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Jérôme Detemple and Marcel Rindisbacher



Contents vii

26 Low-Discrepancy Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703
Harald Niederreiter

27 Introduction to Support Vector Machines and Their
Applications in Bankruptcy Prognosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731
Yuh-Jye Lee, Yi-Ren Yeh, and Hsing-Kuo Pao

Part V Software Tools

28 MATLAB R� as a Tool in Computational Finance . . . . . . . . . . . . . . . . . . . . . . 765
James E. Gentle and Angel Martinez

29 R as a Tool in Computational Finance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781
John P. Nolan



•



Contributors

Johan Bjursell George Mason University, Fairfax, VA 22030, USA, cbjursel@
gmu.edu
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D-50931 Köln, Germany, seydel@math.uni-koeln.de, www.compfin.de

Elena Silyakova Ladislaus von Bortkiewicz Chair of Statistics and CASE-Center
for Applied Statistics and Economics, Humboldt-Universität zu Berlin, Spandauer
Straße 1, 10178 Berlin, Germany, silyakoe@cms.hu-berlin.de

Kenneth R. Vetzal School of Accounting and Finance, University of Waterloo,
Waterloo, ON, Canada, kvetzal@uwaterloo.ca

Hoi Ying Wong The Chinese University of Hong Kong, Sha Tin, NT, Hong Kong,
hywong@cuhk.edu.hk

Jun Yu School of Economics, Lee Kong Chian School of Economics and Sim
Kee Boon Institute for Financial Economics, Singapore Management University,
90 Stamford Road, Singapore 178903, yujun@smu.edu.sg

Yi-Ren Yeh Research Center for Information Technology Innovation, Academia
Sinica, Taipei 11529, Taiwan, yryeh@citi.sinica.edu.tw

ostap.okhrin@wiwi.hu-berlin.de
ludger.overbeck@math.uni-giessen.de
pao@mail.ntust.edu.tw
christian.pigorsch@uni-bonn.de
uta.pigorsch@vwl.uni-mannheim.de
uta.pigorsch@vwl.uni-mannheim.de
ipopov@mail.uni-mannheim.de
rindisbm@bu.edu
cesare.robotti@atl.frb.org
tsauer@gmu.edu
melanie.schienle@wiwi.hu-berlin.de
seydel@math.uni-koeln.de
www.compfin.de
silyakoe@cms.hu-berlin.de
kvetzal@uwaterloo.ca
hywong@cuhk.edu.hk
yujun@smu.edu.sg
yryeh@citi.sinica.edu.tw


Part I
Introduction



Chapter 1
Computational Finance: An Introduction

Jin-Chuan Duan, James E. Gentle, and Wolfgang Karl Härdle

1.1 Computational Statistics, Finance, and Computational
Finance

This book is the fourth volume of the Handbook of Computational Statistics. As
with the other handbooks in the series, it is a collection of articles on specific aspects
of the broad field, written by experts in those areas. The purpose is to provide a
survey and summary on each topic, ranging from basic background material through
the current frontiers of research. The development of the field of computational
statistics has been rather fragmented. We hope that the articles in this handbook
series can provide a more unified framework for the field.

The methods of computational statistics have pervaded most areas of application,
particularly such data-rich fields as finance. The tools of computational statistics
include efficient computational algorithms, graphical methods, simulation, and
resampling. These tools allow processing of massive amounts of data and simulation
of complex data-generating processes, leading to better understanding of those
processes.
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4 J.-C. Duan et al.

1.1.1 Finance

The field of finance is concerned with asset prices, how they vary over time, and risk
associated with that variation.

Anything that is openly traded has a market price that may be more or less than
some “fair” price. For shares of corporate stock, the fair price is likely to be some
complicated function of intrinsic (or “book”) current value of identifiable assets
owned by the company, expected rate of growth, future dividends, and other factors.
Some of these factors that affect the price can be measured at the time of a stock
transaction, or at least within a relatively narrow time window that includes the
time of the transaction. Most factors, however, relate to future expectations and
to subjective issues, such as current management and corporate policies, that are
believed to affect future financial performance of the corporation.

There are many motivating factors for the study of financial data. Investors,
speculators, and operators seek an advantage over others in the trading of financial
assets. Academics often find a different motive for studying financial data just
because of the challenges of developing models for price movements. Finally,
government regulators and others are motivated by an interest in maintaining a fair
and orderly market. With more and more retirees depending on equity investments
for their livelihood, it becomes very important to understand and control the risk in
portfolios of corporate stock.

Study of characteristics of a corporation and their relationship to the current and
future financial status of the corporation is a major topic in the field of finance.
A general objective is to measure “fair price”, “value”, or “worth” of corporate
stock. The price, either the market price or the fair price, varies over time.

In the subfield of finance known variously as “mathematical finance”, “financial
engineering”, or “computational finance”, a major objective is to develop and study
models of the movement of the market price of basic financial assets. A second
important objective in computational finance is to develop useful models of the
fair price of derivative assets; that is, financial assets that convey rights and/or
obligations to execute prespecified transactions in some basic underlying assets.
The fair price of such a derivative asset depends on the expected movements of the
market price of the underlying asset.

1.1.2 Models for Movement of Prices of Basic Assets

We first consider the question of how market prices change over time.
As a first simple approximation, we assume discrete time, t0; t1; t2; : : : or t , t C 1,

t C 2; : : :. In more realistic models, we assume continuous time, but in applications
of course, we have to revert to some type of discreteness. We also generally study
aggregated prices or index prices The prices of individual securities, even if they
follow similar models, behave in a way peculiar to the security. There are more
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security-specific extraordinary events that affect the price of a given security, than
there are extraordinary events that affect the overall market.

A stochastic model of the price of a stock (or index) may view the price as a
random variable that depends on previous prices and some characteristic parameters
of the particular stock. For example, in discrete time:

StC1 D f .St ; �; �/; (1.1)

where t indexes time, � and � are parameters, and f is some function that contains
a random component. The randomness in f may be assumed to reflect all variation
in the price that is not accounted for in the model.

In the absence of exogenous forces, the movement of stock prices is similar to
a random walk with steps that are neither independent nor identically distributed.
A simple random walk could take the prices negative. Also, it seems intuitive
that the random walk should have a mean step size that is proportional to the
magnitude of the price. The proportional rate of change, .StC1�St /=StC1, therefore,
is more interesting than the prices themselves, and is more amenable to fitting to a
probability model.

Two different types of models of price movements are obvious choices. One type
of model is based on a stochastic diffusion process and another uses an autoregres-
sive moving average process. Each approach has a wide range of variations. The
most difficult choice is the probability distribution for the random components in
the model. The vexing questions relate to the tails of the distributions and the nature
of the dependencies of random elements. Assumptions of a single probability model
or of independence rarely can be supported by observational data.

1.1.3 Pricing Models for Derivative Assets

There are many kinds of derivative assets that are based on the price of some
underlying asset, which may be a commodity such as an extractive or agricultural
product, a financial security, or a financial index. Although these derivative assets
are often used by speculators looking for fast gains, an important role of derivatives
is to add a measure of order to financial markets by allowing for hedging and
spreading of risk.

A derivative can be either a right or an obligation either to buy an asset, to sell an
asset, or otherwise to settle an obligation at some future time or within some fixed
time period.

The fair price of a derivative asset depends on the movement of the market price
of the underlying asset or index that the right or obligation of the settlement is
based on.

The value of a derivative is difficult to assess not only because of the uncertainty
of the price of the underlying, but also because of the range options the holder of
the derivative may have in closing out the derivative.
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There are various approaches to setting a fair price for derivatives. These
approaches generally are based on some financial principle, such as an assumption
that prices of various securities, even in different markets, have rational relationships
to each other, that is, an assumption that arbitrage is not possible. Because the value
of a derivative asset depends strongly on the passage of time, some fixed time-
value measure, that is, a risk-free return, must be assumed. Following these kinds of
assumptions, a hedged portfolio that includes the derivative asset can be constructed
under an additional assumption of a complete market. The balance required by the
hedge portfolio yields the relative values of the assets.

1.1.4 Statistical Inference in Financial Models

Statistical inference means the use of observational data to make decisions about the
process that yields the data. Statistical inference involves development of models of
processes that exhibit some type of randomness. These models generally consist
of a systematic component, possibly with various parameters, and a stochastic
component.

Prior to statistical inference about a model, exploratory methods of data analysis
are employed in order to establish some general aspects of the data-generating
process. Following the exploratory data analysis, the development of a model
generally begins with some assumptions about the nature of the systematic and
stochastic components and their relationships with each other.

Formal statistical inference usually begins either with estimation or testing of
some parameters in the systematic component of the model. This is followed by
inference about the stochastic component and comparison of the model residuals
with observational data. The assessment of the adequacy of the model by study of
the residuals is one of the most important types of statistical inference and is the
basis for the feedback loops that are a vital component of model building.

Simulation methods are used to study the models. Because the stochastic
components of the models are so important, to use the models for prediction often
requires Monte Carlo simulation.

1.1.5 Computational Methods for Financial Models

Many problems in finance, especially those involving pricing of financial assets,
cannot be formulated into simple models. The numerical methods for dealing with
such models are generally computationally-intensive.

The relevant areas of numerical analysis for financial model include most of
the standard methods: optimization, filtering, solution of differential equations, and
simulation. Computations in linear algebra are generally basic to most of these more
specific numerical methods.
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1.2 The Organization and Contents of This Handbook

The purpose of this handbook is to provide a survey of the important concepts and
methods of computational finance. A glance at the table of contents reveals a wide
range of articles written by experts in various subfields. The articles are expository,
taking the reader from the basic concepts to the current research trends.

1.2.1 Organization

After this introductory part, this handbook is divided into four parts: “Pricing
Models”, “Statistical Inference in Financial Models”, “Computational Methods”,
and “Software Tools”. The chapters in each part generally range from more basic
topics to more specialized topics, but in many cases there is may be no obvious
sequence of topics. There often considerable interrelationships of a chapter in one
part with chapters in other parts of this handbook.

1.2.2 Asset Pricing Models (Part II)

The second part begins with an article by Gentle and Härdle that surveys the general
approaches to modeling asset prices. The next three chapters address specific
approaches. First, Detemple and Rindisbacher consider general diffusion models,
and then Figueroa-López discusses diffusion models with a superimposed jump
component, which also allows for stochastic volatility and clustering of volatility.
Next, Hafner and Manner discuss multivariate time series models, such as GARCH
and linear factor models, that allow for stochastic volatility.

The next two chapters in Part II address pricing of derivatives. Fengler reviews
the basic Black-Scholes-Merton (BSM) option pricing formula for stock options,
and then discusses the concept of implied volatility, which derives from an inverse
of the formula using observed prices of options. Especially since 1987, it has
been observed that a plot of implied volatility versus moneyness exhibits a convex
shape, or “smile”. The volatility smile, or volatility surface when a term structure
dimension is introduced, has been a major impetus for the development of option
pricing models. For other derivatives, the term structure of implied volatility or its
relationship to moneyness has not been as thoroughly investigated. Li explores the
“smile” of implied volatility in the context of interest rate derivatives.

Financial markets can be built on anything that varies. If volatility varies, then it
can be monetized. In the final chapter of Part II, Härdle and Silyakova discuss the
market in variance swaps.
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1.2.3 Statistical Inference in Financial Models (Part III)

While Part II addressed the descriptive properties of financial models, the chapters
in Part III consider issues of statistical inference, estimation and testing, with these
models. The first chapter in this section, by Kan, develops criteria for evaluating
the correspondence of asset pricing models to actual observed prices, and the
discusses statistical methods of comparing one model with another. The next two
chapters consider the general problem of estimation of the probability density of
asset option prices, both under the assumption that the prices conform to the risk-
neutral valuation principle. The first of these chapters, by Kraetschmer and Grith,
uses parametric models, and the other chapter, by Härdle, Grith, and Schienle, uses
nonparametric and semiparametric models.

A topic that is receiving a great deal of attention currently is value at risk
(VaR). Chen and Lu provide a survey of recent developments in estimation of VaR
and discuss the robustness and accuracy of the methods, comparing them using
simulated data and backtesting with real data.

An important parameter in any financial model is the volatility, whether it is
assumed to be constant or stochastic. In either case, data-based estimates of its
magnitude or of its distribution are necessary if the model is to be used. (As noted
above, the model can be inverted to provide an “implied volatility”, but this is not
of much value for the primary purpose for which the model was developed.) The
basic statistic for estimation of the volatility is “realized volatility”, which is just the
standard deviation of a sample of returns. The sample is actually a sequence, and
hence cannot be considered a random sample. Furthermore, the sampling interval
has a very large effect on the estimator. While certain statistical properties of
the realized volatility require ever-increasing frequencies, other effects (“noise”)
become confounded with the volatility at high frequencies. Christian Pigorsch,
Uta Pigorsch, and Popov address the general problem of estimation of the volatility
using realized volatility at various frequencies.

Bjursell and Gentle discuss the problem of identifying jumps in a jump-diffusion
model. Their focus is energy futures, particularly in brief periods that include the
release of official build statistics.

Several of the chapters in Parts II and III use simulation to illustrate the points
being discussed. Simulation is also one of the most useful tools for statistical
inference in financial models. In the final chapter of Part III, Yu discusses various
simulation-based methods for use with financial time series models.

1.2.4 Computational Methods (Part IV)

Many financial models require extensive computations for their analysis. Efficient
numerical methods have thus become an important aspect of computational finance.



1 Computational Finance: An Introduction 9

As we indicated above, statistical models generally consist of systematic com-
ponents (“signals”) and random components (“noise”), and a primary aspect of
statistical analysis is to identify the effects of these components. An important
method of doing this is filtering. In the first chapter of Part IV, Fulop describes
filtering techniques in the setting of a hidden dynamic Markov process, which
underlies many financial models.

The stochastic components of financial models are often assumed to have some
simple parametric form, and so fitting the probability model to empirical data
merely involves the estimation of parameters of the model. Use of nonparametric
models often results in greater fidelity of the model to observational reality. The
greatest problem in fitting probability models to empirical data, however, occurs
when multiple variables are to be modeled. The simple assumption of independence
of the variables often leads to gross underestimation of risk. Simple variances and
covariances do not adequately capture the relationships. An effective method of
modeling the relationships of the variables is by use of copulae. These are not as
simple to fit to data as are variances and covariances, especially if the number of
variables is large. Okhrin discusses the use of copulae and numerical methods for
fitting high-dimensional copulae to data.

The next two chapters in Part IV discuss numerical methods of solution of partial
differential equations (PDEs) in finance. Forsyth and Vetzal describe numerical
solution of nonlinear deterministic PDEs, and Sauer discusses numerical methods
for stochastic partial differential equations (SDEs). Both of these chapters are
focused on the financial applications of PDEs.

One of the most important problems in computational finance is the development
of accurate and practical methods for pricing derivatives. Seydel discusses lattice or
tree-based methods, and Kwok, Leung, and Wong discuss the use of discrete Fourier
transforms implemented by the fast Fourier transform (FFT) of course.

Some of the earliest studies in computational finance led to the development of
dynamic programming. This continues to be an important tool in computational
finance. Huang and Guo discuss its use in hedging strategies, and Breton and Frutos
describe the use of approximation of dynamic programs for derivative pricing.

An important concern about any model or inference procedure is the robustness
to unusual situations. A model that serves very well in “normal” times may be
completely inappropriate in other regimes. Evaluation of models involves “stress
testing”; that is, assessment of the validity of the model in unusual situations, such
as bubble markets or extended bear markets. Overbeck describes methods of stress
testing for risk management.

One of the earliest problems to which modern computational methods were
addressed is that of selection of an optimal portfolio, given certain characteristics
of the available securities and restrictions on the overall risk. Rindisbacher and
Detemple discuss portfolio optimization in the context of modern pricing models.

As Yu discussed in Part III, simulation-based methods have widespread applica-
tions in financial models. The efficiency of these computationally-intensive methods
can be greatly increased by the use of better methods of covering the sample space.
Rather than simulating randomness of sampling, it is more efficient to proceed
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through the sample space deterministically in a way that guarantees a certain
uniformity of coverage. In the next chapter of Part IV, Niederreiter describes the
concepts of low discrepancy simulation, and discusses how quasi Monte Carlo
methods can be much more efficient than ordinary Monte Carlo.

An important tool in computational finance is statistical learning; that is, the
identification of rules for classification of features of interest. There are various
approaches to statistical learning, and in the last chapter of Part IV, Lee, Yeh, and
Pao discuss support vector machines, which is one of the most useful of the methods
of classification.

1.2.5 Software Tools (Part V)

Financial modeling and analysis require good software tools. In Part V Gentle
and Martinez briefly discuss the various types of software available for financial
applications and then proceed to discuss one specific software package, Matlab.
This flexible and powerful package is widely used not only for financial analyses
but for a range of scientific applications. Another software package, which is open
source and freely distributed, is Nolan discusses R, and gives several examples of
its use in computational finance.

1.3 The Computational Statistics Handbook Series

The first handbook in the series, published in 2004, was on concepts and funda-
mentals. It had thirty expository chapters, written by experts in various subfields of
computational statistics. The chapters, which were organized into parts on statistical
computing, statistical methodology, and applications (including financial applica-
tions), covered a wide range of topics and took the reader from the basic concepts
to the current research trends. As mentioned above, there are several chapters in this
more fundamental handbook, such as those in the part on statistical computing,
that provide more background on the topics of this handbook on computational
finance.

The handbook on concepts and fundamentals set the stage for future handbooks
that will go more deeply into the various subfields of computational statistics. These
handbooks will each be organized around either a specific class of theory and
methods, or else around a specific area of application. Two subsequent handbooks
on specific topics in computational statistics have appeared, one on visualization
and one on partial least squares.

The current handbooks in the Springer Handbooks of Computational Statistics,
published by Springer in Berlin, Heidelberg, and New York are the following.
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• Handbook of Computational Statistics. Concepts and Methods, edited by James
E. Gentle, Wolfgang Härdle, and Yuichi Mori (2004).

• Handbook of Data Visualization, edited by Chun-houh Chen, Wolfgang Härdle,
and Antony Unwin (2008).

• Handbook of Partial Least Squares. Concepts, Methods and Applications in
Marketing and Related Fields, edited by Vincenco Esposito Vinzi, Wynne
W. Chin, Jörg Henseler, Huiwen Wang (2009).
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Chapter 2
Modeling Asset Prices

James E. Gentle and Wolfgang Karl Härdle

Abstract As an asset is traded, its varying prices trace out an interesting time series.
The price, at least in a general way, reflects some underlying value of the asset. For
most basic assets, realistic models of value must involve many variables relating not
only to the individual asset, but also to the asset class, the industrial sector(s) of
the asset, and both the local economy and the general global economic conditions.
Rather than attempting to model the value, we will confine our interest to modeling
the price. The underlying assumption is that the price at which an asset trades is a
“fair market price” that reflects the actual value of the asset.

Our initial interest is in models of the price of a basic asset, that is, not the price of a
derivative asset. Usually instead of the price itself, we consider the relative change
in price, that is, the rate of return, over some interval of time.

The purpose of asset pricing models is not for prediction of future prices; rather
the purpose is to provide a description of the stochastic behavior of prices. Models of
price changes have a number of uses, including, for investors, optimal construction
of portfolios of assets and, for market regulators, maintaining a fair and orderly
market. A major motivation for developing models of price changes of given assets
is to use those models to develop models of fair value of derivative assets that depend
on the given assets.
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The rate of return has a strong stochastic component, and in this chapter, we
describe various stochastic models of the rate of return. We also briefly discuss
statistical inference in these models, and applications of these models for pricing
derivative assets. Our presentation is quite general. We refer to readily-available
literature, some in the present volume, for details on the analysis and applications
of the models.

The models we consider in this chapter are for the prices of a single asset,
although, of course, that asset may be a portfolio of individual assets. Pricing
models of more than one asset must take into account the correlations among their
prices. Multivariate pricing models are discussed by Hafner and Manner (2010, this
volume).

In most models of asset prices such as those we discuss in Sects. 2.2–2.4,
the basic observable components are the prices themselves, and the stochastic
components of interest are the changes in asset prices. Such models assume rational
and independent traders. Models of asset prices depend on principles of general
economic theory such as equilibrium and arbitrage.

Another approach to modeling asset prices is based on modeling the stochastic
aspects in terms of behavior of the traders who collectively determine the asset
prices. This agent-based approach allows incorporation of human behavior in the
model and so instead of relying solely on classical economic theory, the results of
behaviorial economics can be included in the model. In the agent-based approach,
which we briefly discuss in Sect. 2.6, the actions of the agents include a random
component and their actions determine the prices.

In discussing models, it is always worthwhile to recall the dictum, generally
attributed to George Box, “All models are wrong, but some are useful.” The
usefulness of models of asset prices is not because of the opportunity for financial
gain, but rather for determining fair prices, for better understanding of market
dynamics, and possibly for regulatory policy development.

2.1 Characteristics of Asset Price Data

Asset prices are directly observable and are readily available from the various
markets in which trading occurs. Instead of the prices themselves, however, we are
often more interested in various derived data and statistical summaries of the derived
data. The most common types of derived data are a first-order measure of change in
the asset prices in time, and a second-order measure of the variation of the changes.

The scaled change in the asset price is called the rate of return, which in its
simplest form is just the price difference between two time points divided by the
price at the first time point, but more often is the difference in the logarithm of the
price at the first time point and that at the second time point. The length of the time
period of course must be noted. Rates of return are often scaled in some simple way
to correspond to an annual rate. In the following, when we refer to “rate of return,”
we will generally mean the log-return, that is, the difference in the logarithms. This
derived measure is one of the basic quantities we seek to model.
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The log-return depends on the length of the time interval, and so we may speak
of “weekly” log-returns, “daily” returns, and so on. As the time interval becomes
very short, say of the order of a few minutes, the behavior of the returns changes
in a significant way. We will briefly comment on that high-frequency property in
Sect. 2.2.7 below.

One of the most important quantities in financial studies is some measure of the
variability of the log-returns. The standard deviation of the log-return is called the
volatility.

A standard deviation is not directly observable, so an important issue in financial
modeling is what derived measures of observable data can be used in place of the
standard deviation. The sample standard deviation of measured log-returns over
some number of time intervals, of course, is an obvious choice. This measure is
called statistical volatility or realized volatility.

Before attempting to develop a model of an empirical process, we should
examine data from the process. Any reasonable model must correspond at least to
the grossest aspects of the process. In the case of asset prices, there may be various
types of empirical processes. We will just focus on one particular index of the price
of a set of assets, the S&P 500 Index.

We will examine some empirical data for the S&P 500. First we compute the
log-rate for the S&P 500 from January 1, 1990, to December 31, 2005. A histogram
for this 15 year period is shown in Fig. 2.1.

With a first glance at the histogram, one may think that the log-returns have a
distribution similar to a Gaussian. This belief, however, does not receive affirmation
by the q–q plot in Fig. 2.2.
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Fig. 2.1 Histogram of log-rates of return 1990–2005
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Fig. 2.2 Normal q–q plot of log-rates of return 1990–2005

Some may argue, however, that data models based on a normal distribution
are often robust, and can accommodate a wide range of distributions that are
more-or-less symmetric and unimodal.

One who is somewhat familiar with the performance of the US stock market will
recognize that we have been somewhat selective in our choice of time period for
examining the log-return of the S&P 500. Let us now look at the period from January
1, 1987, to September 30, 2009. The belief – or hope – that a normal distribution is
an adequate model of the stochastic component is quickly dispelled by looking at
the q–q plot in Fig. 2.3.

Figure 2.3 indicates that the log-rates of the S&P 500 form a distribution with
very heavy tails. We had only seen a milder indication of this in Figs. 2.1 and 2.2 of
the histogram and q–q plots for the 1990–2005 period.

The previous graphs have shown only the static properties of the log-return over
fixed periods. It is instructive to consider a simple time series plot of the rates of
log-returns of the S&P 500 over the same multi-year period, as shown in Fig. 2.4.

Even a cursory glance at the data in Fig. 2.4 indicates the modeling challenges
that it presents. We see the few data points with very large absolute values relative
to the other data. A visual assessment of the range of the values in the time series
gives us a rough measure of the volatility, at least in a relative sense. Figure 2.4
indicates that the volatility varies over time and that it seems to be relatively high
for some periods and relatively low for other periods. The extremely large values of
the log-returns seem to occur in close time-proximity to each other.
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Fig. 2.3 Normal q–q plot of log-rates of return 1987–2009
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Of course there are many more ways that we could look at the data in order to
develop ideas for modeling it, but rather than doing that, in the next two sections
we will just summarize some of the general characteristics that have been observed.
Many of these properties make the data challenging to analyze.

2.1.1 Stylized Properties of Rates of Return

We have only used a single index of one class of asset prices for illustrations, but the
general properties tend to hold to a greater or lesser degree for a wide range of asset
classes. From Figs. 2.1–2.4, we can easily observe the following characteristics.

• Heavy tails. The frequency distribution of rates of return decrease more slowly
than exp.�x2/.

• Asymmetry in rates of return. Rates of return are slightly negatively skewed.
(Possibly because traders react more strongly to negative information than to
positive information.)

• Nonconstant volatility. (This is called “stochastic volatility.”)
• Clustering of volatility. (It is serially correlated.)

These characteristics are apparent in our graphical illustrations, but the detection
of other properties requires computations of various statistics. There are some
characteristics that we could observe by using two other kinds of similar plots. In
one approach, we compare rates of return at different frequencies, and in the other,
we study lagged data. Lagged data is just an additional form of derived measure,
much like rate of return itself is a derived measure, and like rate of return it may
also depend on the frequency; that is, the length of the lag. We will not display plots
illustrating these properties, but merely list them.

• Asymmetry in lagged correlations.
• Aggregational normality.
• Long range dependence.
• Seasonality.
• Dependence of stochastic properties on frequency. Coarse volatility predicts fine

volatility better than the other way around.

These stylized properties have been observed through analysis of financial data
of various classes over many years. Some of the most interesting of these properties
depend on how the volatility changes. We will now note some more properties of
the volatility itself.

2.1.2 Volatility

A standard deviation is defined in terms of a probability model, so defining volatility
as the standard deviation of the log-return implies a probability model for the
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log-return. It is this probability model that is central to more general models of
asset prices.

Our preliminary graphical analyses showed that there is a problem with a simple
interpretation of volatility; it is not constant in time. In some cases, it is clear that
news events, that is, shocks to financial markets, cause an increase in volatility. In
fact, it appears that both “positive” news and “negative” news lead to higher levels
of volatility, but negative news tends to increase future volatility more than positive
news does. It also appears that there are two distinct components to the effect of
news on volatility, one with a rapid decay and one with a slow decay.

Another aspect of volatility, as we mentioned above, it that it is not directly
observable, as is the price of an asset or even the change in price of an asset.

The point of this discussion is that the concept of volatility, despite its simple
definition, is neither easy to model nor to measure.

Volatility, however, is one of the most important characteristics of financial
data, and any useful model of changes in asset prices must include a component
representing volatility. Increased volatility, however it is measured, has the practical
effect of increasing the risk premium on financial assets.

2.2 The Basic Models

Asset prices and their rates of change are stochastic processes. We will represent the
general form of the stochastic process modeling the asset prices as fXt W t 2 Ig, for
some (well-ordered) index set I. We assume a general probability space .�;F ; P /.
The specific form of the stochastic process is determined by the nature of I and
.�;F ; P /, and by the stochastic relations between Xt and Xs for t; s 2 I and
s < t ; that is, relations between Xt and the sequence fXs W s 2 I; s < tg.

In this section we consider various forms of models of asset prices and of changes
in asset prices. We begin with an abstract description. The purpose of this approach
is to emphasize that the models used in conventional financial analyses are just
particular choices that are made to simplify the analysis.

As we discuss pricing models from simple to more complex, we should bear
in mind the empirical properties discussed in Sect. 2.1.1 of the processes we are
attempting to model. We will consider various formulations of models to capture
various properties, but in the end we see that the models do not fully capture all of
those stylized properties.

2.2.1 Systematic Factors and Random Perturbations

Many mathematical models of interesting processes take the form of a systematic
component that involves various measurable factors, plus a random component that
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represents unobservable or non-quantifiable factors and/or truly “random” factors:

Y D f .ys/CE: (2.1)

(Here we are using different notation so as to focus on the abstract model.) The
function f may take on a variety of forms. In preliminary models, it almost always
linear. As a model is refined, it may assume more complicated forms. The input
ys may represent directly observable variables or it may represent derived variables
such as rates. As models are built or evolve, in addition to changes in the function
form of f , the factors included in the input ys may change. In preliminary models,
ys may include a large number of factors that are of potential interest, and as part
of the model-building process, some of these factors are removed from the model.
Alternatively, in preliminary models, ys may include only one or two factors that are
believed to be important, and as part of the model-building process, other factors are
added the model.

In many models, the random component E is the most important term in the
model. A mathematical model may be very precise in the description of E, for
example, the model may state that E � N.0; �2/, or the model may be looser,
stating only, for example, that the expectation of E is 0, and that in set of E’s, they
are exchangeable.

Before we can build models of stochastic processes in time fXt W t 2 Ig, we must
address the nature of the index set I.

2.2.2 Indexing Time

There are essentially two types of index sets. A “discrete time” index set is
countable, and, hence, can be taken as the set of integers. A “continuous time” index
can be taken as an interval in the reals. These two ways of treating time lead to two
general classes of models.

For discrete time, the models evolve from moving average and autoregressive
models. The continuous time models are diffusion processes, possibly in combina-
tion with a Poisson process. Although discrete time and continuous time may appear
to yield completely different kinds of models, there are various limiting equivalent
forms.

For either discrete or continuous time, there are various possibilities for choice of
the probability space. A standard approach, of course, is to use a normal distribution,
at least as a first approximation, as a model for the stochastic component. The
important consideration is the nature of the conditional distribution of Xt given
fXsW s 2 I; s < tg.

In this chapter we will review the types of models that have been used for changes
in asset prices over time. We first describe these briefly, and then indicate some of
the ways in which the models are inadequate. Several other papers in this Handbook
are concerned with various modifications of these models.
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2.2.3 Discrete Time Series Models

Discrete time series models describe the behavior of a stochastic process in terms of
a functional relationship of the general form

Xt D f .Xt�1; : : : ; Xt�p; �t ; �t�1; : : : ; �t�q/: (2.2)

In models of this form, the �i are generally assumed to be random variables, and so
if their effects are additive, this is of the same form as model (2.1). More specific
assumptions about their distribution allow various methods of statistical inference
to be used in making refinements to the model. In most models of this form, the
function f is linear. We will briefly describe various forms of the model (2.2). These
models are the subject of the well-established field of time series analysis in the time
domain. We begin with a few definitions.

A white noise process f�t g is one in which for each t , �t � N.0; 1/, that is, it
has a Gaussian or normal distribution with mean 0 and variance 1, and for s ¤ t ,
Cov.�s; �t / D 0; that is, �s and �t are independent (because of normality).

The most useful forms of the function f in (2.2) are linear. A particularly simple
form yields a linear process. We say fXtg is a linear process if it has the form

Xt D �C
1X

iD�1
ai�t�i ; (2.3)

where
P1

iD� 1 ai <1 and f�tg is a white noise process.
One of the most important properties of a stochastic process is stationarity, which

refers to a distributional measure remaining constant in time. The mean of the linear
process is stationary: E.Xt/ D �. The linear process is also covariance stationary
since

Cov.Xt ; XtCh/ D
1X

iD� 1

1X

jD� 1
aiaj If.i;j /jiCjDhg.i; j / D

1X

iD� 1
aiai�h

and V.�t /D 1. Note that covariance stationary means that the covariance between
Xs and Xt depends only on jt � sj.

In general, we say that a process is weakly stationary (or just stationary) if it is
mean and covariance stationary.

If the linear model involves only the �i , that is,

Xt D ˇ1�t�1 C � � � C ˇq�t�q C �t ; (2.4)

it is called a moving average model with q terms. We refer to this model as MA(q).
Assuming f�t g is a white noise process, the MA(q) model is a linear process,
and the normality of the stochastic components allows use of relatively simple
statistical analyses. For example, we can use maximum likelihood methods, which
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require specification of probability density functions, and these are particularly
straightforward when the stochastic components are normal.

If the linear model involves only the Xt�j and �t , that is,

Xt D ˛0 C ˛1Xt�1 C � � � C ˛pXt�p C �t ; (2.5)

it is called an autoregressive model with p terms. We refer to this model as AR(p).
Again, specific assumptions about the distributions of

: : : ; �t�2; �t�1; �t ; �tC1; �tC2; : : :

allow various methods for statistical inference about their distribution and about the
parameters ˛j .

Combining the MA(q) model of (2.4) with the AR(p) model of (2.5), we have
the autoregressive moving average model of order p and q, that is, ARMA(p; q),

Xt D ˛0 C ˛1Xt�1 C � � � C ˛pXt�p C ˇ1�t�1 C � � � C ˇq�t�q C �t : (2.6)

Assumptions about the relative values of the ˇj and ˛k imply certain interesting
properties of the time series.

The usefulness of ARMA models can be greatly extended by applying it to differ-
ences of the time series. If theX ’s in (2.6) are replaced by d th-order differences, the
“integrated” model in the same form as (2.6) is called an ARIMA(p; d; q) model.
The differences allow the model to accommodate seasonal effects.

The simple AR, MA, ARMA, and ARIMA models we have just described can
be applied to a time series of prices or to a series of returns. The nature of the
series and the assumptions about the stochastic component determine the kind of
analyses. For example, given the price process fXyg, an AR(1) model of returns
Yt D .Xt �Xt�1/=Xt�1 from (2.5) would have the form of a pure noise,

Yt D ıt : (2.7)

The random variable ıt does not have the same distribution as that of �t . In fact, if
f�t g is a white noise, then ıt is a Cauchy process, which has infinite moments of all
orders. Clearly, the specific assumptions about the distributions of f�tg determine the
methods for statistical inference about their distribution and about the parameters in
the model.

2.2.4 Continuous Time Diffusion Models

Differential equations are effective models of continuous change of quantities over
time. Such models are widely used for expressing diffusion of a substance or of
energy over a physical space. At a macro level the laws governing diffusion are
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deterministic. Furthermore, substances and energy can be treated as ensembles over
a physical space, and so the diffusion model represents an average density. Thus,
such a model contains no stochastic component.

Empirical evidence clearly indicates that a deterministic differential equation
could not effectively model price movements of an asset such as a stock.

The first step must be to introduce a stochastic component into the differential
equation, and the simplest way to this is for the differential to be from a Brownian
motion. This is what Bachelier proposed in 1900 (see, e.g., Steele (2001)). In
Bachelier’s stochastic differential equation, the Brownian motion represented the
change in price. This model is

dXt D �Xtdt C �XtdWt; (2.8)

where Wt is a Brownian motion. Clearly, dWt could represent some other type
of stochastic differential, although the existence of a stochastic differential with
appropriate properties would need to be established. (Wiener established this for
Brownian motion. See, again for example, Steele (2001).)

Samuelson (1965) modified the model (2.8) to one he called geometric Brownian
motion:

dXt
Xt

D �dt C �dWt: (2.9)

This is a model for the rate of change of asset prices. Note that this is similar to
forming (2.7) from (2.5), and then changing the assumptions about the distribution
of the random component so that the random variable in the derived equation has a
simple distribution.

The geometric Brownian motion model (2.9) has been widely used in financial
analysis. In the context of a riskless portfolio of an asset and an option on the
asset, the geometric Brownian motion model leads to the Black-Scholes-Merton
differential equation for the fair price P of an option:

@Pt

@t
C rXt

@Pt

@Xt
C 1

2
�2X2

t

@2Pt

@X2
t

D rP; (2.10)

where r is a risk-free interest rate.
Detemple and Rindisbacher (2010, this volume) provide a more extensive

discussion of diffusion models. We will briefly consider some modifications of the
basic diffusion models in Sect. 2.4.

2.2.5 Accounting for Jumps

Looking at the data in Fig. 2.4, we notice a few extremely large returns, both positive
and negative. These outliers are called “jumps.” Figures 2.2 and 2.3 indicate that the
presence of these outliers is inconsistent with the assumption that the underlying
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random variables in either model (2.6) or model (2.9) have Gaussian distributions.
(In model (2.6) the random variable is �, and in model (2.9) it is dWt .)

In standard statistical analyses, there are two simple ways of accounting for out-
liers. One way is to use an “outlier-generating distribution” or “jump process,” that
is, a heavy-tailed distribution, such as stable distribution other than the Gaussian.
Figueroa-López (2010, this volume) describes the use of Lévy processes in diffusion
models. Other discussions of models with non-Gaussian random components are in
Jondeau et al. (2007) and Rachev et al. (2005).

Another method of accounting for jumps is to use a mixture of distributions. Even
mixtures of Gaussian distributions result in outlier-generating distributions. Instead
of using simple mixtures of Gaussians, however, a more common approach is to use
a mixture of a continuous distribution, such as a Gaussian, and a discrete Poisson
process, possibly associated with an effect with a random magnitude. Bjursell and
Gentle (2010, this volume) and Cont and Tankov (2004) describe the use of mixtures
that include Poisson processes. We will briefly consider jump-diffusion models in
Sect. 2.4.2.

Either of these modifications to the models results in more difficult data analyses.

2.2.6 Accounting for Stochastic Volatility

The ARMA model of (2.6) incorporates the volatility of the stochastic process in
the standard deviation of the random variables �, and the diffusion model of (2.9)
incorporates the volatility in the standard deviation of the random variables �dWt .
An assumption of either model is that this standard deviation is constant; hence, a
serious deficiency of either of the two basic models (2.6) and (2.9) is that the model
does not account for the stochastic volatility that is apparent in Fig. 2.4.

To be realistic, either type of model must be modified to allow for the volatility
to be nonconstant. Further, as we note from Fig. 2.4, the modification must include
a serial correlation of the volatility.

2.2.7 Market Microstructure

Pricing data represent the value exchanged in a specific trade. The price at which
a specific transaction occurs should be exactly the same as the price (within the
minimum unit of money) of the same transaction at the same time. It turns out, for a
variety of reasons, that this is not the case. Tick data, that is, data on each transaction
(also called “high-frequency data”) exhibit characteristics that are different from
price data collected less frequently, say at the close of each trading day.

Some stylized properties of tick data include intraday periodicity; nonsyn-
chronicity, that is, a sequence of prices over a short time interval do not form an
equally-spaced time series; price clustering; and negative lag-1 autocorrelations.
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These properties constitute what is called “market microstructure.” See Lai and Xing
(2008) for more discussion of microstructure.

Bjursell and Gentle (2010, this volume) discuss the use of microstructure noise
to test for jumps superimposed on a diffusion model.

2.3 GARCH-Type Models

The AR, MA, ARMA, and ARIMA models described in Sect. 2.2.3 assume a
constant variance. There are various ways of modifying the model to make the
variance change over time.

For a model of the form (2.7), we first introduce a scale on the random
component:

Yt D �t ıt : (2.11)

Then, following the empirical observation that the standard deviation of a process
is proportional to the magnitude (that is, the coefficient of variation is relatively
constant), we may assume a model for the variance of the form

�2t D ˛0 C ˛1Y
2
t�1: (2.12)

The variance is conditional on the value of Y 2t�1, and so this kind of model is
called an ARCH (autoregressive conditionally heteroscedastic) model; specifically
the model of (2.11) and (2.12) is called an ARCH(1) model (recall that it originated
as an AR(1) model).

The ARCH models can be generalized further by modeling the variance as an
AR process; that is, (2.12) may become, for example,

�2t D ˛0 C ˛1Y
2
t�1 C ˇ1�

2
t�1: (2.13)

Such models are called GARCH (generalized autoregressive conditionally het-
eroscedastic) models; specifically, the model of (2.11) and (2.13) is a GARCH(1,1)
model, because both components are lag 1 processes.

Notice that the simple ARCH(1) model of (2.11) and (2.12) could be reformu-
lated by squaring both sides of (2.11), then subtracting (2.12) and then rearrange
terms to obtain

Y 2t D ˛0 C ˛1Y
2
t�1 C �t ; (2.14)

in which, if ıt is a N.0; 1/ random variable, then �t is a scaled and shifted chi-
squared random variable with one degree of freedom.

The purpose of this re-expression is only to show that the ARCH(1) model is
related to an AR(1) model with a change of distribution of the random component.
The ARCH and GARCH models, while they do incorporate stochastic volatility, if
the underlying distribution of the stochastic component is normal, the models will
not display the heavy-tailed and asymmetric returns that are observed empirically.
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Many variations of GARCH models have been studied; see, for example,
Christoffersen et al. (2010, this volume) and Gouriéroux (1997). Most of these
variations are still based on an underlying normal distribution, however.

2.3.1 GARCH with Jumps

As we mentioned previously, jumps can be modeled either through an outlier-
generating distribution or by superimposition of a jump process. The most common
way of incorporating jumps in a discrete time series model is by use of a heavy-tailed
distribution, such as stable distribution other than the Gaussian. This, of course,
presents problems in the statistical analysis of data using such models.

2.3.2 Inference on the Parameters

Statistical inference on autoregressive moving average models is usually based on
the likelihood. Given a distribution for the random components in any such model,
it is usually rather simple to formulate the associated likelihood. The likelihood
rarely can be maximized analytically, but there are efficient numerical methods.
These methods are usually two-stage optimizations, and are similar to methods
originally used in the ARIMA models of Box and Jenkins. Gouriéroux (1997)
describes maximum likelihood methods for various GARCH models.

Just fitting the parameters, of course, is only one part of the problem of statistical
inference. Various assumptions about the distributions of the stochastic components
require different methods for statistical inference such as tests and confidence
regions. Even if the underlying distribution is not assumed to be normal, most
inference methods end up using approximate normal distributions.

2.4 Diffusion Models

The basic geometric Brownian motion diffusion model (2.9),

dXt
Xt

D �dt C �dWt ;

misses most of the salient empirical properties of Sect. 2.1.1.
Brownian motion is a rather complex process, and given our understanding of it –

and our lack of understanding of a similar process not based on Gaussianity – we
would seek to build modifications onto the Brownian motion, rather than to replace
the Gaussian distribution with some other distribution that is either heavy-tailed
or asymmetric. (Recall our elliptical reference above to the existence of Brownian
motion.)
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There are several possible modifications of the Brownian motion. We will
formulate two modifications below that address stochastic volatility and jumps.
Before doing so, however, we mention a simple modification that allows for long
range dependencies in a model of the form (2.9). In this modification, instead of the
Brownian motionWt , we use a fractional Brownian motion,W H

t , where 0 < H < 1

is the Hurst index. (An index of 0.5 is ordinary Brownian motion.) The essential
characteristic of a fractional Brownian motion,

Cov.W H
t ;W

H
s / D 1

2

�jt j2H C jsj2H � js � t j2H � ;

allows for the modified model (2.9) to exhibit long range dependencies, which, as
we remarked without elaboration in Sect. 2.1.1, is an empirical property of rates of
return. Fractional Brownian motion is in spirit related to the reformulation of the
ARCH(1) model of (2.11) and (2.12) as the AR(1) model (2.14).

2.4.1 Coupled Diffusion Models

The modification of an AR model that yields a GARCH model is merely to apply to
a function of the volatility the same basic time series model that is used for returns.
This way of handling stochastic volatility in the case of diffusion models would
result in coupled diffusion models in which a secondary diffusion model is applied
to a function of the volatility:

dXt
Xt

D �dt C �td.W1/t (2.15)

d�2t D ˛.��2t � �2t /dt C ˇ.�2t /
�d.W2/t ; (2.16)

where ˛, ��2t , ˇ, and � are constants and .W1/t and .W2/t are Brownian motions.
Equations (2.15) and (2.16) are sometimes called the Hull and White model

(although that term is usually used for a different model used for interest rate
derivatives). For the special case of � D 0:5, it is also called the Heston model.

There are many variations on models of this form. Notice that this model does
not tie the magnitude of the volatility to the magnitude of the return, as the simple
ARCH model did. This could be remedied by an incorporation of X into (2.16). An
important consideration is the relationship between the two Brownian motions .W1/t
and .W2/t . The simplest assumption is that they are independent. An alternative, but
still very simple assumption, is that .W2/t is a linear combination of .W1/t and an
independent Brownian motion.

While the coupled diffusion model do incorporate stochastic volatility, just as
with the ARCH and GARCH models, because the underlying distribution of the
stochastic component is normal, the models will not display the heavy-tailed and
asymmetric returns that are observed empirically.
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2.4.2 Diffusion with Jumps

A modification of any of the models that we have discussed above that can display
both heavy-tailed and asymmetric returns is to superimpose a Poisson process
onto the model. Starting with the simple geometric Brownian motion diffusion
model (2.9), we write

dXt
Xt

D �dt C �dWt C �tdqt ; (2.17)

whereWt is the standard Wiener process; qt is a counting process with intensity �t ,
that is, P.dqt D 1/ D �tdt ; and �t is the size of the price jump at time t if a jump
occurred. If Xt� denotes the price immediately prior to the jump at time t , then
�t D Xt � Xt�.

2.4.3 Inference on the Parameters

If restrictive assumptions are made about the constancy of parameters and indepen-
dence of the events in the process, there are fairly simple statistical estimators for
most of the parameters in the single-equation models. Parameters in coupled equa-
tions can often be estimated using two-stage likelihood methods. The parameters in
a model such as (2.17) are difficult to estimate because we do not know which of the
two processes is operating. One approach to the fitting the parameters in a model
with a superimposed process is to set an arbitrary threshold for the return, and to
assume the Poisson process generates any realization greater than that threshold.

For models with time-varying parameters, analysis generally depends on the use
of Monte Carlo methods.

2.5 How Simple Can a Realistic Model Be?

At this point, we must ask how simple can a pricing model be and still capture all of
the empirical properties that we have observed. Clearly, the basic models of Sect. 2.2
fail drastically.

The first modification to the simple ARMA or geometric Brownian motion model
is usually to address the stochastic volatility. An approach in either case is to couple
the basic process with a similar process for the volatility. So long as the underlying
stochastic components are Gaussian, two-stage maximum likelihood methods can
be used in the analysis.

The issue of heavy tails and asymmetric distributions could perhaps be addressed
by replacing the Gaussian processes with some asymmetric heavy-tailed process,
perhaps a stable process. The loss of the simplicity of the normal distribution,
however, is a very steep price to pay. An alternative approach is to superimpose
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a Poisson jump process, as in model (2.17). Such a model has a stochastic volatility
(due to the firing of the Poisson process), but it is not the slowly-varying volatility
that we observe. Hence, the jump process needs to be superimposed on a model
that already accounts for stochastic volatility, such as a GARCH model or a coupled
diffusion model.

It is clear that the amount of a jump, �t , is not constant. A simple modification
would be to take �t as an independent random variable. Its distribution would seem
to be heavy-tailed and to have a negative mean. Empirically (see Fig. 2.4) a negative
(positive) jump tends to be followed immediately by a positive (negative) jump,
This may suggest that jumps be modeled as paired events instead of trying to
accommodate these positive and negative values in the distribution of �t .

A further glance at Fig. 2.4 indicates two additional considerations (assuming
a somewhat arbitrary visual identification of jumps): jumps do not follow a
time-homogeneous Poisson process, and jumps and (ordinary) volatility are not
independent. This means that �t (the Poisson intensity) must be stochastic and it
must depend on qs , for s < t . Also, �t must depend on qs , for s < t . Furthermore,
�t and �t must be correlated.

Rather than suggesting a comprehensive and realistic model, in this section, we
have just discussed some of the relevant considerations. We seek a realistic model
that accounts for the peculiar properties of the rate-of-return process, but we must
realistically limit the degrees of freedom in the model.

2.6 Agent-Based Models

The pricing models discussed in Sects. 2.2–2.5 are developed from a macro perspec-
tive on the prices themselves. This perspective excludes aspects of the market that
results from irrational human behavior, where “irrational” is defined subjectively
and usually means that the market participants are attempting to optimize a simple
objective function. In a rational approach to modeling market behavior, what
individual traders are doing has no affect on the decision of a trader to buy or sell;
that is the market does not have “momentum.” There is an instantaneous adjustment
of prices to some “fair market value.” No matter how attractive a rational approach to
financial modeling is, its attractive simplicity cannot make it so. Market participants
do not act independently of each other. Traders do not have share the same processed
data. Traders do not identify the same objective function. Traders do not all share a
similar model of the market. The proportion of traders who behave in a certain way,
that is, who do share a similar model varies in time.

The ultimate dependence of prices on the beliefs and actions of individual
traders suggests another approach to financial modeling. This approach begins with
models of behavior of the market participants. In this kind of approach to scientific
modeling, called “agent-based,” the actions of a set of individual “agents” are
governed by control parameters that can depend on the actions of other agents.
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We will not pursue this approach here. LeBaron (2006) provides a survey of the
micro perspective modeling incorporated in an agent-based approach.

2.7 Applications of Pricing Models

We must emphasize again that the role of pricing models is not to predict prices.
Pricing models provide a description of stochastic behavior, and for that reason
they have important applications in a number of areas, such as in the regulation of
financial markets, in management of risk, and in pricing of derivative assets.

Options pricing is probably the highest profile application of asset pricing
models. This application soared to prominence in the early 1970s when Black and
Scholes used the differential (2.10) derived from the geometric Brownian motion
model (2.9) to develop exact formulas for fair prices of European puts and calls.

As we have pointed out, the simple geometric Brownian motion model does not
correspond very well with empirical data. Although prices yielded by the Black-
Scholes options pricing formulas were useful for traders, they quickly noticed that
the prices set by the market differed from the Black-Scholes prices in systematic
ways. If the market price is inserted as the price in a Black-Scholes formula, any
other single variable in the formula can be solved for. The time to expiry, the current
market price of the asset, and the strike price are all directly observable, so the only
variable in the model that might be considered questionable is the volatility. An
interesting fact emerged; if the formula is applied to options on the same underlying
asset and at the same time to expiry but at different strike prices, the value of the
volatility that satisfies the formula is not constant, but rather a convex function of
the strike price. This was called the “volatility smile.” Likewise, if the same strike
price but different times to expiry are entered into the formula, the volatility exhibits
systematic curvature. Fengler (2010, this volume) provides more details on this kind
of result from the Black-Scholes formula.

Although we have taken the definition of “volatility” simply to be “standard
deviation of rates of returns,” we have already indicated in Sect. 2.1.2 the difficulties
in assigning a value to volatility. The value of volatility implied by the inverted
use of the Black-Scholes formula with observed prices of derivatives therefore
has intrinsic interest. Volatility defined by inversion of a pricing formula is called
“implied volatility,” and so volatility defined as originally in terms of a standard
deviation is now often called “statistical volatility.” The inverted use of pricing
models together with observed prices of derivatives to define a type of asset price
volatility is probably more common now than use of the pricing models for their
earlier purpose of determining fair prices for derivatives.

There are now markets in implied volatility of various market indexes, and this
kind of market provides another tool for hedging investment risks. The most widely
traded such implied volatility index is the VIX, which follows the implied volatility
of the S&P 500. Traded implied volatility indexes use rather complicated asset
pricing models; none currently use the simple Black-Scholes formula.
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The simpler models such as ARMA/ARIMA or geometric Brownian motion
can often be analyzed by well-established statistical methods. The most impressive
result of such an analysis is probably the Black-Scholes formulas. For more realistic
models, the analysis is often by Monte-Carlo methods. In the case of stochastic
models, the Monte Carlo methods are often coupled with numerical solutions to the
stochastic differential equations; see, for example, Sauer (2010, this volume).

Realistic asset pricing models generally present analysis problems that can
feasibly be addressed only by Monte Carlo methods. See Yu (2010, this volume)
or Glasserman (2004) for more detailed discussion of Monte Carlo methods in the
application of asset pricing models.
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& W. Härdle (Eds.), Handbook of computational finance. Berlin: Springer.

Christoffersen, P., Jacobs, K., & Ornthanalai, C. (2010). GARCH Option pricing: Theory and
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J. E. Gentle, & W. Härdle (Eds.), Handbook of computational finance. Berlin: Springer.



Chapter 3
Diffusion Models of Asset Prices

Jérôme Detemple and Marcel Rindisbacher

Abstract This paper reviews the literature on asset pricing in diffusion models.
The first part is devoted to equilibrium models based on the representative agent
paradigm. Explicit formulas for fundamental equilibrium quantities such as the
state price density, the interest rate and the market price of risk are presented.
Valuation formulas for stocks and contingent claims are also provided. Numerical
implementation of the model is carried out in a setting with constant relative risk
aversion. The second part of the paper focuses on multiagent models with complete
financial markets. Characterizations of equilibrium are reviewed and numerical
algorithms for computation are proposed.

3.1 Introduction

This paper provides a review of asset pricing models cast in general equilibrium
settings with diffusive uncertainty structure. It identifies and discusses the basic
relations that tie consumption to equilibrium quantities such as state price densities,
interest rates and market prices of risk. It also reviews the structure of asset
risk premia and return volatilities. Both single and multiple agent economies are
considered. Numerical algorithms for implementation are provided. Numerical
illustrations are given in the context of simple examples with constant relative risk
aversion.

The topic of asset pricing has a long history, dating back centuries, and has
been the subject of an enormous literature. This review does not seek to give
a comprehensive presentation. Rather, it will focus on a limited, but essential,
part of the modern literature, that dealing with complete or effectively complete
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financial markets. Moreover, the presentation will concentrate on continuous time
pure exchange economies in which primitives follow diffusion processes. These
choices are driven by the desire to present the most basic relations tying endogenous
and exogenous variables and to provide clear and analytically tractable formulas
for equilibrium quantities. Complete market models, which are easy to handle, are
particulary useful for these purposes. Continuous time facilitates tractability and
permits the derivation of transparent and implementable formulas for a variety
of endogenous variables. Particularly illuminating examples include formulas for
interest rates, market prices of risk and asset return volatilities.

Classic papers in the continuous time diffusion tradition include Merton (1973),
Breeden (1979), Cox et al. (1985) and Huang (1987). In these settings, stock prices
and state variables (such as dividends) are typically modelled as joint diffusion pro-
cesses. In standard continuous time pure exchange economies, all equity-financed
firms operate technologies that produce flows of a perishable consumption good.
Equity shares (stocks) represent claims to this perishable output. Stock dividends
are thus naturally modelled as flows of production per unit time. Stock prices,
which are determined in equilibrium, reflect the structure of dividend processes.
General processes can be used to model the evolution of dividends over time (see,
for instance, Duffie and Zame (1989); Karatzas et al. (1990); Detemple and Zapatero
(1991); Back (1991)). For computational tractability, it is nevertheless convenient
to assume that they follow more specialized Markovian or diffusion processes. The
models reviewed in this paper focus on the diffusion setting.

Section 3.2 presents the basic economic model with a representative agent
and a single perishable consumption good. The financial market structure and the
agent’s choices, preferences and decision problem are described. Equilibrium is
defined. Equilibrium prices and returns are presented in Sect. 3.3. The structure of
the interest rate, market prices of risk and stock return volatilities are examined
and discussed. Section 3.4 describes the computational method and provides an
illustrative example. Models with heterogeneous agents are reviewed in Sect. 3.5.
Computational algorithms are described. A numerical illustration is presented in the
context of an economy with two agents. Concluding remarks are formulated last.

3.2 The Single Agent Model

A continuous time asset pricing model is developed in the context of a pure
exchange economy with a single perishable consumption good, a representative
agent and complete markets. The good serves as the numeraire. The economy has
a finite horizon Œ0; T 	. The uncertainty is carried by a d -dimensional Brownian
motion process W . Brownian increments represent economic shocks. There are k
state variables Y . Aggregate consumption C , dividends D and state variables Y
follow diffusion processes.
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3.2.1 The Financial Market

The financial market has ds risky assets (stocks) and 1 locally riskless asset (a
money market account). Stocks are claims to dividends, which are paid in units
of the consumption good. The vector of dividends DD .D1; : : : ;Dds / evolves
according to

dDt D IDt Œ� .t;Dt ; Yt / dt C � .t;Dt ; Yt / dW t 	 (3.1)

dYt D �Y .t; Yt / dt C �Y .t; Yt / dWt ; (3.2)

where IDt is a diagonal matrix with vector of dividends Dt on its diagonal,
� .t;Dt ; Yt / is the ds-dimensional vector of expected dividend growth rates and
� .t;Dt ; Yt / is the ds �d volatility matrix of dividend growth rates. Likewise,
�Y .t; Yt / is the k-dimensional vector of expected changes in the state variables and
�Y .t; Yt / their k � d matrix of volatility coefficients. Coefficients of the stochastic
differential equations (3.1)–(3.2) are assumed to satisfy standard conditions for the
existence of a unique strong solution .D; Y /. Stocks are in unit supply (the number
of shares is normalized to one). The aggregate dividend (aggregate consumption) is
C � 10D.

Stock prices are determined in a competitive equilibrium. Equilibrium prices are
assumed to have a representation

dSt CDtdt D I St Œ� .t;Dt ; Yt / dt C � .t;Dt ; Yt / dWt 	 ; (3.3)

where � .t;Dt ; Yt / is the ds-dimensional expected return and � .t;Dt ; Yt / the ds �
d matrix of return volatilities. The coefficients � .t;Dt ; Yt / and � .t;Dt ; Yt / are
endogenous.

The locally riskless asset is a money market account which pays interest at some
rate r .t;Dt ; Yt / per unit time. There is no exogenous supply of this asset (the money
market account is an inside asset in zero net supply). The interest rate, representing
the return on the asset, is also endogenously determined in equilibrium.

To simplify notation the arguments of drift, volatility and other functions are
sometimes omitted. For example rt will be used to denote r .t;Dt ; Yt /, �t to denote
� .t;Dt ; Yt /, etc.

The following assumptions are made

Assumption 1. Candidate equilibrium prices processes satisfy the following
conditions

(i)
R T
0 jrvjdv < 1; P � a:s:

(ii)
R T
0

�P
i j�ivj CP

i;j

ˇ̌
ˇ
�
�v�

0
v

�
i;j

ˇ̌
ˇ
�
dv < 1; P � a:s:

Assumption 1 is a set of restrictions on the space of candidate equilibrium prices
processes. These assumptions are weak. Condition (i) ensures that the discount

factor at the riskfree rate bt � exp
�
� R t

0
rvdv

�
is strictly positive for all t 2 Œ0; T 	.
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Condition (ii) ensures that the cumulative expected returns and return variances
exist. This condition is sufficient for the existence of the total return process in (3.3).

3.2.2 Consumption, Portfolios and Wealth

The economy has a representative agent endowed with 1 share of each stock. The
endowment of the money market account is null. The standing agent consumes
and allocates wealth among the different assets available. Let Xt be the wealth
at date t . Consumption is ct and 
t is the d � 1 vector of wealth proportions
invested in the risky assets (thus 1�
 0

t1 is the proportion invested in the riskless
asset). Consumption satisfies the physical nonnegativity constraint c 	 0. No sign
restrictions are placed on the proportions 
 invested in the various assets: long as
well as short positions are permitted. The evolution of wealth is governed by the
stochastic differential equation

dXt D .Xt rt � ct / dt CXt

0
t Œ.�t � rt1/ dt C �tdWt 	 (3.4)

subject to some initial condition X0 D x � 10S . For this evolutionary equation to
make sense the following integrability condition is imposed on the policy .c; 
/

Z T

0

�jct j C ˇ̌
Xt


0
t .�t � rt1/

ˇ̌C ˇ̌
Xt


0
t �t�

0
t 
tXt

ˇ̌�
dt < 1; .P � a:s:/: (3.5)

Under (3.5) the stochastic integral on the right hand side of (3.4) is well defined.
Condition (3.5) is a joint restriction on consumption-portfolio policies and candidate
equilibrium price processes.

3.2.3 Preferences

Preferences are assumed to have the time-separable von Neumann-Morgenstern
representation. The felicity provided by a consumption plan .c/ is

U .c/ � E
�Z T

0

u.cv; v/dv

	
; (3.6)

where the utility function u W ŒA;1/ � Œ0; T 	 ! R is strictly increasing, strictly
concave and differentiable over its domain. The consumption lower bound is
assumed to be nonnegative, A 	 0. The limiting conditions limc!A u0.c; t/ D 1
and limc!1 u0.c; t/ D 0 are also assumed to hold, for all t 2 Œ0; T 	. If ŒA;1/ is a
proper subset of RC (i.e. A > 0) the function u is extended to RC � Œ0; T 	 by setting
u.c; t/ D �1 for c 2 RCnŒA;1/ and for all t 2 Œ0; T 	.
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This class of utility functions includes the HARA specification

u.c; t/ D 1

1 �R.c �A/1�R;

where R > 0 and A 	 0. If A > 0 the function has the required properties over
the subset ŒA;1/ 
 RC. The function is then extended by setting u.c; t/ D �1
for 0 � c < A. This particular HARA specification corresponds to a model with
subsistence consumptionA.

Under these assumptions the inverse I WRC � Œ0; T 	! ŒA;1/ of the marginal
utility function u0.ct ; t/ with respect to its first argument exists and is unique.
It is also strictly decreasing with limiting values limy!0 I.y; t/D 1 and
limy!1 I.y; t/DA.

3.2.4 The Consumption-Portfolio Choice Problem

The consumer-investor seeks to maximize expected utility

max
.c;
/

U .c/ � E
�Z T

0

u .cv; v/ dv

	
(3.7)

subject to the constraints

dXt D .rtXt � ct / dt CXt

0
t Œ.�t � rt / dt C �tdWt 	 I X0 D xi (3.8)

ct 	 0;Xt 	 0 (3.9)

for all t 2 Œ0; T 	, and the integrability condition (3.5). The first constraint, (25.6),
describes the evolution of wealth given a consumption-portfolio policy .c; 
/. The
quantity x represents initial resources, given by the value of endowments x D 10S0.
The next one (25.7) has two parts. The first captures the physical restriction that
consumption cannot be negative. The second is a non-default condition requiring
that wealth can never become negative.

A policy .c; 
/ is said to be admissible, written .c; 
/ 2 A, if and only if it
satisfies (25.6) and (25.7). A policy .c�; 
�/ is optimal, written .c�; 
�/ 2 A�, if
and only if it cannot be dominated, i.e., U .c�/ 	 U .c/ for all .c; 
/ 2 A.

3.2.5 Equilibrium

A competitive equilibrium is a collection of stochastic processes .c; 
; S0; r; �; �/
such that:

1. Individual rationality: .c; 
/ 2 A�, where .S0; r; �; �/ is taken as given.
2. Market clearing: (a) commodity market: cDC � 10D, (b) equity market:
X
 DS and (c) money market: 
 01 D 1.
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This notion of equilibrium involves rational expectations. The representative
agent correctly forecasts the evolution of asset returns when making individual
decisions (condition 1). In equilibrium, forecasted return processes and market
clearing return processes coincide (condition 2).

For later developments it is also useful to note that clearing of the commodity
market implies clearing of the equity and money markets.

3.3 Equilibrium

The optimal consumption demand is characterized in Sect. 3.3.1. Formulas for the
equilibrium state price density and the values of securities are given in Sect. 3.3.2.

3.3.1 Optimal Consumption Policy

The competitive equilibrium pins down the returns associated with intertemporal
transfers of funds. The interest rate r measures the instantaneous return on the
money market account (the locally riskless asset). The market price of risk �j
captures the expected instantaneous return on a claim with unit exposure to the
Brownian motion risk Wj . Let � � .�1; : : : ; �d /

0 be the d -dimensional vector of
market prices of risk. Both r and � are endogenous in equilibrium and reflect the
economic structure and conditions.

The state price density (SPD) associated with a pair of candidate equilibrium
processes .r; �/ is

�v � exp



�
Z v

0



rs C 1

2
� 0
s�s

�
ds �

Z v

0

� 0
sdWs

�
; (3.10)

where v 2 Œ0; T 	. The SPD �v is the stochastic discount factor that matters for the
valuation at date 0 of a cash flow received at v 	 0. The conditional state price
density (CSPD) �t;v � �v=�t determines the value at t of a cash flow at v. The SPD
(CSPD) also represents the cost at 0 (at t) of a state-contingent dollar received at
time v.

Assumption 2. Candidate market prices of risk satisfy
R T
0
� 0

v�vdv < 1 .P �a:s:/.
Under Assumption 2 the stochastic integral

R v
0 �

0
sdWs exists and is a local

martingale. In combination with Assumption 1(i), it implies that the growth rate
of the state price density is well defined.

The following characterization of the consumption demand (optimal consump-
tion) is derived in Pliska (1986), Karatzas et al. (1987) and Cox and Huang (1989).

Theorem 1. Consider the dynamic consumption-portfolio problem (25.5)–(25.7)
and suppose that Assumptions 1 and 2 hold. Also assume that the minimum wealth
condition
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x 	 AE
�Z T

0

�vdv

	
(3.11)

is satisfied. A consumption plan c� is optimal if and only if it satisfies the first order
conditions

u0 �c�
v ; v

� D y�v (3.12)

E
�Z T

0

�vI.y
��v; v/dv

	
D x (3.13)

for some constant y > 0.

Condition (3.12) shows that optimal consumption is set so as to equate the
marginal utility of consumption to its marginal cost. Given the utility assumptions
in Sect. 3.2.3, the unique solution is c�

v D I.y��v; v/ where I.�; v/ is the inverse
marginal utility function. Condition (3.13) is the static budget constraint. It ensures
that initial resources are exhausted at the optimum.

The first order condition (3.12) can be rewritten in terms of the value function
associated with the agent’s optimization problem, more specifically its derivative
with respect to wealth. The resulting equation corresponds to the optimality
condition derived by Merton (1971), based on dynamic programming principles.

3.3.2 Equilibrium State Price Density

At equilibrium, the demand for the consumption good c equals its supply C D 10D
where

dCt

Ct
D 10dDt

10Dt

� �Ct dt C �Ct dWt : (3.14)

Substituting into the first order condition (3.12) leads to the following closed form
solution for the equilibrium state price density and its components.

Theorem 2. Consider the representative agent economy .u/ and suppose that the
aggregate dividend suffices to finance the subsistence consumption level (i.e., (3.11)
holds). The equilibrium state price density is given by

�t D uc .Ct ; t/

uc .C0; 0/
(3.15)

for t < T where uc .�; t/ is the derivative of the instantaneous utility function with
respect to consumption. The equilibrium interest rate and market price of risk are
given by

rt D ˇt CRt�
C
t � 1

2
RtPt�

C
t

�
�Ct
�0

(3.16)

�t D Rt�
C
t ; (3.17)
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where

ˇt � �uct .Ct ; t/

uc .Ct ; t/
; Rt � �ucc .Ct ; t/ Ct

uc .Ct ; t/
; Pt � �uccc .Ct ; t/ Ct

ucc .Ct ; t/
: (3.18)

and uct .�; t/, ucc .�; t/, uccc .�; t/ are the first and second derivatives of the marginal
utility function with respect to time and consumption. The coefficient ˇt is the
representative agent’s subjective discount rate, Rt is a measure of relative risk
aversion and Pt a measure of relative prudence.

Equation (3.15) in Theorem 2 shows that the equilibrium SPD is the marginal
rate of substitution between aggregate consumption at dates t and 0. An application
of Ito’s lemma to this expression leads to the equilibrium formulas for the interest
rate and the market price of risk. The relation (25.64) between the instantaneous
interest rate and the moments of the consumption (or production) growth rate was
discovered by Breeden (1986). Formula (3.17) for the market price of risk leads to
the well known CCAPM (consumption CAPM). This relation, between asset risk
premia and the consumption growth rate, was identified and discussed by Breeden
(1979). It builds on the standard intertemporal capital asset pricing model derived
by Merton (1973).

The following characterization of stock prices is a direct consequence of
Theorem 2.

Theorem 3. Equilibrium stock prices are given by the present value formula

Sjt D Et

�Z T

t

�t;vDj vdv

	
D DjtEt

�Z T

t

�t;vDjt;vdv

	
; (3.19)

where Djt;v �Dj v=Djt , for j D 1; : : : ; ds . Asset return volatilities are

Sjt�jt D Et

�Z T

t

�t;vDtDj vdv

	
C Et

�Z T

t

�t;v



Rt

DtCt

Ct
� Rv

DtCv

Cv

�
Dj vdv

	

D �j .t;Dt ; Yt / Sjt C �Ct Et

�Z T

t

�t;v .Rt �Rv/Dj vdv

	

CDjt



Et

�Z T

t

�t;v
�
DtDjt;v �Rv .Dt logCt;v/Djt;v

�
dv

	�
; (3.20)

where DtDj v;Dt Ys solves the stochastic differential equations

dDtDj v D �
�j .v;Dv; Yv/ dv C �j .v;Dv; Yv/ dWv

�
DtDj v (3.21)

Dj v
�
@D�j .v;Dv; Yv/ dv C .dWv/

0 @D�j .v;Dv; Yv/
0�DtDv

CDj v
�
@Y �j .v;Dv; Yv/ dv C .dWv/

0 @Y �j .v;Dv; Yv/
0�Dt Yv (3.22)

dDt Ys D
2

4@�Y .s; Ys/ds C
dX

jD1
@Y �

Y
j .s; Ys/dW

j
s

3

5Dt Ys (3.23)
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with initial conditions DtDjt DDjt�j .t;Dt ; Yt / and Dt Yt D �Y .t; Yt /: The Malli-
avin derivative of aggregate consumption is DtCv D P

j DtDj v. In these expres-
sions @Df .D; Y / and @Y f .D; Y / stand for the gradients of a function f with
respect to the vectorsD and Y . If f is a k�1 vector the differential @Y f .Y / is a k�
k matrix. Expected stock returns satisfy the CCAPM: �j v � rv D �j v�v DRv�j v�

C
v .

The present value formula (3.19) is standard. Expression (3.20) shows that stock
volatilities are made up of two components. The first one (first line of (3.20))
consists of static terms associated with the instantaneous volatilities of the stock’s
dividend and the aggregate consumption growth rates. The second one (second line
of (3.20)) is associated with intertemporal components due to fluctuations in the
coefficients of the dividend and consumption growth rates. Formula (3.20) is a
special case of the volatility expression in Detemple and Zapatero (1991), which
also accounts for habit formation effects and assumes a more general uncertainty
structure (Ito processes). A variation of the formula is presented in Detemple
and Serrat (2003) for the case of wealth constraints, in a model with constant
coefficients. Recent contributions, such as Berrada (2006) and Gallmeyer and
Hollifield (2008), have also analyzed versions of the formula for certain types of
economies with heterogeneous beliefs.

The CCAPM and the present value formula in Theorem 3 are the basis for
a wide literature discussing properties of asset pricing models and in particular
their ability to explain empirical regularities. The volatility formula sheds light on
some of the debates. For instance, the original argument for the volatility puzzle
identified in Grossman and Shiller (1981) relies on the assumption of constant
relative risk aversion (CRRA) and constant moments of the dividend growth rate. As
(3.20) shows, stock return and dividend growth rate volatilities are the same under
these assumptions. In this context, low volatility of a dividend growth rate implies
low volatility of the stock’s return, in contradiction with the empirical evidence.
Follow-up literature, e.g. Hansen and Singleton (1983) and Grossman et al. (1987),
highlighted the high levels of relative risk aversion estimates implied by this simple
economic model (with CRRA). This theme is central to the equity premium puzzle
popularized by the analysis in Mehra and Prescott (1985).

Likewise, contingent claim values satisfy the standard present value formulas

Theorem 4. Consider a contingent claim .f; F; / where f is an adapted stochas-
tic process representing intermediate cash flows, F is an F -measurable terminal
payment and  < T is a stopping time representing the random maturity date of the
claim. The equilibrium value of the claim is

Vt D Et

�Z 

t

�t;vfvdv C �t;vF

	
: (3.24)

In the case of a pure discount bond .0; 1; v/ with maturity date v<T , the
equilibrium price becomes Bv

t DEt Œ�t;v	. Similarly, the European call option�
0; .Sj v �K/C; v

�
written on stock j and maturing at v < T is worth

Ce
t DEt

�
�t;v.Sj v �K/C

�
.
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Valuation formulas for contingent claims, such as (3.24), can be found in
numerous places. A derivation in the context of a production model and a PDE
characterization of the price can be found in Cox et al. (1985).

3.4 Computation

Equilibrium asset prices and contingent claims are characterized in Theorems 3
and 4 as conditional expectations of their discounted payoffs where discounting is
performed using the equilibrium SPD in Theorem 2. For general diffusion processes,
these expectations cannot be simplified and expressed in explicit form as known
functions of the relevant state variables. Numerical computations are therefore
necessary for implementation.

In principle, various numerical approaches can be employed to carry out
computations. Lattice methods (such as PDE schemes or finite dimensional trees)
and Monte Carlo methods are two possible approaches. In many practical imple-
mentations, however, the relevant state space is large. Lattice methods, which suffer
from the curse of dimensionality, quickly become infeasible as the dimensionality
of the problem increases. In these instances, Monte Carlo simulation remains the
only tractable approach.

This section describes an implementation based on Monte Carlo simulation.
Section 25.4 presents the computational algorithm. An illustrative example is
presented in Sect. 25.5.

3.4.1 A Monte Carlo Method

Numerical implementation is carried out using Monte Carlo simulation. The
following basic scheme can be employed for the valuation of stocks (taken as an
example) at date 0:

1. Select a discretization with K C 1 points of the time interval Œ0; T 	:
ftk W kD 0; : : : ; Kg. Let h� tkC1 � tk be the common size of the partition
(equidistant partition).

2. Along this time discretization simulate M trajectories, mD 1; : : : ;M , of the
Brownian motion W and construct the corresponding trajectories for the pair
.D; Y /. This can be done using various discretization schemes for stochastic
differential equations (see Kloeden and Platen (1999)). For the Euler scheme

Dm
tkC1

D Dm
tk

C ID
m

tk

�
�
�
tk ;D

m
tk
; Y mtk

�
hC �

�
tk;D

m
tk
; Y mtk

�
�W m

tk

�
(3.25)

Y mtkC1
D Y mtk C �Y

�
tk; Y

m
tk

�
hC �Y

�
tk ; Y

m
tk

�
�W m

tk
(3.26)
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for kD 0; : : : ; K � 1 and mD 1; : : : ;M , where �W m
tk

� W m
tkC1

� W m
tk

. Initial
values are Dm

t0
DD0 and Y mt0 DY0 for all m.

3. Construct the corresponding trajectories of the equilibrium SPD � using (3.15).
Construct the weighted dividend processes �D and their cumulative valuePjT �R T
0
�vDj vdv using

Pm
jtkC1

D Pm
jtk

C �mtk D
m
jtk
h; for k D 0; : : : ; K � 1 andm D 1; : : : ;M:

Initial values are Pm
jt0

D 0 for mD 1; : : : ;M .
4. Calculate the stock prices by taking the Monte Carlo average of the cumulative

discounted payoff over the set of simulated trajectories

Sj0 D 1

M

MX

mD1
Pm
jtK

D 1

M

MX

mD1

 
K�1X

kD0
�mtk D

m
jtk

!
h:

The same algorithm applies in order to price securities at an arbitrary date
t 2 Œ0; T /. In that case the simulation estimates the evolution of the conditional state
price density �t;v D uc .Cv; v/ =uc .Ct ; t/ and the associated discounted dividends
over the subinterval Œt; T /.

The volatility process in Theorem 3, which is also expressed as a conditional
expectation, can be estimated in the same manner. Step 2, in this instance, constructs
the trajectories of the vector diffusion process .D; Y;DD;DY / according to (3.25)
and (3.26) and

�
Dt0DjtkC1

�m

D �
Dt0Djtk

�m C �
�j
�
tk;D

m
tk
; Y mtk

�
hC �j

�
tk;D

m
tk
; Y mtk

�
�W m

tk

� �
Dt0Djtk

�m

CDm
jtk

h
@D�j

�
tk;D

m
tk
; Y mtk

�
hC �

�W m
tk

�0
@D�j

�
tk;D

m
tk
; Y mtk

�0i �Dt0Dtk

�m

CDm
jtk

h
@Y �j

�
tk;D

m
tk
; Y mtk

�
hC �

�W m
tk

�0
@Y �j

�
tk;D

m
tk
; Y mtk

�0i �Dt0Ytk
�m

(3.27)
�
Dt0YtkC1

�m

D �
Dt0Ytk

�m C
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4@Y �Y
�
tk; Y

m
tk

�
hC

dX

jD1
@Y �

Y
j

�
tk; Y

m
tk

�
�W

j;m
tk
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5�Dt0Ytk
�m

for kD 0; : : : ; K � 1 and mD 1; : : : ;M , where �W
j;m
tk

� W
j;m
tkC1

� W
j;m
tk

.
Initial conditions are Dt0D

m
jt0

DDjt0�j .t0;Dt0 ; Yt0/ and Dt0Y
m
t0

D �Y .t0; Yt0/ for
all mD 1; : : : ;M . In some cases, a dimensionality reduction can be achieved by
expressing these Malliavin derivatives in terms of the related tangent processes (see
Detemple et al., 2008).
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3.4.2 Numerical Example

The example is based on the model with CRRA and a single source of uncertainty
(hence a single stock) capturing the risk factor underlying the stock market. In
this setting aggregate consumption is the dividend paid by the asset, C D D.
Equilibrium is summarized in the following corollary.

Corollary 1. Consider the economy of Theorem 2 and suppose that the agent has
constant relative risk aversion u .c; t/ D exp .�ˇt/ c1�R= .1 � R/ where R is the
relative risk aversion coefficient and ˇ is a constant subjective discount rate. Also
suppose d Dds D 1 (hence C DD). The equilibrium state price density and its
components are

�t D exp .�ˇt/


Ct

C0

��R
(3.28)

rt D ˇ CR�Ct � 1

2
R .1CR/�Ct

�
�Ct
�0

(3.29)

�t D R�Ct : (3.30)

The equity premium and the volatility of the market return are

�t � rt D R�t�
C
t (3.31)

�t D �Ct C .1 � R/
Et
hR T
t
�t;vDtCt;vdv

i

Et
hR T
t
�t;vCt;vdv

i

D R�Ct C .1 �R/
Et
hR T
t �t;vDtCvdv

i

Et
hR T
t �t;vCvdv

i : (3.32)

In these expressions �Ct D � .t;Dt ; Yt / and �Ct D� .t; Ct ; Yt /.

For illustration purposes assume that aggregate consumption (dividend) follows
the nonlinear mean reverting process

dCt D Ct
�
�
�
C � Ct

�
dt C �dW t

�
;

where �; � are constants. This process has linear speed of mean reversion (the drift
has therefore a quadratic component) and proportional volatility. The Malliavin
derivative process solves

dDtCs D DtCs
�
�
�
C � 2Cs

�
ds C �dWs

� I DtCt D Ct�
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so that

DtCs D Ct� exp


Z s

t



�
�
C � 2Cv

� � 1

2
�2
�
dv C � .Ws �Wt/

�

D Cs� exp



��

Z s

t

Cvdv

�
:

It follows that DtCs > 0 for all s 2 Œt; T 	 and that the second component in the
stock volatility (on the second line of (3.32)) is positive (resp. negative) for R < 1

(resp. R > 1).
Figure 3.1 displays the market return volatility as a function of relative risk

aversion and the volatility of the consumption growth rate. For the parameter values
selected the market return volatility is increasing in both variables. It exceeds
(resp. falls below) the consumption growth rate volatility �D 3% when risk aversion
exceeds 1 (resp. falls below 1). Maximum market volatility is �0 D 4:5% over the
range of values examined.
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Fig. 3.1 This figure shows the market volatility as a function of relative risk aversion and
aggregate consumption (dividend) growth rate volatility. Parameter values are C0 D 109; � D
0:001 � 10�9; C D 109; ˇ D 0:01; T D 100: Risk aversion varies from 0 to 4. Consumption
volatility from 2 to 4%. The number of trajectories and time discretization points are M D 1;000,
N D 100
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3.5 Multiagent Models

Section 3.5.1 outlines the structure of the canonical complete market model with
multiple agents. Section 3.5.2 describes the structure of consumption and portfolio
demands. Equilibrium characterizations are in Sect. 3.5.3. Algorithms for numerical
computation and illustrations are presented in Sect. 3.5.4.

3.5.1 Model Structure

The uncertainty structure and the financial market are the same as in Sect. 25.2.1.
But it is now assumed that there are as many risky stocks as Brownian motions
(ds D d ). In addition to Assumption 1, it is also postulated that asset prices are such
that the financial market is complete in equilibrium.

Assumption 3. Candidate equilibrium price processes are such that ��1 exists.

Assumption 3 is a non-degeneracy condition which ensures that all the risks are
hedgeable (i.e., that markets are complete). Indeed, under this condition

dW t D ��1
t

��
ISt
��1

.dSt CDtdt/� �tdt
�

which indicates that Brownian shocks can be duplicated by taking suitable positions
in the stocks and the riskless asset. In addition, under this assumption the market
price of risk is uniquely implied by the returns on traded assets and equals � �
��1 .� � r/. It represents the risk premium per unit risk. The SPD associated with
this complete market structure is given by (25.2) evaluated at the implied market
price of risk.

The economy’s population is comprised of i D 1; : : : ; N diverse investors.
Each individual is endowed with a number ni � .ni;1 : : : ; ni;ds / of shares of the
stocks, such that

PN
i D 1 ni;j D 1 for all j D 1; : : : ; ds (aggregate endowments are

normalized to one share for each stock). Endowments of the money market account
are null. Individuals consume and allocate their wealth among the different assets
available. Let Xit be the wealth of individual i at date t . Consumption is cit and 
it
is the d � 1 vector of wealth proportions invested in the risky assets (thus 1 � 
 0

i t1
is the proportion invested in the riskless asset). Consumption satisfies the physical
nonnegativity constraint ci 	 0. No sign restrictions are placed on the proportions

i invested in the various assets: long as well as short positions are permitted. The
evolution of individual wealth is governed by the stochastic differential equation

dXit D .Xit rt � cit / dt CXit

0
i t Œ.�t � rt1/ dt C �tdW t 	 (3.33)

subject to the initial condition Xi0 D xi D niS0. For this evolutionary equation to
make sense the following integrability condition is imposed on the policy .ci ; 
i /
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Z T

0

�jcit j C ˇ̌
Xit


0
i t .�t � rt1/

ˇ̌C ˇ̌
Xit


0
i t �t�

0
t 
itXit

ˇ̌�
dt < 1; .P � a:s:/:

(3.34)
Under (3.34) the stochastic integral on the right hand side of (3.33) is well
defined. Condition (3.34) is a joint restriction on consumption-portfolio policies
and candidate equilibrium price processes.

Preferences for each individual are assumed to have the time-separable von
Neumann-Morgenstern representation. The felicity provided by a consumption plan
.ci / is

U .ci / � E
�Z T

0

ui .civ; v/dv

	
; (3.35)

where the utility function ui W ŒAi ;1/ � Œ0; T 	 ! R is strictly increasing,
strictly concave and differentiable over its domain. The consumption bound is
assumed to be nonnegative, Ai 	 0. The limiting conditions limc!Ai u0

i .c; t/ and
limc!1 u0

i .c; t/ D 0 are also assumed to hold, for all t 2 Œ0; T 	. If ŒAi ;1/ is a
proper subset of RC (i.e. Ai > 0) the function ui is extended to RC � Œ0; T 	 by
setting ui .c; t/ D �1 for c 2 RCnŒAi ;1/ and for all t 2 Œ0; T 	.

Each consumer-investor seeks to maximize expected utility

max
.ci ;
i /

U .ci / (3.36)

subject to the constraints

dXit D .rtXit � cit / dt CXit

0
i t Œ.�t � rt / dt C �tdW t 	 I Xi0 D xi (3.37)

cit 	 0;Xit 	 0 (3.38)

for all t 2 Œ0; T 	, and the integrability condition (3.34). Initial resources are xi D
niS0.

A policy .ci ; 
i / is admissible for agent i , written .ci ; 
i / 2 Ai , if and only if it
satisfies (3.37) and (3.38). A policy

�
c�
i ; 


�
i

�
is optimal for i , written

�
c�
i ; 


�
i

� 2 A�
i ,

if and only if it cannot be dominated, i.e., U
�
c�
i

� 	 U .ci / for all .ci ; 
i / 2 Ai .
A competitive equilibrium is a collection of stochastic processes

f.ci ; 
i / W i D 1; : : : N; .S0; r; �; �/g

such that:

1. Individual rationality: .ci ; 
i / 2 A�
i , for i D 1; : : : ; N where .S0; r; �; �/ is

taken as given.
2. Market clearing: (i) commodity market:

PN
i D 1 ci DC , (ii) equity market:PN

i D 1 Xi
i DS and (iii) money market:
PN

i D 1 Xi
�
1 � 
 0

i1
� D 0.
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3.5.2 Consumption and Portfolio Demands

Optimal consumption and portfolio demands are obtained by using the methods in
Pliska (1986), Karatzas et al. (1987), Cox and Huang (1989), Ocone and Karatzas
(1991) and Detemple et al. (2003).

Theorem 5. Consider the dynamic consumption-portfolio problem (25.5)–(25.7)
and suppose that the minimum wealth condition holds

xi 	 AiE
�Z T

0

�vdv

	
: (3.39)

Optimal consumption is c�
iv D Ii

�
y�
i �iv; v

�
where y�

i solves

E
�Z T

0

�vIi .y
�
i �v; v/dv

	
D xi : (3.40)

Intermediate wealth satisfies

X�
i t D Et

�Z T

t

�t;vc
�
ivdv

	
: (3.41)

Define the absolute risk tolerance function

�iu.c; v/ D � u0
i .c; v/

u00
i .c; v/

(3.42)

and let � �
iv ��iu.c

�
iv; v/ be the risk tolerance function evaluated at optimal con-

sumption at date v. Define the random variable I iv � Ii
�
y�
i �v; v

�
. The optimal

portfolio has the decomposition 
�
i t D
mit C 
rit C 
�it with


mit D Et

�Z T

t

�t;v�
�
ivdv

	 �
� 0
t

��1
�t (3.43)


rit D � �� 0
t

��1
Et

�Z T

t

�t;v
�
c�
iv � � �

iv

�
Hr
t;vdv

	
(3.44)


�it D � �� 0
t

��1
Et

�Z T

t

�t;v
�
c�
iv � � �

iv

�
H�
t;vdv

	
; (3.45)

where the random variables Hr
t;v;H

�
t;v are

�
Hr
t;v

�0 D
Z v

t

@r.Ys; s/Dt Ysds (3.46)
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�
H�
t;v

�0 D
Z v

t

� 0
s@�.Ys; s/Dt Ysds C

Z v

t

dW 0
s @�.Ys; s/Dt Ys (3.47)

and Dt Ys satisfies the stochastic differential equation (3.23).

The consumption demand is obtained as in the single agent model, as the
inverse marginal utility evaluated at the (normalized) SPD. The portfolio financing
the consumption demand has three terms, described in (3.43)–(3.45). The first
component (3.43) is a mean-variance term, motivated by the desire to diversify. The
next two components are dynamic hedging terms, designed to hedge fluctuations in
the opportunity set: (3.44) is an interest rate hedge and (3.45) is a market price of
risk hedge.

3.5.3 Equilibrium Prices and Allocations

Aggregating over individual consumption demands yields the aggregate demand
function

NX

iD1
Ii
�
y�
i �t ; t

�
:

The clearing condition in the commodity market leads to the following standard
characterization of the equilibrium state price density.

Theorem 6. Consider the multiagent economy with population f.ui ; ni / W
i D 1; : : : ; N g and suppose that individual wealth finances the subsistence
consumption for each agent (i.e., (3.39) holds for each i D 1; : : : ; N ). The
equilibrium state price density is given by

�t D f .Ct ; t I z/

f .C0; 0I z/
; (3.48)

where f .Ct ; t I z/ is the unique solution of the nonlinear equation

I1 .f .Ct ; t I z/ ; t/C
NX

iD2
Ii .zi f .Ct ; t I z/ ; t/ D Ct (3.49)

and the N � 1 dimensional vector of relative Lagrange multipliers z � .z2; : : : ; zN /
solves the system of nonlinear equations

xi D E
�Z T

0

f .Cv; vI z/

f .C0; 0I z/
Ii .zi f .Cv; vI z/ ; v/ dv

	
(3.50)

for i D 2; : : : ; N . In (3.50) xi DniS0 where S0 is given by the present value formula
in Theorem 3 (with � as in (3.48)).
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Questions pertaining to the existence and uniqueness of equilibria related to those
described in Theorem 6 are addressed in Karatzas et al. (1990) and Karatzas et al.
(1991) (see also Karatzas and Shreve (1998), Sect. 4.6).

Equation (3.48) expresses the state price density in terms of a functionf .Ct ; t I z/
of aggregate consumption Ct and of the vector of Lagrange multipliers z, which
satisfies the market clearing condition (3.49) at each point in time t 2 Œ0; T 	. The
function f .Ct ; t I z/ is the unnormalized state price density. It corresponds to the
marginal utility of the aggregator. Lagrange multipliers are also endogenous: they
satisfy the vector of static budget constraints (3.50) which are parameterized by the
unknown stochastic process ff .Ct ; t I z/ W t 2 Œ0; T 	g.

An application of Ito’s lemma now gives the equilibrium interest rate and market
price of risk.

Theorem 7. Consider the multiagent economy with population f.ui ; ni / W i D
1; : : : ; N g and suppose that individual wealth finances the subsistence consumption
of each agent. The equilibrium interest rate and market price of risk are given by

rt D ˇat CRat �
C
t � 1

2
Rat P

a
t �

C
t

�
�Ct
�0

(3.51)

�t D Rat �
C
t ; (3.52)

where

ˇat �
PN

iD1 I 0
i .zi f .Ct ; t I z// ˇitPN

iD1 I 0
i .zi f .Ct ; t I z// zi f .Ct ; t I z/

(3.53)

Rat � CtPN
iD1 I 0

i .zi f .Ct ; t I z// zi f .Ct ; t I z/
(3.54)

Pa
t � 1

Rat

PN
iD1 I 00

i .zi f .Ct ; t I z// zi f 0 .Ct ; t I z/
PN

iD1 I 0
i .zi f .Ct ; t I z// zi f .Ct ; t I z/

: (3.55)

The coefficient ˇat is the aggregate discount rate, Rat is a measure of aggregate
relative risk aversion and Pa

t is a measure of aggregate prudence.

Stock prices satisfy the standard present value formula based on the equilibrium
SPD.

Theorem 8. Equilibrium stock prices are given by the present value formula (3.19).
Asset return volatilities are

Sjt�jt D Et

�Z T

t

�t;vDtDj vdv

	
C Et

�Z T

t

.Dt �t;v/Dj vdv

	
; (3.56)

where Dt �t;v is calculated on the basis of the equilibrium SPD formula (3.48).
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The volatility formula in Theorem 8 concentrates on the contributions of future
dividends and of the CSPD. A more refined version, identifying static and dynamic
components, can be derived by calculating the Malliavin derivatives DtDj v;Dt �t;v.

Equilibrium portfolios can also be characterized as

Theorem 9. Equilibrium portfolios are 
�
i t D 
mit C 
rit C 
�it with


mit D Et

�Z T

t

�t;v�
�
ivdv

	 �
� 0
t

��1
�t (3.57)


rit D � �� 0
t

��1
Et

�Z T

t

�t;v
�
c�
iv � � �

iv

�
Hr
t;vdv

	
(3.58)


�it D � �� 0
t

��1
Et

�Z T

t

�t;v
�
c�
iv � � �

iv

�
H�
t;vdv

	
; (3.59)

where Hr
t;v;H

�
t;v are

�
Hr
t;v

�0 D
Z v

t

Dt rsds and
�
H�
t;v

�0 D
Z v

t

� 0
sDt �sds C

Z v

t

dW 0
sDt �s (3.60)

and the Malliavin derivatives Dt rs;Dt �s are calculated on the basis of the formulas
in Theorem 7.

3.5.4 Computation

This section first presents two algorithms that can be used to compute equilibrium
for general economic settings. It then specializes to a class of economies with two
agents. A numerical illustration is presented in this context.

3.5.4.1 General Economies

On the basis of the result in Theorem 6, numerical computation of the state price
density can be performed by using an iteration-simulation algorithm of the following
type:

1. Select a discretization withKC1 points of the time interval: ftk W k D 0; : : : ; Kg.
2. Along this discretization simulateM trajectories ofW and .D; Y /. For the Euler

scheme this gives the approximations (3.25) and (3.26).
3. Fix a vector of multipliers z.0/:

(a) At each time tk and for each trajectorym calculate the solution of (3.49) using
a zero finding procedure. If a Newton-Raphson scheme is used, the iterative
algorithm is
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f .nC1;m/ �Cm
tk
; tk I z.0/

� D f .n;m/
�
Cm
tk
; tk I z.0/

�

C
 

NX

iD1
I 0
i

�
z.0/i f

.n;m/
�
Cm
tk
; tk I z.0/

��
z.0/i

!�1

�
 
Cm
tk

�
NX

iD1
Ii

�
z.0/i f

.n;m/
�
Cm
tk
; tk I z.0/

��
!

for n D 0; : : :, where f .0;m/.Cm
tk
; tk I z.0// is a selected initial condition.

Stop when a selected convergence criterion is satisfied. This produces an
approximate stochastic process

�
f
.n0;m/
k � f .n

0;m/
�
Cm
k ; tk I z.0/

�
W k D 0; : : : ; K � 1


;

where n0 is the stopping point.

(b) Feed

�
f
.n0;m/
k W k D 0; : : : ; K � 1


into (3.50) and calculate the updated

vector of multipliers z.1/ which solves (3.50). In this calculation, expectations
are estimated by Monte Carlo averaging over the trajectories of the (Euler)

approximate process

�
f
.n0;m/
k W k D 0; : : : ; K � 1


. A Newton-Raphson

scheme can again be used to calculate the fixed point. This Newton-Raphson
Monte Carlo Euler scheme is

z.jC1/
i D z.j /i C

 
MX

mD1

K�1X

kD0



f
.n0;m/
k

�2
I 0
i



z.j /i f

.n0;m/
k

�
h

!�1

�
MX

mD1

K�1X

kD0
f
.n0;m/
k



niC

m
k � Ii



z.j /i f

.n0;m/
k

��
h

for j D 0; : : : and i D 2; : : : ; N . Stop when a selected convergence criterion
is satisfied.

4. Repeat step 3 until some desired convergence criterion is satisfied.

The overall procedure is a two-stage Newton-Raphson Monte Carlo Euler
scheme. This procedure is computationally intensive, as it is exponential in the
number of stages.

An alternative is a one stage Newton-Raphson Monte Carlo Euler scheme.
Choose starting values z.0/i and f .0;m/

�
CmI z.0/

�
and iterate to obtain

n�
f .nC1;m/; z.nC1/

i

�
W m D 1; : : : ;M and i D 2; : : : ; N

o
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from
n�
f .n;m/; z.n/i

�
W m D 1; : : : ;M and i D 2; : : : ; N

o
as follows

2
6666666664

f
.nC1;m/
0
:::

f
.nC1;m/
K�1
z.nC1/
2
:::

z.nC1/
N

3
7777777775

D

2
6666666664

f
.n;m/
0
:::

f
.n;m/
K�1
z.n/2
:::

z.n/N

3
7777777775

C
�
H.n;m/

��1
L.n;m/;

where

L.n;m/ �

2

6666666666664

Cm
0 �PN

iD1 Ii
�

z.n/i f
.n;m/
0

�

:::

Cm
K�1 �PN

iD1 Ii
�

z.n/i f
.n;m/
K�1

�

PM
mD1

PK�1
kD0 f

.n;m/

k

�
n2C

m
k � I2

�
z.n/2 f

.n;m/

k

��
h

:::
PM

mD1
PK�1

kD0 f
.n;m/

k

�
nNC

m
k � IN

�
z.n/N f

.n;m/

k

��
h

3

7777777777775

and

H.n;m/ �
2

4
H
.n;m/
11 H

.n;m/
12

H
.n;m/
21 H

.n;m/
22

3

5

with blocks

H
.n;m/
11 � diag

"
NX

iD1
I 0
i

�
z.n/i f

.n;m/

k

�
z.n/i

#

H
.n;m/
12 �

h
I 0
i

�
z.n/i f

.n;m/

k

�
f
.n;m/

k

i
kD0;:::;K�1
iD2;:::;N

H
.n;m/
21 � H

.n;m/
211 CH

.n;m/
212

H
.n;m/
211 �

"
MX

mD1

�
�niCm

k C Ii

�
z.n/i f

.n;m/

k

��
h

#

iD2;:::;N

kD0;:::;K�1

H
.n;m/
212 �

"
MX

mD1

�
f
.n;m/

k I 0
i

�
z.n/i f

.n;m/

k

�
z.n/i

�
h

#

iD2;:::;N

kD0;:::;K�1
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H
.n;m/
22 � diag

"
MX

mD1

K�1X

kD0

�
f
.n;m/

k

�2
I 0
i

�
z.n/i f

.n;m/

k

�
h

#
:

For a vector V � �
V1; : : : ; Vp

�0
, the notation diagŒVi 	 indicates the diagonal matrix

with vector elements Vi on the diagonal, and ŒVij 	 iD1;:::;p

jD1;:::;q
is the matrix with rows

i D 1; : : : ; p and columns j D 1; : : : ; q. The iteration continues until a selected
tolerance threshold is attained (Step 4).

The one-stage Newton-Raphson Monte Carlo Euler scheme updates the vector of
Lagrange multipliers at each iteration. It therefore cuts down on the number of fixed
point computations required to approximate the equilibrium SPD. But the number
of equations involved at each iteration increases.

3.5.4.2 A Class of Economies with Two Types of Agents

Certain economies, in which agents’ risk attitudes are related, are more amenable to
computations. Consider for instance economies populated by two types of agents,
both with constant relative risk aversion, where R2 D 2R1. Economies in that class
have been examined by Dumas (1989) and Wang (1996).

Under these restrictions, the market clearing condition becomes



f .Ct ; t I z2/

exp .�ˇt/
��1=R1

C



z2
f .Ct ; t I z2/

exp .�ˇt/
��1=R2

D Ct

leading to the quadratic equation G2 C z�1=R2
2 G � Ct D 0, where

G �


f .Ct ; t I z2/

exp .�ˇt/
��1=R2

:

A characterization of equilibrium is provided next

Corollary 2. Consider the multiagent economy with population f.ui ; ni / W
i D 1; 2g where ui .c; t/ D exp .�ˇt/ c1�Ri = .1 �Ri/ with constant relative risk
aversion Ri and constant subjective discount rate ˇ. Assume furthermore that
R2 D 2R1. The equilibrium state price density is given by (3.48) where

f .Ct ; t I z2/ D exp .�ˇt/

0
B@

�z�1=R2
2 C

q
z�2=R2
2 C 4Ct

2

1
CA

�R2

: (3.61)
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and the transformed multiplier ' � z�1=R2
2 solves the nonlinear equation

x2 D E

2

4
Z T

0

exp .�ˇv/

 
�' Cp

'2 C 4Cv

�' Cp
'2 C 4C0

!�R2
'

 
�' Cp

'2 C 4Cv

2

!
dv

3

5

(3.62)

with

x2 D n2E

2

4
Z T

0

exp .�ˇv/

 
�' Cp

'2 C 4Cv

�' Cp
'2 C 4C0

!�R2
Cvdv

3

5 : (3.63)

When R2 D 2R1 the equilibrium state price density is known up to the constant
' � z�1=R2

2 , that satisfies (3.62) and (3.63). The nonlinear equation for ' can also
be written as ' D G .'/ with

G .'/ � 2n2

E
�R T

0
exp .�ˇv/

�
�' Cp

'2 C 4Cv

��R2
Cvdv

	

E
�R T

0
exp .�ˇv/

�
�' Cp

'2 C 4Cv

�1�R2
dv

	 :

Simple derivations show that G .0/ > 0 and lim'!1G .'/ =' < 1. This ensures
the existence of a fixed point. For R2 < 1, it can be shown that G0 .'/ < 1 at any
arbitrary fixed point, which guarantees uniqueness (see also Karatzas and Shreve
(1998), Theorems 6.1 and 6.4, for results in a related model).

Computation of equilibrium reduces to the resolution of this nonlinear equation.
This is a one-dimensional zero finding problem, which can be solved by standard
methods (Newton-Raphson scheme, bisection method, secant method, etc.,. . . ).

To complete the description of equilibrium, return components are given next

Corollary 3. Consider the economy of Corollary 2 and suppose d D ds D 1

(hence C D D). The equilibrium state price density and its components are

�t D f .Ct ; t I z2/

f .C0; 0I z2/
D exp .�ˇt/

�
�' Cp

'2 C 4Ct

��R2

�
�' Cp

'2 C 4C0

��R2 (3.64)

rt D ˇ CRat �
C
t � 1

2
Rat P

a
t

�
�Ct
�2

(3.65)

�t D Rat �
C
t ; (3.66)

where the aggregate relative risk aversion and prudence coefficients are
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Rat D 2R2

 �
'2 C 4Ct

��1=2

�' Cp
'2 C 4Ct

!
Ct (3.67)

Pa
t D



2

'2 C 4Ct

� 
1C .1 � R2/

p
'2 C 4Ct

�' Cp
'2 C 4Ct

!
Ct : (3.68)

The equity premium and the volatility of the market return are given by

�t � rt D Rat �t �
C
t (3.69)

�t D �Ct C
Et
hR T
t �t;v

�
DtCt;v C Dt �t;v

�t;v
Ct;v

�
dv
i

Et
hR T
t
�t;vCt;vdv

i ; (3.70)

where

DtCt;v D DtCv

Ct
� Ct;v

DtCt

Ct
(3.71)

Dt �t;v

�t;v
D �



Rav

DtCv

Cv
�Rat

DtCt

Ct

�
(3.72)

In these expressions �Ct D � .t;Dt ; Yt / and �Ct D � .t; Ct ; Yt /.

3.5.4.3 Numerical Example

Consider the two-agent economy of Sect. 3.5.4.2 and suppose that aggregate
consumption follows the nonlinear process described in Sect. 25.5. Numerical
computation of the transformed multiplier is based on (a variation of) the iterative
scheme '.nC1/ D G.'.n//.

Figure 3.2 displays the stock return volatility when relative risk aversion R2 and
consumption growth rate volatility vary. The return volatility behavior mimicks the
patterns found in the single agent model, but with a milder impact of risk aversion.
In this example aggregate risk aversion is lower than the risk aversion of agent 2,
which helps to explain the smaller slope.

3.6 Conclusions

Equilibrium considerations have long been central in the asset pricing literature.
Analyses based on complete market models have derived expressions for interest
rates, risk premia and return volatilities that highlight the relation to fundamentals,
such as consumption. Numerical analysis permits a new level of understanding
of these relations and the complex phenomena that affect the behavior of security
prices.
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Fig. 3.2 Market volatility as a function of relative risk aversion of agent 2 and aggregate
consumption (dividend) growth rate volatility. Parameter values are C0 D 109; � D 0:001�10�9;

C D 109; ˇ D 0:01; n2 D 0:5, T D 100: Risk aversion R2 varies from 0 to 4. Consumption
volatility from 2 to 4%. The number of trajectories and time discretization points are M D 1; 000

N D 100

While complete market models are useful in helping us develop a basic under-
standing of equilibrium phenomena, they are clearly limited in their ability to
capture certain features of the economic environment. For instance, it is fairly clear
that risk factors can not all be hedged. Sudden economic events, emerging factors,
individual-specific risks and restrictions on trading are a few examples of relevant
elements that are set aside by complete market analyses. These aspects have been
at the center of research efforts during the past two decades. Yet, progress has been
slow due to the complexity of the issues and the lack of tractability of the models
seeking to incorporate these elements. Further efforts are undoubtedly required to
get a fuller grasp of the effects at play. Advances in methodology and in numerical
analysis are likely to prove instrumental for gaining new insights about asset prices
in these constrained environments.
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Chapter 4
Jump-Diffusion Models Driven by Lévy
Processes

José E. Figueroa-López

Abstract During the past and this decade, a new generation of continuous-time
financial models has been intensively investigated in a quest to incorporate the
so-called stylized empirical features of asset prices like fat-tails, high kurtosis,
volatility clustering, and leverage. Modeling driven by “memoryless homogeneous”
jump processes (Lévy processes) constitutes one of the most viable directions in
this enterprise. The basic principle is to replace the underlying Brownian motion of
the Black-Scholes model with a type of jump-diffusion process. In this chapter, the
basic results and tools behind jump-diffusion models driven by Lévy processes are
covered, providing an accessible overview, coupled with their financial applications
and relevance. The material is drawn upon recent monographs (cf. Cont and Tankov
(2004). Financial modelling with Jump Processes. Chapman & Hall.; Sato (1999).
Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press.)
and papers in the field.

4.1 An Overview of Financial Models with Jumps

The seminal Black-Scholes model Black and Scholes (1973) provides a framework
to price options based on the fundamental concepts of hedging and absence of
arbitrage. One of the key assumptions of the Black-Scholes model is that the
stock price process t ! St is given by a geometric Brownian motion (GBM),
originally proposed by Samuelson (1965). Concretely, the time-t price of the stock
is postulated to be given by

St D S0e
�WtC�t ; (4.1)
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where fWt gt�0 is a standard Brownian motion. This model is plausible since
Brownian motion is the model of choice to describe the evolution of a random
measurement whose value is the result of a large-number of small shocks occurring
through time with high-frequency. This is indeed the situation with the log return
process Xt D log.St=S0/ of a stock, whose value at a given time t (not “very”
small) is the superposition of a high number of small movements driven by a large
number of agents posting bid and ask prices almost at “all times”.

The limitations of the GBM were well-recognized almost from its incep-
tion. For instance, it well known that the time series of log returns, say
logfS�=S0g; : : : ; logfSk�=S.k�1/�g, exhibit leptokurtic distributions (i.e. fat tails
with high kurtosis distributions), which are inconsistent with the Gaussian
distribution postulated by the GBM. As expected the discrepancy from the Gaussian
distribution is more marked when � is small (say a day and smaller). Also, the
volatility, as measured for instance by the square root of the realized variance of
log returns, exhibits clustering and leverage effects, which contradict the random-
walk property of a GBM. Specifically, when plotting the time series of log returns
against time, there are periods of high variability followed by low variability periods
suggesting that high volatility events “cluster” in time. Leverage refers to a tendency
towards a volatility growth after a sharp drop in prices, suggesting that volatility is
negatively correlated with returns. These and other stylized statistical features of
asset returns are widely known in the financial community (see e.g. Cont 2001 and
Barndorff-Nielsen and Shephard (2007) for more information). In the risk-neutral
world, it is also well known that the Black-Scholes implied volatilities of call and
put options are not flat neither with respect to the strike nor to the maturity, as it
should be under the Black-Scholes model. Rather implied volatilities exhibit smile
or smirk curve shapes.

In a quest to incorporate the stylized properties of asset prices, many models have
been proposed during the last and this decade, most of them derived from natural
variations of the Black-Scholes model. The basic idea is to replace the Brownian
motion W in (4.1), with another related process such as a Lévy process, a Wiener
integral

R t
0
�sdWs , or a combination of both, leading to a “jump-diffusion model” or

a semimartingale model. The simplest jump-diffusion model is of the form

St WD S0e
�WtC�tCZt ; (4.2)

where Z WD fZt gt�0 is a “pure-jump” Lévy process. Equivalently, (4.2) can be
written as

St WD S0e
Xt ; (4.3)

where Xt is a general Lévy process. Even this simple extension of the GBM,
called geometric Lévy model or exponential Lévy model, is able to incorporate
several stylized features of asset prices such as heavy tails, high-kurtosis, and
asymmetry of log returns. There are other reasons in support of incorporating jumps
in the dynamics of the stock prices. On one hand, certain event-driven information
often produces “sudden” and “sharp” price changes at discrete unpredictable times.
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Second, in fact stock prices are made up of discrete trades occurring through time
at a very high frequency. Hence, processes exhibiting infinitely many jumps in any
finite time horizon Œ0; T 	 are arguably better approximations to such high-activity
stochastic processes.

Merton (1976), following Press (1967), proposed one of the earliest models of
the form (4.2), taking a compound Poisson process Z with normally distributed
jumps (see Sect. 4.2.1). However, earlier Mandelbrot (1963) had already proposed a
pure-jump model driven by a stable Lévy process Z. Merton’s model is considered
to exhibit light tails as all exponential moments of the densities of log.St=S0/
are finite, while Mandelbrot’s model exhibit very heavy tails with not even finite
second moments. It was during the last decade that models exhibiting appropriate
tail behavior were proposed. Among the better known models are the variance
Gamma model of Carr et al. (1998), the CGMY model of Carr et al. (2002), and
the generalized hyperbolic motion of Barndorff-Nielsen (1998); Barndorff-Nielsen
and Shephard (2001) and Eberlein and Keller (1995); Eberlein (2001). We refer to
Kyprianou et al. 2005, Chapter 1 and Cont and Tankov 2004, Chapter 4 for more
extensive reviews and references of the different types of geometric Lévy models in
finance.

The geometric Lévy model (4.2) cannot incorporate volatility clustering and
leverage effects due to the fact that log returns will be independent identically
distributed. To cope with this shortcoming, two general classes of models driven by
Lévy processes have been proposed. The first approach, due to Barndorff-Nielsen
and Shephard (see e.g. Barndorff-Nielsen and Shephard 2001 and references
therein), proposes a stochastic volatility model of the form

St WD S0e
R t
0 buduCR t0 �udWu ; (4.4)

where � is a stationary non-Gaussian Ornstein–Uhlenbeck process

�2t D �20 C
Z t

0

˛�2s ds CZ˛t ;

driven by a subordinatorZ (i.e. a non-decreasing Lévy process) (see Shephard 2005
and Andersen and Benzoni 2007 for two recent surveys on these and other related
models). The second approach, proposed by Carr et al. (2003); Carr and Wu (2004),
introduces stochastic volatility via a random clock as follows:

St D S0e
Z.t/ ; with .t/ WD

Z t

0

r.u/du: (4.5)

The process  plays the role of a “business” clock which could reflect non-
synchronous trading effects or a “cumulative measure of economic activity”.
Roughly speaking, the rate process r controls the volatility of the process; for
instance, in time periods where r is “high”, the “business time”  runs faster
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resulting in more frequent jump times. Hence, positive mean-revering diffusion
processes fr.t/gt�0 are plausible choices to incorporate volatility clustering.

To account for the leverage phenomenon, different combinations of the previous
models have been considered leading to semimartingale models driven by Wiener
and Poisson random measures. A very general model in this direction assumes that
the log return process Xt WD log .St=S0/ is given as follows (c.f. Jacod 2006;
Todorov 2008):

Xt D X0 C
Z t

0

bsds C
Z t

0

�sdWs C
Z t

0

Z

jxj�1
ı.s; x/ NM.ds; dx/

C
Z t

0

Z

jxj>1
ı.s; x/M.ds; dx/

�t D �0 C
Z t

0

Qbsds C
Z t

0

Q�sdWs C
Z t

0

Z

jxj�1
Qı.s; x/ NM.ds; dx/

C
Z t

0

Z

jxj>1
Qı.s; x/M.ds; dx/;

where W is a d�dimensional Wiener process, M is the jump measure of an
independent Lévy processZ, defined by

M.B/ WD #f.t;�Zt/ 2 B W t > 0 such that �Zt ¤ 0g;

and NM.dt; dx/ WDM.dt; dx/� �.dx/dt is the compensate Poisson random measure
of Z, where � is the Lévy measure of Z. The integrands (b, � , etc.) are random
processes themselves, which could even depend on X and � leading to a system
of stochastic differential equations. One of the most active research fields in
this very general setting is that of statistical inference methods based on high-
frequency (intraday) financial data. Some of the researched problems include the
prediction of the integrated volatility process

R t
0
�2s ds or of the Poisson integralsR t

0

R
Rnf0g g.x/M.dx; ds/ based on realized variations of the process (see e.g. Jacod

2006, 2007; Mancini 2009; Woerner 2003, 2006; Podolskij 2006; Barndorff-Nielsen
and Shephard 2006), testing for jumps (Barndorff-Nielsen and Shephard 2006;
Podolskij 2006; Ait-Sahalia and Jacod 2006), and the estimation in the presence
of “microstructure” noise (Aı̈t-Sahalia et al. 2005; Podolskij and Vetter 2009 2009).

In this work, the basic methods and tools behind jump-diffusion models driven
by Lévy processes are covered. The chapter will provide an accessible overview of
the probabilistic concepts and results related to Lévy processes, coupled whenever
is possible with their financial application and relevance. Some of the topics
include: construction and characterization of Lévy processes and Poisson random
measures, statistical estimation based on high- and low-frequency observations,
density transformation and risk-neutral change of measures, arbitrage-free option
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pricing and integro-partial differential equations. The material is drawn upon recent
monographs (c.f. Cont and Tankov 2004; Sato 1999) and recent papers in the field.

4.2 Distributional Properties and Statistical Estimation
of Lévy Processes

4.2.1 Definition and Fundamental Examples

A Lévy process is a probabilistic model for an unpredictable measurement Xt
that evolves in time t , in such a way that the change of the measurement in
disjoint time intervals of equal duration, say XsC� � Xs and XtC� � Xt with
s C � � t , are independent from one another but with identical distribution. For
instance, if St represents the time-t price of an asset and Xt is the log return during
Œ0; t 	, defined by

Xt D log .St=S0/ ;

then the previous property will imply that daily or weekly log returns will be
independent from one another with common distribution. Formally, a Lévy process
is defined as follows:

Definition 1. A Lévy process X D fXtgt�1 is a R
d -valued stochastic process

(collection of random vectors in R
d indexed by time) defined on a probability space

.�;F ;P/ such that:

(i) X0 D 0.
(ii) X has independent increments: Xt1 � Xt0; : : : ; Xtn � Xtn�1 are independent

for any 0 � t0 < : : : < tn.
(iii) X has stationary increments: the distribution ofXtC��Xt is the same asX�,

for all t; � 	 0.
(iv) its paths are right-continuous with left-limits (rcll).
(v) it has no fixed jump-times; that is, P.�Xt ¤ 0/ D 0, for any time t .

The last property can be replaced by asking that X is continuous in probability,

namely, Xs
P�! Xt , as s ! t , for any t . Also, if X satisfies all the other properties

except (iv), then there exists a rcll version of the process (see e.g. Sato 1999).
There are three fundamental examples of Lévy processes that deserve some

attention: Brownian motion, Poisson process, and compound Poisson process.

Definition 2. A (standard) Brownian motion W is a real-valued process such that
(i)W0 D 0, (ii) it has independent increments, (iii)Wt �Ws has normal distribution
with mean 0 and variance t � s, for any s < t , and (iv) it has continuous paths.

It turns out that the only real Lévy processes with continuous paths are of the form
Xt D �Wt C bt; for constants � > 0 and b.
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A Poisson process is another fundamental type of Lévy process that is often used
as building blocks of other processes.

Definition 3. A Poisson process N is an integer-valued process such that
(i) N0 D 0, (ii) it has independent increments, (iii) Nt �Ns has Poisson distribution
with parameter �.t � s/, for any s < t , and (iv) its paths are rcll. The parameter �
is called the intensity of the process.

The Poisson process is frequently used as a model to count events of certain type
(say, car accidents) occurring randomly through time. Concretely, suppose that T1 <
T2 < : : : represent random occurrence times of a certain event and let Nt be the
number of events occurring by time t :

Nt D
1X

iD1
1fTi�tg: (4.6)

Then, if the events occur independently from one another, homogeneously in time,
and with an intensity of � events per unit time, fNtgt�0 given by (4.6) will be
approximately a Poisson process with intensity �. This fact is a consequence of the
Binomial approximation to the Poisson distribution (see, e.g., Feller 1968 for this
heuristic construction of a Poisson process). It turns out that any Poisson process can
be written in the form (4.6) with fTigi�1 (called arrival times) such that the waiting
times

i WD Ti � Ti�1;

are independent exponential r.v.’s with common mean 1=� (so, the bigger the �, the
smaller the expected waiting time between arrivals and the higher the intensity of
arrivals).

To introduce the last fundamental example, the compound Poisson process, we
recall the concept of probability distribution. Given a random vector J in R

d defined
on some probability space .�;P/, the distribution of J is the mapping � defined on
sets A 
 R

d as follows:
�.A/ WD P.J 2 A/:

Thus, �.A/ measures the probability that the random vector J belongs to the set
A. A compound Poisson process with jump distribution � and jump intensity � is a
process of the form

Zt WD
NtX

iD1
Ji ;

where fJigi�1 are independent with common distribution � and N is a Poisson
process with intensity � that is independent of fJi gi . When d D 1, one can say that
the compound Poisson process Z WD fZtgt�0 is like a Poisson process with random
jump sizes independent from one another. A compound Poisson process is the only
Lévy process that has piece-wise constant paths with finitely-many jumps in any
time interval Œ0; T 	. Note that the distribution of the compound Poisson process Z
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is characterized by the finite measure:

�.A/ WD ��.A/; A 
 R
d ;

called the Lévy measure of Z. Furthermore, for any finite measure �, one can
associate a compound Poisson process Z with Lévy measure � (namely, the com-
pound Poisson process with intensity of jumps � WD �.Rd / and jump distribution
�.dx/ WD �.dx/=�.Rd /).

For future reference, it is useful to note that the characteristic function of Zt is
given by

Eeihu;Zt i D exp

�
t

Z

Rd

�
eihu;xi � 1

�
�.dx/


(4.7)

Also, if EjJi j D R jxj�.dx/ < 1, then EZt D t
R
x�.dx/ and the so-called

compensated compound Poisson process NZt WD Zt�EZt has characteristic function

Eeihu; NZt i D exp

�
t

Z

Rd

�
eihu;xi � 1 � i hu; xi

�
�.dx/


: (4.8)

One of the most fundamental results establishes that any Lévy process can be
approximated arbitrarily close by the superposition of a Brownian motion with drift,
�Wt C bt , and an independent compound Poisson process Z. The reminder Rt WD
Xt � .�Wt C bt C Zt/ is a pure-jump Lévy process with jump sizes smaller than
say an " > 0, which can be taken arbitrarily small. The previous fundamental fact is
a consequence of the Lévy-Itô decomposition that we review in Sect. 4.3.2.

4.2.2 Infinitely Divisible Distributions and the Lévy–Khintchine
Formula

The marginal distributions of a Lévy process X are infinitely-divisible. A random
variable � is said to be infinitely divisible if for each n 	 2, one can construct n i.i.d.
r.v’s . �n;1; : : : ; �n;n such that

�
DD �n;1 C : : :C �n;n:

That Xt is infinitely divisible is clear since

Xt D
n�1X

kD0

�
X.kC1/t=n � Xkt=n

�
;

and fX.kC1/t=n �Xkt=ngn�1
kD0 are i.i.d. The class of infinitely divisible distributions is

closely related to limits in distribution of an array of row-wise i.i.d. r.v.’s:
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Theorem 1 (Kallenberg 1997). � is infinitely divisible iff for each n there exists
i.i.d. random variables f�n;kgknkD1 such that

knX

kD1
�n;k

D�! �; as n ! 1:

In term of the characteristic function '�.u/ WDEeihu;�i; � is infinitely divisible if
and only if '�.u/¤ 0, for all u, and its distinguished nth-root '�.u/1=n is the
characteristic function of some other variable for each n (see Lemma 7.6 in Sato
1999). This property of the characteristic function turns out to be sufficient to
determine its form in terms of three “parameters” .A; b; �/, called the Lévy triplet
of �, as defined below.

Theorem 2 (Lévy-Khintchine formula). � is infinitely divisible iff

Eeihu;�i D exp

�
i hb; ui � 1

2
hu; Aui C

Z �
eihu;xi � 1 � i hu; xi 1jxj�1

�
�.dx/


;

(4.9)
for some symmetric nonnegative-definite matrix A, a vector b 2 R

d , and a measure
� (called the Lévy measure) on R

d
0 WD R

dnf0g such that

Z

R
d
0

.jxj2 ^ 1/�.dx/ < 1: (4.10)

Moreover, all triplets .A; b; �/ with the stated properties may occur.

The following remarks are important:

Remark 1. The previous result implies that the time-t marginal distribution of a
Lévy process fXtgt�0 is identified with a Lévy triplet .At ; bt ; �t /. Given that X has
stationary and independent increments, it follows that Eeihu;Xt i D ˚

Eeihu;X1i�t ; for
any rational t and by the right-continuity of X , for any real t . Thus, if .A; b; �/ is
the Lévy triplet of X1, then .At ; bt ; �t / D t.A; b; �/ and

'Xt .u/ WD Eeihu;Xt i D et .u/; where (4.11)

 .u/ WD i hb; ui � 1

2
hu; Aui C

Z �
eihu;xi � 1 � i hu; xi 1jxj�1

�
�.dx/: (4.12)

The triple .A; b; �/ is called the Lévy or characteristic triplet of the Lévy processX .

Remark 2. The exponent (4.12) is called the Lévy exponent of the Lévy process
fXt gt�0. We can see that its first term is the Lévy exponent of the Lévy process
bt . The second term is the Lévy exponent of the Lévy process †Wt , where
W D .W 1; : : : ;W d /T are d�independent Wiener processes and† is a d �d lower
triangular matrix in the Cholesky decomposition A D ††T . The last term in the
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Lévy exponent can be decomposed into two terms:

 cp.u/ D
Z

jxj>1

�
eihu;xi � 1

�
�.dx/;

 lccp.u/ D
Z

jxj�1

�
eihu;xi � 1 � i hu; xi

�
�.dx/:

The first term above is the Lévy exponent of a compound Poisson process Xcp

with Lévy measure �1.dx/ WD 1jxj>1�.dx/ (see (4.7)). The exponent  lccp cor-
responds to the limit in distribution of compensated compound Poisson processes.
Concretely, suppose that X."/ is a compound Poisson process with Lévy measure
�".dx/ WD 1"<jxj�1�.dx/, then the process X."/

t � EX
."/
t converges in distribution

to a process with characteristic function expft lccpg (see (4.8)). Lévy-Khintchine
formula implies that, in distribution, X is the superposition of four independent
Lévy processes as follows:

Xt
DD bt„ƒ‚…

Drift

C †Wt„ƒ‚…
Brownian part

C X
cp
t„ƒ‚…

Cmpnd. Poisson

C lim
"&0

�
X
."/
t � EX

."/
t

�

„ ƒ‚ …
Limit of cmpstd cmpnd Poisson

; (4.13)

where equality is in the sense of finite-dimensional distributions. The condition
(4.10) on � guarantees that the X cp is indeed well defined and the compensated
compound Poisson converges in distribution.

In the rest of this section, we go over some other fundamental distributional
properties of the Lévy process and their applications.

4.2.3 Short-Term Distributional Behavior

The characteristic function (4.11) of X determines uniquely the Lévy triple
.A; b; �/. For instance, the uniqueness of the matrix A is a consequence of the
following result:

lim
h!0

h � log'Xt
�
h�1=2u

� D � t
2

hu; Aui I (4.14)

see pp. 40 in Sato (1999). In term of the process X , (4.14) implies that

�
1p
h
Xht



t�0
D�! f†Wt gt�0 ; as h ! 0: (4.15)

whereW D .W 1; : : : ;W d /T are d�independent Wiener processes and† is a lower
triangular matrix such that A D ††T .
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From a statistical point of view, (4.15) means that, when † ¤ 0, the short-term
increments fX.kC1/h � XkhgnkD1, properly scaled, behave like the increments of a
Wiener process. In the context of the exponential Lévy model (4.34), the result
(4.15) will imply that the log returns of the stock, properly scaled, are normally
distributed when the Brownian component of the Lévy process X is non-zero. This
property is not consistent with the empirical heavy tails of high-frequency financial
returns. Recently, Rosiński (2007) proposes a pure-jump class of Lévy processes,
called tempered stable (TS) Lévy processes, such that

�
1

h1=˛
Xht



t�0
D�! fZt gt�0 ; as h ! 0; (4.16)

where Z is a stable process with index ˛ < 2.

4.2.4 Moments and Short-Term Moment Asymptotics

Let g WRd !RC be a nonnegative locally bounded function and X be a Lévy pro-
cess with Lévy triplet .A; b; �/. The expected value Eg.�/ is called the g-moment
of a random variable �. Let us now consider submultiplicative or subadditive
moment functions g. Recall that a nonnegative locally bounded function g is
submultiplicative (resp. subadditive) if there exists a constant K > 0 such that
g.x C y/ � Kg.x/g.y/ (resp. g.x C y/ � K.g.x/ C g.y//), for all x; y.
Examples of this kind of functions are g.x1; : : : ; xd / D jxj jp, for p 	 1, and
g.x1; : : : ; xd / D expfjxj jˇg, for ˇ 2 .0; 1	. In the case of a compound Poisson
process, it is easy to check that

Eg.Xt / < 1, for any t > 0 if and only if
R

jxj>1 g.x/�.dx/ < 1.

The previous fact holds for general Lévy processes (see Kruglov 1970 and (Sato,
1999, Theorem 25.3)). In particular, X.t/ WD .X1.t/; : : : ; Xd .t// WDXt has finite
mean if and only if

R
fjxj>1g jxj�.dx/ < 1. In that case, by differentiation of the

characteristic function, it follows that

EXj .t/ D t


Z

fjxj>1g
xj �.dx/C bj

�
;

Similarly, EjX.t/j2 < 1 if and only if
R

fjxj>1g jxj2�.dx/ < 1, in which case,

Cov
�
Xj .t/; Xk.t/

� D t



Ajk C

Z
xj xk�.dx/

�
:

The two above equations show the connection between the the Lévy triplet
.A; b; �/, and the mean and covariance of the process. Note that the variance rate
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Var.Xj .t//=t remains constant over time. It can also be shown that the kurtosis is
inversely proportional to time t . In the risk-neutral world, these properties are not
empirically supported under the exponential Lévy model (4.2), which rather support
a model where both measurements increase with time t (see e.g. Carr et al. 2003 and
references therein).

The Lévy measure � controls the short-term ergodic behavior of X . Namely, for
any bounded continuous function ' W Rd ! R vanishing on a neighborhood of the
origin, it holds that

lim
t!0

1

t
E'.Xt / D

Z
'.x/�.dx/I (4.17)

cf. (Sato, 1999, Corollary 8.9). For a real Lévy processes X with Lévy triplet
.�2; b; �/, (4.17) can be extended to incorporate unbounded functions and different
behaviors at the origin. Suppose that 'WR ! R is ��continuous such that j'j � g

for a subadditive or submultiplicative function gWR ! RC. Furthermore, fixing
I WDfr 	 0W R .jxjr ^ 1/ �.dx/ < 1g; assume that ' exhibits any of the following
behaviors as x ! 0:

(a) i. '.x/ D o.jxj2/.
ii. '.x/ D O.jxjr /, for some r 2 I \ .1; 2/ and � D 0.

iii. '.x/ D o.jxj/, 1 2 I and � D 0.
iv. '.x/ D sO.jxjr /, for some r 2 I \ .0; 1/, � D 0, and Nb WD b �R

jxj�1 x�.dx/ D 0.

(b) '.x/ � x2.
(c) '.x/ � jxj and � D 0.

Building on results in Woerner (2003) and Jacod (2007), Figueroa-López (2008)
proves that

lim
t!0

1

t
E'.Xt / WD

8
ˆ̂̂
<

ˆ̂̂
:

R
'.x/�.dx/; if (a) holds;

�2 C R
'.x/�.dx/; if (b) holds;

j Nbj C R
'.x/�.dx/; if (c) holds:

(4.18)

Woerner (2003) and also Figueroa-López (2004) used the previous short-term
ergodic property to show the consistency of the statistics

Ǒ
.'/ WD 1

tn

nX

kD1
'
�
Xtk �Xtk�1

�
; (4.19)

towards the integral parameter ˇ.'/ WD R
'.x/�.dx/; when tn ! 1 and

maxftk�tk�1g ! 0, for test functions ' as in (a). When �.dx/ D s.x/dx, Figueroa-
López (2004) applied the estimators (4.19) to analyze the asymptotic properties of
nonparametric sieve-type estimators Os for s. The problem of model selection was
analyzed further in Figueroa-López and Houdré (2006); Figueroa-López (2009),



72 J.E. Figueroa-López

where it was proved that sieve estimatorsesT can match the rate of convergence of
the minimax risk of estimators Os. Concretely, it turns out that

lim sup
T!1

Eks �esT k2
infOs sups2� Eks � Osk2 < 1;

where Œ0; T 	 is the time horizon over which we observe the process X , � is certain
class of smooth functions, and the infimum in the denominator is over all estimators
Os which are based on whole trajectory fXtgt�T . The optimal rate of the estimatoresT
is attained by choosing appropriately the dimension of the sieve and the sampling
frequency in function of T and the smoothness of the class of functions�.

4.2.5 Extraction of the Lévy Measure

The Lévy measure � can be inferred from the characteristic function 'Xt .u/ of
the Lévy process (see, e.g., Sato 1999, pp. 40–41). Concretely, by first recovering
hu; Aui from (4.14), one can obtain

‰.u/ WD log'X1 .u/C 1

2
hu; Aui :

Then, it turns out that

Z

Œ�1;1	d
.‰.u/�‰.u C w// dw D

Z

Rd

eihz;xi Q�.dx/; (4.20)

where Q� is the finite measure

Q�.dx/ WD 2d

0

@1 �
dY

jD1

sinxj
xj

1

A �.dx/:

Hence, � can be recovered from the inverse Fourier transform of the left-hand side
of (4.20).

The above method can be applied to devise non-parametric estimation of the
Lévy measure by replacing the Fourier transform 'X1 by its empirical version:

O'X1 .u/ WD 1

n

nX

kD1
exp fi hu; Xk �Xk�1ig :

given discrete observations X1; : : : ; Xn of the process. Recently, similar nonpara-
metric methods have been proposed in the literature to estimate the Lévy density
s.x/ D �.dx/=dx of a real Lévy process X (c.f. Neumann and Reiss 2007; Comte
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and Genon-Catalot 2008; Gugushvili 2008). For instance, based on the increments
X1 � X0; : : : ; Xn � X.n�1/, Neumann and Reiss (2007) consider a nonparametric
estimator for s that minimizes the distance between the “population” characteristic
function 'X1 .�I s/ and the empirical characteristic function O'X1 .�/. By appropriately
defining the distance metric, Neumann and Reiss (2008) showed the consistency of
the proposed estimators. Another approach, followed for instance by Watteel and
Kulperger (2003) and Comte and Genon-Catalot (2008), relies on an “explicit”
formula for the Lévy density s in terms of the derivatives of the characteristic
function 'X1 . For instance, under certain regularity conditions,

F .xs.x// .�/ D �i
' 0
X1
.�/

'X1 .�/
;

where F.f /.u/ D R
eiuxf .x/dx denotes the Fourier transform of a function f .

Hence, an estimator for s can be built by replacing  by a smooth version of the
empirical estimate O'X1 and applying inverse Fourier transform F�1.

4.3 Path Decomposition of Lévy Processes

In this part, we show that the construction in (4.13) holds true a.s. (not only in
distribution) and draw some important consequences. The fundamental tool for
this result is a probabilistic characterization of the random points f.t;�Xt/ W
t s.t. �Xt ¤ 0g as a Poisson point process on the semi-plane RC � Rnf0g. Due
to this fact, we first review the properties of Poisson random measures, which are
also important building blocks of financial models.

4.3.1 Poisson Random Measures and Point Processes

Definition 4. Let S be a Borel subset of Rd , let S be the set of Borel subsets of
S , and let m be a ��finite measure on S . A collection fM.B/ W B 2 Sg of NZC-
valued random variables defined on a probability space .�;F ;P/ is called a Poisson
random measure (PRM) (or process) on S with mean measurem if:

(1) For every B 2 S, M.B/ is a Poisson random variable with mean m.B/.
(2) If B1; : : : ; Bn 2 S are disjoint, thenM.B1/; : : : ;M.B1/ are independent.
(3) For every sample outcome ! 2 �, M.�I!/ is a measure on S.

Above, we used some basic terminology of real analysis. For all practical purposes,
Borel sets of R

d are those subsets that can be constructed from basic operations
(complements, countable unions, and intersections) of elementary sets of the form
.a1; b1	 � : : : .ad ; bd 	. A measurem is a mapping from S to Œ0;1	 such that
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m.;/ D 0; and m

 1[

iD1
Bi

!
D

1X

iD1
m.Bi/;

for any mutually disjoints Borel sets fBigi�1. A measure is said to be �-finite if
there exists mutually disjoints fBi gi�1 such that Rd D S1

iD1 Bi and m.Bi/ < 1,
for any i .

It can be proved that (a.s.), a Poisson random measure M.�I!/ is an atomic
measure; that is, there exist countably many (random) points fxigi 
 S (called
atoms) such that

M.B/ D #fi W xi 2 Bg D
1X

iD1
ıxi .B/: (4.21)

Similarly, if a sequence of finitely many or countably many random points fxigi
is such that the measure (4.21) satisfies (1)–(3) above, then we say that fxigi is
a Poisson point process on S with mean measure m. The following is a common
procedure to construct a realization of a Poisson random measure or point process:

1. Suppose that B1;B2; : : : is a partition of S such that m.Bj / < 1
2. Generate nj � Poiss.m.Bj //

3. Independently, generate nj -points, say fxji gnjiD1, according to the distribution
m.�/=m.Bj /

4. Define M.B/ D #f.i; j / W xji 2 Bg

4.3.1.1 Transformation of Poisson Random Measures

Among the most useful properties of PRM is that certain transformations of a
Poisson point process are still a Poisson point process. The following is the simplest
version:

Proposition 1. Suppose that T W S ! S 0 
 R
d 0

is a one-to-one measurable
function. Then, the random measure associated with the transformed points x0

i WD
T .xi /, namely M 0.�/ D P1

iD1 ıx0
i
.�/; is also a Poisson random measure with mean

measure m0.B/ WD m.fx W T .x/ 2 Bg/:
The following result shows that a marked Poisson point process is still a Poisson
point process. Suppose that we associate a R

d 0

-valued score x0
i to each point xi

of M . The scores are assigned independently from one another. The distribution
of the scores can actually depend on the point xi . Concretely, let �.x; dx0/ be a
probability measure on S 0 
 R

d 0

, for each x 2 S (hence, �.x; S 0/ D 1). For each i ,
generate a r.v. x0

i according �.xi ; dx0/ (independently from any other variable).
Consider the so-called marked Poisson process

M 0.�/ D
1X

iD1
ı.xi ;x0

i /
.�/:
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Proposition 2. M 0 is a Poisson random measure on S � S 0 with mean measure

m0.dx; dx0/ D �.x; dx0/m.dx/:

As an example, consider the following experiment. We classify the points of
the Poisson process M into k different types. The probability that the point xi
is of type j is pj .xi / (necessarily pj .�/ 2 Œ0; 1	), independently from any other
classification. Let fyji g be the points of fxig of type j and let Mj be the counting
measure associated with fyji g:

Mj WD
X

ıfyji g

We say that the processM1 is constructed fromM by thinning.

Proposition 3. M1; : : : ;M k are independent Poisson random measures with
respective mean measuresm1.dx/ WD p1.x/m.dx/; : : : ; mk.dx/ WD pk.x/m.dx/.

Example 1. Suppose that we want to simulate a Poisson point process on the unit
circle S WD f.x; y/Wx2 C y2 � 1g with mean measure:

m0.B/ D
“

B\S

p
x2 C y2dxdy:

A method to do this is based on the previous thinning method. Suppose that
we generate a “homogeneous” Poisson point process M on the square R WD
f.x; y/Wjxj � 1; jyj � 1g with an intensity of � D 8 points per unit area. That
is, the mean measure of M is

m.B/ D 1

4

“

B

�dxdy:

Let f.xi ; yi /gi denote the atoms of the Poisson random measure M . Now, consider
the following thinning process. We classify the point .xi ; yi / of type 1 with

probability p.xi ; yi / WD 1
2

q
x2i C y2i and of type 2 with probability 1 � p.xi ; yi /.

Suppose that f.x1i ; y1i /gi are the point of type 1. Then, this process is a Poisson
point process with mean measurem0.

4.3.1.2 Integration with Respect to a Poisson Random Measure

Let M be a Poisson random measure as Definition 4. Since M.�I!/ is an atomic
random measure for each !, say M.�I!/D P1

iD1 ıxi .!/.�/, one can define the
integral
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M.f / WD
Z

S

f .x/M.dx/ D
1X

iD1
f .xi /;

for any measurable nonnegative deterministic function f . This is a NRC D R[f1g-
valued r.v. such that

E

h
e� R

f .x/M.dx/
i

D exp

�
�
Z �

1 � e�f .x/�m.dx/

;

� E

�Z
f .x/M.dx/

	
D
Z
f .x/m.dx/I

see Kallenberg 1997, Lemma 10.2. Also, if B 2 S is such that m.B/ < 1, then

Z

B

f .x/M.dx/ WD
X

i Wxi2B
f .xi /;

is a well-defined R
d�valued r.v. for any measurable function f W S ! R

d . Its
characteristic function is given by

E

h
eihRB f .x/M.dx/;uii D exp

�Z

B

�
eihf .x/;ui � 1

�
m.dx/


:

Furthermore, if B1; : : : ; Bm are disjoints sets in S with finite measure, then

Z

B1

f .x/M.dx/; : : : ;
Z

Bm

f .x/M.dx/:

are independent (see (Sato, 1999, Proposition 19.5)).
In the general case, determining conditions for the integral

R
S f .x/M.dx/ to be

well-defined requires some care. Let us assume that m is a radon measure (that is,
m.K/<1, for any compact K
S ). Then,

R
S
f .x/M.dx/D P1

iD1 f .xi / is well-
defined for any bounded function f W S ! R of compact support. We say that the
integral

R
S
f .x/M.dx/ exists if

Z

S

fn.x/M.dx/
P�! X; as n ! 1;

for a random variable X and any sequence fn of bounded functions with compact
support such that jfnj � jf j and fn !f . In that case, the so-called Poisson integralR
S
f .x/M.dx/ is defined to be that common limit X . We define in a similar way the

so-called compensated Poisson integral of f , denoted by
R
S
f .x/.M �m/.dx/. The

following theorem gives conditions for the existence of the Poisson integrals (see
(Kallenberg, 1997, Theorem 10.15)):
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Proposition 4. Let M be a Poisson random measure as in Definition 4. Then,

(a) M.f / D R
S
f .x/M.dx/ exists iff

R
S
.jf .x/j ^ 1/m.dx/ < 1.

(b) .M�m/.f / WD R
S
f .x/.M�m/.dx/ exists iff

R
S
.jf .x/j2^jf .x/j/m.dx/ < 1.

4.3.2 The Lévy-Itô Decomposition

The following result, called the Lévy-Itô decomposition, is fundamental for the
theory of Lévy processes. It says that any Lévy process X is the superposition of a
constant drift bt , a Brownian component †Wt , a compound Poisson process Xcp

t ,
and the limit of compensated Poisson processes. As stated below, it characterizes
not only Lévy processes but also processes with independent increments (called
additive processes).

Theorem 3. [13.4, Kallenberg] Let fXt gt�0 be a rcll process in R
d with X.0/ D 0.

Then, X has independent increments without fixed jumps times if and only if, there
exists �0 2 F with P.�0/ D 1 such that for any ! 2 �0,

Xt.!/ D bt .!/CGt.!/C
Z t

0

Z

fjxj>1g
x M.!I ds; dx/

C
Z t

0

Z

fjxj�1g
x .M �m/.!I ds; dx/; (4.22)

for any t 	 0, and for a continuous function b with b0 D 0, a continuous centered
Gaussian process G with independent increments and G0 D 0, and an independent
Poisson random measure M on Œ0;1/ � R

d
0 with mean measure m satisfying

Z t

0

Z

R
d
0

.jxj2 ^ 1/ m.ds; dx/ < 1; 8t > 0: (4.23)

The representation is almost surely unique, and all functions b, processes G, and
measuresm with the stated properties may occur.

Note that the above theorem states that the jump random measure MX of X ,
defined by

MX..s; t 	 �B/ WD
X

u2.s;t 	W�Xu¤0
1f�Xu 2 Bg;

is almost surely a Poisson process with mean measure m.dt; dx/. In the case of a
Lévy process (that is, we also assume thatX has stationary increments), the previous
theorem implies that MX is a Poisson random measure in RC � R0 with mean
measure m.dt; dx/ D �.dx/dt; for a measure � satisfying (4.10). In that case, the
representation (4.22) takes the following form:
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Xt D bt C†Wt C
Z t

0

Z

fjxj>1g
x M.ds; dx/C

Z t

0

Z

fjxj�1g
x .M �m/.ds; dx/;

(4.24)
where W is a d -dimensional Wiener process. The third term is a compound
Poisson process with intensity of jumps �.jxj>1/ and jump distribution
1fjxj>1g�.dx/=�.jxj>1/. Similarly, the last term can be understood as the limit
of compensated Poisson processes as follows:

Z t

0

Z

fjxj�1g
x.M �m/.ds; dx/ D lim

"#0

Z t

0

Z

f"<xj�1g
x .M �m/.ds; dx/: (4.25)

Furthermore, the convergence in (4.25) is uniform on any bounded interval of t (c.f.
[19.2, Sato]).

4.3.3 Some Sample Path Properties

One application of the Lévy-Itô decomposition (4.24) is to determine conditions for
certain path behavior of the process. The following are some cases of interest (see
Sect. 19 in Sato 1999 for these and other path properties):

1. Path-continuity: The only continuous Lévy processes are of the form bt C �Wt .
2. Finite-variation: A necessary and sufficient condition for X to have a.s. paths of

bounded variation is that � D 0 and
Z

fjxj�1g
jxj�.dx/ < 1:

Note that in that case one can write

Xt D b0t C
Z t

0

Z
x M.ds; dx/;

where b0 WD b � R
jxj�1 x�.dx/, called the drift of the Lévy process, is such that

P



lim
t!0

1

t
Xt D b0

�
D 1:

A process of finite-variation can be written as the difference of two non-
decreasing processes. In the above representation, this processes will be b0t CR t
0

R
x>0

x M.ds; dx/, and
R t
0

R
x<0

x M.ds; dx/ when b0 > 0.
3. A non-decreasing Lévy process is called a subordinator. Necessary and sufficient

conditions forX to be a subordinator are that b0 > 0; � D 0, and �..�1; 0// D 0.
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4.4 Simulation of Lévy Processes

4.4.1 Approximation by Skeletons and Compound Poisson
Processes

Accurate path simulation of a pure jump Lévy processes X D fX.t/gt2Œ0;1	, regard-
less of the relatively simple statistical structure of their increments, present some
challenges when dealing with infinite jump activity (namely, processes with infinite
Lévy measure). One of the most popular simulation schemes is based on the gen-
eration of discrete skeletons. Namely, the discrete skeleton of X based on equally
spaced observations is defined by

eXt D
1X

kD1
Xk�1

n
1Œ k�1

n �t< k
n 		

D
1X

kD1
�k1ft� k

n g;

where�k D Xk=n �X.k�1/=n are i.i.d. with common distribution L.X1=n/. Popular
classes where this method is applicable are Gamma, variance Gamma, Stable, and
Normal inverse Gaussian processes (see (Cont and Tankov, 2004, Section 6.2)).
Lamentably, the previous scheme has limited applications since in most cases a r.v.
with distribution L.X1=n/ is not easy to generate.

A second approach is to approximate the Lévy process by a finite-jump activity
Lévy processes. That is, suppose that X is a pure-jump Lévy process, then, in light
of the Lévy-Itô decomposition (4.24), the process

X
0;"
t � t



b �

Z

fjxj�"g
x �.dx/

�
C
X

s�t
�Xs1fj�Xsj�"g (4.26)

converges uniformly on any bounded interval to X a.s. (as usual �Xt � Xt �
Xt�). The process

P
s�t �Xs1fj�Xs j�"g can be simulated using a compound Poisson

process of the form
PN"

t

iD1 J "i ; where N"
t is a homogeneous Poisson process with

intensity �.jxj 	 "/ and
˚
J "i
�1
iD1 are i.i.d with common distribution �".dx/ �

1fjxj�"g�.dx/=�.jxj 	 "/:Clearly, such a scheme is unsatisfactory because all jumps
smaller than " are totally ignored. An alternative method of simulation approximates
the small jumps with a Wiener motion.

4.4.2 Approximation of the Small Jumps of a Lévy Processes

Consider a Lévy process with Lévy triple .�2; b; �/. Define the following processes:

X
1;"
t WD b"t C �Wt C

Z t

0

Z

jxj�"
xM.dx; ds/;
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where b" D b � R
"<jxj�1 x�.dx/ and M is the jump-measure of X (a posterior a

Poisson measure on RC �R
d
0 with mean measure �.dx/dt). Consider the following

pure jump Lévy process

X"
t WD Xt �X1;"

t D
Z t

0

Z

fjxj<"g
x fM.dx; ds/ � �.dx/dsg :

Also, consider the jump-diffusion model

X
2;"
t WD b"t C .�2 C �2."//1=2Wt C

Z t

0

Z

jxj�"
xN.dx; ds/;

where �2."/ D R
jxj�" x

2�.dx/: Asmussen and Rosiński (2001) establish the
following approximation method:

Theorem 4. Suppose that � has no atoms in a neighborhood of the origin. Then:

(a)
˚
��1."/X"

t

�
t�0 converges in distribution to a standard Brownian motion

fB.t/gt�0 if and only if

lim
"!0

�."/

"
D 1: (4.27)

(b) Under (4.27), it holds that

sup
x2R

ˇ̌
ˇP.Xt � x/ � P.X

2;"
t � x/

ˇ̌
ˇ � c

R
jxj�" x

3�.dx/

�3."/
� c

"

�."/
:

The first part of the above theorem provides a way to approximate the small-
jumps component of X properly scaled by a Wiener process. Condition (4.27) can
be interpreted as an assumption requiring that the size of the jumps of ��1."/X"
are asymptotically vanishing. Part (b) suggests that the distribution of certain
Lévy processes (with infinite jump activity) can be approximated closely by the
combination of a Wiener process with drift and a compound Poisson process.

4.4.3 Simulations Based on Series Representations

Throughout, X D fXt gt2Œ0;1	 is a Lévy process on R
d with Lévy measure � and

without Brownian component (which can be simulated separately). Let M WD MX

be the jump measure of the process X , which we assumed admits the following
representation:

Condition 1. The following series representation holds:

M.�/ D
1X

iD1
ı.Ui ;H.�i ;Vi // .�/ ; a:s: (4.28)
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for a homogeneous Poisson process f�i g1
iD1 on RC with unit intensity rate,

an independent random sample fUig1
iD1 uniformly distributed on .0; 1/, and an

independent random sample fVi g1
iD1 with common distribution F on a measurable

space S , and a measurable functionH W .0;1/� S ! R
d .

Remark 3. Representation (4.28) can be obtained (in law) if the Lévy measure has
the decomposition

�.B/ D
Z 1

0

�.uIB/du; (4.29)

where �.uIB/ D P ŒH.u;V/ 2 B	. It is not always easy to obtain (4.29). The
following are typical methods: the inverse Lévy measure method, Bondensson’s
method, and Thinning method (see Rosiński 2001 for more details).

Define

A.s/ D
Z s

0

Z

S

H.r; v/I .kH.r; v/k � 1/F.dv/dr: (4.30)

Condition 2.
A.�n/�A.n/ ! 0; a:s: (4.31)

Lemma 1. The limit in (4.31) holds true if any of the following conditions is
satisfied:

i. b � lims!1A.s/ exists in R
d ;

ii. the mapping r ! kH.r; v/k is nonincreasing for each v 2 S .

Proposition 5. If the conditions 1 and 2 are satisfies then, a.s.

Xt D bt C
1X

iD1
.H.�i ; Vi /I .Ui � t/ � tci / ; (4.32)

for all t 2 Œ0; 1	, where ci � A.i/ �A.i � 1/.
Remark 4. The series (4.32) simplifies further when

R
jxj�1 jxj�.dx/ < 1, namely,

when X has paths of bounded variation. Concretely, a.s.

Xt D .b � a/ t C
1X

iD1
Ji I .Ui � t/ ; (4.33)

where a D R
jxj�1 x�.dx/: The vector b0 � b � a is the drift of the Lévy process.

4.5 Density Transformation of Lévy Processes

The following two results describe Girsanov-type theorems for Lévy processes.
Concretely, the first result provides conditions for the existence of an equivalent
probability measure under which X is still a Lévy process, while the second
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result provides the density process. These theorems have clear applications in
mathematical finance as a device to define risk-neutral probability measures. The
proofs can be found in Sect. 33 of Sato (1999). Girsanov-type theorems for more
general processes can be found in Jacod and Shiryaev (2003) (see also Applebaum
(2004) for a more accessible presentation).

Theorem 5. Let fXtgt�T be a real Lévy process with Lévy triple .�2; b; �/ under
some probability measure P. Then the following two statements are equivalent:

(a) There exists a probability measure Q � P such that fXtgt�T is a Lévy process
with triplet .� 02; b0; �0/ under Q.

(b) All the following conditions hold.

(i) � 0.dx/ D k.x/�.dx/, for some function k W R ! .0;1/.
(ii) b0 D b C R

x1jxj<1.k.x/ � 1/�.dx/C ��, for some � 2 R.
(iii) � 0 D � .

(iv)
R �
1 �p

k.x/
�2
�.dx/ < 1:

Theorem 6. Suppose that the equivalent conditions of the previous theorem are
satisfied. Then, � � dQ

dP
; is given by the formula

� � exp



��WT � 1

2
�2�2T

C lim
"#0


Z T

0

Z

jxj>"
log k.x/M.ds; dx/ � T

Z

jxj>"
.k.x/ � 1/�.dx/

��
;

with EP Œ�	 � 1. The convergence on the right-hand side of the formula above is
uniform in t on any bounded interval.

4.6 Exponential Lévy Models

As it was explained in the introduction, the simplest extension of the GBM (4.1) is
the Geometric or exponential Lévy model:

St D S0e
Xt ; (4.34)

where X is a general Lévy process with Lévy triplet .�2; b; �/ defined on a
probability space .�;P/. In this part, we will review the financial properties of this
model. As in the Black-Scholes model for option pricing, we shall also assume the
existence of a risk-free asset B with constant interest rate r . Concretely, B is given
by any of the following two equivalent definitions:

dBt D rBtdt
B0 D 1

; or Bt D ert : (4.35)
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The following are relevant questions: (1) Is the market arbitrage-free?; (2) Is the
market complete?; (3) Can the arbitrage-free prices of European simple claim X D
˚.ST / be computed in terms of a Black-Scholes PDE?.

4.6.1 Stochastic Integration and Self-Financing Trading
Strategies

As in the classical Black-Scholes model, the key concept to define arbitrage
opportunities is that of a self-financing trading strategy. Formally, this concept
requires the development of a theory of stochastic integration with respect to Lévy
processes and related processes such as (4.34). In other words, given a suitable
trading strategy fˇt g0�t�T , so that ˇt represents the number of shares of the stock
held at time t , we want to define the integral

Gt WD
Z t

0

ˇudSu; (4.36)

which shall represent the net gain/loss in the stock at time t . Two different treatments
of the general theory of stochastic integration with respect to semimartingales
can be found in Jacod and Shiryaev (2003), and Protter (2004). More accessible
presentations of the topic are given in, e.g., Applebaum (2004), and Cont and
Tankov (2004). Our goal in this part is only to recall the general ideas behind (4.36)
and the concept of self-financibility.

We first note that the process ˇ should not only be adapted to the information
process fFtg0�t�T generated by the stock price (i.e. ˇt should depend only on
the stock prices up to time t), but also should be predictable, which roughly
speaking means that its value at any time t can be determined from the information
available right before t . As usual, (4.36) can be defined for simple trading strategies
in a natural manner and then, this definition can be extended to a certain class
of processes ˇ as the limits of stochastic integrals for simple trading strategies.
Concretely, consider a “buy-and-hold” trading strategy of the form ˇt WD 1f1<t�2g;
for deterministic times 0 � 1 < 2 � T . That is, ˇt represents a strategy that buys
one share of the stock “right-after” time 1 and holds it until time 2. Then, the net
gain/loss process is Gt D R t

0
ˇudSu D S2^t �S1^t : Combinations of buy and hold

strategies can be defined similarly as

ˇt WD �01ftD0g C
nX

iD1
�i1fi�1<t�i g; (4.37)

where 0 D 0 < 1 < : : : < n � T are deterministic trading times and the value
of �i is revealed at time i�1, for i D 1; : : : ; n, while �0 is deterministic. The net
gain/loss of the strategy (4.37) at time t is then given by
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Gt D
Z t

0

ˇudSu D �0S0 C
nX

iD1
�i .Si^t � Si�1^t / :

The integral (4.36) can subsequently be defined for more general processes ˇ
that can be approximated by simple processes of the form (4.37). For instance, if
ˇ is an adapted process (thus, for any t 	 0, the value of ˇt is revealed at time t)
having paths that are left-continuous with right limits (lcrl), then for any sequence
0 D n0 < 1 < : : : < 

n
n D T such that maxk

�
nk � nk�1

� ! 0, it holds that

ˇ0S0 C
nX

iD1
ˇi�1 .Si^t � Si�1^t /

P�!
Z t

0

ˇudSu;

as n ! 1, where the convergence is uniform in Œ0; T 	. The times ni can be taken
to be stopping times, which means that at any time t , one can decide whether the
event ni � t occurs or not.

Once a trading strategy has been defined, one can easily define a self-financing
strategy on the market (4.34–4.35), as a pair .˛; ˇ/ of adapted processes such that
the so-called value process Vt WD ˛tBt C ˇtSt ; satisfies that

Vt D V0 C
Z t

0

˛uBurdu C
Z t

0

ˇudSu;

or equivalently expressed in “differential form”,

dVt D ˛tBt rdt C ˇtdSt :

Intuitively, the change of the portfolio value dVt during a small time interval Œt; t C
dt 	 is due only to the changes in the value of the primary assets in the portfolio and
not due to the infusion or withdrawal of money into the portfolio.

4.6.2 Conditions for the Absence of Arbitrage

Let us recall that an arbitrage opportunity during a given time horizon Œ0; T 	 is just a
self-financing trading strategy .˛; ˇ/ such that its value process fVtg0�t�T satisfies
the following three conditions:

.i/ V0 D 0; .i i/ VT 	 0; a:s: .i i i/ P.VT > 0/ > 0:

According to the first fundamental theorem of finance, the market (4.34-4.35) is
arbitrage-free if there exists an equivalent martingale measure (EMM) Q; that is, if
there exists a probability measure Q such that the following two conditions hold:
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(a) Q.B/ D 0 if and only if P.B/ D 0.
(b) The discounted price process S�

t WD B�1
t St , for 0 � t � T , is a martingale

under Q.

In order to find conditions for the absence of arbitrage, let us recall that for any
function k satisfying (iv) in Theorem 5, and any real � 2 R, it is possible to find
a probability measure Q

.�;k/ equivalent to P such that, under Q.�;k/, X is a Lévy
process with Lévy triplet .�2; b0; �0/ given as in Theorem 5. Thus, under Q.�;k/, the
discounted stock price S� is also an exponential Lévy model

S�
t D S0e

X�
t ;

with X� being a Lévy process with Lévy triplet .�2; b0 � r; � 0/. It is not hard to find
conditions for an exponential Lévy model to be a martingale (see, e.g., Theorem
8.20 in Cont and Tankov 2004). Concretely, S� is a martingale under Q.�;k/ if and
only if

bC
Z
x1fjxj�1g.k.x/�1/�.dx/C���rC�2

2
C
Z

R0

.ex�1�x1fjxj�1g/k.x/�.dx/D 0:

(4.38)
It is now clear that if � � 0, there will exist a unique EMM of the form Q

.�;k/, but
if � ¤ 0, there will exist in general infinitely-many of such EMM. In particular,
we conclude that the exponential Lévy market (4.34–4.35) is incomplete. One
popular EMM for exponential Lévy models is the so-called Esscher transform,
where k.x/ D e�x; and � is chosen to satisfy (4.38).

4.6.3 Option Pricing and Integro-Partial
Differential Equations

As seen in the previous part, the exponential Lévy market is in general incomplete,
and hence, options are not superfluous assets whose payoff can be perfectly
replicated in an ideal frictionless market. The option prices are themselves subject to
modeling. It is natural to adopt an EMM that preserve the Lévy structure of the log
return process Xt D log.St=S0/ as in the previous section. From now on, we adopt
exactly this option pricing model and assume that the time-t price of a European
claim with maturity T and payoff X is given by

…t D EQ

˚
e�r.T�t /X

ˇ̌
Su; u � t

�
;

where Q is an EMM such that

St D S0e
rtCX�

t ;
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with X� being a Lévy process under Q. Throughout, .�2; b�; ��/ denotes the Lévy
triplet of X� under Q.

Note that in the case of a simple claim X D ˚.ST /; there exists a function
C W RC �RC ! RC such that…t WD C.t; St .!//: Indeed, by the Markov property,
one can easily see that

C.t; x/ D e�r.T�t /
EQ

h
˚
�
xer.T�t /CX�

T�t

�i
: (4.39)

The following theorem shows that C satisfies an integro-partial differential equation
(IPDE). The IPDE equation below is well-known in the literature (see e.g. Chan
1999 and Raible 2000) and its proof can be found in, e.g., (Cont and Tankov, 2004,
Proposition 12.1).

Proposition 6. Suppose the following conditions:

1.
R

jxj�1 e
2x��.dx/ < 1;

2. Either � > 0 or lim inf"&0 "
�ˇ R

jxj�" jxj2��.dx/ < 1:

3. j˚.x/ � ˚.y/j � cjx � yj, for all x; y and some c > 0.

Then, the functionC.t; x/ in (4.39) is continuous on Œ0; T 	�Œ0;1/, C1;2 on .0; T /�
.0;1/ and verifies the integro-partial differential equation:

@C.t; x/

@t
C rx

@C

@x
.t; x/C 1

2
�2x2

@2C

@x2
.t; x/ � rC.t; x/

C
Z

R0



C.t; xey/� C.t; x/ � x.ey � 1/@C

@x
.t; x/

�
��.dy/ D 0;

on Œ0; T / � .0;1/ with terminal condition C.T; x/ D ˚.x/; for all x.
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Asmussen, S., & Rosiński, J. (2001). Approximations of small jumps of Lévy processes with a
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Chapter 5
Multivariate Time Series Models
for Asset Prices

Christian M. Hafner and Hans Manner

Abstract The modelling of multivariate financial time series has attracted an
enormous interest recently, both from a theoretical and practical perspective.
Focusing on factor type models that reduce the dimensionality and other models
that are tractable in high dimensions, we review models for volatility, correlation and
dependence, and show their application to quantities of interest such as value-at-risk
or minimum-variance portfolio. In an application to a 69-dimensional asset price
time series, we compare the performance of factor-based multivariate GARCH,
stochastic volatility and dynamic copula models.

5.1 Introduction

In this chapter we review recent developments in time series analysis of financial
assets. We will focus on the multivariate aspect since in most applications the
dynamics of a broad variety of assets is relevant. In many situations in finance,
the high dimensional characteristics of the data can lead to numerical problems
in estimation algorithms. As a motivating example, we show that an application
of a standard multivariate GARCH type model in high dimensions to determine
the minimum variance portfolio (MVP) yields sub-optimal results due to biased
parameter estimates. One possibility to avoid numerical problems is to impose more
structure on the conditional covariance matrix of asset returns, for example a factor
structure.
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We first discuss recent advances in factor models, where factors can be observed
as in the one-factor capital asset pricing model (CAPM) and the three-factor
model of Fama and French (1993), or unobserved. The main idea of factor models
is to capture common movements in asset prices while reducing the dimension
substantially, allowing for flexible statistical modelling.

