (8 > E/e′ < (13) 15), another second, minor parameter 
is necessary to substantiate the diagnosis such as:

  – enlarged LA indicated by LAVI > 34 mL/m2 (40 mL/m2), or

  – atrial fibrillation to be present in a typical clinical setting, or

  –  that the LV-mass index is bigger than 115 (149) g/m2 (men) and 95 (122) g/m2 (women), or

  – E/A ratio < 0.5 in the presence of a deceleration time exceeding 280 ms, or

  – the Ard − Ad difference exceeds 30 ms

→ in case of elevated bio-markers an

  –  E/e′ > 8 or one of the above mentioned parameters is required to meet criterion III [1, 7, 
8, 446, 449].

5.5.3.5  Invasively Derived Parameters
Invasively determined diastolic parameters are still “gold standard” [5, 89, 446] 
in diagnosing HFpEF, and may be assessed at least if the diagnosis is unclear [8, 
446, 449].
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A prolonged relaxation constant (τ > 48 ms) is indicative for impaired relax-
ation [445], and an increased slope coefficient reflects reduced LV compliance 
[446].

Interestingly, the highly quality clinical study by Zile [22] revealed that in virtu-
ally all patients with HFpEF, LV relaxation is impaired, and that even independent 
of LV hypertrophy (increased LV mass) and of increased stiffness.

The assessment of the diastolic pressure-volume (P-V) relation is the most accu-
rate way to describe and evaluate cardiac diastolic properties [530]—but this inva-
sive method is not feasible in daily practice as it involves fairly complex 
measurements of chamber stiffness at end-diastole with varying end-diastolic vol-
umes [38]. The pressure-volume relation during diastole attempts to characterize 
the structural behaviour of the heart as a whole [530]. The relation is never linear, in 
general it is exponential [52].

A steeper slope at the same position of an upward shifted pressure-volume rela-
tion gives proof of altered diastolic properties [1, 22, 38, 275, 286, 312]. However, 
also “external” forces (shifting the p-v-relation upward in parallel, nonetheless 
increasing the pressures [275]) including cardiac constraining effects [114, 273, 
276, 280, 285, 531, 532], changes in aortic stiffness [21, 38, 286] and ventriculo–
arterial coupling [44, 62, 147, 287], (consecutively) affect diastolic properties [38, 
62, 286] and LV performance supporting the considerable heterogeneity of this dis-
order [9, 13, 14, 256]—for details read the paragraph on “PV-relation and LVEDP” 
outlined above in this chapter.

5.5.3.6  Diastolic Stress Test
As a considerable number of patients may develop symptoms only during exercise 
(because of the limited sensitivity of markers), and the fact that the clinical course 
may be dynamic, and in case of clinical uncertainty, exertion-based assessment 
(“diastolic stress testing”) is recommended in order to enhance diagnostic sensitiv-
ity and specificity [3, 24, 276, 533]. It may be performed by echocardiography or 
invasively assessed exercise hemodynamics [24, 534, 535]. Meanwhile quite a sub-
stantial number of publications could clearly demonstrate the value of diastolic 
stress tests in that heterogeneous group [24, 536–539]. Particularly as the occur-
rence of pathological pulmonary pressures developed during physical exercise are 
shown to be associated with increased mortality rates [535, 540], stress testing 
yields prognostic information which subsequently may inevitably demand thera-
peutic consequences.

As the findings of echocardiographic assessments during exercise are still 
challenged and suggested to be less robust than invasively derived ones [20, 
449], invasively performed diastolic stress testing may be the preferred method 
[449]. Even more, since right heart catheterizations at expert centres are found to 
have extreme low complication rates, with 1.1% morbidity and a 0.055% mortal-
ity rate [541].

Accordingly, the algorithm to diagnose HFpEF can be summarized as follows 
(adapted from Wachter [7] and Paulus [1], with permission), see Fig. 5.5:
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5.6  Therapy

No evidence-based specific therapeutic approach on how to treat HFpEF could be 
established until now [10, 11, 16, 32, 83, 542]. Clinical trials examining more or 
less the same drugs successfully applied in HFrEF have indeed all been really 
disappointing, since neither a survival nor a sustained symptomatic benefit could 
ever be demonstrated [3, 446, 449, 459, 542–543]. Reasons for this disappointing 
situation are explained by (1) the diversity in trial designs, (2) recruitment of 
patients without true HF, (3) inadequate diagnostic criteria used in HFpEF, but in 

Symptoms or signs of heart failure

Normal or mildly reduced left ventricular systolic function
LVEF ≥ 50%

and 
LVEDVI < 97mL/m2

Evidence of abnormal LV relaxation,  filling, diastolic 
distensibility and diastolic stiffness

Invasive 
Hemodynamics

PCWP >12 mmHg
or

LVEDP >16 mmHg
or

Tau > 48 ms
or

b> 0.27

Tissue Doppler

E/e` ≥ 13 (15)

E/e` 8 –13 (8-15)

Diagnosis: Heart failure with preserved ejection fraction (HFpEF)

Biomarkers

BNP > 35 (200 )pg/mL
or

NT-proBNP
> 125 (220) pg/mL

Tissue Doppler

E/e` > 8

Echo-Doppler

LAVI > 34 (40) mL/m2

or
LVMI> 95 (122) mL/m2 (F)

> 115 (149) mL/m2 (M)
or

atrial fibrillation
or

E/A < 0.5, DT>280 ms
or

Ard-Ad > 30 ms

Biomarkers

BNP > 35 (200) pg/mL
or

NT-proBNP
> 125 (220) pg/mL

Fig. 5.5 Diagnostic algorithm
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particular that (4) the disease mechanisms in HFpEF are still not fully understood, 
(5) the therapeutic approaches do not match the underlying pathophysiologies 
and that (6) there have been a considerable heterogeneity of patient groups with 
variable degrees of “different types” of HFpEF included in the trials [11, 16, 32, 
446, 546].

As such, the therapeutic recommendations of ACCP/AHA [2, 4] and ECS [2, 3] 
are based on expert opinion rather than on evidence [3, 10, 11, 83].

The current therapeutic approach addresses the patients′ acute symptoms aim-
ing to relieve the patients from congestion by alleviating hypertensive dysregula-
tion or by slowing down acute tachycardic rhythm disturbances (as in case of new 
onset of atrial fibrillation) [547]. In a more long-term perspective, blood pressure, 
fluid status, and heart rhythm/heart rate need to be well controlled, ischemic 
events have to be prevented, and an “aggressive” treatment of the co-morbidities 
(a measure which is shown to be effective as it may obviate the development of 
HFpEF [547]), is paramount. However, all efforts are reported to possibly improve 
symptoms, quality of life and exercise capacity, hence represent a symptomatic 
pathway rather than a causal measure nor have any effect on mortality reduction 
[2–4, 16, 446, 542, 548].

Accordingly, (loop) diuretics are to be applied in case of (acute) pulmonary 
congestion and peripheral edema formation in order to relieve of dyspnea and 
volume overload associated symptoms [50, 85, 549]. The improvement of symp-
toms in case of fluid overload by diuretics is independent of LV-EF [550, 551], 
however, evidence from randomized studies are completely lacking [446]. 
Diuretics given in such circumstances definitely improve quality of life [549]. On 
the other hand, “overdiuresis” has to be avoided on all accounts, since altered 
diastolic ventricular properties imply that the heart is highly sensitive to even 
small changes in volume loading such that hypovolemia may immediately cause 
a fall in CO. [124, 446]

Spironolactone may be considered to be given in stable conditions instead of, or 
mostly in addition to, loop diuretics or thiazids in order to control fluid status, blunt 
fibrotic progression, and to take care of euvolemia: The so-called Aldo-DHF study 
in fact gave evidence that this mineralocorticoid antagonist may improve diastolic 
dysfunction [552], but neither the Aldo-DHF [552] nor the larger randomized 
TOPCAT study [545] found any improvement in outcomes when applied to patients 
with HFpEF.

Another essential issue to be treated is high blood pressure: Successful and ambi-
tious BP control may indeed prevent the evolution of heart failure [553], and casual 
evidence suggests the treatment of hypertension could be critical in HFpEF/HFmrEF 
[553, 554]. Furthermore, a high proportion (61%) of patients with acutely decom-
pensated HFpEF/HFmrEF present as hypertensive (defined as sBP > 140 mmHg 
[85], 12% even with uncontrolled hypertension [86]. ACE-inhibitors and ARBs 
are the preferred drugs to address hypertension in patients with heart failure, at least 
in those with HFrEF [3]. Unfortunately all the substances of these groups (ACIs and 
ARBs) failed to show any beneficial effect on mortality rate in HFpEF individuals 
[83, 105, 446, 542, 555]. A combination of enalapril and diuretics indeed led to a 
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significant reduction in LV mass and to an improved exercise tolerance [556], and 
the CHARM study in fact revealed that patients on candesartan had a reduced rate 
of hospitalizations due to heart failure [105]. Nevertheless the beneficial effect on 
mortality, as displayed in HFrEF patients, does not occur in HFpEF individuals at 
all if treated with these drugs [105, 555, 557–559].

Interestingly, a low-sodium diet has been reported to be associated with reduc-
tions in blood pressure and improved diastolic function [560].

Theoretically, lower heart rates may be beneficial in HFpEF patients since 
they extend diastolic filling time and reduce/avoid possible ischemic events 
(which impair relaxation) because of a prolonged coronary perfusion time [10, 
50, 561]. As such, β-blockers, verapamil as well as ivabradine have been exam-
ined. No positive effect on mortality rate is reported in case of β-blockers 
[562–565]. Moreover, β-blockers may even worsen chronotropic incompe-
tence, which is relatively common in HFpEF [10]. Verapamil is reported in 
several studies on hypertrophic cardiomyopathy to markedly improve LV dia-
stolic properties, and thus LV filling characteristics, symptoms, and exercise 
tolerance [566–568]. The results of two smaller trials applying verapamil to 
HFpEF patients suggest verapamil may improve both, symptoms and diastolic 
function [569, 570]. Although these results are quite promising, unfortunately 
no larger studies have been done. The results regarding ivabradine are incon-
sistent, while Kosmala found an improved exercise capacity, Ashrafian found 
the opposite [571].

Atrial fibrillation with tachycardic chamber frequency is, besides hypertensive 
dysregulations, another common trigger for acute decompensations, 21% of acutely 
decompensated patients present with AF [85]. In patients with AF, control of ven-
tricular rate is crucial [2, 32], and restoration of sinus rhythm would enable effective 
atrial contraction and aid filling of the LV [572]. Giving β-blockers in this situation 
seems to be ineffective, while digoxin has not been studied [3].

Exercise training has been assessed in several studies [305, 573–576] and the 
patients who typically trained three times a week for 30 min at an intensity based 
on previous exercise tests demonstrated improved symptoms, quality of life and 
exercise capacity. Two studies found an improvement of diastolic function [573, 
577], none any change in neuroendocrine activity. Unfortunately, an evaluation 
regarding the rate of hospital (re)admissions and outcome (mortality rate) has not 
been done [16].

Sildenafil, although showing inconsistent results and no improvements in exer-
cise capacity, quality of life, diastolic function and clinical status [58, 97], may 
nevertheless be considered in case of substantial pulmonary hypertension [446].

Statins may improve outcomes possibly due to anti-inflammatory and pleiotro-
pic effects [578, 579], however a large study on rosuvastatin’s impact on chronic 
heart failure was not able to reveal larger benefits [580].

Abbate [446] has summarized current treatment practice based on expert opinion in 
the following diagram, which the author of this book slightly modified (with per-
mission) (Fig. 5.6):
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6Pulmonary Hypertension in Left Heart 
Disease

6.1  Definition

Elevated left ventricular filling pressures are a general feature and hallmark of heart 
failure resulting from cardiac dysfunctions, essentially arising from and affecting 
the left ventricle [1, 2]. These disorders include heart failure due to diastolic and/or 
systolic malfunction, as such heart failure with preserved (HFpEF) and without pre-
served, reduced (HFrEF) ejection fraction; valvular diseases; congenital cardiomy-
opathies; and congenital and acquired afflictions of left heart inflow and/or outflow 
tract [2, 3]. Thereby, the pressure of the left atrium will be elevated, either subse-
quently due to the increased LV-filling pressure [1, 4], or even primarily in case of 
mitral stenosis [5]. In any case, left heart disease (LHD) is generally characterized 
by elevated left-sided filling pressures [4, 6]. These augmented left-sided filling 
pressures are transmitted backwards, downstream, thereby causing an increase in 
pulmonary venous pressures [1, 5–7], a condition “of passive or congestive nature” 
as associated with pulmonary venous congestion [6]. In the literature this issue has, 
in the past, been called pulmonary venous hypertension (PvH) [8], or post-capillary 
pulmonary hypertension [9] or passive pulmonary hypertension [10]. Consequently, 
with the rise in pulmonary venous pressure, pulmonary artery pressure (PAP) also 
increases [11].

Pulmonary hypertension (PH) is defined as a mean pulmonary arterial pres-
sure ≥ 25 mmHg at rest measured invasively by right heart catheterization [12–
14], and PH due to LHD requires in addition a PCWP > 15 mmHg [5, 12, 13]  
or a LVEDP > 15 mmHg [5, 12, 13] (> 18 mmHg [15]) - group II PH.

In all other forms of pulmonary hypertension (groups I, III, IV, V—see 
below), PCWP is and has to be, per definition, ≤15 mmHg [12, 13], character-
izing pre- capillary PH as the pulmonary veins remain basically unaffected 
[16–18].

Commonly, PH is applied equivalent to, and thus is supposed to be associ-
ated with, elevated pulmonary vascular resistance (PVR) [7]. However, PH 
simply indicates elevated pressures in the pulmonary circulation, rather than 
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explicitly indicating pulmonary vascular alterations, which are reflected by an 
elevated PVR [7, 19, 20]. Moreover, in case of acutely elevated left-sided pres-
sures [21, 22] and in the early phase of venous PH, with passive increase of the 
pulmonary venous pressure due to elevated LVEDPs and/or LA-pressures [22], 
PVR is usually pretty normal [13]. There is no evidence at all that this acute 
and non-sustained post-capillary rise in pulmonary pressure is accompanied by 
any kind of dysfunction inherent to the pulmonary vessel system [21]. 
Accordingly, although in most circumstances PAP enhancements are related to 
an increase in PVR, an increase in PAP is not inevitably coupled with an 
increase in PVR [23, 24].

6.2  Classification of PH

Pulmonary hypertension is classified in five categories [3, 12, 13].

Group I: Pulmonary arterial hypertension (PAH)

 – idiopathic PAH
 – heritable PAH
 – Drug- and toxin-induced PAH
 – PAH associated with connective tissue disease, HIV infection, portal hyperten-

sion, congenital heart disease, schistosomiasis
 – pulmonary veno-occlusive disease and/or pulmonary capillary hemangiomatosis

Group II: Pulmonary hypertension due to left heart disease (LHD)
as classified by Simenneau [14] and modified by Rosenkranz [25]

 – left heart systolic dysfunction/HFrEF (EF ≤ 50%)
 – ischemic cardiomyopathy
 – dilated cardiomyopathy

 – left ventricular diastolic dysfunction/HFpEF (EF > 50%)
 – hypertensive heart disease
 – coronary heart disease
 – diabetic cardiomyopathy
 – hypertrophic cardiomyopathy
 – restrictive cardio, yopathy
 – constrictive pericarditis

 – valvular heart disease
 – aortic valve stenosis
 – aortic valve regurgitation
 – mitral valve stenosis
 – mitral valve regurgitation
 – persistent/residual PH after effective valvular defect correction

6 Pulmonary Hypertension in Left Heart Disease
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 – congenital/acquired left heart inflow/outflow tract obstruction and congenital 
cardiomyopathies including cor triatriatum, myxoma or left atrial thrombus

Group III: Pulmonary hypertension due to lung diseases and/or hypoxia

 – chronic obstructive pulmonary disease (COPD)
 – interstitial lung diseases
 – other pulmonary diseases with mixed restrictive and obstructive patterns
 – alveolar hypoventilation disorders
 – sleep-disordered breathing
 – chronic exposure to high altitude

Group IV: Pulmonary hypertension due to chronic thromboembolic disease 
(CTEPH)

Group V: Pulmonary hypertension with unclear/multifactorial mechanisms

 – hematologic disorders like chronic haemolytic anemia, myeloproliferative 
disease

 – systemic disorders like sarcoidosis, pulmonary histiocytosis
 – metabolic disorders like thyroid maladies, glycogen storage disorders
 – others like chronic renal failure, fibrosing mediastinitis

6.3  Epidemiology of Pulmonary Hypertension due to Left 
Heart Disease

Pulmonary hypertension ranks third, after coronary artery disease and arterial 
hypertension, in the number of incidences of cardiovascular diseases [26]. LHD 
is the most common cause of PH [17, 27], and accounts for 65–80% of all PH 
cases [17, 28, 29]. PH is far more common in patients suffering from heart failure 
(HFrEF and HFpEF), as traditionally assumed. In a study by Butler, who consid-
ers a PVR above 1.5 WU (130 dyn s cm−2) to be elevated, 36% of the patient 
group, suffering from HFrEF, showed a mildly elevated PVR, 17% a moderate 
elevation, and 19% a severe one [24]—consequently 72% of the patient group 
was afflicted with a relevant PH associated with pulmonary vascular disease. 
Lam demonstrated in a community-based study of HFpEF patients, that 83% of 
patients had PH, defined as a systolic pulmonary pressure of >35 mmHg [8]. 
Schwartzenberg recently studied patients with HFrEF and HFpEF and found that 
80–90% of the patients exhibit a PVR > 1.7 WU (about 136 dyn s cm−2) and thus 
vascular inherent PH [30]. Bursi, defining PH as being present if the systolic PAP 
exceeds 35 mmHg, confirmed Schwartzenberg’s results in a community-study, 
finding an incidence of PH in 79% of heart failure patients in his study (HFrEF 
and HFpEF) [31].

6.3 Epidemiology of Pulmonary Hypertension due to Left Heart Disease
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Accordingly, in both HFrEF and HFpEF, PH is frequently present: As study 
results demonstrate, PH occurs in roughly 80% of all patients suffering from 
primarily left-sided heart failure [24, 30–36], whereupon PH is even more pres-
ent in HFpEF than in HFrEF. Moreover, diastolic dysfunction, as the central 
pathology in HFpEF, has been identified as being the predominant cause of PH 
in LHD [17].

Unfortunately, if PH is present, increased morbidity and mortality have been 
verified in both HFrEF [6, 21, 31, 37, 38] and HFpEF [6, 31, 34, 36]. It has 
been demonstrated, that systolic PAPs exceeding 35 mmHg are independently 
associated with decreased survival in both, HFpEF and HFrEF patients [8, 31]. 
Moreover, the presence of PH is even associated with poor prognosis and high 
mortality in the general population, not only in those with heart failure [34]. Up 
to 73% of patients suffering from primarily mitral valve disease develop PH as 
a complication [39, 40]. PH is also reported to be as high as 30–50% in patients 
with aortic stenosis [41, 42]. In valvular heart disease, the presence of PH indi-
cates poorer survival after valve surgery [43]. Ensuing right heart dysfunction/
failure in chronic LHD is shown to be predictive of clinical events and reduced 
survival [44–46].

6.4  Pathophysiology

Pulmonary hypertension in general results from increases in pulmonary vascular 
resistance (PVR), pulmonary blood flow, pulmonary venous pressure, or a combi-
nation of these features [2, 6, 19]. More specifically, and in differentiation to 
pulmonary venous hypertension (PvH), pulmonary arterial hypertension (PAH) 
with idiopathic arterial pulmonary hypertension (IPAH, formerly called primary 
pulmonary hypertension) as the classical disorder in this group of maladies, 
results from (a) vascular wall remodelling, (b) (micro)thrombosis, and (c) vaso-
constriction [47, 48].

Elevated left-sided filling pressures are a fundamental and characteristic fea-
ture in patients with LHD [12, 13]. Since PH is verified to depend on elevated 
filling pressures (and on the degree of mitral regurgitation [49]), diastolic car-
diac properties, rather than systolic LV function, are determining this disorder 
[50–52]. Increased LV—filling pressures are, in any case, passively transmitted 
backward, downstream, and thus have a substantial impact on LA pressure and 
on pulmonary venous pressure (PvP), facilitating the development of pulmonary 
venous hypertension [1, 5]. As such, elevated left heart filling pressures are 
recognized to cause PvH [53] irrespective of LV-EF [54]. Even milder eleva-
tions of LVEDP and consecutively or initially raised LA-pressures may display 
PvH, since, due to the anatomically serialised vascular structures, the transmit-
ted pressure adds up to the resistive and flow-related PA-pressure [7]. 
Concomitantly with the rise in pulmonary venous pressure, pulmonary artery 
pressure (PAP) increases [11]. Moreover, downstream pressure has (compared 
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to the systemic arterial circulation) a marked impact on the pressure level within 
the pulmonary circuit, as it may contribute up to 50% (systemic circulation 5% 
to MAP) to total PAP [21].1

Acutely elevated and pathologically high pulmonary venous pressures may 
cause so-called “alveolar-capillary stress failure” [55], facilitating acute pul-
monary edema formation [21, 22]. “Overt pulmonary edema is the clinical cor-
relate of alveolar- capillary stress failure” [22]. This condition, histologically 
indicated by ultrastructural alterations of the alveolar-capillary unit due to an 
abrupt rise in pulmonary capillary hydrostatic pressure, is characterized by a 
disruption of the capillary endothelial and alveolar epithelial cellular layers 
resulting in endothelial cell dysfunction, capillary leakage and increased per-
meability of the alveolar-capillary barrier [22, 55], accordingly promoting 
acute pulmonary congestion [56] or even pulmonary edema onset[5, 21, 22, 
57]. Acute pulmonary congestion or edema, arising from acutely increased 
left-sided filling pressures, are definitely caused by the raised hydrostatic cap-
illary pressure, hence denoted hydrostatic or hemodynamic edema [58]. 
However, a rise in the permeability of the alveolar-capillary membrane, the 
predominant disruption in non-cardiogenic edema as described in the literature 
[58, 59], is supposed to contribute to the primarily cardiac initiated congestion/
edema formation, and as such, both mechanisms, of course with quite different 
emphasis, may participate in the pathobiology of pulmonary edema develop-
ment in LHD [5, 56, 60, 61]. Fortunately, there is good evidence suggesting 
that these ultrastructural abnormalities, indicating acute alveolar-capillary 
stress failure, are fully reversible if PvP and thus capillary hydrostatic pressure 
returns to normal values after a more or less short spell [62, 63]. Elliot [64] 
demonstrated complete restoration of the alveolar-capillary unit after normal-
ized LA-pressure, indicating a quite impressive plasticity of this alveolar-vas-
cular interface. Yet, acute alveolar-capillary stress failure may serve as a trigger 
for maladaptive processes ensuing, namely in the pulmonary vessel tissue 
structure [63].

On the other hand, if the elevation of the pulmonary venous pressure is sustained 
and PvH persists for a length of time, or pressure exacerbations occur repetitively 
[21], both the alveolar-capillary membrane [65, 66] and the pulmonary vessel net-
work, including veins, arterioles and arteries [67], may suffer from an irreversible 
remodelling: The basement membrane composition changes and the membrane 
thickens, mainly attributed to considerable deposition of collagen (type IV) [65, 
66]. These modifications may have a protective effect against further pressure dam-
age and prevent edema formation [60], may substantially affect alveolar diffusion 
capacity (membrane conductance) and as such blunt gas exchange and remarkably 
limits exercise tolerance [21, 56, 68].

1 Arterial pressure is generally determined by the integration of flow and vascular resistance, 
summed up with downstream pressure. Downstream pressure in the systemic arterial circulation is 
reflected by the CVP/RA-P, in the pulmonary circuit by LA-P/PvP [21].
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This process of remodelling of the alveolar-capillary unit, caused by injury 
through elevated hydrostatic pressures in the capillaries of the alveolar-capillary 
unit, attributed to LHD with backward transmitted elevated left-sided filling pres-
sures, is associated with and considerably influenced by an inflammatory response, 
decisively mediated and “orchestrated” by the endothelial cells [53, 69–71]. 
Vascular stretch is attested to possibly initiate an inflammatory response [72, 73], 
and hydrostatic pressure is known to be one of the highest potential biomechanical 
stimuli for endothelial cells to display a pro- inflammatory, pro-oxidant and vaso-
constrictive milieu [74]. Of special interest is the impact of the endothelium on local 
hemodynamics, substantially regulating the vascular tone [75–77]. By communicat-
ing and interacting with the vascular smooth muscle cells, the endothelial cells try 
to provide a well-balanced vascular tone and blood flow, meeting cellular and tissue 
metabolic demands [75, 76, 78]. Imbalanced production and release of vasoactive 
agents, notably blunted NO synthesis in response to vascular pressure stimuli of the 
endothelial mechanoreceptors, and increased generation and release of ET-1, as 
occurring in endothelial dysfunction due to LHD with sustained PvH [79], implies 
impaired smooth muscles cell relaxation, and subsequently substantial increases in 
pulmonary microvascular tone arise, enhancing PVR [79–82]. PVR is crucially 
determined by the balance between these opposing mediator resources [79, 80]. 
Furthermore, a NO deficit results in the loss of the physiological oscillation in endo-
thelial calcium handling, thus the cytoskeleton organisation will be considerably 
disturbed [83]. Alongside, a variety of local pro-inflammatory mediators including 
TNF-α, angiotensin II and endothelin-1 (ET-1), circulating immune competent 
cells, (myo)fibroblasts, etc., as well as hypoxia are also involved in the alterations 
induced, ending in a histological structural remodelling of the alveolar-capillary 
unit [22, 63].

Beyond this microcirculatory remodelling, pulmonary veins, arterioles and 
small and medium arteries are affected by the functional and structural remodel-
ling [4, 53]. The imbalance between vasodilative and vasoconstrictive mediators, 
in case of group II PH in particular the blunted capillary and arteriolar NO syn-
thesis in response to mechanical and receptor-mediated stimuli [79], favouring 
vasoconstriction, provokes a marked rise in the tone of pulmonary resistive ves-
sels, significantly driving the PVR up [5, 27, 79, 80, 84]. Furthermore, media 
hypertrophy of the veins potentially leading to so-called pulmonary venous arte-
rialization (histologically presenting as muscularisation of arterioles, hypertro-
phy of the intima and the media of the arteries) [5, 21, 67], are structural 
abnormalities inevitably resulting in increased PVR, due to a reduced area of the 
pulmonary vessel system [5, 85]. Noteworthy, these substantiated histological 
alterations are quite similar to those we come across in primary pulmonary 
hypertension [4, 86].

PVR increases, and pathologically high values are associated with and indi-
cate, “pulmonary vascular disease” [5, 7, 20, 86, 87]. PVR may be considered 
to predominantly represent the functional condition of the coupled unit, com-
posed of pulmonary endothelium and adjacent smooth muscles cells [88–90]. 
Increases in PVR indicate significant reductions of functional, or even 
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structural, capacity  (diminished cross-sectional area) of the pulmonary vessel 
system, mainly of the small, resistive distal pulmonary arteries and arterioles [5, 
85]. Moreover, at least in acutely elevated left-sided pressures [21, 22], and in 
the early phase of venous PH with passive increase of the pulmonary venous 
pressure due to elevated LVEDPs and/or LA-pressures [22], PVR is usually 
pretty normal [13]. Most patients suffering from HFpEF show some degree of 
PvH, but may have normal PVR, however, a substantial subset will develop 
pulmonary vascular disease [91].