If factors exhibit specific dynamic features such as volatility clustering or fat
tails, then these are typically inherited by the asset prices or returns. For example,
fat tailed factor distributions may generate tail dependence and reduce the benefits of
portfolio diversification. As for volatility clustering, the modelling of the volatility
and the dependence between assets becomes essential for asset pricing models. We
therefore review volatility models, again focusing on multivariate models. Since its
introduction by Engle (1982) and Bollerslev (1986), the generalized autoregressive
conditional heteroscedastic (GARCH) model has dominated the empirical finance
literature and several reviews appeared, e.g. Bera and Higgings (1993) and Bauwens
et al. (2006). We compare (multivariate) GARCH models to the alternative class of
(multivariate) stochastic volatility (SV) models, where the volatility processes are
driven by idiosyncratic noise terms. We consider properties and estimation of the
alternative models.

With an increasing amount of intra-day data available, an alternative approach of
volatility modelling using so-called realized volatility (RV) measures has become
available. This approach goes back to an idea of Andersen and Bollerslev (1998).
Rather than modelling volatility as an unobserved variable, RV tries to make
volatility observable by taking sums of squared intra-day returns, which converges
to the daily integrated volatility if the time interval between observations goes to
zero. A similar approach is available to obtain realized covariances, taking sums
of intra-day cross-products of returns. While this approach delivers more precise
measures and predictions of daily volatility and correlations, it also uses another
information set and is hence difficult to compare with standard GARCH or SV type
models.

Correlation-based models are models of linear dependence, which are sufficient
if the underlying distributions have an elliptical shape. However, one often finds
empirically that there is an asymmetry in multivariate return distributions and that
correlations change over time. In particular, clusters of large negative returns are
much more frequent than clusters of large positive returns. In other words, there is
lower tail dependence but no upper tail dependence. Copulas are a natural tool to
model this effect and have the additional advantage of decoupling the models for the
marginal distributions from those for the dependence. We review recent research on
dynamic copula models and compare them to correlation-based models.

Finally, we consider approaches how to evaluate the quality of fitted models from
a statistical and economic perspective. Two important criteria are, for example, the
Value-at-Risk of portfolios and the portfolio selection problem.
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5.2 The Investor Problem and Potential Complications

Since the seminal work of Markowitz (1959), portfolio selection has become one
of the main areas of modern finance. Today, investment strategies based on mean-
variance optimization are considered the benchmark. A first problem of the standard
approach is that the obtained optimal portfolio weights depend on second moments
(variances and covariances) of the underlying asset returns, which are notoriously
time-varying. In other words, the optimal portfolio can only be considered optimal
for a short period of time, after which a re-balancing becomes necessary. Another
problem is that the formula for optimal portfolio weights depends on the inverse
of the covariance matrix, and that in high dimensions the covariance matrix is
typically ill-behaved. Hence, portfolio selection might lead to suboptimal results
in high dimensions when the standard formulas are applied.

A somewhat related problem is the numerical complexity of standard multivariate
volatility models, where the number of parameters may explode as the dimension
increases, which leads to intractable estimation and inference of these models.
Moreover, in those models where the number of parameters is constant (such as the
DCC model of Engle (2002) see Sect. 5.4.2.1), there is no problem in terms of model
complexity, but another problem occurs: as the dimension increases, parameter
estimates are downward biased and variation in correlations is underestimated, see
e.g. Engle et al. (2007). In the following, we illustrate this effect using data of the
London stock exchange.

We use the estimated (time varying) covariance matrix for the DCC model to
construct the MVP. For the estimated covariance matrix OHt , the MVP weights are

wt D
OH�1
t �

�> OH�1
t �

; (5.1)

where � is an .N � 1/ vector of ones.
The measure of interest is then the variance of the MVP, which should be minimal

across different models, and the variance of the standardized portfolio returns given

by rp;t D w>
t rt=

q
w>
t

OHtwt , which should be close to one.
To illustrate the potential problems that can occur when modelling large dimen-

sional data sets we consider daily returns of 69 stocks that are part of the FTSE 100
index ranging from January 1995 until December 1996 we consider the problem of
estimating conditional correlations and constructing the MVP between only the first
two stocks in the data set. However, a model is fit to a larger data set and we look at
the effect of including additional assets in the model.

Figure 5.1 shows the correlations between the first two assets of the sample
estimated using the DCC Garch model by Engle in Engle (2002) as the number
of assets in the sample K is increased. Surprisingly as the dimension of the data
set increases the correlation dynamics are estimated with less precision and the
conditional correlations become almost flat for K large as already noted in Engle
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Fig. 5.1 Conditional correlations between two fixed assets for growing dimensions of the model

et al. (2007). Using the covariance matrix estimated using the same sample we
constructed the MVP for the first two assets using (5.1). The number of assets is
increased from 2 to 69 and the variance of the resulting portfolio is plotted in Fig. 5.2
as a function ofK . The portfolio reaches the lowest variance for the model estimated
using about ten assets thus implying that the additional information contained in the
other series adds economic value. However, onceK is increased further the variance
grows again and the benefit of including more information in the data is outweighed
by the numerical problems causing the flat estimates of the conditional correlations.
As the dimension of the model grows further the problem is likely to become worse
in addition to the computational complexity that makes estimating large dimensional
models difficult.

5.3 Factor Models for Asset Prices

Let rt D .r1t ; : : : ; rNt /
> denote the vector of asset returns at time t , t D 1; : : : ; T .

Factor models assume that there is a small number K , K < N of factors fkt ,
k D 1 : : : ;K , such that

rt D aC Bft C "t ; (5.2)
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Fig. 5.2 Variance of the MVP of two fixed assets for growing dimensions of the model

where a is an .N �1/ vector,B an .N �K/ loading matrix and "t a stochastic error
term with mean zero and variance matrix ˝ , uncorrelated with the factors. The
idea of factor models is to separate common, non-diversifiable components from
idiosyncratic, diversifiable ones. The idiosyncratic error terms are usually assumed
to be uncorrelated so that ˝ is diagonal, in which case one speaks of a strict factor
model. If the factors are stationary with mean zero and variance matrix ˙ , then
returns are stationary with mean a and variance

H WD Var.rt / D B˙B> C˝: (5.3)

Dynamic properties of the factors typically carry over to returns. For example,
if factors are nonstationary with time-varying variance ˙t , then returns will also
be nonstationary with variance Ht D B˙tB

> C ˝ . Another example is that of
conditional heteroscedasticity, where factors can be stationary but conditioned on
the information of lagged factors, the variance ˙t is time-varying. Models for ˙t

andHt will be discussed in the next section.
Note that factor models are identified only up to an invertible rotation of the

factors and the loading matrix. To see this, let G be an invertible .K � K/ matrix
and write (5.2) equivalently as rt D a C BGG�1ft C "t , then we have the same
model but with factors Qft D G�1ft and loading matrix QB D BG. Thus, only the
K-dimensional factor space can be identified, not the factors themselves.
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Two types of factor models are usually distinguished: those with observed and
unobserved factors. When factors are observed, then simple estimation methods
such as OLS can be used to estimate the parameters a and the loading matrixB . The
most popular example of an observed one-factor model in finance is the capital asset
pricing model (CAPM), developed by Sharpe (1964) and Lintner (1965), where the
single factor is the market portfolio, which is usually approximated by an observable
broad market index. Several empirical anomalies have been found which led to the
three-factor model of Fama and French (1993), where additional to the market factor
there is a second factor explaining differences in book to market values of the stocks,
and a third factor controlling for differences in market capitalization or sizes of the
companies. A general multifactor asset pricing model has been proposed by Ross
(1976) in his arbitrage pricing theory (APT).

When factors are unobserved, estimation becomes more involved. Imposing
structure on ˝ and ˙ it is possible to do maximum likelihood estimation, but
in high dimensions this is often infeasible. On the other hand, Chamberlain and
Rothschild (1983) have shown that by allowing ˝ to be non-diagonal and hence
defining an approximate factor model, one can consistently estimate the factors (up
to rotation) using principal components regression if both the time and cross-section
dimension go to infinity. Bai (2003) provides inferential theory for this situation,
whereas Connor and Korajczyk (1993) and Bai and Ng (2002) propose tests for the
number of factors in an approximate factor model.

In order to render the factor model dynamic, several approaches have been
suggested recently. A stationary dynamic factor model specifies the loading matrix
B as a lag polynomial B.L/ where L is the lag operator and factors follow a
stationary process, for example a vector autoregression. Forni et al. (2000) apply the
dynamic principal components method by Brillinger (1981) to estimate the common
component B.L/ft in the frequency domain. Forecasting using the dynamic factor
model has been investigated e.g. by Stock and Watson (2002). A recent review of
dynamic factor models is given by Breitung and Eickmeier (2006).

Rather than considering stationary processes, Motta et al. (2011) follow another
approach where factors are stationary but the loading matrix B is a smooth
function of time, and hence returns are non-stationary. Estimation is performed
using localized principal components regression. To extend the idea of dynamic
factor models to the nonstationary case, Eichler et al. (0000) let the lag polynomial
B.L/ be a function of time and show asymptotic properties of the frequency domain
estimator for the common components.

5.4 Volatility and Dependence Models

5.4.1 Univariate Volatility Models

In this section we review alternative univariate models for volatility: GARCH,
stochastic volatility and realized volatility.
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5.4.1.1 GARCH

The generalized autoregressive conditional heteroskedasticity (GARCH) model
introduced by Engle (1982) and Bollerslev (1986) suggests the following specifi-
cation for asset returns rt ,

rt D �t C "t ; "t D �t �t

�2t D ! C ˛"2t�1 C ˇ�2t�1; (5.4)

where �t � N.0; 1/ and�t is the mean, conditional on the information set at time t�
1. For example, the CAPM mentioned in Sect. 5.3 implies that for the return on the
market portfolio,�t D rf C��2t , where rf is the risk free interest rate, � the market
price of risk and �2t market volatility that could be explained by the GARCH model
in (5.4). This is the so-called GARCH-in-mean or GARCH-M model of Engle et al.
(1987).

For �2t in (5.4) to be a well defined variance, sufficient conditions for positivity
are ! > 0 and ˛ 	 0; ˇ 	 0. Higher order models that include more lags of "t and
�2t are possible but rarely used in practice. A more serious restriction of the standard
GARCH model is that recent errors "t have a symmetric impact on volatility with
respect to their sign. Empirically, one has often observed a leverage effect, meaning a
higher impact of negative errors than positive ones. Many extensions of the standard
GARCH model have been proposed, see e.g. Hentschel (1995) for a review of
alternative specifications.

The GARCH(1,1) process in (5.4) is covariance stationary if and only if ˛Cˇ <

1, in which case the unconditional variance of "t is given by �2 D !=.1 � ˛ � ˇ/.
In the GARCH-M case with �t D rf C ��2t , the unconditional first two moments
of rt are given by EŒrt 	 D rf C ��2 and Var.rt / D �2Var.�2t / C �2. Note that
a positive autocorrelation of �2t induces a similar autocorrelation in returns in the
GARCH-M model. This corresponds to empirical evidence of significant first order
autocorrelations in daily or weekly stock returns, see e.g. Chap. 2 of Campbell et al.
(1997). Straightforward calculations show that the -order autocorrelation of rt is
given by

�./ D .˛ C ˇ/
�2Var.�2t /

�2Var.�2t /C �2
;  	 1:

Compared with an AR(1) model with �t D �rt�1 for which �./ D � , these
autocorrelations could be matched for  D 1, but at higher orders the GARCH-M
model would imply higher autocorrelation than the AR(1) model. Hafner and
Herwartz (2000) compared the GARCH-M and AR(1) specifications and found that
in most cases the AR(1) model, although without economic motivation, provides a
better fit to the data. Obviously, if � D 0, then rt is white noise with �./ D 0

for all  ¤ 0. An effect of nonzero autocorrelation of returns does not violate the
hypothesis of market efficiency, as the autocorrelation is explained by a time-varying
risk premium, see e.g. Engle et al. (1987).
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The GARCH model implies that returns yt have a fat tailed distribution,
which corresponds to empirical observations already found by Fama (1965) and
Mandelbrot (1963). In particular, assuming �t � N.0; 1/ and finite fourth moments
of rt by the condition ˇ2 C 2˛ˇ C 3˛2 < 1, the GARCH(1,1) process in (5.4) has
an unconditional kurtosis given by

� D 3C 6˛2

1 � ˇ2 � 2˛ˇ � 3˛2 ;

where the second term is positive such that � > 3. Thus, while the conditional
distribution of rt is Gaussian, the unconditional one is fat-tailed. Furthermore, there
is volatility clustering in the sense that there are periods of high volatility and other
periods of low volatility. This reflected by a positive autocorrelation of squared error
terms.

Estimation of GARCH models is rather straightforward. Suppose one can
separate the parameter � that describes the conditional mean �t from the volatility
parameter � D .!; ˛; ˇ/0. Assuming normality of �t , one can write the log
likelihood function for a sample of T observations up to an additive constant as

L.�; �/ D �1
2

TX

tD1

�
log �2t .�/C fyt � �t.�/g2

�2t .�/

	

which is maximized numerically w.r.t. � and � . Under weak regularity conditions,
Bollerslev and Wooldridge (1992) show that

p
T . O� � �/ ! N.0; J�1/ where J is

the Fisher information matrix.

5.4.1.2 Stochastic Volatility

Stochastic volatility (SV) models offer a good alternative to capture time-varying
variances of asset returns. They originated in different branches of the literature
such as financial economics, option pricing and the modelling of financial markets
in order to relax the constant variances assumption. For example, Hull and White
(1987) allow volatility to follow a general diffusion in their option pricing model.
Clark (1973) introduced a model where the information flow to the market is
specified as a log-normal stochastic process, which results in a mixture of normal
distributions for asset prices. Taylor (1986) accommodated the persistence in
volatility and suggested the following autoregressive SV model, which is the most
common formulation.

rit D �it C exp.hit=2/�it (5.5)

hitC1 D ıi C �ihit C ��i �it (5.6)
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�it and �it are standard normal innovations and are potentially (negatively) corre-
lated, which leads to a statistical leverage effect meaning that price drops lead to
increases in future volatility. ��i is assumed to be positive and for j� j < 1 the
returns rit are strictly stationary. This basic specification is able to explain the fat-
tailed return distributions and persistence in volatility well due to the flexibility
introduced by the error term. In fact, the Gaussian SV model fit financial data
considerably better than a Normal GARCH(1,1) model and it performs about as well
as a GARCH model with Student-t innovations. Taylor (1994), Ghysels et al. (1996)
and Andersen and Shephard (2009) are excellent reviews on SV models and some
extensions. Estimation of SV models, which is reviewed in Broto and Ruiz (2004),
is not trivial and probably the main reason why ARCH models are considered more
often in empirical studies. Estimation can be done by many different techniques
such as the method of moments (see Taylor (1986)), quasi maximum likelihood
using the Kalman filter in Harvey et al. (1994), the simulated method of moments
by Duffie and Singleton (1993), Gourieroux et al. (1993) and Gallant and Tauchen
(1996), Markov Chain Monte Carlo (MCMC) estimation by Jacquier et al. (1994)
and Kim et al. (1998), and simulation based maximum likelihood estimations using
importance sampling (IS) by Danielsson (1994), Danielsson and Richard (1993)
and Liesenfeld and Richard (2003). We recommend using either MCMC or IS
methods for estimating the parameters and latent volatility process in a SV model,
as these offer very efficient estimates and the considerable computational effort can
be handled easily by modern computers.

5.4.1.3 Realized Volatility

With the availability of high-frequency data, by which we mean price data observed
every 5 min or even more often, a new set of very powerful tools for volatility esti-
mation and modelling has evolved, namely realized volatility and related concepts.
The information contained in high-frequency data allows for improved estimation
and forecasting of volatility compared to using only daily data. Furthermore,
realized volatility measure relate closely to continuous time SV models and one only
needs to assume that the return process is arbitrage free and has a finite instantaneous
mean. This in turn implies that the price process is a semi-martingale that the returns
can be decomposed into a predictable and integrable mean component and a local
martingale. This includes the continuous time stochastic volatility diffusion

dpt D �tdt C �tdWt; (5.7)

where Wt denotes Brownian motion and the volatility process �t is assumed to be
stationary. Denote the continuously compoundedh period return by rtCh;h � ptCh�
pt , where one usually chooses h D 1 to be one trading day. Consider a sample of
1=� observations per day. In practice� is often chosen to be 1/288 corresponding to
5-min returns, although this clearly depends on the data set. Sampling too frequently
can lead to a bias due to microstructure noise in the data. Then realized variance for



98 C.M. Hafner and H. Manner

day t is defined as

RV D
h=�X

jD1
r2tCj�;�: (5.8)

This is a consistent estimator of the quadratic variation and, if the price process
does not exhibit any jumps, also of the integrated variance

R h
0
�2tCsds. However, in

the presence of jumps quadratic variation decomposes into integrated variance and
the quadratic variation of the jump component. Barndorff-Nielsen and Shephard
(2004b) propose a measure that consistently estimates the integrated variance even
in the presence of jumps. This estimator, called bipower variation, is defined as

BPV D 


2

h=�X

jD2
jrtCj�;�jjrtC.j�1/�;�j: (5.9)

Thus it is possible to separate the continuous and the jump components of volatility
by estimating both realized variance and bipower variation, and to identify the jumps
by looking at the difference between the two.

Convergence in probability of RV was established by Andersen et al. (2003).
Empirical properties ofRV are documented in Andersen et al. (2001) and Andersen
et al. (2001), such as approximate log-normality, high correlation across different
RV series, and long memory properties of volatilities. Forecasting of volatility and
the gains that can be made by using high frequency data are discussed in Andersen
et al. (1999). Anderson and Vahid (2007) consider latent factor models forRV series
and show that these can help forecasting volatilities. The asymptotic distribution
of the RV measure and connections to SV models are provided in the notable
contributions Barndorff-Nielsen and Shephard (2002a) and Barndorff-Nielsen and
Shephard (2002b).

5.4.2 Multivariate Volatility Models

5.4.2.1 Multivariate GARCH Models

GARCH models have been vastly applied to multivariate problems in empirical
finance. The typically large number of assets, however, caused problems in early
years where models were too complex with too many parameters to estimate. For
example, the BEKK model of Engle and Kroner (1995) specifies the conditional
covariance matrixHt as

Ht D C0C
>
0 C A"t�1">

t�1A> CBHt�1B>; (5.10)
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where C0, A and B are N � N parameter matrices and C0 is upper triangular.
The model (5.10) is the simplest version of a BEKK model, but higher order
models are rarely used. An advantage of the classical BEKK model is its flexibility
and generality while generating implicitly a positive definite Ht . However, the
number of parameters to estimate is O.N2/, which revealed to be infeasible in high
dimensions.

In the following we will therefore concentrate on two model classes, factor
GARCH and DCC models, that can be applied to hundreds or thousands of assets.
Factor models can be shown to be restricted versions of the BEKK model in (5.10),
while DCC type models form a separate, non-nested class of models. A broad
overview of multivariate GARCH models has been given recently by Bauwens et al.
(2006).

Suppose there are N asset returns, r1t ; : : : ; rNt ; t D 1; : : : ; T . A model with K
factors can be written as

rit D bi1f1t C : : :C biKfKt C "it; i D 1; : : : ; N;

where "it is an idiosyncratic white noise sequence. In matrix notation this is just the
model given in (5.2). If factors follow univariate GARCH processes with conditional
variance �2it and are conditionally orthogonal, then the conditional variance of rit can
be written as

hit D
KX

kD1
b2ik�

2
it C !i ;

where !i D Var."it/. Factors can be observed assets as in Engle et al. (1990)
or latent and estimated using statistical techniques. For example, the Orthogonal
GARCH model of Alexander (2001) uses principal components as factors and the
eigenvalues of the sample covariance matrix to obtain the factor loadings, before
estimating the univariate GARCH models of the factors. van der Weide (2002)
generalizes the O-GARCH model to allow for multiplicities of eigenvalues while
maintaining identifiability of the model.

A second class of models has attracted considerable interest recently, the class of
dynamic conditional correlation (DCC) models introduced by Engle (2002) and Tse
and Tsui (2002). In the standard DCC model of order (1,1), conditional variances
hit are estimated in a first step using e.g. univariate GARCH. Then, standardized
residuals eit D .rit ��it/=

p
hit are obtained and the conditional correlation is given

by

Rij;t D Qij;tp
Qii;tQjj;t

;

whereQij;t is the .i; j /-element of the matrix process Qt ,

Qt D S.1� ˛ � ˇ/C ˛et�1e>
t�1 C ˇQt�1 (5.11)

with S being the sample covariance matrix of eit. In the special case of ˛ D ˇ D 0,
one obtains the constant conditional correlation (CCC) model of Bollerslev (1990).
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Splitting the joint likelihood into conditional mean, variance and correlation
parameters, the part of the likelihood corresponding to the correlation parameters
can be written as

logL.˛; ˇ/ D �1
2

TX

tD1
.log jRt j C e>

t R
�1
t et / (5.12)

An interesting feature of estimators that maximize (5.12) is that for increasing
dimension N the ˛ estimates appear to go to zero, as noted already by Engle
and Sheppard (2001). Engle et al. (2007) argue that this may be due to the first
stage estimation of the conditional variance parameters and the sample covariance
matrix S . The parameters of the first stage can be viewed as nuisance parameters
for the estimation of the second stage. The covariance targeting idea used in
the specification of (5.11) depends on one of these nuisance parameters, S . The
effect, clearly demonstrated in simulations by Engle et al. (2007) and Hafner and
Franses (2009), is a negative bias for the ˛ estimate, thus delivering very smooth
correlation processes in high dimensions and eventually estimates that converge to
the degenerate case of a CCC model. Engle et al. (2007) propose to use a so-called
composed likelihood estimation, where the sum of quasi-likelihoods over subsets
of assets is maximized. They show that this approach does not suffer from bias
problems in high dimensions.

Another reason why maximization of (5.12) is not suitable in high dimensions is
numerical instability due to almost singular matricesRt and the problem of inverting
this matrix at every t . The sample covariance matrix S is typically ill-conditioned,
meaning that the ratio of its largest and smallest eigenvalue is huge. In this case,
shrinkage methods as in Ledoit et al. (2003) could possibly be applied to S to
improve the properties of the DCC estimates.

A limitation of the classical DCC model in (5.11) is that only two parameters,
˛ and ˇ, drive the dynamic structure of a whole covariance matrix, possibly of
high dimension. This seems implausible if N is large, say 50 or higher. Hafner and
Franses (2009) proposed to generalize the DCC model as

Qt D S ˇ .1 � N̨2 � Ň2/C ˛˛> ˇ "t�1">
t�1 C ˇˇ> ˇQt�1;

where now ˛ and ˇ are .N�1/ vectors, ˇ is the Hadamard product, i.e. elementwise
multiplication, and N̨ D .1=N /

P
i ˛i and Ň D .1=N /

P
i ˇi . This generalized

version of the DCC model has the advantage of still guaranteeing a positive definite
Qt andRt while being much more flexible in allowing some correlations to be very
smooth and others to be erratic.

5.4.2.2 Multivariate Stochastic Volatility Models

The basic specification for a multivariate stochastic volatility model (MSV) intro-
duced by Harvey et al. (1994) is given by
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rt D �t CH
1=2
t �t (5.13)

H
1=2
t D diagfexp.h1t ; : : : ; exp.hNt //

hitC1 D ıi C �ihit C �it; for i D 1; : : : ; N (5.14)


�t
�t

�
� N

�

0

0

�
;



P� 0

0 ˙�

�	
; (5.15)

where �t D .�1t ; : : : ; �Nt /
>, �t D .�1t ; : : : ; �Nt /

> and �t D .�1t ; : : : ; �Nt /
>.

˙� is a positive-definite covariance matrix and P� is a correlation matrix capturing
the contemporaneous correlation between the return innovations. Of course, both
correlations between the mean innovations and the volatility innovations can be
restricted to be zero to reduce the number of parameters. If one only assumes that
the off-diagonal elements of ˙� are equal to zero this specification corresponds to
the constant conditional correlation (CCC) GARCH model by Bollerslev (1990),
since no volatility spillovers are possible.

This basic model has relatively few parameters to estimate .2N C N2/, but
Danielsson (1998) shows that it outperforms standard Vector-GARCH models that
have a higher number of parameters. Nevertheless, a number of extensions of
this model are possible. First, one can consider heavy tailed distributions for the
innovations in the mean equation �t in order to allow for higher excess kurtosis
compared to the Gaussian SV model, although in most cases this seems to be
unnecessary. Harvey et al. (1994) suggest using a multivariate t-distribution for that
purpose.

A second simple and natural extension of the basic model can be achieved by
introducing asymmetries into the model. One possibility is to replace (5.15) by



�t
�t

�
� N

�

0

0

�
;



P� L

L ˙�

�	

L D diagf�1��;11; : : : ; �N ��;NN g; (5.16)

where ��;i i denotes the i’th diagonal element of˙� and �i is expected to be negative
for i D 1; : : : ; N . This specification allows for a statistical leverage effect. Asai
et al. (2006) distinguish between leverage, denoting negative correlation between
current returns and future volatility, and general asymmetries meaning negative
returns have a different effect on volatility than positive ones. These asymmetric
effects may be modeled as a threshold effect or by including past returns and their
absolute values, in order to incorporate the magnitude of the past returns, in (5.14).
The latter extension was suggested by Danielsson (1994) and is given by

hitC1 D ıi C �i1yit C �i2jyitj C �ihit C ��i �it: (5.17)
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A potential drawback of the basic models and its extensions is that the number of
parameters grows with N and it may become difficult to estimate the model with a
high dimensional return vector. Factor structures in MSV models are a possibility to
achieve a dimension reduction and make the estimation of high dimensional systems
feasible. Furthermore, factor structures can help identify common features in asset
returns and volatilities and thus relate naturally to the factor models described in
Sect. 5.3. Diebold and Nerlove (1989) propose a multivariate ARCH model with
latent factors that can be regarded as the first MSV model with a factor structure,
although Harvey et al. (1994) are the first to propose the use of common factors in
the SV literature. Two types of factor SV models exist: Additive factor models and
multiplicative factor models. An additiveK factor model is given by

rt D �t CDft C et

fit D exp.hit=2/�it (5.18)

hitC1 D ıi C �ihit C ��i �it; for i D 1; : : : ; K;

with et � N.0; diag.�21 ; : : : ; �
2
N //, ft D .f1t ; : : : ; fKt /

>, D is an N � K matrix
of factor loadings and K < N . Identification is achieved by setting Dii D 1 for all
i D 1; : : : ; N andDij D 0 for all j < i . As mentioned in Asai et al. (2006) a serious
drawback of this specification is that homoscedastic portfolios can be constructed,
which is unrealistic. Assuming a SV model for each element of et can solve this
problem, although it does increase the number of parameters again. Furthermore,
the covariance matrix of et is most likely not diagonal. A further advantage of the
model is that it does not only accommodate time-varying volatility, but also time-
varying correlations, which reflects the important stylized fact that correlations are
not constant over time. A multiplicative factor model with K factors is given by

rt D �t C exp



wht
2

�
�t (5.19)

hitC1 D ıi C �ihit C ��i �it; for i D 1; : : : ; K;

where w is an N � K matrix of factor loadings that is of rank K and ht D
.h1t ; : : : ; hKt /

>. This model is also called stochastic discount factor model.
Although factor MSV models allow for time-varying correlations these are driven

by the dynamics in the volatility. Thus a further extension of the basic model is to
let the correlation matrix P� depend on time. For the bivariate case Yu and Meyer
(2006) suggest the following specification for the correlation coefficient �t .

�t D exp.2�t/ � 1
exp.2�t /C 1

�tC1 D ı� C ���t C ��zt ; (5.20)
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where zt � N.0; 1/. A generalization to higher dimensions of this model is not
straightforward. Yu and Meyer (2006) propose the following specification following
the DCC specification of Engle (2002).

P�t D diag.Q�1=2
t /Qtdiag.Q�1=2

t / (5.21)

QtC1 D .��> � A� B/ˇ S C B ˇQt C Aˇ zt z
>
t ;

where zt � N.0; I /, � is a vector of ones. An alternative to this is the model by Asai
and McAleer (2009), which also uses the DCC specification, but the correlations are
driven by a Wishart distribution.

Further specifications of MSV models along with a large number of references
can be found in Asai et al. (2006), whereas Yu and Meyer (2006) compares the
performance of a number of competing models. One main finding of this study is
that models that allow for time-varying correlations clearly outperform constant
correlation models.

Estimation can in principle be done using the same methods suggested for
univariate models, although not each method may be applicable to every model.
Still, simulated maximum likelihood estimation and MCMC estimation appear to
be the most flexible and efficient estimation techniques available for MSV models.

5.4.2.3 Realized Covariance

The definition of realized volatility extends to the multivariate case in a straight-
forward fashion and thus the additional information contained in high frequency
data can also be exploited when looking at covariance, correlation and simple
regressions. Some references are Andersen et al. (2001) and Andersen et al.
(2001) providing definitions, consistency results and empirical properties of the
multivariate realized measures. Barndorff-Nielsen and Shephard (2004a) provide
a distribution theory for realized covariation, correlation and regression, the authors
discuss how to calculate confidence intervals in practice. A simulation study
illustrates the good quality of their approximations in finite samples when � is
small enough (about 1/288 works quite well). Let the h period return vector be
rtCh;h. Then realized covariance is defined as

RCOV D
h=�X

jD1
rtCj�;�r>

tCj�;�: (5.22)

The realized correlation between return on asset k, r.k/tCh;h, and the return of asset
l , r.l/tCh;h, is calculated as

RCORR D
Ph=�

jD1 r.k/tCj�;�r.l/tCj�;�qPh=�
jD1 r2.k/tCj�;�

Ph=�
jD1 r2.l/tCj�;�

: (5.23)
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Finally, the regression slope when regressing variable l on variable k is given by

Ǒ
.lk/;t D

Ph=�
jD1 r.k/tCj�;�r.l/tCj�;�
Ph=�

jD1 r2.k/tCj�;�
: (5.24)

All these quantities have been shown to follow a mixed normal limiting distribution.
An application of the concept of realized regression is given in Andersen et al.
(2006), where the authors compute the realized quarterly betas using daily data and
discuss its properties.

5.4.2.4 Dynamic Copula Models

A very useful tool for specifying flexible multivariate versions of any class of
distribution functions are copulas. A copula is, loosely speaking, that part of a
multivariate distribution function that captures all the contemporaneous depen-
dence. The most important results concerning copulas known as Sklar’s theorem
tells us that there always exists a copula such that any multivariate distribution
function can be decomposed into the marginal distributions capturing the individual
behavior of each series and a copula characterizing the dependence structure. This
separation does not only allow for an easy and tractable specification of multivariate
distributions, but also for a two-step estimation greatly reducing the computational
effort. Thus any of the volatility models described above can be generalized to the
multivariate case in a straightforward fashion by coupling the univariate models
using copulas. Furthermore, dependence structures that go beyond linear correlation
such as tail dependence and asymmetric dependencies, which is useful when
markets or stocks show stronger correlation for negative than for positive returns,
can be allowed for. Nelsen (2006) provides a mathematical introduction to the topic,
whereas Joe (1997) treats the topic from a statistical viewpoint. Cherubini et al.
(2004) and Franke et al. (2008) look at copulas and their applications for financial
problems.

Consider the N-dimensional return vector rt D .r1t ; : : : ; rNt /
>. Let Fi be the

marginal distribution function of return i at let H be the joint distribution function
of r t . Then by Sklar’s theorem there exists a copula function C such that

H.r1t ; : : : ; rNt / D C fF1.r1t /; : : : ; FN .rNt /g : (5.25)

Additionally, if the marginals are continuous the copula is unique. Recalling that
by the probability integral transform the variable uit DFi .rit/ follows a standard
uniform distribution it becomes clear that a copula is simply a multivariate
distribution function with U.0; 1/marginals.

A large number of examples of copula function and methods to simulate artificial
data from them, which is extremely useful for the pricing of derivatives with
multiple underlying assets, is discussed in the chapter “Copulae Modelling” in this
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handbook. However, here we focus our attention on the situation when the copula
is allowed to vary over time, which accommodates the special case of time-varying
correlations, a feature usually observed in financial data. Dynamic copulas can thus
be used to construct extremely flexible multivariate volatility models that tend to fit
the data better than models assuming a dependence structure that is fixed over time.
In what follows we denote the time-varying parameter of a bivariate copula by �t .

Structural Breaks in Dependence

A formal test for the presence of a breakpoint in the dependence parameter of a
copula was developed in Dias and Embrechts (2004). Denote �t ’s the parameters of
the marginal distributions, which are treated as nuisance parameters. Formally, the
null hypothesis of no structural break in the copula parameter becomes

H0 W �1 D �2 D ::: D �T and �1 D �2 D ::: D �T

whereas the alternative hypothesis of the presence of a single structural break is
formulated as:

H1 W �1 D ::: D �k ¤ �kC1 D ::: D �T � ��
k and �1 D �2 D ::: D �T :

In the case of a known break-point k, the test statistics can be derived as a
generalized likelihood ratio test. Let Lk.�;�/, L�

k .�;�/ and LT .�;�/ be the log-
likelihood functions corresponding to a copula based multivariate model using
the first k observations, the observations from k C 1 to T and all observations,
respectively. Then the likelihood ratio statistic can be written as

LRk D 2ŒLk. O�k; O�T /C L�
k .

O��
k ; O�T /� LT . O�T ; O�T /	;

where a hat denotes the maximizer of the corresponding likelihood function. Note
that O�k and O��

k denote the estimates of � before and after the break, whereas O�T and
O�T are the estimates of � and � using the full sample. In the case of an unknown
break date k, a recursive procedure similar to the one proposed in Andrews (1993)
can be applied. The test statistic is the supremum of the sequence of statistics for
known k

ZT D max1�k<T LRk (5.26)

and the asymptotic critical values of Andrews (1993) can be used. Manner and
Candelon (2010) extended the procedure to additionally allow for a breakpoint in the
unconditional variance of the individual series at a (possibly) different point in time
and they discuss how to estimate the breakpoints in volatility and in dependence
sequentially.
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The Conditional Copula Model

Patton (2006a) showed that Sklar’s theorem still holds for conditional distributions
and suggested the following time varying specification for copulas. For the Gaussian
copula correlation evolves, similarly to the DCC model, as

�t D �

�
˛ C ˇ1 � �t�1 C ˇ2 � 1

p

pX

jD1
˚�1.u1;t�j / � ˚�1.u2;t�j /


; (5.27)

where, �.x/ D 1�e�x

1Ce�x is the inverse Fisher transformation. The number of lags
p is chosen to be 10, although this is a rather arbitrary choice that may be
varied. For copulas different from the Gaussian the sum in (5.27) is replaced byPp

jD1 ju1;t�j � u2;t�j j and � has to be replaced by a transformation appropriate to
ensure the dependence parameter is in the domain of the copula of interest.

Adaptive Estimation of Time-Varying Copulas

In order to save some space we refer to the chapter “Copulae Modelling” in
this handbook for a description of these techniques to estimate dynamic copulas
introduced by Giacomini et al. (2009).

Stochastic Dynamic Copulas

While the model by Patton can be seen as the counterpart to a GARCH model, where
correlations are a function of the past observation, in Hafner and Manner (2011) we
propose to let the dependence parameter of a copula follow a transformation of a
Gaussian stochastic process. That has, similar to stochastic volatility models, the
advantage of being a bit more flexible than a DCC model or the specification by
Patton at the cost of being more difficult to estimate. Furthermore, it is a natural
approach for a multivariate extension of stochastic volatility models.

We assume that �t is driven by an unobserved stochastic process �t such that
�t D �.�t /, where � W R ! � is an appropriate transformation to ensure that the
copula parameter remains in its domain and whose functional form depends on the
choice of copula. The underlying dependence parameter �t , which is unobserved, is
assumed to follow a Gaussian autoregressive process of order one,

�t D ˛ C ˇ�t�1 C �"t ; (5.28)

where "t is an i.i.d. N.0; 1/ innovation. Since �t is unobservable it must be
integrated out of the likelihood function. Such a T dimensional integral cannot be
solved analytically. However, �t can be integrated out by Monte Carlo integration
using the efficient importance sampler of Liesenfeld and Richard (2003).
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Local Likelihood Estimation of Dynamic Copulas

A model which allows �t to change over time in a non-parametric way is proposed
in Hafner and Reznikova (2010). It is assumed that the copula parameter can be
represented as a function �.t=T / in rescaled time. If that function is sufficiently
smooth then the bivariate return process is locally stationary. Estimation is done
in two steps, where first GARCH models for the margins are estimated and in the
second step the time-varying copula parameter is estimated by local maximum like-
lihood estimation. That means that the log-likelihood function is locally weighted
by a kernel function. Additionally, a one step correction for the estimates of the
GARCH parameters ensures semi-parametric efficiency of the estimator, which is
shown to work well in simulations.

5.4.2.5 Assessing the Quality of the Models

For practical purposes it is important to have a way to distinguish among the many
competing models. For testing a particular feature of a model such as the leverage
effect one can often apply standard hypothesis tests such a t-tests or likelihood ratio
tests. When competing models do not belong to the same model class and are non-
nested this is usually not possible anymore. Here we do not only consider statistical
criteria to assess how well a given model can describe that data, but we also look
at some economic measures that compare the usefulness of competing models for
certain investment decisions.

The simplest way to compare the in-sample fit of competing models is to look
at the value of the log-likelihood function at the parameter estimates, which gives a
good indication of how well the statistical model describes a given data set. Since
not all models have the same number of parameters and since models with a larger
number of parameters will most of the time fit the data better due to more flexibility,
it is often recommendable to use some type of information criterion that penalizes a
large number of parameters in a model. The two most commonly used information
criteria are the Akaike information criterion given by

AIC D �2LLC 2p (5.29)

and the Bayesian information criterion

BIC D �2LLC p log.T /; (5.30)

where LL denotes the value of log-likelihood function, T is the sample size and
p is the number of parameters in the model. The model with the smallest value
for either AIC or BIC is then considered the best fitting one, where the BIC tends
to favor more parsimonious models. However, even the best fitting model from
a set of candidate models may not provide reasonable fit for the data, which is
why distributional assumptions are often tested using specific goodness-of-fit tests
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such as the Jarque-Bera test for normality, the Kolmogorov-Smirnov test or the
Anderson-Darling test. One may also want to test for i.i.d.’ness of the standardized
residuals of the candidate model by testing for remaining autocorrelation and
heteroscedasticity. Finally, one may be interested in comparing the out-of-sample
performance of a number of models. We refer to Diebold et al. (1998) for possible
procedures. When comparing the forecasting performance of volatility models
realized volatility offers itself naturally as a measure for the (unobserved) variance
of a series.

Although a good statistical fit of a model is a desirable feature of any model a
practitioner may be more interested in the economic importance of using a certain
model. A very simple, yet informative measure is the Value-at-Risk (VaR), which
measures how much money a portfolio will loose at least with a given probability.
For portfolio return yt the VaR at quantile ˛ is defined as P Œyt < VaR˛	 D ˛. The
VaR can be computed both in sample and out-of-sample and Engle and Manganelli
(2004) suggest a test to assess the quality of a VaR estimate for both cases. A related
measure is the expected shortfall (ES), which is the expected loss given that the
portfolio return lies below a specific quantile, i.e. ES˛ D E.yt jyt < VaR˛/. As
portfolio managers are often interested to minimize the risk of their portfolio for a
given target return models can be compared by their ability to construct the MVP as
suggested by Chan et al. (1999). The MVP can be considered and the conditional
mean can be ignored as it is agreed on that the mean of stock returns is notoriously
difficult to forecast, especially for returns observed at a high frequency. A similar
approach was taken in Fleming et al. (2001) to evaluate the economic values of using
sophisticated volatility models for portfolio selection. Since portfolio manager often
aim at reproducing a certain benchmark portfolio (Chan et al. (1999)) also suggest
to compare models by their ability to minimize the tracking error volatility, which
is the standard deviation of the difference between the portfolio’s return and the
benchmark return.

5.5 Data Illustration

In this section we want to illustrate some of the techniques mentioned above for
modelling a multi-dimensional time series of asset prices. The data we consider are
those 69 stocks from the FTSE 100 index that were included in that index over our
whole sample period. We look at daily observations from the beginning of 1995
until the end of 2005 and calculate returns by taking the first difference of the
natural logarithm. We multiply returns by 100 to ensure stability of the numerical
procedures used for estimation. Modelling 69 assets is still less than the vast
dimensions required for practical applicability, but it is already quite a large number
for many multivariate time series models and much more than what is used in most
studies. Fitting a 69 dimensional volatility model directly to the data is not possible
for many of the models presented above, mainly because the number of parameters
grows rapidly with the dimension of the problem and estimation becomes difficult
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or even impossible. We therefore impose a lower dimensional factor structure on the
data in order to achieve a reduction of the dimension of the problem and fit different
volatility models to the factors extracted by principal component analysis (PCA).
The idiosyncratic components are assumed to be independent of each other and their
time-varying volatilities are estimated by univariate GARCH and SV models. When
estimating simple univariate GARCH or SV models to the factors this is very similar
to the O-GARCH model of Alexander (2001), but we also consider multivariate
GARCH and SV models to model the volatility of the factors jointly. Namely,
we estimate DCC and BEKK GARCH models, and SV models with conditional
correlations being described by the Patton and SCAR copula specification. For the
last two cases conditional correlations can only be estimated for the case of two
factors. Note that although the correlations between the factors extracted by PCA
are unconditionally zero, conditional correlations may be different from zero and
vary over time.

For the factor specification the covariance matrix for the full set of assets can
be calculated using (5.3) in Sect. 5.3. For the number of factors we restrict our
attention to a maximum of four factors. When estimating SV model the efficient
importance sampler by Liesenfeld and Richard (2003) is used for estimation and for
the time-varying volatility we consider the smoothed variance, i.e. an estimate of
the volatility using the complete sample information. The volatilities of the first two
factors estimated by GARCH and SV are shown in Fig. 5.3, whereas the conditional
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Fig. 5.3 Conditional volatilities of the first two factors
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Fig. 5.4 Conditional correlations between the first two factors

correlation using the four competing bivariate models can be found in Fig. 5.4. The
correlation dynamics show that the factors are only unconditionally orthogonal, but
show a strong variation over time and extremely high persistence (ˇ D 0:99 for
the SCAR model). It is remarkable that the four models produce estimates of the
conditional correlations that are very similar.

The results comparing the in-sample ability to compute the MVP of the
competing models can be found in Table 5.1. For comparison we also include
the variance of the equally weighted portfolio to see how much can be gained
by optimizing the portfolio. All models yield clear improvements over using the
equally weighted portfolio. Furthermore, the ranking of the models is the same
looking either at the variance of the MVP, �MVP, or the variance of the standardized
MVP, �MVP�std. The choice of the number of factors does not matter as much
as one might expect. Still, two factor models give the best results and seem to be
sufficient to estimate the volatility of the data set. Allowing for non-zero conditional
correlations between the factors slightly improves the quality of the covariance
matrix of the stock returns. Finally, the smoothed volatilities of the SV models seem
to provide much better estimates of the covariance than volatilities estimated with
GARCH models. This is not surprising, as the SV volatilities are estimated using the
full information in the data, whereas the GARCH volatilities are based on one-step
ahead forecasts. Hence, the two-factor SV model with correlations estimated using
a SCAR specification provides the best fit for our data set based on the economic
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Table 5.1 In-sample fit of competing volatility models

Model �MVP �MVP�std Model �MVP �MVP�std

Equally weighted 0.821
GARCH 0.307 2.369 SV 0.143 1.341
O-GARCH 0.295 2.004 O-SV 0.135 1.100

1 Factor DCC 0.292 1.965 SCAR 0.131 1.073
BEKK 0.292 1.959 Patton 0.133 1.081
O-GARCH 0.298 2.047 O-SV 0.137 1.129

2 Factors DCC 0.297 2.006
BEKK 0.296 1.994
O-GARCH 0.302 2.041 O-SV 0.140 1.128

3 Factors DCC 0.301 2.003
4 Factors BEKK 0.299 1.990
Note: Variance of the MVPs (�MVP) and the standardized portfolio (�MVP�std) constructed using
competing factor based multivariate volatility models for 69 stocks from the FTSE 100 during the
period 1995–2005

criteria we have chosen. Nevertheless one has to keep in mind that the analysis we
have done is entirely an in-sample comparison. Out-of-sample the models may be
ranked quite differently. In particular, when considering one-step ahead forecasts
the GARCH model is likely to perform quite well (in particular better than SV), due
to the way it is designed. When considering multi-step ahead forecasts it is unclear
which model will do better and this issue is worth investigating.

5.6 Outlook

In this chapter we have reviewed new developments in the dynamic modelling of
financial asset returns. We have concentrated on the multivariate aspect, since the
typical practical application concerns not only volatilities but also an adequate mod-
elling of asset dependencies. We have paid attention to the use of factor structures
in order to achieve some dimension reduction when modelling a large number of
assets. Such factor structures combined with appropriate volatility models seem to
provide a good fit to the data we examined, and not too much information is lost
when computing the MVP, compared to modelling the full set of assets directly.

In future research the choice of the number of factors, a problem that has been
discussed extensively in a theoretical way and for macroeconomic applications,
needs to be analyzed concerning the model performance using economic criteria
such as the construction of the MVP. Also the use of the class of locally stationary
factor models by Motta et al. (2011) and Eichler et al. (0000) for financial
applications needs to be considered. Furthermore, the modelling of vast dimensional
data (i.e. over 100 assets) needs to be studied. Although some progress has been
made for GARCH models, stochastic volatility models that are usable for such
dimensions, and estimation techniques for them, need to be developed. Finally,



112 C.M. Hafner and H. Manner

time-varying copula models need to be extended to allow for dimensions larger than
two in order to be relevant for realistic applications.
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Chapter 6
Option Data and Modeling BSM Implied
Volatility

Matthias R. Fengler

Abstract The present handbook contributions introduces the notion of the Black-
Scholes-Merton implied volatility surface and reviews its stylized facts. Static
no-arbitrage conditions and recent theoretical results on the far expiry, short expiry
and far strike asymptotics are surveyed. A discussion of the numerical aspects of
computing implied volatility efficiently and accurately follows. We conclude by
reviewing models of the implied volatility surface starting with parametric and non-
and semiparametric approaches. The emphasis is on models observing financial no-
arbitrage constraints.

6.1 Introduction

The discovery of an explicit solution for the valuation of European style call and
put options based on the assumption a Geometric Brownian motion driving the
underlying asset constitutes a landmark in the development of modern financial
theory. First published in Black and Scholes (1973), but relying heavily on the
notion of no-arbitrage in Merton (1973), this solution is nowadays known as
the Black-Scholes-Merton (BSM) option pricing formula. In recognition of this
achievement, Myron Scholes and Robert C. Merton were awarded the Nobel prize
in economics in 1997 (Fischer Black had already died by this time).

Although it is widely acknowledged that the assumptions underlying the BSM
model are far from realistic, the BSM formula still enjoys unrivalled popularity in
financial practice. This is not so much because practitioners believe in the model as
a good description of market behavior, but rather because it serves as a convenient
mapping device from the space of option prices to a single real number called the
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Fig. 6.1 IV surface of DAX index options from 28 October 2008, traded at the EUREX. IV given
in percent across a spot moneyness metric, time to expiry in years

(BSM-)implied volatility. Indeed, the only unknown parameter involving the BSM
formula is the volatility. Backed out of given option prices it allows for straight
forward comparisons of the relative expensiveness of options across various strikes,
expiries and underlying assets. In practice calls and puts are thus quoted in terms of
implied volatility.

For illustration consider Fig. 6.1 displaying implied volatility (IV) as observed
on 28 October 2008 and computed from options traded on the futures exchange
EUREX, Frankfurt. IV is plotted against relative strikes and time to expiry. Due to
institutional conventions, there is a very limited number of expiry dates, usually 1–3
months apart for short-dated options and 6–12 months apart for longer-dated ones,
while the number of strikes for each expiry is more finely spaced. The function
resulting for a fixed expiry is frequently called the ‘IV smile’ due to its U-shaped
pattern. For a fixed (relative) strike across several expiries one speaks of the term
structure of IV. Understandably, the non-flat surface, which also fluctuates from day
to day, is in strong violation to the assumption of a Geometric Brownian motion
underlying the BSM model.

Although IV observations are observed on this degenerate design, practitioners
think of them as stemming from a smooth and well-behaved surface. This view is
due to the following objectives in option portfolio management: (1) market makers
quote options for strike-expiry pairs which are illiquid or not listed; (2) pricing
engines, which are used to price exotic options and which are based on far more
realistic assumptions than the BSM model, are calibrated against an observed IV
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surface; (3) the IV surface given by a listed market serves as the market of primary
hedging instruments against volatility and gamma risk (second-order sensitivity
with respect to the spot); (4) risk managers use stress scenarios defined on the IV
surface to visualize and quantify the risk inherent to option portfolios.

Each of these applications requires suitably chosen interpolation and extrapo-
lation techniques or a fully specified model of the IV surface. This suggests the
following structure of this contribution: Section 6.2 introduces the BSM-implied
volatility and in Sect. 6.3 we outline its stylized facts. No-arbitrage constraints on
the IV surface are presented in Sect. 6.4. In Sect. 6.5, recent theoretical advances
on the asymptotic behavior of IV are summarized. Approximation formulae and
numerical methods to recover IV from quoted option prices are reviewed in
Sect. 6.6. Parametric, semi- and nonparametric modeling techniques of IV are
considered in Sect. 6.7.

6.2 The BSM Model and Implied Volatility

We consider an economy on the time interval Œ0; T �	. Let .˝;F ;P/ be a probability
space equipped with a filtration .Ft /0�t�T� which is generated by a Brownian
motion .Wt /0�t�T � defined on this space, see e.g. Steele (2000). A stock price
.St /0�t�T � , adapted to .Ft /0�t�T� (paying no-dividends for simplicity) is modeled
by the Geometric Brownian motion satisfying the stochastic differential equation

dSt
St

D �dt C � dWt ; (6.1)

where � denotes the (constant) instantaneous drift and �2 measures the (constant)
instantaneous variance of the return process of .logSt /t�0. We furthermore assume
the existence of a riskless money market account paying interest r . A European style
call is a contingent claim paying at some expiry date T , 0 < T � T �, the amount

 c.ST / D .ST �X/C, where .�/C defD max.�; 0/ andX is a fixed number, the exercise
price. The payoff of a European style put is given by  p.ST / D .X � ST /

C.
Under these assumptions, it can be shown that the option price H.St ; t/ is a

function in the space C2;1
�
R

C � .0; T /� satisfying the partial differential equation

0 D @H

@t
C rS

@H

@S
C 1

2
�2S2

@2H

@S2
� rH (6.2)

subject to H.ST ; T / D  i.ST / with i 2 fc; pg.
The celebrated BSM formula for calls solving (6.2) with boundary condition

 c.ST / is found to be

CBSM
t .X; T / D St˚.d1/� e�r.T�t /X˚.d2/; (6.3)
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with

d1 D log.St=X/C .r C 1
2
�2/.T � t/

�
p
T � t ; (6.4)

d2 D d1 � �
p
T � t ; (6.5)

and where ˚.v/ D R v
�1 '.u/ du is the cdf of the standard normal distribution with

pdf '.v/ D 1p
2

e�v2=2 for v 2 R.

Given observed market prices eC t , one defines – as first introduced by Latané and
Rendelman (1976) – implied volatility as

O� W CBSM
t .X; T; O�/ � eC t D 0: (6.6)

Due to monotonicity of the BSM price in � , there exists a unique solution O� 2 R
C.

Note that the definition in (6.6) is not confined to European options. It is also used
for American options, which can be exercised at any time in Œ0; T 	. In this case, as
no explicit formulae for American style options exists, the option price is computed
numerically, for instance by means of finite difference schemes (Randall and Tavella
(2000)).

In the BSM model volatility is just a constant, whereas empirically, IV displays a
pronounced curvature across strikes X and different expiry days T . This gives rise
to the notion of an IV surface as the mapping

b� W .t; X; T / !b�t .X; T /: (6.7)

In Fig. 6.2, we plot the time series of 1Y at-the-money IV of DAX index options (left
axis, black line) together with DAX closing prices (right axis, gray line). An option
is called at-the-money (ATM) when the exercise price is equal or close to the spot (or
to the forward). The index options were traded at the EUREX, Frankfurt (Germany),
from 2000 to 2008. As is visible IV is subject to considerable variations. Average
DAX index IV was about 22% with significantly higher levels in times of market
stress, such as after the World Trade Center attacks 2001, during the pronounced
bear market 2002–2003 and the financial crisis end of 2008.

6.3 Stylized Facts of Implied Volatility

The IV surface displays a number of static and dynamic stylized facts which
we demonstrate here using the present DAX index option data dating from 2000
to 2008. These facts can be observed for any equity index market. They similarly
hold for stocks. Other asset classes may display different features, for instance,
smiles may be more shallow, symmetric or even upward-sloping, but this does not
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Fig. 6.2 Time series of 1Y ATM IV (left axis, black line) and DAX index closing prices (right
axis, gray line) from 2000 to 2008

fundamentally change the smile phenomenon. A more complete synthesis can be
found in Rebonato (2004).

Stylized facts of IV are as follows:

1. The smile is very pronounced for short expiries and becomes flattish for longer
dated options. This fact was already visible in Fig. 6.1.

2. As noted by Rubinstein (1994) this has not always been the case. The strong
asymmetry in the smile first appeared after the 1987 market turmoil.

3. For equity options, both index and stocks, the smile is negatively skewed.

We define the ‘skew’ here by @ O�2
@m

ˇ̌
ˇ
mD0, where m is log-forward moneyness

as defined in Sect. 6.5. Figure 6.3 depicts the time series of the DAX index
skew (left axis) for 1M and 1Y options. The skew is negative throughout and –
particularly the short-term skew – increases during times of crisis. For instance,
skews increase in the aftermath of the dot-com boom 2001–2003, or spike at 11
September 2001 and during the heights of the financial crisis 2008. As theory
predicts, see Sect. 6.5, the 1Y IV skew has most of the time been flatter than the
1M IV skew.

4. Fluctuations of the short-term skew are much larger. Figure 6.4 gives the
quantiles of the skew as a function of time to expiry. Similar patterns also apply
to IV levels and returns.
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5. The IV surface term structure is typically upward sloping (i.e. has increasing
levels of IV for longer dated options) in calm times, while in times of crisis it
is downward sloping with short dated options having higher levels of IV then
longer dated ones. This is seen in Fig. 6.3 giving the difference of 1M ATM IV
minus 1Y ATM in terms of percentage points on the right axis. A positive value
therefore indicates a downward sloping term structure. During the financial crisis
the term structure slope achieved unprecedented levels. Humped profiles can be
observed as well.

6. Returns of the underlying asset and returns of IV are negatively correlated. For
the present data set we find a correlation between 1M ATM IV and DAX returns
of � D �0:69.

7. IV appears to be mean-reverting, see Fig. 6.2, but it is usually difficult to confirm
mean reversion statistically, since IV data is often found to be nearly integrated,
see Fengler et al. (2007) for a discussion.

8. Shocks cross the IV surface are highly correlated, as can be observed from the
comovements of IV levels in Fig. 6.2 and the skew and the term structure in
Fig. 6.3. In consequence IV surface dynamics can be decomposed into a small
number of driving factors.

6.4 Arbitrage Bounds on the Implied Volatility Surface

Despite the rich empirical behavior, IV cannot simply assume any functional
form. This is due to constraints imposed by no-arbitrage principles. For IV, these
constraints are very involved, but are easily stated indirectly in the option price
domain. From now on, we set t D 0 and suppress dependence on t for sake of
clarity.

We state the bounds using a (European) call option; deriving the corresponding
bounds for a put is straightforward. The IV function must be such that the call price
is bounded by

max
�
S � e�rT X; 0

�
� C.X; T / � S: (6.8)

Moreover, the call price must be a decreasing and convex function in X , i.e.

� e�rT � @C

@X
� 0 and

@2C

@X2
	 0: (6.9)

To preclude calendar arbitrage, prices of American calls for the same strikes
must be nondecreasing across increasing expiries. This statement does not hold
for European style calls because their theta can change sign. No-arbitrage implies,
however, that there exists a monotonicity relationship along forward-moneyness
corrected strikes (also in the presence of dividend yield), see Reiner (2000), Gatheral
(2004), Kahalé (2004), Reiner (2004), Fengler (2009). Denote by x D X=FT

forward-moneyness, where F T is a forward with expiry T , and by T1 < T2 the
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expiry dates of two call options whose strike prices X1 and X2 are related by
forward-moneyness, i.e. x1 D x2. Then

C.X2; T2/ 	 C.X1; T1/: (6.10)

Most importantly, this results implies that total implied variance must be nonde-
creasing in forward-moneyness to preclude arbitrage. Defining total variance as

�2.x; T /
defD O�2.x; T / T , we have

�2.x; T2/ > �
2.x; T1/: (6.11)

Relationship (6.11) has the important consequence that one can visually check IV
smiles for calendar arbitrage by plotting total variance across forward moneyness.
If the lines intersect, (6.11) is violated.

6.5 Implied Volatility Surface Asymptotics

Many of the following results had the nature of conjectures and were generalized
and rigorously derived only very recently. Understanding the behavior of IV for
far expiries and far strikes is of utter importance for extrapolation problems often
arising in practice.

Throughout this section set r D 0 and t D 0. This is without loss of generality
since in the presence of nonzero interest rates and dividends yields, the option and
underlying asset prices may be viewed as forward prices, see Britten-Jones and

Neuberger (2000). Furthermore define log-(forward) moneyness by m
defD logx D

log.X=S/ and total (implied) variance by �2
defD O�2T . Let S D .St /t�0 be a non-

negative martingale with S0 > 0 under a fixed risk-neutral measure.

6.5.1 Far Expiry Asymptotics

The results of this section can be found in more detail in Tehranchi (2010) whom
we follow closely.

The first theorem shows that the IV surface flattens for infinitely large expiries.

Theorem 1 (Rogers and Tehranchi (2009)). For any M > 0 we have

lim
T!1 sup

m1;m22Œ�M;M	

j O�.m2; T / � O�.m1; T /j D 0:

Note that this result does not hinge upon the central limit theorem, mean-reversion
of spot volatility etc., only the existence of the martingale measure. In particular,
limT!1 O�.m; T / does not need to exist for anym.
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The rate of flattening of the IV skew can be made more precise by the following
result. It shows that the flattening behavior of the IV surface as described in Sect. 6.3
is not an empirical artefact, but has a well-founded theoretical underpinning (for
earlier, less general arguments see Hodges (1996), Carr and Wu (2003)).

Theorem 2 (Rogers and Tehranchi (2009)).

(i) For any 0 � m1 < m2 we have

O�.m2; T /
2 � O�.m1; T /

2

m2 �m1

� 4

T
:

(ii) For anym1 < m2 � 0

O�.m2; T /
2 � O�.m1; T /

2

m2 �m1

	 � 4

T
:

(iii) If St
P�! 0 as t ! 1; for any M > 0 we have

lim sup
T!1

sup
m1;m22Œ�M;M	; m1¤m2

T

ˇ̌
ˇ̌ O�.m2; T /

2 � O�.m1; T /
2

m2 �m1

ˇ̌
ˇ̌ � 4:

As pointed out by Rogers and Tehranchi (2009), the inequality in (iii) is sharp in the

sense that there exists a martingale .St /t�0 with St
P�! 0 such that

T
@

@m
O�.m; T /2 ! �4:

as T ! 1 uniformly for m 2 Œ�M;M	. The condition St
P�! 0 as t ! 1; is not

strong. It holds for most financial models and is equivalent to the statement that

C.X; T / D EŒ.ST �X/C	 ! S0

as T ! 1 for some X > 0. The BSM formula (6.3) fulfills it trivially. Indeed
one can show that if the stock price process does not converge to zero, then
limT!1 O�.m; T / D 0, because �2 < 1.

Finally Tehranchi (2009) obtains the following representation formula for IV:

Theorem 3 (Tehranchi (2009)). For any M > 0 we have

lim
T!1 sup

m2Œ�M;M	

ˇ̌
ˇ̌
ˇ O�.m; T / �

r
� 8

T
log EŒST ^ 1	

ˇ̌
ˇ̌
ˇ

with a ^ b D min.a; b/. Moreover there is the representation
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O�21 D lim
T!1 � 8

T
log EŒST ^ 1	 (6.12)

whenever this limit is finite.

A special case of this result was derived by Lewis (2000) in the context of the Heston
(1993) model. For certain model classes, such as models based on Lévy processes,
the last theorem allows a direct derivation of O�1.

The implication of these results for building an IV surface are far-reaching. The

implied variance skew must be bounded by
ˇ̌
ˇ @�

2

@m

ˇ̌
ˇ � 4 and should decay at a rate

of 1=T between expiries. Moreover, a constant far expiry extrapolation in O�.m; Tn/
beyond the last extant expiry Tn is wrong, since the IV surface does not flatten in
this case. A constant far expiry extrapolation in �2.m; Tn/ beyond Tn is fine, but may
not be a very lucky choice given the comments following Theorem 2 number .iii/.

6.5.2 Short Expiry Asymptotics

Roper and Rutkowski (2009) consider the behavior of IV towards small times to
expiry. They prove

Theorem 4 (Roper and Rutkowski (2009)). If C.X; �/ D .S � X/C for some
� > 0 then

lim
T!0C

O�.X; T / D 0: (6.13)

Otherwise

lim
T!0C

O�.X; T / D
8
<

:
limT!0C

p
2
C.X;T /

S
p
T

if S D X

limT!0C
j log.S=X/jq

�2T logŒC.X;T /�.S�X/C	
if S ¤ X

; (6.14)

in the sense that the LHS is finite (infinite) whenever the RHS is finite (infinite).

The quintessence of this theorem is twofold. First, the asymptotic behavior of
O�.X; T / as T ! 0C is markedly different for S D X and S ¤ X . Note that the
ATM behavior of (6.14) is the well-established Brenner and Subrahmanyam (1988),
Feinstein (1988) formula to be presented in Sect. 6.6.1. Second, convergent IV is
not a behavior coming for granted. In particular no-arbitrage does not guarantee
that a limit exists, see Roper and Rutkowski (2009) for a lucid example. However,
the limit of time-scaled IV exists and is zero:

lim
T!0C

�.X; T / D lim
T!0C

O�p
T D 0: (6.15)



6 Option Data and Modeling BSM Implied Volatility 127

6.5.3 Far Strike Asymptotics

Lee (2004) establishes the behavior of the IV surface as strikes tend to infinity. He
finds a one-to-one correspondence between the large-strike tail and the number of
moments of ST , and the small-strike tail and the number of moments of S�1

T . We

retain the martingale assumption for .St /t�0 andm
defD log.X=S/.

Theorem 5 (Lee (2004)). Define

ep D supfp W ES1CpT < 1g ˇR D lim sup
m!1

�2

jmj D lim sup
m!1

O�2
jmj=T :

Then ˇR 2 Œ0; 2	 and

ep D 1

2ˇR
C ˇR

8
� 1

2
;

with the understanding that 1=0 D 1. Equivalently,

ˇR D 2 � 4.
p
ep2 Cep �ep/:

The next theorem considers the case m ! �1.

Theorem 6 (Lee (2004)). Denote by

eq D supfq W ES�q
T < 1g ˇL D lim sup

m!�1
�2

jmj D lim sup
m!�1

O�2
jmj=T :

Then ˇL 2 Œ0; 2	 and

eq D 1

2ˇL
C ˇL

8
� 1

2
;

with 1=0 D 1, or

ˇL D 2 � 4.
p
eq2 Ceq �eq/:

Roger Lee’s results have again vital implications for the extrapolation of the IV
surface for far strikes. They show that linear or convex skews for far strikes are
wrong by the O.jmj1=2/ behavior. More precisely, the IV wings should not grow
faster than jmj1=2 and not grow slower than jmj1=2, unless the underlying asset price
is supposed to have moments of all orders. The elegant solution following from these
results is to extrapolate �2 linearly in jmj with an appropriately chosen ˇL; ˇR 2
Œ0; 2	.
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6.6 Approximating and Computing Implied Volatility

6.6.1 Approximation Formulae

There is no closed-form, analytical solution to IV, even for European options. In
situations when iterative procedures is not readily available, such as in the context of
a spreadsheet, or when numerical approaches are not applicable, such as in real time
applications, approximation formulae to IV are of high interest. Furthermore, they
also serve as good inital values for the numerical schemes discussed in Sect. 6.6.2.

The most simple approximation to IV, which is due to Brenner and Subrah-
manyam (1988) and Feinstein (1988), is given by

O� �
r
2


T

C

S
: (6.16)

The rationale of this formula can be understood as follows. Define by K
defD S D

Xe�rT the discounted ATM strike. The BSM formula then simplifies to

C D S
�
2 ˚.�

p
T =2/� 1

�
:

Solving for � yields the semi-analytical formula

� D 2p
T

˚�1


C C S

2S

�
; (6.17)

where ˚�1 denotes the inverse function of the normal cdf. A first order Taylor
expansion of (6.17) in the neighborhood of 1

2
yields formula (6.16). In consequence,

it is exact only, when the spot is equal to the discounted strike price.
A more accurate formula, which also holds for in-the-money (ITM) and out-

of- the-money (OTM) options (calls are called OTM when S X and ITM when
S � X ), is based on a Taylor expansion of third order to ˚ . It is due to Li (2005):

O� �

8
ˆ̂<

ˆ̂:

2 z
q

2
T

� 1p
T

q
8z2 � 6˛p

2z
if � � 1:4

1

2
p
T

�
˛ C

q
˛2 � 4.K�S/2

S.SCK/
�

if � > 1:4;
(6.18)

where z D cos
h
1
3

arccos
�
3˛p
32

�i
, ˛ D

p
2


SCK .2C CK � S/ and � D jK � S jSC�2.
The value of the threshold parameter � separating the first part, which is for nearly-
ATM options, and the second part for deep ITM or OTM options, was found by
Li (2005) based on numerical tests.
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Other approximation formulae found in the literatur often lack a rigorous
mathematical foundation. The possibly most prominent amongst these are those
suggested by Corrado and Miller (1996) and Bharadia et al. (1996). The Corrado
and Miller (1996) formula is given by

O� � 1p
T

p
2


S CK

2

4C � S �K
2

C
s


C � S �K
2

�2
� .S �K/2




3

5 : (6.19)

Its relative accuracy is explained by the fact that (6.19) is identical to the second
formula in (6.18) after multiplying the second term under the square root by 1

2
.1C

K=S/, which is negligible in most cases, see Li (2005) for the details. Finally, the
Bharadia et al. (1996) approximation is given by

O� �
r
2


T

C � .S �K/=2
S � .S �K/=2

: (6.20)

Isengildina-Massa et al. (2007) investigate the accuracy of six approximation
formulae. According to their criteria, Corrado and Miller (1996) is the best
approximation followed by Li (2005) and Bharadia et al. (1996). This finding holds
uniformly also for deviations to up to 1% around ATM (somewhat unfortunate, the
authors do not consider a wider range) and up to maturities of 11 months. As a matter
of fact, the approximation by Brenner and Subrahmanyam (1988) and Feinstein
(1988) is of competing quality for ATM options only.

6.6.2 Numerical Computation of Implied Volatility

6.6.2.1 Newton–Raphson

The Newton–Raphson method, which will be the method of first choice in most
cases, was suggested by Manaster and Koehler (1982). Denoting the observed
market price by eC , the approach is described as

�iC1 D �i � �
Ci.�i /� eC

��@C

@�
.�i /; (6.21)

where Ci.�i / is the option price and @C
@�
.�i / is the option vega computed at �i . The

algorithm is run until a tolerance criterion, such as jeC � CiC1j � �, is achieved;
IV is given by O� D �iC1. The algorithm may fail, when the vega is close to zero,
which regularly occurs for (short-dated) far ITM oder OTM options. The Newton–
Raphson method has at least quadratic convergence, and combined with a good
choice of the initial value, it achieves convergence within a very small number of
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steps. Originally, Manaster and Koehler (1982) suggested

�0 D
r
2

T
j log.S=X/C rT j (6.22)

as initial value (setting t D 0). It is likely, however, that the approximation formulae
discussed in Sect. 6.6.1 provide initial values closer to the solution.

6.6.2.2 Regula Falsi

The regula falsi is more robust than Newton–Raphson, but has linear convergence
only. It is particularly useful when no closed-form expression for the vega is
available, or when the price function is kinked as e.g. for American options with
high probability of early exercise.

The regula falsi is initialized by two volatility estimates �L and �H with
corresponding option prices CL.�L/ and CH.�H / which need to include the
solution. The iteration steps are:

1. Compute

�iC1 D �L � �
CL.�L/� eC

� �H � �L

CH.�H / � CL.�L/ I (6.23)

2. If CiC1.�iC1/ and CL.�L/ have same sign, set �L D �iC1; if CiC1.�iC1/ and
CH.�H / have same sign, set �H D �iC1. Repeat step 1.

The algorithm is run until jeC � Ci j � �, where � the desired tolerance. Implied
volatility is O� D �iC1.

6.7 Models of Implied Volatility

6.7.1 Parametric Models of Implied Volatility

Since it is often very difficult to define a single parametric function for the
entire surface (see Chap. 2 in Brockhaus et al. (2000) and Dumas et al. (1998)
for suggestions in this directions), a typical approach is to estimate each smile
independently by some nonlinear function. The IV surface is then reconstructed by
interpolating total variances along forward moneyness as is apparent from Sect. 6.4.
The standard method is linear interpolation. If derivatives of the IV surface with
respect to time to expiry are needed, higher order polynomials for interpolation
are necessary. Gatheral (2006) suggests the well-behaved cubic interpolation due to
Stineman (1980). A monotonic cubic interpolation scheme can be found in Wolberg
and Alfy (2002).
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In practice a plethora of functional forms is used. The following selection of
parametric approaches is driven by their respective popularity in three different
asset classes (equity, fixed income, FX markets) and by the solid theoretical
underpinnings they are derived from.

6.7.1.1 Gatheral’s SVI Parametrization

The stochastic volatility inspired (SVI) parametrization for the smile was introduced
by Gatheral (2004) and is motivated from the asymptotic extreme strikes behavior
of a IV smile, which is generated by a Heston (1993) model. It is given in terms of
log-forward moneynessm D log.X=F / as

O�2.m; T / D aC b
�
�.m � c/C

p
.m � c/2 C �2

�
; (6.24)

where a > 0 determines the overall level of implied variance and b 	 0

(predominantly) the angle between left and right asymptotes of extreme strikes;
j�j � 1 rotates the smile around the vertex, and � controls the smoothness of the
vertex; c translates the graph.

The beauty of Gatheral’s parametrization becomes apparent observing that
implied variance behaves linear in the extreme left and right wing as prescribed
by the moment formula due to Lee (2004), see Sect. 6.5.3. It is therefore straight
forward to control the wings for no-arbitrage conditions. Indeed, comparing the
slopes of the left and right wing asymptotes with Theorem 6, we find that

b.1C j�j/ � 2

T
;

to preclude arbitrage (asymptotically) in the wings. The SVI appears to fit a wide
of range smile patterns, both empirical ones and those of many stochastic volatility
and pure jump models, Gatheral (2004).

6.7.1.2 The SABR Parametrization

The SABR parametrization is a truncated expansion of the IV smile which is
generated by the SABR model proposed by Hagan et al. (2002). SABR is an
acronym for the ‘stochastic ˛ˇ� model’, which is a two-factor stochastic volatility
model with parameters ˛, the initial value of the stochastic volatility factor; ˇ 2
Œ0; 1	, an exponent determining the dynamic relationship between the forward and
the ATM volatility, where ˇ D 0 gives rise to a ‘stochastic normal’ and ˇ D 1 to a
‘stochastic log-normal’ behavior; j�j � 1, the correlation between the two Brownian
motions; and � > 0, the volatility of volatility. The SABR approach is very popular
in fixed income markets where each asset only has a single exercise date, such as
swaption markets.
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Denote by F the forward price, X is as usual the strike price. The SABR
parametrization is a second order expansion given by

O�.X; T / D O�0.X/
n
1C O�1.X/ T

o
C O.T 2/; (6.25)

where the first term is

O�0.X/ D �

�.z/
log

F

X
(6.26)

with

z D �

˛

F 1�ˇ � X1�ˇ

1 � ˇ

and

�.z/ D log

 p
1 � 2�z C z2 C z � �

1 � �

!
I

the second term is

O�1.X/ D .1 � ˇ/2
24

˛2

.FX/1�ˇ
C 1

4

�ˇ�˛

.FX/.1�ˇ/=2
C 2 � 3�2

24
�2: (6.27)

Note that we display here the expansion in the corrected version as was pointed out
by Obłój (2008); unlike the original fomula this version behaves consistently for
ˇ ! 1, as then z.ˇ/ ! �

˛
log F

X
.

The formula (6.25) is involved, but explicit and can therefore be computed
efficiently. For the ATM volatility, i.e. F D X , z and �.z/ disappear, and the first
term in (6.25) collapses to O�0.F / D ˛F ˇ�1.

As a fitting strategy, it is usually recommended to obtain ˇ from a log-log plot
of historical data of the ATM IV O�.F; F / against F and to exclude it from the
subsequent optimizations. Parameter � and � are inferred from a calibration to
observed market IV; during that calibration ˛ is found implicitly by solving for
the (smallest) real root of the resulting cubic polynomial in ˛, given � and � and the
ATM IV O�.F; F /:

˛3
.1 � ˇ/2T
24 F 2�2ˇ C ˛2

�ˇ�T

4F .1�ˇ/ C ˛



1C 2 � 3�2

24
�2T

�
� O�.F; F /F 1�ˇ D 0:

For further details on calibrations issues we refer to Hagan et al. (2002) and West
(2005), where the latter has a specific focus on the challenges arising in illiquid mar-
kets. Alternatively, Mercurio and Pallavicini (2006) suggest a calibration procedure
for all parameters (inluding ˇ) from market data exploiting both swaption smiles
and constant maturity swap spreads.



6 Option Data and Modeling BSM Implied Volatility 133

6.7.1.3 Vanna-Volga Method

In terms of input information, the vanna-volga (VV) approach is probably the most
parsimonious amongst all constructive methods for building an IV surface, as it
relies on as few as three input observations per expiry only. It is popular in FX
markets. The VV method is based on the idea of constructing a replication portfolio
that is locally risk-free up to second order in spot and volatility in a fictitious setting,
where the smile is flat, but varies stochastically over time. Clearly, this setting is
not only fictitious, but also theoretically inconsistent, as there is no model which
generates a flat smile that fluctuates stochastically. It may however be justified by
the market practice of using a BSM model with a regularly updated IV as input
factor. The hedging costs incurred by the replication portfolio thus constructed are
then added to the flat-smile BSM price.

To fix ideas, denote the option vega by @C
@�

, volga by @2C
@�2

and vanna by @2C
@�@S

. We
are given three market observations of IV O�i with associated strikes Xi , i D 1; 2; 3,
with X1 < X2 < X3, and same expiry dates Ti D T for which the smile is to be
constructed. In a first step, the VV method solves the following system of linear
equations, for an arbitrary strike X and for some base volatility Q� :

@CBSM

@�
.X; Q�/ D

3X

iD1
wi .X/

@CBSM

@�
.Xi ; Q�/

@2CBSM

@�2
.X; Q�/ D

3X

iD1
wi .X/

@2CBSM

@�2
.Xi ; Q�/ (6.28)

@2CBSM

@�@S
.X; Q�/ D

3X

iD1
wi .X/

@2CBSM

@�@S
.Xi ; Q�/

The system can be solved numerically or analytically for the weights wi .X/, i D
1; 2; 3. In a second step, the VV price is computed by

C.X/ D CBSM .X; Q�/C
3X

iD1
wi .X/

�
CBSM .Xi ; O�i /� CBSM .Xi ; Q�/� ; (6.29)

from which one obtains IV by inverting the BSM formula. These steps need to be
solved for each X to construct the VV smile. For more details on the VV method,
approximation formulae for the VV smile, and numerous practical insights we refer
to the lucid description presented by Castagna and Mercurio (2007). As a typical
choice for the base volatility, Castagna and Mercurio (2007) suggest Q� D �2, where
�2 would be an ATM IV, and �1 and �3 are 25� put and the 25� call IV, respectively.
As noted there, the VV method is not arbitrage-free by construction, in particular
convexity can not be guaranteed, but it appears to produce arbitage-free estimates
of IV surfaces for usual market conditions.
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6.7.2 Non- and Semiparametric Models of Implied Volatility

If potential arbitrage violations in the resulting estimate are of no particular concern,
virtually any non- and semiparametric method can be applied to IV data. A specific
choice can often be made from practical considerations. We therefore confine this
section to pointing to the relevant examples in the literature.

Piecewise quadratic or cubic polynomials to fit single smiles was applied by
Shimko (1993), Malz (1997), Ané and Geman (1999) and Hafner and Wallmeier
(2001). Aı̈t-Sahalia and Lo (1998), Rosenberg (2000), Cont and da Fonseca (2002)
and Fengler et al. (2003) employ a Nadaraya-Watson smoother. Higher order local
polynomial smoothing of the IV surface was suggested in Fengler (2005), when
the aim is to recover the local volatility function via the Dupire formula, or by
Härdle et al. (2010) for estimating the empirical pricing kernel. Least-squares kernel
regression was suggested in Gouriéroux et al. (1994) and Fengler and Wang (2009).
Audrino and Colangelo (2009) rely on IV surface estimates based on regression
trees in a forecasting study. Model selection between fully parametric, semi- and
nonparametric specifications is discussed in detail in Aı̈t-Sahalia et al. (2001).

6.7.3 Implied Volatility Modeling Under No-Arbitrage
Constraints

For certain applications, for instance for local volatility modeling, an arbitrage-free
estimate of the IV surface is mandatory. Methods producing arbitrage-free estimates
must respect the bounds presented in Sect. 6.4. They are surveyed in this section.

6.7.3.1 Call Price Interpolation

Interpolation techniques to recover a globally arbitrage-free call price function have
been suggested by Kahalé (2004) and Wang et al. (2004). It is crucial for these
algorithms to work that the data to be interpolated are arbitrage-free from the
beginning. Consider the set of pairs of strikes and call prices .Xi ; Ci/; i D 0; : : : ; n.
Then, applying to (6.9), the set does not admit arbitrage in strikes if the first divided
differences associated with the data observe

� e�rT <
Ci � Ci�1
Xi � Xi�1

<
CiC1 � Ci
XiC1 �Xi < 0 (6.30)

and if the price bounds (6.8) hold.
For interpolation Kahalé (2004) considers piecewise convex polynomials which

are inspired from the BSM formula. More precisely, for a parameter vector � D
.�1; �2; �3; �4/

> with �1 > 0, �2 > 0 consider the function
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c.X I�/ D �1 ˚.d1/� X ˚.d2/C �3X C �4; (6.31)

where d1 D �
log.�1=X/C0:5 �22

�
=�2 and d2 D d1��2. Clearly, c.X I�/ is convex

in strikes X > 0, since it differs from the BSM formula by a linear term, only. It
can be shown that on a segment ŒXi ; XiC1	 and for Ci , CiC1 and given first order
deratives C 0

i and C 0
iC1 there exists a unique vector� interpolating the observed call

prices.
Kahalé (2004) proceeds in showing that for a sequence .Xi ; Ci ; C 0

i / for i D
0; : : : ; nC 1 with the (limit) conditionsX D 0, Xi < XiC1, XnC1 D 1, C0 D S0,
CnC1 D 0, C 0

0 D �e�rT and C 0
nC1 D 0 and

C 0
i <

CiC1 � Ci
XiC1 �Xi < C

0
iC1 (6.32)

for i D 1; : : : ; n there exists a unique C1 convex function c.X/ described by a series
of vectors�i for i D 0; : : : ; n interpolating observed call prices. There are 4.nC1/

parameters in�i , which are matched by 4n equations in the interior segments Ci D
c.Xi I�i/ and C 0

i D c0.Xi I�i/ for i D 1; : : : ; n, and four additional equations by
the four limit conditions in .X0; C0/ and .XnC1; CnC1/.

A C2 convex function is obtained in the following way: For j D 1; : : : ; n,
replace the j th condition on the first order conditions by �j D c0.Xj I�j / and
�j D c0.Xj I�j�1/, for some �j 2	lj ; ljC1Œ and lj D .Cj � Cj�1/=.Xj � Xj�1/.
Moreover add the condition c00.Xj I�j / D c00.Xj I�j�1/. This way the number of
parameters is still equal to the number of constraints.

Concluding, the Kahalé (2004) algorithm for a C2 call price function is as
follows:

1. Put C 0
0 D �e�rT , C 0

nC1 D 0 and C 0
i D .li C liC1/=2 for i D 1; : : : ; n, where

li D .Ci � Ci�1/=.Xi � Xi�1/.
2. For each j D 1; : : : ; n compute the C1 convex function with continuous second

order derivative at Xj . Replace C 0
j D �j .

Kahalé (2004) suggests to solve the algorithm using the Newton–Raphson method.
An alternative, cubicB-spline interpolation was suggested by Wang et al. (2004).

For observed prices .Xi ; Ci/; i D 0; : : : ; n, 0 < a D X0 < : : : < Xn D b < 1
they consider the following minimization problem:

min jjc00.X/ � e�rT h.X/jj22
s.t. c.Xi / D Ci ; i D 0; : : : ; n; (6.33)

c00.X/ 	 0 X 2 .0;1/;

where jj � jj2 is the (Lebesgue) L2 norm on Œa; b	, h some prior density (e.g.,
the log-normal density) and c the unknown option price function with absolutely
continuous first and second order derivatives on Œa; b	. By the Peano kernel theorem,
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the constraints c.Xi / D Ci , i D 1; : : : ; n can be replaced by

Z b

a

Bi .X/ c
00.X/ dX D di ; i D 1; : : : ; n � 2; (6.34)

where Bi is a normalized linear B-spline with the support on ŒXi ; XiC2	 and di the
second divided differences associated with the data. Wang et al. (2004) show that
this infinite-dimensional optimization problem has a unique solution for c00.X/ and
how to cast it into a finite-dimensional smooth optimization problem. The resulting
function for c.X/ is then a cubicB-spline. Finally they devise a generalized Newton
method for solving the problem with superlinear convergence.

6.7.3.2 Call Price Smoothing by Natural Cubic Splines

For a sample of strikes and call prices, f.Xi ; Ci /g, Xi 2 Œa; b	 for i D 1; : : : ; n,
Fengler (2009) considers the curve estimate defined as minimizerbg of the penalized
sum of squares

nX

iD1

n
Ci � g.Xi /

o2 C �

Z b

a

fg00.v/g2 dv: (6.35)

The minimizerbg is a natural cubic spline, and represents a globally arbitrage-free
call price function. Smoothness is controlled by the parameter � > 0. The algorithm
suggested by Fengler (2009) observes the no-arbitrage constraints (6.8)–(6.10). For
this purpose the natural cubic spline is converted into the value-second derivative
representation suggested by Green and Silverman (1994). This allows to formulate
a quadratic program solving (6.35). Put gi D g.ui / and �i D g00.ui /, for i D
1; : : : ; n, and define g D .g1; : : : ; gn/

> and � D .�2; : : : ; �n�1/>. By definition of
a natural cubic spline, �1 D �n D 0. The natural spline is completely specified by
the vectors g and � , see Sect. 2.5 in Green and Silverman (1994) who also suggest
the nonstandard notation of the entries in � .

Sufficient and necessary conditions for g and � to represent a valid cubic spline
are formulated via the matrices Q and R. Let hi D uiC1 � ui for i D 1; : : : ; n � 1,
and define the n � .n � 2/ matrix Q by its elements qi;j , for i D 1; : : : ; n and
j D 2; : : : ; n � 1, given by

qj�1;j D h�1
j�1; qj;j D �h�1

j�1 � h�1
j ; and qjC1;j D h�1

j ;

for j D 2; : : : ; n � 1, and qi;j D 0 for ji � j j 	 2, where the columns of Q are
numbered in the same non-standard way as the vector � .

The .n� 2/� .n� 2/ matrix R is symmetric and defined by its elements ri;j for
i; j D 2; : : : ; n � 1, given by
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ri;i D 1
3
.hi�1 C hi / for i D 2; : : : ; n � 1

ri;iC1 D riC1;i D 1
6
hi for i D 2; : : : ; n � 2;

(6.36)

and ri;j D 0 for ji � j j 	 2. R is strictly diagonal dominant, and thus strictly
positive-definite.

Arbitrage-free smoothing of the call price surface can be cast into the fol-
lowing iterative quadratic minimization problem. Define a .2n � 2/-vector y D
.y1; : : : ; yn; 0; : : : ; 0/

>, a .2n � 2/-vector � D .g>; �>/> and the matrices, A D�
Q;�R>� and

B D


In 0

0 �R

�
; (6.37)

where In is the unit matrix with size n. Then:

1. Estimate the IV surface by means of an initial estimate on a regular forward-
moneyness grid J D Œx1; xn	 � ŒT1; Tm	.

2. Iterate through the price surface from the last to the first expiry, and solve the
following quadratic programs.
For Tj , j D m; : : : ; 1, solve

min
�

�y>� C 1

2
�>B� (6.38)

subject to

A>� D 0

�i 	 0

g2 � g1

h1
� h1

6
�2 	 �e�rTj

�gn � gn�1
hn�1

� hn�1
6
�n�1 	 0

g1 � St if j D m

g
.j /
i < g

.jC1/
i if j 2 Œm � 1; 1	

for i D 1; : : : ; n .�/
g1 	 St � e�rTj u1

gn 	 0

(6.39)

where � D .g>; �>/>. Note that we suppress the explicit dependence on j
except in conditions .�/ to keep the notation more readable. Conditions .�/
implement (6.10); therefore g.j /i and g.jC1/

i are related by forward-moneyness.

The resulting price surface is converted into IV. It can be beneficial obtain a
first coarse estimate of the surface by gridding it on the estimation grid. This
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allows to more easily implement condition (6.10). The minimization problem can be
solved by using the quadratic programming devices provided by standard statistical
software packages. The reader is referred to Fengler (2009) for the computational
details and the choice of the smoothing parameter �. In contrast to the approach
by Kahalé (2004), a potential drawback this approach suffers from is the fact that
the call price function is approximated by cubic polynomials. This can turn out to
be disadvantageous, since the pricing function is not in the domain of polynomials
functions. It is remedied however by the choice of a sufficiently dense grid in the
strike dimension in J .

6.7.3.3 IV Smoothing Using Local Polynomials

As an alternative to smoothing in the call price domain Benko et al. (2007) suggest
to directly smooth IV by means of constrained local quadratic polynomials. This
implies minimization of the following (local) least squares criterion

min
˛0;˛1;˛2

nX

iD1

˚
e�i � ˛0 � ˛1.xi � x/ � ˛2.xi � x/2

�2Kh.x � xi /; (6.40)

where e� is observed IV. We denote by Kh.x � xi / D h�1K
�
x�xi
h

�
and by K a

kernel function – typically a symmetric density function with compact support, e.g.
K.u/ D 3

4
.1 � u2/1.juj � 1/, the Epanechnikov kernel, where 1.A/ is the indicator

function of some set A. Finally, h is the bandwidth which governs the trade-off
between bias and variance, see Härdle (1990) for the details on nonparametric
regression. Since Kh is nonnegative within the (localization) window Œx�h; xCh	,
points outside of this interval do not have any influence on the estimatorb�.x/.

No-arbitrage conditions in terms of IV are obtained by computing (6.9) for an IV
adjusted BSM formula, see Brunner and Hafner (2003) among others. Expressed in
forward moneyness x D X=F this yields for the convexity condition

@2CBSM

@x2
D e�rTp

T '.d1/

�
(

1

x2b�T
C 2d1

xb�
p
T

@b�
@x

C d1d2

b�



@b�
@x

�2
C @2b�
@x2

)
(6.41)

where d1 and d2 are defined as in (6.4) and (6.5).
The key property of local polynomial regression is that it yields simultaneously

to the regression function its derivatives. More precisely, comparing (6.40) with the
Taylor expansion ofb� shows that

b�.xi / D ˛0; b� 0.xi / D ˛1; b� 00.xi / D 2˛2: (6.42)



6 Option Data and Modeling BSM Implied Volatility 139

Based on this fact Benko et al. (2007) suggest to miminize (6.40) subject to

e�rTp
T '.d1/

�
1

x2˛0T
C 2d1˛1

x˛0
p
T

C d1d2

˛0
.˛1/

2 C 2˛2


	 0; (6.43)

with

d1 D ˛20T=2� log.x/

�
p
T

; d2 D d1 � ˛0
p
T :

This leads to a nonlinear optimization problem in ˛0; ˛1; ˛2.
The case of the entire IV surface is more involved. Suppose the purpose is to

estimate b�.x; T / for a set of maturities fT1; : : : ; TLg. By (6.11), for a given value
x, we need to ensureb�2.x; Tl ; / � b�2.x; Tl 0/; for all Tl < T 0

l . Denote by Khx ;hT

.x�xi ; Tl�Ti/ a bivariate kernel function given by the product of the two univariate
kernel functions Khx .x � xi / and KhT .T � Ti /. Extending (6.40) linearly into the
time-to-maturiy dimension then leads to the following optimization problem:

min
˛.l/

LX

lD1

nX

iD1
Khx ;hT .x � xi ; Tl � Ti/

n
e�i � ˛0.l/

�˛1.l/.xi � x/ � ˛2.l/.Ti � T /� ˛1;1.l/.xi � x/2

�˛1;2.l/.xi � x/.Ti � T /
o2

(6.44)

subject to

p
Tl'.d1.l//

�
1

x2˛0.l/Tl
C 2d1.l/˛1.l/

x˛0.l/
p
Tl

C d1.l/d2.l/

a0.l/
˛21.l/C 2˛1;1.l/


	 0;

d1.l/ D ˛20.l/Tl=2� log.x/

˛0.l/
p
Tl

; d2.l/ D d1.l/ � a0.l/
p
Tl ; l D 1; : : : ; L

2Tl˛0.l/˛2.l/C ˛20.l/ > 0 l D 1; : : : ; L

˛20.l/Tl < ˛
2
0.l

0/T 0
l ; Tl < T

0
l :

The last two conditions ensure that total implied variance is (locally) nondecreasing,
since @�2

@T
> 0 can be rewritten as 2T ˛0˛2 C ˛20 > 0 for a given T , while the last

conditions guarantee that total variance is increasing across the surface. From a
computational view, problem (6.44) calculates for a given x the estimates for all
given Tl in one step in order to warrant thatb� is increasing in T .

The approach by Benko et al. (2007) yields an IV surface that respects the
convexity conditions, but neglects the conditions on call spreads and the general
price bounds. Therefore the surface may not be fully arbitrage-free. However, since
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convexity violations and calendar arbitrage are by far the most virulent instances
of arbitrage in observed IV data occurring the surfaces will be acceptable in most
cases.
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Benko, M., Fengler, M. R., Härdle, W. & Kopa, M. (2007). On extracting information implied in
options. Computational Statistics, 22(4), 543–553.

Bharadia, M. A., Christofides, N., & Salkin, G. R. (1996). Computing the Black-Scholes implied
volatility – generalization of a simple formula. In P. P. Boyle, F. A. Longstaff, P. Ritchken, D. M.
Chance & R. R. Trippi (Eds.), Advances in futures and options research, (Vol. 8, pp. 15–29.).
London: JAI Press

Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of
Political Economy, 81, 637–654.

Brenner, M., & Subrahmanyam, M. (1988). A simple formula to compute the implied standard
deviation. Financial Analysts Journal, 44(5), 80–83.

Britten-Jones, M., & Neuberger, A. J. (2000). Option prices, implied price processes, and stochastic
volatility. Journal of Finance, 55(2), 839–866.

Brockhaus, O., Farkas, M., Ferraris, A., Long, D., & Overhaus, M. (2000). Equity derivatives and
market risk models. London: Risk Books.

Brunner, B., & Hafner, R. (2003). Arbitrage-free estimation of the risk-neutral density from the
implied volatility smile. Journal of Computational Finance, 7(1), 75–106.

Carr, P., & Wu, L. (2003). Finite moment log stable process and option pricing. Journal of Finance,
58(2), 753–777.

Castagna, A., & Mercurio, F. (2007). Building implied volatility surfaces from the available market
quotes: A unified approach. In I. Nelken (Ed.), Volatility as an asset class (pp. 3–59). London:
Risk Books.

Cont, R., & da Fonseca, J. (2002). The dynamics of implied volatility surfaces. Quantitative
Finance, 2(1), 45–60.

Corrado, C. J., & Miller, T. W. (1996). A note on a simple, accurate formula to compute implied
standard deviations. Journal of Banking and Finance, 20, 595–603.

Dumas, B., Fleming, J., & Whaley, R. E. (1998). Implied volatility functions: Empirical tests,
Journal of Finance, 53(6), 2059–2106.

Feinstein, S. (1988). A source of unbiased implied volatility. Technical Report 88–89, Federal
Reserve Bank of Atlanta.

Fengler, M. R. (2005). Semiparametric modeling of implied volatility, Lecture Notes in Finance.
Berlin: Springer.

Fengler, M. R. (2009). Arbitrage-free smoothing of the implied volatility surface. Quantitative
Finance, 9(4), 417–428.

Fengler, M. R., & Wang, Q. (2009). Least squares kernel smoothing of the implied volatility smile.
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Chapter 7
Interest Rate Derivatives Pricing
with Volatility Smile

Haitao Li

Abstract The volatility “smile” or “skew” observed in the S&P 500 index options
has been one of the main drivers for the development of new option pricing models
since the seminal works of Black and Scholes (J Polit Econ 81:637–654, 1973) and
Merton (Bell J Econ Manag Sci 4:141–183, 1973). The literature on interest rate
derivatives, however, has mainly focused on at-the-money interest rate options. This
paper advances the literature on interest rate derivatives in several aspects. First, we
present systematic evidence on volatility smiles in interest rate caps over a wide
range of moneyness and maturities. Second, we discuss the pricing and hedging
of interest rate caps under dynamic term structure models (DTSMs). We show that
even some of the most sophisticated DTSMs have serious difficulties in pricing
and hedging caps and cap straddles, even though they capture bond yields well.
Furthermore, at-the-money straddle hedging errors are highly correlated with cap-
implied volatilities and can explain a large fraction of hedging errors of all caps
and straddles across moneyness and maturities. These findings strongly suggest the
existence of systematic unspanned factors related to stochastic volatility in interest
rate derivatives markets. Third, we develop multifactor Heath–Jarrow–Morton
(HJM) models with stochastic volatility and jumps to capture the smile in interest
rate caps. We show that although a three-factor stochastic volatility model can price
at-the-money caps well, significant negative jumps in interest rates are needed to
capture the smile. Finally, we present nonparametric evidence on the economic
determinants of the volatility smile. We show that the forward densities depend
significantly on the slope and volatility of LIBOR rates and that mortgage refinance
activities have strong impacts on the shape of the volatility smile. These results
provide nonparametric evidence of unspanned stochastic volatility and suggest that
the unspanned factors could be partly driven by activities in the mortgage markets.
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7.1 Introduction

The extensive literature on multifactor dynamic term structure models (hereafter,
DTSMs) of the last decade mainly focuses on explaining bond yields and swap
rates (see Dai and Singleton 2003; Piazzesi 2009 for surveys of the literature). The
pricing and hedging of over-the-counter interest rate derivatives such as caps and
swaptions has attracted attention only recently. World-wide, caps and swaptions are
among the most widely traded interest rate derivatives. According to the Bank for
International Settlements, in recent years, their combined notional value exceeds
10 trillion dollars, which is many times larger than that of exchange-traded options.
The accurate and efficient pricing and hedging of caps and swaptions is therefore
of enormous practical importance. Moreover, because cap and swaption prices may
contain information on term structure dynamics not contained in bond yields or
swap rates (see Jagannathan et al. 2003 for a related discussion), Dai and Singleton
(2003, p. 670) argue that there is an “enormous potential for new insights from using
(interest rate) derivatives data in model estimations.”

Since caps and swaptions are traded over-the-counter, the common data sources,
such as Datastream, only supply at-the-money (ATM) option prices. As a result,
the majority of the existing literature uses only ATM caps and swaptions, with
almost no documentation of the relative pricing of caps with different strike prices.
In contrast, the attempt to capture the volatility smile in equity option markets has
been the driving force behind the development of the equity option pricing literature
for the past few decades (for reviews of the equity option literature, see Duffie 2002;
Campbell et al. 1997; Bakshi et al. 1997, and references therein). Analogously,
studying caps and swaptions with different strike prices could provide new insights
about existing term structure models that are not available from using only ATM
options.

Using almost 4 years of daily interest rate caps price data, we provide a
comprehensive documentation of volatility smiles in the caps market. We obtain
daily prices of interest rate caps between August 1, 2000 and July 26, 2004 from
SwapPX. Our data set is one of the most comprehensive ones available for caps
written on dollar LIBOR rates. One advantage of our data is that we observe prices
of caps over a wide range of strike prices and maturities. There are 15 different
maturities ranging from 6 months to 10 years throughout the sample period, and
for each maturity, there are 10 different strike prices. The data makes it possible to
examine issues that have not been addressed in the literature.

The first question we study is the pricing and hedging of interest rate caps over
different strike prices using one of the most popular classes of term structure models,
the DTSMs. One main reason for the popularity of the DTSMs is their tractability.
They provide closed-form solutions for the prices of not only zero-coupon bonds,
but also of a wide range of interest rate derivatives (see, for example, Duffie et al.
2000; Chacko and Das 2002; Leippold and Wu 2002). The closed-form formulas
significantly reduce the computational burden of implementing these models and
simplify their applications in practice. However, almost all existing DTSMs assume
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that bonds and derivatives are driven by the same set of risk factors, which implies
that derivatives are redundant and can be perfectly hedged using solely bonds.
Interest rate caps and swaptions are derivatives written on Libor and swap rates.
Therefore, according to DTSMs, their prices should be determined by the same set
of risk factors that determine Libor and swap rates.

Li and Zhao (2006) study the pricing and hedging of caps over different strike
prices using the quadratic term structure models (QTSMs) of Ahn et al. (2002)
(hereafter, ADG). We choose the QTSMs over the affine term structure models
(ATSMs) of Duffie and Kan (1996) in our analysis because of their superior perfor-
mance in capturing the conditional volatility of bond yields, which is important for
pricing derivatives. We find that the QTSMs have serious difficulties in hedging caps
and cap straddles, even though they capture bond yields well. Furthermore, ATM
straddle hedging errors are highly correlated with cap-implied volatilities and can
explain a large fraction of hedging errors of all caps and straddles across moneyness
and maturities. Our results strongly suggest the existence of systematic unspanned
factors related to stochastic volatility in interest rate derivatives markets.

Li and Zhao (2006) contribute nicely to the literature on the “unspanned
stochastic volatility” puzzle. Heidari and Wu (2003) show that while the three
common term structure factors (i.e. the level, slope and curvature of the yield curve)
can explain 99.5% of the variations of bond yields, they explain less than 60% of
swaption implied volatilities. Similarly, Collin-Dufresne and Goldstein (2002) show
that there is a very weak correlation between changes in swap rates and returns on
ATM cap straddles: the R2s of regressions of straddle returns on changes of swap
rates are typically less than 20%. Furthermore, one principal component explains
80% of regression residuals of straddles with different maturities. As straddles are
approximately delta neutral and mainly exposed to volatility risk, they refer to the
factor that drives straddle returns but is not affected by the term structure factors
as “unspanned stochastic volatility” (USV). Jagannathan et al. (2003) find that
an affine three-factor model can fit the LIBOR swap curve rather well. However,
they identify significant shortcomings when confronting the model with data on
caps and swaptions, thus concluding that derivatives must be used when evaluating
term structure models. Fan et al. (2003) (hereafter, FGR), however, challenge the
findings of Heidari and Wu (2003) and Collin-Dufresne and Goldstein (2002),
arguing that the linear regression approach used in these two studies could give
misleading results of USV due to the highly nonlinear dependence of straddle
returns on the underlying yield factors. Instead, FGR show that multifactor models
with state variables linked solely to underlying LIBOR and swap rates can hedge
swaptions and even swaption straddles very well. Our rigorous analysis of model-
based hedging of caps and cap straddles based on QTSMs avoids the problems
facing the linear regression approach of previous studies and helps resolve the
controversy on USV.

Some recent studies also provide evidence in support of the existence of USV
using bond data alone. They show the yield curve volatilities backed out from a
cross-section of bond yields do not agree with the time-series filtered volatilities,
via GARCH or high-frequency estimates from yields data. This challenges the
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traditional DTSMs even more since these models can not be expected to capture the
option implied volatilities if they can not even match the realized yield curve volatil-
ities. Specifically, Collin-Dufresne, Goldstein, and Jones (2009, CDGJ) show that
the LIBOR volatility implied by an affine multi-factor specification from the swap
rate curve can be negatively correlated with the time series of volatility obtained
from a standard GARCH approach. In response, they argue that an affine four-factor
USV model delivers both realistic volatility estimates and a good cross-sectional
fit. Andersen and Benzoni (2006), through the use of high-frequency data on bond
yields, construct the model-free “realized yield volatility” measure by computing
empirical quadratic yield variation for a cross-section of fixed maturities. They find
that the yield curve fails to span yield volatility, as the systematic volatility factors
are largely unrelated to the cross-section of yields. They claim that a broad class of
affine diffusive, Gaussian-quadratic and affine jump-diffusive models is incapable of
accommodating the observed yield volatility dynamics. An important implication
is that the bond markets per se are incomplete and yield volatility risk cannot be
hedged by taking positions solely in the Treasury bond market. They also advocate
using the empirical realized yield volatility measures more broadly as a basis for
specification testing and (parametric) model selection within the term structure lit-
erature. Thompson (2008), on the LIBOR swap data, argues when the affine models
are estimated with the time-series filtered yield volatility they can pass on his newly
proposed specification test, but not with the cross-sectional backed-out volatility.
From these studies on the yields data alone, there may exist an alternative expla-
nation for the failure of DTSMs in effectively pricing derivatives in that the bonds
small convexity makes bonds not sensitive enough to identify the volatilities from
measurement errors. Therefore efficient inference requires derivatives data as well.

The second question we study is how to incorporate USV into a term structure
model so it can price wide spectrum of interest rate derivatives effectively. The
existence of USV has profound implications for term structure modeling, in
particular for the DTSMs. The presence of USV in the derivatives market implies
that one fundamental assumption underlying all DTSMs does not hold and that
these models need to be substantially extended to incorporate the unspanned
factors before they can be applied to derivatives. However, as Collin-Dufresne
and Goldstein (2002) show, it is rather difficult to introduce USV in traditional
DTSMs: One must impose highly restrictive assumptions on model parameters to
guarantee that certain factors that affect derivative prices do not affect bond prices.
In contrast to the approach of adding USV restrictions to DTSMs, it is relatively
easy to introduce USV in the Heath et al. (1992) (hereafter, HJM) class of models,
which include the LIBOR models of Brace et al. (1997) and Miltersen et al. (1997),
the random field models of Goldstein (2000), and the string models of Santa-Clara
and Sornette (2001). Indeed, any HJM model in which the forward rate curve has
stochastic volatility and the volatility and yield shocks are not perfectly correlated
exhibits USV. Therefore, in addition to the commonly known advantages of HJM
models (such as perfectly fitting the initial yield curve), they offer the additional
advantage of easily accommodating USV. Of course, the trade-off here is that in an
HJM model, the yield curve is an input rather than a prediction of the model.
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Jarrow et al. (2007) develop multifactor HJM models with stochastic volatility
and jumps in LIBOR forward rates to capture the smile in interest rate caps. The
LIBOR rates follow the affine jump diffusions (hereafter, AJDs) of Duffie et al.
(2000) and a closed-form solution for cap prices is provided. Given that a small
number of factors can explain most of the variation of bond yields, we consider
low-dimensional model specifications based on the first few (up to three) principal
components of historical forward rates. Our model explicitly incorporates jumps
in LIBOR rates, making it possible to differentiate between the importance of
stochastic volatility versus jumps for pricing interest rate derivatives. Jarrow et al.
(2007) provide one of the first empirical analyses of their model for capturing the
volatility smile in the cap market. We show that although a three-factor stochastic
volatility model can price at-the-money caps well, significant negative jumps in
interest rates are needed to capture the smile.

Recently, several HJM models with USV have been developed and applied to
price caps and swaptions. Collin-Dufresne and Goldstein (2003) develop a random
field model with stochastic volatility and correlation in forward rates. Applying the
transform analysis of Duffie et al. (2000), they obtain closed-form formulae for a
wide variety of interest rate derivatives. However, they do not calibrate their models
to market prices of caps and swaptions. Han (2007) extends the model of LSS
(2001) by introducing stochastic volatility and correlation in forward rates. Han
(2007) shows that stochastic volatility and correlation are important for reconciling
the mispricing between caps and swaptions. Trolle and Schwartz (2009) develop
a multifactor term structure model with unspanned stochastic volatility factors and
correlation between innovations to forward rates and their volatilities.

The third question we study is what economic factors determine the shape of
the volatility smile in interest rate caps. Li and Zhao (2009) provide one of the
first nonparametric estimates of probability densities of LIBOR rates under forward
martingale measures using caps with a wide range of strike prices and maturities.1

The nonparametric estimates of LIBOR forward densities are conditional on the
slope and volatility factors of LIBOR rates, while the level factor is automatically
incorporated in existing methods.2 They find that the forward densities depend
significantly on the slope and volatility of LIBOR rates. In addition, they document
important impacts of mortgage market activities on the LIBOR forward densities
even after controlling for both the slope and volatility factors. For example, the
forward densities at intermediate maturities (3, 4, and 5 years) are more negatively
skewed when refinance activities, measured by the Mortgage Bankers Association

1The nonparametric forward densities estimated using caps, which are among the simplest and
most liquid OTC interest rate derivatives, allow consistent pricing of more exotic and/or less liquid
OTC interest rate derivatives based on the forward measure approach. The nonparametric forward
densities can reveal potential misspecifications of most existing term structure models, which rely
on strong parametric assumptions to obtain closed-form formula for interest rate derivative prices.
2Andersen and Benzoni (2006) show the “curvature” factor are not significantly correlated with
the yield volatility and it is true in this paper as well, therefore the volatility effect here is not due
to the “curvature” factor.
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of America (MBAA) refinance index, are high. Demands for out-of–the-money
(OTM) floors by investors in mortgage-backed securities (MBS) to hedge potential
losses from prepayments could lead to more negatively skewed forward densities.
These empirical results have important implications for the unspanned stochastic
volatility puzzle by providing nonparametric and model-independent evidence of
USV. The impacts of mortgage activities on the forward densities further suggest
that the unspanned factors could be partially driven by activities in the mortgage
markets. While Duarte (2008) shows mortgage-backed security (MBS) hedging
activity affects interest rate volatility, Li and Zhao (2009) provide evidence on the
impacts of mortgage market activities on the shape of the volatility smile.

The rest of the paper is organized as follows. In Sect. 7.2, we provide a
comprehensive evidence on a volatility smile in interest rate cap markets. In
Sect. 7.3, we present the main results of Li and Zhao (2006) on the pricing and
hedging of interest rate caps under QTSMs. Section 7.4 contains the main results
of Jarrow et al. (2007) on pricing the volatility smile in the cap markets using
multifactor HJM model with stochastic volatility and jumps. In Sect. 7.5, we present
the nonparametric evidence of Li and Zhao (2009) on the impacts of mortgage
market activities on the shape of the volatility smile. Section 7.6 concludes, and
the Appendix contains some mathematical details.

7.2 A Volatility Smile in the Interest Rate Cap Markets

In this section, using almost 4 years of cap price data we provide a comprehensive
documentation of volatility smiles in the cap markets. The data come from SwapPX
and include daily information on LIBOR forward rates (up to 10 years) and prices
of caps with different strikes and maturities from August 1, 2000 to July 26,
2004. Jointly developed by GovPX and Garban-ICAP, SwapPX is the first widely
distributed service delivering 24-hour real-time rates, data, and analytics for the
world-wide interest rate swaps market. GovPX, established in the early 1990s
by the major US fixed-income dealers in a response to regulators’ demands for
increased transparency in the fixed-income markets, aggregates quotes from most of
the largest fixed-income dealers in the world. Garban-ICAP is the world’s leading
swap broker specializing in trades between dealers and trades between dealers and
large customers. The data are collected every day the market is open between
3:30 and 4 p.m. To reduce noise and computational burdens, we use weekly data
(every Tuesday) in our empirical analysis. If Tuesday is not available, we first use
Wednesday followed by Monday. After excluding missing data, we have a total of
208 weeks in our sample. To our knowledge, our data set is the most comprehensive
available for caps written on dollar LIBOR rates (see Gupta and Subrahmanyam
2005; Deuskar et al. 2003 for the only other studies that we are aware of in this area).

Interest rate caps are portfolios of call options on LIBOR rates. Specifically, a
cap gives its holder a series of European call options, called caplets, on LIBOR
forward rates. Each caplet has the same strike price as the others, but with different
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expiration dates. Suppose L.t; T / is the 3-month LIBOR forward rate at t � T ,
for the interval from T to T C 1

4
. A caplet for the period

�
T; T C 1

4

�
struck at K

pays 1
4
.L .T; T / �K/ at T C 1

4
: Note that although the cash flow of this caplet is

received at time T C 1
4
, the LIBOR rate is determined at time T . Hence, there is

no uncertainty about the caplet’s cash flow after the LIBOR rate is set at time T . In
summary, a cap is just a portfolio of caplets whose maturities are 3 months apart.
For example, a 5-year cap on 3-month LIBOR struck at 6% represents a portfolio of
19 separately exercisable caplets with quarterly maturities ranging from 6 months
to 5 years, where each caplet has a strike price of 6%.

The existing literature on interest rate derivatives mainly focuses on ATM
contracts. One advantage of our data is that we observe prices of caps over a wide
range of strikes and maturities. For example, every day for each maturity, there are
10 different strike prices: 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 8.0, 9.0, and 10.0% between
August 1, 2000 and October 17, 2001; 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 and
5.5% between October 18 and November 1, 2001; and 2.5, 3.0, 3.5, 4.0, 4.5, 5.0,
5.5, 6.0, 6.5, and 7.0% between November 2, 2001 and July 15, 2002; 2.0, 2.5, 3.0,
3.5, 4.0, 4.5, 5.0, 5.5, 6.0, and 6.5% between July 16, 2002 and April 14, 2003; 1.5,
2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, and 6.0% between April 15, 2003 and September
23, 2003; and 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, and 6.0% between April 15,
2003 and July 26, 2004. Moreover, caps have 15 different maturities throughout the
whole sample period: 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 6.0, 7.0, 8.0, 9.0,
and 10.0 years. This cross-sectional information on cap prices allows us to study the
performance of existing term structure models in the pricing and hedging of caps
for different maturity and moneyness.

Ideally, we would like to study caplet prices, which provide clear predictions of
model performance across maturity. Unfortunately, we only observe cap prices. To
simplify the empirical analysis, we consider the difference between the prices of
caps with the same strike and adjacent maturities, which we refer to as difference
caps. Thus, our analysis deals with the sum of the caplets between two neighboring
maturities with the same strike. For example, 1.5-year difference caps with a specific
strike represent the sum of the 1.25-year and 1.5-year caplets with the same strike.

Due to daily changes in LIBOR rates, difference caps realize different moneyness
(defined as the ratio between the strike price and the average LIBOR forward
rates underlying the caplets that form the difference cap) each day. Therefore,
throughout our analysis, we focus on the prices of difference caps at given fixed
moneyness. That is, each day we interpolate difference cap prices with respect to
the strike price to obtain prices at fixed moneyness. Specifically, we use local cubic
polynomials to preserve the shape of the original curves while smoothing over the
grid points. We refrain from extrapolation and interpolation over grid points without
nearby observations, and we eliminate all observations that violate various arbitrage
restrictions. We also eliminate observations with zero prices, and observations that
violate either monotonicity or convexity with respect to the strikes.

Figure 7.1a plots the average Black (1976)-implied volatilities of difference caps
across moneyness and maturity, while Fig. 7.1b plots the average implied volatilities
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26, 2004
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of ATM difference caps over the whole sample period. Consistent with the existing
literature, the implied volatilities of difference caps with a moneyness between 0.8
and 1.2 have a humped shape with a peak at around a maturity of 2 years. However,
the implied volatilities of all other difference caps decline with maturity. There is
also a pronounced volatility skew for difference caps at all maturities, with the skew
being stronger for short-term difference caps. The pattern is similar to that of equity
options: In-the-money (ITM) difference caps have higher implied volatilities than
do out-of-the-money (OTM) difference caps. The implied volatilities of the very
short-term difference caps are more like a symmetric smile than a skew.

Figure 7.2a–c, respectively, plots the time series of Black-implied volatilities for
2.5-, 5-, and 8-year difference caps across moneyness, while Fig. 7.2d plots the time
series of ATM implied volatilities of the three contracts. It is clear that the implied
volatilities are time varying and they have increased dramatically (especially for
2.5-year difference caps) over our sample period. As a result of changing interest
rates and strike prices, there are more ITM caps in the later part of our sample.

Fig. 7.2 (a) Black implied volatilities of 2.5-year difference caps. (b) Black implied volatilities of
5-year difference caps. (c) Black implied volatilities of 8-year difference caps. (d) Black implied
volatilities of 2.5-, 5-, and 8-year ATM difference caps
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7.3 Pricing and Hedging Interest Rate Caps Under QTSMs

In this section, we present the main results of Li and Zhao (2006), who study the
pricing and hedging of interest rate caps under QTSMs. We first discuss the main
ingredients of QTSMs and the method for model estimation. Then we discuss the
main empirical findings of Li and Zhao (2006).

7.3.1 Model and Estimation

Suppose the economy is represented by a filtered probability space�
�;F ; fFt g0�t�T ; P

�
; where fFt g0�t�T is the augmented filtration generated

by an N -dimensional standard Brownian motion, W; on this probability space. We
assume fFtg0�t�T satisfies the usual hypothesis (see Protter 1990). The QTSMs
rely on the following assumptions:

• The instantaneous interest rate rt is a quadratic function of the N -dimensional
state variables Xt;

r.Xt/ D X 0
t ‰Xt C ˇ0Xt C ˛: (7.1)

• The state variables follow a multivariate Gaussian process,

dXt D Œ�C �Xt 	 dt C†dWt: (7.2)

• The market price of risk is an affine function of the state variables,

#.Xt/ D �0 C �1Xt : (7.3)

Note that in the above equations ‰; �;†; and �1 are N -by-N matrices, ˇ;�
and �0 are vectors of length N and ˛ is a scalar. The quadratic relation between
rt and Xt has the desired property that rt is guaranteed to be positive if ‰ is
positive semidefinite and ˛ � 1

4
ˇ0‰ˇ 	 0. Although Xt follows a Gaussian

process in (2), interest rate rt exhibits conditional heteroskedasticity because of the
quadratic relationship between rt and Xt . As a result, the QTSMs are more flexible
in modeling volatility clustering in bond yields and correlations among the state
variables than the ATSMs.

To guarantee the stationarity of the state variables, we assume that � permits the
following eigenvalue decomposition,

� D UƒU�1;

where ƒ is the diagonal matrix of the eigenvalues that take negative values, ƒ �
diag Œ�i 	N ; and U is the matrix of the eigenvectors of �, U � Œu1 u2 : : : uN 	.
The conditional distribution of the state variables Xt is multivariate Gaussian with
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conditional mean

E ŒXtC�t jXt	 D Uƒ�1 Œˆ � IN 	U
�1�C Uƒ�1 Œˆ� IN 	 U

�1Xt (7.4)

and conditional variance

var ŒXtC�t jXt 	 D U‚U 0; (7.5)

where ˆ is a diagonal matrix with elements exp.�i�t/ for i D 1; : : : ; N; ‚ is

a N -by-N matrix with elements
h

vij
�iC�j

�
e�t.�iC�j / � 1

�i
, where

�
vij
�
N�N D

U�1††0U 0�1.
With the specification of market price of risk, we can relate the risk-neutral

measureQ to the physical one P as followsW

E

�
dQ

dP
jFt
	

D exp

�
�
Z t

0

#.Xs/
0dWs � 1

2

Z t

0

#.Xs/
0#.Xs/ds

	
; for t � T:

Applying Girsanov’s theorem, we obtain the risk-neutral dynamics of the state
variables

dXt D Œı C �Xt 	 dt C†dWQ
t

where ı D ��†�0; � D ��†�1; andW Q
t is anN -dimensional standard Brownian

motion under measureQ.
Under the above assumptions, a large class of fixed-income securities can be

priced in (essentially) closed-form (see Leippold and Wu 2002). We discuss the
pricing of zero-coupon bonds below and the pricing of caps in the Appendix.
Let V.t; / be the time-t value of a zero-coupon bond that pays 1 dollar at
time T . D T � t/. In the absence of arbitrage, the discounted value process

exp
�
� R t

0
r .Xs/ ds

�
V.t; / is a Q�martingale. Thus the value function must

satisfy the fundamental PDE, which requires the bond’s instantaneous return equals
the risk-free rate,

1

2
tr



††0 @2V .t; /

@Xt@X
0
t

�
C @V.t; /

@X 0
t

.ı C �Xt/C @V.t; /

@t
D rtV .t; /

with the terminal condition V.t; 0/ D 1. The solution takes the form

V.t; / D exp
��X 0

t A./Xt � b./0Xt � c./� ;

where A./; b./ and c./ satisfy the following system of ordinary differential
equations (ODEs),

@A./

@
D ‰ C A./� C � 0A./ � 2A./††0A./I (7.6)
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@b./

@
D ˇ C 2A./ı C � 0b./ � 2A./††0b./I (7.7)

@c./

@
D ˛ C b./0ı � 1

2
b./0††0b./C tr

�
††0A./

� I (7.8)

with A.0/ D 0N�N I b.0/ D 0N I c.0/ D 0:

Consequently, the yield-to-maturity, y.t; /; is a quadratic function of the state
variables

y.t; / D 1



�
X 0
t A./Xt C b./0Xt C c./

�
: (7.9)

In contrast, in the ATSMs the yields are linear in the state variables and therefore the
correlations among the yields are solely determined by the correlations of the state
variables. Although the state variables in the QTSMs follow multivariate Gaussian
process, the quadratic form of the yields helps to model the time varying volatility
and correlation of bond yields.

To price and hedge caps in the QTSMs, we need to estimate both model
parameters and latent state variables. Due to the quadratic relationship between bond
yields and the state variables, the state variables are not identified by the observed
yields even in the univariate case in the QTSMs. Previous studies, such as ADG
(2002) have used the efficient method of moments (EMM) of Gallant and Tauchen
(1996) to estimate the QTSMs. However, in our analysis, we need to estimate not
only model parameters, but also the latent state variables. Hence, we choose the
extended Kalman filter to estimate model parameters and extract the latent state
variables. Duffee and Stanton (2004) show that the extended Kalman filter has
excellent finite sample performance in estimating DTSMs. Previous studies that
have used the extended Kalman filter in estimating the ATSMs include Duan and
Simonato (1995), De Jong and Santa-Clara (1999), and Lund (1997), among many
others.

To implement the extended Kalman filter, we first recast the QTSMs into a state-
space representation. Suppose we have a time series of observations of yields of
L zero-coupon bonds with maturities � D .1; 2; : : : ; L/. Let „ be the set of
parameters for QTSMs, Yk D f .Xk; �I„/ be the vector of the L observed yields at
the discrete time points k�t; for k D 1; 2; : : : ; K; where �t is the sample interval
(one day in our case). After the following change of variable,

Zk D U�1.��1�CXk/;

we have the state equation:

Zk D ˆZk�1 C wk; wk � N.0;‚/; (7.10)

whereˆ and ‚ are first introduced in (4) and (5), and measurement equation:

Yk D dk CHkZk C vk; vk � N.0;Rv/; (7.11)
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where the innovations in the state and measurement equations wk and vk follow
serially independent Gaussian processes and are independent from each other. The
time-varying coefficients of the measurement equation dk andHk are determined at
the ex ante forecast of the state variables,

Hk D @f .U z � ��1�; �/
@z

jzDZkjk�1

dk D f .UZkjk�1 � ��1�; �/ �HkZkjk�1 C Bk;

where Zkjk�1 D ˆZk�1.
In the QTSMs, the transition density of the state variables is multivariate

Gaussian under the physical measure. Thus the transition equation in the Kalman
filter is exact. The only source of approximation error is due to the linearization
of the quadratic measurement equation. As our estimation uses daily data, the
approximation error, which is proportional to one-day ahead forecast error, is likely
to be minor.3 The Kalman filter starts with the initial state variable Z0 D E.Z0/

and the variance-covariance matrix PZ
0 ;

PZ
0 D E

�
.Z0 � E.Z0// .Z0 � E.Z0//

0� :

These unconditional mean and variance have closed-form expressions that can be
derived using .4/ and .5/ by letting �t goes to infinity. Given the set of filtering
parameters, f„;Rvg ; we can write down the log-likelihood of observations based
on the Kalman filter

logL.Y I„/ D
KX

kD1
logf .Yk IYk�1; f„;Rvg/

D �LK
2

log.2
/ � 1

2

KX

kD1
log

ˇ̌
ˇPY

kjk�1
ˇ̌
ˇ

� 1

2

KX

kD1

��
Yk � OYkjk�1

�0 �
PY
kjk�1

��1 �
Yk � OYkjk�1

�	
;

with Yk�1 is the information set at time .k�1/�t; and PY
kjk�1 is the time .k�1/�t

conditional variance of Yk ,

PY
kjk�1 D HkP

Z
kjk�1H

0
k CRvI

PZ
kjk�1 D ˆPZ

k�1ˆ0 C‚:

3The differences between parameter estimates with and without the correction term are very small
and we report those estimates with the correction term Bk .
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Parameters are obtained by maximizing the above likelihood function. To avoid
local minimum, in our estimation procedure, we use many different starting values
and search for the optimal point using simplex method. Then we use gradient-based
optimization method to refine those estimates, until they cannot be further improved.
This is the standard technique in the literature (see e.g., Duffee 2002).

7.3.2 Empirical Results

Now we discuss the main empirical results of Li and Zhao (2006) on the perfor-
mance of QTSMs in pricing and hedging interest rate caps. Even though the study
is based on QTSMs, the empirical findings are common to ATSMs as well.4 The
pricing analysis can reveal two sources of potential model misspecification. One
is on the number of factors in the model as a missing factor usually causes large
pricing errors. An analogy is using Black-Scholes model while the stock price is
generated from a stochastic volatility model. The other is on the assumption of the
innovation process of each factor. If the innovation of the factor has a fat-tailed
distribution, the convenient assumption of Gaussian distribution is going to deliver
large pricing error as well. So from a pricing study, we can not conclude one or the
other or both cause large pricing errors. On the other hand, hedging analysis focuses
on the changes of the prices, so even if the marginal distribution of the prices can
be highly non-Gaussian, the conditional distribution for a small time step can still
be reasonably approximated with Gaussian distribution. As the result, a deficiency
in hedging, especially at high frequency, reveals more about the potential missing
factors than the distribution assumption in a model.

Li and Zhao (2006) show that the QTSMs can capture yield curve dynamics
extremely well. First, given the estimated model parameters and state variables,
they compute the one day ahead projection of yields based on the estimated model.
Figure 7.3 shows that QTSM1 model projected yields are almost indistinguishable
from the corresponding observed yields. Secondly, they examine the performance
of the QTSMs in hedging zero-coupon bonds assuming that the filtered state
variables are traded and use them as hedging instruments. The delta-neutral hedge
is conducted for zero-coupon bonds of six maturities on a daily basis. Hedging

4In the empirical analysis of Li and Zhao (2006), the QTSMs are chosen for several reasons. First,
since the nominal spot interest rate is a quadratic function of the state variables, it is guaranteed
to be positive in the QTSMs. On the other hand, in the ATSMs, the spot rate, an affine function of
the state variables, is guaranteed to be positive only when all the state variables follow square-root
processes. Second, the QTSMs do not have the limitations facing the ATSMs in simultaneously
fitting interest rate volatility and correlations among the state variables. That is, in the ATSMs,
increasing the number of factors that follow square-root processes improves the modeling of
volatility clustering in bond yields, but reduces the flexibility in modeling correlations among
the state variables. Third, the QTSMs have the potential to capture observed nonlinearity in term
structure data (see e.g., Ahn and Gao 1999). Indeed, ADG (2002) and Brandt and Chapman (2002)
show that the QTSMs can capture the conditional volatility of bond yields better than the ATSMs.
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Fig. 7.3 The observed yields (dot) and the QTSM1 projected yields (solid)

Table 7.1 The performance of QTSMs in modeling bond yields. This table reports the perfor-
mance of the three-factor QTSMs in capturing bond yields. Variance ratios of model-based hedging
of zero-coupon bonds in QTSMs using filtered state variables as hedging instruments. Variance
ratio measures the percentage of the variations of an unhedged position that can be reduced through
hedging

Maturity (yr)
0.5 1 2 5 7 10

QTSM3 0.717 0.948 0.982 0.98 0.993 0.93
QTSM2 0.99 0.956 0.963 0.975 0.997 0.934
QTSM1 0.994 0.962 0.969 0.976 0.997 0.932

performance is measured by variance ratio, which is defined as the percentage of
the variations of an unhedged position that can be reduced by hedging. The results
on the hedging performance in Table 7.1 show that in most cases the variance ratios
are higher than 95%. This should not be surprising given the excellent fit of bond
yields by the QTSMs.
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If the Libor and swap market and the cap market are well integrated, the estimated
three-factor QTSMs should be able to hedge caps well. Based on the estimated
model parameters, the delta-neutral hedge of weekly changes of difference cap
prices is conducted using filtered state variables as hedging instruments. It is also
possible to use Libor zero-coupon bonds as hedging instruments by matching the
hedge ratios of a difference cap with that of zero-coupon bonds. Daily rebalance –
adjustment of the hedge ratios everyday given changes in market conditions –
is implemented to improve hedging performance. Therefore, daily changes of a
hedged position is the difference between daily changes of the unhedged position
and the hedging portfolio. The latter equals to the sum of the products of a
difference cap’s hedge ratios with respect to the state variables and changes in the
corresponding state variables. Weekly changes are just the accumulation over daily
positions. The hedging effectiveness is measured by variance ratio, the percentage of
the variations of an unhedged position that can be reduced by hedging. This measure
is similar in spirit to R2 in linear regression.

The variance ratios of the three QTSMs in Table 7.2 show that all models have
better hedging performance for ITM, short-term (maturities from 1.5 to 4 years)
difference caps than OTM, medium and long-term difference caps (maturities longer
than 4 years) caps. There is a high percentage of variations in long-term and OTM
difference cap prices that cannot be hedged. The maximal flexible model QTSM1
again has better hedging performance than the other two models. To control for
the fact that the QTSMs may be misspecified, in Panel B of Table 7.2, the hedging
errors of each moneyness/maturity group are further regressed on the changes of
the three yield factors. While the three yield factors can explain some additional
hedging errors, their incremental explanatory power is not very significant. Thus
even excluding hedging errors that can be captured by the three yield factors, there is
still a large fraction of difference cap prices that cannot be explained by the QTSMs.

Table 7.3 reports the performance of the QTSMs in hedging cap straddles. The
difference floor prices are computed from difference cap prices using the put-call
parity and construct weekly straddle returns. As straddles are highly sensitive to
volatility risk, both delta and gamma neutral hedge is needed. Collin-Dufresne and
Goldstein (2002) show that 80% of straddle regression residuals can be explained by
one additional factor. Principle component analysis of ATM straddle hedging errors
in Panel B of Table 7.3 shows that the first factor can explain about 60% of the total
variations of hedging errors. The second and third factor each explains about 10%
of hedging errors and two additional factors combined can explain about another
10% of hedging errors. The correlation matrix of the ATM straddle hedging errors
across maturities in Panel C shows that the hedging errors of short-term (2, 2.5, 3,
3.5, and 4 years), medium-term (4.5 and 5 years) and long-term (8, 9, and 10 years)
straddles are highly correlated within each group, suggesting that there could be
multiple unspanned factors.

To further understand whether the unspanned factors are related to stochastic
volatility, we study the relationship between ATM cap implied volatilities and
straddle hedging errors. Principle component analysis in Panel A of Table 7.4 shows
that the first component explains 85% of the variations of cap implied volatilities.
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In Panel B, we regress straddle hedging errors on changes of the three yield factors
and obtain R2s that are close to zero. However, if we include the weekly changes
of the first few principle components of cap implied volatilities, the R2s increase
significantly: for some maturities, the R2s are above 90%. Although the time series
of implied volatilities are very persistent, their differences are not and we do not
suffer from the well-known problem of spurious regression. In the extreme case in
which we regress straddle hedging errors of each maturity on changes of the yield
factors and cap implied volatilities with the same maturity, theR2s in most cases are
above 90%. These results show that straddle returns are mainly affected by volatility
risk but not term structure factors.

As ATM straddles are mainly exposed to volatility risk, their hedging errors
can serve as a proxy of the USV. Panels A and B of Table 7.5 report the R2s of
regressions of hedging errors of difference caps and cap straddles across moneyness
and maturity on changes of the three yield factors and the first five principle
components of straddle hedging errors. In contrast to the regressions in Panel B
of Table 2, which only include the three yield factors, the additional factors from
straddle hedging errors significantly improve the R2s of the regressions: for most
moneyness/maturity groups, the R2s are above 90%. Interestingly for long-term
caps, the R2s of ATM and OTM caps are actually higher than that of ITM caps.
Therefore, a combination of the yield factors and the USV factors can explain cap
prices across moneyness and maturity very well.

While the above analysis is mainly based on the QTSMs, the evidence on USV is
so compelling that the results should be robust to potential model misspecification.
The fact that the QTSMs provide excellent fit of bond yields but can explain only
a small percentage of the variations of ATM straddle returns is a strong indication
that the models miss some risk factors that are important for the cap market. While
we estimate the QTSMs using only bond prices, we could also include cap prices
in model estimation. We do not choose the second approach for several reasons.
First, the current approach is consistent with the main objective of our study to
use risk factors extracted from the swap market to explain cap prices. Second, it is
not clear that modifications of model parameters without changing the fundamental
structure of the model could remedy the poor cross-sectional hedging performance
of the QTSMs. In fact, if the QTSMs indeed miss some important factors, then no
matter how they are estimated (using bonds or derivatives data), they are unlikely
to have good hedging performance. Finally, Jagannathan et al. (2003) do not find
significant differences between parameters of ATSMs estimated using LIBOR/swap
rates and cap/swaption prices. The existence of USV strongly suggests that existing
DTSMs need to relax their fundamental assumption that derivatives are redundant
securities by explicitly incorporating USV factors. Therefore, the DTSMs in their
current form may not be directly applicable to derivatives because they all rely on
the fundamental assumption that bonds and derivatives are driven by the same set of
risk factors.
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7.4 LIBOR Market Models with Stochastic Volatility and
Jumps: Theory and Evidence

The existence of USV factors suggests that it might be more convenient to consider
derivative pricing in the forward rate models of HJM (1992) or the random field
models of Goldstein (2000) and Santa-Clara and Sornette (2001) because it is
generally very difficult to introduce USV in DTSMs. For example, Collin-Dufresne
and Goldstein (2002) show that highly restrictive assumptions on model parameters
need to be imposed to guarantee that some state variables that are important for
derivative pricing do not affect bond prices. In contrast, they show that it is much
easier to introduce USV in the HJM and random field class of models: Any HJM or
random field model in which the forward rate has a stochastic volatility exhibits
USV. While it has always been argued that HJM and random field models are
more appropriate for pricing derivatives than DTSMs, the reasoning given here is
quite different. That is, in addition to the commonly known advantages of these
models (such as they can perfectly fit the initial yield curve while DTSMs generally
cannot), another advantage of HJM and random field models is that they can easily
accommodate USV (see Collin-Dufresne and Goldstein 2002 for illustration).

In this section, we discuss the multifactor HJM models with stochastic volatility
and jumps in LIBOR forward rates developed in Jarrow et al. (2007) and their
performance in capturing the volatility smile in interest rate cap markets. Instead of
modeling the unobservable instantaneous forward rates as in standard HJM models,
we focus on the LIBOR forward rates which are observable and widely used in the
market.

7.4.1 Model and Estimation

Throughout our analysis, we restrict the cap maturity T to a finite set of dates 0 D
T0 < T1 < : : : < TK < TKC1; and assume that the intervals TkC1 � Tk are equally
spaced by ı, a quarter of a year. Let Lk.t/ D L.t; Tk/ be the LIBOR forward rate
for the actual period ŒTk; TkC1	 ; and similarly let Dk.t/ D D.t; Tk/ be the price of
a zero-coupon bond maturing on Tk . Thus, we have

L.t; Tk/ D 1

ı



D.t; Tk/

D .t; TkC1/
� 1

�
; for k D 1; 2; : : : ; K: (7.12)

For LIBOR-based instruments, such as caps, floors and swaptions, it is conve-
nient to consider pricing under the forward measure. Thus, we will focus on the
dynamics of the LIBOR forward rates Lk.t/ under the forward measure Q

kC1,
which is essential for pricing caplets maturing at TkC1. Under this measure, the
discounted price of any security using DkC1.t/ as the numeraire is a martingale.
Therefore, the time t price of a caplet maturing at TkC1 with a strike price of X is
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Caplet .t; TkC1; X/ D ıDkC1.t/EQ
kC1

t

�
.Lk.Tk/ �X/C� ;

where EQ
kC1

t is taken with respect to Q
kC1 given the information set at t . The key

to valuation is modeling the evolution of Lk.t/ under QkC1 realistically and yet
parsimoniously to yield closed-form pricing formula. To achieve this goal, we rely
on the flexible AJDs of Duffie et al. (2000) to model the evolution of LIBOR rates.

We assume that under the physical measure P, the dynamics of LIBOR rates are
given by the following system of SDEs, for t 2 Œ0; Tk/ and k D 1; : : : ; K;

dLk.t/

Lk.t/
D ˛k.t/dt C �k.t/dZk.t/C dJk.t/; (7.13)

where ˛k.t/ is an unspecified drift term, Zk.t/ is the k-th element of a
Kdimensional correlated Brownian motion with a covariance matrix ‰.t/; and
Jk.t/ is the k-th element of a Kdimensional independent pure jump process
assumed independent of Zk.t/ for all k. To introduce stochastic volatility and
correlation, we could allow the volatility of each LIBOR rate �k.t/ and each
individual element of ‰.t/ to follow a stochastic process. But, such a model is
unnecessarily complicated and difficult to implement. Instead, we consider a low
dimensional model based on the first few principal components of historical LIBOR
forward rates. We assume that the entire LIBOR forward curve is driven by a small
number of factorsN <K (N � 3 in our empirical analysis). By focusing on the first
N principal components of historical LIBOR rates, we can reduce the dimension of
the model fromK to N .

Following LSS (2001) and Han (2007), we assume that the instantaneous
covariance matrix of changes in LIBOR rates share the same eigenvectors as the
historical covariance matrix. Suppose that the historical covariance matrix can be
approximated as H DUƒ0U

0; where ƒ0 is a diagonal matrix whose diagonal
elements are the first N largest eigenvalues in descending order, and the N

columns of U are the corresponding eigenvectors.5 Our assumption means that
the instantaneous covariance matrix of changes in LIBOR rates with fixed time-
to-maturity,�t; share the same eigenvectors as H . That is

�t D UƒtU
0; (7.14)

where ƒt is a diagonal matrix whose i -th diagonal element, denoted by Vi .t/; can
be interpreted as the instantaneous variance of the i -th common factor driving the
yield curve evolution at t:We assume that V.t/ follows the square-root process that

5We acknowledge that with jumps in LIBOR rates, both the historical and instantaneous covariance
matrix of LIBOR rates contain a component that is due to jumps. Our approach implicitly
assumes that the first three principal components from the historical covariance matrix captures the
variations in LIBOR rates due to continuous shocks and that the impact of jumps is only contained
in the residuals.
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has been widely used in the literature for modeling stochastic volatility (see, e.g.,
Heston 1993):

dVi.t/ D �i .Nvi � Vi .t// dt C �i
p
Vi.t/deW i.t/ (7.15)

where eW i.t/ is the i -th element of anN -dimensional independent Brownian motion
assumed independent of Zk.t/ and Jk.t/ for all k:6

While (14) and (15) specify the instantaneous covariance matrix of LIBOR rates
with fixed time-to-maturity, in applications we need the instantaneous covariance
matrix of LIBOR rates with fixed maturities †t . At t D 0, †t coincides with �t ;
for t > 0, we obtain†t from�t through interpolation. Specifically, we assume that
Us;j is piecewise constant,7 i.e., for time to maturity s 2 .Tk; TkC1/ ;

U 2
s D 1

2

�
U 2
k C U 2

kC1
�
: (7.16)

We further assume that Us;j is constant for all caplets belonging to the same differ-
ence cap. For the family of the LIBOR rates with maturities T D T1; T2; : : : TK; we
denoteUT�t the time-t matrix that consists of rows of UTk�t ; and therefore we have
the time-t covariance matrix of the LIBOR rates with fixed maturities,

†t D UT�tƒtU
0
T�t : (7.17)

To stay within the family of AJDs, we assume that the random jump times arrive
with a constant intensity �J ; and conditional on the arrival of a jump, the jump
size follows a normal distributionN.�J ; �2J /. Intuitively, the conditional probability
at time t of another jump within the next small time interval �t is �J�t and,
conditional on a jump event, the mean relative jump size is� D exp.�J C 1

2
�2J /�1.8

We also assume that the shocks driving LIBOR rates, volatility, and jumps (both
jump time and size) are mutually independent from each other.

Given the above assumptions, we have the following dynamics of LIBOR rates
under the physical measure P,

6Many empirical studies on interest rate dynamics have shown that correlation between stochastic
volatility and interest rates is close to zero. That is, there is not a strong “leverage” effect for interest
rates as for stock prices. The independence assumption between stochastic volatility and LIBOR
rates in our model captures this stylized fact.
7Our interpolation scheme is slightly different from that of Han (2007) for the convenience of
deriving closed-form solution for cap prices.
8For simplicity, we assume that different forward rates follow the same jump process with constant
jump intensity. It is not difficult to allow different jump processes for individual LIBOR rates and
the jump intensity to depend on the state of the economy within the AJD framework.
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dLk.t/

Lk.t/
D ˛k.t/dtC

NX

jD1
UTk�t;j

q
Vj .t/dWj .t/CdJk.t/; k D 1; 2; : : : ; K: (7.18)

To price caps, we need the dynamics of LIBOR rates under the appropriate
forward measure. The existence of stochastic volatility and jumps results in an
incomplete market and hence the non-uniqueness of forward martingale measures.
Our approach for eliminating this nonuniqueness is to specify the market prices of
both the volatility and jump risks to change from the physical measure P to the
forward measure Q

kC1.9 Following the existing literature, we model the volatility
risk premium as �kC1

j

p
Vj .t/; for j D 1; : : : ; N . For the jump risk premium,

we assume that under the forward measure Q
kC1; the jump process has the same

distribution as that under P , except that the jump size follows a normal distribution
with mean �kC1

J and variance �2J . Thus, the mean relative jump size under QkC1

is �kC1 D exp
�
�kC1
J C 1

2
�2J

�
� 1. Our specification of the market prices of jump

risks allows the mean relative jump size under QkC1 to be different from that under
P, accommodating a premium for jump size uncertainty. This approach, which
is also adopted by Pan (2002), artificially absorbs the risk premium associated
with the timing of the jump by the jump size risk premium. In our empirical
analysis, we make the simplifying assumption that the volatility and jump risk
premiums are linear functions of time-to-maturity, i.e., �kC1

j D cj v .Tk � 1/ and

�kC1
J D �JCcJ .Tk � 1/.10 Due to the no arbitrage restriction, the risk premiums of

shocks to LIBOR rates for different forward measures are intimately related to each
other. If shocks to volatility and jumps are also correlated with shocks to LIBOR
rates, then both volatility and jump risk premiums for different forward measures
should also be closely related to each other. However, in our model shocks to LIBOR
rates are independent of that to volatility and jumps, and as a result, the change of
measure of LIBOR shocks does not affect that of volatility and jump shocks. Due to
stochastic volatility and jumps, the underlying LIBOR market is no longer complete
and there is no unique forward measure. This gives us the freedom to choose the
functional forms of �kC1

j and �kC1
J . See Andersen and Brotherton-Ratcliffe (2001)

for similar discussions.
Given the above market prices of risks, we can write down the dynamics of

log.Lk.t// under forward measure QkC1;

9The market prices of interest rate risks are defined in such a way that the LIBOR rate is a
martingale under the forward measure.
10In order to estimate the volatility and jump risk premiums, we need a joint analysis of the
dynamics of LIBOR rates under both the physical and forward measure as in Pan (2002), and
Eraker (2004). In our empirical analysis, we only focus on the dynamics under the forward
measure. Therefore, we can only identify the differences in the risk premiums between forward
measures with different maturities. Our specifications of both risk premiums implicitly use the
1-year LIBOR rate as a reference point.
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d log.Lk.t// D �
0

@�J�kC1 C 1

2

NX

jD1
U 2
Tk�t;j Vj .t/

1

A dt

C
NX

jD1
UTk�t;j

q
Vj .t/dW

Q
kC1

j .t/C dJQ
kC1

k .t/: (7.19)

For pricing purpose, the above process can be further simplified to the following
one which has the same distribution,

d log.Lk.t// D �
0

@�J�kC1 C 1

2

NX

jD1
U 2
Tk�t;j Vj .t/

1

A dt

C
vuut

NX

jD1
U 2
Tk�t;j Vj .t/dZ

Q
kC1

k .t/C dJQ
kC1

k .t/; (7.20)

where ZQ
kC1

k .t/ is a standard Brownian motion under QkC1. Now the dynamics of
Vi .t/ under QkC1 becomes

dVi.t/ D �kC1
i

�
NvkC1
i � Vi.t/

�
dt C �i

p
Vi .t/deW Q

kC1

i .t/ (7.21)

where eW Q
kC1

is independent of ZQ
kC1
; �kC1

j D �j � �j �
kC1
j ; and NvkC1

j D
�j Nvj

�j��j �kC1
j

; j D 1; : : : ; N . The dynamics of Lk.t/ under the forward measure QkC1

are completely captured by (20) and (21).
Given that LIBOR rates follow AJDs under both the physical and forward

measure, we can directly apply the transform analysis of Duffie et al. (2000)
to derive closed-form formula for cap prices. Denote the state variables at t
as Yt D .log.Lk.t//; Vt /0 and the time-t expectation of eu�YTk under the forward

measure Q
kC1 as  .u; Yt ; t; Tk/ , E

Q
kC1

t Œeu�YTk 	. Let u D .u0; 01�N /0; then the
time-t expectation of LIBOR rate at Tk equals;

E
Q
kC1

t fexp Œu0 log .Lk.Tk//	g D  .u0; Yt ; t; Tk/ (7.22)

D exp
�
a.s/C u0 log.Lk.t//C B.s/0Vt

�
; (7.23)

where s D Tk � t and closed-form solutions of a.s/ and B.s/ (an N -by-1 vector)
are obtained by solving a system of Ricatti equations in the Appendix.

Following Duffie et al. (2000), we define

Ga;b.yIYt ; Tk;QkC1/ D E
Q
kC1

t

h
ea�log.Lk.Tk//1fb�log.Lk.Tk//�yg

i
; (7.24)
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and its Fourier transform,

Ga;b.vIYt ; Tk;QkC1/ D
Z

R

eivydGa;b.y/ (7.25)

D E
Q
kC1

t

h
e.aCivb/�log.Lk.Tk//

i

D  .aC ivb; Yt ; t; Tk/ : (7.26)

Levy’s inversion formula gives

Ga;b.yIYt ; Tk;QkC1/ D  .a C ivb; Yt ; t; Tk/

2

� 1




Z 1

0

Im
�
 .a C ivb; Yt ; t; Tk/ e�ivy�

v
dv: (7.27)

The time-0 price of a caplet that matures at TkC1 with a strike price of X equals

Caplet.0; TkC1; X/ D ıDkC1 .0/EQ
kC1

0

�
.Lk.Tk/ �X/C� ; (7.28)

where the expectation is given by the inversion formula,

E
Q
kC1

0 ŒLk.Tk/� X	C D G1;�1.� lnX IY0; Tk;QkC1/ (7.29)

�XG0;�1.� lnX IY0; Tk;QkC1/: (7.30)

The new models developed in this section nest some of the most important
models in the literature, such as LSS (2001) (with constant volatility and no jumps)
and Han (2007) (with stochastic volatility and no jumps). The closed-form formula
for cap prices makes an empirical implementation of our model very convenient and
provides some advantages over existing methods. For example, Han (2007) develops
approximations of ATM cap and swaption prices using the techniques of Hull and
White (1987). However, such an approach might not work well for away-from-the-
money options. In contrast, our method would work well for all options, which is
important for explaining the volatility smile.

In addition to introducing stochastic volatility and jumps, our multifactor HJM
models also has advantages over the standard LIBOR market models of Brace et al.
(1997), Miltersen et al. (1997), and their extensions often applied to caps in prac-
tice.11 While our models provide a unified multifactor framework to characterize
the evolution of the whole yield curve, the LIBOR market models typically make
separate specifications of the dynamics of LIBOR rates with different maturities.

11Andersen and Brotherton-Ratcliffe (2001) and Glasserman and Kou (2003) develop LIBOR
models with stochastic volatility and jumps, respectively.
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As suggested by LSS (2001), the standard LIBOR models are “more appropriately
viewed as a collection of different univariate models, where the relationship between
the underlying factors is left unspecified.” In contrast, the dynamics of LIBOR
rates with different maturities under their related forward measures are internally
consistent with each other given their dynamics under the physical measure and the
market prices of risks. Once our models are estimated using one set of prices, they
can be used to price and hedge other fixed-income securities.

We estimate our new market model using prices form a wide cross section of
difference caps with different strikes and maturities. Every week we observe prices
of difference caps with ten moneyness and thirteen maturities. However, due to
changing interest rates, we do not have enough observations in all moneyness/
maturity categories throughout the sample. Thus, we focus on the 53 money-
ness/maturity categories that have less than ten percent of missing values over the
sample estimation period. The moneyness and maturity of all difference caps belong
to the following sets f0.7, 0.8, 0.9, 1.0, 1.1g and f1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0,
6.0, 7.0, 8.0, 9.0, 10.0g (unit in years), respectively. The difference caps with time-
to-maturity less than or equal to 5 years represent portfolios of two caplets, while
those with time-to-maturity longer than 5 years represent portfolios of four caplets.

We estimate the model parameters by minimizing the sum of squared percentage
pricing errors (SSE) of all relevant difference caps.12 Consider the time series
observations t D 1; : : : ; T , of the prices of 53 difference caps with moneyness mi

and time-to-maturities i ; i D 1; : : : ;M D 53.Let � represent the model parameters
which remain constant over the sample period. Let C .t;mi ; i / be the observed
price of a difference cap with moneyness mi and time-to-maturity i and let
OC .t; i ; mi ; Vt .�/ ; �/ denote the corresponding theoretical price under a given

model, where Vt .�/is the model implied instantaneous volatility at t given model
parameters � . For each i and t , denote the percentage pricing error as

ui;t .�/ D C .t;mi ; i /� OC .t;mi ; i ; Vt .�/ ; �/

C .t;mi ; i /
; (7.31)

where Vt .�/ is defined as

Vt .�/ D arg min
fVt g

MX

iD1

"
C .t;mi ; i / � OC .t;mi ; i ; Vt ; �/

C .t;mi ; i /

#2
: (7.32)

12Due to the wide range of moneyness and maturities of the difference caps involved, there could
be significant differences in the prices of difference caps. Using percentage pricing errors helps to
mitigate this probelem.
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7.4.2 Empirical Results

In this section, we provide empirical evidence on the performance of six different
models in capturing the cap volatility smile. The first three models, denoted as
SV1, SV2 and SV3, allow one, two, and three principal components to drive the
forward rate curve, respectively, each with its own stochastic volatility. The next
three models, denoted as SVJ1, SVJ2 and SVJ3, introduce jumps in LIBOR rates in
each of the previous SV models. SVJ3 is the most comprehensive model and nests
all the others as special cases. We first examine the separate performance of each
of the SV and SVJ models, then we compare performance across the two classes of
models. The estimation of all models is based on the principal components extracted
from historical LIBOR forward rates between June 1997 and July 2000.13

The SV models contribute to cap pricing in four important ways. First, the three
principal components capture variations in the levels of LIBOR rates caused by
innovations in the “level”, “slope”, and “curvature” factors. Second, the stochastic
volatility factors capture the fluctuations in the volatilities of LIBOR rates reflected
in the Black implied volatilities of ATM caps.14 Third, the stochastic volatility
factors also introduce fatter tails in LIBOR rate distributions than implied by the
log-normal model, which helps capture the volatility smile. Finally, given our model
structure, innovations of stochastic volatility factors also affect the covariances
between LIBOR rates with different maturities. The first three factors, however, are
more important for our applications, because difference caps are much less sensitive
to time varying correlations than swaptions.15 Our discussion of the performance
of the SV models focuses on the estimates of the model parameters and the
latent volatility variables, and the time series and cross-sectional pricing errors of
difference caps.

A comparison of the parameter estimates of the three SV models in Table 7.6
shows that the “level” factor has the most volatile stochastic volatility, followed,
in decreasing order, by the “curvature” and “slope” factor. The long-run mean (Nv1)
and volatility of volatility (�1) of the first volatility factor are much bigger than
that of the other two factors. This suggests that the fluctuations in the volatilities
of LIBOR rates are mainly due to the time varying volatility of the “level” factor.
The estimates of the volatility risk premium of the three models are significantly
negative, suggesting that the stochastic volatility factors of longer maturity LIBOR
rates under the forward measure are less volatile with lower long-run mean and
faster speed of mean reversion. This is consistent with the fact that the Black implied
volatilities of longer maturity difference caps are less volatile than that of short-term
difference caps.

13The LIBOR forward curve is constructed from weekly LIBOR and swap rates from Datastream
following the bootstrapping procedure of LSS (2001).
14Throughout our discussion, volatilities of LIBOR rates refer to market implied volatilities from
cap prices and are different from volatilities estimated from historical data.
15See Han (2002) for more detailed discussions on the impact of time varying correlations for
pricing swaptions.
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Table 7.6 Parameter estimates of stochastic volatility models. This table reports parameter
estimates and standard errors of the one-, two-, and three-factor stochastic volatility models. The
estimates are obtained by minimizing sum of squared percentage pricing errors (SSE) of difference
caps in 53 moneyness and maturity categories observed on a weekly frequency from August 1,
2000 to September 23, 2003. The objective functions reported in the table are re-scaled SSEs over
the entire sample at the estimated model parameters and are equal to RMSE of difference caps. The
volatility risk premium of the i th stochastic volatility factor for forward measure QkC1 is defined
as �kC1

i D civ(Tk�1)

SV1 SV2 SV3

Parameter Estimate Std. err Estimate Std. err Estimate Std. err

�1 0:0179 0.0144 0:0091 0.0111 0:0067 0.0148
�2 0:1387 0.0050 0:0052 0.0022
�3 0:0072 0.0104
Nv1 1:3727 1.1077 1:7100 2.0704 2:1448 4.7567
Nv2 0:0097 0.0006 0:0344 0.0142
Nv3 0:1305 0.1895
#1 1:0803 0.0105 0:8992 0.0068 0:8489 0.0098
#2 0:0285 0.0050 0:0117 0.0065
#3 0:1365 0.0059
c1v �0:0022 0.0000 �0:0031 0.0000 �0:0015 0.0000
c2v �0:0057 0.0010 �0:0007 0.0001
c3v �0:0095 0.0003
Objective function 0:0834 0:0758 0:0692

Our parameter estimates are consistent with the volatility variables inferred from
the prices of difference caps. The volatility of the “level” factor is the highest among
the three (although at lower absolute levels in the more sophisticated models). It
starts at a low level and steadily increases and stabilizes at a high level in the later
part of the sample period. The volatility of the “slope” factor is much lower and
relatively stable during the whole sample period. The volatility of the “curvature”
factor is generally between that of the first and second factors. The steady increase
of the volatility of the “level” factor is consistent with the increase of Black implied
volatilities of ATM difference caps throughout our sample period. In fact, the
correlation between the Black implied volatilities of most difference caps and the
implied volatility of the “level” factor are higher than 0.8. The correlation between
Black implied volatilities and the other two volatility factors is much weaker. The
importance of stochastic volatility is obvious: the fluctuations in Black implied
volatilities show that a model with constant volatility simply would not be able to
capture even the general level of cap prices.

The other aspects of model performance are the time series and cross-sectional
pricing errors of difference caps. The likelihood ratio tests in Panel A of Table 7.7
overwhelmingly reject SV1 and SV2 in favor of SV2 and SV3, respectively. The
Diebold-Mariano statistics in Panel A of Table 7 also show that SV2 and SV3 have
significantly smaller SSEs than SV1 and SV2, respectively, suggesting that the more
sophisticated SV models improve the pricing of all caps. The time series of RMSEs
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of the three SV models over our sample period16 suggest that except for two special
periods where all models have extremely large pricing errors, the RMSEs of all
models are rather uniform with the best model (SV3) having RMSEs slightly above
5%. The two special periods with high pricing errors cover the period between the
second half of December of 2000 and the first half of January of 2001, and the
first half of October 2001, and coincide with high prepayments in mortgage-backed
securities (MBS). Indeed, the MBAA refinancing index and prepayment speed (see
Fig. 7.3 of Duarte 2004) show that after a long period of low prepayments between
the middle of 1999 and late 2000, prepayments dramatically increased at the end of
2000 and the beginning of 2001. There is also a dramatic increase of prepayments at
the beginning of October 2001. As widely recognized in the fixed-income market,17

excessive hedging demands for prepayment risk using interest rate derivatives may
push derivative prices away from their equilibrium values, which could explain the
failure of our models during these two special periods.18

In addition to overall model performance as measured by SSEs, we also examine
the cross-sectional pricing errors of difference caps with different moneyness and
maturities. We first look at the squared percentage pricing errors, which measure
both the bias and variability of the pricing errors. Then we look at the average
percentage pricing errors (the difference between market and model prices divided
by the market price) to see whether SV models can on average capture the volatility
smile in the cap market.

The Diebold-Mariano statistics of squared percentage pricing errors of individual
difference caps between SV2 and SV1 in Panel B of Table 7 show that SV2 reduces
the pricing errors of SV1 for some but not all difference caps. SV2 has the most
significant reductions in pricing errors of SV1 for mid- and short-term around-
the-money difference caps. On the other hand, SV2 has larger pricing errors for
deep ITM difference caps. The Diebold-Mariano statistics between SV3 and SV2 in
Panel C of Table 7 show that SV3 significantly reduces the pricing errors of many
short- (2–3 years) and mid-term around-the-money, and long-term (6–10 years) ITM
difference caps.

Table 7.8 reports the average percentage pricing errors of all difference caps
under the three SV models. Panel A of Table 7.8 shows that, on average, SV1
underprices short-term and overprices mid- and long-term ATM difference caps,
and underprices ITM and overprices OTM difference caps. This suggests that SV1
cannot generate enough skewness in the implied volatilities to be consistent with the

16RMSE of a model at t is calculated as

r
u0
t

� O�
�

ut
� O�
�
=M . We plot RMSEs instead of SSEs

because the former provides a more direct measure of average percentage pricing errors of
difference caps.
17We would like to thank Pierre Grellet Aumont from Deutsche Bank for his helpful discussions
on the influence of MBS markets on OTC interest rate derivatives.
18While the prepayments rates were also high in later part of 2002 and for most of 2003, they
might not have come as surprises to participants in the MBS markets given the two previous special
periods.
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data. Panel B shows that SV2 has some improvements over SV1, mainly for some
short-term (less than 3.5 years) ATM, and mid-term (3.5–5 years) slightly OTM
difference caps. But SV2 has worse performance for most deep ITM (m D 0:7

and 0:8) difference caps: it actually worsens the underpricing of ITM caps. Panel
C of Table 8 shows that relative to SV1 and SV2, SV3 has smaller average
percentage pricing errors for most long-term (7–10 years) ITM, mid-term (3.5–5
years) OTM, and short-term (2–2.5 years) ATM difference caps, and bigger average
percentage pricing errors for mid-term (3.5–6 years) ITM difference caps. There is
still significant underpricing of ITM and overpricing of OTM difference caps under
SV3.

Overall, the results show that stochastic volatility factors are essential for captur-
ing the time varying volatilities of LIBOR rates. The Diebold-Mariano statistics in
Table 7 shows that in general more sophisticated SV models have smaller pricing
errors than simpler models, although the improvements are more important for
close-to-the-money difference caps. The average percentage pricing errors in Table 8
show that, however, even the most sophisticated SV model cannot generate enough
volatility skew to be consistent with the data. While previous studies, such as Han
(2007), have shown that a three-factor stochastic volatility model similar to ours
performs well in pricing ATM caps and swaptions, our analysis shows that the model
fails to completely capture the volatility smile in the cap markets. Our findings
highlight the importance of studying the relative pricing of caps with different
moneyness to reveal the inadequacies of existing term structure models, the same
inadequacies cannot be obtained from studying only ATM options.

One important reason for the failure of SV models is that the stochastic volatility
factors are independent of LIBOR rates. As a result, the SV models can only
generate a symmetric volatility smile, but not the asymmetric smile or skew
observed in the data. The pattern of the smile in the cap market is rather similar to
that of index options: ITM calls (and OTM puts) are overpriced, and OTM calls (and
ITM puts) are underpriced relative to the Black model. Similarly, the smile in the cap
market could be due to a market expectation of dramatically declining LIBOR rates.
In this section, we examine the contribution of jumps in LIBOR rates in capturing
the volatility smile. Our discussion of the performance of the SVJ models parallels
that of the SV models.

Parameter estimates in Table 7.9 show that the three stochastic volatility factors
of the SVJ models resemble that of the SV models closely. The “level” factor
still has the most volatile stochastic volatility, followed by the “curvature” and the
“slope” factor. With the inclusion of jumps, the stochastic volatility factors in the
SVJ models, especially that of the “level” factor, tend to be less volatile than that of
the SV models (lower long run mean and volatility of volatility). Negative estimates
of the volatility risk premium show that the volatility of the longer maturity LIBOR
rates under the forward measure have lower long-run mean and faster speed of
mean-reversion.