Accordingly, patients suffering from LHD and consecutively persistent venous 
pulmonary hypertension may, although the increased pulmonary pressures are basi-
cally of backward transmitted, passive nature, develop functional and structural modi-
fications of the pre-capillary, namely of the arterioles and the small arteries, segments 
of the pulmonary vessel system [5, 67, 79, 80, 82]. These alterations cause an increase 
in PVR and concomitantly, a (further) considerable rise in pulmonary pressures [5, 21, 
85]. Indeed, vasoconstriction of functional nature and/or structural reductions in the 
area of the pulmonary arterioles and arteries, inevitably provokes an “out of propor-
tion” increase in the pulmonary pressures, hence in addition to the PvH, a pulmonary 
“arterial” component to the (total) PAP is recognized [6, 19, 20, 47]. As such, study 
results reporting disproportionate PAP increases, clearly above of those expected from 
(measured) left atrial pressure/LV-filling pressures, are very well explained by this 
superimposed pre-capillary, reactive component contributing to the PH found in a 
substantial number of patients with LHD [4, 9, 92, 93]. Of course, not all patients are 
affected, and as such, the response and the consequences to PvH varies widely [4]. 
However, the majority of patients suffering from mitral stenosis [93], HFrEF [24, 38], 
and HFpEF [8] show a pre-capillary component to their pulmonary hypertension.

LA dysfunction characterized by increased LA size, interstitial LA fibrosis (causing 
increased LA stiffness), reduced LA compliance, and impaired LA contractility, 
contributes to the disease process by affecting left ventricular filling, enhancing LA 
and pulmonary venous pressures, provoking a rise in pulmonary vascular resistance 
and in PAP, amplifying the development and manifestation of “combined” PH [94–
97]. Ensuing heart failure symptoms relate to LA dysfunction in patients with 
HFpEF [98]. Increased pressure and dilatation of LA are likely to be necessary 
adaptions to compensate for increased LV-filling pressures in order to maintain LV 
filling in HFpEF patients [99–101].

Furthermore, the development of relevant functional mitral regurgitation (MR), 
often exercise—induced and thus reiteratively occurring [50, 102–104], is demon-
strated to augment LA pressure, since the pressure effected by the systolic part of 
regurgitation volume adds up to systolic LA filling pressure [103, 104]. The insen-
sitivity of the pulmonary vasculature to vasodilators including NO and natriuretic 
peptides [6, 79, 93] and the neurohormonal activation are considered to potentially 
contribute to the disease process leading to combined PH.

In HFrEF, the extent of (functional) MR is considered crucial for the quantity of 
PH [50]. Hypoxemia related to congestion and obstructive sleep apnoea, often seen 
in patients with LHD, may also worsen PH [6]. Finally, even genetic factors 
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predisposing patients to maladaption of the pulmonary vessel network are being 
discussed [105].

This increase in pulmonary vascular resistance and PAP markedly impacts 
the impedance (rises) of the pulmonary artery and the RV outflow tractus, after-
loading the right ventricle [106–109], with relevant consequences for RV-PA-
coupling and RV-performance [5, 53, 106, 110, 111]. The dynamic interplay 
between pulmonary vascular resistance, the pulmonary vessel compliance, and 
the wave reflections determine RV-afterload [111]. Increases in PVR are the 
most common cause for increases in RV-afterload [112]. PVR reflects the resis-
tive RV-load, however, vascular resistance and vascular compliance (represent-
ing the pulsatile load) are inversely related to each other in pulmonary circulation 
[113]. Consequently, a relevant decrease in vascular compliance will occur with 
increasing PVR [113]. This “special” relation is explained by the fact that in the 
pulmonary circuit, compliance is distributed over the whole vascular network, 
while largely located in the aorta within the systemic circulation [114]. Indeed, 
Stenmark [115] provides evidence that more than 1/3 of the increase in RV-load 
due to an increase in PAP is caused by pulmonary artery/large pulmonary arter-
ies stiffening. Additionally, stiffening of the pulmonary artery/arteries is 
reported to increase while PH progresses [116]. Thus, large pulmonary artery 
stiffness causes significant increases in RV afterload [20, 111], notably in case 
of persistently high pulmonary venous pressure and in advanced stages of vas-
cular remodelling [87, 111].

RV afterload is a major determinant of RV systolic function [117], and as the 
performance of the right ventricle crucially depends on its afterload, even more 
than the LV [106, 118], it is more than reasonable to consider RV and pulmo-
nary vasculature as one unit: “PAH is a disorder affecting both the pulmonary 
vasculature and the right heart” [29, 119–121]. Accordingly, enhanced afterload 
effects RV systolic function and as mean PAP is inversely related to RV-EF 
[117], increasing PAP impairs RV-EF [122]. Therefore, in patients with PH, 
decreases in RV-EF generally reflect an increase in RV- afterload rather than a 
compromised RV systolic function/contractility [123].2

Furthermore, Di Salvo [124] and Ghio [37] both found that RV-EF provides, in 
addition to PAP, independent prognostic information, emphasizing the necessity to 
consider the RV-pulmonary circuit as a unit in patients with LHD and consecutive 
PH [119]. Several studies demonstrated that both, PH and the (subsequently) com-
promised RV-function, henceforth called the RV-pulmonary unit, considerably 
affect the prognosis of patients with LHD [31, 37]. Moreover, ventriculo-arterial 
coupling specifically refers to the relationship between ventricular contractility and 

2 LV systolic dysfunction is reflected by an increase in PCWP, and this, in turn, may result in an 
elevation of mean PAP and/or RV afterload [117]. Since an elevated mean PAP is coupled with a 
decrease in systolic RV-function [37], and RV afterload literally determines RV systolic function, 
thus a raise in mean PAP reflects an increase in RV afterload: mPAP ~ 1/RV-EF [117].

↑ PAP coupled to ↓ RV systolic function, and RV-afterload determines RV systolic function

→ ↑ PAP reflects an increase in afterload: mPAP ~ 1/RV-EF 
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afterload [113] and as such, ventriculo-arterial coupling, indicated by the Ea-pul/Ees-RV 
ratio, is an important determinant of net cardiac performance [125] and cardiac 
energetics [126]. Only appropriate matching between the right ventricle and the 
pulmonary arterial system results in an optimal transfer of blood from the RV to the 
pulmonary circuit without excessive changes in pressure, an optimal or near- optimal 
stroke work, and energetic efficiency [127]. Interestingly, RV-PA uncoupling occurs 
in chronic pressure overload following PH due to LHD [128], while in idiopathic 
PAH RV-PA coupling is preserved [129].

As described in Chap. 4 in more detail, a rapid (and substantial) rise in PAP caus-
ing acute pulmonary hypertension with concomitantly enhanced RV wall tension, 
immediately leads to RV-dilatation [106, 130], which is accompanied by increases 
in RVEDV [107, 109, 130] and RVEDP [131, 132], compromised RV contractility 
[37, 108], impaired RV-EF [130, 133], RV pump failure and even cardiogenic shock 
may promptly ensue [134]. These hemodynamic alterations are largely a result of 
the thin-walled RV, which is physiologically coupled to, and ejects the blood into a 
low pressure highly compliant compartment [27, 85, 112], and therefore is only 
poorly capable to respond to, and suitably face, an acute increase in afterload [135]. 
Even mild acute PH, following an increase in RV-afterload, may lead to substantial 
RV-PA-uncoupling, indicating that the RV is not able to match the combined load of 
elevated PVR and augmented vascular/ventricular elastance [136]. Due to PH, 
which precipitates RV stiffening [137], and as such results in increased RVEDP 
[137] and RV-dilatation, tricuspid regurgitation [138] arises. Furthermore, diastolic 
ventricular interaction (DVI) applies, compromising left ventricular filling and 
(even further) deteriorating global cardiac function and systemic circulation [138–
140]. DVI, coming in general and particularly into effect with increasing RVEDP, 
as for example when RV loading conditions change [141, 142], substantially con-
tributes to acute RHF pathobiology and makes a crucial hemodynamic impact on 
right heart and subsequently systemic cardiovascular functions [143]. Beyond, 
RV-dilatation directly affects LV geometry, impairing LV filling [144], and subse-
quently compromises LV contractility with considerable effect on RV perfor-
mance—as about 1/3 (20–40%) of systolic RV pressure generation and output 
results from LV contraction [143, 145, 146]. Furthermore, neurohormonal and 
endothelial—immunologic/inflammatory cascades acutely activated in cardiocircu-
latory challenge, markedly influence the acute pathology [119, 147–149]. As such, 
stimulated sympathetic discharge (including increased systemic catecholamines 
levels) and excited activation of the renin- angiotensin- aldosterone cascade, specifi-
cally angiotensin II, as well as enhanced endothelin-1 release, and all that in the 
presence of blunted and imbalanced counter- regulatory mechanisms such as natri-
uretic peptides, substantially co-determine the acute pathophysiology of right heart 
dysfunction [149–154].

In these circumstances, sufficient and consistent adaption may fail as the initial het-
erometric response may not be replaced by enhanced ventricular performance [155]: 
The so-called heterometric adaption (coping beat-to-beat changes) applies, when the 
ventricle is faced by an abrupt rise in afterload, using the Frank-Starling mechanism, 
and thus allowing to maintain SV at the expense of increased end- diastolic filling 
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volume [156, 157]. However, within a couple of minutes, ventricular elastance, and 
thus systolic performance, will match the increased load by full homeometric adaption, 
replacing the initial heterometric response [158]. This may not be the case in acute 
RHF thereby keeping the “compensatory” mechanisms activated and running.

In case of a gradual increase in PAP and PVR as is usual in LHD, so-called homeo-
metric contractility adaption to afterload, according to Anrep’s law [159], may ensue 
[155]. The homeometric adaption and remodelling is characterized by an increase in 
ventricular systolic function (e.g. contractility) without chamber dilatation, in order to 
meet the load the ventricle is facing [156]: The right ventricle adapts to the increased 
afterload by increasing its wall thickness and contractility [113]. Homeometric adap-
tion is shown to be the predominant feature of RV to face increased afterload and to 
ensure preserved RV-PA-coupling [155, 160]. However, if the load rises further, becom-
ing too high for too long a period, or if these compensatory mechanisms are insufficient 
to match the load imposed, RV-PA uncoupling, associated with a (further) increase in 
RVEDV occurs [155, 156], and a heterometric adaptive response, indicating RV dys-
function [113], or even RV-failure, rapidly ensues [155, 160]. Severe inflammatory 
conditions (e.g. septicaemia), long-term increase in PVR or advanced heart failure, are 
disorders predisposing RV-PA uncoupling and RV-dysfunction [155, 160]. Indeed, it is 
essential to mention that, for sure, further, supplemental features (in addition to the 
pulmonary vascular and pressure alterations and their consequences for the RV and the 
RV-PA unit) are involved and contributing to the complex pathobiology of (developing) 
RV-dysfunction/failure including persistent neurohormonal activation and inflamma-
tion, apoptosis, persistent oxidative stress, metabolic derangements, the results of 
remodelling like hypertrophy and fibrosis, and, not least, RV ischemia [113, 148, 161].

To summarise, in the first instance, LHD leads to pulmonary venous hypertension 
attributed to passive, backward transmission of the elevated left heart-sided filling 
pressures [1, 5, 7], mainly precipitated by LV dysfunction, many a time by LV dia-
stolic dysfunction [162, 163]. Mitral regurgitation, often exercise-induced and thus 
occurring repeatedly, and the loss of LA compliance may amplify the pulmonary 
venous pressure increase and thus PvH [94]. Abrupt increases in left-sided filling 
pressures may cause alveolar-capillary stress failure [55], facilitating acute overt 
pulmonary edema formation [21, 22]. The main pathophysiological feature, and 
driving force precipitating pulmonary congestion or pulmonary edema, is the 
increased hydrostatic capillary pressure in the alveolar-capillary unit [58]. Alveolar- 
capillary stress failure is potentially fully reversible, as long as pulmonary venous 
pressures return to normal in good time [62–64]. However, persistent or recurrent 
elevated pulmonary venous pressures have been shown to cause functional and 
structural alterations not only at the alveolar-capillary unit [4, 65, 66], inducing 
irreversible remodelling, but also notably of the arterioles and the small and 
medium-sized pulmonary arteries [67] (the pre-capillary segments of the pulmo-
nary circuit [5, 21]). Endothelial dysfunction, and the activated inflammatory cas-
cade, decisively determine and integrate the incipient processes [53, 69–71]. This 
leads to both, functional alterations (mainly a significant rise in pulmonary vascular 
tone in microcirculation and resistive vessels, augmenting PVR [5, 27, 79]), as well 
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as to structural vascular remodelling (including intima and media hypertrophy of 
the pulmonary arteries and arterialization of the veins) [86, 164], reducing the area 
of blood flow and thereby driving the PVR up [4, 5, 27, 85]. Accordingly, PVR rises 
considerably [5, 7, 27], indicating pulmonary vascular disease [5, 87]. Subsequently, 
a further increase in pulmonary hypertension arises [5, 85], as the change in PVR is 
superimposed on the elevated PvP [86, 93]. Elevated PVR and the disproportionate 
(in excess to the left-sided filling and consecutively pulmonary venous pressures 
[162, 163]) rise in PAP, indirectly confirm a pre-capillary, pulmonary arterial com-
ponent, superimposing the PvH and contributing to the considerable PH, recognized 
in a significant number of patients suffering from LHD [4, 27, 87]. As such, reactive 
PH displays and represents a complex reaction to chronically elevated filling pres-
sures of the left heart side, including structural (pulmonary venous arterialization of 
small and medium-sized vessels [164]) and functional alterations such as ED asso-
ciated imbalances between NO and ET-1 production fascilitating vasoconstriction 
[79, 80]. Consecutively, a marked load, largely attributed to the rise in PVR and to 
the stiffening of the large(r), central pulmonary arteries [115, 165], is imposed on 
the right ventricle (RV- PA unit) [106–109], crucially affecting RV-PA-coupling and 
RV function, potentially provoking RV failure [87, 113, 128].