Most importantly, we find overwhelming evidence of strong negative jumps in
LIBOR rates under the forward measure. To the extend that cap prices reflect market
expectations of future evolutions of LIBOR rates, the evidence suggests that the
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Table 7.9 Parameter estimates of stochastic volatility and jumps models. This table reports
parameter estimates and standard errors of the one-, two-, and three-factor stochastic volatility and
jump models. The estimates are obtained by minimizing sum of squared percentage pricing errors
(SSE) of difference caps in 53 moneyness and maturity categories observed on a weekly frequency
from August 1, 2000 to September 23, 2003. The objective functions reported in the table are re-
scaled SSEs over the entire sample at the estimated model parameters and are equal to RMSE of
difference caps. The volatility risk premium of the i th stochastic volatility factor and the jump risk
premium for forward measure QkC1 is defined as �kC1

i =civ(Tk�1) and �kC1
J D �J+cJ (Tk�1),

respectively

SVJ1 SVJ2 SVJ3

Parameter Estimate Std. err Estimate Std. err Estimate Std. Err

�1 0:1377 0:0085 0:0062 0:0057 0:0069 0:0079

�2 0:0050 0:0001 0:0032 0:0000

�3 0:0049 0:0073

Nv1 0:1312 0:0084 0:7929 0:7369 0:9626 1:1126

Nv2 0:3410 0:0030 0:2051 0:0021

Nv3 0:2628 0:3973

#1 0:8233 0:0057 0:7772 0:0036 0:6967 0:0049

#2 0:0061 0:0104 0:0091 0:0042

#3 0:1517 0:0035

c1v �0:0041 0:0000 �0:0049 0:0000 �0:0024 0:0000

c2v �0:0270 0:0464 �0:0007 0:0006

c3v �0:0103 0:0002

� 0:0134 0:0001 0:0159 0:0001 0:0132 0:0001

�J �3:8736 0:0038 �3:8517 0:0036 �3:8433 0:0063

cJ 0:2632 0:0012 0:3253 0:0010 0:2473 0:0017

�J 0:0001 3:2862 0:0003 0:8723 0:0032 0:1621

Objective function 0:0748 0:0670 0:0622

market expects a dramatic declining in LIBOR rates over our sample period. Such
an expectation might be justifiable given that the economy has been in recession
during a major part of our sample period. This is similar to the volatility skew in the
index equity option market, which reflects investors fear of the stock market crash
such as that of 1987. Compared to the estimates from index options (see, e.g., Pan
2002), we see lower estimates of jump intensity (about 1.5% per annual), but much
higher estimates of jump size. The positive estimates of a jump risk premium suggest
that the jump magnitude of longer maturity forward rates tend to be smaller. Under
SVJ3, the mean relative jump size, exp

�
�J C cJ .Tk � 1/C �2J =2

��1; for 1, 5, and
10 year LIBOR rates are �97%, �94%, and �80%, respectively. However, we do
not find any incidents of negative moves in LIBOR rates under the physical measure
with a size close to that under the forward measure. This big discrepancy between
jump sizes under the physical and forward measures resembles that between the
physical and risk-neutral measure for index options (see, e.g., Pan 2002). This could
be a result of a huge jump risk premium.

The likelihood ratio tests in Panel A of Table 7.10 again overwhelmingly reject
SVJ1 and SVJ2 in favor of SVJ2 and SVJ3, respectively. The Diebold-Mariano



178 H. Li

T
ab

le
7.

10
C

om
pa

ri
so

n
of

th
e

pe
rf

or
m

an
ce

of
st

oc
ha

st
ic

vo
la

ti
li

ty
an

d
ju

m
p

m
od

el
s.

T
hi

s
ta

bl
e

re
po

rt
s

m
od

el
co

m
pa

ri
so

n
ba

se
d

on
lik

el
ih

oo
d

ra
tio

an
d

D
ie

bo
ld

-M
ar

ia
no

st
at

is
ti

cs
.

T
he

to
ta

l
nu

m
be

r
of

ob
se

rv
at

io
ns

(b
ot

h
cr

os
s

se
ct

io
na

l
an

d
ti

m
e

se
ri

es
),

w
hi

ch
eq

ua
ls

8,
54

5
ov

er
th

e
en

ti
re

sa
m

pl
e,

ti
m

es
th

e
di

ff
er

en
ce

be
tw

ee
n

th
e

lo
ga

ri
th

m
s

of
th

e
SS

E
s

be
tw

ee
n

tw
o

m
od

el
s

fo
ll

ow
s

a
�
2
di

st
ri

bu
ti

on
as

ym
pt

ot
ic

al
ly

.W
e

tr
ea

ti
m

pl
ie

d
vo

la
ti

li
ty

va
ri

ab
le

s
as

pa
ra

m
et

er
s.

T
hu

s
th

e
de

gr
ee

of
fr

ee
do

m
of

th
e
�
2
di

st
ri

bu
ti

on
is

16
8

fo
r

th
e

pa
ir

s
of

SV
J2

/S
V

J1
an

d
SV

J3
/S

V
J2

,b
ec

au
se

SV
J2

an
d

SV
J3

ha
ve

fo
ur

m
or

e
pa

ra
m

et
er

s
an

d
16

4
ad

di
ti

on
al

im
pl

ie
d

vo
la

ti
li

ty
va

ri
ab

le
s

th
an

SV
J1

an
d

SV
J2

,r
es

pe
ct

iv
el

y.
T

he
1%

cr
it

ic
al

va
lu

e
of
�
2
(1

68
)

is
21

4.
T

he
D

ie
bo

ld
-M

ar
ia

no
st

at
is

ti
cs

ar
e

ca
lc

ul
at

ed
ac

co
rd

in
g

to
eq

ua
ti

on
(1

4)
w

it
h

a
la

g
or

de
r

q
of

40
an

d
fo

ll
ow

an
as

ym
pt

ot
ic

st
an

da
rd

N
or

m
al

di
st

ri
bu

ti
on

un
de

r
th

e
nu

ll
hy

po
th

es
is

of
eq

ua
lp

ri
ci

ng
er

ro
rs

.A
ne

ga
tiv

e
st

at
is

ti
c

m
ea

ns
th

at
th

e
m

or
e

so
ph

is
ti

ca
te

d
m

od
el

ha
s

sm
al

le
r

pr
ic

in
g

er
ro

rs
.B

ol
d

en
tr

ie
s

m
ea

n
th

at
th

e
st

at
is

ti
cs

ar
e

si
gn

ifi
ca

nt
at

th
e

5%
le

ve
l

Pa
ne

lA
.L

ik
el

ih
oo

d
R

at
io

an
d

D
ie

bo
ld

-M
ar

ia
no

st
at

is
ti

cs
fo

r
ov

er
al

lm
od

el
pe

rf
or

m
an

ce
ba

se
d

on
SS

E
s

M
od

el
s

D
-M

st
at

s
L

ik
el

ih
oo

d
ra

ti
o

st
at

s
�
2
(1

68
)

SV
J2

–S
V

J1
�2

.2
40

18
86

SV
J3

–S
V

J2
�7

.1
49

12
56

Pa
ne

lB
.D

ie
bo

ld
-M

ar
ia

no
st

at
is

ti
cs

be
tw

ee
n

SV
J2

an
d

SV
J1

fo
r

in
di

vi
du

al
di

ff
er

en
ce

ca
ps

ba
se

d
on

sq
ua

re
d

pe
rc

en
ta

ge
pr

ic
in

g
er

ro
rs

M
on

ey
ne

ss
2y

r
3y

r
4y

r
5y

r
6y

r
7y

r
8y

r
9y

r
10

yr

0.
7

–
–

�0
:3
0
8

�0
:4
6
7

�0
:1
8
8

0.
67

5
�0
:2
4
0

�0
:7
7
4

�0
:1
8
0

0.
8

–
�0
:5
3
7

�1
:0
3
1

�1
:3
7
2

�0
:6
8
4

�0
:3
6
5

�0
:7
4
9

�1
:8
3
7

�1
:1
6
9

0.
9

�1
:5
3
0

�0
:9
3
4

�1
:4
6
3

�3
.2

53
�0
:9
2
0

�1
:5
8
8

�2
.3

95
�3

.2
87

�0
:6
8
6

1.
0

�3
.3

00
�1
:2
6
5

�1
:6
4
7

�2
.0

20
�0
:5
7
3

�1
:6
7
4

�1
:3
9
6

�2
.5

40
�0
:7
9
9

1.
1

�5
.3

41
0.

15
6

�3
.1

41
�2

.1
07

–
–

–
–

–
Pa

ne
lC

.D
ie

bo
ld

-M
ar

ia
no

st
at

is
ti

cs
be

tw
ee

n
SV

J3
an

d
SV

J2
fo

r
in

di
vi

du
al

di
ff

er
en

ce
ca

ps
ba

se
d

on
sq

ua
re

d
pe

rc
en

ta
ge

pr
ic

in
g

er
ro

rs
M

on
ey

ne
ss

2y
r

3y
r

4y
r

5y
r

6y
r

7y
r

8y
r

9y
r

10
yr

0.
7

–
–

0.
69

0
�1
:0
2
3

�1
:1
3
3

�2
.5

50
�1
:4
6
9

�0
:6
0
5

�1
:9
2
0

0.
8

–
�0
:1
5
9

1.
60

9
�1
:8
9
8

�0
:7
7
8

�3
.1

91
�3

.9
92

�2
.9

51
�3

.7
78

0.
9

�1
:2
3
5

�0
:3
2
8

1.
18

3
�1
:3
6
1

�0
:2
4
9

�2
.7

84
�1
:4
0
8

�3
.4

11
�2

.9
94

1.
0

�1
:2
4
5

�0
:5
5
3

�0
:4
6
3

�1
:3
1
7

2.
78

0
0.

18
2

�0
:5
5
1

�1
:5
4
2

�1
:2
0
7

1.
1

�1
:5
8
3

�0
:3
3
4

�2
:0
4
0

�1
:2
5
9

–
–

–
–

–



7 Interest Rate Derivatives Pricing with Volatility Smile 179

statistics in Panel A of Table 7.10 show that SVJ2 and SVJ3 have signifi-
cantly smaller SSEs than SVJ1 and SVJ2, respectively, suggesting that the more
sophisticated SVJ models significantly improve the pricing of all difference caps.
The Diebold-Mariano statistics of squared percentage pricing errors of individual
difference caps in Panel B of Table 7.10 show that SVJ2 significantly improves the
performance of SVJ1 for long-, mid-, and short-term around-the-money difference
caps. The Diebold-Mariano statistics in Panel C of Table 7.10 show that SVJ3
significantly reduces the pricing errors of SVJ2 for long-term ITM, and some mid-
and short-term around-the-money difference caps. Table 7.11 shows the average
percentage pricing errors also improve over the SV models.

Table 7.12 compares the performance of the SVJ and SV models. During the
first 20 weeks of our sample, the SVJ models have much higher RMSEs than the
SV models. As a result, the likelihood ratio and Diebold-Mariano statistics between
the three pairs of SVJ and SV models over the entire sample are somewhat smaller
than that of the sample period without the first 20 weeks. Nonetheless, all the SV
models are overwhelmingly rejected in favor of their corresponding SVJ models by
both tests. The Diebold-Mariano statistics of individual difference caps in Panels
B, C, and D show that the SVJ models significantly improve the performance of
the SV models for most difference caps across moneyness and maturity. The most
interesting results are in Panel D, which show that SVJ3 significantly reduces the
pricing errors of most ITM difference caps of SV3, strongly suggesting that the
negative jumps are essential for capturing the asymmetric smile in the cap market.

Our analysis shows that a low dimensional model with three principal compo-
nents driving the forward rate curve, stochastic volatility of each component, and
strong negative jumps captures the volatility smile in the cap markets reasonably
well. The three yield factors capture the variations of the levels of LIBOR rates,
while the stochastic volatility factors are essential to capture the time varying
volatilities of LIBOR rates. Even though the SV models can price ATM caps
reasonably well, they fail to capture the volatility smile in the cap market. Instead,
significant negative jumps in LIBOR rates are needed to capture the smile. These
results highlight the importance of studying the pricing of caps across moneyness:
the importance of negative jumps is revealed only through the pricing of always-
from-the-money caps. Excluding the first 20 weeks and the two special periods,
SVJ3 has a reasonably good pricing performance with an average RMSEs of 4.5%.
Given that the bid-ask spread is about 2–5% in our sample for ATM caps, and
because ITM and OTM caps tend to have even higher percentage spreads,19 this
cam be interpreted as a good performance.

Despite its good performance, there are strong indications that SVJ3 is mis-
specified and the inadequacies of the model seem to be related to MBS markets.
For example, while SVJ3 works reasonably well for most of the sample period, it
has large pricing errors in several special periods coinciding with high prepayment
activities in the MBS markets. Moreover, even though we assume that the stochastic

19See, for example, Deuskar et al. (2003).
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Table 7.13 Correlations between LIBOR rates and implied volatility variables. This table reports
the correlations between LIBOR rates and implied volatility variables from SVJ3. Given the
parameter estimates of SVJ3 in Table 4, the implied volatility variables are estimated at t by
minimizing the SSEs of all difference caps at t

L(t,1) L(t,3) L(t,5) L(t,7) L(t,9) V1(t) V2(t) V3(t)

V1(t) �0:8883 �0:8772 �0:8361 �0:7964 �0:7470 1 �0:4163 0:3842

V2(t) 0:1759 0:235 0:2071 0:1545 0:08278 �0:4163 1 �0:0372
V3(t) �0:5951 �0:485 �0:4139 �0:3541 �0:3262 0:3842 �0:0372 1

volatility factors are independent of LIBOR rates, Table 7.13 shows strong negative
correlations between the implied volatility variables of the first factor and the
LIBOR rates. This result suggests that when interest rate is low, cap prices become
too high for the model to capture and the implied volatilities have to become
abnormally high to fit the observed cap prices. One possible explanation of the
“leverage” effect is that higher demands for caps to hedge prepayments from MBS
markets in low interest rate environments could artificially push up cap prices and
implied volatilities. Therefore, extending our models to incorporate factors from
MBS markets seems to be a promising direction of future research.

7.5 Nonparametric Estimation of LIBOR Forward Density

The studies presented so far have shown the importance of USV factors for pricing
interest rate derivatives and have developed models that explicitly incorporate USV
factors to capture the volatility smile. In this section, we try to identify economic
factors that influence the shape of the volatility smile. In particular, we discuss the
nonparametric analysis of LIBOR forward densities in Li and Zhao (2009), in which
they identify the impacts of mortgage market activities on the volatility smile.

7.5.1 Nonparametric Method

For LIBOR-based instruments such as caps, floors, and swaptions, it is convenient
to consider pricing using the forward measure approach. We will therefore focus on
the dynamics of LIBOR forward rateLk.t/ under the forward measure QkC1, which
is essential for pricing caplets maturing at TkC1. Under this measure, the discounted
price of any security using DkC1.t/ as the numeraire is a martingale. Thus, the
time-t price of a caplet maturing at TkC1 with a strike price of X is

C .Lk.t/; X; t; Tk/ D ıDkC1.t/
Z 1

X

.y �X/pQ
kC1

.Lk.Tk/ D yjLk.t// dy;

(7.33)
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where pQ
kC1

.Lk.Tk/ D yjLk.t// is the conditional density of Lk.Tk/ under
forward measure Q

kC1. Once we know the forward density, we can price any
security whose payoff on TkC1 depends only on Lk.t/ by discounting its expected
payoff under QkC1 using DkC1.t/.

Existing term structure models rely on parametric assumptions on the distribution
of Lk.t/ to obtain closed-form pricing formulae for caplets. For example, the
standard LIBOR market models of Brace et al. (1997) and Miltersen et al. (1997)
assume thatLk.t/ follows a log-normal distribution and price caplet using the Black
formula. The models of Jarrow et al. (2007) assume that Lk.t/ follows affine jump-
diffusions of Duffie et al. (2000).

We estimate the distribution of Lk.t/ under QkC1 using the prices of a cross
section of caplets that mature at TkC1 and have different strike prices. Following
Breeden and Litzenberger (1978), we know that the density of Lk.t/ under QkC1 is
proportional to the second derivative of C .Lk.t/; t; Tk; X/ with respect to X;

pQ
kC1

.Lk.Tk/jLk.t// D 1

ıDkC1.t/
@2C .Lk.t/; t; Tk; X/

@X2
jXDLk.Tk/: (7.34)

In standard LIBOR market models, it is assumed that the conditional density of
Lk.Tk/ depends only on the current LIBOR rate. This assumption, however, can
be overly restrictive given the multifactor nature of term structure dynamics. For
example, while the level factor can explain a large fraction (between 80 and 90%) of
the variations of LIBOR rates, the slope factor still has significant explanatory power
of interest rate variations. Moreover, there is overwhelming evidence that interest
rate volatility is stochastic, and it has been suggested that interest rate volatility is
unspanned in the sense that it can not be fully explained by the yield curve factors
such as the level and slope factors.

One important innovation of our study is that we allow the volatility of Lk.t/ to
be stochastic and the conditional density of Lk.Tk/ to depend on not only the level,
but also the slope and volatility factors of LIBOR rates. Denote the conditioning
variables as Z.t/ D fs.t/; v.t/g; where s.t/ (the slope factor) is the difference
between the 10- and 2-year LIBOR forward rates and v.t/ (the volatility factor) is
the first principal component of EGARCH-filtered spot volatilities of LIBOR rates
across all maturities. Under this generalization, the conditional density of Lk.Tk/
under the forward measure QkC1 is given by

pQ
kC1

.Lk.Tk/jLk.t/; Z.t// D 1

ıDkC1.t/
@2C .Lk.t/; X; t; Tk;Z.t//

@X2
jXDLk.Tk/:

(7.35)

Next we discuss how to estimate the SPDs by combining the forward and
physical densities of LIBOR rates. Denote a SPD function as 
 . In general, 

depends on multiple economic factors, and it is impossible to estimate it using
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interest rate caps alone. Given the available data, all we can estimate is the projection
of 
 onto the future spot rate Lk.Tk/:


k .Lk.Tk/ILk.t/; Z.t// D EP

t Œ
jLk.Tk/ILk.t/; Z.t/	 ; (7.36)

where the expectation is taken under the physical measure. Then the price of the
caplet can be calculated as

C .Lk.t/; X; t; Tk;Z.t// D ıEP

t

�

 � .Lk.Tk/� X/C

�

D ı

Z 1

X


k .y/ .y � X/pP .Lk.Tk/

D yjLk.t/; Z.t// dy; (7.37)

where the second equality is due to iterated expectation and pP.Lk.Tk/ D
yjLk.t/; Z.t// is the conditional density of Lk.Tk/ under the physical measure.

Comparing (33) and (37), we have


k .Lk.Tk/ILk.t/; Z.t// D DkC1.t/
pQ

kC1
.Lk.Tk/jLk.t/; Z.t//

pP .Lk.Tk/jLk.t/; Z.t// : (7.38)

Therefore, by combining the densities ofLk.Tk/ underQkC1 and P;we can estimate
the projection of 
 onto Lk.Tk/. The SPDs contain rich information on how risks
are priced in financial markets. While Ait-Sahalia and Lo (1998, 2000), Aı̈t-Sahalia
and Duarte (2003), Jackwerth (2000), Rosenberg and Engle (2002), and others
estimate the SPDs using index options (i.e., the projection of 
 onto index returns),
our analysis based on interest rate caps documents the dependence of the SPDs on
term structure factors.

Similar to many existing studies, to reduce the dimensionality of the problem,
we further assume that the caplet price is homogeneous of degree 1 in the current
LIBOR rate:

C .Lk.t/; X; t; Tk;Z.t// D ıDkC1.t/Lk.t/CM .Mk.t/; t; Tk;Z.t// ; (7.39)

where Mk.t/ D X=Lk.t/ represents the moneyness of the caplet. Hence, for the
rest of the paper we estimate the forward density of Lk.Tk/=Lk.t/ as the second
derivative of the price function CM with respect to M W

pQ
kC1



Lk.Tk/

Lk.t/
jZ.t/

�
D 1

ıDkC1.t/
@2CM .Mk.t/; t; Tk;Z.t//

@M2
jMDLk.Tk/=Lk.t/:

(7.40)
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7.5.2 Empirical Results

In this section, we present nonparametric estimates of the probability densities of
LIBOR rates under physical and forward martingale measures. In particular, we
document the dependence of the forward densities on the slope and volatility factors
of LIBOR rates.

Figure 7.4 presents nonparametric estimates of the forward densities at different
levels of the slope and volatility factors at 2, 3, 4, and 5 year maturities. The two
levels of the slope factor correspond to a flat and a steep forward curve, while
the two levels of the volatility factor represent low and high volatility of LIBOR
rates. The 95% confidence intervals are obtained through simulation. The forward
densities should have a zero mean since LIBOR rates under appropriate forward
measures are martingales. The expected log percentage changes of the LIBOR
rates are slightly negative due to an adjustment from the Jensen’s inequality. We
normalize the forward densities so that they integrate to one. However, we do not
have enough data at the right tail of the distribution at 4 and 5 year maturities. We
do not extrapolate the data to avoid potential biases.

Figure 7.4 documents three important features of the nonparametric LIBOR
forward densities. First, the log-normal assumption underlying the popular LIBOR
market models is grossly violated in the data, and the forward densities across all
maturities are significantly negatively skewed. Second, all the forward densities
depend significantly on the slope of the term structure. For example, moving from
a flat to a steep term structure, the forward densities across all maturities become
much more dispersed and more negatively skewed. Third, the forward densities also
depend on the volatility factor. Under both flat and steep term structures, the forward
densities generally become more compact when the volatility factor increases. This
is consistent with a mean reverting volatility process: High volatility right now leads
to low volatility in the future and more compact forward densities.

To better illustrate the dependence of the forward densities on the two condi-
tioning variables, we also regress the quantiles of the forward densities on the two
factors. We choose quantiles instead of moments of the forward densities in our
regressions for two reasons. First, quantiles are much easier to estimate. While
quantiles can be obtained from the CDF function, which is the first derivative of
the price function, moments require integrations of the forward density, which is the
second derivative of the price function. Second, a wide range of quantiles provide a
better characterization of the forward densities than a few moments, especially for
the tail behaviors of the densities.

Suppose we consider I and J levels of the transformed slope and volatility
factors in our empirical analysis. For a given level of the two conditioning variables�
si ; vj

�
; we first obtain a nonparametric estimate of the forward density at a given

maturity and its quantilesQx

�
si ; vj

�
; where x can range from 0 to 100%. Then we

consider the following regression model

Qx

�
si ; vj

� D b0x C b1x � si C b2x � vj C b3x � si � vj C "x; (7.41)
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Fig. 7.4 Nonparametric estimates of the LIBOR forward densities at different levels of the slope
and volatility factors. The slope factor is defined as the difference between the 10- and 2-year
three-month LIBOR forward rates. The volatility factor is defined as the first principal component
of EGARCH-filtered spot volatilities and has been normalized to a mean that equals one.
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Fig. 7.4 (Continued) The two levels of the slope factor correspond to flat and steep term structures,
while the two levels of the volatility factor corresponds to low and high levels of volatility
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Fig. 7.5 Impacts of the slope and volatility factors on LIBOR forward densities. This figure
reports regression coefficients of different quantiles of the forward densities at 2, 3, 4, and 5 year
maturities on the slope and volatility factors of LIBOR rates in (27) without the interaction term

where i D 1; 2; : : : ; I , and j D 1; 2; : : : ; J . We include the interaction term to cap-
ture potential nonlinear dependence of the forward densities on the two conditioning
variables.

Figure 7.5 reports regression coefficients of the slope and volatility factors for
the most complete range of quantiles at each maturity, i.e., b1x and b2x as a function
of x. While Fig. 7.4 includes only the slope and volatility factors as explanatory
variables, Fig. 7.6 contains their interaction term as well. Though in results not
reported here we also include lagged conditioning variables in our regressions, their
coefficients are generally not statistically significant.

The regression results in Fig. 7.5 are generally consistent with the main findings
in Fig. 7.4. The slope coefficients are generally negative (positive) for the left (right)
half of the distribution and become more negative or positive at both tails. Consistent
with Fig. 7.4, this result suggests that when the term structure steepens, the forward
densities become more dispersed and the effect is more pronounced at both tails.
One exception to this result is that the slope coefficients become negative and
statistically insignificant at the right tail at 5-year maturity. The coefficients of
the volatility factor are generally positive (negative) for the left (right) half of the
distribution. Although the volatility coefficients start to turn positive at the right tail
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Fig. 7.6 Impacts of the slope and volatility factors (with their interaction term) on LIBOR forward
densities. This figure reports regression coefficients of different quantiles of the forward densities at
2, 3, 4, and 5 year maturities on the slope and volatility factors of LIBOR rates and their interaction
term in (27)

of the distribution, they are not statistically significant. These results suggest that
higher volatility leads to more compact forward densities, a result that is generally
consistent with that in Fig. 7.4.

In Fig. 7.6, although the slope coefficients exhibit similar patterns as that in
Fig. 7.5, the interaction term changes the volatility coefficients quite significantly.
The volatility coefficients become largely insignificant and exhibit quite different
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Fig. 7.7 Nonlinear dependence of LIBOR forward densities on the volatility factor of LIBOR
rates. This figure presents regression coefficients of quantiles of LIBOR forward densities on the
volatility factor at different levels of the slope factor. The two levels of the slope factor represent
flat and steep term structures

patterns than those in Fig. 7.5. For example, the volatility coefficients at 2- and
3-year maturities are largely constant across different quantiles. At 4- and 5-year
maturities, they even become negative (positive) for the left (right) half of the
distribution. On the other hand, the coefficients of the interaction term exhibit
similar patterns as that of the volatility coefficients in Fig. 7.5. These results suggest
that the impacts of volatility on the forward densities depend on the slope of the
term structure.

Figure 7.7 presents the volatility coefficients at different levels of the slope
factor (i.e., Ob2x C Ob3x � si ; where si D 0:3 or 2.4). We see clearly that the impact
of volatility on the forward densities depends significantly on the slope factor.
With a flat term structure, the volatility coefficients generally increase with the
quantiles, especially at 3-, 4-, and 5-year maturities. The volatility coefficients are
generally negative (positive) for the left (right) tail of the distribution, although not
all of them are statistically significant. However, with a steep term structure, the
volatility coefficients are generally positive (negative) for the left (right) half of
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the distribution for most maturities. Therefore, if the current volatility is high and
the term structure is flat (steep), then volatility is likely to increase (decline) in the
future. We observe flat term structure during early part of our sample when the
Fed has raised interest rate to slow down the economy. It could be that the market
was more uncertain about future state of the economy because it felt that recession
was imminent. On the other hand, we observe steep term structure after the internet
bubble bursted and the Fed has aggressively cut interest rate. It could be that the
market felt that the worst was over and thus was less uncertain about future state of
the economy.

Our nonparametric analysis reveals important nonlinear dependence of the
forward densities on both the slope and volatility factors of LIBOR rates. These
results have important implications for one of the most important and controversial
topics in the current term structure literature, namely the USV puzzle. While
existing studies on USV mainly rely on parametric methods, our results provide
nonparametric evidence on the importance of USV: Even after controlling for
important bond market factors, such as level and slope, the volatility factor still
significantly affects the forward densities of LIBOR rates. Even though many
existing term structure models have modelled volatility as a mean-reverting process,
our results show that the speed of mean reversion of volatility is nonlinear and
depends on the slope of the term structure.

Some recent studies have documented interactions between activities in mortgage
and interest rate derivatives markets. For example, in an interesting study, Duarte
(2008) shows that ATM swaption implied volatilities are highly correlated with
prepayment activities in the mortgage markets. Duarte (2008) extends the string
model of Longstaff et al. (2001) by allowing the volatility of LIBOR rates to
be a function of the prepayment speed in the mortgage markets. He shows that
the new model has much smaller pricing errors for ATM swaptions than the
original model with a constant volatility or a CEV model. Jarrow et al. (2007)
also show that although their LIBOR model with stochastic volatility and jumps
can price caps across moneyness reasonably well, the model pricing errors are
unusually large during a few episodes with high prepayments in MBS. These
findings suggest that if activities in the mortgage markets, notably the hedging
activities of government sponsored enterprises, such as Fannie Mae and Freddie
Mac, affect the supply/demand of interest rate derivatives, then this source of risk
may not be fully spanned by the factors driving the evolution of the term structure.20

In this section, we provide nonparametric evidence on the impact of mortgage
activities on LIBOR forward densities. Our analysis extends Duarte (2008) in
several important dimensions. First, by considering caps across moneyness, we
examine the impacts of mortgage activities on the entire forward densities. Second,
by explicitly allowing LIBOR forward densities to depend on the slope and volatility
factors of LIBOR rates, we examine whether prepayment still has incremental

20See Jaffee (2003) and Duarte (2008) for excellent discussions on the use of interest rate
derivatives by Fannie Mae and Freddie Mac in hedging interest rate risks.
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Fig. 7.8 Mortgage Bankers Association of America (MBAA) weekly refinancing and ARMs
indexes. This figure reports the logs of the refinance and ARMs indexes obtained by weekly surveys
at the Mortgage Bankers Association of America (MBAA)

contributions in explaining interest rate option prices in the presence of these two
factors.21 Finally, in addition to prepayment activities, we also examine the impacts
of ARMs origination on the forward densities. Implicit in any ARM is an interest
rate cap, which caps the mortgage rate at a certain level. Since lenders of ARMs
implicitly sell a cap to the borrower, they might have incentives to hedge such
exposures.22

Our measures of prepayment and ARMs activities are the weekly refinancing and
ARMs indexes based on the weekly surveys conducted by MBAA, respectively. The
two indexes, as plotted in Fig. 7.8, tend to be positively correlated with each other.
There is an upward trend in ARMs activities during our sample period, which is
consistent with what happened in the housing market in the past few years.

To examine the impacts of mortgage activities on LIBOR forward densities, we
repeat the above regressions by including two additional explanatory variables that
measure refinance and ARMs activities. Specifically, we refer to the top 20% of
the observations of the refinance (ARMs) index as the high prepayment (ARMs)
group. After obtaining a nonparametric forward density at a particular level of the
two conditioning variables, we define two new variables “Refi” and “ARMs,” which
measure the percentages of observations used in estimating the forward density

21While the slope factor can have nontrivial impact on prepayment behavior, the volatility factor is
crucial for pricing interest rate options.
22We thank the referee for the suggestion of examining the effects of ARMs origination on the
forward densities.
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Fig. 7.9 Impacts of refinance and ARMs activities on LIBOR forward densities. In this figure, for
each quantile of LIBOR forward densities at 2, 3, 4, and 5 year maturities, we report regression
coefficients of the quantile on (1) the slope and volatility factors and their interaction term as in
(27); and (2) refinance and ARMs activities
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that belong to the high prepayment and ARMs groups, respectively. These two
variables allow us to test whether the forward densities behave differently when
prepayment/ARMs activities are high. To control for potential collinearity among
the explanatory variables, we have orthogonalized any new explanatory variable
with respect to existing ones.

Figure 7.9 contain the new regression results with “Refi” and “ARMs” for the
four maturities. The coefficients of the slope, volatility, and the interaction term
exhibit similar patterns as that in Fig. 7.6.23

The strongest impacts of ARMs on the forward densities occur at 2-year maturity,
as shown in Panel A of Fig. 7.9. Therefore, high ARMs origination shifts the median
and the right tail of the forward densities at 2-year maturity toward the right. This
finding is consistent with the notion that hedging demands from ARMs lenders for
the cap they have shorted might increase the price of OTM caps. One possible reason
that the effects of ARMs are more pronounced at 2-year maturity than at 3-, 4-, and
5-year maturities is that most ARMs get reset within the first 2 years.

While high ARMs activities shift the forward density at 2-year maturity to
the right, high refinance activities shift the forward densities at 3-, 4-, and 5-
year maturities to the left. We see that the coefficients of Refi at the left tail are
significantly negative. While the coefficients also are significantly negative for the
middle of the distribution (40–70% quantiles), the magnitude of the coefficients are
much smaller. These can be seen in Panels B, C, and D of Fig. 7.9. Therefore, high
prepayment activities lead to much more negatively skewed forward densities. This
result is consistent with the notion that investors in MBS might demand OTM floors
to hedge their potential losses from prepayments. The coefficients of Refi are more
significant at 4- and 5-year maturities because the duration of most of MBS are close
to 5 years.

Our results confirm and extend the findings of Duarte (2008) by showing that
mortgage activities affect the entire forward density and consequently the pricing
of interest rate options across moneyness. While prepayment activities affect the
left tail of the forward densities at intermediate maturities, ARMs activities affect
the right tail of the forward densities at short maturity. Our findings hold even after
controlling for the slope and volatility factors and suggest that part of the USV
factors could be driven by activities in the mortgage markets.

7.6 Conclusion

In this paper, we have provided a review of some recent developments in the
academic literature on interest rate derivatives. Our discussions have revolved
around the new evidence of volatility smile in interest rate derivatives markets.

23In results not reported, we find that the nonlinear dependence of the forward densities on the
volatility factor remain the same as well.
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Studies on the pricing and hedging interest rate derivatives in the presence of
volatility smile have provided rich insights on term structure modeling. For example,
Li and Zhao (2006) have shown that one fundamental assumption of DTSMs that
bonds and derivatives are driven by the same set of risk factors is violated in the
data. Therefore, existing DTSMs, which have been popular and successful in pricing
bonds and swaps, need substantial extension to price interest rate derivatives. Jarrow
et al. (2007) also show that stochastic volatility and negative jumps are essential for
pricing the smile in LIBOR market models. Finally, Li and Zhao (2009) provide
nonparametric evidence on the impacts of mortgage refinance activities on the shape
of the volatility smile. Given that volatility smile has guided the development of
equity option pricing literature since Black and Scholes (1973) and Merton (1973),
we hope that the volatility smile documented here will help the development of term
structure models in the years to come.

Appendix

Derivatives Pricing Under QTSMs

Leippold and Wu (2002) show that a large class of fixed-income securities can be
priced in closed-form in the QTSMs using the transform analysis of Duffie et al.
Duffie et al. (2000). They show that the time-t value of a contract that has an
exponential quadratic payoff structure at terminal time T , i.e.

exp .�q.XT // D exp
�
�X 0

T AXT � b
0
XT � c

�

has the following form

 .q;Xt ; t; T / D EQ

�
e� R T

t r.Xs/dse�q.XT /jFt
�

(7.42)

D exp
��XtA.T � t/Xt � b.T � t/0Xt � c.T � t/� :

where A.:/; b.:/ and c.:/ satisfy the ODEs (4)–(6) with the initial conditions
A.0/ D A; b.0/ D b and c.0/ D c.

The time-t price a call option with payoff
�
e�q.XT / � y�C at T D t C  equals

C .q; y;Xt ; / D EQ

�
e� R T

t r.Xs/ds
�
e�q.XT / � y

�C jFt
�

D EQ

�
e� R T

t r.Xs/ds
�
e�q.XT / � y

�
1f�q.XT /�ln.y/gjFt

�

D Gq;q .� ln .y/ ;Xt ; / � yG0;q .� ln .y/ ;Xt ; / ;
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where Gq1;q2 .y;Xt ; / D EQ

h
e� R T

t r.Xs/dse�q1.XT /1fq2.XT /�ygjFt
i

and can be

computed by the inversion formula,

Gq1;q2 .y;Xt ; / D  .q1;Xt ; t; T /

2

� 1




Z 1

0

eivy .q1 C ivq2/ � e�ivy .q1 � ivq2/
iv

dv: (7.43)

Similarly, the price of a put option is

P .q; y; ; Xt / D yG0;�q .ln .y/ ;Xt ; / �Gq;�q .ln .y/ ;Xt ; / :

We are interested in pricing a cap which is portfolio of European call options on
future interest rates with a fixed strike price. For simplicity, we assume the face
value is one and the strike price is r . At time 0; let ; 2; : : : ; n be the fixed dates
for future interest payments. At each fixed date k; the r-capped interest payment is
given by  .R ..k � 1/; k/ � r/C ; where R ..k � 1/; k/ is the -year floating
interest rate at time .k � 1/; defined by

1

1C R ..k � 1/; k/ D % ..k � 1/; k/

D EQ

 
exp

 
�
Z k

.k�1/
r .Xs/ ds

!
jF.k�1/

!
:

The market value at time 0 of the caplet paying at date k can be expressed as

Caplet .k/ D EQ

"
exp

 
�
Z k

0

r .Xs/ ds

!
 .R ..k � 1/; k/ � r/C

#

D .1C r/EQ

"
exp

 
�
Z .k�1/

0

r .Xs/ ds

!

�



1

.1C r/
� % ..k � 1/; k/

�C#
:

Hence, the pricing of the k�th caplet is equivalent to the pricing of an .k�1/-for-
put struck at K D 1

.1Cr/ . Therefore,

Caplet.k/ D G0;�q
�
lnK;X.k�1/ ; .k � 1/�

� 1

K
Gq ;�q

�
lnK;X.k�1/ ; .k � 1/

�
: (7.44)
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Similarly for the k � th floorlet

Floorlet.k/ D �G0;q
�� lnK;X.k�1/ ; .k � 1/

�

C 1

K
Gq ;q

�� lnK;X.k�1/ ; .k � 1/
�
: (7.45)

Derivation of the Characteristic Function in Jarrow et al. (2007)

The solution to the characteristic function of log.Lk.Tk// ;

 .u0; Yt ; t; Tk/ D exp
�
a.s/C u0 log.Lk.t//C B.s/0Vt

�
;

a.s/ and B.s/; 0 � s � Tk satisfy the following system of Ricatti equations:

dBj .s/

ds
D ��kC1

j Bj .s/C 1

2
B2
j .s/�

2
j C 1

2

�
u20 � u0

�
U 2
s;j ; 1 � j � N;

da.s/

ds
D

NX

jD1
�kC1
j �kC1

j Bj .s/C �J Œ�.u0/ � 1 � u0 .�.1/ � 1/	 ;

where the function � is

�.c/ D exp.�kC1
J c C 1

2
�2J c

2/:

The initial conditions are B.0/ D 0N�1; a.0/ D 0; and �kC1
j and �kC1

j are the

parameters of Vj .t/ process under QkC1.
For any l < k; Given that B .Tl/ D B0 and a .Tl/ D a0; we have the closed-

form solutions for B .TlC1/ and a .TlC1/. Define constants p D �
u20 � u0

�
U 2
s;j ;

q D
r�

�kC1
j

�2 C p�2j ; c D p

q��kC1
j

and d D p

qC�kC1
j

. Then we have

Bj .TlC1/ D c � .c C d/.c � Bj0/�
d C Bj0

�
exp.�qı/C �

c � Bj0
� ; 1 � j � N;

a.TlC1/ D a0 �
NX

jD1

"
�kC1
j �kC1

j

 
dı C 2

�2j
ln

 �
d C Bj0

�
exp.�qı/C �

c � Bj0
�

c C d

!!#

C�J ı Œ�.u0/ � 1 � u0 .�.1/ � 1/	 ;

if p ¤ 0 and Bj .TlC1/ D Bj0; a.TlC1/ D a0 otherwise. B.Tk/ and a.Tk/ can be
computed via iteration.
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Chapter 8
Volatility Investing with Variance Swaps

Wolfgang Karl Härdle and Elena Silyakova

Abstract Traditionally volatility is viewed as a measure of variability, or risk, of
an underlying asset. However, recently investors began to look at volatility from
a different angle. It happened due to emergence of a market for new derivative
instruments - variance swaps. In this chapter, first we introduce the general idea of
the volatility trading using variance swaps. Then we describe valuation and hedging
methodology for vanilla variance swaps as well as for the third generation volatility
derivatives: gamma swaps, corridor variance swaps, conditional variance swaps.
Finally, we show the results of the performance investigation of one of the most
popular volatility strategies - dispersion trading. The strategy was implemented
using variance swaps on DAX and its constituents during the 5-year period from
2004 to 2008.

8.1 Introduction

Traditionally volatility is viewed as a measure of variability, or risk, of an underlying
asset. However recently investors have begun to look at volatility from a different
angle, variance swaps have been created.

The first variance swap contracts were traded in late 1998, but it was only after
the development of the replication argument using a portfolio of vanilla options that
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variance swaps became really popular. In a relatively short period of time these over-
the-counter (OTC) derivatives developed from simple contracts on future variance to
more sophisticated products. Recently we have been able to observe the emergence
of 3G volatility derivatives: gamma swaps, corridor variance swaps, conditional
variance swaps and options on realised variance.

Constant development of volatility instruments and improvement in their liquid-
ity allows for volatility trading almost as easily as traditional stocks and bonds.
Initially traded OTC, now the number of securities having volatility as underlying
are available on exchanges. Thus the variance swaps idea is reflected in volatility
indices, also called “fear” indices. These indices are often used as a benchmark
of equity market risk and contain option market expectations on future volatility.
Among those are VIX – the Chicago Board Options Exchange (CBOE) index on
the volatility of S&P500, VSTOXX on Dow Jones EURO STOXX 50 volatility,
VDAX – on the volatility of DAX. These volatility indices represent the theoretical
prices of one-month variance swaps on the corresponding index. They are calculated
daily and on an intraday basis by the exchange from the listed option prices. Also,
recently exchanges started offering derivative products, based on these volatility
indices – options and futures.

8.2 Volatility Trading with Variance Swaps

Variance swap is a forward contract that at maturity pays the difference between
realised variance �2R (floating leg) and predefined strike K2

var (fixed leg) multiplied
by notionalNvar.

.�2R �K2
var/ �Nvar (8.1)

When the contract expires the realised variance �2R can be measured in different
ways, since there is no formally defined market convention. Usually variance swap
contracts define a formula of a final realised volatility �R. It is a square root of
annualized variance of daily log-returns of an underlying over a swap’s maturity
calculated in percentage terms:

�R D
vuut252

T

TX

tD1



log

St

St�1

�2
� 100 (8.2)

There are two ways to express the variance swap notional: variance notional and
vega notional. Variance notional Nvar shows the dollar amount of profit (loss) from
difference in one point between the realised variance �2R and the strike K2

var. But
since market participants usually think in terms of volatility, vega notional Nvega

turns out to be a more intuitive measure. It shows the profit or loss from 1% change
in volatility. The two measures are interdependent and can substitute each other:
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Nvega D Nvar � 2Kvar: (8.3)

Example 1. Variance notional Nvar D 2500. If Kvar is 20% (K2
var D 400) and the

subsequent variance realised over the course of the year is .15%/2 (quoted as �2R D
225), the investor will make a loss:

Loss D Nvar � .�2R �K2
var/

437500 D 2500 � .400� 225/:

Marking-to-market of a variance swap is straightforward. If an investor wishes to
close a variance swap position at some point t before maturity, he needs to define a
value of the swap between inception 0 and maturity T . Here the additivity property
of variance is used. The variance at maturity �2R;.0;T / is just a time-weighted sum of

variance realised before the valuation point �2R;.0;t/ and variance still to be realised

up to maturity �2R;.t;T /. Since the later is unknown yet, we use its estimate K2
var;.t;T /.

The value of the variance swap (per unit of variance notional) at time t is therefore:

T �1
n
t�2R;.0;t/ � .T � t/K2

var;.t;T /

o
�K2

var;.0;T / (8.4)

8.3 Replication and Hedging of Variance Swaps

The strike K2
var of a variance swap is determined at inception. The realised variance

�2R, on the contrary, is calculated at expiry (8.2). Similar to any forward contract, the
future payoff of a variance swap (8.1) has zero initial value, orK2

var D EŒ�2R	. Thus
the variance swap pricing problem consists in finding the fair value ofK2

var which is
the expected future realised variance.

To achieve this, one needs to construct a trading strategy that captures the realised
variance over the swap’s maturity. The cost of implementing this strategy will be the
fair value of the future realised variance.

One of the ways of taking a position in future volatility is trading a delta-hedged
option. The P&L from delta-hedging (also called hedging error) generated from
buying and holding a vanilla option up to maturity and continuously delta-hedging
it, captures the realised volatility over the holding period.

Some assumptions are needed:

• The existence of futures market with delivery dates T 0 	 T

• The existence of European futures options market, for these options all strikes
are available (market is complete)

• Continuous trading is possible
• Zero risk-free interest rate (r D 0)
• The price of the underlying futures contractFt following a diffusion process with

no jumps:
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dFt
Ft

D �tdt C �tdWt (8.5)

We assume that the investor does not know the volatility process �t , but believes
that the future volatility equals �imp, the implied volatility prevailing at that time
on the market. He purchases a claim (for example a call option) with �imp. The
terminal value (or payoff) of the claim is a function of FT . For a call option the
payoff is denoted: f .FT / D .FT � K/C. The investor can define the value of a
claim V.Ft ; t/ at any time t , given that �imp is predicted correctly. To delta-hedge
the long position in V over Œ0; T 	 the investor holds a dynamic short position equal
to the option’s delta: � D @V=@Ft . If his volatility expectations are correct, then at
time t for a delta-neutral portfolio the following relationship holds:

� D �1
2
�2impF

2
t � (8.6)

subject to terminal condition:

V.FT ; T / D f .FT / (8.7)

� D @V=@t is called the option’s theta or time decay and � D @2V=@F 2
t is the

option’s gamma. Equation (8.6) shows how the option’s value decays in time (�)
depending on convexity (� ).

Delta-hedging of V generates the terminal wealth:

P&L� D �V.F0; 0; �imp/�
Z T

0

�dFt C V.FT ; T / (8.8)

which consists of the purchase price of the option V.F0; 0; �imp/, P&L from delta-
hedging at constant implied volatility �imp and final pay-off of the option V.FT ; T /.

Applying Itô’s lemma to some function f .Ft / of the underlying process specified
in (8.5) gives:

f .FT / D f .F0/C
Z T

0

@f .Ft /

@Ft
dFt C 1

2

Z T

0

F 2
t �

2
t

@2f .Ft /

@F 2
t

dt C
Z T

0

@f .Ft /

@t
dt

(8.9)
For f .Ft / D V.Ft ; t; �t / we therefore obtain:

V.FT ; T / D V.F0; 0; �imp/C
Z T

0

�dFt C 1

2

Z T

0

F 2
t � �

2
t dt C

Z T

0

�dt (8.10)

Using relation (8.6) for (8.10) gives:

V.FT ; T / � V.F0; 0; �imp/ D
Z T

0

�dFt C 1

2

Z T

0

F 2
t � .�

2
t � �2imp/dt (8.11)
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Finally substituting (8.11) into (8.8) gives P&L� of the delta-hedged option
position:

P&L� D 1

2

Z T

0

F 2
t � .�

2
t � �2imp/dt (8.12)

Thus buying the option and delta-hedging it generates P&L (or hedging error)
equal to differences between instantaneous realised and implied variance, accrued
over time Œ0; T 	 and weighed by F 2

t � =2 (dollar gamma).
However, even though we obtained the volatility exposure, it is path-dependent.

To avoid this one needs to construct a portfolio of options with path-independent
P&L or in other words with dollar gamma insensitive to Ft changes. Figure 8.1
represents the dollar gammas of three option portfolios with an equal number of
vanilla options (puts or calls) and similar strikes lying in a range from 20 to 200.
Dollar gammas of individual options are shown with thin lines, the portfolio’s dollar
gamma is a bold line.

First, one can observe, that for every individual option dollar gamma reaches
its maximum when the option is ATM and declines with price going deeper out
of the money. One can make a similar observation by looking at the portfolio’s
dollar gamma when the constituents are weighted equally (first picture). However,
when we use the alternative weighting scheme (1=K), the portfolio’s dollar gamma
becomes flatter (second picture). Finally by weighting options with 1=K2 the
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Fig. 8.1 Dollar gamma of option portfolio as a function of stock price. Weights are defined:
equally, proportional to 1=K and proportional to 1=K2
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Fig. 8.2 Dollar gamma of option portfolio as a function of stock price and maturity. Weights are
defined proportional to 1=K2

portfolio’s dollar gamma becomes parallel to the vertical axis (at least in 20–140
region), which suggests that the dollar gamma is no longer dependent on the Ft
movements.

We have already considered a position in a single option as a bet on volatility.
The same can be done with the portfolio of options. However the obtained exposure
is path-dependent. We need, however the static, path-independent trading position
in future volatility. Figures 8.1 and 8.2 illustrate that by weighting the options’
portfolio proportional to 1=K2 this position can be achieved. Keeping in mind this
intuition we proceed to formal derivations.

Let us consider a payoff function f .Ft /:

f .Ft / D 2

T



log

F0

Ft
C Ft

F0
� 1

�
(8.13)

This function is twice differentiable with derivatives:

f 0.Ft / D 2

T



1

F0
� 1

Ft

�
(8.14)

f 00.Ft / D 2

TF 2
t

(8.15)

and
f .F0/ D 0 (8.16)

One can give a motivation for the choice of the particular payoff function (8.13).
The first term, 2 logF0=TFt , is responsible for the second derivative of the payoff
f .Ft / w.r.t. Ft , or gamma (8.15). It will cancel out the weighting term in (8.12)
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and therefore will eliminate path-dependence. The second term 2=T .Ft=F0 � 1/

guarantees the payoff f .Ft / and will be non-negative for any positive Ft .
Applying Itô’s lemma to (8.13) (substituting (8.13) into (8.9)) gives the expres-

sion for the realised variance:

1

T

Z T

0

�2t dt D 2

T



log

F0

FT
C FT

F0
� 1

�
� 2

T

Z T

0



1

F0
� 1

Ft

�
dFt (8.17)

Equation (8.17) shows that the value of a realised variance for t 2 Œ0; T 	 is
equal to

• A continuously rebalanced futures position that costs nothing to initiate and is
easy to replicate:

2

T

Z T

0



1

F0
� 1

Ft

�
dFt (8.18)

• A log contract, static position of a contract that pays f .FT / at expiry and has to
be replicated:

2

T



log

F0

FT
C FT

F0
� 1

�
(8.19)

Carr and Madan (2002) argue that the market structure assumed above allows for
the representation of any twice differentiable payoff function f .FT / in the following
way:

f .FT / D f .k/C f 0.k/
�˚
.FT � k/C � .k � FT /C

��C (8.20)

C
Z k

0

f 00.K/.K � FT /CdK C
Z 1

k

f 00.K/.FT �K/CdK

Applying (8.20) to payoff (8.19) with k D F0 gives:

log



F0

FT

�
C FT

F0
�1 D

Z F0

0

1

K2
.K�FT /CdKC

Z 1

F0

1

K2
.FT �K/CdK (8.21)

Equation (8.21) represents the payoff of a log contract at maturity f .FT / as a
sum of:

• The portfolio of OTM puts (strikes are lower than forward underlying price F0),
inversely weighted by squared strikes:

Z F0

0

1

K2
.K � FT /CdK (8.22)

• The portfolio of OTM calls (strikes are higher than forward underlying price F0),
inversely weighted by squared strikes:
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Z 1

F0

1

K2
.FT �K/CdK (8.23)

Now coming back to equation (8.17) we see that in order to obtain a constant
exposure to future realised variance over the period 0 to T the trader should, at
inception, buy and hold the portfolio of puts (8.22) and calls (8.23). In addition he
has to initiate and roll the futures position (8.18).

We are interested in the costs of implementing the strategy. Since the initiation
of futures contract (8.18) costs nothing, the cost of achieving the strategy will be
defined solely by the portfolio of options. In order to obtain an expectation of
a variance, or strike K2

var of a variance swap at inception, we take a risk-neutral
expectation of a future strategy payoff:

K2
var D 2

T
erT

Z F0

0

1

K2
P0.K/dK C 2

T
erT

Z 1

F0

1

K2
C0.K/dK (8.24)

8.4 Constructing a Replication Portfolio in Practice

Although we have obtained the theoretical expression for the future realised
variance, it is still not clear how to make a replication in practice. Firstly, in reality
the price process is discrete. Secondly, the range of traded strikes is limited. Because
of this the value of the replicating portfolio usually underestimates the true value of
a log contract.

One of the solutions is to make a discrete approximation of the payoff (8.19).
This approach was introduced by Demeterfi et al. (Summer 1999).

Taking the logarithmic payoff function, whose initial value should be equal
to the weighted portfolio of puts and calls (8.21), we make a piecewise linear
approximation. This approach helps to define how many options of each strike
investor should purchase for the replication portfolio.

Figure 8.3 shows the logarithmic payoff (dashed line) and the payoff of the
replicating portfolio (solid line). Each linear segment on the graph represents the
payoff of an option with strikes available for calculation. The slope of this linear
segment will define the amount of options of this strike to be put in the portfolio.

For example, for the call option with strike K0 the slope of the segment would
be:

w.K0/ D f .K1;c/ � f .K0/

K1;c �K0

(8.25)

whereK1;c is the second closest call strike.
The slope of the next linear segment, betweenK1;c andK2;c , defines the amount

of options with strike K1;c . It is given by

w.K1;c/ D f .K2;c/ � f .K1;c/

K2;c �K1;c

� w.K0/ (8.26)
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Fig. 8.3 Discrete approximation of a log payoff

Finally for the portfolio of n calls the number of calls with strike Kn;c :

w.Kn;c/ D f .KnC1;c/� f .Kn;c/

KnC1;c �Kn;c

�
n�1X

iD0
w.Ki;c/ (8.27)

The left part of the log payoff is replicated by the combination of puts. For the
portfolio of m puts the weight of a put with strike Km;p is defined by

w.Km;p/ D f .KmC1;p/ � f .Km;p/

Km;p �KmC1;p
�
m�1X

jD0
w.Kj;p/ (8.28)

Thus constructing the portfolio of European options with the weights defined by
(8.27) and (8.28) we replicate the log payoff and obtain value of the future realised
variance.

Assuming that the portfolio of options with narrowly spaced strikes can produce
a good piecewise linear approximation of a log payoff, there is still the problem
of capturing the “tails” of the payoff. Figure 8.3 illustrates the effect of a limited
strike range on replication results. Implied volatility is assumed to be constant for
all strikes (�imp D 25%). Strikes are evenly distributed one point apart. The strike
range changes from 20 to 1,000. With increasing numbers of options the replicating
results approach the “true value” which equals to �imp in this example. For higher
maturities one needs a broader strike range than for lower maturities to obtain the
value close to actual implied volatility.
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Table 8.1 Replication of a variance swaps strike by portfolio of puts and calls

Strike IV BS Price Type of option Weight Share value

200 0.13 0.01 Put 0.0003 0.0000
210 0.14 0.06 Put 0.0002 0.0000
220 0.15 0.23 Put 0.0002 0.0000
230 0.15 0.68 Put 0.0002 0.0001
240 0.16 1.59 Put 0.0002 0.0003
250 0.17 3.16 Put 0.0002 0.0005
260 0.17 5.55 Put 0.0001 0.0008
270 0.18 8.83 Put 0.0001 0.0012
280 0.19 13.02 Put 0.0001 0.0017
290 0.19 18.06 Put 0.0001 0.0021
300 0.20 23.90 Call 0.0000 0.0001
310 0.21 23.52 Call 0.0001 0.0014
320 0.21 20.10 Call 0.0001 0.0021
330 0.22 17.26 Call 0.0001 0.0017
340 0.23 14.91 Call 0.0001 0.0014
350 0.23 12.96 Call 0.0001 0.0011
360 0.24 11.34 Call 0.0001 0.0009
370 0.25 9.99 Call 0.0001 0.0008
380 0.25 8.87 Call 0.0001 0.0006
390 0.26 7.93 Call 0.0001 0.0005
400 0.27 7.14 Call 0.0001 0.0005

Kvar 0.1894
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Fig. 8.4 Dependence of replicated realised variance level on the maturity of the swap and the
number of options

Table 8.1 shows the example of the variance swap replication. The spot price of
S� D 300, riskless interest rate r D 0, maturity of the swap is one year T D 1,
strike range is from 200 to 400 (Fig. 8.4). The implied volatility is 20% ATM and
changes linearly with the strike (for simplicity no smile is assumed). The weight of
each option is defined by (8.27) and (8.28).
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8.5 3G Volatility Products

If we need to capture some particular properties of realised variance, standard
variance swaps may not be sufficient. For instance by taking asymmetric bets on
variance. Therefore, there are other types of swaps introduced on the market, which
constitute the third-generation of volatility products. Among them are: gamma
swaps, corridor variance swaps and conditional variance swaps.

By modifying the floating leg of a standard variance swap (8.2) with a weight
process wt we obtain a generalized variance swap.

�2R D 252

T

TX

tD1
wt



log

Ft

Ft�1

�2
(8.29)

Now, depending on the chosen wt we obtain different types of variance swaps:
Thus wt D 1 defines a standard variance swap.

8.5.1 Corridor and Conditional Variance Swaps

The weight wt D w.Ft / D IFt2C defines a corridor variance swap with corridor C .
I is the indicator function, which is equal to one if the price of the underlying asset
Ft is in corridor C and zero otherwise.

If Ft moves sideways, but stays inside C , then the corridor swap’s strike is large,
because some part of volatility is accrued each day up to maturity. However if the
underlying moves outside C , less volatility is accrued resulting the strike to be low.
Thus corridor variance swaps on highly volatile assets with narrow corridors have
strikes K2

C lower than usual variance swap strike K2
var.

Corridor variance swaps admit model-free replication in which the trader holds
statically the portfolio of puts and calls with strikes within the corridor C . In this
case we consider the payoff function with the underlying Ft in corridor C D ŒA; B	

f .Ft / D 2

T



log

F0

Ft
C Ft

F0
� 1

�
IFt2ŒA;B	 (8.30)

The strike of a corridor variance swap is thus replicated by

K2
ŒA;B	 D 2

T
erT

Z F0

A

1

K2
P0.K/dK C 2

T
erT

Z B

F0

1

K2
C0.K/dK (8.31)

C D Œ0; B	 gives a downward variance swap, C D ŒA;1	 – an upward variance
swap.
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Since in practice not all the strikes K 2 .0;1/ are available on the market,
corridor variance swaps can arise from the imperfect variance replication, when just
strikes K 2 ŒA; B	 are taken to the portfolio.

Similarly to the corridor, realised variance of conditional variance swap is
accrued only if the price of the underlying asset in the corridor C . However
the accrued variance is averaged over the number of days, at which Ft was in the
corridor (T ) rather than total number of days to expiry T . Thus ceteris paribus the
strike of a conditional variance swap K2

C;cond is smaller or equal to the strike of a
corridor variance swap K2

C .

8.5.2 Gamma Swaps

As it is shown in Table 8.2, a standard variance swap has constant dollar gamma and
vega. It means that the value of a standard swap is insensitive to Ft changes. How-
ever it might be necessary, for instance, to reduce the volatility exposure when the
underlying price drops. Or in other words, it might be convenient to have a derivative
with variance vega and dollar gamma, that adjust with the price of the underlying.

The weight wt D w.Ft / D Ft=F0 defines a price-weighted variance swap or
gamma swap. At maturity the buyer receives the realised variance weighted to
each t , proportional to the underlying price Ft . Thus the investor obtains path-
dependent exposure to the variance of Ft . One of the common gamma swap
applications is equity dispersion trading, where the volatility of a basket is traded
against the volatility of basket constituents.

The realised variance paid at expiry of a gamma swap is defined by

�gamma D
vuut252

T

TX

tD1

Ft

F0



log

St

St�1

�2
� 100 (8.32)

Table 8.2 Variance swap greeks

Greeks Call Put Standard variance swap Gamma swap
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One can replicate a gamma swap similarly to a standard variance swap, by using
the following payoff function:

f .Ft / D 2

T



Ft

F0
log

Ft

F0
� Ft

F0
C 1

�
(8.33)

f 0.Ft / D 2

TF0
log

Ft

F0
(8.34)

f 00.Ft / D 2

TF0Ft
(8.35)

f .F0/ D 0 (8.36)

Applying Itô’s formula (8.9) to (8.33) gives

1

T

Z T

0

Ft

F0
�2t dt D 2

T



FT

F0
log

FT

F0
� FT

F0
C 1

�
� 2

TF0

Z T

0

log
Ft

F0
dFt (8.37)

Equation (8.37) shows that accrued realised variance weighted each t by the
value of the underlying is decomposed into payoff (8.33), evaluated at T , and a

continuously rebalanced futures position
2

TF0

Z T

0

log
Ft

F0
dFt with zero value at t D

0. Then applying the Carr and Madan argument (8.20) to the payoff (8.33) at T we
obtain the t D 0 strike of a gamma swap:

K2
gamma D 2

TF0
e2rT

Z F0

0

1

K
P0.K/dK C 2

TF0
e2rT

Z 1

F0

1

K
C0.K/dK (8.38)

Thus gamma swap can be replicated by the portfolio of puts and calls weighted
by the inverse of strike 1=K and rolling the futures position.

8.6 Equity Correlation (Dispersion) Trading with Variance
Swaps

8.6.1 Idea of Dispersion Trading

The risk of the portfolio (or basket of assets) can be measured by the variance (or
alternatively standard deviation) of its return. Portfolio variance can be calculated
using the following formula:

�2Basket D
nX

iD1
w2i �

2
i C 2

nX

iD1

nX

jDiC1
wiwj �i�j �ij (8.39)
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where �i – standard deviation of the return of an i -th constituent (also called
volatility), wi – weight of an i -th constituent in the basket, �ij – correlation
coefficient between the i -th and the j -th constituent.

Let’s take an arbitrary market index. We know the index value historical
development as well as price development of each of index constituent. Using this
information we can calculate the historical index and constituents’ volatility using,
for instance, formula (8.2). The constituent weights (market values or current stock
prices, depending on the index) are also known to us. The only parameter to be
defined are correlation coefficients of every pair of constituents �ij . For simplicity
assume �ij D const for any pair of i; j and call this parameter � - average index
correlation, or dispersion. Then having index volatility �index and volatility of each
constituent �i , we can express the average index correlation:

� D �2index �Pn
iD1 w2i �

2
i

2
Pn

iD1
Pn

jDiC1 wiwj �i �j
(8.40)

Hence it appears the idea of dispersion trading, consisting of buying the volatility
of index constituents according to their weight in the index and selling the volatility
of the index. Corresponding positions in variances can be taken by buying (selling)
variance swaps.

By going short index variance and long variance of index constituents we go
short dispersion, or enter the direct dispersion strategy.

Why can this strategy be attractive for investors? This is due to the fact that index
options appear to be more expensive than their theoretical Black-Scholes prices,
in other words investors will pay too much for realised variance on the variance
swap contract expiry. However, in the case of single equity options one observes no
volatility distortion. This is reflected in the shape of implied volatility smile. There
is growing empirical evidence that the index option skew tends to be steeper then
the skew of the individual stock option. For instance, this fact has been studied in
Bakshi et al. (2003) on example of the S&P500 and Branger and Schlag (2004) for
the German stock index DAX.

This empirical observation is used in dispersion trading. The most widespread
dispersion strategy, direct strategy, is a long position in constituents’ variances
and short in variance of the index. This strategy should have, on average, positive
payoffs. Hoverer under some market conditions it is profitable to enter the trade in
the opposite direction. This will be called – the inverse dispersion strategy.

The payoff of the direct dispersion strategy is a sum of variance swap payoffs of
each of i -th constituent

.�2R;i �K2
var;i / �Ni (8.41)

and of the short position in index swap

.K2
var;index � �2R;index/ �Nindex (8.42)
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where

Ni D Nindex � wi (8.43)

The payoff of the overall strategy is:

Nindex �
 

nX

iD1
wi �

2
R;i � �2R;index

!
� ResidualStrike (8.44)

The residual strike

ResidualStrike D Nindex �
 

nX

iD1
wiK

2
var;i �K2

var;index

!
(8.45)

is defined by using methodology introduced before, by means of replication
portfolios of vanilla OTM options on index and all index constituents.

However when implementing this kind of strategy in practice investors can
face a number of problems. Firstly, for indices with a large number of constituent
stocks (such as S&P500) it would be problematic to initiate a large number of
variance swap contracts. This is due to the fact that the market for some variance
swaps did not reach the required liquidity. Secondly, there is still the problem
of hedging vega-exposure created by these swaps. It means a bank should not
only virtually value (use for replication purposes), but also physically acquire and
hold the positions in portfolio of replicating options. These options in turn require
dynamic delta-hedging. Therefore, a large variance swap trade (as for example
in case of S&P500) requires additional human capital from the bank and can be
associated with large transaction costs. The remedy would be to make a stock
selection and to form the offsetting variance portfolio only from a part of the index
constituents.

It has already been mentioned that, sometimes the payoff of the strategy could be
negative, in order words sometimes it is more profitable to buy index volatility and
sell volatility of constituents. So the procedure which could help in decisions about
trade direction may also improve overall profitability.

If we summarize, the success of the volatility dispersion strategy lies in correct
determining:

• The direction of the strategy
• The constituents for the offsetting variance basket

The next sections will present the results of implementing the dispersion trading
strategy on DAX and DAX constituents’ variances. First we implement its classical
variant meaning short position in index variance against long positions in variances
of all 30 constituents. Then the changes to the basic strategy discussed above are
implemented and the profitability of these improvements measured.
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Fig. 8.5 Average implied correlation (dotted), average realized correlation (gray), payoff of the
direct dispersion strategy (solid black)

8.6.2 Implementation of the Dispersion Strategy on DAX Index

In this section we investigate the performance of a dispersion trading strategy over
the 5 years period from January 2004 to December 2008. The dispersion trade was
initiated at the beginning of every moth over the examined period. Each time the
1-month variance swaps on DAX and constituents were traded.

First we implement the basic dispersion strategy, which shows on average
positive payoffs over the examined period (Fig. 8.5). Descriptive statistics shows
that the average payoff of the strategy is positive, but close to zero. Therefore in the
next section several improvements are introduced.

It was discussed already that index options are usually overestimated (which is
not the case for single equity options), the future volatility implied by index options
will be higher than realized volatility meaning that the direct dispersion strategy is
on average profitable. However the reverse scenario may also take place. Therefore
it is necessary to define whether to enter a direct dispersion (short index variance,
long constituents variance) or reverse dispersion (long index variance and short
constituents’ variances) strategy.

This can be done by making a forecast of the future volatility with GARCH (1,1)
model and multiplying the result by 1.1, which was implemented in the paper of
Deng (2008) for S&P500 dispersion strategy. If the variance predicted by GARCH
is higher than the variance implied by the option market, one should enter the reverse
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Table 8.3 Comparison of basic and improved dispersion strategy payoffs for the period from
January 2004 to December 2008

Strategy Mean Median SD Skewness Kurtosis J-B Probability

Basic 0.032 0.067 0.242 0.157 2.694 0.480 0.786
Improved 0.077 0.096 0.232 �0.188 3.012 0.354 0.838

dispersion trade (long index variance and short constituents variances). After using
the GARCH volatility estimate the average payoff increased by 41.7% (Table 8.3).

The second improvement serves to decrease transaction cost and cope with
market illiquidity. In order to decrease the number of stocks in the offsetting
portfolio the Principal Components Analysis (PCA) can be implemented. Using
PCA we select the most “effective” constituent stocks, which help to capture the
most of index variance variation. This procedure allowed us to decrease the number
of offsetting index constituents from 30 to 10. According to our results, the 1-st
PC explains on average 50% of DAX variability. Thereafter each next PC adds
only 2–3% to the explained index variability, so it is difficult to distinguish the first
several that explain together 90%. If we take stocks, highly correlated only with the
1-st PC, we can significantly increase the offsetting portfolio’s variance, because
by excluding 20 stocks from the portfolio we make it less diversified, and therefore
more risky.

However it was shown that one still can obtain reasonable results after using the
PCA procedure. Thus in the paper of Deng (2008) it was successfully applied to
S&P500.
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Statistical Inference in Financial Models



Chapter 9
Evaluation of Asset Pricing Models
Using Two-Pass Cross-Sectional Regressions

Raymond Kan and Cesare Robotti

Abstract This chapter provides a review of the two-pass cross-sectional regression
methodology, which over the years has become the most popular approach for
estimating and testing linear asset pricing models. We focus on some of the recent
developments of this methodology and highlight the importance of accounting for
model misspecification in estimating risk premia and in comparing the performance
of competing asset pricing models.

9.1 Introduction

Since Black et al. (1972) and Fama and MacBeth (1973), the two-pass cross-
sectional regression (CSR) methodology has become the most popular approach
for estimating and testing linear asset pricing models. Although there are many
variations of this two-pass methodology, the basic approach always involves two
steps. In the first pass, the betas of the test assets are estimated from ordinary least
squares (OLS) time series regressions of returns on some common factors. In the
second pass, the returns on the test assets are regressed on the betas estimated from
the first pass. The intercept and the slope coefficients from the second-pass CSR are
then used as estimates of the zero-beta rate and factor risk premia. In addition, the
R2 from the second-pass CSR is a popular measure of goodness-of-fit and is often
used to compare the performance of competing asset pricing models.
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Although the two-pass CSR approach is easy to implement, conducting robust
statistical inference under this method is not trivial. In this article, we survey the
existing asymptotic techniques and provide some new results. While we are not the
first to review the CSR methodology (see Shanken 1996; Jagannathan et al. 2010),
our summary of this approach is more current and emphasizes the role played by
model misspecification in estimating risk premia and in comparing the performance
of competing asset pricing models.

The remainder of the article is organized as follows. Section 9.2 presents the
notation and introduces the two-pass CSR methodology. Section 9.3 discusses
statistical inference under correctly specified models. Section 9.4 shows how to
conduct statistical inference under potentially misspecified models. Section 9.5
reviews some popular measures of model misspecification and analyzes their
statistical properties. Section 9.6 discusses some subtle issues associated with the
two-pass CSR methodology that are often overlooked by researchers. The focus of
Sects. 9.7 and 9.8 is on pairwise and multiple model comparison tests, respectively.
Section 9.9 concludes and discusses several avenues for future research.

9.2 The Two-Pass Cross-Sectional Regression Methodology

Let ft be a K-vector of factors at time t and Rt a vector of returns on N test assets
at time t . We define Yt D Œf 0

t ; R
0
t 	

0 and its unconditional mean and covariance
matrix as

� D EŒYt 	 �
"
�1

�2

#
; (9.1)

V D VarŒYt 	 �
"
V11 V12

V21 V22

#
; (9.2)

where V is assumed to be positive definite. The multiple regression betas of the N
assets with respect to theK factors are defined as ˇ D V21V

�1
11 . These are measures

of systematic risk or the sensitivity of returns to the factors. In addition, we denote
the covariance matrix of the residuals of the N assets by ˙ D V22 � V21V

�1
11 V12.

Throughout the article, we assume that the time series Yt is jointly stationary and
ergodic, with finite fourth moment.

The proposed K-factor beta pricing model specifies that asset expected returns
are linear in the betas, i.e.,

�2 D X�; (9.3)

where X D Œ1N ; ˇ	 is assumed to be of full column rank, 1N is an N -vector of
ones, and � D Œ�0; �

0
1	

0 is a vector consisting of the zero-beta rate (�0) and risk
premia on theK factors (�1). In general, asset pricing models only require the linear
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relationship in (9.3) to hold conditionally. However, most empirical studies estimate
an unconditional version of (9.3). This can be justified on the following grounds.
First, the stochastic process of the conditional betas could be specified such that the
K-factor beta pricing model holds unconditionally. See, for example, Caflisch and
Chaudhary (2004) and Jagannathan and Wang (1996). Second, one could let � be
linear in a set of instruments. This will then lead to an expanded unconditional beta
pricing model, which includes the instruments and the original factors multiplied by
the instruments as additional factors.

Suppose that we have T observations on Yt and denote the sample mean and
covariance matrix of Yt by

O� D
" O�1

O�2

#
D 1

T

TX

tD1
Yt ; (9.4)

OV D
" OV11 OV12

OV21 OV22

#
D 1

T

TX

tD1
.Yt � O�/.Yt � O�/0: (9.5)

The popular two-pass method first estimates the betas of the N assets by running
the following multivariate regression:

Rt D ˛ C f̌t C �t ; t D 1; : : : ; T: (9.6)

The estimated betas from this first-pass time-series regression are given by the
matrix Ǒ D OV21 OV �1

11 .
In the second pass, we run a single CSR of O�2 on OX D Œ1N ; Ǒ	 to estimate � .

Note that some studies allow Ǒ to change throughout the sample period. For
example, in the original Fama and MacBeth (1973) study, the betas used in the
CSR for month t were estimated from data prior to that month. We do not study
this case here mainly because the estimator of � from this alternative procedure
is generally not consistent. The second-pass CSR estimators will depend on the
weighting matrix W . Popular choices of W in the literature are W D IN (OLS),
W D V �1

22 (generalized least squares, GLS), andW D ˙�1
d (weighted least squares,

WLS), where˙d D Diag.˙/ is a diagonal matrix containing the diagonal elements
of ˙ .

When W is known (say OLS CSR), we can estimate � in (9.3) by

O� D . OX 0W OX/�1 OX 0W O�2: (9.7)

In the feasible GLS and WLS cases, W contains unknown parameters and one
needs to substitute a consistent estimate of W , say OW , in (9.7). This is typically
the corresponding matrix of sample moments, OW D OV �1

22 for GLS and OW D Ȯ �1
d

for WLS. As pointed out by Lewellen et al. (2010), the estimates of � are the same
regardless of whether we use W D V �1

22 or W D ˙�1 as the weighting matrix for
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the GLS CSR. However, it should be noted that the cross-sectionalR2s are different
forW D V �1

22 andW D ˙�1. For the purpose of model comparison, it makes sense
to use a common W across models, so we prefer to use W D V �1

22 for the case of
GLS CSR.

9.3 Statistical Inference Under Correctly Specified Models

In this section, we present the asymptotic distribution of O� when the model is
correctly specified, i.e., (9.3) holds exactly.

We first consider the special case in which the true betas are used in the second-
pass CSR. The estimate of � is given by

O� D A O�2; (9.8)

where A D .X 0WX/�1X 0W . Equation (9.8) shows that the randomness of O� is
entirely driven by the randomness of O�2. Under the joint stationarity and ergodicity
assumptions, we have

p
T . O�2 � �2/

A� N

0

@0N ;
1X

jD�1
EŒ.Rt � �2/.RtCj � �2/0	

1

A : (9.9)

It follows that p
T . O� � �/

A� N.0KC1; V . O�//; (9.10)

where

V. O�/ D
1X

jD�1
EŒhth

0
tCj 	; (9.11)

with
ht D �t � �; (9.12)

and �t � Œ�0t ; �
0
1t 	

0 D ARt is the period-by-period estimate of � from regressing
Rt on X .

If Rt is serially uncorrelated, then ht is serially uncorrelated and

V. O�/ D AV22A
0: (9.13)

For statistical inference, we need a consistent estimator of V. O�/. This can be
accomplished by replacing ht with

Oht D �t � O�: (9.14)
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When ht is serially uncorrelated, a consistent estimator of the asymptotic variance
of O� is given by

OV . O�/ D 1

T

TX

tD1
Oht Oh0

t : (9.15)

Equation (9.15) yields the popular standard error of O� due to Fama and MacBeth
(1973), which is obtained using the standard deviation of the time series f�tg. When
ht is autocorrelated, one can use the method proposed by Newey and West (1987)
to obtain a consistent estimator of V. O�/.

In the general case, the betas are estimated with error in the first-pass time
series regression and an errors-in-variables (EIV) problem is introduced in the
second-pass CSR. Measurement errors in the betas cause two problems. The first
is that the estimated zero-beta rate and risk premia are biased, though Shanken
(1992) shows that they are consistent as the length of the time series increases
to infinity. The second problem is that the usual Fama-MacBeth standard errors
for the estimated zero-beta rate and risk premia are inconsistent. Shanken (1992)
addresses this by developing an asymptotically valid EIV adjustment of the stan-
dard errors. Jagannathan and Wang (1998) extend Shanken’s asymptotic analysis
by relaxing the assumption that the returns are homoskedastic conditional on
the factors.

It turns out that one can easily deal with the EIV problem by replacing ht in
(9.12) with

ht D .�t � �/ � .�t � �/wt ; (9.16)

where �t D Œ�0t ; .�1t �ft /0	0, � D Œ�0; .�1��1/0	0, and wt D � 0
1V

�1
11 .ft ��1/. The

second term, .�t ��/wt , is the EIV adjustment term that accounts for the estimation
error in Ǒ. To estimate V. O�/, we replace ht with its sample counterpart

Oht D . O�t � O�/ � . O�t � O�/ Owt ; (9.17)

where O�t D Œ O�0t ; O� 0
1t 	

0 D . OX 0W OX/�1 OX 0WRt , O�t D Œ O�0t ; . O�1t � ft /
0	0, O� D

Œ O�0; . O�1 � O�1/0	0, and Owt D O� 0
1

OV �1
11 .ft � O�1/.

When ht is serially uncorrelated and VarŒRt jft 	 D ˙ (conditional homoskedas-
ticity case), we can simplify V. O�/ to

V. O�/ D AV22A
0 C � 0

1V
�1
11 �1A˙A

0; (9.18)

which is the expression given in Shanken (1992). Using the fact that

V22 D ˙ C ˇV11ˇ
0 D ˙ CX

"
0 00

K

0K V11

#
X 0; (9.19)
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we can also write (9.18) as

V. O�/ D .1C � 0
1V

�1
11 �1/A˙A

0 C
"
0 00

K

0K V11

#
: (9.20)

In the above analysis, we have treated W as a known weighting matrix. Under
a correctly specified model, the asymptotic distribution of O� does not depend on
whether we useW or its consistent estimator OW as the weighting matrix. Therefore,
the asymptotic results in this section also hold for the GLS CSR and WLS CSR
cases.

Under a correctly specified model, it is interesting to derive the optimal (in the
sense that it minimizes V. O�/) weighting matrix W in the second-pass CSR. Ahn
et al. (2009) provide an analysis of this problem. Using the fact that �t � � D
A.Rt � �2/ and �t � � D A�t , where �t D .Rt � �2/ � ˇ.ft � �1/, we can write

ht D Alt ; (9.21)

where lt � Rt � �2 � �twt . It follows that

V. O�/ D AVlA
0 D .X 0WX/�1X 0W VlWX.X 0WX/�1; (9.22)

where

Vl D
1X

jD�1
EŒlt l

0
tCj 	: (9.23)

From this expression, it is obvious that we can chooseW D V �1
l to minimize V. O�/

and we have minW V. O�/ D .X 0V �1
l X/�1. However, it is important to note that V �1

l

is not the only choice of W that minimizes V. O�/. Using a lemma in Kan and Zhou
(2004), it is easy to show that any W that is of the form .aVl C XCX 0/�1, where
a is a positive scalar and C is an arbitrary symmetric matrix, will also yield the
lowest V. O�/.

There are a few cases in which the GLS CSR will give us the lower bound of
V. O�/. The first case arises when ht is serially uncorrelated and VarŒRt jft 	 D ˙

(conditional homoskedasticity case). In this scenario, we have

Vl D EŒlt l
0
t 	 D .1C � 0

1V
�1
11 �1/˙ C ˇV11ˇ

0 D V22 C � 0
1V

�1
11 �1˙: (9.24)

It can be readily shown that

.X 0V �1
l X/�1 D .X 0V �1

22 X/
�1 C � 0

1V
�1
11 �1.X

0˙�1X/�1: (9.25)

The second case arises when Yt D Œf 0
t ; R0

t 	
0 is i.i.d. multivariate elliptically

distributed with multivariate excess kurtosis parameter �. In this case, we have

Vl D EŒlt l
0
t 	 D Œ1C .1C �/� 0

1V
�1
11 �1	˙ C ˇV11ˇ

0 D V22 C .1C �/� 0
1V

�1
11 �1˙

(9.26)
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and

.X 0V �1
l X/�1 D .X 0V �1

22 X/
�1 C .1C �/� 0

1V
�1
11 �1.X

0˙�1X/�1: (9.27)

In general, the GLS CSR is not the optimal CSR to be used in the second pass. The
best choice of W is V �1

l . To use the optimal two-pass CSR, one needs to obtain a
consistent estimator of Vl . This can be accomplished with a two-step procedure: (1)
Obtain a consistent estimate of �1 using, for example, the OLS CSR. (2) Estimate
Vl using Olt D .Rt � O�2/� O�t Owt .

9.4 Statistical Inference Under Potentially Misspecified Models

Standard inference using the two-pass CSR methodology typically assumes that
expected returns are exactly linear in the betas, i.e., the beta pricing model
is correctly specified. It is difficult to justify this assumption when estimating
many different models because some (if not all) of the models are bound to be
misspecified. Moreover, since asset pricing models are, at best, approximations of
reality, it is inevitable that we will often, knowingly or unknowingly (because of
limited power), estimate an expected return relation that departs from exact linearity
in the betas. In this section, we discuss how to conduct statistical inference on
O� when the model is potentially misspecified. The results that we present here
are mostly drawn from Kan et al. (2010), which generalizes the earlier results of
Hou and Kimmel (2006) and Shanken and Zhou (2007) that are obtained under a
normality assumption.

When the model is misspecified, the pricing-error vector, �2 � X� , will be
nonzero for all values of � . For a given weighting matrixW , we define the (pseudo)
zero-beta rate and risk premia as the choice of � that minimizes the quadratic form
of pricing errors:

�W �
�
�W;0
�W;1

	
D argmin� .�2 �X�/0W.�2 �X�/ D .X 0WX/�1X 0W�2: (9.28)

The corresponding pricing errors of the N assets are then given by

eW D �2 �X�W : (9.29)

It should be emphasized that unless the model is correctly specified, �W and eW
depend on the choice of W . To simplify the notation, we suppress the subscript W
from �W and eW when the choice of W is clear from the context.

Unlike the case of correctly specified models, the asymptotic variance of O� under
a misspecified model depends on whether we use W or OW as the weighting matrix.
As a result, we need to separate these two cases when presenting the asymptotic
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distribution of O� . For the known weighting matrix case, the asymptotic variance of
O� is obtained by replacing ht in (9.16) with

ht D .�t � �/ � .�t � �/wt C .X 0WX/�1ztut ; (9.30)

where zt D Œ0; .ft � �1/0V �1
11 	

0 and ut D e0W.Rt � �2/.
For the GLS case that uses W D V �1

22 as the weighting matrix, ht has the
following expression:

ht D .�t � �/ � .�t � �/wt C .X 0V �1
22 X/

�1ztut � .�t � �/ut : (9.31)

For the WLS case, ht is given by

ht D .�t � �/ � .�t � �/wt C .X 0˙�1
d X/�1ztut � A�t˙

�1
d e; (9.32)

where �t D Diag.�t �0
t / and �t D .Rt ��2/�ˇ.ft ��1/. As before, we can obtain

a consistent estimator of V. O�/ by replacing ht with its sample counterpart.
Note that model misspecification adds extra terms to ht and this could have

a serious impact on the standard error of O� . For example, when ht is serially
uncorrelated and the conditional homoskedasticity assumption holds, we can show
that for the GLS CSR

V. O�/ D .X 0V �1
22 X/

�1 C � 0
1V

�1
11 �1.X

0˙�1X/�1 C e0V �1
22 e

�
"
.X 0˙�1X/�1

"
0 00

K

0K V
�1
11

#
.X 0˙�1X/�1 C .X 0˙�1X/�1

#
: (9.33)

We call the last term in (9.33) the misspecification adjustment term. When
e0V �1

22 e > 0, the misspecification adjustment term is positive definite since it is
the sum of two matrices, the first positive semidefinite and the second positive
definite. It can also be shown that the misspecification adjustment term crucially
depends on the variance of the residuals from projecting the factors on the returns.
For factors that have very low correlations with the returns (e.g., macroeconomic
factors), the impact of the misspecification adjustment term on the asymptotic
variance of O�1 can be very large.

9.5 Specification Tests and Measures of Model Misspecification

One of the earliest problems in empirical asset pricing has been to determine
whether a proposed model is correctly specified or not. This can be accomplished by
using various specification tests, which are typically aggregate measures of sample
pricing errors. However, some of these specification tests aggregate the pricing
errors using weighting matrices that are model dependent, and these test statistics
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cannot be used to perform model comparison. Therefore, researchers are often
interested in a normalized goodness-of-fit measure that uses the same weighting
matrix across models. One such measure is the cross-sectional R2. Following
Kandel and Stambaugh (1995), this is defined as

�2 D 1 � Q

Q0

; (9.34)

where

Q0 D min
�0
.�2 � 1N�0/

0W.�2 � 1N�0/

D �0
2W�2 � �0

2W1N .1
0
NW1N /

�110
NW�2; (9.35)

Q D e0We

D �0
2W�2 � �0

2WX.X
0WX/�1X 0W�2: (9.36)

In order for �2 to be well defined, we need to assume that �2 is not proportional to
1N (the expected returns are not all equal) so thatQ0 > 0. Note that 0 � �2 � 1 and
it is a decreasing function of the aggregate pricing-error measureQ D e0We. Thus,
�2 is a natural measure of goodness of fit. However, it should be emphasized that
unless the model is correctly specified, �2 depends on the choice of W . Therefore,
it is possible that a model with a good fit under the OLS CSR provides a very poor
fit under the GLS CSR.

The sample measure of �2 is similarly defined as

O�2 D 1 �
OQ
OQ0

; (9.37)

where OQ0 and OQ are consistent estimators of Q0 and Q in (9.35) and (9.36),
respectively. When W is known, we estimate Q0 andQ using

OQ0 D O�0
2W O�2 � O�0

2W1N .1
0
NW1N /

�110
NW O�2; (9.38)

OQ D O�0
2W O�2 � O�0

2W
OX. OX 0W OX/�1 OX 0W O�2: (9.39)

When W is not known, we replaceW with OW in the formulas above.
To test the null hypothesis of correct model specification, i.e., e D 0N (or,

equivalently,Q D 0 and �2 D 1), we typically rely on the sample pricing errors Oe.
Therefore, it is important to obtain the asymptotic distribution of Oe under the null
hypothesis. For a given weighting matrix W (or OW with a limit of W ), let P be an
N � .N �K � 1/ orthonormal matrix with its columns orthogonal to W

1
2X . Kan

et al. (2010) derive the asymptotic distribution of Oe under the null hypothesis:

p
T Oe A� N.0N ; V . Oe//; (9.40)
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where

V. Oe/ D
1X

jD�1
EŒqtq

0
tCj 	; (9.41)

with

qt D W � 1
2 PP 0W

1
2 �tyt ; (9.42)

and yt D 1 � � 0
1V

�1
11 .ft � �1/.

Remark 1. Under the correctly specified model, the asymptotic distribution of Oe
does not depend on whether we use W or OW as the weighting matrix.

Remark 2. Under the correctly specified model, qt in (9.42) can also be written as

qt D W � 1
2 PP 0W

1
2Rtyt : (9.43)

Remark 3. V. Oe/ is a singular matrix and some linear combinations of
p
T Oe are not

asymptotically normally distributed. As a result, one has to be careful when relying
on individual sample pricing errors to test the validity of a model because some of
them may not be asymptotically normally distributed. Gospodinov et al. (2010b)
provide a detailed analysis of this problem. For our subsequent analysis, it is easier
to work with

Qe D P 0W
1
2 Oe: (9.44)

The reason is that the asymptotic variance of Qe is given by

V. Qe/ D
1X

jD�1
EŒ Qqt Qq0

tCj 	; (9.45)

where

Qqt D P 0W 1
2 �tyt ; (9.46)

and V. Qe/ is nonsingular.

Given (9.40), we can obtain the asymptotic distribution of any quadratic form of
sample pricing errors. For example, let ˝ be an N � N positive definite matrix,
and let Ő be a consistent estimator of˝ . When the model is correctly specified, we
have

T Oe0 Ő Oe A�
N�K�1X

iD1
�i xi ; (9.47)
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where the xi ’s are independent �21 random variables, and the �i ’s are the N �K � 1
eigenvalues of

.P 0W � 1
2 ˝W � 1

2 P /V . Qe/: (9.48)

Using an algorithm due to Imhof (1961) and later improved by Davies (1980) and
Lu and King (2002), one can easily compute the cumulative distribution function of
a linear combination of independent �2 random variables. As a result, one can use
(9.47) as a specification test of the model.

There are several interesting choices of Ő . The first one is Ő D OW , and the test
statistic is simply given by T Oe0 OW Oe D T OQ. In this case, the �i ’s are the eigenvalues
of V. Qe/. The second one is Ő D OV . Oe/C, where OV . Oe/ is a consistent estimator of
V. Oe/ and OV . Oe/C stands for its pseudo-inverse. This choice of Ő yields the following
Wald test statistic:

JW D T Oe0 OV . Oe/C Oe D T Qe0 OV . Qe/�1 Qe A� �2N�K�1; (9.49)

where OV . Qe/ is a consistent estimator of V. Qe/. The advantage of using JW is that its
asymptotic distribution is simply �2N�K�1 and does not involve the computation of
the distribution of a linear combination of independent �2 random variables. The
disadvantage of using JW is that the weighting matrix is model dependent, making
it problematic to compare the JW ’s of different models.

When qt is serially uncorrelated and VarŒRt jft 	 D ˙ (conditional homoskedas-
ticity case), we can show that

V. Qe/ D .1C � 0
1V

�1
11 �1/P

0W
1
2˙W

1
2 P: (9.50)

For the special case of W D V �1
22 or W D ˙�1, we have

V. Qe/ D .1C � 0
1V

�1
11 �1/IN�K�1: (9.51)

If we estimate V. Qe/ using OV . Qe/ D .1 C O� 0
1

OV �1
11 O�1/IN�K�1, the Wald test in (9.49)

becomes

JW D T Qe0 OV . Qe/�1 Qe D T Oe0 OV �1
22 Oe

1C O� 0
1

OV �1
11 O�1

D T Oe0 Ȯ �1 Oe
1C O� 0

1
OV �1
11 O�1

A� �2N�K�1; (9.52)

and JW coincides with the cross-sectional regression test (CSRT) proposed by
Shanken (1985). Better finite sample properties of the Wald test can be obtained,
as suggested by Shanken (1985), by using the following approximate F -test:

JW
app:� T .N �K � 1/

T �N C 1
FN�K�1;T�NC1: (9.53)
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Using the general result in (9.47), one can show that when the model is correctly
specified,

T . O�2 � 1/
A�
N�K�1X

iD1
� �i

Q0

xi ; (9.54)

and the sample cross-sectional R2 can be used as a specification test.
When the model is misspecified, i.e., �2 < 1, there are two possible asymptotic

distributions for O�2. When �2 D 0, we have

T O�2 A�
KX

iD1
Q�i xi ; (9.55)

where the xi ’s are independent �21 random variables and the Q�i ’s are the eigenvalues
of

Œˇ0Wˇ � ˇ0W1N.10
NW1N /

�110
NWˇ	V. O�1/; (9.56)

where V. O�1/ is the asymptotic covariance matrix of O�1 under potentially misspeci-
fied models (i.e., based on the expressions of ht in (9.30)–(9.32)). This asymptotic
distribution permits a test of whether the model has any explanatory power for
expected returns. It can be shown that �2 D 0 if and only if �1 D 0K . Therefore,
one can also test H0 W �2 D 0 using a Wald test of H0 W �1 D 0K .

When 0 < �2 < 1, the asymptotic distribution of O�2 is given by

p
T . O�2 � �2/

A� N

0

@0;
1X

jD�1
EŒntntCj 	

1

A ; (9.57)

where

nt D 2
��utyt C .1 � �2/vt

�
=Q0 for known W; (9.58)

nt D �
u2t � 2utyt C .1 � �2/.2vt � v2t /

�
=Q0 for OW D OV �1

22 ; (9.59)

nt D �
e0�te � 2utyt C .1 � �2/.2vt � e0�te0/

�
=Q0 for OW D Ȯ �1

d ; (9.60)

with vt D e0
0W.Rt � �2/ and �t D ˙�1

d Diag.�t �0
t /˙

�1
d .

In the 0 < �2 < 1 case, O�2 is asymptotically normally distributed around its true
value. It is readily verified that the expressions for nt approach zero when �2 ! 0 or
�2 ! 1. Consequently, the standard error of O�2 tends to be lowest when �2 is close
to zero or one, and thus it is not monotonic in �2. Note that the asymptotic normal
distribution of O�2 breaks down for the two extreme cases (�2 D 0 or 1). Intuitively,
the normal distribution fails because, by construction, O�2 will always be above zero
(even when �2 D 0) and below one (even when �2 D 1).
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9.6 Some Subtle Issues

In this section, we discuss two issues related to the two-pass CSR methodology
that are worth clarifying. The first point is about testing whether the risk premium
associated with an individual factor is equal to zero. The second point is about the
assumption of full column rank on the matrix X D Œ1N ; ˇ	.

While the betas are typically used as the regressors in the second-pass CSR,
there is a potential issue with the use of multiple regression betas when K > 1:
in general, the beta of an asset with respect to a particular factor depends on
what other factors are included in the first-pass time series OLS regression. As a
consequence, the interpretation of the risk premia in the context of model selection
can be problematic.

For example, suppose that a model has two factors f1 and f2. We are often
interested in determining whether f2 is needed in the model. Some researchers have
tried to answer this question by performing a test ofH0 W �2 D 0, where �2 is the risk
premium associated with factor 2. When the null hypothesis is rejected by the data,
they typically conclude that factor 2 is important, and when the null hypothesis is
not rejected, they conclude that factor 2 is unimportant. In the following, we provide
two numerical examples that illustrate that the test of H0 W �2 D 0 does not answer
the question of whether factor 2 helps to explain the cross-sectional differences in
expected returns on the test assets.

In the first example, we consider two factors with

V11 D
"
15 �10

�10 15

#
: (9.61)

Suppose there are four assets and their expected returns and covariances with the
two factors are

�2 D Œ2; 3; 4; 5	0; V12 D
"
1 2 3 4

3 5 2 1

#
: (9.62)

It is clear that the covariances (or simple regression betas) of the four assets with
respect to the first factor alone can fully explain �2 because �2 is exactly linear in
the first row of V12. As a result, the second factor is irrelevant from a cross-sectional
expected return perspective. However, when we compute the (multiple regression)
beta matrix with respect to the two factors, we obtain:

ˇ D V21V
�1
11 D

"
0:36 0:64 0:52 0:56

0:44 0:76 0:48 0:44

#0
: (9.63)

Simple calculations give � D Œ1; 15; �10	0 and �2 is nonzero even though f2 is
irrelevant. This suggests that when the capital asset pricing model is true, it does
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not imply that the betas with respect to the other two Fama and French (1993)
factors should not be priced. See Grauer and Janmaat (2009) for a discussion of
this point.

In the second example, we change �2 to Œ10; 17; 14; 15	0. In this case, the
covariances (or simple regression betas) with respect to f1 alone do not fully explain
�2 (in fact, the OLS R2 for the model with just f1 is only 28%). However, it is
easy to see that �2 is linear in the first column of the beta matrix, implying that
the R2 of the full model is 100%. Simple calculations give us � D Œ1; 25; 0	0
and �2 D 0, even though f2 is needed in the factor model, along with f1, to
explain �2.

To overcome this problem, we propose an alternative second-pass CSR that uses
the covariances V21 as the regressors. Let C D Œ1N ; V21	 and �W be the choice of
coefficients that minimizes the quadratic form of pricing errors:

�W �
�
�W;0

�W;1

	
D argmin�.�2 �C�/0W.�2 �C�/ D .C 0WC/�1C 0W�2: (9.64)

Given (9.28) and (9.64), there is a one-to-one correspondence between �W and �W :

�W;0 D �W;0; �W;1 D V �1
11 �W;1: (9.65)

To simplify the notation, we suppress the subscript W from �W when the choice
of W is clear from the context. It is easy to see that the pricing errors from this
alternative second-pass CSR are the same as the pricing errors from the CSR that
uses the betas as regressors. It follows that the �2 for these two CSRs are also
identical. However, it is important to note that unless V11 is a diagonal matrix,
�1;i D 0 does not imply �1;i D 0, and vice versa. If interest lies in determining
whether a particular factor i contributes to the explanatory power of the model, the
correct hypothesis to test is H0 W �1;i D 0 and not H0 W �1;i D 0. This issue is
also discussed in Jagannathan and Wang (1998) and Cochrane (2005, Chap. 13.4).
Another solution to this problem is to use simple regression betas as the regressors
in the second-pass CSR, as in Chen et al. (1986) and Jagannathan and Wang (1996,
1998). Kan and Robotti (2011) provide asymptotic results for the CSR with simple
regression betas under potentially misspecified models.

Let OC D Œ1N ; OV21	. The estimate of � from the second-pass CSR is given by

O� D . OC 0W OC/�1 OC 0W O�2: (9.66)

For the GLS and WLS cases, one needs to replace W with OW in the expression
for O�.

Under a potentially misspecified model, the asymptotic distribution of O� is
given by p

T . O� � �/ A� N.0KC1; V . O�//; (9.67)
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where

V. O�/ D
1X

jD�1
EŒ Qht Qh0

tCj 	: (9.68)

To simplify the expressions for Qht , we define QGt D V21 � .Rt � �2/.ft � �1/
0,

Qzt D Œ0; .ft � �1/
0	0, QA D .C 0WC/�1C 0W , �t D QARt , and ut D e0W.Rt � �2/.

The Qht expressions for the different cases are given by

Qht D .�t � �/C QA QGt�1 C .C 0WC/�1Qztut for known W; (9.69)

Qht D .�t � �/C QA QGt�1 C .C 0V �1
22 C /

�1Qztut � .�t � �/ut for OW D OV �1
22 ;(9.70)

Qht D .�t � �/C QA QGt�1 C .C 0˙�1
d C /�1Qztut � QA�t˙�1

d e for OW D Ȯ �1
d ;(9.71)

where �t D Diag.�t �0
t /. Besides allowing us to test whether a given factor is impor-

tant in a model, the asymptotic distribution of O� is necessary for the implementation
of model comparison, a topic that will be discussed in Sects. 9.7 and 9.8. To test
H0 W �1;i D 0, one needs to obtain a consistent estimator of V. O�/. This can be
easily accomplished by replacing Qht with its sample counterpart.

The second issue that is often overlooked by researchers is related to the full
column rank assumption on X D Œ1N ; ˇ	. In the two-pass CSR methodology,
we need to assume that X has full rank to ensure that �W (or �W ) is uniquely
defined. This assumption is often taken for granted and most researchers do not
examine its validity before performing the two-pass CSR. When X does not have
full column rank, the asymptotic results will break down, leading to misleading
statistical inference on O� and O�2, especially when the model is misspecified. For
example, Kan and Zhang (1999) show that there is a high probability that the
estimated risk premium on a useless factor is significantly different from zero.
This happens because, when the factor is useless, ˇ D 0N and X D Œ1N ; ˇ	

does not have full column rank. As a result, �W is not uniquely defined and the
usual asymptotic standard error of O� is no longer valid. Note that the useless factors
scenario is not completely unreasonable since many macroeconomic factors exhibit
very low correlations with asset returns. Even when the full column rank condition is
satisfied in population, Kleibergen (2009) shows that there can still be serious finite
sample problems with the asymptotic results if the factors have low correlations
with the returns and the beta estimates are noisy.

When the factors have very low correlations with the returns, it is sensible to test
whetherX has full column rank before running the two-pass CSR. Note that testing
H0 W rank.X/ D K is the same as testing H0 W rank.˘/ D K � 1, where˘ D P 0ˇ
and P is an N � .N � 1/ orthonormal matrix with its columns orthogonal to 1N .
When K D 1, it is easy to perform this test because the null hypothesis is simply
H0 W P 0ˇ D 0N�1.

A simple Wald test of H0 W P 0ˇ D 0N�1 can be performed using the following
test statistic:

J1 D T Ǒ0P.P 0 OV . Ǒ/P /�1P 0 Ǒ A� �2N�1; (9.72)
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where OV . Ǒ/ is a consistent estimator of V. Ǒ/, the asymptotic covariance of Ǒ. Under
the stationarity and ergodicity assumptions on Yt ,

V. Ǒ/ D
1X

jD�1
EŒxtx

0
tCj 	; (9.73)

where
xt D V �1

11 .ft � �1/�t : (9.74)

If we further assume that xt is serially uncorrelated and VarŒRt jft 	 D ˙

(conditional homoskedasticity case),

V. Ǒ/ D V �1
11 ˙; (9.75)

and we can use the following Wald test:

J2 D T OV11 Ǒ0P.P 0 ȮP/�1P 0 Ǒ A� �2N�1: (9.76)

When �t is i.i.d. multivariate normal, we have the following exact test:

F2 D .T �N/J2
.N � 1/T � FN�1;T�N : (9.77)

When �t is not normally distributed, this F -test is only an approximate test but it
generally works better than the asymptotic one.

When K > 1, the test of H0 W rank.˘/ D K � 1 is more complicated. Several
tests of the rank of a matrix have been proposed in the literature. In the following,
we describe the test of Cragg and Donald (1997). Let Ŏ D P 0 Ǒ, we have

p
T vec. Ŏ �˘/

A� N.0.N�1/K; S Ŏ /; (9.78)

where

S Ŏ D
1X

jD�1
EŒ Qxt Qx0

tCj 	; (9.79)

and
Qxt D V �1

11 .ft � �1/˝ P 0�t : (9.80)

Denoting by OS Ŏ a consistent estimator of S Ŏ , Cragg and Donald (1997) suggest that
we can test H0 W rank.˘/ D K � 1 using

J3 D T min
˘2� .K�1/ vec. Ŏ �˘/0 OS�1

Ŏ vec. Ŏ �˘/
A� �2N�K; (9.81)
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where � .K � 1/ is the space of an .N � 1/�K matrix with rankK � 1. This test is
not computationally attractive in general since we need to optimize over N.K � 1/

parameters. Gospodinov et al. (2010a) propose an alternative expression for J3 that
greatly reduces the computational burden. Their test is given by

J3 D T min
c
Œ�1; c0	 Ŏ 0.C OS ŎC 0/�1 Ŏ Œ�1; c0	0 A� �2N�K; (9.82)

where c is a .K � 1/-vector and C D Œ�1; c0	˝ IN�1. With this new expression,
one can easily test whether X has full column rank even whenK is large.

If we further assume that Qxt is serially uncorrelated and VarŒRt jft 	 D ˙

(conditional homoskedasticity case),

S Ŏ D V �1
11 ˝ P 0˙P; (9.83)

and we have the following simple test of H0 W rank.˘/ D K � 1:

J4 D T �K
A� �2N�K; (9.84)

where �K is the smallest eigenvalue of OV11 Ǒ0P.P 0 ȮP/�1P 0 Ǒ.

9.7 Pairwise Model Comparison Tests

One way to think about pairwise model comparison is to ask whether two competing
beta pricing models have the same population cross-sectional R2. Kan et al.
(2010) show that the asymptotic distribution of the difference between the sample
cross-sectional R2s of two models depends on whether the models are nested or
non-nested and whether the models are correctly specified or not. In this section,
we focus on the R2 of the CSR with known weighting matrix W and on the R2 of
the GLS CSR that uses OW D OV �1

22 as the weighting matrix. Since the weighting
matrix of the WLS CSR is model dependent, it is not meaningful to compare the
WLS cross-sectionalR2s of two or more models. Therefore, we do not consider the
WLS cross-sectional R2 in the remainder of the article. Our analysis in this section
is based on the earlier work of Vuong (1989), Rivers and Vuong (2002), and Golden
(2003).

Consider two competing beta pricing models. Let f1t , f2t , and f3t be three sets
of distinct factors at time t , where fit is of dimension Ki � 1, i D 1; 2; 3. Assume
that model 1 uses f1t and f2t , while Model 2 uses f1t and f3t as factors. Therefore,
model 1 requires that the expected returns on the test assets are linear in the betas or
covariances with respect to f1t and f2t , i.e.,

�2 D 1N�1;0 C CovŒRt ; f 0
1t 	�1;1 C CovŒRt ; f 0

2t 	�1;2 D C1�1; (9.85)
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where C1 D Œ1N ; CovŒRt ; f 0
1t 	; CovŒRt ; f 0

2t 		 and �1 D Œ�1;0; �
0
1;1; �

0
1;2	

0. Model 2
requires that expected returns are linear in the betas or covariances with respect to
f1t and f3t , i.e.,

�2 D 1N�2;0 C CovŒRt ; f 0
1t 	�2;1 C CovŒRt ; f 0

3t 	�2;3 D C2�2; (9.86)

where C2 D Œ1N ; CovŒRt ; f 0
1t 	; CovŒRt ; f 0

3t 		 and �2 D Œ�2;0; �
0
2;1; �

0
2;3	

0.
In general, both models can be misspecified. The �i that maximizes the �2 of

model i is given by

�i D .C 0
i WCi /

�1C 0
i W�2; (9.87)

whereCi is assumed to have full column rank, i D 1; 2. For each model, the pricing-
error vector ei , the aggregate pricing-error measure Qi , and the corresponding
goodness-of-fit measure �2i are all defined as in Sects. 9.4 and 9.5.

WhenK2 D 0, model 2 nests model 1 as a special case. Similarly, whenK3 D 0,
model 1 nests model 2. When both K2 > 0 and K3 > 0, the two models are non-
nested.

We study the nested models case next and deal with non-nested models later in
the section. Without loss of generality, we assume K3 D 0, so that model 1 nests
model 2. Since �21 D �22 if and only if �1;2 D 0K2 (this result is applicable even
when the models are misspecified), testing whether the models have the same �2 is
equivalent to testing H0 W �1;2 D 0K2 . Under the null hypothesis,

T O�0
1;2

OV . O�1;2/�1 O�1;2 A� �2K2; (9.88)

where OV . O�1;2/ is a consistent estimator of the asymptotic covariance of
p
T . O�1;2 �

�1;2/ given in Sect. 9.6. This statistic can be used to testH0 W �21 D �22. It is important
to note that, in general, we cannot conduct this test using the usual standard error of
O�, which assumes that model 1 is correctly specified. Instead, we need to rely on the
misspecification-robust standard error of O� given in Sect. 9.6.

Alternatively, one can derive the asymptotic distribution of O�21 � O�22 and use this
statistic to test H0 W �21 D �22. Partition QH1 D .C 0

1WC1/
�1 as

QH1 D
" QH1;11

QH1;12

QH1;21
QH1;22

#
; (9.89)

where QH1;22 is K2 �K2. Under the null hypothesisH0 W �21 D �22,

T . O�21 � O�22/ A�
K2X

iD1

�i

Q0

xi ; (9.90)



9 Evaluation of Asset Pricing Models Using Two-Pass CSRs 241

where the xi ’s are independent �21 random variables and the �i ’s are the eigenvalues
of QH�1

1;22V .
O�1;2/. Once again, it is worth emphasizing that the misspecification-robust

version of V. O�1;2/ should be used to testH0 W �21 D �22. Model misspecification tends
to create additional sampling variation in O�21 � O�22 . Without taking this into account,
one might mistakenly reject the null hypothesis when it is true. In actual testing,
we replace �i with its sample counterpart O�i , where the O�i ’s are the eigenvalues of
OQH�1
1;22

OV . O�1;2/, and OQH1;22 and OV . O�1;2/ are consistent estimators of QH1;22 and V. O�1;2/,
respectively.

The test of H0 W �21 D �22 is more complicated for non-nested models. The
reason is that underH0, there are three possible asymptotic distributions for O�21� O�22,
depending on why the two models have the same cross-sectional R2. To see this,
first let us define the normalized stochastic discount factors at time t for models 1
and 2 as

y1t D 1 � .f1t � EŒf1t 	/
0�1;1 � .f2t � EŒf2t 	/

0�1;2; (9.91)

y2t D 1 � .f1t � EŒf1t 	/
0�2;1 � .f3t � EŒf3t 	/

0�2;3: (9.92)

Kan et al. (2010) show that y1t D y2t implies that the two models have the
same pricing errors and hence �21 D �22. If y1t ¤ y2t , there are additional cases in
which �21 D �22. A second possibility is that both models are correctly specified (i.e.,
�21 D �22 D 1). This occurs, for example, if model 1 is correctly specified and the
factors f3t in model 2 are given by f3t D f2t C �t , where �t is pure “noise” – a
vector of measurement errors with mean zero, independent of returns. In this case,
we haveC1 D C2 and both models produce zero pricing errors. A third possibility is
that the two models produce different pricing errors but the same overall goodness
of fit. Intuitively, one model might do a good job of pricing some assets that the
other prices poorly and vice versa, such that the aggregation of pricing errors is the
same in each case (�21 D �22 < 1). As it turns out, each of these three scenarios
results in a different asymptotic distribution for O�21 � O�22.

For non-nested models, Kan et al. (2010) show that y1t D y2t if and only
if �1;2 D 0K2 and �2;3 D 0K3 . This result, which is applicable even when the
models are misspecified, implies that we can test H0 W y1t D y2t by testing the
joint hypothesis H0 W �1;2 D 0K2; �2;3 D 0K3 . Let  D Œ�0

1;2; �0
2;3	

0 and
O D Œ O�0

1;2;
O�0
2;3	

0. Under H0 W y1t D y2t , the asymptotic distribution of O is
given by p

T . O �  /
A� N.0K2CK3; V . O //; (9.93)

where

V. O / D
1X

jD�1
EŒ Qqt Qq0

tCj 	; (9.94)

and Qqt is a K2 CK3 vector obtained by stacking up the last K2 and K3 elements of
Qht for models 1 and 2, respectively, where Qht is given in Sect. 9.6.
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Let OV . O / be a consistent estimator of V. O /. Then, under the null hypothesis
H0 W  D 0K2CK3 ,

T O 0 OV . O /�1 O A� �2K2CK3; (9.95)

and this statistic can be used to test H0 W y1t D y2t . As in the nested models case,
it is important to conduct this test using the misspecification-robust standard error
of O .

Alternatively, one can derive the asymptotic distribution of O�21 � O�22 given H0 W
y1t D y2t . Let QH1 D .C 0

1WC1/
�1 and QH2 D .C 0

2WC2/
�1, and partition them as

QH1 D
" QH1;11

QH1;12

QH1;21
QH1;22

#
; QH2 D

" QH2;11
QH2;13

QH2;31
QH2;33

#
; (9.96)

where QH1;11 and QH2;11 are .K1 C 1/ � .K1 C 1/. Under the null hypothesis H0 W
y1t D y2t ,

T . O�21 � O�22/ A�
K2CK3X

iD1

�i

Q0

xi ; (9.97)

where the xi ’s are independent �21 random variables and the �i ’s are the
eigenvalues of " QH�1

1;22 0K2�K3
0K3�K2 � QH�1

2;33

#
V. O /: (9.98)

Note that we can think of the earlier nested models scenario as a special case
of testing H0 W y1t D y2t with K3 D 0. The only difference is that the �i ’s
in (9.90) are all positive whereas some of the �i ’s in (9.97) are negative. As a
result, we need to perform a two-sided test based on O�21 � O�22 in the non-nested
models case.

If we fail to reject H0 W y1 D y2, we are finished since equality of �21 and �22
is implied by this hypothesis. Otherwise, we need to consider the case y1t ¤ y2t .
As noted earlier, when y1t ¤ y2t , the asymptotic distribution of O�21 � O�22 given
H0 W �21 D �22 depends on whether the models are correctly specified or not. A
simple chi-squared statistic can be used for testing whether models 1 and 2 are both
correctly specified. As this joint specification test focuses on the pricing errors, it
can be viewed as a generalization of the CSRT of Shanken (1985), which tests the
validity of the expected return relation for a single pricing model.

Let n1 D N � K1 � K2 � 1 and n2 D N � K1 � K3 � 1. Also let P1 be an

N �n1 orthonormal matrix with columns orthogonal to W
1
2 C1 and P2 be anN �n2

orthonormal matrix with columns orthogonal to W
1
2 C2. Define

gt .�/ D
"
g1t .�1/

g2t .�2/

#
D
"
�1ty1t

�2t y2t

#
; (9.99)
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where �1t and �2t are the residuals of models 1 and 2, respectively, � D .�0
1; �

0
2/

0,
and

S �
"
S11 S12

S21 S22

#
D

1X

jD�1
EŒgt .�/gtCj .�/0	: (9.100)

If y1t ¤ y2t and the null hypothesisH0 W �21 D �22 D 1 holds, then

T

" OP 0
1

OW 1
2 Oe1

OP 0
2

OW 1
2 Oe2

#0 " OP 0
1

OW 1
2 OS11 OW 1

2 OP1 OP 0
1

OW 1
2 OS12 OW 1

2 OP2
OP 0
2

OW 1
2 OS21 OW 1

2 OP1 OP 0
2

OW 1
2 OS22 OW 1

2 OP2

#�1 " OP 0
1

OW 1
2 Oe1

OP 0
2

OW 1
2 Oe2

#
A� �2n1Cn2;

(9.101)
where Oe1 and Oe2 are the sample pricing errors of models 1 and 2, and OP1, OP2, and OS
are consistent estimators of P1, P2, and S , respectively.

An alternative specification test makes use of the cross-sectional R2s. If y1t ¤
y2t and the null hypothesisH0 W �21 D �22 D 1 holds, then

T . O�21 � O�22/ A�
n1Cn2X

iD1

�i

Q0

xi ; (9.102)

where the xi ’s are independent �21 random variables and the �i ’s are the
eigenvalues of "�P 0

1W
1
2 S11W

1
2 P1 �P 0

1W
1
2 S12W

1
2 P2

P 0
2W

1
2 S21W

1
2 P1 P 0

2W
1
2 S22W

1
2 P2

#
: (9.103)

Note that the �i ’s are not all positive because O�21� O�22 can be negative. Thus, again,
we need to perform a two-sided test of H0 W �21 D �22.

If the hypothesis that both models are correctly specified is not rejected, we are
finished, as the data are consistent with H0 W �21 D �22 D 1. Otherwise, we need
to determine whether �21 D �22 for some value less than one. As in the earlier
analysis for O�2, the asymptotic distribution of O�21 � O�22 changes when the models
are misspecified. Suppose y1t ¤ y2t and 0 < �21 D �22 < 1. Then,

p
T . O�21 � O�22/ A� N

0

@0;
1X

jD�1
EŒdtdtCj 	

1

A : (9.104)

When the weighting matrixW is known,

dt D 2Q�1
0 .u2ty2t � u1ty1t /; (9.105)

where u1t D e0
1W.Rt � �2/ and u2t D e0

2W.Rt � �2/. With the GLS weighting
matrix OW D OV �1

22 ,

dt D Q�1
0 .u

2
1t � 2u1ty1t � u22t C 2u2ty2t /: (9.106)
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Note that if y1t D y2t , then �21 D �22, u1t D u2t , and hence dt D 0. Or, if y1t ¤
y2t , but both models are correctly specified (i.e., u1t D u2t D 0 and �21 D �22 D 1),
then again dt D 0. Thus, the normal test cannot be used in these cases.

Given the three distinct cases encountered in testing H0 W �21 D �22 for non-
nested models, the approach we have described above entails a sequential test, as
suggested by Vuong (1989). In our context, this involves first testingH0 W y1t D y2t
using (9.95) or (9.97). If we reject H0 W y1t D y2t , then we use (9.101) or (9.102)
to test H0 W �21 D �22 D 1. Finally, if this hypothesis is also rejected, we use the
normal test in (9.104) to test H0 W 0 < �21 D �22 < 1. Let ˛1, ˛2, and ˛3 be the
significance levels employed in these three tests. Then the sequential test has an
asymptotic significance level that is bounded above by maxŒ˛1; ˛2; ˛3	.

Another approach is to simply perform the normal test in (9.104). This amounts
to assuming that y1t ¤ y2t and that both models are misspecified. The first
assumption rules out the unlikely scenario that the additional factors are completely
irrelevant for explaining cross-sectional variation in expected returns. The second
assumption is sensible because asset pricing models are approximations of reality
and we do not expect them to be perfectly specified.

9.8 Multiple Model Comparison Tests

Thus far, we have considered comparison of two competing models. However,
given a set of models of interest, one may want to test whether one model, the
“benchmark,” has the highest �2 of all models in the set. This gives rise to a common
problem in applied work – if we focus on the statistic that provides the strongest
evidence of rejection, without taking into account the process of searching across
alternative specifications, there will be a tendency to reject the benchmark more
often than the nominal size of the tests suggests. In other words, the true p-value
will be larger than the one associated with the most extreme statistic.

Therefore, in this section we discuss how to perform model comparison when
multiple models are involved. Suppose we have p models. Let �2i denotes the cross-
sectional R2 of model i . We are interested in testing if model 1 performs as well
as models 2 to p. Let ı D .ı2; : : : ; ıp/, where ıi D �21 � �2i . We are interested in
testing H0 W ı 	 0r , where r D p � 1.

We consider two different tests of this null hypothesis. The first one is the
multivariate inequality test developed by Kan et al. (2010). Numerous studies in
statistics focus on tests of inequality constraints on parameters. The relevant work
dates back to Bartholomew (1961), Kudo (1963), Perlman (1969), Gourieroux et al.
(1982) and Wolak (1987, 1989). Following Wolak (1989), we state the null and
alternative hypotheses as

H0 W ı 	 0r ; H1 W ı 2 <r : (9.107)
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We also consider another test based on the reality check of White (2000) that has
been used by Chen and Ludvigson (2009). Let ımin D min2�i�p ıi . Define the null
and alternative hypotheses as

H0 W ımin 	 0; H1 W ımin < 0: (9.108)

The null hypotheses presented above suggest that no other model outperforms
model 1, whereas the alternative hypotheses suggest that at least one of the other
models outperforms model 1.

Let Oı D . Oı2; : : : ; Oıp/, where Oıi D O�21 � O�2i . For both tests, we assume

p
T . Oı � ı/

A� N.0r;˙Oı/: (9.109)

Starting with the multivariate inequality test, its test statistic is constructed by
first solving the following quadratic programming problem

min
ı
. Oı � ı/0 Ȯ �1

Oı . Oı � ı/ s:t: ı 	 0r ; (9.110)

where Ȯ Oı is a consistent estimator of ˙Oı . Let Qı be the optimal solution of the
problem in (9.110). The likelihood ratio test of the null hypothesis is given by

LR D T . Oı � Qı/0 Ȯ �1
Oı . Oı � Qı/: (9.111)

For computational purposes, it is convenient to consider the dual problem

min
�
�0 Oı C 1

2
�0 Ȯ Oı� s:t: � 	 0r : (9.112)

Let Q� be the optimal solution of the problem in (9.112). The Kuhn-Tucker test of
the null hypothesis is given by

KT D T Q�0 Ȯ Oı Q�: (9.113)

It can be readily shown that LR D KT .
To conduct statistical inference, it is necessary to derive the asymptotic distribu-

tion of LR. Wolak (1989) shows that under H0 W ı D 0r (i.e., the least favorable
value of ı under the null hypothesis),LR has a weighted chi-squared distribution:

LR
A�

rX

iD0
wi .˙

�1
Oı /Xi D

rX

iD0
wr�i .˙Oı/Xi ; (9.114)

where the Xi ’s are independent �2 random variables with i degrees of freedom,
�20 � 0, and the weights wi sum up to one. To compute the p-value of LR, ˙�1

Oı
needs to be replaced with Ȯ �1

Oı in the weight functions.
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The biggest hurdle in determining the p-value of this multivariate inequality test
is the computation of the weights. For a given r � r covariance matrix ˙ D .�ij /,
the expressions for the weights wi .˙/, i D 0; : : : ; r , are given in Kudo (1963). The
weights depend on ˙ through the correlation coefficients �ij D �ij =.�i�j /. When
r D 1, w0 D w1 D 1=2. When r D 2,

w0 D 1

2
� w2; (9.115)

w1 D 1

2
; (9.116)

w2 D 1

4
C arcsin.�12/

2

: (9.117)

When r D 3,

w0 D 1

2
� w2; (9.118)

w1 D 1

2
� w3; (9.119)

w2 D 3

8
C arcsin.�12�3/C arcsin.�13�2/C arcsin.�23�1/

4

; (9.120)

w3 D 1

8
C arcsin.�12/C arcsin.�13/C arcsin.�23/

4

; (9.121)

where
�ij �k D �ij � �ik�jk

Œ.1 � �2ik/.1� �2jk/	
1
2

: (9.122)

For r > 3, the computation of the weights is more complicated. Following Kudo
(1963), let P D f1; : : : ; rg. There are 2r subsets of P , which are indexed byM . Let
n.M/ be the number of elements in M and M 0 be the complement of M relative
to P . Define ˙M as the submatrix that consists of the rows and columns in the
set M , ˙M 0 as the submatrix that consists of the rows and columns in the set M 0,
˙M;M 0 the submatrix with rows corresponding to the elements in M and columns
corresponding to the elements in M 0 (˙M 0;M is similarly defined), and ˙M �M 0 D
˙M �˙M;M 0˙�1

M 0˙M 0 ;M . Kudo (1963) shows that

wi .˙/ D
X

M W n.M/Di
P.˙�1

M 0/P.˙M �M 0/; (9.123)

where P.A/ is the probability for a multivariate normal distribution with zero mean
and covariance matrix A to have all positive elements. In the above equation, we
use the convention that P Œ˙;�P 	 D 1 and P Œ˙�1

; 	 D 1. Using (9.123), we have
w0.˙/ D P.˙�1/ and wr .˙/ D P.˙/.
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Researchers have typically used a Monte Carlo approach to compute the positive
orthant probability P.A/. However, the Monte Carlo approach is not efficient
because it requires a large number of simulations to achieve the accuracy of a few
digits, even when r is relatively small.

To overcome this problem, Kan et al. (2010) rely on a formula for the positive
orthant probability due to Childs (1967) and Sun (1988a). Let R D .rij / be the
correlation matrix corresponding to A. Childs (1967) and Sun (1988a) show that

P2k.A/ D 1

22k
C 1

22k�1

X

1�i<j�2k
arcsin.rij /

C
kX

jD2

1

22k�j 
j
X

1�i1<���<i2j�2k
I2j

�
R.i1;:::;i2j /

�
; (9.124)

P2kC1.A/ D 1

22kC1 C 1

22k


X

1�i<j�2kC1
arcsin.rij /

C
kX

jD2

1

22kC1�j 
j
X

1�i1<���<i2j�2kC1
I2j

�
R.i1;:::;i2j /

�
; (9.125)

where R.i1;:::;i2j / denotes the submatrix consisting of the .i1; : : : ; i2j /th rows and
columns of R, and

I2j .�/ D .�1/j
.2
/j

Z 1

�1
� � �
Z 1

�1

 
2jY

iD1

1

!i

!
exp



�!

0�!
2

�
d!1 � � � d!2j ; (9.126)

where � is a 2j � 2j covariance matrix and ! D .!1; : : : ; !2j /
0. Sun (1988a)

provides a recursive relation for I2j .�/ that allows us to obtain I2j starting from I2.
Sun’s formula enables us to compute the 2j th order multivariate integral I2j using
a .j � 1/th order multivariate integral, which can be obtained numerically using the
Gauss-Legendre quadrature method. Sun (1988b) provides a Fortran subroutine to
compute P.A/ for r � 9. Kan et al. (2010) improve on Sun’s program and are able
to accurately compute P.A/ and hence wi .˙/ for r � 11.

Turning to the ımin test based on White (2000), one can use the sample
counterpart of ımin:

Oımin D min
2�i�p

Oıi (9.127)

to test (9.108). To determine the p-value of Oımin, we need to identify the least
favorable value of ı under the null hypothesis. It can be easily shown that the least
favorable value of ı under the null hypothesis occurs at ı D 0r . It follows that
asymptotically,
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P Œ
p
T ımin < c	 ! P Œ min

1�i�r zi < c	

D 1 � P Œ min
1�i�r zi > c	

D 1 � P Œz1 > c; : : : ; zr > c	
D 1 � P Œz1 < �c; : : : ; zr < �c	; (9.128)

where z D .z1; : : : ; zr /0 � N.0r; �/, and the last equality follows from symmetry
since EŒz	 D 0r . Therefore, to compute the asymptotic p-value one needs to
evaluate the cumulative distribution function of a multivariate normal distribution.

Note that both tests crucially depend on the asymptotic normality assumption in
(9.109). Sufficient conditions for this assumption to hold are (1) 0 < �2i < 1, and
(2) the implied stochastic discount factors of the different models are distinct. Even
though the multivariate normality assumption may not always hold at the boundary
point of the null hypothesis (i.e., ı D 0r ), it is still possible to compute the p-
value as long as we assume that the true ı is not at the boundary point of the null
hypothesis. There are, however, cases in which this assumption does not hold. For
example, if model 2 nests model 1, then we cannot have ı2 > 0. As a result, the null
hypothesis H0 W ı2 	 0 becomes H0 W ı2 D 0. Under this null hypothesis,

p
T Oı2

no longer has a multivariate normal distribution and both the multivariate inequality
test and the ımin test will break down.

Therefore, when nested models are involved, the two tests need to be modified.
If model 1 nests some of the competing models, then those models that are nested
by model 1 will not be included in the model comparison tests. The reason is that
these models are clearly dominated by model 1 and we no longer need to perform
tests in presence of these models. If some of the competing models are nested by
other competing models, then the smaller models will not be included in the model
comparison tests. This is reasonable since if model 1 outperforms a larger model, it
will also outperform the smaller models that are nested by the larger model. With
these two types of models being eliminated from the model comparison tests, the
remaining models will not nest each other and the multivariate asymptotic normality
assumption on

p
T . Oı � ı/ can be justified.

Finally, if model 1 is nested by some competing models, one should separate the
set of competing models into two subsets. The first subset will include competing
models that nest model 1. To test whether model 1 performs as well as the models
in this subset, one can construct a model M that contains all the distinct factors in
this subset. It can be easily verified that model 1 performs as well as the models
in this subset if and only if �21 D �2M . In this case, a test of H0 W �21 D �2M can
be simply performed using the model comparison tests for nested models described
earlier. The second subset includes competing models that do not nest model 1. For
this second subset, we can use the non-nested multiple model comparison tests as
before. If we perform each test at a significance level of ˛=2 and accept the null
hypothesis if we fail to reject in both tests, then by the Bonferroni inequality, the
size of the joint test is less than or equal to ˛.
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9.9 Conclusion

In this review article, we provide an up-to-date summary of the asymptotic results
related to the two-pass CSR methodology, with special emphasis on the role
played by model misspecification in estimating risk premia and in comparing the
performance of competing models. We also point out some pitfalls with certain
popular usages of this methodology that could lead to erroneous conclusions.

There are some issues related to the two-pass CSR methodology that require
further investigation. At the top of the list are the finite sample properties of the
risk premium and cross-sectional R2 estimates. At the current stage, we have little
understanding of the finite sample biases of these estimates and, as a result, no good
way to correct them. This is a serious concern especially when the number of assets
is large relative to the length of the time series. An important related issue is how
to implement the two-pass CSR methodology when the number of assets is large.
In this respect, the standard practice is to simply run an OLS CSR since the GLS
CSR becomes infeasible. However, in this scenario, relying on asymptotic results
may not be entirely appropriate. Alternatively, one could form portfolios and use
the potentially more efficient GLS CSR. How many portfolios should we consider
and how should we form them are certainly open questions that we hope future
research will address.

While most of the econometric results in this review article are relatively easy to
program, some of them require specialized subroutines that may be time consuming
to develop. To facilitate this task, a set of Matlab programs is available from the
authors upon request.
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Chapter 10
Parametric Estimation of Risk Neutral
Density Functions

Maria Grith and Volker Krätschmer

Abstract This chapter deals with the estimation of risk neutral distributions for
pricing index options resulting from the hypothesis of the risk neutral valuation
principle. After justifying this hypothesis, we shall focus on parametric estimation
methods for the risk neutral density functions determining the risk neutral
distributions. We we shall differentiate between the direct and the indirect way.
Following the direct way, parameter vectors are estimated which characterize the
distributions from selected statistical families to model the risk neutral distributions.
The idea of the indirect approach is to calibrate characteristic parameter vectors for
stochastic models of the asset price processes, and then to extract the risk neutral
density function via Fourier methods. For every of the reviewed methods the
calculation of option prices under hypothetically true risk neutral distributions is a
building block. We shall give explicit formula for call and put prices w.r.t. reviewed
parametric statistical families used for direct estimation. Additionally, we shall
introduce the Fast Fourier Transform method of call option pricing developed in
Carr and Madan [J. Comput. Finance 2(4):61–73, 1999]. It is intended to compare
the reviewed estimation methods empirically.
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10.1 Introduction

It is usual practice of empirical studies on index option pricing in financial markets
to start with the hypothesis of risk neutral valuation principle. That means it is
assumed that prices of path independent derivatives with expiration at maturity
may be represented as expected pay offs. The underlying distribution is referred
as the risk neutral distribution. In the seminal paper (Black and Scholes (1973)), a
stochastic model for financial markets has been established where this risk neutral
distribution may be singled out by arbitrage arguments up to the volatility parameter.
This Black Scholes model is nowadays very well understood, and widely used in
financial industries due to the derived formula of risk neutral index call and put
option prices.

Several empirical studies had come to the conclusion that the stochastic assump-
tions underlying the Black Scholes model does not fit very well the observed
dynamics of asset prices. Therefore several alternative stochastic models have been
proposed in the literature where typically risk neutral distributions may not be
obtained by arbitrage arguments alone. However, within quite general stochastic
frameworks one may identify theoretically risk neutral distributions compatible
with observable liquid derivatives like call and put options. These risk neutral
distributions are often called implied risk neutral distributions.

Compared to the risk neutral distribution according to the Black Scholes model
implied risk neutral distributions generally do not have further specifications in
advance. This complicates estimations in two directions. From the point of view
of accuracy specification aspects like the choice of statistical families for the risk
neutral distributions or the assumptions on stochastic models for the asset price
processes have to be taken into account when selecting the estimation method and
controlling the accuracy. Additionally the numerical problems associated with the
implementation of the estimation method typically became more involved.

As a general assumption within the literature on estimation of risk neutral
distributions they are considered as continuous distributions. The object is then
to estimate related probability density functions called the risk neutral density
functions, with a slight abuse of mathematical correctness. Two principal ways
to estimate risk neutral density functions may be pointed out, parametric and
nonparametric methods. This chapter deals with the parametric ones. One class of
them is built upon parametric statistical families assumed to describe the risk neutral
distribution accurately. The problem reduces to the estimation of the distribution
parameters. The other group of methods estimate the probability density functions
indirectly. A parametric stochastic model is assumed for the asset price processes,
and the risk neutral density functions are extracted then after the calibration of the
model to observed option prices. The chapter is organized as follows.

We shall start with the risk neutral valuation principle. There are controversial
standpoints concerning the reasonability of this principle. Since the field of math-
ematical finance is mainly built upon the framework of arbitrage theory, many
mathematicians accept risk neutral pricing for replicable options only. Instead
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non-linear pricing rules like superhedging are favoured which reduce to risk neutral
pricing for replicable options. In Sect. 10.2 we shall present an argumentation which
might reconcile the different views.

The general idea behind the estimation methods under considerations is to fit
option prices calculated under hypothetically true risk neutral density distributions
to respective observed ones. Therefore these calculations play an important role
for the implementation of the estimation methods. In Sect. 10.4 we shall assume
particular statistical families to model the risk neutral distributions. The considered
families, namely log-normal distributions, mixtures of log-normal distributions and
general gamma distributions, allow for explicit formula of call and put prices.
Section 10.3 deals with calculations of call prices based on parametric stochastic
models for the asset price processes. There the classical Black Scholes formula
will be reviewed, and the Fast Fourier Transform method developed in Carr and
Madan (1999) will be introduced. This method might be used as a tool for the model
calibration as presented in Sect. 10.5. There it will also be shown how to extract the
risk neutral density functions via Fourier methods. The whole line of reasoning
will be explified by Merton’s jump diffusion and Heston’s volatility model. In the
last section it is intended to compare the different reviewed estimation methods
empirically.

10.2 The Risk Neutral Valuation Principle

Let Œ0; T 	 be the time interval of investment in the financial market, where t D 0

denotes the present time and t D T 2	0;1Œ the time of maturity.
Furthermore it is assumed that a riskless bond with constant interest rate r >

�1 and a risky asset are traded in the financial market as basic underlyings. The
evolution of the risky asset is expressed in terms of a state dependent nonnegative
price process .St /t2Œ0;T 	 with constant S0: Notice that time discrete modelling may
be subsumed under this framework.

For the pricing of nonnegative derivatives  .ST / it is often assumed that the
risk valuation principle is valid. That means that there is a stochastic model for
.St /t2Œ0;T 	 by means of a probability measure Q such that the price of any  .ST / is
characterized by

EQ
�
e�rT  .ST /

�
:

There exist many arguments supporting this principle. From the viewpoint of the
arbitrage theory it is closely related to the condition that Q is a so called martingale
measure, i.e.

EQ
�
e�t rSt jS;  � Qt � D e�Qt rSQt for 0 � Qt < t � T: (10.1)

In this case the financial market is arbitrage free in the sense that the value process
.Vt .H//t2Œ0;T 	 of a self-financing investment strategy H D .Ht /t2Œ0;T 	 which is
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bounded from below by �.ıSt /t2Œ0;T 	 for some ı > 0; with V0.H/ � 0 the value at
maturity VT .H/ is vanishing almost surely if it is nonnegative. For a comprehensive
account on the theory of arbitrage the reader is kindly referred to the monograph
(Delbaen and Schachermayer (2006)).

The expectation EQ
�
e�rT  .ST /

�
is then a so called arbitrage free price of

 .ST /; meaning that Q remains a martingale measure for the new financial market
with an additional underlying having price process

˚
E
�
e�r.T�t / .ST / j S;  � t

��
t2Œ0;T 	 :

Unfortunately, arbitrage free prices vary over the martingal measures unless a
derivative  .ST / is replicable by the terminal wealth VT .H/ of a value process
.Vt .H//t2Œ0;T 	 of a self-financing investment strategy H D .Ht /t2Œ0;T 	 satisfying
boundness conditions as above. If every such derivative is replicable the financial
market is called complete. An outstanding example is the famous Black-Scholes
model (see below). However, at least in the special case of time discrete modelling
complete financial markets are very exceptional, e.g. reducing directly to a binomial
model within out setting (cf. Föllmer and Schied (2004), Theorem 5.38). Hence
arbitrage arguments alone are not sufficient for a justification of the risk neutral
valuation. Several suggestions have combined them with additional criteria. In
Hugonnier et al. (2005) arbitrage free markets are embedded into a utility-based
model for the terminal wealths of value processes of self-financing investment
strategies that leads to risk neutral valuation of the derivatives  .ST /: Another
suggestion is built upon the observation that in organized markets call and put
options are traded so often that they might be viewed as liquid derivatives. So the
idea is to look for martingale measures Q consistent with observable prices C.K/
of call options with expiration T and strike price K in the sense

C.K/ D EQ
�
e�rT maxf0; ST �Kg� :

If consistency is required for all strike prices K; then for any pair Q1;Q2 of such
martingale measures the marginal distributions of ST w.r.t. Q1;Q2 coincide (see
proof of Lemma 7.23 in Föllmer and Schied (2004)), implying EQ1

�
e�rT  .ST /

� D
EQ2

�
e�rT  .ST /

�
for a derivative  .ST /: Moreover, there exist axiomatizations

for pricing rules in financial markets that guarantee the existence of martingale
measures which are consistent with the observable call prices C.K/ for all strikes
K (cf. e.g. Föllmer and Schied (2004), Proposition 7.26, Biagini and Cont (2006)).

If the risk neutral valuation principle is valid w.r.t. to some stochastic model
in terms of a probability measure Q; we shall call it risk neutral probability
measure. As discussed above marginal distributions of ST are independent of the
chosen risk neutral probability measure so that we may speak of the risk neutral
distribution of ST ; henceforth denoted by QST . Of course the marginal distributions
of ln.ST / are independent of the choice of risk neutral probability measures too,
suggesting the convention of the log-price risk neutral distribution. We shall
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further restrict considerations to continuous risk neutral distributions admitting a
probability density function q; which we shall call risk neutral density function. So
from now on the assumption of the risk valuation principle should mean that the
price of a derivative  .ST / is expressed by

Z
 .x/ q.x/ dx:

Since the risk neutral density function is unknown, the task is to estimate it upon
observed prices for options  .ST / at time t D 0: Typically, prices for call and
put options are used. We shall review some widely used parametric methods.
There always computations of hypothetical prices for options w.r.t. candidates of
the risk neutral density functions are involved. For some models like the Black
Scholes model such hypothetical prices for call and put options are given in
implementable analytical expressions, for others like several stochastic volatility
models numerically efficient ways of calculations have been developed. These
results and methods will be the subject of the next section.

10.3 Calculations of Risk Neutral Option Prices

Let us assume that the stock price process .St /t2Œ0;T 	 is characterized by a parameter
vector # 2 � � R

r under the risk neutral probability measures. In the special case
of the Black Scholes model the famous Black Scholes formulas provide explicit
formulas for parameter dependent call and put prices. They will be reviewed in
the following subsection. Afterwards we shall introduce the Fast Fourier Transform
method to calculate call option prices as proposed in Carr and Madan (1999). It
relies on the additional assumption that the characteristic function of the log-price
risk neutral distribution is known analytically.

10.3.1 The Black Scholes Formula

In the Black Scholes model the price process .St /t2Œ0;T 	 is modelled under the risk
neutral probability measure by

St D S0 exp

�

r � �2

2

�
t C �Wt


;

where � > 0; and .Wt /t2Œ0;1Œ denotes a standard Brownian motion. In particular

#
defD � 2 �

defD	0;1Œ; the so called volatility, and the risk neutral distribution is a

log-normal distributions with parameters �
defD


r � �2

2

�
T C ln.S0/ and �2T:
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As usual, let ˚ denote the distribution function of the standard normal dis-

tribution, and let MK
defD ST

K
be the moneyness w.r.t. strike price K >0. With

these notations we may report the celebrated Black Scholes formula (cf. Black and
Scholes (1973)) for the prices CBS.K; �/; PBS .K; �/ of respectively the call and
put with expiration at T and strike price K > 0 dependent on the volatility � :

CBS.K; �/ D ST˚.d1/�Ke�rT ˚.d2/ (10.2)

PBS .K; �/ D CBS.K; �/ � S0 C e�rTK (10.3)

d1
defD � ln.M/C T .r C �2

2
/

�
p
T

; d2
defD d1 � �p

T (10.4)

10.3.2 Fast Fourier Transform Method to Calculate
Call Option Prices

We shall follow the line of reasoning in Carr and Madan (1999), assuming that
the characteristic function ˚T j# of the log-price risk neutral distribution is known
analytically. Prominent examples are some widely used stochastic volatility models
with or without jumps (see below). The aim is to calculate the hypothetical price
C#.K/ for the call option with expiration at T and strikeK if # is the true parameter
vector driving the risk neutral model for the stock price process.

Recall that for an integrable function f W R ! R we may define the so called
Fourier transform Of of f via

Of .y/ defD
Z
feiyv dv:

Due to Plancherel’s theorem (cf. Rudin (1974), Theorem 9.13) we may recover f
from its fourier transform by

f .x/ D
Z
e�ixy Of .y/

2

dy

if f is in addition square integrable. Under the assumption

E
�
S1C˛T

�
< 1 for some ˛ > 0 (10.5)

this relationship between functions and their fourier transforms may be applied to

C#
˛ W R ! R; x 7! e˛xC #.ex/ .# 2 �/
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(see Carr and Madan (1999)). We obtain the following formulas for the fourier

transforms cC#
˛ of C#

˛ (# 2 �)

cC#
˛ D e�rT ˚T j#.y � .1C ˛/i/

˛2 C ˛ � y2 C i.2˛C 1/y
; (10.6)

A derivation may be found in Carr and Madan (1999) or Cizek et al. (2005), p. 189.
This yields

C#.K/ D K�˛C #
˛ .ln.K// D

Z
K�˛e�iy ln.K/cC#

˛ .y/

2

dy

D
1Z

0

K�˛e�iy ln.K/cC#
˛ .y/



dy: (10.7)

The last equation holds because C#.K/ is real, which implies that fourier transform
cC#
˛ is odd in its imaginary part and even in its real part. Using the Trapezoid rule for

the integral on the right hand side of (10.7), we may approximate the prices C#.K/

by

C#.K/ � 1

K˛


N�1X

jD0
e�i�jcC#

˛ .�j /�; (10.8)

where � > 0 is the distance between the points of the integration grid. Bounds for
sampling and truncation errors of this approximation have been developed in Lee
(2004).

Approximation (10.8) suggests to apply the Fast Fourier algorithm which is an
efficient algorithm to compute sums of the form

wu D
N�1X

jD0
e�i 2


N j uzj for u D 0; : : : ; N � 1

(cf. Walker (1996)). In general, the strikes near the spot price S0 are of interest
because call options with such prices are traded most frequently. We thus consider
an equidistant spacing of the log-strikes around the log spot price ln.S0/:

xu D � 1

N
N# C #u C ln.S0/ for u D 0; : : : ; N � 1; (10.9)

where # > 0 denotes the distance between the log-strikes. Inserting (10.9) into
formula (10.8) yields

C# fexp.xu/g � exp.�˛xu/




N�1X

jD0
e�i#�j u ei�jf 12N#�ln.S0/gcC#

˛ .�j /� (10.10)
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for u D 0; : : : ; N � 1. Now we may apply the Fast Fourier algorithm to

zj
defD ei�jf 12 N#�ln.S0/gcC#

˛ .�j /� for j D 0; : : : ; N � 1

provided #� D 2

N

holds. This restriction means on one hand that if we choose �
small in order to obtain a fine grid for the integration, we have a relatively large
spacing between the log-strikes with few log-strikes lying around the desired region
near ln.S0/: On the other hand a small # to catch many log-strikes near ln.S0/ a
more rough grid for the integration is forced by the restriction. So we face a trade-off
between accuracy and the number of interesting strikes. Accuracy may be improved
for large � by using better numerical integration rules. Carr and Madan considered
the Simpson rule leading to the approximation

exp.�˛xu/




N�1X

jD0
e�i#�j u ei�jf 12 N#�ln.S0/gcC#

˛ .�j /
�

3

˚
3C .�1/j � ı0.j /

�
(10.11)

for u D 0; : : : ; N �1, instead of (10.10), where ı0.0/
defD 1 and ı0.j /

defD 0 for j ¤ 0:

The Fast Fourier algorithm may be applied to calculate

zj
defD ei�jf 12N#�ln.S0/gcC#

˛ .�j /
�

3

˚
3C .�1/j � ı0.j /

�
for j D 0; : : : ; N � 1;

again taking into account the condition #� D 2

N
:

10.4 Direct Parametric Estimation of the Risk Neutral
Density Function

The parametric approach to estimate the risk neutral density function directly
starts with the assumption that the risk neutral distribution of ST belongs to a
parametric family W� .� � R

r / of one-dimensional continuous distributions.
For any parameter vector # 2 � and every strike price K we may calculate the
hypothetical prices for the call C.K; #/; the put P.K; #/ both with expiration T;
and the forward F� by

C.Kj#/ D e�rT
1Z

K

.x �K/ q.xj�/ dx (10.12)

P.Kj#/ D e�rT
KZ

0

.K � x/ q.xj�/ dx (10.13)
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F# D e�rT
1Z

0

x q.xj#/ dx (10.14)

Therein, q.�j#/ denotes any probability density function of the distribution fromW�

associated with #:
The estimation of the risk neutral density function reduces to the estimation of

the distribution parameter vector #: The most common approach is based on S0;
observed prices Y1; : : : ; Yn for calls with strikes K1; : : : ; Km; and QY1; : : : ; QYm with
strikes QK1; : : : ; QKn: Both, calls and puts with expiration T: The parameter vector #
is estimated by minimizing the sum of the squared differences between the observed
call, put and forward price and the hypothetical ones. More precisely, the estimation
involves the solution of the following minimization problem

min
mX

iD1
fYi � C.Ki j#/g2 C

nX

jD1

˚ QYi � P. QKi j#/
�2

(10.15)

C �
e�rT S0 � F#

�2
s.t. # 2 �:

The crucial step to implement this parametric approach is to find a proper
statistical family W� as a model for the risk neutral distribution. Usually, either
a very general class a distribution is selected or mixtures of log-normal distributions
are utilized. As general classes we shall discuss the benchmark case of log-normal
distributions and the generalized Gamma distributions. Let us start with assumption
of log-normal distributions.

10.4.1 Estimation Using Log-Normal Distributions

Closely related to the Black Scholes model the log-normal distributions are
sometimes used for the risk neutral distribution, indicated as a benchmark case
(cf. e.g. Jondeau and Rockinger (2000)). Recall that a probability density function
fLN.�;�/ of a log-normal distribution with parameters � 2 R and � > 0 is given by

fLN.�;�/.x/
defD

8
<̂

:̂

1p
2
�x

e
� fln.x/��g2

2�2 W x > 0

0 W otherwise
:

For fixed �2 and different �1; �2 the respective probability density functions
fLN.�1;�/ and fLN.�2;�/ are linked by

fLN.�2;�/ D e.�1��2/ fLN.�1;�/

˚
x e.�1��2/

�
: (10.16)
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Then applying the change of variables theorem for integration we obtain the
following relationships between the call and put prices

C.Kj�2; �/ D e.�2��1/ C
˚
K e.�1��2/j�1; �

�
(10.17)

P.Kj�2; �/ D e.�2��1/ P
˚
K e.�1��2/j�1; �

�
: (10.18)

The equations suggest to express prices C.Kj�; �/ and P.Kj�; �/ in terms of

Black Scholes formulas, noticing thatCBS.K; �/DC
�
Kj


r��

2

2

�
TC ln.S0/; �



and PBS.K; �/ D P

�
Kj


r � �2

2

�
T C ln.S0/; �


holds for any strike K: For

� 2 R and � > 0 we obtain

CBS.Kj�; �/ defD C.Kj�; �/ (10.19)

D e

8
<

:��
0

@r�
�2

2

1

ATCln.S0/

9
=

;
CBS

8
ˆ̂<

ˆ̂:
K e

0

@r�
�2

2

1

ATCln.S0/��
; �

9
>>=

>>;

PBS .Kj�; �/ defD C.Kj�; �/ (10.20)

D e

8
<

:��
0

@r�
�2

2

1

ATCln.S0/

9
=

;
PBS

8
ˆ̂<

ˆ̂:
K e

0

@r�
�2

2

1

ATCln.S0/��
; �

9
>>=

>>;
:

With a slight abuse of convention we shall call CBS.Kj�; �/ and PBS .Kj�; �/
Black Scholes call and put prices too.

Next we want to introduce the approach to substitute log-normal distributions for
the risk neutral distributions by mixtures of them.

10.4.2 Estimation Using Log-Normal Mixtures

The use of log-normal mixtures to model the risk neutral distribution of ST
was initiated by Ritchey (1990) and became further popular even in financial
industries by the studies Bahra (1997), Melick and Thomas (1997) and Söderlind
and Swensson (1997). The idea is to model the risk neutral density function as
a weighted sum of probability density functions of possibly different log-normal
distribution. Namely, we set

q.xj�1; : : : ; �k; �1; : : : ; �k; �1; : : : ; �k/ defD
kX

iD1
�ifLN.�i ;�i /.x/;
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where fLN.�i ;�i / denotes a probability density function of the log-normal distribution
with parameters �i 2 R as well as �i > 0; and nonnegative weights �1; : : : ; �k
summing up to 1:

This approach might be motivated w.r.t. two aspects. Firstly such density
functions are flexible enough to model a great variety of potential shapes for the
risk neutral density function. Secondly, we may compute easily the hypothetical
call and put prices in terms of respective Black-Scholes formulas by

C.Kj�1; : : : ; �k; �1; : : : ; �k; �1; : : : ; �k/ D
kX

iD1
�iC

BS.Kj�i; �i / (10.21)

P.Kj�1; : : : ; �k; �1; : : : ; �k; �1; : : : ; �k/ D
kX

iD1
�iP

BS .Kj�i; �i /:(10.22)

Additionally, drawing on well known formulas for the expectations of log-normal
distributions, we obtain

F�1;:::;�k ;�1;:::;�k ;�1;:::;�k D
kX

iD1
�i e

.�iC �2i
2 �rT /

Recalling that the parameter estimation is based on observations ofm call and n put
prices we have to take into account the problem of overfitting. More precisely, the
number 3k�1 of parameters should not exceedmCn; the number of observations.
Furthermore in order to reduce the numerical complexity of the minimization
problem underlying the estimation it is often suggested to restrict estimation to the
choice of k 2 f2; 3g:

Empirical evidence (cf. e.g. Corrado and Su (1997); Savickas (2002, 2005))
shows that the implied skewness of the underlying used in options is often negative,
in contrary to the skewness of log-normal distributions. In order to take into account
negative skewness Savickas proposed to use Weibull distributions (cf. Savickas
(2002, 2005)). In Fabozzi et al. (2009) this suggestion has been extended to the fam-
ily of generalized gamma distributions that will be considered in the next subsection.

10.4.3 Estimation Using Generalized Gamma Distributions

According to #
defD .˛; ˇ; k/ 2 � defD	0;1Œ3 a respective probability density function

fG.�j˛; ˇ; ı/ is given by

fG.�j˛; ˇ; k/ D
8
<

:

1

� .k/



ˇ

˛

� �x
˛

�ˇk�1
exp

�
�
�x
˛

�ˇ W x > 0

0 W otherwise
;
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where � denotes the Gamma function. The corresponding cumulative distribution
functionG.�j˛; ˇ; k/ is given by

G.xj˛; ˇ; k/ defD I

�
k;
�x
˛

�ˇ
;

where I denotes the incomplete gamma function defined as

I .k; y/
defD 1

� .k/

yZ

0

xk�1 e�x dx:

It is known that k D 1 leads to a Weibull distribution, when ˇ D 1 we get a gamma
distribution, when ˇ D k D 1 we obtain an exponential distribution and when
k ! 1 we arrive a log-normal distribution. Explicit formulas for the respective
hypothetical prices C.Kj˛; ˇ; k/; P.Kj˛; ˇ; k/ and F˛;ˇ;k , the moment generating
function, have been derived in Fabozzi et al. (2009) (pp. 58, 70). They read as
follows.

F˛;ˇ;k D ˛
� .k C 1

ˇ
/

� .k/
(10.23)

C.Kj˛; ˇ; k/ D e�rT F˛;ˇ;k � e�rT K (10.24)

�
"
F˛;ˇ;k I

(
k � 1

ˇ
;



K

˛

�ˇ)
C K I

(
k;



K

˛

�ˇ)#

P.Kj˛; ˇ; k/ D e�rT
"
K I

(
k;



K

˛

�ˇ)
� F˛;ˇ;k I

(
k C 1

ˇ
;



K

˛

�ˇ)#
:

(10.25)

A different class of methods to estimate the risk neutral density start with a
parametric model of the whole stock price process which determines in an analytic
way the risk neutral distribution. Then the risk neutral density will be estimated
indirectly via calibration of the stock price process.

10.5 Estimation via Calibration of the Stock Price Process

The starting point for the indirect estimation of the risk neutral density function via
model calibration is the assumption that the risk neutral probability measure of the
stock price process .St /t2Œ0;T 	 is characterized by a parameter vector # 2 � � R

r :

Furthermore it is supposed that the characteristic functions ˚T j# of ln.ST / under
# is known analytically. Prominent examples are some widely used models (see
below).
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Based on observed prices Y1; : : : ; Ym for call options with expiration T and
strike pricesK1; : : : ; Km the stock price process is calibrated to obtain an estimated
parameter vector O#: A popular way is to solve the following inverse problem (cf.
e.g. Bates (1996); Andersen and Andreasen (2000))

min
mX

iD1

˚
Yi � C#.Ki/

�2
(10.26)

s.t. # 2 �; (10.27)

where C#.Ki/ denotes the hypothetical call price with expiration T and strike price
Ki if # is the true characteristic parameter vector. These prices might be calculated
via the Fast Fourier Transform method as introduced in Sect. 10.3.2. This approach
has the attractive numerical feature that for implementation we may draw on the
Fast Fourier algorithm.

Once we have solved the inverse problem some parameter vector say O#;we might
extract the risk neutral density function in the following way. Firstly we obtain by
Fourier inversion theorem (cf. Dudley (2002), 9.5.4) for probability density function
q

logj O# of ln.ST /

q
logj O#.x/ D

Z
˚
T j O#.y/e

�i ty

2

dy:

Then application of the transformation theorem for probability density functions
yields the estimation

q O#.x/ D
8
<

:

q
logj O#.x/
x

W x > 0

0 W otherwise
:

Let us now have a closer look at some special models where we shall identify
the respective calibration parameter and characteristic functions. We shall consider
refinements of the classical Black Scholes model. Namely Merton’s jump diffusion
model which incoporates possible large or sudden movement in prices, and Heston’s
volatility model which take into account state dependent changes in volatilities.

10.5.1 Merton’s Jump Diffusion Model

The jumps of the log prices are usually modelled by a compound Poisson process
NtP
iD1

Yi ; consisting of a Poisson process .Nt /t2Œ0;1Œ with intensity parameter � > 0

independent of a sequence .Yi /i2N of i.i.d. random variables. The Nt model the
random number of jumps, whereas the respective jump sizes are expressed by the
Yi having a common distribution of typical jump size. Within the Merton’s jump
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diffusion model a normal distribution N.�; ı2/ is assumed as the distribution of
typical jump size. Then this compound Poisson process is added to classical Black
Scholes model. As introduced in Merton (1976), the risk neutral price process within
Merton’s jump diffusion model may be described by

St D S0 exp

 
�M t C �Wt C

NtX

iD1
Yi ;

!
;

where �M D r � �2

2
� �

n
exp

�
�C ı2

2

�
� 1

o
; � > 0; and .Wt /t2Œ0;1Œ denoting a

standard Brownian motion which is independent of the compound Poisson process.
Drawing on well-known formulas for characteristic functions of normally dis-

tributed random variables (cf. Dudley (2002), Proposition 9.4.2), and that for
compound Poisson processes (Cont and Tankov (2004), Proposition 3.4), we obtain
the characteristic function ˚ln.ST / of ln.ST / by an easy calculation, yielding

˚ln.ST /.z/ D exp fiz ln.S0/g (10.28)

� exp

�
T

�
1 � �2z2

2
C i�M z C �



e.�

ı2z2
2 Ci�z/

�	

As parameter vector we may identify #
defD .�2; �; �; ı2/2 	0;1Œ2�R�	0;1Œ

defD �.

10.5.2 Heston’s Volatility Model

A popular approach to substitute the deterministic volatility in the Black Scholes
model by a stochastic process .vt /t2Œ0;1Œ: was proposed in Heston (1993). In this
model the risk neutral dynamics of the log price ln.St / is expressed by the stochastic
differential equations

d ln.St / D


r � 1

2
vt

�
dt C p

vt dW
S
t (10.29)

d vt D �.�� vt / dt C �
p

vt dW
V ; (10.30)

where .W S
t /t2Œ0;1Œ; .W

V
t /t2Œ0;1Œ are correlated standard Brownian motion with

rate �:

Cov.d W S
t ; d W

V
t / D � dt:

An analytical expression of the characteristic function ˚ln.ST / of ln.ST / has been
derived in Heston (1993) in the following way
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˚ln.ST /.z/ D
exp

h
��T .��i��z/

�2
C iz fT r C ln.S0/g

i

n
cosh. �T

2
/C ��i��z

�
sinh. �T

2
/
o 2��
�2

(10.31)

� exp

(
� .z2 C iz/v0

� coth. �T
2
/ C � � i��z

)
;

where � D p
�2.z2 C iz/C .� � i��z/2: As parameter vector we obtain

#
defD .�; �; �; �/ 2 	0;1Œ�Œ�1; 1	 � Œ0;1Œ�	0;1Œ

defD �:

10.6 Empirical Study

In this section we will demonstrate the methods exposed in the theoretical part and
address some aspects of concern for practitioners. Estimating the risk neutral density
by direct methods involves the choice of parametric distribution family to which it
belongs to. This introduces some arbitrariness in modelling because the distribution
family must be selected a priori from a set of candidates. Indirect modelling relies
on assumptions about the data generating process and the shape of the risk neutral
density is intrinsically related to the parameter values of the underlying process.

Practitioners are interested in modelling the RND from observed data and
therefore have to solve an inverse problem. Model parameters are often obtained
by solving nonlinear least squares equations for which analytical solutions may
be very difficult or impossible to derive. Therefore, one has to rely on numerical
optimization algorithms in order to retrieve the unknown parameters. In addition,
the approaches may suffer the drawbacks associated with the ill-posedness of some
inverse problems in pricing models: there may exist no solution at all or an infinity
of solutions. The last case means that there are many sets of parameters reproducing
call prices with equal precision, which in turn may translate in pricing errors
with many local minima or flat regions with low model sensitivity to variations in
parameters. The solutions are often very sensitive to the numerical starting values;
numerical instability may also occur if the dependence of solutions to the observed
data is discontinuous. Uniqueness and stability may be achieved by introducing
a regularization method: e.g. adding penalty to the linear least squares term. For
further discussions on regularization methods see Cont and Tankov (2004).

In order to assess the shape of RND implied by different parametric approaches
we use paired European call options written on the underlying DAX stock index
which mature in 1 month (21 days) and strike prices observed on 20040121. The
data is provided by Eurex – Deutsche Börse and collected from the Research
Data Center (RDC) of the Collaborative Research Center 649. Strike prices have
been transformed to account for intraday stock price movements; these have been
computed from the futures prices following a methodology by Fengler (2005). The
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Fig. 10.1 Left: European call option vs. strike prices on 21 Jan 2004. Right: � of the observed call
prices

EURIBOR interpolated interest rate for this maturity is r D 2:05% per annum and
the stock index value taken from the daily series DAX 30 Index is S D 4;138. The
dividend rate is zero. Observations that do not respect general arbitrage conditions
(see Jackwerth (2000)) have been excluded from the sample. We are left with 2,562
paired observations, which we display in Fig. 10.1. The counterpart representation
of the observations in the implied volatility space (based on Black-Scholes valuation
formula) will be further used to assess the quality of the estimates. Note that in
practice, it is often more convenient to match implied volatilities which are of the
same order of magnitude relative to call prices which display a much larger out-of-
the-money variation.

Figure 10.2 depicts the estimation results for the RND by direct methods as well
as the fit in the implied volatility space. In the upper left panel, the Black-Scholes
log-normal RND depends on only one unknown for given risk free interest rate, the
constant – across strikes – volatility parameter � . It is contrasted with the implied
volatility of the observed call prices in the right panel.

Next, we fit a mixture of log-normal densities. The parameter k is usually
assumed to be unknown and one has to apply appropriate criteria to find the optimal
parameter value. Here, we illustrate the method for fixed k D 2 in the central part
of Fig. 10.2. Since �1 and �2 are known up to the volatility parameters �1 and �2
respectively of the components, the mixing distribution will have three unknown
parameters. We have investigated the shape of the resulting density and found that it
is robust with respect to the mixtures, in the sense that for known basic densities, the
proportion parameter � regulates the relative impact of each component. Conversely,
one can fix � and try to estimate �1 and �2. The mixture generates a rather symmetric
smile, with a minimum different from that of the volatility skew of the observed
prices. The higher kurtosis improves the fit at a price of higher skewness compared
with the simple log-normal case. This shows that using mixtures of log-normals
improves the fit especially by higher kurtosis. Every (central) moment of a linear
combination of densities is given by the same combination of the corresponding
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Fig. 10.2 Left: RND estimated by: log-normal distribution with � D 0:18 (top), mixture of log-
normal distributions for weighted components �1 D 0:24 – dashed, �2 D 0:15 – dotted with
� D 0:31 (center) and generalized gamma distribution with ˛1 D 3033:03, ˇ2 D 6:86 and
k D 9:05 (bottom). Right: IVBS for observed call prices (asterisk) and fitted call prices (plus sign)

moments. The third moment of a log-normal density is always positive, therefore a
mixture of log-normal can never generate negative skewness. In order to generate a
negative skew either other mixture types or other parametric models for the RND
has to be considered.
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Generalized gamma distribution allows more flexibility in modelling the shape of
RND. It depends on three parameters: the parameter ˛ is a scale parameter, k is the
index parameter and ˇ is the power parameter. There are many sets of parameters
that give a good fit and produce relatively stable shapes of the RND. For a given set
of parameters we display the results in the lower panel of Fig. 10.2. In the implied
volatility space, the gamma distribution cannot reproduce the smile; it establishes a
negative relationship between the strike price and the implied volatility. In terms of
the fitting errors this does not constitute too much of a problem because the vega of
the call price � D @C

@�
decreases steeply for largeK and reaches values close to 0 for

deep out-of-the money call prices (see Fig. 10.1 right). The vega of the call option
based on the Black-Scholes’s call pricing formula is given by � D S

p
T .�.d1//

with d1 defined in (10.4).
For the Black-Scholes RND the calibration error function jjY � C

O# jj2, where Y
is the vector of observed and C O# the vector of fitted call prices (i.e. the objective
function in (10.15)) has a unique minimum (see Fig. 10.3 upper panel left). The
same holds for the mixture when the two basic densities are fixed. The RSS takes
values close to a minimum for a multitude of combinations of �1 and �2 (see
Fig. 10.3 right). The following two panels in Fig. 10.3 refer to the generalized
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Fig. 10.3 Estimation error function by direct methods
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Table 10.1 Comparison of the RND estimates by direct method in terms of moments and fit: log-
normal for � D 0:18 (blue), mixture of lognormals for �1 D 0:24, �2 D 0:15 and � D 0:31,
generalized gamma for ˛1 D 3033:03, ˇ2 D 6:86 and k D 9:05

Model Mean St. Dev. Skewness Kurtosis RSS

Log-normal 4,145.11 216.99 0.15 3.04 7,693.08
Mixture 4,139.39 221.28 0.20 3.83 7,465.22
Generalized gamma 4,152.76 205.44 �0.18 3.06 351.07

gamma distribution. The objective function is a surface which forms a valley or
rift of minimum values. This illustrate the ill-posed problem.

The pricing errors computed as a difference between observed and fitted call
prices, display some regularities: RND-s estimated by the first two methods lead to
underpriced calls for ITM options and overpriced calls for OTM options; the dis-
crepancies diminish for deep ITM and OTM options. Generalized gamma distribu-
tion is flexible enough to give a good fit for a large range of strikes in the central part
of the distribution. Since the observations in the tails are more sparse, the pricing
errors will be higher for deep ITM call options. In this particular case, the estimated
density will have fetter left tails resulting in overpriced options for small strike
prices. However, the absolute pricing errors are smaller than for the other candidates.
The resulting moments of the estimated densities are summarized in Table 10.1.

In the remaining of this section, we describe the results by the indirect approach
for finding the RND. The calibration of the second type of models is further
supported by advanced numerical methods available, such as Fast Fourier Transform
(FFT). In order to apply the FFT-based algorithm we use the characteristic function
of the risk neutral density as described in Sect. 5 for the Merton and Heston models
and set the parameters ˛ D 1:25, N D 4;096, and � D 0:25. For OTM option
prices the calibration error increases; therefore, we use the Fourier Transform
of OTM option prices as described in Carr and Madan (1999). With the above
parameters choice and pricing rules, we solve the problem of model calibration.
This implies solving the minimization problem given in (10.26) and (10.27). We
describe the results for both models in terms of the resulting RND and fit in the IV
space in Fig. 10.4.

Merton model for pricing European options tries to capture the deviations from
normality of log-returns by adding a compound Poisson jump process to the Black-
Scholes model. Jump components add mass to the tails of the returns distribution.
Increasing ı adds mass to both tails. The sign of � determines the sign of the
skewness: negative � implies relatively more mass in the left (negative skew) and
the other way around. Larger values of the intensity parameters � (which means that
the jumps are expected to occur more frequently) makes the density flatter tailed,
i.e. increases kurtosis.

In the Merton model an implied volatility skew is attainable by the presence of
jumps. By introducing a correlation parameter � between log-returns and volatility
movements in the Heston model has a similar effect on the volatility smile. Varying
the parameter � around 0 gives us asymmetric tails of RND. Intuitively, if � > 0,
then volatility will increase as the asset price/return increases. This will spread
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Fig. 10.4 Left: RND estimated for the Merton with � D 0:13, � D 0:10, � D �0:23, ı D 0:17

and Heston with � D 0:19, � D �0:61, � D 1:18, � D 0:21. Right: IVBS for observed call prices
(asterisk) and fitted call prices (plus sign)

the right tail and squeeze the left tail of the distribution creating a fat right-
tailed distribution. Parameter � measures the speed of mean reversion and can be
interpreted as the degree of “volatility clustering” in the sense that large price
variations are likely to be followed by large price variations and the other way
around. � is the long run level of volatility and � is the volatility of volatility. �
affects the kurtosis of the distribution: when it is 0 the log-returns will be normally
distributed. Increasing � will then increase the kurtosis only, creating heavy tails
on both sides. Conversely, if � < 0, then volatility will increase when the asset
price/return decreases, thus spreading the left tail and squeezing the right tail of the
distribution and creating a fat left-tailed distribution.

Empirical results for the RND by both method indicate negative skewness:� > 0
in Merton model and � < 0 in Heston model. Negative correlation � is in line with
the empirical studies of the financial returns which show that volatility is negatively
correlated with the returns. Reproducing some of the essential features of asset
dynamics can result in significant shape differences. We can see in Fig. 10.4 that
RND implied by Merton has a much fatter left tail and a higher kurtosis than the
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Fig. 10.5 Calibration error function by indirect methods

RND obtained from the Heston model. This shows how different models for the
stock prices give various shapes of the risk neutral density. In terms of the implied
volatility, Merton model seems more suitable to reproduce the skew in Fig. 10.4.
Pricing errors have a very similar structure for the two models: they are almost
symmetrical against the 0 line and decrease for high strike prices.

The graphs in Fig. 10.5 show the calibration error function in both models for
pairs of parameters in each model. Three of the panels indicate that the calibration
is ill-posed because there is a large, nearly flat region or a valley of minima for the
objective function. It implies that there are many parameter sets for which the model
prices match the observed prices. However, by using this approach the shape of RND
for different set of parameters that give a comparable good fit may differ a lot. We
do not report such graphs here, but one can easily vary two of the parameters along
a valley in Fig. 10.5 to verify this. The right panel bottom indicate that the objective
function has a clearly defined minimum so that the pairs .�; �/ in the Heston model
are uniquely defined when keeping the other model parameters fixed.

In modelling the risk neutral densities based on option data the practitioners face
a trade off between modelling aspects of the underlying’s dynamics and reliability
of calculations concerning the shape of the RND. While some distribution families
allow for great flexibility in the shape of RND (e.g. generalized gamma) they are
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Table 10.2 Comparison of the RND estimates by indirect method in terms of moments and fit:
Merton with � D 0:13, � D 0:10, � D �0:23, ı D 0:17 and Heston with � D 0:19, � D �0:61,
� D 1:18, � D 0:21

Model Mean St. Dev. Skewness Kurtosis RSS

Merton 4,008.40 256.61 �0.09 4.88 6,468.49
Heston 4,130.12 240.20 �0.35 3.19 6,362.18

not very informative about the dynamic of the underlying asset. If modelling the
underlying process is preferred indirect methods are to be chosen. The challenge is
to find a model that is able the reproduce the main features of the stock prices.
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Chapter 11
Nonparametric Estimation of Risk-Neutral
Densities

Maria Grith, Wolfgang Karl Härdle, and Melanie Schienle

Abstract This chapter deals with nonparametric estimation of the risk neutral
density. We present three different approaches which do not require parametric
functional assumptions on the underlying asset price dynamics nor on the distri-
butional form of the risk neutral density. The first estimator is a kernel smoother
of the second derivative of call prices, while the second procedure applies kernel
type smoothing in the implied volatility domain. In the conceptually different third
approach we assume the existence of a stochastic discount factor (pricing kernel)
which establishes the risk neutral density conditional on the physical measure of
the underlying asset. Via direct series type estimation of the pricing kernel we can
derive an estimate of the risk neutral density by solving a constrained optimization
problem. The methods are compared using European call option prices. The focus
of the presentation is on practical aspects such as appropriate choice of smoothing
parameters in order to facilitate the application of the techniques.
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278 W.K. Härdle et al.

11.1 Introduction

Most of our economic understanding of investment under uncertainty is based
on pure Arrow–Debreu securities (Arrow 1964; Debreu 1959), which pay one
unit of currency at the end of a period if a state of nature is realized and zero
otherwise. Their theoretical state-contingent prices are the starting point for pricing
any security in an economic equilibrium under uncertainty. In a continuum of states,
the prices of the Arrow–Debreu securities can be characterized by the state-price
density, which yields one dollar if the final state is in the interval Œx; x C dx	 when
starting from any point x. The existence and form of a state-price density can be
justified by preference-based equilibrium models (Lucas 1978) or reasoning from
arbitrage-based models (Merton 1973). We focus on the latter, where the state-price
density is denoted as risk neutral density (RND). It exists if the underlying market
is dynamically complete, i.e. any position can be replicated by a cash-flow neutral
(self-financing) trading strategy over subsequent trades. We assume this for the rest
of the chapter. Then the RND also uniquely characterizes the equivalent martingale
measure under which all asset prices discounted at the risk-free rate are martingales.

In standard option pricing models such as Merton (1976), Heston (1993) or Bates
(1996), estimation of the risk neutral density crucially depends on underlying model
assumptions such as the underlying asset price dynamics and the statistical family
of distributions that the risk neutral density is assumed to belong to. Consumption
based asset pricing models prespecify preferences of the representative agent
and condition therefore the shape of the pricing kernel (Lucas 1978; Rubinstein
1976). Recent empirical findings, however, question the validity of these popular
specifications which drive the overall result (Campbell et al. 1997). Nonparametric
estimation offers an alternative by avoiding possibly biased parametric restrictions
and therefore reducing the respective misspecification risk. Since nonparametric
estimation techniques require larger sample sizes for the same accuracy as a
parametric estimation procedure, increasing availability of large data sets as intraday
traded option prices have raised their feasibility. On the other hand, due to their
flexibility, many existing nonparametric risk neutral density estimation techniques
are afflicted by irregularities such as data sparsity in the tails, negative probabilities
and failure of integration to unity. We will address these problems by appropriate
choices of smoothing parameters, by employing semiparametric techniques or
imposing relevant constraints.

We present a thorough picture of nonparametric estimation strategies for the
RND q: We study direct standard kernel based approaches (local polynomial
regression) which are flexible and yield point estimates as opposed to series
expansion, sieve methods or splines. Though shape constraints such as convexity
or monotonicity of the call price are hard to incorporate directly in the estimation
step. Therefore, in particular in small samples, they are not satisfied leading to
problems with economic theory. Thus we also propose an indirect way of estimation
by employing series methods for directly controlling constraints in the estimation.
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In the following, we will briefly outline the main ideas for direct or indirect
estimation of q.

In a dynamically complete market, the price of a European call is obtained by
discounting the expected payoff, where the expectation is taken with respect to the
risk neutral measure

C.X; ; rt; ; ıt; ; St / D e�rt; 
Z 1

0

.ST � X/Cq.ST j; rt; ; ıt; ; St / dST : (11.1)

Here St is the underlying asset price at time t , X the strike price,  the time to
maturity, T D t C  the expiration date, rt; the deterministic risk free interest
rate at t until maturity T , ıt; the corresponding dividend yield of the asset, and
q.ST j; rt; ; ıt; ; St / is the conditional risk neutral density. We assume that these
state variables contain all essential information needed for estimation of C and
q while quantities such as stochastic market volatility, trading volumes, bid-ask
spreads are negligible. We write q.ST / instead of q.ST j�/ to keep notation simple.
The risk neutral density can be derived from (11.1) as

q.ST / D ert; 
�
@2C

@X2



XDST
; (11.2)

see Breeden and Litzenberger (1978). It has been exploited to derive two standard
nonparametric kernel estimation strategies for q: Either obtain an estimate of the
RND from estimating a continuous twice-differentiable call function in all its
arguments from traded options by smoothing in the call price, or alternatively, by
smoothing in the implied volatility space.

In addition to these standard approaches, here we also introduce a third indirect
way via series estimation of the empirical pricing kernel. Assuming that all the
variables other than X are fixed, the price of the European call option with strike
price X expiring in  years under the historical measure p is given by

C.X/ D e�rt; 
Z 1

0

.ST �X/C q.ST /
p.ST /

p.ST /dST

D e�rt; 
Z 1

0

.ST �X/Cm.ST /p.ST /dST ; (11.3)

where p is the subjective density of the stock price at the expiration of the option,
at time T andm is the so called pricing kernel characterizing the change of measure
from q to p.

The rest of this chapter is organized as follows: Section 11.2 describes kernel
based regression methods for direct estimation of the RND from the call price
function, Sect. 3 introduces the pricing kernel concept and explains the indirect
method of estimating RND, Sect. 4 concludes. Throughout the chapter, empirical
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studies using EUREX DAX Index based European option data illustrate the methods
and compare their performance.

11.2 Estimation of RND Based on the Second Derivative

The standard approach for a nonparametric estimator of the risk neutral density is by
estimating the second derivative of the call price with respect to the strike X . Then
an estimate for q is obtained by discounting according to (11.2). Therefore in the
following we focus on estimation of the second derivative of a regression function.

Call the d -dimensional vector of covariates Z which comprises all estimation
relevant variables of .X; ; rt; ; ıt; ; St / from (11.1) and denote call prices as
response Y . From paired observations Yi and Zi D .Zik/

d
kD1, for i D 1; :::; n we

want to estimate the following general, possibly nonlinear relationship

Yi D C.Zi /C "i ; i D 1; :::; n; (11.4)

where C.�/ W Rd ! R is a smooth function in all d dimensions and " is i.i.d. with
EŒ"jZ	 D 0.

Kernel based methods are local techniques for estimating the function C at any
point z in its domain; they use a weighted average of the Yi ’s to yield fitted values
via

bC.z/ D
nX

iD1
wi .z/Yi ; (11.5)

where the weights wi .z/ assigned to each point of fit z decline with the distance
jZi�zj and satisfy 1

n

Pn
iD1 wi .z/ D 1. Kernel regression methods use kernel

functions to construct weights. A univariate kernel is a smooth, symmetric real-
valued squared integrable function K.u/ W R ! R which integrates to one. We can
think of a standard kernel function as a probability density with potentially compact
support. Examples of suchK are presented in Table 11.1, that is an updated version
of H’̈ardle (1990) Table 4.5.2.

Table 11.1 Kernel functions K.u/

Uniform
1

2
I.juj � 1/

Triangle .1� juj/ I.juj � 1/

Epanechnikov
3

4
.1� u2/ I.juj � 1/

Quartic (Biweight)
15

16
.1� u2/2 I.juj � 1/

Triweight
35

32
.1� u2/3 I.juj � 1/

Gaussian
1p
2


exp.� 1
2
u2/

Cosine



4
cos. 


2
u/ I.juj � 1/
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Furthermore, there exist more general types of kernel functions, so called higher
order kernels, which can be used for bias refinements in the estimation, see Sect. 2.1.
The order of a kernel ) > 0 is defined as the first nonzero moment of the kernel,
that is

Z
ulK.u/du D 0; l D 1; :::; ) � 1 (11.6)

Z
u)K.u/du D �) ¤ 0

and �) < 1. Solving the system of (11.6) for kernel functions integrating to unity
for a fixed ) , yields a ) th order kernel. The larger ) , however, the more “wiggly”
the resulting kernel becomes – covering more and more negative areas. Here we
mostly consider standard second order kernels, which are nonnegative functions.

Set Kh.u/ D 1
h
K
�

u
h

�
for all u 2 R where h is the bandwidth, the smoothing

parameter. In a d -dimensional space, for each pair z and Zi the multivariate kernel
function K.z � Zi / W Rd ! R must analogously fulfil

KH.z � Zi / D 1

jH jKfH�1.z � Zi /g;

where H D diag. Qh/ is the diagonal matrix of bandwidths Qh D Œh1; :::; hd 	. The
matrix H can in general also contain off-diagonal elements – but in practice such
generality is not needed. Define the multidimensional kernelKH.z�Zi / as a product
of univariate kernels

KH.z � Zi / D
dY

kD1
K



zk �Zik

hk

�
:

For expositional simplicity we let h1 D : : : D hd D h. Details on how to choose
the optimal bandwidths are addressed in the next section.

The simplest case of choosing wi in (11.5) is to use Nadaraya-Watson weights

wi .z/ D Kh.z � Zi /Pn
iD1Kh.z � Zi /

:

These are a special constant case of general local polynomial weights derived
below. Besides, other choices of weights such as in the k-nearest neighbour or the
Gasser-Müller estimator are possible.

Estimators of the second derivative of a function are constructed by twice
differentiating the estimator of the function. Such estimators, however, have inferior
statistical properties and are therefore not included here (see e.g. Härdle et al. 2004;
Fan and Gijbels 1996 (for details)). We focus on local polynomial estimation which
directly yields estimates of derivatives. The idea of local polynomial regression is
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based on Taylor expansion approximating an unknown function C at a point z. In
order to keep notation simple, we first illustrate the method for the univariate case.
The multivariate case is systematically the same and will be sketched afterwards.

Locally, any sufficiently smooth function C can be approximated by a polyno-
mial of degree p

C.Zi / D
pX

jD0

C .j /.z/

j Š
.Zi � z/j C Of.Zi � z/pC1g (11.7)

D
pX

jD0
ˇj .Zi � z/j C Of.Zi � z/pC1g

with i D 1; :::; n. Therefore by minimizing a locally weighted least squares
regression

min
ˇ

nX

iD1

8
<

:Yi �
pX

jD0
ˇj .z/.z �Zi/

j

9
=

;

2

Kh.z �Zi/ (11.8)

the solution Ǒ
0.z/ provides an estimator of C at point z, while j Š Ǒ

j .z/, with

j D 1; :::; p are the estimated derivatives at that point. Closed forms for Ǒ.z/ D
. Ǒ
0.z/; : : : ; Ǒ

p.z// can be obtained by solving (11.8) via equating the corresponding
system of first order conditions to zero. As we are interested in an estimator for
the second derivative of a function, we should choose p 	 2. As will be outlined
in the subsection below, for good statistical properties without requiring too much
smoothness p D 3 will be a suitable choice.

In d -dimensional case, expansion (11.7) will include mixed terms which must
be appropriately ordered. Then the interpretation of the coefficients is similar: b̌0.z/
is the estimator of C at point z, while j Šb̌j .z/ D j Š

�
ˇj1.z/; � � � ; ˇj�.z/

�
with

� D 1; :::; Nj is Nj -dimensional vector of j th order derivatives of C evaluated at
point z. It is obvious that N0 D 1 (ˇ0 is the local constant) and N1 D d (ˇ1 is
the vector of partial derivatives) but for j 	 2 the expansion contains cross order
derivatives and the general formula for Nj is

Nj D


d C j � 1
j � 1

�
D .d C j � 1/Š

d Š.j � 1/Š :

For example, when j D 2 we have N2 D d.d C 1/=2 distinct derivatives and,
r.2/ OC.z/ D 2 Ǒ

2.z/ is the estimate of

r.2/C.z/ D

0
BBBBB@

@2C.z/
@z21

@2C.z/
@z1@z2
:::

@2C.z/
@z2d

1
CCCCCA
:
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For the estimation of the RND we are interested in the second derivative of
the call price with respect to the strike price X . In our notation with Z D
.X; ; rt; ; ıt; ; St /, this is 2ˇ21. Thus

Oq.ST / D 2ert;  Ǒ
21.ST ; z�1/ D ert; 

(
b@2C .z/

@z21

)

XDST

with z�1 D .; rt; ; ıt; ; St /.

11.2.1 Statistical Properties

Assume for simplicity that C is univariate and has continuous derivatives of total
order .pC1/. The probability density function f ofZ is continuous, it is f 	 0, and
f is .p C 1/ times continuously differentiable. The kernel K is a bounded second
order kernel with compact support and the EŒ"2jZ D z	 exists and is continuous in
z. Let bC .j / denote the estimator of C .j / based on a pth order local polynomial fit
.j � p/. The results below are standard and can be found for instance in Li and
Racine (2007).

Theorem 1. When p � j is odd, the bias is

E
h
bC.j /.z/

i
� C .j /.z/ D hp�jC1c1;j;p

�
!.pC1/.z/
.p C 1/Š


C O.hp�jC1/: (11.9)

When p � j is even, the bias is

E
h
bC.j /.z/

i
� C .j /.z/ D hp�jC2c2;j;p

�
!.pC2/.z/
.p C 2/Š

 Z
upC2K.u/du(11.10)

Chp�jC2c3;j;p
�
!.pC1/.z/f .1/.z/

f .z/.p C 1/Š


;

where !.z/ D
n
bC.z/ � C.z/

o
f .z/. In either case

Var
�
bC .j /.z/

�
D
�
c4;j;p�

2.z/

nh2jC1


C O

˚
.nh2jC1/�1

�
; (11.11)

where �2.z/ D EŒ"2jZ D z	 is the residual variance. The exact form of the constants
ca;j;p for a D 1; 2; 3; 4 can be found in Ruppert and Wand (1994).

Theorem 1 provides asymptotic bias and variance expressions of local polyno-
mial estimators of degree p for a general j th derivative. For illustration consider the
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special case p D 0 and j D 0 – local constant estimation of a function. The bias is

h2

2

�
C .2/.z/C 2

C .1/.z/f .1/.z/

f .z/


�2.K/ ; (11.12)

with �2.K/ D R
u2K.u/ du: For p D 1 and j D 0 – local linear estimation of a

function – the bias becomes

h2

2

˚
C .2/.z/

�
�2.K/: (11.13)

Observe in general from (11.9) and (11.10) that the bias forp�j even contains an

additional design dependent term with factor f
.1/.z/
f .z/ as opposed to the odd case. Sign

and size of this quantity, however, depend on the shape of the underlying estimated
function and the shape of fZ . In particular at the boundary of the support of Z,
small values of f inflate the entire term. Therefore odd values of p�j are preferable
avoiding such boundary bias problems and pertaining the same variance. In our case,
we are interested in the second derivative. We therefore choose the polynomial order
p D 3 and not p D 2 according to Theorem 1.

With higher order kernels (11.6) of order ) and corresponding higher smoothness
assumptions the bias in Theorem 1 can be further reduced to be of order h) for fixed
p and j with ) > p � j C 2 without changing the rate in the variance. In practice
the order ) , however, cannot be chosen too large as with increasing ) the estimates
have robustness problems in finite samples due to negative weights associated with
the kernels (Müller 1988).

Observe from Theorem 1 that kernel estimation of a derivative is harder than
of the function itself. While the variance in the function estimation decreases with
O.1=.nh// the corresponding rate in the second derivative is only OP .1=.nh

5//

which is much slower. Therefore the finite sample performance of second derivatives
lacks the precision of the fit achieved for the function.

Rates of convergence can be judged according to the mean squared error (MSE).
Assuming that p � j is odd, it is

MSE.z; h; j / D E
h OC .j /.z/ � C .j /.z/

i2
(11.14)

D Ofh2.p�jC1/
„ ƒ‚ …

bias2

C .nh2jC1/�1„ ƒ‚ …
var

g:

For constructing confidence intervals of the nonparametric estimates use the
following normality result

Theorem 2. Under some additional moment assumptions it is for p � j odd

p
nh2jC1f OC .j /.z/ � C .j /.z/g ! N.0; Vj / (11.15)

with Vj as in Theorem 1.
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For a precise statement of the standard moment conditions see Li and Racine (2007).
Analogous results to Theorem 1 and 2 hold for d -dimensional functions. The only
remarkable systematic difference is that the dimension of the regressors enters in
the rate of the variance which is then OP f.nh2jCd /�1g. Likewise the rate of con-
vergence to the asymptotic distribution also deteriorates with d and is nh2jCd . This
phenomenon is known in the literature as the curse of dimensionality capturing the
fact that finite sample performance of nonparametric estimators decreases with an
increasing number of regressors. Therefore in practice, appropriate semiparametric
dimension reduction techniques are used. They keep high modeling flexibility but
yield better finite sample properties in regression settings with more than three
regressors. See Sect. 11.2.3 for details.

11.2.2 Selection of the Smoothing Parameter

In practice, most important for good nonparametric estimation results is an appro-
priate choice of bandwidth. Other parameters like the selection of a suitable kernel
K only have little influence on the final result in practice. Asymptotically the choice
of K has no effect, and in finite samples its impact is negligible (see Marron and
Nolan 1988). For the choice of order p of the employed local polynomial estimator
it is sufficient to follow the logic outlined above.

An optimal bandwidth should minimize both bias and variance of the estimator.
Though according to Theorem 1 there is a tradeoff between these quantities as
smaller bandwidths would reduce the bias but inflate the variance. Therefore
selecting h by minimizing MSE.z; h; j / (multivariate analogue to (11.14)) balances
bias and variance (see Fig. 11.1 for an illustration in averages). However, such a
choice depends on the location z. For a global choice, use an integrated criterion
like the weighted integrated mean square error (WIMSE)

WIMSE.h; j / D
Z

MSE.z; h; j / .z/dz D
Z

EŒ OC .j /.z/ � C .j /.z/	2 .z/dz;

(11.16)
where  .z/ is a nonnegative weight function which ensures that WIMSE is
well defined. Instead of an integrated criterion also an averaged criterion like
the mean average squared error (MASE) can be used which replaces integration
with summation in (11.16). When using a second order kernel straightforward
calculations yield

h? D
�
cn�1=.2pCdC2/ for p � j odd
c0n�1=.2pCdC4/ for p � j even

(11.17)

for the optimal bandwidth h? in a multivariate setting with constants c; c0 > 0

depending on kernel constants and higher derivatives of C and the density f

of regressors at z as we can see from (11.9)–(11.11). In our case of interest for
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Fig. 11.1 MASE (solid line), squared bias (dashed line) and variance part (dotted line) for
simulated data, weights w.x/ D I.x 2 Œ0:05; 0:95	/

p D 3; j D 2 and d D 1, it is h? D n�1=9. As for larger j also p must
be enlarged, the optimal bandwidth for estimating the j th derivative decreases in
j . Note, however, that h? is not feasible in practice because the constants c; c0
in (11.17) contain unknown quantities such as higher derivatives of C and the
density f of regressors.

A way to operationalize these are plug-in methods. They replace unknown
quantities by pilot estimates and then calculate h? via (11.17). The rule-of-thumb
additionally uses normality assumptions in the distribution of the regressors and for
the kernel to calculate exact constants. For p D j D 0 it is hk � skn

�1=.4Cd/
for h D .h1; : : : ; hd / with sk the standard deviation of observations of covariate
Zk . It is an easy and fast way to obtain a rough estimate and can be used for pilot
estimates in plug-in procedures. Nevertheless, a bandwidth choice based on these
procedures yields only an asymptotically optimal selection as the employed criteria
are asymptotic ones.

In small samples, however, there are better choices which can be made by
data driven cross-validation (CV) methods. In general, these procedures yield valid
finite sample bandwidth choices, but do not have closed form solutions. Therefore
computation intensive numerical methods must be used in order to obtain such an
automatic bandwidth hCV . This can amount to a feasibility issue in particular for
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time series. We present a least squares cross-validation for local cubic estimation
as our interest is in estimating the second derivative of C . Here, we select hCV
as minimizer of the sum of squared errors between obtained local cubic fit and
observed response used as cross-validation criterion.

CV. Qh/ D
nX

iD1

nX

j¤i

(
Yi � bC Qh;�i .Zi /� bC.1/

Qh;�i .Zi /.Zj � Zi / (11.18)

� 1

2
bC .2/

Qh;�i .Zi /.Zj � Zi /2
) 2
M.Zi /;

where 0 � M.Zi / � 1 is a weight function that ensures existence of the limit
for n large. and .bC Qh;�i ;bC

.1/

Qh;�i ;
bC.2/

Qh;�i / denote the local cubic regression estimate

obtained without using the i th observation .Zi ; Ci /. This way we ensure that the
observations used for calculating bC Qh;�i .�/ are independent of Zi . It can be shown
that asymptotically hCV converges to the corresponding theoretical bandwidth
obtained from (11.17). This design driven choice of bandwidth is completely free of
functional form assumptions and therefore most appealing in finite samples at the
expense of potentially long computation time.

11.2.3 Dimension Reduction Techniques

While flexible, high-dimensional kernel regression requires large data samples for
precise results in terms of tight pointwise confidence intervals. Aı̈t-Sahalia and Lo
(1998), for example, use 1 year option data to empirically derive the call function
based on five-dimensional kernel regression. Asymptotically, rates of convergence
of nonparametric estimators decrease the more regressors are included in the model.
This is referred to as the “curse of dimensionality” (see Sect. 2.1. for theoretical
details). Hence, there is a need to keep the dimension or equivalently the number of
regressors low.

There exists a vast literature on methods which reduce the complexity of high
dimensional regression problems resulting in better feasibility. In particular, the
reduction of dimensionality is achieved by putting some structure on the model
by e.g. imposing a parametric model or an additive or partially linear structure.
The resulting models are so-called semiparametric models, among which the
additive models are the most flexible kind requiring the least structural assumptions.
In additive models, the regression function additively separates the influence of
each univariate regressor. Thus estimation is restricted to a surface of the full-
dimensional space of regressors Z, which allows to construct estimators with
univariate nonparametric rates of convergence and thus substantially improved finite
sample properties. We refer to Mammen et al. (1999) and Linton and Nielsen
(1995) for detailed methods in this case. Here, however, we will focus on suitable
parametric assumptions tailored to financial modeling.
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One way is to use no-arbitrage arguments and collapse St , rt; and ıt; into the
forward price Ft D Ste

.rt;�ıt; / in order to express the call pricing function as

C.St ; X; ; rt; ; ıt; / D C.Ft; ; X; ; rt; /

Alternatively use the non-arbitrage relation to estimate dividends and express the
function in terms of the discounted stock price, that is either by S0t D Ste

�ıt; D
St � Dt; where Dt; is the present value of the dividends to be paid before the
expiration. Thus it is

C.St ; X; ; rt; ; ıt; / D C.S0t ; X; ; rt; / :

A further reduction of the number of regressors is achieved by assuming that the
call option function is homogeneous of degree one in St and X so that

C.St ; X; ; rt; ; ıt; / D XC.St=X; ; rt; ; ıt; /:

Combining the assumptions of the last two equations, the call price function can

be further reduced to a function of three variables: moneynessMt D S0t
K

, maturity 
and risk free interest rate rt; . Notice that by smoothing with respect to moneyness,
rather than with respect to the dividend adjusted index level we implicitly assume
the theoretical option function is homogeneous of degree one with respect to the
index and strike price. The basic Black and Scholes (1973) formula is an example of
such a function, and as shown by Merton (1973) and discussed in Ingersoll (1987),
a call price is homogeneous of degree one in the asset price and strike price if the
asset’s return distribution is independent of the level of the underlying index. We use
these dimension reduction techniques in the empirical study in both settings, direct
estimation of the RND from the call prices and but also in indirect estimation via
implied volatility.

11.2.4 Application

We use tick data on the DAX index based European options prices maturing in
1 month (21 trading days), provided by EUREX for 20040121. The transformed
data according to a methodology by Fengler (2005) contain date stamp, implied
volatility, type of the option, maturity, strike price, option price, interest rate,
intraday future price, average dividend rate.

The index stock price varies within 1 day and one needs to identify the price at
which a certain transaction has taken place. Intraday DAX index prices are available
on EUREX. Several authors report that the change of the index price is stale and for
every pair option/strike we use instead the prices of futures contracts closest to the
time of the registered trade, see e.g. Jackwerth (2000).
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Original strike prices are given on an equidistant grid and in order to account for
movements in the intraday price we use the following transformation Xi

Fi
Ste

rt;�ıt; ,
where Xi and Fi are paired observations and St is the median intraday stock price,
rt; is the 1 month interest rate (linearly interpolated EURIBOR rates, for the desired
maturity) and ıt; the average dividend (see Fengler 2005). Conditional on these
values we estimate q and interpret it as an average curve for the estimation date.

We use only at-the-money and out-of-the-money call options and in-the-money
puts translated in call prices by using the put call parity

Ct � Pt D Ste
�ıt;  � Xe�rt; 

This guarantees that unreliable observations (high volatility) will be removed
from our estimation samples. Since, as mentioned before, the intraday stock price
varies, we use its median to compute the risk neutral density. For this price, we
verify if our observations satisfy the arbitrage condition and delete for our sample
those who do not satisfy it

St 	 Ci 	 max.St � Xie
�rt;  ; 0/:

Finally, if we have different call price observations for the same strike price we
take their median at that point. In this way we ensure that we have a one to one
relationship between every call and strike price.

11.2.4.1 Smoothing in Call Option Space

As described in Sect. 2.1 local polynomial estimation allows to compute the second
derivative of the call price directly, in a single step. We use local polynomial
smoothing of degree three and a quartic kernel to reduce finite sample bias. In
the first step, we rescale the call price by dividing it by St and we smooth in
this direction. We use cross-validation to choose the optimal bandwidth; however,
this bandwidth appears to undersmooth in extreme areas around the mode and in
the tails yielding a wiggly estimator in these regions (see in Fig. 11.2). Therefore
we decide to gradually increase the bandwidth to “stabilize” the estimate in the
extremes. However, Fig. 11.2 also illustrates that this should be done with care, as
too much of oversmoothing can easily cause a huge bias at the mode.

11.2.4.2 Smoothing in Implied Volatility Space

In practice, the smoothing is mainly done in the implied volatility span because call
prices respond asymmetrically to changes in the strike prices. In the present context,
implied volatility is the volatility that yields a theoretical value for the option equal
to the observed market price of that option, when using the Black-Scholes pricing
model. We then estimate a smooth function O� and recover the call price by a bijective
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Fig. 11.2 Oq.ST / by local polynomial smoother for the optimally chosen bandwidth h D 114:34

by cross-validation (solid line) and oversmoothing bandwidths h D 227:59 (dashed line) and
h D 434:49 (dotted line)

function evaluated at some fixed values of the regressors and variable �

OC.St ; X; ; rt; ; ıt; / D CBS.� I O�.St ; X; ; rt; ; ıt; //
D e�ıt;  St˚.y C �

p
/� e�rt; X˚.y/;

where ˚ is the distribution function of the standard normal distribution and

y D log. St
K
/C .rt; � 1

2
�2/

�
p


:

In this chapter we use a method based on Rookley (1997) who shows how to
improve the efficiency of the estimator by estimating � and its first two derivatives
by local polynomial regression and plugging them into a modified version of the
Black–Scholes formula. Below we describe the method for fixed maturity of 1
month.

For each pair fCi ;Xi gniD1 we define the rescaled call option ci D Ci=St in terms
of moneynessMi D St=Xi so that starting from the Black–Scholes formula for the
call price we can write

Ci D C fMi I �.Mi/g D ˚.d1/ � e�r˚.d2/
Mi
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d1 D log.Mi /C ˚
rt; C 1

2
�.Mi/

2
�


�.Mi/
p


d2 D d1 � �.Mi/
p
 :

For simplification we drop the indices. The risk neutral density can be expressed
in terms of rescaled call price

q.�/ D er
@2C

@X2
D erS

@2c

@X2

with
@2C

@X2
D d2c

dM2



M

X

�2
C 2

dc

dM

M

X2

and

d2C

dM2
D '.d1/

(
d2d1
dM2

� d1



dd1
dM

�2)

� e�r '.d2/
M

(
d2d2
dM2

� 2

M

dd2
dM

� d2



dd2
dM

�2)

� 2e�r˚.d2/
M3

;

where ' is the probability density function of the standard normal distribution. The
results depend further on the following quantities, where �.M/, � 0.M/, � 00.M/ are
smooth functions in moneyness direction

d2d1
dM2

D � 1

M�.M/
p


�
1

M
C � 0.M/

�.M/



C � 00.M/

�p


2
� log.M/C r

�.M/2
p




C � 0.M/

�
2� 0.M/

log.M/C r

�.M/3
p


� 1

M�.M/2
p




d2d2
dM2

D � 1

M�.M/
p


�
1

M
C � 0.M/

�.M/



� � 00.M/

�p


2
C log.M/C r

�.M/2
p




C � 0.M/

�
2� 0.M/

log.M/C r

�.M/3
p


� 1

M�.M/2
p



:
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Fig. 11.3 Oq.ST / by Rookley method with oversmoothing bandwidth h D 372:42

In order to estimate �.M/ and its associated first and second derivatives with
respect to moneyness we use univariate local polynomial kernel regression of degree
three and a quartic kernel. The optimal bandwidth has been computed using cross-
validation criteria (11.18) for the implied volatility. Oversmoothing bandwidths, see
Fig. 11.3, improve the fit in the tails because they allow for more observations to be
included in the estimators while having little effects on the values of Oq situated in
the middle of the distribution, where the estimates by different bandwidths overlap
almost perfectly. It follows that smoothing in implied volatility yields a more stable
estimator in terms of shape in finite sample, for varying bandwidths. This can be
well seen in Figs. 11.2 and 11.3. It is because the implied volatility responds with
a fairly constant magnitude to the changes in the strike price over the estimation
domain.

11.2.4.3 Problems and Refinements

In applications the support of strike prices is mostly compact and thus bounded.
As shown in Sect. 2.1. the quality of estimates in regions close to the boundary
might be low due to small values of the regressors’ density when using even order
polynomials. By using a polynomial of order three, estimation is design adaptive for
the second derivative avoiding this problem.
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Furthermore, associated with the boundary, option data is characterized by
scarce observations close to the bounds. In general, nonparametric techniques do
not perform well in regions with sparse data and other methods are required.
Parametrization of the tails using Pareto type distributions might be advantageous
leaving however the question of how to join the two regions in order to assure that
the resulting distribution integrates to one. Alternatively, Rookley (1997) proposes
to further parametrize these distributions by matching them with an Edgeworth
expansion type density

q.ST / D 1

ST �
˚.Z/f1C ˇ.Z3 � 3Z/C �.Z4 � 6Z2 C 3/g

for Z D log.ST /� Q�
Q� , where Q� and Q� are the conditional mean and standard deviation

of log.ST / implied by the risk neutral measure, and ˇ and � are coefficients related
to the higher moments of log.ST /.

In order for the risk neutral density to be well defined, an estimate of the call
price function C must satisfy certain high-level conditions (see e.g. Aı̈t-Sahalia and
Duarte 2003): It should be (1) positive, (2) decreasing in X , (3) convex, and (4) its
second derivative should exist, be nonnegative and integrable. Given that the first
derivative of C with respect to X is the (negative) discounted cumulative density
function of q conditions .2/ and condition .3/ can be summarized by the following
inequality

�ert; � @C.St ; X; ; rt; ; ıt; /

@X
� 0:

Convexity requires

@2C.St ; X; ; rt; ; ıt; /

@2X
	 0:

Nonparametric kernel estimates may violate these constraints, unless we deal
with large samples of observations. Imposing constraints like monotonicity or
convexity directly in the estimation leads to nontrivial optimization problems in
topological cones. If it is crucial for the outcome to fulfill the shape restrictions in
small samples, it is recommended to use series type estimation methods which easily
allow to incorporate them directly in the estimation. In general, these constrains
must be applied directly to the call price, because theoretical properties of the
implied volatility are not well known. For further references see Ait-Sahalia (2003).
This will be illustrated in the next section.

11.3 Estimation of the RND via Empirical Pricing Kernel

In the previous section, we studied nonparametric kernel methods for estimating
q as the discounted second derivative of the call price function and discussed the
problems associated with kernel type estimators in this setting. Now, we propose a
new approach, based on series expansion of the pricing kernel.



294 W.K. Härdle et al.

In financial mathematics the relationship between the physical measure p and
RND q of a financial asset can be represented via the pricing kernel m. Also called
stochastic discount factor, the pricing kernel is the quotient of the Arrow security
prices and the objective probability measure and summarizes information related to
asset pricing. Thus it is

q.ST / D m.ST /p.ST /: (11.19)

From a behavioral economics perspective m describes risk preferences of a rep-
resentative agent in an exchange economy. In many applications, the empirical
pricing kernel is the object of interest. In most of the studies Aı̈t-Sahalia and Lo
(2000), Brown and Jackwerth (2004), Grith et al. (2010) it has been estimated
as a ratio of two estimated densities: Oq computed as the second derivative of a
smooth call function (as described in Sect. 2) and Op based on historical returns. This
approach leads to difficulties in deriving the statistical properties of the estimator. In
particular, the sample sizes for estimating p and q may differ substantially: p uses
daily observations, whereas q is based on intraday high-frequency observations. On
the other hand, methods for estimating p are in general much simpler and more
stable compared to those for q for which typically nonparametric kernel estimation
of a second derivative is required. Direct estimation of the pricing kernel can be seen
as an improvement in this sense. Engle and Rosenberg (2002), for instance, specify
the pricing kernel using a polynomial expansion.

For estimating q, however, a series approach is additionally appealing, as high-
level shape constraints are straightforward to incorporate in finite samples. Recall
that for kernel type estimators this is not the case, see the end of Sect. 2.4.

We introduce the series expansion for the pricing kernel in (11.3). With an
estimate of the physical measure from historical data and the pricing kernel m
from option prices, these indirectly imply an estimate of q via (11.19). In statistical
theory and also in practice, this indirect way of estimating q has a faster rate
of convergence than using series methods directly for q in (11.1) which require
the choice of an additional regularization parameter to guarantee invertibility of
an ill-posed statistical problem. In particular, in (11.19) large values of ST are
downweighted by integrating over the physical measure, while they enter undamped
in (11.1) leading to unreliable results.

11.3.1 Direct Estimation of Empirical Pricing Kernel via Series
Methods

As for q, there are several factors which drive the form of the pricing kernel. Here,
however, we focus on the projection of the pricing kernel on the set of available
payoff functionsm�, which allows us to representm in terms of ST only. In practice
this is a reasonable assumption. Thus we require that m and m� are close in the
following sense
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jjm �m�jj2 D
Z

jm.x/ �m�.x/j2dx < � (11.20)

with � small. Further we assume that m� has a Fourier series expansion

m�.ST / D
1X

lD1
˛lgl .ST /; (11.21)

where f˛lg1
lD1 are Fourier coefficients and fglg1

lD1 is a fixed collection of basis
functions. The functions gl are chosen as orthonormal with respect to a particular
norm. Such a representation is possible if the function is absolutely integrable.

Based on (11.21), we can construct an estimator for m� and thus m. If a finite
number L of basis functions is sufficient for a good approximation of m then

bm.ST / D
LX

lD1
Ǫ l gl .ST /: (11.22)

Estimates Ǫ l for the coefficients ˛l could be obtained by least squares for fixed basis
functions gl if a direct response was observable. Clearly the choice ofL controls the
quality of the estimate. The larger L, the better the fit but the higher the computing
cost and less robust the result. See Sect. 3.3 for a sophisticated way of selecting the
smoothing parameter.

In financial applications the following polynomial basis functions are frequently
used: e.g. Laguerre, Legendre, Chebyshev polynomials, see Fig. 11.4 and Sect. 3.5.
While asymptotically equivalent, in finite samples their form will influence the size
of L. In general, one would prefer to have gl such that L small is sufficient. For a
formal criterion on how to select between different basis options see Li and Racine
(2007). They assess different candidate basis functions by comparing a CV -type
criterion for fixed L.

Though the form of m is only indirectly determined by relating observable call
prices Yi to strike pricesXi for given T;  via (11.3). A response to observed payoffs
via the pricing kernel is not directly observable. In sample an estimate of m should
fulfill

Yi D e�rt; 
Z 1

0

.ST �Xi/C
LX

lD1
Ǫ l gl .ST /pt .ST /dST C "i (11.23)

D
LX

lD1
Ǫ l
�
e�rt; 

Z 1

0

.ST � Xi/
Cgl .ST /pt.ST /dST


C "i

with error " such that EŒ"jX	 D 0. Set
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Fig. 11.4 First five terms of the Legendre polynomials

 il D  l.Xi/ D e�rt; 
Z 1

0

.ST �Xi/Cgl .ST /pt .ST /dST : (11.24)

Then for known p and fixed basis functions and fixed L, the vector Ǫ D
. Ǫ1; :::; ǪL/> is obtained as

arg min
˛

nX

iD1

(
Yi �

LX

lD1
˛l l .Xi /

) 2
(11.25)

In practice, however, p is not known and can only be estimated. Therefore instead
of  l in (11.24) we have only estimates O l of the basis functions. We consider two
possible ways for constructing them. First, regard as an expectation which can be
estimated by sample averaging over J different payoffs at time T for fixed  and
given X

O il D e�rt; J�1
JX

sD1
.SkT �Xi/Cgl .SkT / with (11.26)

How .SkT /
J
kD1 are obtained is explained in detail in the following section. Alterna-

tively, replace p by an estimator, e.g. a kernel density estimator. Then it is

O il D e�rt; 
Z 1

0

.ST �Xi/Cgl.ST / Op.ST /dST : (11.27)
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Fig. 11.5 Oq.ST / in Legendre basis with L D 5 based on approximation (11.26) (simple line) and
(11.27) of � (dashed line)

Here some care is needed in numerical integration to keep discretization errors neg-
ligible. Furthermore, for an appropriate choice of bandwidth in Op, both approaches
are asymptotically equivalent. In finite samples, however, estimates for q might
differ (see Fig. 11.5, for J D 4;500, and SkT simulated based on historical log-
returns).

In total we obtain a feasible estimator of ˛ based on a feasible version of (11.25)
as

L̨ D . O�> O�/� O�>Y: (11.28)

The elements of O�.n�L/ are given either by (11.26) or (11.27) and Y D
.Y1; � � � ; Yn/>.

Then an estimate of the pricing kernel at observation s of ST is given by

Om.s/ D gL.s/> L̨ ; (11.29)

where gL.s/ D .g1.s/; : : : ; gL.s//
>. We see in Fig. 11.6 that the estimator of m is

less stable for different approximations of  il . Finally, the risk neutral density is
estimated as

Oq.s/ D Om.s/ Op.s/: (11.30)



298 W.K. Härdle et al.

3500 4000 4500

1

2

ST

E
P

K

Fig. 11.6 Om�.ST / by Legendre basis expansion with L D 5 based on approximation (11.26)
(solid line) and (11.27) of � (dashed line)

11.3.2 Estimation of the PDF of ST

In the empirical study we use two different ways of obtaining Op from the DAX Index
prices at time T . And we look at the sensitivity of Oq w.r.t. Op. First, we extrapolate
possible realizations of ST in the future from historical log-returns. Based on a
window of historical DAX Index values of length J we get

SkT D Ste
rkT ; for rkT D log.St�k=St�.kC1//: (11.31)

Alternatively, we use a GARCH(1,1) specification for the log-returns to account
for slowly decaying autocorrelation in the data. The model is specified as follows

log.St=St�1/ D �C ut ; ut � f .0; �rt /: (11.32)

In (11.32), the returns consist of a simple constant, plus an uncorrelated, non-
Gaussian disturbance. The conditional variance .�rt /

2 follows an ARMA(1,1) type
specification
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.�rt /
2 D a1 C a2r

2
t�1 C a3.�

r
t�1/2 : (11.33)

We can estimate the parameters of the model .�; a1; a2; a3/ and retrieve a time
series of stochastic volatilities f�rt�kgJkD1. The simulated index prices at time T are
obtained as in (11.31) above for

rkT D rt�k
�rT
�rt�k

;

where we use for the forecasted volatility �rT today’s volatility �t based on GARCH.
Then the probability density p of ST is estimated at each point ST using a kernel

density estimator

bph.ST / D 1

Jh

JX

kD1
K



SkT � ST

h

�
; (11.34)

where K is a kernel function and the bandwidth is selected similarly to the criteria
introduced in Sect. 11.2.2. Resulting estimates of the two approaches are illustrated
in Fig. 11.7 for J D 5;000. We observe that they differ significantly in spread and
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Fig. 11.7 Oq in Legendre basis with L D 5 and Op based on log-returns (blue) and weighted log-
returns (red). Solid and dashed lines correspond to the specifications in the Fig. 11.5
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the mode. However, the differences depend on the window length J of returns
used to estimate the parameters of the GARCH model, as well as on the choice
of the bandwidth used to estimate p, which carries over to q via (11.30) directly or
indirectly.

11.3.3 Choice of the Tuning Parameters

The quality of the obtained series estimators (11.29) and (11.30) depends on a
suitable choice of the number L.n/ ! 1 for n ! 1 for given basis functions.
Note that the role ofL (orL=n) is similar to that played by the smoothing parameter
h for the kernel methods. There are three well-known procedures for a data-driven
optimal selection ofL, see Wahba (1985). The first one is Mallows’sCL as proposed
in Mallows (1973): Select LM such that it minimizes

CL D n�1
nX

iD1

(
Yi �

LX

lD1
L̨ l O l.Xi/

) 2
C 2�2.L=n/;

where �2 is the variance of ". One can estimate �2 by

O�2 D n�1
nX

iD1
O"2i

with O"i D Yi �P
l L̨ l O l.Xi /.

A second way for selecting L is according to generalized cross-validation
suggested by Craven and Wahba (1979). Choose LGCV minimizing

CV G
L D

n�1Pn
iD1

n
Yi �PL

lD1 L̨ l O l.Xi/
o2

f1 � .L=n/g2 :

The last criterion is leave-one-out cross-validation according to Stone (1974):
Select LCV minimizing

CVL D
nX

iD1

(
Yi �

LX

lD1
L̨�i
l

O l.Xi/
) 2
;

where L̨�i
l is the leave one estimate of ˛l obtained by removing .Xi ; Yi / from the

sample.
Li (1987) showed that each of the above three criteria leads to an optimally

selected L in the sense that they all minimize the asymptotic weighted integrated
squared error (see (11.16)). In this sense the obtained L are asymptotically
equivalent.
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11.3.4 Statistical Properties

Series type estimators are designed to provide good approximations in an L2
sense, see (11.20). Therefore asymptotic properties as consistency and rates of
convergence should be derived from the asymptotic mean squared error. The rate
of convergence for the indirect estimator of q via the pricing kernel depends on the
two smoothing parameters h and L.

Z 1

0

f Oq.ST /� q.ST /g2dST D
Z 1

0

f Om.ST / Op.ST /�m.ST /p.ST /g2dST

D
Z 1

0

Œ Om.ST /f Op.ST / � p.ST /g	2dST C
Z 1

0

Œp.ST /f Om.ST / �m.ST /g	2dST

C
Z 1

0

2 Om.ST /f Op.ST /� p.ST /gp.ST /f Om.ST / �m.ST /gdST

It easily follows from the law of iterated expectations that the third term equals zero.
Consequently, the convergence of Oq.ST / depends only on the first two terms. Since
sup Om.s/ D OP .1/ under Assumption 1 given below, the order of convergence for
the first term is dominated by f Op.ST /� p.ST /g2.

Assumption 1. Suppose that p is twice continuously differentiable, K is a second
order kernel and the bandwidth is chosen optimally as h D cn�1=5, for a known
constant c.

Then the asymptotic mean squared error for the kernel density estimator is

jjbph.x/ � p.x/jj22 D OP .n
�4=5/ (11.35)

This follows along the same logic as the results for local polynomials in Sect. 2.1.
For further details see e.g. Härdle et al. (2004).

The order of convergence for the second term only depends on f Om.ST /�m.ST /g2
since supp.s/ � 1. The next assumption establishes consistency of Om.ST /.

Assumption 2. fXi; Yig are i.i.d. observations of .X; Y /, Var.Y jX/ is bounded on
S , the compact connected interval of support of X . Furthermore p is bounded away
from zero and m is �-times continuously differentiable on S . Choose L such that
L3=n ! 0 as n ! 1.

Under Assumption 2 it is

Z 1

0

f Om.ST /�m.ST /g2dST D Op.L=nCL�2�/: (11.36)
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This result is from Newey (1997) for fixed basis functions  l . With estimated
basis O l the result still goes through as the convergence of O l to the true  l is
at parametric rate. The i.i.d. assumption is for simplicity of the exposition only. It
can be easily relaxed to mixing type of observations.

The theorem below puts (11.35) and (11.36) together for an asymptotic result for
q.

Theorem 3. Assume that Assumptions 1 and 2 hold. Then the integrated square
error (ISE) converges as

Z 1

0

f Oq.ST /� q.ST /g2dST D Op.n
�4=5 CL=nC L�2�/ : (11.37)

11.3.5 Implementation

We illustrate the method using the data described in Sect. 11.2.4. We consider the
univariate regression of C on the strike price X for fixed maturity and fixed interest
rate. We estimate q using three different systems of orthogonal basis: Laguerre,
Legendre and Chebyshev. We found that the fit of the call price is almost identical
for fixed L, while Ǫ varies obviously with the series. There is little sensitivity with
respect to the choice of the basis functions that holds also for the empirical pricing
kernel and the implied risk neutral density. Based on the selection criteria for L
from Sect. 3.3, we have chosen L D 5. We exemplify the method with Legendre
polynomials. Estimation results are displayed in Figs. 11.5–11.8.

11.4 Conclusions

We have studied three nonparametric approaches for estimating the risk neutral
density. They are based on fundamentally different techniques: two of them use local
features and the third one is based on global curve fitting. For these approaches we
have described the estimation methodology and their performance in finite sample,
in terms of robustness and stability. Statistical properties of all procedures have been
derived and illustrated focusing on practically most relevant aspects.

Figure 11.8 shows estimates of q using the three methods we discussed in this
article for suitable choices of tuning parameters. While for the given sample size, all
three nonparametric methods yield similar results, there still are some peculiarities.
Our empirical results suggest that kernel methods for the estimation of q in implied
volatility space work much better than those which smooth in the call price space
in our sample. Local polynomial methods applied to call prices yield estimates
which are highly sensitive to the choice of the bandwidth: A globally optimal
bandwidth might in fact severely undersmooth around the mode or in the tails,
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Fig. 11.8 Oq.ST / by local polynomial regression with h D 227:59 in call space (black), by
Rookley method h D 372:42 in IV space (green), indirect estimation of the pricing kernel as
Legendre basis expansion with L D 5 (green)

resulting in wiggly estimates in this areas. In comparison to this, when we smooth in
the implied volatility space, the Rookley method yields a much smoother estimate
directly without additional oversmoothing and performs better in regions of sparse
data, see Figs. 11.2 and 11.3. Estimation of the risk neutral density based on the
pricing kernel is not affected by the choice of the basis functions in small samples –
differences occur only in the tails due to scarcity of observations at the boundaries in
our empirical findings. Generally, series type methods allow for direct incorporation
of shape constraints. Thus resulting estimates are consistent with economic theory
even in finite samples.
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Chapter 12
Value at Risk Estimation

Ying Chen and Jun Lu

Abstract This chapter reviews the recent developments of Value at Risk (VaR)
estimation. In this survey, the most available univariate and multivariate methods are
presented. The robustness and accuracy of these estimation methods are investigated
based on the simulated and real data. In the backtesting procedure, the conditional
coverage test (Christoffersen, Int. Econ. Rev. 39:841–862, 1998), the dynamic
quantile test (Engle and Manganelli, J. Bus. Econ. Stat. 22(4):367–381, 2004) and
Ljung-Box test (Berkowitz and O’Brien, J. Finance 57(3):1093–1111, 2002) are
used to justify the performance of the methods.

12.1 Introduction

Value-at-Risk (VaR) is a standard risk measure, which indicates the possible loss
of a financial portfolio at a certain risk level over a certain time horizon. The
introduction of VaR dated back to the late 1980s, when stock market crashed and
immediately measuring market risk became overwhelmingly necessary. In 1994
Morgan launched RiskMetrics with a free access to VaR estimation, making the
analysis of VaR simple and standard. The Basel Accord in 1996 allowed financial
institutions to use internal models to calculate VaR, which further prompted the
development of VaR estimation. After that, many VaR estimation methods have been
proposed and widely used in risk management. Hence, it was believed that VaR
estimation has been well developed and can provide reliable risk measure. Early
studies even show that many large financial institutions adopt conservative internal
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VaR models and report over-estimated risks in the US and Canada (see Berkowitz
et al. 2006; Pérignon et al. 2008).

The 2007–2009 financial crisis however called the entire risk management
system into question, when so many large and reputable financial firms either
bankrupted or faced survival problem, e.g. Lehman fell, Merrill Lynch was sold,
AIG was saved by the US government. The VaR, as an industrial standard risk
measure, and its estimation have again attracted global attention. It is necessary to
at least investigate the robustness and accuracy of the most available VaR estimation
methods under different market conditions, e.g. with and without financial crisis.

From the statistical point of view, VaR is in fact a certain quantile of a portfolio’s
returns. Given a probability level ˛ 2 .0; 1/, VaR for period t C h is defined
as a threshold value such that the probability that the mark-to-market loss on the
portfolio over the given time horizon exceeds this value is ˛:

VaR˛tCh D � inffc 2 IR W P.rtCh � cjFt / 	 ˛g; (12.1)

where Ft represents the past information at time t . Even before the subprime
mortgage crisis, VaR has been criticized over its mathematical properties and over
its potential destabilizing impact on financial activities by e.g. Artzner et al. (1999)
and Bibby and Sørensen (2001). It has been well-known that VaR is not a coherent
risk measure, i.e. it is not necessarily subadditive. For example, the VaR value for a
portfolio may exceed the summation of the individual VaR values of its component
assets, which contradicts the principle of diversification. Moreover, VaR provides
less information about the potential size of the loss that exceeds it. Despite these
criticisms, VaR remains the industrial benchmark for measuring market risk. In
addition, the coherent risk measures such as conditional VaR, also depends on
VaR. Therefore, it is still meaningful to discuss VaR and its estimation in risk
management.

To date, there are many methods used for VaR estimation, see Jorion (2001) and
the references therein. In addition, Kuester et al. (2006) gives an extensive review
on the VaR estimation methods with a focus on the univariate financial time series.
In accordance with the definition (12.1), the initial focus of VaR estimation is to
estimate the distributional quantile of the portfolio’s returns. The simplest way is the
historical simulation (HS) method, where the sample quantile of returns conditional
on past information is used as VaR. Another widely-used method is based on the
extreme value theory (EVT). With a focus on the distributional behavior in tails,
EVT is expected to provide accurate VaR estimates (see e.g. Embrechts et al. 1999b;
McNeil 2000). Alternatively, the quantile regression and its implementation in VaR
estimation is also used. For example, the class of conditional autoregressive value
at risk (CAViaR) models estimates VaR using the quantile regression minimization
(Engle and Manganelli 2004).

These methods are based on the assumption that the returns are independently
and identically distributed (IID). Financial returns are unfortunately not IID. As
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Fig. 12.1 The EVT shape parameter fluctuation for the returns (left) and the standardized returns
(right). EVT is presented in Sect. 12.2

noted by Mandelbrot, the variance of financial returns changes and clusters over
time. This heteroscedasticity (non IID) of financial returns can be illustrated in
Fig. 12.1. Based on three real financial data, the Dow Jones Industry Average 30,
the German DAX index and the Singapore Straight Time Index from 18/08/2003 to
31/07/2009, the distributional parameters of the returns (left panel) are re-estimated
using a 500-day rolling window for each time point. If the returns are IID, the
parameters should be constant over time and straight lines are expected. However,
the fitted parameters for the return series fluctuates, especially around January 2008
(financial crisis). On the other hand, the fitted parameters against the standardized
returns (returns are filtered by volatility estimates) on the right panel display relative
stable (IID) pattern. To account for this heteroscedasticity, financial returns are
modeled without loss of generality as:

rt D �t "t ; (12.2)

where �t denotes the conditional variance of returns rt . The standardized returns,
i.e. the residuals "t , are assumed to be IID with E."t / D 0 and E."2t / D 1. In other
words, the probability distribution of the residuals is assumed to be invariant over
time.

Clearly, volatility estimation is an important issue in VaR estimation. Among
volatility models, the GARCH model (see Engle 1982; Bollerslev 1986) and its
extensions are widely-used. Their success stems from the ability to capture the
stylized facts of financial time series, such as time-varying volatility and volatility
clustering, see among others Poon and Granger (2003) and the references therein.
Therefore, we estimate volatility with the GARCH(1,1) model using a rolling
window in this survey. The density of the standardized returns can be estimated with
or without distributional assumption. In the parametric literature, financial returns
are typically assumed to be Gaussian distributed for simplicity, e.g. in RiskMetrics.
However, this assumption contradicts the empirical observation – daily financial
time series are heavy-tailed distributed. Therefore, heavy-tailed distribution families
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such as the hyperbolic and Student-t distributions and the Lévy process have
been introduced and used in quantitative finance by Eberlein and Keller (1995),
Embrechts et al. (1999a) and Barndorff-Nielsen and Shephard (2001). Alternatively,
the density (or quantile) of the standardized returns can be estimated by using
nonparametric methods. For example, the filtered historical simulation (FHS) has
been considered as the most successful VaR estimation in practice, which is based
on the empirical quantile of the standardized returns.

From both academic and practical aspects, it is also interesting to discuss and
evaluate multivariate VaR estimation. Although the reduced models, in which the
portfolio’s returns are considered as one single univariate time series, can be used
to calculate VaR for large portfolio, the reduced models (univariate method) may
yield low accuracy by ignoring the complicated correlation among the individual
returns. Consequently, reduced models provide less detailed information on the
source of risk. Therefore, multivariate methods are necessary to be investigated.
Moreover, the multivariate VaR estimation will be at least a useful complement to
reduced models and could help in evaluating the accuracy of univariate methods.
Nevertheless, there are few contributions in multivariate VaR estimation, due
to the numerical complexity in the covariance estimation and the joint density
identification.

In this chapter, we will present three workable multivariate VaR estimation
methods. The DCC-VaR method estimates the covariance matrix by using the
dynamic conditional covariance (DCC) model (see Engle 2002; Tse and Tsui
2002) and assumes the standardized returns are Gaussian distributed. The Copula-
VaR method calculate VaR based on the fitted copula function, in which the joint
distribution of portfolios is estimated by linking all the marginal distributions with a
fixed form (see e.g. Nelsen 1999; Embrechts and Dias 2003; Giacomini et al. 2009).
Moreover, we present a multivariate VaR estimation based on the independent
component analysis (ICA) method that converts the high dimensional analysis to
univariate study with a simple linear transformation (Hyvärinen et al. 2001). It is
worth noting that the first two approaches are numerically cumbersome when the
number of assets involved is large, while the ICA based method significantly speeds
up the VaR calculation even for a large portfolio (Chen et al. 2009).

The chapter is organized as follows. We will first give a definition of VaR.
The most available VaR estimation methods, including the volatility/covariance
estimation and the calculation of the residual quantile position, will be presented
in Sect. 12.2. In this survey, three tests are used in the backtesting procedure
to evaluate the robustness and accuracy of the VaR methods. They will be
discussed in Sect. 12.3. In particular, the conditional coverage test (Christoffersen
1998), the dynamic quantile test (Engle and Manganelli 2004) and Ljung-box
test (Berkowitz and O’Brien 2002) are considered. The implementation of vari-
ous VaR methods and the backtesting results are illustrated based on simulated
and real data with and without financial crisis. Finally we will give a short
conclusion.
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12.2 VaR and Methodology

Value at Risk (VaR) is so far the most widely used risk measure by financial
institutions. With a target probability ˛ 2 .0; 1/ and time horizon Œt; t C h	, VaR
is defined as a threshold value such that the probability that the mark-to-market
loss on the portfolio over the given time horizon exceeds this value is the given
probability level:

VaR˛tCh D � inffc 2 IR W P.rtCh � cjFt / 	 ˛g;

where Ft represents the past information at time t . The target level ˛ is often to be
set between 0:1 and 5% for different purposes such as regulatory requirement and
internal supervisory.

Despite its simple definition, the calculation of VaR is a very challenging
statistical problem. From a statistical point of view, VaR is a certain quantile of
the distribution of the portfolio’s future returns. Hence VaR is tightly linked to
estimating the (joint) distribution of returns. A direct estimation of the returns’
quantile, with or without distributional assumption, is however insufficient. The
reason is that the variable of interest, the financial returns, is not IID. To take into
account this heteroscedasticity, financial returns are modeled as:

rt D �t C �t"t ; (12.3)

where �t and �t denote the conditional mean and variance of returns rt and the
residuals (also known as standardized returns) "t are assumed to be IID with
E."t / D 0 and E."2t / D 1. In literature, the conditional mean of financial
returns plays a relatively trivial role since �t D 0 holds under the efficient
market hypothesis. Therefore, we illustrate the VaR estimation with focus on (1)
estimating the conditional variance and (2) identifying the distributional behavior
of the residuals.

The forecast of VaR at the future time point t C h, based on the fitted
heteroscedastic model, can be formulated as:

bVaR˛tCh D b�tChQ˛; (12.4)

whereQ˛ denotes the ˛th quantile of the residuals "t .
In the following, we firstly discuss the volatility estimation and then show how to

calculate the quantile of the standardized returns. Some multivariate VaR estimation
methods will be presented after that.

12.2.1 Volatility Estimation

Volatility plays an important role in VaR estimation and other financial activities. It
is a latent variable and not directly observed in markets. Therefore, many volatility
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models and volatility proxies have been proposed in the quantitative finance liter-
ature. Among others, the generalized autoregressive conditional heteroscedasticity
(GARCH) model and its extension can capture with success the volatility clustering
(see e.g. Bollerslev 1995; Nelson 1990, 1991) and hence the ARCH-type models
dominate the modeling and estimation of variance. We refer to Engle (1995), Franke
et al. (2008) and Tsay (2005) for a comprehensive review. In general, GARCH(1,1)
has a good performance in estimation as well as prediction of volatility. Based on
the comparison of 330 ARCH-type models, Lunde and Hansen (2005) finds no
evidence that a GARCH(1,1) is outperformed for exchange rate series, although
the GARCH(1,1) is inferior when there is leverage effect in the data. In addition,
Andersen and Bollerslev (1998) demonstrates that based on the realized variance
(RV) – a consistent estimator of volatility calculated from ultra-high frequency
data (see Andersen et al. 2001; Barndorff-Nielsen and Shephard 2002; Zhang et al.
2005; McAleer and Medeiros 2008) GARCH models produce accurate forecasts.
Motivated by these works, the GARCH(1,1) set up is used to estimate the latent
volatility variable in our study.

GARCH(1,1) model is defined as (see Engle, 1982; Bollerslev, 1986):

�2t D ! C ˇ1r
2
t�1 C ˇ2�

2
t�1; (12.5)

where the unconditional variance �2 D !=.1 � ˇ1 � ˇ2/ exists if 1� ˇ1 � ˇ2 ¤ 0.
(Very often, it is observed that the sum of the estimated parameters Q̌

1 and Q̌
2 is

close to 1, partially due to the nonstationarity or persistence of volatility process,
Nelson 1990.)

It is worth noting that the dynamic of variance may change over time, especially
when market shifts. To achieve accuracy in estimation, one can use the most recent
observations to adapt the estimation, which is referred to as rolling window average
method. Basel accord has suggested to use a window size of 2 years (roughly 500
days) in VaR estimation, we here follow the suggestion. Figure 12.2 displays the
fitted GARCH parameters for three stock indices by using a rolling window for

Fig. 12.2 The GARCH(1,1) fitted parameter ˛ (left) and ˇ (right) by using a 500-day rolling
window for each time point
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each time point. It shows that the parameters ˇ1 and ˇ2 change over time, especially
during the sub-prime financial crisis 2007–2009. The results support the use of
rolling window. The selection of 500 days, however, raises the question whether
the experience-based value is really better than others. Clearly, a large window size
often corresponds to low variation of estimate but rises the risk of modeling bias.
On the contrary, a small window size delivers estimates that are sensitive to model
changes but have high variation. As a consequence, it is suggested to choose a large
window size when the markets are stationary and to reduce the window size to a
small value when the markets change. For selecting a local optimal window size,
we refer to the recently developed adaptive approach (see e.g. Chen and Spokoiny,
2009; Čı́žek et al., 2009).

12.2.2 Quantile of (Standardized) Returns

The quantile of residuals can be estimated in either nonparametric (without distri-
butional assumption, e.g. historical simulation) or parametric way. In parametric
way, for reasons of stochastic and numerical simplicity, it is often assumed that the
(standardized) returns are normally distributed e.g. in the Morgan’s RiskMetrics
framework. Although returns will converge to normality under temporal aggre-
gation, it is observed that most concerned short-term returns, e.g. daily returns,
obviously deviate from the assumption of normality (Andersen et al. 2005). The
heavy-tailed distribution families such as the normal inverse Gaussian (NIG) and
Student-t distributions, on the other hand, have been used in VaR models, see e.g.
Eberlein and Keller (1995) and Embrechts et al. (1999a). In particular, the density
of NIG random variable has a form of:

fNIG.xI$;ˇ; ı; �/ D $ı




K1

n
$
p
ı2 C .x � �/2

o

p
ı2 C .x � �/2 expfı

p
$2 � ˇ2Cˇ.x��/g;

where the distributional parameters fulfill� 2 IR; ı > 0 and jˇj � $ . The modified
Bessel function of the third kindK�.�/ with an index � D 1 has a form of:

K�.x/ D 1

2

Z 1

0

x��1 expf�x
2
.x C x�1/g dy

It is worth noting that these parametric approaches tend to fit the density curves
that accommodate the mass of central observations. On the contrary, extreme value
theory (EVT) provides a natural approach to VaR estimation, which projects tail
out from a data over a certain threshold, see Pickands (1975a) and Embrechts et al.
(1997). The details will be presented in Sect. 12.2.2.1.

The simplest nonparametric VaR estimation is the historical simulation (HS)
method. The VaR at t C 1 for instance is given by the empirical ˛-quantile of the
past K observations up to date t :
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bVaRtC1 D Q˛.rt ; � � � ; rt�KC1/

Empirically, filtered HS (FHS) shows improved accuracy and is more adopted
than HS method. In FHS, VaRs are calculated based on the empirical quantiles of
residuals and the estimated volatility:

bVaR˛tC1 D b�tC1Q˛.b"t ; � � � ;b"t�KC1/

These quantile estimation methods only based on the portfolio’s (standardized)
returns and assume that returns contain sufficient information for forecasting.
Recently, Engle and Manganelli (2004) opens a new door to VaR estimation, in
which the dynamic of VaR depends not only on returns but also on other covariates,
for example, the returns. The details are given in the following.

12.2.2.1 Extreme Value Theory

There are two kinds of models for extreme values; the block maxima models that are
for the largest observations collected from large samples of identically distributed
observations, and the peaks-over-threshold (POT) models that are for all large
observations which exceed a high threshold. The POT models are often considered
to be more useful for practical usage, especially in VaR estimation. In our study we
will focus on POT model based on the generalized Pareto distribution. The other
models based on the Hill estimator and its relatives are referred to Beirlant et al.
(1996).

Let z1; z2; � � � be IID random variables representing financial losses (zt D �rt )
and having distribution function F . Let u be the high threshold and defines the
excess distribution above the threshold u as:

Fu.z/ D P fZ � u � zjZ > ug D F.z C u/� F.u/
1 � F.u/

; z 	 0 (12.6)

For a wide class of distributions, the distribution of the excess over a sufficiently
large threshold u converges to generalized Pareto distribution (GPD), see Pickands
(1975b):

G�;ˇ.z/ D
(
1 � .1C �z

ˇ
/�1=� if � ¤ 0

1 � exp.�z=ˇ/ if � D 0
; (12.7)

where � is the shape parameter and ˇ is the scale parameter. In addition, we have:

�
z 	 0 if � 	 0

0 � z < �ˇ=� � u if � < 0:

The GDP distribution nests certain other distributions. For example, if � > 0 then
GPD is in fact the ordinary Pareto distribution. If � D 0 then GPD corresponds to
the exponential distribution and � < 0 is known as a Pareto type II distribution.
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Given IID z > u, (12.6) can be reformulated to

NF .z C u/ D NF .u/ NFu.z/:

NF .u/ is estimated by its empirical counterpart k=n, i.e. proportion of the k

observations that are larger than the threshold u to the total n observations. On the
basis of EVT, NFu.z/ for z > u is estimated using a GPD approximation to obtain the
tail estimator, i.e. Fu.z/ � G�;ˇ.z/ and

bNF .z/ D k

n

 
1C O� z � u

Ǒ

!�1=O�
:

By inverting the above formula we get the quantile estimator, i.e. VaR:

bVaR˛ D zkC1 C
Ǒ
O�

�
1 � .

1 � ˛
k=n

/�O�

;

recalling u D zkC1. It is important to note that the tail estimator is only valid
for z > u. Needless, the threshold u plays an important role in the estimation.
A high u reduces bias in estimating the excess function since the approximation
(12.7) only works well on the tails. Simultaneously, choosing a high u leads to very
few exceedances and hence a high variance of the estimator. On the other hand, a
low u induces a large bias but a small variance for estimator. For practical use we
must trade off bias and variance. Data-driven tools, e.g. mean excess plot, can help
to choose a suitable threshold value u, see Embrechts et al. (1997).

A direct application of EVT is possibly inappropriate for most financial assets
returns, since EVT assumes IID of random variables. It is suggested to use filtered
EVT (FEVT), in which the time varying volatility is estimated and EVT is applied
to the residuals, see e.g. McNeil and Frey (2000), Franke et al. (2008).

12.2.2.2 Quantile Regression: CAViaR Model

Given a standard linear regression model:

rt D x>
t ˇ C "t ;

the median regression is concerned with the estimation of the conditional median
given X Dx, which corresponds to the minimization of the mean absolute error
(MAE). Let u D r�x>ˇ, we denote MAE as f .u/D juj and rewrite the optimization
problem for the median – the 50% quantile as:

min0:5f .u/ D 0:5uIŒ0;1/.u/� .1 � 0:5/uI.�1;0//.u/;
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where IA.u/ D 1 if u 2 A and 0 otherwise is the usual indicator function of the set
A. This definition has been generalized by replacing 0:5 by ˛ to obtain an ˛-quantile
regression (Koenker and Bassett 1978):

ˇ.˛/ D argmin

8
<

:
X

rt�x>
t ˇ

˛jrt � x>
t ˇj C

X

rt<x
>
t ˇ

.1 � ˛/jrt � x>
t ˇj

9
=

; (12.8)

One desirable feature of the quantile regression is that there is no distributional
assumptions for the portfolio’s returns.

Motivated by the good performance of quantile regression, Engle and Manganelli
(2004) proposed the CAViaR models, which estimates VaR by using both the
(standardized) returns and the past values of VaR. Given the observation that
financial returns tends to be autocorrelated and have clustering phenomenon, the
quantile of portfolio’s returns – VaR with a natural link to the distribution – is
expected to exhibit a similar behavior. One version of the CAViaR models with
a focus on absolute value of past returns (Symmetric absolute value CAViaR) is
defined as:

VaRt D ˇ0 C ˇ1VaRt�1 C ˇ2jrt�1j
The CAViaR model measures the relationship between VaRs and the past value of
returns rt�1. Moreover, the autoregressive term (past values of VaR) ensures that the
VaR changes smoothly over time.

12.2.3 Multivariate VaR Models

Along with the remarkable development of univariate VaR estimation, there are
few contributions to multidimensional VaR estimation. Although the univariate
VaR estimation methods, which are based on the simple modeling structure and
assumption, can be extended to multivariate time series, the performance is poor
due to the unrealistic assumptions. On the other hand, the VaR estimation methods,
which are based on the realistic but complex modeling structure and assumption are
infeasible or inappropriate for solving high-dimensional problem. In this section,
we will introduce three methods that balance the numerical calculation and the
estimation accuracy.

LetXt 2 IRd denote the vector of individual returns in a portfolio. The portfolio’s
return is mapped by the trading strategy bt 2 IRd as:

rt D b>
t Xt D b>

t ˙
1=2
t "t ;

where the portfolio’s returns rely on the trading allocation bt D .b1;t ; � � � ; bd;t />,
the covariance matrix ˙t for returns of individual components in the portfolio and
the residuals "t . The VaR estimation provides the future VaR values based on the
fitted model:



12 Value at Risk Estimation 317

bVaR˛tCh D Q˛.rtCh/ D Q˛.b
>
tCh ḃ

1=2

tCh"tCh/ (12.9)

12.2.3.1 DCC-VaR

We introduce one multivariate GARCH volatility models, the dynamic conditional
correlation (DCC) model (see Engle, 2002; Tse and Tsui, 2002) and incorporate the
covariance estimator into the VaR estimation.

˙t D DtRtDt ;

where ˙t denotes the covariance matrix at time point t , Dt D diag.h
1=2
11;t : : : h

1=2

dd;t /

and hii;t denotes the variance of the i th component. Its dynamic can be modeled in
a univariate GARCH framework. In addition, the dynamic conditional correlation is
formulated as (Tse and Tsui 2002):

Rt D .1 � �1 � �2/RC �1�t�1 C �2Rt�1;

where �1 and �2 are non-negative parameters satisfying �1C�2 < 1,R is a symmetric
d � d positive definite matrix with �ii D 1. �t�1 is the d � d correlation matrix of
� for  D t �M; t �M C 1; : : : ; t � 1, in which the i; j th elements is given by:

�i;j;t�1 D
PM

m�1 ui;t�muj;t�mq
.
PM

m�1 u2i;t�m/.
PM

m�1 u2j;t�m/

with ui t D "it=
p
hii;t . The covariance estimation is however numerically cum-

bersome when the dimension of portfolio is high. The distribution of the filtered
series ("t D ˙

�1=2
t xt ) is assumed to be Gaussian distributed for simplicity. The

VaR estimator is obtained as the empirical quantile of the portfolio.

12.2.3.2 Copula-VaR

Copula is a function that links a multidimensional joint distribution F to its one-
dimensional margins Fj :

F.x1; � � � ; xd / D C fF1.x1/; � � � ; Fd .xd /I �g;

where C is a copula function and the parameter � measures the dependence of
the variables. According to Sklar’s theorem, given any joint distribution function
and respective marginal distribution functions, there exists a copula C to bind the
margins and give the joint distribution (Nelsen, 1999). Many families of copulas
have been proposed in the literature, which differ in the detail of the dependence
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they represent. For example, one elliptical copula – the Gaussian copula function –
is defined:

C�.u1; � � � ; ud / D ˚�
�
˚�1.u1/; � � � ; ˚�1.ud /

�
;

where u1; � � � ; ud 2 Œ0; 1	 and ˚ denotes the standard normal cumulative distribu-
tion function. The parameter � measures the linear dependence among the variables.
In the later calculation, we will use the Gaussian copula. Note that the elliptical
copula group is rich in parameters – parameter for each pair of variables and hence
it is easy for simulation.

For a sample fxt gTtD1, the procedure of VaR estimation with copula can be defined
as (Giacomini et al. 2009):

1. Identify of marginal distributions Fxj .xj I ıj / and select copula C.u1; � � � ; ud I �/
2. Fit the copula C
3. Generate Monte Carlo data xTCh � C fF1.x1/; � � � ; Fd .xd /I O�g
4. Generate a sample of portfolio returns
5. Estimate bVaR˛tCh, the empirical quantile at level ˛ from the generated returns

It is worth noting that the Copula-VaR approach is also numerically cumbersome
when the dimension of portfolio is high, since Monte Carlo simulation is necessary
in the VaR estimation. In the following, we introduce an advanced statistical method,
with which a fast multivariate VaR model is derived that is even applicable to very
high dimensional problem.

12.2.3.3 ICA-VaR

Independent component analysis (ICA) is to retrieve, out of high dimensional
time series, stochastically independent components (ICs) through a linear
transformation:

y.t/ D Wx.t/;

where the transformation matrix W D .w1; � � � ;wd /> is nonsingular. Chen et al.
(2009) proposes an ICA-VaR model (named as GHICA in the reference), where the
high-dimensional risk factors are modeled as:

x.t/ D W �1y.t/ D W �1˙1=2
y .t/"y.t/:

Clearly, the covariance of the ICs ˙y.t/ is a diagonal matrix because of
independence. The diagonal elements are variances of the ICs at time point t .
The stochastic innovations "y.t/ D f"y1.t/; � � � ; "yd .t/g> are cross independent
and can be individually identified in any univariate distributional framework.
Based on Jacobian transformation (see e.g. Härdle and Simar, 2003), the joint
distribution can be straightforwardly derived from the identified marginals. In
other words, ICA-VaR converts the multivariate problem to univariate problems,



12 Value at Risk Estimation 319

where the realistic and complex univariate approaches and assumptions can
be easily used. Hence, the ICA-VaR estimation provides a solution to balance
the numerical tractability and the realistic distributional assumption on the risk
factors.

Various methods have been proposed to compute the transformation matrix W ,
see Hyvärinen et al. (2001) and references therein. In this study, we use the fastICA
method. The idea is to find ICs by maximizing nongaussianity, in particular, to
maximize the negentropy:

J.yj / D
Z
fyj .u/ logfyj .u/du �

Z
'0;1.u/ log'0;1.u/du;

where '0;1 is the density function of a standard Gaussian random variable
(Hyvärinen, 1998). This optimization problem is solved by using the symmetric
FastICA algorithm.

The formal procedure of the ICA-VaR method is defined as:

1. Apply ICA to the given risk factors to get ICs.
2. Estimate the variance of each IC and identify the distribution of every IC’s

innovation in the normal inverse Gaussian (NIG) or other distributional
framework.

3. Estimate the density of the portfolio return using the FFT technique.
4. Calculate risk measures.

12.3 Backtesting

Empirical study shows that VaR models sometimes provide quite different VaR
values for the same portfolio data (Beder, 1995). Therefore, it is important to justify
the VaR models in the backtesting procedure. Backtesting involves a systematical
comparison of the historical VaR forecasts with the associated portfolio returns.
By far, several statistical tests have been proposed in the framework of backtesting
procedure. In our study, three tests are considered: Christoffersen (1998) ’s test
based on the use of a Markov chain, dynamic quantile test of Engle and Manganelli
(2004) derived from a linear auto-regressive model, Berkowitz and O’Brien (2002)’s
test – a portmanteau test of weak white noise.

12.3.1 Conditional Coverage Test

Let us define exceedance as a violation when VaR is exceeded by the actual losses.
The simplest way to verify the accuracy of VaR methods is to record the failure rate –
the proportion of occurrence of exceedances in a given sample. In the baktesting
procedure, each day is marked to 0 if VaR is not exceeded, i.e. no exceedance, and
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to 1 otherwise:

It D I.rt < �VaRt /

The test of unconditional coverage is initially developed by Kupiec (1995), where
the failure rate with n1 exceedances over T points is equal to:

EŒIt jFt�1	 D n1

T

According to the definition of VaR (12.1), the failure rate should be close to the
expected risk level ˛. The test of unconditional coverage is formulated as:

H0 W EŒIt 	 D ˛ H1 W EŒIt 	 ¤ ˛ (12.10)

The sequence of It is naturally Bernoulli distributed with parameter ˛ (Christof-
fersen, 1998). Under the null hypothesis, the likelihood ratio test statistic is
constructed:

LRuc D �2log

�
.1 � ˛/T�n1˛n1

.1 � n1=T /T�n1.n1=T /n1

	
L�!�21

It is worth noting that the unconditional coverage test ignores the temporal
dependence of exceedances, e.g. the clustering of exceedances. The fact that
extreme losses follow extreme losses, will lead to bankruptcy and hence invalidate
VaR methods. To overcome this limitation, Christoffersen (1998) extends the uncon-
ditional coverage test (12.10) with a focus on the serial correlation of exceedances.
In particular, the process of exceedances fItg is modeled by a binary first-order
Markov chain with a transition probability matrix:

˘ D



00 
01


10 
11

�

where 
ij D P.It D j jIt�1 D i/ denotes the probability of observing a state j in
1 day given a state i in the previous day. For example, 
01 records the conditional
failure rate with no exceedance (state D 0) followed by an exceedance (state D 1).
The null hypothesis of the temporal dependence is formulated as:

H0 W ˘ D ˘˛ D


1 � ˛ ˛
1 � ˛ ˛

�
H1 W ˘ ¤ ˘˛

Under the null hypothesis, the occurrence of exceedances should not contain
information for future state. In other words, the hypothesis is 
ij D 
jj . Moreover,
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the probability of observing exceedances is equivalent to the target probability ˛.
Overall, it leads to the likelihood ratio test statistic:

LRtd D �2log

�
.1� ˛/T�n1˛n1

.1 � 
01/n00
01/n01.1 � 
11/n10
11/n11

	
L�!�21;

where nij represents the number of transitions from state i to state j , i.e. nij DPT
tD2 .It D j jIt�1 D i/; and the number of days with exceedances is n1 Dn0jCn1j .
The combination of the two tests yields the conditional coverage test statistic

(Christoffersen, 1998):

LRcc D LRuc C LRtd (12.11)

Although the conditional coverage test has been widely used in verifying VaR
methods, it is criticized for two limitations. First the temporal dependence test only
take into account the dependence of order one (two consecutive days). Secondly,
the Markov chain only measures the influence of past exceedances and not that
of any other exogenous variable. Next we introduce the tests proposed by Engle
and Manganelli (2004) and Berkowitz and O’Brien (2002) that overcome the
limitations.

12.3.2 Dynamic Quantile Test

Engle and Manganelli (2004) proposes a conditional coverage test by using a linear
regression model based on the process of hit function:

Ht D It � ˛ D
�
1 � ˛; if rt < �VaRt
�˛; else

;

where fHt g is a centered process on the target probability ˛. The dynamic of the hit
function is modeled as:

Ht D ˇ0 C
pX

jD1
ˇjHt�j C

KX

kD1
�kgk.zt /C "t ; (12.12)

where "t is an IID process with mean of zero and g.�/ is a function of past
exceedances and of variable zt .

Under the hypothesis that the VaR estimation can deliver accurate VaR estimates
and also the occurrence of p consecutive exceedances is uncorrelated, the regressors
should have no explanatory power. Hence, the dynamic quantile (DQ) test is
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defined as:
H0 W � D .ˇ0; ˇ1; � � � ; ˇp; �1; � � � ; �K/> D 0:

It is easy to show that the DQ test statistic, in association with the Wald statistic, is:

DQ D
O�>X>X O�
˛.1 � ˛/

L�!�21CpCK; (12.13)

where X denotes the covariates matrix in (12.12). In our study, we select p D 4,
K D 1 and g.zt / D bVaRt to account for the influence of past exceedances up to 4
days and that of the VaR estimates.

12.3.3 Ljung-Box Test

Berkowitz and O’Brien (2002) suggests to use the Ljung-Box test in checking the
temporal dependence of exceedances. The Ljung-Box is used to assess the temporal
dependence of time series. Here it is again motivated by the hypothesis of absence
of autocorrelation in the centered process of exceedances fHt D It � ˛g. The null
hypothesis is:

H0 W �1.Ht / D � � � D �p.Ht / D 0;

where �j is the j th autocorrelations of the exceedances process: Under the null
hypothesis, the test statistic is:

LB D .T /.T C 2/

pX

jD1

O�2j
T � j

L�!�2p; (12.14)

where p is the order of the autocorrelation for the hit function process. In practice,
p D log.T / is recommended. As same as the dynamic quantile test, the Ljung-Box
test also overcomes the limitation of the traditional conditional coverage test (12.11)
by considering temporal dependence with order higher than one.

12.4 Simulation Study

In this section, we will demonstrate the performance of the discussed VaR estima-
tion methods based on simulated data. The initial focus is the accuracy of these
methods. In addition, it is interesting to investigate the effect of financial crisis on
the accuracy of the VaR estimation. In particular, we will simulate the processes with
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and without financial crisis respectively. The backtesting tests will help to justify the
validity of the VaR methods, see Sect. 12.3.

The return series is generated based on the heteroscedastic model:

rt D �t "t ;

where the volatility index VIX is chosen as the “actual” value of market volatility
�t . VIX is the implied volatility based on S&P 500 index options and has been
adopted across financial communities. To investigate the accuracy of the discussed
VaR models to various market situations, we use the daily VIX observations from
18/08/2003 to 31/06/2009 (1,500 days) that covers financial crisis time period
(whole sample period) and the observations from 18/08/2003 to 30/04/2007 (pre-
financial crisis period) respectively in data generation. The innovations or shocks "t
are assumed to be either standard normal distributed, Student-t distributed or normal
inverse gaussian (NIG) distributed. The assumption of the last two distributions
(Student-t and NIG) helps us to mimic the fat-tails of the financial return series. The
degree of freedoms of Student-t distribution is set to be 5, which is enough to show
the fat-tail feature of the return series. The NIG parameters are empirically estimated
based on the VIX-filtered S&P series with ˛ D 1:34, ˇ D �0:015, ı D 1:337 and
� D 0:01. For each type of distribution, we generate 200 processes with 1,500
observations (whole sample) or 930 observations (pre-financial crisis) respectively.

For each scenario, the first 500 observations are used as training set. Note that
a rolling window with a window size of 500 observations is used in the dynamic
estimation. The 1 day ahead forecasts of volatility based on the GARCH(1,1) set up
are reasonable, see Fig. 12.3.

Fig. 12.3 VIX and the average value of 1 day ahead volatility forecasts
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Fig. 12.4 The 1-day ahead VaR plots using HS vs FHS (left) and EVT vs filtered EVT (right)

At the beginning, we show the performance of the historical simulation (HS)
and the filtered HS based on the whole time period, see Fig. 12.4. The VaR
forecasts at risk level ˛ D 1% and h D 1 day are reported. It shows that the
overall performance of the filtered HS is better than HS, where HS obviously
underestimates the risk with many exceedances. In fact, the empirical failure rate
– the probability of exceedances’ occurrence – is larger than 2% and all the three
tests reject the validation of the HS method in backtesting. The similar results are
observed for EVT without filtration (right panel). As mentioned before, the poor
performance of the direct implementation of HS and EVT on the return series is due
to the heteroscedasticity of financial data. In the following, we will justify the VaR
methods accounting for heteroscedasticity.

After filtering the generated return series by using the estimated volatility in
Fig. 12.3, various VaR methods are used to calculate the quantile position of the
residuals. In particular, we consider the parametric methods based on the normal,
Student-t with degrees of freedom 5 and NIG distributional assumptions, the
nonparametric method – the filtered HS (FHS) method, the filtered EVT (FEVT)
method and the quantile regression method – CAViaR. The one-period and multi-
period VaR with forecasting horizon h D 1, 5 and 10 steps are calculated for two
target probability levels 1 and 0:5%. The average values of the VaR forecasts and
backtesting results based on the conditional coverage test (Christoffersen, 1998),
the dynamic quantile (DQ) test (Engle and Manganelli, 2004) and Ljung-Box (LB)
test (Berkowitz and O’Brien, 2002) are reported in Tables 12.1 and 12.2. The results
can be summarized as follows:

1. The performance of some VaR estimation methods is very sensitive to market
conditions. For example, under the normal market condition in the pre-financial
crisis period up to 30/04/2007, the VaR estimation based on the normal distribu-
tional assumption yields quite accurate VaR forecasts over both short interval
(hD 1) and relatively long interval (hD 10). However, if the financial crisis
period is included, the normality based estimation has a low accuracy. On
the other hand, the quantile regression method – CAViaR – outperforms many
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Table 12.1 Backtesting results – the conditional coverage test, Ljung-Box test and the dynamic
quantile test – applied to the simulated data with three distributional types before and over
the global financial crisis 2007–2009. The forecasting horizon of VaRs at level ˛ D 1:0% is
respectively h D 1, 5 and 10. The VaR estimation methods are ordered according to the average
value of accuracy measured by j Ǫ �˛j, where Ǫ is the empirical failure rate. The significant testing
statistics (5%) are labeled by �

others in most cases, if the financial crisis period is included in the estimation.
Especially, CAViaR yields accurate VaR values for the heavy-tailed (realistic)
t(5) and NIG distributed data.

2. Some methods are robust to both normal and “bad” market conditions. For
example, the FHS method and the NIG based method in general deliver
reasonable VaR estimation. The observation is consistent to the popularity of
the FHS method in industry and also explains why the NIG based method attract
much attention of researchers, although the NIG based method does not perform
very well for the long term (h D 10) prediction.
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Table 12.2 Backtesting results – the conditional coverage test, LB test and the dynamic quantile
test – applied to the simulated data with three distributional types before and over the global
financial crisis 2007–2009. The forecasting horizon of VaRs at level ˛ D 0:5% is respectively
h D 1, 5 and 10. The VaR estimation methods are ordered according to the average value of
accuracy measured by j Ǫ �˛j, where Ǫ is the empirical failure rate. The significant testing statistics
(5%) are labeled by �

3. The exceedance clustering becomes serious if the forecasting horizon is getting
long or if the financial crisis happens. Among these methods, FEVT is very easy
to generate the clustering phenomenon, supported by the rejection of LB or DQ
test. It is possibly a limitation of FEVT, although FEVT can pass the conditional
coverage test and furthermore provide accurate VaR forecasts at ˛ D 1% level in
most cases.

4. The Student-t based estimation method is not attractive in terms of accuracy.
However we do observe that the performance of the t(5) method is getting
improved as the financial crisis happens and the long forecasting interval is
considered in the VaR estimation.
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Fig. 12.5 The VaR plot based on different VaR estimation methods. The financial crisis is in
2007–2009

Figure 12.5 shows the time plot of 1-day ahead VaR forecasts at 1% level based on
one generated process. It demonstrates that VaR estimation may yield quite different
VaR values by using various methods, especially during the financial crisis period.
It is observed that the VaR estimation based on the NIG assumption delivers small
and accurate VaRs that follow the fluctuations of return series closely, especially
when market is volatile. It motivates us to use NIG distributional assumption in the
ICA-VaR estimation.

12.5 Empirical Analysis

For the real data analysis, we consider three stock indices, the Dow Jones (DJ)
Industry Average 30, the German DAX index and the Singapore Straight Time
Index (STI) from 18/08/2003 to 31/07/2009 (each with 1,500 observations). The
log returns of these indices are displayed in Fig. 12.6. For these 3 indices, the VaRs
can be estimated either by using the reduced models (univariate methods) or by
using the multivariate methods based on the returns of the component stocks. As an
illustration, we apply the multivariate methods to DJ30 and investigate the accuracy
of the multivariate methods to reduced models. In particular, the multivariate VaR
estimation methods – by using DCC, ICA and Copula are respectively considered.
For a fair comparison, the actual weights used for composing the indices are
assigned to the multivariate stocks.

The h D 1, 5 and 10-day ahead VaR forecasts are calculated given two risk levels
˛ D 1% and ˛ D 0:5%. The volatility of the univariate variables is estimated based
on the GARCH(1,1) model. The rolling window approach with 500-day window
size is again used to adapt the estimation for each time point. Figure 12.7 shows that
VaR plot by using different estimation methods. The plots against DAX and STI are
similar and omitted.
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Fig. 12.6 Dow Jones Industry average 30 log return series from 18/08/2003 to 31/07/2009
(upper). DAX index log return series from 12/09/2003 to 31/07/2009 (bottom left). Singapore
STI index log return series from 7/08/2003 to 31/07/2009 (bottom right)

Fig. 12.7 The VaR plot against the Dow Jones Index

The backtesting results are reported in Tables 12.3 and 12.4, where the methods
are ordered according to the estimation accuracy j Ǫ � ˛j with Ǫ denoting the
empirical failure rate. The observations are summarized as follows:

1. In general, CAViaR and the NIG-based estimation are robust and deliver accurate
VaR estimation, if the short forecasting interval is considered, i.e. h D 1.
However, if the forecasting horizon is relatively long, e.g. h D 5, these estimation
are sensitive to market condition, especially the NIG-based method. To be more
specifically, NIG works well if the market is normal, i.e. without financial crisis,
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Table 12.3 Backtesting results – the conditional coverage test, Ljung-Box test and the dynamic
quantile test – applied to the three indices: DJ30, DAX and STI. The forecasting horizon of VaRs
at level ˛ D 1:0% is respectively h D 1, 5 and 10. The univariate (and multivariate for DJ30) VaR
estimation methods are ordered according to the average value of accuracy measured by j Ǫ � ˛j,
where Ǫ is the empirical failure rate. The significant testing statistics (5%) are labeled by �

whereas the method provides low accurate VaR values if the financial crisis
happens.

2. The widely used methods, FHS and FEVT, on the other hand, display robust and
good performance in terms predictability over e.g. 1 week h D 5, if the risk level
is ˛ D 1:0%. However it is not necessary applied to extreme risks e.g. ˛ D 0:5%.

3. The other two univariate estimation methods, based on normal and Student-t
distributional assumption respectively, are often out-performed.
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Table 12.4 Backtesting results – the conditional coverage test, Ljung-Box test and the dynamic
quantile test – applied to the three indices: DJ30, DAX and STI. The forecasting horizon of VaRs
at level ˛ D 0:5% is respectively h D 1, 5 and 10. The univariate (and multivariate for DJ30) VaR
estimation methods are ordered according to the average value of accuracy measured by j Ǫ � ˛j,
where Ǫ is the empirical failure rate. The significant testing statistics (5%) are labeled by �

4. As an illustration, we applied the multivariate VaR estimation methods to DJ30.
The results show that the ICA-VaR method performs better than some univariate
methods as well as the other two multivariate methods in most cases. This
observation is consistent to the study of Chen et al. (2009), where the ICA-VaR
method shows superior performance.
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12.6 Conclusion

In this chapter we reviewed and implemented several popular or recently developed
VaR estimation methods. The robustness and accuracy of the univariate and
multivariate methods are investigated and demonstrated based on simulated data
and real data. Backtesting is used as a standard tool to evaluate the performance. We
tested both the unconditional and conditional coverage properties of all the models
we covered using the Christofferson’s test, the Ljung-Box test and the dynamic
quantile test.

In the simulation study, we generated three types of processes with normal,
Student-t and NIG distributional assumption, and applied the discussed univariate
VaRestimation methods. Backtesting results show that FHS and the NIG-based
method are robust to market conditions and deliver reasonable VaR estimation.
The CAViaR model outperforms many others in most cases, however it is sensitive
to market condition. In addition, FEVT is very easy to generate the clustering
phenomenon, although it provides accurate VaR forecasts at ˛ D 1% level in most
cases. Last but not least, the filtered HS and EVT methods overall outperform the
non-filtered counter parties.

For empirical analysis, three composite indices DJ30, DAX and STI are used
to illustrate the performance of the VaR estimation. In general, CAViaR and the
NIG-based estimation are robust and deliver accurate VaR estimation, if the short
forecasting interval is considered, i.e. h D 1. FHS and FEVT, on the other hand,
display robust and good performance in terms predictability over e.g. 1 week h D 5,
if the risk level is ˛ D 1:0%. One multivariate estimation based on ICA performs
better than many univariate methods in most cases.
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Chapter 13
Volatility Estimation Based on High-Frequency
Data

Christian Pigorsch, Uta Pigorsch, and Ivaylo Popov

Abstract With the availability of high-frequency data ex post daily (or lower
frequency) nonparametric volatility measures have been developed, that are more
precise than conventionally used volatility estimators, such as squared or absolute
daily returns. The consistency of these estimators hinges on increasingly finer
sampled high-frequency returns. In practice, however, the prices recorded at the
very high frequency are contaminated by market microstructure noise. We provide a
theoretical review and comparison of high-frequency based volatility estimators and
the impact of different types of noise. In doing so we pay special focus on volatility
estimators that explore different facets of high-frequency data, such as the price
range, return quantiles or durations between specific levels of price changes.The
various volatility estimators are applied to transaction and quotes data of the
S&P500 E-mini and of one stock of Microsoft using different sampling frequencies
and schemes. We further discuss potential sources of the market microstructure
noise and test for its type and magnitude. Moreover, due to the volume of high-
frequency financial data we focus also on computational aspects, such as data
storage and retrieval.
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13.1 Introduction

This chapter presents a review and empirical illustration of nonparametric volatility
estimators that exploit the information contained in high-frequency financial data.
Such ex-post volatility measures can be directly used for the modelling and
forecasting of the (future) volatility dynamics, which in turn may be essential for
an adequate risk management or hedging decisions. Moreover, volatility constitutes
the main ingredient in asset pricing and the knowledge of this quantity therefore
plays a major role in most financial applications.

One of the most recent milestones in financial econometrics is therefore probably
the introduction of the concept of realized volatility, which allows to consistently
estimate the price variation accumulated over some time interval, such as 1 day, by
summing over squared (intraday) high-frequency returns. The consistency of this
estimator hinges on increasingly finer sampled high-frequency returns. In practice,
however, the sampling frequency is limited by the actual quotation or transaction
frequency and prices are contaminated by market microstructure effects, so-called
noise. We discuss different types and potential sources of the noise and its impact on
realized volatility. We further review two of the probably most popular approaches
to estimate volatility based on squares or products of high-frequency returns, i.e. the
two time scales estimators and kernel-based approaches. However, our main focus in
this chapter is on volatility estimators that explore different facets of high-frequency
data, such as the price range, return quantiles or durations between specific levels
of price changes. Our review thus differs from the one provided in McAleer and
Medeiros (2008). A theoretical summary and comparison of the estimators is
given. Moreover, as the high-frequency financial data exceeds the amount of data
usually encountered by financial econometricians we provide a discussion on data
storage and retrieval, i.e. computational aspects that may be of interest to anybody
dealing with such high-frequency data. In our empirical application we estimate and
illustrate realized volatility over various frequencies for different sampling schemes
and price series of one future (S&P500 E-mini) and one stock (Microsoft). We
test for the magnitude and type of market microstructure noise and implement the
discussed volatility estimators.

13.2 Realized Volatility

Assume that the logarithmic price of a financial asset is given by the following
diffusion process

pt D
Z t

0

�.s/ds C
Z t

0

�.s/dW.s/; (13.1)

where the mean process� is continuous and of finite variation, �.t/ > 0 denotes the
càdlàg instantaneous volatility andW is a standard Brownian motion. The object of
interest is the integrated variance (IV ), i.e. the amount of variation at time point t



13 Volatility Estimation Based on High-Frequency Data 337

accumulated over a past time interval �:

IVt D
Z t

t��
�2.s/ds:

In the sequel, our focus is on the estimation of IV over one period, e.g. 1 day. For the
ease of exposition we, thus, normalize� D 1 and drop the time subscript. Suppose
there exist m intraday returns, the i th intraday return is then defined as:

r
.m/
i D pi=m � p.i�1/=m; i D 1; 2; : : : ; m:

The sum of the squared intraday returns:

RV .m/ D
mX

iD1
r
.m/
i

2
(13.2)

provides a natural estimator of IV. In fact, based on the theory of quadratic variation,

Andersen et al. (2003) show that RV.m/
p! IV as m ! 1. Following the recent

literature we will refer to this ex-post measure of IV as the realized volatility, see
e.g. Andersen and Bollerslev (1998).

Barndorff-Nielsen and Shephard (2002a) show the consistency of this estimator
and that its asymptotic distribution is normal:

p
m
�
RV .m/ � IV

�
p
2IQ

d! N .0; 1/;

with IQ D R 1
0 �

4.s/ds denoting the integrated quarticity. An application of
this asymptotic result, e.g. the construction of confidence intervals, however, is
complicated by the unobservability of IQ. A solution is offered in Barndorff-Nielsen
and Shephard (2004), who propose the concept of realized power variation, that
allows to estimate IQ via the realized quarticity:

RQ.m/ D m

3

mX

iD1
r
.m/4

i ;

such that

RV.m/ � IVq
2
3

Pm
iD1 r

.m/
i

4

d! N .0; 1/

can be used for large m. In practice, however, the sampling frequency is limited
by the actual transaction or quotation frequency. Moreover, the very high-frequency
prices are contaminated by market microstructure effects (noise), such as bid-ask
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bounce effects, price discreteness etc., leading to biases in realized volatility, see
e.g. Andersen et al. (2001) and Barndorff-Nielsen and Shephard (2002b). The next
section discusses typical assumptions on the structure of the market microstructure
noise and its implications for realized volatility. Section 13.4 presents modifica-
tions of the realized volatility estimator, while Sect. 13.5 focuses on estimators
that exploit other data characteristics for measuring IV. Section 13.6 provides a
comparison of the various estimators and discusses the situation where the price
process (13.1) additionally exhibits finite active jumps.

13.3 Market Microstructure Noise: Assumptions
and Implications

Assume that the observed (log) price is contaminated by market microstructure
noise u (or measurement error), i.e.:

pi=m D p�
i=m C ui=m; i D 1; 2; : : : m;

wherep�
i=m is the latent true, or so-called efficient, price that follows the semimartin-

gale given in (13.1). In this case, the observed intraday return is given by:

r
.m/
i D r

�.m/
i C �

.m/
i ; i D 1; 2; : : : m;

i.e. by the efficient intraday return r�.m/
i D p�

i=m � p�
.i�1/=m and the intraday noise

increment �.m/i D ui=m � u.i�1/=m. As a consequence, the observed RV can be
decomposed as:

RV.m/ D RV�.m/ C 2

mX

iD1
r

�.m/
i �i

.m/ C
mX

jD1
�
.m/
j

2
;

where the last term on the right-hand side can be interpreted as the (unobservable)
realized variance of the noise process, while the second term is induced by potential
dependence between the efficient price and the noise. Based on this decomposition
and the assumption of covariance stationary noise with mean zero, Hansen and
Lunde (2006) show that RV is a biased estimator of IV. Interestingly, this bias is
positive if the noise increments and the returns are uncorrelated, but may become
negative in the case of negative correlation. One possible explanation for such
negative correlation is given in Hansen and Lunde (2006), who show that in price
series compiled from mid-quotes (see Sect. 13.7 for a definition), this can be caused
by non-synchronous revisions of the bid and the ask prices, leading to a temporary
widening of the spread. Another source of negative correlation may be the staleness
of the mid-quote prices.
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Obviously, the precise implications of the presence of noise for the properties
of the RV estimator depend on the assumed structure of the noise process. In the
following we focus on the most popular noise assumption.

Assumption 1: Independent noise.

(a) The noise process u is independent and identically distributed with mean zero
and finite variance !2 and finite fourth moment.

(b) The noise is independent of the efficient price.

The independent noise assumption implies that the intraday returns have an
MA(1) component. Such a return specification is well established in the market
microstructure literature and is usually justified by the existence of the bid-
ask bounce effect, see e.g. Roll (1984). However, as shown in Hansen and
Lunde (2006) and Zhang et al. (2005) the iid noise introduces a bias into the
RV estimator:

E
�
RV .m/

� D IV C 2m!2 (13.3)

that diverges to infinity as m ! 1. Moreover, the asymptotic distribution of RV is
given by: �

RV.m/ � IV � 2m!2
�

2
p
mE.u4/

d!N .0; 1/ :

Sampling at lower frequencies, i.e. sparse sampling, reduces the bias but leads to an
increase in the variance (see e.g. Barndorff-Nielsen and Shephard 2002b), which is
usually referred to as the bias-variance trade-off.

The independent noise assumption seems restrictive. In fact, Hansen and Lunde
(2006) provide some evidence of serial dependence in the noise process and
correlation with the efficient price, i.e. time-dependent and endogenous noise,
respectively. Alternative estimators of IV have been developed and are shown to be
robust to some dependence in the noise process, but they are in no way developed
around a universally accepted dependence specification like Assumption 1. The next
section discusses the probably most popular alternatives to theRV estimator that are
asymptotically unbiased and consistent under iid and under dependent noise types.

13.4 Subsampling and Realized Kernels

In the following we briefly present two more elaborate, but under specific noise
assumptions consistent procedures for estimating IV.
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13.4.1 Averaging and Subsampling

The subsampling approach originally suggested by Zhang et al. (2005) builds on
the idea of averaging over various RVs constructed by sampling sparsely over
high-frequency subsamples. To this end the intraday observations are allocated
to K subsamples. Using a regular allocation, 5 min returns can for example be
sampled at the time points 9:30, 9:35, 9:40, : : : ; and at the time points 9:31,
9:36, 9:41, : : : and so forth. Averaging over the subsample RVs yields the so-
called average RV estimator: .1=K/

PK
kD1 RV .k;mk/ withmk denoting the sampling

frequency used in the RV computation for subsample k. Usually, mk is equal
across all subsamples. The average RV estimator is still biased, but the bias now
depends on the average size of the subsamples rather than on the total number of
observations. RV constructed from all observations, RV .al l/ can be used for bias
correction yielding the estimator:

TTSRV.m;m1;:::;mK;K/ D 1

K

KX

kD1
RV.k;mk/ � Nm

m
RV.al l/; (13.4)

where Nm D .1=K/
PK

kD1 mk . As the estimator (13.4) consists of a component based
on sparsely sampled data and one based on the full grid of price observations, the
estimator is also called two time scales estimator.

Under the independent noise assumption, the estimator is consistent. Further-
more, under equidistant observations and under regular allocation to the grids, the
asymptotic distribution is given by:

m1=6.TTSRV.m;m1;:::;mK;K/ � IV/
q

8
c2
.!2/2 C c 4

3
IQ

d! N .0; 1/ :

for K D cm2=3. The optimal value of K , i.e. minimizing the expected asymptotic

variance, can be obtained by estimating copt D �
12!2=IQ

�1=3
based on data prior to

the day under consideration (see Zhang et al. 2005).
A generalization of TTSRV was introduced by Aı̈t-Sahalia et al. (2010) and Zhang

(2006), which is consistent and asymptotically unbiased also under time-dependent
noise. To account for serial correlation in the noise, the RVs are based on overlapping
J -period intraday returns. Using these so-called average-lag-J RVs the estimator
becomes:

TTSRV.m;K;J /
adj D s

 
1

K

m�KX

iD0
.p.iCK/=m � pi=m/2

� Nm.K/

Nm.J/

1

J

m�JX

lD0
.p.lCJ /=m � pl=m/2

!
(13.5)
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with Nm.K/ D .m � K C 1/=K , Nm.J/ D .m � J C 1/=J , 1 � J < K < m

and the small sample adjustment factor s D �
1 � Nm.K/= Nm.J/

��1
. Note that K and

J now basically denote the slow and fast time scales, respectively. The asymptotic
distribution is given by:

m1=6
�

TTSRV.m;K;J /adj � IV
�

q
1
c2
�2 C c 4

3
IQ

d�N .0; 1/

with �2 D 16
�
!2
�2 C 32

P1
lD1 .E.u0; ul //

2 and
d� denotes that when multiplied by

a suitable factor, then the convergence is in distribution.
Obviously, TTSRVadj converges to IV at rate m1=6, which is below the rate of

m1=4, established as optimal in the fully parametric case in Aı̈t-Sahalia et al. (2005).
As a consequence, Aı̈t-Sahalia et al. (2010) introduced the multiple time scale
estimator, MTSRV, which is based on the weighted average of average-lag-J RVs
computed over different multiple scales. It is computationally more complex, but
for suitably selected weights it attains the optimal convergence rate m1=4.

13.4.2 Kernel-Based Estimators

Given the similarity to the problem of estimating the long-run variance of a
stationary time series in the presence of autocorrelation, it is not surprising that
kernel-based methods have been developed for the estimation of IV. Such an
approach was first adopted in Zhou (1996) and generalized in Hansen and Lunde
(2006), who propose to estimate IV by:

KRV.m;H/Z&HL D RV .m/ C 2

HX

hD1

m

m � h
�h

with �h D Pm
iD1 r

.m/
i r

.m/

iCh. As the bias correction factor m=.m � h/ increases the
variance of the estimator, Hansen and Lunde (2006) replaced it by the Bartlett
kernel. Nevertheless, all three estimators are inconsistent.

Recently, Barndorff-Nielsen et al. (2008) proposed a class of consistent kernel
based estimators, realized kernels. The flat-top realized kernel:

KRV.m;H/F T D RV.m/ C
HX

hD1
k



h � 1
H

�
.�h C ��h/ ;

where k.x/ for x 2 Œ0; 1	 is a deterministic weight function. If k .0/ D 1, k .1/ D 0

and H D cm2=3 the estimator is asymptotically mixed normal and converges at



342 C. Pigorsch et al.

rate m1=6. The constant c is a function of the kernel and the integrated quarticity,
and is chosen such that the asymptotic variance of the estimator is minimized. Note
that for the flat-top Bartlett kernel, where k.x/ D 1 � x, and the cubic kernel,
k D 1 � 3x2 C 2x3, KRV.m;H/FT has the same asymptotic distribution as the TTSRV
and the MTSRV estimators, respectively.

Furthermore, if H D cm1=2, k0 .0/ D 0 and k0 .1/ D 0 (called smooth kernel
functions), the convergence rate becomes m1=4 and the asymptotic distribution is
given by:

m1=4
�

KRV.m;H/FT � IV
�

q
4ckıIQ C 8

c
k0ı!2IV C 4

c3
k00ı!4

d! N .0; 1/

with kı D R 1
0
k.x/2dx, k0ı D R 1

0
k0.x/2dx and k00ı D R 1

0
k00.x/2dx.

For practical applications, Barndorff-Nielsen et al. (2009) consider the non-flat-
top realized kernels, which are robust to serial dependent noise and to dependence
between noise and efficient price. The estimator is defined as:

KRV.m;H/NFT D RV.m/ C
HX

hD1
k



h

H

�
.�h C ��h/ : (13.6)

However, the above mentioned advantages of this estimator come at the cost of a
lower convergence rate, i.e. m1=5, and a small asymptotic bias:

m1=5
�

KRV.m;H/NFT � IV
�
ds! MN

�
c�2 ˇ̌k00 .0/

ˇ̌
!2; 4ckıIQ

�
;

where ds denotes stable convergence and MN a mixed normal distribution.
Barndorff-Nielsen et al. (2009) recommend the use of the Parzen kernel
as it is smooth and always produces non-negative estimates. The kernel is
given by:

k .x/ D
8
<

:

1 � 6x2 C 6x3 for 0 � x < 1=2

2.1 � x/3 for 1=2 � x � 1

0 for x > 1
: (13.7)

For non-flat-top realized kernels, the bandwidthH can be optimally selected as:

H� D c��4=5m3=5; c� D
 
k00.0/2

kı

!1=5
and �2 D !2p

IQ
:

For the Parzen kernel c� D 3:5134. Obviously, the optimal value of H is larger
if the variance of the microstructure noise is large in comparison to the integrated
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quarticity. The estimation of this signal-to-noise ratio �2 is discussed in Barndorff-
Nielsen et al. (2008, 2009), see also Sect. 13.8.

Realized kernels are subject to the so-called end effects, caused by the missing
sample size adjustment of the autocovariance terms. This can be accounted for by
using local averages of returns in the beginning and the end of the sample. However,
Barndorff-Nielsen et al. (2009) argue that for actively traded assets these effects can
be ignored in practice.

Further refinements of the realized kernels in the spirit of the subsampling
approach adopted in the TTSRV and MTSRV estimators are considered in Barndorff-
Nielsen et al. (2010) by using averaged covariance terms in the realized kernel
estimators.

13.5 Alternative Volatility Estimators

All of the realized variance measures discussed so far are based on squared intraday
returns. In the following we present estimators of the quadratic variation that exploit
other aspects of high-frequency financial data.

13.5.1 Range-Based Estimation

In volatility estimation, the usage of the range, i.e. the difference between high and
low (log) prices, is appealing, as it is based on extremes from the entire price path
and, thus, provides more information than returns sampled at fixed time intervals.
The range-based estimator has therefore attracted researcher’s interest, see e.g.
Feller (1951), Garman and Klass (1980), Parkinson (1980), and it has been found
that using the squared range based on the daily high and low is about five times
more efficient than the daily squared return. Nevertheless, it is less efficient than RV
based on a sampling frequency higher than two hours.

Recently, Christensen and Podolskij (2007) proposed a realized range-based
estimator, that replaces the squared intraday returns by normalized squared ranges.
Assume that the (log) price process follows a continuous semimartingale and that
mKK C 1 equidistant prices are observed discretely over a day. Decomposing the
daily time interval into K non-overlapping intervals of size mK , the estimator is
given by:

RRV.mK;K/ D 1

�2;mK

KX

iD1
s
.mK/
i

2
; (13.8)

where the range of the price process over the i th interval is defined as:

s
.mK/
i D max

0�h;l�mK

�
p i�1Ch=mK

K

� p i�1Cl=mK
K

�
; i D 1; : : : K;
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and �r;mK D E
�
max0�h;l�mK

�
Wh=mK �Wl=mK

�r�
. I.e. �2;mK is the second moment

of the range of a standard Brownian motion over the unit interval withmK observed
increments. This factor corrects for the downward bias arising from discretely
observed data. In particular, the observed high and low prices may under- and
overestimate the true ones, respectively, such that the true range is underestimated.

The estimator is asymptotically distributed according to:

p
K
�
RRV.mK;K/ � IV

�
p
�cIQ

d! N .0; 1/

as K ! 1, where it is sufficient that mK converges to a natural number c, i.e.
mK ! c 2 N [ 1, �c D limmK!c �mK and �mK D �

�4;mK � �22;mK

�
=�22;mK .

The efficiency of the RRV estimator obviously depends on the variance factor �.
Christensen and Podolskij (2007) illustrate that formK D 10, which is a reasonable
choice for moderately liquid assets, the factor is about 0.7. Its asymptotic value,
i.e. for continuously observed prices, the factor is 0.4, such that RRV is five times
more efficient than RV. For mK D 1 the efficiency of RV is obtained. Notably, IQ
can also be estimated based on the range, i.e. via the so-called realized range-based

quarticity RRQ.mK;K/ D .1=�4;mK /
PK

iD1 s
.mK/
i

4
.

Market microstructure noise corrections of range-based volatility estimators have
been proposed by Martens and van Dijk (2007), who focus particularly on the effect
of the bid-ask bounce, and by Christensen et al. (2009a). The latter address bias
correction under iid noise. However, bias correction is not as straightforward as in
the case of using squared returns as the extreme value theory of RRV depends on the
distribution of the noise. Moreover, RRV is more sensitive towards price outliers than
squared returns. Nevertheless, the empirical results reported in Christensen et al.
(2009a) indicate that bias reduction can be achieved by imposing simple parametric
assumptions on the distribution of the noise process and sampling at a 1–2 min
frequency.

13.5.2 Quantile-Based Estimation

An approach that is very similar to the range-based estimators is to consider
quantiles of the return rather than of the (log) price. We refer to these estimators
as the quantile-based estimators. This idea dates back at least to David (1970) and
Mosteller (1946) and was generalized in Christensen et al. (2009b) by combining
multiple quantiles for each of the mK intraday subintervals yielding the so-called
quantile-based realized variance (QRV) estimator.

The setup is similar to the one used in RRV, i.e. the sample is again split into
K non-overlapping blocks with mK returns, where we denote the set of returns
contained in block j by rŒ.j�1/mKC1WjmK	. For a vector of p return quantiles N� D
.�1; : : : �p/

0 the QRV estimator is given by:
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QRV.mK;K;
N�/ D 1

K

pX

iD1
˛i

KX

jD0

q
.mK;�i /
j

�
.mK;�i /
1

for �i 2 .1=2; 1/ (13.9)

with the realized squared symmetric �i -quantile

q
.mK;�i /
j D g2�imK

�p
mKKrŒ.j�1/mKC1WjmK	

�

C g2mK��imKC1
�p

mKKrŒ.j�1/mKC1WjmK	
�
; (13.10)

where the function gl .x/ extracts the l th order statistic from a vector x, ˛ D
.˛1; : : : ˛p/

0 is a non-negative vector of quantile weights, summing to unity, and

�.mK;�/r D E
h�ˇ̌
U.�mK/

ˇ̌2 C ˇ̌
U.mK��mKC1/

ˇ̌2�ri

with U.�mK/ denoting the .�mK/th order statistic of an independent standard
normal sample fUigmKiD1. For mK fixed and as the number of blocks is increasing,

i.e. m D mKK ! 1, q.mK;�i /j =�
.mK;�i /
1 is an estimator of the (scaled) return

variance over the j th block. Summing across all blocks naturally yields a consistent
estimator of the integrated variance. Christensen et al. (2009b) derive the asymptotic
distribution of QRV:

p
m
�

QRV.mK;K;
N�/ � IV

�

q
�.mK;N�;˛/IQ

d! N .0; 1/ ;

where �.mK;N�;˛/ D ˛0�.mK;N�/˛ and the i; j th element of the p�p matrix�.mK;N�/ is
given by

�
.mK;N�/
i;j D mK

�
.mK;�i �j /

1 � �
.mK;�i /
1 �

.mK;�j /

1

�
.mK;�i /
1 �

.mK;�j /

1

with

�
.mK;�i �j /

1 D E
h�

jU.�imK/j2 C jU.mK��imKC1/j2
�

�
�ˇ̌
U.�jmK/

ˇ̌2 C ˇ̌
U.mK��j mKC1/

ˇ̌2�i
:

The fourth power of the realized quantiles can be used to construct a quantile-based
estimator of IQ.

Christensen et al. (2009b) further propose a subsampled version of the QRV
estimator that yields improvements in the efficiency of the above estimator by using
overlapping subintervals.
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The implementation of the estimator involves the choice of several hyperparam-
eters, i.e. the selection of the quantiles �, the block length mK , and the assignment
of the optimal weights ˛. For a fixed set of quantiles and a fixed block size, the
weights ˛ can be chosen to minimize the asymptotic variance of QRV estimators,
i.e.minimizing � yields the optimal weights:

˛� D �.m;N�/�1�

�0�.m;N�/�1�
;

where � is a (p � 1/ vector of ones. Comparing the efficiency of the estimator,
Christensen et al. (2009b) conclude that the gains from optimizing ˛ for finite
samples, instead of using the asymptotic optimal values, are only minor.

For the quantile selection, Christensen et al. (2009b) find that the 90–95%
quantiles are most informative. The quantiles around the median are uninformative
and those around the extremes are too erratic and less robust to potential jumps in
the price process or to outliers. Nevertheless, quantiles outside the most informative
region may be used to exploit the covariances structure of the order statistics for
p > 1. Smaller block sizes deliver slightly more efficient estimators, as they achieve
better locality of volatility. Also, the subsampled version is shown to be slightly
more efficient than the blocked version for multiple quantiles. Finally, the efficiency
constant � can be reduced to around 2.5 for one quantile and is close to 2 for multiple
quantiles, achieving the efficiency constant of RV.

Christensen et al. (2009b) propose a modification of the QRV estimator that
makes it robust to iid noise. Based on a pre-averaging technique similar to
Podolskij and Vetter (2009), the robust estimator is obtained by applying the QRV
methodology to a weighted average of the observed returns. In particular, define the
averaged data by:

Nyj D
L�1X

iD1
h
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L

�
r
.m/
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with L D c
p
m C o.m1=4/ for some constant c and weight function h on Œ0; 1	.

Further conditions of h are given in Christensen et al. (2009b), who use in their
simulation and application the weight function h.x/ D min.x; 1 � x/. The QRV
estimator is then given by:

QRV.L;mK;K;
N�/
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The problem of QRV.L;mK;K;
N�/

Ny is that it is biased. Incorporating a bias-correction
finally yields the iid noise-robust estimator:

QRV.L;mK;K;
N�/

i id D QRV.L;mK;K;
N�/

Ny �  1

c2 2
!2; (13.11)

where  1 and  2 can be computed by
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Under some further mild assumptions, Christensen et al. (2009b) show that this
estimator converges at ratem�1=4 to the IV. However, in contrast to the other volatil-
ity estimators its asymptotic variance has no explicit expression in terms of IQ.
Nevertheless, it can be estimated based on the estimates of the qi ,  2 and �1 terms.
For h.x/ D min.x; 1�x/ and the constant volatility setting the estimator achieves a
lower bound of 8:5�3!. This is close to the theoretical bound of the variance of the
realized kernel approach discussed in Sect. 13.4.2, which is 8�3!. The behavior of
the noise robust estimator will of course depend on the choice of L, which trades-
off between the noise reduction and the efficiency loss due to pre-averaging. A
simulation study suggests that a conservative choice, e.g. a larger value of L, such
as L D 20, may be preferable. In applications the estimated signal-to-noise ratio
can be used to determine L based on the mean-square error (MSE) criterion.

13.5.3 Duration-Based Estimation

While the return- and range-based volatility estimators make use of a functional of
the price path between fixed points in time, the duration-based approach focuses
on the time it takes the price process to travel between fixed price levels. Such
an approach was first investigated by Cho and Frees (1988) for the constant
volatility case. Recently, Andersen et al. (2009) provide a more comprehensive
treatment of this concept in the case of constant volatility and for stochastic
volatility evolving without drift. They consider three different passage times, i.e.
three different ways to measure the time a Brownian motion needs to travel a given
distance r :

.r/ D
8
<

:

infft W t > 0 & jWt j > rg (first exit time)
infft W .max0<s�t Ws � min0<s��t Ws�/ > rg (first range time)
infft W t > 0 & Wt D rg (first hitting time)
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In the constant volatility case, the moments of these passage times are available in
closed-form:

E
�
.r/

� D

8
<̂

:̂

r2

�2
(first exit time)

1
2
r2

�2
(first range time)

1 (first hitting time)

(13.12)

Interestingly, comparing these moments to the expected value of a squared Brown-
ian increment over the interval  , which is �2 , illustrates the duality between RV
and the range-based volatility approaches and the duration-based one.

The moment conditions (13.12) suggest to estimate �2 via the method of
moments using either an observed sample of first exit times or of first range times
with fixed r . However, as the expected passage times are inversely proportional to
the instantaneous variance, these estimators will suffer from severe small sample
biases induced by Jensen’s inequality. For this reason, Andersen et al. (2009)
propose small sample unbiased estimators based on the reciprocal passage times:

E

�
r2

.r/

	
D �1�

2 D
8
<

:

2C�2 (first exit time)
.4 log 2/�2 (first range time)
�2 (first hitting time)

;

where C � 0:916 is the Catalan constant. Interestingly, moment based estimators
for the reciprocal hitting time are now also feasible.

The concept also allows to define a local volatility estimator for a single passage
time at (intraday) time point i :

�
O�.r/i

�2 D 1

�1

r2


.r/
i

;

such that IV can also be estimated in the case of stochastic volatility by applying the
Riemann sum. The resulting duration-based realized variance estimator is given by:

DRV.m;r/ D
mX

iD1

�
O�.r/i

�2
ıi (13.13)

with ıi denoting the times between the intraday observations.
Based on the time-reversibility of the Brownian motion, the local volatility

estimates can be constructed using either the previous passage time or the next
passage time, i.e. the time is determined by the path of the Brownian motion
either prior to or after the time point i , respectively. In practice, market closures
will thus induce the problem of censoring. In particular, the expected next passage
time is affected by the time left until the market closes, (right censoring), while
the expected previous passage time is limited by the time the market opened, (left
censoring). Andersen et al. (2009) show that a one-directional approach may be
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Table 13.1 Efficiency constant of DRV for different types of passage time

Bi-directional Uni-directional

First exit time 0.3841 0.7681
First range time 0.2037 0.4073
First hitting time 1.0000 2.0000

preferred, although combining both schemes, so-called bi-directional local volatility
estimation, has the potential of reducing the variance of the duration-based estimator
by a factor of two, see also Table 13.1. More precisely, to account for censoring
effects, they suggest to construct the DRV estimator based on the next passage time
scheme during the first half of the day and to use the previous passage time scheme
over the second half of the day. The suggestion is motivated by their simulation
results for exit and range passage times showing that left and right censoring can
be ignored, if the difference in time to the market opening and closing is 2–3 times
longer than the expected passage times.

The duration-based approach can also be used to construct estimators of the
integrated quarticity:

DRQ.m;r/ D
mX

iD1

� O�.r/�4 ıi ;

which allows the construction of confidence intervals using the asymptotic result for
DRV:

p
m
�
DRV.m;r/ � IV

�
p
�IQ

d! N .0; 1/ ;

where � is a constant that is specific to the type of passage time used in the
estimation and that is independent of the choice of r . Table 13.1 presents the
respective values of this efficiency constant.

The asymptotic efficiency is much higher compared to the return-based esti-
mators, especially if the dataset allows the usage of bi-directional passage times
through non-interrupted trading, suggesting the use of trade data from FOREX or
GLOBEX. However, similarly to the other estimators, the DRV not only suffers
from the problem that the price process is observed only at m discrete time points,
but also that the number of observed price changes is even less, see Sect. 13.7.
Andersen et al. (2009) therefore suggest to sample sparsely in order to avoid this
potentially more pronounced discreetness effect. Moreover, similarly to the range-
based estimator the DRV based on first range time and on first exit time may be
biased, as the observed times may not coincide with the true ones.

A formal noise-robust DRV estimator has not been developed so far, however,
Andersen et al. (2009) investigate the impact of market microstructure noise on
the DRV estimator within a simulation study with independent and serial dependent
noise assumptions. The results indicate that the estimator is nevertheless sufficiently
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robust to independent noise with moderate levels of noise-to-signal ratio even in the
case of first range and first exit times. Also, as may be naturally expected, higher
threshold values r make the estimator more robust to noise.seems to be very robust
to the higher persistent levels typically encountered for quote data as argued in
Andersen et al. (2009).

13.6 Theoretical Comparison of Volatility Estimators
and Price Jumps

So far we have discussed and presented the most popular and the most recent
approaches to estimate IV based on various characteristics of high-frequency
financial data. In the following we provide a brief summary of the main large sample
properties of these estimators in order to facilitate their comparison. An empirical
evaluation and illustration of the estimators is given in Sect. 13.8.

Table 13.2 summarizes the estimators, which are grouped according to the
underlying assumption on the market microstructure noise under which they achieve
consistency. We further report the asymptotic variances (based on rounded and
optimally chosen parameter values) and the convergence rates of the various
estimators. Note that due to the unavailability of a closed-form expression of the
asymptotic variance of QRViid we report here only its lower bound in the setting of
constant volatility. The reported asymptotic variance of KRVNFT is based on the
Parzen kernel. Moreover, the complexity and the performance of the estimators
often depend on the choice of hyperparameters as is indicated in the table. The
exact impact of those parameters and their determination have been discussed in the
previous sections. Note that with the exception of the non-flat-top realized kernel all
the estimators are unbiased in large samples and we, thus do not comment on this
property in the table.

The table also reports the robustness of the various estimators to the presence of
jumps. So far we have assumed that the log price follows a pure diffusion process.
However, recent empirical evidence suggests that jumps may have a non-trivial
contribution to the overall daily price variation, see e.g. Andersen et al. (2007),
Eraker et al. (2003) and Huang and Tauchen (2005). Suppose the log price follows
in fact a continuous-time jump diffusion process:

pt D
Z t

0

�.s/ds C
Z t

0

�.s/dW.s/C
N.t/X

jD1
�.sj /;

where the N.t/ process counts the number of jumps occurring with possibly time-
varying intensity �.t/ and jump size �.sj /. Given the presence of jumps in the price
process, the question arises, whether the proposed approaches still deliver estimators
of the integrated variance, i.e. the object of interest in many financial applications?

From the theory of quadratic variation it follows that the basic RV estimator
converges uniformly in probability to the quadratic variation as the sampling
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frequency of the underlying returns approaches infinity:

RV
p! IV C

N.t/X

jDN.t�1/C1
�2.sj /:

In other words, the realized variance provides an ex-post measure of the true total
price variation, i.e. including the discontinuous jump part.

In order to distinguish the continuous variation from the jump component,
Barndorff-Nielsen and Shephard (2004) first proposed the so-called Bipower varia-
tion measure, defined by:

BPV.m/ D 


2

mX

jD2
jrj jjrj�1j;

which becomes immune to jumps and consistently estimates the integrated variance
as m ! 1. A central limit theory for Bipower variation has just recently been
derived in Vetter (2010). He also provides a brief review of alternative jump-
robust estimators of IV including multipower variations, see Barndorff-Nielsen et al.
(2006), and a threshold-based realized variance estimator, see Mancini (2009).

Table 13.2 shows, that only a few of the previously discussed approaches deliver
consistent estimators of IV in the presence of (finite active) jumps. In the quantile-
based estimation, the jump robustness is due to the exclusion of the extreme
quantiles in the construction of the estimator. Similarly, the DRV estimator can
be made robust by the choice of the price threshold r , i.e. limiting the impact of

Table 13.2 Asymptotic properties of the IV estimators

Asymptotic Convergence Jump
Estimator Equation variance rate robust Parameters

No microstructure noise
RV (13.2) 2IQ m1=2 No m

RRV (13.8) 0:4IQ K1=2 No mK;K

QRV (13.9) 2:3IQ m1=2 Yes mK;K; N�
DRV first exit (13.13) 0:77IQ m1=2 Yesa m; r

iid noise

TTSRV (13.4) 1:33
K

m2=3
IQC8m

4=3

K2
!2 m1=6 No m;m1; : : : ; mK;K

QRViid (13.11) 8:5�3! m1=4 Yes mK;K;L; N�
Time-dependent noise

TTSRVadj (13.5) 1:33
K

m2=3
IQCm4=3

K2
�2 m1=6 No m;K; J

Time-dependent and endogenous noise

KRVNFT (13.6)+(13.7) 3:78IQ m1=5 No m; k;H
aExplanation is given in the text
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jumps that exceed this threshold. The asterisk in Table 13.2 indicates that the jump
robustness of this estimator has been shown only within a Monte Carlo simulation
for a modified version of the estimator that utilizes the threshold corresponding to
the observed log price at the tick time prior to the crossing of the target threshold.
A jump robust range-based estimator is proposed by Klößner (2009).

13.7 High-Frequency Financial Data: Characteristics
and Computational Aspects

In the following we briefly review some of the main characteristics of high-
frequency financial data and of the existing sampling schemes. Moreover, as the
volume of the high-frequency dataset exceeds the one usually encountered in
financial statistics or econometrics, we discuss also the computational aspects
concerning data storage and retrieving, which will be useful not only for the reader
interested in implementing volatility estimators, but also to those planning to work
with high-frequency financial data in general.

13.7.1 Price Series and Sampling Schemes

Electronic trading systems have lead to the availability of detailed price and trade
information at the ultrahigh frequency. In particular, information on the arrival and
volume of the sell and buy orders is stored along with the ask and bid quotes. A trade
takes place if buy and sell orders could be matched and the corresponding price
of this transaction, i.e. the transaction price, is recorded. As the underlying type
of trading mechanism differs across exchanges, we refer the interested reader to
Hasbrouck (2007) and Gouriéroux and Jasiak (2001) for a more detailed discussion
on order books and existing types of markets.

An important feature of an exchange market is that prices at which one can send
buy (bid) and sell (ask) quotations and at which transactions take place must be
multiples of a predetermined number, called tick size. As a consequence, markets
with a tick size relatively large in comparison to the price level of the asset, large
tick markets, often exhibit a spread, i.e. the difference between the price of the
highest available bid and the lowest available ask quote, that equals most of the time
exactly one tick. The S&P500 future is an example for such a market, see Hasbrouck
(2007). Obviously, such price discreteness or round-off errors represent one source
of market microstructure noise that will affect the performance of the IV estimators,
especially of DRV.

Given the availability of transaction, bid and ask prices, the question arises on
which of these price series should be used in the construction of the estimators.
Financial theory of course suggests to use the price at which the asset trades.
However, assuming a random flow of alternating buying and selling market orders,
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the trading mechanism and the discrete prices will cause transaction prices to
randomly fluctuate between the best bid and ask price. This effect is called bid-
ask bounce and was first described in Roll (1984). It induces a strong negative
autocorrelation in the returns and, thus, violates the assumption of a semimartingale
for the price process.

This has lead to the consideration of the mid-quotes, i.e. the average of the best
bid and ask price. However, the mid-quotes are also not immune to microstructure
effects. In fact, they suffer from the so-called price staleness. They change rather
rarely, and are subject to non-synchronous adjustments of the bid and ask quotes.
Alternatively, the bid and ask prices can be used, which in large tick markets contain
a similar amount of information as the mid-quotes, but do not suffer from non-
synchronous adjustment effects.

Apart from deciding upon the price series used in the empirical implementation
of the IV estimators, one also has to choose the scheme at which prices are sampled.
The literature basically distinguishes between four types of sampling schemes, see
Oomen (2006): calendar time sampling, transaction time sampling, business time
sampling and tick time sampling. The most obvious one is calendar time sam-
pling, CTS, which samples at equal intervals in physical time. As high-frequency
observations are irregularly spaced in physical time, an artificial construction of
CTS from the full record of prices is necessary. A natural approach is given by the
previous tick method, see Wasserfallen and Zimmermann (1985), which uses the
last record observed prior to the sampling point. The linear interpolation method
instead interpolates between the previous and the next observed price. At ultra high-
frequencies this implies, however, that RV ! 0 asm ! 1, see Hansen and Lunde
(2006).

Alternatively, one can sample whenever a transactions takes place, i.e. the
so-called transaction time sampling, TTS, or whenever prices change, so-called
tick time sampling, TkTS. The latter can further be distinguish according to the
type of price series, yielding tick-time sampling for transactions TkTS(T), mid-
quotes TkTS(MQ), and bid and ask prices, TkTS(B) and TkTS(A), respectively.
A generalization of TTS is event time sampling, ETS, where sampling takes place at
all market events including transactions and quotations. Thus, TTS, TkTS and ETS
are only based on observed prices and time points. This is not the case in business
time sampling, BTS, which samples data such that IV of the intraday intervals are
all equal, i.e. IVi D IV

m
.

BTS is infeasible as it depends on IV. However, in practice it can be approximated
by prior estimates of IV or by standard non-parametric smoothing methods using
the transaction times, see Oomen (2006). The '-sampling scheme introduced by
Dacorogna et al. (1993) is similar to BTS, but also removes seasonalities in the
volatility across days, while the BTS just operates within the day. Empirical results
of Andersen and Bollerslev (1997) and Curci and Corsi (2006) suggest that BTS can
be well approximated by TTS. In the setting of Oomen (2006) random transaction
times are generated by a quantity related to IV such that TTS can be directly
interpreted as a feasible variant of BTS. Hansen and Lunde (2006) show that BTS,
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Table 13.3 Overview of the number of observations (ticks) in different sampling schemes
(01/01/2008–03/31/2008)

S&P500 E-mini (8:30–15:15) MSFT (9:30–16:00)

Total ticks Ticks/day � s Ticks/s Total ticks Ticks/day � s Ticks/s

CTS (1 s) 1,496,576 23,755 1.00 1.00 1,427,277 22,655 1.05 0.95
TTS 9,466,209 150,257 0.16 6.33 8,452,679 134,170 0.18 5.65
ETS 44,646,176 708,669 0.03 29.83 – – – –
QTS – – – – 22,342,994 354,651 0.07 14.93
TkTS (T) 2,772,594 44,009 0.54 1.85 1,191,310 18,910 1.26 0.80
TkTS (MQ) 1,935,415 30,721 0.77 1.29 1,893,741 30,059 0.79 1.27
TkTS (B) 968,666 15,376 1.54 0.65 831,659 13,201 1.80 0.56

by construction, minimizes IQ. Thus, using BTS and TTS rather than CTS may
reduce the variance of RV.

Moreover, the results in Griffin and Oomen (2010), who introduce a model for
transaction time patterns for analyzing the effects of TkTS and TTS, suggest that
TkTS is equivalent to TTS for high levels of noise and is superior for low levels.
However, once a first-order bias correction is applied, TTS is preferable.

Table 13.3 illustrates the impact of the various sampling schemes on the number
of ticks available for the construction of the IV estimators. The numbers are based
on the two datasets used in our empirical illustration, see Sect. 13.8. Generally, the
number of ticks as well as the time scales are quite different across the sampling
schemes. For example, for the S&P500 E-mini the one minute CTS corresponds to
sampling about every 380 transactions in TTS and 1,750 events in ETS. For MSFT
we obtain 340 in TTS and 900 in QTS (see Sect. 13.8). For both assets the markets
have become more active, i.e. there are more quotes and trades in 2008 than in 2006.
As the tick number for the Bid and Ask are similar we just report here TkTS(B).

13.7.2 Computational Aspects

A unique feature of high-frequency datasets is the vast mounds of data. In compar-
ison to datasets commonly used in financial econometrics, e.g. daily financial data,
high-frequency data requires a different approach to data storage and retrieval. The
full Trade and Quote, TAQ, dataset contains for example around 10 million records
per day in November 2004 and around 150 million records per day in November
2008. Obviously, the mere storage, fast retrieval and processing of this amount
of data requires advanced information technology, which is discussed in this para-
graph. In addition to the established row-oriented database systems we also discuss
column-oriented systems and perform a comparison in terms of storage require-
ments and query execution speed. All computations are performed on the Microsoft
Windows.Net framework but can also be replicated in econometric/statistics pack-
ages, e.g. Matlab or R, given a suitable interface to the database.
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Structured data is usually stored in database management systems, i.e. software
packages that offer convenient, flexible and fast read and write access to it. There
is a high number of mature general purpose databases, including Microsoft SQL
Server, Oracle Database, IBM DB2 and others. They are all row-oriented, i.e.
they store entire records one after another, which may be highly disadvantageous
for analytical data. Only recently have column-oriented databases attracted more
attention, see Abadi et al. (2008). column-oriented databases store all the attributes
from different records belonging to the same column contiguously and densely
packed, which allows for more efficient read access, when few columns but many
rows are required. column-oriented storage can be traced back to the 1970s, when
transposed files and vertical partitioning clustering techniques were first studied.
The interest in these techniques accelerated during the 2000s, partially because of
the exponentially growing data volumes, which have become increasingly hard to
handle by general purpose row-oriented databases. Another factor, which necessi-
tates a rethinking of the design of database systems, is the increasing discrepancy
between processor and physical memory speeds (Boncz 2002). While over the last
decades transistor density in chips, affecting processor speed and storage density,
has closely followed Moore’s law – postulating a doubling of transistor chip density
every 18 months – external and internal memory latency have been lagging, creating
a growing bottleneck. Modern column-oriented databases are designed considering
this bottleneck. Each column is stored separately, typically using large disk read
units to amortize head seeks. Columnar values are stored densely, in sequence,
which especially on sparse data types, can deliver astonishing levels of compression
(see e.g. Stonebraker et al. 2005). Consider the storage of a bid price column,
for instance. There is approx. one price change per 50 quote size changes and
these price changes are mostly within a narrow band. Obviously the information
entropy of the column is quite low. Furthermore, to partially avoid the processing
cost involved in the decompression, column-oriented databases usually have query
executors which work directly on the compressed data Abadi et al. (2006). The
benefits of compression are not entirely limited to column-oriented stores but are a
lot bigger, considering that the information entropy of the values within a column is
almost always lower than the information entropy of the values within a record.

The biggest disadvantages of column-oriented storage manifest themselves
during tuple (record) reconstruction and write operations. Write operations are
problematic as inserted records have to be broken into columns and stored separately
and as densely packed data makes moving records almost impossible. Some of the
techniques used to mitigate the write issues are in-memory buffering and partition-
merging. The problem with tuple reconstruction is again that the data for a single
row is scattered in different locations on the disk. Most database interface standards
(e.g. ODBC) access the results of a query on a row basis, not per columns. Thus,
at some point of the query plan of a column-oriented database, the data from
multiple columns must be combined in records. Abadi et al. (2008) consider several
techniques, which can be used to minimize this reconstruction overhead.

A list of the currently available commercial column-oriented databases includes
Sybase IQ, Vertica, VectorWise, InfoBright, Exasol, ParAccel, SAP BI Accelerator,
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Kickfire and others. Not all of them are general purpose databases, e.g. InfoBright
is actually an MySQL storage engine and Kickfire is offered as an hardware
appliance. The most mature academic system is MonetDB/X100, developed at
Centrum Wiskund & Informaticas.

The MySQL/InfoBright solution can be referred to as a hybrid system, as
MySQL can simultaneously handle a number of different engines, including both
column- and row-oriented stores, which can be selected on a per table basis. The
usage of the highly mature MySQL database platform and the fact that InfoBright
is freely available in an open-source edition (InfoBright ICE), make it a good
candidate for academic comparison.

In the following we compare the retrieval speed and the compression levels of the
row-oriented Microsoft SQL Server, which is a mature database system, introduced
in 1989 and very well integrated into the whole palette of development tools from
Microsoft, and the column-oriented database MySQL/InfoBright. The dataset used
for the test comprises all transactions and quote updates in the first quarter of 2008,
a total of 97.9 million records.

The sizes of the sample in the form of: raw data, flat file, uncompressed Microsoft
SQL database, compressed Microsoft SQL database and compressed InfoBright
database are given in Fig. 13.1. Indeed, the compression rate of InfoBright is
astonishing – 1–20 compared to the raw data size. The implications are huge – a
raw dataset of e.g. 10 Terabyte (TB) can be stored on an off-the-shelf hard drive
with 500 GB capacity. On the contrary, Microsoft SQL manages to achieve only
compression ratios of 1–2, compared to the raw data size, and 1–3, compared to
the uncompressed Microsoft SQL database. The benefits of these rates may become
questionable in the light of the processor overhead caused by decompression.
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scale) for the InfoBright, Microsoft SQL compressed and Microsoft SQL uncompressed databases
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The performance of the two database systems will be compared with the help
of two queries, the first of which will test the speed of retrieval of aggregated and
filtered information, performing an in-database full table scan:

SELECT SecurityID, DateID, MIN(Timestamp),
MAX(Timestamp), SUM(Count), SUM(Size), MIN(Price),
MAX(Price) FROM tblTickES WHERE FieldID = 3 GROUP
BY SecurityID, DateID

The second query will test the sequential retrieval of all the information in the table
from an external environment:

SELECT SecurityID, DateID, Timestamp, FieldID, Price,
Size, Count FROM tblTickES

Both query types are important in analytical work (e.g. in econometrics) but the
performance of the second is especially relevant, as it is used on a more regular basis
and requires the transfer of huge amounts of data between applications, a process
which can quickly become a bottleneck for the whole system.

It is important to note that these tests were not performed under ideal conditions
and are in no way representative for the general and even optimal performance of
the two database systems. The tests are designed to assess the performance which
can be expected from the systems in a normal working environment by an analytical
worker, who is not able or willing to spend considerable amounts of time on learning
and optimizing the systems. The results of the tests on the second run are reported in
Fig. 13.1. The results of the first run are ignored because they can unfairly penalize
systems which make use of cache and memory to optimize their performance. The
results of runs after the second one, on the other side, can be too hardware specific,
since some systems could manage to cache large amount of data from hard drive
media in the memory.

The speed of retrieving all data from InfoBright is low. The number in Fig. 13.1
reports the result for the general ODBC driver for MySQL. Changes of diverse
settings in the ODBC driver did not improve the situation. The in-database query
speed of InfoBright is satisfactory. Overall, the compressed Microsoft SQL variant
offers a promising improvement over the uncompressed one – a factor of 1–6 for the
in-database query and slightly less than 1–2 for the external query.

To conclude, column-oriented database systems provide a comfortable way to
achieve a high comparison of the data and fast in-database queries. On the other
side a sequential retrieval of all records is significantly slower than for row-
oriented database systems. Thus, the preferred choice of the database system may
depend whether good compression or fast sequential retrieval of all records is
important.
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13.8 Empirical Illustration

Our empirical application aims at illustrating the impact of market microstructure
noise on the estimation of IV in finite samples and on an empirical comparison of
the various estimators. To this end, we consider two high-frequency datasets over
the first quarters of 2008: data on the highly liquid futures S&P500 E-mini and on
an individual stock, i.e. of Microsoft, MSFT. The reason for this choice is, that the
data sources and the type of asset are quite different allowing for a more detailed
analysis of the market microstructure noise and the performance of the estimators.

The S&P500 E-mini, is traded on the CME Globex electronic trading platform
and the dataset consists of all transaction and quotation updates in correct order and
with time-stamps given in milliseconds. The quality of the data is very high and
no filtering or cleaning is required, except for a trivial removal of any non-positive
prices or volume. Note that in our application we roll-over between the most liquid
contracts.

Such highly accurate information is not available for MSFT, which is obtained
from the (monthly) TAQ dataset, disseminated by the NYSE for all listed stocks.
The dataset includes quotation updates and transactions provided in separate files
and the time-stamps are available only up to the precision of a second. This
requires a more involved data filtering and cleaning. As the TAQ is probably the
most popular high-frequency dataset, we give here a few more details on the data
manipulations conducted for our analysis. In particular, we focus on the TAQ data
coming from the NASDAQ, such that we filter all records with exchange identifiers
being different from T, D or Q, as specified in the TAQ 3 User’s Guide (2004–2008).
For transactions we have additionally removed records with a CORR attribute
different from 0 or 1. The resulting data contains numerous outliers, such as prices
equal to 0.01$ or 2,000$ right next to regular prices varying around the usual trading
price range of MSFT, i.e. around 30$. Such outliers have been removed by first
dismissing records with non-positive price or size and by discarding records with
a price that deviates from the last one by more than 10%. More advanced methods
involve filtering based on rolling windows and a deviation threshold adapted to the
current volatility of the price, see Brownlees and Gallo (2006).

One of the major problems of the TAQ dataset, however, is the separate
distribution of transaction and quote data and the lack of millisecond precision in
the time-stamps, such that the exact order of the generation of transaction prices and
quotes over the trading day cannot be deduced. An approach to match transactions
at least to the corresponding bid and ask quotes has been proposed in Lee and
Ready (1991). For volatility estimation such synchronicity is only required for
sampling schemes involving price type pairs. For MSFT we have, thus, limited
TTS to transaction prices and introduce a modification of ETS, which only regards
quote updates as events, called quote-time sampling (QTS). This sampling scheme
can of course be applied to mid-quotes, bid and ask prices avoiding any mixing of
transaction and quote series.
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13.8.1 Type and Magnitude of the Noise Process

A common tool to visualize the impact of market microstructure noise on the high-
frequency based volatility estimators are the so-called volatility signature plots made
popular in Andersen et al. (2000). Depicted are usually the average estimates of
daily volatility as a function of the sampling frequency, where the average is taken
across multiple days, i.e. in our case all trading days in the first quarter of 2008.
Figure 13.2 shows the volatility signature plots for RV based on different sampling
schemes and different prices.

Overall, it seems that CTS is most strongly affected by market microstructure
noise, compared to the alternative sampling schemes. This is important, as CTS
is probably the most commonly applied sampling method. Moreover, under the
assumption of a pure jump diffusion price process, Oomen (2006) shows theoreti-
cally that TTS is superior to CTS, if the in a MSE sense optimal sampling frequency
is used.

Interestingly, the biases observed in the RV estimates for both of our datasets
are all positive, irrespective of the sampling scheme and the employed price series.
Moreover, we find across all sampling schemes that transaction prices produce the
most severe bias in the case of the S&P500 E-mini (note that all quotes series
yield identical RVs in both CTS and TTS and we thus only display the estimates
based on the mid-quotes), but are preferable for MSFT. Using the same stock but a
different sample period, Hansen and Lunde (2006) instead observe a superiority
of quotation data in terms of bias reduction and a negative bias if quote data
is used. The latter may be induced by the non-synchronous quote revisions or
price staleness. Recall that another source of a negative bias may be given by
the dependence between the efficient price and the noise. Obviously, the potential
presence of these different types of market microstructure effects make it difficult
to draw general statements on the expected sign and size of the biases in the RV
estimator and the preferable sampling method/price series. Negative and positive
biases may be present at the same time, leading to overall small biases or to
non-monotone patterns like the one observed for the S&P500 E-mini under ETS.
Volatility signature plots based on estimators that are robust to particular types of
microstructure noise, allow to shed more light on the noise effects. Using a kernel-
based approach, Hansen and Lunde (2006) for example find, that the iid robust RV
based on transaction prices also exhibits a negative bias and that this may be due to
endogenous noise.

Instead of using pure visual inspections to judge the presence and potential
type of market microstructure noise, Awartani et al. (2009) propose statistical tests
on the no noise assumption and on noise with constant variance. The no market
microstructure noise test builds on the idea, that RV sampled at two different
frequencies, e.g. very frequently and sparsely, should both converge in probability
to IV. The test therefore evaluates, whether the difference of both estimators is zero.
Asymptotically the test statistic is normally distributed. The implementation of the
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Fig. 13.2 Volatility signature plots for RV of S&P500 E-mini (left) and MSFT (right), first
quarter 2008, based on different sampling schemes and different price series: transaction prices
(circles), mid-quotes (rhombuses) and bid/ask prices (triangles). The bold vertical lines represent
the frequency equal, on average, to 5 s, 1 and 5 min in the respective sampling scheme, the
horizontal line refers to the average RV estimate based on a 30 min frequency

test of course depends on the choice of both sampling frequencies. As an alternative,
Awartani et al. (2009) suggest to exploit the autocovariance structure of the intraday
returns. Focusing on the first lag, the scaled autocovariance estimator over e.g. n
days can be expressed by
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where Nm D nm. Under the null of no noise the last three terms converge to zero
almost surely. The first term therefore drives the asymptotic distribution of the test
statistic which is given by:
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Figure 13.3 presents the test statistic and corresponding confidence intervals as a
function of the sampling frequency over the first quarter of 2008. The results indicate
that the noise “kicks in” at frequencies exceeding approximately 1 and 3 min for the
S&P500 E-mini and MSFT data, respectively. Moreover, if quote data is used in
the case of MSFT, then the noise robust sampling frequency should be lower than
approx. every 5 min.

Most of the noise robust estimators have been derived under the assumption of
iid noise, implying also that the noise has a constant noise variance, irrespective
of the sampling frequency. Awartani et al. (2009) therefore propose a test for the
null of constant noise variance. To this end it is instructive to first consider feasible
estimators of the noise variance. Based on the bias of RV in the presence of iid
noise, see (13.3), the noise variance can be estimated by Q!2 D RV=2m using
sparse sampling. However, Hansen and Lunde (2006) show that this estimator will
overestimate the true noise variance whenever IV=2m is negligible. They therefore
suggest the following estimator:

O!2 D RV .mK/ �RV .mJ /

2.mK �mJ /
; (13.14)

where mJ denotes a lower sampling frequency, such that RV .mJ / is an unbiased
estimator of IV. However, both variance estimators may be inadequate if the iid
noise assumption is not appropriate, which may be the case at very high frequencies.
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Fig. 13.3 Tests on no noise. Depicted are the zAC;1 statistics and corresponding confidence
intervals (dashed) based on different sampling frequencies for the S&P500 E-mini (left) and MSFT
(right) using TTS/QTS and transaction (top), mid-quote (middle row) and bid/ask quote (bottom)
price series. The bold vertical lines give the frequency equal, on average, to 5 s, 1 and 5 min

The constant noise variance test of Awartani et al. (2009) considers the difference
between two noise variances estimated at different sampling frequencies:

zIND D p NmJ

RV . NmK/�RV . NmL/

2 NmK � RV . NmJ /�RV . NmL/

2 NmJs

3
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Table 13.4 Test on constant noise variance. Reported are the test statistics zIND . Asterisks denote
rejections at the 5% significance level

S&P500 E-mini, TTS, B MSFT, TTS, T
mJ mJ

mK 40 90 120 240 mK 90 180 360 420
60 20.71� – – – 180 8.86� – – –
120 15.43� 2.61� – – 360 9.09� 5.78� – –
300 12.38� 1.2 0.85 �0.61 540 6.65� 4.11� 2.73� 1.6

where the third frequency NmL should be unaffected by the noise. Moreover,
mJ<mK .

Table 13.4 presents the test results for some pairs of mK and mJ , where the
choice of mL is conditional on the no noise test results. Obviously, the constant
variance assumption is rejected only at the very high frequencies. The results are
very much in line with those reported in Awartani et al. (2009) and we conclude
that noise seems to be statistically significant at frequencies higher than 1–5 min
(depending on the dataset and the price series used) and that the iid noise assumption
is violated only at the ultrahigh frequencies, e.g. at approximately 0.5 min TTS, B
sampling for S&P500 E-mini and at 1.5 min TTS, transaction prices for MSFT.

The noise test results may serve as a guidance for the selection of the sampling
frequencies in the noise variance estimation, see (13.14). In particular, mJ should
be set to a frequency where no noise is present, while mK should correspond
to a very high frequency, at which, however, the iid assumption is not violated.
The procedure should produce reliable noise variance estimates. Applying this
method to the S&P500 E-mini, for example, yields an estimated signal-to-noise
ratio 2mJ!

2=IV of about 8% using TTS, B. In contrast, Q!2 yields a signal-to-noise
ratio of about 45%.

13.8.2 Volatility Estimates

In the following we provide an empirical illustration of the various volatility estima-
tors. To this end we first need to determine the values of the hyperparameters, which
can be partly guided by the findings of the previous section. In the computation
of TTSRVadj , for example, we can set the return horizon of the slow time scale
(K) to the highest frequencies without significant noise and the horizon of the fast
time scale returns (J ) to the highest frequencies at which the iid assumption is
not violated. For the KRV estimator we implement the non-flat-top Parzen kernel.
The optimal bandwidth H is selected to minimize the variance of the estimator, as
described in Sect. 13.4. Estimates for !2 and IV are derived from the full sample
period to obtain constant values H.m/ for all days.

In the implementation of the RRV estimator we vary K and sample at every
observation in each interval. The DRV estimator is implemented in its first exit time
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variant. Specifically, in the first half of the day the next exit time is used, while the
second half of the day is based on the previous exit time. We depict the results
for 8 ticks on the original scale, which is converted to the logarithmic scale at
the beginning of each day using the current price level. Note that we have also
experimented with alternative numbers of ticks ranging from 1 to 15 and we found
that the resulting IV estimates are quite stable for values of r D 3–14.

Following Christensen et al. (2009b), we compute the subsampled version of the
QRV estimators for three different block lengths, mK D 20; 40; 100, for a fixed
set of quantiles, N� D .0:80; 0:85; 0:90; 0:95/0, and asymptotically optimal weights.
These parameters are also adopted for the QRVi id estimator. While the optimal value
of L can be determined by a data-driven simulation of the MSE loss function, we
set here L to a conservative value of 20 and c D 0:02, which is motivated by the
finite sample performance study of Christensen et al. (2009b). Nevertheless, note
that ideally L and c should be chosen at each sampling frequency m. Thus, our
volatility signature plots of QRV should be interpreted with care.

Figures 13.4 and 13.5 depict the resulting volatility estimates over the period
from 01/01/2006 to 05/31/2008 with respect to various sampling frequencies m.
Clearly, the estimators that have been derived under the no noise assumption seem
to be subject to severe positive biases at high frequencies, with the exception of the
BPV for the S&P500 E-mini, which seems to be negatively biased. Interestingly, the
two estimators that are robust to time-dependent noise specifications, i.e. TTSRV
and KRV, appear to be unbiased. In contrast, the QRViid is negatively biased at
ultrahigh frequencies, pointing towards the presence of time-dependent noise at
those frequencies. Overall, the results are thus in line with our findings from the
noise specification tests. Moreover, although the DRV estimator has been formally
derived under the no noise assumption, we find empirical support for the simulation
results of Andersen et al. (2009), indicating that DRV is robust to iid and serial
dependent noise. (Note that we do not report DRV for MSFT due to the coarse time
stamping.)