6.5  Clinical Issues and Diagnosis

The symptoms patients with PH complain of, are non-specific and comprise amongst 
others, dyspnoea, fatigue, chest discomfort or pain, palpitations, syncope and 
peripheral edema [2]. Especially remarkable, and most common symptoms, are 
exertional dyspnoea and a noticeable exercise intolerance, which patients with 
PH suffer from, due to LHD [21].

The pathophysiology underlying exertional dyspnoea is complex and several 
mechanisms are interrelated and contributing [21]. However, the basic pathology 
may be that the pulmonary circuit in PH, due to LHD, is unable to accommodate the 
increased blood flows during exercise [166], and contrary to the physiologically 
expected PVR fall [167] and moderate increase in PAP [168], abnormally high pres-
sures occur (rising PCWP, PAP and/or PVRs) [166]. One feature of the predominat-
ing pulmonary vascular pathophysiology is the impaired physiological dynamic 
pulmonary vasodilation, which subsequently imposes a considerable load on the RV 
during stress [169].

Exercise, provides a powerful tool to examine the response of the cardiovascular 
system to stress and to assess its functional reserve [170], and may reveal early 
stages of heart failure, especially in HFpEF [92]. Patients with normal filling pat-
terns at rest may exhibit dyspnoea and PH during exercise [92, 166].

Ventilatory abnormalities, particularly oscillatory breathing patterns during 
exercise due to pulmonary vasoconstriction, compromised right ventricular per-
formance and low total CO [171, 172], and the limited cardiac reserve and  thus 
limited CO increase [85, 173], provoke a lower anaerobic threshold and contribute 
to dyspnoea [2].
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Breathing alterations are common in group II PH, as such, periodic breathing is 
related to sympathetic activation [174], enhanced incidence of sleep apnoea, and 
especially patients with HFrEF and PH show inefficient ventilation with high expi-
ratory volumes per time in relation to the carbon dioxide exhaled, hence are often 
hyperpnoic [175].

Syncope may appear due to exercise or arrhythmias. Chest pains, attributed to 
maladjusted coronary perfusion in the presence of elevated RV pressures [176], 
befall even more predisposed patients with coronary artery disease and/or RV 
hypertrophy, particularly if there is a low MAP (due to poor LV function) [2].

Peripheral edema formation may be the result of tricuspid regurgitation and RV 
dysfunction, leading to venous congestion, subsequently affecting abdominal organs, 
particularly incipient renal venous congestion which impairs renal function (called 
cardio-renal syndrome, see Chap. 7), will all complicate the malady [4, 11, 177, 178].

Moreover, Rosenkranz [28] even indicates that the clinical picture in patients 
with PH, due to LHD, may be completely dominated by signs and symptoms typical 
and characteristic for (acute) right heart failure. The spectrum of the clinical presen-
tation of this patient group is broad, ranging from a more or less `pure` decompen-
sated left heart phenotypic picture, to an appearance which is dominated by features 
representative of an acutely decompensated right heart [28].

Chest X-ray may indicate pulmonary vascular congestion or even pulmonary edema 
and pleural effusion in or without the presence of cardiomegaly. Of note, co- existence 
of pulmonary edema and signs of right heart failure is rare, possible due to that fact that 
the vascular alterations of the pulmonary vessel network protect against pulmonary 
fluid transudation [21]. Computer tomography may denote ground-glas opacities and 
mosaic perfusion patterns consistent with chronic interstitial edema [21].

ECG signs are unspecific, but may include LH hypertrophy and atrial fibrilla-
tion [21].

Lung function tests may reveal restrictive ventilatory patterns and disturbed gas 
diffusion [179].

Echocardiography is an essential tool and the method of choice to detect PH [4, 
13] and thus is an indispensable procedure in the assessment of patients suspected 
of PH [2, 6, 13]. Systolic pulmonary pressures (sPAP) become assessable, if tricus-
pid regurgitation is present [180]. Systolic pulmonary pressures > 35 mmHg are 
suggestive for PH [181]. Both, under- and overestimations (if pressures are normal 
or only mildly elevated) are not infrequent [182], and estimated sPAPs between 35 
and 45 mmHg need careful interpretation [183] and should only be apprised in the 
clinical context. Echocardiographically calculated sPAPs between 35 and 45 mmHg 
are considered to indicate mild PH, pressures between 46 and 60 mmHg represent 
a moderate and those above 60 mmHg a severe PH [184]. PH and its severity are 
determined by elevated filling pressures which can be echcardiographically evalu-
ated by the severity of diastolic dysfunction [50–52]. As such, E/A-ratio and the 
E/e’-ratio are reported as the echocardiographic parameters which most reasonably 
reflect end-diastolic filling pressures [49, 50, 185]. Restrictive filling patterns 
(E-wave deceleration rate) and the degree of mitral regurgitation turned out to be 
the strongest independent predictors of PH [49, 186].

6 Pulmonary Hypertension in Left Heart Disease

http://dx.doi.org/10.1007/978-3-319-54973-6_7


353

Furthermore, the presence of LHD/LV dysfunction may be assessed, or even 
recognized, by echocardiography. Signs suggestive of LV dysfunction include LA 
dilatation, LV hypertrophy, more severe mitral valve regurgitation, and indicators of 
elevated LV filling pressures [187–189]—further details see Chap. 5 HFpEF. As 
RV-function encroaches upon the prognosis in patients with LHD and PH, assess-
ment of the right heart is absolutely essential [2, 190, 191].

The gold standard in diagnosing PH is right heart catheterization (RHC), and the 
current guidelines even require RHC in order to reliably diagnose PH [10, 13]. 
Clinical and/or echocardiographic evidence for PH should lead to RHC [2, 6].

Importantly, invasively derived pressure measurements should be registered only 
in end-expiration as the pressures recorded may significantly differ between inspira-
tion (lower) and expiration (higher) while PH definition and specified limits are 
standardized to end- expiratory measurements [28, 192, 193]. Furthermore, LVEDP 
depends on loading conditions [28], and changes may induce a considerable modi-
fication of hemodynamics and thus the magnitude of pressure values recorded: 
especially patients suffering from PH caused by HFpEF are highly sensitive to even 
small changes in volume and/or BP [30, 127, 194, 195]. As such, after diuretic 
therapy, the presence of elevated left sided filling pressures, and subsequently PH, 
may be missed, just because the patient has been volume unloaded [196]. Volume 
depletion can underestimate left heart filling pressures [197]. On the other hand, in 
balanced fluid conditions, a standardized fluid challenge (500 mL normal saline 
infused within 5–10 min) may unmask a post-capillary, venous PH component pres-
ent in patients with PH, clearly identifying LHD as the cause for PH [197–199]. If 
a PCWP of >18 mmHg can be recognized in response to the fluid applied, a left 
heart dysfunction, whether systolic or diastolic, should be assumed [198]. 
Extraordinarily and remarkably, Fujimoto [198] showed that even in healthy volun-
teers, a transient but significant increase in filling pressures (right and left sided) can 
be observed when infusing fluids rapidly (1 L of normal saline within 5 to 10 min-
utes): mean PAP, PCWP and RA-P were all significantly raised in all groups, young, 
old and HFpEF patients, but increased the most in patients with HFpEF. Causative, 
pericardial constraint was demonstrated to be largely responsible for the increase in 
filling pressures, indicating that non- myocardial structural changes caused the ele-
vation in pressures [198, 200, 201]. Thus, no change in myocardial stiffness occurred 
[202, 203]. Accordingly, the results of fluid infusion in order to identify occult 
venous pulmonary hypertension need superb interpretation!

PVR—defined by [PVR = mean PAP – PCWP]/CO [85], which equals PVR = TPG/
CO, is a commonly used parameter in daily practice [87]. Increased PVR represents 
pulmonary vascular disease, and as such, pulmonary arterial hypertension [24, 204]. 
PVR is found to be sensitive to both, changes in flow and filling pressures, however 
PVR may not sufficiently indicate changes of the pulmonary circulation at rest [162, 
205]. PVR values of ≥3 Woods (240 dyn s cm−2) are highly suggestive of pulmo-
nary vascular disease [10, 206].

The new recommendations based on the 5th Symposium on PH in Nice, France, in 
2013 encourage practitioners to include PVR in the characterization of PH—with an 
elevated PVR (>3 WU) in the presence of a mean PAP ≥ 25 mmHg and a 
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PCWP ≤ 15 mmHg (normal left heart-sided filling pressures) is indicating pre- capillary 
PH—but PVR should not be part of the general definition of PH [12]. In case of com-
bined PH, attributed to LHD, PCWP > 15 mmHg and PVR > 3 WU are required.

High mean PAP, PCWP, PVR, and reduced PA compliance are indicative of poor 
survival and as such provide prognostic information [37, 207, 208].

Of special note, in case of RV failure, PAP may decline despite considerably 
high PVR and thus may underestimate the extent of pre-capillary PH [21].

The so-called transpulmonary pressure gradient (TPG), the driving pressure 
across the pulmonary circulation [27] (defined as TPG = mean PAP – LA-P, respec-
tively PCWP [162]), has been shown to rise “out of proportion” to wedge pressure 
PCWP (left-sided filling pressure), concomitantly accompanied by disproportional 
increases in PAP [209], in patients with LHD suffering from combined post-and 
precapillary PH [24, 204]. As such, an elevated transpulmonary gradient (defined as 
calculated values exceeding 12–15 mmHg [41, 52]), reflects pre-capillary contribu-
tion to pulmonary hypertension in LHD patients [1, 21, 91]. Accordingly, in case of 
LHD, reflected by a mean PAP ≥ 25 mmHg and a PCWP > 15 mmHg:

• TPG < 12 mmHg may be suggestive of isolated post-capillary PH
• TPG ≥ 12 mmHg may be suggestive for combined, post- and precapillary PH

Elevated TPGs, in the presence of heightened PVR and impaired pulmonary vas-
cular compliance, confirms significant pulmonary vasculopathy [21, 91].

In recent years, diastolic pressure difference or gradient (defined as DPG = dia-
stolic PAP – PCWP [87]), is the preferred parameter used to identify a pre-capil-
lary component contributing to PH in patients with LHD [87]. Diastolic PAP is, 
compared to mean PAP and systolic PAP, less influenced by changes in loading 
conditions, for example by PCWP (≈LA-pressure) and SV [28, 162, 163]. This 
effect is even more evident when SV increases, such as during exercise [162, 
163]. Changes in mPAP consecutively have an impact on TPG. Therefore, TPG is 
affected by all determinants of mPAP including flow, resistance, and left heart 
filling pressures [162, 205]. Accordingly, mPAP, TPG and PVR may be “too” 
unspecific as indicators of pulmonary vascular remodelling [210]. Furthermore, 
the prognostic impact of TPG is poor [211]. As a consequence, DPG is considered 
to be the most reliable approach to identify pulmonary vasculopathy and hence 
pre-capillary input to PH in LHD patients [87, 162, 212]. In a landmark study, 
Gerges and co-workers [212] investigated the role of DPG in predicting outcome 
and, using a receiver-operating analysis, identified and determined cut-off points 
for DPG: They established “mixed” PH to be present, if DPG ≥ 7 mmHg or 
TPG > 12 mmHg. Patients with PH due to LHD and with a TPG > 12 mmHg and 
a DPG ≥ 7 mmHg, had an inferior outcome after 78 months than those with a TPG 
of >12 mmHg, but a DPG < 7 mmHg [212]. However, the study has a couple of 
limitations including: being retrospective in nature; having a bias in the popula-
tion (patients presented a negative DPG, further a number of patients with a TPG 
of <12 mmHg had a DPD ≥ 7 mmHg); the patient group had been a selected 
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population (referred to a tertiary centre for their PH); they had a burden of isch-
emic heart disease; and the patients suffered from severe heart failure. Nevertheless, 
the cut-off ranges found their way into newly published diagnostic recommenda-
tions [162, 212], as such:

• isolated post-capillary PH: PCWP > 15 mmHg and DPG < 7 mmHg and/or 
PVR ≤ 3 WU

• combined post- and pre-capillary PH: PCWP > 15 mmHg and DPG ≥ 7 mmHg 
and/or PVR >3 WU [87, 213]

However, a very recent study challenged the value of the newly introduced DPG: 
In a study by Tampakakis [214], investigating in a retrospective analysis the John 
Hopkins Cardiomyopathy Database, DPG failed to provide sufficient prognostic 
information, and a correlation between DPG value and survival could not be estab-
lished. They found that in patients with PH, increasing TPG and PVR were signifi-
cantly related to a higher all-cause mortality, even after adjustment for standard 
variables.

As such, the DPG parameter, relatively independent of influences from varying 
CO and elevated filling pressures on pulmonary arterial compliance [87, 162], has 
not withstood real world scrutiny, and its implementation in the standard diagnostic 
may be premature [210]. Moreover, as discussed above, the pulmonary vessel sys-
tem, with its properties, and the right heart and its performance, have to be consid-
ered and have to be seen at as a unit because they substantially interact and influence 
each other [1, 215]. Insofar, the metric DPG parameter may preferably and uniquely 
refer to and indicate pulmonary vascular disorders [212], but does not reflect right 
heart properties and function in the setting of pulmonary vascular pathology. Thus, 
an integrated approach relating pulmonary vascular pathology, indicated by PVR, 
TPG, DPG, etc., to RV-PA function and performance, e.g. RV-PA-coupling ratio, is 
potentially able to translate into prognostic significance [210].

However, clinical assessment and judgement remains crucial: Thenappan et al. have 
demonstrated in a study on “clinical characteristics of pulmonary hypertension in 
patients with heart failure and preserved ejection fraction” [91], that clinical, echo-
cardiographic, and hemodynamic features are able to distinguish PH in LHD from 
PAH, and from patients with HFpEF but without PH.