Another aspect that should be kept in mind when interpreting the volatility
estimates is that some estimators do not only measure IV, but additionally the
variation due to jumps. From a closer, i.e. zoomed-in, look at the volatility signature
plots (not presented here), however, we cannot observe systematically lower
volatility estimates based on the jump robust estimators. Testing for the relative
contribution of jumps to total price variation based on the ratio BPV to RV, see e.g.
Huang and Tauchen (2005), we do not find significant evidence for jumps at lower
frequencies, e.g. lower than 5 min for the S&P500 data, respectively. Computing the
tests at various sampling frequencies, similarly to the volatility signature plots, we
could, however, observe that the relative jump contribution seems to be increasing
strongly at the very high frequencies (e.g. for the S&P500 E-mini we observe that
20% of the total price variation is due to jumps at a sampling frequency of 1 s and
reaches up to 80% for ultrahigh frequencies). Still it is interesting to understand
the behavior of the statistic at higher frequencies, which, at a first glance, points
to significant presence of discontinuities. BPV and the jump statistic are not derived
under microstructure noise. We know that bid prices are rather stale, with long series
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Fig. 13.4 Volatility signatures of the various high-frequency based estimators for the S&P500
E-mini based on TTS with bid prices over the period from 01/01/2006 to 05/31/2008. The bold
vertical lines represent the frequency equal, on average, to 5 s, 1 and 5 min
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Fig. 13.5 Volatility signatures of the various high-frequency based estimators for MSFT based
on QTS with transaction prices over the period from 01/01/2006 to 05/31/2008. The bold vertical
lines represent the frequency equal, on average, to 5 s, 1 and 5 min
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of zero-return observations and infrequent returns of at least one tick. If we imagine
a scenario, in which we sample in TTS and there are at least two transactions
between every two consecutive price moves, actually not so far from reality, then
there will be no two consecutive returns, both ¤ 0, and therefore BPV goes to zero.
Thus, from the perspective of BPV, high-frequency data approaches a pure jump
process as the frequency of the observations increases.

13.9 Conclusion

In this chapter we have reviewed the rapidly growing literature on volatility esti-
mation based on high-frequency financial data. We have paid particular attention to
estimators that exploit different facets of such data. We have provided a theoretical
and empirical comparison of the discussed estimators. Moreover, statistical tests
indicated that for the series considered in this chapter market microstructure noise
can be neglected at sampling frequencies lower than 5 min, and that the common
assumption of iid noise is only violated at the very high frequencies. The specific
type of noise at these ultra-high frequencies is still an open question. Interestingly,
estimators that are robust to serial dependent and/or endogenous noise (TSRV; KRV)
seem to provide plausible estimates at all frequencies. Nevertheless, understanding
the properties of estimators under different noise types could be considered in more
detail within a simulation study, allowing also for a more thorough comparison of
the various estimators in terms of their finite sample performance.
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Chapter 14
Identifying Jumps in Asset Prices

Johan Bjursell and James E. Gentle

14.1 Jump/Diffusion Models of Asset Prices

For over a hundred years, diffusion differential equations have been used to model
the changes in asset prices. Despite obvious fundamental problems with these
equations, such as the requirement of continuity, they often provide adequate local
fits to the observed asset price process. There are, however, several aspects of the
empirical process that are not fit by simple diffusion equations.

Direct observation indicates that the standard deviation of an asset’s price
changes is not constant. A diffusion model can be modified so that this term is
not constant. There are, of course, several ways that this can be done, for example,
by coupling the basic diffusion model with another stochastic differential equation
that models changes in the standard deviation.

Direct observation indicates that the distribution of an asset’s price changes,
even over local periods in which parameters can be assumed constant, do not
follow a Gaussian distribution. The observations clearly cannot be realizations of
a random process with a kurtosis of 0. Again, it might be possible to modify a
simple diffusion equation so that the stochastic component has heavy tails. Various
continuous probability distributions with varying tail weights, or with other non-
Gaussian moment properties such as skewness can be used instead of a simple
Brownian process.

Finally, direct observation indicates that asset prices often suddenly change by
a very large amount. While a diffusion model could perhaps account for this kind
of change if the random component has extremely heavy tails, this approach has
the problems of dealing with infinite moments. Many statistical procedures such
as those based on least-squares cannot be used. Many statistics of interest, such as
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confidence intervals, cannot be computed. In addition, the fundamental disconnect
between a continuous-time model and real world markets remains. An alternative
approach to the problem of using diffusion differential equations to model a process
that may suddenly change by a very large amount is to superimpose a discrete jump
process on the continuous diffusion process.

Let Xt D logSt denote the logarithmic price where St is the observed price at
time t . Assume that the logarithmic price process, Xt , follows a continuous-time
diffusion process coupled with a discrete process defined as,

dXt D �tdt C �tdWt C �tdqt ; (14.1)

where �t is the instantaneous drift process and �t is the diffusion process;Wt is the
standard Wiener process; qt is a counting process with intensity �t , that is, P.dqt D
1/ D �tdt ; and �t is the size of the price jump at time t if a jump occurred. If Xt�
denotes the price immediately prior to the jump at time t , then �t D Xt � Xt�.

This model has been used in various applications of financial modeling, such
as options pricing; see Cont and Tankov (2004) for general background and
methodology. Use of this model raises two interesting questions:

when has a jump occurred and how large was the jump?

That is, in an observed sequence of prices, fXtg, identify tj when the counting
process fired, and determine �tj D Xtj �Xtj�.

In Sect. 14.2, we study some tests that have been proposed for identification of
jumps in a jump/diffusion process, and Sect. 14.3, we consider applications of this
model in the context of the U.S. energy futures market. This is an interesting setting
for a model with jumps because of the effects of the regular release of data on
petroleum commodities by the U.S. Energy Information Administration.

14.2 Identification of Jumps

An increase in the availability of high-frequency data has produced a growing
literature on nonparametric methods to identify jumps such as Barndorff-Nielsen
and Shephard (2004, 2006), Fan and Wang (2007), Jiang and Oomen (2008), Lee
and Mykland (2008) and Sen (2008) This section introduces the work by Barndorff-
Nielsen and Shephard, which many others have built on and used as a benchmark.

14.2.1 Theoretical Framework

Define the intraday return, rtj , as the difference between two logarithmic prices,

rtj D Xtj � Xtj�1 ; (14.2)
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where tj denotes the j th intraday observation on the t th day. Let � denote the
discrete intraday sample period of length, tj � tj�1. The realized variance is defined
as the sum of squared intraday returns,

RVt D
mtX

jD1
r2tj ; (14.3)

where mt is the number of �-returns during the t th time horizon (such as a trading
day) and is assumed to be an integer. Jacod and Shiryaev (1987) show that the
realized (quadratic) variation converges to the integrated variation assuming that
the underlying process follows (14.1) without jumps (� D 0). Furthermore, in the
presence of jumps (� > 0), the realized volatility converges in probability to the
total variation as �!0,

RVt

p!
Z t

t�1
�2s ds C

X

t<s<tC1
�2.s/: (14.4)

Hence, the realized variation captures the effects of both the continuous and the
discrete processes where the first term in (14.4) is the return variation from the
diffusion process and the second term is due to the jump component.

A second estimator of the integrated variance is the realized bipower variation,
which is defined as,

BVt D ��1
1

mt

mt � 1

mtX

jD2
jrtj jjrtj�1 j; (14.5)

where �1 is a constant given by,

�k D 2k=2p


�



k C 1

2

�
; (14.6)

where � is the Gamma function. Barndorff-Nielsen and Shephard (2004) show that
as � ! 0,

BVt

p!
Z t

t�1
�2s ds: (14.7)

The result follows from that only a finite number of terms in the sum in (14.5)
are affected by jumps while the remaining returns go to zero in probability. Since
the probability of jumps goes to zero as � ! 0, those terms do not impact the
limiting probability. Hence, the asymptotic convergence of the bipower variation
captures only the effects of the continuous process even in the presence of jumps. By
combining the results from (14.4) and (14.7), the contribution of the jump process
in the total quadratic variation can be estimated by the difference between these two
variations where,
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RVt � BVt

p!
X

t<s<tC1
�2.s/; (14.8)

as � ! 0. Hence, (14.8) estimates the integrated variation due to the jump
component and, as such, provides the basis for a nonparametric statistic for
identifying jumps.

Barndorff-Nielsen and Shephard (2004, 2006) and Barndorff-Nielsen et al.
(2006) show that in the absence of jumps in the price process,

��1=2 RVt � BVt
��
�bb � �qq

� R t
t�1 �4.s/ds

�1=2
p! N.0; 1/; (14.9)

as � ! 0 where RVt and BVt are defined in (14.3) and (14.5) and �bb D

2=2C 
 � 3 and �qq D 2. The integral in the denominator, called the integrated
quarticity, is unobservable. From the work by Barndorff-Nielsen and Shephard
(2004) on multipower variations, Andersen et al. (2007) propose to estimate the
integrated quarticity using the realized tripower quarticity, TPt , which is defined as,

TPt D mt�
�3
4=3

mt

mt � 2

mtX

jD3

2Y

iD0
jrtj�i j4=3; (14.10)

where �4=3 is defined in (14.6). Asymptotically, as � ! 0,

TPt
p!
Z t

t�1
�4s ds: (14.11)

Hence, a test statistic based on (14.9) is given by,

��1=2 RVt � BVt
��
�bb � �qq

�
TPt

�1=2 : (14.12)

Barndorff-Nielsen and Shephard (2004, 2006) propose a number of variations
of the statistic in (14.12), all of which asymptotically have a standard normal
distribution. See Huang and Tauchen (2005) for a list of these statistics and finite
sample studies of their properties. Empirical studies favor the statistic,

ZTPRM;t D RJts
�
�bb � �qq

�
1
mt

max

�
1; TPt

BV2
t

 ; (14.13)

where

RJt D RVt � BVt

RVt

: (14.14)
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The ratio, RJt , is an estimator of the relative contribution of the jump component to
the total variance.

14.2.2 Market MicroStructure Noise

The test statistic relies on estimates of integrated variations, which are obtained with
model-free methods on high-frequency intraday data. The asymptotic results hinge
on efficient (noise-free) price processes. Observed prices, however, are noisy due
to market microstructure. Thus, the variation in intraday returns can be attributed
to two components: the efficient price returns and the microstructure frictions. The
variance generated by market frictions is the result of price formation under specific
trade mechanisms and rules, such as discrete price grids and bid-ask bounce effects.
Such noise introduces bias in the variance estimates, which becomes particularly
severe at high sampling rates. The variance due to noise rather than the integrated
variance will dominate the estimate as the sampling interval goes to zero.

One approach that is used in the applied literature to alleviate the bias is simply
to sample the price process at lower frequencies than what the data permits. The
sampling intervals are typically arbitrarily chosen and commonly in the range of
5–30 min. Bandi and Russell (2006) and Zhang et al. (2005) propose methods that
finds an optimal sampling rate for estimating the realized volatility. Andersen et al.
(2007) take another approach to reduce the bias. These methods are introduced in
this section.

14.2.2.1 Optimal Sampling Rate

Define a noisy logarithmic price process, Yti , which is observed in the market by,

Ytj D Xtj C �tj ; (14.15)

where �tj denotes the microstructure noise process. The observed returns,ertj , are
then given by,

ertj D Ytj � Ytj�1 D rtj C �tj ; (14.16)

where as before rtj denotes the efficient returns,

rtj D Xtj �Xtj�1 : (14.17)

The microstructure noise in the observed return process is given by,

�tj D �tj � �tj�1 : (14.18)

The random shocks, �tj , are assumed to be iid with mean zero and variance �2� .
Furthermore, the true price return process, rtj , and the noise process, �tj , are
assumed to be independent.
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The efficient returns are then of order O.
p
�/, which follows from the definition

of the true price returns in (14.17) and the properties of the standard Brownian
motion. Meanwhile, the microstructure noise, �tj , is of order O.1/. The indepen-
dence from the time duration in the microstructure noise component is motivated
by that adjustments of observed prices (such as the bid-ask spread) are fixed in
size regardless of how short the time interval is. Hence, the accumulated noise
dominates the realized variance at high sampling rates, whereas at lower sample
rates the variance of the efficient price process is proportionally larger compared to
the component due to noise.

An optimal sampling rate is obtained by minimizing the conditional mean-square
error (MSE), which Bandi and Russell (2006) show can be written as,

E

0

@
mtX

jD1
er2ti �

Z t

t�1
�2s ds

1

A
2

D 2
1

mt

.Qt C o.1//Cmtˇ Cmt
2˛ C �; (14.19)

where Qt denotes the quarticity,
R t
t�1 �

4ds. The three other parameters are defined
as,

˛ D �
E
�
�2t
��2
;

ˇ D 2E
�
�4t
� � 3 �E ��2t

��2
;

� D 4E
�
�2t
� Z t

t�1
�2s ds � E

�
�4t
� � 2 �E ��2t

��2
:

The optimal number of samples,m0, is obtained by minimizing the MSE in (14.19).
Bandi and Russell (2006) show that m0 can be approximated by,

m0 �



Qt

.E.�2//2

�1=3
; (14.20)

when the optimal sampling frequency is high. Notice that the approximation does
not depend on the fourth moment and has a closed-form solution. Intuitively, the
approximation seems reasonable since for large estimates of the second moment of
the microstructure noise component, �tj (that is, the more contaminated the series
is), the lower the sampling frequency should be.

14.2.2.2 Staggered Returns

Andersen et al. (2007), Barndorff-Nielsen and Shephard (2006) and Huang and
Tauchen (2005) evaluate a different approach to reduce the impact of microstructure
noise. Specifically, the method addresses the bias generated by spurious correlations
in the returns due to noise, such as the bid-ask spread, which generates negative
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correlations. Any correlation structure in the returns may bias the bipower, tripower
and quadpower estimators since these are functions of adjacent returns. The
method, referred to as staggered returns, attempts to break up or at least reduce
the correlation structure by skipping one or more returns when computing the
estimators. The bipower variation using staggered returns becomes,

BVtCi D 


2

mt

mt � 1 � i
mtX

jD2Ci
jrtj jjrtj�1�i j: (14.21)

The offset, i , is chosen based on the order of the autocorrelation in the return
process. Similarly, the staggered version of the tripower quarticity is defined by,

TPt D mt�
�3
4=3

mt

mt � 2.1C i/

mtX

jD1C2.1Ci /

2Y

kD0
jrtj�k.1Ci /

j4=3: (14.22)

14.2.3 Empirical Results

The following section presents finite sample results of the statistics and examines
the implications of noise.

14.2.3.1 Design of Simulation Study

The setup follows Huang and Tauchen (2005), who consider a one-factor stochastic
volatility jump-diffusion model written as,

dXt D �dt C eˇ0Cˇ1vt dwp;t C �tdqt ;

dvt D ˛vvtdt C dwv;t ; (14.23)

where vt is a stochastic volatility factor; ˛v is the mean reversion parameter; and dwp
and dwv are standard Brownian motions with correlation, �. qt is a discontinuous
jump process where jumps occur at a rate denoted by �. �t is the size of the jumps.
In the following, we refer to the model defined in (14.23) as SV1F for �t D 0, that
is, when no jumps are simulated, and SV1FJ otherwise.

Table 14.1 presents values of the parameters in the data-generating processes that
we consider. The values are obtained from Huang and Tauchen (2005), who select
the values based on empirical studies reported in literature.

We simulate observed prices per second. The number of simulated prices per
interval t is equivalent to six hours and a half of trading, that is, t corresponds to
a typical trading day. We compute intraday price returns for time intervals ranging
from 1 s to 30 min. We assume that the number of jumps in the SV1FJ model has
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Table 14.1 The experimental design for SV1F and SV1FJ (14.23) where the jump rate, �, is set
to zero for SV1F

Parameter Value

� 0.030
ˇ0 0.000
ˇ1 0.125
˛v �0.100
� �0.620
� f0.000, 0.014, 0.118, 1.000, 2.000g
�jmp f0.500, 1.000, . . . , 2.500g

a Poisson distribution; hence, the interarrival times have an exponential distribution
with parameter �. The size of the jumps, �, has a normal distribution with zero mean
and variance, �2jmp. This jump model produces the asymmetric leptokurtic features of
the return distribution which is typical for market data.

Figure 14.1 graphs realizations of 10000 simulated days from the SV1FJ model.
The parameters � and �jmp are 0:014 and 1:50, respectively. The top panel plots daily
closing prices; the second panel plots daily price returns; the third panel plots the
volatility factor, vt ; and the bottom panel plots the jump component, �tdqt .

14.2.3.2 Optimal Sampling Rates

Bandi and Russell (2006) derive optimal sampling frequencies for estimating the
integrated variance,

R t
t�1 �

2
s ds, using the realized variation estimator, RVt . The jump

statistics, however, also require the bipower, BVt , and tripower, TPt estimators,
all of which are based on intraday sampling. We evaluate how well the optimal
sampling rates apply to these power variations.

For this study, we assume that the return process, Xt , follows the geometric
Brownian motion with constant drift and volatility so that the bias and mean-square
error can be computed without any error. Thus, let the data-generating process be,

dXt D �dt C �dWt ; (14.24)

whereWt is a standard Wiener process and the drift, �, and volatility, � , parameters
are constant. Let Yti denote the observed noisy price process given by,

Yti D Xti C �ti ; (14.25)

where �ti is normally distributed. The estimates are mean values of 1000 realized
trading days per data point, where each trading day is equivalent to six and a half
hours. The drift rate, �, is zero and the volatility, � , is one. The sampling intervals
range from 1 to 60 min in increments of 1 min.
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Fig. 14.1 The figure plots results based on realizations of 10000 simulated days of the SV1FJ
model, (14.23). The experimental design is described in Table 14.1 with � D 0:014 and �jmp D
1:50. The top panel is the daily closing price; the second panel is the daily price returns given by
the logarithmic difference between the last and first price; the third panel plots the volatility factor,
vt ; and the bottom panel plots the jump process

Panel A in Fig. 14.2 plots the bias (first column), variance (second column) and
mean square error (third column) for the realized variance (RVt ), bipower variation
(BVt ) and tripower variation (TPt ) for a price process without noise. Under these
conditions, the asymptotic theory states that the price process should be sampled
as frequently as possible. Consistent with this, the MSE obtains its minimum at the
highest frequency, that is, 1 min and increases linearly with the sampling interval.
This is expected since the variance is negatively related to the sampling frequency.



380 J. Bjursell and J.E. Gentle

Bias

RV

0.0

0.5

1.0

Variance

0.0

0.1

0.2

0.3

MSE

0.0

0.5

1.0

1.5

BV

0.0

0.5

1.0

0.0

0.2

0.4

0.0

0.5

1.0

1.5

TP

0

1

2

Sampling interval (minutes)

0

1

2

3

0 20 40 60 0 20 40 60 0 20 40 60

0

1

2

3

4

Bias

RV

0.0

0.5

1.0

Variance

0.0

0.1

0.2

0.3

MSE

0.0

0.5

1.0

1.5

BV

0.0

0.5

1.0

0.0

0.2

0.4

0.0

0.5

1.0

1.5

TP

0

1

2

Sampling interval (minutes)

0

1

2

3

0

1

2

3

4

0 20 40 60 0 20 40 60 0 20 40 608.8

Panel A: No Noise

Panel B: Noise

Fig. 14.2 The figure plots bias, variance and mean-square error for three estimators: realized
variance (RVt ), bipower (BVt ), and tripower (TPt ) variations. Prices are generated from the
geometric Brownian motion model, (14.24), with � D 0 and � D 1. Panel A plots results for
efficient price series; Panel B presents results where an iid N.0; 0:0402/ noise component is added
to the price process
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Panel B graphs the equivalent results with the standard deviation of the noise
component equal to 0:040. The pattern is consistent across all three estimators.
The bias is large at high sampling frequencies but drops as the sampling interval
increases by a few minutes and thereafter flattens out after about 10 min. Similarly,
as in the previous case with no noise, the variance is low at the highest sampling
frequencies but increases nearly linearly as the sampling frequency drops. As a
result, the mean-square error peaks at the shortest sampling interval but drops
rapidly and reaches its minimum around 7–10 min.

We estimate the optimal sampling rates by Bandi and Russell (2006) (BR) and
compare with the minimum point of the MSE. For the first set of results without
noise, the optimal sampling intervals are about 20 s for BR. Once we add noise
to the observed prices, the MSE in Panel B in Fig. 14.2 suggests that the optimal
sampling interval is in the range of 7–10 min for all three estimators. The mean
(standard deviation) of the sampling interval based on 1000 simulations using BR
is 8:8 (1:8) min. The vertical line in the MSE plots represents the BR estimate. The
sampling rate given by BR coincides with the minimum of the MSE for all three
estimators. In sum, these results suggest that the optimal sampling rates derived for
the realized variance also are appropriate for the bipower and tripower estimators.

14.2.3.3 Asymptotics

This section documents the convergence to the asymptotics of the jump statistics.
We examine the distribution of the ZTPRM statistic as �! 0 by generating 100 trad-
ing days from the SV1F model and compute the jump statistics per day. Thereafter,
we calculate the p-value from the Kolmogorov–Smirnov test of normality. The
results are equivalent for the Anderson-Darling and Shapiro-Francia tests. We repeat
these steps 100 times and examine the distribution of the p-values, which is uniform
under the asymptotic theory. We produce these results for sampling intervals, �,
ranging from 1 s to about 30 min; specifically,� D 1; 2; 4; : : : ; 2048 s.

Panel A in Fig. 14.3 plots histograms for prices without noise. The labels
specifies the sampling interval, �, in seconds. The distributions appear to be
uniform with the exception for the longest sampling intervals (1024 and 2048).
Panel B graphs histograms for a price process with a relatively severe noise
component, NIID.0; 0:160/, which show that there are proportionally too many
small p-values at the lower sampling frequencies. In spite of the severe noise
process, the distribution converges to a normal distribution for the high frequency
estimates. We examine the mean and standard deviations of the jump statistic which
asymptotically are zero and one, respectively. Panel A in Table 14.2 presents the
mean and standard deviation of 10000 realizations of the ZTPRM statistic. The row
labels denote the sampling interval in seconds, and the column labels denote the
standard deviation of the noise process. The means remain close to zero for efficient
prices (first column); however, even for small levels of noise, the estimates become
negatively biased at high sampling frequencies. For the lowest levels of noise
(�mn D 0:027), a sampling interval around 3 min or longer seems appropriate. The
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Fig. 14.3 The figure graphs histograms of 100 p-values from the K-S test on 100 realizations of
the ZTPRM statistic. Prices are simulated from the SV1F model, (14.23). The plot labels denote the
sampling interval, �, in seconds. Panel A plots results for efficient price series; Panel B presents
results where an iid N.0; 0:1602/ noise component is added to the price process

optimal frequency drops as the noise intensifies. Similarly, the standard deviation
is biased. Panel B presents estimates for staggered intraday returns which are offset
by one lag. The means are close to zero at any noise level and sampling frequency.
Similarly, the standard deviations are close to one. Hence, offsetting the intraday
returns appears to adequately address the impact of noise.

The results without offsetting the intraday returns presented in Panel A in
Table 14.2 suggest that for each noise variance, there exists a range of sampling
intervals that produces estimates of the moments that are consistent with the
asymptotic properties. The objective of the optimal sampling rate method introduced
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Table 14.2 The table presents means and standard deviations (in parentheses) of the ZTPRM

statistic for 10000 price paths. The prices are generated from the SV1F model, (14.23). Panel
A and Panel B report estimates without and with staggered returns by one lag

0.000 0.020 0.040 0.080 0.160 0.320
Panel A: No Staggering

1 0:01 �21:04 �23:00 �23:53 �23:66 �23:69
.1:00/ .1:61/ .0:84/ .0:73/ .0:72/ .0:72/

2 0:01 �13:37 �15:77 �16:50 �16:68 �16:73
.1:01/ .1:77/ .0:91/ .0:73/ .0:72/ .0:71/

4 �0:01 �7:85 �10:54 �11:49 �11:76 �11:83
.0:99/ .1:77/ .1:01/ .0:76/ .0:72/ .0:72/

8 0:01 �4:10 �6:71 �7:89 �8:25 �8:34
.0:98/ .1:52/ .1:09/ .0:79/ .0:73/ .0:72/

16 �0:00 �1:81 �3:94 �5:27 �5:73 �5:87
.1:00/ .1:24/ .1:12/ .0:83/ .0:73/ .0:72/

32 0:00 �0:65 �2:06 �3:36 �3:92 �4:11
.1:00/ .1:04/ .1:06/ .0:87/ .0:75/ .0:72/

64 0:01 �0:19 �0:91 �1:97 �2:63 �2:87
.0:99/ .1:00/ .1:00/ .0:90/ .0:78/ .0:74/

128 0:02 �0:03 �0:33 �1:01 �1:65 �1:95
.0:98/ .0:98/ .0:98/ .0:93/ .0:83/ .0:76/

256 �0:01 0:00 �0:11 �0:45 �0:93 �1:27
.0:98/ .0:97/ .0:98/ .0:95/ .0:86/ .0:79/

512 �0:02 �0:01 �0:02 �0:15 �0:47 �0:79
.0:98/ .0:98/ .0:98/ .0:96/ .0:91/ .0:83/

1024 0:00 0:01 �0:01 �0:06 �0:19 �0:43
.1:00/ .0:99/ .1:00/ .0:98/ .0:94/ .0:89/

2048 0:01 0:00 0:01 �0:01 �0:07 �0:21
.0:99/ .1:00/ .0:99/ .0:99/ .0:98/ .0:95/

Panel B: Staggering
1 �0:01 �0:02 �0:01 �0:01 �0:02 �0:02

.1:00/ .1:00/ .0:99/ .0:99/ .0:99/ .0:99/
2 0:00 0:01 0:00 0:00 0:01 0:01

.1:00/ .0:98/ .0:99/ .0:99/ .0:98/ .0:98/
4 �0:01 �0:00 0:00 0:00 0:00 0:00

.1:00/ .1:00/ .0:99/ .0:98/ .0:99/ .0:99/
8 0:02 0:00 �0:01 �0:01 0:00 0:00

.1:00/ .1:00/ .0:99/ .0:99/ .0:99/ .0:99/
16 �0:00 �0:00 0:01 0:01 0:00 0:00

.1:01/ .0:99/ .1:00/ .0:99/ .0:98/ .0:98/
32 �0:00 0:02 �0:01 �0:02 0:02 0:01

.1:00/ .0:98/ .0:99/ .1:00/ .0:98/ .0:98/
64 0:02 0:01 0:01 �0:00 �0:01 �0:01

.0:99/ .1:00/ .1:00/ .0:99/ .0:99/ .0:99/
128 0:02 0:02 0:01 0:01 0:01 0:01

.0:99/ .0:99/ .1:01/ .0:99/ .1:00/ .1:00/
256 �0:02 �0:00 �0:01 �0:01 0:01 0:01

.0:99/ .0:99/ .0:99/ .0:99/ .0:99/ .0:98/
512 �0:00 �0:01 0:01 0:01 �0:00 0:01

.1:01/ .1:01/ .1:01/ .1:01/ .1:00/ .1:00/
1024 0:01 0:01 0:00 0:00 0:01 0:01

.1:04/ .1:04/ .1:04/ .1:03/ .1:04/ .1:03/
2048 0:01 0:01 0:00 0:00 0:01 0:02

.1:07/ .1:07/ .1:07/ .1:07/ .1:08/ .1:08/
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in the previous section is to find these ranges. We calculate the rates given by
Bandi and Russell (2006) and find that these correspond well with the sampling
intervals in Panel A that produces values close to the asymptotics. The estimated
optimal sampling intervals for the first five noise processes are 31, 242, 569, 1227,
and 2125 s, which all seem appropriate. The interval for the most severe noise
component is 2827, and thus goes beyond the range covered in the table.

14.2.4 Size

The following section evaluates the size of the statistic for different sampling rates.
The left panel in Fig. 14.4 plots the size of the ZTPRM statistics against the sampling
intervals: 1, 3, 5, 10, 15 and 30 min. The nominal size is 0:05. The estimates are for
10000 simulated trading days from the SV1F model without any noise process.

The rejection rates remain near the nominal size for all sizes and sampling
intervals. The right figure plots the size for prices with noise. We add an iid
N.0; �mn/ process to the simulated prices with �mn D 0:080. The statistic becomes
conservative at higher sampling frequencies but approaches the nominal size as
the sample rate increases and reaches 0:05 for sampling intervals at about 10 min
or longer. These findings agree with the applied literature on high-frequency data
where the sampling interval typically is chosen in the 5–30-min range.

Table 14.3 reports the rejection frequencies under the null hypothesis; the
significance level is set to ˛ D 0:99. The columns report rejection rates for different
values of the standard deviation of the noise process, �mn. The sampling rates are
kept constant at 1, 3, 5 and 30 min. We include results for the ZTPRM statistic. The
three panels tabulate the rejection rates for the statistic where the bipower (14.21)
and tripower (14.22) are computed using staggered returns with offset zero (panel
i D 0), one (panel i D 1).

10 15 30

Sampling interval (minutes)

0.00

0.05

0.10

S
iz
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1 5 1 5 10 15 30
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Fig. 14.4 The figure plots the size of the ZTPRM statistic based on 10000 simulated days of the
SV1F model, (14.23). The estimates are based on efficient prices in the left panel and noisy prices
to the right where an iid N.0; 0:0802/ process is added to the simulated prices. The sizes are plotted
against sampling intervals which range from 1 to 30 min. The horizontal lines denote the nominal
size 0:05



14 Identifying Jumps in Asset Prices 385

Table 14.3 The size of the ZTPRM statistic is tabulated based on 10000 days simulated from the
SV1F model, (14.23). An iid N.0; �2mn/ noise process is added to the simulated prices; �mn is set
to 0:000, 0:027, 0:040, 0:052, 0:065, 0:080. The panel labels i D 0; 1 denote the staggered offset.
The return horizons are 1, 3, 5 and 30 min. The test size is 0:01

�mn

Interval 0.000 0.027 0.040 0.052 0.065 0.080

.i D 0/

1 minutes 0.010 0.003 0.001 0.000 0.000 0.000
3 minutes 0.015 0.011 0.008 0.006 0.004 0.002
5 minutes 0.013 0.013 0.012 0.010 0.007 0.004
30 minutes 0.016 0.015 0.016 0.017 0.017 0.018

.i D 1/

1 minutes 0.014 0.014 0.013 0.013 0.013 0.011
3 minutes 0.017 0.015 0.015 0.015 0.016 0.015
5 minutes 0.016 0.016 0.017 0.017 0.018 0.017
30 minutes 0.033 0.033 0.034 0.033 0.034 0.034

The first panel clearly shows that the noise has a considerable impact on the
test sizes, particularly at high sampling frequencies. For 1-min sampling intervals,
the statistic becomes biased against identifying jumps, which is consistent with the
convergence results above. In fact, the rejection rates are less than 0:000 for the
three largest values of the noise variations although the nominal test size is 0:01.
As the sampling interval increases to 3 min, the test size approaches the nominal
size yet remains conservative for the larger values of �mn. Notice, however, that
the statistic is becoming increasingly anti-conservative for no or minor noise at this
sampling rate. The same patterns hold for 5-min sampling. Thus, we confirm that
the optimal constant sampling rate is highly dependent on the noise variance. A high
sampling rate yields test sizes that are closer to the true size without noise while the
appropriate sampling frequency drops as the noise variance increases.

Applying staggered returns reduces the impact of noise considerably. The
estimated sizes are nearly constant across all values of the noise variations, and
thus alleviate the user from having to gauge the level of noise in order to select an
appropriate sampling rate.

The rejection rates for ZTPRM at the highest sampling frequency when offsetting
the returns by one lag is analogous to the 30-min sampling interval without
staggering. That is, the former uses thirty times more data. We investigate below
whether this translates into a more powerful test.

Table 14.4 presents results based on the method by Bandi and Russell (2006).
We compute sampling rates per day using their exact and approximate equations,
see (14.19) and (14.20), which we refer to as BR1 and BR0, respectively. Notice
that the optimal sampling rates are computed per day; that is, the sampling rate is
adjusted per day. The benefit is that if the price process is noisier during certain
periods, the sampling rate is appropriately adjusted.
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Table 14.4 The size is tabulated for the ZTPRM statistics based on 10000 days simulated from the
SV1F model, (14.23). An iid N.0; �2mn/ noise process is added to the simulated prices; �mn is set
to 0:000, 0:027, 0:040, 0:052, 0:065, 0:080. BR1 and BR0 denote sampling rates that are obtained
by solving (14.19) and by (14.20), respectively. The test size is 0:01

�mn

Interval 0.000 0.027 0.040 0.052 0.065 0.080

BR0 0.011 0.013 0.013 0.014 0.013 0.014
BR1 0.011 0.013 0.013 0.012 0.013 0.012

In contrast to the results for constant sampling without staggered returns, the
sizes stay effectively constant near the nominal size across all standard deviations
for the ZTPRM statistic. That is, the noise does not bias the ZTPRM statistic against
rejecting the null hypothesis, which is remarkable considering the large bias
resulting from sampling at constant sampling rates, see Table 14.3. The application
of staggered returns combined with BR makes the test statistics anti-conservative
and thus invalidates the test. Further analysis shows that the mean values of the
statistics becomes positively biased, which results in too many rejection, when both
methods are applied.

Bandi and Russell (2006) evaluate two methods for estimating the optimal
sampling rate, one exact and one approximate. The tables shows that the results
based on the exact (BR1) and approximate (BR0) rates are equivalent.

We document the sampling intervals estimated by BR1 to further explore what
causes the difference between applying constant and optimal sampling rates with
no staggering. For prices without noise, the optimal sampling interval predicted by
BR1 is around 30 s. The interval gradually increases with the noise and reaches
about 30 min for the largest noise variance. Interestingly, even though BR1 on
average gives a 30-min sampling rate for the largest noise variance, holding the
sampling interval constant at that rate across the whole sample period yields worse
results (compare with the first panel in Table 14.3 for results with constant 30-min
sampling.) This suggests that estimating the sampling rate per trading day rather
than across the full sample is beneficial since some intervals are more (or less) noisy
and thus require longer (shorter) sampling intervals.

14.2.5 Power

In this section, we add the jump component to the data-generating process and
evaluate the power of the test statistics for different values of the jump intensity,
�, and the standard deviation of the jump size, �jmp.

We generate prices from the jump-diffusion model, SVIFJ, as specified in (14.23)
(page 377). The experimental design is described in Table 14.1 (page 378) with
� D 0:014 and �jmp D 1:50. We initially consider a price process without noise.
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Table 14.5 Confusion matrices are tabulated for the ZTPRM statistic based on 10000 days
simulated from the SV1FJ model, (14.23). The jump rates, �, are 0:014; 0:118; 1:000, and 2:000.
Results are presented for four return horizons: 1, 3, 5 and 30 min. The labels, NJ and J, denote days
without and with a jump, respectively. The rows correspond to the actual event of a jump or no
jump while the columns denote the statistical inference. The test size is 0:01

� D 0:014 � D 0:118 � D 1:000 � D 2:000

(NJ) (J) (NJ) (J) (NJ) (J) (NJ) (J)

1 minutes (NJ) 0.990 0.010 0.989 0.011 0.990 0.010 0.984 0.016
(J) 0.239 0.761 0.208 0.792 0.211 0.789 0.211 0.789

3 minutes (NJ) 0.985 0.015 0.985 0.015 0.986 0.014 0.990 0.010
(J) 0.319 0.681 0.323 0.677 0.307 0.693 0.305 0.695

5 minutes (NJ) 0.987 0.013 0.987 0.013 0.988 0.012 0.989 0.011
(J) 0.377 0.623 0.404 0.596 0.375 0.625 0.373 0.627

30 minutes (NJ) 0.984 0.016 0.984 0.016 0.980 0.020 0.985 0.015
(J) 0.754 0.246 0.761 0.239 0.734 0.266 0.734 0.266

Table 14.5 presents confusion matrices for the ZTPRM statistic for different values
of the jump intensity, �. The labels, NJ and J, denote days without and with a
jump, respectively. The rows represent the true events while the columns denote
the statistical inference. Hence, the rows for the 2� 2 matrices add up to one where
the 1 � 1 element is the fraction of correct non-rejections of the null (no-jump)
hypothesis and the 1 � 2 element is the false rejection rate. Meanwhile, the 2 � 1

element is the false non-rejection of the null hypothesis and the 2 � 2 element is
the correct rejection. The jump intensity, �, is set to 0:014, 0:118, 1:000 and 2:000,
respectively, while the standard deviation of the jump size, �jmp, is held constant at
1:50. The significance level, ˛, is 0:99.

Since the underlying prices are efficient, theory states that the price series should
be sampled as frequently as possible. Consistently, the type I error is smallest and
near the nominal test size for the highest frequency, that is, for the 1-min sampling
interval. Furthermore, the test correctly rejects the null hypothesis at relatively high
rates. As the sampling interval increases, the statistic is computed on fewer data
points. Consequently, the test properties deteriorate as the variance increases. The
type I error holds up reasonable well for the ZTPRM statistic as the sampling rate
decreases; the type II error, however, increases significantly. Hence, for efficient
prices there is a considerable loss in power at low sampling rates. In fact, there is
an evident drop in the power already at the 5-min sampling rate compared to the
highest frequency.

Moreover, the observed patterns are nearly constant across the different jump
intensities, which is anticipated since the nonparametric statistic is applied to each
day individually. If the jump arrival rate were large enough to generate multiple
jumps per day, the power should increase as the statistics would accrue the effects
of several jumps. We expect the variance of the jump size, �jmp, however, to be
positively related to the power of the test since larger jumps are easier to identify.
This is confirmed in Table 14.6 where we explore the relationship between the
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Table 14.6 The power is tabulated for ZTPRM per jump intensity and standard deviation of the
jump size based on 10000 days simulated from the SV1FJ model, (14.23). The jump rates, �,
are 0:5, 1:0, 1:5 and 2:0. The standard deviation of the jumps, �jmp, ranges from 0:5 to 2:5 by
increments of 0:5. The return horizons are 1, 3, 5 and 30 min. The test size is 0:01

�jmp

� 0:5 1:0 1:5 2:0 2:5

1 minutes 0.5 0.432 0.678 0.780 0.837 0.868
1.0 0.439 0.691 0.789 0.842 0.871
1.5 0.443 0.690 0.789 0.839 0.872
2.0 0.438 0.692 0.789 0.841 0.871

3 minutes 0.5 0.278 0.552 0.679 0.756 0.806
1.0 0.288 0.559 0.693 0.765 0.812
1.5 0.289 0.569 0.698 0.768 0.812
2.0 0.290 0.562 0.695 0.768 0.811

5 minutes 0.5 0.197 0.465 0.615 0.700 0.749
1.0 0.211 0.477 0.625 0.712 0.765
1.5 0.206 0.484 0.634 0.715 0.768
2.0 0.205 0.485 0.627 0.714 0.769

30 minutes 0.5 0.038 0.138 0.252 0.349 0.426
1.0 0.037 0.139 0.266 0.368 0.448
1.5 0.041 0.147 0.273 0.377 0.462
2.0 0.041 0.149 0.266 0.368 0.455

power and the magnitude of the jump size, by simulating price processes for
different values of the jump size. It is remarkable how low the power drops for
the 30-min sampling intervals. Even going from one to 5-min sampling leads to a
considerable reduction in power, which is significant since 5-min sampling intervals
are commonplace in the applied empirical literature.

To examine the impact of noise on the power of the test, we tabulate confusion
matrices for different sampling intervals and noise variances based on 10000

simulated days from the SV1FJ model, (14.23). The jump intensity, �, is 0:014
and the standard deviation of the jump size is 1:50. Table 14.7 presents matrices for
constant 1, 3, 5 and 30-min sampling intervals. For �mn equal to 0:052 and 0:080, the
type I errors are less than 0:0005 at the highest sampling frequency. For the 30-min
sampling interval, the type I errors are near 0:01 for all values of �mn. The power
decreases with the sampling frequency. Staggering the returns, however, increases
the power. The type I errors remain nearly constant only narrowly exceeding 0:01.
Without noise, the test rejects the false null about 75% of the time while the
percentage drops to 50% for the largest noise variance for 1-min sampling.

Table 14.8 presents the confusion matrices for the method by Bandi and Russell
(2006). The rates for BR without applying staggered returns are equivalent to the
values for constant sampling at the highest frequency with staggering the returns at
one lag. Moreover, the results for BR0 and BR1 are equivalent.



14 Identifying Jumps in Asset Prices 389

Table 14.7 Confusion matrices are tabulated for ZTPRM based on 10000 days simulated from the
SV1FJ model, (14.23), with � D 0:014, and �jmp D 1:50. An iid N.0; �mn/ noise process is added
to the simulated prices; �mn is set to 0:000, 0:027, 0:052, 0:080. Results are presented for four
return horizons: 1, 3, 5 and 30 min. The panel label i denotes the staggered offset. The labels, NJ
and J, denote days without and with a jump, respectively. The rows correspond to the actual event
of a jump or no jump while the columns denote the statistical inference. The test size is 0:01

f�mng
0:000 0:027 0:052 0:080

(NJ) (J) (NJ) (J) (NJ) (J) (NJ) (J)

.i D 0/

1 min (NJ) 0.990 0.010 0.997 0.003 1.000 0.000 1.000 0.000
(J) 0.239 0.761 0.297 0.703 0.493 0.507 0.623 0.377

3 min (NJ) 0.985 0.015 0.988 0.012 0.994 0.006 0.998 0.002
(J) 0.319 0.681 0.399 0.601 0.471 0.529 0.572 0.428

5 min (NJ) 0.987 0.013 0.987 0.013 0.990 0.010 0.996 0.004
(J) 0.377 0.623 0.377 0.623 0.464 0.536 0.536 0.464

30 min (NJ) 0.984 0.016 0.984 0.016 0.983 0.017 0.982 0.018
(J) 0.754 0.246 0.775 0.225 0.761 0.239 0.768 0.232

.i D 1/

1 min (NJ) 0.986 0.014 0.986 0.014 0.987 0.013 0.989 0.011
(J) 0.246 0.754 0.297 0.703 0.413 0.587 0.500 0.500

3 min (NJ) 0.983 0.017 0.985 0.015 0.985 0.015 0.985 0.015
(J) 0.348 0.652 0.355 0.645 0.435 0.565 0.536 0.464

5 min (NJ) 0.984 0.016 0.984 0.016 0.983 0.017 0.983 0.017
(J) 0.362 0.638 0.391 0.609 0.449 0.551 0.493 0.507

30 min (NJ) 0.968 0.032 0.967 0.033 0.967 0.033 0.966 0.034
(J) 0.674 0.326 0.703 0.297 0.725 0.275 0.754 0.246

Table 14.8 Confusion matrices are tabulated for the ZTPRM statistic based on 10000 days
simulated from the SV1FJ model, (14.23). The experimental design is described in Table 14.1
with � D 0:014 and �jmp D 1:50. BR1 and BR0 denote sampling rates that are obtained by
solving (14.19) and by (14.20), respectively. The labels, NJ and J, denote days without and with
a jump, respectively. The rows correspond to the actual event of a jump or no jump while the
columns denote the statistical inference. The test size is 0:01

f�mng
0:000 0:027 0:052 0:080

(NJ) (J) (NJ) (J) (NJ) (J) (NJ) (J)

BR0 (NJ) 0:989 0:011 0:987 0:013 0:986 0:014 0:985 0:015

(J) 0:203 0:797 0:370 0:630 0:493 0:507 0:572 0:428

BR1 (NJ) 0:989 0:011 0:987 0:013 0:988 0:012 0:988 0:012

(J) 0:210 0:790 0:399 0:601 0:493 0:507 0:609 0:391
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14.3 Volatility in U.S. Energy Futures Market

14.3.1 Introduction

Observers of energy futures markets have long noted that energy futures prices are
very volatile and often exhibit jumps (price spikes) during news event periods. Thus,
the assumption of a continuous diffusion process for asset price behavior is often
violated in practice. Since volatility behavior is the central topic for option pricing,
risk management and asset allocation strategies, market participants, regulators
and academics have a strong interest in the identification of jumps over time and
measuring the relative importance of the jump component versus the smooth sample
path component as contributors to total volatility. Motivated by the increase in
the availability of high-frequency data (tick by tick data), Barndorff-Nielsen and
Shephard (2004, 2006) and Jiang and Oomen (2008) have developed nonparametric
procedures for detecting the presence of jumps in high-frequency intraday financial
time series.

This section shows how a method based on the statistic by Barndorff-Nielsen and
Shephard from Sect. 14.2 can be applied to study the jump process. We examine the
realized volatility behavior of natural gas, heating oil and crude oil futures contracts
traded on the New York Mercantile Exchange (NYMEX) using high-frequency
intraday data from January 1990 to January 2008.

14.3.2 Background of Statistical Methodology

In Sect. 14.2, we described the method by Barndorff-Nielsen and Shephard. In this
applied study, we follow Jiang et al. (2008) and combine the ZTPRM statistic with
another jump statistic by Jiang and Oomen (2008).

14.3.2.1 Swap Variance

Jiang and Oomen (2008) base a statistic to test for jumps in asset prices on the
variance swap replication strategy (Neuberger 1994). This strategy allows traders
to hedge their exposure to volatility risk more effectively than by using traditional
put or call options. The hedge portfolio is based on that the accumulated difference
between the simple return and the logarithmic return is one half of the integrated
variance under the assumption that the asset price process is continuous. The relation
between the two return measures breaks down, however, if the data-generating
process has discontinuities in the price process, which Jiang and Oomen (2008)
use to develop a test for jumps.

The price process in (14.1) with St D exp.Xt / can be written as,
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dSt
St

D


�t C 1

2
�2
�

dt C �tdWt C .e�t � 1/ dqt ; (14.26)

which can be shown to be,

2

Z 1

0



dSt
St

� dXt

�
D �2.0;1/ C 2

Z 1

0

.e�T � �t � 1/ dqt : (14.27)

In the discrete case, the left-hand side of (14.27) is the swap variance, which can be
estimated by,

SwVt D 2

mtX

iD1
.Rti � rti /; (14.28)

where Rti D .Sti � Sti�1/=Sti�1 is the i th intraday simple return, rti is the
logarithmic return, and mt is the number of intraday returns. Asymptotically, as
mt ! 1,

SwVt � RVt

p!
�
0; if no jumpI
2
R t
t�1

�
e�t � 1

2
�2t � �t � 1� dq; if jump;

(14.29)

where RVt is the realized variation (14.3). The result in (14.29) follows from (14.27)
and that RVt ! R t

t�1 �sds CP
t<s<tC1 �2.s/ (Jacod and Shiryaev 1987). Jiang and

Oomen (2008) uses these results to derive a statistic which is defined as,

Zswv;t D b�2t mtq
b̋
t



1 � RVt

SwVt

�
: (14.30)

b̋
t is an estimator of,

˝t D �6

9

Z t

t�1
�
�2u
�3

du; (14.31)

where �t is the volatility term in the data-generating process defined in (14.1) (page
372) and �6 is a constant given by (14.6). The estimator, b̋ t , is defined by,

b̋.p/
t D �6

9

m3
t �

�p
6=p

mt � p C 1

N�pX

jD0

pY

kD1
jrtCkj6=p: (14.32)

Jiang and Oomen (2008) conclude in simulations studies that four and six are
appropriate choices for p.

Simulation studies (see for example Huang and Tauchen (2005) and Jiang et al.
(2008)) on these two statistics have shown that both methods may become anti-
conservative. Jiang et al. (2008) propose to address this by only rejecting the null
hypothesis when both tests reject. They provide empirical evidence suggesting that
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the combined version is conservative and powerful. We apply this combined method
to the energy market data to increase the validity of the results.

The daily variance due to the jump component is estimated by the difference
between RVt and BVt , (14.8), where RVt estimates the total variation including
the contribution due to the jump component, whereas BVt is robust to jumps
and only captures the variation due to the continuous component. Hence, the
difference is zero in absence of jumps and greater than zero otherwise. However,
due to measurement errors, the difference can be negative. Barndorff-Nielsen and
Shephard (2004) suggest imposing a lower bound at zero by letting the variance due
to the jump component be given by,

Jt D maxŒRVt � BVt ; 0	: (14.33)

Furthermore, since small values of Jt may be due to noise rather than discontinuities
in the price process. We identify the variance contributed by significant jumps as,

Jt;˛ D .RVt � BVt / I.p<1�˛/; (14.34)

where p is the p-value which is set to the maximum value of the p-values
based on the ZTPRM and Zswv;t statistics; ˛ is the significance level; and I is the
indicator function, which is equal to one if the test rejects the null hypothesis and
zero otherwise. The variation that is contributed by the continuous sample path
component can then be estimated by,

Ct;˛ D I.p<1�˛/RVt C I.p�1�˛/BVt : (14.35)

By this definition, the sum of Jt;˛ and Ct;˛ adds up to the total variation, RVt .

14.3.3 Contract Specifications and Data

We examine price series for three contracts from the U.S. energy futures markets.
The contracts are on natural gas, crude oil, and heating oil, all of which are traded
on the New York Mercantile Exchange (NYMEX).

The natural gas futures contract is commonly cited as the benchmark for the
spot market, which accounts for nearly 25% of the energy consumption in the U.S.
The futures contract began trading on April 3, 1990 and is based on delivery at the
Henry Hub in Louisiana. The futures contract on crude oil began trading in 1983
and, according to NYMEX, is the world’s most liquid futures contract on a physical
commodity. The contract calls for delivery of both domestic as well as international
crude oils of different grades in Cushing, Oklahoma. The heating oil futures contract
began trading on November 14, 1978 and calls for deliver of heating oil in New York
Harbor. Heating oil currently accounts for about a fourth of the yield of a barrel of
crude oil, second only to gasoline.
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The intraday data series for crude oil and heating oil range from January 1, 1990
to December 31, 2007 and the series for the natural gas contract span from January 1,
1993 to January 1, 2008.

14.3.4 Empirical Results

14.3.4.1 Realized Variations and Jump Dynamics

The time series behavior of daily closing prices (top panel) and log-returns (bottom
panel) for natural gas are presented in Fig. 14.5. It clearly exhibits that the closing
prices of the three energy markets have generally increased since around 1999.

The Augmented Dickey-Fuller (ADF) test is used to test for the presence of a unit
root in realized variance, realized volatility (realized variance in standard deviation
form), and log transformation of realized variance and the same forms of the jump
component. The first row of Table 14.9 reports the ADF test statistics which indicate
that the null hypothesis of unit root is rejected at the 1% level of significance for all
series.

The top panel in Fig. 14.2 shows daily volatilities (realized variance in standard
deviation form) for the natural gas series. Each of the three series exhibits strong
autocorrelation. This is confirmed by the Ljung-Box statistic (LB10), which is equal
to 10;926 for crude oil, 9;263 for heating oil and 6;184 for natural gas (see the
bottom row of Panel A-C in Table 14.9). A cross-market comparison shows that the
natural gas market is the most volatile market; the annualized realized volatilities are
39.4% for natural gas, 26.5% for heating oil and 26.0% for crude oil. The equivalent
values for the S&P 500 and the thirty-year U.S. Treasury bond futures over the
sample period 1990–2002 are 14.7% and 8.0%, respectively (Andersen et al. 2007).
Based on the skewness and excess kurtosis, the logarithmic form appears to be the
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Fig. 14.5 The figure graphs closing prices (top panel) and daily returns (bottom panel) for futures
contracts on natural gas. The returns are computed as the logarithmic price difference between the
last and first transactions per day



394 J. Bjursell and J.E. Gentle

Table 14.9 Daily summary statistics for futures contracts on crude oil (Panel A), heating oil
(Panel B) and natural gas (Panel C) for realized variance, RVt (equation (14.3)) and jump
component, Jt (equation (14.33)). Statistics are also computed in standard deviation form, RV1=2

t

(J 1=2t ), and logarithmic form, log.RVt / (log.Jt C 1/). ADF denotes the augmented Dickey-Fuller
statistic. The lag orders are determined by Schwartz criterion. Only intercepts are included in the
level series. The critical value for the ADF test for the 1% (5%) significance level is �3:4393
(�2:8654). Min and Max are minimum and maximum daily values. JB is the Jarque-Bera test
statistic for normality. LB10 denotes the Ljung-Box tenth-order serial correlation test statistic.
Kurtosis denotes excess kurtosis. The realized variations are computed based on 5-min intraday
returns and staggered returns with one lag offset

RVt RV1=2
t log.RVt / Jt J1=2t log.Jt C 1/

Panel A: Crude Oil
ADF1 �16:04 �6:75 �5:67 �33:99 �19:34 �33:96
Mean 0:0003 0:0164 �8:3774 0:0000 0:0033 0:0000

Std Dev 0:0007 0:0072 0:7718 0:0003 0:0045 0:0003

Skewness 44:30 4:87 0:04 59:82 7:34 59:71

Kurtosis 2534:14 88:62 1:06 3835:89 175:34 3825:63

Min 0:0000 0:0030 �11:6462 0:0000 0:0000 0:0000

Max 0:0381 0:1953 �3:2664 0:0188 0:1370 0:0186

JB 1:21E C 09 1:49E C 06 2:13E C 02 2:77E C 09 5:82E C 06 2:76E C 09

LB10 968 10926 16947 91 283 93

Panel B: Heating Oil
ADF1 �15:35 �6:80 �4:95 �27:02 �23:85 �27:00
Mean 0:0003 0:0167 �8:3128 0:0000 0:0038 0:0000

Std Dev 0:0004 0:0064 0:6897 0:0002 0:0044 0:0002

Skewness 27:81 3:24 0:17 50:19 3:83 50:07

Kurtosis 1286:59 39:97 0:83 2998:58 56:75 2988:21

Min 0:0000 0:0034 �11:3906 0:0000 0:0000 0:0000

Max 0:0207 0:1439 �3:8779 0:0103 0:1017 0:0103

JB 3:08E C 08 3:04E C 05 1:50E C 02 1:67E C 09 6:08E C 05 1:66E C 09

LB10 1873 9263 13033 137 193 138

Panel C: Natural Gas
ADF1 �10:91 �8:63 �7:53 �21:34 �13:62 �21:33
Mean 0:0007 0:0248 �7:5419 0:0001 0:0061 0:0001

Std Dev 0:0008 0:0105 0:7556 0:0003 0:0075 0:0003

Skewness 6:73 2:16 0:22 11:83 2:74 11:80

Kurtosis 81:85 10:01 0:66 207:69 14:62 206:60

Min 0:0000 0:0038 �11:1209 0:0000 0:0000 0:0000

Max 0:0165 0:1286 �4:1015 0:0073 0:0852 0:0072

JB 1:06E C 06 1:82E C 04 9:60E C 01 6:70E C 06 3:74E C 04 6:63E C 06

LB10 2912 6184 8503 194 231 194

most normally distributed, which is consistent with previous empirical findings in
the equity and foreign exchange markets (Andersen et al. 2007) although the Jarque-
Bera test statistic rejects normality for all forms and markets at the 1% significance
level.
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Fig. 14.6 The figure graphs time-series of the realized volatility and jump component for futures
contracts natural gas. The top panel for respective contract graphs the daily realized volatility,
RV1=2

t (14.3); the second panel plots the jump component J 1=2t (14.33); the third panel shows the
jump statistic,ZTPRM (14.13); and the bottom panel plots the significant jump component, J 1=2t;˛D0:99

(14.34). The realized variations are computed based on 5-min intraday returns and staggered
returns with one lag offset

The second panel in Fig. 14.6 plots the separate measurement of the jump
components in standard deviation form. The jump component is defined as the
difference between the realized and bipower variations with a lower bound at zero
(14.33). The mean of the daily volatility due to the jump component is equivalent for
crude and heating oil at 0:0033 and 0:0038, respectively, while it is larger for natural
gas at 0:0061; the corresponding annualized volatilities are 5.2%, 6.0% and 9.7%,
respectively. The jump component is highly positively skewed with a large kurtosis
in all three markets. The Ljung-Box test statistics reported in the bottom row are
significant although considerably smaller than for the total volatility. The Ljung-
Box statistics for the standard deviation form of the jump components are between
190 and 290 for the three markets while the corresponding statistics are greater
than 6;000 for the realized volatility of each of the three series. Hence, the smooth
component appears to contribute more to the persistency in the total volatility.

Since the jump component in Table 14.9 is computed by the difference defined
in (14.33), the properties and in particular the prevalence of autocorrelation may
partially be due to that the estimator captures some of the smooth process on days
without jumps. Hence, to alleviate such potential bias, we examine the properties
for significant jumps as defined by (14.34). The significant jumps are determined by
the combined statistic where the bipower and tripower estimators are obtained using
staggered returns with one lag offset to reduce the impact of market microstructure
noise. The significant jump components based on the test level ˛ set to 0.99 are
plotted in the last panel in Fig. 14.6 which clearly exhibits that large volatility often
can be associated with a large jump component.

Table 14.10 reports yearly statistics of the significant jump components for ˛
equal to 0:99. There are significant jumps in all three price series. The number of
days with a jump ranges from 5 to 34 for natural gas, 5–28 for heating oil and 4–20
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Table 14.10 Yearly estimates for natural gas. No. Days denotes the number of trading days, No.
Jumps denotes the number of days with jumps, and Prop denotes the proportion of days with jumps.
Min, Mean, Median and Max are daily statistics of the relative contribution of the jump component
to the total realized variance (14.14) computed for days with a significant jump component

RJ on Jump Days (%)

No. Days No. Jumps Prop Min Mean Median Max

1993 250 5 0.020 31.72 46.17 46.58 60.52
1994 248 11 0.044 25.18 34.49 34.53 54.62
1995 250 8 0.032 26.42 39.34 33.76 75.23
1996 248 15 0.060 26.62 37.22 36.43 61.08
1997 213 8 0.038 28.84 38.65 33.20 73.60
1998 240 11 0.046 26.47 42.90 37.51 78.50
1999 232 12 0.052 25.32 33.53 32.12 55.07
2000 235 17 0.072 28.23 48.46 48.03 87.47
2001 236 34 0.144 23.56 45.76 44.06 85.92
2002 245 17 0.069 28.12 46.05 43.43 72.97
2003 249 25 0.100 25.89 38.51 34.75 77.15
2004 249 26 0.104 26.45 42.05 37.26 69.19
2005 251 19 0.076 26.50 42.05 40.37 68.96
2006 250 23 0.092 25.47 41.88 42.09 62.96
2007 258 14 0.054 23.39 33.81 32.18 52.13

days for crude oil. The proportion of days with jumps in natural gas is higher during
the second half of the sample period; the other markets do not reveal the same trend.
The table also includes daily summary statistics per year for the relative contribution
for days with a significant jump. The relative contribution of the jump component
to the total variance ranges from 23% to 87% for natural gas futures, 23%–64% for
crude oil futures and 23%–74% for heating oil futures for days with jumps. Hence,
jumps have a significant impact in all three markets.

To further examine the jump dynamics, we consider different levels of ˛ ranging
from 0:5 to 0:9999. The empirical results are reported in Table 14.11. The first row
tabulates the number of days with a significant jump. As a comparison, the total
number of trading days for the complete sample period for natural gas is 3;676,
for crude oil is 4;510, and for heating oil is 4;449. As expected, the proportion
of days with significant jumps declines from 0:49 to 0:02 for natural gas, 0:49 to
0:01 for heating oil, and from 0:44 to 0:01 for crude oil, as the level of ˛ increases
from 0:5 to 0:9999. Andersen et al. (2007) report that the equivalent values for S&P
500 futures and thirty-year U.S. Treasury bond futures are 0.737–0.051 and 0.860–
0.076, respectively; thus, jumps are more frequent in the latter markets. Andersen
et al. (2007) identifies jumps by the Barndorff-Nielsen and Shephard framework
which partially explain the differences. The rates using this statistic for the energy
markets are 0:64 to 0:02 for natural gas and heating oil and from 0:44 to 0:01 for
crude oil. Based on the proportions of days with a jump for the energy futures
markets, the test statistic consistently rejects the null hypothesis too frequently for
the larger test sizes had the underlying data generating process been a continuous
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Table 14.11 Summary statistics for significant jumps, J 1=2t;˛ (14.34), for futures contracts on crude
oil, heating oil and natural gas. No. Jumps denotes the number of jumps in the complete sample.
Proportion denotes the ratio of days with a jump. The sample consists of 4; 510 trading days for
crude oil, 4; 449 for heating oil, and 3; 676 for natural gas. Mean and Std Dev are the mean and
standard deviation of the daily jump component, J1=2t;˛ . LB10; J

1=2
t;˛ denotes the Ljung-Box tenth-order

autocorrelation test statistic. The realized variations are computed based on 5-min intraday returns
and staggered returns with one lag offset

˛ 0:500 0:950 0:990 0:999 0:9999

Panel A: Crude Oil
No. Jumps 1993 440 197 80 37

Proportion 0:44 0:10 0:04 0:02 0:01

Mean (J 1=2t;˛ ) 0:0061 0:0100 0:0121 0:0152 0:0144

Std Dev 0:0051 0:0082 0:0109 0:0159 0:0079

LB10; J
1=2
t;˛ 75 71 59 58 0

Panel B: Heating Oil
No. Jumps 2161 502 272 115 66

Proportion 0:49 0:11 0:06 0:03 0:01

Mean (J 1=2t;˛ ) 0:0063 0:0103 0:0121 0:0144 0:0157

Std Dev 0:0046 0:0064 0:0077 0:0096 0:0116

LB10; J
1=2
t;˛ 124 101 105 41 0

Panel C: Natural Gas
No. Jumps 1816 470 246 121 75

Proportion 0:49 0:13 0:07 0:03 0:02

Mean (J 1=2t;˛ ) 0:0101 0:0171 0:0207 0:0263 0:0297

Std Dev 0:0079 0:0103 0:0120 0:0137 0:0135

LB10; J
1=2
t;˛ 179 241 216 222 38

diffusion process. For natural gas, 13% of the days are identified as having a jump
for ˛ D 0:95 and 7% for ˛ D 0:99. Similar percentages hold for the other markets.
The sample mean and standard deviations are daily values of the volatility due to
significant jumps where the estimates are computed only over days with significant
jumps. Hence, the average jump size increases as the significance level increases.
The annualized estimates range from 16.0% to 47.1% for natural gas, 9.68%–22.6%
for crude oil and 10.0%–24.9% for heating oil. The Ljung-Box test statistics for
significant jumps (LB10; J

1=2
˛ ) are lower than the equivalent values for jumps defined

by (14.33) reported in Table 14.9. Consistently, the Ljung-Box statistics decrease
as the size of ˛ increases. Yet, even as the number of jumps declines, the Ljung-
Box statistics indicate that some persistency remains in the jump component. The
p-values are less than 0:01 for ˛ D 0:999 for all markets and less than 0:01 for
˛ D 0:9999 for natural gas. The time series plot of the significant jump component
is graphed in the fourth panel of Fig. 14.6.

Finally, Table 14.12 presents summary statistics for jump returns conditioned
on the sign of the returns. Since the test statistic does not provide the direction of
the price change, we define the largest (in magnitude) intraday price return as the
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Table 14.12 Summary statistics for jump returns for days with significant jumps (˛ D 0:99) for
crude oil, heating oil and natural gas. N denotes the number of jumps. The largest (in magnitude)
5-min intraday return per day with a significant jump is identified as the jump return. The statistics
are computed for positive and negative returns, respectively

Contract N Mean Median StdDev Max Min

Positive Jumps
Crude Oil 89 0:012 0:009 0:015 0:137 0:003

Heating Oil 101 0:012 0:010 0:010 0:102 0:005

Natural Gas 89 0:021 0:016 0:014 0:083 0:007

Negative Jumps
Crude Oil 107 0:012 0:011 0:005 0:031 0:003

Heating Oil 165 0:012 0:011 0:005 0:033 0:004

Natural Gas 153 0:020 0:018 0:011 0:067 0:006

jump for each day for which the test rejects the null hypothesis and thus obtain
the size and sign of the jump return. We observe that there are more negative than
positive jumps for all three energy futures markets. The mean and median values are
equivalent, however.

In summary, using high-frequency data, we have applied a nonparametric statis-
tical procedure to decompose total volatility into a smooth sample path component
and a jump component for three markets. We find that jump components are less
persistent than smooth components and large volatility is often associated with a
large jump component. Across the three markets, natural gas futures is the most
volatile, followed by heating oil and then by crude oil futures.
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Chapter 15
Simulation-Based Estimation Methods
for Financial Time Series Models

Jun Yu

Abstract This chapter overviews some recent advances on simulation-based meth-
ods of estimating financial time series models that are widely used in financial
economics. The simulation-based methods have proven to be particularly useful
when the likelihood function and moments do not have tractable forms and hence
the maximum likelihood (ML) method and the generalized method of moments
(GMM) are difficult to use. They are also useful for improving the finite sample
performance of the traditional methods. Both frequentist and Bayesian simulation-
based methods are reviewed. Frequentist’s simulation-based methods cover various
forms of simulated maximum likelihood (SML) methods, simulated generalized
method of moments (SGMM), efficient method of moments (EMM), and indirect
inference (II) methods. Bayesian simulation-based methods cover various MCMC
algorithms. Each simulation-based method is discussed in the context of a specific
financial time series model as a motivating example. Empirical applications, based
on real exchange rates, interest rates and equity data, illustrate how to implement the
simulation-based methods. In particular, we apply SML to a discrete time stochastic
volatility model, EMM to estimate a continuous time stochastic volatility model,
MCMC to a credit risk model, the II method to a term structure model.

15.1 Introduction

Relative to other fields in economics, financial economics has a relatively short
history. Over the last half century, however, there has been an explosion of
theoretical work in financial economics. At the same time, more and more complex
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financial products and services have been created. The size of financial markets has
exponentially increased and the quality of database is hugely advanced. The major
developments in theoretical finance and the availability of high quality data provide
an extremely rich framework for empirical work in financial economics.

How to price financial assets has been a driving force for much of the research
on financial asset pricing. With the growth in complexity in financial products
and services, the challenges faced by the financial economists naturally grow
accordingly, one of which is the computing cost. Another driving force for research
in financial economics is to bring finance theory to data. Empirical analysis in
financial economics often involves calculating the likelihood function or solving
a set of moment conditions.

Traditional econometric methods for analyzing models in financial economics
include maximum likelihood (ML), quasi-ML, generalized method of moments
(GMM), and classical Bayesian methods. When the model is fully specified and the
likelihood function has a tractable form, ML and Bayesian methods provide the full
likelihood-based inference. Under mild regularity conditions, it is well recognized
that the ML estimator (MLE) is consistent, asymptotically normally distributed
and asymptotically efficient. Due to the invariance principle, a function of MLE
is a MLE and hence inherits all the nice asymptotic properties (e.g., Zehna 1966).
These features greatly facilitate applications of ML in financial economics. When
the model is not fully specified but certain moments exist, GMM can be applied.
Relative to ML, GMM trades off efficiency with robustness.

Financial data are typically available in the time series format. Consequently,
time series methods are of critical importance to empirical research in financial
economics. Historically, financial economists restricted themselves to a small class
of time series models so that the setups were simple enough to permit an analytical
solution for asset prices. Moreover, empirical analysis was often done based a
small set of financial assets, so that the computational cost is kept low. The leading
example is perhaps the geometric Brownian motion, which was used by Black and
Scholes to price European options (Black and Scholes 1973) and by Merton to price
corporate bonds (Merton 1974). In recent years, however, many alternative models
and financial products have been proposed so that asset prices do not have analytical
solutions any more. As a result, various numerical solutions have been proposed,
one class of which is based on simulations. Although the use of simulation-based
methods for asset pricing is sufficient important and merits a detailed review, it is
beyond the scope of the present chapter. We refer readers to McLeish (2005) for a
textbook treatment on asset pricing via simulation methods.

Even if the pricing formula of a financial asset has a tractable form, estimation
of the underlying time series model is not always feasible by standard econometric
methods. For many important financial time series models, the likelihood function
or the moment conditions cannot be evaluated analytically and may be numerically
formidable so that standard econometric methods, such as ML, GMM and Bayesian,
are not feasible. For example, Heston (1993) derived a closed-form expression for
the European option price under the square root specification for volatility. It is
known that the ML estimation of Heston’s stochastic volatility (SV) model from
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stock prices is notoriously difficult. For more complicated models where asset prices
do not have a closed-form expression, it is almost always the case that standard
estimation methods are difficult to use.

Parameter estimation is important for asset pricing. For example, in order to
estimate the theoretical price of a contingent claim implied by the underlying time
series model, one has to estimate the parameters in the time series model and then
plug the estimates into the pricing formula. In addition, parameter estimates in
financial time series models are necessary inputs to many other financial decision
makings, such as asset allocation, value-at-risk, forecasting, estimation of the
magnitude of microstructure noise, estimation of transaction cost, specification
analysis, and credit risk analysis. For example, often alternative and sometimes
competing time series specifications co-exist. Consequently, it may be important
to check the validity of a particular specification and to compare the relative
performance of alternative specifications. Obviously, estimation of these alternative
specifications is an important preliminary step to the specification analysis. For
another example, in order to estimate the credit spread of a risky corporate bond over
the corresponding Treasury rate and the default probability of a firm, the parameters
in the underlying structural model have to be estimated first.

In some cases where ML or GMM or Bayesian methods are feasible but financial
time series are highly persistent, classical estimators of certain parameters may have
poor finite sample statistical properties, due to the presence of a large finite sample
bias. The bias in parameter estimation leads to a bias in other financial decision
making. Moreover, the large finite sample bias often leads to a poor approximation
to the finite sample distribution by the asymptotic distribution. As a result, statistical
inference based on the asymptotic distribution may be misleading. Because many
financial variables, such as interest rates and volatility, are highly persistence, this
finite sample problem may be empirically important.

To overcome the difficulties in calculating likelihood and moments and to
improve the finite sample property of standard estimators, many simulation-based
estimation methods have been proposed in recent years. Some of them are method-
ologically general; some other are specially tailored to deal with a particular model
structure. In this chapter, we review some simulation-based estimation methods that
have been used to deal with financial time series models.

Stern (1997) is an excellent review of the simulation-based estimation methods
in the cross-sectional context while Gouriéroux and Monfort (1995) reviewed the
simulation-based estimation methods in the classical framework. Johannes and
Polson (2009) reviewed the Bayesian MCMC methods used in financial economet-
rics. Our present review is different from these reviews in several important aspects.
First, our review covers both the classical and Bayesian methods whereas Johannes
and Polson (2009) only reviewed the Bayesian methods. Second, relative to Stern
(1997) and Gouriéroux and Monfort (1995), more recently developed classical
methods are discussed in the present chapter. Moreover, only our review discuss
the usefulness of simulation-based methods to improve finite sample performances.

We organize the rest of this chapter by collecting the methods into four cate-
gories: simulation-based ML (SML), simulation-based GMM (SGMM), Bayesian
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Markov chain Monte Carlo (MCMC) methods, and simulation-based resampling
methods. Each method is discussed in the context of specific examples and an
empirical illustration is performed using real data correspondingly. Section 15.2
overviews the classical estimation methods and explains why they may be difficult to
use in practice. Section 15.3 discusses discrete time stochastic volatility models and
illustrates the implementation of a SML method. Section 15.4 discusses continuous
time models and illustrates the implementation of EMM. Section 15.5 discusses
structure credit risk models and illustrates the implementation of a Bayesian MCMC
method. Section 15.6 discusses continuous time models with a linear and persistent
drift function and illustrates the implementation of the indirect inference (II) method
in the context of Vasicek model for the short term interest rate. Finally, Sect. 15.7
concludes.

15.2 Problems with Traditional Estimation Methods

In many cases the likelihood function of a financial time series model can be
expressed as:

L.�/ D p.XI �/ D
Z
p.X;VI �/dV; (15.1)

where X D .X1; � � � ; Xn/ WD .Xh; � � � ; Xnh/ is the data observed by econometri-
cians, h the sampling interval, p.X/ the joint density of X, V a vector of latent
variables, � a set of K parameters that econometricians wish to estimate. As X.t/
often represents the annualized data, when daily (weekly or monthly) data are used,
h is set at 1/252 (1/52 or 1/12). Assume T D nh is the time span of the data and the
true values for � is �0.

MLE maximizes the log-likelihood function over � in a certain parameter space:

O�MLn WD argmax�2�`.�//;

where `.�/ D lnL.�/ D lnp.XI �/. The first order condition of the maximization
problem is:

@`

@�
D 0:

Under mild regularity conditions, the ML estimator (MLE) has desirable asymp-
totic properties of consistency, normality and efficiency. Moreover, the invariance
property of MLE ensures that a smoothed transformation of MLE is a MLE of the
same transformation of the corresponding parameters (Zehna 1966). This property
has proven very useful in financial applications.

Unfortunately, when the integration in (15.1) is not analytically available and
the dimension of V is high, numerical evaluation of (15.1) is difficult. If p.XI �/ is
difficult to calculate, ML is not easy to implement.
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Instead of maximizing the likelihood function, Bayesian methods update the
prior density to the posterior density using the likelihood function, based on the
Bayes theorem:

p.� jX/ / p.XI �/p.�/;
where p.�/ is the prior density and p.� jX/ the posterior distribution. As in ML, if
p.XI �/ is difficult to calculate, the posterior density p.� jX/ is generally difficult to
evaluate.

Unlike ML or Bayesian methods that rely on the distributional assumption of the
model, GMM only requires a set of moment conditions to be known. Let g be a set
of q moment conditions, i.e.

EŒg.XI �0/	 D 0

GMM minimizes a distance measure, i.e.

O�GMMn WD argmin�2�

 
1

n

nX

tD1
g.Xt I �/

!0
Wn

 
1

n

nX

tD1
g.Xt I �/

!0
;

where Wn is a certain positive definite weighting matrix of q � q-dimension (q 	
K), which may depend on the sample but not � . Obviously, the implementation
of GMM requires the moments to be known analytically or easy to calculate
numerically. Since a fixed set of moments contain less information than a density,
in general GMM uses less information than ML and hence is statistically less
efficient. In the case where the moment conditions are selected based on the
score functions (in which case q D K), GMM and ML are equivalent. However,
sometimes moment conditions are obtained without a distributional assumption
and hence GMM may be more robust than the likelihood-based methods. Under
mild regularity conditions, Hansen (1982) obtained the asymptotic distributions
of GMM estimators. Unfortunately, many financial time series models do not
have an analytical expression for moments and moments are difficult to evaluate
numerically, making GMM not trivial to implement.

Even if ML is applicable, MLE is not necessarily the best estimator in finite
sample. Phillips and Yu (2005a,b, 2009a,b) have provided numerous examples to
demonstrate the poor finite sample properties of MLE. In general there are three
reasons for this. First, many financial variables (such as interest rates and volatility)
are very persistent. When a linear time series model is fitted to these variables, ML
and GMM typically lead to substantial finite sample bias for the mean reversion
parameter even in very large samples. For example, when 2,500 daily observations
are used to estimate the square root model of the short term interest rate, ML
estimates the mean reversion parameter with nearly 300% bias. Second, often
financial applications involve non-linear transformation of estimators of the system
parameters. Even if the system parameters are estimated without any bias, insertion
of even unbiased estimators into the nonlinear functions will not assure unbiased
estimation of the quantity of interest. A well known example is the MLE of a deep
out-of-money option which is highly nonlinear in volatility. In general, the more
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pronounced the nonlinearity, the worse the finite sample performance is. Third, even
if a long-span sample is available for some financial variables and hence asymptotic
properties of econometric estimators is more relevant, full data sets are not always
employed in estimation because of possible structural changes in long-span data.
When short-span samples are used in estimation, finite sample distributions can be
far from the asymptotic theory.

A natural way to improve the finite sample performance of classical estimators
is to obtain the bias in an analytical form and then remove the bias from the biased
estimator, with the hope that the variance of the bias-corrected estimator does not
increase or only increases slightly so that the mean square error becomes smaller.
Unfortunately, the explicit analytical bias function is often not available, except in
very simple cases.

When the likelihood function and moments are difficult to calculate or traditional
estimators perform poorly in finite sample, one can resort to simulation methods.
There has been an explosion of theoretical and empirical work using simulation
methods in financial time series analysis over the last 15 years. In the following
sections we will consider some important examples in financial economics and
financial econometrics. Simulated-based methods are discussed in the context of
these examples and an empirical illustration is provided in each case.

15.3 Simulated ML and Discrete Time SV Models

To illustrate the problem in ML, we first introduce the basic lognormal (LN) SV
model of Taylor (1982) defined by

�
Xt D �eht =2�t ; t D 1; : : : ; n;

htC1 D �ht C ��t ; t D 1; : : : ; n � 1; (15.2)

where Xt is the return of an asset, j�j < 1, �t
iid� N.0; 1/, �t

iid� N.0; 1/,
corr.�t ; �t / D 0, and h1 � N.0; �2=.1 � �2//. The parameters of interest are
� D .�; �; �/0. This model is proven to be a powerful alternative to ARCH-type
models (Geweke 1994; Danielsson 1994). Its continuous time counterpart has been
used to pricing options contracts (Hull and White 1987).

Let X D .X1; : : : ; Xn/
0 and V D .h1; : : : ; hn/

0. Only X is observed by the
econometrician. The likelihood function of the model is given by

p.XI �/ D
Z
p.X;VI �/dV D

Z
p.XjVI �/p.VI �/dV: (15.3)

To perform the ML estimation to the SV model, one must approximate the
high-dimensional integral (15.3) numerically. Since a typical financial time series
has at least several hundreds observations, using traditional numerical integration
methods, such as quadratures, to approximate the high-dimensional integral (15.3) is
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numerically formidable. This is the motivation of the use of Monte Carlo integration
methods in much of the SV literature.

The basic LN-SV model has been found to be too restrictive empirically for many
financial time series and generalized in various dimensions to accommodate stylized
facts. Examples include the leverage effect (Harvey and Shephard 1996; Yu 2005),
SV-t (Harvey et al. 1994), super-position (Pitt and Shephard 1999b), jumps (Duffie
et al. 2000), time varying leverage effect (Yu 2009b). An widely used specification,
alternative to the LN-SV model, is the Heston model (Heston 1993).

In this section, we will review several approaches to do simulated ML estimation
of the basic LN-SV model. The general methodology is first discussed, followed by
a discussion of how to use the method to estimate the LN-SV model and then by an
empirical application.

15.3.1 Importance Sampler Based on the Laplace Approximation

Taking the advantage that the integrand is a probability distribution, a widely used
SML method evaluates the likelihood function numerically via simulations. One
method matches the integrand with a multivariate normal distribution, draws a
sequence of independent variables from the multivariate normal distribution, and
approximates the integral by the sample mean of a function of the independent
draws. Namely, a Monte Carlo method is used to approximate the integral numeri-
cally and a carefully selected multivariate normal density is served as an importance
function in the Monte Carlo method. The technique in the first stage is known as
the Laplace approximation while the technique in the second stage is known as the
importance sampler. In this chapter the method is denoted LA-IS.

To fix the idea, in Stage 1, we approximate p.X;VI �/ by a multivariate normal
distribution for V, N.�I V�;�˝�1/, where

V� D arg max
V

lnp.X;VI �/ (15.4)

and

˝ D @2 lnp.X;V�I �/
@V@V0 : (15.5)

For the LN-SV model V� does not have the analytical expression and hence
numerical methods are needed. For example, Shephard and Pitt (1997), Durham
(2006), Skaug and Yu (2007) proposed to use Newton’s method, which involves
recursive calculations of V D V� � ˝�1V�, based on a certain initial vector of
log-volatilities, V0.

Based on the Laplace approximation, the likelihood function can be written as

p.XI �/ D
Z
p.X;VI �/dV D

Z
p.X;VI �/

N.VI V�;�˝�1/
N.VI V�;�˝�1/dV: (15.6)
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The idea of importance sampling is to draw samples V.1/; : : : ;V.S/ from
N.�I V�;�˝�1/ so that p.XI �/ is approximated by

1

S

SX

sD1

p.X;V.s/I �/
N.V.s/I V�;�˝�1/

: (15.7)

After the likelihood function is obtained, a numerical optimization procedure, such
as the quasi Newton method, can be applied to obtain the ML estimator.

The convergence of (15.7) to the likelihood function p.XI �/ with S ! 1
is ensured by Komogorov’s strong law of large numbers. The square root rate of
convergence is achieved if and only if the following condition holds

Var



p.X;V.s/I �/

N.V.s/I V�;�˝�1/

�
< 1:

See Koopman et al. (2009) for further discussions on the conditions and a test to
check the convergence.

The idea of the LA-IS method is quite general. The approximation error is
determined by the distance between the integrant and the multivariate normal
distribution and the size of S . The Laplace approximation does not have any error
if p.X;VI �/ is the Gaussianity in V. In this case, S D 1 is big enough to obtain
the exact value of the integral. The further p.X;VI �/ away from Gaussian in V, the
less precise the Laplace approximation is. In this case, a large value is needed for S .

For the LN-SV model, the integrand in (15.3) can be written as

p.X;VI �/ D N



h1; 0;

�2

1 � �2

� nY

tD2
N
�
ht ; �hn�1; �2

� nY

tD1
N
�
Xt ; 0; �

2eht
�
;

(15.8)
and hence

lnp.X;VI �/ D lnN



h1; 0;

�2

1 � �2

�
C

nX

tD2
lnN

�
ht ; �hn�1; �2

�

C
nX

tD1
lnN

�
Xt ; 0; �

2eht
�
: (15.9)

It is easy to show that

@N.xI�; �2/=@x
N.xI�; �2/ D �x � �

�2
;
@N.xI�; �2/=@�
N.xI�; �2/ D �� � x

�2
;

@N.xI�; �2/=@�2
N.xI�; �2/ D � 1

�2



1 � .x � �/2

�2

�
;
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Using these results, we obtain the gradient of the log-integrand:

0

BBBBBBBB@

@ lnp.X;VI�/
@h1

@ lnp.X;VI�/
@h2
:::

@ lnp.X;VI�/
@hn�1

@ lnp.X;VI�/
@hn

1

CCCCCCCCA

D

0

BBBBBBBB@

�h2�h1
�2

� 1
2

C 1
2
�21

�h3��2h2C�h1
�2

� 1
2

C 1
2
�22

:::
�hn��2hn�1C�hT�2

�2
� 1

2
C 1

2
�2n�1

hn��hn�1

�2
� 1

2
C 1

2
�2n

1

CCCCCCCCA

; (15.10)

and the Hessian matrix of the log-integrand:

˝ D

0

BBBBBBBBB@

� 1
�2

� 1
2
�21

�

�2
� � � 0 0

�

�2
� 1C�2

�2
� 1

2
�22 � � � 0 0

:::
:::

: : :
:::

:::

0 0 � � � � 1C�2
�2

� 1
2
�2n�1

�

�2

0 0 � � � �

�2
� 1
�2

� 1
2
�2n

1

CCCCCCCCCA

: (15.11)

Durham (2006, 2007), Koopman et al. (2009), Skaug and Yu (2007) and
Yu (2009b) applied the SML method to estimate generalized SV models and
documented the reliable performance in various contexts.

15.3.2 Monte Carlo Likelihood Method

Durbin and Koopman (1997) proposed a closely related SML method which is
termed Monte Carlo likelihood (MCL) method. MCL was originally designed to
evaluate the likelihood function of a linear state-space model with non-Gaussian
errors. The basic idea is to decompose the likelihood function into the likelihood of
a linear state-space model with Gaussian errors and that of the remainder. It is known
that the likelihood function of a linear state-space model with Gaussian errors can
be calculated by the Kalman filter. The likelihood of the remainder is calculated by
simulations using LA-IS.

To obtain the linear state-space form for the LN-SV model, one can apply the
log-squared transformation to Xt :

�
Yt D lnX2

t D ln �2 C ht C "t ; t D 1; : : : ; n;

htC1 D �ht C ��t ; t D 1; : : : ; n � 1;
(15.12)
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where "t
iid� ln�2.1/ (i.e. no-Gaussian), �t

iid�N.0; 1/, corr."t ; �t /D 0, and h1 �N

.0; �2=.1� �2//. For any linear state-space model with non-Gaussian measurement
errors, Durbin and Koopman (1997) showed that the log-likelihood function can be
expressed as

lnp.XI �/ D lnLG.XI �/C lnEG

�
p"."I �/
pG."I �/

	
; (15.13)

where lnLG.XI �/ is the the log-likelihood function of a carefully chosen approxi-
mating Gaussian model, p"."I �/ the true density of ".WD ."1; : : : ; "n/

0/, pG."I �/
the Gaussian density of the measurement errors of the approximating model,
EG the expectation with respect to the importance density in connection to the
approximating model.

Relative to (15.3), (15.13) has the advantage that simulations are only needed
to estimate the departure of the likelihood from the Gaussian likelihood, rather
than the full likelihood. For the LN-SV model, lnLG.XI �/ often takes a much

larger value than lnEG
h
p"."I�/
pG."I�/

i
. As a result, MCL is computationally efficient

than other simulated-based ML methods because it only needs a small number of
simulations to achieve the desirable accuracy when approximating the likelihood.
However, the implementation of the method requires a linear non-Gaussian state-
space representation. Jungbacker and Koopman (2007) extended the method to deal
with nonlinear non-Gaussian state-space models. Sandmann and Koopman (1998)
applied the method to estimate the LN-SV model and the SV-t model. Broto and
Ruiz (2004) compared the performance of alternative methods for estimating the
LN-SV model and found supporting evidence for of the good performance of MCL.

15.3.3 Efficient Importance Sampler

Richard and Zhang (2007) developed an alternative simulated ML method. It
is based on a particular factorization of the importance density and termed as
Efficient Importance Sampling (EIS). Relative to the two SML methods reviewed
in Sects 3.1 and 3.2, EIS minimizes locally the Monte Carlo sampling variance of
the approximation to the integrand by factorizing the importance density. To fix the
idea, assume g.VjX/ is the importance density which can be constructed as

g.VjX/ D
nY

tD1
g.ht jht�1;X/ D

nY

tD1

n
Cte

ct htCdt h2t p.ht jht�1/
o
; (15.14)

where ct ; Ct and dt depend on X and ht�1 with fCtg be a normalization sequence
so that g is a normal distribution. The sequences fctg and fdtg should be chosen to
match p.X;VI �/ and g.VjX/ which, as we shown in Sect. 15.3.1, requires a high-
dimensional non-linear regression. The caveat of EIS is to match each component in
g.VjX/ (i.e. Ctect htCdt h

2
t p.ht jht�1/), to the corresponding element in the integrand
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p.XI V/ (ie p.Xt jht /p.ht jht�1/) in a backward manner, with t D n; n � 1; � � � ; 1.
It is easy to show that Ct depends only on ht�1 but not on ht . As a result, the
recursive matching problem is equivalent to running the following linear regression
backward:

lnp.Xt jh.s/t /� lnCtC1 D a C cth
.s/
t C dt .h

.s/
t /

2; s D 1; � � � ; S; (15.15)

where h.1/t ; : : : ; h
.S/
t are drawn from the importance density and h.s/t and .h.s/t /

2 are
treated as the explanatory variables in the regression model with CnC1 D 1.

The method to approximate the likelihood involves the following procedures:

1. Draw initial V.s/ from (15.2) with s D 1; � � � ; S .
2. Estimate ct and dt from (15.15) and do it backward with CnC1 D 1.
3. Draw V.s/ from importance density g.VjX/ based on ct and dt .
4. Repeat Steps 2-3 until convergence. Denote the resulting sampler by V.s/.
5. Approximate the likelihood by

1

S

SX

sD1

8
<

:

nY

tD1

p.Xt jh.s/t /
Ct exp

�
cth

.s/
t C dt.h

.s/
t /

2

�

9
=

; :

The EIS algorithm relies on the user to provide a problem-dependent auxiliary
class of importance samplers. An advantage of this method is that it does not
rely on the assumption that the latent process is Gaussian. Liesenfeld and Richard
(2003, 2006) applied this method to estimate a number of discrete SV models while
Kleppe et al. (2009) applied this method to estimate a continuous time SV model.
Lee and Koopman (2004) compared the EIS method with the LA-IS method and
found two methods are comparable in the context of the LN-SV model and the SV-t
model. Bauwens and Galli (2008) and Bauwens and Hautsch (2006) applied EIS to
estimate a stochastic duration model and a stochastic conditional intensity model,
respectively.

15.3.4 An Empirical Example

For the purposes of illustration, we fit the LN-SV model to a widely used dataset
(namely svpd1.txt). The dataset consists of 945 observations on daily pound/dollar
exchange rate from 01/10/1981 to 28/06/1985. The same data were used in Harvey
et al. (1994), Shephard and Pitt (1997), Meyer and Yu (2000), and Skaug and Yu
(2007).

Matlab code (namely LAISLNSV.m) is used to implement the LA-IS method.
Table 15.1 reports the estimates and the likelihood when S D 32. In Skaug and
Yu (2007) the same method was used to estimate the same model but S was set at
64. The estimates and the log-likelihood value based on S D 32 are very similar
to those based on S D 64, suggesting that a small number of random samples can
approximate the likelihood function very well.
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Table 15.1 SMLE of the LN-SV model
� � � Log-likelihood

S D 32 0.6323 0.1685 0.9748 917.845
S D 64 0.6305 0.1687 0.9734 917.458

15.4 Simulated GMM and Continuous Time Models

Many models that are used to describe financial time series are written in terms of a
continuous time diffusion X.t/ that satisfies the stochastic differential equation

dX.t/ D �.X.t/I �/dt C �.X.t/I �/dB.t/; (15.16)

where B.t/ is a standard Brownian motion, �.X.t/I �/ a diffusion function,
�.X.t/I �/ a drift function, and � a vector of unknown parameters. The target here
is to estimate � from a discrete sampled observations, Xh; : : : ; Xnh with h being
the sampling interval. This class of parametric models has been widely used to
characterize the temporal dynamics of financial variables, including stock prices,
interest rates, and exchange rates.

Many estimation methods are based on the construction of the likelihood function
derived from the transition probability density of the discretely sampled data.
This approach is explained as follows. Suppose p.XihjX.i�1/h; �/ is the transition
probability density. The Markov property of model (15.16) implies the following
log-likelihood function for the discrete sample

`.�/ D
nX

iD1
ln.p.XihjX.i�1/h; �//: (15.17)

To perform exact ML estimation, one needs a closed form expression for `.�/
and hence ln.p.XihjX.i�1/h; �//. In general, the transition density p satisfies the
forward equation:

@p

@t
D 1

2

@2p

@y2

and the backward equation:
@p

@s
D �1

2

@2p

@x2
;

where p.y; t jx; s/ is the transition density. Solving the partial differential equation
numerically at y D Xih; x D X.i�1/h yields the transition density. This approach
was proposed by Lo (1988).

Unfortunately, only in rare cases, does the transition density p.XihjX.i�1/h; �/
have a closed form solution. Phillips and Yu (2009) provide a list of examples
in which ln.p.XihjX.i�1/h; �// have a closed form analytical expression. These
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examples include the geometric Brownian Motion, Ornstein-Uhlenbeck (OU) pro-
cess, square-root process, and inverse square-root process. In general solving the
forward/backward equations is computationally demanding.

A classical and widely used estimation method is via the Euler scheme, which
approximates a general diffusion process such as equation (15.16) by the following
discrete time model

Xih D X.i�1/h C �.X.i�1/h; �/hC �.X.i�1/h; �/
p
h�i ; (15.18)

where �i � i.i.d. N.0; 1/. The transition density for the Euler discrete time model
(15.18) has the following closed form expression:

XihjX.i�1/h � N
�
X.i�1/h C �.X.i�1/h; �/h; �2.X.i�1/h; �/h

�
: (15.19)

Obviously, the Euler scheme introduces a discretization bias. The magnitude
of the bias introduced by Euler scheme is determined by h, which cannot be
controlled econometricians. In general, the bias becomes negligible when h is
close to zero. One way to use the full likelihood analysis is to make the sampling
interval arbitrarily small by partitioning the original sampling interval so that the
new subintervals are sufficiently fine for the discretization bias to be negligible. By
making the subintervals smaller, one inevitably introduces latent variables between
the two original consecutive observationsX.i�1/h and Xih. While our main focus is
SGMM in this section, SML is possible and is discussed first.

15.4.1 SML Methods

To implement ML estimation, one can integrate out these latent observations.When
the partition becomes finer, the discretization bias is approaching 0 but the required
integration becomes high dimensional. In general, the integral does not have a
closed-form expression and hence simulation-based methods can be used, leading
to simulated ML estimators. To fix the idea, suppose thatM �1 auxiliary points are
introduced between .i � 1/h and ih, i.e.

..i � 1/h �/0; 1; � � � ; M�1; M .� ih/:

Thus

p.XihjX.i�1/hI �/ D
Z

� � �
Z
p.XM ;XM�1 ; � � � ; X1 jX0 I �/dX1 � � �dXM�1

D
Z

� � �
Z MY

mD1
p.Xm jXm�1 I �/dX1 � � �dXM�1 : (15.20)
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The second equality follows from the Markov property. The idea behind the simu-
lated ML method is to approximate the densities p.Xm jXm�1 I �/ (step 1), evaluate
the multidimensional integral using importance sampling techniques (step 2) and
then maximize the likelihood function numerically. To the best of my knowledge,
Pedersen (1995) was the first study that suggested the idea in this context.

Pedersen’s method relies on the Euler scheme, namely, approximates the latent
transition densities p.Xm jXm�1 I �/ based on the Euler scheme and approximates
the integral by drawing samples of .XM�1 ; � � � ; X1/ via simulations from the
Euler scheme. That is, the importance sampling function is the mapping from
.�1; �2; � � � ; �M�1/ 7! .X1 ; X2 ; � � � ; XM�1 / given by the Euler scheme:

XmC1
D Xm C �.Xm I �/h=M C �.Xm; �/

p
h=M�mC1; m D 0; � � � ;M � 2;

where .�1; � � � ; �M�1/ is a multivariate standard normal.
Durham and Gallant (2002) noted two sources of approximation error in

Pedersen’s method, the discretization bias in the Euler scheme and the errors
due to the Monte Carlo integration. A number of studies have provided methods
to reduce these two sources of error. For example, to reduce the discretization
bias in step 1, Elerian (1998) used the Milstein scheme instead of the Euler
scheme while Durham and Gallant advocated using a variance stablization trans-
formation, i.e. applying the Lamperti transform to the continuous time model.
Certainly, other methods that can reduce the discretization bias may be used.
Regarding step 2, Elerian et al. (2001) argued that the importance sampling function
of Pedersen ignores the end-point information, XM , and Durham and Gallant
(2002) showed that Pedersen’s importance function draws most samples from
regions where the integrand has little mass. Consequently, Pedersen’s method is
simulation-inefficient.

To improve the efficiency of the importance sampler, Durham and Gallant (2002)
considered the following importance sampling function

XmC1
D Xm C Xih � Xm

ih� m
h=M C �.Xm ; �/

p
h=M�mC1; m D 0; � � � ;M � 2;

where .�1; � � � ; �M�1/ is a multivariate standard normal. Loosing speaking, this is a
Brownian bridge because it starts from X.i�1/h at .i � 1/h and is conditioned to ter-
minate with Xih at ih. Another importance sampling function proposed by Durham
and Gallant (2002) is to draw XmC1

from the density N.Xm C Q�mh=M; Q�2mh=M/

where Q�m D .XM �Xm/=.ih�m/, Q�2m D �2.Xm/.M �m�1/=.M �m/. Elerian
et al. (2001) suggested the following tied-down process:

p.X1 ; � � � ; XM�1 jX0; XM /;

as the importance function and proposed using the Laplace approximation to the
tied-down process. Durham and Gallant (2002) compared the performance of these
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three importance functions relative to Pedersen (1995) and found that all these
methods deliver substantial improvements.

15.4.2 Simulated GMM (SGMM)

Not only is the likelihood function for (15.16) difficult to construct, but also the
moment conditions; see, for example, Duffie and Singleton (1993) and He (1990).
While model (15.16) is difficult to estimate, data can be easily simulated from it.
For example, one can simulate data from the Euler scheme at an arbitrarily small
sampling interval. With the interval approaches to zero, the simulated data can
be regarded as the exact simulation although the transition density at the coarser
sampling interval is not known analytically. With simulated data, moments can be
easily constructed, facilitating simulation-based GMM estimation. Simulated GMM
(SGMM) methods have been proposed by McFadden (1989), Pakes and Pollard
(1989) for iid environments, and Lee and Ingram (1991), Duffie and Singleton
(1993) for time series environments.

Let feX.s/
t .�/gN .n/

tD1 be the data simulated from (15.16) when parameter is � using

random seed s. Therefore, feX.s/
t .�0/g is drawn from the same distribution as the

original data fXtg and hence share the same moment characteristic. The parameter
� is chosen so as to “match moments”, that is, to minimize the distance between
sample moments of the data and those of the simulated data. AssumingH represents
K-moments, SGMM estimator is defined as:

O�SGMMn WD argmin�2�

0

@1
n

nX

tD1
g.Xt /� 1

N .n/

N .n/X

tD1
g. QX.s/

t I �/
1

A
0

Wn

0

@1
n

nX

tD1
g.Xt /� 1

N .n/

N .n/X

tD1
g. QX.s/

t I �/
1

A
0

;

whereWn is a certain positive definite weighting matrix of q�q-dimension (q 	 K),
which may depend on the sample but not � , N .n/ is the number of number of
observations in a simulated path. Under the ergodicity condition,

1

N .n/

N .n/X

tD1
g. QX.s/

t I �0/ p! E.g.Xt I �0//

and

1

n

nX

tD1
g.Xt /

p! E.g.Xt I �0//;

justifying the SGMM procedure.
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The SGMM procedure can be made optimal with a careful choice of the
weighting function, given a set of moments. However, the SGMM estimator is in
general asymptotically less efficient than SML for the reason that moments are less
informative than the likelihood. Gallant and Tauchen (1996a,b) extended the SGMM
technique so that the GMM estimator is asymptotically as efficient as SML. This
approach is termed efficient method of moments (EMM), which we review below.

15.4.3 Efficient Method of Moments

EMM is first introduced by Gallant and Tauchen (1996a,b) and has now found
many applications in financial time series; see Gallant and Tauchen (2001a,c) for
the detailed account of the method and a review of the literature. While it is closely
related to the general SGMM, there is one important difference between them.
Namely, GMM relies on an ad hoc chosen set of moment conditions, EMM is
based on a judiciously chosen set of moment conditions. The moment conditions
that EMM is based on are the expectation of the score of an auxiliary model which
is often referred to as the score generator.

For the purpose of illustration, let a SV model be the structural model. The SV
model is the continuous time version of the Box-Cox SV model of Yu et al. (2006),
which contains many classical continuous SV models as special cases, and is of the
form:

dS.t/ D ˛10S.t/dt C S.t/Œ1C ı.ˇ10 C ˇ12h.t//	
1=.2ı/dB1.t/;

dh.t/ D �˛22h.t/dt C dB2.t/:

Let the conditional density of the structural model (the Box-Cox SV model in
this case) is defined by

pt .Xt jYt ; �/;
where Xt D lnS.t/, the true value of � is �0, �0 2 � 
 <`� with `� being the
length of �0 and Yt is a vector of lagged Xt . Denote the conditional density of an
auxiliary model by

ft .Xt jYt ; ˇ/; ˇ 2 R 
 <`ˇ :

Further define the expected score of the auxiliary model under the structural model
as

m.�; ˇ/ D
Z

� � �
Z

@

@̌
lnf .xjy; ˇ/p.xjy; �/p.yj�/dxdy:

Obviously, in the context of the SV model, the integration cannot be solved
analytically since neither p.xjy; �/ nor p.yj�/ has a closed form expression.
However, it is easy to simulate from an SV model so that one can approximate
the integral by Monte Carlo simulations. That is
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m.�; ˇ/ � mN.�; ˇ/ � 1

N

NX

D1

@

@̌
lnf . OX.�/j OY.�/; ˇ/;

where f OX; OYg are simulated from the structural model. The EMM estimator is a
minimum chi-squared estimator which minimizes the following quadratic form,

O�n D arg min
�2� m

0
N .�;

Ǒ
n/.In/

�1mN .�; Ǒ
n/;

where Ǒ
n is a quasi maximum likelihood estimator of the auxiliary model and In is

an estimate of
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with ˇ� being the pseudo true value of ˇ. Under regularity conditions, Gallant and
Tauchen (1996a,b) show that the EMM estimator is consistent and has the following
asymptotic normal distribution,

p
n. O�n � �0/ d! N
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For specification testing, we have

Jn D nm0
N .

O�n; Ǒ
n/.In/

�1mN . O�n; Ǒ
n/

d! �2`ˇ�`�

under the null hypothesis that the structural model is correct. When a model fails the
above specification test one may wish to examine the quasi-t-ratios and/or t-ratios
to look for some suggestion as to what is wrong with the structural model. The
quasi-t-ratios are defined as

OTn D S�1
n

p
nmN . O�n; Ǒ

n/;

where Sn D Œdiag.In/	1=2. It is well known that the elements of OTn are downward
biased in absolute value. To correct the bias one can use the t-ratios defined by

QTn D Q�1
n

p
nmN . O�n; Ǒ

n/;

where

Qn D


diagfIn � @

@� 0
mN. O�n; Ǒ

n/Œm
0
N .

O�n; Ǒ
n/.In/

�1mN . O�n; Ǒ
n/	

�1 @

@�
mN . O�n; Ǒ

n/g
�1=2

:
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Large quasi-t-ratios and t-ratios reveal the features of the data that the structural
model cannot approximate.

Furthermore, Gallant and Tauchen (1996a,b) show that if the auxiliary model
nests the data generating process, under regularity conditions the EMM estimator
has the same asymptotic variance as the maximum likelihood estimator and hence
is fully efficient. If the auxiliary model can closely approximate the data generating
process, the EMM estimator is nearly fully efficient (Gallant and Long 1997;
Tauchen 1997).

To choose an auxiliary model, the seminonparametric (SNP) density proposed
by Gallant and Tauchen (1989) can be used since its success has been documented
in many applications. As to SNP modeling, six out of eight tuning parameters are
to be selected, namely, Lu, Lg , Lr , Lp , Kz, and Ky . The other two parameters, Iz

and Ix, are irrelevant for univariate time series and hence set to be 0. Lu determines
the location transformation whereas Lg and Lr determine the scale transformation.
Altogether they determine the nature of the leading term of the Hermite expansion.
The other two parameters Kz and Ky determine the nature of the innovation. To
search for a good auxiliary model, one can use the Schwarz BIC criterion to move
along an upward expansion path until an adequate model is found, as outlined in
Bansal et al. (1995). To preserve space we refer readers to Gallant and Tauchen
(2001b) for further discussion about the role of the tuning parameters and how to
design an expansion path to choose them.

While EMM has found a wide range of applications in financial time series,
Duffee and Stanton (2008) reported finite sample evidence against EMM when
financial time series is persistent. In particular, in the context of simple term
structure models, they showed that although EMM has the same asymptotic
efficiency as ML, the variance of EMM estimator in finite sample is too large and
cannot be accepted in practice.

15.4.4 An Empirical Example

For the purposes of illustration, we fit the continuous time Box-Cox SV model to
daily prices of Microsoft. The stock price data consist of 3,778 observations on the
daily price of a share of Microsoft, adjusted for stock split, for the period from
March 13, 1986 to February 23, 2001. The same data have been used in Gallant and
Tauchen (2001a) to fit a continuous time LN-SV model. For this reason, we use the
same sets of tuning parameters in the SNP model as in Gallant and Tauchen (2001a),
namely,

.Lu; Lg; Lr ; Lp;Kz; Iz; Ky; Iy/ D .1; 1; 1; 1; 6; 0; 0; 0/:

Fortran code and the date can be obtained from an anonymous ftp site at
ftp.econ.duke.edu. A EMM User Guide by Gallant and Tauchen (2001a) is available
from the same site. To estimate the Box-Cox SV model, we only needed to change
the specification of the diffusion function in the subroutine difuse in the fortran
file emmuothr.f, i.e. “tmp1 D DEXP( DMIN1 (tmp1,bnd))” is changed to
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Table 15.2 EMM estimate of the continuous time box-cox SV model
˛10 ˛22 ˇ10 ˇ12 ı �26

0.4364 0.5649 �0.1094 0.2710 0.1367 13.895

“tmp1 D (1+ delta* DMIN1 (tmp1,bnd))**(0.5/delta)”. Table 15.2 reports the
EMM estimates. Obviously, the volatility of Microsoft is very persistent since the
estimated mean reversion parameter is close to zero and the estimate value of ı is
not far away from 0, indicating that the estimated Box-Cox SV is not very different
from the LN-SV model model.

15.5 Bayesian MCMC and Credit Risk Models

Credit derivatives market had experienced a fantastic growth before the global
financial meltdown in 2007. The size of the market had grew so much and the
credit risk management had been done so poorly in practice that the impact of the
financial crisis is so big. Not surprisingly, how to estimate credit risk has received an
increasing attention from academic researchers, industry participants, policy makers
and regulators.

A widely used approach to credit risk modelling in practice is the so-called
structural method. All structural credit risk models specify a dynamic structure for
the underlying firm’s asset and default boundary. Let V be the firm’s asset process, r
the risk-free interest rate, F the face value of a zero-coupon debt that the firm issues
with the time to maturity T . Merton (1974) is the simplest structural model where
Vt is assumed to follow a geometric Brownian motion:

d lnVt D .� � �2=2/dt C �dBt ; V0 D c; (15.21)

The exact discrete time model, sampled with the step size h, is

lnVtC1 D .� � �2=2/hC lnVt C �
p
h�t ; V0 D c; (15.22)

which contains a unit root.
There are two types of outstanding claims faced by a firm that is listed in a stock

exchange, an equity and a zero-coupon debt whose face value is F maturing at T .
The default occurs at the maturity date of debt in the event that the issuer’s assets are
less than the face value of the debt (i.e. VT < F ). Under the assumption of (15.21)
the firm’s equity can be priced with the Black-Scholes formula as if it is a call option
on the total asset value V of the firm with the strike price of F and the maturity date
T . Namely, the equity claim, denoted by St , is

St � S.Vt I �/ D Vt˚.d1t / � Fe�r.T�t /˚.d2t /; (15.23)
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where ˚.�/ is the cumulative distribution function of the standard normal variate,

d1t D ln.Vt=F /C .r C �2=2/.T � t/

�
p
T � t

;

and

d2t D ln.Vt=F /C .r � �2=2/.T � t/

�
p
T � t

:

Merton’s model can be used to evaluate private firm credit risk and the credit
spread of a risk corporate bond over the corresponding Treasure rate. The credit
spread is given by

C.Vt I �/ D � 1

T � t
ln



Vt

F
˚.�d1t /C e�r.T�t /˚.d2t /

�
� r: (15.24)

The default probability is given by

P.Vt I �/ D ˚



ln.F=Vt/ � .� � �2=2/.T � t /

�
p
T � t

�
: (15.25)

At a reasonably high frequency, St may be observed with errors due to the
presence of various market microstructure effects. This observation motivates Duan
and Fulop (2009) to consider the following generalization to Merton’s model:

lnSt D lnS.Vt I �/C ıvt ; vt � N.0; 1/: (15.26)

In a state-space framework, (15.26) is an observation equation and (15.22) is
a state equation. Unfortunately, the Kalman filter is not applicable here since the
observation equation is nonlinear.

Let X D .lnS1; � � � ; lnSn/0, V D .lnV1; � � � ; lnVn/0, and � D .�; �; ı/0. The
likelihood function of (15.26) is given by

p.XI �/ D
Z
p.X;VI �/dV D

Z
p.XjVI�/p.VI �/dV: (15.27)

In general this is a high-dimensional integral which does not have closed form
expression due to the non-linear dependence of lnSt on lnVt . Although in this
section, our main focus is the Bayesian MCMC methods, SML is possible. Indeed
all the SML methods discussed in Sect. 15.3 are applicable here. However, we will
discuss a new set of SML methods – particle filters.

15.5.1 SML via Particle Filter

It is known that Kalman filter is an optimal recursive data processing algorithm
for processing series of measurements generated from a linear dynamic system. It
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is applicable any linear Gaussian state-space model where all relevant conditional
distributions are linear Gaussians. Particle filters, also known as sequential Monte
Carlo methods, extend the Kalman filter to nonlinear and non-Gaussian state space
models.

In a state space model, two equations have to be specified in the fully parametric
manner. First, the state equation describes the evolution of the state with time.
Second, the measurement equation relates the noisy measurements to the state.
A recursive filtering approach means that received data can be processed sequen-
tially rather than as a batch so that it is not necessary to store the complete data set
nor to reprocess existing data if a new measurement becomes available. Such a filter
consists of essentially two stages: prediction and updating. The prediction stage uses
the system model to predict the state density forward from one measurement time
to the next. Since the state is usually subject to unknown disturbances, prediction
generally translates, deforms, and spreads the state density. The updating operation
uses the latest measurement to modify the prediction density. This is achieved
using Bayes theorem, which is the mechanism for updating knowledge about the
target state in the light of extra information from new data. When the model is
linear and Gaussian, the density in both stages is Gaussian and Kalman filter gives
analytical expressions to the mean and the co-variance. As a byproduct, the full
conditional distribution of measurements is available, facilitating the calculation of
the likelihood.

For nonlinear and non-Gaussain state space models, the density in neither stage
is not Gaussian any more and the optimal filter is not available analytically. Particle
filter is a technique for implementing a recursive filter by Monte Carlo simulations.
The key idea is to represent the required density in connection to prediction and
updating by a set of random samples (known as “particles”) with associated weights
and to compute estimates based on these samples and weights. As the number
of samples becomes very large, this simulation-based empirical distribution is
equivalent the true distribution.

To fix the idea, assume that the nonlinear non-Gaussian state space model is of
the form,

�
Yt D H.Xt ; et /

Xt D F.Xt�1; ut /;
(15.28)

whereXt is a k-dimensional state vector, ut is a l-dimensional white noise sequence
with density q.u/, vt is a l-dimensional white noise sequence with density r.v/ and
assumed uncorrelated with fusgtsD1, H and F are possibly nonlinear functions. Let
vt D G.Yt ; Xt/ and G0 is the derivative of G as a function of Yt . The density of
the initial state vector is assumed to be p0.x/. Denote Y1Wk D fY1; � � � ; Ykg. The
objective of the prediction is to obtain p.Xt jY1Wt /. It can be seen that

p.Xt jY1Wt�1/ D
Z
p.Xt jXt�1/p.Xt�1jY1Wt�1/dXt�1: (15.29)
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At time step t , when a new measurement Yt becomes available, it may be used to
update the predictive density p.Xt jY1Wt�1/ via Bayes rule in the updating stage,

p.Xt jY1Wt / D p.Yt jXt/p.Xt jY1Wt�1/
p.Yt jY1Wt�1/ : (15.30)

Unfortunately, for the nonlinear non-Gaussian state-space model, the recursive
propagation in both stages is only a conceptual solution and cannot be determined
analytically. To deal with this problem, particle filtering algorithm consists of
recursive propagation of the weights and support points when each measurement
is received sequentially so that the true densities can be approximated by the
corresponding empirical density.

Various versions of particle filters have been proposed in the literature. In this
chapter we only summarize all the steps involved in Kitagawa’s algorithm (Kitagawa
1996):

1. Generate M l-dimensional particles from p0.x/, f
.j /
0 for j D 1; : : : ;M .

2. Repeat the following steps for t D 1; : : : ; n.

(a) Generate M l-dimensional particles from q.u/, u.j /t for j D 1; : : : ;M .
(b) Compute p.j /t D F.f

.j /
t�1; u

.j /
t / for j D 1; : : : ;M .

(c) Compute ˛.j /t D r.G.Yt ; p
.j /
t // for j D 1; : : : ;M .

(d) Re-sample fp.j /t gMjD1 to get ff .j /t gMjD1 with probabilities proportional to

fr.G.Yt ; p.j /t // � jG0.Yt ; p.j /t /jgMjD1.

Other particle filtering algorithms include sampling importance resampling filter
of Gordon et al. (1993), auxiliary sampling importance resampling filter of Pitt and
Shephard (1999a), and regularized particle filter (Musso et al. 2001).

To estimate the Merton’s model via ML, Duan and Fulop employed the particle
filtering method of Pitt (2002). Unlike the method proposed by Kitagawa (1995)
which samples a pointX.m/

t when the system is advanced, Duan and Fulop sampled
a pair .V .m/

t ; V
.m/
tC1/ at once when the system is advanced. Since the resulting

likelihood function is not smooth with respect to the parameters, to ensure a smooth
surface for the likelihood function, Duan and Fulop used the smooth bootstrap
procedure for resampling of Pitt (2002).

Because the log-likelihood function can be obtained as a by-product of the
filtering algorithm, it can be maximized numerically over the parameter space to
obtain the SMLE. If M ! 1, the log-likelihood value obtained from simulations
should converge to the true likelihood value. As a result, it is expected that for a
sufficiently large number of particles, the estimates that maximize the approximated
log-likelihood function are sufficiently close to the true ML estimates.
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15.5.2 Bayesian MCMC Methods

The structure in the state-space model ensures the pivotal role played by Bayes
theorem in the recursive propagation. Not surprisingly, the requirement for the
updating of information on receipt of new measurements are ideally suited for
the Bayesian approach for statistical inference. In this chapter, we will show
that Bayesian methods provide a rigorous general approach to the dynamic state
estimation problem. Since many models in financial econometrics have a state-
space representation, Bayesian methods have received more and more attentions
in statistical analysis of financial time series.

The general idea of the Bayesian approach is to perform posterior computations,
given the likelihood function and the prior distribution. MCMC is a class of
algorthims which enables one to obtain a correlated sample from a Morkov chain
whose stationary transition density is the same as the posterior distribution. There
are certain advantages in the Bayesian MCMC method. First, as a likelihood-based
method, MCMC matches the efficiency of ML. Second, as a by-product of param-
eter estimation, MCMC provides smoothed estimates of latent variables because
it augments the parameter space by including the latent variables. Third, unlike
the frequentist’s methods whose inference is almost always based on asymptotic
arguments, inferences via MCMC are based on the exact posterior distribution.
This advantage is especially important when the standard asymptotic theory is
difficult to derive or the asymptotic distribution does not provide satisfactory
approximation to the finite sample distribution. As a trade-off, one has to specify
the prior distribution. In addition, with MCMC it is straightforward to obtain the
exact posterior distribution of any transformation (linear or nonlinear) of model
parameters and latent variables, such as the credit spread and the default probability.
Therefore, the exact finite sample inference can easily be made in MCMC, whereas
the ML method necessitates the delta method to obtain the asymptotic distribution.
When the asymptotic distribution of the original parameters does not work well, it
is expected that the asymptotic distribution yielded by the delta method may not
work well. Fourth, numerical optimization is not needed in MCMC. This advantage
is of practical importance when the likelihood function is difficult to optimize
numerically. Finally, the proposed method lends itself easily to dealing with flexible
specifications.

There are three disadvantages of the MCMC method. First, in order to obtain
the filtered estimate of the latent variable, a separate method is required. This
is in contrast with the ML method of Duan and Fulop (2009) where the filtered
estimate of the latent variable is obtained as a by-product. Second, with the MCMC
method the model has to be fully specified whereas the MLE remains consistent
even when the microstructure noise is nonparametrically specified, and in this case,
ML becomes quasi-ML. However, in recent years, semiparametric MCMC methods
have appeared in the literature. For example, the flexibility of the error distribution
may be accommodated by using a Dirichelt process mixture (DPM) prior (see
Ferguson (1973) for the detailed account of DMP, and Jensen and Maheu (2008)
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for an application of DMP to volatility modeling). Finally, prior distributions have
to be specified. In some cases, prior distributions may have important influences on
the posterior analysis but it is not so obvious to specify the prior distributions.

From the Bayesian viewpoint, we understand the specification of the structural
credit risk model as a hierarchical structure of conditional distributions. The hierar-
chy is specified by a sequence of three distributions, the conditional distribution
of lnSt j lnVt ; ı, the conditional distribution of lnVt j lnVt�1; �; � , and the prior
distribution of � . Hence, our Bayesian model consists of the joint prior distribution
of all unobservables, here the three parameters, �; �; ı, and the unknown states,
V, and the joint distribution of the observables, here the sequence of contaminated
log-equity prices X. The treatment of the latent state variables V as the additional
unknown parameters is the well known data-augmentation technique originally
proposed by Tanner and Wong (1987) in the context of MCMC. Bayesian inference
is then based on the posterior distribution of the unobservables given the data. In the
sequel, we will denote the probability density function of a random variable � by
p.�/. By successive conditioning, the joint prior density is

p.�; �; ı;V/ D p.�; �; ı/p.ln V0/
nY

tD1
p.lnVt j lnVt�1; �; �/: (15.31)

We assume prior independence of the parameters �, ı and � . Clearly
p.lnVt j lnVt�1; �; �/ is defined through the state equations (15.22). The likelihood
p.Xj�; �; ı;V/ is specified by the observation equations (15.26) and the conditional
independence assumption:

p.Xj�; �; ı;V/ D
nY

tD1
p.lnSt j lnVt ; ı/: (15.32)

Then, by Bayes’ theorem, the joint posterior distribution of the unobservables given
the data is proportional to the prior times likelihood, i.e.

p.�; �; ı;VjX/ / p.�/p.�/p.ı/p.lnV0/
nY

tD1
p.lnVt j lnVt�1; �; �/

nY

tD1
p.lnSt j lnVt ; ı/:

(15.33)

Without data augmentation, we need to deal with the intractable likelihood
function p.Xj�/ which makes the direct analysis of the posterior density p.� jV/
difficult. The particle filtering algorithm of Duan and Fulop (2009) can be used
to overcome the problem. With data augmentation, we focus on the new posterior
density p.�;VjX/ given in (15.33). Note that the new likelihood function is
p.Xj�;V/ which is readily available analytically once the distribution of �t is
specified. Another advantage of using the data-augmentation technique is that the
latent state variables V are the additional unknown parameters and hence we can
make statistical inference about them.
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The idea behind the MCMC methods is to repeatedly sample from a Markov
chain whose stationary (multivariate) distribution is the (multivariate) posterior
density. Once the chain converges, the sample is regarded as a correlated sample
from the posterior density. By the ergodic theorem for Markov chains, the posterior
moments and marginal densities can be estimated by averaging the corresponding
functions over the sample. For example, one can estimate the posterior mean by the
sample mean, and obtain the credible interval from the marginal density. When the
simulation size is very large, the marginal densities can be regarded to be exact,
enabling exact finite sample inferences. Since the latent state variables are in the
parameter space, MCMC also provides the exact solution to the smoothing problem
of inferring about the unobserved equity value.

While there are a number of MCMC algorithms available in the literature, we
only use the Gibbs sampler which samples each variate, one at a time, from the full
conditional distributions defined by (15.33). When all the variates are sampled in
a cycle, we have one sweep. The algorithm is then repeated for many sweeps with
the variates being updated with the most recent samples. With regularity conditions,
the draws from the samplers converge to draw from the posterior distribution at
a geometric rate. For further information about MCMC and its applications in
econometrics, see Chib (2001) and Johannes and Polson (2003).

Defining lnV�t by lnV1; : : : ; lnVt�1; lnVtC1; : : : ; lnVn, the Gibbs sampler is
summarized as:

1. Initialize � and V.
2. Sample lnVt from lnVt j lnV�t ;X.
3. Sample � jX;V; �; ı.
4. Sample ıjX;V; �; � .
5. Sample �jX;V; �; ı.

Steps 2–5 forms one cycle. Repeating steps 2–5 for many thousands of times
yields the MCMC output. To mitigate the effect of initialization and to ensure
the full convergence of the chains, we discard the so-call burn-in samples. The
remaining samples are used to make inference.

It is easy to implement the Gibbs sampling for the credit risk model defined
above. One can make use of the all purpose Bayesian software package WinBUGS.
As shown in Meyer and Yu (2000) and Yu et al. (2006), WinBUGS provides an
idea framework to perform the Bayesian MCMC computation when the model has
a state-space form, whether it is nonlinear or non-Gaussian or both. As the Gibbs
sampler updates only one variable at a time, it is referred as a single-move algorithm.

In the stochastic volatility literature, the single-move algorithm has been criti-
cized by Kim et al. (1998) for lacking simulation efficiency because the components
of state variables are highly correlated. More efficient MCMC algorithms, such
as multi-move algorithms, can be developed for estimating credit risk models. In
fact, Shephard and Pitt (1997), Kim et al. (1998), Chib et al. (2002), Liesenfeld
and Richard (2006) and Omori et al. (2007) have developed various multi-move
algorithms to estimate univariate and multivariate SV models. The idea of the multi-
mover algorithms is to sample the latent vector V in a single block.
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Table 15.3 MCMC and SML estimates of the credit risk model
� � ı � 100

Mean Std err Mean Std err Mean Std err

Bayesian 0.3154 0.1689 0.1686 0.0125 0.5673 0.1225
SML 0.3130 0.1640 0.1589 0.0181 0.6820 0.2082

15.5.3 An Empirical Application

For the purposes of illustration, we fit the credit risk model to daily prices of AA a
company from the Dow Jones Industrial Index. The daily equity values are obtained
from the CRSP database over year 2003 (the logarithmic values are contained in a
file named AAlogS.txt). The initial maturity of debt is 10 years. The debt is available
from the balance sheet obtained from the Compustat annual file. It is compounded
for 10 years at the risk-free rate to obtain F . The risk-free rate is obtained from the
US Federal Reserve. Duan and Fulop fitted the same model to the same data using
SML via particle filter and approximated the variance using the Fisher information
matrix. Following Huang and Yu (2010), we use the following independent prior
for the three system parameters: � � N.0:3; 4/, ı � IG.3; 0:0001/, and � �
IG.2:5; 0:025/ where IG is the inverse-gamma distribution.

WinBugs code (aa.odc) is used to implement the MCMC method based on
55,000 sweeps of which the first 5,000 sweeps are thrown away. Table 15.3 reports
the estimates (the posterior means) and the standard errors (the posterior standard
errors). For the purpose of comparison, the SML estimates and their asymptotic
standard errors, obtained directly from Duan and Fulop (2009, Table 15.1), are also
reported. While the two sets of estimates are close to each other, their standard errors
are further away.

15.6 Resampling Methods and Term Structure Models

It is well known dynamic models are estimated with bias by standard estimation
methods, such as least squares (LS), maximum likelihood (ML) or generalized
method of moments (GMM). The bias was developed by Hurwicz (1950) for the
autoregressive parameter in the context of dynamic discrete time models. The
percentage bias of the corresponding parameter, i.e. the mean reversion parameter,
is much more pronounced in continuous time models than their discrete time
counterparts. On the other hand, estimation is fundamentally important for many
practical applications. For example, it provides parameter estimators which are
used directly for estimating prices of financial assets and derivatives. For another
example, parameter estimation serves as an important stage for the empirical
analysis of specification and comparative diagnostics. Not surprisingly, it has been
found in the literature that the bias in the mean reversion estimator has important
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implications for the specification analysis of continuous time models (Pritsker 1998)
and for pricing financial assets (Phillips and Yu 2005a, 2009b). For instance, when
the true mean reversion parameter is 0.1 and 600 weekly observations (i.e. just over
10 years of data) are available to estimate a one-factor square-root term structure
model (Cox et al. 1985), the bias in the ML estimator of the mean reversion
parameter is 391.2% in an upwards direction. This estimation bias, together with the
estimation errors and nonlinearity, produces a 60.6% downward bias in the option
price of a discount bond and 2.48% downward bias in the discount bond price. The
latter figures are comparable in magnitude to the estimates of bias effects discussed
in Hull (2000, Chap. 21.7). The biases would be even larger when less observations
are available and do not disappear even when using long spans of data that are
currently available. For example, when the true mean reversion parameter is 0.1 and
600 monthly observations (i.e. 50 years of data) are available to estimate the square-
root diffusion model, the bias in the ML estimator of the mean reversion parameter
is 84.5% in an upwards direction. This estimation bias implies a 24.4% downward
bias in the option price of a discount bond and a 1.0% downward bias in the discount
bond price.

In recent years, there have been interesting advances in developing analytical
formulae to approximate the bias in certain model specifications. This is typically
obtained by estimating higher order terms in an asymptotic expansion of the bias.
For example, in the Vasicek term structure model with a known �,

dXt D �.�� Xt/dt C �dBt ; X0 � N.�; �2=.2�//

Yu (2009a,b) showed that the bias in the MLE of � can be approximated by

1

2T

�
3C e2�h

� � 2.1� e�2n�h/
T n.1 � e�2�h/

:

When � has to be estimated in the Vasicek model, Tang and Chen (2009) showed
that the bias in the MLE of � can be approximated by

E.b�/ � � D 1

2T
.e2�h C 2e�h C 5/:

Interestingly, the same bias formula applies to a QML estimate of �, developed by
Nowman (1997), under the CIR model, as shown in Tang and Chen (2009).

For more complicated models, unfortunately, the approximate bias formula is
not available. To reduce this bias in parameter estimation and in pricing contingent
claims, Phillips and Yu (2005a) proposed a new jackknife procedure. Phillips and
Yu (2005a) show that the jackknife method always trades off the gain that may be
achieved in bias reduction with a loss that arises through increased variance.

The bootstrap method of Efron (1979) is another way to reduce the bias via
simulation. It was shown to be an effective method for bias correction (Hall 1992)
and was illustrated in the parameter estimation in the context of continuous time
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model in Tang and Chen (2009). Relative to the jackknife method, it does not
significantly increase the variance. Relative to the two simulation-based procedures
that will be discussed below, however, bootstrap seems to use less information and
hence is expected to be less efficient.

15.6.1 Indirect Inference and Median Unbiased Estimation

Resampling methods may achieve bias reduction as well as variance reduction.
In this chapter, two simulation-based resampling methods are discussed, indirect
inference (II) and median unbiased estimation (MUE).

II and MUE are simulation-based estimation procedures and can be understood
as a generalization of the simulated method of moments approach of Duffie
and Singleton (1993). MUE was first introduced by Andrews (1993). II was
first introduced by Smith (1993) and coined with the term by Gouriéroux et al.
(1993). II was originally proposed to deal with situations where the moments or
the likelihood function of the true model are difficult to deal with (and hence
traditional methods such as GMM and ML are difficult to implement), but the
true model is amenable to data simulation. Because many continuous time models
are easy to simulate but difficult to obtain moment and likelihood functions, the II
procedure has some convenient advantages in working with continuous time models
in finance.

The II and MUE procedures can have good small sample properties of parameter
estimates, as shown by Andrews (1993), MacKinnon and Smith (1996), Monfort
(1996), Gouriéroux et al. (2000) in the time series context and by Gouriéroux et al.
(2005) in the panel context. The idea why II can remove the bias goes as follows.
Whenever a bias occurs in an estimate and from whatever source, this bias will also
be present in the same estimate obtained from data, which are of the same structure
of the original data, simulated from the model for the same reasons. Hence, the
bias can be calculated via simulations. The method therefore offers some interesting
opportunities for bias correction and the improvement of finite sample properties in
continuous time parameter estimation, as shown in Phillips and Yu (2009a).

To fix the idea of II/MUE for parameter estimation, consider the Vasicek model
which is typically used to describe the movement of the short term interest rate.
Suppose we need to estimate the parameter � in:

dX.t/ D �.� �X.t//dt C �.X.t// dW.t/;

from observations fXh; � � � ; Xnhg. An initial estimator of � can be obtained, for
example, by applying the Euler scheme to fXh; � � � ; Xnhg (call it O�n). Such an
estimator is involved with the discretization bias (due to the use of the Euler scheme)
as well as a finite sample estimation bias (due to the poor finite sample property of
ML in the near-unit-root situation).
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Given a parameter choice �, we apply the Euler scheme with a much smaller step
size than h (say ı D h=100), which leads to

QXk
tCı D �.�� QXk

t /hC QXk
t C �. QXk

t /
p
ı"tCı;

where

t D 0; ı; � � � ; h.D 100ı/„ ƒ‚ …; hC ı; � � � ; 2h.D 200ı/„ ƒ‚ …; 2hC ı; � � � ; nh:

This sequence may be regarded as a nearly exact simulation from the continuous
time OU model for small ı. We then choose every .h=ı/th observation to form the
sequence of f QXk

ihgniD1, which can be regarded as data simulated directly from the
OU model with the (observationally relevant) step size h.

Let f QXk
h ; � � � ; QXk

nhg be data simulated from the true model, where k D 1; � � � ; K
with K being the number of simulated paths. It should be emphasized that it is
important to choose the number of simulated observations and the sampling interval
to be the same as the number of observations and the sampling interval in the
observed sequence for the purpose of the bias calibration. Another estimator of �
can be obtained by applying the Euler scheme to fXk

h ; � � � ; Xk
nhg (call it Q�kn ). Such an

estimator and hence the expected value of them across simulated paths is naturally
dependent on the given parameter choice �.

The central idea in II/MUE is to match the parameter obtained from the actual
data with that obtained from the simulated data. In particular, the II estimator and
median unbiased estimator of � solve, respectively,

O�n D 1

K

KX

hD1
Q�kn .�/ or O�n D O�0:5. Q�kn .�//; (15.34)

where O� is the  th sample quantile. In the case where K tends to infinity, the II
estimator and median unbiased estimator solve

O�n D E. Q�kn.�// or O�n D �0:5. Q�kn .�//; (15.35)

where E. Q�kn .�// is called the mean binding function, and �0:5. Q�kn .�// is the median
binding function, i.e.

bn.�/ D E. Q�kn .�//; or bN .�/ D �0:5. Q�kn .�//:

It is a finite sample functional relating the bias to �: In the case where bn is invertible,
the II estimator and median unbiased estimator are given by:

O�IIn D b�1
n . O�n/: (15.36)
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Typically, the binding functions cannot be computed analytically in either case. That
is why II/MUE needs to calculate the binding functions via simulations. While
often used in the literature for the binding function is the mean, the median has
certain advantages over the mean. First, the median is more robust to outliers than
the mean. Second, it is easier to obtain the unbiased property via the median. In
particular, while the linearity of bn.�/ gives rise of the mean-unbiasedness in O�IIn ,
only monotonicity is needed for bn.�/ to ensure the median-unbiasedness (Phillips
and Yu 2009b).

There are several advantages in the II/MUE procedure relative to the jackknife
procedure. First, II is more effective on removing the bias in parameter estimates.
Phillips and Yu (2009a) provided evidence to support this superiority of II. Second,
the bias reduction may be achieved often without an increase in variance. In extreme
cases of root near unity, the variance of II/MUE can be even smaller than that of ML
(Phillips and Yu 2009a). To see this, note that (15.36) implies:

Var. O�IIn / D


@bn

@�

��1
Var. O�MLn /



@bn

@�0

��1
:

When @bn=@� >1, the II/MUE estimator has a smaller variance than MLE.
Gouriéroux et al. (2000) discussed the relationship among II, MUE and bootstrap
in the context of bias correction.

A disadvantage in the II/MUE procedure is the high computational cost. It is
expected that with the continuing explosive growth in computing power, such a
drawback is of less concern. Nevertheless, to reduce the computational cost, one can
choose a fine grid of discrete points of � and obtain the binding function on the grid.
Then standard interpolation and extrapolation methods can be used to approximate
the binding functions at any point.

As pointed out before, since prices of contingent-claims are always non-linear
transformations of the system parameters, insertion of even unbiased estimators
into the pricing formulae will not assure unbiased estimation of a contingent-claim
price. The stronger the nonlinearity, the larger the bias. As a result, plugging-in the
II/MUE estimates into the pricing formulae may still yield an estimate of the price
with unsatisfactory finite sample performances. This feature was illustrated in a the
context of various continuous time models and contingent claims in Phillips and Yu
(2009d). To improve the finite sample properties of the contingent price estimate,
Phillips and Yu (2009b) generalized the II/MUE procedure so that it is applied to
the quantity of interest directly.

To fix the idea, suppose � is the scalar parameter in the continuous time model
on which the price of a contingent claim, P.�/, is based. Denote by O�MLn the MLE
of � that is obtained from the actual data, and write bPML

n D P. O�MLn / be the ML
estimate of P . bPML

n involves finite sample estimation bias due to the non-linearity
of the pricing function P in � , or the use of the biased estimate O�MLn ; or both these
effects. The II/MUE approach involves the following steps.
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Table 15.4 ML, II and median unbiased estimates of � in the Vasicek model

MLE II MUE

O� 0.2613 0.1358 0.1642

1. Given a value for the contingent-claim price p, compute P�1.p/ (call it �.p/),
where P�1.�/ is the inverse of the pricing function P.�/.

2. Let eSk.p/ D f QSk1 ; QSk2 ; � � � ; QSkT g be data simulated from the time series model
(15.16) given �.p/, where k D 1; : : : ; K with K being the number of simulated
paths. As argued above, we choose the number of observations ineSk.p/ to be the
same as the number of actual observations in S for the express purpose of finite
sample bias calibration.

3. Obtain Q�ML;kn .p/, the MLE of � , from the kth simulated path, and calculate
ePML;k
n .p/ D P. Q�ML;kn .p//.

4. Choose p so that the average behavior of ePML;k
n .p/ is matched with bPML

n to
produce a new bias corrected estimate.

15.6.2 An Empirical Application

This empirical application compares the ML method and the simulation-based
methods for estimating the mean reversion parameter in a context of Vasicek term
structure model. The dataset of a short term interest rate series involves the Federal
fund rate and is available from the H-15 Federal Reserve Statistical Release. It is
sampled monthly and has 432 observations covering the period from January 1963
to December 1998. The same data were used in Ait-Sahalia (1999) and are contained
in a file named ff.txt.

Matlab code, simVasicek.m, is used to obtain the ML, II and median unbiased
estimates of � in the Vasiecek model. Table 15.4 reports these estimates. The ML
estimate is about twice as large as the II estimate. The II estimate is similar to the
median unbiased estimate.

15.7 Conclusions

Simulation-based estimation of financial time series model has been ongoing in
the financial econometric literature and the empirical finance literature for more
than one decade. Some new developments have been made and some existing
methods have been refined with the increasing complexity in models. More and
more attention have been paid to the simulation-based methods in recent years.
Researchers in empirical finance have sought to use these methods in practical
applications in an increasing scale. we expect the need for these methods to grow
further as the financial industry continues to expand and data sets become richer.
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Chapter 16
Filtering Methods

Andras Fulop

Abstract This chapter surveys filtering methods, where the state of an unobserved
dynamic model is inferred based on noisy observations. In linear and gaussian
models, the Kalman Filter is applicable. We provide a brief description of the
method and an example with a gaussian factor model of yields. More general models
can be tackled using sequential monte carlo (SMC) techniques (also called particle
filters). Here, the filtering distribution of the unobserved states is approximated by a
swarm of particles and recursively update these particles using importance sampling
and resampling. We give brief review of the methodology, illustrated throughout by
the example of inferring asset values from noisy equity prices in a structural credit
risk model. The MATLAB code implementing the examples is available.

16.1 Introduction

The methods described in this chapter are applicable to problems where a hidden
dynamic Markov process needs to be filtered from the observed data containing
some noise. To illustrate the problem, start with an example from fixed income
taken from Diebold and Li (2006) and Diebold et al. (2006). Figure 16.1 plots 18
US treasury zero-coupon bond yields with maturities between 1 and 120 months
observed in the period 1970–2000. To summarize the information in these time
series, analysts often find it useful to extract a small number of dynamic factors
that describe most of the variation in the yields. This parsimonious representation
can help both in the interpretation of past yield curve movements and in prediction.
However, in general, this low-dimensional factor structure is consistent with the
observations only if the observed yields are assumed to contain some measurement
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Fig. 16.1 US treasury zero-coupon-bond yields between 1970 and 2000

errors. To uncover the unobserved dynamic factors, one needs to infer them from
the noisy observed yields.

Credit risk modeling is the subject of the second example. Six Flags Inc., a large
operator of theme parks has been having financial difficulties in the last couple of
years. On January 2, 2008 the company reported total assets of 2,945 Million USD,
total liabilities of 2,912 Millions USD and preferred equities with a book value of
285 Millions, consistent with a negative �252 Millions of shareholders’ equity on
its balance sheets. However, in 2008, the stocks of the company were not worthless,
as reported in Fig. 16.2. The main reason for the positive market value of the stock
in spite of the large debt is limited liability. In case the value of the company is less
than the face value of the debt when the debt is to be repaid, the stockholders can
default in effect handing the company to the debtholders. As a result of this default
option, both the equity and the debt can be interpreted as derivatives written on the
face value of the firm. The equity holders own a long call option on the value of the
firm with an exercise price equal to the face value of debt, while the debt-owners
are short of this position. Unfortunately, the observed equity prices are not perfect
signals on the firm value. The first order autocorrelation coefficient of the equity
log-returns is equal to �0.25, showing that a considerable part of the observed price
changes are due to transitory microstructure effects unrelated to permanent value
innovations. Then, a methodology is needed to filter the unobserved asset value of
the firm from the noisy observed equity prices.
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Fig. 16.2 Market capitalization of Six Flags’ equity in 2008

The chapter begins in Sect. 16.2 with the description of the general filtering
problem and puts the two examples in the general framework. Section 16.3 describes
Kalman Filtering, applicable to linear normal systems. Here the filtering distribu-
tions are normally distributed with a mean and variance that can be recursively
updated using the Kalman recursion. The method is applied to the first example
on interest rate term structure. Further, some extensions of the Kalman Filter to
nonlinear systems are mentioned. Section 16.4 turns to the general filtering problem,
where the dynamic model is nonlinear/nongaussian. Here, the Kalman Filter is
not valid any more, but analogous theoretical recursions still hold. Unfortunately,
these involve integrals that need to be solved numerically. The chapter proceeds
by presenting sequential Monte Carlo techniques that have been developed in last
15 year and are routinely used to solve the general filtering problem. It describes
the general particle filtering algorithm, where resampling is introduced to tackle
sample impoverishment, a pervasive problem in sequential importance sampling.
Here and in the remaining part of the chapter, Merton’s model with noisy equity
observations is used to illustrate the presentation. Section 16.5 presents various
strategies to produce effective proposal distributions, a crucial issue in designing an
efficient importance sampling algorithm. The section ends by applying the filtering
methodology on the second example, in filtering the asset value of Six Flags Inc.
from its observed equity prices. Section 16.6 concludes with a brief discussion
of various classical and Bayesian approaches to the estimation of the fixed model
parameters in the particle filtering context.
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16.2 The Filtering Problem

Assume that the state of a financial model at time k is described by a random vector
xk whose dynamics follows the transition equation

xkC1 D Q.xk; "kC1/; (16.1)

where Q. / is an arbitrary function and "k is a sequence of independent random
vectors. When xk is continuous, this defines the conditional probability density
q.xkC1 j xk/. xk is not directly observable, instead at time k a noisy observation yk
is available, linked to xk through the measurement equation

yk D G.xk; �k/; (16.2)

where G./ is an arbitrary function and �k the observation noise is a sequence of
random vectors, independent across time and from "k . When yk is continuous, this
defines the conditional probability density g.yk j xk/. Use the following notation

x0Wk D .x0; : : : ; xk/

y1Wk D .y1; : : : ; yk/

Further, assume some prior distribution, q0.x0/, for the initial state variable. Then,
the objective of filtering is to come up with the distribution of the hidden variable,
xk , given the observed data up to k. This quantity is the filtering distribution of xk
and is denoted by f .xk j y1Wk/. In the algorithms that follow these distributions are
obtained sequentially, as new observations arrive.

16.2.1 Uncovering Yield Curve Factors

To tackle the first example in the introduction, this subsection describes a specific
factor model of the term structure closely following Diebold and Li (2006) and
Diebold et al. (2006) and shows how it fits into the general filtering framework.
Denote by y.l /k the zero-coupon yield observations at time k with maturity l .
On each observation date k, there are 18 observed yields with maturities ranging
between 1 D 1; : : : ; 18 D 120 months. The data-set has monthly observations
in the period 1975–2000. To summarize the rich cross-sectional information, the
yields are assumed to depend on three common factors .x1;k ; x2;k ; x3;k/ and a yield-
specific measurement noise �l;k . This latter is assumed to be standard normal and
independent across the yields and through time. This setup leads to the following
measurement equations for l D 1; : : : ; 18
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y.l /k D x1;k C x2;k



1 � e��l
�l

�
C x3;k



1 � e��l
�l

� e��l
�

C ���l;k (16.3)

This factor representation is a version of the Nelson and Siegel (1987) parametric
form, popular with practitioners. The interpretability of the factors is an attractive
feature of this specific parameterization. First, x1;k has the same loading on each
yield, so it can be interpreted as a level factor. Second, x2;k affects yields with
longer maturities less, hence it is close to a slope factor. Last, x3;k has hump-shaped
loadings and plays the role of a curvature factor. The parameter � determines where
the maximum of this hump-shaped pattern lies.

To ensure some degree of time-series consistency and to allow prediction using
the model, the factors are assumed to follow independent normal AR(1) processes,
resulting in the following transition equations

xi;kC1 D �i C �ixi;k C �i;x�i;kC1; (16.4)

where �i;kC1 are independent standard normal variables. Then, if one wants to
forecast the future yields, one needs to filter the last value of the unobserved factors,
xi;k given the noisy yield observations up to k.

16.2.2 Finding the Value of the Firm in Merton’s Model

Merton (1974) laid the foundation to the literature on the structural approach to
credit risk modeling. The value of the firm at time t , Vt , is assumed to follow
a geometric Brownian motion with respect to the physical probability law that
generates the asset values

dVt

Vt
D �dt C �dWt

The risk-free rate of interest is assumed to be a constant, r . Furthermore, the firm
has two classes of claims outstanding – an equity and a zero-coupon debt maturing
at time T with face value F . Due to limited liability, equity is a call option on the
value of the firm with payout

ST D max.VT � F; 0/ (16.5)

Then, the equity claim in (16.5) can be priced at time t < T by the standard Black-
Scholes option pricing model to yield the following solution:

St � S.Vt I �; F; r; T � t/ D Vt˚.dt /� Fe�r.T�t /˚.dt � �
p
T � t/; (16.6)

where
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dt D log. Vt
F
/C .r C �2

2
/.T � t/

�
p
T � t

and ˚.�/ is the standard normal distribution function.
Unfortunately, the asset value of the firm, Vi is rarely observable. In contrast,

for an exchange listed firm, one can obtain a time series of equity prices denoted by
DN D fSi ; i D 0; � � � ; N g and try to infer the asset value using the equity prices
and balance sheet information on debt. If the equity prices are not contaminated
by trading noises, the asset value can be obtained by inverting the equity pricing
function from (16.6) following Duan (1994). However the observed equity prices
may be contaminated by microstructure noise that can be important, especially
for smaller firms or firms in financial difficulties. Following Duan and Fulop
(2009b) the trading noise obeys a multiplicative structure leading to the following
measurement equation for the log equity price

logSi D logS.Vi I �; F; r; T � i /C ı�i ; (16.7)

where f�i ; i D 0;N g are i.i.d. standard normal random variables and the nonlinear
pricing function S.Vt I �; F; r; T � t/ has been given earlier. Since the unobserved
asset value process follows a geometric Brownian motion, we can derive its discrete-
time form as

logViC1
D logVi C .�� �2

2
/hC �

p
h"iC1; (16.8)

where f"i ; i D 1;N g are i.i.d. standard normal random variables and h D i � i�1
is the observation frequency. Then, one needs to filter the unobserved asset price,
Vi given the noisy equity observations up to time k in the model defined by the
measurement equation (16.7) and the transition equation (16.8).

16.3 Kalman Filtering

When the measurement and the transition equations are normal and linear, the
filtering density is normal. Assume that the transition equation is

xk D C C Axk�1 C "k; (16.9)

where "k � N.0;Q/. The measurement equation is also linear and normal:

yk D Hxk C �k; (16.10)

where �k � N.0;R/. Introduce the following notation for conditional expectations
and variances:

Es.xk/ D E.xk j y1Ws/
Vs.xk/ D Var.xk j y1Ws/
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if the initial state x0 is distributed as x0 � N.E0.x0/; V0.x0//, the subsequent
filtering distributions are also normally distributed. Further, the first two moments
can be sequentially updated by first predicting the distribution of the hidden variable
at k given past information up to k � 1

Ek�1.xk/ D C C AEk�1.xk�1/

Vk�1.xk/ D AVk�1.xk�1/A0 CQ

Then, the filtering distribution at k is obtained by including the information at k

Kk D Vk�1.xk/H 0 �HVk�1.xk/H 0 CR
��1

Ek.xk/ D Ek�1.xk/CKk .yk �HEk�1.xk//

Vk.xk/ D .I �KkH/Vk�1.xk/

For a general review of Kalman Filtering see Anderson and Moore (1979). For
an application in yield curve modeling see Christensen et al. (2007), Diebold and Li
(2006) and another in commodities see Schwartz and Smith (2000).

16.3.1 Application of Kalman Filtering: Uncovering Yield
Curve Factors

It is apparent that the first example, on extracting yield curve factors, falls within
the realm of Kalman Filtering. In particular both the measurement equation in
(16.3) and the transition equation in (16.4) are gaussian and linear. To investigate
the method on the US zero-coupon yield data-set, the parameters of the model are
fitted using maximum likelihood. In-sample, the model-predicted yields have a root
mean squared error of around 12 basis points, pointing towards a satisfactory fit.
Figure 16.3 plots the model-implied filtered mean of the factors and the results
seem to be in accord with intuition. For example, one can see that the first factor
indeed acts as a level factor, with high values when the general level of interest rates
is high.

Forecasting is an important application of yield-curve models. Further, inves-
tigating the out-of-sample performance of various models may be an even more
important check on model validity than the in-sample fit. Hence, following Diebold
and Li (2006), the out-of-sample forecasting performance of the yield curve factor
model is compared with two competitors, the first being a naive random walk model
while the second is an AR(1) model of the individual yields. All the models are
estimated on the data up to 1993 and the quality of their forecasts is investigated on
the remaining sample at the 6-months horizon. Figure 16.4 shows the RMSE of the
three forecasts for all maturities and provides evidence that the discipline that the
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Fig. 16.3 Time series of filtered yield curve factors

factor model puts on the data considerably helps in prediction. All the results in this
subsection are produced by the MATLAB script DieboldLi_KF.m.

16.3.2 Extensions

16.3.2.1 Extended Kalman Filter

Often, the financial model of interest is normal, but the transition and measurement
equation are not linear. In particular we may have

xk D Q.xk�1; "k/ (16.11)

yk D G.xk; �k/; (16.12)

where Q./ and G./ are differentiable functions and "k and �k are normally dis-
tributed. Then, the Extended Kalman Filter (EKF) approximates this system using
a first-order Taylor expansion around Ek�1.xk�1/ and applies Kalman Filtering on
the approximating linear system. In finance, this approach is often applied in term
structure modeling (De Jong 2000; Duan and Simonato 1999; Duffee 2002) and in
commodities modeling (Trolle and Schwartz 2008).
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Fig. 16.4 RMSE of various forecasting methods on the 6-months horizon, 1994–2000

16.3.2.2 Unscented Kalman Filter

The EKF approximates the system only up to a first order and it can provide
poor results when the nonlinearity of the measurement or transition equation is
serious. An alternative approach that avoids linearization altogether is the Unscented
Kalman Filter (UKF). This method approximates the normal filtering distribution
using a discrete distribution that matches the mean and covariance matrix of the
target gaussian random variable. Then, these points are passed through directly the
nonlinear functions to obtain the quantities necessary for the Kalman recursion. In
many situations the method provides a higher order approximation to the nonlinear
system than the EKF. For a detailed description of the method see van der Merwe
and Wan (2000). The technique has been applied to currency option pricing by
Bakshi et al. (2008).

16.4 Particle Filtering

16.4.1 General Filtering Recursion

When the system is non-linear and/or non-gaussian, the filtering distribution may
not be normal and the Kalman Filter is not valid any more. To appreciate the
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difficulty of the task, in the following we describe the sequential filtering problem
in the general model described by (16.1) and (16.2).

The joint filtering distribution of x0Wk given y1Wk is

f .x0Wk j y1Wk/ D f .x0Wk; y1Wk/
f .y1Wk/

D f .x0Wk; y1Wk/
L.y1Wk/

;

where L.y1Wk/ is the likelihood of the data observed up to k

L.y1Wk/ D
Z
f .x0Wk; y1Wk/dx0Wk

Now derive the recursive formula connecting the filtering distributions at k and kC1

f .x0WkC1 j y1WkC1/ D f .x0WkC1; y1WkC1/
L.y1WkC1/

D g.ykC1 j xkC1/q.xkC1 j xk/f .x0Wk; y1Wk/
L.y1Wk/

L.y1Wk/
L.y1WkC1/

D g.ykC1 j xkC1/q.xkC1 j xk/
f .ykC1 j y1Wk/ f .x0Wk j y1Wk/

This equation gives the recursion of the filtered distributions over the whole path
space. Integrating over x0Wk�1 one gets the following relationship

f .xkWkC1 j y1WkC1/ D g.ykC1 j xkC1/q.xkC1 j xk/
f .ykC1 j y1Wk/ f .xk j y1Wk/

/ g.ykC1 j xkC1/q.xkC1 j xk/f .xk j y1Wk/

showing that f .x0Wk j y1Wk/ is a sufficient statistic. Integrating out xk , one arrives at
the filtering distribution of xkC1

f .xkC1 j y1WkC1/ /
Z
g.ykC1 j xkC1/q.xkC1 j xk/f .dxk j y1Wk/

The Kalman Filter is a special case where this recursion can be executed in closed-
form due to the joint normality of the system. In general, the filtering distributions
do not belong to a known parametric family and the integration has to be done
using numerical methods. In the following a class of simulation-based methods is
presented that has been extensively used in the last few years to solve the general
filtering task.
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16.4.2 Sequential Importance Sampling

The target is the joint filtering distribution of the hidden states

f .x0Wk j y1Wk/ /
kY

tD1
g.yt j xt /q.xt j xt�1/q0.x0/ (16.13)

Ideally, one would like to sample directly from the densities g.yt j xt /q.xt j xt�1/,
providing a straightforward recursive Monte Carlo scheme. Unfortunately, due to
the complexity of these densities, this is usually not possible. Importance sampling
is an approach that can be used in such cases. Here, one draws from a feasible
proposal distribution r.x0Wk/ instead of the target and attaches importance weights
to the samples to compensate for the discrepancy between the proposal and the
target. If the weighted sample is denoted by .�.m/0Wk ;w

.m/

k / where m D 1; : : : ;M , the
samples and weights are obtained as

�
.m/

0Wk � r.x0Wk/

w.m/k D
Qk
tD1 g.yt j �.m/t /q.�

.m/
t j �.m/t�1/q0.�

.m/
0 /

r.�
.m/

0Wk /

The expectation E .h.x0Wk j y1Wk// can be estimated by the estimator

bh D
PM

mD1 h.�
.m/

0Wk /w
.m/

kPM
mD1 w.m/k

Using independence of the sample the estimator is asymptotically consistent

bh� E .h.x0Wk j y1Wk// !P 0 as M ! 1

and asymptotically normal

p
M
h
bh �E .h.x0Wk j y1Wk//

i
!D N

�
0;
Varr .h.x0Wk/w.x0Wk//

ŒEr .w.x0Wk//	2

	
as M ! 1

Note that the asymptotic variance can also be estimated using the simulation output,
allowing inference on the reliability of the estimate.

The preceding importance sampling algorithm can be made sequential by
choosing a recursive structure for the importance sampling distribution, r.x0Wk/:

R.x0Wk/ D
kY

tD1
r.xt j yk; xt�1/r0.x0/
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Then the importance weight wk can be written as

wk D
kY

tD1

g.yt j xt /q.xt j xt�1/
r.xt j yk; xt�1/

q0.x0/

r0.x0/

and the importance sampler can be implemented in a sequential manner

Sequential Importance Sampling

• Initial State: Draw an i.i.d. sample �.m/0 ;m D 1; : : : ;M from �i0 � r0.x0/

and set

w.m/0 D q0.�
.m/
0 /

r0.�
.m/
0 /

;m D 1; : : : ;M

• Recursion: For k D 1; : : : ; N

1. Draw .�.m/k ;mD 1; : : : ;M / from the distribution �.m/k � r.xk jyk; �.m/k�1/
2. Compute the updated importance weights

w.m/k D w.m/k�1 � g.yk j �.m/k /q.�
.m/

k j �.m/k�1/
r.�

.m/

k j yt ; �.m/k�1/

This algorithm seems to provide a solution to the recursive filtering problem.
Unfortunately after a couple of time steps the normalized weights of most points
fall to zero and the weighted sample ceases to provide a reliable representation of
the target distribution.

16.4.2.1 Weight Degeneracy in Merton’s Model

To illustrate the phenomenon mentioned before, consider the performance of the
sequential importance sampling algorithm for Merton’s model with noisy equity
observations. Choose the prior distribution to be a point mass assuming that
the initial equity observation S0 is observed without any error. Further, use the
transition density f .ViC1

j V .m/
i / as the proposal distribution. The procedure that

results is:

Sequential Importance Sampling in Merton’s Model

• Initial State: Set V .m/
0 D S�1.S0/ where the function S�1.:/ is the inverse

of the equity pricing function in (16.6).
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• Recursion: For k D 1; : : : ; N

1. Draw V
.m/
k from f .Vk j V .m/

k�1
; �/, which can be easily done using

(16.8).
2. Compute the updated importance weights

w.m/
k D w.m/k�1f .Sk j V .m/

k
; �/

One measure of the reliability of an importance sampler is the effective sample
size, Neff , defined as

Neff D
2

4
MX

mD1

 
w.m/kPM
mD1 w.m/k

!23

5
�1

0 200 400 600 800 1000
0

0.005

0.01

t=1; N
eff

=168.7

0 200 400 600 800 1000
0

0.1

0.2

t=2; N
eff

=8.7

0 200 400 600 800 1000
0

0.5

1

t=3; N
eff

=1.8

Fig. 16.5 Normalized importance weights for sequential importance sampling in Merton’s model
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Roughly speaking, the effective sample size measures the size of an equally-
weighted Monte Carlo sample providing the same reliability as the output of the
importance sampler. Figure 16.5 depicts the effective sample sizes for the first few
observations in Merton’s model obtained by running the SIS algorithm. The model
parameters are .� D 0:2; � D 0:1; r D 0:05; ı D 0:01; F D 100/. The initial asset
value is 60, the initial debt maturity is 3 years, and a year of daily data is generated
(i.e. h D 1=250; n D 250) and the sample size is M D 1;000. The MATLAB file
producing this figure is test_MertonSIS.m. One can observe that by t D 5 the
effective sample size collapses to one, signaling the deterioration of the filter. The
underlying reason behind this phenomenon is that a fixed number of points is used
to cover an increasing dimensional space.

16.4.3 Sequential Importance Sampling with Resampling
(SIR or Particle Filtering)

To deal with the problem of sample impoverishment, Gordon et al. (1993) suggest
to resample the current population of particles using the normalized weights as
probabilities of selection. After resampling, all importance weights are reset to one.
The intuition behind this procedure is that unlikely trajectories are eliminated and
likely ones are multiplied. This yields the following algorithm:

Sequential Importance Sampling with Resampling

• Initial State: Draw an i.i.d. sample �.m/0 from �
.m/
0 � r0.x0/ and set w.m/0 D

q0.�
.m/
0 /

r0.�
.m/
0 /
; m D 1; : : : ;M

• For k D 1; : : : ; N repeat the next steps

1. Sampling

– Draw .�
.m/

k ;mD 1; : : : ;M / conditionally independently given

.�
.m/

0Wk�1;mD 1; : : : ;M / from the distribution �.m/k � r.xk j yk; �.m/k�1/
– Compute the importance weights

w.m/k D g.yk j �.m/k /q.�
.m/

k j �.m/k�1/
r.�

.m/

k j yk; �.m/k�1/
2. Resampling

– Draw from the multinomial trial .I 1k ; : : : ; I
M
k / with probabilities of

success
w1kPM

mD1 w.m/k

; : : : ;
wMkPM

mD1 w.m/k



16 Filtering Methods 453

– Reset the importance weights w.m/k to 1;

3. Trajectory update: �.m/0Wk D �
I
.m/
k

0Wk ;m D 1; : : : ;M

This approach concentrates on the marginal filtering distribution f .xk j y0Wk/
instead of the joint one, f .x0Wk j y0Wk/. Resampling helps to achieve a better
characterization of the last state of the system at the expense of representing the
past of the full hidden path, x0Wk .

16.4.3.1 Bootstrap Filter

In the bootstrap filter of Gordon et al. (1993) the proposal density is chosen to be
equal to the transition density

r.xk j yk; xk�1/ D q.xk j xk�1/

In this case the importance weights take a particularly simple form, they simply
equal the measurement density

wmk D g.yk j �mk /q.�mk j �mk�1/
q.�mk j �mk�1/

D g.yk j �mk /

16.4.3.2 Bootstrap Filter in Merton’s Model

Bootstrap Filter in Merton’s Model

• Initial State: Set V .m/
0 D S�1.S0/ where the function S�1.:/ is the inverse

of the equity pricing function in (16.6).
• Recursion: For k D 1; : : : ; N

1. Sampling

– Draw V
.m/
k from f .Vk j V .m/

k�1
; �/, using equation(16.8).

– Compute the normalized importance weights



.m/

k D w.m/kPM
mD1 w.m/k

where w.m/k D f .Sk j V .m/
k
; �/
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2. Resample from the weighted sample f.V .m/
k ; 


.m/

k /Im D 1; � � � ;M g to
obtain a new equal-weight sample of size M .

To investigate whether the resampling step successfully deals with sample depletion
we repeat the simulation exercise described before on Merton’s model, but now
we run the bootstrap filter. Panel A of Fig. 16.6 depicts the effective sample
sizes (Neff ) for a simulated sample path. One can see that now Neff does not
collapse as time progresses, so the resampling seems an effective remedy to sample
depletion. Panel B reinforces this message by showing that the filter reliably
tracks the unobserved asset value path. The MATLAB file producing Fig. 16.6 is
test_MertonBootstrap.m.
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Fig. 16.6 Bootstrap filter in Merton’s model
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16.4.4 Theoretical Properties of Particle Filters

The filtering algorithm described above has been shown to possess attractive
asymptotic properties as the number of particles, N , goes to infinity (see Crisan
and Doucet 2002 for a short introduction to the theory and Del Moral 2004 for a
monograph-length treatment). In particular it provides consistent estimates of any
filtering quantity

1

M

MX

mD1
h.�mk / �E .h.xk j y1Wk// ! 0 as M ! 1

Central limit theorems has been proved for particle systems, leading to results of the
type

p
M

 
1

M

MX

mD1
h.�mk /� E.h.xk j y1Wk//

!
! N.0; �2k.h// as M ! 1

In general the Monte-Carlo variance, �2k .h/ increases with the time k. This reflects
the fact that as time passes, errors accumulate in the filtering recursions. In practice
this means that an ever-increasing number of particles is needed to ensure the same
quality for the estimates. To rule this out and achieve uniform convergence further
assumptions on the forgetting properties of the model are needed.

While these results provide the rate of convergence,
p
M , the constant of

convergence, �2
k .h/ is usually not known. This means that in contrast to simple

importance sampling, one cannot compute confidence intervals for the estimates.

16.5 Implementation Issues for Particle Filters

16.5.1 The Choice of Proposal in SIR

The choice of the proposal distribution is critical for the efficiency of the method.
The question is how to best use the information in the next observation in
sampling. The optimal choice would be the conditional distribution of the new
hidden state given the past hidden state and the new observation:

f .xk j yk; xk�1/ / g.yk j xk/q.xk j xk�1/

As direct sampling from the optimal choice is usually not feasible, approximations
are needed. In the following Merton’s model is used to illustrate various strategies
to obtain efficient proposal distributions. The first approach uses a specific feature
of Merton’s model by localizing the sampler around the new observation. The
second, more generic approach linearizes the model around each particle and uses
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the optimal sampler of the approximated model as the proposal. The third strategy
adapts a parametric family of proposal and picks the best density within this family
using the information in the previously sampled particles.

16.5.1.1 Localized Sampling in Merton’s Model

To illustrate the importance of the proposal density, consider again Merton’s model.
If one uses the bootstrap filter, the importance weights are

f .SiC1
j ViC1

; �/ / 1

ı
�



logSiC1

� logS.ViC1
; �/

ı

�

When the microstructure noise ı is small, this density function is peaked, resulting
in high variance of the particle weights and a poor representation of the filtering
distribution. Intuitively, when the microstructure noise is relatively small, the new
observation is very informative on the hidden asset value. This makes the bootstrap
sampler that ignores the new observation, a poor choice for the proposal.

However, if the observation is so important, why not totally base the sampler on
the observation, forgetting the past? This idea is used in Duan and Fulop (2009b)
to propose an efficient sampler, localized around the new observed equity price. In
particular, Duan and Fulop (2009b) suggest to draw from the microstructure noise,
�k and to use the asset value implied by the noise and the new observation as the
sampler. This results in the following algorithm:

Localized Sampling in Merton’s Model

• Initial State: Set V .m/
0 D S�1.S0/ where the function S�1.:/ is the inverse

of the equity pricing function in (16.6).
• Recursion: For k D 1; : : : ; N

1. Sampling

– Draw a standard normal �.m/k and compute V .m/
k D V �

k
.Sk ; �

.m/

k / to

obtain the pair .V .m/
i ; V

.m/
k /, where

V �
k
.Sk ; �k/ D S�1.Sk e�ı�k I �; F; r; T � k/

– Compute the importance weights

w.m/k D f .V
.m/
k j V .m/

k�1
; �/

˚.d
�.m/
k /eı�

.m/
k

– Normalize the importance weights
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.m/

k D w.m/kPM
mD1 w.m/k

where w.m/k D f .Sk j V .m/
k
; �/

2. Resample from the weighted sample f.V .m/
k ; 


.m/

k /Im D 1; � � � ;M g to
obtain a new equal-weight sample of size M .

Here, using a change of variables formula, the density function of the sampler is

g.V .m/
k

j Sk ; V .m/
k�1

/ D f .V �
k
.Sk ; �

.m/

k / j Sk / D �.�
.m/

k /˚.d
�.m/
k /eı�

.m/
k

ıSk

Then, the expression for the importance weights can be derived as

w.m/k D f .Sk j V .m/
k ; �/f .V

.m/
k j V .m/

k�1
; �/

g.V
.m/
k j Sk ; V .m/

k�1
/

D f .Sk j V .m/
k ; �/ıSkf .V

.m/
k j V .m/

k�1
; �/

�.�
.m/

k /˚.d
�.m/
k /eı�

.m/
k

D f .V
.m/
k j V .m/

k�1
; �/

˚.d
�.m/
k /eı�

.m/
k

Table 16.1 shows the efficient sample sizes for the bootstrap filter and the
localized sampler for different values of the measurement noise standard deviation,
ı. The values are averages taken through time and across 20 simulations, run at
different random seeds. The sample size M D 1;000 and all the other simulation
parameters are as described before. The MATLAB file producing the table is
test_MertonLocalized.m. Overall, the localized sampler seems to perform
much better than the bootstrap filter reflected in the much higher effective sample
sizes. Further, as ı decreases, the performance of the bootstrap filter deteriorates
while that of the localized filter actually gets better. The reason for this phenomenon
is that for smaller values of ı, the relative importance of the new observation is
higher in determining the location of the new unobserved asset value. Then, the
localized sampler that ignores the past overperforms the bootstrap filter that ignores
the new observation.

Table 16.1 Effective sample size for the localized sampler and the bootstrap filter in Merton’s
model

ı D 0:0005 ı D 0:005 ı D 0:01 ı D 0:02

Neff .Localized/ 999:9 993:0 974:1 916:9

Neff .Bootstrap/ 6:4 61:4 121:1 230:4
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16.5.1.2 Using Local Linearization to Generate the Proposal
in Merton’s Model

The localized sampler described in the previous section completely ignores the past.
An alternative approach is to follow the advice of Doucet et al. (2000) and use a
local linear approximation of the model to generate a proposal. Here, both the past
and the new observation is used to come up with a proposal distribution at the price
of the bias due to the linearization. In Merton’ model, the only non-linearity is in
the measurement equation (16.7). Linearizing this equation around the conditional
expected value yields the approximate measurement equation:

logSk � A
�
logV �.m/�C B

�
logV �.m/� � �logVk � logV �.m/� ;

where

logV �.m/ D .� � �2

2
/hC logV .m/

k�1

A
�
logV �.m/� D logS

�
elogV �.m/I �; F; r; T � k

�

B
�
logV �.m/� D V �˚.d�.m//

S
�
elogV �.m/ I �; F; r; T � k

�

By local normality of this system, the conditional distribution of logV .m/
k given

logSk is

logV .m/
k

� N
�
�.logV .m/

k�1
/; �2.logV .m/

k�1
/
�
;

where

�.logV .m/
k�1

/ D logV �.m/ C B
�
logV �.m/� �2h

B2
�
logV �.m/� �2hC ı2

� �logSk � A
�
logV �.m/��

�2.logV .m/
k�1

/ D �2h� B2
�
logV �.m/� �4h2

B2
�
logV �.m/� �2hC ı2

The expression of the importance weights is

w.m/k D f .Sk j V .m/
k ; �/f .V

.m/
k j V .m/

k�1
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Table 16.2 Effective sample size for the localized sampler and the bootstrap filter in Merton’s
model

ı D 0:0005 ı D 0:005 ı D 0:01 ı D 0:02

Neff .Linearized/ 607:5 966:7 979:1 955:0

Neff .Bootstrap/ 6:4 61:4 121:1 230:4

Table 16.2 compares this linearized proposal with the bootstrap filter. The MAT-
LAB file producing the table is test_MertonLinearized.m. The linearized
filter performs much better, with results that are comparable to the localized
sampler described before. Instead of using local linearization, van der Merwe
et al. (2000) suggests using the unscented Kalman Filter for proposal genera-
tion.

16.5.1.3 Using Adaptation to Tune the Proposal in Merton’s Model

Another generic approach to improve the efficiency of the particle filtering algo-
rithm is to use the filter output to adapt the proposal. Cornebise et al. (2008) suggests
to implement this idea by choosing a parametric family of proposal distribution
and then optimize the parameters using the particles from the filter. To illustrate
this method, consider the adaptation of the bootstrap filter in Merton’s model. In
particular, assume that the following family of proposals is chosen:

logV .m/
k

� N



.� � �2

2
/hC logV .m/

k�1
C �1;k; �

2h�2;k

�
(16.14)

Setting �1;k D 0 and �2;k D 1 one obtains bootstrap filter. In general �1;k and �2;k
can be varied in order to find a proposal that is as close as possible to the
target distribution, f .logVk ; logVk�1

j Dk/. One appropriate metric to measure
closeness between probability distributions is the Kullback-Leibler (K-L) distance.
In the present context, if r.logVk j �; logVk�1

/ is the parametric proposal
conditional on logVk�1

, then the overall proposal over the pair .logVk ; logVk�1
/

is r.logVk j �; logVk�1
/f .logVk�1

j Dk�1/. The K-L distance of this proposal
from the target is defined as

DKL D �
f .logVk ; logVk�1

j Dk/kr.logVk j �; logVk�1
/f .logVk�1

j Dk�1/
�

D
Z

flogVk ;log Vk�1
g
f .logVk ; logVk�1

j Dk/

� log



f .logVk ; logVk�1

j Dk/

r.logVk j �; logVk�1
/f .logVk�1

j Dk�1/

�
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Then, the “best” proposal within the parametric family is the one that minimizes the
K-L distance to f .logVk ; logVk�1

j Dk/. This is achieved by ��
k solving

��
k D argmax

�

Z

flogVk ;logVk�1
g
f .logVk ; logVk�1

j Dk/

� log r.logVk j �; logVk�1
/ (16.15)

This optimization problem is unfeasible as the integral is not known in closed
form. However, if one has a normalized weighted sample .
.m/k ; logV .m/

k ; logV .m/
k�1 ;

m D 1; : : : ;M / representingf .logVk ; logVk�1
j Dk/ from a prior run of a particle

filter, the problem can be approximated by

��
k D argmax

�

MX

iD1


.m/

k log r.logV .m/
k

j �; logV .m/
k�1

/ (16.16)

In the example in Merton’s model with the choice of the proposal family as in
(16.14), the optimization problem becomes

.��
1;k; �

�
2;k/ D arg max

�1;k ;�2;k

MX

iD1


.m/

k

 
� .logV .m/
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2
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2
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� log.�1;k; �2h�2;k/

2

�

This can be solved in one step, yielding

��
1;k D
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iD1


.m/

k



logV .m/

k
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2
/h� logV .m/
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�
(16.17)

��
2;k D

PM
iD1 


.m/

k

�
logV .m/

k � .�� �2

2
/h� logV .m/

k�1
� ��

1;k

�2

�2h
(16.18)

The algorithm is initialized by running the bootstrap filter (setting .�
.0/

1;k D 0,

�
.0/

2;k D 1/) and then the filter is adapted by the procedure described above.

Adapted Bootstrap Filter in Merton’s Model

• Initial State: Set V .m/
0 D S�1.S0/ where the function S�1.:/ is the inverse

of the equity pricing function in (16.6).
• Run the bootstrap filter, providing .�.1/1;k ; �

.1/

2;k/ using (16.17) and (16.18)
• Adapt the filter: For j D 1; : : : ; Niter
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– Recursion: For k D 1; : : : ; N

1. Sampling

� Draw logV .m/
k from r.V

.m/
k j �.j /1;k ; �

.j /

2;k /

logV .m/
k

� N



.� � �2

2
/hC logV .m/

k�1
C �

.j /

1;k ; �
2h�

.j /

2;k

�

� Compute the normalized importance weights



.m/

k D w.m/kPM
mD1 w.m/k

where

w.m/k D f .Sk j V .m/
k ; �/f .V

.m/
k j V .m/

k�1
; �/

r.V
.m/
k j �.j /1;k ; �

.j /

2;k ; V
.m/
k�1 /

2. Compute the new value of the adaptation parameters: .�.jC1/
1;k ,

�
.jC1/
2;k / using the new weighted sample and (16.17-16.18). To avoid

spurious results due to a poor particle set, �2;k is updated only when
Neff .k/ >D 5.

3. Resample from the weighted sample f.V .m/
k ; 


.m/

k /Im D 1; � � � ;M g
to obtain a new equal-weight sample of size M .

As M ! 1, the approximating optimization problem in (16.16) converges to
the true problem in (16.15). Thus if M is large enough, setting Niter D 1 would
already achieve the optimal parameters. However for finite M , the initial particle
approximation may be poor and running a couple more iterations can yield further
improvements.

Table 16.3 reports the results of this algorithm with Niter D 4 and M D
1;000, with all the other simulation parameters set as in the examples before. The
MATLAB file producing the table is test_MertonAdapt.m. Adaptation yields
great improvements in the algorithm, providing acceptable results even when ı is
small and the likelihood function is very peaked. In accordance with theory, most of
the improvement takes place in the first iteration. Substantial further improvements
are achieved only when the initial sampler is very poor, the case of small ı. In more
complicated problems, wider parametric families could be used for adaptation. In
particular, using the adaptive D-kernel method of Cappe et al. (2007, 2008) would
allow the use of general mixture classes.
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Table 16.3 Effective sample size for the adapted bootstrap filter in Merton’s model

ı D 0:0005 ı D 0:005 ı D 0:01 ı D 0:02

Neff .Iteration 0/ 6.4 61.4 121.1 230.4
Neff .Iteration 1/ 252.6 520.3 537.4 557.8
Neff .Iteration 2/ 457.4 542.0 546.5 557.9
Neff .Iteration 3/ 506.7 543.54 545.8 559.7
Neff .Iteration 4/ 523.9 544.3 547.51 557.6

16.5.2 Other Variations on the Filtering Algorithm

When the future observation is very informative on the present state, it may be better
to resample the present particles before propagating them forward. This idea is used
in the Auxiliary Particle Filter by Pitt and Shephard (1999) and investigated theoret-
ically in Doucet and Johansen (2008). More sophisticated resampling routines have
been proposed to reduce the variance of multinomial resampling. Some examples
are residual resampling (Liu, 2001) or stratified resampling (Kitagawa, 1996).

16.5.3 Application of Particle Filtering: Obtaining the Asset
and Debt Value of Six Flags

In the second example described before the objective is to obtain the unobserved
asset value of Six Flags in 2008 using the noisy time series of equity. The application
of Merton’s model necessitates some assumptions on the inputs of the model. The
face value of debt is chosen to be the sum of total liabilities and preferred equity
(as this latter is more senior than common equity) yielding F D 3; 197:9 (the unit
is Million USD). The maturity of debt is chosen to be 1 years, while the risk-free
rate is set to 2.7%, the 1-year zero-coupon yield on treasuries at the beginning of
2008. Last, to run the filter one needs estimates of the model parameters .�; �; ı/.
The estimation of the drift is unreliable using 1 year of data, so the drift is simply
set equal to the riskfree rate. The other two parameters � and ı are estimated in
a Bayesian procedure using importance sampling and a flat prior. The posterior
means are used as point estimates yielding � D 0:075 and ı D 0:0117. Panel
A of Fig. 16.7 reports the filtered asset values while Panel B the filtered yield
spread on the debt (liabilities+preferred equity) of the firm. The localized filter with
M D 1;000 particles was used to produce the results. One can see that in the second
half of 2008 when the asset value of the company decreased, the spread becomes
more sensitive to changes in the asset value. This can be explained by the fact that
by this stage, the equity buffer that protects the debt-holders is more depleted. To
understand the uncertainty created by the noise in the equity prices, Fig. 16.8 plots
the 90% confidence interval of the yield spread of Six Value, ranging from 7 basis
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points at the beginning of the year to 12 basis points at the end of the period. The
figures have been produced using the MATLAB script SixFlags.m.

16.6 Outlook

While the algorithms described in this chapter provide reliable sequential inference
on the unobservable dynamic states, the important task of estimating the fixed
parameters of the financial model has proved to be a formidable task.

In a classical setting, the problem stems from the irregularity of the likelihood
surface. The individual likelihood function, f .yk j y1Wk�1; �/, can be estimated
pointwise using the particle filter as

Of .yk j y1Wk�1; �/ �
MX

iD1
w.m/k .�/

yielding an estimate of the sample loglikelihood:

Ol.y1WN j �/ D
NX

kD1
log Of .yk j y1Wk�1; �/

However, Ol.y1WN j �/ is an inherently irregular function of the fixed model parame-
ters, � . Figure 16.9 illustrates this phenomenon by plotting the estimated likelihood
function of a simulated data sample in Merton’s model for different values of
the asset volatility parameter, � . The local wiggles one observes here result from
the resampling step and make both the usual gradient-based optimization routines
unusable and inference based on the numerical derivatives of the likelihood function
problematic.

There are several ways in the literature to circumvent this problem. Pitt (2002)
proposes to use a smooth resampling routine that makes the likelihood function
regular. Duan and Fulop (2009b) apply the method to estimate the parameters of
Merton’s model with noisy equity prices, while Christoffersen et al. (2008) use it in
fitting equity option prices with different stochastic volatility models. Unfortunately,
the approach only works when the hidden state is one-dimensional.

An alternative approach that works even when xk is multi-dimensional is the
Monte-Carlo Expectation-Maximization (MCEM) algorithm. Here the irregularity
of the filter becomes inconsequential for obtaining parameter estimates, because
filtering and optimization are disentangled. In particular, while the particle filter is
used to approximate the necessary expectations in the E-step, the particles are kept
unchanged in the M-step where optimization is implemented. Further, Olsson et al.
(2008) show that it is sufficient to use fixed-lag smoothing in the E-step with a
relatively small number of lags. This is important because in particle filtering the
inference on the recent past is more reliable than the representation of the distant
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Fig. 16.9 Irregularity of the likelihood function in Merton’s model

past, a result of the repeated use of the resampling step. To deal with the problem of
inference, Duan and Fulop (2009) proposes the use the sample cross-products of the
individual smoothed scores and a Newey-West correction. Duan and Fulop (2007)
apply the MCEM algorithm to the estimation of a jump-diffusion model with high-
frequency data and microstructure noise, while Fulop and Lescourret (2008) uses
it to estimate intra-daily patterns of transaction costs and volatilities on the credit
default swap market.

In a Bayesian setting, one could simply try to include the fixed parameters in the
state-space and perform particle filtering on the extended state-space. This is very
attractive as it would allow joint sequential inference on the states and the fixed
parameters. Unfortunately it is well-known that this algorithm is unreliable. The
underlying reason is that the extended dynamic system is not forgetting its past due
to the inclusion of the fixed parameters, thus the Monte-Carlo errors committed in
each stage quickly accumulate. Extending the work of Storvik (2002), Johannes and
Polson (2006) suggest tracking the filtering distribution of some sufficient statistics
to perform sequential inference on the parameters. Johannes et al. (2008) apply this
approach to examine the predictability of the stock market and optimal portfolio
allocation. The key limitation is that the method can only be applied to models
that admit a finite-dimensional sufficient statistic structure for the fixed parameters.
Instead of attempting sequential inference, Andrieu et al. (2010) suggest inserting
particle filters into an MCMC algorithm as a proposal-generating mechanism. The
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method is illustrated on different economic and financial models by Flury and
Shephard (2008).

References

Anderson, B. D. O. & Moore, J. B. (1979). Optimal filtering. Englewood Cliffs, N.J: Prentice-Hall.
Andrieu, C., Doucet, A., & Holenstein, A. (2010). Particle markov chain monte carlo. Journal of

Royal Statistical Society B, 72, 1–33.
Bakshi, G., Carr, P., & Wu, L. (2008). Stochastic risk premiums, stochastic skewness in currency

options, and stochastic discount factors in international economies. Journal of Financial
Economics, 87, 132–156.

Cappe, O., Douc, R., Gullin, A., Marin, J. M., & Robert, C. P. (2007). Convergence of adaptive
mixtures of importance sampling schemes. Annals of Statistics, 35, 420–448.

Cappe, O., Douc, R., Gullin, A., Marin, J. M., & Robert, C. P. (2008). Adaptive importance
sampling in general mixture classes. Statistics and Computing, 18, 447–459.

Christensen, J. H. E., Diebold, F. X., & Rudebusch, G. D. (2007). The affine arbitrage-free class of
Nelson-Siegel term structure models. NBER Working Paper No. 13611.

Christoffersen, P. F., Jacobs, K., & Mimouni, K. (2008). Models for S&P 500 dynamics: Evidence
from realized volatility, daily returns, and option prices. Manuscript, McGill University.

Cornebise, J., Moulines, E., & Olsson, J. (2008). Adaptive methods for sequential importance
sampling with application to state space models. Statistics and Computing, 18, 461–480.

Crisan, D. & Doucet, A. (2002). A survey of convergence results on particle filtering methods for
practitioners. IEEE Transactions on Signal Processing, 50, 736–746.

De Jong, F. (2000). Time series and cross-section information in affine term-structure models.
Journal of Business & Economic Statistics, 18, 300–314.

Del Moral, P. (2004). Feynman-Kac formulae genealogical and interacting particle systems with
applications. New York: Springer.

Diebold, F. X. & Li, C. (2006). Forecasting the term structure of government bond yields. Journal
of Econometrics, 130, 337–364.

Diebold, F. X., Rudebusch, G. D., Aruoba, B. (2006). The macroeconomy and the yield curve:
A dynamic latent factor approach. Journal of Econometrics, 131, 309–338.

Doucet, A. & Johansen, A. M. (2008). A note on auxiliary particle filters. Statistics and Probability
Letters, 78, 1498–1504.

Doucet, A., Godsill, S. J., & Andrieu, C. (2000). On sequential monte carlo sampling methods for
bayesian filtering. Statistics and Computing, 10, 197–208.

Duan, J. C. (1994). Maximum likelihood estimation using price data of the derivative contract.
Mathematical Finance, 4, 155–167.

Duan, J. C. & Fulop, A. (2007). How frequently does the stock price jump? – an analysis of high-
frequency data with microstructure noises. Working Paper.

Duan, J. C. & Fulop, A. (2009). A stable estimator for the information matrix under EM. Statistics
and Computing, 21, 83–91.

Duan, J. C. & Fulop, A. (2009b). Estimating the structural credit risk model when equity prices
are contaminated by trading noises. Journal of Econometrics, 150, 288–296.

Duan, J. C. & Simonato, J. G. (1999). Estimating and testing exponential-affine term structure
models by Kalman filter. Review of Quantitative Finance and Accounting, 13, 111–135.

Duffee, G. E. (2002). Term premia and interest rate forecasts in affine models. Journal of Finance,
57, 405–443.

Flury, T. & Shephard, N. (2008). Bayesian inference based only on simulated likelihood: Particle
filter analysis of dynamic economic models. Technical report, Nuffield College, Oxford
University.



16 Filtering Methods 467

Fulop, A. & Lescourret, L. (2008). Intra-daily variations in volatility and transaction costs in the
Credit Default Swap market. Working Paper, 2009.

Gordon, N. J., Salmond, D. J., & Smith, A. F. M. (1993). A novel approach to non-linear and
non-gaussian bayesian state estimation. IEEE Proceedings F, 140, 107–113.

Johannes, M. & Polson, N. (2006). Exact particle filtering and parameter learning. Working Paper.
Johannes, M., Korteweg, A. G., & Polson, N. (2008). Sequential learning, predictive regressions,

and optimal portfolio returns. Working Paper.
Kitagawa, G. (1996). Monte carlo filter and smoother for non-gaussian nonlinear state space

models. Journal of Computational and Graphical Statistics, 5, 1–25.
Liu, J. S. (2001). Monte Carlo strategies in scientific computing. New York: Springer.
Merton, R. C. (1974). On the pricing of corporate debt: The risk structure of interest rates. Journal

of Finance, 29, 449–470.
Nelson, C. R. & Siegel, A. F. (1987). Parsimonious modeling of yield curve. Journal of Business,

60, 473–489.
Olsson, J., Cappe, R., Douc, R., & Moulines, E. (2008). Sequential monte carlo smoothing with

application to parameter estimation in non-linear state space models. Bernoulli, 14, 155–179.
Pitt, M. (2002). Smooth particle filters likelihood evaluation and maximisation. Working Paper,

University of Warwick.
Pitt, M. & Shephard, N. (1999). Filtering via simulation: Auxiliary particle filter. Journal of the

American Statistical Association, 94, 590–599.
Schwartz, E. & Smith, J. E. (2000). Short-term variations and long-term dynamics in commodity

prices. Management Science, 46, 893–911.
Storvik, G. (2002). Particle filters in state space models with the presence of unknown static

parameters. IEEE Transactions on Signal Processing, 50, 281–289.
Trolle, A. B. & Schwartz, E. (2008). Unspanned stochastic volatility and the pricing of commodity

derivatives. Working Paper.
van der Merwe, R. & Wan, E. (2000). The unscented kalman filter for nonlinear estimation.

Proceedings of Symposium 2000 on Adaptive Systems for Signal Processing, Communication
and Control.

van der Merwe, R., Doucet, A., De Freitas, N., & Wan, E. (2000). The unscented particle filter.



Chapter 17
Fitting High-Dimensional Copulae to Data

Ostap Okhrin

Abstract This paper make an overview of the copula theory from a practical side.
We consider different methods of copula estimation and different Goodness-of-
Fit tests for model selection. In the GoF section we apply Kolmogorov-Smirnov
and Cramer-von-Mises type tests and calculate power of these tests under different
assumptions. Novating in this paper is that all the procedures are done in dimensions
higher than two, and in comparison to other papers we consider not only simple
Archimedean and Gaussian copulae but also Hierarchical Archimedean Copulae.
Afterwards we provide an empirical part to support the theory.

17.1 Introduction

Many practical problems arise from modelling high dimensional distributions.
Precise modelling is important in fitting of asset returns, insurance payments,
overflows from a dam and so on. Often practitioners stay ahead of potential prob-
lems by using assets backed up in huge portfolios, payments spatially distributed
over land, and dams located on rivers where there are already other hydrological
stations. This means that univariate problems are extended to multivariate ones in
which all the univariate ones are dependent on each other. Until the late 1990s
elliptical distribution, in particular the multivariate normal one, was the most desired
distribution in practical applications. However the normal distribution does not, in
practice, meet most applications. Some studies (see e.g Fama 1965; Mandelbrot
1965, etc.) show that daily returns are not normally distributed but follow stable
distributions. This means that on one hand one cannot take the distribution in which
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Fig. 17.1 Scatter plots of bivariate samples with different dependency structures

margins are normal, and on the other hand, stable multivariate distributions are
difficult to implement. In the hydrological problem, margins arise from extreme
value distribution, while one is interested in the maximal value of the water collected
after the winter season over a number of years, this value arises from the family of
extreme distributions. As in the previous example, the multivariate extreme value
distribution family is also somewhat restrictive.

Two further problems are illustrated in Fig. 17.1. The scatter plot in the first
figure shows the realisations of two Gaussian random variables. The points are
symmetric and no extreme outliers can be observed. In contrary, the second picture
exhibits numerous outliers. The outliers in the first and third quadrants show that
extreme values often occur simultaneously for both variables. Such behaviour is
observed in crisis periods, when strong negative movements on financial markets
occur simultaneously. On the third figure we observe that the dependency between
the negative values is different compared to the positive values. This type of non-
symmetric dependency cannot be modeled by elliptical distributions, because they
impose a very specific radially symmetric dependency structure.

Following these examples we need a solution to easily separate the modelling
of the dependency structure and the margins. This is one of the tasks of copulae;
to enable the modelling of marginals separately from the dependency. The above
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problem concerning assets could be solved by taking margins from the stable
distribution and the dependency, as in the multivariate one. Similar solutions could
be found for other problems. In finance, copulae are applied in different fields such
as credit portfolio modelling and risk management.

Over the last 40 years, copula has only been attractive from a mathematical
perspective, and only as late as 1999 were the different complicated properties of
copula, such as the distribution (which made it more flexible), settled and solved.
Nowadays dependency plays a key role in many financial models, starting from the
basic portfolio theory of Markowitz. Recent developments strongly support the joint
non-Gaussianity of asset returns and exploit numerous alternative approaches to
model the underlying distribution. The key role of dependency can be best illustrated
by the famous quote “Given the prices of single-bet financial contracts, what is the
price of multiple-bet contracts? There is no unique answer to that question . . .”. The
first application of copulae to financial data was carried out by Embrechts et al.
(1999). In this paper copulae were used in risk management framework which
stimulated a series of ground breaking applied papers. Breymann et al. (2003) model
the dependencies of high-frequency data. An application to risk management is
discussed in Junker and May (2005). Portfolio selection problems were considered
in Hennessy and Lapan (2002) and in Patton (2004). Theoretical foundations of
copula-based GARCH models and its application were proposed by Chen and Fan
(2005). Lee and Long (2009), Giacomini et al. (2009) and Härdle et al. (2010)
consider time varying copulae.

The new fields of application show the need for further theoretical developments.
Each proposed model should be estimated with either parametric, semi- or nonpara-
metric methods. The semiparametric estimation of the copula-based distribution,
which is based on the nonparametric estimation of margins and estimation of the
parameter for the fixed copula function, is discussed in Chen and Fan (2006),
Chen et al. (2006), Genest et al. (1995), Joe (2005) and Wang and Wells (2000).
Fully nonparametric estimation is discussed in Fermanian and Scaillet (2003), Chen
and Huang (2007) and Lejeune and Sarda (1992). To measure how well a copula-
based statistical model fits the data, several goodness-of-fit tests were developed
and discussed in the papers by Chen and Fan (2005), Chen et al. (2004), Fermanian
(2005), Genest et al. (2006), Genest and Rémillard (2008) and Breymann et al.
(2003). In-depth discussion of simulation methodologies for Archimedean copulae
can be found in Whelan (2004) and McNeil (2008). A detailed review and discussion
of copula theory is given in Joe (1997) and Nelsen (2006).

In this chapter we describe the attractive features of copulae from the statistical
perspective, with examples and applications in real data. We consider the most
important copula classes with different methods of estimation and goodness-of-fit
tests. We compare different goodness-of-fit tests by their rejection rates, for which
a profound simulation study has been devised. In the empirical part of the chapter
we apply different copula models to the normalised residuals and test the quality
of the fit by discussed goodness-of-fit tests. We found that for the selected datasets
hierarchical Archimedean copula outperform the simple Archimedean copula and
the Gaussian copula by all goodness-of-fit tests.
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17.2 Theoretical Background

From the early days of the multivariate probability theory it is well known, that
given the d -variate distribution function F W R ! Œ0I 1	 of a d -variate random
vector .X1; : : : ; Xd/ the distribution function, called marginal distribution function
of each of the d componentsX1; : : : ; Xd is easily computed:

F1.x/ D F.x;C1; : : : ;C1/;

F2.x/ D F.C1; x;C1; : : : ;C1/;

� � �
Fd.x/ D F.C1; : : : ;C1; x/:

The converse problem was studied by Fréchet (1951), Hoeffding (1940) and
Hoeffding (1941), where having the distribution functions F1; : : : ; Fd of d random
variablesX1; : : : ; Xd defined on the same probability space .˝;F ;P/ they wanted
to make a conclusions about the set � .F1 : : : ; Fd / of the d -variate distribution
functions whose marginals are F1; : : : ; Fd

F 2 � .F1; : : : ; Fd / ,

8
ˆ̂<

ˆ̂:

F1.x/ D F.x;C1; : : : ;C1/;

F2.x/ D F.C1; x;C1; : : : ;C1/;

� � �
Fd .x/ D F.C1; : : : ;C1; x/:

Nowadays the set � .F1; : : : ; Fd / is called the Fréchet class of F1; : : : ; Fd . � is not
empty, because it always contains the independence case in which F.x1; : : : ; xd / D
F1.x1/ � � � � � Fd.xd /; 8x1; : : : ; xd 2 R. Dealing with Fréchet classes, one often
interests in the bounds and members of the � . Dall’Aglio (1972) studies conditions
under which there is only one distribution function which belongs to � .F1; : : : ; Fd /.
A nice and short review of the Fréchet classes can be found in Joe (1997).

In 1959 Sklar found the partial solution to the above mentioned problem by
introducing copulae. Because there are a variety of copula definitions we will first
look at the most general one. For this we will need to define the C -volume with
the d -box that is a cartesian product Œa;b	 D Qd

jD1Œaj ; bj 	, where, for every index
j 2 f1; 2; : : : ; d g; 0 � aj � bj � 1.

Definition 1. For a function C W Œ0I 1	d ! Œ0I 1	, the C -volume Vc of the box Œa;b	
is defined via

Vc.Œa;b	/
defD

X

v

sign.v/C.v/;

where the sum is carried over all the 2d vertices v of the box Œa;b	. Here also
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sing.v/ D
�
1; if vj D aj for an even number of vertices,
�1; if vj D aj for an odd number of vertices.

Here is the definition of a copula, see Härdle and Simar (2007):

Definition 2. A function C W Œ0; 1	d ! Œ0; 1	 is a d -dimensional copula if:

1. C.x1; : : : ; xd / D 0, when xj D 0 for at least one index j 2 f1; : : : ; d g.
2. C.1; 1; : : : ; xj ; 1 : : : ; 1/ D xj .
3. The Vc-volume of every d -box Œa;b	 is positive: Vc.Œa;b	/ 	 0.

The set of all the d -dimensional copulae (d 	 3) in the rest of the chapter is
denoted as Cd , while the set of all bivariate (d D 2) copulae is denoted by C.
As already mentioned above, this simple family of functions has been extremely
popular because of its property given in the Sklar (1959) theorem

Theorem 1. Given a d -dimensional distribution functionF , a copulaC 2 Cd exists

such that for all .x1; : : : ; xd / 2 R
d

:

F.x1; : : : ; xd / D C fF1.x1/; : : : ; Fd .xd /g: (17.1)

The copula C is uniquely defined on
Qd
jD1 Fj .R/ and therefore unique if all

margins are continuous, thus

C.u1; : : : ; ud / D F fF�1
1 .u1/; : : : ; F

�1
d .ud /g: (17.2)

Conversely, if F1; : : : ; Fd are d one-dimensional distribution functions, then the
function F defined in (17.1) is a d -dimensional distribution function.

Sklar’s theorem also answers the question of the uniqueness of the copula
C . However, if, for example, in the two dimensional case at least one of the two
distribution functions has a discrete component, there may be more than one copula
extending C from F1.R/ � F2.R/ to the whole unit square Œ0; 1	2. This is due to a
fact that C is uniquely defined only on the product of the ranges F1.R/ � F2.R/.
In this case it is good to have a procedure of bilinear interpolation in order to
single out a unique copula. In the variety of papers where copulae are applied in
different fields, authors usually do not consider the assumption that the random
variables are continuous. This assumption is necessary to avoid problems with
non-uniqueness. The second part of the Sklar’s theorem is based on the construction
of the multivariate distribution from the margins and the copula function. It is
extremely popular in practice, where, for example, in risk management, analysts
may have a better idea about the marginal behaviour of individual risk factors,
than about their dependency structure. This approach allows them to combine
marginal models and to investigate the sensitivity of risk to the dependence
specification.

New multivariate distributions are created in two steps. At first, all univariate ran-
dom variables X1; : : : ; Xd are separately described by their marginal distributions
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F1; : : : ; Fd . Then secondly, the copula C 2 Cd which contains all the information
about the relationship between the original variables X1; : : : ; Xd – not taking into
account the information provided by F1; : : : ; Fd – is introduced.

Being armed with the remarks written above, one can write the following copula
definition

Definition 3. A d -dimensional copula is a cumulative distribution function on
Œ0; 1	d with standard uniform marginal cumulative distribution functions.

As in the case of the multivariate distribution, mentioned at the beginning, setting
all of the arguments equal to C1 one gets an univariate marginal distribution.
A univariate marginal of copula C is obtained by setting some of its arguments
equal to 1. Similarly the m-marginal of C , m < d is given by setting all d � m

arguments equal to 1, from the simple combinatoric problem, we see that there are�
d
m

�
differentm-margins of the copula C .

A copula C satisfies a set of different important conditions, one of which is the
Lipschitz condition which says that:

jC.u1; : : : ; ud / � C.v1; : : : ; vd /j �
dX

jD1
jvj � uj j:

Another property says, that 8j 2 f1; : : : ; d g; fu1; : : : ; uj�1; t; ujC1; : : : ; ud g; 8t 2
Œ0; 1	, the functions t 7! C.u1; : : : ; uj�1; t; ujC1; : : : ; ud / are increasing as func-
tions of t .

To get a better impression of what a copula is from a definition, let us consider a
special bivariate case. Explicitly, a bivariate copula is a functionC W Œ0; 1	2 ! Œ0; 1	

such that:

1. 8u 2 Œ0; 1	 C.u; 0/ D C.0; u/ D 0.
2. 8u 2 Œ0; 1	 C.u; 1/ D C.1; u/ D u.
3. 8u; u0; v; v0 2 Œ0; 1	 with u � u0 and v � v0

C.u0; v0/� C.u0; v/� C.u; v0/C C.u; v/ 	 0:

The last inequality is referred to as the rectangular inequality and the function
that satisfies it is said to be 2-increasing. The bivariate copula is always of special
interest, because of the properties that are difficult to derive in higher dimensions.

The property of increasingness with respect to each argument could be profound
for the bivariate copula in the following way. As we know from above, if C is a
bivariate copula, then functions Œ0; 1	 3 t 7! C.t; v/ and Œ0; 1	 3 t 7! C.v; t/
are increasing with respect to t . The increasingness with respect to each argument
means that derivatives with respect to Lebegue measure exist almost everywhere,
and those derivatives are positive where they exist. From the Lipschitz conditions
they are also bound above
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0 � @C.s; t/

@s
� 1; 0 � @C.s; t/

@t
� 1:

Every copula can be expressed in the form of the sum of absolutely continuous and
singular part and an absolutely continuous copula C has a density c such that

C.u1; : : : ; ud / D
Z

Œ0;1	d
c.s1; : : : ; sd /ds1 : : : dsd D

Z 1

0

ds1 : : :

Z 1

0

c.s1; : : : ; sd /dsd

from which the copula density is found by differentiation

c.u1; : : : ; ud / D @dC.u1; : : : ; ud /

@u1 : : : @ud
:

Following the Sklar theorem, the multivariate distribution F with margins
F1; : : : ; Fd has multivariate density f with marginal densities f1; : : : ; fd respec-
tively. If, from the Sklar theorem copula C exists such that F.x1; : : : ; xd / D
C fF1.x1/; : : : ; Fd .xd /g then the d -variate density is

f .x1; : : : ; xd / D cfF1.x1/; : : : ; Fd .xd /g � f1.x1/ : : : fd .xd /: (17.3)

Notice, however, that, as a consequence of the Lipschitz condition, for every
bivariate copula C and for every v 2 Œ0; 1	, both functions t 7! C.t; v/ and
t 7! C.v; t/ are absolutely continuous so that

C.t; v/ D
Z t

0

c1v.s/ds and C.v; t/ D
Z t

0

c2v.s/ds:

Unfortunately, this representation has no application so far.

17.3 Copula Classes

Naturally, there are an infinite number of different copula functions satisfying the
assumptions of definition. In this section we discuss in details three important
classes of simple, elliptical and Archimedean copulae.

17.3.1 Simple Copulae

Often we are interested in some extreme, special cases, like independence and
perfect positive or negative dependence. If d -random variables X1; : : : ; Xd are
stochastically independent from the Sklar Theorem the structure of such a relation-
ship is given by the product (independence) copula defined as
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˘.u1; : : : ; ud / D
dY

jD1
uj ; u1; : : : ; ud 2 Œ0; 1	:

Another two extremes are the lower and upper Fréchet–Hoeffding bounds. They
represent the perfect negative and positive dependencies respectively

W.u1; : : : ; ud / D max
�
0;

dX

jD1
uj C 1 � d

�
;

M.u1; : : : ; ud / D min.u1; : : : ; ud /; u1; : : : ; ud 2 Œ0; 1	:

If, in a two dimensional case C DW and .X1;X2/ � C.F1; F2/ then X2 is a
decreasing function of X1. Similarly, if C D M , then X2 is an increasing function
of X1. In other words both M and W are singular, where M uniformly spreads
the probability mass on the diagonal X1 D X2 and W uniformly spreads the
probability mass on the opposite diagonal X1 D �X2. In general we can argue
that an arbitrary copula which represents some dependency structure lies between
these two bounds, i.e.

W.u1; : : : ; ud / � C.u1; : : : ; ud / � M.u1; : : : ; ud /:

The bounds serve as benchmarks for the evaluation of the dependency magnitude.
Note, however, that the lower Fréchet–Hoeffding bound is not a proper copula
function for d > 2 but is a proper quasi-copula. Both upper and lower bounds are
sharp, because there are copulae, that are either equal, at some points, to one of the
two bounds.

The simple copulae for the two dimensional case are plotted in Fig. 17.2.

17.3.2 Elliptical Copulae

Due to the popularity of Gaussian and t-distributions in financial applications,
elliptical copulae also play an important role. For example, in the modelling of
collateralized debt obligations, where the assumption of the Gaussian one-factor
dependency between joint default of the obligors, proposed by Li (2000), is seen as
a standard approach. The construction of this type of copulae is based directly on
the Sklar Theorem. The Gaussian copula and its copula density are given by:

CN.u1; : : : ; ud ;†/ D ˆ†f˚�1.u1/; : : : ; ˚�1.ud /g;
cN .u1; : : : ; ud ;†/

D j†j�1=2 exp

(
� Œ˚

�1.u1/; : : : ; ˚�1.ud /	0.†�1 � I/Œˆ�1.u1/; : : : ;ˆ�1.ud /	
2

)
;

for all u1; : : : ; ud 2 Œ0; 1	;
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Fig. 17.2 Lower Frechet–Hoeffdings bound, Product copula and upper Frechet–Hoeffdings bound
in two-dimensional case (from left to right)

where ˆ† is a d -dimensional normal distribution with a zero mean and the
correlation matrix †. The variances of the variables are imposed by the marginal
distributions. Note, that in the multivariate case the implementation of elliptical
copulae is very involved due to technical difficulties with multivariate cdf’s. The
level plots of the two-dimensional respective densities with different margins are
given in Fig. 17.3.

Using (17.2) one can derive the copula function for an arbitrary elliptical
distribution. The problem is, however, that such copulae depend on the inverse
distribution functions and these are rarely available in an explicit form. Therefore,
the next class of copulae with its generalisations provides an important flexible and
rich family of alternatives to the elliptical copulae.
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Fig. 17.3 Contour diagrams for Gaussian copula with Gaussian (left column) and t3 distributed
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17.3.3 Archimedean Copulae

In contrast to elliptical copulae, Archimedean copulae have a special method of
construction which does not use (17.2), but fulfills all the conditions of the copula.
Having M as an univariate distribution function of the positive random variable let
� be the Laplace transform of M , � D LS.M/

�.s/ D
Z 1

0

e�sw dM.w/; s 	 0: (17.4)

Thus,M is said to be the inverse Laplace transform of �,M D LS�1.�/. We denote
as L the class of Laplace transforms which contain strictly decreasing differentiable
functions, see Joe (1997):

L D f� W Œ0I 1/ ! Œ0; 1	 j�.0/ D 1; �.1/ D 0I .�1/j �.j / 	 0I j D 1; : : : ;1g:

It is known, that for an arbitrary univariate distribution function F , a unique
distribution functionG exists such that

F.x/ D
Z 1

0

G˛.x/ dM.˛/ D �f� logG.x/g:

This leads to G D expf��Œ�1	.F /g, where �Œ�1	 is the generalised inverse

�Œ�1	.x/ D
�
��1.x/ for 0 � x < �.0/I
0 else.

Taking d univariate distributions F1; : : : ; Fd , a simple extension leads to the
multivariate distribution function that belongs to � .F1; : : : ; Fd /
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F D
Z
G˛
1 : : : G

˛
d dM.˛/ D �.� logG1 � � � � � logGd / D �

8
<

:

dX

jD1
�Œ�1	.Fj /

9
=

; ;

with Archimedean copula given by

C.u1; : : : ; ud / D �

8
<

:

dX

jD1
�Œ�1	.uj /

9
=

; : (17.5)

The function � is called the generator of the Archimedean copula. Throughout
the chapter the notation ��1 is understood as the generalised inverse �Œ�1	.
Usually generator function depends on the parameter � which is set to be the
parameter of the copula. It is easy to see, that Archimedean copulae are exchange-
able. In two-dimensional cases they are symmetric in the sense that C.u; v/ D
C.v; u/; 8u; v 2 Œ0; 1	. Joe (1997) and Nelsen (2006) provide a classified list of the
typical Archimedean generators. Here we discuss the three most commonly used
ones in financial applications, Archimedean copulae.

The first, widely used (in practice) copula is the Gumbel (1960) copula, which
gained its popularity from the extreme value theory. The multivariate distribution
based on the Gumbel copula with univariate extreme value marginal distributions is
the only extreme value distribution based on an Archimedean copula, see Genest and
Rivest (1989). Moreover, all distributions based on Archimedean copulae belong to
its domain of attraction under common regularity conditions. Direct and inverse
generators of the Gumbel copula with the copula function are given by

�.x; �/ D exp f�x1=� g; 1 � � < 1; x 2 Œ0;1/;

��1.x; �/ D .� logx/� ; 1 � � < 1; x 2 Œ0; 1	;

C� .u1; : : : ; ud / D exp

2

64�
8
<

:

dX

jD1
.� log uj /

�

9
=

;

��1
3

75 ; u1; : : : ; ud 2 Œ0; 1	:

The Gumbel copula leads to asymmetric contour diagrams and shows stronger
linkage between positive values, however, is also shows more variability and more
mass in the negative tail.

For � D 1, the Gumbel copula reduces to the product copula and for � ! 1 we
obtain the Fréchet–Hoeffding upper bound. This copula does not have an extension
to the negative dependence. The Gumbel copula is one of a few Archimedean
copulae for which we have an explicit form of the distribution function M from
(17.4). In the case of Gumbel copulaM is the stable distribution, see Renyi (1970).
This information is very useful in the simulation techniques, especially for the
Marshall and Olkin (1988) method, see Sect. 17.4.

Another example is the Clayton (1978) copula which, in contrary to the Gumbel,
has more mass on the lower tail, and less on the upper. This copula is often used
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in the modelling of the losses, which is of interest, for example, in insurance and
finance. The necessary functions for this example are

�.x; �/ D .�x C 1/� 1
� ; �1=.d � 1/ � � < 1; � ¤ 0; x 2 Œ0;1/;

��1.x; �/ D 1

�
.u�� � 1/; �1=.d � 1/ � � < 1; � ¤ 0; x 2 Œ0; 1	;

C�.u1; : : : ; ud / D
8
<

:

0

@
dX

jD1
u��
j

1

A � d C 1

9
=

;

���1

; u1; : : : ; ud 2 Œ0; 1	:

The Clayton copula is one of few copulae that has a truncation property and has a
simple explicit form of density for any dimension

c� .u1; : : : ; ud / D
dY

jD1
f1C .j � 1/�gu�.�C1/

j

0

@
dX

jD1
u��
j � d C 1

1

A
�.��1Cd/

:

As the parameter � tends to infinity, dependence becomes maximal and the
copula gives the upper Frechet–Hoeffding bound. As � tends to zero, we have
independence. As � ! �1=.d � 1/, the distribution tends to the lower Fréchet
bound.

Another interesting Archimedean copula is the so called Frank (1979) copula,
which, in the bivariate case, is the only elliptical Archimedean copula in the sense
that C.u; v/ D u C v � 1 C C.1 � u; 1 � v/ D C.u; v/, where C.u; v/ is called
the survival or associative copula. C.u; v/ is also a copula for a survival bivariate
distribution. Direct and inverse generator of the Frank copula with the copula
functions are

�.x; �/ D � 1
�

logf1C eu.e�� � 1/g; 0 � � < 1; x 2 Œ0;1/;

��1.x; �/ D log

�
e��x � 1
e�� � 1


; 0 � � < 1; x 2 Œ0; 1	;

C� .u1; : : : ; ud / D � 1
�

log

2

666664
1C

dY

jD1

˚
exp.��uj /� 1

�

fexp.��/ � 1gd�1

3

777775
; u1; : : : ; ud 2 Œ0; 1	:

The dependence becomes maximal when � tends to infinity and independence is
achieved when � D 0.

The level plots of the bivariate copula-based densities with t3 and normal margins
are given in Fig. 17.4.
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Fig. 17.4 Contour diagrams for (from top to bottom) Gumbel, Clayton and Frank copula with
normal (left column) and t3 distributed (right column) margins
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17.3.4 Hierarchical Archimedean Copulae

A recently developed flexible method is provided by hierarchical Archimedean
copulae (HAC). The special, so called partially nested, case of HAC:

C.u1; : : : ; ud / D C0fC1.u1; : : : ; uk1/; : : : ; Cm.ukm�1C1; : : : ; ud /g (17.6)

D �0

2

4
mX

pD1
��1
0 ı �i

8
<

:

kpX

jDkp�1C1
��1
p .uj /

9
=

;

3

5

for ��1
0 ı �p 2 fw W Œ0I 1/ ! Œ0I 1/jw.0/ D 0I w.1/ D 1I .�1/j�1w.j / 	

0I j D 1; : : : ;1g; p D 1; : : : ; m, with k0 D 1. In contrast to the Archimedean
copula, HAC defines the whole dependency structure in a recursive way. At the
lowest level the dependency between the first two variables is modelled by a copula
function with the generator �1, i.e. z1 D C.u1; u2/ D �1f��1

1 .u1/C��1
1 .u2/g. At the

second level an another copula function is used to model the dependency between z1
and u3, etc. Note, that the generators �i can come from the same family and differ
only through the parameter or, to introduce more flexibility, come from different
generator families. As an alternative to the fully nested model, we can consider
copula functions, with arbitrarily chosen combinations at each copula level. Okhrin
et al. (2008) provide several methodologies of determining the structure of the HAC
from the data, Okhrin et al. (2009) provide necessary theoretical properties of HAC,
there are also several empirical papers on the application HAC to CDO (see Choros
et al. 2009 ) and to weather data (see Filler et al. 2010 ).

17.4 Simulation Techniques

To investigate the properties of some multivariate distributions, one needs the
algorithms of the simulations because many of those properties are to be checked by
Monte Carlo techniques. In this section we provide different methods of sampling
from copula.

17.4.1 Conditional Inverse Method

The conditional inverse method is a general approach for the simulation of random
variables from an arbitrary multivariate distribution. This method can be also used
to simulate from copulae. The idea is to generate random variables recursively from
the conditional distributions. To sampleU1; : : : ; Ud from copulaC we proceed with
the following steps:
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1. Sample V1; : : : ; Vd from U.0; 1/.
2. U1 D V1.
3. Uj D C�1

j .Vj jU1; : : : ; Uj�1/ for j D 2; : : : ; d where the conditional distribu-
tion of Uj is given by

Cj .uj ju1; : : : ; uj�1/ D P.Uj � uj jU1 D u1 : : : Uj�1 D uj�1/

D
@j�1Cj .u1;:::;uj /
@u1:::@uj�1

@j�1Cj�1.u1;:::;uj�1/

@u1:::@uj�1

(17.7)

with Cj D C.u1; : : : ; uj ; 1; : : : ; 1/ D C.u1; : : : ; uj /.

The approach is numerically expensive, due to high order derivatives of C and the
calculation of the inverse of the conditional distribution function.

17.4.2 Marshall and Olkin (1988) Method

To simulate from Archimedean copulae a simpler method was introduced in Mar-
shall and Olkin (1988). The idea of the method is based on the fact that Archimedean
copulae are derived from Laplace transforms (17.4). Following Marshall and Olkin
(1988) we proceed with the following three steps procedure:

1. Sample U fromM D LS�1.�/.
2. Sample independent .V1; : : : ; Vd / � U Œ0; 1	.
3. Uj D �f� ln.Vj /=U g for j D 1; : : : ; d .

This method works much faster than the classic conditional inverse technique.
The drawback is that the distribution M can only be determined explicitly
for a few generator functions �. For example for Gumbel copula M.�/ D
St.1=�; 1; Œcosf
=.2�/g	�/ and for Clayton copulaM.�/ D � .1=�; 1/.

17.4.3 McNeil (2008) Method

Methods of simulation from the different HAC structures were proposed in McNeil
(2008); this is an extension of the Marshall and Olkin (1988) method. Below is the
algorithm for partially nested copulae (17.6):

1. Sample U fromM D LS�1.�0/.
2. For i D 1; : : : ; m sample

Vkp�1C1; : : : ; Vkp from C Œukp�1C1; : : : ; ukp I expf�U��1
0 ı �p.�/g	



484 O. Okhrin

using Marshall and Olkin (1988) method where

C Œukp�1C1; : : : ; ukp I expf�U��1
0 ı �p.�/g	

is the simple Archimedean copula with the generator function given by
expf�U��1

0 ı �p.�/g.
3. .Ukp�1C1; : : : ; Ukp /> D �0Œ� logf.Vkp�1C1; : : : ; Vkp />g=U 	; p D 1; : : : ; m.

This method, however also has some drawbacks because the inverse Laplace
transform of the composition of the generator function does not always have an
explicit form. Nevertheless, McNeil (2008) provides a list of combinations, which
enable this.

17.5 Estimation

For a given data-set one needs to find an appropriate model, and to estimate the
parameter when the model is fixed. In this section we describe different methods
of the estimation of the copula from the data. All methods are similar and are
based on (17.2). Having the sample Xij ; i D 1; : : : ; n; j D 1; : : : ; d one needs to
estimate the copula. To estimate the marginal distributions OFj .�/; j D 1; : : : ; d

at least three possible methods are available. The most simple one is to use the
empirical distribution function

OFj .x/ D 1

nC 1

nX

iD1
IfXij � xg:

The change of the fraction before the sum from the classical 1
n

to 1
nC1 is made

to bound the empirical distribution from 1; otherwise this causes problems in the
maximum likelihood (ML) calculation. The inverse function of OFj .x/ is then an
empirical quantile. Instead of this simplest empirical estimation one can smooth the
distribution function by using a kernel method, see Härdle and Linton (1994). Using
kernel function � W R ! R;

R
� D 1 with the bandwidth h > 0 one gets following

estimator

QFj .x/ D 1

nC 1

nX

iD1
K



x � Xij

h

�
;

with K.x/D R x
�1 �.t/dt . Apart from nonparametric methods, there is also a

parametric method that is based on the assumption of a parametric form of the
marginal distribution Fj .x; Ǫj /, where ˛j is the parameter of the distribution, and
Ǫj is its estimator based on the ML method or method of moments. The last case
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considers the full knowledge of the true marginal distribution Fj .x/, which is rare
in practice.

In the same way, there are four possible choices of the copula function. Let us
first determine general margins MFj .x/ that could be one of OFj .x/; QFj .x/; Fj .x; Ǫ /
or Fj .x/. The empirical copula is then defined as

bC.u1; : : : ; ud / D 1

n

nX

iD1

dY

jD1
If MFj .Xij / � uj g: (17.8)

Let Kj ; j D 1; : : : ; d be the same symmetric kernel for each direction as in
the estimation of marginal distributions, and let hj ; j D 1; : : : ; d be the set of
bandwidths, then the kernel based copula estimation considered in Fermanian and
Scaillet (2003) is

eC.u1; : : : ; ud / D 1

n

nX

iD1

dY

jD1
Kj

(
uj � MFj .Xij /

hj

)
: (17.9)

In the bivariate case (d D 2) to avoid boundary bias, one uses Chen and Huang
(2007) local linear kernel to smooth at u 2 Œ0; 1	

Kuh D K.x/fa2.u; h/ � a1.u; h/xg
a0.u; h/a2.u; h/ � a21.u; h/

;

with a`.u; h/ D R u=h
.u�1/=h t

`K.t/dt; ` D 0; 1; 2 and h > 0 (see Lejeune and Sarda

1992 ; Jones 1993 ). Let Guh.t/ D R t
�1 Kuh.x/dx and Tuh D Guhf.u � 1/=hg, then

an unbiased kernel based estimator of the bivariate copula is given by

eC.u1; u2/ D 1

n
Gu1h

(
u1 � MF1.Xi1/

h

)
Gu2h

(
u2 � MF2.Xi2/

h

)

�.u1Tu2h C u2Tu1h C Tu1hTu2h/: (17.10)

The last situation is the parametric copula C.u; �/, where the copula comes from
some fixed family. In this case the parameter of the copula function is estimated
using the ML method. From (17.3) the likelihood function for the case MFj .x/ D
Fj .x; ˛j /; j D 1; : : : ; d is

L.�; ˛1; : : : ; ˛d / D
nY

iD1
f .Xi1; : : : ; Xid I˛1; : : : ; ˛d ; �/
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and the log-likelihood function is given by

`.�; ˛1; : : : ; ˛d / D
nX

iD1
log cfF1.Xi1I˛1/; : : : ; Fd .Xid I˛d /I �g

C
nX

iD1

dX

jD1
logfj .Xij I˛j /;

where fj .�/ are marginal densities. All parameters f�; ˛1; : : : ; ˛d g can be estimated
in one or two steps. For practical applications, however, a two step estimation
procedure is more efficient. A one step procedure, also called full maximum
likelihood, is carried out by maximising likelihood function simultaneously over
all parameters, thus by solving

.@`=@˛1; : : : ; @`=@˛d ; @`=@�/ D 0;

with respect to .�; ˛1; : : : ; ˛d /. Following the standard theory on ML estimation
estimators are efficient and asymptotically normal. However, it is often computa-
tionally demanding to solve the system simultaneously.

The two step procedure can be done for any kind of marginal distribution
MFj .x/ 2 fbF j .x/;eF j .x/; Fj .x; Ǫ /g. Firstly, we estimate the marginal distribution

by using any of the above methods and secondly, we estimate the copula parameter
by the pseudo log-likelihood function

`p.�/ D
nX

iD1
log cf MF1.Xi1/; : : : ; MFd .Xid /I �g:

The solution is then
O� D arg max

�

`p.�/:

If the marginal distributions are from parametric families MFj .x/ D Fj .x; Ǫj /; j D
1; : : : ; d , then the method is called inference for margins. Otherwise, if margins,
are nonparametrically estimated MFj .x/ 2 fbF j .x/;eF j .x/g; j D 1; : : : ; d , then the
method is called canonical maximum likelihood method.

17.6 Goodness-of-Fit (GoF) Tests

After the copula is estimated, one needs to test how well the estimated copula
describes the sample. Nonparametric copula is certainly the best choice for this, and
is usually considered the benchmark in many tests. With the GoF tests one checks
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whether the underlying copula belongs to any copula family. The test problem could
be written as a composite null hypothesis

H0 W C 2 C0; against H1 W C … C0;

where C0 D fC� W � 2 �g is a known parametric family of copulae. In some cases
we restrict ourselves to the one element family C0 D C0, thus the hypothesis in this
case in the simple one. The test problem is, in general, equivalent to the GoF tests
for multivariate distributions. However, since the margins are estimated we cannot
apply the standard test procedures directly.

Here we consider several methodologies recently introduced in the literature. We
can categorised them into three classes: tests based on the empirical copula, tests
based on the Kendall’s process and tests based on Rosenblatt’s transform.

17.6.1 Tests Based on the Empirical Copula

These tests are based directly on the distance between C and C0. Naturally, as C
is unknown one takes the empirical copula which is fully nonparametric OC or QC
instead. The estimated copulaC0, that should be tested, is the parametric oneC.�; O�/.
Two statistics considered in the literature (see e.g Fermanian 2005; Genest and
Rémillard 2008, etc.) are similar to Crámer-von Mises and Kolmogorov–Smirnov
test statistics

S D n

Z

Œ0;1	d
fbC.u1; : : : ; ud / � C.u1; : : : ; ud ;b�/g2 dbC.u1; : : : ; ud /;

T D sup
u1;:::;ud2Œ0;1	

p
njbC.u1; : : : ; ud /� C.u1; : : : ; ud ;b�/j:

Genest and Rémillard (2008) show the convergence of
p
nfbC.u1; : : : ; ud / �

C.u1; : : : ; ud ;b�/g in distribution, they also show that tests based on S and T are
consistent. In actual fact, the p-values of the test statistics depends on this limiting
distribution and in practice p-values are calculated using the bootstrap methods
described in Genest and Rémillard (2008). This is quite expensive numerically, but
leads to proper results.

17.6.2 Tests Based on Kendall’s Process

Genest and Rivest (1993), Wang and Wells (2000) and Barbe et al. (1996) consider
a test based on the true and empirical distributions of the pseudo random variable
V DC.U1; : : : ; Ud / � K . The expectation of v is the transformation of the
multivariate extension of Kendall’s  , hence the deviation of the true K and
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empirical OK as a univariate function is called Kendall’s process. The most natural
empirical estimation of K is

OK.v/ D 1

n

nX

iD1
IfVi � vg:

The theoretical form of the K was discussed in Barbe et al. (1996) and Okhrin
et al. (2009) for different copula functions. In the bivariate case of the Archimedean
copulae it is related to the generator function as

K.v; �/ D v � ��1
� .v/

f��1
� .v/g0 :

As in the tests based on the empirical copulae Wang and Wells (2000) and Genest
et al. (2006) propose to compute a Kolmogorov–Smirnov and Crámer-von-Mises
statistics for the K

SK D n

Z 1

0

f OK.v/�K.v; �/g2 dv;

TK D sup
v2Œ0;1	

j OK.v/�K.v; �/j;

where OK.v/ andK.v; �/ are empirical and theoreticalK-distributions of the variable
v D C.u1; : : : ; ud /. However, as in the previous tests, exact p-values for this statistic
cannot be computed explicitly. Savu and Trede (2004) propose a �2-test based on the
K-distribution. Unfortunately, in most cases the distribution of the test statistic does
not follow a standard distribution and either a bootstrap or another computationally
intensive methods should be used.

17.6.3 Tests Based on Rosenblatt’s Process

An alternative global approach is based on the probability integral transform
introduced in Rosenblatt (1952) and applied in Breymann et al. (2003), Chen et al.
(2004) and Dobrić and Schmid (2007). The idea of the transformation is to construct
the variables

Yi1 D MF1.Xi1/;
Yij D C f MFj .Xij /j MF1.Xi1/; : : : ; MFj�1.Xi;j�1/g; for j D 2; : : : ; d;(17.11)

where the conditional copula is defined in (17.7). Under H0 the variables Yij , for
j D 1; : : : ; d are independently and uniformly distributed on the interval Œ0; 1	.
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Here we discuss the second test based on Yij proposed in Chen et al. (2004).
Consider the variable Wi D Pd

jD1Œ˚�1.Yij /	2. Under H0 it holds that Wi � �2d .
Breymann et al. (2003) assume that estimating margins and copula parameters does
not significantly affect the distribution of OWi and apply a standard �2 test directly
to the pseudo-observations. Chen et al. (2004) developed a kernel-based test for the
distribution of W and, thus, an account for estimation errors. Let QgW .w/ denote the
kernel estimator of the density of W . Under H0 the density gW .w/ is equal to one,
as the density of the uniform distribution. As a measure of divergency Chen et al.
(2004) used OJn D R 1

0 f QgW .w/ � 1g2dw. Assuming non-parametric estimator of the
marginal distributions Chen et al. (2004) prove under regularity conditions that

Tn D .n
p
h OJn � cn/=� ! N.0; 1/;

where the normalisation parameters h; cn and � are defined in Chen et al. (2004).
The proof of this statement does not depend explicitly on the type of the non-
parametric estimator of the marginals MFj , but uses the order of MFj .Xij / � Fj .Xij /

as a function of n. It can be shown that if the parametric families of marginal distri-
butions are correctly specified and their parameters are consistently estimated, then
the statement also holds if we use parametric estimators for marginal distributions.

17.7 Simulation Study

A Monte Carlo experiment has been provided to discuss the finite sample properties
of the goodness-of-fit tests based on the empirical copula and different estimation
techniques on the simulated data. We restrict ourselves to the three dimensional case
of three copula families, namely Gaussian, simple AC with Gumbel generator and
HAC with Gumbel generator. For the simulation from the AC we use the Marshall
and Olkin (1988) method and for simulation from HAC the McNeil (2008) method.
To simulate from the Gaussian copula we simulate first from normal distribution
and then apply the Sklar’s theorem (1).

The main characteristic of interest in this study is to see whether the
tests are able to maintain their nominal level fixed at ˛D 0:1 and to see the
power of the tests under the variety of alternatives. This is the only study that
discusses the power of goodness-of-fit tests for copula in dimensions higher that
d D 2. We consider all possible copulae with parameters  2 f0:25; 0:5; 0:75g.
This means that under consideration were three AC: C�.0:25/.�/, C�.0:5/.�/,
C�.0:75/.�/, three HAC: C�.0:25/fC�.0:50/.u1; u2/; u3g, C�.0:25/fC�.0:75/.u1; u2/; u3g,
C�.0:75/fC�.0:50/.u1; u2/; u3g, and 15 Gaussian copulae with all possible positive
definite correlation matrices containing values � 2 f0:25; 0:5; 0:75g. Here �./
converts Kendall’s  correlation coefficient into a corresponding copula parameter.

The results are provided in Table 17.1 for AC, in Table 17.2 for HAC and in
Table 17.3 for Gaussian copulae. To save the workspace we provide results for
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Table 17.1 Non-rejection rate of the different models, where the sample is drawn from the simple
AC

AC
n D 50 n D 150

� T S T S
emp. par. emp. par. emp. par. emp. par.

�.0:25/

HAC 0.88 0.51 0.83 0.38 0.93 0.36 0.90 0.35
AC 0.88 0.51 0.89 0.50 0.95 0.32 0.90 0.34
Gauss 0.71 0.29 0.56 0.22 0.69 0.11 0.43 0.08

�.0:5/

HAC 0.90 0.38 0.94 0.30 0.87 0.35 0.88 0.27
AC 0.96 0.55 0.95 0.45 0.90 0.45 0.92 0.35
Gauss 0.76 0.30 0.65 0.19 0.47 0.13 0.31 0.02

�.0:75/

HAC 0.93 0.29 0.93 0.15 0.89 0.27 0.89 0.10
AC 0.93 0.29 0.93 0.22 0.90 0.25 0.91 0.13
Gauss 0.77 0.19 0.65 0.10 0.57 0.11 0.24 0.05

Table 17.2 Non-rejection rate of the different models, where the sample is drawn from the HAC

HAC
n D 50 n D 150

� T S T S
emp. par. emp. par. emp. par. emp. par.

�.0:25; 0:5/

HAC 0.88 0.29 0.90 0.24 0.96 0.31 0.92 0.26
AC 0.91 0.26 0.93 0.36 0.54 0.13 0.53 0.07
Gauss 0.82 0.20 0.69 0.19 0.57 0.14 0.37 0.04

�.0:25; 0:75/

HAC 0.93 0.21 0.92 0.13 0.88 0.18 0.88 0.09
AC 0.46 0.14 0.54 0.07 0.00 0.00 0.00 0.00
Gauss 0.84 0.19 0.71 0.13 0.52 0.10 0.42 0.01

�.0:5; 0:75/

HAC 0.86 0.31 0.87 0.18 0.91 0.20 0.94 0.08
AC 0.89 0.36 0.92 0.28 0.44 0.04 0.47 0.02
Gauss 0.70 0.19 0.55 0.12 0.50 0.11 0.30 0.05

only 3 Gaussian copulae out of 15 with the largest difference between parameters.
For HAC, a vector function �.1; 2/ converts two Kendall’s  into HAC copula
parameters. If 1 < 2 then copula C�.1/fC�.2/.u1; u2/; u3g is considered. For
Gaussian copula

†.1; 2; 3/ D
0

@
1 1 2
1 1 3

2 3 1

1

A :

From each copula we simulate a sample of n D 50 or n D 150 observations with
standard normal margins. The margins are then estimated parametrically (normal
distribution with estimated mean and variance) or nonparametrically. Respective
columns in the tables are marked by “par.” and “emp.”. For each sample we estimate
the AC using inference for the margins method, HAC using Okhrin et al. (2008) and
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Table 17.3 Non-rejection rate of the different models, where the sample is drawn from the
Gaussian copula

Gauss
n D 50 n D 150

† T S T S
emp. par. emp. par. emp. par. emp. par.

†.0:25; 0:25; 0:75/

HAC 0.89 0.20 0.93 0.11 0.78 0.08 0.81 0.02
AC 0.43 0.13 0.47 0.09 0.00 0.00 0.00 0.00
Gauss 0.88 0.22 0.89 0.12 0.87 0.11 0.86 0.03

†.0:25; 0:75; 0:25/

HAC 0.92 0.20 0.91 0.14 0.76 0.07 0.69 0.04
AC 0.39 0.12 0.39 0.04 0.00 0.00 0.00 0.00
Gauss 0.90 0.18 0.87 0.13 0.92 0.12 0.94 0.10

†.0:75; 0:25; 0:25/

HAC 0.89 0.30 0.93 0.16 0.78 0.10 0.75 0.04
AC 0.51 0.16 0.46 0.07 0.00 0.00 0.00 0.00
Gauss 0.91 0.28 0.90 0.17 0.88 0.13 0.86 0.06

the Gaussian copula using the generalised method of moments. Then we test how
good these distributions fit the sample. The empirical copula for both tests has been
calculated as in (17.8). Number of bootstrap steps provided for the tests is equal to
N D 1000. To sum up the simulation procedure, we used:

1. F W two methods of estimation of margins (parametric and nonparametric).
2. C0 W hypothesised copula models underH0 (three models).
3. C W copula model from which the data were generated (three models with 3, 3

and 15 levels of dependence respectively).
4. n W size of each sample drawn from C (two possibilities, n D 50 and n D 150).

Thus, for all these 2�3�.3C3C15/�2 D 252 situations we perform 100 repetitions
in order to calculate the power of both tests. This study is hardly comparable to other
similar studies, because, as far as we know, this is the only one that considers the
three dimensional case, and the only one that considers a hierarchical Archimedean
copulae.

To understand the numbers in the tables more deeply let us consider first the
value in Table 17.1. The number 0:88 says, that testing using Kolmogorov–Smirnov
type statistic Tn for the AC with  D 0:25 from the sample of a size n D 50, with
nonparametrically estimated margins, rejects the null hypothesesH0, assuming that
the data are from HAC, in 100%�88% D 12% of chances. It is very natural that the
rejection rate for the AC, that have HAC under H0, is very close to the case, where
AC is under H0. In general AC is a special case of HAC. If the true distribution is
AC, the rejection rates should be equal, or close to each other, and the difference
based only on the estimation error.

Figure 17.6 represents the level of both goodness-of-fit tests for different sizes
in terms of three quartiles; the outliers are marked with closed dots. In general,
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Fig. 17.5 Samples of size n D 50 from C0:25.�/, C�.0:75/fC�.0:50/.u1; u2/; u3g and Gaussian copula
with upper diagonal elements of the correlation matrix given by � D .0:25; 0:25; 0:75/>

values lies below 0.1, which implies that the bootstrap performs well. Increasing the
number of runs improves this graph. We see that if the sample size has enlarged three
times, then the tests have approximately doubled their power in S statistics, and a
slightly smaller coefficient is given for the T statistics. In general, small size samples
from different models look very similar (see Fig. 17.5), this makes detection of the
model that best fits the data hardly applicable, this also explains a lot of outliers in
Fig. 17.6.

From the tables we see, that Sn performs, on average, better than Tn statistics,
this can be also seen from the Fig. 17.6. In the tables, rejection rates for Sn under
false H0 are in general higher, than for Tn statistics. We can also conclude that the
larger the difference between parameters of the model is the faster AC is rejected.
This can be expressed by the only parameter in AC that does not covers the whole
dependency.
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Fig. 17.6 Levels of goodness-of-fit tests for different sample size, for parametric margins

17.8 Empirical Results

The empirical part of this study is based on the calculation of the Value-at-Risk for
the Profit and Loss function of the portfolio containing three assets. Asset returns
follow some GARCH-type process with residuals from copula based models. We
consider the daily stock prices of three American banks, namely Bank of America,
Citigroup and Santander from 29.09.2000 to 16.02.2001. This results in T D 100

observations being consistent with the simulation study provided above. We take
this time interval because several U.S. banks have recorded strong earnings in the
fourth quarter of 2000. Rising profits were reported by U.S. industry leaders, namely
Citigroup and Bank of America. At the same time bad forecasts for technology
companies were reported; these influence the financial sector as well. Prices
fXtj g; j D 1; 2; 3 behave (over the chosen period) as in Fig. 17.7. Assuming the
log-returns Rtj D log.Xtj =Xt�1;j /; j D 1; 2; 3; t D 1; : : : ; T (see Fig. 17.8) follow
an ARMA(1,1)-GARCH(1,1) process, we have

Rtj D �j C �jRt�1;j C #j �t�1;j "t�1;j C �tj "tj ;

where
�2tj D !j C ˛j �

2
t�1;j C ˇj �

2
t�1;j "2t�1;j

and ! > 0, ˛j 	 0, ˇj 	 0, ˛j C ˇj < 1, j#j < 1.
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Fig. 17.7 Stock prices for Bank of America, Citigroup and Santander (from top to bottom)

The fit of an ARMA(1,1)-GARCH(1,1) model to the log returns Rt D .Rt1,
Rt2; Rt3/

>, T D 100, gives the estimates O!j , Ǫj , Ǒ
j , O#j and O�j , as in Table 17.4.

Empirical residuals fO"tgTtD1, where O"t D .O"t1; O"t2; O"t3/> are assumed to be normally
distributed; this is not rejected by the Kolmogorov–Smirnov test at the high level
of significance for all three banks. Residuals are also assumed to be independent,
because of the Box–Ljung autocorrelation test with lag 12. Thus, in the estimation
of copula we use an inference for margins method, where margins are normal, thus,
estimated parametrically.

Upper diagonal cells of Fig. 17.9 represent pair wise scatterplots of ARMA-
GARCH residuals. In the lower diagonal cells of the same figure we show the
scatterplots of the residuals mapped on the unit square by the estimated marginal
cdf, OF .O"/.

We estimated three different models, namely simple AC, HAC and Gaussian
copula. Afterwards two tests, used in the simulation study, were applied to see how
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Fig. 17.8 Log-returns for Bank of America, Citigroup and Santander (from top to bottom)

Table 17.4 Fitting of univariate ARMA(1,1)-GARCH(1,1) to asset returns. The standard devi-
ation of the parameters, which are quiet big because of the small sample size, are given
in parentheses. The last two columns provide the p-values of the Box–Ljung test (BL) for
autocorrelations and Kolmogorov–Smirnov test (KS) for testing of normality of the residuals

O�j O�j O#j O!j Ǫj Ǒ
j BL KS

Bank of 1.879e�03 0.226 �0.232 3.465e�04 0.551 0.170 0.567 0.829
America (2.598e�03) (0.642) (0.654) (1.369e�04) (0.284) (0.155)

Citigroup 0.116e�03 0.305 �0.455 2.669e�04 0.096 0.471 0.569 0.786
(1.487e�03) (0.296) (0.288) (5.533e�04) (0.165) (1.008)

Santander 1.359e�03 0.430 �0.566 4.512e�10 0.012 0.979 0.914 0.781
(0.908e�03) (0.149) (0.174) (1.376e�05) (0.018) (0.049)
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Fig. 17.9 Scatterplots from ARMA-GARCH residuals (upper triangular) and from residuals
mapped on unit square by the cdf (lower triangular)

good these models describe data. In this case the number of bootstrap runs has been
increased to N D 10000 to make the test results more precise. Estimated models,
and p-values are represented in Table 17.5. We see that parameters in the HAC
model deviate from each other, we may conclude therefore, that a simple AC is not
a proper model that fits the data. On the other hand, from Fig. 17.9 we see that the
points are not elliptical; this convinces us to expect a low p-value of the test where
the Gaussian copula is under H0. In the first two columns of Table 17.5 we put p-
values for all tests. We conclude that HAC is the most appropriate model for this
particular dataset, because it has the largest p-value. Based on two tests only HAC
can not be rejected under significance level ˛ D 0:05. This means that our data
may not be described by the simple three-dimensional normal distribution, but the
margins are still normal.

To see if knowledge of preferable distribution is worth knowing in a financial
problem, we estimate the Vale-at-Risk from a Profit and Loss of a linear portfolio
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Table 17.5 p-values of both GoFs and estimates of the models under different H0 hypotheses

T100 S100 Estimates

HAC 0.3191 0.1237 C fC.u1; u2I 1:996/; u3I 1:256g
AC 0.0012 0.0002 C.u1; u2; u3I 1:276/
Gauss 0.0160 0.0078 CN fu1; u2; u3I †.0:697; 0:215; 0:312/g

using copulae. The portfolio is composed of the stocks discussed above. We also
perform an evaluation of the estimators through backtesting. Let w be the portfolio,
which is represented by the number of assets for a specified stock in the portfolio,
w D fw1; : : : ;wd g; wi 2 Z. The value Vt of the portfolio w is given by

Vt D
dX

jD1
wjXtj (17.12)

and the random variable defined as the absolute change in the portfolio

LtC1 D .VtC1 � Vt/ D
dX

jD1
wjXtj

˚
exp.RtC1;j / � 1� (17.13)

also called profit and loss (P&L) function, expresses the absolute change in the
portfolio value in one period. The distribution function of L, dropping the time
index, is given by

FL.x/ D P.L � x/: (17.14)

As usual the Value-at-Risk at level ˛ from a portfolio w is defined as the ˛-
quantile from FL:

VaR.˛/ D F�1
L .˛/: (17.15)

It follows from (17.14) that FL depends on the d -dimensional distribution of log-
returns FX . In general, the loss distribution FL depends on a random process
representing the risk factors influencing the P&L from a portfolio. In the present
case log-returns modelled by an ARMA(1,1)-GARCH(1,1) model are a suitable risk
factor choice. Thus, modelling their distribution is essential to obtain the quantiles
from FL. To estimate the VaR we simulate samples of residuals "t from HAC, AC
and Gaussian copula with normal margins, then apply simulated residuals to the
estimated ARMA(1,1)-GARCH(1,1) model and calculate it based on the values
of the Profit and Loss OL with w D .1; 1; 1/>. The bVaR.˛/ is then an empirical
˛-quantile from the OL. In Fig. 17.10 we represent the series of estimated Value-at-
Risk with ˛D 0:1 and the P&L function. Afterwards backtesting is used to evaluate
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Fig. 17.10 bVaR.˛/, P&L (dots) and exceedances (crosses), estimated with 3-dimensional HAC
with Gumbel generator (top), simple Gumbel copula (middle) and Gaussian copula (bottom) with
˛D 0:1

the performance of the specified copula family C. The estimated values for the VaR
are compared with the true realisations fLt g of the P&L function, an exceedance
occuring for eachLt smaller than bVaRt .˛/. The ratio of the number of exceedances
to the number of observations gives the exceedances ratio Ǫ :

Ǫ D 1

T

TX

tD1
IfLt < bVaRt .˛/g:

The backtesting results are provided in Table 17.6. From them we see that the
Gaussian copula usually underestimates the VaR. This is natural because this copula
does not have nor upper nor a lower tail dependence. The simple Archimedean
copula overestimates the VaR. Results provided by HAC are the closest to the true
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Table 17.6 Backtesting for the estimation of VaR under different alternatives

˛ ǪHAC ǪAC ǪGauss

0.10 0.091 0.122 0.081
0.05 0.040 0.061 0.031
0.01 0.000 0.010 0.000

ones, but this copula underestimates the true VaR in all levels of significance. This
is also natural because Gumbel copula describes wins rather than losses best. In
general these results were expected due to the fact, that HAC is the only copula that
was accepted by both tests under a high level of significance.

17.9 Conclusions

In this chapter we gave a short survey on copulae. We discussed different copula
classes, methods of simulation and estimation and several goodness-of-fit tests.
We provided an extensive simulation study in which two goodness-of-fit tests and
two estimation techniques were considered. Afterwards, copulae were applied to
de-GARCHed real world time-series. From the empirical study we conclude that,
in some cases, even if margins are normal, the dependency is certainly not linearly
normal, and more flexible dependency models are asked for.
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Sklar, A. (1959). Fonctions dé repartition á n dimension et leurs marges. Publ. Inst. Stat. Univ.

Paris, 8, 299–231.
Wang, W., & Wells, M. (2000). Model selection and semiparametric inference for bivariate failure-

time data. Journal of the American Statistical Association, 95, 62–76.
Whelan, N. (2004). Sampling from Archimedean copulas. Quantitative Finance, 4, 339–352.



Chapter 18
Numerical Methods for Nonlinear PDEs
in Finance

Peter A. Forsyth and Kenneth R. Vetzal

Abstract Several examples of nonlinear Hamilton Jacobi Bellman (HJB) partial
differential equations are given which arise in financial applications. The concept
of a visocisity solution is introduced. Sufficient conditions which ensure that a
numerical scheme converges to the viscosity solution are discussed. Numerical
examples based on an uncertain volatility model are presented which show that
seemingly reasonable discretization methods (which do not satisfy the sufficient
conditions for convergence) fail to converge to the viscosity solution.

18.1 Introduction

Many problems in finance can be posed in terms of an optimal stochastic control.
Some well-known examples include transaction cost/uncertain volatility models
(Leland 1985; Avellaneda et al. 1995; Pooley et al. 2003), passport options
(Andersen et al. 1998; Shreve and Vecer 2000), unequal borrowing/lending costs in
option pricing (Bergman 1995), risk control in reinsurance (Mnif and Sulem 2001),
optimal withdrawals in variable annuities (Dai et al. 2008), optimal execution of
trades (Lorenz and Almgren 2007; Lorenz 2008), and asset allocation (Zhou and Li
2000; Li and Ng 2000). A recent survey on the theoretical aspects of this topic is
given in Pham (2005).

These optimal stochastic control problems can be formulated as nonlinear
Hamilton-Jacobi-Bellman (HJB) partial differential equations (PDEs). In general,
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especially in realistic situations where the controls are constrained (e.g. in the case
of asset allocation, we may require that trading must cease upon insolvency, that
short positions are not allowed, or that position limits are imposed), there are no
analytical solutions to the HJB PDEs. At first glance, it would appear to be a
formidable task to develop a numerical method for solving such complex PDEs.
In addition, there may be no smooth classical solutions to the HJB equations. In this
case, we must seek the viscosity solution (Crandall et al. 1992) of these equations.

However, using the powerful theory developed in Barles and Souganidis (1991),
Barles et al. (1995) and Barles (1997) we can devise a general approach for
numerically solving these HJB PDEs. This approach ensures convergence to the
viscosity solution.

The contributions of this article are as follows:

• We discuss several examples of optimal stochastic control in finance.
• We give an intuitive description of the concept of a viscosity solution.
• We present a general approach for discretizing the HJB PDEs. This technique

ensures that the discrete solutions converge to the viscosity solution (Barles
and Souganidis 1991; Barles et al. 1995; Barles 1997). The method uses fully
implicit time stepping. Consequently, there are no time step restrictions due to
stability considerations, an advantage over the Markov chain approach (Kushner
and Dupuis 1991).

• We also discuss some techniques for the solution of the nonlinear discretized
algebraic equations and an important property of the discrete solutions (i.e.
preservation of arbitrage inequalities).

• Finally, we present a numerical example, illustrating that seemingly reasonable
discretization methods, which do not satisfy the conditions in Barles and
Souganidis (1991) can converge to incorrect (i.e. non-viscosity) solutions, and
even solutions which embed arbitrage opportunities.

18.2 Examples

18.2.1 Uncertain Volatility

Let V.S; t/ be the value of a contingent claim written on an asset which has a price
S that evolves according to the stochastic process

dS D �S dt C �S dZ; (18.1)

where� is the drift rate, � is volatility, and dZ is the increment of a Wiener process.
There are a number of situations where V.S; t/ must be determined by solving an
optimal control problem.

Consider for example, the uncertain volatility model developed in Avellaneda
et al. (1995) and Lyons (1995). This provides a pricing mechanism for cases where
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volatility is uncertain, but lies within a band, � 2 Œ�min; �max	. In this case, the PDE
which is used to determine the value of a contingent claim is determined by the two
extremal volatilities. Let the expiry time of the claim be T , and let  D T � t . For
a short position the optimal control problem is given by

V D sup
Q2 OQ

�
Q2S2

2
VSS C SVS � rV


D 0; (18.2)

where OQ D f�min; �maxg and r is the borrowing/lending rate. Replacing the sup by
an inf gives the corresponding pricing equation for a long position. It should also be
pointed out that a PDE of precisely the same form as (18.2) arises in the completely
different context of option valuation under transaction costs (Leland 1985).

18.2.2 Continuous Time Mean-Variance Asset Allocation

We suppose that an investor may divide his wealth W into a fraction p in a risky
asset, the price of which follows process (18.1), and a fraction .1�p/ in a risk-free
bond, the value of which follows

dB

dt
D rB; (18.3)

where r is the risk-free rate. If ˛ is the number of units of S owned, then W D
˛S C B , and the process followed by W is

dW D Œp�C .1 � p/r	W dt C p�W dZ: (18.4)

We suppose that the investor follows an asset allocation strategy p.t/ for time t 2
Œ0; T 	. If WT is the wealth at the terminal time T , then the optimal strategy may be
posed as finding the p.t/ that maximizes the expected return less a penalty for risk
(as measured by variance), i.e.

sup
p.t/2z

˚
EtD0ŒWT 	 � �vartD0ŒWT 	

�
; (18.5)

where

EtD0Œ�	 is the expectation as seen at t D 0

vartD0Œ�	 is the variance as seen at t D 0

z is the set of admissible controls, and

� is the risk aversion parameter.
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Varying � allows us to generate a set of points
�p

vartD0ŒWT 	; E
tD0ŒWT 	

�
on the

mean-variance efficient frontier.
Problem (18.5) is the pre-commitment version of the mean-variance trade-off

(Basak and Chabakauri 2007). There is no direct dynamic programming formulation
of problem (18.5). However, we can solve a different problem which has the same
optimal control p.t/ and which is easier to solve.

We would like to use dynamic programming to determine the efficient frontier,
given by (18.5). However, the presence of the variance term causes some difficulty.
This can be avoided with the help of the results in Li and Ng (2000) and Zhou and
Li (2000):

Theorem 1 (Equivalent Linear Quadratic (LQ) problem). If p�.t/ is the opti-
mal control of problem (18.5), then p�.t/ is also the optimal control of problem

sup
p.t/2z

˚
EtD0Œ�WT � �W 2

T 	
�
; (18.6)

where

� D 1C 2�EtD0
p� ŒWT 	; (18.7)

with p� being the optimal control of problem (18.6).

The notation EtD0
p� Œ�	 refers to the expected value given the strategy p�.t/. This

result seems at first sight to be not very useful, since the parameter � is a function
of the optimal control p�, which is not known until the problem is solved. However,
we can write (18.6) in the form

� � inf
p.t/2z

EtD0ŒW 2
T � �WT 	 (18.8)

with � D �=�, since � > 0. Consequently, for fixed � , an optimal control of
problem (18.8) is an optimal control of

inf
p.t/2z

n
EtD0

h
.WT � �

2
/2
io
: (18.9)

As a result, for fixed � , we can determine the optimal control p.t/ of problem (18.5)
as follows. Let

V.W; / D ET� �.WT � �/2
�
: (18.10)

Then, V is given from the solution to

V D inf
p2z

˚
.p�C .1 � p/r/W VW C .p�/2W 2VWW

�
(18.11)
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V.W;  D 0/ D .W � �=2/2: (18.12)

Having solved (18.12), we then have the optimal control p�.W; t/. This can be used

to determine a pair
�p

vartD0ŒWT 	/; E
tD0ŒWT 	

�
. Varying � allows us to trace out

an efficient frontier.

18.2.3 Guaranteed Minimum Withdrawal Benefit Variable
Annuity

Guaranteed Minimum Withdrawal Benefit (GMWB) variable annuities are dis-
cussed at length in Milevsky and Salisbury (2006), Dai et al. (2008) and Chen
and Forsyth (2008). We briefly review the final equations here. Let W � W.t/

be the stochastic process of the personal variable annuity account and A � A.t/

be the stochastic process of the account balance of the guarantee. We assume that
the reference portfolio S � S.t/, which underlies the variable annuity policy
before the deduction of any proportional fees, follows a geometric Brownian motion
under the risk-neutral measure with a volatility of � and a risk-free interest rate of r :

dS D rS dt C �S dZ: (18.13)

The major feature of the GMWB is the guarantee on the return of the entire premium
via withdrawal. The insurance company charges the policy holder a proportional
annual insurance fee � for this guarantee. Therefore we have the following stochastic
differential equation for W :

dW D
(
.r � �/Wdt C �WdZ C dA if W > 0;

0 if W D 0:
(18.14)

Let � � �.t/ denote the withdrawal rate at time t and assume 0 � � � � (� is the
maximum possible withdrawal rate). The policy guarantees that the accumulated
sum of withdrawals throughout the policy’s life is equal to the premium paid up
front, which is denoted by !0. Consequently, we have A.0/ D !0, and

A.t/ D !0 �
Z t

0

�.u/ du: (18.15)

In addition, almost all policies with GMWB put a cap on the maximum allowed
withdrawal rate without penalty. Let G be such a contractual withdrawal rate,
and � be the proportional penalty charge applied on the portion of withdrawal
exceedingG. The net withdrawal rate f .�/ received by the policy holder is then
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f .�/ D
(
� 0 � � � G;

G C .1 � �/.� �G/ G < � � �:
(18.16)

The no-arbitrage value V.W;A; t/ of the variable annuity with GMWB therefore is
given by

V.W;A; t/ D max
� 2 Œ0;�	 E

t

"
e�r.T�t / max .W.T /; .1 � �/A.T //

C
Z T

t

e�r.u�t /f .�.u// du

#
; (18.17)

where T is the policy maturity time and the expectation Et is taken under the risk-
neutral measure. The withdrawal rate � is the control variable chosen to maximize
the value of V.W;A; t/.

Define

LV D �2

2
W 2VWW C .r � �/W VW � rV; (18.18)

and
FV D 1 � VW � VA: (18.19)

If we let the maximum possible withdrawal rate � ! 1 (withdrawing instanta-
neously a finite amount), then we obtain the singular control problem (Dai et al.
2008)

min ŒV � LV �Gmax.FV; 0/; � � FV 	 D 0: (18.20)

18.3 Viscosity Solutions

The highly nonlinear PDEs ((18.2), (18.12), and (18.20)) do not have smooth
(i.e. differentiable) solutions in general. In this case, it is not obvious what we
mean by the solution to a differential equation. To clarify, it is useful to give an
intuitive description of the concept of a viscosity solution. For sake of illustration,
consider (18.2).

We can write our PDE as

g.V; VS ; VSS ; V / D V � sup
Q2 OQ

�
Q2S2

2
VSS C SVS � rV


D 0: (18.21)

We assume that g.x; y; z;w/ (x D V; y D VS; z D VSS ;w D V ) satisfies the
ellipticity condition
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g.x; y; z C �;w/ � g.x; y; z;w/ 8� 	 0; (18.22)

which in our case usually means that the coefficient of the VSS term in LV is non-
negative. Suppose for the moment that smooth solutions to (18.21) exist, i.e. V 2
C2;1, where C2;1 refers to a continuous function V D V.S; / having continuous
first and second derivatives in S , and a continuous first derivative in  . Let � be a
set of C2;1 test functions. Suppose V �� � 0, and that �.S0; 0/ D V.S0; 0/ at the
single point .S0; 0/. Then the single point .S0; 0/ is a global maximum of .V ��/,

V � � � 0;

max.V � �/ D V.S0; 0/� �.S0; 0/ D 0: (18.23)

Consequently, at .S0; 0/

� D V

�S D VS

.V � �/SS � 0 ) �SS 	 VSS : (18.24)

Hence, from (18.22,18.24), we have

g .V.S0; 0/; �S .S0; 0/; �SS.S0; 0/; � .S0; 0//

D g .V.S0; 0/; VS .S0; 0/; �SS.S0; 0/; V .S0; 0//

� g .V.S0; 0/; VS .S0; 0/; VSS.S0; 0/; V .S0; 0// D 0; (18.25)

or, to summarize,

g .V.S0; 0/; �S .S0; 0/; �SS.S0; 0/; � .S0; 0// � 0

V � � � 0

max.V � �/ D V.S0; 0/� �.S0; 0/ D 0:

(18.26)

If this is true for any test function �, then we say that V is a viscosity subsolution of
(18.21).

Now, suppose that � is a C2;1 test function, with V � � 	 0, and V.S0; 0/ D
�.S0; 0/ at the single point .S0; 0/. Then, .S0; 0/ is the global minimum of V ��,

V � � 	 0

min.V � �/ D V.S0; 0/� �.S0; 0/ D 0: (18.27)

Consequently, at .S0; 0/
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� D V

�S D VS

.V � �/SS 	 0 ) �SS � VSS : (18.28)

Hence, from (18.27,18.28), we have

g .V.S0; 0/; �S .S0; 0/; �SS .S0; 0/; � .S0; 0//

D g .V.S0; 0/; VS .S0; 0/; �SS .S0; 0/; V .S0; 0//

	 g .V.S0; 0/; VS .S0; 0/; VSS.S0; 0/; V .S0; 0// D 0: (18.29)

Summarizing,

g .V.S0; 0/; �S .S0; 0/; �SS.S0; 0/; � .S0; 0// 	 0

V � � 	 0

min.V � �/ D V.S0; 0/ � �.S0; 0/ D 0:

(18.30)

If this is true for any test function �, we say that V is a viscosity supersolution
of (18.21). A solution which is both a viscosity subsolution and a viscosity
supersolution is a viscosity solution.

Now, suppose that V is continuous but not smooth. This means that we cannot
define V as the solution to g.V; VS ; VSS ; V / D 0. However, we can still use
conditions (18.26) and (18.30) to define a viscosity solution to (18.21), since all
derivatives are applied to smooth test functions. Informally, a viscosity solution V
to (18.21) is defined such that:

• For any C2;1 test function �, such that

V � � � 0I �.S0; 0/ D V.S0; 0/; (18.31)

(� touches V at the single point .S0; 0/), then

g .V.S0; 0/; �S.S0; 0/; �SS .S0; 0/; � .S0; 0// � 0: (18.32)

• As well, for any C2;1 test function � such that

V � � 	 0I V.S0; 0/ D �.S0; 0/; (18.33)

(� touches V at the single point .S0; 0/), then

g .V.S0; 0/; �S .S0; 0/; �SS .S0; 0/; � .S0; 0// 	 0: (18.34)
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Fig. 18.1 Illustration of viscosity subsolution definition

An example of a subsolution and a typical test function is shown in Fig. 18.1.
Similarly, the supersolution case is shown in Fig. 18.2.

Note that there may be some points where a smooth test function can touch the
viscosity solution only from above or below, but not both. The kink at S D 1 in
Fig. 18.2 is an example of such a situation. It is not possible for a smooth C2;1 test
function � satisfying V � � 	 0, �.1; 0/ D V.1; 0/ to exist.

There may also be some points where a smooth C2;1 test function cannot touch
the solution from either above or below. As a pathological example, consider the
function

f .x/ D
(p

x x 	 0;

�p�x x < 0:
(18.35)

This function cannot be touched at the origin from below (or above) by any smooth
function with bounded derivatives. Note that the definition of a viscosity solution
only specifies what happens when the test function touches the viscosity solution
at a single point (from either above or below). The definition is silent about cases
where this cannot happen.

18.4 General Form for the Example Problems

We can treat many control problems in finance using a similar approach. Even
singular control problems, as in (18.20), can be solved using the methods described
here, if we use the penalty technique described in Dai et al. (2008).
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Fig. 18.2 Illustration of viscosity supersolution definition

For ease of exposition, we will focus on single factor optimal control problems.
We give a brief overview of the methods here – see Forsyth and Labahn (2008) for
more details. Let the value function be denoted by V D V.S; /, where  D T � t ,
with T being the expiry time of the contract or claim being considered. Set

LQV � a.S; ;Q/VSS C b.S; ;Q/VS � c.S; ;Q/V; (18.36)

whereQ is a control parameter. We write our problem in the general form

V D sup
Q2 OQ

n
LQV C d.S; ;Q/

o
; (18.37)

OQ being a compact set of feasible controls. Note that we can replace the sup in
(18.37) by an inf and all the methods remain essentially the same.

We will assume in the following that a.S; ;Q/ 	 0 and c.S; ;Q/ 	 0. In a
financial context this corresponds to non-negative interest rates and volatilities.

18.4.1 Boundary Conditions

We will assume that the problem is posed on a bounded domain ŒSmin; Smax	. In
many cases, the original problem is posed on an unbounded domain. We assume that
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the problem has been localized for computational purposes. We will assume that the
boundary conditions at ŒSmin; Smax	 are either the limit of the PDE as S ! Smin; Smax

or some type of given Dirichlet condition.

18.4.2 Strong Comparison Result

We assume that the HJB PDE (18.37) along with appropriate boundary conditions
satisfies the strong comparison property (Crandall et al. 1992), which then implies
that there exists a unique, continuous viscosity solution to (18.37).

18.5 Discretization

Define a grid fS0; S1; : : : ; Spg with Sp D Smax, and let V n
i be a discrete approxi-

mation to V.Si ; n/. Let V n D ŒV n
0 ; : : : ; V

n
p 	

0, and let .LQh V n/i denote the discrete
form of the differential operator (18.36) at node .Si ; n/. The operator (18.36) can
be discretized using forward, backward or central differencing in the S direction to
give

.LQ
h V

nC1/i D ˛nC1
i .Q/V nC1

i�1 C ˇnC1
i .Q/V nC1

iC1
� .˛nC1

i .Q/C ˇnC1
i .Q/C cnC1

i .Q//V nC1
i : (18.38)

It is important that central, forward or backward discretizations be used to
ensure that (18.40) is a positive coefficient discretization. To be more precise, this
condition is

Condition 3. Positive Coefficient Condition

˛nC1
i .Q/ 	 0; ˇnC1

i .Q/ 	 0; cnC1
i .Q/ 	 0; i D 0; : : : ; p � 1; 8Q 2 OQ:

(18.39)

We will assume that all models have cnC1
i .Q/ 	 0. Consequently, we choose

central, forward or backward differencing at each node so as to ensure that
˛nC1
i .Q/; ˇnC1

i .Q/ 	 0. Appendix A provides details concerning forward, back-
ward and central differencing. Note that different nodes can have different dis-
cretization schemes. If we use forward and backward differencing, then (18.57)
in Appendix A guarantees a positive coefficient method. However, since this
discretization is only first order correct, it is desirable to use central differencing
as much as possible (and yet still obtain a positive coefficient method). This issue is
discussed in detail in Wang and Forsyth (2007).
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Equation (18.37) can now be discretized using fully implicit time stepping
together with the discretization (18.38) to give

V nC1
i � V n

i

�
D sup

QnC12 OQ

n
.LQ

nC1

h V nC1/i C dnC1
i

o
: (18.40)

Of course, an explicit method would involve evaluating the terms on the right hand
side of (18.40) at the old time level n instead of nC 1. A Crank–Nicolson scheme
would be an equally-weighted average of the fully implicit scheme (18.40) and an
explicit scheme.

18.5.1 Matrix Form of the Discrete Equations

Set V nC1 D ŒV nC1
0 ; V nC1

1 ; : : : ; V nC1
p 	0 and Q D ŒQ0;Q1; : : : ;Qp	

0. We can write

the discrete operator .LQh V n/i as

.LQh V
n/i D ŒA.Q/V n	i

D �
˛ni .Q/V

n
i�1 C ˇni .Q/V

n
iC1 � .˛ni .Q/C ˇni .Q/C cni .Q//V

n
i

�
; i < p:

(18.41)

The first and last rows of A are modified as needed to handle the boundary
conditions. LetF nC1 be a vector which encodes boundary conditions (i.e.F nC1

i D 0

except possibly at i D 0; p).
Let Dn.Q/ be the vector with entries

ŒD.Q/	ni D
(
dni .Q/ for i < p ! i is not a Dirichlet node

0 for i D p ! i is a Dirichlet node
:

Remark 1 (Matrix Supremum Notational Convention). In the following, we will
denote

sup
Q2 OQ

n�
AnC1.Q/V nC1 CDnC1.Q/

�
i

o

by
AnC1.QnC1/V nC1 CDnC1.QnC1/;

where the optimal control at time level nC 1 for node i is

QnC1
i 2 arg sup

Q2 OQ

n�
AnC1.Q/V nC1 CDnC1.Q/

�
i

o
:
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If the local objective function is a continuous function of Q, then the supremum is
simply the maximum value (since OQ is compact), and QnC1 is the point where a
maximum is reached. Alternatively, if the local objective function is discontinuous,
AnC1.QnC1/ is interpreted as the appropriate limiting value of ŒAnC1.Q/	i which
generates the supremum at the limit point QnC1. An example of an algorithm
for computing this limit point is given in Wang and Forsyth (2007) for the case
of maximizing the usage of central weighting. Note that QnC1 is not necessarily
unique.

The discrete equations (18.40) can be written as

�
I ��AnC1.QnC1/

�
V nC1 D V n C�DnC1.QnC1/C .F nC1 � F n/; (18.42)

where
QnC1
i 2 arg sup

Q2 OQ

n�
AnC1.Q/V nC1 CDnC1.Q/

�
i

o
:

For convenience, define

.�/max D max
n
.nC1 � n/ and .�/min D min

n
.nC1 � n/;

where we assume that there are mesh size/time step parameters hmin; hmax such that

.�S/max D C1hmax; .�/max D C2hmax;

.�S/min D C3hmin; .�/min D C4hmin;

with C1; C2; C3; C4 being positive constants independent of h.
We can then write the discrete equations (18.40) or (18.42) at each node in the

form
GnC1
i .hmax; V

nC1
i ; V nC1

iC1 ; V
nC1
i�1 ; V

n
i ; V

n
iC1; V n

i�1/ D 0;

where

GnC1
i � V nC1

i � V n
i

�
� sup
QnC12 OQ

n�
AnC1.QnC1/V nC1 CDnC1.QnC1/

�

i

o

� F nC1
i � F n

i

�
: (18.43)

For notational brevity, we shall occasionally write

GnC1
i .hmax; V

nC1
i ; fV nC1

j gj¤i ; V n
i / � GnC1

i .hmax; V
nC1
i ; V nC1

iC1 ; V
nC1
i�1 ; V

n
i /;

(18.44)

where fV nC1
j gj¤i is the set of values V nC1

j , for j D 1; : : : ; p, with j ¤ i .
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18.6 Convergence to the Viscosity Solution

In Pooley et al. (2003), examples were given in which seemingly reasonable
discretizations of nonlinear option pricing PDEs were either unstable or converged
to the incorrect solution. It is important to ensure that we can generate discretizations
which are guaranteed to converge to the viscosity solution (Barles 1997; Crandall
et al. 1992). Assuming that (18.37) satisfies the strong comparison property (Barles
and Burdeau 1995; Barles and Rouy 1998; Chaumont 2004), then, from Barles
and Souganidis (1991) and Barles (1997), a numerical scheme converges to the
viscosity solution if the method is (1) consistent, (2) stable (in the l1 norm), and
(3) monotone. To be precise, we define these terms.

Definition 1 (Stability). Discretization (18.43) is stable if

kV nC1k1 � C5;

for 0 � n � N , T D N� , for .�/min ! 0, .�S/min ! 0, where C5 is
independent of .�/min; .�S/min.

Lemma 1 (Stability). If the discretization (18.43) satisfies the positive coefficient
condition (18.39), then the scheme is l1 stable.

Proof. This is easily shown using a maximum analysis as in Forsyth and Labahn
(2008). ut

For ease of exposition, we consider the simple case where we restrict attention
to interior nodes. This allows us to use the following definition of consistency.

Definition 2 (Consistency). Let � denote any smooth function with �ni D
�.Si ; 

n/, and let

˚ D
 
� � sup

Q2 OQ
fLQ� C d g

!nC1

i

�GnC1
i

�
hmax; �

nC1
i ; �nC1

iC1 ; �
nC1
i�1 ; �

n
i ; �

n
iC1; �ni�1

�
:

Scheme (18.43) is consistent if

lim
hmax!0

j˚ j D 0: (18.45)

Remark 2. For the general case where the HJB PDE degenerates at the boundary, a
more complicated definition of consistency is required in order to handle boundary
data (Barles 1997). We refer the reader to Barles (1997) for this definition, and to
Chen and Forsyth (2008) for a specific application of this more complex definition.

Remark 3. Note that Definition 2 is given in terms of smooth test functions �, and
does not require differentiability of the actual solution.
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Lemma 2 (Consistency). If the discrete equation coefficients are as given in
Appendix A, then the discrete scheme (18.43) is consistent as defined in Definition 2.

Proof. This follows from a Taylor series argument. ut
Definition 3 (Monotonicity). The discrete scheme (18.43) is monotone if for all
�lj 	 0 and i

GnC1
i

�
hmax; V

nC1
i ; fV nC1

j C �nC1
j gj¤i ; fV n

j C �nj g
�

� GnC1
i

�
hmax; V

nC1
i ; fV nC1

j gj¤i ; fV n
j g
�
: (18.46)

Lemma 3 (Monotonicity). If the discretization (18.43) satisfies the positive coeffi-
cient condition (18.39), then it is monotone as defined in Definition 3.

Proof. We write (18.43) out in component form (at the interior nodes so thatFi D 0)

GnC1
i

�
h; V nC1

i ; V nC1
iC1 ; V

nC1
i�1 ; V

n
i

�

D V nC1
i � V n

i

�
C inf

QnC12 OQ

n�
˛nC1
i .Q/C ˇnC1

i .Q/C cnC1
i .Q/

�
V nC1
i

�˛nC1
i .Q/V nC1

i�1 � ˇnC1
i .Q/V nC1

iC1 � dnC1
i .Q/

o
: (18.47)

Note that, given two functionsX.x/; Y.x/,

inf
x
X.x/ � inf

y
Y.y/ � sup

x

.X.x/ � Y.x//:

Then, for � 	 0, we have

GnC1
i

�
h; V nC1

i ; V nC1
iC1 C �; V nC1

i�1 ; V
n
i

� �GnC1
i

�
h; V nC1

i ; V nC1
iC1 ; V

nC1
i�1 ; V

n
i

�

D inf
Q2 OQ

n�
˛nC1
i .Q/C ˇnC1

i .Q/C cnC1
i .Q/

�
V nC1
i

� ˛nC1
i .Q/V nC1

i�1 � ˇnC1
i .Q/V nC1

iC1 � ˇnC1
i .Q/� � dnC1

i .Q/
o

� inf
Q�2 OQ

n�
˛nC1
i .Q�/C ˇnC1

i .Q�/C cnC1
i .Q�/

�
V nC1
i

� ˛nC1
i .Q�/V nC1

i�1 � ˇnC1
i .Q�/V nC1

iC1 � dnC1
i .Q�/

o

� sup
Q2 OQ

n
�ˇnC1

i .Q/�
o

D �� inf
Q2 OQ

n
ˇnC1
i .Q/

o
� 0:

(18.48)

This follows from the fact that ˇnC1
i .Q/ 	 0. Similarly,
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GnC1
i

�
h; V nC1

i ; V nC1
iC1 ; V

nC1
i�1 C �; V n

i

� �GnC1
i

�
h; V nC1

i ; V nC1
iC1 ; V

nC1
i�1 ; V

n
i

� � 0:

(18.49)
Finally, it is obvious from (18.47) that

GnC1
i

�
h; V nC1

i ; V nC1
iC1 ; V

nC1
i�1 ; V

n
i C �

� �GnC1
i

�
h; V nC1

i ; V nC1
iC1 ; V

nC1
i�1 ; V

n
i

� � 0;

(18.50)
concluding the proof. ut
Theorem 2 (Convergence to the Viscosity Solution). Provided that the original
HJB PDE satisfies the strong comparison property, and discretization (18.42)
satisfies all the conditions required for Lemmas 1–3, then scheme (18.42) converges
to the viscosity solution of (18.37).

Proof. This follows directly from the results in Barles and Souganidis (1991) and
Barles (1997). ut

18.7 Solution of the Nonlinear Discretized Equations

Note that an implicit time stepping method requires the solution of highly nonlinear
algebraic equations at each time step. We use a Newton-like form of policy iteration
to solve the discrete equations:

Policy Iteration

Let .V nC1/0 D V n

Let OV k D .V nC1/k

For k D 0; 1; 2; : : : until convergence

Solve
�
I � .1 � �/�AnC1.Qk/

� OV kC1 D
ŒI C ��An.Qn/	 V n C .F nC1 � F n/

C .1 � �/�DnC1.Qk/C ��Dn

Qk
i 2 arg sup

Q2 OQ

nh
AnC1.Q/ OV k CDnC1.Q/

i

i

o

If k > 0 and
0

@max
i

ˇ̌
ˇ OV kC1
i � OV k

i

ˇ̌
ˇ

max
�

scale;
ˇ̌
ˇ OV kC1
i

ˇ̌
ˇ
� < tolerance

1

A

then quit

EndFor

(18.51)
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The term scale in scheme (18.51) is used to preclude unrealistic levels of accuracy
when the value is very small. Typically, scale D 1 for values expressed in dollars.

Theorem 3 (Convergence of the Policy Iteration). Provided that the discretiza-
tion (18.43) satisfies the positive coefficient condition (18.39), then the policy
iteration (18.51) converges to the unique solution of (18.42) for any initial iterate
OV 0. Moreover, the iterates converge monotonically.

Proof. See Forsyth and Labahn (2008). ut
The most fundamental principle of valuation in finance is the absence of arbitrage

(i.e. there are no free lunches). One way of stating this is as follows. Imagine that we
have two contingent claims with the same expiry time that are written on the same
underlying asset, which has a price of S . Denote these two claims by V.S; / and
W.S; /. No-arbitrage implies that if the terminal payoff for V is always at least as
high as that forW , then V must be worth at least as much asW at any time prior to
expiry. More succinctly,

V.S; 0/ 	 W.S; 0/ ) V.S; / 	 W.S; /: (18.52)

Let V n and W n denote discrete solutions to (18.42). We would like to ensure that
these solutions are arbitrage-free, i.e.

V n 	 W n ) V nC1 	 W nC1: (18.53)

It can be shown that this property is satisfied under certain conditions, which we
state in the following theorem:

Theorem 4 (Discrete no-arbitrage principle). Assume that:

(i) Discretization (18.43) satisfies the positive coefficient condition (18.39);
(ii) Fully implicit time stepping is used; and

(iii) Appropriate boundary conditions are imposed at the end-points of the discrete
grid (see Forsyth and Labahn 2008 for details).

Then the discrete no-arbitrage condition (18.53) holds.

Proof. See Forsyth and Labahn (2008). ut

18.8 Numerical Example: Uncertain Volatility

As a simple illustration of the methods outlined above, we will consider the case
of pricing an option contract in an uncertain volatility model, as described in
Avellaneda et al. (1995) and Lyons (1995) and outlined above in Sect. 18.2.1. Recall
that we are interested in valuing an option under the assumption that the volatility
� lies between two bounds, �min and �max, but is otherwise unknown. From the
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standpoint of the option writer, the best case is found by solving (18.2), reproduced
here for convenience:

V D sup
Q2 OQ

(
Q2S2

2
VSS C SVS � rV

)
D 0; (18.54)

with OQ D f�min; �maxg. Of course, from the perspective of the purchaser of the
option, this would represent the worst possible case. Conversely, the worst case for
the writer (found by replacing the sup by an inf in the equation above) corresponds
to the best situation for the purchaser. At first glance this problem might appear to
be trivial, since option values are increasing in volatility. However, while this is the
case for a plain vanilla European option, it is not true in general provided that the
option “gamma” VSS can change sign. This can happen, for example, in the case
of barrier options. Consider the case of an up-and-out call option, which is just like
a regular call option unless the underlying asset price S moves above some barrier
H during the contract’s life, in which case the payoff becomes zero. The gamma of
this contract can be positive for some values of S and negative for others, as noted,
for example, in Derman and Kani (1996).

Another example arises in the context of a portfolio of plain vanilla European
options, and it is this case that we will consider here. Note that this highlights
the nonlinear nature of the problem, in that the problem is trivial for each of the
options in the portfolio, but not for the linear combination that forms the portfolio.
Suppose that an investor purchases a butterfly spread from a financial institution.
This involves taking a long position in a low strike (K1) option, a short position in
two middle strike (K2) options, and a long position in a high strike (K3) option,
all with identical maturities. Assume that the strikes are evenly spaced, and that all
options are calls. Our test case uses the input parameters provided in Table 18.1.

The payoff function at maturity is plotted in Fig. 18.3. The sharp peak around the
middle strike K2 D 100 will generate rapid changes with S in the solution value as
we solve over time. This can be expected to cause problems with numerical methods
unless we are careful.

Our numerical experiment uses a discrete grid ranging from Smin D 0 to Smax D
500. The coarsest grid has 94 unevenly spaced nodes (a finer spacing is placed near
the strikes), and uses 100 (constant-sized) time steps. Successive grid refinements

Table 18.1 Input parameters for test case

Parameter Value

r 0.04
T 0.5
K1 95
K2 100
K3 105
�min 0.30
�max 0.45
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Fig. 18.3 Payoff function for butterfly spread

involve doubling the number of time steps and inserting new grid points midway
between previously existing nodes.

We begin by considering the results for the best case for a long position with
fully implicit time stepping. Results are provided in Table 18.2. In this table, the
column labelled “Change” is the difference in the computed solution from the
previous grid refinement level, and the column labelled “Ratio” is the change for
the current refinement level divided by that for the previous level. Values of “Ratio”
around two indicate approximate first order convergence. Approximate second order
convergence would be shown by values of “Ratio” of about four. As can be seen
from the table, fully implicit time stepping leads asymptotically to approximate first
order convergence. The last two columns of the table show the total number of
nonlinear iterations taken during the solution, and the average number of nonlinear
iterations per time step. For this particular case, about two iterations are required for
each time step.

Table 18.3 repeats the analysis, but for the worst case for a long position. Clearly,
the value at S D 100 is much lower, but we again see that the algorithm exhibits
approximate linear convergence and that around two iterations are needed per time
step. Figure 18.4 plots the solution profile obtained for the best and worst cases for
a long position using fully implicit time steps.

Tables 18.4 and 18.5 document the serious problems which can occur when
we use numerical methods which are not guaranteed to converge to the viscosity
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Table 18.2 Best case for long position, fully implicit time stepping

Refinement Grid Time Value at Total Iterations
level nodes steps S D 100 Change Ratio iterations per step

0 94 100 0.792639 227 2.27
1 187 200 0.796737 0.004098 450 2.25
2 373 400 0.798984 0.002247 1.82 871 2.18
3 745 800 0.800263 0.001279 1.76 1,689 2.11
4 1,489 1,600 0.800957 0.000694 1.84 3,260 2.04
5 2,977 3,200 0.801322 0.000365 1.90 6,445 2.01
6 5,953 6,400 0.801511 0.000189 1.93 12,802 2.00

Table 18.3 Worst case for long position, fully implicit time stepping

Refinement Grid Time Value at Total Iterations
level nodes steps S D 100 Change Ratio iterations per step

0 94 100 0.130726 227 2.27
1 187 200 0.128638 �0.002088 443 2.22
2 373 400 0.127363 �0.001275 1.64 870 2.18
3 745 800 0.126643 �0.000720 1.77 1,685 2.11
4 1,489 1,600 0.126257 �0.000386 1.87 3,297 2.06
5 2,977 3,200 0.126056 �0.000201 1.92 6,488 2.03
6 5,953 6,400 0.125954 �0.000102 1.97 12,844 2.01

solution and are not necessarily arbitrage-free. The only difference here compared
to Tables 18.2 and 18.3 is the switch from fully implicit time stepping to Crank–
Nicolson. The key results from Table 18.4 are as follows. Although Crank–Nicolson
is in theory second order accurate in time, the convergence rate here is actually less
than first order. More importantly, the scheme is converging to a different answer
than that obtained in Table 18.2. Since the fully implicit scheme used in Table 18.2
is guaranteed to converge to the viscosity solution, the implication here is that the
Crank–Nicolson approach is converging to some other (i.e. non-viscosity) solution.
Comparing Tables 18.2 and 18.3, we can also see that the Crank–Nicolson approach
requires more than twice as many nonlinear iterations.

The same general conclusions apply to Table 18.5: the Crank–Nicolson scheme
converges at a rate which is slower than first order, it requires more than twice
as many iterations than does the fully implicit approach, and it is converging to
an answer which is not the viscosity solution. In fact, the Crank–Nicolson method
converges here to a negative value. This represents an obvious arbitrage opportunity
and is clearly an absurd result. Cases like this are in a sense reassuring, since it is
obvious that the answer makes no sense. From this perspective, the Crank–Nicolson
results for the best case long position are possibly of greater concern. Without
calculating the correct answer via the fully implicit approach, it is not immediately
clear that the Crank–Nicolson answer is incorrect. Figure 18.5 plots the solution
profile obtained for the best and worst cases for a long position using the Crank–
Nicolson scheme.
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Fig. 18.4 Value of butterfly spread with uncertain volatility. Fully implicit time stepping, long
position

Table 18.4 Best case for long position, Crank–Nicolson time stepping

Refinement Grid Time Value at Total Iterations
level nodes steps S D 100 Change Ratio iterations per step

0 94 100 4.410778 428 4.28
1 187 200 4.571876 0.161098 897 4.49
2 373 400 4.687534 0.115658 1.39 1,780 4.45
3 745 800 4.765390 0.077856 1.49 3,539 4.42
4 1,489 1,600 4.816438 0.051048 1.53 7,161 4.48
5 2,977 3,200 4.849302 0.032864 1.55 13,995 4.37
6 5,953 6,400 4.870269 0.020967 1.57 27,529 4.30

In addition to calculating the value of the position, we are often interested in
hedging parameters such as delta and gamma. Figures 18.6 and 18.7 plot the delta
and gamma respectively for the best case for a long position with fully implicit time
steps. The corresponding plots for the Crank–Nicolson case for delta and gamma
are given in Figs. 18.8 and 18.9 respectively. Comparing Figs. 18.6 and 18.8, we see
that the plot for delta is much smoother for the fully implicit case (in addition to
being far smaller in magnitude). In fact, there appears to be a discontinuity in the
delta at S D 100 for the Crank–Nicolson case. Figure 18.7 shows a smooth profile
for the option gamma using fully implicit time steps. On the other hand, Fig. 18.9
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Table 18.5 Worst case for long position, Crank–Nicolson time stepping

Refinement Grid Time Value at Total Iterations
level nodes steps S D 100 Change Ratio iterations per step

0 94 100 �6.178730 457 4.57
1 187 200 �6.399983 �0.221253 926 4.63
2 373 400 �6.545795 �0.145812 1.52 1,901 4.75
3 745 800 �6.643648 �0.097853 1.49 3,815 4.77
4 1,489 1,600 �6.709119 �0.065471 1.49 7,341 4.59
5 2,977 3,200 �6.751707 �0.042588 1.54 14,379 4.49
6 5,953 6,400 �6.778385 �0.026678 1.60 28,317 4.42
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Fig. 18.5 Value of butterfly spread with uncertain volatility. Crank–Nicolson time stepping, long
position

shows severe oscillations around values of S D 100. Taken collectively, these plots
again provide a strong warning against the naı̈ve use of Crank–Nicolson methods
in that the calculation of important hedging parameters is prone to serious errors.
This is not surprising – if the solution itself is not accurate, we should expect the
estimates of its derivatives to be even worse.
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Fig. 18.6 Delta of butterfly spread with uncertain volatility. Fully implicit time stepping, long
position, best case
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Fig. 18.7 Gamma of butterfly spread with uncertain volatility. Fully implicit time stepping, long
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Fig. 18.8 Delta of butterfly spread with uncertain volatility. Crank–Nicolson time stepping, long
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Fig. 18.9 Gamma of butterfly spread with uncertain volatility. Crank–Nicolson time stepping,
long position, best case

18.9 Conclusions

Many problems of practical interest in finance can be cast as stochastic optimal
control problems. These problems are generally nonlinear and require numerical
solution. This article has described some of these problems, along with a general
approach that can be taken to solve them numerically. This approach stresses
the importance of using a positive coefficient discretization and fully implicit
time stepping. This guarantees convergence to the viscosity solution, and has
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the important feature that the discrete solutions are arbitrage-free. Apparently
reasonable discretizations such as Crank–Nicolson methods are not guaranteed to
converge to the viscosity solution, nor can we be sure that they do not lead to
free lunches. Moreover, the use of such methods can lead to serious errors in the
estimation of hedging parameters.

Appendix A: Discrete Equation Coefficients

Let Qn
i denote the optimal control at node i and time level n, and set

anC1
i D a.Si ; 

n;Qn
i /; bnC1

i D b.Si ; 
n;Qn

i /; cnC1
i D c.Si ; 

n;Qn
i /:

(18.55)
Then we can use central, forward or backward differencing at any node. For central
differencing:

˛ni;central D
�

2ani
.Si � Si�1/.SiC1 � Si�1/ � bni

SiC1 � Si�1

	

ˇni;central D
�

2ani
.SiC1 � Si/.SiC1 � Si�1/

C bni
SiC1 � Si�1

	
: (18.56)

For forward/backward differencing: (bni > 0/bni < 0)

˛ni;forward/backward D
�

2ani
.Si � Si�1/.SiC1 � Si�1/

C max



0;

�bni
Si � Si�1

�	

ˇni;forward/backward D
�

2ani
.SiC1 � Si /.SiC1 � Si�1/ C max



0;

bni
SiC1 � Si

�	
:

(18.57)
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Chapter 19
Numerical Solution of Stochastic Differential
Equations in Finance

Timothy Sauer

Abstract This chapter is an introduction and survey of numerical solution methods
for stochastic differential equations. The solutions will be continuous stochastic
processes that represent diffusive dynamics, a common modeling assumption for
financial systems. We include a review of fundamental concepts, a description
of elementary numerical methods and the concepts of convergence and order for
stochastic differential equation solvers.

In the remainder of the chapter we describe applications of SDE solvers to
Monte-Carlo sampling for financial pricing of derivatives. Monte-Carlo simulation
can be computationally inefficient in its basic form, and so we explore some
common methods for fostering efficiency by variance reduction and the use of quasi-
random numbers. In addition, we briefly discuss the extension of SDE solvers to
coupled systems driven by correlated noise, which is applicable to multiple asset
markets.

19.1 Stochastic Differential Equations

Stochastic differential equations (SDEs) have become standard models for financial
quantities such as asset prices, interest rates, and their derivatives. Unlike determin-
istic models such as ordinary differential equations, which have a unique solution
for each appropriate initial condition, SDEs have solutions that are continuous-
time stochastic processes. Methods for the computational solution of stochastic
differential equations are based on similar techniques for ordinary differential
equations, but generalized to provide support for stochastic dynamics.
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We will begin with a quick survey of the most fundamental concepts from
stochastic calculus that are needed to proceed with our description of numerical
methods. For full details, the reader may consult Klebaner (1998), Oksendal (1998)
and Steele (2001).

A set of random variables Xt indexed by real numbers t 	 0 is called a
continuous-time stochastic process. Each instance, or realization of the stochastic
process is a choice from the random variable Xt for each t , and is therefore a
function of t .

Any (deterministic) function f .t/ can be trivially considered as a stochastic
process, with variance V.f .t// D 0. An archetypal example that is ubiquitous in
models from physics, chemistry, and finance is the Wiener processWt , a continuous-
time stochastic process with the following three properties:

Property 1. For each t , the random variable Wt is normally distributed with mean 0
and variance t .

Property 2. For each t1 < t2, the normal random variable Wt2 �Wt1 is independent
of the random variableWt1 , and in fact independent of all Wt ; 0 � t � t1.

Property 3. The Wiener process Wt can be represented by continuous paths.

The Wiener process, named after Norbert Wiener, is a mathematical construct
that formalizes random behavior characterized by the botanist Robert Brown in
1827, commonly called Brownian motion. It can be rigorously defined as the scaling
limit of random walks as the step size and time interval between steps both go to
zero. Brownian motion is crucial in the modeling of stochastic processes since it
represents the integral of idealized noise that is independent of frequency, called
white noise. Often, the Wiener process is called upon to represent random, external
influences on an otherwise deterministic system, or more generally, dynamics that
for a variety of reasons cannot be deterministically modeled.

A typical diffusion process in finance is modeled as a differential equation
involving deterministic, or drift terms, and stochastic, or diffusion terms, the latter
represented by a Wiener process, as in the equation

dX D a.t; X/ dt C b.t; X/ dW t (19.1)

Notice that the SDE (19.1) is given in differential form, unlike the derivative form
of an ODE. That is because many interesting stochastic processes, like Brownian
motion, are continuous but not differentiable. Therefore the meaning of the SDE
(19.1) is, by definition, the integral equation

X.t/ D X.0/C
Z t

0

a.s; y/ ds C
Z t

0

b.s; y/ dWs ;

where the meaning of the last integral, called an Ito integral, will be defined next.
Let c D t0 < t1 < : : : < tn�1 < tn D d be a grid of points on the interval Œc; d 	.

The Riemann integral is defined as a limit
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Z d

c

f .x/ dx D lim
�t!0

nX

iD1
f .t 0i /�ti ;

where�ti D ti � ti�1 and ti�1 � t 0i � ti . Similarly, the Ito integral is the limit

Z d

c

f .t/ dWt D lim
�t!0

nX

iD1
f .ti�1/�Wi

where �Wi D Wti � Wti�1 , a step of Brownian motion across the interval. Note a
major difference: while the t 0i in the Riemann integral may be chosen at any point
in the interval .ti�1; ti /, the corresponding point for the Ito integral is required to be
the left endpoint of that interval.

Because f andWt are random variables, so is the Ito integral I D R d
c
f .t/ dW t .

The differential dI is a notational convenience; thus

I D
Z d

c

f dWt

is expressed in differential form as

dI D f dW t :

The differential dW t of Brownian motionWt is called white noise. A typical solution
is a combination of drift and the diffusion of Brownian motion.

To solve SDEs analytically, we need to introduce the chain rule for stochastic
differentials, called the Ito formula:
If Y D f .t; X/, then

dY D @f

@t
.t; X/ dt C @f

@x
.t; X/ dx C 1

2

@2f

@x2
.t; X/ dx dx (19.2)

where the dx dx term is interpreted by using the identities

dt dt D 0

dt dWt D dWt dt D 0

dW t dWt D dt (19.3)

The Ito formula is the stochastic analogue to the chain rule of conventional
calculus. Although it is expressed in differential form for ease of understanding,
its meaning is precisely the equality of the Ito integral of both sides of the equation.
It is proved under rather weak hypotheses by referring the equation back to the
definition of Ito integral (Oksendal 1998).
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Some of the important features of typical stochastic differential equations can
be illustrated using the following historically-pivotal example from finance, often
called the Black–Scholes diffusion equation:

�
dX D �X dt C �X dW t

X.0/ D X0
(19.4)

with constants � and � . Although the equation is comparatively simple, the fact
that it can be exactly solved led to its central importance, by making a closed-form
formula available for the pricing of simple options (Black and Scholes 1973).

The solution of the Black–Scholes stochastic differential equation is geometric
Brownian motion

X.t/ D X0e
.�� 1

2
�2/tC�Wt : (19.5)

To check this, write X D f .t; Y / D X0e
Y , where Y D .� � 1

2
�2/t C �Wt . By the

Ito formula,
dX D X0e

Y dY C 1
2
eY dY dY

where dY D .� � 1
2
�2/ dt C � dW t . Using the differential identities from the Ito

formula,
dY dY D �2 dt;

and therefore

dX D X0e
Y .r � 1

2
�2/ dt CX0e

Y � dW t C 1
2
�2eY dt

D X0e
Y � dt CX0e

Y � dWt

D �X dt C �X dW t

as claimed.
Figure 19.1 shows a realization of geometric Brownian motion with constant

drift coefficient � and diffusion coefficient � . Similar to the case of ordinary
differential equations, relatively few stochastic differential equations have closed-
form solutions. It is often necessary to use numerical approximation techniques.

19.2 Numerical Methods for SDEs

The simplest effective computational method for the approximation of ordinary
differential equations is Euler’s method (Sauer 2006). The Euler-Maruyama method
(Maruyama 1955) is the analogue of the Euler method for ordinary differential
equations. To develop an approximate solution on the interval Œc; d 	, assign a grid
of points

c D t0 < t1 < t2 < : : : < tn D d:
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Approximate x values
w0 < w1 < w2 < : : : < wn

will be determined at the respective t points. Given the SDE initial value problem

�
dX.t/ D a.t; X/dt C b.t; X/dWt

X.c/ D Xc
(19.6)

we compute the approximate solution as follows:

Euler-Maruyama Method

w0 D X0

wiC1 D wi C a.ti ;wi /�tiC1 C b.ti ;wi /�WiC1 (19.7)

where

�tiC1 D tiC1 � ti

�WiC1 D W.tiC1/�W.ti /: (19.8)

The crucial question is how to model the Brownian motion �Wi . Define N.0; 1/
to be the standard random variable that is normally distributed with mean 0 and
standard deviation 1. Each random number�Wi is computed as

�Wi D zi
p
�ti (19.9)

where zi is chosen from N.0; 1/. Note the departure from the deterministic
ordinary differential equation case. Each set of fw0; : : : ;wng produced by the Euler-
Maruyama method is an approximate realization of the solution stochastic process
X.t/ which depends on the random numbers zi that were chosen. Since Wt is a
stochastic process, each realization will be different and so will our approximations.

As a first example, we show how to apply the Euler-Maruyama method to the
Black–Scholes SDE (19.4). The Euler-Maruyama equations (19.7) have form

w0 D X0 (19.10)

wiC1 D wi C �wi�ti C �wi�Wi :

We will use the drift coefficient � D 0:75 and diffusion coefficient � D 0:30,
which are values inferred from the series of market close share prices of Google, Inc.
(NYSE ticker symbol GOOG) during the 250 trading days in 2009. To calculate the
values� and �2, the mean and variance, respectively, of the daily stock price returns
were converted to an annual basis, assuming independence of the daily returns.

An exact realization, generated from the solution (19.5), along with the
corresponding Euler-Maruyama approximation, are shown in Fig. 19.1. By



534 T. Sauer

0 1time (years)
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600
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Fig. 19.1 Solution to the Black–Scholes stochastic differential equation (19.4). The exact solution
(19.5) is plotted as a black curve. The Euler-Maruyama approximation with time step �t D 0:2

is plotted as circles. The drift and diffusion parameters are set to � D 0:75 and � D 0:30,
respectively. Shown in grey is the actual stock price series, from which � and � were inferred

corresponding, we mean that the approximation used the same Brownian motion
realization as the true solution. Note the close agreement between the solution and
the approximating points, plotted as small circles every 0:2 time units. In addition,
the original time series of Google share prices is shown for comparison. Both the
original time series (grey curve) and the simulation from (19.5) (black curve) should
be considered as realizations from the same diffusion process, with identical �; �
and initial price X0 D 307:65.

As another example, consider the Langevin equation

dX.t/ D ��X.t/ dt C � dW t (19.11)

where � and � are positive constants. In this case, it is not possible to analytically
derive the solution to this equation in terms of simple processes. The solution of the
Langevin equation is a stochastic process called the Ornstein-Uhlenbeck process.
Figure 19.2 shows one realization of the approximate solution. It was generated
from an Euler-Maruyama approximation, using the steps

w0 D X0 (19.12)

wiC1 D wi � �wi�ti C ��Wi

for i D 1; : : : ; n. This stochastic differential equation is used to model systems that
tend to revert to a particular state, in this case the state X D 0, in the presence of a
noisy background. Interest-rate models, in particular, often contain mean-reversion
assumptions.
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Fig. 19.2 Solution to Langevin equation (19.11). The upper path is the solution approximation
for parameters � D 10; � D 1, computed by the Euler-Maruyama method

19.3 Strong Convergence of SDE Solvers

The definition of convergence is similar to the concept for ordinary differential
equation solvers, aside from the differences caused by the fact that a solution to an
SDE is a stochastic process, and each computed trajectory is only one realization
of that process. Each computed solution path w.t/, using Euler-Maruyama for
example, gives a random value at T , so that w.T / is a random variable as well.
The difference between the values at time T , e.T / D X.T / � w.T /, is therefore a
random variable.

A discrete-time approximation is said to converge strongly to the solution X.t/
at time T if

lim
�t!0

EfjX.T / � w�t .T /jg D 0

where w�t is the approximate solution computed with constant stepsize �t , and E
denotes expected value (Platen 1999). For strongly convergent approximations, we
further quantify the rate of convergence by the concept of order. An SDE solver
converges strongly with orderm if the expected value of the error is ofmth order in
the stepsize, i.e. if for any time T ,

EfjX.T / � w�t .T /jg D O..�t/m/

for sufficiently small stepsize �t . This definition generalizes the standard conver-
gence criterion for ordinary differential equations, reducing to the usual definition
when the stochastic part of the equation goes to zero (Higham 2001, Higham and
Kloeden 2005).

Although the Euler method for ordinary differential equations has order 1, the
strong order for the Euler-Maruyama method for stochastic differential equations
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is 1=2. This fact was proved in Gikhman and Skorokhod (1972), under appropriate
conditions on the functions a and b in (19.6).

In order to build a strong order 1method for SDEs, another term in the “stochastic
Taylor series” must be added to the method. Consider the stochastic differential
equation �

dX.t/ D a.X; t/dt C b.X; t/dWt

X.0/ D X0:
(19.13)

Milstein Method

w0 D X0

wiC1 D wi C a.wi ; ti /�ti C b.wi ; ti /�Wi

C 1

2
b.wi ; ti /

@b

@x
.wi ; ti /.�W

2
i ��ti / (19.14)

The Milstein Method has order one (Milstein 1985, 1995, 1997, 2004, 2005).
Note that the Milstein Method is identical to the Euler-Maruyama Method if there
is no X term in the diffusion part b.X; t/ of the equation. In case there is, Milstein
will in general converge to the correct stochastic solution process more quickly than
Euler-Maruyama as the step size �ti goes to zero.

For comparison of the Euler-Maruyama and Milstein methods, we apply them to
the Black–Scholes stochastic differential equation

dX D �X dt C �X dW t : (19.15)

We discussed the Euler-Maruyama approximation above. The Milstein Method
becomes

w0 D X0 (19.16)

wiC1 D wi C �wi�ti C �wi�Wi C 1
2
�.�W 2

i ��ti/

Applying the Euler-Maruyama Method and the Milstein Method with decreasing
stepsizes �t results in successively improved approximations, as Table 19.1 shows:

The two columns represent the average, over 100 realizations, of the error
jw.T / � X.T /j at T D 8. The orders 1=2 for Euler-Maruyama and 1 for Milstein
are clearly visible in the table. Cutting the stepsize by a factor of 4 is required to
reduce the error by a factor of 2 with the Euler-Maruyama method. For the Milstein
method, cutting the stepsize by a factor of 2 achieves the same result. The data in
the table is plotted on a log-log scale in Fig. 19.3.

The Milstein method is a Taylor method, meaning that it is derived from a
truncation of the stochastic Taylor expansion of the solution. This is in many cases
a disadvantage, since the partial derivative appears in the approximation method,
and must be provided explicitly by the user. This is analogous to Taylor methods for
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Table 19.1 Average error at
T D 8 of approximate
solutions of (19.4). The error
scales as �t1=2 for
Euler-Maruyama and �t for
Milstein

�t Euler-Maruyama Milstein

2�1 0.169369 0.063864
2�2 0.136665 0.035890
2�3 0.086185 0.017960
2�4 0.060615 0.008360
2�5 0.048823 0.004158
2�6 0.035690 0.002058
2�7 0.024277 0.000981
2�8 0.016399 0.000471
2�9 0.011897 0.000242
2�10 0.007913 0.000122

100

10–1

10–2

10–3

10–4

10–4 10–2 100

stepsize  t

m
ea

n 
er
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Fig. 19.3 Error in the Euler-Maruyama and Milstein methods. Solution paths are computed for
the geometric Brownian motion equation (19.15) and are compared to the correct X.T / given
by (19.5). The absolute difference is plotted versus stepsize h for the two different methods. The
Euler-Maruyama errors are plotted as circles and the Milstein error as squares. Note the slopes 1=2
and 1, respectively, on the log-log plot

solving ordinary differential equations, which are seldom used in practice for that
reason. To counter this problem, Runge–Kutta methods were developed for ODEs,
which trade these extra partial derivatives in the Taylor expansion for extra function
evaluations from the underlying equation.

In the stochastic differential equation context, the same trade can be made with
the Milstein method, resulting in a strong order 1 method that requires evaluation of
b.X/ at two places on each step. A heuristic derivation can be carried out by making
the replacement

bx.wi / � b.wi C b.wi /
p
�ti/ � b.wi /

b.wi /
p
�ti

in the Milstein formula (19.14), which leads to the following method (Rumelin
1982):
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Strong Order 1.0 Runge–Kutta Method

w0 D X0

wiC1 D wi C a.wi /�ti C b.wi /�Wi

C 1

2
Œb.wi C b.wi /

p
�ti /� b.wi /	.�W

2
i ��ti /=

p
�ti

The orders of the methods introduced here for SDEs, 1=2 for Euler-Maruyama
and 1 for Milstein and the Runge–Kutta counterpart, would be considered low by
ODE standards. Higher-order methods can be developed for SDEs, but become
much more complicated as the order grows (Saito and Mitsui 1996, Burrage et al.
2000, Burrage et al. 2004, Higham et al. 2002). As an example, consider the strong
order 1:5 scheme for the SDE (19.13) proposed in Platen and Wagner (1982):

Strong Order 1.5 Taylor Method

w0 D X0

wiC1 D wi C a�ti C b�Wi C 1

2
bbx

�
�W 2

i ��ti
�

C ay��Zi C 1

2



aax C 1

2
b2axx

�
�t2i

C



abx C 1

2
b2bxx

�
.�Wi�ti ��Zi/

C 1

2
b
�
bbxx C b2x

� 
1
3
�W 2

i ��ti
�
�Wi (19.17)

where partial derivatives are denoted by subscripts, and where the additional random
variable �Zi is normally distributed with mean 0, variance E.�Z2

i / D 1
3
�t3i and

correlated with �Wi with covariance E.�Zi�Wi/ D 1
2
�t2i . Note that �Zi can be

generated as

�Zi D 1
2
�ti .�Wi C�Vi=

p
3/

where�Vi is chosen independently from
p
�tiN.0; 1/.

Whether higher-order methods are needed in a given application depends on
how the resulting approximate solutions are to be used. In the ordinary differential
equation case, the usual assumption is that the initial condition and the equation
are known with accuracy. Then it makes sense to calculate the solution as closely
as possible to the same accuracy, and higher-order methods are called for. In the
context of stochastic differential equations, in particular if the initial conditions are
chosen from a probability distribution, the advantages of higher-order solvers are
often less compelling, and if they come with added computational expense, may not
be warranted.
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19.4 Weak Convergence of SDE Solvers

Strong convergence allows accurate approximations to be computed on an individ-
ual realization basis. For some applications, such detailed pathwise information is
required. In other cases, the goal is to ascertain the probability distribution of the
solution X.T /, and single realizations are not of primary interest.

Weak solvers seek to fill this need. They can be simpler than corresponding
strong methods, since their goal is to replicate the probability distribution only. The
following additional definition is useful.

A discrete-time approximation w�t with step-size �t is said to converge weakly
to the solution X.T / if

lim
�t!0

Eff .w�t .T //g D Eff .X.T //g

for all polynomials f .x/. According to this definition, all moments converge as
�t ! 0. If the stochastic part of the equation is zero and the initial value is
deterministic, the definition agrees with the strong convergence definition, and the
usual ordinary differential equation definition.

Weakly convergent methods can also be assigned an order of convergence. We
say that a the solver converges weakly with orderm if the error in the moments is of
mth order in the stepsize, or

jEff .X.T //g � Eff .w�t .T //gj D O..�t/m/

for sufficiently small stepsize �t .
In general, the rates of weak and strong convergence do not agree. Unlike the case

of ordinary differential equations, where the Euler method has order 1, the Euler-
Maruyama method for SDEs has strong orderm D 1=2. However, Euler-Maruyama
is guaranteed to converge weakly with order 1.

Higher order weak methods can be much simpler than corresponding strong
methods, and are available in several different forms. The most direct approach
is to exploit the Ito-Taylor expansion (Kloeden and Platen 1992), the Ito calculus
analogue of the Taylor expansion of deterministic functions. An example SDE
solver that converges weakly with order 2 is the following:

Weak Order 2 Taylor Method

w0 D X0

wiC1 D wi C a�ti C b�Wi C 1
2
bbx.�W

2
i ��ti /

C axb�Zi C 1
2
.aax C 1

2
axxb

2/�t2

C .abx C 1
2
bxxb

2/.�Wi�ti ��Zi/ (19.18)
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where �Wi is chosen from
p
�tiN.0; 1/ and �Zi is distributed as in the above

Strong Order 1.5 Method.
A second approach is to mimic the idea of Runge–Kutta solvers for ordinary

differential equations. These solvers replace the explicit higher derivatives in the
Ito-Taylor solvers with extra function evaluations at interior points of the current
solution interval. Platen (1987) proposed the following weak order 2 solver of
Runge–Kutta type:

Weak Order 2 Runge–Kutta Method

w0 D X0

wiC1 D wi C 1
2
Œa.u/C a.wi /	�ti

C 1

4
Œb.uC/C b.u�/C 2b.wi /	�Wi

C 1

4
Œb.uC/ � b.u�/	.�W 2

i ��t/=
p
�ti (19.19)

where

u D wi C a�ti C b�Wi

uC D wi C a�ti C b
p
�ti

u� D wi C a�ti � b
p
�ti :

Figure 19.4 compares the Euler-Maruyama method, which converges with order
1 in the weak sense, to the Weak Order 2 Runge–Kutta-Type Method. Note the
difference between strong and weak convergence. In the previous Fig. 19.3, which
considers strong convergence, the mean error of the estimate of a point X.T / on
the solution curve was plotted. In Fig. 19.4, on the other hand, the mean error of the
estimate of the expected value EŒX.T /	 is plotted, since we are comparing weak
convergence of the methods. The weak orders are clearly revealed by the log-log
plot.

Several other higher-order weak solvers can be found in Kloeden and Platen
(1992). Weak Taylor methods of any order can be constructed, as well as Runge–
Kutta analogues that reduce or eliminate the derivative calculations (Talay and
Tubaro 1990, Tocino and Ardanuy 2002, Jentzen et al. 2008). In addition, standard
Richardson extrapolation techniques (Sauer 2006) can be used to bootstrap weak
method approximations of a given order to the next order. See (Kloeden and Platen
1992) or (Kloeden et al. 1994) for details.

Weak solvers are often an appropriate choice for financial models, when the
goal is to investigate the probability distribution of an asset price or interest rate,
or when Monte-Carlo sampling is used to price a complicated derivative. In such
cases it is typical to be primarily interested in one of the statistical moments
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Fig. 19.4 The mean error of the estimation of E.X.T // for SDE (19.15). The plot compares the
Euler-Maruyama method (circles) which has weak order 1, and the weak order 2 Runge–Kutta type
method (squares) given in (19.19). Parameter used were X.0/ D 10; T D 1; � D �3; � D 0:2

of a stochastically-defined quantity, and weak methods may be simpler and still
sufficient for the sampling purpose. In the next section we explore some of the
most common ways SDE solvers are used to carry out Monte-Carlo simulations
for derivative pricing.

19.5 Monte-Carlo Sampling of SDE Paths for Option Pricing

As an illustrative example of the use of SDE solvers for option pricing, consider
the European call, whose value at expiration time T is maxfX.T / � K; 0g, where
X.t/ is the price of the underlying stock, K is the strike price (Hull 2002). The no-
arbitrage assumptions of Black–Scholes theory imply that the present value of such
an option is

C.X0; T / D e�rT E.maxfX.T / �K; 0g/ (19.20)

where r is the fixed prevailing interest rate during the time interval Œ0; T 	, and where
the underlying stock price X.t/ satisfies the stochastic differential equation

dX D rX dt C �X dW t :

The value of the call option can be determined by calculating the expected value
(19.20) explicitly. Using the Euler-Maruyama method for following solutions to the
Black–Scholes SDE, the value X.T / at the expiration time T can be determined
for each path, or realization of the stochastic process. For a given n realizations,
the average hmaxfX.T / � K; 0gi can be used as an approximation to the expected
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Fig. 19.5 Option pricing comparison between pseudo-random and quasi-random numbers. Cir-
cles (squares) represent error in Monte-Carlo estimation of European call by following SDE paths
using pseudo-random (quasi-random) numbers to generate increments. Settings were X.0/ D
10;K D 12; r D 0:05; � D 0:5, expiration time T D 0:5. The number of Wiener increments
per trajectory was m D 8

value in (19.20). Carrying this out and comparing with the exact solution from the
Black–Scholes formula

C.X; T / D XN.d1/ � Ke�rT N.d2/ (19.21)

where

d1 D log.X=K/C .r C 1
2
�2/T

�
p
T

; d2 D log.X=K/C .r � 1
2
�2/T

�
p
T

;

yields the errors plotted as circles in Fig. 19.5.
The results above were attained using pseudo-random numbers (Park and Miller

1988, Hellekalek 1998, Marsaglia and Zaman 1991, Marsaglia and Tsang 2000)
to generate the Wiener increments �W in the Euler-Maruyama method. An
improvement in accuracy can be achieved by using quasi-random numbers instead.

By definition, standard normal pseudo-random numbers are created to be
independent and identically-distributed, where the distribution is the standard
normal distribution. For many Monte-Carlo sampling problems, the independence
is not crucial to the computation (Rubinstein 1981, Fishman 1996, Gentle 2003,
Glasserman 2004). If that assumption can be discarded, then there are more efficient
ways to sample, using what are called low-discrepancy sequences. Such quasi-
random sequences are identically-distributed but not independent. Their advantage
is that they are better at self-avoidance than pseudo-random numbers, and by
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essentially reducing redundancy they can deliver Monte-Carlo approximations of
significantly reduced variance with the same number of realizations.

Consider the problem of estimating an expected value like (19.20) by calcu-
lating many realizations. By Property 2 of the Wiener process, the m increments
�W1; : : : ; �Wm of each realization must be independent. Therefore along the
trajectories, independence must be preserved. This is accomplished by using m
different low-discepancy sequences along the trajectory. For example, the base-p
low discrepancy sequences due to Halton (1960) for m different prime numbers p
can be used along the trajectory, while the sequences themselves run across different
realizations.

Figure 19.5 shows a comparison of errors for the Monte-Carlo pricing of the
European call, using this approach to create quasi-random numbers. The low-
discrepancy sequences produce nonindependent uniform random numbers, and
must be run through the Box-Muller method (Box and Muller 1958) to produce
normal quasi-random numbers. The pseudo-random sequences show error propor-
tional to n�0:5, while the quasi-random appear to follow approximately n�0:7.

More sophisticated low-discrepancy sequences, due to Faure, Niederreiter, Xing,
and others, have been developed and can be shown to be more efficient than the
Halton sequences (Niederreiter 1992). The chapter in this volume by Niederreiter
(Niederreiter 2010) describes the state of the art in generating such sequences.

The quasi-random approach can become too cumbersome if the number of steps
m along each SDE trajectory becomes large. As an example, consider a barrier
option, whose value is a function of the entire trajectory. For a down-and-out barrier
call, the payout is canceled if the underlying stock drops belong a certain level
during the life of the option. Therefore, at time T the payoff is max.X.T / � K; 0/

if X.t/ > L for 0 < t < T , and 0 otherwise. For such an option, accurate pricing
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Fig. 19.6 Pricing error for barrier down-and-out call option. Error is proportional to the square
root of the number of Monte-Carlo realizations



544 T. Sauer

is dependent on using a relatively large number of steps m per trajectory. Results of
a Monte-Carlo simulation of this modified call option are shown in Fig. 19.6, where
the error was computed by comparison with the exact price

V.X; T / D C.X; T / �


X

L

�1� 2r

�2

C.L2=X; T /

where C.X; t/ is the standard European call value with strike price K . The
trajectories were generated with Euler-Maruyama approximations with pseudo-
random number increments, where m D 1000 steps were used.

Other approaches to making Monte-Carlo sampling of trajectories more efficient
fall under the umbrella of variance reduction. The idea is to calculate the expected
value more accurately with fewer calls to the random number generator. The concept
of antithetic variates is to follow SDE solutions in pairs, using the Wiener increment
in one solutions and its negative in the other solution at each step. Due to the
symmetry of the Wiener process, the solutions are equally likely. For the same
number of random numbers generated, the standard error is decreased by a factor
of

p
2.

A stronger version of variance reduction in computing averages from SDE
trajectories can be achieved with control variates. We outline one such approach,
known as variance reduction by delta-hedging. In this method the quantity that is
being estimated by Monte-Carlo is replaced with an equivalent quantity of smaller
variance. For example, instead of approximating the expected value of (19.20), the
cash portion of the replicating portfolio of the European call can be targeted, since
it must equal the option price at expiration.

Let C0 be the option value at time t D 0, which is the goal of the calculation. At
the time t D 0, the seller of the option hedges by purchasing� D @C

@X
shares of the

underlying asset. Thus the cash account, valued forward to time T , holds

�
C0 � @C

@X
.t0/Xt0

	
er.T�t0/:

At time step t D t1, the seller needs to hold � D @C
@X
.t1/ shares, so after purchasing

@C
@X
.t1/ � @C

@X
.t0/ shares, the cash account (valued forward) drops by

�
@C

@X
.t1/ � @C

@X
.t0/	Xt1

	
er.T�t1/:

Continuing in this way, the cash account of the replicating portfolio at time T , which
must be CT , equals
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Fig. 19.7 Estimation errors for European call using control variates. Error is proportional to the
square root of the number of Monte-Carlo realizations. Compare absolute levels of error with
Fig. 19.5

C0e
r.T�t0/ �

NX

kD0

�
@C

@X
.tk/ � @C

@X
.tk�1/

	
Xtk e

r.T�tk /

D C0e
r.T�t0/ C

N�1X

kD0

@C

@X
.tk/.XtkC1

� Xtke
r�t /er.T�tkC1/

and so

C0 D e�r.T�t0/
"
CT �

N�1X

kD0

@C

@X
.tk/.XtkC1

� Xtke
r�t /er.T�tkC1/

#

D e�r.T�t0/ ŒCT � cv	

where cv denotes the control variate. Estimating the expected value of this expres-
sion yields fast convergence, as demonstrated in Fig. 19.7. Compared to Fig. 19.5,
the errors in pricing of the European call are lower by an order of magnitude for a
similar number of realizations. However, the calculation of the control variate adds
significantly to the computational load, and depending on the form of the derivative,
may add more overhead than is gained from the reduced variance in some cases.
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19.6 Multifactor Models

Financial derivatives that depend on a variety of factors should be modeled as a
stochastic process that is driven by a multidimensional Wiener process. The various
random factors may be independent, but more realistically, there is often correlation
between the random inputs.

For multifactor Wiener processes .W 1
t ; : : : ;W

k
t /, the generalization of Ito’s

Formula requires that (19.3) is replaced with

dt dt D 0

dt dWi
t D dW i

t dt D 0

dWi
t dWj

t D �ij dt (19.22)

where �ij represents the statistical correlation between W i
t and W j

t . As usual,
correlation � of two random variablesX1 and X2 is defined as

�.X1;X2/ D cov.X1;X2/p
V.X1/

p
V.X2/

:

Note that �.X1;X1/ D 1, and X1 and X2 are uncorrelated if �.X1;X2/ D 0.
To construct discretized correlated Wiener processes for use in SDE solvers, we

begin with a desired correlation matrix

R D

2

64
�11 � � � �1k
:::

:::

�k1 � � � �kk

3

75

that we would like to specify for Wiener processes W 1; : : : ;W k . The matrix R is
symmetric with units on the main diagonal. A straightforward way to create noise
processes with a specified correlation is through the singular value decomposition
(SVD) (see Sauer 2006 for a description). The SVD of R is

R D ��� >

where � is an orthogonal matrix (� �1 D � >), and � is a diagonal matrix with
nonzero entries on the main diagonal.

Begin with k independent, uncorrelated Wiener processesZ1; : : : ; Zk , satisfying
dZidZi D dt; dZidZj D 0 for i ¤ j . Define the column vector dW D ��1=2dZ,
and check that the covariance matrix, and therefore the correlation matrix, of dW is
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dWdW> D ��1=2dZ.��1=2dZ/>

D ��1=2dZdZ>�1=2� >

D ��� >dt D R dt

For example, a two-asset market has correlation matrix

R D
�
1 �

� 1

	
D
�

corr.W 1;W 1/ corr.W 1;W 2/

corr.W 2;W 1/ corr.W 2;W 2/

	
:

Since the SVD of this 2 � 2 correlation matrix is

�
1 �

� 1

	
D
"

1p
2

1p
2

1p
2

� 1p
2

#�
1C � 0

0 1 � �

	" 1p
2

1p
2

1p
2

� 1p
2

#
;

we calculate

dW1 D
p
1C �p
2

dZ1 C
p
1 � �p
2

dZ2

dW2 D
p
1C �p
2

dZ1 �
p
1 � �p
2

dZ2: (19.23)

With a change of variables, the correlation � can be generated alternatively as

dW1 D dZ1

dW2 D � dZ1 C
p
1 � �2 dZ2: (19.24)

As a simple example, we calculate the value of a European spread call using
Monte-Carlo estimation of noise-coupled stochastic differential equations using a
two-factor model. Assume there are two assets X1 and X2 satisfying arbitrage-free
SDE’s of form

dX1 D rX1 dt C �1X1 dW1

dX1 D rX2 dt C �2X3 dW2 (19.25)

where dW1dW2 D � dt, and that the payout at expiration time T is maxfX1.T / �
X2.T / � K; 0g for a strike price K . The Monte-Carlo approach means estimating
the expected value

E.e�rT maxfX1.T / �X2.T / �K; 0g/:
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Fig. 19.8 European spread call value as a function of correlation. The Euler-Maruyama solver
was used with multifactor correlated Wiener processes. The initial values of the underlying assets
were X1.0/ D 10; X2.0/ D 8, the interest rate was r D 0:05, strike price K D 2, and expiration
time T D 0:5

Using either form (19.23) or (19.24) for the coupled Wiener increments in the
Euler-Maruyama paths, the correct price can be calculated. Figure 19.8 shows the
dependence of the price on the two-market correlation �. As can be expected,
the more the assets move in an anticorrelated fashion, the more probable the spread
call will land in the money.

19.7 Summary

Numerical methods for the solution of stochastic differential equations are essential
for the analysis of random phenomena. Strong solvers are necessary when explor-
ing characteristics of systems that depend on trajectory-level properties. Several
approaches exist for strong solvers, in particular Taylor and Runge–Kutta type
methods, although both increase greatly in complication for orders greater than one.
We have restricted our discussion to fixed stepsize methods; consult Romisch and
Winkler (2006) and Lamba et al. (2007) for extensions to adaptive stepsize selection.

In many financial applications, major emphasis is placed on the probability
distribution of solutions, and in particular mean and variance of the distribution.
In such cases, weak solvers may suffice, and have the advantage of comparatively
less computational overhead, which may be crucial in the context of Monte-Carlo
simulation.

Independent of the choice of stochastic differential equation solver, methods of
variance reduction exist that may increase computational efficiency. The replace-
ment of pseudorandom numbers with quasirandom analogues from low-discrepancy
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sequences is applicable as long as statistical independence along trajectories is
maintained. In addition, control variates offer an alternate means of variance
reduction and increases in efficiency in Monte-Carlo simulation of SDE trajectories.
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Chapter 20
Lattice Approach and Implied Trees

Rüdiger U. Seydel

Abstract Lattice methods or tree methods have become standard tools for pricing
many types of options, since they are robust and easy to implement. The basic
method is built on a binomial tree and assumes constant volatility and constant
relative node spacing. The tree grows from the initial spot price, until maturity is
reached. There the payoff is evaluated, and a subsequent backward recursion yields
the value of the option. The resulting discrete-time approach is consistent with the
continuous Black-Scholes model. This basic lattice approach has been extended to
cope with a variable local volatility. Here the lattice nodes are determined based
on market data of European-style options. In this way an “implied tree” is created
matching the volatility smile. This chapter introduces into tree methods.

Lattice methods or tree methods play an important role in option pricing. They
are robust, and relatively easy to implement. The first lattice method for option
pricing is attributed to Cox et al. (1979). It is based on a binomial tree in the .S; t/-
plane, where S denotes the price of the underlying and t is time. The recombining
tree grows from the initial point of the current spot price .S0; 0/, branching
at equidistantly spaced time instances with grid spacing �t , until the maturity
is reached. Following the Black–Scholes model, the original lattice framework
assumes a constant volatility � . This enables a uniform mesh generation with a
constant relative node spacing, and a minimum number of parameters. The discrete-
time approach is consistent with the continuous Black–Scholes model, converging
to the continuous value when the time step �t goes to zero. The resulting binomial
method is widely applicable. This basic version has been extended to handle
payment of dividends, and exotic options.
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As is well-known, the Black–Scholes model endures some shortcomings. One
remedy is to tune the parameter � such that it is not solely calibrated to the process
St , but rather linked to option prices as seen through the eyes of the Black–Scholes
formula. The adjusted parameter is the implied volatility. While this approach
improves the ability to price exotic options under the Black–Scholes model, it is
not fully satisfying because of the smile, which means the variation of � with strike
K and maturity T . In about 1994, Derman and Kani, Dupire, Rubinstein and others
in a series of papers suggested lattice approaches that overcome the assumption of
constant volatility. The new methods cope with a variable local volatility �.S; t/.
The S -values of the lattice nodes are calibrated on market data of European-style
options. In this way a somewhat irregular grid is created, which allows to match the
volatility smile. Resulting trees are called implied trees. The greater flexibility of
the tree goes along with an increased number of parameters.

Today many different variants of lattice methods are in use. This chapter starts
with an introduction into the basic idea of a tree method. Then variants will be
reviewed and discussed, including a basic implied-tree approach.

20.1 Preparations

Figure 20.1 illustrates the geometrical setting, here for a vanilla put. The surface
of the value function V.S; t/ of the option’s price is shown, with the asset S -axis
with strike K , and the time t-axis with maturity T . As solution of the Black–
Scholes partial differential equation, the entire surface V.S; t/ for the rectangular
half strip S > 0, 0 � t � T may be of interest, see Seydel (2009). This half
strip is the domain of the value function. In practice one is often interested in
the one value V.S0; 0/ of an option at the current spot price S0. Then it can be
unnecessarily costly to calculate the surface V.S; t/ for the entire domain to extract
the required information V.S0; 0/. The relatively small task of calculating V.S0; 0/

T

0
K

K

tV

S

Fig. 20.1 Vanilla put option, schematically: the geometry of the value-function surface V .S; t/,
and the main variables. At maturity t D T , the surface equals the payoff, which is redrawn for
t D 0 (dashed)
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Fig. 20.2 The domain of the half strip S > 0, 0 � t � T with T D 1; nodes of a binomial tree
with M D 16 layers of time steps; horizontally: S-axis cut to S � 30, with S0 D 10; vertically:
t -axis

can be comfortably solved using the binomial method. This method is based on a
tree-type grid applying appropriate binary rules at each grid point. The grid is not
predefined but is constructed by the method. For illustration see the grid nodes in
Fig. 20.2.

20.1.1 The Continuous Problem

In this chapter, put or call options are to be valued. For vanilla options, the final
payoff �.ST / at maturity T is

�.ST /
defD
�
.ST �K/C for a call,
.K � ST /

C for a put,
(20.1)

where .f .S//C defD maxff .S/; 0g. For vanilla options there are market prices avail-
able. Market models help to valuate or analyze options. The famous model due to
Black, Merton, and Scholes is a continuous-time model based on the assumption of
a geometrical Brownian motion (GBM) for the asset St

dSt D .�� ı/ St dt C � St dWt (20.2)

where Wt denotes a standard Wiener process. For the scenario of Sects. 20.1, 20.2,
20.3, the growth rate �, the rate ı of a dividend yield, and the volatility � are
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assumed constant. Later (in Sect. 20.4) we shall consider a nonlinear volatility
function �.S; t/. In Sect. 20.1 and Sect. 20.2, for the sake of a simple exposition,
we assume ı D 0.

20.1.2 A Discrete Model

We begin with discretizing the continuous time t , replacing t by equidistant time
instances ti . Let us use the notations

M D number of time steps

�t D T
M

ti D i ��t; i D 0; : : : ;M

Si D S.ti /

(20.3)

So far the domain of the .S; t/ half strip is semidiscretized in that it is replaced by
parallel straight lines with distance �t apart, leading to a discrete-time model. For
later reference, we list expectation and variance of GBM for constant �; � for this
discrete time setting with time step�t . Expectations of the continuous model, under
the risk-free probability with constant risk-free interest rate r , are

E.SiC1/ D Si er�t (20.4)

E.S2iC1/ D S2i e.2rC�2/�t (20.5)

from which the variance follows.
The next step of discretization will replace the continuous values Si along the

line t D ti by discrete values Sj;i , for all i and appropriate j . A tree structure will
emerge, for example, as illustrated by its nodes in Fig. 20.2. The root of the tree is
the current asset price S0 for t D 0. For a binomial tree, the tree will branch into
two branches at each node (Figs. 20.2, 20.3, 20.4). The resulting tree serves a the
grid on which the computation and valuation of an option will be performed.