Characteristics PAH PH due to LHD HFpEF

Age Younger Older Younger

Comorbidities Rare More frequent Frequent

RA—dilatation More frequent Less frequent Absent
LA enlargement Absent Frequent Frequent

Aortic systolic pressure Normal Elevated Elevated
RA-pressure Normal to high High Normal

CO Low Normal Normal

PVR Markedly elevated Moderately elevated Normal

6.5 Clinical Issues and Diagnosis
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Notably:

 1. If right heart failure ensues in patients with PH due to LHD, low CO may result 
in a fall in PCWP, making diagnosis difficult [10].

 2. In patients with HFpEF, the presence of morbid obesity, chronic obstructive lung 
disease (COPD), atrial arrhythmias, particularly AF, dyspnoea on exertion, and 
mPAP ≥ 25 mmHg are suggestive of PH [216].

Accordingly, combining the study results of Thenappan [91] and of Guazzi [22], 
PAH may be clinically-hemodynamically distinguished from PH due to LHD by the 
following issues suggestive of PH-LHD:

 – older age
 – typical co-morbidities like coronary artery disease, hypertension, obesity, diabe-

tes, obstructive
 – sleep apnoea, COPD, etc.
 – dilated left atrium
 – left ventricular hypertrophy
 – substantially elevated right atrial pressure
 – elevated systolic aortic pressure
 – evidence for pulmonary congestion/edema on X-ray/thoracic CT/ultrasound

To summaries:

 1. A mean PAP ≥ 25 mmHg in patients with LHD, the latter hemodynamically 
indicated by a PCWP > 15 mmHg, confirms the presence of PH

 2. A TPG > 12–15 mmHg and/or a PVR > 3 WU is suggestive of a mixed form of 
PH, which means aside from the post-capillary (venous hydrostatic component 
due to passive backward transmission of the elevated left-sided fillings pres-
sures), a pre-capillary reactive superimposed component, due to congestive pul-
monary vasculopathy, has to be determined

 3. A TPG < 12 mmHg and/or a PVR around 3 WU is most likely indicative of a 
“pure”, isolated venous pulmonary hypertension (PvH)

 4. Using the newly introduced metric parameter DPG, isolated post-capillary PH 
is characterized by: PCWP > 15 mmHg and DPG < 7 mmHg and/or PVR ≤ 3WU, 
combined post-capillary and pre-capillary PH by: PCWP > 15 mmHg and 
DPG ≥ 7 mmHg and/or a PVR > 3 WU [27, 87, 213].

6.6  Therapeutic Considerations

Substantial and evidence based data on how to manage PH due to LHD are scarce 
at best, more often than not they are missing [5, 28, 87]. Current guidelines are 
based on expert opinion and provide only very limited treatment suggestions [5].
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However, common sense is to treat the underlying malady(ies) and co-morbidities 
[13, 22], to address volume status [10, 196], and to keep attention on PAP, due to its 
clinical importance, since lowering elevated pulmonary pressure will reduce dys-
pnoea and hospitalization rates in both HFrEF and HFpEF [217, 218]. PH due to 
LDH will improve by unloading the left ventricle and thereby lowering LV-filling 
and pulmonary pressures [27].

Accordingly, an optimized volume status is crucial and of utmost importance 
[13, 53, 87]. Diuretic therapy is the conventional approach to control fluid status, 
applied in case of congestion, diuretics reduce mean PAP, PVR, and 
PCWP. Subsequently, the clinical situation of the patient will significantly 
improve [28, 53, 196, 219]. Functional mitral regurgitation, particularly in 
HFrEF, may not only play a marked role in inducing PH, but worsens prognosis 
[220]. Proper repair of mitral valve regurgitation (for example using a mitral 
clipping or cardio-band) even in asymptomatic patients [221] is demonstrated 
not only to improve pulmonary hemodynamics, but to markedly alleviate symp-
toms, ameliorate quality of life, increase exercise tolerance and to reduce hospi-
talizations [222, 223]. However, clinical outcome studies are still not available.

Additionally, cardiac resynchronization measures may result in improved car-
diac output and reduced PAWPs in selected patients [224].

The approach for group II patients is based on pathobiological considerations, and 
simply applies PAH therapies by targeting the pulmonary vasculopathy. However, the 
results have been quite diverse and are in general not very positive [22, 87]. Only the 
treatment with the phosphodiesterase type 5 (PDE 5) inhibitor sildenanfil, applied to 
patients with LHD of miscellaneous etiology, has yielded encouraging results in both, 
HFpEF and HFrEF individuals [225–235]. Several observational trials (sildenafil was 
given in acute situations [225–228] and as long term therapy [229–231]) as well as 
diverse, mostly smaller, single centre studies [232–235] indeed revealed some benefi-
cial molecular, hemodynamic, and clinical effects: Phosphodiesterase type 5 activity 
is recognized to be significantly increased in the systemic (including renal), as well as 
pulmonary, circulation in heart failure patients [235–237]. Sildenafil leads to increases 
in NO-bioavailability and hence NO-mediated vasodilation [238]. Additionally, it has 
been demonstrated to improve endothelial function [238], to lower arterial stiffness 
[239] and LV afterload [240], to attenuate sympathetic activation [241], and to ame-
liorate myocardial contractility in general [27]. Decisively, while not lowering mean 
arterial pressure, despite SVR declines [27], sildenafil is recognized as a “selective” 
pulmonary vasodilator [242, 243]- of course, the high expression of phosphodiester-
ase type 5 in the lungs substantially co-constitutes this selectivity [243]. Sildenafil 
was, in general, well tolerated, blunted PH and RA hypertension, reduced PCWP, 
PVR and RV dilatation [232, 235, 238, 244, 245]. LV mass was regressive, RV con-
tractile function improved, as were LV and RV compliance, renal and neuroendocrine 
function and gas exchange [232, 235, 238, 244, 245]. Of note, fluid shift into the 
alveolar interstitium was diminished [242, 246]. It is supposed that PDE 5 inhibitors, 
by ameliorating the cGMP—dependent phosphorylation of titin, exerts directly ben-
eficial effects on LV diastolic stiffness [247].

6.6 Therapeutic Considerations
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Unfortunately, the randomised controlled RELAX- study failed to show any 
clinical or hemodynamic improvements in HFpEF patients, however PAH, and con-
secutively affected RV function, was not present in this study group [248]. Indeed, 
this result is not surprising, since sildenafil is a selective vasodilator, targeting the 
pulmonary vasculature, and thereby unloads the RV [236]. Moreover, neither post- 
capillary, nor combined PH, have been specified entry criteria. Strictly speaking, the 
Relax - study did not intend to assess the effects of PDE 5 on pulmonary hemody-
namics and RV function [22]. As such, these results do not preclude application of 
sildenafil in patients with LHD and PH [22, 249]. Nevertheless, the use of PDE 5 
inhibitors is anything else but definitive [28].

Sildenafil is initially given in a dosage between 3x 25 mg, but can be titrated up 
to 75 mg tds, on average 50 mg tds was used [228, 232]. Acutely 40 mg may be 
applied [245]. Noteworthy, acute reductions in PVR carries the subsequent risk of 
abrupt increases in left-sided filling pressures, as blood flow increases with PVR 
reduction [250].

To conclude, therapeutic approaches in LHD and PH are currently not evidence 
based at all, particularly not in patients with PH due to HFpEF. As such, careful 
consideration is essential and an individualised approach is necessary.
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7Cardiorenal Syndrome (CRS)

7.1  Definition

To express and to outline the special relationship observed between the heart and the 
kidneys in health and in malady, several characterizations and definitions have been 
proposed [1]. The knowledge of a specific interrelation between these two organs 
dates back as early as the seventeenth century BC, where in the Egyptian “Book of 
the Dead” one can find: “Homage to thee, O my heart! Homage to you, O my kid-
neys” [2]. In any case, traditional Chinese medicine already recognized and 
described a disorder termed “heart and kidney failing to link”, suggesting a close 
connection between kidney and heart dysfunction [3].

As such, the most recent and currently used definition is actually based on Ronco [4], 
who elaborated the most operational and practical determination of that interac-
tion. The consensus conference of the Acute Dialysis Quality Initiative (ADQI), 
held in September 2008, compiled the following definition and characteristics of 
cardiorenal syndrome (CRS) [5]:

Cardiorenal syndrome, a complex disorder of both, the heart and the kidneys [6, 7], 
may be defined as “disorders of the heart and the kidneys whereby acute or 
chronic dysfunction in one organ may induce acute or chronic dysfunction of the 
other” [5].

To fulfil this definition, both organs must display or develop structural and/or 
functional alterations [8]. Furthermore, we can distinguish between five subtypes 
[4, 5]. Type 1 (acute CRS) refers to an acute worsening of heart function leading to 
acute kidney injury and/or dysfunction [5].

7.2  Epidemiology and Prognostic Issues

Type 1 CRS is found to arise in up to 45% (incidence between 19 and 45%) of 
patients admitted with ADHF displaying acute kidney injury (AKI) [9–12]. 
The occurrence of AKI, attributed to AHFS, is indicative of an even worse 
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prognosis, as it is associated with higher all-cause and cardiovascular mortality 
in both the short- and long-term perspective, and a prolonged hospitalization 
[10, 13–17]. Risk factors to develop AKI due to AHF include: a history of 
 diabetes mellitus, severity of cardiac dysfunction on admission (the more 
severe heart failure the higher the risk to develop AKI) [14, 18], use of high 
dose diuretics (frusemide dose >100 mg/24 h, or use of high dose thiazides), 
vasodilator therapy or application of higher radiocontrast volume [9, 16, 19, 
20]. Most cases of AKI occur and develop within 3–5 days after admission [9, 
10, 21].

7.3  Clinical Issues and Diagnosis

Rapid worsening of renal function in the setting of AHF, resulting in volume over-
load, low CO and poor response to diuretic treatment (the latter known as “diuretic 
resistance”), are characteristic features of CRS, type 1 [4, 22]. Typically, signs and 
symptoms of fluid retention are present in the clinical picture with pulmonary (rales) 
and systemic congestion [9, 10, 23], while laboratory findings indicate elevated 
creatinine and nitrogen urea plasma concentrations [4]—see Chap. 2, BUN with 
prognostic validity [24].

Of note, patients with worsening renal function more often suffer from hyperten-
sion and complain about fatigue [9, 10, 23].

Following and applying the definition, the diagnosis of CRS type 1 requires 
incipient or worsening renal function attributed to, and induced by, primarily 
acute heart failure [7, 25]. Several tools to assess, to recognize and to classify 
renal dysfunction have been proposed and used in studies. I recommend to fol-
low the definition of the RIFLE [26], respectively the AKIN classification [27], 
rather than to apply surrogate markers like the ratio of urine production to 
diuretic dose applied [28], or even newer biomarkers like NGAL or cystatin C 
(the latter arguably being a suitable indicator of high risk patients) [29–31]. The 
newer markers are not yet common daily practice, are not generally accepted by 
practitioners, and may need further evaluation in the context of cardio-renal 
syndrome [32, 33]. Applying AKIN allows for greater standardization of data, 
future (epidemiologic) studies and embeds CRS, type 1, into “the broader con-
text of AKI” [34].

Impaired renal function, in the presence of AHF, is basically suggestive 
of altered renal perfusion [35], unless proven otherwise. Subsequently, either 
low cardiac output, and/or particularly the much more common increased 
renal venous pressure, has to be considered and the patient should be examined 
for this [36]. Renal venous congestion may distinguish acute CRS, type 1, 
from other etiologies of AKI [37]. Specifically, drug-induced renal func-
tional alterations need to be taken into consideration in a differential diagnosis 
[38].
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The poor response to diuretics (diuretics are the cornerstone and standard thera-
peutic approach in CRS type 1 [39, 40]) has diverse aetiologies [4, 41, 42], and the 
persistence of signs and symptoms of heart failure, despite suitable and increasing 
dosages of diuretics, is referred to as “diuretic resistance” [43].

Unfortunately, there is no generally accepted definition of diuretic resis-
tance. The most commonly cited definition of diuretic resistance is: “a failure 
to decongest despite adequate and escalating doses of diuretics” [42]. The 
pathomechanisms involved and responsible for the poor effect of diuretic medi-
cation include: compromised renal blood flow (RBF) [43], altered enteral drug 
reabsorption [44, 45], reduced glomerular filtration (as loop diuretics act best 
from the luminal site) [46, 47], low albumin concentrations (impair uptake and 
secretion of active frusemide) [48, 49], and increased levels of urea nitrogen 
and other organic acids competitively hampering diuretic availability on the 
site of action [50, 51].

AKI related to AHF is most common in up to 60% of all patients with pre- 
existing renal dysfunction [11, 17], as is diuretic resistance in patients with pre- 
existing (chronically) impaired renal function [41, 52]. Predisposing issues to 
develop AKI due to AHF are: obesity [53, 54], diabetes [9, 55], hypertension 
[55–57], anemia [58, 59], and of course nephrotoxic drugs and even the medica-
tion applied to treat AHFS [4, 34, 38]. As such, particularly contrast agents, as 
given in case of coronary angiography, are a frequent precipitant of type 1 CRS 
[60–62].

7.4  Pathophysiology

The close interrelation and the interactions between the heart and the kidneys have 
been traditionally related to hemodynamic issues [63–65], as cross-talk between the 
two organs is physiologically necessary to regulate and to care for physiologic cir-
culatory conditions and fluid and electrolyte homeostasis [1, 5, 65–68]. Cross-talk 
between organs is, in general, essential and indispensable to assure and maintain 
in vivo homeostasis, physiological and smooth functioning of the organism [5, 69]. 
The communication between the heart and the kidneys is of bidirectional nature, 
using several pathways available to notify, give feedback and impact on each other 
[43, 66, 69]. In the setting of malady, the injured, dysfunctional organ, may affect 
the other via various complex humoral, metabolic, and cell-mediated pathways 
[69]. As such, acute heart failure has a direct impact on kidney function (and vice 
versa in case of acute renal dysfunction) [4, 5, 7], by immediate precipitation of 
disrupted and toxic cell signaling promoting distant organ malfunction and/or struc-
tural alterations [70].