What is needed now are rules how such a binomial tree should evolve. In the
following Sect. 20.2, we describe the classical tree valuation method introduced by
Cox et al. (1979), see also Rendleman and Bartter (1979), and Hull and White
(1988). We label the binomial tree method with CRR. The CRR tree matches the
Black–Merton–Scholes model. For a more general tree suitable for local volatility
functions, we refer to Sect. 20.4.

20.2 The Basic CRR Binomial Method

For a better understanding of the S -discretization consult Fig. 20.3. This figure
shows a mesh of the CRR grid, namely, the transition from t to t C �t , or from
ti to tiC1.
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Fig. 20.3 The principle setup of the CRR binomial method

20.2.1 Assumptions

We assume (Bi1), (Bi2), and (Bi3) below.

(Bi1) The price S over each period of time �t can only have two possible
outcomes: An initial value S either evolves up to Su or down to Sd with
0 < d < u. Here u is the factor of an upward movement and d is the factor
of a downward movement.

(Bi2) The probability of an up movement is p, P.up/ D p.

The rules (Bi1) and (Bi2) represent the framework of a binomial process. Such a
process behaves like tossing a biased coin where the outcome “head” (up) occurs
with probability p. At this stage of the modeling, the values of the three parameters
u; d and p are undetermined. They are fixed in a way such that the model is
consistent with the continuous model in case �t ! 0. This aim leads to further
assumptions. The basic idea of the approach is to equate the expectation and the
variance of the discrete model with the corresponding values of the continuous
model. This amounts to require

(Bi3) Expectation and variance of S refer to their continuous counterparts, evalu-
ated for the risk-free interest rate r .

This assumption leads to two equations for the parameters u; d; p. The resulting
probability P of (Bi2) does not reflect the expectations of an individual in the
market. Rather P is an artificial risk-neutral probability that matches (Bi3). The
expectation E in (20.4) refers to this probability, which is sometimes written EP.
As noted above, we assume that no dividend is paid within the time period of
interest. This assumption simplifies the derivation of the method and can be removed
later.
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20.2.2 Derivation of Equations

By definition of the expectation for the discrete case, we have

E.SiC1/ D p Si u C .1 � p/ Si d:

Here Si represents an arbitrary value for ti , which develops randomly to SiC1,
following the assumptions (Bi1) and (Bi2). In this sense, E is a conditional
expectation. Equating with (20.4) gives

er�t D pu C .1 � p/d (20.6)

This is the first of three equations required to fix u; d; p. Solved for the risk-neutral
probability p we obtain

p D er�t � d
u � d :

To be a valid model of probability, 0 � p � 1 must hold. This is equivalent to

d � er�t � u:

These inequalities relate the upward and downward movements of the asset price to
the riskless interest rate r . The inequalities are no new assumption but follow from
the no-arbitrage principle. The assumption 0 < d < u remains sustained.

Next we equate variances. Via the variance the volatility � enters the model.
Recall that the variance satisfies Var.S/ D E.S2/ � .E.S//2. Equations (20.4) and
(20.5) combine to

Var.SiC1/ D S2i e2r�t .e�
2�t � 1/:

On the other hand the discrete model satisfies

Var.SiC1/ D E.S2iC1/ � .E.SiC1//2
D p.Siu/2 C .1 � p/.Sid/

2 � S2i .pu C .1 � p/d/2:

Equating variances of the continuous and the discrete model, and applying (20.6)
leads to

e2r�tC�2�t D pu2 C .1 � p/d2 (20.7)

Equations (20.6) and (20.7) constitute two relations for the three unknowns u; d; p.

20.2.2.1 Anchoring the Equations

Because there is one degree of freedom in (20.6) and (20.7) we are free to impose
an arbitrary third equation. One class of examples is defined by the assumption

u � d D �; (20.8)
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for a suitable constant � . The simple and plausible choice � D 1 reflects a symmetry
between upward and downward movement of the asset price. Alternatively to the
choice ud D 1 in (20.8), the choice p D 1

2
has been suggested, see Rendleman and

Bartter (1979), Hull (2000), +16.5, or Wilmott et al. (1996).
When the strike K is not well grasped by the tree and its grid points, the error

depending onM may oscillate. To facilitate extrapolation, it is advisable to have the
strike value K on the medium grid point, ST D K , no matter what (even) value of
M is chosen. The error can be smoothed by special choices of u and d . To anchor
the grid such that at the final line (for t D T ) the center grid point always equals the
strike K , one proceeds as follows. On the final line the grid points are

Sj;M D S0u
j dM�j

for j D 0; : : : ;M . For even M , the center grid point has index j D M=2, and
S -value

S0u
M=2dM=2:

That is, for evenM , set

S0u
M=2dM=2 D K

and the tree is centered at the strike. A straightforward calculation with

.ud/M=2 D K

S0
) 2

M
log

K

S0
D log .ud/

gives the proper constant � :

� D ud D exp

�
2

M
log

K

S0

	
(20.9)

Now the parameters u; d and p are fixed by (20.6), (20.7), (20.8). They depend on
r; � and �t . So does the grid, which is analyzed next (Fig. 20.4).

Fig. 20.4 Sequence of
several meshes
(schematically)

Su2SudSd2

SuSd

S
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20.2.2.2 The Shape of the Grid

The above rules are applied to each grid line i D 0; : : : ;M , starting at t0 D 0 with
the specific value S DS0. Attaching meshes of the kind depicted in Fig. 20.3
for subsequent values of ti builds a tree with values Suj d k and j C kD i .
In this way, specific discrete values Sj;i of Si and the nodes of the tree are
defined. Since the same constant factors u and d underlie all meshes and since
Sud DSdu holds, after the time period 2�t the asset price can only take three
values rather than four: The tree is recombining. It does not matter which of the
two possible paths we take to reach Sud . This property extends to more than two
time periods. Consequently the binomial process defined by Assumptions (Bi1)–
(Bi3) is path independent. Accordingly at expiration time T DM�t the price
S can take only the .M C 1/ discrete values Suj dM�j ; j D 0; 1; : : : ;M . For
ud D 1 these are the values Su2j�M DSj;M . The number of nodes in the tree grows
quadratically in M .

The symmetry of the choice ud D 1 becomes apparent in that after two time
steps the asset value S repeats. (Compare also Fig. 20.2.) In the .t; S/-plane the
tree can be interpreted as a grid of exponential-like curves. The binomial approach
defined by (Bi1) with the proportionality between Si and SiC1 reflects exponential
growth or decay of S . So all grid points have the desirable property S > 0.

20.2.3 The Algorithm

Next we give a solution to the equations and set up the classical CRR algorithm.

20.2.3.1 Solution of the Equations

Using the abbreviations

˛ D er�t ; ˇ D 1

2

��
˛

C ˛e�
2�t
�
;

we obtain by elimination the quadratic equation

0 D u2 � u.
�

˛
C ˛e�

2�t /C � D u2 � 2ˇu C �;

with solutions u D ˇ ˙ p
ˇ2 � � . By virtue of ud D � and Vieta’s Theorem, d

is the solution with the minus sign. In summary, the three parameters u; d; p are
given by

ˇ D 1
2
.�e�r�t C e.rC�2/�t /

u D ˇ Cp
ˇ2 � �

d D �=u D ˇ �p
ˇ2 � �

p D er�t � d

u � d

(20.10)
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A consequence of this approach is that for � D 1 the relation u D e�
p
�t holds up

to terms of higher order. Therefore the extension of the tree in S -direction matches
the volatility of the asset. So the tree is well-scaled and covers a relevant range of
S -values. The original CRR choice is

u D e�
p
�t ; d D e��p

�t ; Qp defD 1

2

�
1C r

�

p
�t
�
;

where Qp is a first-order approximation to the p of (20.10). The choice p D 1=2

leads to the parameters

u D er�t .1C
p

e�2�t � 1/; d D er�t .1 �
p

e�2�t � 1/:

In what follows, we stick to (20.10) with � D 1.

20.2.3.2 Forward Phase: Initializing the Tree

Now the parameters u and d can be considered known, and the discrete node values
of S for each ti for all i � M can be calculated. (To adapt the matrix-like notation
to the two-dimensional grid of the tree, the initial price and root of the tree will be
also denoted S0;0.) Each initial price S0 leads to another tree of node values Sj;i .

For i D 1; 2; : : : ;M calculate W
Sj;i D S0uj d i�j ; j D 0; 1; : : : ; i

Now the grid points .ti ; Sj;i / are fixed, on which approximations to the option values

Vj;i
defD V.Sj;i ; ti / are to be calculated.

20.2.3.3 Calculating the Option Value, Valuation on the Tree

For tM the values V.S; tM / are known from the payoff (20.1). This payoff is valid
for each S , including Sj;M D Suj dM�j ; j D 0; : : : ;M , and defines the values
Vj;M D �.Sj;m/:

Call:
Vj;M D .Sj;M �K/C (20.11)

Put:
Vj;M D .K � Sj;M /C (20.12)

The backward phase calculates recursively for tM�1; tM�2; : : : the option values
V for all ti , starting from Vj;M . Recall that based on Assumption (Bi3) the equation
that corresponds to (20.6) with double index leads to
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Sj;i er�t D p Sj;i u C .1 � p/ Sj;i d;

and

Sj;i D e�r�t .pSjC1;iC1 C .1 � p/Sj;iC1/:

This manifestation of risk neutrality is valid also for V , Vi D e�r�tE.ViC1/. In
double-index notation the recursion is

Vj;i D e�r�t �pVjC1;iC1 C .1 � p/Vj;iC1
�
: (20.13)

This recursion for Vj;i is no further assumption, but a consequence of the no-
arbitrage principle and the risk-neutral valuation. For European options, (20.13)
is a recursion for i D M � 1; : : : ; 0, starting from (20.11), (20.12), and terminating
with V0;0. The obtained value V0;0 is an approximation to the value V.S0; 0/ of the
continuous model, which results in the limit M ! 1 (�t ! 0). The accuracy
of the approximation V0;0 depends on M . This is reflected by writing V .M/

0 . The

basic idea of the approach implies that the limit of V .M/
0 forM ! 1 is the Black–

Scholes value V.S0; 0/, see below Sect. 2.5.
For American options, the above recursion must be modified by adding a test

whether early exercise is to be preferred. To this end the value of (20.13) is compared
with the value of the payoff � . In this context, the value (20.13) is the continuation
value, denoted V cont

j;i . And at any time ti the holder optimizes the position and
decides which of the two choices

f exercise; hold g

is preferable. So the holder chooses the maximum

maxf�.Sj;i /; V cont
j;i g:

This amounts to a dynamic programming procedure. In summary, the dynamic-
programming principle, based on the (20.11), (20.12) for i rather thanM , combined
with (20.13), reads as follows:

Call:

Vj;i D max
˚
.Sj;i �K/C; e�r�t � .pVjC1;iC1 C .1 � p/Vj;iC1/

�
(20.14)

Put:

Vj;i D max
˚
.K � Sj;i /

C; e�r�t � .pVjC1;iC1 C .1 � p/Vj;iC1/
�

(20.15)
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The resulting algorithm is
Algorithm (CRR binomial method)

input: r; �; S D S0; T; K; choice of put or call,
European or American,M

calculate: �t D T=M; u; d; p from (10)
S0;0 D S0
Sj;M D S0;0uj dM�j ; j D 0; 1; : : : ;M

(for American options, also Sj;i D S0;0uj d i�j
for 0 < i < M , j D 0; 1; : : : ; i)

valuation: Vj;M from .11/ or .12/

Vj;i for i < M

�
from (13) for European options
from (14) or (15) for American options

output: V0;0 is the approximation V .M/
0 to V.S0; 0/

Note that this algorithm is a basic version of a binomial method. Several improve-
ments are possible, see the Remarks below.

20.2.4 Practical Experience and Improvements

The above CRR algorithm is easy to implement and highly robust. Figure 20.5
illustrates the result of the algorithm for an American put. In two examples, we
present numbers for comparison. For anchoring, the classical ud D 1 is used.
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Fig. 20.5 Tree in the .S; t/-plane with nodes (empty squares) and .S; t; V /-points (full squares)
for M D 32 (American put with r D 0:06; � D 0:30;K D 10; T D 1; S0 D 10)
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Table 20.1 Results of example 1

M V .M/.5; 0/

8 4.42507
16 4.42925
32 4.429855
64 4.429923
128 4.430047
256 4.430390
2,048 4.430451

Black–Scholes 4.43046477621

Example 1 (European put): We choose the parametersKD 10; S D 5; r D 0:06;

� D 0:3; T D 1:

The Table 20.1 lists approximations V .M/ to V.5; 0/. The convergence towards
the Black–Scholes value V.S; 0/ is visible; the latter was calculated by evaluating
the Black–Scholes formula, see Seydel (2009). The number of printed decimals
illustrates at best the attainable accuracy and does not reflect economic practice.
The convergence rate is reflected by the results in Table 20.1.

The convergence rate is linear,O.�t/DO.M�1/, which may be seen by plotting
V .M/ over M�1. In such a plot, the values of V .M/ roughly lie close to a straight
line, which reflects the linear error decay. The reader may wish to investigate more
closely how the error decays with M . It turns out that for the described version
of the binomial method the convergence in M is not monotonic. It will not be
recommendable to extrapolate the V .M/-data to the limit M ! 1, at least not
the data of Table 20.1.

Example 2 (American put): For the parameters KD 50; S D 50; r D 0:1;

� D 0:4; T D 0:41666 : : : ( 5
12

for 5 months), M D 32, the CRR approximation
to V0 is 4.2719.

20.2.4.1 Remarks

Table 20.1 might suggest that it is easy to obtain high accuracy with binomial
methods. This is not the case; flaws were observed in particular close to the early-
exercise curve, see Coleman et al. (2002). As illustrated by Fig. 20.2, the described
standard version wastes many nodes Sj;i close to zero and far away from the strike
region. For advanced binomial methods and speeding up convergence, consult Breen
(1991), Figlewski and Gao (1999), and Klassen (2001). Broadie and Detemple
(1996) improve the accuracy by using the analytic Black–Scholes formula for the
continuation value at the first step of the backward phase i D M � 1. For a detailed
account of the binomial method consult also Cox and Rubinstein (1985). The
approximation of the Greeks delta, gamma, and theta exploit the calculatedV -values
at the nodes in an elegant way, see Pelsser and Vorst (1994). Finite differences are
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used for a slightly extended tree, which starts already at t D �2�t so that a tree
node hits the point .S0; 0/. Honore and Poulsen (2002) explain how to implement the
binomial method in spreadsheets. Many applications of binomial trees are found in
Lyuu (2002). In case of barrier options, the nodes of the tree should be placed with
care to maintain high accuracy. Dai and Lyuu (2010) suggest an initial trinomial
step, tuned so that the following CRR tree has layers coinciding with barriers.

20.2.5 Convergence to the Black–Scholes Formula

Consider a European call in the CRR binomial model. Suppose the calculated value
is V .M/

0 . In the limit M ! 1 the sequence V .M/
0 converges to the value Vcall.S0; 0/

of the continuous Black–Scholes model. In what follows, we sketch the proof, again
for the case of no dividend payment, ı D 0. For later reference we state the famous
Black–Scholes formula:

Vcall.S0; 0/ D S0F.d1/ � e�rT K � F.d2/ (20.16)

with

d1 D log S
K

C .r C �2

2
/T

�
p
T

; d2 D log S
K

C .r � �2

2
/T

�
p
T

; (20.17)

and F.a/ denotes the standard normal distribution

F.a/ D 1p
2


Z a

�1
e�z2=2 dz:

Let X D Sj;M be the final value at tM of a path that traverses the tree starting at
S0. The index j reflects the number of “up’s” after the M decisions at the nodes of
the tree. For the binomial distribution the probability P that the path arrives at node
Sj;M is

P.X D Sj;M / D
 
M

j

!
pj .1 � p/M�j (20.18)

(See Fig. 20.6 for an illustration of this probability.) Hence the value of the CRR
approximation of the European call at t D 0 is

V
.M/
0 D e�rT

MX

jD0

 
M

j

!
pj .1 � p/M�j .S0uj dM�j �K/C: (20.19)

Let J be the smallest index j with Sj;M 	 K . This J is determined by the
parameters, as seen from the equivalent statements
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Fig. 20.6 Illustration of a binomial tree and payoff, here for a put, .S; t/-grid points for M D 8,
K D S0 D 10. The binomial density (dashed line) of the risk-free probability is shown, scaled
with factor 10

S0u
J dMd�J �K 	 0

� u

d

�J 	 K

S0
d�M

J log
� u

d

�
	 log

Kd�M

S0

J 	 ˛
defD log K

S0
�M log d

log u � log d
D � log S0

K
CM log d

log u � log d
(20.20)

With this well-defined ˛ D ˛.M/ we have J as the smallest index 	 ˛. Now the
zero part of the payoff in (20.19) can be split off, and

V
.M/
0 D e�rT S0

MP
jDJ

�
M
j

�
pj .1 � p/M�j uj dM�j

�e�rT K
MP
jDJ

�
M
j

�
pj .1 � p/M�j :

(20.21)

We make use of
e�rT D e�rM�t D .e�r�t /M
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and rewrite the first sum in (20.21)

MX

jDJ

 
M

j

!� pu

er�t

�j 
 .1 � p/d
er�t

�M�j
:

Note that

pu

er�t
C .1 � p/d

er�t
D .pu � pd/C d

er�t
D .er�t � d/C d

er�t
D 1:

With the notation Qp D pu
er�t

the first sum is equal to

MX

jDJ

 
M

j

!
Qpj .1 � Qp/M�j ;

the same type as the second sum in (20.21). Now we can express V .M/
0 by means of

the binomial probability P with (complementary) distribution function BM;p.J /,

P.j > J / D BM;p.J / D
MX

kDJ



M

k

�
pk.1 � p/M�k;

as

V
.M/
0 D S0BM; Qp.J / � e�rTK � BM;p.J /: (20.22)

Recall the central limit theorem,

lim
M!1 P

 
j �Mpp
Mp.1 � p/ � a

!
D F.a/;

whereMp is the expectation of j and Mp.1� p/ its variance. Hence,

lim
M!1 P.Y > a/ D 1 � lim

M!1 P.Y � a/ D 1 � F.a/ D F.�a/: (20.23)

The observation

P.j > J / D P

 
j �Mp

p
Mp.1 � p/ >

J �Mp
p
Mp.1 � p/

!

reveals the a in (20.23),

a D J �Mp
p
Mp.1 � p/ :
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Since J ! ˛ for M ! 1 it remains to show

lim
M!1

M Qp � ˛
p
M Qp.1� Qp/ D d1 and lim

M!1
Mp � ˛

p
Mp.1� p/

D d2:

To this end one substitutes the p; u; d by their expressions from (20.10). We leave
this to the reader. A reference is Kwok (1998).

20.3 Extensions

Lattice approaches can be adjusted to actual market data. For example, the terminal
probabilities can be corrected appropriately, see Rubinstein (1994). In that respect,
implied trees are basic means, and will be explained in some detail in Sect. 20.4.
Tree methods can be applied to value exotic options as well, see Hull (2000) or Lyuu
(2002). In this Sect. 20.3 we briefly comment on dividends and trinomial models.

20.3.1 Dividends

Discrete paying of dividends can be incorporated into the binomial algorithm. If
a dividend is paid at a specific time tk , the price of the asset drops by the same
amount. To take this jump into account, the tree is cut at tk and the S -values are
reduced appropriately, see Hull (2000), +16.3, or Wilmott et al. (1996). Note that
when the stock pays an amount D, then the part of the tree for t 	 tk is no
longer recombining. As is easily seen from adjusting node values S0uj d k�j to
S0uj d k�j �D, the nodes on the next time level differ byD.u�d/, and the number
of nodes doubles. Hull (2000) discusses this matter and suggests ways how to fix the
problem. For a constant dividend yield rate ı, the formulas of the preceeding section
are easily adapted. For example, in (20.4), (20.5), (20.6), (20.7), (20.10) the rate r
must be replaced by r � ı, but the discount factor in (20.13) remains unchanged.
This more general case will be considered in Sect. 20.4.

20.3.2 Trinomial Model

Another extension of the binomial method is the trinomial method. Here each mesh
offers three outcomes, with probabilities p1; p2; p3 and p1 C p2 C p3 D 1, see the
illustration of Fig. 20.7. One possible set of parameters is

u D e�
p
3�t

d D 1

u
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Fig. 20.7 First meshes of a
trinomial tree
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see Hull (2000). Lyuu (2002) suggests another set of parameters. The trinomial
model is more flexible and allows for higher accuracy. Figlewski and Gao (1999)
work with patches of finer meshes to improve accuracy, in particular, close to
.S; t/ D .K; T /.

20.3.3 Trees in Higher Dimension

Boyle et al. (1989) generalized the binomial method canonically to multivariate
contingent claims with n assets. But already for n D 2 the recombining standard
tree withM time levels requires 1

3
M 3CO.M2/ nodes, and for n D 3 the number of

nodes is of the order O.M4/. Tree methods also suffer from the curse of dimension.
But obviously not all of the nodes of the canonical binomial approach are needed.
The ultimate aim is to approximate the lognormal distribution, and this can be done
with fewer nodes. Nodes in IRn should be constructed in such a way that the number
of nodes grows comparably slower than the quality of the approximation of the dis-
tribution function. Lyuu (2002) presents an example of a two-dimensional approach.
Generalizing the trinomial approach to higher dimensions is not recommendable
because of storage requirements. Instead, other geometrical structures as icosahedral
volumes can be applied. McCarthy and Webber (2001/02) discuss such approaches.
For a convergence analysis of tree methods, and for an extension to Lévy processes,
see Forsyth et al. (2002), and Maller et al. (2006).
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20.4 Implied Trees

The Black-Scholes model is based on simplifying assumptions that are not neces-
sarily met by real markets. In particular this holds for the assumption of a constant
volatility � . In market data of traded options, one observes the volatility smile, a
non-constant dependence of � on the strike K and on the time for maturity T . This
smile consists of the skew (variation of � with K), and the term structure (variation
of � with T ).

In the classical approaches, the dependence of the value V.S; t I K;T / has been
focused on .S; t/, and K;T have been considered constant. Dupire (1994) derived
a partial differential equation for the dependence of V on K;T . From relevant data
it is possible to approximate a local volatility �.S; t/. Inserting the local volatility
into the Black-Scholes approach allows to improve its pricing ability.

Such an additional flexibility of the Black-Scholes approach can be adapted also
by tree methods. Such methods were suggested, for example, by Derman and Kani
(1994), and by Rubinstein (1994). Here we describe in some detail the implied tree
of Derman and Kani (1994). Implied trees take advantage of market prices and are
calibrated right away from option data. Note the contrast to the CRR tree, which is
calibrated to the underlying process St independently of the option.

20.4.1 Arrow-Debreu Prices

An essential tool for the derivation is the Arrow-Debreu price.

Definition Arrow-Debreu price �j;i : �j;i is the sum of the products of all
riskless-discounted transition probabilities, with summation over all paths leading
from the root .0; 0/ to the node .j; i/.

For example,

�1;2 D e�r2�t Œp0;1.1 � p0;0/C .1� p1;1/p0;0	;

compare Fig. 20.8. As is easily seen, there is a recursion for these prices. Fixing
�0;0 D 1,

�0;1 D e�r�t �0;0.1 � p0;0/; �1;1 D e�r�t �0;0 p0;0
holds. The general recursion for the interior nodes is

�jC1;iC1 D e�r�t Œ�j;i pj;i C �jC1;i .1 � pjC1;i /	 for 0 � j � i � 1; (20.24)

because two entries exist for each of the nodes. And for the two boundary paths,
each node has only one entry, hence

�iC1;iC1 D e�r�t �i;i pi;i
�0;iC1 D e�r�t �0;i .1 � p0;i /

(20.25)

completes the recursion.
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Fig. 20.8 Nodes .j; i/ of a
general binomial grid, with
probabilities pj;i and variable
positions of the nodes; initial
part of the tree
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Recall that in the special case of the classical CRR tree, with pj;i D p for all
j; i , the Bernoulli experiment results in the probabilities (20.18)

 
M

j

!
pj .1 � p/M�j ;

describing the probability that the node .j;M/ is hit. Since the Arrow-Debreu prices
distribute the discounting over the time slices,

�j;M D e�rT
 
M

j

!
pj .1 � p/M�j

holds, and the expectation of a European vanilla option can be written

V.S0;0; 0/ D
MX

jD0
�j;M �.Sj;M /: (20.26)

The same pricing formula (20.26) holds true for a general binomial path with
probabilities pj;i . The final probability to hit the node .j;M/ is erT �j;M .

20.4.2 Derman & Kani Tree

The method of Derman and Kani sets up reasonable probabilities pj;i and positions
.Sj;i ; ti / of the nodes .j; i/. The grid is designed such that it matches market data.
Assume that a bunch of market prices of options are known. These option data are
subjected to a suitable smoothing algorithm as described by Fengler (2005), and by
Glaser and Heider (2010). Based on this cumbersome preparatory work, the data
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Fig. 20.9 The general
buildup for node
.j C 1; i C 1/

pj,i

j+1,i+1

j+1,ij,i

S

t

ti+1

ti

can be interpolated or approximated such that “market data” are given for any value
of strike and maturity.

Suppose all nodes are placed and all probabilities are fixed for the time level ti .
That is, the 2i C 2 numbers

S0;i ; S1;i ; : : : ; Si;i ;

�0;i ; �1;i ; : : : ; �i;i

are available. For the next time level tiC1 the 2i C 4 numbers

S0;iC1; S1;iC1; : : : ; SiC1;iC1;
�0;iC1; �1;iC1; : : : ; �iC1;iC1

are to be calculated. This requires 2i C 3 equations, because the recursion (20.24),
(20.25) for the Arrow-Debreu prices requires only i C 1 probabilities

p0;i ; : : : ; pi;i

see Figs. 20.8, 20.9, 20.10. i C 1 of the equations are easily set up, requesting as
in CRR that the expectation over the time step �t matches that of the continuous
model (20.4). With the forward price Fj;i

Fj;i
defD Sj;i e.r�ı/�t

this can be written

pj;i SjC1;iC1 C .1 � pj;i / Sj;iC1 D Fj;i (20.27)

for 0 � j � i . This sets up i C 1 equations for the probabilities,

pj;i D Fj;i � Sj;iC1
SjC1;iC1 � Sj;iC1 ; (20.28)
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Fig. 20.10 All nodes of lines ti and tiC1; transition from line ti to tiC1

which in turn fix the Arrow-Debreu values via (20.24), (20.25). It remains to set up
i C 2 equations for the unknown grid coordinates Sj;iC1 for 0 � j � i C 1.

At this stage, the market data enter. According to the assumption, (approximate)
vanilla put and call prices are available also for the specific choices of the maturity
tiC1 and the i C 1 strikes S0;i ; : : : ; Si;i . For ease of notation, we denote the market
values

Cj;i D V market
call .S0;0; 0I Sj;i ; tiC1/

Pj;i D V market
put .S0;0; 0I Sj;i ; tiC1/

(20.29)

for 0 � j � i . In (20.29), there are only i C 1 independent option values, because
put and call are related through the put-call parity.

20.4.2.1 Recursion Based on Call Data

Next we discuss how the call values Cj;i enter; the put values Pj;i will enter
analogously. For the strike Sj;i , we apply (20.26), where M is replaced by i C 1.
Then, by (20.29), the grid values Sk;iC1 are to be chosen such that

Cj;i D
iC1X

kD0
�k;iC1.Sk;iC1 � Sj;i /

C;

which for Sj;iC1 < Sj;i < SjC1;iC1 can be written

Cj;i D
iC1X

kDjC1
�k;iC1.Sk;iC1 � Sj;i /: (20.30)

Substituting the recursion (20.24), (20.25), this is

Cj;i D e�r�t X

k�jC1
Œ�k�1;i pk�1;i C �k;i .1 � pk;i /	 � .Sk;iC1 � Sj;i / (20.31)
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where the last term of the sum, according to (20.25), consists of one term only. It
follows

er�tCj;i D Œ�j;i pj;i C �jC1;i .1 � pjC1;i /	 .SjC1;iC1 � Sj;i /
CŒ�jC1;i pjC1;i C �jC2;i .1 � pjC2;i /	 .SjC2;iC1 � Sj;i /
C : : :C Œ�i�1;i pi�1;i C �i;i .1 � pi;i /	 .Si;iC1 � Sj;i /

CŒ�i;i pi;i 	.SiC1;iC1 � Sj;i /

D �j;i pj;i .SjC1;iC1 � Sj;i /
C�jC1;i .FjC1;i � Sj;i /C : : :C �i;i .Fi;i � Sj;i /

D �j;i pj;i .SjC1;iC1 � Sj;i /C
iP

kDjC1
�k;i .Fk;i � Sj;i /

Note that the sum in this expression is completely known from the previous line ti .
The known summation term is combined with the data of the smile into the known
numbers

Aj;i
defD er�tCj;i �

iX

kDjC1
�k;i .Fk;i � Sj;i /:

This gives the relation

Aj;i D �j;i pj;i .SjC1;iC1 � Sj;i / (20.32)

which involves only two unknowns pj;i and SjC1;iC1. We substitute pj;i from
(20.28) into (20.32), and solve for SjC1;iC1. The result

SjC1;iC1 D Sj;iC1.Aj;i C �j;iSj;i / � �j;iSj;iFj;i
Sj;iC1�j;i C Aj;i � �j;iFj;i (20.33)

is a recursion SjC1;iC1 D f .Sj;iC1/ along the line tjC1, fixing a new node SjC1;iC1
after the previous node Sj;iC1 was set. The probabilities are then given by (20.28)
and (20.24).

20.4.2.2 Starting the Recursion

This raises a new question: Where should the recursion (20.33) start? Recall that we
have iC 2 unknown nodes on line tjC1, but only i C 1 independent option values in
(20.29). That is, there is one degree of freedom. For example, one node can be set
freely. Following Derman and Kani (1994), we make the center of the tree coincide
with the center of the standard CRR tree. This requires to discuss two situations:
Either the line t1C1 has an even number of nodes, or an odd number.

The simple situation is the odd number of nodes at line tiC1. Then we set
artificially for the center node with j -indexm,
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.i odd/ m
defD i C 1

2
; Sm;iC1

defD S0;0: (20.34)

For the upper part of the line (j > m) the recursion (20.33) defines all nodes,
starting from Sm;iC1. For the lower part of line (j < m) the corresponding recursion
based on put values Pj;i will be applied, see (20.40) below.

In the other situation, when the number of nodes at line tiC1 and i are even, the
center of the tree is straddled by the two nodes with j -indices m D i=2 and mC 1.
Recall from CRR with d D 1=u that its logarithmic spacing for the scenario of
Fig. 20.3 amounts to

Sj;iC1 D S2j;i=SjC1;iC1 (20.35)

for any j; i . We assume this spacing for the center nodes, and substitute (20.35)
into (20.33). This gives a quadratic equation for the SjC1;iC1 at the center position.
One of the two solutions (Sj;i ) is meaningless, because nodes are not separated. The
other node is

SjC1;iC1 D Sj;i .�j;iSj;i C Aj;i /

�j;iFj;i � Aj;i
:

Note from the previous line, where i is odd, we have Sm;i D S0;0. So

.i even/ m
defD i

2
; SmC1;iC1

defD S0;0.�m;iS0;0 C Am;i /

�m;iFm;i �Am;i : (20.36)

This defines the starting point for the recursion (20.33) [or for (20.40) below].

20.4.2.3 Recursion Based on Put Data

For the put, the recursion is derived in a similar way as done above for the call. We
demand for the strike Sj;i and the put data Pj;i

Pj;i D
iC1X

kD0
�k;iC1 .Sj;i � Sk;iC1/C:

Then for an ordered grid with Sj;iC1 < Sj;i < SjC1;iC1

Pj;i D
jX

kD0
�k;iC1 .Sj;i � Sk;iC1/: (20.37)

Hence,

er�tPj;i D �0;i .1 � p0;i / .Sj;i � S0;iC1/
C Œ�0;i p0;i C �1;i .1 � p1;i /	 .Sj;i � S1;iC1/
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C Œ�1;i p1;i C �2;i .1� p2;i /	 .Sj;i � S2;iC1/

C : : :

C Œ�j�1;i pj�1;i C �j;i .1 � pj;i /	 .Sj;i � Sj;iC1/

D �j;i .1 � pj;i /.Sj;i � Sj;iC1/C
j�1X

kD0
�k;i .Fk;i � Sj;i /

With the well-defined numbers

Bj;i
defD er�tPj;i �

j�1X

kD0
�k;i .Fk;i � Sj;i / (20.38)

we arrive at
Bj;i D �j;i .1 � pj;i /.Sj;i � Sj;iC1/: (20.39)

After substituting pj;i the final recursion based on put data is

Sj;iC1 D Bj;iSjC1;iC1 C �j;iSj;i .Fj;i � SjC1;iC1/
Bj;i C �j;i .Fj;i � SjC1;iC1/

(20.40)

This is the recursion for the lower half of the nodes on line tiC1. The starting point
is again provided by (20.34), or (20.36).

The pricing of an option works in a backward loop analogously as in the CRR
algorithm.

20.4.2.4 Adjustment of Node Spacing

To avoid arbitrage, it is crucial that the probabilities pj;i must lie between zero and
one. From (20.28) we see what a violation pj;i < 0 or pj;i > 1 would mean. The
latter is equivalent to Fj;i > SjC1;iC1, the former depends on whether SjC1;iC1 >
Sj;iC1 is guaranteed. Sufficient for 0 � pj;i � 1 is to demand for all j; i

Fj;i < SjC1;iC1 < FjC1;i : (20.41)

In addition to (20.41), the ordered-grid condition Sj;i < SjC1;iC1 < SjC1;i
anticipated by Fig. 20.9 must hold. In case these requirements are not satisfied by the
node values provided by (20.33) or (20.40), the values of SjC1;iC1 must be adjusted
accordingly. Derman and Kani (1994) suggest to escape to the logarithmic spacing.

The practical work with the above implied grid is not without problems. When
the values of Sj;iC1 provided by (20.33) and (20.40) are frequently overridden in
order to maintain an ordered grid that satisfies (20.41), then the influence of some
of the market data Cj;i , Pj;i is cut off. The loss of information caused by many such
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repairs deteriorates the quality of the approximation. This happens often for fine
grids. Also, the denominators in (20.33) and (20.40) may take unfavorable values
(say, close to zero), which can lead to unplausible values of the nodes.

20.4.3 Local Volatility

Estimates of the local volatility can be obtained from the implied grid. To this end,
the return R is investigated at each node j; i . For a binomial tree, we have two
samples for Rj;i . Taking the return of the underlying process S in the sense R D
log.Snew=Sold/ as in Seydel (2009), the expectation and variance is

E.Rj;i / D pj;i log
SjC1;iC1

Sj;i
C .1 � pj;i / log

Sj;iC1

Sj;i

Var.Rj;i / D pj;i

h
log

SjC1;iC1

Sj;i
� E.Rj;i /

i2 C .1 � pj;i /
h
log

Sj;iC1

Sj;i
� E.Rj;i /

i2

For the model (20.2), the scaling is Var.Rj;i / D �2j;i�t , which defines the local
volatility �j;i at node j; i . A short calculation shows

�j;i D
r
pj;i .1 � pj;i /

�t
log

SjC1;iC1
Sj;i

(20.42)

This allows to estimate the local volatility � from the values of the grid.
A worked example can be found in Derman and Kani (1994), and in Fengler

(2005). For the test, for example, an artificial implied volatility function O�.K/ is
set up, and corresponding Black–Scholes values are calculated. These in turn serve
as the data Cj;i , Pj;i for the computational experiment. The same test example is
also used to illustrate the trinomial tree. For the handling of actual market data,
consult Fengler (2005), and Glaser and Heider (2010), who discuss the calculation
of reasonable values of Cj;i , Pj;i . Exotic options of the European style are priced
using the Arrow-Debreu prices calculated by an implied tree.

20.4.4 Alternative Approaches

Barle and Cakici (1998) modify the Derman and Kani algorithm by setting the
strikes equal to the forward prices Fj;i . The central node is set such that the
tree bends along with the interest rate. Rubinstein (1994) implements the tree by
a backward recursion. An improvement was suggested by Jackwerth (1977); see
also the discussion in Fengler (2005). An implied trinomial tree is constructed by
Derman et al. (1996). The trinomial tree gives more flexibility because it involves
more parameters. But also for the trinomial tree and for the Barle and Cakici variant
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the “probabilities” p must be checked, and nodes must be overridden in case p < 0
or p > 1. Derman et al. (1996) discuss also variations in the time step �t . A
comparison of the Barle and Cakici approach with the Derman and Kani approach
is found in Hardle and Myvsivckova (2009).
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Chapter 21
Efficient Options Pricing Using the Fast Fourier
Transform

Yue Kuen Kwok, Kwai Sun Leung, and Hoi Ying Wong

Abstract We review the commonly used numerical algorithms for option pricing
under Levy process via Fast Fourier transform (FFT) calculations. By treating option
price analogous to a probability density function, option prices across the whole
spectrum of strikes can be obtained via FFT calculations. We also show how the
property of the Fourier transform of a convolution product can be used to value
various types of option pricing models. In particular, we show how one can price the
Bermudan style options under Levy processes using FFT techniques in an efficient
manner by reformulating the risk neutral valuation formulation as a convolution. By
extending the finite state Markov chain approach in option pricing, we illustrate an
innovative FFT-based network tree approach for option pricing under Levy process.
Similar to the forward shooting grid technique in the usual lattice tree algorithms,
the approach can be adapted to valuation of options with exotic path dependence.
We also show how to apply the Fourier space time stepping techniques that solve
the partial differential-integral equation for option pricing under Levy process. This
versatile approach can handle various forms of path dependence of the asset price
process and embedded features in the option models. Sampling errors and truncation
errors in numerical implementation of the FFT calculations in option pricing are also
discussed.
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21.1 Introduction

The earliest option pricing models originated by Black and Scholes (1973) and
Merton (1973) use the Geometric Brownian process to model the underlying asset
price process. However, it is well known among market practitioners that the
lognormal assumption of asset price returns suffers from serious deficiencies that
give rise to inconsistencies as exhibited by smiles (skewness) and term structures in
observed implied volatilities. The earlier remedy to resolve these deficiencies is the
assumption of state and time dependence of the volatility of the asset price process
(see Derman and Kani 1998; Dupire 1994). On the other hand, some researchers
recognize the volatility of asset returns as a hidden stochastic process, which may
also undergo regime change. Examples of these pioneering works on stochastic
volatility models are reported by Stein and Stein (1991), Heston (1993), and Naik
(2000). Starting from the seminar paper by Merton (1976), jumps are introduced
into the asset price processes in option pricing. More recently, researchers focus
on option pricing models whose underlying asset price processes are the Levy
processes (see Cont and Tankov 2004; Jackson et al. 2008).

In general, the nice analytic tractability in option pricing as exhibited by Black-
Scholes-Merton’s Geometric Brownian process assumption cannot be carried over
to pricing models that assume stochastic volatility and Levy processes for the
asset returns. Stein and Stein (1991) and Heston (1993) manage to obtain an
analytic representation of the European option price function in the Fourier domain.
Duffie et al. (2000) propose transform methods for pricing European options under
the affine jump-diffusion processes. Fourier transform methods are shown to be
an effective approach to pricing an option whose underlying asset price process
is a Levy process. Instead of applying the direct discounted expectation approach
of computing the expectation integral that involves the product of the terminal
payoff and the density function of the Levy process, it may be easier to compute
the integral of their Fourier transform since the characteristic function (Fourier
transform of the density function) of the Levy process is easier to be handled than
the density function itself. Actually, one may choose a Levy process by specifying
the characteristic function since the Levy-Khinchine formula allows a Levy process
to be fully described by the characteristic function.

In this chapter, we demonstrate the effective use of the Fourier transform
approach as an effective tool in pricing options. Together with the Fast Fourier
transform (FFT) algorithms, real time option pricing can be delivered. The under-
lying asset price process as modeled by a Levy process can allow for more general
realistic structure of asset returns, say, excess kurtosis and stochastic volatility. With
the characteristic function of the risk neutral density being known analytically, the
analytic expression for the Fourier transform of the option value can be derived.
Option prices across the whole spectrum of strikes can be obtained by performing
Fourier inversion transform via the efficient FFT algorithms.

This chapter is organized as follows. In the next section, the mathematical
formulations for building the bridge that links the Fourier methods with option
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pricing are discussed. We first provide a brief discussion on Fourier transform and
FFT algorithms. Some of the important properties of Fourier transform, like the
Parseval relation, are presented. We also present the definition of a Lévy process
and the statement of the Lévy-Khintchine formula. In Sect. 21.3, we derive the
Fourier representation of the European call option price function. The Fourier
inversion integrals in the option price formula can be associated with cumulative
distribution functions, similar to the Black-Scholes type representation. However,
due to the presence of a singularity arising from non-differentiability in the option
payoff function, the Fourier inversion integrals cannot be evaluated by applying
the FFT algorithms. We then present various modifications of the Fourier integral
representation of the option price using the damped option price method and time
value method (see Carr and Madan 1999). Details of the FFT implementation of
performing the Fourier inversion in option valuation are illustrated. In Sect. 21.4,
we consider the extension of the FFT techniques for pricing multi-asset options.
Unlike the finite difference approach or the lattice tree methods, the FFT approach
does not suffer from the curse of dimensionality of the option models with regard to
an increase in the number of risk factors in defining the asset return distribution (see
Dempster and Hong 2000; Hurd and Zhou 2009). In Sect. 21.5, we show how one
can price Bermudan style options under Lévy processes using the FFT techniques by
reformulating the risk neutral valuation formulation as a convolution. We show how
the property of the Fourier transform of a convolution product can be effectively
applied in pricing a Bermudan option (see Lord et al. 2008). In Sect. 21.6, we
illustrate an innovative FFT-based network approach for pricing options under Lévy
processes by extending the finite state Markov chain approach in option pricing.
Similar to the forward shooting grid technique in the usual lattice tree algorithms,
the approach can be adapted to valuation of options with exotic path dependence
(see Wong and Guan 2009). In Sect. 21.7, we derive the partial integral-differential
equation formulation that governs option prices under the Lévy process assumption
of asset returns. We then show how to apply the Fourier space time stepping
techniques that solve the partial differential-integral equation for option pricing
under Lévy processes. This versatile approach can handle various forms of path
dependence of the asset price process and features/constraints in the option models
(see Jackson et al. 2008). We present summary and conclusive remarks in the last
section.

21.2 Mathematical Preliminaries on Fourier Transform
Methods and Lévy Processes

Fourier transform methods have been widely used to solve problems in mathematics
and physical sciences. In recent years, we have witnessed the continual interests
in developing the FFT techniques as one of the vital tools in option pricing. In
fact, the Fourier transform methods become the natural mathematical tools when
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we consider option pricing under Lévy models. This is because a Lévy process Xt
can be fully described by its characteristic function �X.u/, which is defined as the
Fourier transform of the density function of Xt .

21.2.1 Fourier Transform and Its Properties

First, we present the definition of the Fourier transform of a function and review
some of its properties. Let f .x/ be a piecewise continuous real function over
.�1;1/ which satisfies the integrability condition:

Z 1

�1
jf .x/j dx < 1:

The Fourier transform of f .x/ is defined by

Ff .u/ D
Z 1

�1
eiuyf .y/ dy: (21.1)

Given Ff .u/, the function f can be recovered by the following Fourier inversion
formula:

f .x/ D 1

2


Z 1

�1
e�iuxFf .u/ du: (21.2)

The validity of the above inversion formula can be established easily via the
following integral representation of the Dirac function ı.y � x/, where

ı.y � x/ D 1

2


Z 1

�1
eiu.y�x/ du:

Applying the defining property of the Dirac function

f .x/ D
Z 1

�1
f .y/ı.y � x/ dy

and using the above integral representation of ı.y � x/, we obtain

f .x/ D
Z 1

�1
f .y/

1

2


Z 1

�1
eiu.y�x/ dudy

D 1

2


Z 1

�1
e�iux


Z 1

�1
f .y/eiuy dy

�
du:

This gives the Fourier inversion formula (21.2).
Sometimes it may be necessary to take u to be complex, with Im u ¤ 0. In this

case, Ff .u/ is called the generalized Fourier transform of f . The corresponding
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Fourier inversion formula becomes

f .x/ D 1

2


Z i ImuC1

i Imu�1
e�iuxFf .u/ du:

Suppose the stochastic process Xt has the density function p, then the Fourier
transform of p

Fp.u/ D
Z 1

�1
eiuxp.x/ dx D E

�
eiuX

�
(21.3)

is called the characteristic function of Xt .
The following mathematical properties of Ff are useful in our later discussion.

1. Differentiation
Ff 0 .u/ D �iuFf .u/:

2. Modulation
Fe�xf .u/ D Ff .u � i�/; � is real:

3. Convolution
Define the convolution between two integrable functions f .x/ and g.x/ by

h.x/ D f � g.x/ D
Z 1

�1
f .y/g.x � y/ dy;

then
Fh D FfFg:

4. Parseval relation
Define the inner product of two complex-valued square-integrable functions f
and g by

< f; g >D
Z 1

�1
f .x/ Ng.x/ dx;

then

< f; g >D 1

2

< Ff .u/;Fg.u/ > :

We would like to illustrate an application of the Parseval relation in option
pricing. Following the usual discounted expectation approach, we formally write
the option price V with terminal payoff VT .x/ and risk neutral density function
p.x/ as

V D e�rT
Z 1

�1
VT .x/p.x/ dx D e�rT < VT .x/; p.x/ > :
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By the Parseval relation, we obtain

V D e�rT

2

< Fp.u/;FVT .u/ > : (21.4)

The option price can be expressed in terms of the inner product of the characteristic
function of the underlying process Fp.u/ and the Fourier transform of the terminal
payoff FVT .u/. More applications of the Parseval relation in deriving the Fourier
inversion formulas in option pricing and insurance can be found in Dufresne et al.
(2009).

21.2.2 Discrete Fourier Transform

Given a sequence fxkg, k D 0; 1; � � � ; N � 1, the discrete Fourier transform of fxkg
is another sequence fyj g, j D 0; 1; � � � ; N � 1, as defined by

yj D
N�1X

kD0
e
2
ijk
N xk; j D 0; 1; � � � ; N � 1: (21.5)

If we write the N -dimensional vectors

x D .x0 x1 � � � xN�1/T and y D .y0 y1 � � � yN�1/T;

and define a N �N matrix FN whose .j; k/th entry is

FN
j;k D e

2
ijk
N ; 1 � j; k � N;

then x and y are related by
y D FN x: (21.6)

The computation to find y requiresN2 steps.
However, if N is chosen to be some power of 2, say, N D 2L, the computation

using the FFT techniques would require only 1
2
NL D N

2
log2 N steps. The idea

behind the FFT algorithm is to take advantage of the periodicity property of the
N th root of unity. Let M D N

2
, and we split vector x into two half-sized vectors as

defined by

x0 D .x0 x2 � � � xN�2/T and x00 D .x1 x3 � � � xN�1/T:

We form the M -dimensional vectors

y0 D FMx0 and y00 D FMx00;
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where the .j; k/th entry in the M �M matrix FM is

FM
j;k D e

2
ijk
M ; 1 � j; k � M:

It can be shown that the first M and the last M components of y are given by

yj D y0
j C e

2
ij
N y00

j ; j D 0; 1; � � � ;M � 1;

yjCM D y0
j � e

2
ij
N y00

j ; j D 0; 1; � � � ;M � 1: (21.7)

Instead of performing the matrix-vector multiplication FN x, we now reduce the
number of operations by two matrix-vector multiplications FM x0 and FMx00. The
number of operations is reduced from N2 to 2

�
N
2

�2 D N2

2
. The same procedure

of reducing the length of the sequence by half can be applied repeatedly. Using
this FFT algorithm, the total number of operations is reduced from O.N2/ to
O.N log2 N /.

21.2.3 Lévy Processes

An adapted real-valued stochastic processXt , withX0 D 0, is called a Lévy process
if it observes the following properties:

1. Independent increments
For every increasing sequence of times t0; t1; � � � ; tn, the random variables
Xt0; Xt1 � Xt0; � � � ; Xtn � Xtn�1 are independent.

2. Time-homogeneous
The distribution of fXtCs � XsI t 	 0g does not depend on s.

3. Stochastically continuous
For any � > 0, P ŒjXtCh �Xt j 	 �	 ! 0 as h ! 0.

4. Cadlag process
It is right continuous with left limits as a function of t .

Lévy processes are a combination of a linear drift, a Brownian process, and a
jump process. When the Lévy process Xt jumps, its jump magnitude is non-zero.
The Lévy measure w of Xt defined on R n f0g dictates how the jump occurs. In
the finite-activity models, we have

R
R

w.dx/ < 1. In the infinite-activity models,
we observe

R
R

w.dx/ D 1 and the Poisson intensity cannot be defined. Loosely
speaking, the Lévy measure w.dx/ gives the arrival rate of jumps of size .x; x C
dx/. The characteristic function of a Lévy process can be described by the Lévy-
Khinchine representation



586 Y.K. Kwok et al.

Table 21.1 Characteristic functions of some parametric Levy processes

Lévy process Xt Characteristic function �X.u/

Finite-activity models
Geometric Brownian motion exp

�
iu�t � 1

2
�2tu2

�

Lognormal jump diffusion exp
�
iu�t � 1

2
�2tu2 C �t.eiu�J � 1

2 �
2
J u2 � 1/

�

Double exponential jump diffusion exp



iu�t � 1

2
�2tu2 C �t



1� �2

1C u2�2
eiu� � 1

��

Infinite-activity models
Variance gamma exp.iu�t/.1� iu�� C 1

2
�2�u2/

t
�

Normal inverse Gaussian exp
�
iu�t C ıt

p
˛2 � ˇ2 �p

˛2 � .ˇ C iu/2
�

Generalized hyperbolic exp.iu�t/



˛2 � ˇ2

˛2 � .ˇ C iu/2

� �t
2

 
K�

�
ı
p
˛2�.ˇCiu/2

�

K�

�
ı
p
˛2�ˇ2

�

!t
,

where K�.z/ D 


2

I�.z/� I��.z/

sin.�
/
,

I�.z/ D
� z

2

�� 1X

kD0

.z2=4/k

kŠ� .� C k C 1/

Finite-moment stable exp
�
iu�t � t .iu�/˛ sec 
˛

2

�

CGMY exp.C� .�Y //Œ.M � iu/Y �MY C .G C iu/Y �GY 	,
where C;G;M > 0 and Y > 2

�X.u/ D EŒeiuXt 	

D exp



aitu � �2

2
tu2 C t

Z

Rnf0g
�
eiux � 1 � iux1jxj�1

�
w.dx/

�

D exp.t X.u//; (21.8)

where
R
R

min.1; x2/w.dx/ < 1, a 2 R, �2 	 0. We identify a as the drift rate and
� as the volatility of the diffusion process. Here,  X.u/ is called the characteristic

exponent of Xt . Actually, Xt
dD tX1. All moments of Xt can be derived from the

characteristic function since it generalizes the moment-generating function to the
complex domain. Indeed, a Lévy process Xt is fully specified by its characteristic
function �X . In Table 21.1, we present a list of Lévy processes commonly used in
finance applications together with their characteristic functions.

21.3 FFT Algorithms for Pricing European Vanilla Options

The renowned discounted expectation approach of evaluating a European option
requires the knowledge of the density function of the asset returns under the risk
neutral measure. Since the analytic representation of the characteristic function
rather than the density function is more readily available for Lévy processes, we
prefer to express the expectation integrals in terms of the characteristic function.
First, we derive the formal analytic representation of a European option price as
cumulative distribution functions, like the Black-Scholes type price formula. We
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then examine the inherent difficulties in the direct numerical evaluation of the
Fourier integrals in the price formula.

Under the risk neutral measure Q, suppose the underlying asset price process
assumes the form

St D S0 exp.�rt CXt/; t > 0;

where Xt is a Lévy process and r is the riskless interest rate. We write
Y D logS0 C rT and let FVT denote the Fourier transform of the terminal payoff
function VT .x/, where x D logST . By applying the discounted expectation
valuation formula and the Fourier inversion formula (21.2), the European option
value can be expressed as (see Lewis 2001)

V.St ; t/ D e�r.T�t /EQŒVT .x/	

D e�r.T�t /

2

EQ

�Z i�C1

i��1
e�izxFVT .z/ d z

	

D e�r.T�t /

2


Z i�C1

i��1
e�izx�XT .�z/FVT .z/ d z;

where � D Im z and˚XT .z/ is the characteristic function ofXT . The above formula
agrees with (21.4) derived using the Parseval relation.

In our subsequent discussion, we set the current time to be zero and write the
current stock price as S . For the T -maturity European call option with terminal
payoff .ST �K/C, its value is given by (see Lewis 2001)

C.S; T IK/ D �Ke�rT

2


Z i�C1

i��1
e�iz��XT .�z/

z2 � iz
d z

D �Ke�rT

2


�Z i�C1

i��1
e�iz��XT .�z/

i

z
d z

�
Z i�C1

i��1
e�iz��XT .�z/

i

z � i d z

	

D S

�
1

2
C 1




Z 1

0

Re



eiu log ��XT .u � i/

iu�XT .�i/
�
du

	

�Ke�rT
�
1

2
C 1




Z 1

0

Re



eiu log ��XT .u/

iu

�
du

	
; (21.9)

where � D log S
K

C rT . This representation of the call price resembles the Black-
Scholes type price formula. However, due to the presence of the singularity at u D 0

in the integrand function, we cannot apply the FFT to evaluate the integrals. If we
expand the integrals as Taylor series in u, the leading term in the expansion for
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both integral is O
�
1
u

�
. This is the source of the divergence, which arises from the

discontinuity of the payoff function at ST D K . As a consequence, the Fourier
transform of the payoff function has large high frequency terms. Carr and Madan
(1999) propose to dampen the high frequency terms by multiplying the payoff by an
exponential decay function.

21.3.1 Carr–Madan Formulation

As an alternative formulation of European option pricing that takes advantage of
the analytic expression of the characteristic function of the underlying asset price
process, Carr and Madan (1999) consider the Fourier transform of the European
call price (considered as a function of log strike) and compute the corresponding
Fourier inversion to recover the call price using the FFT. Let k D logK , the Fourier
transform of the call price C.k/ does not exist since C.k/ is not square integrable.
This is because C.k/ tends to S as k tends to �1.

21.3.1.1 Modified Call Price Method

To obtain a square-integrable function, Carr and Madan (1999) propose to consider
the Fourier transform of the damped call price c.k/, where

c.k/ D e˛kC.k/;

for ˛ > 0. Positive values of ˛ are seen to improve the integrability of the modified
call value over the negative k-axis. Carr and Madan (1999) show that a sufficient
condition for square-integrability of c.k/ is given by

EQ
�
S˛C1
T

�
< 1:

We write T .u/ as the Fourier transform of c.k/, pT .s/ as the density function of
the underlying asset price process, where s D logST , and �T .u/ as the characteristic
function (Fourier transform) of pT .s/. We obtain

 T .u/ D
Z 1

�1
eiukc.k/ dk

D
Z 1

�1
e�rT pT .s/

Z s

�1
�
esC˛k � e.1C˛/k� eiuk dkds

D e�rT �T .u � .˛ C 1/ i/

˛2 C ˛ � u2 C i.2˛ C 1/u
: (21.10)

The call price C.k/ can be recovered by taking the Fourier inversion transform,
where
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C.k/ D e�˛k

2


Z 1

�1
e�iuk T .u/ du

D e�˛k




Z 1

0

e�iuk T .u/ du; (21.11)

by virtue of the properties that  T .u/ is odd in its imaginary part and even in its real
part [since C.k/ is real]. The above integral can be computed using FFT, the details
of which will be discussed next. From previous numerical experience, usually ˛ D 3

works well for most models of asset price dynamics. It is important to observe that
˛ has to be chosen such that the denominator has only imaginary roots in u since
integration is performed along real value of u.

21.3.1.2 FFT Implementation

The integral in (21.11) with a semi-infinite integration interval is evaluated by
numerical approximation using the trapezoidal rule and FFT. We start with the
choice on the number of intervals N and the stepwidth �u. A numerical approx-
imation for C.k/ is given by

C.k/ � e�˛k




NX

jD1
e�iuj k T .uj /�u; (21.12)

where uj D .j �1/�u, j D 1; � � � ; N . The semi-infinite integration domain Œ0;1/

in the integral in (21.11) is approximated by a finite integration domain, where
the upper limit for u in the numerical integration is N�u. The error introduced is
called the truncation error. Also, the Fourier variable u is now sampled at discrete
points instead of continuous sampling. The associated error is called the sampling
error. Discussion on the controls on various forms of errors in the numerical
approximation procedures can be found in Lee (2004).

Recall that the FFT is an efficient numerical algorithm that computes the sum

y.k/ D
NX

jD1
e�i 2
N .j�1/.k�1/x.j /; k D 1; 2; � � � ; N: (21.13)

In the current context, we would like to compute around-the-money call option
prices with k taking discrete values: km D �b C .m � 1/�k, m D 1; 2; � � � ; N .
From one set of the FFT calculations, we are able to obtain call option prices for a
range of strike prices. This facilitates the market practitioners to capture the price
sensitivity of a European call with varying values of strike prices. To effect the FFT
calculations, we note from (21.13) that it is necessary to choose �u and �k such
that
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�u�k D 2


N
: (21.14)

A compromise between the choices of �u and �k in the FFT calculations is called
for here. For fixed N , the choice of a finer grid�u in numerical integration leads to
a larger spacing �k on the log strike.

The call price multiplied by an appropriate damping exponential factor becomes
a square-integrable function and the Fourier transform of the modified call price
becomes an analytic function of the characteristic function of the log price.
However, at short maturities, the call value tends to the non-differentiable terminal
call option payoff causing the integrand in the Fourier inversion to become highly
oscillatory. As shown in the numerical experiments performed by Carr and Madan
(1999), this causes significant numerical errors. To circumvent the potential numer-
ical pricing difficulties when dealing with short-maturity options, an alternative
approach that considers the time value of a European option is shown to exhibit
smaller pricing errors for all range of strike prices and maturities.

21.3.1.3 Modified Time Value Method

For notational convenience, we set the current stock price S to be unity and define

zT .k/ D e�rT
Z 1

�1
�
.ek � es/1fs<k;k<0g C .es � ek/1fs>k;k<0g

�
pT .s/ ds;

(21.15)
which is seen to be equal to the T -maturity call price when K > S and the
T -maturity put price when K < S . Therefore, once zT .k/ is known, we can obtain
the price of the call or put that is currently out-of-money while the call-put parity
relation can be used to obtain the price of the other option that is in-the-money.

The Fourier transform #T .u/ of zT .k/ is found to be

#T .u/ D
Z 1

�1
eiukzT .k/ dk

D e�rT
�

1

1C iu
� erT

iu
� �T .u � i/

u2 � iu
	
: (21.16)

The time value function zT .k/ tends to a Dirac function at small maturity and
around-the-money, so the Fourier transform #T .u/ may become highly oscillatory.
Here, a similar damping technique is employed by considering the Fourier transform
of sinh.˛k/zT .k/ (note that sinh ˛k vanishes at k D 0). Now, we consider

�T .u/ D
Z 1

�1
eiuk sinh.˛k/zT .k/ dk

D #T .u � i˛/ � #T .u C i˛/

2
;
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and the time value can be recovered by applying the Fourier inversion transform:

zT .k/ D 1

sinh.˛k/

1

2


Z 1

�1
e�iuk�T .u/ du: (21.17)

Analogous FFT calculations can be performed to compute the numerical approxi-
mation for zT .km/, where

zT .km/ � 1

 sinh.˛km/

PN
jD1 e�i 2
N .j�1/.m�1/eibuj �T .uj /�u; (21.18)

m D 1; 2; � � � ; N; and km D �b C .m � 1/�k:

21.4 Pricing of European Multi-Asset Options

Apparently, the extension of the Carr–Madan formulation to pricing European
multi-asset options would be quite straightforward. However, depending on the
nature of the terminal payoff function of the multi-asset option, the implementation
of the FFT algorithm may require some special considerations.

The most direct extension of the Carr–Madan formulation to the multi-asset
models can be exemplified through pricing of the correlation option, the terminal
payoff of which is defined by

V.S1; S2; T / D .S1.T / �K1/
C.S2.T / �K2/

C: (21.19)

We define si D logSi , ki D logKi , i D 1; 2, and write pT .s1; s2/ as the joint
density of s1.T / and s2.T / under the risk neutral measure Q. The characteristic
function of this joint density is defined by the following two-dimensional Fourier
transform:

�.u1; u2/ D
Z 1

�1

Z 1

�1
ei.u1s1Cu2s2/pT .s1; s2/ ds1ds2: (21.20)

Following the Carr–Madan formulation, we consider the Fourier transform
 T .u1; u2/ of the damped option price e˛1k1C˛2k2VT .k1; k2/ with respect to the
log strike prices k1, k2, where ˛1 > 0 and ˛2 > 0 are chosen such that the damped
option price is square-integrable for negative values of k1 and k2. The Fourier
transform  T .u1; u2/ is related to �.u1; u2/ as follows:

 T .u1; u2/ D e�rT �.u1 � .˛1 C 1/i; u2 � .˛2 C 1/i/

.˛1 C iu1/.˛1 C 1C iu1/.˛2 C iu2/.˛2 C 1C iu2/
: (21.21)

To recover CT .k1; k2/, we apply the Fourier inversion on  T .u1; u2/. Following
analogous procedures as in the single-asset European option, we approximate the
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two-dimensional Fourier inversion integral by

CT .k1; k2/ � e�˛1k1�˛2k2
.2
/2

N�1X

mD0

N�1X

nD0
e�i.u1mk1Cu2nk2/ T .u

1
m; u

2
n/�1�2; (21.22)

where u1m D �
m � N

2

�
�1 and u2n D �

n � N
2

�
�2. Here, �1 and �2 are the

stepwidths, and N is the number of intervals. In the two-dimensional form of the
FFT algorithm, we define

k1p D


p � N

2

�
�1 and k1q D



q � N

2

�
�2;

where �1 and �2 observe

�1�1 D �2�2 D 2


N
:

Dempster and Hong (2000) show that the numerical approximation to the option
price at different log strike values is given by

CT .k
1
p; k

2
q/ � e�˛1k1p�˛2k2q

.2
/2
� .k1p; k

2
q/�1�2; 0 � p; q � N; (21.23)

where

� .k1p; k
2
q/ D .�1/pCq

N�1X

mD0

N�1X

nD0
e� 2
i

N .mpCnq/ �.�1/mCn T .u1m; u2n/
�
:

The nice tractability in deriving the FFT pricing algorithm for the correlation
option stems from the rectangular shape of the exercise region ˝ of the option.
Provided that the boundaries of ˝ are made up of straight edges, the above
procedure of deriving the FFT pricing algorithm still works. This is because one
can always take an affine change of variables in the Fourier integrals to effect
the numerical evaluation. What would be the classes of option payoff functions
that allow the application of the above approach? Lee (2004) lists four types
of terminal payoff functions that admit analytic representation of the Fourier
transform of the damped option price. Another class of multi-asset options that
possess similar analytic tractability are options whose payoff depends on taking
the maximum or minimum value among the terminal values of a basket of stocks
(see Eberlein et al. 2009). However, the exercise region of the spread option with
terminal payoff

VT .S1; S2/ D .S1.T / � S2.T / �K/C (21.24)
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is shown to consist of a non-linear edge. To derive the FFT algorithm of similar
nature, it is necessary to approximate the exercise region by a combination of
rectangular strips. The details of the derivation of the corresponding FFT pricing
algorithm are presented by Dempster and Hong (2000).

Hurd and Zhou (2009) propose an alternative approach to pricing the European
spread option under Lévy model. Their method relies on an elegant formula of the
Fourier transform of the spread option payoff function. Let P.s1; s2/ denote the
terminal spread option payoff with unit strike, where

P.s1; s2/ D .es1 � es2 � 1/C:

For any real numbers �1 and �2 with �2 > 0 and �1 C �2 < �1, they
establish the following Fourier representation of the terminal spread option payoff
function:

P.s1; s2/ D 1

.2
/2

Z 1Ci�2

�1Ci�2

Z 1Ci�1

�1Ci�1
ei.u1s1Cu2s2/ OP.u1; u2/ du1du2; (21.25)

where

OP .u1; u2/ D � .i.u1 C u2/� 1/� .�iu2/
� .iu1 C 1/

:

Here, � .z/ is the complex gamma function defined for Re.z/ > 0, where

� .z/ D
Z 1

0

e�t t z�1 dt:

To establish the Fourier representation in (21.25), we consider

OP.u1; u2/ D
Z 1

�1

Z 1

�1
e�i.u1s1Cu2s2/P.s1; s2/ ds2ds1:

By restricting to s1 > 0 and es2 < es1 � 1, we have

OP.u1; u2/ D
Z 1

0

e�iu1s1
Z log.es1�1/

�1
e�iu2s2 .es1 � es2 � 1/ ds2ds1

D
Z 1

0

e�iu1s1 .es1 � 1/1�iu2



1

�iu2 � 1

1 � iu2
�
ds1

D 1

.1 � iu2/.�iu2/
Z 1

0

ziu1


1 � z

z

�1�iu2 d z

z
;

where z D e�s1 . The last integral can be identified with the beta function:
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ˇ.a; b/ D � .a/� .b/

� .a C b/
D
Z 1

0

za�1.1 � z/b�1 d z;

so we obtain the result in (21.25). Once the Fourier representation of the terminal
payoff is known, by virtue of the Parseval relation, the option price can be expressed
as a two-dimensional Fourier inversion integral with integrand that involves the
product of OP.u1; u2/ and the characteristic function of the joint process of s1
and s2. The evaluation of the Fourier inversion integral can be affected by the
usual FFT calculations (see Hurd and Zhou 2009). This approach does not require
the analytic approximation of the two-dimensional exercise region of the spread
option with a non-linear edge, so it is considered to be more computationally
efficient.

The pricing of European multi-asset options using the FFT approach requires
availability of the analytic representation of the characteristic function of the joint
price process of the basket of underlying assets. One may incorporate a wide range
of stochastic structures in the volatility and correlation. Once the analytic forms
in the integrand of the multi-dimensional Fourier inversion integral are known, the
numerical evaluation involves nested summations in the FFT calculations whose
dimension is the same as the number of underlying assets in the multi-asset
option. This contrasts with the usual finite difference/lattice tree methods where the
dimension of the scheme increases with the number of risk factors in the prescription
of the joint process of the underlying assets. This is a desirable property over other
numerical methods since the FFT pricing of the multi-asset options is not subject to
this curse of dimensionality with regard to the number of risk factors in the dynamics
of the asset returns.

21.5 Convolution Approach and Pricing of Bermudan Style
Options

We consider the extension of the FFT technique to pricing of options that allow
early exercise prior to the maturity date T . Recall that a Bermudan option can only
be exercised at a pre-specified set of time points, say T D ft1; t2; � � � ; tM g, where
tM D T . On the other hand, an American option can be exercised at any time prior
to T . By taking the number of time points of early exercise to be infinite, we can
extrapolate a Bermudan option to become an American option. In this section, we
would like to illustrate how the convolution property of Fourier transform can be
used to price a Bermudan option effectively (see Lord et al. 2008).

Let F.S.tm/; tm/ denote the exercise payoff of a Bermudan option at time tm,
m D 1; 2; � � � ;M . Let V.S.tm/; tm/ denote the time-tm value of the Bermudan
option with exercise point set T ; and we write�tm D tmC1�tm,m D 1; 2; � � � ;M�
1. The Bermudan option can be evaluated via the following backward induction
procedure:
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terminal payoff: V.S.tM /; tM / D F.S.tM /; tM /

For m D M � 1;M � 2; � � � ; 1; compute

C.S.tm/; tm/ D e�r�tm
Z 1

�1
V.y; tmC1/p.yjS.tm// dy

V.S.tm/; tm/ D maxfC.S.tm/; tm/; F.S.tm/; tm/g:

Here, p.yjS.tm// represents the probability density that relates the transition from
the price level S.tm/ at tm to the new price level y at tmC1. By virtue of the early
exercise right, the Bermudan option value at tm is obtained by taking the maximum
value between the time-tm continuation value C.S.tm/; tm/ and the time-tm exercise
payoff F.S.tm/; tm/.

The evaluation of C.S.tm/; tm/ is equivalent to the computation of the time-
tm value of a tmC1-maturity European option. Suppose the asset price process
is a monotone function of a Lévy process (which observes the independent
increments property), then the transition density p.yjx/ has the following
property:

p.yjx/ D p.y � x/: (21.26)

If we write z D y�x, then the continuation value can be expressed as a convolution
integral as follows:

C.x; tm/ D e�r�tm
Z 1

�1
V.x C z; tmC1/p.z/ d z: (21.27)

Following a similar damping procedure as proposed by Carr and Madan (1999), we
define

c.x; tm/ D e˛xCr�tmC.x; tm/

to be the damped continuation value with the damping factor ˛ > 0. Applying the
property of the Fourier transform of a convolution integral, we obtain

Fxfc.x; tm/g.u/ D Fyfv.y; tmC1/g.u/�.�.u � i˛//; (21.28)

and �.u/ is the characteristic function of the random variable z.
Lord et al. (2008) propose an effective FFT algorithm to calculate the following

convolution:

c.x; tm/ D 1

2


Z 1

�1
e�iux Ov.u/�.�.u � i˛// du; (21.29)

where Ov.u/ D Ffv.y; tm/g. The FFT calculations start with the prescription of
uniform grids for u; x and y:

uj D u0 C j�u; xj D x0 C j�x; yj D y0 C j�y; j D 0; 1; � � � ; N � 1:
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The mesh sizes �x and �y are taken to be equal, and �u and �y are chosen to
satisfy the Nyquist condition:

�u�y D 2


N
:

The convolution integral is discretized as follows:

c.xp/ � e�iu0.x0Cp�y/

2

�u

N�1X

jD0
e�ijp 2
N eij.y0�x0/�u�.�.uj � i˛//Ov.uj /; (21.30)

where

Ov.uj / � eiu0y0�y

N�1X

nD0
eijn2
=N einu0�ywnv.yn/;

w0 D wN�1 D 1

2
; wn D 1 for n D 1; 2; � � � ; N � 2:

For a sequence xp , p D 0; 1; � � � ; N � 1, its discrete Fourier transform and the
corresponding inverse are given by

Dj fxng D
N�1X

nD0
eijn2
=N xn; D�1

n fxj g D 1

N

N�1X

jD0
e�ij n2
=N xj :

By setting u0 D �N
2
�u so that einu0�y D .�1/n, we obtain

c.xp/ � eiu0.y0�x0/.�1/pD�1
p feij.y0�x0/�u�.�.uj � i˛//Dj f.�1/nwnv.yn/gg:

(21.31)
In summary, by virtue of the convolution property of Fourier transform, we

compute the discrete Fourier inversion of the product of the discrete characteristic
function of the asset returns �.�.uj � i˛// and the discrete Fourier transform of
option prices Dj f.�1/nwnv.yn/g. It is seen to be more efficient when compared to
the direct approach of recovering the density function by taking the Fourier inversion
of the characteristic function and finding the option prices by discounted expectation
calculations (see Zhylyevsky 2010).

21.6 FFT-Based Network Method

As an extension to the usual lattice tree method, an FFT-based network approach
to option pricing under Lévy models has been proposed by Wong and Guan
(2009). The network method somewhat resembles Duan-Simonato’s Markov chain
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approximation method (Duan and Simonato 2001). This new approach is developed
for option pricing for which the characteristic function of the log-asset value is
known. Like the lattice tree method, the network method can be generalized to
valuation of path dependent options by adopting the forward shooting grid technique
(see Kwok 2010).

First, we start with the construction of the network. We perform the space-
time discretization by constructing a pre-specified system of grids of time and
state: t0 < t1 < � � � < tM , where tM is the maturity date of the option, and
x0 < x1 < � � � < xN , where X D fxj jj D 0; 1; � � � ; N g represents the set
of all possible values of log-asset prices. For simplicity, we assume uniform grid
sizes, where �x D xjC1 � xj for all j and �t D tiC1 � ti for all i . Unlike the
binomial tree where the number of states increases with the number of time steps,
the number of states is fixed in advance and remains unchanged at all time points.
In this sense, the network resembles the finite difference grid layout. The network
approach approximates the Lévy process by a finite state Markov chain, like that
proposed by Duan and Simonato (2001). We allow for a finite probability that the
log-asset value moves from one state to any possible state in the next time step.
This contrasts with the usual finite difference schemes where the linkage of nodal
points between successive time steps is limited to either one state up, one state down
or remains at the same state. The Markov chain model allows greater flexibility to
approximate the asset price dynamics that exhibits finite jumps under Lévy model
with enhanced accuracy. A schematic diagram of a network with seven states and
three time steps is illustrated in Fig. 21.1.

After the construction of the network, the next step is to compute the transition
probabilities that the asset price goes from one state xi to another state xj under
the Markov chain model, 0 � i; j � N . The corresponding transition probability is
defined as follows:

pij D P ŒXtC�t D xj jXt D xi 	; (21.32)

Fig. 21.1 A network model with three time steps and seven states
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which is independent of t due to the time homogeneity of the underlying Lévy
process. We define the corresponding characteristic function by

�i .u/ D
Z 1

�1
eiuzfi .zjxi / d z;

where fi .zjxi / is the probability density function of the increment XtC�t � Xt
conditional on Xt D xi . The conditional probability density function can be
recovered by Fourier inversion:

fi .xj jxi / D F�1
u f�i .u/g.xj /: (21.33)

If we take the number of Markov chain states to be N C1 D 2L for some integerL,
then the above Fourier inversion can be carried out using the FFT techniques.
The FFT calculations produce approximate values for fi .xj jxi / for all i and j .
We write these approximate conditional probability values obtained from the FFT
calculations as Qfi .xj jxi /. The transition probabilities among the Markov chain
states are then approximated by

Qpij �
Qfi .xj jxi /PN

iD0 Qfi .xj jxi /
; 0 � i; j � N: (21.34)

Once the transition probabilities are known, we can perform option valuation
using the usual discounted expectation approach. The incorporation of various path
dependent features can be performed as in usual lattice tree calculations. Wong and
Guan (2009) illustrate how to compute the Asian and lookback option prices under
Lévy models using the FFT-based network approach. Their numerical schemes are
augmented with the forward shooting grid technique (see Kwok 2010) for capturing
the asset price dependency associated with the Asian and lookback features.

21.7 Fourier Space Time Stepping Method

When we consider option pricing under Lévy models, the option price function is
governed by a partial integral-differential equation (PIDE) where the integral terms
in the equation arise from the jump components in the underlying Lévy process. In
this section, we present the Fourier space time stepping (FST) method that is based
on the solution in the Fourier domain of the governing PIDE (see Jackson et al.
2008). This is in contrast with the usual finite difference schemes which solve the
PIDE in the real domain. We discuss the robustness of the FST method with regard
to its symmetric treatment of the jump terms and diffusion terms in the PIDE and
the ease of incorporation of various forms of path dependence in the option models.
Unlike the usual finite difference schemes, the FST method does not require time
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stepping calculations between successive monitoring dates in pricing Bermudan
options and discretely monitored barrier options. In the numerical implementation
procedures, the FST method does not require the analytic expression for the Fourier
transform of the terminal payoff of the option so it can deal easier with more exotic
forms of the payoff functions. The FST method can be easily extended to multi-asset
option models with exotic payoff structures and pricing models that allow regime
switching in the underlying asset returns.

First, we follow the approach by Jackson et al. (2008) to derive the governing
PIDE of option pricing under Lévy models and consider the Fourier transform of the
PIDE. We consider the model formulation under the general multi-asset setting. Let
S.t/ denote a d -dimensional price index vector of the underlying assets in a multi-
asset option model whose T -maturity payoff is denoted by VT .S.T //. Suppose the
underlying price index follows an exponential Lévy process, where

S.t/ D S.0/eX.t/;

and X.t/ is a Lévy process. Let the characteristic component of X.t/ be the triplet
.�;M; �/, where � is the non-adjusted drift vector, M is the covariance matrix
of the diffusion components, and � is the d -dimensional Lévy density. The Lévy
process X.t/ can be decomposed into its diffusion and jump components as follows:

X.t/ D �.t/CMW.t/C Jl .t/C lim
�!0

J�.t/; (21.35)

where the large and small components are

Jl .t/ D
Z t

0

Z

jyj�1
ym.dy � ds/

J�.t/ D
Z t

0

Z

��jyj<1
y Œm.dy � ds/ � �.dy � ds/	;

respectively. Here, W.t/ is the vector of standard Brownian processes, m.dy � ds/
is a Poisson random measure counting the number of jumps of size y occurring at
time s, and �.dy � ds/ is the corresponding compensator. Once the volatility and
Lévy density are specified, the risk neutral drift can be determined by enforcing the
risk neutral condition:

E0Œe
X.1/	 D er ;

where r is the riskfree interest rate. The governing partial integral-differential
equation (PIDE) of the option price function V.X.t/; t/ is given by

@V

@t
C LV D 0 (21.36)
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with terminal condition: V.X.T /; T / D VT .S.0/; eX.T //, where L is the infinitesi-
mal generator of the Lévy process operating on a twice differentiable function f .x/
as follows:

Lf .x/ D
 

�T @

@x
C @

@x

T

M
@

@x

!
f .x/

C
Z

Rnnf0g
fŒf .x C y/� f .x/	 � yT @

@x
f .x/1jyj<1g �.dy/: (21.37)

By the Lévy-Khintchine formula, the characteristic component of the Lévy process
is given by

 X.u/ D i�Tu � 1

2
uTMu C

Z

Rn

�
eiu

Ty � 1 � iuTy1jyj<1
�
�.dy/: (21.38)

Several numerical schemes have been proposed in the literature that solve the PIDE
(21.36) in the real domain. Jackson et al. (2008) propose to solve the PIDE directly
in the Fourier domain so as to avoid the numerical difficulties in association with the
valuation of the integral terms and diffusion terms. An account on the deficiencies
in earlier numerical schemes in treating the discretization of the integral terms can
be found in Jackson et al. (2008).

By taking the Fourier transform on both sides of the PIDE, the PIDE is reduced
to a system of ordinary differential equations parametrized by the d -dimensional
frequency vector u. When we apply the Fourier transform to the infinitesimal
generator L of the process X.t/, the Fourier transform can be visualized as a linear
operator that maps spatial differentiation into multiplication by the factor iu. We
define the multi-dimensional Fourier transform as follows (a slip of sign in the
exponent of the Fourier kernel is adopted here for notational convenience):

F Œf 	.u/ D
Z 1

�1
f .x/e�iuTx dx

so that

F�1ŒFf 	.u/ D 1

2


Z 1

�1
Ff eiu

Tx du:

We observe

F
�
@

@x
f

	
D iuF Œf 	 and F

�
@2

@x2
f

	
D iuF Œf 	 iuT

so that
F ŒLV 	.u; t/ D  X.u/F ŒV 	.u; t/: (21.39)
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The Fourier transform of LV is elegantly given by multiplying the Fourier transform
of V by the characteristic component  X.u/ of the Lévy process X.t/. In the
Fourier domain, F ŒV 	 is governed by the following system of ordinary differential
equations:

@

@t
F ŒV 	.u; t/C  X.u/F ŒV 	.u; t/ D 0 (21.40)

with terminal condition: F ŒV 	.u; T / D FVT .u; T /.
If there is no embedded optionality feature like the knock-out feature or early

exercise feature between t and T , then the above differential equation can be
integrated in a single time step. By solving the PIDE in the Fourier domain and
performing Fourier inversion afterwards, the price function of a European vanilla
option with terminal payoff VT can be formally represented by

V.x; t/ D F�1 ˚F ŒVT 	.u; T /e X.u/.T�t /� .x; t/: (21.41)

In the numerical implementation procedure, the continuous Fourier transform and
inversion are approximated by some appropriate discrete Fourier transform and
inversion, which are then effected by FFT calculations. Let vT and vt denote the
d -dimensional vector of option values at maturity T and time t , respectively, that
are sampled at discrete spatial points in the real domain. The numerical evaluation
of vt via the discrete Fourier transform and inversion can be formally represented by

vt D FFT �1ŒFFT ŒvT 	e X.T�t /	; (21.42)

where FFT denotes the multi-dimensional FFT transform. In this numerical FFT
implementation of finding European option values, it is not necessary to know the
analytic representation of the Fourier transform of the terminal payoff function. This
new formulation provides a straightforward implementation of numerical pricing of
European spread options without resort to elaborate design of FFT algorithms as
proposed by Dempster and Hong (2000) and Hurd and Zhou (2009) (see Sect. 21.4).

Suppose we specify a set of preset discrete time points X D ft1; t2; � � � ; tN g,
where the option may be knocked out (barrier feature) or early exercised (Bermudan
feature) prior to maturity T (take tNC1 D T for notational convenience). At
these time points, we either impose constraints or perform optimization based on
the contractual specification of the option. Consider the pricing of a discretely
monitored barrier option where the knock-out feature is activated at the set of
discrete time points X . Between times tn and tnC1, n D 1; 2; � � � ; N , the barrier
option behaves like a European vanilla option so that the single step integration can
be performed from tn to tnC1. At time tn, we impose the contractual specification of
the knock-out feature. Say, the option is knocked out when S stays above the up-
and-out barrier B . Let R denote the rebate paid upon the occurrence of knock-out,
and vn be the vector of option values at discrete spatial points. The time stepping
algorithm can be succinctly represented by
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vn D HB.FFT �1ŒFFT ŒvnC1	e X.tnC1�tn/	/;

where the knock-out feature is imposed by defining HB to be (see Jackson et al.
2008)

HB.v/ D v1n
x<log B

S.0/

o CR1n
x�log B

S.0/

o:

No time stepping is required between two successive monitoring dates.

21.8 Summary and Conclusions

The Fourier transform methods provide the valuable and indispensable tools for
option pricing under Lévy processes since the analytic representation of the
characteristic function of the underlying asset return is more readily available than
that of the density function itself. When used together with the FFT algorithms, real
time pricing of a wide range of option models under Lévy processes can be delivered
using the Fourier transform approach with high accuracy, efficiency and reliability.
In particular, option prices across the whole spectrum of strikes can be obtained in
one set of FFT calculations.

In this chapter, we review the most commonly used option pricing algorithms via
FFT calculations. When the European option price function is expressed in terms of
Fourier inversion integrals, option pricing can be delivered by finding the numerical
approximation of the Fourier integrals via FFT techniques. Several modifications
of the European option pricing formulation in the Fourier domain, like the damped
option price method and time value method, have been developed so as to avoid
the singularity associated with non-differentiability of the terminal payoff function.
Alternatively, the pricing formulation in the form of a convolution product is used
to price Bermudan options where early exercise is allowed at discrete time points.
Depending on the structures of the payoff functions, the extension of FFT pricing to
multi-asset models may require some ingeneous formulation of the corresponding
option model. The order of complexity in the FFT calculations for pricing multi-
asset options generally increases with the number of underlying assets rather than
the total number of risk factors in the joint dynamics of the underlying asset returns.
When one considers pricing of path dependent options whose analytic form of
the option price function in terms of Fourier integrals is not readily available, it
becomes natural to explore various extensions of the lattice tree schemes and finite
difference approach. The FFT-based network method and the Fourier space time
stepping techniques are numerical approaches that allow greater flexibility in the
construction of the numerical algorithms to handle various form of path dependence
of the underlying asset price processes through the incorporation of the auxiliary
conditions that arise from modeling the embedded optionality features. The larger
number of branches in the FFT-based network approach can provide better accuracy
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to approximate the Lévy process with jumps when compared to the usual trinomial
tree approach. The Fourier space time stepping method solves the governing partial
integral-differential equation of option pricing under Lévy model in the Fourier
domain. Unlike usual finite difference schemes, no time stepping procedures are
required between successive monitoring instants in option models with discretely
monitored features.

In summary, a rich set of numerical algorithms via FFT calculations have been
developed in the literature to perform pricing of most types of option models under
Lévy processes. For future research topics, one may consider the pricing of volatility
derivatives under Lévy models where payoff function depends on the realized
variance or volatility of the underlying price process. Also, more theoretical works
should be directed to error estimation methods and controls with regard to sampling
errors and truncation errors in the approximation of the Fourier integrals and other
numerical Fourier transform calculations.
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for pricing early-exercise options under Lévy processes. SIAM Journal on Scientific Computing,
30, 1678–1705.

Merton, R. (1973). Theory of rational option pricing. Bell Journal of Economics and Management
Sciences, 4, 141–183.

Merton, R. (1976). Option pricing when the underlying stock returns are discontinuous. Journal of
Financial Economics, 3, 125–144.

Naik, V. (2000). Option pricing with stochastic volatility models. Decisions in Economics and
Finance, 23(2), 75–99.

Stein, E., & Stein, J. (1991). Stock price distribution with stochastic volatility: An analytic
approach. Review of Financial Studies, 4, 727–752.

Wong, H. Y., & Guan, P. (2009). An FFT network for Lévy option pricing. Working Paper of The
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Chapter 22
Dynamic Programming and Hedging Strategies
in Discrete Time

Shih-Feng Huang and Meihui Guo

Abstract In this chapter, we introduce four hedging strategies for path-independent
contingent claims in discrete time – superhedging, local expected shortfall-hedging,
local quadratic risk-minimizing and local quadratic risk-adjusted-minimizing strate-
gies. The corresponding dynamic programming algorithms of each trading strategy
are introduced for making adjustment at each rebalancing time. The hedging
performances of these discrete time trading strategies are discussed in the trinomial,
Black-Scholes and GARCH models. Moreover, the hedging strategies of path-
dependent contingent claims are introduced in the last section, and the hedges of
barrier options are illustrated as examples.

22.1 Introduction

A hedge is an important financial strategy used to reduce the risk of adverse price
movements in an asset by buying or selling others. Recently, hedging becomes a
more important issue consequent on the catastrophe for the global financial system
caused by the bankruptcy of major financial-services firm such as the Lehman
Brothers Holdings Inc. In practice, practitioners are impossible to adjust their
hedging positions continuously, such as in the Black-Scholes framework, and need
to reduce the rebalancing times to lower down their transaction costs. Thus how to
set up hedging portfolios in discrete time is of more practical importance. Herein,
we introduce four hedging strategies for path-independent contingent claims in
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discrete time – superhedging, local expected shortfall-hedging, local quadratic risk-
minimizing and local quadratic risk-adjusted-minimizing strategies. The related
dynamic programmings are introduced for making adjustment of the hedging
portfolio at each rebalancing time.

Normally, a hedge consists of taking an offsetting position in a related security,
such as a derivative. In complete financial markets, contingent claims can be
replicated by self-financing strategies, and the costs of replication define the prices
of the claims. In incomplete financial markets, one can still eliminate the risk
completely by using a “superhedging” strategy (or called the perfect-hedging).
However, from a practical point of view the cost of superhedging is often too
expensive. Therefore investors turn to hedging strategies with less capitals by
considering risk minimization criteria. Different hedging strategies are proposed
from different economic perspectives such as minimizing the quadratic hedging
risks or the expected shortfall risks. To simplify the illustration of the hedging
strategies, we employ a trinomial model, which is a discrete time and discrete state
incomplete market model, to introduce the construction of these hedging strategies.
In addition, we will compare the hedging performances of different discrete time
hedging strategies in the Black-Scholes and GARCH models. In the last section, we
discuss the problem of hedging path-dependent contingent claims and introduce the
hedging strategies of barrier options.

22.2 Discrete Time Hedging Strategies and Dynamic
Programmings

In this section, several discrete time hedging strategies in incomplete market models
are introduced. We illustrate four hedging strategies in a trinomial model, which
is a discretized description of geometric Brownian motion often used to describe
asset behavior. One can extend the results to multinomial market model analogously.
In a trinomial tree the asset price at each node moves in three possible ways, up
movement, down movement and jump movement. The general form of a one period
trinomial tree is as shown in Fig. 22.1a. Given the stock price St�1 at time t � 1,
where t D 1; 2; � � � , suppose that there are three possible stock prices at time t , St D
uSt�1, St D dSt�1 and St D jSt�1, with probability p1, p2 and p3, respectively,
where u > d > j , pi ’s are positive and p1 C p2 C p3 D 1. If a practitioner shorts
a European call option with expiration date T and strike price K at the initial time,
how could she set up a hedging portfolio to hedge her short position?

22.2.1 Superhedging Strategy

First of all, we discuss the superhedging strategy, which was introduced by Bensaid
et al. (1992) in discrete time. They concluded that for a contingent claim with
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a b

Fig. 22.1 (a) One period trinomial model; (b) Superhedging of the one period trinomial model

expiration date T and payoff VT the initial hedging capital of the corresponding
superhedging strategy is identical to

sup
Q2Q

EQ.e�rT VT /;

where Q is the set containing all the risk-neutral probability measures Q, and r
is the continuously compounded riskless interest rate. In order to construct the
superhedging strategy in the trinomial model, a comprehensive method is introduced
in the following. We employ a one-period trinomial model for illustration. Denote
the initial hedging capital by F0 and let

F0 D h00 C h10S0;

where h00 and h10 are the holding units of the riskless bond and the stock at the
initial time, respectively. At the expiration date, the value of this hedging portfolio
becomesF1 D h00e

rCh10S1. Our aim is to search a hedging strategyHSH D . Oh00; Oh10/
such that

F0.H
SH/ D minH fF0.H/ W F1.H/ 	 C1 D .S1 �K/C;

for S1 D uS0; dS0; and jS0g;
(22.1)

where C1 D .S1 � K/C is the payoff function of a European call option with
strike price K . Note that F1 is a linear function of S1 and C1 is convex in S1.
Thus the linear function passing through the two terminal points .uS0; C1.uS0//
and .jS0; C1.jS0// is the optimal solution of (22.1). Hence, in the trinomial model
with assuming K < uS0, the superhedging strategyHSH is defined as

8
ˆ̂<

ˆ̂:

Oh00 D K � uS0
u � j je�r

Oh10 D uS0 �K
.u � j /S0

;
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and thus

F0.H
SH / D .uS0 �K/.1� je�r /

u � j :

In Fig. 22.1b, the dash line represents the function of the superhedging strategy at
time 1. Apparently, the values of dash line are all greater than the corresponding
payoffs of the three possible stock prices jS0, dS0 and uS0 at the expiration date.
In other words, practitioners can eliminate all the risk of the short position of the
European call option by setting the superhedging strategy HSH with initial capital
F0.H

SH /.

Example 1. If u D 1:1, d D 0:9, j D 0:8, r D 0, S0 D 100 and K D 100, then
F0.H

SH / D 20
3

. Furthermore, let q1, q2 and q3 denote the risk-neutral probability
measures of the events S1 D uS0, S1 D dS0 and S1 D jS0, respectively. Using the
constraints of S0 D e�rEQ.S1/, q1 C q2 C q3 D 1, and qi ’s are positive, we have
1
2
< q1 <

2
3
, q2 D 2 � 3q1 and q3 D 2q1 � 1. Hence, the no-arbitrage price of

the European call option, C0 D e�rEQ.C1/, is between 5 and 20
3

, where the upper
bound is exactly the same as the hedging capital of the superhedge. This result is
consistent with the conclusion in Bensaid et al. (1992).

Although the superhedging can always keep investors staying on the safe side, it
is often too expensive. Therefore, practitioners are unwilling to put up the initial
amount of capital required by a superhedging and are ready to accept some risk
with some risk minimizing criteria. In the following sections, we introduce several
different risk minimizing criteria.

22.2.2 Local Expected Shortfall-Hedging and the Related
Dynamic Programming

The expected shortfall of a self-financing hedging strategy H of a contingent claim
with payoff VT is defined as

Ef.VT � FT .H//
Cg;

where FT .H/ is the terminal wealth of the self-financing hedging strategy H at
the expiration date T . Practitioners want to know whether there exists an optimal
hedging strategy, denoted byHES , such that the expected shortfall risk is minimized
with a pre-fixed initial hedging capital V0, that is,

HES D arg min
H2S

Ef.VT � FT .H//
Cg;



22 Dynamic Programming and Hedging Strategies in Discrete Time 609

where

S D fH j H is a self-financing hedging strategy with initial hedging capital V0g:

Cvitanić and Karatzas (1999) and Föllmer and Leukert (2000) pioneered the
expected shortfall-hedging approach and showed the existence of this hedging
strategy. Schulmerich and Trautmann (2003) proposed a searching algorithm to
construct a hedging strategy which minimizes the expected shortfall risk in complete
and incomplete discrete markets. But the searching algorithm often spends large of
computation time. In order to overcome this time-consuming problem, Schulmerich
and Trautmann (2003) further proposed a local expected shortfall-hedging strategy.
The idea of the local expected shortfall-hedging strategy is introduced in the
following.

The first step is to find an optimal modified contingent claim X�, which is a
contingent claim that belongs to the set � of all modified contingent claims, where

� � fX j X < VT and EQ.X=BT / � V0

for all risk-netral probability measureQg;

and
X� D arg min

X2� E.VT � X/: (22.2)

The above definition implies that the superhedging cost of any modified contingent
claim is lower or equal than the initial hedging capital V0. By Proposition 2 of
Schulmerich and Trautmann (2003), the superhedging cost of the optimal modifined
contingent claim X� is identical to the shortfall risk of the hedging strategy HES ,
that is,

Ef.VT � FT .HES//Cg D E.VT � X�/:

Therefore, one can determine the desired hedging strategy HES by the following
two steps:

[Dynamic programming of expected shortfall-hedging]

1. Find an optimal modified contingent claim X� 2 � with criterion (22.2).
2. Construct a superhedging strategy for X�.

Since Step-2 can be accomplished by the method introduced in the previous section,
the main concern is the first step. In complete markets, the optimal modified
contingent claimX� is a direct consequence of a slight modification of the Neyman-
Pearson lemma (see Föllmer and Leukert 2000; Schulmerich and Trautmann 2003).
The solution of the optimal modified contingent claim is given in Proposition 4 of
Schulmerich and Trautmann (2003), that is,

X�.!/ D VT .!/I.P.!/=Q.!/>c/ C �I.P.!/=Q.!/Dc/ (22.3)
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with cES D min!fP.!/=Q.!/g and

� D fV0BT � VTE
Q.I.P.!/=Q.!/>c//g

.
EQ.I.P.!/=Q.!/Dc//:

If the market is incomplete, the construction of the optimal expected shortfall
hedging strategy is much more complicated than that in complete markets due to the
fact that the risk-neutral probability measures are not unique. For continuous time
models, Föllmer and Leukert (2000) showed that an optimal hedging strategy exists
but didn’t provide an explicit algorithm to calculate it. As for the discrete models,
an algorithm of the optimal expected shortfall-hedging is given in Proposition 5 of
Schulmerich and Trautmann (2003). The basic idea of this algorithm is still based
on (22.3). The main difficulty is to deal with the non-uniqueness of the equivalent
martingale measures. Let Q denote the smallest polyhedron containing all the
martingale measures. Since Q is convex, there exists a finite number of extreme
points of the convex polyhedronQ, denoted by Q1; � � � ;QL, and thus the criterion
of choosing optimal modified contingent claim X�, maxQ2Q EQ.X�=BT / � V0,
could be simplified by

max
iD1;��� ;L E

Qi .X�=BT / � V0:

However, it consumes a lot of computational effort to check this condition.
Therefore, Schulmerich and Trautmann (2003) further proposed the following local
expected shortfall-hedging strategy, denoted by HLES :

[Dynamic programming of local expected shortfall-hedging]

Let VT be a European type contingent claim and F SH
t be the corresponding superhedging

values at time t D 1; � � � ; T . Then find sequentially a self-financing strategy HLES D
.HLES

1 ; � � � ; HLES
T / withHLES

t minimizing the local expected shortfall

Et�1f.F SH
t � Ft .H//

Cg;
for t D 1; � � � ; T , where Et�1.�/ denotes the conditional expectation under the dynamic
probability measure given the information up to time t � 1.

In the following, we give two examples to illustrate the construction of HLES
t .

Example 2 gives a one-period trinomial case and Example 3 considers a two-period
situation.

Example 2. Consider the same one-period trinomial model as in Example 1. Let
!1, !2 and !3 denote the states of S1 D uS0, dS0 and jS0, respectively, and
P denote the dynamic probability measure with P.!1/ D 0:55, P.!2/ D 0:40

and P.!3/ D 0:05. As shown in Example 1, the set Q of risk-neutral probability
measures can be expressed as

Q D f.q1; q2; q3/ W 1
2
< q1 <

2

3
; q2 D 2 � 3q1 > 0 and q3 D 2q1 � 1 > 0g:
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Let Q be the smallest polyhedron containingQ, that is,

Q D f.q1; q2; q3/ W 1
2

� q1 � 2

3
; q2 D 2 � 3q1 	 0 and q3 D 2q1 � 1 	 0g:

Then Q1.!1; !2; !3/ D . 1
2
; 1
2
; 0/ and Q2.!1; !2; !3/ D . 2

3
; 0; 1

3
/ be two extreme

points of this convex polyhedron Q.
A practitioner is willing to set her initial hedging capital to be 6, which is

less than the initial capital required by the superhedging strategy 20
3

. Our aim is
to determine a trading strategy minimizing the expected shortfall with the initial
hedging capital. By Proposition 5 of Schulmerich and Trautmann (2003), since
EQ2.V1/ > EQ1.V1/, we consider Q2 first. In order to determine the modified
contingent claim, one can apply Proposition 4 of Schulmerich and Trautmann
(2003). However, Proposition 4 of Schulmerich and Trautmann (2003) can not be
implemented directly to the trinomial model since trinomial model is not a complete
market model. Nevertheless, due to the fact thatQ2.!2/ D 0, we can ignore the state
!2 temporarily and only determine the modified contingent claim by the states !1
and !3:

X.!/ D V1.!/I.P.!/=Q2.!/>c/ C �I.P.!/=Q2.!/Dc/;

where c D minfP.!/=Q2.!/ W ! D !i ; i D 1; 3g and � is chosen to
ensure EQ2.X/ � 6. By straightforward computation, we have X.!1/ D 10 and
X.!3/ D �2.

Next, construct the superhedging strategy for X.!i/, i D 1; 3. By the same way
introduced in Sect. 22.2.1, one can obtain the hedging portfolio HLES

0 D . Qh00; Qh10/
to be ( Qh00 D �34

Qh10 D 0:4:
;

which satisfies HLES
1 .!1/ D X.!1/ D 10 andHLES

1 .!3/ D X.!3/ D �1. Finally,
we defined the value of the modified contingent claim of state !2 by X.!2/ D
HLES
1 .!2/ D 2. Note that for this modified contingent claim, we have EQ2.X/ D

EQ1.X/ D 6 and since any risk-neutral probability measure can be expressed by
Q D aQ1 C .1 � a/Q2, 0 < a < 1, thus for all risk-neutral probability measure
Q 2 Q we conclude that EQ.X/ D 6, and the corresponding minimal expected
shortfall is

EfV1 � F1.HLES
0 /gC D E.V1 � X/C D 0:1:

Example 3. In this example, we extend the one-period trinomial model discussed in
previous examples to two period. In each period, given the stock price St , t D 0; 1,
let the stock prices at the next time point be StC1 D uSt , dSt and jSt , with dynamic
probability 0:55, 0:40 and 0:05, respectively. In Fig. 22.3, the values of S0, S1 and
S2 are set with S0 D 100, u D 1:1, d D 0:9 and j D 0:8. The payoff at time-2 is
defined by V2 D .S2 � 100/C, which is the payoff of a European call option with
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a b

Fig. 22.2 (a) One period trinomial model in Example 2; (b) Local expected shortfall-hedging
strategy of the one period trinomial model

(S2, F2, X2)

(S1, F1, X1)

S0

100

3
1

0,,
3
2

Under Q2
(64,0,-30)

(72,0,-20)
(80,0,-10)

(90,0,-2)

(110,14,14)

(72,0,-6)

(81,0,-4)

(99,0,0)

(88,0,0)

(99,0,7)

(121,21,21)

(88,0,0)

Fig. 22.3 Local expected shortfall-hedging strategy of the two period trinomial model in
Example 3

expiration date T D 2 and strike price K D 100. As in Example 2, the probability
measures Q1.!1; !2; !3/ D . 1

2
; 1
2
; 0/ and Q2.!1; !2; !3/ D . 2

3
; 0; 1

3
/ are the two

extreme points of the convex polyhedron Q. Also assume that an investor’s initial
hedging capital is set to be 6, which is still less than the initial capital required by
the superhedging strategy

max
Q2Q

EQ.e�2rV2/ D EQ2.e�2rV2/ D 28

3
;

where the riskless interest rate r is set to be 0. In the following, we illustrate how
to obtain the modified contingent claim Xt at each time point t D 1; 2, and then
construct the local expected shortfall-hedging strategy.

Since EQ2.e�2rF2/ > EQ1.e�2rF2/ where F2 D V2, thus under the proba-
bility measure Q2, compute the time-1 payoff F1 by the conditional expectation,
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EQ2.e�rF2jS1/, given the stock price S1. The first step is to find the one period
optimal expected shortfall-hedging with initial hedging capital 6 and payoff F1
in the one period trinomial model. This step can be solve by similar way as
in Example 2. Hence, we obtain the modified contingent claim X1 and the
corresponding hedging strategy.

For the second period, given any stock price S1, the problem can be treated
as another one period trinomial hedging task, that is, find the one period optimal
expected shortfall-hedging with initial hedging capital X1.S1/ and payoff F2.
Therefore, we can still adopt similar way as in Example 2 to obtain the modified
contingent claim X2 and the corresponding hedging strategy. The values of the
modified contingent claim Xi , i D 1; 2, are given in Fig. 22.3. Note that for the
modified contingent claim X2, we have EQ2.X2/ D EQ1.X2/ D 6 and since any
risk-neutral probability measure can be expressed by Q D aQ1 C .1 � a/Q2,
0 < a < 1, thus for all risk-neutral probability measure Q 2 Q we conclude that
EQ.X/ D 6, and the corresponding expected shortfall is EŒ.F2 �X2/C	 D 1:235:

22.2.3 Local Quadratic Risk-Minimizing Hedging Strategy
and Its Dynamic Programming

In the following two sections, we introduce two different local quadratic risk-
minimizing hedging strategies. Both are allowed to be non-self-financing trading
strategies. That is, practitioners are allowed to put or withdraw money at each
rebalancing time point.

Consider a contingent claim, underlying the risky stock ST , that pays the value
VT at expiration date T . Practitioners interested in hedging this claim could attempt
to set up a hedging scheme by a dynamic trading strategy in the underlying assets.
Let Ft�1 be the value of the hedging portfolio consisting of riskless bond and the
underlying stock at time t � 1,

Ft�1 D h0t�1Bt�1 C h1t�1St�1; (22.4)

where h0t�1 and h1t�1 are the holding units of riskless bondBt�1 and the stock St�1 at
time t�1, respectively. Retain h0t�1 and h1t�1 constant till time t and the value of the
hedging portfolio becomes h0t�1Bt Ch1t�1St before relocating the hedging positions
at time t . Denote the difference between before and after relocating the hedging
portfolio by ıt , which is called the additional capital at time t and is defined as
follows,

ıt .St / D Ft .St /� .h0t�1Bt C h1t�1St /; (22.5)

for t D 1; � � � ; T . Note that if ıt .St / D 0 for all t D 1; � � � ; T , then the trading
strategy is called self-financing. Here we release this restriction and consider to
construct a trading strategy which is capable to reduce the risk caused by the
additional capital in some risk-minimizing sense. In order to achieve this objective,
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let the holding positions at the expiration date be h0T D VT =BT and h1T D 0, and
thus FT D VT , which means that the hedging portfolio is set to replicate the payoff
of the claim after relocating the hedging positions at time T . The holding positions
at rebalancing time t D 1; � � � ; T � 1, are then determined by a backward scheme
with a specific risk-minimizing criterion.

In this section, we first introduce the local quadratic risk-minimizing criterion.
Based on this criterion, the holding units are determined by

min
h0t�1;h

1
t�1

Et�1
�
fıt .St /=Bt g2

�
; (22.6)

and the closed-form expression of h0t�1 and h1t�1 for t D 1; � � � ; T can be obtained
by solving

@

@h0t�1
Et�1

�
fıt .St /=Bt g2

�
D 0 and

@

@h1t�1
Et�1

�
fıt .St /=Bt g2

�
D 0:

The dynamic programming of the local quadratic risk-minimizing hedging, abbre-
viated by LQR-hedging, is summarized as follows.

[Dynamic programming of LQR-hedging]

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

. Oh0T ; Oh1T / D . QVT ; 0/

Oh1t�1 D Covt�1. QFt ; QSt /
Vart�1. QSt /

Oh0t�1 D Et�1. QFt /� Oh1t�1E. QSt / D Et�1f Oh0t C . Oh1t � Oh1t�1/ QSt g

; (22.7)

where QVT D VT =BT , QFt D Ft=Bt and QSt D St=Bt , for t D 1; � � � ; T .

In the following, we give an example to illustrate the local expected squared risk
minimizing hedging strategy in a trinomial model.

Example 4. Consider the same one-period trinomial model as in Example 2. By
the dynamic programming (22.7), the holding units of riskless bonds and the risky
security are given by . Oh00; Oh10/ D .�40:26; 0:4553/. The initial hedging capital is

F0 D Oh00 C Oh10S0 D 5:5;

which lies in the no-arbitrage region .5; 20
3
/. That is, practitioners can use an

initial hedging capital of 5.5, which is less than the initial capital required by
the superhedging strategy, to construct a hedging portfolio which minimizes the
quadratic risk.
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Security 1

Riskless bond

Security k

.  .  . 

adjusted

discounted

0 T

Fig. 22.4 Risk-adjusted and discounted values

22.2.4 Local Quadratic Risk-Adjusted-Minimizing Hedging
and Its Dynamic Programming

In this section, we introduce another type of quadratic risk-minimizing hedging
under consideration of risk-adjusted. Define the one-step-ahead risk-adjusted hedg-
ing cost as

ı�
t .St / � ı.Ste

��t /;

where �t � logŒEt�1f.St=Bt /=.St�1=Bt�1/g	 is the risk premium. Figure 22.4
illustrates the concepts of risk-adjusted with k risky securities and discounted
values. Instead of the risk-minimizing criterion (22.6) mentioned in Sect. 22.2.3,
we consider to construct a trading strategy which minimizes the one-step-ahead
quadratic discounted risk-adjusted hedging costs, that is,

min
h0t�1;h

1
t�1

Et�1f Qı�
t .St /g2; (22.8)

where Qı�
t .St / D ı�

t .St /=Bt D QF �
t �.h0t�1Ch1t�1 QS�

t /; and QF �
t D Ft .Ste

��t /=Bt and
QS�
t D Ste

��t =Bt denote the discounted adjusted values of Ft and St , respectively.
Statistically speaking, the criterion (22.8) is equivalent to find a best

linear approximation of QF �
t with the shortest L2-distance under the physical

measure P . Hence, this best linear approximation will pass through the point
.Et�1. QS�

t /; Et�1. QF �
t //. By the definition of �t , we have Et�1. QS�

t / D QSt�1:
Therefore, the amount Et�1. QF �

t / is treated as the discounted hedging capital for a
given discounted stock price QSt�1 at time t � 1 and thus

Et�1. QF �
t / D QFt�1;
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under the dynamic probability measure. The theoretical proof of this equality could
be found in Elliott and Madan (1998) and Huang and Guo (2009c).

Based on the optimal criterion (22.8), the closed-form expression of h0t�1 and
h1t�1 can be obtained by solving

@

@h0t�1
Et�1f Qı�

t .St /g2 D 0 and
@

@h1t�1
Et�1f Qı�

t .St /g2 D 0:

We call this trading strategy by local quadratic risk-adjusted-minimizing hedging,
abbreviated by LQRA-hedging, and the corresponding dynamic programming is
described as follows.

[Dynamic programming of LQRA-hedging]

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

. Oh0T ; Oh1T / D . QVT ; 0/

Oh1t�1 D Covt�1. QF �
t ; QS�

t /

Vart�1. QS�
t /

Oh0t�1 D Et�1. QF �
t /� Oh1t�1E. QS�

t / D Et�1f Oh0t C . Oh1t � Oh1t�1/ QS�
t g

: (22.9)

In the following, we give an example to illustrate the LQRA-hedging in a trinomial
model.

Example 5. Consider the same one-period trinomial model as in Example 2. First,
we compute the risk premium

� D log
n
E
�
e�r St

St�1

�o
D e�r log.up1 C dp2 C jp3/ D log.1:0005/:

The discounted risk-adjusted stock prices at time 1 are

QS�
1 .!1/ D S1.!1/e

�r�� D 22000

201
> K D 100;

QS�
1 .!2/ D S1.!2/e

�r�� D 1800

201
< K;

and
QS�
1 .!3/ D S1.!3/e

�r�� D 16000

201
< K:

Hence, the corresponding discounted risk-adjusted option values are QV �
1 .!1/ D

1900
201

, and QV �
1 .!2/ D QV �

1 .!3/ D 0. By the dynamic programming (22.9), the holding

units of riskless bonds and the security are given by . Oh00; Oh10/ D .�38:06; 0:4326/.
Thus the initial hedging capital is

F0 D Oh00 C Oh10S0 D 5:199;
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which also lies in the interval of no-arbitrage prices, .5; 20
3
/. In other words, the

criterion of quadratic risk-adjusted-minimizing not only provides a hedging strategy,
but also a no-arbitrage price of the European call option in this incomplete market.

If the market model is discrete time and continuous state type, such as the
GARCH model (Bollerslev 1986), Elliott and Madan (1998) showed that

Et�1. QF �
t / D E

Q
t�1. QFt / D QFt�1;

where the measure Q is the martingale measure derived by the extended Girsanov
change of measure. In particular, Huang and Guo (2009c) showed that if the
innovation is assumed to be Gaussian distributed, then the GARCH martingale
measure derived by the extended Girsanov principle is identical to that obtained by
Duan (1995). Moreover, the formula of the optimal . Oh0t�1; Oh1t�1/ obtained in (22.9)
can be expressed as

8
ˆ̂̂
<

ˆ̂̂
:

Oh0t�1 D
QFt�1EQ

t�1. QS2t / � QSt�1EQ
t�1. QFt QSt /

VarQt�1. QSt /
Oh1t�1 D CovQt�1. QFt ; QSt /

VarQt�1. QSt /

(22.10)

under the risk-neutral measure Q, for t D 1; � � � ; T , where CovQt�1 and VarQt�1 are
the conditional covariance and variance given Ft�1 computed under the risk-neutral
measureQ, respectively.

Both (22.9) and (22.10) provide recursive formulae for building the LQRA-
hedging backward from the expiration date. In practical implementation, practition-
ers may want to keep the holding units of the hedging portfolio constant for ` units of
time due to the impact of the transaction costs. If we denote the discounted hedging
capital with hedging period ` at time t by

QFt;` D Oh0t;` C Oh1t;` QSt ; (22.11)

where Oh0t;` and Oh1t;` are the holding units of riskless bonds and the underlying asset,
respectively, and are determined instead by the following optimal criterion

min
h0t;`;h

1
t;`

E
Q
t f QıtC`.StC`/g2: (22.12)

Note that the optimal holding units . Oh0t;`; Oh1t;`/ are functions of the hedging

period `. By similar argument as (22.10), Oh0t;` and Oh1t;` can be represented as

8
<̂

:̂

Oh1t;` D CovQt . QFtC`; QStC`/=VarQt . QStC`/

Oh0t;` D E
Q
t . QFtC`/� O�1t;` QStC`

: (22.13)
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Equation (22.13) is really handy in building LQRA-hedging. For example, suppose
that a practitioner writes a European call option with strike price K and expiration
date T . She wants to set up a `-period hedging portfolio consisting of the underlying
stock and the riskless bonds at time t with the hedging capital Ft to hedge her short
position, and the hedging portfolio remains constant till time t C `, 0 < ` � T � t .
Huang and Guo (2009c) proved that the hedging capital of the `-period LQRA-
hedging is independent of the hedging period ` and is equal to the no-arbitrage
price derived by the extended Girsanov principle. A dynamic programming of the
`-period LQRA-hedging for practical implementation is also proposed by Huang
and Guo (2009c). The algorithm is summarized as follows.
[Dynamic programming of `-period LQRA-hedging]

1. For a given stock price St at time t , generate n stock prices fStC`;j gnjD1 , at time t C `

conditional on St from the risk-neutral model.
2. For each StC`;j , derive the corresponding European call option prices, FtC`.StC`;j /,

by either the dynamic semiparametric approach (DSA) (Huang and Guo 2009a,b)
or empirical martingale simulation (EMS) method (Duan and Simonato 1998) for
t C ` < T . If t C ` D T , then FT .ST;j / D .ST;j �K/C.

3. Regress QFtC`.StC`;j / on QStC`;j , j D 1; � � � ; n. Then . Oh0t;`; Oh1t;`/ are the corresponding
regression coefficients.

Since the above trading strategy employs the simple linear regression to deter-
mine the hedging positions, it is easy to be implemented and computed in a personal
computer. The main computational burden might comes from Step-2 of the above
algorithm, where we have to compute the European call option values by the DSA
or EMS method. Herein, we give a brief introduction of this method. The DSA
is proposed by Huang and Guo (2009a) for solving the multi-step conditional
expectation problems where the multi-step conditional density doesn’t have closed-
form representation. It is an iterative procedure which uses nonparametric regression
to approximate derivative values and parametric asset models to derive the one-
step conditional expectations. The convergence order of the DSA is derived under
continuity assumption on the transition densities of the underlying asset models.
For illustration, suppose we want to compute the multi-step conditional expectation
E0.FT /. We transform the problem into E0ŒE1Œ� � � ŒET�1.FT /	 � � � 		. and then
compute the one-step backward conditional expectation. Denote Ft D Et.FtC1/,
t D 0; � � � ; T � 1. In general, Ft is a nonlinear function of the underlying asset
for t D 1; � � � ; T � 1, and the conditional expectation Et�1.Ft / does not have
closed-form representation, which makes the multi-step conditional expectation
complexity. Huang and Guo (2009a) adopted piecewise regression function to
approximate the derivative value function Ft at each discrete time point t , denoted
by OFt , and then compute the conditional expectation of OFt , that is, QFt D Et. OFtC1/
and treated QFt as an approximation of Ft . The procedure keeps iterating till the
initial time to obtain the derivative price. A flow chart of the DSA is given in
Fig. 22.5.
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Fig. 22.5 Flow chart of the DSA

22.3 The Comparison of the Discrete Time Hedging Strategies

In this section, we are interested in comparing commonly used delta-hedging
strategy with the discrete time hedging strategies introduced in Sect. 22.2. The delta
of a derivative is referred to as the rate of change in the price of a derivative security
relative to the price of the underlying asset. Mathematically, the delta value �t at
time t is defined as the partial derivative of the price of the derivative with respect
to the price of the underlying, that is, �t D @Vt=@St , where Vt and St are the prices
of the derivative and the underlying asset at time t , respectively.

For example, considering a European call option with expiration date T and
strike price K , the no-arbitrage option value at time t is Ct D e�r.T�t /EQ

t f.ST �
K/Cg; where r is the riskless interest rate. After simplifying the partial derivative
@Ct=@St and exploiting the following property,

lim
h!0

1

h

Z log.K=St /

log.K=.StCh//
f.St C h/ey �KgdGt.y/ D 0;

where Gt.y/ is the conditional distribution of log.ST =St/ given Ft under the
martingale measure Q, one can show that the delta of the European call option
can be expressed as
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�t.c/ D @Ct

@St
D e�r.T�t /EQ

t

�ST
St
I.ST�K/

�
: (22.14)

And the delta value of the put option,�t.p/, can also be derived from the following
relationship based on the put-call parity:

�t.c/ ��t.p/ D 1: (22.15)

Since (22.15) is derived based on a simple arbitrage argument, the result is
distribution-free, that is it does not depend on the distribution assumption of the
underlying security. To calculate the delta value of a European call option, one can
either approximate the conditional expectation,EQ

t .ST IfST�Kg/, recursively by the
DSA or approximate the partial derivative,�t.c/ D @Ct=@St , by the relative rate of
change fCt.St C h/ � Ct.St /g=h, where h is a small constant and the option price
Ct ’s can be obtained by the DSA.

22.3.1 LQRA-Hedging and Delta-Hedging Under Complete
Markets

In a complete market every contingent claim is marketable, and the risk neutral
probability measure is unique. There exists a self-financing trading strategy and
the holding units of the stocks and bonds in the replicating portfolio are uniquely
determined. This trading strategy is called the perfect hedging which attains the
lower bound of the criteria (22.6) and (22.8). Thus we expect both the LQR- and
LQRA-hedging strategies will coincide with the delta-hedging under the complete
market models. In the following, we show directly the holding units of the stocks in
an LQRA-hedging is the same as in the delta-hedging for the two complete market
models – the binomial tree and the Black-Scholes models (Black and Scholes 1973).
For simplicity, let the bond price Bt D ert where r represents a constant riskless
interest rate. First, consider a binomial tree model. Assumes at each step that the
underlying instrument will move up or down by a specific factor (u or d ) per step of
the tree, where .u; d / satisfies 0 < d < er < u. For example, if St�1 D s, then St
will go up to su D us or down to sd D ds at time t , with the risk neutral probability

q D P.St D sujSt�1 D s/ D er � d

u � d D 1 � P.St D sd jSt�1 D s/:

By straightforward computation, we have

CovQt�1.Ft ; St / D q.1 � q/.su � sd /fFt .su/ � Ft .sd /g

and
VarQt�1.St / D q.1 � q/.su � sd /2:
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Thus by (22.10) the holding units of the stock in the �-hedging is

Oh1t�1 D CovQt�1. QFt ; QSt/
VarQt�1. QSt/

D Ft .su/ � Ft .sd /
su � sd ;

which is consistent with the delta-hedging of the binomial tree model.
Next, consider the Black-Scholes model,

dSt D rStdt C �StdWt ; (22.16)

where r and � are constants and Wt is the Wiener process. For a European call
option with strike price K and expiration date T , the holding units of the stock in
the delta-hedging of the Black-Scholes model is �t D ˚.d1.St // at time t , where

d1.St / D log.St=K/C .r C 0:5�2/.T � t/
�

p
T � t

and ˚.�/ is the cumulative distribution function of the standard normal random
variable. We claim in the following that

h1t ! ˚.d1/

as dt ! 0, where dt denotes the length of the time period Œt; t C dt	. Denote the
discounted stock price and option value at time t by QSt and QFt , respectively. Note
that

CovQt . QFtCdt ; QStCdt / D E
Q
t . QFtCdt QStCdt /� QFt QSt

D E
Q
t

�
e�r.tCdt/

n
StCdt˚.d1.StCdt//

�Ke�r.T�t�dt/˚.d2.StCdt //
o QStCdt

�
� QFt QSt

� E
Q
t . QS2tCdt/˚.d1.St // � QStKe�rT ˚.d2.St //

�e�rt
n
St˚.d1.St // �Ke�r.T�t /˚.d2.St //

o QSt
D ˚.d1.St //VarQt . QStCdt/;

where d2.St / D d1.St /� �
p
T � t and the approximation (�) is due to

E
Q
t f QSktCdt˚.di .StCdt//g � E

Q
t . QSktCdt/˚.di .St //

for small dt , i D 1; 2 and k D 1; 2. Therefore, by (22.10) we have h1t ! ˚.d1/

as dt ! 0. This result indicates that if practitioners are allowed to adjust the
hedging portfolio continuously, then LQRA-hedging coincides with delta-hedging.
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However, we should be aware that practitioners are not allowed to rebalance
the hedging portfolio continuously and may want to reduce the number of the
rebalancing time as less as possible due to the impact of transaction costs in practice.

22.3.2 LQRA-Hedging and Delta-Hedging Under Incomplete
Markets

In this section, we consider that the log-return of the underlying assets follows a
GARCH model such as

8
<

:
Rt D r � 1

2
�2t C ��t C �t"t ; "t � D.0; 1/

�2t D ˛0 C ˛1�
2
t�1"2t�1 C ˛2�

2
t�1

; (22.17)

where the parameters are set the same as in Duan (1995)

� D 0:007452; ˛0 D 0:00001524; ˛1 D 0:1883; ˛2 D 0:7162;

�d D
q

˛0
1�˛1�ˇ1 D 0:01263 .per day, i.e. 0:2413 per annum/;

K D 40; r D 0;

and the innovation "t is assumed to be normal or double exponential distributed
with zero mean and unit variance. Suppose that a practitioner writes a European
call option with strike price K and expiration date T , and set up a delta-hedging
portfolio at the initial time, with the hedging capital F0, that is,

F0 D h0 C�0S0;

where F0 denotes the risk-neutral price derived by the extended Girsanov principle
and thus the cash position h0 can be obtained by F0 � �0S0. Similarly, we can
construct the LQRA-hedging portfolio by

F0 D h
�
0 C �0S0:

We simulate n D 10;000 random paths to generate the stock price, fST;igniD1, under
the physical model (22.17), and then compute the ratio of the average variations of
the delta hedging and LQRA-hedging portfolios

GT D
Pn

iD1fh0erT C�0ST;i � .ST;i �K/Cg2Pn
iD1fh�0erT C �0ST;i � .ST;i �K/Cg2 ;

for T D 5; 10; 30 (days). Table 22.1 shows the simulation results of GT , T D
5; 10; 30, of the GARCH-normal and GARCH-dexp models with K D 35; 40; 45

and several different parameter settings.
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Table 22.1 The relative values of the average squared hedging costs of delta-hedging and LQRA-
hedging in the GARCH(1,1) log-return model

GARCH-normal GARCH-dexp
kur. K D 35 K D 40 K D 45 kur. K D 35 K D 40 K D 45

Case 1: ˛0 D 0:00001524; ˛1 D 0:1883; ˛2 D 0:7162; � D 0:007452

G5 4.10 1.01 1.00 1.01 6.67 1.02 1.01 1.03
G10 4.33 1.01 1.00 1.02 7.39 1.03 1.01 1.07
G30 4.29 1.01 1.01 1.05 9.24 1.04 1.03 1.16

Case 2: ˛0 D 0:00002; ˛1 D 0:1; ˛2 D 0:8; � D 0:01

G5 3.50 1.00 1.01 1.01 4.91 1.02 1.01 1.05
G10 3.53 1.01 1.01 1.03 4.76 1.02 1.01 1.07
G30 3.42 1.01 1.03 1.04 4.28 1.00 1.03 1.08

Case 3: ˛0 D 0:00002; ˛1 D 0:2; ˛2 D 0:7; � D 0:01

G5 4.18 1.01 1.01 1.03 6.95 1.04 1.01 1.09
G10 4.42 1.01 1.01 1.06 8.34 1.05 1.02 1.16
G30 4.39 1.00 1.03 1.08 9.21 1.01 1.06 1.21

Case 4: ˛0 D 0:00002; ˛1 D 0:3; ˛2 D 0:6; � D 0:01

G5 5.09 1.02 1.01 1.06 10.52 1.06 1.02 1.15
G10 6.06 1.04 1.02 1.11 20.50 1.08 1.04 1.27
G30 8.87 1.01 1.06 1.20 53.67 1.04 1.25 1.79

Note that the values of GT ’s in Table 22.1 are all greater than 1, which means
the average variation of the LQRA-hedging is smaller than the delta-hedging. Under
the same parameter setting in both GARCH-normal and GARCH-dexp models, the
kurtosis of the GARCH-dexp models is greater than the GARCH-normal model.
The results shows that GT tends to increase in the kurtosis of the log-returns,
especially when the option is out-of-the-money.

In Fig. 22.6, we plot the hedging strategies of delta- and LQRA-hedging for one
period case, where QFt is the discounted option value function at time t and the point
. QSt ; QFt / denotes the time-t discounted stock price and discounted hedging capital.
In the left-hand panel, the dash-line, �.t � 1; t/, denotes the delta-hedging values,
which is the tangent of the curve QFt at the point . QSt ; QFt /. In the right-hand panel,
the dot-line, �.t � 1; t/, represents the LQRA-hedging, which is regression line of
QFtC1 under the risk-neutral probability measure derived by the extended Girsanov

principle (see Elliott and Madan 1998; Huang and Guo 2009d).
If the hedging period increases to `, ` > 1, then the delta-hedging �.t; t C `/

remains the same, that is, �.t; t C `/ D �.t; t C 1/, (see the left-hand panel of
Fig. 22.7). However, the LQRA-hedging, �.t; t C `/ (see the red line in the right-
hand panel of Fig. 22.7), would be different from �.t; tC1/ since the hedging target
is changed from QFt to QFtC`. This phenomenon states that the LQRA-hedging is
capable of making adjustment to the hedging period `, which makes it more suitable
for various time period hedging. This phenomenon also provides an explanation
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of why the GT ’s in most cases of Table 22.1 tends to increase in the hedging
period or in the kurtosis of the log-returns. Because when the hedging period or
the kurtosis of the log-returns increases, the LQRA-hedging would reduce more
variability between the hedging portfolio and the hedging target than delta-hedging.

22.4 Hedging Strategies of Barrier Options

In previous sections, we introduce several discrete time hedging strategies and
illustrate the corresponding dynamic programming for vanilla options. In this
section, we consider the hedging strategies of barrier options. A barrier option is
one type of exotic option and the corresponding payoff depends on the underlying
reaching or crossing a given barrier. Since barrier options are cheaper than a similar
option without barrier, thus traders might like to buy a barrier option instead of the
vanilla option in some situations. For example, if a trader wants to buy the IBM
stock with a certain price in the future and believes that the stock price will go up
next few months, but won’t go above 100, then she can buy an up-and-out call option
with a certain barrier and pay less premium than the vanilla call option. In Korea, one
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type of barrier option, called Knock-In-Knock-Out (KIKO) option, was very popular
among smaller firms in early 2008, when the Korean won was stronger against the
US dollar. The KIKO contracts allow subscribers to hedge against currency rate
fluctuations with a preferential exchange rate as long as the currency stays within
the knock-in and knock-out barriers. Many local small and midsized exporters
signed KIKO contracts with local banks to hedge against moderate currency swings.
Unfortunately, the currency exchange rate dropped unexpectedly in the summer
of 2008, and local firms that bought KIKO contracts were forced to take massive
losses. Some of the firms later sued the banks that sold them the derivatives. From
this event, we realize that the potential risk of the financial derivative might cause
huge disaster to both the issuer and the subscriber of the contract. Therefore, it is of
practical importance to construct the hedging strategy of the exotic options. In the
following, we focus on the hedging of barrier option and introduce a trading strategy
under consideration of hedging performance and transaction costs.

Barrier option is a path-dependent contingent claim, that is, the payoff of a
barrier option depends on the underlying asset values during the time interval Œ0; T 	,
where 0 and T stand for the initial and expiration dates, respectively. In general,
the evaluation of path-dependent contingent claims is more complicated than path-
independent ones since the randomness comes from not only the underlying asset
value at maturity but also those before the expiration date. For example, the payoff
of a down-and-in call option is defined as

DICT D .ST �K/CI.mint2Œ0;T 	 St�B/;

where ST is the underlying asset value at time T , K is the strike price, B denotes
the barrier and I.�/ is an indicator function. By the definition of DICT , one can see
that the payoff not only depends on ST but also depends on the minimum value of
the underlying asset, mint2Œ0;T 	 St , in the time interval Œ0; T 	. Once the value of the
underlying asset reaches or bellows the barrier B prior to maturity, the option is
active immediately and the payoff is then identical to the European call option with
the same strike price and expiration date.

Suppose that a practitioner shorts a down-and-in call option and wants to set up
a hedging portfolio to hedge her short position. Under consideration of transaction
costs, the trading strategies introduced in the previous sections may not be optimal
since the increasing frequency of portfolio rebalancing costs more transaction fees.
Due to the trade-off between risk reduction and transaction costs, Huang and Huang
(2009) proposed a hedging strategy which rebalances the hedging positions only
once during the duration of the barrier option. In the following, we illustrate the
hedging strategy for down-and-in call options when the underlying asset follows a
geometric Brownian motion process.

Assume that the underlying asset follows Model (22.16). We have the following
results:

1. If B 	 K , then the no-arbitrage price of the down-and-in call option is



626 S.-F. Huang and M. Guo
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2. If B < K , then the no-arbitrage price of the down-and-in call option is

DIC0.B;K/ D
�
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(22.19)

where P0.K/ is the European put option price with the same strike price and
maturity as the down-and-in call option, ˚.�/ is the distribution function of a
standard normal random variable, andDIB0.B/ denotes the no-arbitrage price of a
down-and-in bond, which is defined as

DIBT .B/ D I.min0�t�T St�B/;

and can be evaluated by

DIB0.B/ D e�rT
�
˚
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(22.20)
In particular, if the riskless interest rate equals zero, r D 0, then the above results

can be simplified as:

(i0) If B 	 K , DIC0.B;K/ D P0.K/C .B �K/DIB0.B/;
(ii0) If B < K , DIC0.B;K/ D K

B
P0.

B2

K
/.

By (i0) and (ii0), we can construct a perfect hedging strategy of a down-and-in call
option. If B 	 K , since the right-hand side of (i0) is a linear combination of a
European put option and a down-and-in bond, thus the practitioner who shorts a
down-and-in call option can hedge her short position via the following two steps:

1. At time 0, long a European put option with strike price K and expiration date
T and also long .B � K/ shares of a down-and-in bond with barrier B and
expiration date T . Notice that the cost of this portfolio is exactly the same as the
no-arbitrage price of the down-and-in call option.

2. Let  denote the first hitting time when the underlying asset value reaches the
barrier price, that is,

 D infft; St D B; 0 � t � T g; (22.21)

and let  D 1 if mint2Œ0;T 	 St > B . If  D 1, then the down-and-in call option
and the hedging portfolio set up in Step-1 are both worthless. If  � T , by the
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fact that DIC.B;K/ D C.K/ and put-call parity, C.K/ D P.K/CB �K;
one can then hedge the down-and-in call option perfectly via shorting the hedging
portfolio set up in Step-1 and longing a European call option with strike price K
and expiration date T at time  .

Similarly, if B < K , from (ii0), the trader can hedge her short position by longing
K=B shares of a European put option with strike price B2=K and expiration date T
at time 0. And then by put-call symmetry (see Carr and Lee 2009), C.K/I.�T / D
.K=B/P

�
B2=K

�
I.�T /, the trader can short the European put option and long a

European call option with strike price K and expiration date T without putting in
or withdrawing any capital to hedge the down-and-in call option perfectly at time
 .< T /. Moreover, if  D 1, then the down-and-in call option and the hedging
portfolio set up at time 0 are both worthless. Therefore, in the case of r D 0, a down-
and-in call option can be perfectly hedged by plain vanilla options and down-and-in
bond. This result is also obtained by Bowie and Carr (1994).

If the riskless interest is greater than zero, then the hedging strategy of barrier
options mentioned above would not be the perfect-hedging. Details are as follows.
If B � K and at time  .< T /, one can set up a perfect-hedging by longing a
European call option with the same strike price and expiration date as the down-
and-in call option, that is, DIC.B;K/I.�T / D C.K/I.�T /. Then by put-call
parity, C.K/I.�T / D .P .K/C B �Ke�r.T�//I.�T /; one can have the desired
European call option by shorting a European put option andB�Ke�r.T�/ shares of
down-and-in bond at time  . Therefore, at time 0, the hedging portfolio comprises a
European put option with strike priceK and expiration date T and Be�r �Ke�rT
shares of down-and-in bond. Since  is a random variable, thus the above hedging
portfolio can not be set up at time 0 in practice. On the other hand, if B > K and at
time  .< T /, by put-call symmetry, we have

DIC.B; K/I.�T / D C.K/I.�T / D K

Ber.T�/ P


B2e2r.T�/

K

�
I.�T /:

In this case, one can longKe�rT =B shares of European put option with strike price
B2e2r.T�/=K and expiration date T to construct a perfect-hedging portfolio at
time 0. However, since the strike price of the European put option is now a random
variable, this hedging strategy can’t be obtained in practice as well. In order to
overcome this problem, Huang and Huang (2009) proposed the following method.

If B � K , by using the inequalities e�rT I.�T / � e�r I.�T / � I.�T /,
we have the upper and lower bounds of the down-and-in call option value: L �
DIC0.B;K/ � U; where L D P0.K/ C .B � K/DIB0.B/ and U D P0.K/ C
.BerT � K/DIB0.B/ are both linear combinations of European put option and
down-and-in bond. Next, we adopt a linear combination of L and U to construct a
hedging portfolio, that is, V0 D .1�˛/LC˛U;where V0 denotes the initial hedging
capital and 0 < ˛ < 1. Further let V0 be identical to the price of the down-and-in
call option and we then have ˛ D .DIC0 � L/=.U � L/ and
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V0 D DIC0.B;K/ D P0.K/C ˇDIB0.B/; (22.22)

where ˇ D fDIC0.B;K/ � P0.K/g=DIB0.B/. The hedging strategy proposed
by Huang and Huang (2009) is to set up the portfolio (22.22), which comprises
a European put option and ˇ shares of down-and-in bond, at time 0 and hold the
portfolio till time min.; T /. If  � T , then short the portfolio and long a European
call option with strike price K and expiration date T . Notice that at time  .� T /

the value of the hedging portfolio (22.22) becomes P.K/C ˇ, which may not be
identical to the European call option price,C.K/. Therefore, the trader has to put in
some additional capital for portfolio rebalancing and the total payoff of this hedging
strategy is

fVT �DICT .B;K/gI.�T / D fˇ � er.T�/.B �Ke�r.T�//gI.�T /; (22.23)

at expiration date, where the equality holds by the put-call parity, C.K/ D
P.K/CB�Ke�r.T�/ and the profit ˇ comes from the down-and-in bond. On the
other hand, if the underlying asset prices are never equal to or less than the barrier
price, then the down-and-in call option and the hedging portfolio (22.22) are both
worthless at expiration date.

Similarly, if B > K , Huang and Huang (2009) adopted the inequalities,

L� � DIC0.B;K/ � U �;

where L� D .K=B/P0.B
2=K/ and U � D .K=BerT /P0.B

2e2rT =K/ are both
European put options. And then set up the hedging portfolio by a linear combination
of L� and U �, V0 D .1 � ˛�/L� C ˛�U �. Further let V0 D DIC0 and hence
˛� D .DIC0 � L�/=.U � �L�/ and the initial hedging portfolio is

V0 D .1 � ˛�/K
B

P0



B2

K

�
C ˛�K
BerT

P0



B2e2rT

K

�
; (22.24)

which comprises .1 � ˛�/K=B shares of European put option with strike price
B2=K and expiration date T and ˛�K=.BerT / shares of European put option with
strike price B2e2rT =K and expiration date T . Hold the hedging portfolio till time
min.; T /, and if  < T , then short the portfolio and long a European call option
with strike price K and expiration date T . As in the case of B � K , the value of
the hedging portfolio (22.24) may not be identical to the European call option price
at time  and the trader needs some additional capital for the portfolio rebalancing.
The total payoff of this hedging strategy is

fVT �DICT .B;K/gI.�T /

D er.T�/
n .1 � ˛�/K

B
P

�B2

K

�
C ˛�K
BerT

P

�B2e2rT

K

�
� C.K/

o
I.�T /; (22.25)
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and

fVT �DICT .B;K/gI.>T / D ˛�K
BerT

PT

�B2e2rT

K

�
I.>T /;

at maturity.
The trading strategies of barrier option proposed in (22.22) and (22.24) are

handy in practice since both are comprised of the derivatives traded in the financial
market such as the vanilla options and down-and-in bond. Also, the corresponding
strike prices and expiration dates of the components in the hedging portfolio are
all deterministic functions of those of the original barrier option. Therefore, it is
easy to be implemented in practice and the traders who adopt this trading strategy
only need to determine which derivative should be bought or sold in the market. In
addition, the strike prices and the units of the derivatives could be computed directly
by the formulae through (22.22)–(22.25). Next, we are interested in investigating
the hedging performance of the proposed strategy in the real market. However,
barrier options are usually traded over-the-counter (OTC) and thus the option data
is not publicly available. In the following, we employ a simulation study instead
to compare the hedging performance of the proposed hedging portfolio with non-
hedging strategy for down-and-in call options, where the non-hedging strategy
means that the practitioner didn’t set up any hedging portfolio but put the money,
obtained from shorting the down-and-in call option, in a bank. By generating N
simulation paths, let

D0 D 1

N

NX

jD1
.V0e

rT �DICT;j /=DIC0

and

D1 D 1

N

NX

jD1
.VT;j �DICT;j /=DIC0

denote the average payoff of non-hedging strategy divided by DIC0 and the
proposed hedging strategy divided by DIC0, respectively, where DICT;j and
VT;j are the values of the down-and-in call option and the proposed hedging
strategy, respectively, obtained from the j th simulated path at maturity. Further
let q0˛ and q1˛ are the ˛-quantiles derived from the empirical distributions of
.V0e

rT �DICT;j /=DIC0 and .VT;j �DICT;j /=DIC0, j D 1; � � � ; N , respectively.
Table 22.2 gives the simulation results with parameters r D 0:05, � D 0:10,
� D 0:20 and S0 D 100. In Table 22.2, one can see that D1 < D0 in most cases,
which means that the average loss of the proposed hedging strategy is less than
that of non-hedging strategy. Moreover, q00:005 and q10:005 are adopted to measure
the range of the risk of the hedging strategies. And the ratio q10:005=q

0
0:005 is used

to compare the hedging efficiency of the proposed hedging strategy with respect
to the non-hedging strategy. In Table 22.2, the values of q10:005=q

0
0:005 decrease as

the barrier price B increases if T is fixed, that is, the hedging performance of the
proposed strategy becomes better with large barrier prices. Furthermore, the values
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Table 22.2 The simulation results of hedging strategies (22.22) and (22.24) with parameters r D
0:05, � D 0:10, � D 0:20, S0 D 100 and N D 10;000

T(days) .B=S0;K=S0/ ND0
ND1 q00:005 q10:005

q10:005
q00:005

90 (22.22) (0.90,0.90) 0.0506 �0.0004 �20.4710 �0.3172 0.0155
(0.925,0.90) 0.0584 �0.0001 �10.9191 �0.1220 0.0112
(0.95,0.95) �0.0723 �0.0002a �10.7767 �0.0973 0.0090

(0.975,0.95) �0.0692 �0.0001a �5.9533 �0.0290 0.0049
(22.24) (0.925,0.95) 0.0045 0.0251a �20.2215 �0.1753 0.0087

(0.95,0.975) �0.0809 0.0134a �14.1331 �0.0990 0.0070

180 (22.22) (0.90,0.90) �0.0536 �0.0018a �15.4581 �0.2480 0.0160
(0.925,0.90) �0.0085 �0.0003a �9.6246 �0.1155 0.0120
(0.95,0.95) �0.1320 �0.0005a �9.1158 �0.0839 0.0092

(0.975,0.95) �0.1405 �0.0002a �6.1975 �0.0295 0.0048
(22.24) (0.925,0.95) �0.0645 0.0032a �13.7629 �0.1827 0.0133

(0.95,0.975) �0.1322 0.0013a �11.6451 �0.1039 0.0089
aDenotes ND1 > ND0

of q10:005=q
0
0:005 are all less than 2%, which means that the proposed hedging strategy

is able to hedge over 98% risk of the non-hedging strategy. The simulation study
shows that the hedging performance of the proposed hedging strategy is much more
better than the non-hedging one. Therefore, comparing with saving the money in the
bank, practitioner is suggested to adopt the proposed hedging strategy to hedge her
short position of a down-and-in call option.
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Chapter 23
Approximation of Dynamic Programs

Michèle Breton and Javier de Frutos

Abstract Under some standard market assumptions, evaluating a derivative implies
computing the discounted expected value of its future cash flows and can be written
as a stochastic Dynamic Program (DP), where the state variable corresponds to the
underlying assets’ observable characteristics. Approximation procedures are needed
to discretize the state space and to reduce the computational burden of the DP
algorithm. One possible approach consists in interpolating the function representing
the value of the derivative using polynomial basis functions. This chapter presents
basic interpolation approaches used in DP algorithms for the evaluation of financial
options, in the simple setting of a Bermudian put option.

23.1 Introduction

A derivative security is a financial instrument whose value depends on the value of
other basic underlying assets. A stock option, for example, is a derivative whose
value depends on the price of a stock. Derivative securities include forward and
future contracts, swaps, and options of various kinds. They are characterized by their
payoff function, maturity, and cash-flow schedule. Options are further characterized
by their “optionality” and by their exercise schedule; holders have the right, but
not the obligation, to exercise options at previously defined dates. European options
can be exercised only at the maturity date; Bermudian options can be exercised at
a finite number of predefined dates; and, American options can be exercised at any
time during their life.
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Under some standard market assumptions, evaluating a derivative implies com-
puting the discounted expected value of its future cash flows. In that context,
the evaluation of a financial option can be written as a stochastic Dynamic
Program, where the state variable corresponds to the underlying assets’ observable
characteristics (e.g. prices), the stages correspond to the dates where the option can
be exercised, the decision at a given stage amounts to a choice between exercising
the option or not, and the value function represents the value of the financial option
as a function of the date and of the underlying asset’s observable characteristics.

The discrete-stage Dynamic Programming (DP) algorithm over a finite horizon
requires the evaluation of the value function at each decision stage for all possible
states, by comparing expected values of actions over all possible state transitions.
Approximation procedures are used to reduce the computational burden of the DP
algorithm.

In most financial models, the state variable is continuous. One way to approx-
imate the dynamic program is to divide the state space in convex sections, and to
suppose that the value function and strategies are constant on a given section. This
discretization approach leads to a Markov Decision Problem with finite state and
action spaces, which can be solved with the standard DP recursion.

Another interesting approach consists in interpolating the value function, as a
linear combination of suitably chosen basis functions, in order to replicate the
properties of the financial derivative (e.g. matching, continuity, convexity), and
such that the approximant is easy to use inside the DP algorithm. Two classical
interpolation schemes are spectral methods and finite element methods.

Spectral methods use basis functions that are non-zero over the entire domain
(most commonly families of polynomial functions). They usually require few
interpolation nodes, and relatively high degree polynomials. On the other hand,
finite element methods use basis functions with support on small subsets of the
domain (most commonly spline functions). They usually are carried-out on a large
number of interpolation nodes and use polynomials of low degree over sub-intervals.

A third approximation approach is to use prospective DP, which consists in
evaluating the value function on a subset of the state space, for example by
generating possible trajectories. Monte-Carlo simulation is often used in that context
to approximate the value function. One salient characteristic of the DP model for
the evaluation of financial derivatives is the fact that the possible trajectories do not
depend on the decisions taken by the option holder, which simplifies considerably
the state space exploration strategies of prospective DP. A drawback of such
methods is the introduction of statistical error, but this may be the only possible
way when the state space is too large to be explored exhaustively.

This chapter presents basic interpolation approaches used in DP algorithms for
the evaluation of financial options. The approaches are presented in the simple
setting of a Bermudian put option, and references to specific applications are
provided. Section 23.2 presents the DP model and notation, as well as the Markov
Decision Problem (MDP) resulting from the state space discretization. Section 23.3
introduces interpolation approaches, and Sects. 23.4 and 23.5 present respectively
finite element and spectral interpolation of the value function. Section 23.6 proposes
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a hybrid algorithm combining elements from both methods. Section 23.7 is a
conclusion.

23.2 Model and Notation

Consider a Bermudian put option written on the underlying asset, with maturity T .
This option gives its holder the right to sell the underlying asset for a pre-determined
price K , called the strike price, at any date in a given set T D ftng in Œ0; T 	.
To simplify, and without loss of generality, assume that exercise dates are equally
spaced, with n D 1; : : : ; N , where t0 is the contract inception date and tN D T

is the maturity of the contract. Bermudian options admit European options as a
special case (when the set T contains a single date T ) and American options as
a limiting case (when the time between two exercise dates becomes arbitrarily
small).

Let the price of the underlying asset fSg be a Markov process that verifies the
fundamental no-arbitrage property. The value of the option at any date tn when the
price of the underlying asset is s is given by

vn .s/ D
8
<

:

vh0 .s/ for n D 0

max
�
ve .s/ ; vhn .s/

�
for n D 1; : : : ; N � 1

ve .s/ for n D N

; (23.1)

where ve denotes the exercise value of the option:

ve .s/ D max fK � sI 0g , (23.2)

and vhn denotes the holding value of the option at tn. Under standard no-arbitrage
assumptions, the discounted price of the underlying asset is a martingale with
respect to some probability measure Q, and the expected value of the future
potentialities of the option contract is given by

vhn.s/ D ˇEŒvnC1.StnC1
/ j Stn D s	, for n D 0; : : : ; N � 1, (23.3)

where ˇ is the discount factor and E Œ�	 denotes the expectation with respect to
measureQ.

One way to price the option is to solve the discrete-time stochastic dynamic
program (23.1)–(23.3), by backward induction from the known function vN D ve .
Even for the most simple cases, the value function cannot be expressed in closed-
form and the option value must be obtained numerically.

In most market models, the underlying asset price is assumed to take values in
Œ0;C1/: Since the state space of the dynamic program is continuous, the first step
is to partition it into a collection of convex subsets, and obtain a corresponding finite
set of grid points where the option value is to be evaluated.
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Define a partition of the positive real line into .p C 1/ intervals

Œai ; aiC1/ for i D 0; : : : ; p; (23.4)

where 0 D a0 � a1 < : : : < ap < apC1 D C1 and grid G D fai giD1;:::;p .
Here, to simplify notation, we assume that the partitions and grids are identical
for n D 1; :::; N , but stage-specific grids Gn D ˚

ani
�
iD1;:::;pncan also be used. The

standard projection of the dynamic program (23.1)–(23.3) into a finite-state Markov
Decision Program (MDP) is given, for i D 1; : : : ; p, by

evn .i/ D
8
<

:

evh0 .i/ for n D 0

max
�
eve .i/ ;evh .i/

�
for n D 1; : : : ; N � 1

eve .i/ for n D N

(23.5)

eve .i/ D max fK � ai I 0g (23.6)

evhn.i/ D ˇ

pX

jD0
pnijevnC1.j / for n D 1; : : : ; N � 1, (23.7)

where each state i corresponds to a grid point ai , and where the transition
probabilities pnij are obtained from the Markov price process fSg under measure
Q so that:

pnij D Q
�
StnC1

2 Œaj ; ajC1/jStn D ai
�
:

In many applications, the transition probabilities pnij are independent of n if the
discretization grids are identical at all stages and they can be pre-computed inO.p2/
operations. Solution of the MDP (23.5)–(23.7) is straightforward by backward
induction and yields, in O.N � p2/ operations, the value of the option and the
optimal strategy (exercise or not) for all decision dates and all asset prices on the
grid. The option value and exercise strategy in the discrete problem can then be
extended to an approximate option value and sub-optimal strategy in the original
continuous problem through some form of interpolation; for instance, one may use
linear interpolation for the option value, and constant strategies over the intervals
Œai ; aiC1/, i D 0; : : : ; p: Typically, this approximation scheme will converge to the
solution of the original problem, as the discretization becomes finer and finer, if
there is a sufficient amount of continuity in the original problem (see Whitt 1978,
1979). In addition, since the state space is unbounded, one usually has to show that
the approximation error outside the localization interval

�
a1; ap

�
becomes negligible

when this interval is large enough.
This approach was used in Duan and Simonato (2001) to price American options

in a GARCH setting. In their model, the option price depends on two state variables
(asset price and volatility), and the state space is projected on a two-dimensional
grid. The numerical algorithm proposed by the authors, termed Markov chain
approximation, relies on the approximation of the underlying GARCH asset price
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process by a finite-state Markov chain. The authors show that the MDP converges
to the option value as the grid becomes finer while the localization interval becomes
wider. The advantage of Markov chain approximation lies in the fact that the price
of an option can be computed by simple matrix operations, making use of matrix
representation and computation available in high-level programming languages.

23.3 Interpolation of the Value Function

An interpolation functionbv is generally defined as a linear combination of p basis
functions, denoted 'j ; j D 1; : : : ; p:

bv.s/ D
pX

jD1
cj 'j .s/: (23.8)

Interpolation achieves two interesting purposes in option evaluation; First, it
allows to approximate a complicated function, which cannot be expressed in closed-
form, by a simpler function which can be used efficiently in computations; Second,
it allows to describe and store the continuous function approximating the option
value using a finite set of coefficients.

Assume that, at stage nC1 � N; the option value as a function of the underlying
state price is described by a (continuous) interpolation functionbvnC1.s/: At stage n,
the approximate DP algorithm consists in evaluating, on the set of grid points G,

evhn.i/ D ˇEŒbvnC1.StnC1
/ j Stn D ai 	, (23.9)

evn .i/ D
�
evh0 .i/ for n D 0

max
�
ve .ai / ;evhn .i/

�
for n D 1; : : : ; N � 1:

(23.10)

An interpolation functionbvn .s/ is then obtained, using the valuesevn .i/ ; i D 1; :::p,
which are called interpolation nodes. Interpolation consists in computing the value
of coefficients cj in (23.8) by specifying conditions that need to be satisfied by the
interpolation function. The simplest and most usual property is that the interpolation
function coincide with the the option value at the p interpolation nodes, yielding a
system of p linear equations

pX

jD1
cnj 'j .ai / Devn .i/ ; i D 1; :::p; (23.11)

where cnj ; j D 1; :::p; denote the coefficients obtained at stage n.
The choice of an interpolation scheme consists in selecting a family of basis

functions 'j and a set of interpolation nodes G that are unisolvent, that is, for
any data set evn .i/ ; i D 1; :::p, the system (23.11) has a unique solution. Three
fundamental principles motivate these choices: convergence of the interpolation
function to the value function, efficiency and accuracy in the computation of the
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interpolation coefficients, and efficiency in the evaluation of the expected value
in (23.9). In the two following sections, we describe two families of interpolation
methods.

23.4 Finite Element Interpolation

In finite element interpolation, basis functions are non-zero on sub-intervals of
the domain. The most common schemes are spline interpolation, and piecewise
polynomial interpolation. Both consist in using polynomials of low degree over each
sub-interval. Piecewise polynomial interpolation yields continuous interpolation
functions. Spline interpolation of order k yields continuous interpolation functions
with continuous derivatives of order k� 1 or less. When k D 1, spline interpolation
and polynomial interpolation coincide, yielding a piecewise linear continuous
approximation. Here, we will focus on spline approximation of degree 1, which
is easy to implement and results in an efficient approximation of the option value.
The approach is easy to extend to higher degree polynomials or splines. Figure 23.1
gives a graphical representation of a piecewise linear approximation of the value of
a Bermudian put option, using equally spaced grid points.

Consider the grid G D fai giD1;:::;p and the corresponding partition (23.4). Define
p piecewise linear basis functions such that, for j D 1; :::; p

'j .ai / D
�
1 if i D j

0 if i ¤ j
; i D 1; :::; p

6

5

4

3

2

1

0
50 54 56 58 60 62 64 66 68 7052

–1

interpolation exercise hold

Fig. 23.1 Value and finite-element interpolation of a Bermudean put option in the Black–Scholes
model, one period before maturity. Parameters are K D 55; � D 0:1; r D 0:0285
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and where the 'j are continuous on
�
a0; ap

�
; linear on each Œai ; aiC1	 and null on

.a0; a1/ and
�
ap;C1�

. At stage n, given the valuesevn .i/ ; i D 1; :::p computed
by (23.9) and (23.10), the system of conditions (23.11) satisfied by the coefficients
reduces to

cni Devn .i/ ; i D 1; :::p

and the interpolation function is given by

bvn.s/ D
pX

jD1
evn .j / 'j .s/: (23.12)

Given a function v and a grid G D fai g ; denoteEinŒv.S/	 �EŒv.StnC1
/ j Stn D ai 	:

Using (23.12), the expectation in (23.9) of an interpolation functionbvnC1 is written

EinŒbvnC1.S/	 D Ein

2

4
pX

jD1
evnC1 .j / 'j .S/

3

5

D
pX

jD1
evnC1 .j / EinŒ'j .S/	

D
pX

jD1
evnC1 .j / Anij ;

where the transition parameters Anij are given by

Anij D EinŒ'j .S/	 D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

Ein

h
a2�S
a2�a1 I

n
1

i
for i D 1

Ein

h
S�ai�1
ai�ai�1 I

n
i�1 C aiC1�S

aiC1�ai I
n
i

i
for 1 < i < p

Ein

h
S�ai�1
ai�ai�1 I

n
i�1
i

for i D p

and where Ini denotes the indicator function of the event fai � StnC1 � aiC1g.
Notice that the transition parameters can be obtained in closed-form for a large class
of models for the underlying asset price process; otherwise, numerical integration
may be used. In many applications, if the interpolation grids are identical at all
stages, these transition parameters are independent of time and can be pre-computed
in O.p2/ operations. The option value can then be readily obtained in O.N � p2/
operations by the dynamic program

evhn.i/ D ˇ

pX

jD1
evnC1 .j / Anij ; i D 1; :::p

evn .i/ D
8
<

:

evh0 .i/ for n D 0

max
�
ve .ai / ;evhn .i/

�
for n D 1; : : : ; N � 1

ve .ai / for n D N

; i D 1; :::p:



640 M. Breton and J. de Frutos
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Fig. 23.2 Interpolation error of a Bermudean put option in the Black–Scholes model, one period
before maturity. Parameters are K D 55; � D 0:1; r D 0:0285: Localization interval is [50,68]
and p D 10

Notice that a linear spline approximation does not require computation of
interpolation coefficients, and that the expected value in (23.9) is obtained by simple
matrix operations. Ideally, the density of grid points should be higher in the regions
where the value function has higher curvature, and around the exercise frontier
where the curvature changes abruptly – however there is often a clear advantage in
keeping the grid constant over time. Finally, notice that linear extrapolation can also
be used outside the localization interval, for instance in the exercise region where the
value function is linear. For convex value functions, piecewise linear interpolation
provides an upper bound on the option value if the approximation error outside the
localization interval is small enough. Figure 23.2 shows the approximation error
from the interpolation of the Bermudian put illustrated in Fig. 23.1.

A higher convergence rate can be achieved when interpolating with higher degree
polynomials on each sub-interval, but this increases the computational and storage
burden for both the transition parameters and the computation of the interpolation
coefficients.

Finite element interpolation was used in Ben-Ameur et al. (2002) to price Asian
options in a Black–Scholes framework; in this case, the option price depends on two
state variables (current price and arithmetic average). They use a linear interpolation
with respect to the price, and a quadratic interpolation with respect to the average,
and the grid is defined from the quantiles of the log-normal distribution. It was used
in Ben-Ameur et al. (2006) to price installment options, in Ben-Ameur et al. (2007)
to price call and put options embedded in bonds, and in Ben Abdallah et al. (2009)
to price the delivery options of the CBOT T-Bond futures. In the last two cases, the
underlying asset is the spot interest rate. Ben-Ameur et al. (2009) use finite element
interpolation with time-varying, equally spaced grids to price options in a GARCH
framework, using asset price and asset volatility as state variables.
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To conclude, we point out that Markov chain approximation can be shown to be
equivalent to a special case of finite element interpolation, where the basis functions
are piecewise constant, such that, for j D 1; :::; p

'j .s/ D
�
1 if s 2 .aj ; ajC1	
0 otherwise.

Finite element interpolation using linear splines is usually more efficient than
Markov chain approximation, as it does not require more computational work,
while it produces a continuous approximation to the option value rather than a
discontinuous one, and converges at a faster rate.

23.5 Spectral Interpolation

In spectral interpolation, basis functions are non-zero over the entire domain. The
most common scheme is polynomial interpolation. It yields a polynomial of degree
p � 1 matching the value function on p interpolation nodes. Figure 23.3 gives
a graphical representation of the interpolation of a Bermudian put option with a
polynomial of degree 9, using Chebyshev interpolation nodes.

Define p polynomial basis functions such that 'j is a polynomial of degree j�1;
for j D 1; :::; p. Consider the grid G D fai giD1;:::;p : At stage n, denoteevn the

6

5

4

3

2

1

0
55 60 65 7050

–1 exercisehold approx

Fig. 23.3 Value and spectral interpolation of a Bermudean put option in the Black–Scholes model,
one period before maturity. Parameters are K D 55; � D 0:1; r D 0:0285
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column vector Œevn .i/	 ; i D 1; :::p computed by (23.9) and (23.10). The system
(23.11) satisfied by the coefficients is written in matrix form

cn D ˚�1evn;

where˚ is a square matrix of dimensionp;with˚ij D 'j .ai /, and cn is the column

vector of coefficients
h
cnj

i
; j D 1; :::; p. The interpolation function is a polynomial

of degree p � 1 given by

bvn.s/ D
pX

jD1
cnj 'j .s/: (23.13)

Using (23.13), the expectation in (23.9) of an interpolation functionbvnC1 is written

EinŒbvnC1.S/	 D Ein

2

4
pX

jD1
cnC1
j 'j .s/

3

5

D
pX

jD1
cnC1
j EinŒ'j .S/	

D
pX

jD1
cnC1
j Bn

ij ; (23.14)

where the transition parameters Bn
ij are expectations of polynomial functions. As

in the case of finite-element interpolation, for a large class of models, transition
parameters can be obtained in closed-form and are independent of time if the
interpolation grids are identical over stages. The DP algorithm then requiresO.p2/
operations for the computation of the transition parameters, O.N � p2/ operations
for the computation of the coefficients in (23.13) andO.N � p2/ operations for the
computation of the value function in (23.9), (23.10), and (23.14).

With spectral interpolation, the choice of the interpolation scheme is crucial.
With respect to the convergence of the interpolation function, polynomial approx-
imation tends to produce oscillating errors; with equally spaced interpolation
nodes, the interpolation error may grow, rather than decrease, with increasing
number of interpolation nodes (this is the so-called Runge phenomenon), producing
large errors near the boundary of the localization interval. For that reason, it
is better to space interpolation nodes more closely near the endpoints of the
localization interval, and less so near the center. This is achieved by using, for
instance, Chebyshev interpolation nodes, which can be shown to provide a better
approximation. Moreover, the approximation error from interpolating a smooth
function by a polynomial using Chebyshev nodes converges very rapidly to 0 when
p increases. Chebyshev nodes over the interval

�
a1; ap

�
are given by:
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ai D a1 C ap

2
� ap � a1

2
cos



i � 1

p � 1



�
; i D 1; ::p:

Figure 23.4 shows the approximation error from the interpolation of the Bermu-
dian put illustrated in Fig. 23.3 using Chebyshev interpolation nodes, compared to
the approximation error obtained with equally spaced nodes. Notice that because of
the early exercise opportunity, the option value is not smooth at the exercise barrier,
thus requiring a high degree polynomial for a precise interpolation.