In detail: immune and somatic cell signaling may be substantially altered; 
the inflammatory cascades including augmented cytokine release and features 
associated with endothelial dysfunction are activated; enhanced 
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neurohormonal (sympathetic and renin-angiotensin-aldosterone) drive and 
modified heart- renal reflexes (e.g. Henry-Gauer reflex) are described; neutro-
phil migration, leukocyte trafficking, enhanced oxidative stress and disturbed 
redox homeostasis are verified; non-osmotic release of arginine vasopressin 
(disturbed hypothalamic-pituitary axis), and cell apoptosis are all potentially 
able to markedly affect distant organ function and structure, particularly the 
renal tubular epithelium and the renal vascular endothelium [1, 8, 22, 36, 66, 
71–73].

As a main result, intrarenal and intraglomerular hemodynamics are sub-
stantially altered, affecting GFR [4, 5, 8, 36, 74–76], and fluid and electrolyte 
homeostasis [8, 71, 77, 78], and thus renal dysfunction, AKI, may apply. 
Accordingly, it is not astonishing, that traditionally cross-talk between heart 
and kidneys has been exclusively considered to be a hemodynamic feature [63–
65, 79]. The attenuated GFR, and the fluid and electrolyte derangements are a 
consequence of altered renal hemodynamics, attributed to acute or chronic 
heart failure [8, 77, 80, 81], as Guyton explained: “Combined heart and renal 
failure in terms of interactions between cardiac filling and contractility, renal 
function, blood pressure and blood and extracellular fluid volumes” [67]. 
Indeed, altered renal function can, by all means, be related to changes in renal 
blood flow, and renal and glomerular perfusion pressures arising from incipient 
AHF [82]. As such, renal dysfunction related to AHFS has been attributed to 
renal hypoperfusion following low cardiac output [4, 22, 66, 74, 75, 83].

Renal blood flow, and subsequently the glomerular filtration rate (the latter 
being a hallmark of renal function which is decisively depended on renal perfu-
sion/perfusion pressure and RBF respectively [84, 85]), are regulated by a very 
complex interplay between renal and systemic vascular resistance, CO and 
effective circulating blood volume, and intrarenal and intraglomerular hemody-
namics. Thus, conditions determined, modulated and affected by miscellaneous 
factors and features including: renal autoregulation (with its two components, 
tubuloglomerular feedback and myogenic response of renal vasculature [84, 86, 
87]), circulating and local hormones, paracrine factors, as well as endothelial 
and renal neurohormonal (sympathetic and renin-angiotensin-aldosterone sys-
tem, baroreceptor-mediated neuronal) effects and replies [86, 88–94]. Impaired 
renal perfusion activates at least some (depending on the severity of hypoperfu-
sion) of these mechanisms to compensate for hypoperfusion, largely facilitating 
renal and systemic vasoconstriction, and sodium and water retention in order to 
restore renal and systemic (as there will be, in turn, macrocirculatory effects 
[88, 95]) perfusion pressure, systemic perfusion in general and as such renal 
blood flow [4, 7, 74, 83, 96]. However, in case of mild to moderate reductions in 
CO and/or intravascular volume (the effective circulating blood volume), basi-
cally renal autoregulatory mechanisms (autoregulation is considered being pri-
marily a pressure-mediated mechanism [97]), will promote a gradual 
vasodilation (mediated by myogenic response and vasodilating agents, such as 
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prostagalandin I2 and NO) of the afferent, preglomerular arterioles, atoning for 
the diminished blood flow offered to the kidneys, by adapting the renal perfu-
sion to the altered conditions and thus maintaining RBF [88, 90, 98–100]. 
Tubuloglomerular feedback (TGF) fine-tunes renal perfusion and GFR by co-
adjusting the tone of afferent arterioles (vasodilation) via local mediators such 
as NO or adenosine [86, 89], and of vas efferens (mild vasoconstriction in order 
to maintain or restore glomerular filtration pressure), largely mediated via local 
renin release (of the macula densa due to diminished chloride concentration 
there), and thus concomitantly, locally generated angiotensin II [89, 93, 101], 
thereby contributing to restore and/or to preserve GFR. Additionally, salt and 
water retention ensues [102, 103] substantiating the adjusting measures. 
Myogenic response and TGF may be modulated by neurohormonal effects via 
paracrine and endocrine paths, as well as neurally- mediated reflexes and 
responses [86, 93, 104–108].

The circumstances are clearly different in case of severe AHF with markedly 
reduced CO, often accompanied by significant hypotension, and/or if compensa-
tory mechanisms cannot resolve the compromised renal blood flow: Markedly 
reduced CO and thus effective circulating blood volume, or otherwise diluted 
effective circulating fluid volume, diminishes renal blood flow and will subse-
quently reduce renal perfusion pressure [98, 107]. This affects and substantially 
blunts, or disrupts, autoregulation, as soon as renal perfusion pressure drops 
below the autoregulatory threshold [98, 109]. Renal autoregulation is acknowl-
edged to be attenuated, disturbed or even disrupted in heart failure, due to hemo-
dynamic changes, but also related to endothelial dysfunction (see below) [8, 22, 
37, 110–112]. As a response, a marked activation of the neurohormonal systems 
arises with a perceptible effect of an elevated sympathetic drive, and a strongly 
stimulated RAAS with substantially increased levels of angiotensin II (A II) [113, 
114]. This is the result of attenuated and reduced stretch of the baroreceptors of 
the renal vasculature (e.g. vas afferens), due to an attenuated renal blood flow, 
consecutively considerably stimulating the neurohormonal systems [6, 43, 65, 
80]. Its response (neurally/reflectory-mediated release of mediators like A II, NA, 
endothelin-1, vasopressin-arginine, etc.) promotes combined constriction of vas 
afferens and vas efferens, increasing their tone and total intra-renal vascular resis-
tance [71, 93, 107]. Increases in the tone, and thus resistance, of vas afferens, and 
(general) increases in renal vascular resistance, are associated with reduced renal 
blood flow and glomerular filtration pressure, and subsequently a fall in GFR [93, 
115–118]. Furthermore, changes in the tone of vas afferens and efferent are dis-
cordantly in those circumstances, as the afferent arterioles constrict relatively 
stronger than the efferent ones, since vas afferens had been initially dilated and is 
also more densely innervated by sympathetic nerves (three times more) compared 
to vas efferens [119]. However, as the effective filtration pressure is mainly 
affected by the ratio between the tones of afferent and efferent arteriole [76, 88, 
90, 120], this ratio shortens as the tones of both arterioles approach each other. In 
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consequence, a generalized vasoconstrictive environment within the renal vascu-
lar bed is engendered [88, 118, 121], and renal function evidently affected. 
Furthermore, subsequently a considerable volume expansion, namely due to the 
effects of the sympathetic nervous system, aldosterone and arginine vasopressin, 
applies [80, 108, 122–125], which may, in turn, restore renal perfusion [102, 103]. 
However, this volume expansion is basically achieved at the expense of a substan-
tial fluid overload, and in any case, the enhanced renal water, and particularly 
sodium reabsorption, provokes extracellular fluid expansion, as well as systemic 
and pulmonary congestion [71, 78, 80, 122]. Therefore, these hemodynamic alter-
ations cause a bidirectional coupling, as renal failure due to AHF causes fluid 
retention which aggravates heart failure, and thus may provoke further reductions 
in arterial blood pressures thereby worsening renal perfusion even more [1].

Moreover, if GFR cannot be restored by the applied compensatory mecha-
nisms, the kidneys are at high risk of ischemia and ischemic insults [107]: As 
with reduced glomerular capillary pressure, the post-glomerular vessel network 
may be under- perfused, thus tubular ischemia potentially applies and if evoking 
structural tubular injuries, acute tubular necrosis (ATN) may arise [126]. 
Furthermore, local differences in the intensity of the increase in renal vascular 
resistance are observed, resulting in diverse regional perfusion within different 
kidney areas [85, 95, 127, 128]. Endothelial dysfunction arises, and with limited 
NO bioavailability, endothelial- dependent vasorelaxation is mitigated [128], 
thus, microcirculatory failure applies. As such, substantially altered intra-renal 
microcirculation ensues [95, 129, 130], creating disproportionally modified, 
diverse local intra-renal blood flows [100, 131–134], promoting hypoxia/isch-
emia in predisposed areas, particularly the outer medulla [95, 132, 135, 136]. 
Subsequent reperfusion injuries may ensue [90, 132, 137].

Autoregulation, in general, refers to the ability of a vascular bed to adjust its tone 
to maintain a constant blood flow during changes in perfusion following variations in 
arterial perfusion pressure [138, 139]. “Autoregulation is largely and essentially a 
local mechanism of control of blood flow” [140]. Thus, autoregulation, as a crucial 
component determining microcirculatory hemodynamics [110, 141–143], provides a 
rather constant blood flow, and particularly, an appropriate blood flow distribution 
over a wide range of different perfusion pressures, ensuring that oxygen and nutrient 
supplies meet actual metabolic demand of each organ, region and tissue area [144, 
145]. A well performing autoregulation is obviously a critical element in a proper 
renal perfusion arrangement, as altered and affected renal autoregulation applying in 
the context of AHFS has a substantial impact on renal function [8, 76, 97]. Even in 
case of adequate CO, as found in the vast majority of AHF patients, GFR reduc-
tions are demonstrated in quite a number of patients, arguably attributed to 
impaired renal autoregulation [76]. Indeed, renal autoregulation is basically medi-
ated by changes in the tone of vas afferent [97]. As such, uneven renal blood flows are 
considered to be due to attenuated or impaired autoregulation [76], and CRS type 1 is 
suggested to at least partly develop secondary to autoregulatory dysfunction [76].

Lowering elevated BPs in acutely decompensated heart failure patients may 
affect autoregulation and renal function, although BPs are therapeutically “only” 
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reduced to normal ranges [146, 147]. Drugs affecting renal autoregulation may con-
tribute to blunted autoregulatory effects, including loop diuretics, renin blocking 
agents or non-steroidal anti-inflammatory agents [148]. Hence, GFR remains stable, 
unless renal autoregulation is attenuated or impaired, like in case of severe hypoten-
sion and/or markedly reduced CO, or in case renal autoregulation is afflicted, as in 
the setting of AHFS [8, 76, 97, 98]. Accordingly, only as long as renal autoregulatory 
capacity is uninterrupted, GFR will be maintained, despite reduced renal perfusion, 
resulting from mild to moderately impaired CO, reduced effective circulating vol-
ume or otherwise diminished intravascular filling [97, 98, 146, 147].

Renal autoregulation is closely related to, and dependent on, endothelial cell func-
tion: Endothelial cells are acknowledged to play a central role in the regulation of 
the microcirculation [149–151]. They exert relevant influence on vasomotor tone 
[143, 152] (via a dedicated collaboration and cross-talk with the vascular smooth 
muscle cells [150, 153, 154]), show cross-talk among themselves (communicating 
upstream information about the hemodynamic situation and constitution in the 
downstream areas (backward communication)), and as such, modulate and adopt 
local blood flows [110, 155, 156]. Accordingly, they decisively contribute to and 
arrange for a well-functioning microcirculation [149–151]. In low flow conditions, 
pro-inflammatory and pro-thrombotic properties are expressed [157]. It is crucial 
for flow adaptions that endothelial cells align with actual conditions and any disor-
dered alignment, as may be present in case of disturbed blood flows, leaves the 
inflammatory pathways activated [150]. A compromised endothelial function is 
known to impair local vascular autoregulation and to provoke perfusion mismatch 
[158–161]. Unfortunately, endothelial cell function is reported to be afflicted in 
AHFS [112, 162–164]. Correspondingly, a well-performing autoregulation is 
closely related to, and also markedly dependent on, endothelial cell function, 
because the endothelium plays an obligatory role in cardiovascular homeostasis by 
regulating vascular tone (and cardiac function as influencing ventricular load by 
vascular stiffness [162, 165] and coronary and myocardial perfusion and thus ven-
tricular function [166]), adjusting vascular permeability, preserving blood fluidity 
[167], and is particularly central to functions of the microcirculation [149].

However, by far the vast majority of patients admitted due to AHF are adequately 
perfused, with an at least reasonable CO and fair blood pressures caring for pre-
served renal blood flow and autoregulatory capacity—in fact, far less than 10% of 
all AHFS exert compromised organ perfusion [168–175]. As such, this traditional 
view of renal hypoperfusion being mainly responsible for incipient renal dysfunc-
tion in AHFS has been warrantable challenged [37, 176, 177]. Indeed, no correla-
tion has been found between baseline renal function and CO/CI [19], an improvement 
in cardiac index does not translate into improvement in renal function [174, 178], 
and even patients with relatively normal systolic function (those with preserved 
ejection fraction and/or preserved CO) are often presenting with, or develop, 
impaired renal function [171, 179, 180]. Moreover, worsening renal function can be 
found in a similar range in patients with preserved and those with reduced systolic 

7.4 Pathophysiology



378

function [181], and most AHFS patients are admitted with elevated BPs rather than 
being hypotensive [41]. Recent trial results present convincing evidence, that in 
those patients predominantly venous congestion is the main reason for (and cause 
of) renal dysfunction [169, 174].

That elevated renal venous pressures may affect kidney function has already 
been described more than 75 years ago [79, 182]: In a dog model, Winton [79] rec-
ognized a deterioration of urine generation with renal venous pressures above 
20 mmHg and even a suspended urine formation at pressures ≥25 mmHg. 
Furthermore, he expressed a relationship between elevated central venous pressures 
and reduced renal blood flow, indicating that renal blood flow decreases with the 
decline in pressure gradient between vas afferent and vas efferent, probably induced 
by an increase in vas efferent tone [79]. Later on, extrinsic compression of abdomi-
nal veins due to intra-abdominal hypertension were also reported to compromise 
renal function [183, 184], which has in the meantime be confirmed by several stud-
ies [185, 186]. Firth showed a direct transmission of elevated central venous pres-
sures to the renal veins, attenuating GFR, as increased renal venous pressure was 
accompanied by a drop in glomerular perfusion pressure—a dysfunction that may 
recover, if enhanced pressures are resolved [187]. Gottschalk and Mylle [188] dem-
onstrated that in case where renal venous pressure exceeds 15 mmHg, a linear 
increase in peritubular capillary and intratubular pressures arises. However, every 
increase in intratubular pressure directly diminishes net ultra-filtration pressure, as 
enhancing the pressure within the Bowman’s space, which opposes glomerular fil-
tration pressure, and subsequently attenuates GFR [1, 76, 97, 189]. Raised systemic 
and renal venous pressures, with concomitant congestion of the renal venous sys-
tem, are thought to cause extravasation and congestion of the kidney [82, 177]. 
Since the kidney is surrounded by a tight non-distensible capsule [82, 177], subse-
quent interstitial intra-renal pressure increases in case of elevated renal venous pres-
sures [190–193].

Consecutively, renal parenchymal hypoxia, tubular dysfunction, due to tubular 
obstruction, or even collapse concomitantly opposing glomerular filtration  
pressure [97], and activating the RAAS may apply, promoting a decrease in GFR 
[97, 191–193]: Elevated venous pressures, in any case, reduce the trans-renal perfu-
sion pressure (a decrease in arterio-venous pressure gradient occurs with increasing 
venous pressures within the renal vessel system), will provoke a diminished renal 
blood flow [22, 97], and may distend the venule network surrounding the tubules of 
the distal nephron, causing tubular compression, obstruction or even collapse of the 
tubules (at least as long as the pressure of the ultrafiltrate does not exceed venular 
pressure [79]) ensue [107, 177]. Subsequently, net glomerular filtration pressure is 
lowered, and backleak of the ultrafiltrate into the interstitium may occur, the latter 
potentially leading to an increase in the interstitial pressure [107, 177].

With increasing renal venous pressure, neurohormonal activation ensues. As 
such, increasing renal and systemic angiotensin II concentrations are demonstrated 
to accompany increasing renal venous pressures [190, 194], leading to (further) 
decreases in GFR, enhanced proximal tubular sodium and water reabsorption 
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(aggravating heart failure and renal venous and intra-renal interstitial pressure ele-
vation and congestion), and stimulated sympathetic drive [71, 125, 192, 195]. 
Angiotensin II and sympathetic activity affect arteriolar tone and thus, impact on 
perfusion and afferent and efferent glomerular pressures [125, 190].

This concept is further considerably supported, and profoundly substantiated, by 
results demonstrating an association between increased central venous and right 
atrial pressures, attributed to acute decompensating or chronic heart failure, and 
worsening renal function. Moreover increasing central venous pressures go along 
with an increased mortality rate in that patient group [174, 196, 197]. Beyond this, 
elevated central venous pressure is reported to be associated with higher baseline 
createnine serum concentrations [197] and tricuspid regurgitation, attributed to 
heart failure, and shows a relationship with renal dysfunction [198]. Damman finally 
verified that in heart failure patients, venous pressure is an independent determinant 
of glomerular filtration [169].

It is not definitely known how autoregulation responds to the increased renal 
venous pressure, however, renal autoregulation is considered to be affected by the 
above described hemodynamic alterations (renal hypoperfusion and renal venous 
hypertension), impairing autoregulatory effects and efficacy, or even provoking 
complete breakdown of autoregulation [8, 22, 76, 97]. It seems, and it is suggested 
that, due to the increased renal venous and interstitial pressures, not only the RBF 
will be attenuated, but that the myogenic response is strongly affected (while TGF 
is not relevantly impacted) and thus autoregulation impaired [199, 200]. 
Meanwhile, “systemic venous congestion” (and thereby renal venous congestion) 
is acknowledged to be “the major driver of acute cardiorenal syndrome (CRS, 
type 1), especially in severely elevated central venous pressure from RV dysfunc-
tion and/or tricuspid regurgitation” (associated with (acute) heart failure) [35, 76, 
169, 174].

Haase [76] summarized the hemodynamic alterations potentially displayed, and 
to be anticipated in, CRS type 1 patients with respect and related to the clinical- 
hemodynamic profile assessed by physical examination at bedside as proposed by 
Stevenson [201] (and later resumed and established by Nohria and co-workers [202, 
203]). This is currently the widely used and even endorsed (by AHA/ACCP and 
ESC) approach [204] to evaluate the predominant clinical-hemodynamic condition 
of AHF patients and seminal for the initial therapeutic approach and prognosis 
[202, 204–206]: Source [76].

Warm and dry Warm and wet

Discordantly ↓ RBF Discordantly ↓ RBF

Intra-renal microvascular dysregulation Impaired intra-renal autoregulation
↑ renal venous pressure

Cold and dry Cold and wet

↓ RBF Discordantly ↓ RBF

Impaired intra-renal autoregulation Impaired intra-renal autoregulation
↑ renal venous pressure
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Beyond the described hemodynamic issues, several non-hemodynamic features, 
namely the neurohormonal activities and the inflammatory and endothelial effects, 
are considered to be relevant contributors to, mediators of and communicators in the 
development of CRS, type 1, linking heart and kidneys and impressively demon-
strating, how cross-talk and interactions work, and conditions/information are 
mediated [1, 36, 69, 83, 207].

As such, the renin-angiotensin-system is a typical example of the bidirec-
tional impact, which the heart and the kidneys exert on each other, as well as 
being a connector of both organs [1, 35, 115]. Increased renal venous pressures 
[208, 209], diminished renal artery pressure [210], diluted sodium concentra-
tion in the distal nephron [211], and enhanced sympathetic discharge [210], all 
are demonstrated to be associated with, and are conditions of, the pathophysiol-
ogy of acute and chronic heart failure and kidney afflictions [36, 78, 83, 212]. 
They have been shown to promote substantial renin release and thus activate the 
renin-angiotensin cascade [115]. Elevated renin secretion is characteristic of 
early biventricular heart failure, leading and contributing (via angiotensin II (A 
II)) to myocardial and renal dysfunction, and promoting edema formation [212]. 
Activation of the renin-angiotensin system allows to maintain glomerular perfu-
sion pressure and glomerular filtration rate, despite reductions in cardiac output 
and/or low BPs, through preferential constriction of the efferent glomerular 
arterioles in patients with HF [213]. The biologically most active representative 
of the renin-angiotensin-system, angiotensin II, stimulates pro-inflammatory 
cells, thus induces the generation of reactive oxygen species (via the NADPH/
NADH oxidase pathway [214, 215]) and pro-inflammatory mediators [216], and 
is, as such, coupled to the inflammatory path connecting both organs [1, 176]. A 
II causes and amplifies renal and systemic vasoconstriction, subsequently 
enhances LV afterload, diminishes renal perfusion, increases venous pressure 
and facilitates edema formation [22, 36]. Furthermore, A II (and the RAS) has 
been shown to be tightly linked to the sympathetic nervous system [217], where-
upon signals of the sympathetic nervous system to the kidney are closely related 
to incipient CRS [218]. Not at least, A II causes aldosterone excretion, and 
hence promotes tubular water and sodium reabsorption [36]. Both, heart failure 
and renal failure are substantially influenced by (but also simultaneously facili-
tate) incitement of the inflammatory and oxidative path, adversely affecting 
both organs [176, 207]. Meanwhile, oxidative injury is recognized as a “com-
mon link between cardiac and renal dysfunction” [207] and the final common 
pathway in CRSs [36].

As already described, the vascular and cardiac endothelium is another feature, 
mediator, coordinator and conductor orchestrating inflammatory and vascular reac-
tions and replies. It is not only A II which causes endothelial dysfunction (ED) 
[216, 220], but rather heart failure and chronic kidney disease are both indepen-
dently associated with ED [221, 222]. Disrupted NO pathways and reduced NO 
bioavailability, affiliated with ED, are major issues in heart failure 
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pathophysiology, substantially influencing renal function [207, 223–225]. ED may 
considerably affect renal autoregulation [158–161], as ED is also associated with 
oxidative stress (with effects on renal sodium management, systemic and renal 
hemodynamics [226–228], and glomerular glycocalyx barrier function [229, 230]) 
and the inflammatory cascade [1, 36, 176, 231], showing definite cross-links 
between both organs [72, 232–234]. Indeed, CRS may be considered as a low-
grade inflammatory disease, attributed to an imbalance between immune system 
cell signaling [36, 235–237], and interleukin-6 (IL-6) has been identified as a com-
plex cardiorenal connector [1, 238, 239].

Beyond the activated RAAS, ED, inflammation and ROS, the important role and 
interconnection of the sympathetic activation in the pathogenesis, pathophysiology 
and progression of heart (and renal) failure has already been stressed [240]. Enhanced 
sympathetic drive, by increasing afferent arteriole tone, mitigates RBF and GFR, and 
thus affects renal function [241, 242]. Other factors discussed as possible contributors 
include: gut ischemia and (consecutive) endotoxemia [243–245]; superimposed infec-
tions [246, 247]; iatrogenic effects (especially drug applied with kidney compromis-
ing effects) [248–251]; and a failure of counter-regulatory mechanisms (e.g. natriuretic 
peptides) dampening the depicted (compensatory) mechanisms and features [36].

To conclude, the pathobiology of the cardiorenal syndromes is complex and multiple 
mechanisms may be involved [4, 5]. The impact and the importance of each feature 
contributing may vary from patient to patient [7]. The pathophysiology of CRS, type 
1, largely includes hemodynamic features such as diminished RBF and deficient 
renal perfusion pressure, increased intra-renal vascular resistance, as well as 
enhanced renal venous pressure (with concomitant renal venous congestion) [97], 
the latter being identified as the “major driver of acute cardiorenal syndrome” type 1 
[36, 76, 169, 174, 252]. Altered renal perfusion in the setting of acute (and chronic) 
heart failure is attributed to and may be the result of impaired CO, combined with 
pre- glomerular vasoconstriction and renal venous congestion [253]. However, GFR 
(and thus renal function) remains stable unless renal autoregulation is attenuated or 
impaired, as may be (I) in case of severe hypotension and/or markedly reduced CO 
resulting in hypoperfusion, (II) when renal perfusion pressures are beyond the auto-
regulatory threshold, (III) and/or in case renal autoregulation is afflicted by features 
such as renal venous congestion, ED, diminished intrarenal perfusion, and altered 
(intra)glomerular hemodynamics, all apply in the setting of AHFS [8, 76, 97, 98]. As 
such, a proper working autoregulation is critical in renal physiology.

All hemodynamic factors are strongly related to volume retention and activated 
neurohormonal systems (sympathetic and RAAS) [122, 254]. Indeed, features asso-
ciated with and contributing to CRS type 1 are sympathetic-mediated fluid redistri-
bution, venous congestion, inflammation, and endothelial dysfunction [174, 
255–257]. Venous congestion, enhanced neurohormonal activity, ED and inflamma-
tion are the main trigger, contributors, and mediators precipitating baseline renal 
dysfunction by altering intra-renal and intra-glomerular hemodynamics and by 
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affecting renal auto-regulation [4, 36, 76, 252]. Moreover, type 1 CRS may, in fact, 
be also perceived as an inflammatory disorder, as the inflammatory pathway and 
associated features, namely ED and oxidative stress, markedly contribute to the 
pathogenesis, and inflammation is fundamental for the occurrence of distant organ 
damage [7].

7.5  Management

The management of CRS type 1 predominantly relies upon the approach by which 
acute heart failure is tackled [5, 32, 36, 43, 175, 207]. Specific renal requirements 
and issues need to be considered, before taking actions aimed at disrupting cardio-
renal connections and dependencies, by applying multi-modal paths addressing the 
various underlying patho-physiologies [7, 107]. Restauration of physiological renal 
hemodynamics can be achieved in part by relieving the patient from congestion and 
symptoms, and further, any measures jeopardizing renal function need to be abso-
lutely avoided [43, 76, 175].

Before it can be beneficial, it is strictly necessary, that any therapeutic measure 
used to approach AHF does not exert negative effects on kidney performance [258]. 
Accordingly, particularly nephrotoxic drugs like radiocontrast media, non-steroidal 
anti-inflammatory agents, and opiates altering renal hemodynamics (and thus 
impairing autoregulation and thereby negatively affecting kidney function), should 
be held off [60, 61]. Furthermore, adequate BP (MAP of ≥70–80 mmHg, with 
80 mmHg being the target one should definitely aim for in patients with chronic 
hypertension [259, 260]) guarantees operating renal autoregulation and thus main-
tains glomerular perfusion [97]. Hypotension and/or intravascular underfilling have 
to be avoided, eliminated and prevented [147, 261].

7.5.1  Diuretics

The application of diuretics is the cornerstone in the treatment of AHFS [36] and 
CRS [22, 32, 36], but it is somewhat of a double-edged sword. They are important to 
resolving congestion and thereby improving patients’ symptoms and comfort in gen-
eral, and with respect to CRS type 1 in particular, they address renal venous conges-
tion and fluid overload, but unfortunately, they may unfavorably affect kidney 
function and further activate the neurohormonal systems [262–264]. As such, by 
reducing elevated central and renal venous pressures, the latter being a major driver 
of worsening renal function in AHF patients [36, 76, 169, 174], diuretics are an 
essential and effective feature in the treatment armamentarium [5, 22, 32, 36, 43]. 
Furthermore, Atherton [265] impressively demonstrated that in decompensated 
severe heart failure, with considerably elevated LVEDP, diuretics are not only very 
effective to relieve the patients` symptoms and to improve clinical and hemodynamic 
conditions, but are generally well tolerated, and do not worsen circulatory issues 
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(primarily BP). Roughly 50% of all patients admitted to hospital suffer from biven-
tricular failure, and thus the LV is relevantly compromised by pericardial constraint 
and ventricular interactions (specifically diastolic ventricular interdependence, DVI). 
Especially unloading of the right heart (thereby attenuating systemic congestion), 
will optimize LV filling and intraventricular pressure terms, subsequently facilitating 
LV performance and hence supporting macro-hemodynamics. In any case, no BP 
drop could be demonstrated, not even in patients without relevant pericardial con-
straint and DVI, thus no significant hemodynamic setback has to be anticipated if 
diuretics are applied in those patients.

However, in case of (intermittent) arterial underfilling—due to “overshooting” 
diuresis, following application of diuretics—renal perfusion may worsen, while the 
neurohormonal systems will be further activated [115, 262]. As such, the rate of 
fluid removal should not exceed the rate of fluid mobilization, and tissue fluid reab-
sorption rate is estimated to range between 12 and 15 mL/min [266, 267].

Early use of diuretics is reported to reduce mortality in severe AHFS, while sys-
temic congestion (indicated by elevated central venous pressure) is related to wors-
ened mortality in AHFS [196]. Effective and substantial decongestion is a decisive 
prognostic feature, and influences the evolution of the disorder. Incomplete decon-
gestion rather than increasing createnine serum concentrations are associated with 
disease progression and worsens the chance of survival [268, 269]. On the other 
hand, a relationship between increased requirement of loop diuretics and increasing 
mortality has been demonstrated [250, 270, 271]. Thorough monitoring of diuretic 
use and effect is necessary [36].

Diuretic resistance, a specific issue [75], may complicate CRS [34, 43]. The 
underlying pathomechanisms are diverse [41, 42] and may include: compromised 
renal blood flow (e.g. hypotension and/or hypoperfusion) [43, 272], blunted intes-
tinal absorption of the diuretic agent [44, 45], reduced glomerular filtration as 
loop diuretics act best from the luminal site [46, 47], low albumin concentrations 
(impair uptake and secretion of active frusemide) [48, 49], and increased levels of 
urea nitrogen and other organic acids competitively hampering diuretic availabil-
ity on site [50, 51]. Accordingly, all features leading to reduced availability of the 
diuretic drug at the site of action (which is the thick ascending limb of the loop of 
Henle for loop diuretics, and the distal convoluted tubules for thiazide diuretics 
and metolazone, which is a thiazide-like drug, the latter commonly and preferably 
applied in CRS), have to be considered and should be addressed if possible [36, 41, 
43, 273, 274].

The recommended dosage of diuretic medication at which it becomes effec-
tive varies widely [22]. However, either increasing the dosage of loop diuretics 
or adding a second-site diuretic agent [275, 276] (e.g. metolazone 10–20 mg bd/
tds or hydrochlorthiazide 50–100 mg per day (in severe cases 100–200 mg per 
day [273])), is generally advised in case of diuretic resistance [22, 32, 82, 273]. 
As only 50%, or less, of frusemide is absorbed in case of systemic venous con-
gestion and edema [277], i.v. application may overcome intestinal reabsorption 
difficulties [43].
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Furthermore, since no significant differences in renal function have been 
observed when applying loop diuretics as several bolus injections or via continuous 
infusion, the kind of intravenous application does not matter [250].

Dosing of loop diuretics recommended in CRS type 1 [115, 273]:
Frusemide: 40–80 mg i.v., 80–160 mg may be required several times a day, e.g. 

tds or qds in case of moderate renal insufficiency, if renal impairment is severe, 
160–200 mg, e.g. tds or qds. The maximal natriuretic response is reported to be 
achieved with i.v. bolus injections of 160–200 mg frusemide (or equivalent torase-
mide/bumtanide dosages) [278, 279].

Torasemide: 20 mg i.v., 20–50 mg tds in case of moderate renal impairment, 
50–100 mg tds if severe renal insufficiency.

Bumetanide: 1–2 mg i.v., 4–8 mg in case of moderate renal insufficiency, 
8–10 mg if renal dysfunction is severe.

Felker [250] examined the effect of different frusemide dosages, by applying to one 
group intravenously (either by continuous infusion or i.v. as a bolus every 12 h) the 
same dose of frusemide which these patients had previously, before admission, taken 
orally, while he gave the other group of patients, the high dosage group, 2.5 times the 
amount of oral dose. No significant differences were found between either groups and 
thus between the dosages, nor between continuous or bolus intravenous application, 
observed over a period of 72 h. However, although not significantly, the high dose 
group showed beneficial effects in secondary outcome criteria such as: relief of dys-
pnea and congestion, amount of weight loss, reduction of elevated cardiac biomarkers 
(natriuretic peptides), and a trend of a lower rate of hospitalizations, but also devel-
oped some mild degree of renal dysfunction which reversed within 1 week.

The addition of mineralocorticoid diuretics (MRAs) in an acute setting has not 
been examined. However, they are recommended in the guidelines for chronic heart 
failure therapy in low dosages [280, 281]—class I A recommendation [204]. They 
may be added, even to a combination of loop diuretics and thiazides [282, 283], in 
acute decompensations at “higher” dosages (50–75 mg daily—12.5 and 25 mg there 
is no natriuretic effect at all [284]), as smaller observational studies suggest, since 
MRAs may improve diuresis (in diuretic resistance) and thus the clinical condition 
of the patient [285, 286].

Note: Dose titration should in general be subject to effectiveness and/or the side- 
effects experienced [287].

Two randomized controlled studies (UNLOAD and RAPID-CHF) comparing 
ultrafiltration with diuretic medications, revealed a greater fluid removal and sig-
nificantly fewer re-hospitalizations and unscheduled visits for heart failure in the 
ultrafiltration groups [288, 289]. However, weight loss within 24 h [289] and dys-
pnea scores [288] did not differ.

The result of a recently published trial, studying patients with AHFS and cardio-
renal syndrome, showed that ultrafiltration was inferior compared to medical treat-
ment, due to worsening renal function and due to more frequent adverse effects in 
the ultrafiltration group [290].
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Consequently, there is currently no evidence favouring ultrafiltration over loop 
diuretics at all [290, 291]. Ultrafiltration, respectively renal replacement therapy, 
should be restricted to AHF patients who are: severely volume overloaded, staying 
oligo-anuric, despite all treatment efforts, are not responding to diuretic treatment, 
or in cases where acute severe kidney injury ensues [204].

7.5.2  BP/Renal Perfusion Pressure

Maintenance or restauration of a sufficient renal perfusion pressure, MAP (since the 
MAP best represents perfusion pressure [292]), is essential to preserve or re- 
establish renal function [118, 293–296].

Studies on mammalians revealed renal autoregulation to be working within a 
range of 80–180 mmHg [297–299]. Older study results examining the target MAP 
level in case of renal dysfunction, and even diuretic resistance associated with 
AHFS and other critical maladies are inconsistent [300–303]. However, more recent 
studies demonstrate that MAPs between 75 and 85 mmHg do not only enhance 
renal perfusion pressure as desired and necessary, but are obviously beneficial in 
addressing altered renal microcirculation [144, 304, 305]. Patients with afflicted 
renal microhemodynamics will probably benefit from MAPs ≥75 mmHg [305–
307]. Furthermore, in patients with coronary artery disease and CS, MAPs between 
70(75) and 80 mmHg are suggested in order to stabilize the circulatory conditions 
[303, 308, 309]. Moreover, once autoregulation has been lost, re-establishment is 
supposed to require higher MAPs [295, 302]. In the meantime, no concerns and no 
evidence have been found that noradrenaline (NA), the most advantageous and pre-
ferred vasopressor agent [310], may be associated with an increased risk of AKI 
[145, 302, 311–314], if the indication to apply NA is straightforward, to address 
arterial hypotension in life-threatening circumstances, shock states and vasodilatory 
conditions [310, 315–317]. Accordingly, a MAP of around 80 mmHg should be 
targeted, although in each patient treatment should be individualized [293, 307, 314, 
318, 319].

7.5.3  Further Measures

Activation of the renin-angiotensin system allows maintenance of glomerular perfu-
sion pressure and glomerular filtration rate, despite reductions in cardiac output and 
BP, through preferential constriction of the efferent glomerular arteriole in patients 
with HF [213]. By addressing the neurohormonal activation and thus affecting 
heart–kidney cross-talk (attenuating inflammation and endothelial dysfunction), 
fluid retention and vasoconstriction is blunted, and concurrently cardiac and renal 
function stabilizes [22, 34, 176, 320]. Further, ACE-inhibitors and angiotensin 
receptor blockers are key agents in the therapy of systolic heart failure (HFrEF) 
[321–325]. They may counteract or mitigate side-effects of the diuretic medication, 
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potentially further triggering neuroendocrine activity [22]. However, blocking the 
effects of RAAS may impair autoregulation of GFR [326], as attenuation of angio-
tensin II effects cause glomerular efferent arteriole dilation with a subsequent drop 
in glomerular perfusion pressure, resulting in a lower GFR and an increase in serum 
creatinine [192, 219]. Moreover, there is scarce data about the role of ACE-
inhibitors/angiotensin receptor blockers in CRS, and their application in this condi-
tion is more or less empirically and based on expert opinion [6, 107, 327]. If 
ACE-inhibitors/angiotensin receptor blockers are initiated in the presence of

 (a) hypotension (MAP <60 mmHg), and/or
 (b) LVEDP <15 mmHg, and/or
 (c) hyponatremia, and/or
 (d) high dosages of loop diuretics are given,

renal function may significantly worsen [328, 329]. Furthermore, timing to initiate 
ACE-inhibitors/angiotensin receptor blockers is unclear: Some authors recommend 
that treatment should not be initiated before the patient is stabilized [6, 107]. 
However, in patients with moderately diminished renal function (and with diuretic 
resistance), ACE-inhibitors/angiotensin receptor blockers are likely to be beneficial 
and to offer survival benefit, although renal function may transiently (further) 
worsen [327]. In case of severely impaired renal function, it is unknown if they are 
beneficial or deleterious [330]. Dosing should be cautiously carried out starting 
with low dosages and some clinicians tolerate reductions in GFR up to 30% [107, 
331]. It may be advisable to reduce the dosages of diuretic drugs before starting up 
with ACE- inhibitors/angiotensin receptor blockers [331]. Drops in BP should be 
avoided [6], and in patients who were on ACE-inhibitors/angiotensin receptor 
blockers prior to cardiac decompensation, a transient dose reduction may be appro-
priate [332]. Nevertheless, ACE-inhibitors/angiotensin receptor blockers are under-
used and application even in CRS type1 needs to be encouraged [333].

For the treatment with β-blockers, it may be opportune to withhold them until the 
patient is hemodynamically stable, unless AMI is the underlying aetiology where low 
dosages may be beneficial [34, 107]. This is because β-blockers may attenuate neces-
sary and initially beneficial compensatory effects of sympathetic nervous system and 
thus may contribute to the development of cardiogenic shock (CS) [34, 334].

Notable for practical issues: Mild increases in createnine during diuretic treatment 
may be interpret as transient intravascular volume depletion or “overdiuresis” (if so, 
continue less aggressive with lower doses) [207], and may further occur in those 
patients who are on ACE-inhibitors [328] or where BP is apparently too low [207]. 
However, study results suggest that some degree of createnine increase, associated with 
ACE-inhibitor therapy, should be tolerated (increase up to 30% of baseline) [107, 207].

Further, keep in mind, that via fluid retention (and associated elevated CVP and 
RA-P), a normal MAP could be achieved and preserved (successful compensation), 
but often at the cost of amplified congestion and oliguria (high renal venous pres-
sure). Diuretics given in such circumstances may worsen the situation by inducing 
a drop in BP while simultaneously stimulating sodium and water reabsorption. 
Consecutively a vicious cyle may be established [82].
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To summarize, the traditionally close relationship and interconnection 
between heart and kidney function has recently been termed cardiorenal syn-
drome, CRS [4]. The pathophysiology is multifactorial and complex, and the 
features causing renal malfunction in type 1 CRS may individually vary [4, 5, 
7]. However, in type 1 CRS, diminished RBF and deficient renal perfusion pres-
sure, increased intra-renal vascular resistance and enhanced renal venous pres-
sure (concomitantly causing renal venous congestion), are the fundamental 
hemodynamic aberrations precipitating intra-renal and intraglomerular altera-
tions, and thus determining the pathophysiology [36, 76, 97, 169, 174, 252]. 
“Systemic venous congestion” (and thus renal venous congestion) is acknowl-
edged to be “the major driver of acute cardiorenal syndrome” in type 1 CRS [36, 
76, 169, 174, 252]. Nevertheless, GFR remains stable unless renal autoregula-
tion is attenuated or impaired. The latter may arise:

 1. in case of severe hypotension and/or markedly reduced CO resulting in 
hypoperfusion,

 2. when renal perfusion pressures are beyond the autoregulatory threshold, and/or
 3. in case renal autoregulation is afflicted by features such as: renal venous conges-

tion, ED and associated inflammation, diminished intra-renal perfusion, and 
altered (intra)glomerular hemodynamics, all applying during AHFS [8, 76, 97, 98].

In fact, venous congestion, enhanced neuroendocrine discharge, ED and inflam-
mation are recognized to be the main trigger and mediators precipitating baseline 
renal dysfunction, by altering intra-renal and intra-glomerular hemodynamics, con-
secutively affecting renal auto-regulation [4, 36, 76, 252]. Accordingly, a proper 
working autoregulation is critical in renal physiology. Sufficient high blood and 
thus renal perfusion pressures, with MAPs around 75–80 mmHg preserving renal 
autoregulation, are essential [144, 304–307]. Furthermore, diuretics are the corner-
stone in the management of CRS, type 1, and sufficiently high dosages of loop 
diuretics, eventually combined with metolazone, are necessary to overcome diuretic 
resistance. NA is the vasopressor of choice [310], obviously exerting no adverse 
effects on kidney function in low to medium dosages [145, 302, 311–314]. ACE-
inhibitors may be initiated with caution and low dosages are advisable [107, 331, 
333]. Createnine increases of up to 30% of baseline attending diuretic and/or ACE-
inhibitor/angiotensin receptor blocker application can be transiently tolerated [107, 
207, 330].
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