A second concern is the accuracy of the computation of the interpolation
coefficients. Indeed, choosing the power functions 'j .s/ D sj�1 as a basis yields
an ill-conditioned interpolation matrix (the so-called Vandermonde matrix), which
becomes increasingly difficult to invert as p increases, and produces large numerical
errors, even for moderate p. A better choice is the Chebyshev polynomial basis.
Chebyshev polynomials are defined recursively as:

e'1.z/ D 1

e'2.z/ D z

e'j .z/ D 2ze'j�1.z/ �e'j�2.z/;

where, for s 2 �
a1; ap

�
; z D 2 s�a1

ap�a1 � 1 2 Œ�1; 1	 and
ˇ̌
e'j .z/

ˇ̌ � 1:

Chebyshev polynomials evaluated at Chebyshev interpolation nodes yield a well-
conditioned interpolation matrix, which can be solved accurately even when p is
large. Moreover, in that case coefficients can be obtained efficiently by Fast Fourier
Transforms, which reduces the computational burden to O.p logp/ operations (see
Canuto et al. 2006).

0.3

0.25

0.2

0.15

0.1

0.05

–0.05

–0.1

50 52 54

Tchebychevnodes equally spaced nodes

56 58 60 62 64 66 68
0

Fig. 23.4 Interpolation error for a spectral interpolation of a Bermudean put option in the Black–
Scholes model, one period before maturity. Parameters are K D 55; � D 0:1; r D 0:0285
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Fig. 23.5 Approximation error outside the localization interval [50,68]

Finally, even when transition parameters Bn
ij are known is closed-form, the

evaluation of the expected value in (23.9) can be problematic with spectral approx-
imation. A first important remark is that the polynomial function

Pp
jD1 cnj 'j .s/

is generally very far from the value function outside the localization interval.
Theoretical convergence of the DP approximation is obtained if the probability of
leaving the localization interval converges to 0 faster than a polynomial, which is the
case in most market models. However, even in that case, using the expectation of the
interpolation function in (23.14) may still cause significant errors if the localization
interval is not large enough. To illustrate, Fig. 23.5 represents the approximation
error outside the localization interval [50,68] for the Bermudian put in Fig. 23.3.

Because of the possible numerical problems involved with working with high-
order polynomials, spectral approximation has not been much used in the context
of dynamic programming approximation of financial derivatives. However, spec-
tral approximation has been used successfully in PDE algorithms. For instance,
Chiarella et al. (1999) use a Fourier-Hermite representation for American options
while Chiarella et al. (2008a,b) extend this method for the evaluation of barrier
options and jump-diffusion models respectively, de Frutos (2008) uses Laguerre
polynomials to price options embedded in bonds and Breton and de Frutos
(2010) use a Fourier-Chebyshev approximation to price options under GARCH
specifications.

Inside the localization interval, spectral interpolation exhibits spectral conver-
gence, that is, an exponential decrease of the error with respect to the number of
interpolation nodes (or degree of the polynomial interpolant). As a consequence,
for smooth functions, a very good precision can be reached with few interpolation
nodes. This means that the value function can be represented and stored using a
relatively small number of coefficients, which is a definite advantage for options
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defined over a multi-dimensional state space. In the following section, we propose
an hybrid approach maintaining spectral convergence, while minimizing the approx-
imation error outside the localization interval and around the exercise barrier.

23.6 Hybrid Approach

A natural way to reduce the approximation error outside the localization interval�
a1; ap

�
consists in dividing the state space in three distinct regions, where the

spectral interpolation is used in
�
a1; ap

�
, while a suitable extrapolation is used in

[0; a1/ and
�
ap;C1�

: For instance, Fig. 23.6 shows the approximation error in the
case of the put option in Fig. 23.3 when the exercise value is used over [0; a1/ while
the null function is used over

�
ap;C1�

:

Notice that an even better fit can be obtained if a1 coincides with the exercise
barrier, so that the function to be interpolated is smooth in the interval

�
a1; ap

�
, as

illustrated in Fig. 23.7.
However, the computation of conditional expectations of high-order polynomial

functions is often numerically unstable. To illustrate, in the Black–Scholes model,
the transition parameter Bn

ij is given by

Bn
ij D 1p

2


Z 1

�1
'j



ai exp



r � �2

2
C �"

��
exp


�"2
2

�
d";
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0.02

0
48 50 52 54 56 58 60 62 64 66 68 70

–0.02

–0.04

–0.06

–0.08

Fig. 23.6 Approximation error when exercise value is used to the left and null function is used to
the right of the localization interval [50,68]
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Fig. 23.7 Interpolation error when localization interval is Œ52:22; 70	 and exercise value is used to
the left of the exercise frontier

where r is the risk-less interest rate and � the volatility of the underlying asset
between two exercise dates. When 'j is a polynomial of degree q, restricting the

expectation to the interval for " corresponding to ai exp
�
r � �2

2
C �"

�
2 �
a1; ap

�

involves the numerical evaluation of expressions of the form

a
q
i exp .qb/ ;

where b is a constant depending on the values of r; �; ai ; a1 and ap I numerical
evaluation of such an expression rapidly becomes impracticable when the degree
of the interpolation increases.

Here, we propose an alternate approach, where, instead of interpolating the value
function, we interpolate the integrand of the expectation EinŒvnC1.�/	 at grid points.

Consider a grid G D fai g. At stage n < N , the holding value at ai is written

vhn.ai / D ˇEinŒvnC1 .S/	

D ˇEinŒvnC1 .S/ InŒ0;a1/	

CˇEinŒvnC1 .S/InŒa1;ap		C ˇEinŒvnC1 .S/ In.ap;1/	;

where InI denotes the indicator function of the event fStnC1 2 I g. For appropriately
chosen localization interval

�
a1; ap

�
, the holding value may be approximated by

evhn.i/ D ˇ
�
EinŒv

e .S/ InŒ0;a1/	C EinŒvnC1 .S/InŒa1;ap		
�

D ˇEinŒ.K � S/ InŒ0;a1/	C ˇEinŒvnC1 .S/ InŒa1;ap		
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D ˇ

Z a1

0

.K � S/ fin.S/dS C ˇ

Z ap

a1

vnC1 .S/ fin.S/dS

D ˇCn
i C ˇ

Z ap

a1

vnC1 .S/ fin.S/dS; (23.15)

where fin.S/ denotes the probability density of ŒStnC1
j Stn D ai 	: The transition

parameters Cn
i can be readily obtained in closed-form for a large class of models,

and in many cases can be pre-computed as they do not depend on n if the
interpolation grids are identical at all stages.

Define the function winC1.s/ � vnC1 .s/ fin.s/ and assume that an approximation
evnC1 of vnC1 is known on G. The spectral interpolation of winC1.s/ is then

bwinC1.s/ D
pX

jD1
cnC1
ij 'j .s/;

where the coefficients cnC1
ij satisfy, for i D 1; :::; p; the linear system

pX

jD1
cnC1
ij 'j .ak/ DevnC1 .ak/ fin .ak/ ; k D 1; :::p:

Replacing in (23.15), we finally obtain

evhn.i/ D ˇCn
i C ˇ

pX

jD1
cnC1
ij

Z ap

a1

'j .S/dS:

Notice that if e'j is the Chebyshev polynomial of degree j � 1 defined over the
interval Œ�1; 1	, it satisfies

Z 1

�1
e'j .u/du D

(
0 if j is even
2

j .2�j / if j is odd;

Using 'j .s/ D e'j .z/ with z D 2 s�a1
ap�a1 � 1, a simple change of variable then yields

evhn.i/ D ˇCn
i C ˇ

pX

jD1
cnC1
ij

ap � a1
j .2 � j /Ifj oddg:

The dynamic program yielding the option value is then the following:

evN .i/ D ve.ai /; i D 1; :::; p:
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For n D N � 1; :::; 0

winC1.ak/ DevnC1 .ak/ fin.ak/; i D 1; :::; p; k D 1; :::; p (23.16)

cnC1
i D ˚�1winC1; i D 1; :::p (23.17)

Cn
i D

Z a1

�1
.K � S/ fin.S/dS; i D 1; :::; p

evhn.i/ D ˇCn
i C ˇ

pX

jD1
cnC1
ij

ap � a1

j .2 � j /
Ifj oddg; i D 1; :::; p (23.18)

evn.i/ D max
˚
ve.ai /;evhn.i/

�
; i D 1; :::; p;

where cnC1
i D

h
cnC1
ij

i
is the vector of coefficients, winC1 D �

winC1.ak/
�

and ˚ D
�
'j .ak/

�
.

The DP algorithm requires O.N � p/ operations for the computation of the
parameters Cn

i and the value function, O.N � p2/ operations for the computation
of the function in (23.16) and the holding value in (23.15), and O.N � p2 logp/
operations for the computation of the coefficients in (23.17) using Fast Fourier
Transform techniques.

Higher precision – or conversely less grid points – can be achieved by selecting
the lower bound of the localization interval to coincide with the exercise barrier, at
the expense of performing a search for the exercise barrier at each stage. Breton et al.
(2010) recently proposed such a hybrid approach to price options in the GARCH
framework, using a tridimensional state variable. They interpolate the value function
by Chebyshev polynomials in both the asset price and volatility spaces.

23.7 Conclusion

This chapter presented basic interpolation approaches for the approximation of
financial derivatives by dynamic programs. Finite element using linear spline
interpolation is easy to implement and numerically robust, but requires a relatively
large number of interpolation nodes to attain high precision. Spectral interpolation
converges exponentially fast, and very good precision can be attained with a
relatively small number of interpolation nodes when the function to be approx-
imated is smooth and defined over a bounded domain. However, early exercise
opportunities introduce discontinuities in the derivative at the exercise barrier. On
the other hand, spectral interpolation using high degree polynomials may cause
numerical instability. In this chapter, we propose a novel hybrid approach, allowing
to obtain spectral convergence, while avoiding localization errors and numerical
instability.
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Chapter 24
Computational Issues in Stress Testing

Ludger Overbeck

Abstract Stress testing should be an integral part of any risk management approach
for financial institutions. It can be basically viewed as an analysis of a portfolio of
transaction under severe but still reasonable scenarios. Those scenarios might be
based on a sensitivity analysis with respect to the model parameter, like a large shift
in spread curves, or an increase in default probabilities. Then the corresponding
transaction and portfolios are revalued at those stressed parameters. This does not
increase the computational effort compared to the revaluation under the assumed
normal statistical scenario. However a second class of stress testing approaches
relies on the factor model usually underlying most portfolio risk models. In credit
risk this might be an asset-value model or a macro-economic model for the default
rates. In market risk the factor model are interest rates, spread indices and equity
indices. The stress can then be formulated in terms of severe shocks on those factors.
Technically this is based on the restricting the sample space of factors. If one wants
now to assess the risk of a portfolio under those factor stress scenarios, again the
worst case losses should be considered from this sub-sample. In a plain Monte-
Carlo-based sample a huge number of simulations are necessary. In the contributions
we will show how this problem is solved with importance sampling techniques.
Usually the Monte-Carlo sample of the underlying factors is shifted to the regions
of interest, i.e. much more stress scenarios are generated than in the original scenario
generation. This is in particular successful for portfolios, like in credit, which are
mostly long the risk.
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24.1 Introduction

Since the financial crisis starting in 2007 the risk management community has
revisited the concept of stress testing. The importance of stress testing can be seen in
particular in the large literatur on stress testing in the regulatory environment (BIS
2000, 2001, 2005b; Blaschke et al. 2001; Cherubini and Della Lunga 1999; Cihak
2004, 2007; DeBandt and Oung 2004; Elsinger et al. 2006; Gray and walsh 2008;
Lopez 2005; Peura and Jokivuolle 2004). It is also an integral part of the so-called
second Pillar in the new basel accord (BIS 2005a).

Stress testing means to measure the impact of severe changes in the economic
and financial environment to the risk of financial institutions. Basically this can be
viewed to expose the portfolio of a financial institution to some downturn scenarios.
Conceptually it is related to the general theory of coherent risk measures, since those
can also be represented as the supremum of the value of financial positions under
some generalized scenarios (Artzner et al. 1997, 1999). Mathematically however
those scenarios are described by absolutely continuous measures with respect to a
single reference measures. Stress tests are in many cases, from this conceptual point
of view, usually point (Dirac-) measures on very specific point in the set of future
states of the world. Some literatur in that direction can be found in Berkowitz (1999),
Kupiec (1998), Schachter (2001) and Longin (2000), where the last two articles use
extreme value theory, cf. Embrechts et al. (1997) and McNeil et al. (2005).

Portfolio based stress testing which is the main technique we are going discuss
in this article, however, considers more generally new probability measures on the
probability space spanned by the risk factors underlying the risk models. Details
on this approach can be found in the Sect. 24.2, Stress testing in credit risk, which
has grown out of Bonti et al. (2006) and Kalkbrener and Overbeck (2010). Similar
portfolio related stress testing is also considered in Breuer et al. (2007), Breuer
and Krenn (2000), Kim and Finger (2000), Elsinger et al. (2006), Glassermann
and Li (2005) and Cihak (2004). All approaches, as part of risk measurement
systems, rely on the same basic structure, how to measure risk: Risks comes from
the uncertainty of future states of the world. The best we can get is a distribution of
future states. Stress tests are based on some subjective distributional assumptions on
those states, sometimes even Dirac, e.g. deterministic, measures. More intuitively,
the probability of a stress scenario is ignored or just set to 1. But still a functional
relationship between the underlying factors and the impact on the portfolio is
necessary as described in the following paragraph.

24.1.1 General Structure of Risk Models

In general risk models consists of two components. Risk in financial institutions
results from the uncertainty about the future state of the factors underlying the
economy and the financial markets. Hence for each financial position which we
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identify with its value V i there is a set of factors fi and a function Vi such that

V i D Vi .fi /:

For the two main risk types, market and credit risk, we will first comment on the
risk factors used and then on the valuation topic.

24.1.1.1 Risk Factors

The definition and identification of risk factors is crucial for risk measurement
and even more for risk management. In the subprime crisis many risk systems
failed since the ignored the subprime delinquency rate as a risk factors. Those risk
systems used just the quoted market spread on subprime assets without analyzing
the underlying primary risk, default rates. Usually systematic and idiosyncratic
(non-systematic) factors are considered. In market risk the factors are usually
of systematic character, like interest rates, equity indices, commodity prices. In
between systematic and idiosyncratic risk there are spreads and equity time series,
since they are influenced by general market movements and by firm specific issues.
The most idiosyncratic risk factors are default events or, depending on the model, the
idiosyncratic part of the asset-value model or the idiosyncratic part of the spread. In
any risk system the states of the world are fully specified by values or changes these
risk factors will take. For stress testing purposes some of the interesting states of the
world might a priori not be given by values of the risk factors. Additional statistical
or modeling must be done to associated a stress scenario, which is for example
formulated in terms of GDP or unemployment rate, values of the underlying risk
factors. This is a great challenge in stress testing, but not a specific computational
issue. For our more computational oriented analysis the large number of risk factors
poses the main problem concerning risk factors.

Market Risk

In market risk the identification of risk factors is a very straightforward tasks.
Usually one relies on the factors constituting the financial market. The problem
there is the large number of factors, since there might be several thousands of them.
Below find a table of some (Table 24.1):

Credit Risk

In credit risk modelling the question of risk factors depends usually on the model
which is used. An overview on credit risk models can be found in Bluhm et al.
(2002). There are different classification schemes. If we consider the one which
separates reduced form models from structural models, the consequence for the
underlying risk factors are as follows. In reduced form models the defaults rates
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Table 24.1 List of risk
factors

Factor Dimensions

Spreads
Per rating 10
� industrie 50
� region 20
� maturity 5
Equity indices 10
Per industrie 50
� region 20
Volatility matrices 25
Exchange rate 20
Interest rates
Per currency 20
� maturity 10

are the basic prime variables and therefore the default rates can be viewed as the
underlying risk factors. Default rates might be historically calibrated as in Credit
RiskC and Credit Portfolio View or they might be derived from market information,
like in spread based models. They later are of course very similar to market risk
models. Structural models are conceptually based on asset-value variables.

24.1.1.2 Re-Valuation

The second component of a risk systems models how the new values of the risk
factors will impact the value of the transactions in the portfolio of a financial
institution. Of course to determine the value of a transaction is in general a very
complex problem – even outside the context of stress testing. In addition to this
general problem under normal market and economic condition it is of course
questionable whether in stress situation the same valuation formulas can be applied.
This can be already described in the context of parameter of a valuation function. As
an example consider the standard valuation formula for synthetic CDO before the
breakout of the crisis. It was the base correlation approach with a constant recovery
parameter of 40%. In the crisis however the quoted prices were not compatible
with this 40% recovery. One had either to change the model assumption of constant
40% leading to more complex valuation function or assume another fixed recovery
of e.g. 10%. However then the valuation with single name Credit Default Swaps
would be inconsistent. Another way out of this and this might nowadays – after the
crisis – followed by most banks is to replace the simple base correlation by more
complex valuation routine, e.g. based on different copulas, since the base correlation
uses the simple one factor Gaussian copula. More accurate copulas, like hierachial
archimedean copula, are often computational much more involved. This is of course
a computational issue, but not really specific to stress testing, since more accurate
valuation formulas are also important in non-stressed situations. However in normal
economic environment also simple valuation might be sufficient.
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Credit Risk

In credit risk the classical revaluation. sometimes called book-value, is still the most
widespread valuation approach in the banking book. There are then basically to
potential values in the future states of each loan, namely the book value, usually
100, if no default has accured or if default happened the recovery value R of
the transaction. In most implementation the recovery R is even a deterministic
number and not a random variable. Then the only risk – and hence the only
uncertainty – is the default event. However, since in the recent financial crisis
many losses of the banks where not actually defaults but revaluations even of their
banking book positions – mainly accounting wise displayed as provisions or write-
downs, it became obvious, that additional risks should be included in credit risk,
namely migration risk and spread risk. Migration risk is defined as the change in
value coming from changes in the rating of the counterparty or transaction, i.e.
the transaction will have a new value if the underlying counterparty has migrated
to a different rating class. Here it is important to observe that the migration of a
loan to a different rating has only an effect on valuation if we go beyond default
only or more precisely book value method. The valuation of a loan has then to
depend on the credit quality of the loan. This can be achieved by a kind of fair-
value approach. The most credit like approach would be based on expected loss. To
put it simple the loan value is 100-Expected Loss (EL). The EL then depends on
the rating an hence there is a different discount for expected loss in each rating
class. More wide spread however is the discounting with different spreads for
each rating class. Usually this spread might depend also on industry and region.
For most counterparty a single name spread curve is probably not available. One
therefore restores on generic spread curve for a rating, (industry/region) bucket.
In this migration step the spread is fixed and known, i.e. not stochastic. As a last
component in credit risk spread volatility is included. This mean after migrating
in a new rating class also the spread in this rating class might have changed, due
to stochastic fluctuation. Of course, since spread include in addition to the market
assessment of “historical or statistical risk” also the risk aversion of the market.
The risk aversion measures somehow how much more than the expected loss is
necessary to pay in order to convince the investor to take this risk. In reality the
investor is not exposed to expected loss but to realized losses which in credit in each
single case is far away (positive D no loss, negativeD 1-recovery) from expected
loss. Another line of arguments would see the spread above the expected loss as the
unexpected loss component of the market which also changes with risk aversion.
For the purpose of stress testing the assumption how spread, i.e. risk aversion, will
change in crisis is very important. Unfortunately not many studies exits around that
topic. We will show in the example on portfolio level stress testing in credit risk, how
a shift in model implied unexpected loss can be derived. Another important feature
of spread risk comes from its bridging function to market risk. Since it describes
the market risk aversion it has many components in common with market which we
will describe in the next paragraph. Before let us mention the asset-value approach
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to loan valuation which comprises, default, migration and spread risk in a consistent
model (Merton 1974; Gupton et al. 1997; Crosby and Bohn 2003).

Market Risk

There are different way to value a financial product as a function of underlying risk
variables. The full pricing approach would be to take the valuation function V to be
the market standard or for Sometimes in market risk management systems the Delta
or Delta-Gamma approach is applied in which �V is approximated by the first and
second derivative .r; �/ of V with respect to the risk factors

�V D Vi .f
new
i / � Vi .fi / (24.1)

� .f new
i �fi /Tr.Vi .fi //C 1=2 � .f new

i �fi /T �.f .i//f new
i �fi /(24.2)

Of course in the case of largest differences .f new
i � fi / and non-linear products

this is not a good approximation anymore and we could not use it in stress testing.
Therefore we arrive at a second computational issue in the stress testing, namely
the efficient and fast calculation of value functions. Usually, for large market moves
one has to carry out a full revaluation, which is usually computational very costly.
However we do not deal with this in the current overview paper.

24.1.2 Stress Testing

There are several approaches to stress testing. It can be basically viewed as an
analysis of a portfolio of transaction under severe but still reasonable scenarios.
Those scenarios might be based on a sensitivity analysis with respect to the
model parameter, like a large shift in spread curves, or an increase in default
probabilities. Then the corresponding transaction and portfolios are revalued at
those stressed parameters. This does not increase the computational effort compared
to the revaluation under the assumed normal statistical scenario. This stress testing
as mentioned above is based on a Dirac-measure and several specification of those
point scenarios can be found in BIS (2001) and BIS (2005b). However a second
class of stress testing approaches relies on the factor model usually underlying most
portfolio risk models. This approach is the main topic discussed in the article. In
credit risk this might be an asset-value model or a macro-economic model for the
default rates. In market risk the factor model are interest rates, spread indices and
equity indices. The stress can then be formulated in terms of severe shocks on those
factors. Technically this is based on the restricting the sample space of factors. If
one wants now to assess the risk of a portfolio under those factor stress scenarios,
again the worst case losses should be considered from this sub-sample. But also the
expected loss or the mean of the P&L distribution is already very informative in
such severe scenarios.
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24.1.3 Calibration of Stress Scenarios

Many stress scenarios – especially in more regulatory driven approaches – are
formulated in terms of macroeconomic variables, like GDP. Then a first task in
the calibration of stress tests is the translation of those scenarios into scenarios
for the risk factors. As it is well known it is difficult to explain market moves
by some macro-economic variables, i.e. a regression has often small explanatory
power. Attempts like this can be found in Pesaran et al. (2004, 2005, 2006) in the
context of asset-value models. This is an important building block in the stress
testing approach and requires surely more academic input as well. As a practical
way around this weak statistical and econometric link between macro-economic
variables and risk factors might be to formulate the stress directly in the risk factors
world. The mapping can then be done by a probability mapping. For example, if
an increase in oil price by 100% has a probability of 0:1%, then we might translate
this event to the 0:1%-qunatile of the first principal component of the risk factors
system, since an oil price shock is global, cf. Kalkbrener and Overbeck (2010). From
a computational point of view however it does not add to more complexity.

24.1.4 Overview of Paper

As we will concentrated now on portfolio level stress testing we will explain this
approach first in more detail in the context of credit risk in the following section.
This part is based on the papers (Bonti et al. 2006; Kalkbrener and Overbeck 2010).
Then we will discuss some importance sampling issues in this context which are
adopted from approaches developed in Kalkbrener et al. (2004), cf. also Kalkbrener
et al. (2007) and Egloff et al. (2005). In Sect. 24.3 we discuss some issues related to
market risk. First the potential of carry out a similar portfolio level stress testing as
in market risk and secondly the use of importance sampling technique for the joint
calculation of several (point-measure) stress testing.

24.2 Stress Testing in Credit Risk

To be specific we will first construct the portfolio model which we will then expose
to stress.

24.2.1 The Credit Portfolio

For the sake of simplicity we describe the default-only structural model with
deterministic exposure-at-default. Extension to incorporate migration risk or volatile
exposures and loss given defaults are straight-forward. The credit portfolio P
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consists of n loans. With each loan we associate an “Ability-to-Pay” variable
Ai W R

mC1 ! R, which is a linear combination of the m systematic factors
f1; : : : ; fm and a specific variable zi :

Ai.x1; : : : ; xm; zi / WD
mX

jD1
�ij fj C

q
1 �R2i zi (24.3)

with 0 � R2i � 1 and weight vector .�i1; : : : ; �im/. The m systematic fi ; i D
1; : : : ; m will be entry point for the portfolio level stress testing.

The loan loss Li W RmC1 ! R and the portfolio loss function L W RmCn ! R

are defined by

Li WD li � 1fAi�Di g; L WD
nX

iD1
Li ;

where 0 < li and Di 2 R are the exposure-at-default and the default threshold
respectively. As probability measure P on R

mCn we use the product measure

P WD N0;� �
nY

iD1
N0;1;

where N0;1 is the standardized one-dimensional normal distribution and N0;� the
m-dimensional normal distribution with mean 0 D .0; : : : ; 0/ 2 R

m and non-
singular covariance matrix C 2 R

m
m. Note that each fi , zi and Ai is a centered

and normally distributed random variable underP. We assume that the weight vector
.�i1; : : : ; �im/ has been normalized in such a way that the variance ofAi is 1. Hence,
the default probability pi of the i th loan equals

pi WD P.Ai � Di/ D N.Di/;

where N denotes the standardized one-dimensional normal distribution function.
This relation is used to determine the default threshold from empirical default
probabilities.

24.2.2 Coherent Risk Measurement and Capital Allocation

The risk characteristics under stress should include at least the Expected Loss and
Expected Shortfall both under the stressed measure QP and the unstressed measure P:

QEL D QEŒL	

The expected shortfall of L at level ˛ is defined by

ES˛.L/ WD .1 � ˛/�1
Z 1

˛

VaRu.L/du;
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where the value-at-risk VaR˛.L/ of L at level ˛ 2 .0; 1/ is simply an ˛-quantile of
L once under P and then under QP. For most practical applications the average of all
losses above the ˛-quantile is a good approximation of ES˛.L/: for c WD VaR˛.L/
we have

ES˛.L/ � QE.LjL > c/ D .1 � ˛/�1
Z
L � 1fL>cg d QP: (24.4)

24.2.3 Portfolio Level Stress Testing

Often stress scenarios are formulated in a macro-economic manner. Hence, in order
to translate such a given stress scenario into model constraints, a precise meaning
has to be given to the systematic factors of the portfolio model. Recall that each
ability-to-pay variable

Aj D
mX

iD1
�j ifi C

q
1 � R2j zj

is a weighted sum of m systematic factors f1; : : : ; fm and one specific factor "j .
The systematic factors often correspond either to geographic regions or indus-
tries. The systematic weights �j i are chosen according to the relative importance of
the corresponding factors for the given counterparty, e.g. the automobile company
BMW might have the following (unscaled) representation:

BMW assets D 0:8 � German factor C 0:2 � US factor

C 0:9 � Automotive factor C 0:1 � Finance factor

C BMW’s non-systematic risk:

The specific factor is assumed independent of the systematic factors. Its role is to
model the remaining (non-systematic) risk of the counterparty.

The economic interpretation of the systematic factors is essential for implement-
ing stress scenarios in the model. The actual translation of a scenario into model
constraints is done in two steps:

1. Identification of the appropriate risk factors based on their economic interpreta-
tion

2. Truncation of their distributions by specifying upper bounds that determine the
severity of the stress scenario

Using the credit portfolio model introduced in Sect. 24.2.1 as quantitative frame-
work, the specification of the model constraints is formalized as follows. A subset
S � f1; : : : ; mg is defined, which identifies the stressed factors fi , i 2 S . For each
of these factors a cap Ci 2 R is specified. The purpose of the thresholds Ci , i 2 S ,
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is to restrict the sample space of the model. If i … S we set Ci D 1, unrestricted.
More formally, the restricted sample space Q� � � is defined by

Q� WD f! 2 � j fi .!/ � Ci for all ig: (24.5)

The probability measure describing this stress is then restrictions of the �-algebra
A and the probability measure P to N� are denoted by NA and

QP D PŒ�j Q�	 D PŒ�jf < C 	:

24.2.4 Importance Sampling Unstressed

The portfolio level stress testing results can be naively obtained from a subsampling
approach, i.e. run a huge Monte Carlo simulation for the actual calculation of
risk capital at portfolio and transaction level and then select those Monte-Carlo-
Scenarios which satisfy the constraint of the main practical problem in applying
expected shortfall to realistic credit portfolios is the computation of numerically
stable MC estimates. In this section we adapt importance sampling to our credit
portfolio model and show that this technique significantly reduces the variance of
Monte Carlo simulation. The efficient computation of expected shortfall (24.4) is a
challenging task for realistic portfolios, even in the unstressed case. Straightforward
Monte Carlo simulation does not work well . As an example, assume that we want
to compute expected shortfall with respect to the ˛ D 99:9% quantile and compute
� D 100;000MC samples s1 	 s2 	 : : : 	 s� of the portfolio loss L. Then ES˛.L/
becomes

.1 � ˛/�1E.L � 1fL>cg/ D .1 � ˛/�1
Z
L � 1fL>cg dP D

100X

iD1
si =100; (24.6)

where c WD VaR˛.L/. Since the computation of ES˛.L/ is only based on 100 sam-
ples it is subject to large statistical fluctuations numerically unstable. A significantly
higher number of samples has to be computed which makes straightforward MC
simulation impracticable for large credit portfolios. For this purpose we will present
the basic variance reduction idea first for the unstressed probability measure and
then later give some ideas how to modify it for stress scenarios.

24.2.4.1 Monte Carlo Simulation Based on Importance Sampling

Importance sampling is a technique for reducing the variance of MC simulations
and – as a consequence – the number of samples required for stable results. It has
been successfully applied to problems in market risk (Glasserman et al. 1999). In
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our setting, the integral in (24.6) is replaced by the equivalent integral

Z
L � 1fL>cg � � d NP; (24.7)

where P is continuous with respect to the probability measure NP and has density �.
The objective is to choose NP in such a way that the variance of the Monte-Carlo
estimate for the integral (24.7) is minimal under NP. This MC estimate is

ES˛.L/�; NP WD 1

�

�X

iD1
L NP.i/ � 1fLNP.i/>cg�.i/; (24.8)

where L NP.i/ is a realization of the portfolio loss L and �.i/ a realization of the
density � under the probability measure NP. Under suitable conditions as � ! 1,
ES˛.L/�; NP converges to (24.7) and the sampling error converges as

p
� � .ES˛.L/�; NP � ES˛.L//

d�! N.0; �ES˛.L/.
NP//; (24.9)

where �2ES˛.L/
. NP/ is the variance of L � 1fL>cg � � under NP, i.e.

�2ES˛.L/.
NP/ D

Z �
L � 1fL>cg � ��2 d NP �


Z
L � 1fL>cg � dP

�2
: (24.10)

In the following we restrict the set of probability measures NP, which we consider to
determine a minimum of (24.10): for every M D .M1; : : : ;Mm/ 2 R

m define the
probability measure PM by

PM WD NM;� �
nY

iD1
N0;1; (24.11)

whereNM;� is them-dimensional normal distribution with meanM and covariance
matrix � . In other words, those probability measures are considered which only
change the mean of the systematic components x1; : : : ; xm in the definition of the
“Ability-to-Pay” variables A1; : : : ; An. This choice is motivated by the nature of
the problem. The MC estimate of integral (24.7) can be improved by increasing
the number of scenarios which lead to high portfolio losses, i.e. portfolio losses
above threshold c. This can be realized by generating a sufficiently large number
of defaults in each sample. Since defaults occur when “Ability-to-Pay” variables
fall below default thresholds we can enforce a high number of defaults by adding a
negative mean to the systematic components.

Having thus restricted importance sampling to measures of the form (24.11) we
consider �2ES˛.L/

.PM/ as a function from R
m to R and rephrase
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The Variance Reduction Problem

Compute a minimumM D .M1; : : : ;Mm/ of the variance

�2ES˛.L/.PM/ D
Z 


L � 1L>c � n0;�
nM;�

�2
dPM �


Z
L � 1L>c dP

�2
(24.12)

in R
m, where n0;� and nM;� denote the probability density functions of N0;� and

NM;� respectively.

We can formulate the minimization condition as

@Mi �
2
ES˛.L/.PM/ D 0; 8 i D 1; : : : ; m: (24.13)

Using the representation in (24.7) and the specification of the portfolio model this
leads to the system of m equations

2

mX

jD1
C�1
ij Mj

D �@Mi log

 Z
L.x �M; z/2 � 1fL.x�M;z/>cg dN0;�.x/

nY

iD1
dN0;1.zi /

!
:

and the explicit representation of the portfolio loss reads

L.x; z/ D
nX

iD1
lj � 1fN�1.pi />

Pm
kD1 �ikxkC

p
1�R2i zi g: (24.14)

For realistic portfolios with thousands of loans this system is analytically and
numerically intractable.

24.2.4.2 Approximation by a Homogeneous Portfolio

To progress we therefore approximate the original portfolio P by a homogeneous
and infinitely granular portfolio NP . This means that the losses, default probabilities
and “Ability-to-Pay” variables of all loans in NP are identical and that the number of
loans n is infinite with fixed total exposure. We emphasize that this approximation
technique is only used for determining a mean vector M for importance sampling.
The actual calculations of expected shortfall and expected shortfall contributions
are based on Monte Carlo simulation of the full portfolio model as specified in
Sect. 24.2.1. There is no unique procedure to establish the homogeneous portfolio,
which is closest to a given portfolio. We propose the following technique as
in Kalkbrener et al. (2004) for determining the parameters of the homogeneous
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portfolio NP , i.e. exposure-at-default l , default probability p,R2 and the set of factor
weights �j ; .j D 1; : : : ; m/:

Loss and Default Probability

The homogeneous loss l is the average of the individual losses li and the homoge-
neous default probability p is the exposure-at-default weighted default probability
of all loans in the portfolio:

l WD
Pn

iD1 li
n

; p WD
Pn

iD1 pi liPn
iD1 li

:

Weight Vector

The homogeneous weight vector is the normalized, weighted sum of the weight
vectors of the individual loans: in this paper the positive weights g1; : : : ; gn 2 R

are given by gi WD pi li , i.e. the i th weight equals the i th expected loss, and the
homogeneous weight vector � D .�1; : : : ; �m/ is defined by

� WD  =s with  D . 1; : : : ;  m/ WD
nX

iD1
gi � .�i1; : : : ; �im/:

The scaling factor s 2 R is chosen such that

R2 D
mX

i;jD1
�i � �j � Cov.xi ; xj / (24.15)

holds, where R2 is defined in (24.16).

R2

The specification of the homogeneousR2 is based on the condition that the weighted
sum of “Ability-to-Pay” covariances is identical in the original and the homogeneous
portfolio. More precisely, define

R2 WD
Pm

k;lD1  k lCov.xk; xl / �Pn
iD1 g2i R2i

.
Pn

iD1 gi /2 �Pn
iD1 g2i

(24.16)

and the i th homogeneous “Ability-to-Pay” variable by

NAi WD
mX

jD1
�j xj C

p
1 �R2zi :
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Proposition 1. The following equality holds for the weighted sum of “Ability-to-
Pay” covariances of the original and the homogeneous portfolio:

nX

i;jD1
gigjCov.Ai ; Aj / D

nX

i;jD1
gigjCov. NAi ; NAj /: (24.17)

24.2.4.3 Analytic Loss Distributions of Infinite Homogeneous Portfolios

In this section we approximate the loss function of the homogeneous portfolio by
its infinite limit n ! 1. The approximation technique is based on the law of large
numbers and works well for large portfolios as already developed by Vasicek (1991)
and used in the Basel II framework (Gordy (2003)).

Proposition 2. Let the loss function NLi of the i th facility in the homogeneous
portfolio NP be defined by

NLi WD l � 1 NAi�N�1.p/:

Then

lim
n!1.1=n/ �

nX

iD1
NLi D l �N

 
N�1.p/ �Pm

jD1 �j xjp
1 � R2

!

holds almost surely on �.

Based on the above result we define the function L1 W R ! R by

L1.x/ WD n � l �N


N�1.p/ � xp

1 �R2
�

(24.18)

and approximate the portfolio loss functionL.x1; : : : ; xm; z1; : : : ; zn/ of the original
portfolio P by the loss function

L1
m .x1; : : : ; xm/ WD L1

0

@
mX

jD1
�j xj

1

A (24.19)

of the infinite homogeneous portfolio. The threshold c1 WD VaR˛.L1
m / is defined

as the ˛-quantile of L1
m with respect to the m-dimensional Gaussian measure N0;� .

By approximating the finite inhomogeneous portfolioP by an infinite homogeneous
portfolio we have transformed the variance reduction problem (24.12) to

The Variance Reduction Problem for Infinite Homogeneous Portfolios: compute
a minimumM D .M1; : : : ;Mm/ of

�2ES˛.L1
m /.M/ D

Z 

L1
m � 1L1

m >c1 � n0;�

nM;�

�2
dNM;C (24.20)

in R
m.
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Note that we have achieved a significant reduction of complexity: the dimension
of the underlying probability space has been reduced from mC n to m and the loss
function L1

m is not a large sum but has a concise analytic form. In the next section
we will present as in Kalkbrener et al. (2004) simple and efficient algorithm which
solves the variance reduction problem for infinite homogeneous portfolios.

24.2.4.4 Optimal Mean for Infinite Homogeneous Portfolios

The computation of the minimum of (24.20) is done in two steps:

One-factor model

Instead ofm systematic factors x1; : : : ; xm we consider the corresponding one-factor
model and compute the minimum �.1/ 2 R of (24.20) in the case m D 1. This �.1/

is the minimum of Z N�1.1�˛/

�1
.L1

1 � n0;1/2
nM;1

dx:

Multi-factor model

The one-dimensional minimum �.1/ can be lifted to the m-dimensional minimum
�.m/ D .�

.m/
1 ; : : : ; �

.m/
m / of (24.20) by

�
.m/
i WD �.1/ �Pm

jD1 Cov.xi ; xj / � �jp
R2

: (24.21)

24.2.5 Importance Sampling for Stress Testing

The procedure above gives as a very successfull approach for a very efficient
variance reduction technique based on shifting the underlying factor model. Since
the expected shortfall can be viewed as an expected loss under a severe, but very
specific scenario, for the portfolio, namely that the loss exceeds a specific quantile,
this approach is good starting point for importance sampling techniques in stress
testing.

24.2.5.1 Subsampling

As a first remark, one can say that the shifted factor model produces also more
losses in those factor scenarios which finally hurts the portfolio most. Hence many
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stress testing procedures which are also hot spots of the portfolio might be found
by the simple subsampling technique. That is choose now those scenarios under the
shifted measures, where also the constraint of the stress test are fullfilled. I.e. for
each functional T of the loss variable L we compute QEŒT .L/	 by

QEŒT .L/	 D EŒT .L/jX < C	 D .P ŒX < C 	/�1EŒT .L/1fX<C g	 (24.22)

EŒT .L/1fX<C g	 D
Z 


T .L/1fX<C g
n0;�

nM;�

�
dPM (24.23)

� 1

�

�X

iD1
T .L.xi ; zi //1xi<C

n0;�

nM;�
.xi /; (24.24)

where .xi ; zi /; i D 1; : : : ; � are k simulations of the factor model and the
idiosyncratic asset risk vectors. � is the original covariance matrix of the factor
model andM is the optimal drift for the Expected Shortfall calculation (unstressed)
as above.

Remark

There might be functional T of L which give in combination with the restriction
a very fast calculation by the above approach. For example if T .x/ D x and we
restrict only the most sensitive factor for the portfolio. Like for a bank lending
mainly to European customer we only restrict the European factor. For other pairs
of functionals T and restriction vector C this might be not efficient. E.g. calculation
of the Expected Loss in normal times Ci D 1 all i and T .x/ D x importance
sampling with the optimal expected shortfall shift is not efficient.

24.2.5.2 Stress Specific Shifts

Lead by the successfull application of the importance sampling scheme to Expected
Shortfall calculation and the observation, that expected shortfall can also be viewed
as an Expected Loss under a very specific downturn scenario, namely the scenario
“loss is larger than quantile”, we will now propose some specific importance
sampling schemes for stress testing. First the optimisation equation for the general
portfolio level stress testing defined by the restriction vector C and a functional T ,
whose expectation should be related to risk measures is

The Variance Reduction Problem for Stress Testing: compute a minimum M D
.M1; : : : ;Mm/ of the variance

�2T.PM/ D
Z 


T .L/ � 1X<C � n0;�
nM;�

�2
dPM �


Z
T .L/ � 1X<C dP

�2
(24.25)
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Also this minimization problem is not feasible and we propose several approaches
to improve the efficiency:

Infinite Granular Approximation

We can proceed as in the section on unstressed importance sampling by taking the
infinite granular approximation as in the first part leading to Proposition 1. Then we
have to minimize over the drift vectorM

Z 

T .L1

m // � 1X<C � n0;�

nM;�

�2
dNM;� (24.26)

If we consider now a matrix A with A � AT D � we can re-formulate this

Z

Rm



T .L1

m .Ax CM// � 1AxCM<C � n0;�

nM;�
.Ax CM/

�2
…m
iD1n0;1.xi /dx

(24.27)
If one wants to solve the normal integral by a Monte-Carlo simulation one just has
to generate � vectors x.j / D .x

.j /
1 ; : : : ; x

.j /
m /T of m� independent standard normal

random numbers x.j /i and minimize

�X

jD1



T .L1

m .Ax
.j / CM// � 1Ax.j /CM<C � n0;�

nM;�
.Ax CM/

�2
: (24.28)

This is a feasible optimization problem. Of course a reduction to a one-factor
optimization as for the calculation of unstressed expected shortfall is not always
straight forward and subject to future research.

Remark

(i) In this approach we have avoided to work with the probability measure QP, but
did all the analysis under the original P. The reason was that the restricted prob-
ability measure is not normal anymore and we expect less analytic tractability of
the optimization required in importance sampling approach. In the next section
we will therefore replace the restricted probability measure by a shifted one.

(ii) We have so far assumed that the risk characteristic of interest can be written as
an expectation of a functional T of L. Also in the unstressed case we have
approximated the expected shortfall by .1 � ˛/�1EŒLjL > c	 with c the
somewhere known or approximated quantil of L.

For the derivation of the quantil of the unstressed loss distribution can be also carried
out under the transformation to PM : Generate the Monte-Carlo sample L.i/; i D
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1; : : : ; � under PM . Then calculate the sum
Pn

iD1.Œi 	/
n0;�
nM;�

.x.Œi 	//, where Œi 	 is the
index of the Œi 	-largest loss, until this sum equals 1�˛. If we denote the index of last
summand by n˛ thenL.n˛/ corresponds to the quantile under P. In stress testing we
face the additional problem that we want to know such type of risk characteristics,
in particular Value-at-Risk and Expected Shortfall, which can not be written as an
integral of a function of the loss distribution, under QP.

24.2.6 Shifted Factor Model

Let us assume we want to calculate the ˛- quantile of the loss distribution under the
measure QP. This means we want to find the smallest 0 � y such that

˛ � PŒX < C 	 D
Z

1X<C1L<ydP (24.29)

D
Z

1X<C1L<y
n0;�

nM;�
.X/dPM (24.30)

With the techniques presented so far we can only find a reasonable driftM D M.y/

for each y. To find the quantile we therefore restore to a plausible, perhaps not
optimal, drift transformation. We set QMi D Ci if C < 1 and 0 else. Another
possibility would be to set QMi D Ci � � � p

�ii with some multiplier � for the
volatility

p
�ii of the i�th factor.

Second Drift Transformation

If we are interested – as it was the main motivation for the importance sampling
approach of the unstressed model – in the calculation of risk contributions, like
contributions to expected shortfall, we can then proceed as before with a second
drift transformation. Let us assume we have now calculated the quantile Qq with the
help of P QM , suitable QM . Then we have two possibilities:

• We replace in the unstressed case P by P QM and c by Qq and proceed in exactly
the same way as in the unstressed case until we derive at the optimal drift for
the expected shortfall calculation QMopt . In order to obtain the stressed expected
shortfall we have then to apply the subsampling technique, i.e. we have to
generate f1; : : : ; f� Monte-carlo samples of f under P QMopt

and sample zi of the
idiosyncratic risk and then calculate

..1� ˛/ � P ŒX < C 	/�1
1

�

�X

iD1
Lj .fi ; zi /1L>Qq;fi<C

n0;�

n QMopt ;�

.fi / (24.31)
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for the risk contribution of counterparty j with Lj the loss function of counter-
party j .

• Define in (24.28), (24.27) or (24.26) the transformation T .l/ D 1l>Qq and try to
find the optimal drift.

24.2.7 Reformulation of the Scenarios

Instead of the implementation of portfolio level stress testing scenarios in terms of
the conditional distribution QP the conditional distribution that a given set of factor
will stay below some level Ci one can simplify the implementation approach, if the
scenarios are specified in terms of the probability that a certain level is not reached.
To fix the idea assume that we have a single factor scenario, on factor f1, of the type
f1 will drop belowC1 with a probability of s%. This gives directly a reasonable new
drift M1 D C1 � N�1

.0;1/.s%/. More generally we now consider stress tests directly
expressed in terms of a shifted normal distribution or even a new normal distribution
on the factors with density n QM; Q� . Then we can proceed exactly as in the unstressed
case to obtain the optimal importance sampling shift for each single scenario.

24.2.7.1 Simultaneous Stress Test Implementation

The relative straight forward importance sampling technique for a given stress
scenario based on new normal distribution of the factor model might let to the
attempt to do a simultaneous optimisation of the drift. For that let us assume we
have k new stress scenarios associated with the pairs .Mi ; �i /; i D 1; : : : ; k then
we have to find an optimal pair .M; �/ minimizing

kX

iD1

Z 

Ti.L/ � nMi ;�i

nM;�

�2
dPM (24.32)

If this optimial drift transformation leads also to a reasonable sampling variance
for the single scenarios, all scenarios can be calculated in one run of the portfolio
model, namely under the measure PM . This would reduce the computation time for
multiple portfolio stress tests considerably.

Since in credit risk most portfolio are “long only” most scenarios which will
hurt the bank have similar drift. Hence a simultaneous minimization might be
efficient. If the risk of the portfolio is more homogenous distributed and up-wards
and downwards trends of the underlying factor might both hurt the portfolio,
simultaneous minimization might be not efficient. Unfortunately this “dispersion”
property of potential risky investments and risky scenarios is one feature of trading
books which are more exposed to market risk.
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24.3 Stress Testing in Market Risk

As mentioned in the introduction in Market Risk analysis many risk factors have to
be considered. As reported in BIS (2001) and BIS (2005b) most stress tests in market
risk are actually based in single point measures scenarios. Portfolio dependent stress
tests are rarely handled in the literatur. In general the approach should be similar
to credit risk. Once a certain intuitive scenario is specified, usually only by the
specification of values of a single or only a few risk factors, one considered a
kind of truncated or conditional distribution of the factor model taking into account
this specification. The factor model is considered under this shifted or constraint
distribution and the re-valuation takes place in the same way as in the unstressed
model. However as mentioned in the introduction, it might also be sensible to use
stressed valuation models instead of the one in normal market situation For example
it is well-known that the base correlation model for CDOs did not work in the credit
crisis, e.g. Krekel (2008).

A more challenging feature of market risk is the absence of a simple one factor
approximation as in credit risk for the importance sampling and the portfolio stress
testing approach. Since trading books might be long and short w.r.t. to any type
of risk factors, it is usually not straightforward to apply a general importance
sampling scheme for market risk models. It depends usually heavily on the specific
portfolio which are the factors such that a severe shift in the mean of the factor
(the importance sampling shift) will actually lead to large losses. It might e.g. be
that a fall in equity indices leads to large losses, but that the corresponding (i.e.
correlated) decrease in bond prices might actually give a profit for the financial
institutions since the are protection buyer in the corresponding default swap market.
This means the will profit from more expensive protection. This means that the
optimal shift is actually a multidimensional problem and can not easily attacked.
Usually a good starting point of the determination of the mean shift is given by the
vector of sensitivities. If f D .f1; : : : ; fn/ represents the vector of risk factors then
the sensitivities are given by the vector



@Vp

@f1
.f/; : : : ;

@Vp

@fn
.f/
�
:

The single factor with weights proportional to this sensitivities might be a good
starting point to find reasonable stress tests for the traded portfolio and as a
consequence also for the implementation of the importance sampling scheme. A
main disadvantage of the sensitivity based approach is the omission of non-linearity.
An improvement would be to consider the Delta-Gamma-Approach in valuation in
which the second derivatives

�ij D @2Vp

@fi @fj

are also considered. Some ideas for applying importance sampling techniques in the
unstressed case can be found in Chap. 9 of Glasserman (2004).
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Stress Tests by Restriction

Now we consider the subsampling based stress tests in analogy with Sect. 24.2.5.1.
If we define the stressed probability distribution again by the conditional distribution
that the factors are restricted to a multivariate interval Œx; y	 D Œx1; y1	�� � ��Œxm; ym	
where m is the number of risk factors. Then we want to minimize the following
expression with respect to the new drift QM .

Z  
Vp.f / � nM;˙

n QM;˙

!2
1f 2Œx;y	n QM;˙.df /: (24.33)

Here we assume that the factors have a joint normal distribution,˙ is the covariance
matrix of the factor vector f , M is the unstressed mean of the factor distribution,
and Vp.f / is the valuation function, more precisely the change in portfolio value
when f is the change in factor values. In general this problem seems to be hard
to solve. We therefore recommend in a first step to formulate the stress scenarios
in terms of a new shifted distribution of the factor which we then denote by QP. In
order then to calculate risk characteristics T of the portfolio value Vp we proceed as
in any standard, non-stressed, Monte-Carlo technique. Again, some procedures are
described in Glasserman (2004).

Revaluation Under Stress

Let us go back to the frequently used Dirac- measures as a stress scenario, but
assume now that we have to calculate the portfolio for a series of such point
measures. From a valuation point of view Vi the value of a transaction i is the
expected discounted cashflows Vi D EQŒCi 	, Ci D discounted cashflows, under the
“risk neutral” measure Q. The measure Q is always parameterised by the current
values of the risk factors, meaning Q D Q.f /. Each new value will give a new
valuation measure Q. This means, identifying each scenario with a new value of f
we have to carry out many revaluation

Vi.fj / D EQ.fj ŒCi 	; j D 1; : : ;K;

where K is the number of scenarios under consideration. In many cases we might
have the situation where theQ.fj / have densities with respect to Q.f0/ the current
pricing measure. For example if we assume that all cashflows are again functions
of a multivariate normal distribution driven by the factors. Then we can generate �
samples of Ci.!k/; k D 1; : : : ; � under the measure Q.f0/ and the also values of
the density dQ.fj /=dQ.f0/.!k/ and obtain the an estimation of Vi.fj / by

1

�

�X

iD1
Ci .!k/dQ.fj /=dQ.f0/.!k/:
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If the computation of the density is considerably faster than a re-run of the scenario
generation of !k under all the different measure, this procedure might improve
the calculation involved with stress testing in market risk. This might in particular
helpful if there is no analytic form for Vi and therefore if the calculation of the value
Vi has to use Monte-Carlo-Simulation anyway.

24.4 Summary

For credit risk we gave a detailed survey of potential combination of well developed
importance sampling techniques with some portfolio level stress testing as in the
papers (Kalkbrener and Overbeck 2010; Bonti et al. 2006) about stress testing and
(Kalkbrener et al. 2004) about importance sampling. For market risk we gave a
short overview of potential computational techniques – in particular importance
sampling – which might be possible to apply in several levels of stress testing, like
portfolio level stress testing and revaluation under specific single scenarios.

References

Artzner, P., Delbaen, F., Eber, J.-M., & Heath, D. (1997). Thinking coherently. RISK, 10, 68–71.
Artzner, P., Delbaen, F., Eber, J.-M., & Heath, D. (1999). Coherent measures of risk. Mathematical

Finance, 9, 203–228.
Berkowitz, J. (1999). A coherent framework for stress-testing. Journal of Risk, 2(2), 1–11.
BIS (2000). Stress testing in credit portfolio models: Current practice and aggregation issues.

Committee on the global financial system, Basel.
BIS (2001). A survey of stress tests and current practice at major financial institutions. Committee

on the global financial system, Basel.
BIS (2005a). International convergence of capital measurement and capital standards. A revised

framework. Basel Committee on Banking Supervision, Basel.
BIS (2005b). Stress testing at major financial institutions: Survey results and practice. Committee

on the Global Financial System, Basel.
Blaschke, W., Jones, M. T., Majnoni, G., & Martinez Peria, S. (2001). Stress testing of financial

systems: An overview of issues, methodologies, and FSAP experiences. IMF Working Paper,
International Monetary Fund, Washington DC.

Bluhm, C., Overbeck, L., & Wagner, C. K. J.(2002). An introduction to credit risk modeling.
Financial mathematics series. London: Chapman & Hall.

Bonti, G., Kalkbrener, M., Lotz, C., & Stahl, G. (2006). Credit risk concentrations under stress.
Journal of Credit Risk, 2(3), 115–136.

Breuer, T. & Krenn, G. (2000). Identifying stress test scenarios. Working Paper, Fachhochschule
Vorarlberg, Dornbirn.

Breuer, T., Jandaika, M., Rheinberger, K., & Summer, M. (2007). Macro stress and worst case
analysis of loan portfolios. Working Paper, Fachhochschule Vorarlberg, Dornbirn.

Cherubini, U. & Della Lunga, G. (1999). Stress testing techniques and value at risk measures: A
unified approach. Working Paper, Banca Commerciale Italiana, Milano.

Cihak, M. (2004). Stress testing: A review of key concepts. Czech National Bank Research Policy
Note 2/2004.



24 Computational Issues in Stress Testing 673

Cihak, M. (2007). Introduction to applied stress testing. IMF Working Paper No 07/59, Interna-
tional Monetary Fund, Washington DC.

Crosby, P. J. & Bohn, J. R. (2003). Modeling default risk. Manuscript, Moody’s KMV LLC. http://
www.moodyskmv.com/research/whitepaper/ModelingDefaultRisk.pdf.

DeBandt, O., & Oung, V. (2004). Assessment of stress tests conducted on the french banking
system. Banque de France, Financial Stability Review No 5, November 2004.
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Chapter 25
Portfolio Optimization

Jérôme Detemple and Marcel Rindisbacher

Abstract This paper reviews a Monte Carlo method for consumption-portfolio
decision problems in models with complete markets and diffusion processes. It
starts with a review of various characterizations of optimal policies. It then focuses
on characterizations amenable to simulation and discusses the Monte Carlo Malli-
avin Derivative Method (MCMD). Various aspects of the method are examined.
Numerical schemes for solutions of SDEs are reviewed and compared. An error
analysis is carried out. Explicit formulas for convergence rates and asymptotic error
distributions are given. An illustration for HARA utility and multiple risky assets is
provided.

25.1 Introduction

A question of long-standing interest in finance pertains to the optimal allocation
of funds among various financial assets available, in order to sustain lifetime
consumption and bequest. The answer to this question is important for practical
purposes, both from an institutional and an individual point of view. Mutual funds,
pension funds, hedge funds and other institutions managing large portfolios are
routinely confronted with this type of decision. Individuals planning for retirement
are also concerned about the implications of their choices. Quantitative portfolio
models help to address various issues of relevance to the parties involved.

Mean-variance analysis, introduced by Markowitz (1952), has long been a
popular approach to determine the structure and composition of an optimal portfolio.
This type of analysis, unfortunately, suffers from several shortcomings. It suggests,
in particular, optimal portfolios, that are independent of an investor’s wealth
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and horizon. A rigorous dynamic analysis of the consumption-portfolio choice
problem, as originally carried out by Merton (1969, 1971), reveals some of the
missing ingredients. It shows that optimal portfolios should include, in addition
to mean-variance terms, dynamic hedging components designed to insure against
fluctuations in the opportunity set. Merton’s analysis highlights the restrictive nature
of mean-variance portfolios. Policies of this type are only optimal under extreme
circumstances, namely for investors with logarithmic utility (who display myopic
behavior) or when opportunity sets are deterministic (means and variances of asset
returns do not vary stochastically). It also shows that dynamic hedging terms depend
on an investor’s horizon and modulate the portfolio composition as the individual
ages.

Merton’s portfolio formula is based on a partial differential equation (PDE)
characterization of the value function associated with the consumption-portfolio
choice problem. This type of characterization, while leading to interesting economic
insights, presents challenges for implementation. PDEs are indeed notoriously
difficult (if not impossible) to solve numerically in the case of high-dimensional
problems. This precludes implementations for large scale investment models with
many assets and state variables, and for investors with wealth-dependent relative
risk aversion (Brennan et al. (1997) provide numerical results for a class of low
dimentional problems when utilities are constant relative risk averse).

An alternative characterization of optimal portfolios is obtained by using prob-
abilistic concepts and methods, introduced with the advent of the martingale
approach. Major contributions, by Pliska (1986), Karatzas et al. (1987) and Cox and
Huang (1989), lead to the identification of explicit solutions for optimal consump-
tion and bequest. Optimal portfolio formulas are derived by Ocone and Karatzas
(1991) for Ito processes and Detemple et al. (2003) for diffusions. These formulas
take the form of conditional expectations of random variables that are explicitly
identified and involve auxiliary factors solving stochastic differential equations
(SDEs). For implementation, Monte Carlo simulation is naturally suggested by the
structure of these expressions.

This paper reviews the different characterizations of optimal consumption-
portfolio policies derived in the literature. It then focuses more specifically on
the formulas that can be implemented by Monte Carlo simulation. The particular
approach to optimal portfolios which is highlighted is the Monte Carlo Malliavin
Derivatives method (MCMD). Various aspects of MCMD are discussed. Numerical
schemes for simulation of SDEs are reviewed and compared. An extensive asymp-
totic error analysis is also provided. Convergence rates and asymptotic distributions
are reviewed. An example illustrating the power and flexibility of the MCMD
method is presented. Finally, the paper briefly discusses alternative simulation-based
approaches that have been proposed in the literature.

Section 25.2 presents the elements of the consumption-portfolio choice problem.
Section 25.3 describes optimal policies that are obtained using various approaches
to the problem. A Monte Carlo method for the computation of optimal policies is
reviewed in Sect. 25.4. Asymptotic properties of discretization errors and of MCMD
portfolio estimators are described. An illustrative example appears in Sect. 25.5.
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Alternative simulation approaches for optimal portfolio choice are briefly described
in Sect. 25.6.

25.2 The Consumption-Portfolio Choice Problem

The canonical continuous time consumption-portfolio choice model was intro-
duced by Merton (1969, 1971). In his framework, uncertainty is generated by a
d -dimensional Brownian motionW and prices/state variables follow a vector diffu-
sion process. The investor has a finite horizon Œ0; T 	. The presentation, throughout
this review, focuses on the special case of complete financial markets.

25.2.1 Financial Market

The financial market consists of d risky assets and a riskless asset. The riskless asset
is a money market account that pays interest at the rate r .t; Yt /, where Y is a dy-
dimensional vector of state variables. Risky assets are dividend-paying stocks, with
returns evolving according to

�
dRt D .r .t; Yt / 1 � ı .t; Yt // dt C � .t; Yt / .� .t; Yt / dt C dWt/ ; S0 given
dYt D �Y .t; Yt / dt C �Y .t; Yt / dWt ; Y0 given.

(25.1)
The vector R is the d � 1 vector of cumulative stock returns, 1 � .1; :::; 1/0 is the
d � 1 vector of ones, ı .t; Yt / is the d � 1 vector of dividend yields and � .t; Yt /
the d � d matrix of return volatility coefficients. The volatility matrix is assumed
to be invertible, ensuring that all risks are hedgeable (the market is complete). The
quantity � .t; Yt / is the market price of Brownian motion risk, given by � .t; Yt / �
� .t; Yt /

�1 .� .t; Yt /� r .t; Yt / 1/ where � .t; Yt / is the vector of instantaneous
expected stock returns. All the coefficients of the return process depend the vector
of state variables Y , that satisfies the stochastic differential equation described on
the second line of (25.1). The coefficients of this equation,�Y .t; Yt / ; �Y .t; Yt /, are
assumed to satisfy standard conditions for the existence of a unique strong solution
(see Karatzas and Shreve 1991, p. 338).

The state price density (SPD) implied by the return process (25.1) is

�t D exp



�
Z t

0

r .s; Ys/ ds �
Z t

0

� .s; Ys/
0 dWs � 1

2

Z t

0

� .s; Ys/
0 � .s; Ys/ ds

�
:

(25.2)
The SPD �t represents the stochastic discount factor that can be used for valuation
at date 0 of cash flows received at the future date t .

The conditional state price density (CSPD) is defined as �t;v � �v=�t . It represents
the stochastic discount factor for valuation at t of random cash flows received at
v 	 t .



678 J. Detemple and M. Rindisbacher

25.2.2 Choices and Preferences

An investor operating in the market above will consume, invest and leave a bequest
at the terminal date. A consumption policy c is a nonnegative stochastic process,
adapted to the Brownian filtration. A bequest policyXT is a measurable nonnegative
random variable at the terminal date. A portfolio policy 
 is a d -dimensional
adapted stochastic process, representing the fractions of wealth invested in the risky
stocks. Portfolio components are allowed to take negative values (short sales are
permitted).

A consumption-bequest-portfolio policy .c; X; 
/ generates the wealth process
X given by

dXt D .Xt r .t; Yt / � ct / dt CXt

0
t � .t; Yt / .� .t; Yt / dt C dWt/ (25.3)

subject to the initial conditionX0 D x, where x is initial wealth.
Investor preferences are defined over consumption-bequest policies. Preferences

are assumed to have the von Neumann-Morgenstern (expected utility) representation

E
�Z T

0

u .cv; v/ dv C U .XT ; T /

	
; (25.4)

where u .cv; v/ is the instantaneous utility of consumption at date v and U .XT ; T /
is the utility of terminal bequest. Utility functions u W ŒAu;1/ � Œ0; T 	 ! R and
U W ŒAU ;1/ ! R, are assumed to be twice continuously differentiable, strictly
increasing and strictly concave. Marginal utilities are zero at infinity. They are
assumed to be infinite at Au; AU . If Au; AU > 0, the utility functions are extended
over the entire positive domain by setting u .c; v/ D �1; U .X; T / D �1 for
c 2 Œ0; Au/, X 2 Œ0; AU /.

A standard example of utility function is the Hyperbolic Absolute Risk Aversion
(HARA) specification

u .c; t/ D 1

1 � R
.c � Au/

1�R ;

where R > 0 and Au is a constant (Au can be positive of negative).
The inverses I W RC � Œ0; T 	 ! ŒAu;1/ and J W RC ! ŒAU ;1/ of the

marginal utility functions u0.c; t/ and U 0.X; T / play a fundamental role. Given
the assumptions above, these inverses exist and are unique. They are also strictly
decreasing with limiting values limy!0 I .y; t/ D limy!0 J .y; T / D 1 and
limy!1 I .y; t/ D Au,limy!1 J.y; T / D AU .

Throughout the paper it will be assumed that initial wealth is sufficient to finance

the minimum consumption level. This condition is x 	 E
hR T
0
�vA

C
u dv C �T A

C
U

i
,

where AC � max .0; A/.
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25.2.3 The Dynamic Choice Problem

The investor maximizes preferences over consumption, bequest and portfolio
policies. The dynamic consumption-portfolio choice problem is

max
.c;XT ;
/

E
�Z T

0

u.cv; v/dv C U.XT ; T /

	
(25.5)

subject to the constraints

dXt D .Xtr .t; Yt /� ct / dtCXt
 0
t � .t; Yt / .� .t; Yt / dt C dWt/ I X0 D x (25.6)

ct 	 0; Xt 	 0 (25.7)

for all t 2 Œ0; T 	. Equation (25.6) is the dynamic evolution of wealth. The first
constraint in (25.7) is the nonnegativity restriction on consumption. The second
(25.7) is a no-default condition, imposed to ensure that wealth is nonnegative at
all times, including the bequest time.

25.2.4 The Static Choice Problem

Pliska (1986), Karatzas et al. (1987) and Cox and Huang (1989) show that the
dynamic problem is equivalent to the following static consumption-portfolio choice
problem

max
.c;X/

E
�Z T

0

u .cv; v/ dv C U .XT ; T /

	
(25.8)

subject to the static budget constraint

E
�Z T

0

�scs C �T XT

	
� x (25.9)

and the nonnegativity constraints c 	 0 and XT 	 0. Equation (25.9) is a budget
constraint. It mandates that the present value of consumption and bequest be less
than or equal to initial wealth. The objective in (25.8) is to maximize lifetime utility
with respect to consumption and bequest, which satisfy the usual nonnegativity
restrictions.

In the static problem (25.8) and (25.9) there is no reference to the portfolio,
which is treated as a residual decision. The reason for this is because of market
completeness. Once a consumption-bequest policy has been identified, there exists
a replicating portfolio that finances it.
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25.3 Optimal Policies

There are two approaches for characterizing optimal policies. The first is the one
followed by Merton (1969, 1971). If focuses on the dynamic problem and relies on
dynamic programming principles for resolution. Optimal policies are characterized
in terms of a value function solving a nonlinear Partial Differential Equation (PDE).
The second approach was introduced by Pliska (1986), Karatzas et al. (1987) and
Cox and Huang (1989), and is based on probabilistic methods. This approach, often
called the Martingale approach, identifies optimal consumption and bequest as the
explicit solutions of the static optimization problem. The optimal portfolio is the
replicating strategy that synthesizes consumption and bequest.

25.3.1 A PDE Characterization

Merton’s classic approach to the dynamic consumption-portfolio problem is based
on dynamic programming. Optimal policies are expressed in terms of the derivatives
of the value function V .t; Xt ; Yt /, associated with the optimization problem (25.5)–
(25.7).

Theorem 1 (Merton 1971). Optimal consumption and bequest are

c�
t D I

�
Vx
�
t; X�

t ; Yt
�
; t/
�C
; X�

T D J
�
Vx
�
T;X�

T ; YT
�
; T
�C
; (25.10)

where xC � max .0; x/. The optimal portfolio has two components, a mean-
variance term 
mt and a dynamic hedging term 


y
t . Thus, X�

t 

�
t D X�

t 

m
t CX�

t 

y
t

with

X�
t 


m
t D � Vx

�
t; X�

t ; Yt
�

Vxx .t; X
�
t ; Yt /

�
� .t; Yt /

0��1 � .t; Yt / (25.11)

X�
t 


y
t D � �� .t; Yt /0

��1
�Y .t; Yt /

0 Vyx
�
t; X�

t ; Yt
�

Vxx .t; X
�
t ; Yt /

; (25.12)

where Vx; Vxx; Vyx are partial first and second derivatives of the value function. The
value function solves the partial differential equation

0 D u
�
I .Vx; t/

C ; t
�C Vx

�
r .t; Yt / Xt � I .Vx; t/

C�C Vt C Vy�
Y .t; Yt /

C1

2
trace

˚
Vyy�

Y .t; Yt / .�
Y .t; Yt //

0� � 1

2
Vxx

�� 
�
t; X�

t ; Yt
���2 (25.13)

with

 
�
t; X�

t ; Yt
� � �

  
Vx
�
t; X�

t ; Yt
�

Vxx .t; X
�
t ; Yt /

!
� .t; Yt /C �Y .t; Yt /

0
 
Vyx

�
t; X�

t ; Yt
�

Vxx .t; X
�
t ; Yt /

!!

(25.14)
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and subject to the boundary conditions V .T; x; y/ D U .x; T / and V .t; 0; y/ DR T
t

u .0; v/ dv C U .0; T /.

Consumption and bequest depend both on the marginal value of wealth
Vx
�
t; X�

t ; Yt
�
, i.e., the derivative of the value function with respect to wealth.

The latter measures the opportunity cost of wealth. In states where this marginal
value is high, the cost of consumption is high. It is then optimal to consume little.

As stated in the proposition, the optimal portfolio has two components. The first,

mt , is a static mean-variance term capturing the desire to diversify. It depends on the

instantaneous risk-return trade-off, reflected in
�
� .t; Yt /

0��1 � .t; Yt /. The second,


y
t , is the dynamic hedging component first identified by Merton (1971). It reflects

the investor’s desire to protect against stochastic fluctuations in the opportunity set,
i.e., fluctuations in .r .t; Yt / ; � .t; Yt //. If the market price of risk and the interest
rate are independent of the state variables Y , the value function solving (25.13) is
also independent of Y . The dynamic hedging component vanishes.

Another situation in which the dynamic hedging term vanishes is when utility
functions are logarithmic (unit relative risk aversion). In this instance, the solution
of (25.13) is additively separable (Vx

�
t; X�

t ; Yt
� D Vx

�
t; X�

t

� C G .t; Yt /) even if
.r .t; Yt / ; � .t; Yt // are stochastic. The log investor displays myopia, in the sense
of not caring about stochastic variations in the state variables. These variations
determine future market prices of risk and interest rates.

In rare instances the PDE (25.13) can be solved explicitly. In most cases,
numerical resolution methods are required. Lattice-based methods have been exten-
sively used for that purpose. Unfortunately, lattice methods suffer from a curse of
dimensionality (the computational complexity grows exponentially with the number
of state variables). As a result, only low-dimensional problems can be tackled with
this type of numerical approach.

25.3.2 A Probabilistic Representation for Complete Markets

Pliska (1986), Karatzas et al. (1987) and Cox and Huang (1989) approach the
problem from the static point of view. Optimal consumption and bequest policies
for general utilities are derived in the latter two references. Formulas for the
financing portfolio, in settings with Ito processes, were first derived by Ocone and
Karatzas (1991) using the Clark-Ocone formula. Diffusion models were considered
in Detemple et al. (2003). The next theorem is a variation of their results which
emphasizes the role of risk tolerance.

Theorem 2 (Detemple et al. 2003). Optimal consumption and bequest are

c�
t D I

�
y��v; v

�C
; X�

T D J
�
y��T ; T

�C
; (25.15)

where � the state price density in (25.2) and y� is the unique solution of the
nonlinear equation
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E
�Z T

0

�vI
�
y��v; v

�C
dv C �T J

�
y��T ; T

�C
	

D x: (25.16)

The optimal portfolio has the decomposition X�
t 


�
t D X�

t 

m
t CX�

t 

h
t with

X�
t 


m
t D Et

�Z T

t

�t;v�
�

v 1fI�
v �0gdv C �t;T �

�
T 1fJ�

T �0g
	 �
� .t; Yt /

0��1 � .t; Yt /
(25.17)

X�
t 


h
t D � �� .t; Yt /0

��1
Et

�Z T

t

�t;v

�
c�

v � � �
v 1fI�

v �0g
�
Ht;vdv

	

� �� .t; Yt /0
��1

Et
h
�t;T

�
X�
T � � �

T 1fJ�
T �0g

�
Ht;T

i
; (25.18)

where I�
v � I .y��v; v/, J �

T � J .y��T ; T / and � �
v ; �

�
T are the absolute risk toler-

ance measures � u.c; v/ � �ux .x; v/ =uxx .x; v/ and � U .x/ � �Ux .x/ =Uxx .x/
evaluated at optimal consumption c�

v D �
I�

v

�C
and bequest X�

T D �
J �
T

�C
.

Furthermore

H 0
t;v D

Z v

t

�
@r .s; Ys/C � .s; Ys/

0 @� .s; Ys/
�
Dt Ysds C

Z v

t

dW 0
s @� .s; Ys/Dt Ys;

(25.19)
where Dt Ys is the Malliavin derivative process that satisfies the linear SDE

dDt Ys D
2

4@�Y .s; Ys/ ds C
dX

jD1
@�Yj .s; Ys/ dW

j
s

3

5Dt YsI Dt Yt D � .t; Yt /

(25.20)
and @r .s; Ys/ ; @� .s; Ys/ ; @�Y .s; Ys/ ; @�Yj .s; Ys/ are gradients with respect to Y .

The probabilistic formulas in Theorem 2 provide further insights about portfolio
structure. Expression (25.17) shows that the size of the position in the mean-
variance portfolio depends on the cost of optimal risk tolerance. Expression
(25.18) shows the determinants of the hedging demand. Note in particular that
the Malliavin derivative Dt Yv measures the impact of an infinitesimal perturbation
of the Brownian motion Wt at time t on the position of the state variable
at the future time v. If the investment opportunity set is deterministic, then
@r .s; Ys/ D @� .s; Ys/ D Ht;v D 0 and Vxy D 0. The dynamic hedging demand
vanishes. Similarly, if the investor has unit relative risk aversion, then c�

v D � �
v ,

X�
T D � �

T and Vxy
�
t; X�

t ; Yt
� D 0. Moreover, in this case, the cost of optimal risk

tolerance becomes �Vx.t; X�
t ; Yt /=Vxx.t; X

�
t ; Yt / D X�

t .
The formulas is Theorem 2 permit implementations based on Monte Carlo

simulation. Indeed, the formulas express the portfolio components in terms of
expected values of random variables that are completely identified and can be
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calculated by simulation. In particular, Malliavin derivatives appearing in these
expressions solve the linear SDE (25.20) and can be computed by simulation.

The Monte Carlo simulation approach to portfolio choice based on the formulas
in Theorem 2 is called the Monte Carlo Malliavin Derivative (MCMD) method.
MCMD is extremely flexible. It permits implementations for large numbers of assets
and state variables. It also permits arbitrary utility functions, up to the regularity
conditions imposed. With simulation, the computational complexity grows only
linearly with the number of risky assets and state variables.

A comparison of the optimal policies in Theorems 1 and 2 gives y� �
Vx .0; x; Y0/,

Vx
�
t; X�

t ; Yt
�

Vx .0; x; Y0/
D �t (25.21)

� Vx
�
t; X�

t ; Yt
�

Vxx .t; X
�
t ; Yt /

D Et

�Z T

t

�t;v�
�

v 1fI�
v �0gdv C �t;T �

�
T 1fJ�

T �0g
	

(25.22)

and

� Vxy
�
t; X�

t ; Yt
�

Vxx .t; X
�
t ; Yt /

D �Et

�Z T

t

�t;v

�
c�

v � � �
v 1fI�

v �0g
�
Ht;vdv

	

�Et
h
�t;T

�
X�
T � � �

T 1fJ�
T �0g

�
Ht;T

i
: (25.23)

Malliavin calculus and the martingale approach identify the probabilistic represen-
tations (25.22) and (25.23) for the derivatives of the value function, in the same
way as the Feynman-Kac formula represents solutions of PDEs. The Feynman-Kac
formula has led to the development of Monte Carlo methods for the computation
of derivative securities prices characterized by PDEs. These methods have proven
particularly useful in the case of derivatives written on large baskets of financial
assets. The probabilistic portfolio formula in Theorem 2 performs a similar role. It
connects derivatives of the value function from the dynamic programming approach
to conditional expectations of functionals of Brownian motion. With these relations,
optimal portfolios from dynamic programming can be calculated using forward
Monte Carlo simulation methods.

25.3.3 Measure Change and Portfolio Representation

An alternative formula for the optimal portfolio can be derived by using long term
bonds as numeraires. Let Bv

t � Et Œ�t;v	 be the price of a pure discount bond with
maturity date v. Expressing the conditional SPD �t;v in terms of this bond numeraire
defines the density
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Zt;v � �t;v

Et Œ�t;v	
D �t;v

Bv
t

D exp


Z v

t

� z .s; T /0 dWs � 1

2

Z v

t

� z .s; T /0 � z .s; T / ds

�
; (25.24)

where � z .s; v/ � �B .s; v/��s is the volatility of the martingale �z
s � Es ŒZt;v	 and

�B .s; v/0 � Ds logBv
s is the bond return volatility (see Detemple and Rindisbacher

2010). The random variable Zt;v is the density of the forward-v measure. This
measure, introduced by Geman (1989) and Jamshidian (1989), permits calculations
of present values directly in the bond numeraire. The volatility � z .s; v/ is a 1 � d

vector representing the negative of the market price of risk evaluated in the bond
numeraire.

Expressing optimal policies in terms of bond numeraires leads to the following
formulas

Theorem 3 (Detemple and Rindisbacher 2010). Optimal consumption and
bequest are c�

v D J
�
y��tBv

t Zt;v; v
�C

and X�
T D I

�
y��tBT

t Zt;T
�C

. Intermediate
wealth is

X�
t D

Z T

t

Bv
t E

v
t

�
c�

v

�
dv CBT

t ETt
�
X�
T

�
; (25.25)

where Bv
t D Et Œ�t;v	 is the price of a pure discount bond with maturity date

v 2 Œ0; T 	. Define the random variables J �
v � J

�
y��tBv

t Zt;v; v
�

and I�
T �

I
�
y��tBT

t Zt;T
�
. The optimal portfolio has three components, a mean-variance

term 
mt , a static bond hedge 
bt and a forward density hedge 
z
t . It writes
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t CX�
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t CX�
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Z T

t

Ev
t

h
� �

v 1fJ�
v �0g

i
Bv
t dv

�
� .t; Yt /

0��1 � .t; Yt /

CETt
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0��1 � .t; Yt / (25.26)
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where, for v 2 Œt; T 	,Zt;v is the density of the forward v-measure (given by (25.24)).
The volatility of Zt;v is � z .s; v/ � �B .s; v/ � �s , where �B .s; v/0 � Ds logBv

s is
the volatility of the return on the pure discount bond Bv

s . The expectation Ev
t Œ�	 �

Et ŒZt;v�	 is under the forward v-measure, v 2 Œt; T 	.
The portfolio formula in Theorem 3 is in the spirit of the Heath-Jarrow-Morton

(HJM) term structures models (Heath et al. 1992). To see this connection, let f v
t �

�@v log
�
Bv
t

�
be the continuously compounded forward rate for maturity v. AsBv

t D
exp

�� R v
t
f s
t ds

�
the bond return volatility is

�B.t; v/0 D Dt logBv
t D �

Z v

t

Dt f
s
t ds D �

Z v

t

�f .t; s/ds; (25.29)

where �f .t; s/ is the volatility of f s
t . The optimal allocation is then given by

(25.26)–(25.28), with (25.29) and the Malliavin derivative

Dt logZt;v D
Z v

t



dWs C



� .s; Ys/C

Z v

s

�f .s; u/du

�
ds

�0

�


Dt �s C

Z v

s

Dt �
f .s; u/du/

�
: (25.30)

This shows that the portfolio can be expressed directly in terms of the primitives in
HJM model, i.e., the forward rates. Monte Carlo methods for HJM term structure
models are therefore easily adapted to solve portfolio choice problems.

Theorem 3 provides further interpretation of the structure of the optimal portfo-
lio. It effectively shows that the dynamic hedging demand decomposes into a static
bond hedge and a forward market price of risk (�� z) hedge. If � z is deterministic, a
three fund separation result holds: optimal portfolios of investors with arbitrary risk
aversion are spanned by the money market account, the mean-variance portfolio and
a portfolio hedging fluctuations in the term-structure of interest rates. In the case of
a pure bequest motive (null instantaneous utility), the term-structure hedge reduces
to a single pure discount bond with maturity date matching the investor’s horizon.

The formulas for the portfolio components in Theorem 3 involve conditional
expectations of random variables that are obtained in explicit form. As before these
expressions involve auxiliary factors (Malliavin derivatives) that solve SDEs. The
approach for numerical implementation suggested by these formulas is again an
MCMD method. Simulation can be carried out under the forward measures.

25.3.4 Examples

If the utility functions display constant relative risk aversion, optimal portfolio
weights are wealth-independent.
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Corollary 1. Suppose that the investor exhibits constant relative risk aversion
Ru D RU D R and has subjective discount factor at � exp .�ˇt/ where ˇ is
constant. The optimal consumption-bequest policy is
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The optimal portfolio is X�
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with � D 1� 1=R andHt;v defined in (25.19). Alternatively, using bonds as units of
account,X�
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where ˘ v
t D Ev

t

�
c�

v

�
(resp. ˘T

t D ET
t

�
X�
T

�
) is the date t cost in the bond

numéraire of date v consumption (resp. terminal wealth).

In the case of utilities with hyperbolic absolute risk aversion, optimal policies
become

Corollary 2. Suppose that the investor exhibits hyperbolic absolute risk aversion
with utility parameters Ru D RU D R; Au D AU D A and subjective discount
factor at � exp .�ˇt/ where ˇ is constant. The optimal consumption-bequest
policy is
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:

The portfolio components are given by (25.17) and (25.18) or (25.26)–(25.28) with

� u.c; v/ � � ux .c; v/

uxx .c; v/
D 1

R
.c �Au/

� U .X/ � � Ux .X/

Uxx .X/
D 1

R
.X � A/ :

25.4 Monte Carlo Methods

Optimal portfolio formulas in Theorems 2 and 3 can be calculated by Monte
Carlo simulation (MCMD method). Implementation of the MCMD method is
straightforward when the transition densities of the random variables appearing
in these formulas are known. Conditional expectations are then estimated by
averaging over i.i.d. realizations drawn from exact distributions. In this case,
there is a unique source of estimation error, the Monte Carlo error. Asymptotic
convergence properties of the Monte Carlo error are found by a central limit theorem
for i.i.d. random variables. Unfortunately, functionals of diffusion processes with
explicit transition densities are rare. In order to implement MCMD estimators
when transition densities are unknown, the solutions of the relevant SDEs must be
calculated by simulation. For this purpose a discretization scheme for the SDEs is
needed. Two sources of error will then affect the numerical accuracy of portfolio
estimators and determine their convergence properties. The first type of error is the
Monte Carlo error associated with the approximation of conditional expectations
by sample averages. The second type is the discretization error associated with
the discretization of the diffusions. Both types of approximation errors must be
controlled simultaneously in order to implement an efficient simulation scheme (see
Talay and Tubaro 1990; Duffie and Glynn 1995; Bally and Talay 1996a,b).

Errors due to numerical discretization schemes for diffusions are analyzed in
Sect. 25.4.1. Asymptotic properties of MCMD portfolio estimators are discussed in
Sect. 25.4.2.

25.4.1 Numerical Solutions of SDEs

Several numerical schemes for SDEs are presented and their convergence properties
discussed. The simplest scheme, the Euler-Maruyama scheme, is examined first. In
general, Euler-Maruyama is less costly from a computational point of view, than
some of the alternatives such as the Euler-Doss scheme and the Milhstein scheme.
These higher order discretization procedures are discussed second.
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Numerical solutions of SDEs rely on a partition of the time interval P.Œ0; T 	/ D
ft0; : : : ; tN�1g. Increments of the Brownian motion, �Wtk � WtkC1

� Wtk for
k D 0; : : : ; N � 1, are drawn using pseudo- or quasi Monte Carlo random number
generators. The random variables of interest are then obtained as finite-dimensional
functionals of these innovations, using a forward simulation of the discretized
diffusion.

25.4.1.1 Euler-Maruyama Scheme

Consider the process for state variables (second line of (25.1)). The Euler-
Maruyama approximation of the process is given by the solution of the difference
equation

Y NtkC1
D Y Ntk C �Y

�
Y Ntk

�
�tk C

dX

jD1
�Yj
�
Y Ntk

�
�W

j
tk
; Yt0 given (25.33)

where�tk � tkC1�tk and k D 0; : : : ; N�1. The next Theorem gives the weak limit
of the scaled approximation error associated with the scheme, when the number of
discretization pointsN goes to infinity. In order to state this result define the random
variable

�v � ER
0

@
Z �

0

@�Y .Ys/ ds C
dX

jD1

Z �

0

@�Yj .Ys/ dW
j
s

1

A

v

; (25.34)

where ER .�/ is the right stochastic exponential (For a d � d semimartingale M ,
the right stochastic exponential Zv D ER .M/v is the unique solution of the d � d
matrix SDE dZv D dMvZv with Z0 D Id .) and where @�Y ; @�Yj are the dy � dy
matrices of derivatives of the vectors �Y ; �Yj with respect to the elements of Y .

Theorem 4 (Kurtz and Protter 1991). The approximation error Y NT � YT con-
verges weakly at the rate 1=

p
N ,

p
N
�
Y NT � YT

� ) � 1p
2
�T

Z T

0

��1
v

dX

l;jD1

h
@�Yj �

Y
l

i
.Yv/ dZ

l;j
v (25.35)

as N ! 1, where
�
Zl;j

�
l;j2f1;:::;dg is a d2 � 1 standard Brownian motion

independent of W .

The asymptotic distribution of the Euler-Maruyama scheme is that of a random
variable centered at zero. Inspection of the expression for the weak limit reveals
that the approximation error might converge at a higher rate when the volatility
coefficient is deterministic (in this case

p
N
�
Y NT � YT

� ) 0 implying that there
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may exist an ˛ > 1=2 such that N˛
�
Y NT � YT

� ) U ¤ 0). These observations
provide motivation for the Euler scheme with Doss transformation, or Euler-Doss
scheme, presented next.

25.4.1.2 Euler-Doss Scheme

Doss (1977) introduces a transformation that eliminates stochastic fluctuations in
volatility coefficients. Consider again the process for state variables. If �Y has full
rank and if the vector field generated by the columns of the volatility matrix is
Abelian, i.e., if @�Yi �

Y
j D @�Yi �

Y
j (commutative noise), there exists an invertible

function F such that @F .Yv/ �
Y .Yv/ D Id where Id is the d -dimensional identity

matrix. The inverse of F , denoted by G, solves the total differential equation (See
Detemple et al. (2005a) for details).

@G .z/ D �Y .G .z// ; G.0/ D 0: (25.36)

This gives Yt D G
� OYt

�
, where

d OYv D O�Y
� OYv

�
dv C dWv; with OY0 D F .Y0/ (25.37)

and

O�Y .x/ � �Y .x/�1AtG .x/ ; AG � �Y .G/ � 1

2

dX

jD1
@�Yj .G/: (25.38)

The transformed process OY has identity volatility matrix. The Euler-Maruyama
approximation of OY satisfies

OY NtkC1
D OY Ntk C O�Y

� OY Ntk
�
�tk C�Wtk

and an approximation of Y is QY Ntk � G
� OY Ntk

�
; k D 0; :::; N � 1. The error

distribution of this approximation is given next. Let

O�v � ER

Z �

0

@ O�Y . OYs/ds
�

v

(25.39)

and denote by @ O�Y
� OYv

�
D
h
@1 O�Y . OYv/; :::; @d O�Y . OYv/

i
the dy � dy matrix with

columns given by the derivatives of the vector O�Y
� OYv

�
and by @l;k O�Y

� OYs
�

the

d � 1 vector of cross derivatives of O�Y
� OYv

�
with respect to arguments l; k.
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Theorem 5 (Detemple et al. 2006). Suppose that �Y has full rank and that the
commutativity conditions, @�Yi �

Y
j D @�Yj �

Y
i , hold for all i; j D 1; : : : ; dy . The

approximation error QY NT � YT � G
� OY NT

�
� YT converges weakly at the rate 1=N ,

N
� QY NT � YT

� ) �@G
� OYT

� O�T
Z T

0

O��1
v @ O�Y

� OYv

�
1
2
d OYv C 1p

12
dZv

�

�1
2
@G

� OYT
� O�T

Z T

0

O��1
v @ O�Y

� OYv

� dX

k;lD1
@l;k O�Y

� OYv

�
dv(25.40)

asN ! 1, where
�
Zj
�
j2f1;:::;dg is a d � 1 standard Brownian motion independent

of W and of Zl;j defined in Theorem 4.

Theorem 5 shows that the asymptotic error distribution is non-centered. Imposing
additional uniform integrability conditions and taking expectations shows that
the expected approximation error is the expected value of the random variable
on the right hand side of (25.40). Relative to Euler-Maruyama, the speed of
convergence increases from 1=

p
N to 1=N . This increase in speed is achieved

because the Doss transformation eliminates the error in the approximation of the
martingale component. The commutativity condition is necessary for application of
the transformation. As discussed next, this condition also plays an instrumental role
for higher order discretization schemes like the Mihlstein scheme.

25.4.1.3 Mihlstein Scheme

If the drift and diffusion coefficients�Y and �Y are sufficiently smooth, higher order
schemes can be derived using stochastic Taylor expansions. Under these smoothness
conditions, the martingale part of the diffusion is approximated by

Z tkC1

tk

�Yj .Yv/ dW
j

v � �Yj
�
Ytk
� Z tkC1

tk

dW j
v

C
dX

iD1

h
@�Yj �

Y
i

i �
Ytk
� Z tkC1

tk

dW j
s

Z s

tk

dW i
v :

where the first term underlies the Euler-Maruyama approximation and the second
one involves second-order Wiener integrals. Derivation of this approximation uses
the fact that the covariation between increments of a finite variation process and an
infinite variation process is null.

The corresponding discretization scheme, known as the Mihlstein scheme, is
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Y NtkC1
D Y Ntk C �Y

�
Y Ntk

�
�tk C

dX

jD1
�Yj

�
Y Ntk

�
�W

j
tk

C
dX

i;jD1

h
@�Yj �

Y
i

i �
Y Ntk

� Z tkC1

tk

dW j
s

Z s

tk

dW i
v ; (25.41)

where Yt0 is given. The simulation of
Pd

iD1
h
@�Yj �

Y
i

i �
Y Ntk

� R tkC1

tk
dW

j
s

R s
tk
dW i

v

typically requires an additional sub-discretization of the time-step tkC1 � tk , which
increases the computational cost. An exception is when volatility satisfies the
commutativity condition @�Yj �

Y
i D @�Yi �

Y
j . In this case, with the help of the Ito

formula applied to
Z tkC1

tk

dW i
s

Z tkC1

tk

dW j
v D

Z tkC1

tk

dW i
s

Z s

tk

dW j
v C

Z tkC1

tk

dW j
s

Z s

tk

dW i
v Cıij�tk;

where ıij D 1 if i D j and 0 otherwise, it holds that

dX

i;jD1

Z tkC1

tk

Z s

tk

h
@�Yj �

Y
i

i �
Ytk
�
dW j

s dW
i

v D 1

2

dX

i;jD1

h
@�Yj �

Y
i

i �
Ytk
�

�

Z tkC1

tk

dW j
s

Z tkC1

tk

dW i
v � ıij�tk

�

and the Mihlstein-scheme simplifies to

Y NtkC1
D Y Ntk C �Y

�
Y Ntk

�
�tk C

dX

jD1
�Yj

�
Y Ntk

�
�W

j
tk

(25.42)

C1

2

dX

jD1

h
@�Yj �

Y
j

i �
Y Ntk

� 
�
�W

j
tk

�2 ��tk

�

C1

2

dX

i;jD1

i¤j

h
@�Yj �

Y
i

i �
Y Ntk

�
�W

j
tk
�W i

tk
(25.43)

with Yt0 given.
The commutativity condition obviates the need for sub-discretizations of the

time steps, thereby reducing the computational cost of the Mihlstein scheme. This
condition is always satisfied in the case of a one-dimensional SDE. The additional
terms (relative to Euler-Maruyama) in (25.43) compensate for the term with slowest
convergence rate (1=

p
N ) in the error expansion of the Euler-Maruyama scheme

(see Detemple et al. 2006 for details). Adding these terms therefore improves the
rate of convergence.
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Theorem 6 (Detemple et al. 2006). The approximation error LY NT � YT converges
weakly at the rate 1=N ,

N
� LY NT � YT

�
)�1

2
�T

Z T

0

��1
s

0

@@�Y .Ys/ dYs�
dX
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.Ys/ ds
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2
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Z T

0

��1
s
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�
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Z T
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��1
s
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jD1

h�
@�Yj
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�Y
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.Ys/ dW
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s

� 1p
12
�T

Z T

0

��1
s

dX

jD1

h�
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�Yj �
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�
�Y
i
.Ys/ dZ

j
s

� 1p
6
�T

Z T

0

��1
s

dX

i;l;jD1

h
@�Yi @�

Y
l �

Y
j

i
.Ys/ d QZl;j;i

s (25.44)

when N ! 1, where
��
Zj
�
j 2 f1; : : : ; d g; � QZl;j;i

�
i;l;jD1;:::;d

�
is a d C d3 � 1

standard Brownian motion independent of W . The random variable �T is given in
(25.34).

As for the Euler-Doss scheme, the asymptotic error distribution of the Mihlstein
scheme is non-centered. Under additional uniform integrability assumptions, the
expected approximation error is the first moment of the weak limit on the right
hand side of (25.44). The expected approximation error is the second order
bias of the discretization scheme. Second order biases play an important role in
efficiency comparisons based on the length of asymptotic confidence intervals (see
Sect. 25.4.2). Whether the Mihlstein scheme is more efficient and/or has a lower
second order bias than the Euler-Doss scheme depends on the slopes of the drift and
volatility coefficients. Uniform results are not available.

25.4.1.4 Numerical Example

This section presents the error densities of the three discretization schemes dis-
cussed above for the square-root process

dYt D �
p
YtdWt ; Y0 given.
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Fig. 25.1 The graphs show the densities of the error distribution for Y0 D 10, � D 0:05, � D 0:5

and T D 1. Densities are calculated using a kernel estimator with discretization step N D 500

and M D 50;000 replications

For this SDE �Y .y/ � �
p
y and �Y .y/ � 0. Limit error distributions are

N
�
Y NT � Yt

� ) �1
2
�T

Z T

0

��1
s

�
@�Y .Ys/

�
�Y .Ys/ dZs (25.45)

N
� QYT � YT

� ) @G
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� O�T
Z T
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O��1
s @ O�Y

� OYs
�
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2
d OYs C 1p

12
d QZs
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2
@G

� OYT
� O�T

Z T

0

O��1
s @ O�Y

� OYs
�
@2 O�Y

� OYs
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ds (25.46)

N
� LYT � YT

�
) 1p

6
�T

Z T

0

��1
s

�
@�Y .Ys/

�2
�Y .Ys/d LZs; (25.47)

where Z; QZ; LZ are independent Brownian motions, G .z/ � .�.1 � �/z/.1=.1��//
and O�Y .y/ � � .1=2/ .�= .1 � �// y�1 with � D 1=2.

Figure 25.1 shows that the density of the Euler-Doss scheme is the most
concentrated around zero. The range of the error distribution of the Mihlstein
scheme is slightly larger, but considerably smaller than that of the Euler-Maruyama
scheme. The Euler-Doss scheme is the most efficient simulation scheme in this
example: confidence intervals constructed from the quantiles of the error density
are the shortest.

25.4.2 Asymptotic Error Analysis

This section discusses the asymptotic error distribution of Monte Carlo portfolio
estimators. It is assumed that the Lagrange multiplier y�is known. To simplify
notation let �t � � .t; Yt / and �t � � .t; Yt /.
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The optimal portfolio estimator can be written as

1X�
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t
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�tEMt
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t
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Iy�
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� �� 0
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EMt
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; (25.48)

where y�
t � y��t and

˚
ZN
t;v W v 2 Œt; T 	� is a numerical approximation of the dz-

dimensional process

˚
Z0
t;v � �

�t;v;H
0
t;v; vec .Dt Yv/

0 ; Y 0
v ; v
� W v 2 Œt; T 	�

solving

dZt;v D a .Zt;v/ dv C
dX

jD1
bj .Zt;v/ dW

j
v I Zt;t given.

The operatorEM
T ŒX	� 1

M

PM
iD1 Xi is the empirical mean for i.i.d. replicationsXi

of the random variable X . The functions gMV
1 ; gH1 ; g

MV
2 ; gH2 are C3-functions that

appear in the portfolio components related to terminal wealth .g1/ and intermediate
consumption .g2/,

gMV
1 .zIy/ � z1J

0 .yz1; z5/ I gH1 .zIy/ � z1J
0 .yz1; z5/ z2

gMV
2 .zIy/ � z1I

0 .yz1; z5/ I gH2 .zIy/ � z1I
0 .yz1; z5/ z2:

The error components associated with the four terms in (25.48) are, with �Nv �
ŒN v	 =N where Œx	 stands for the largest integer lower bound,
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For j 2 f1; 2g, let
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of approximation errors associated with the mean-variance and hedging demands
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are random variables in the portfolio components. The vector Ct;T plays a critical
role for the joint variance of the asymptotic error distribution.

In order to present the asymptotic convergence result, define for v 2 Œt; T 	 and
for a C3-function f such that f .Zt;v/ 2 D

1;2 (The space D
1;2 is the domain of the

Malliavin derivative operator (see Nualart 1995)), the conditional expectations
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and set
�t;v .Yt If / � Kt;v .Yt If /� kt;v .Yt If / : (25.55)

The random variables V1.t; v/ and V2.t; vIf / in (25.53) are
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where rtZt;s is the tangent process of Zt;s , i.e., the process obtained by an
infinitesimal perturbation of the initial value z at time t (see Detemple et al. (2008)
for a discussion and the relation with the Malliavin derivative), and
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(25.59)

and ei the i th unit vector.
The next proposition gives the asymptotic error distribution for the Monte Carlo

portfolio estimator based on the Euler scheme.

Theorem 7 (Detemple et al. 2006, 2008). Suppose g 2 C3.Rdz/ and g
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where NM ! 1, as M ! 1, �md D limM!1
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is the terminal value of a Gaussian martingale with (deterministic) quadratic
variation and conditional variance given by
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The mean-variance component associated with terminal wealth gMV
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. The functions Kt;T .Yt I �/ ; �t;v .Yt I �/ are defined

in (25.53)–(25.55).

The asymptotic error distribution is non-centered. Estimators are therefore
affected by a second-order bias. This bias, i.e. the expected value of the asymptotic
error distribution, depends on the parameter �md and the functions (25.53)–(25.55).
As indicated above, the second-order bias affects the coverage probability of
confidence intervals. In the limit, as M ! 1, it can be shown (see Detemple et
al. 2006) that the coverage probability of a confidence interval based on the limit
error distribution is smaller than the prescribed size of the confidence interval. In
contrast, if �md D 0, that is if the number of discretization points in the Euler scheme
converges faster than the square root of the number of Monte Carlo replications, this
size distortion disappears and the asymptotic error distribution is free of second-
order biases. Unfortunately, as for given number of discretization points, N , the
number of Monte Carlo replications M is restricted in size, the asymptotic error
variance of the Gaussian martingale L, VARt ŒCt;T 	 =M is larger. It follows that
asymptotic confidence intervals are wider. This implies that the portfolio estimator
is asymptotically less efficient. In the presence of a second order bias, efficient
estimators are only attained if the limit convergence parameter �md differs from
zero (see Duffie and Glynn 1995).

To summarize, efficient estimators are affected by a second order bias and
there is a trade-off between asymptotic efficiency and second-order bias. Detemple
et al. (2006) discuss these issues further and present second-order bias corrected
estimators. They also characterize the asymptotic error distribution of estimators
based on the Euler-Doss and the Mihlstein scheme. In particular, they show that the
Gaussian martingale L, which emerges in the application of a central limit theorem
to the Monte Carlo error, is the same. But the second-order bias terms (25.53)–
(25.55) differ. Model-independent orderings of second order biases are generally
not available.

It should also be noted that, from a weak convergence perspective, alternative
random number generation schemes, such as quasi-Monte Carlo schemes, do not
alter the asymptotic convergence behavior. They are asymptotically equivalent to
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the schemes examined above. Gains may nevertheless be realized in finite samples
by adopting such schemes.

25.5 A Numerical Example

This section illustrates the MCMD algorithm for a setting with multiple assets/state
variables and an investor with HARA utility,

U .x/ D .x � A/1�R

1 � R
:

Portfolio policies are described in Corollary 2.
The investment opportunity set is characterized by a constant market price of risk

� and a stochastic process for the interest rate and state variables .r; Y /,

rt D Nr C ı0
r .Yt � Y0/ (25.64)

dYt D diag
�
�Yi
�
˙ diag

�
Y
�
it

�
dWt ; Y0 given. (25.65)

In these expressions, the 1 � dy row vector ı0
r is constant and measures the interest

rate sensitivity to term-structure factors Y . Factors follow the multivariate CEV
process (25.65), where diag Œai 	 is the matrix with elements ai on the diagonal and
zeroes elsewhere. The matrix ˙ is lower triangular with ˙i;j D %ij for j < i ,

˙i;j D 0 for j > i , and ˙ii D
q
1 �Pi�1

jD1 %2ij for i D 1; : : : ; dy . The parameter
%ij is the correlation coefficient between increments in Yi and Yj . The volatility
coefficient of factor i is �Yi Y

�
it .

Risk factors Y are local martingales. A multivariate affine process is obtained as
a special case, for � D 1=2. The short rate starts at r0 and has a long run mean Nr .

The asset return volatility is assumed to be constant, � D diag
�
�si
�
˙s where

˙s is a lower-triangular matrix with elements ˙s
ij D %sij for i < j , ˙s

ij D 0

for j > i , and ˙ii D
r
1 �Pi�1

jD1
�
%sij

�2
for i D 1; : : : ; d . The coefficient %sij

measures the correlation between returns of asset i and j . The volatility �si is the
standard deviation of asset return i .

Table 25.1 presents portfolio weights for dy D d D 5. With non-homothetic
utilities, portfolio weights depend on initial wealth (see Corollary 2). With A < 0,
marginal utility is finite at zero and the bequest constraint (the no-default condition)
binds. It is of interest to note that the value function for this problem depends on
state variables and on wealth in a non-multiplicative manner. In this example, lattice-
based computational methods are difficult to implement and computationally costly.
This is because boundary conditions with respect to wealth are not readily available
and because the numerical resolution of a six-dimensional PDE is a non-trivial
task. Implementation of the MCMD method, on the other hand, is straightforward.
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Coding takes a few lines and computation times are low. (The Lagrange multiplier is
calculated using a Monte Carlo estimator of the function h .y/ � E Œ�T I .y�T /	�x
and a robust bisection scheme for finding the root of the equation h .y�/ D 0.)

Table 25.1 displays the portfolio policy in two cases. The first one is when
the bequest constraint is enforced, the second when negative terminal wealth is
permitted. The results illustrate the impact of the constraint on the portfolio weights.
Ignoring the bequest constraint is seen to have a first order effect on the optimal
policy. Studies ignoring it are therefore prone to reaching misleading conclusions.
The results also show that wealth effects are important, both for the mean-variance
term and the dynamic hedging component. Finally, it is also worth noting that the
intertemporal hedging demand is significant even though the investment horizon is
of moderate length (T D 10).

25.6 Alternative Monte Carlo Portfolio Methods

An alternative Monte Carlo portfolio estimator has been developed by Cvitanic et al.
(2003). Their method relies on an approximation of the covariation of the optimal
wealth process with the Brownian innovation,

X�
t

�

�
t

�0
�t D lim

!0

1



��
X�;W

�
tC � �

X�;W
�
t

�
D lim

!0

1



Z 

t

X�
s 


0
s�sds:

(25.66)
As X�

t D Et Œ�T I .y�T /	, it follows that

�
X�;W

�
tC � �

X�;W
�
t

D Et Œ�T I .y�T / .WtC �Wt/	 : (25.67)

A Monte Carlo estimator of the portfolio, for a given Lagrange multiplier y�, is

1X�
t 


�
t
M;N D �

� 0
t

��1
EMt

�
�NT I

�
y��NT

� 
WtC �Wt



�	
; (25.68)

where  is some selected time interval.
The Monte Carlo portfolio estimator (25.68) is easy to calculate. But it is

based on a formula which approximates the optimal portfolio (and not the exact
portfolio rule). As shown by Detemple et al. (2005c), this introduces an additional
second-order bias term and reduces the speed of convergence to M�1=3. The
numerical efficiency studies in Detemple et al. (2005b,c) also show that the
efficiency gains of estimators based on exact portfolio formulas (such as MCMD)
can be considerable.

Similar results apply to Monte Carlo finite difference estimators (MCFD). These
estimators use Monte Carlo simulation, but approximate the derivatives of the value
function by finite difference perturbations of the relevant arguments. These finite
difference perturbations replace the correct expressions given by expected values
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of functionals containing Malliavin derivatives. Again, the corresponding portfolio
estimator relies on a formula that holds just in the limit, introducing an additional
approximation error and reducing the convergence speed. The numerical studies in
Detemple et al. (2005b,c) also illustrate the superior performance of MCMD relative
to MCFD estimators.

The Monte Carlo methods based on Malliavin calculus rely only on forward sim-
ulations. In contrast, the Bellman equation naturally suggests backward simulation
algorithms. In order to obtain adapted portfolio policies using backward algorithms,
conditional expectations have to be calculated repeatedly. This is computationally
costly, especially for high-dimensional problems. Brandt et al. (2005) consider
polynomial regressions on basis functions to reduce the computational burden in
backward calculations of the value function. These methods have proven useful for
optimal stopping problems (Tsitsiklis and Van Roy 2001; Longstaff and Schwartz
2001; Gobet et al. 2005) where the control is binary. The optimal policy in a
portfolio problem is more complex and the numerical precision depends directly
on the estimates of the derivatives of the value function. A general convergence
proof for these methods is unavailable at this stage (Partial results are reported in
Clément et al. (2002) and Glasserman and Yu (2004)). The numerical efficiency
study in Detemple et al. (2005b) shows that this approach is dominated by other
MC methods.
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Chapter 26
Low-Discrepancy Simulation

Harald Niederreiter

Abstract This article presents a survey of low-discrepancy sequences and their
applications to quasi-Monte Carlo methods for multidimensional numerical inte-
gration. Quasi-Monte Carlo methods are deterministic versions of Monte Carlo
methods which outperform Monte Carlo methods for many types of integrals and
have thus been found enormously useful in computational finance. First a general
background on quasi-Monte Carlo methods is given. Then we describe principles
for the construction of low-discrepancy sequences, with a special emphasis on
the currently most powerful constructions based on the digital method and the
theory of .T; s/-sequences. Next, the important concepts of effective dimension and
tractability are discussed. A synopsis of randomized quasi-Monte Carlo methods
and their applications to computational finance is presented. A numerical example
concludes the article.

26.1 Introduction

Many typical problems of modern computational finance, such as option pricing,
can be rephrased mathematically as problems of calculating integrals with high-
dimensional integration domains. Very often in such finance problems the integrand
will be quite complicated, so that the integral cannot be evaluated analytically
and precisely. In such cases, one has to resort to numerical integration, i.e., to a
numerical scheme for the approximation of integrals.

A powerful approach to multidimensional numerical integration employs Monte
Carlo methods. In a nutshell, a Monte Carlo method is a numerical method based
on random sampling. A comprehensive treatment of Monte Carlo methods can be
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found in the book of Fishman (1996). The monograph of Glasserman (2004) covers
Monte Carlo methods in computational finance.

Monte Carlo methods for numerical integration can be explained in a straight-
forward manner. In many cases, by using suitable transformations, we can assume
that the integration domain is an s-dimensional unit cube I s WD Œ0; 1	s , so this is
the situation on which we will focus. We assume also that the integrand f is square
integrable over I s . Then the Monte Carlo approximation for the integral is

Z

I s
f .u/ du � 1

N

NX

nD1
f .xn/; (26.1)

where x1; : : : ; xN are independent random samples drawn from the uniform distri-
bution on I s . The law of large numbers guarantees that with probability 1 (i.e., for
“almost all” sequences of sample points) we have

lim
N!1

1

N

NX

nD1
f .xn/ D

Z

I s
f .u/ du;

and so the Monte Carlo method for numerical integration converges almost surely.
We can, in fact, be more precise about the error committed in the Monte Carlo

approximation (26.1). It can be verified quite easily that the square of the error
in (26.1) is, on the average over all samples of size N , equal to �2.f /N�1, where
�2.f / is the variance of f . Thus, with overwhelming probability we have

Z

I s
f .u/ du � 1

N

NX

nD1
f .xn/ D O.N�1=2/: (26.2)

A rigorous version of this statement can be obtained from the central limit theorem
(see Niederreiter 1992, p. 5). An important fact here is that the convergence rate
in (26.2) is independent of the dimension s, and this makes Monte Carlo methods
attractive for high-dimensional problems.

Despite the initial appeal of Monte Carlo methods for numerical integration,
there are several drawbacks of these methods:

1. It is difficult to generate truly random samples.
2. Monte Carlo methods for numerical integration provide only probabilistic error

bounds.
3. In many applications the convergence rate in (26.2) is considered too slow.

Note that the Monte Carlo error bound (26.2) describes the average performance
of integration points (also called integration nodes) x1; : : : ; xN , and there should
thus exist points that perform better than average. We want to focus on these points
and we would like to construct them deterministically and explicitly. The criterion
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for choosing these points will be developed in Sect. 26.2. This ultimately leads
to the concepts of low-discrepancy point sets and low-discrepancy sequences (see
Sect. 26.3). The numerical integration techniques based on low-discrepancy point
sets and low-discrepancy sequences are called quasi-Monte Carlo methods, or QMC
methods for short.

26.2 Background on QMC Methods

Just as we did for Monte Carlo methods, we consider QMC methods in the
context of numerical integration over an s-dimensional unit cube I s D Œ0; 1	s . The
approximation scheme is the same as for the Monte Carlo method, namely

Z

I s
f .u/ du � 1

N

NX

nD1
f .xn/;

but now x1; : : : ; xN are deterministic points in I s . For such a deterministic numerical
integration scheme we expect a deterministic error bound, and this is indeed
provided by the Koksma-Hlawka inequality (see Theorem 1 below). It depends on
the star discrepancy, a measure for the deviation of the empirical distribution of a
point set P (consisting of x1; : : : ; xN 2 I s , say) from the uniform distribution on
I s . For any Borel set M � I s , let A.M IP/ be the number of integers n with
1 � n � N such that xn 2 M . We put

R.M IP/ D A.M IP/
N

� �s.M/;

which is the difference between the relative frequency of the points of P in M and
the s-dimensional Lebesgue measure �s.M/ of M . If the points of P have a very
uniform distribution over I s , then the values of R.M IP/ will be close to 0 for a
reasonable collection of Borel sets, such as for all subintervals of I s .

Definition 1. The star discrepancy of the point set P is given by

D�
N D D�

N .P / D sup
J

jR.J IP/j;

where the supremum is extended over all intervals J D Qs
iD1Œ0; ui /with 0 < ui � 1

for 1 � i � s.

Theorem 1 (Koksma-Hlawka Inequality). For any function f of bounded vari-
ation V.f / on I s in the sense of Hardy and Krause and any points x1; : : : ; xN 2
Œ0; 1/s , we have



706 H. Niederreiter

ˇ̌
ˇ̌
ˇ

Z

I s
f .u/ du � 1

N

NX

nD1
f .xn/

ˇ̌
ˇ̌
ˇ � V.f /D�

N ;

where D�
N is the star discrepancy of x1; : : : ; xN .

Note that V.f / is a measure for the oscillation of the function f . The precise
definition of the variation V.f / can be found in (Niederreiter 1992, p. 19). For
f .u/ D f .u1; : : : ; us/, a sufficient condition for V.f / < 1 is that the partial
derivative @sf=@u1 � � � @us be continuous on I s . A detailed proof of the Koksma-
Hlawka inequality is given in the book of Kuipers and Niederreiter (1974, Sect. 2.5).
There all types of variants of this inequality; see Niederreiter (1978), Niederreiter
(1992, Sect. 2.2), and Hickernell (1998a).

A different kind of error bound for QMC integration was shown by Niederreiter
(2003). It relies on the following concept.

Definition 2. Let M be a nonempty collection of Borel sets in I s . Then a point set
P of elements of I s is called .M; �s/-uniform if R.M IP/ D 0 for all M 2 M.

Theorem 2. Let M D fM1; : : : ;Mkg be a partition of I s into nonempty Borel
subsets of I s . For a bounded Lebesgue-integrable function f on I s and for 1 �
j � k, we put

Gj .f / D sup
u2Mj

f .u/; gj .f / D inf
u2Mj

f .u/:

Then for any .M; �s/-uniform point set consisting of x1; : : : ; xN 2 I s we have

ˇ̌
ˇ̌
ˇ

Z

I s
f .u/ du � 1

N

NX

nD1
f .xn/

ˇ̌
ˇ̌
ˇ �

kX

jD1
�s.Mj /.Gj .f /� gj .f //: (26.3)

An analog of the bound (26.3) holds, in fact, for numerical integration over any
probability space (see Niederreiter 2003). The primary tool for the error analysis
of QMC integration is the Koksma-Hlawka inequality. The bound (26.3) is used
for integrands of a very low degree of regularity which occasionally occur in
computational finance. An example can be found in the work of Jiang (2007) on
the pricing of European-style options and interest-rate derivatives.

26.3 Low-Discrepancy Sequences

The Koksma-Hlawka inequality leads to the conclusion that point sets with small
star discrepancy guarantee small errors in QMC integration over I s . This raises the
question of how small we can make the star discrepancy of N points in I s for fixed
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N and s. For anyN 	 2 and s 	 1, the least order of magnitude that can be achieved
at present is

D�
N .P / D O.N�1.logN/s�1/; (26.4)

where the implied constant is independent of N . (Strictly speaking, one has to
consider infinitely many values of N , i.e., an infinite collection of point sets of
increasing size, for this O-bound to make sense in a rigorous fashion, but this
technicality is often ignored.) A point set P achieving (26.4) is called a low-
discrepancy point set. It is conjectured that the order of magnitude in (26.4) is best
possible, that is, the star discrepancy of any N 	 2 points in I s is at least of the
order of magnitude N�1.logN/s�1. This conjecture is proved for s D 1 and s D 2

(see Kuipers and Niederreiter 1974, Sects. 2.1 and 2.2).
A very useful concept is that of a low-discrepancy sequence, which is an infinite

sequence S of points in I s such that for all N 	 2 the star discrepancy D�
N .S/ of

the first N terms of S satisfies

D�
N .S/ D O.N�1.logN/s/ (26.5)

with an implied constant independent of N . It is conjectured that the order of
magnitude in (26.5) is best possible, but in this case the conjecture has been verified
only for s D 1 (see Kuipers and Niederreiter 1974, Sect. 2.2).

Low-discrepancy sequences have several practical advantages. In the first place,
if x1; x2; : : : 2 I s is a low-discrepancy sequence and N 	 2 is an integer, then it is
easily seen that the points

yn D


n � 1
N

; xn

�
2 I sC1; n D 1; : : : ; N;

form a low-discrepancy point set. Thus, if a low-discrepancy sequence has been
constructed, then we immediately obtain arbitrarily large low-discrepancy point
sets. Hence in the following we will concentrate on the construction of low-
discrepancy sequences. Furthermore, given a low-discrepancy sequence S and a
budget of N integration nodes, we can simply use the first N terms of the sequence
S to get a good QMC method. If later on we want to increase N to achieve a higher
accuracy, we can do so while retaining the results of the earlier computation. This
is an advantage of low-discrepancy sequences over low-discrepancy point sets.

It is clear from the Koksma-Hlawka inequality and (26.5) that if we apply QMC
integration with an integrand f of bounded variation on I s in the sense of Hardy
and Krause and with the first N terms x1; : : : ; xN 2 Œ0; 1/s of a low-discrepancy
sequence, then

Z

I s
f .u/ du � 1

N

NX

nD1
f .xn/ D O.N�1.logN/s/: (26.6)
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This yields a significantly faster convergence rate than the convergence rate
O.N�1=2/ in (26.2). Thus, for many types of integrals the QMC method will
outperform the Monte Carlo method.

26.4 Special Families of Low-Discrepancy Sequences

26.4.1 Halton Sequences

Over the years, various constructions of low-discrepancy sequences have been
obtained. Historically, the first low-discrepancy sequences were designed by Halton
(1960). For integers b 	 2 and n 	 1, let

n � 1 D
1X

jD0
aj .n/ b

j ; aj .n/ 2 f0; 1; : : : ; b � 1g;

be the digit expansion of n � 1 in base b. Then put

�b.n/ D
1X

jD0
aj .n/ b

�j�1:

Now let p1 D 2; p2 D 3; : : : ; ps be the first s prime numbers. Then

xn D .�p1.n/; : : : ; �ps .n// 2 I s; n D 1; 2; : : : ;

is the Halton sequence in the bases p1; : : : ; ps . This sequence S satisfies

D�
N .S/ D O.N�1.logN/s/

for allN 	 2, with an implied constant depending only on s (see Niederreiter 1992,
Theorem 3.6). A discrepancy bound for Halton sequences with a small implied
constant can be found in Atanassov (2004). The standard software implementation
of Halton sequences is that of Fox (1986). More generally, one can replace
p1; : : : ; ps by pairwise coprime integers b1; : : : ; bs 	 2, but the choice we have
made yields the smallest discrepancy bound.

26.4.2 Nets

The starting point for current methods of constructing low-discrepancy sequences is
the following definition which is a special case of Definition 2.
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Definition 3. Let s 	 1, b 	 2, and 0 � t � m be integers and let M.s/

b;m;t be the
collection of all subintervals J of I s of the form

J D
sY

iD1
Œai b

�di ; .ai C 1/b�di /

with integers di 	 0 and 0 � ai < bdi for 1 � i � s and with �s.J / D bt�m.
Then an .M.s/

b;m;t ; �s/-uniform point set consisting of bm points in I s is called a
.t;m; s/-net in base b.

It is important to note that the smaller the value of t for given b, m, and s, the
larger the collection M.s/

b;m;t of intervals in Definition 3, and so the stronger the
uniform point set property in Definition 2. Thus, the primary interest is in .t;m; s/-
nets in base b with a small value of t .

The standard method of constructing .t;m; s/-nets in base b proceeds as follows.
Let integers s 	 1, b 	 2, and m 	 1 be given. Let R be a finite commutative ring
with identity and of order b. For 1 � i � s and 1 � j � m, choose bijections �.i/j W
R ! Zb WD f0; 1; : : : ; b � 1g. Furthermore, choose m �m matrices C .1/; : : : ; C .s/

over R. Now let r 2 Rm be an m-tuple of elements of R and define

p
.i/
j .r/ D �

.i/
j .c

.i/
j � r/ 2 Zb for 1 � i � s; 1 � j � m;

where c.i/j is the j th row of the matrix C .i/ and � denotes the standard inner product.
Next we put

p.i/.r/ D
mX

jD1
p
.i/
j .r/ b

�j 2 Œ0; 1	 for 1 � i � s

and

P.r/ D .p.1/.r/; : : : ; p.s/.r// 2 I s:

By letting r range over all bm possibilities in Rm, we arrive at a point set P
consisting of bm points in I s .

In practice, the ring R is usually chosen to be a finite field Fq of order q,
where q is a prime power. In this case, the t-value of the net constructed above
can be conveniently determined by using an approach due to Niederreiter and Pirsic
(2001). Let Fmsq be the vector space of dimension ms over Fq . We introduce a weight
functionWm on F

ms
q as follows. We start by defining a weight function v on F

m
q . We

put v.a/ D 0 if a D 0 2 F
m
q , and for a D .a1; : : : ; am/ 2 F

m
q with a ¤ 0 we set

v.a/ D max fj W aj ¤ 0g:
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Then we extend this definition to F
ms
q by writing a vector A 2 F

ms
q as the

concatenation of s vectors of lengthm, that is,

A D .a.1/; : : : ; a.s// 2 F
ms
q with a.i/ 2 F

m
q for 1 � i � s;

and putting

Wm.A/ D
sX

iD1
v.a.i//:

Definition 4. The minimum distance ım.N / of a nonzero Fq-linear subspace N of
F

ms
q is given by

ım.N / D min
A2Nnf0g

Wm.A/:

Now let C .1/; : : : ; C .s/ be them�mmatrices over Fq chosen in the construction
of the point set P above. Set up an m � ms matrix M as follows: for 1 � j � m,
the j th row of M is obtained by concatenating the j th columns of C .1/; : : : ; C .s/.
Let R � F

ms
q be the row space of M and let R? be its dual space, that is,

R? D fA 2 F
ms
q W A � R D 0 for all R 2 Rg:

The following result of Niederreiter and Pirsic (2001) requires s 	 2, but this is no
loss of generality since the case s D 1 is trivial in this context.

Theorem 3. Let m 	 1 and s 	 2 be integers. Then, with the notation above, the
point set P is a .t;m; s/-net in base q with

t D mC 1 � ım.R?/:

The t-value is an important quality parameter of a net. But there are also more
refined ways of measuring the quality of a net. For instance, one may also want to
take into account the t-values of various lower-dimensional projections of a given
net. The t-value of a lower-dimensional projection can be bounded from above by
the t-value of the original net, but in some cases it can be substantially smaller.
We refer to L’Ecuyer (2004) and L’Ecuyer and Lemieux (2002) for discussions of
refined quality measures for nets.

26.4.3 .T; s/-Sequences

There is an important sequence analog of Definition 3. Given a real number x 2
Œ0; 1	, let

x D
1X

jD1
zj b

�j ; zj 2 f0; 1; : : : ; b � 1g;
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be a b-adic expansion of x, where the case zj D b � 1 for all but finitely many j is
allowed. For an integerm 	 1, we define the truncation

Œx	b;m D
mX

jD1
zj b

�j :

If x D .x.1/; : : : ; x.s// 2 I s and the x.i/, 1 � i � s, are given by prescribed b-adic
expansions, then we define

Œx	b;m D .Œx.1/	b;m; : : : ; Œx
.s/	b;m/:

We write N for the set of positive integers and N0 for the set of nonnegative integers.

Definition 5. Let s 	 1 and b 	 2 be integers and let T W N ! N0 be a function
with T.m/ � m for all m 2 N. Then a sequence x1; x2; : : : of points in I s is a
.T; s/-sequence in base b if for all k 2 N0 and m 2 N, the points Œxn	b;m with
kbm < n � .k C 1/bm form a .T.m/;m; s/-net in base b. If for some integer t 	 0

we have T.m/ D m for m � t and T.m/ D t for m > t , then we speak of a
.t; s/-sequence in base b.

A general theory of .t;m; s/-nets and .t; s/-sequences was developed by
Niederreiter (1987). The concept of a .T; s/-sequence was introduced by Larcher
and Niederreiter (1995), with the variant in Definition 5 being due to Niederreiter
and Özbudak (2007). Recent surveys of this topic are presented in Niederreiter
(2005, 2008). For a .t; s/-sequence in base b we have

D�
N .S/ D O.btN�1.logN/s/ (26.7)

for all N 	 2, where the implied constant depends only on b and s. Thus, any
.t; s/-sequence is a low-discrepancy sequence.

26.4.4 The Digital Method

The standard technique of constructing .T; s/-sequences is the digital method. Fix
a dimension s 	 1 and a base b 	 2. Let R again be a finite commutative ring
with identity and of order b. Set up a map � W R1 ! Œ0; 1	 by selecting a bijection
� W R ! Zb WD f0; 1; : : : ; b � 1g and putting

�.r1; r2; : : :/ D
1X

jD1
�.rj / b

�j for .r1; r2; : : :/ 2 R1:
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Furthermore, choose 1 � 1 matrices C .1/; : : : ; C .s/ over R which are called
generating matrices. For n D 1; 2; : : : let

n � 1 D
1X

jD0
aj .n/ b

j ; aj .n/ 2 Zb;

be the digit expansion of n � 1 in base b. Choose a bijection  W Zb ! R with
 .0/ D 0 and associate with n the sequence

n D . .a0.n//;  .a1.n//; : : :/ 2 R1:

Then the sequence x1; x2; : : : of points in I s is defined by

xn D .�.nC .1//; : : : ; �.nC .s/// for n D 1; 2; : : : :

Note that the products nC .i/ are well defined since n contains only finitely many
nonzero terms. As in Sect. 26.4.2, the ring R is usually chosen to be a finite field Fq

of order q, where q is a prime power. The success of the digital method depends on
a careful choice of the generating matrices C .1/; : : : ; C .s/.

26.4.5 Sobol’ Sequences and Niederreiter Sequences

The first application of the digital method occurred in the construction of Sobol’
sequences in Sobol’ (1967). This construction uses primitive polynomials over F2
to set up the generating matrices C .1/; : : : ; C .s/ and leads to .t; s/-sequences in
base 2. The wider family of irreducible polynomials was used in the construction
of Niederreiter sequences in Niederreiter (1988), and this construction works for
arbitrary prime-power bases q. Let f1; : : : ; fs be the first s monic irreducible
polynomials over Fq , ordered according to nondecreasing degrees, and put

Tq.s/ D
sX

iD1
.deg.fi /� 1/: (26.8)

The construction of Niederreiter sequences yields .t; s/-sequences in base q with
t D Tq.s/. Let U.s/ denote the least value of t that is known to be achievable by
Sobol’ sequences for given s. Then T2.s/ D U.s/ for 1 � s � 7 and T2.s/ < U.s/

for all s 	 8. Thus, according to (26.7), for all dimensions s 	 8 Niederreiter
sequences in base 2 lead to a smaller upper bound on the star discrepancy than
Sobol’ sequences. Convenient software implementations of Sobol’ and Niederreiter
sequences are described in Bratley and Fox (1988) and Bratley et al. (1992, 1994),
respectively.
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In recent work, Dick and Niederreiter (2008) have shown that for given q and s,
the value given in (26.8) is indeed the least t-value that is possible for s-dimensional
Niederreiter sequences in base q. In the same paper, an analogous result was proved
regardingU.s/ and Sobol’ sequences for a range of dimensions of practical interest.

The potentially smallest, and thus best, t-value for any .t; s/-sequence in base
b would be t D 0. However, according to (Niederreiter 1992, Corollary 4.24), a
necessary condition for the existence of a .0; s/-sequence in base b is s � b. For
primes p, a construction of .0; s/-sequences in base p for s � p was given by
Faure (1982). For prime powers q, a construction of .0; s/-sequences in base q for
s � q was given by Niederreiter (1987). Since Tq.s/ D 0 for s � q by (26.8), the
Niederreiter sequences in Niederreiter (1988) also yield .0; s/-sequences in base q
for s � q.

26.4.6 Niederreiter–Xing Sequences

An important advance in the construction of low-discrepancy sequences was made
in the mid 1990s with the design of Niederreiter–Xing sequences which utilizes
powerful tools from the theory of algebraic function fields and generalizes the
construction of Niederreiter sequences. The basic papers here are Niederreiter and
Xing (1996a) and Xing and Niederreiter (1995), and expository accounts of this
work and further results are given in Niederreiter and Xing (1996b, 1998) and
(Niederreiter and Xing 2001, Chap. 8). Niederreiter–Xing sequences are .t; s/-
sequences in a prime-power base q with t D Vq.s/. Here Vq.s/ is a number
determined by algebraic function fields with full constant field Fq , and we have
Vq.s/ � Tq.s/ for all s 	 1. In fact, much more is true. If we fix q and consider
Vq.s/ and Tq.s/ as functions of s, then Vq.s/ is of the order of magnitude s, whereas
Tq.s/ is of the order of magnitude s log s. This yields an enormous improvement
on the bound for the star discrepancy in (26.7). It is known that for any .t; s/-
sequences in base b the parameter t must grow at least linearly with s for fixed
b (see Niederreiter and Xing 1996b, Sect. 10), and so Niederreiter–Xing sequences
yield t-values of the optimal order of magnitude as a function of s. A software
implementation of Niederreiter–Xing sequences is described in Pirsic (2002) and
available at

http://math.iit.edu/˜mcqmc/Software.html

by following the appropriate links.
To illustrate the comparative quality of the above constructions of .t; s/-

sequences, we consider the case of the most convenient base 2 and tabulate some
values of U.s/ for Sobol’ sequences, of T2.s/ for Niederreiter sequences, and of
V2.s/ for Niederreiter–Xing sequences in Table 26.1. Note that the values of V2.s/
in Table 26.1 for 2 � s � 7 are the least values of t for which a .t; s/-sequence in
base 2 can exist.

The approach to the construction of low-discrepancy sequences by algebraic
function fields was followed up recently by Mayor and Niederreiter (2007) who
gave an alternative construction of Niederreiter–Xing sequences using differentials
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Table 26.1 Values of U.s/, T2.s/, and V2.s/

s 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

U.s/ 0 1 3 5 8 11 15 19 23 27 31 35 40 45 71
T2.s/ 0 1 3 5 8 11 14 18 22 26 30 34 38 43 68
V2.s/ 0 1 1 2 3 4 5 6 8 9 10 11 13 15 21

of algebraic function fields. Niederreiter and Özbudak (2007) obtained the first
improvement on Niederreiter–Xing sequences for some special pairs .q; s/ of prime-
power bases q and dimensions s. For instance, consider the case where q is an
arbitrary prime power and s D q C 1. Then Tq.q C 1/ D 1 by (26.8) and this is the
least possible t-value for a .t; qC 1/-sequence in base q. However, the construction
in Niederreiter and Özbudak (2007) yields a .T; q C 1/-sequence in base q with
T.m/ D 0 for evenm and T.m/ D 1 for odd m, which is even better.

26.4.7 Additional Remarks

We remark that all constructions mentioned in Sects. 26.4.5 and 26.4.6 are based on
the digital method. We note also that the extensive database at

http://mint.sbg.ac.at

is devoted to .t;m; s/-nets and .t; s/-sequences.
In summary, for a given prime-power base q, the currently best low-discrepancy

sequences are:

1. The Faure or Niederreiter sequences (depending on whether q is prime or not)
for all dimensions s � q.

2. The Niederreiter–Xing sequences for all dimensions s > q, except for some
special values of s > q where the Niederreiter-Özbudak sequences are better.

We emphasize that the bound (26.7) on the star discrepancy of .t; s/-sequences
is completely explicit; see Niederreiter 1992, Sect. 4.1 and a recent improvement
in Kritzer (2006). For the best .t; s/-sequences, the coefficient of the leading term
N�1.logN/s in the bound on the star discrepancy tends to 0 at a superexponential
rate as s ! 1.

We recall that the convergence rate O.N�1.logN/s/ in (26.6) achieved by
using low-discrepancy sequences is valid under mild regularity conditions on the
integrand, namely that it be of bounded variation on I s in the sense of Hardy
and Krause. On the other hand, additional smoothness properties of the integrand
are not reflected in applications of the Koksma-Hlawka inequality. For smooth
integrands, there are other techniques of analyzing the integration error in suitable
QMC methods in order to obtain faster convergence rates.

One approach uses a special family of sequences called Kronecker sequences.
A Kronecker sequence is obtained from a point .˛1; : : : ; ˛s/ 2 R

s by considering its
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multiples .n˛1; : : : ; n˛s/, n D 1; 2; : : :, modulo 1, or in other words by considering
the sequence .fn˛1g; : : : ; fn˛sg/, n D 1; 2; : : :, where fug D u � buc denotes the
fractional part of u 2 R. It was shown in (Niederreiter 1973, Sect. 9) that for special
choices of .˛1; : : : ; ˛s/ one obtains QMC methods that yield faster convergence
rates for smooth integrands. We refer also to an account of this work in the survey
article (Niederreiter 1978, Sect. 5). A convenient choice is ˛i D p

pi for 1 � i � s,
where pi is the i th prime number. An efficient implementation of these QMC
methods was recently described by Vandewoestyne and Cools (2008).

Another approach to obtaining faster convergence rates for smooth integrands
uses special QMC methods called lattice rules. For a given dimension s 	 1,
consider the factor group R

s=Zs which is an abelian group under addition of residue
classes. Let L=Zs be an arbitrary finite subgroup of Rs=Zs and let xn C Z

s with
xn 2 Œ0; 1/s for 1 � n � N be the distinct residue classes making up the group
L=Zs . The points x1; : : : ; xN form the integration nodes of an N -point lattice rule.
This terminology stems from the fact that the subset L D [N

nD1.xn C Z
s/ of Rs is

an s-dimensional lattice. Judicious choices of N -point lattice rules yield the desired
faster convergence rates. Expository accounts of the theory of lattice rules are given
in the books of (Niederreiter 1992, Chap. 5) and Sloan and Joe (1994) as well as in
the survey articles of Cools and Nuyens (2008) and Hickernell (1998b).

In recent work, Dick (2007, 2008) has shown that one can also employ .t;m; s/-
nets with additional uniformity properties in order to achieve faster convergence
rates for smooth integrands.

26.5 Effective Dimension

26.5.1 Definition

In view of (26.6), the QMC method for numerical integration performs asymptoti-
cally better than the Monte Carlo method for any dimension s. However, in practical
terms, the numberN of integration nodes cannot be taken too large, and then already
for moderate values of s the size of the factor .logN/s may wipe out the advantage
over the Monte Carlo method. On the other hand, numerical experiments with many
types of integrands have shown that even for large dimensions s the QMC method
will often lead to a convergence rate O.N�1/ rather than O.N�1.logN/s/ as
predicted by the theory, thus beating the Monte Carlo method by a wide margin. One
reason may be that the Koksma-Hlawka inequality is in general overly pessimistic.
Another explanation can sometimes be given by means of the nature of the integrand
f . Even though f is a function of s variables, the influence of these variables could
differ greatly. For numerical purposes, f may behave like a function of much fewer
variables, so that the numerical integration problem is in essence a low-dimensional
one with a faster convergence rate. This idea is captured by the notion of effective
dimension.
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We start with the ANOVA decomposition of a random variable f .u/ D
f .u1; : : : ; us/ on I s of finite variance. This decomposition amounts to writing f
in the form

f .u/ D
X

K	f1;:::;sg
fK.u/;

where f¿ is the expected value of f and each fK.u/ with K ¤ ¿ depends only on
the variables ui with i 2 K and has expected value 0. Furthermore, fK1 and fK2 are
orthogonal wheneverK1 ¤ K2. Then the variance �2.f / of f decomposes as

�2.f / D
X

K	f1;:::;sg
�2.fK/:

The following definition relates to this decomposition.

Definition 6. Let d be an integer with 1�d � s and r a real number with 0< r <1.
Then the function f has effective dimension d at the rate r in the superposition
sense if X

jKj�d
�2.fK/ 	 r�2.f /:

The function f has effective dimension d at the rate r in the truncation sense if

X

K	f1;:::;dg
�2.fK/ 	 r�2.f /:

Values of r of practical interest are r D 0:95 and r D 0:99, for instance. The
formalization of the idea of effective dimension goes back to the papers of Caflisch
et al. (1997) and Hickernell (1998b). There are many problems of high-dimensional
numerical integration arising in computational finance for which the integrands have
a relatively small effective dimension, one possible reason being discount factors
which render variables corresponding to distant time horizons essentially negligible.
The classical example here is that of the valuation of mortgage-backed securities
(see Caflisch et al. 1997; Paskov 1997). For further interesting work on the ANOVA
decomposition and effective dimension, with applications to the pricing of Asian
and barrier options, we refer to Imai and Tan (2004), Lemieux and Owen (2002),
Liu and Owen (2006) and Wang and Sloan (2005).

26.5.2 Weighted QMC Methods

A natural way of capturing the relative importance of variables is to attach weights
to them. More generally, one may attach weights to any collection of variables,
thus measuring the relative importance of all projections – and not just of the one-
dimensional projections – of the given integrand. This leads then to a weighted
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version of the theory of QMC methods, an approach that was pioneered by Sloan
and Woźniakowski (1998).

Given a dimension s, we consider the set f1; : : : ; sg of coordinate indices. To
any nonempty subset K of f1; : : : ; sg we attach a weight �K 	 0. To avoid a
trivial case, we assume that not all weights are 0. Let � denote the collection of
all these weights �K . Then we introduce the weighted star discrepancy D�

N;� which
generalizes Definition 1. For u D .u1; : : : ; us/ 2 I s , we abbreviate the intervalQs
iD1Œ0; ui / by Œ0;u/. For any nonempty K � f1; : : : ; sg, we let uK denote the

point in I s with all coordinates whose indices are not in K replaced by 1. Now for
a point set P consisting of N points from I s , we define

D�
N;� D sup

u2I s
max
K

�K jR.Œ0;uK/IP/j:

We recover the classical star discrepancy if we choose �f1;:::;sg D 1 and �K D 0 for
all nonempty proper subsets K of f1; : : : ; sg. With this weighted star discrepancy,
one can then prove a weighted analog of the Koksma-Hlawka inequality (see Sloan
and Woźniakowski 1998).

There are some special kinds of weights that are of great practical interest. In the
case of product weights, one attaches a weight �i to each i 2 f1; : : : ; sg and puts

�K D
Y

i2K
�i for all K � f1; : : : ; sg; K ¤ ¿: (26.9)

In the case of finite-order weights, one chooses a threshold k and puts �K D 0 for
all K of cardinality larger than k.

The theoretical analysis of the performance of weighted QMC methods requires
the introduction of weighted function spaces in which the integrands live. These
can, for instance, be weighted Sobolev spaces or weighted Korobov spaces. In this
context again, the weights reflect the relative importance of variables or collections
of variables. The papers Kuo (2003), Sloan (2002), and Sloan and Woźniakowski
(1998) are representative for this approach.

26.5.3 Tractability

The analysis of the integration error utilizing weighted function spaces also leads to
powerful results on tractability, a concept stemming from the theory of information-
based complexity. The emphasis here is on the performance of multidimensional
numerical integration schemes as a function not only of the numberN of integration
nodes, but also of the dimension s as s ! 1. Let Fs be a Banach space of
integrands f on I s with norm kf k. Write

Ls.f / D
Z

I s
f .u/ du for f 2 Fs:
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Consider numerical integration schemes of the form

A.f / D
NX

nD1
anf .xn/ (26.10)

with real numbers a1; : : : ; aN and points x1; : : : ; xN 2 I s . The QMC method is of
course a special case of such a scheme. For A as in (26.10), we write card.A/ D N .
Furthermore, we put

err.A;Fs/ D sup
kf k�1

jLs.f /� A.f /j:

For any N 	 1 and s 	 1, the N th minimal error of the s-dimensional numerical
integration problem is defined by

err.N;Fs/ D inf ferr.A;Fs/ W A with card.A/ D N g:

The numerical integration problem is called tractable if there exist constantsC 	 0,
e1 	 0, and e2 > 0 such that

err.N;Fs/ � Cse1N�e2 kLs kop for all N 	 1; s 	 1;

where kLs kop is the operator norm of Ls . If, in addition, the exponent e1 may be
chosen to be 0, then the problem is said to be strongly tractable.

Tractability and strong tractability depend very much on the choice of the
spaces Fs. Weighted function spaces using product weights have proved particularly
effective in this connection. Since the interest is in s ! 1, product weights are set
up by choosing a sequence �1; �2; : : : of positive numbers and then, for fixed s 	 1,
defining appropriate weights �K by (26.9). If the �i tend to 0 sufficiently quickly
as i ! 1, then in a Hilbert-space setting strong tractability can be achieved by
QMC methods based on Halton, Sobol’, or Niederreiter sequences (see Hickernell
and Wang 2002; Wang 2002). Further results on (strong) tractability as it relates
to QMC methods can be found e.g. in Hickernell et al. (2004a), Hickernell et al.
(2004b), Sloan et al. (2002), Sloan et al. (2004), Wang (2003) and Woźniakowski
(2000).

26.6 Randomized QMC Methods

26.6.1 Scrambling Low-Discrepancy Sequences

Conventional QMC methods are fully deterministic and thus do not allow statistical
error estimation as in Monte Carlo methods. However, one may introduce an
element of randomness into a QMC method by randomizing (or “scrambling”) the



26 Low-Discrepancy Simulation 719

deterministic integration nodes used in the method. In this way one can combine the
advantages of QMC methods, namely faster convergence rates, and those of Monte
Carlo methods, namely the possibility of error estimation.

Historically, the first scrambling scheme is Cranley-Patterson rotation which was
introduced in Cranley and Patterson (1976). This scheme can be applied to any point
set in I s . Let x1; : : : ; xN 2 I s be given and put

yn D fxn C vg for n D 1; : : : ; N;

where v is a random vector uniformly distributed over I s and f�g denotes reduction
modulo 1 in each coordinate of a point in R

s . This scheme transforms low-
discrepancy point sets into low-discrepancy point sets.

A scrambling scheme that is tailored to Halton sequences (see Sect. 26.4.1)
was proposed by Wang and Hickernell (2000). Here the initial point of the
sequence is sampled randomly from the uniform distribution on I s , whereas the
construction of the subsequent points imitates the dynamics of the generation of the
Halton sequence. Further devices for scrambling Halton sequences were studied by
Mascagni and Chi (2004) and Vandewoestyne and Cools (2006), among others.

A sophisticated randomization of .t;m; s/-nets and .t; s/-sequences is provided
by Owen scrambling (see Owen 1995). This scrambling scheme works with
mutually independent random permutations of the digits in the b-adic expansions of
the coordinates of all points in a .t;m; s/-net in base b or a .t; s/-sequence in base b.
The scheme is set up in such a way that the scrambled version of a .t;m; s/-net,
respectively .t; s/-sequence, in base b is a .t;m; s/-net, respectively .t; s/-sequence,
in base b with probability 1. Further investigations of this scheme, particularly
regarding the resulting mean square discrepancy and variance, were carried out e.g.
by Hickernell and Hong (1999), Hickernell and Yue (2001), and Owen (1997a,b,
1998b).

Since Owen scrambling is quite time consuming, various faster special versions
have been proposed, such as a method of Matoušek (1998) and the method of digital
shifts in which the permutations in Owen scrambling are additive shifts modulo b
and the shift parameters may depend on the coordinate index i 2 f1; : : : ; sg and
on the position of the digit in the digit expansion of the coordinate. In the binary
case b D 2, digital shifting amounts to choosing s infinite bit strings B1; : : : ;Bs
and then taking each point xn of the given .t;m; s/-net or .t; s/-sequence in base
2 and bitwise XORing the binary expansion of the i th coordinate of xn with Bi
for 1 � i � s. Digital shifts and their applications are discussed e.g. in Dick and
Pillichshammer (2005) and L’Ecuyer and Lemieux (2002). The latter paper presents
also a general survey of randomized QMC methods and stresses the interpretation
of these methods as variance reduction techniques.

Convenient scrambling schemes are also obtained by operating on the generating
matrices of .t; s/-sequences constructed by the digital method. The idea is to
multiply the generating matrices by suitable random matrices from the left or from
the right in such a way that the value of the parameter t is preserved. We refer to
Faure and Tezuka (2002) and Owen (2003) for such scrambling schemes. Software
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implementations of randomized low-discrepancy sequences are described in Friedel
and Keller (2002) and Hong and Hickernell (2003) and are integrated into the Java
library SSJ available at

http://www.iro.umontreal.ca/˜simardr/ssj

which contains also many other simulation tools.

26.6.2 Hybrid Sequences

Another way of combining the advantages of QMC methods and Monte Carlo meth-
ods was proposed by Spanier (1995) in the context of high-dimensional problems.
The idea here is to sample a relatively small number of dominating variables of the
integrand by low-discrepancy sequences and the remaining variables by independent
and uniformly distributed random variates. The number of dominating variables
could be related to the effective dimension of the integrand (see Sect. 26.5.1), and
these dominating variables are efficiently captured by low-discrepancy sequences.
The sampling from independent and uniformly distributed random variates is
realized in practice by using sequences of pseudorandom numbers. Mixing low-
discrepancy sequences and sequences of pseudorandom numbers in this way results
in what is called a hybrid sequence.

The star discrepancy of hybrid sequences can be analyzed from the probabilistic
and from the deterministic point of view. Probabilistic results on the star discrepancy
of hybrid sequences were obtained in Ökten (1996) and Ökten et al. (2006), and the
latter paper discusses also the relevance of the results for computational finance.

The study of deterministic discrepancy bounds for hybrid sequences was initiated
by Niederreiter (2009a). A typical case is the mixing of Halton sequences (see
Sect. 26.4.1) with linear congruential sequences, which are classical sequences
of pseudorandom numbers (see Knuth 1998, Chap. 3 and Niederreiter 1978). Let
x1; x2; : : : be an s-dimensional Halton sequence. Furthermore, choose a large prime
p and integers g1; : : : ; gm; a1; : : : ; am with gcd.gj ; p/ D gcd.aj ; p/ D 1 for
1 � j � m. Then consider the hybrid sequence

.xn; fgn1 a1=pg; : : : ; fgnm am=pg/ 2 Œ0; 1	sCm; n D 1; 2; : : : :

Under suitable conditions on the parameters, a nontrivial discrepancy bound for this
sequence is shown in Niederreiter (2009a). Another interesting case is the mixing
of Kronecker sequences (see Sect. 26.4.7) with linear congruential sequences. This
case is also treated in Niederreiter (2009a). Many further cases of hybrid sequences
are discussed in Niederreiter (2009a) and in the more recent paper (Niederreiter
2009b).
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26.6.3 Improving the Efficiency

In the context of Monte Carlo methods, several techniques for variance reduction
were developed in order to improve the efficiency of Monte Carlo methods. The
affinity between randomized QMC methods and Monte Carlo methods suggests to
try analogous techniques in the framework of randomized QMC methods. There are
indeed successful schemes for variance reduction in randomized QMC methods,
and we mention latin supercube sampling (see Owen 1998a) and control variates
(see Hickernell et al. 2005) as typical examples.

One can also attempt to manipulate the integrand in such a way that it gains
additional desirable properties without changing the value of the integral over I s .
For instance, one may want to periodize the integrand so that it becomes a periodic
function with period interval I s , the idea being that then stronger theoretical error
bounds become available. This is an attractive device in the framework of lattice
rules (see Sect. 26.4.7). A summary of periodization techniques can be found in
(Sloan and Joe 1994, Sect. 2.12).

Another strategy is to manipulate the integrand so as to reduce the effective
dimension of the numerical integration problem. Several sophisticated methods are
available for this purpose. The key ideas here are bridge sampling and principal
component analysis. Bridge sampling was introduced by Caflisch and Moskowitz
(1995) and Moskowitz and Caflisch (1996) in the context of QMC methods and
the terminology refers to a stochastic process known as a Brownian bridge. Various
refinements of this technique have been proposed over the years. We refer to Lin
and Wang (2008) for recent work on this topic. Principal component analysis is a
standard method in multivariate statistics for allocating importance to the initial
coordinates of multidimensional data. Its use for the reduction of the effective
dimension of problems in computational finance was proposed by Acworth et al.
(1998).

26.6.4 Applications to Computational Finance

Among the various QMC methods, randomized QMC methods are probably the
most widely used in computational finance. It is perhaps instructive to include some
historical remarks here.

The application of Monte Carlo methods to challenging problems in computa-
tional finance was pioneered by the paper of Boyle (1977) from 1977. Although
QMC methods were already known at that time, they were not applied to compu-
tational finance because it was thought that they would be inefficient for problems
with high dimensions occurring in this area.

A breakthrough came in the early 1990s when Paskov and Traub applied QMC
integration to the problem of pricing a 30-year collateralized mortgage obligation
provided by Goldman Sachs; see Paskov and Traub (1995) for a report on this work.
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This problem required the computation of ten integrals of dimension 360 each, and
the results were astounding. For the hardest of the ten integrals, the QMC method
achieved accuracy 10�2 with just 170 nodes, whereas the Monte Carlo method
needed 2,700 nodes for the same accuracy. When higher accuracy is desired, the
QMC method can be about 1,000 times faster than the Monte Carlo method. Later
on, it was realized that one important reason why QMC methods work so well
for the problem of pricing mortgage-backed securities is that this problem has a
low effective dimension because the discount factors diminish the influence of the
later years in the 30-year span. For further work on the pricing of mortgage-backed
securities, we refer to Caflisch et al. (1997), Paskov (1997), and Tezuka (1998).

Applications of QMC methods to option pricing were first considered in the
technical report of Birge (1994) and the paper of Joy et al. (1996). These works
concentrated on European and Asian options. In the case of path-dependent options,
if the security’s terminal value depends only on the prices at s intermediate times,
then after discretization the expected discounted payoff under the risk-neutral
measure can be converted into an integral over the s-dimensional unit cube I s .

A related problem in which an s-dimensional integral arises is the pricing of
a multiasset option with s assets; see the paper Acworth et al. (1998) in which
numerical experiments comparing Monte Carlo and QMC methods are reported for
dimensions up to s D 100. This paper discusses also Brownian bridge constructions
for option pricing. Related work on the pricing of multiasset European-style options
using QMC and randomized QMC methods was carried out in Lai and Spanier
(2000), Ross (1998), Tan and Boyle (2000), and comparative numerical experiments
for Asian options can be found in Boyle et al. (1997) and Ökten and Eastman (2004).

Due to its inherent difficulty, it took much longer for Monte Carlo and QMC
methods to be applied to the problem of pricing American options. An excellent
survey of early work on Monte Carlo methods for pricing American options is
presented in Boyle et al. (1997). The first important idea in this context was
the bundling algorithm in which paths in state space for which the stock prices
behave in a similar way are grouped together in the simulation. Initially, the
bundling algorithm was applicable only to single-asset American options. Jin et al.
(2007) recently extended the bundling algorithm in order to price high-dimensional
American-style options, and they also showed that computing representative states
by a QMC method improves the performance of the algorithm.

Another approach to pricing American options by simulation is the stochastic
mesh method. The choice of mesh density functions at each discrete time step is
crucial for the success of this method. The standard mesh density functions are
mixture densities, and so in a Monte Carlo approach one can use known techniques
for generating random samples from mixture densities. In a QMC approach, these
random samples are replaced by deterministic points whose empirical distribution
function is close to the target distribution function. Work on the latter approach
was carried out by Boyle et al. (2001, 2002, 2003) and Broadie et al. (2000).
Another application of QMC methods to the pricing of American options occurs in
regression-based methods, which are typically least-squares Monte Carlo methods.
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Here Caflisch and Chaudhary (2004) have shown that QMC versions improve the
performance of such methods.

26.7 An Example

As an example which illustrates the efficiency of QMC methods, we discuss the
problem of valuing an Asian call option. We are grateful to Gunther Leobacher of
the University of Linz for working out this example. Consider a share whose price
S follows a geometric Brownian motion such that, under the risk-neutral measure,

St D S0 exp.�Wt C .r � �2

2
/t/;

where W is a standard Brownian motion, r is the (constant) riskless interest rate,
and � is the (constant) volatility.

We want to price an option with payoff at time T given by

max

 
1

n

nX

kD1
SkT=n �K; 0

!
; (26.11)

where the strike price K is a constant. The form of the payoff may be the result of
the discretization of the average of S over the time interval Œ0; T 	 or the option may
in fact depend on the average over finitely many instants.

General valuation theory states that the arbitrage-free price at time 0 of the option
with payoff (26.11) is given by the expectation

E

 
e�rT max

 
1

n

nX

kD1
SkT=n �K; 0

!!
;

see for example Glasserman (2004). There is no simple closed-form expression for
this expectation, and so one has to resort to numerical methods. For the case we
consider here there are efficient methods for computing close estimates, see for
example Rogers and Shi (1995) and the references therein. However, these methods
heavily rely on the simplicity of the model, especially on the fact that there is only
one Brownian motion involved. For this reason, our example and generalizations of
it, such as Asian basket options (Dahl and Benth 2002) or Asian options in a Lévy
market (Leobacher 2006), have retained their popularity as benchmarks for QMC
methods.

In our numerical algorithm we used the Box-Muller method (Box and Muller
1958) for the generation of independent normal variables from uniform variables.
Then the paths were generated using the Brownian bridge algorithm. The parameters
were set to S0 D 100,K D 100, T D 1, r D 0:02, � D 0:1, n D 16.
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Figure 26.1 compares the results for several Monte Carlo and QMC rules. We
plot the base-10 logarithm of the standard deviation from the exact value over
20 runs against the base-10 logarithm of the number of paths generated. Thereby
the exact value is computed using Sobol’ points with 223 � 8:4 � 106 paths. For
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Fig. 26.1 Standard deviation of valuation errors for pseudorandom numbers, Halton and Sobol’
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better comparison also the line N�1=2 is drawn. As we can see from the graph, the
Monte Carlo method shows almost exactly the predicted behavior of convergence
order O.N�1=2/. Both QMC methods show superior convergence of order close to
O.N�1/.

Finally, a word of caution is in order. While QMC methods hardly ever perform
worse than Monte Carlo methods, they sometimes provide little advantage when
used without care. Figure 26.2 shows the same comparison as Fig. 26.1, but now
without the Brownian bridge algorithm. While the QMC methods still outperform
plain Monte Carlo, the results are much worse than before. The reason for this,
informally, is that the Brownian bridge algorithm reduces the effective dimension
of the problem, see Caflisch and Moskowitz (1995) and Moskowitz and Caflisch
(1996).
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Matoušek, J. (1998). On the L2-discrepancy for anchored boxes. Journal of Complexity, 14, 527–
556.

Mayor, D. J. S. & Niederreiter, H. (2007). A new construction of .t; s/-sequences and some
improved bounds on their quality parameter. Acta Arithmetica, 128, 177–191.

Moskowitz, B. & Caflisch, R. E. (1996). Smoothness and dimension reduction in quasi-Monte
Carlo methods. Mathematical and Computer Modelling, 23(8–9), 37–54.



728 H. Niederreiter

Niederreiter, H. (1973). Application of diophantine approximations to numerical integration. In
C. F. Osgood (Ed.), Diophantine approximation and its applications (pp. 129–199). New York:
Academic Press.

Niederreiter, H. (1978). Quasi-Monte Carlo methods and pseudo-random numbers. Bulletin of the
American Mathematical Society, 84, 957–1041.

Niederreiter, H. (1987). Point sets and sequences with small discrepancy. Monatshefte für
Mathematik, 104, 273–337.

Niederreiter, H. (1988). Low-discrepancy and low-dispersion sequences. Journal of Number
Theory, 30, 51–70.

Niederreiter, H. (1992). Random number generation and quasi-Monte Carlo methods.
Philadelphia, PA: SIAM.

Niederreiter, H. (2003). Error bounds for quasi-Monte Carlo integration with uniform point sets.
Journal of Computational and Applied Mathematics, 150, 283–292.

Niederreiter, H. (2005). Constructions of .t; m; s/-nets and .t; s/-sequences. Finite Fields and
Their Applications, 11, 578–600.

Niederreiter, H. (2008). Nets, .t; s/-sequences, and codes. In A. Keller, S. Heinrich, & H.
Niederreiter (Eds.), Monte Carlo and quasi-Monte Carlo methods 2006 (pp. 83–100). Berlin:
Springer.

Niederreiter, H. (2009a). On the discrepancy of some hybrid sequences. Acta Arithmetica, 138,
373–398.

Niederreiter, H. (2009b). Further discrepancy bounds and an Erdös-Turán-Koksma inequality for
hybrid sequences. Monatshefte für Mathematik, 161, 193–222.
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Ökten, G., Tuffin, B., & Burago, V. (2006). A central limit theorem and improved error bounds
for a hybrid-Monte Carlo sequence with applications in computational finance. Journal of
Complexity, 22, 435–458.

Owen, A. B. (1995). Randomly permuted .t; m; s/-nets and .t; s/-sequences. In H. Niederreiter
& P. J.-S. Shiue (Eds.), Monte Carlo and quasi-Monte Carlo methods in scientific computing
(pp. 299–317). New York: Springer.

Owen, A. B. (1997a). Monte Carlo variance of scrambled net quadrature. SIAM Journal on
Numerical Analysis, 34, 1884–1910.

Owen, A. B. (1997b). Scrambled net variance for integrals of smooth functions. The Annals of
Statistics, 25, 1541–1562.

Owen, A. B. (1998a). Latin supercube sampling for very high-dimensional simulations. ACM
Transactions on Modeling and Computer Simulation, 8, 71–102.

Owen, A. B. (1998b). Scrambling Sobol’ and Niederreiter-Xing points. Journal of Complexity, 14,
466–489.



26 Low-Discrepancy Simulation 729

Owen, A. B. (2003). Variance with alternative scramblings of digital nets. ACM Transactions on
Modeling and Computer Simulation, 13, 363–378.

Paskov, S. H. (1997). New methodologies for valuing derivatives. In M. A. H. Dempster & S. R.
Pliska (Eds.), Mathematics of derivative securities (pp. 545–582). Cambridge, UK: Cambridge
University Press.

Paskov, S. H. & Traub, J. F. (1995). Faster valuation of financial derivatives. Journal of Portfolio
Management, 22(1), 113–120.

Pirsic, G. (2002). A software implementation of Niederreiter-Xing sequences. In K. T. Fang,
F. J. Hickernell, & H. Niederreiter (Eds.), Monte Carlo and quasi-Monte Carlo methods 2000
(pp. 434–445). Berlin: Springer.

Rogers, L. C. G. & Shi, Z. (1995). The value of an Asian option. Journal of Applied Probability,
32, 1077–1088.

Ross, R. (1998). Good point methods for computing prices and sensitivities of multi-asset
European style options. Applied Mathematical Finance, 5, 83–106.

Sloan, I. H. (2002). QMC integration – beating intractability by weighting the coordinate
directions. In K. T. Fang, F. J. Hickernell, & H. Niederreiter (Eds.), Monte Carlo and quasi-
Monte Carlo methods 2000 (pp. 103–123). Berlin: Springer.

Sloan, I. H. & Joe, S. (1994). Lattice methods for multiple integration. Oxford, UK: Oxford
University Press.
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Chapter 27
Introduction to Support Vector Machines
and Their Applications in Bankruptcy
Prognosis

Yuh-Jye Lee, Yi-Ren Yeh, and Hsing-Kuo Pao

Abstract We aim at providing a comprehensive introduction to Support Vector
Machines and their applications in computational finance. Based on the advances
of the statistical learning theory, one of the first SVM algorithms was proposed
in mid 1990s. Since then, they have drawn a lot of research interests both in
theoretical and application domains and have became the state-of-the-art techniques
in solving classification and regression problems. The reason for the success is not
only because of their sound theoretical foundation but also their good generalization
performance in many real applications. In this chapter, we address the theoretical,
algorithmic and computational issues and try our best to make the article self-
contained. Moreover, in the end of this chapter, a case study on default prediction
is also presented. We discuss the issues when SVM algorithms are applied to
bankruptcy prognosis such as how to deal with the unbalanced dataset, how to
tune the parameters to have a better performance and how to deal with large scale
dataset.

27.1 Introduction

Finance classification problems occur in credit scoring, company rating, and many
fields. One of the most important task is to predict bankruptcy before the disaster.
In the era of Basel Committee on Banking Supervision (Basel II), a powerful tool
for bankruptcy prognosis can always help banks to reduce their risks. On one
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hand, the tool must be precise with high accuracy, but also easily adaptable to the
bank’s objectives regarding the relation of false acceptances (Type I error) and false
rejections (Type II error). The prognosis has become even more important since the
Basel II established borrowers’ rating as the crucial criterion for minimum capital
requirements of banks. The methods for generating rating figures have developed
significantly over the last 10 years Krahnen and Weber (2001).

Parametric statistical models can be used for finance classification. The first
introduced model of this type was discriminant analysis (DA) for univariate Beaver
(1966) and multivariate models Altman (1968). After DA, the logit and probit
approach for predicting default were proposed in Martin (1977) and Ohlson
(1980). These approaches rely on the a priori assumed functional dependence
between risk of default and predictor. One of the weakest points of DA is that
it requires a linear functional, or a preshaped polynomial functional dependence.
Such restrictions often fail to meet the reality of observed data. Semi-parametric
models as in Hwang et al. (2007) are between conventional linear models and
non-parametric approaches. Other than that, nonlinear classification methods such
as Support Vector Machines (SVMs) or neural networks Tam and Kiang (1992)
and Altman (1994) are even stronger candidates to meet these demands as they
go beyond conventional discrimination methods. In this chapter, we concentrate
on providing a comprehensive introduction to SVMs and their applications in
bankruptcy prognosis.

In the last decade, significant advances have been made in support vector
machines (SVMs) both theoretically, by using statistical learning theory; as well
as algorithmically, by applying some optimization techniques Burges (1998),
Cristianini and Shawe-Taylor (1999), Lee and Mangasarian (2001), Mangasarian
(2000), Schölkopf and Smola (2002), Smola and Schölkopf (2004). SVMs have
been successfully developed and have become powerful tools for solving data
mining problems such as classification, regression and feature selection. In classifi-
cation problems, an SVM determine an optimal separating hyperplane that classifies
data points into different categories. Here, “optimality” refers to the sense that the
separating hyperplane has the best generalization ability for unseen data points,
based on statistical learning theory. With the help of nonlinear kernel functions,
SVMs can discriminate between complex data patterns by generating a highly
nonlinear separating hyperplane. The nonlinear extension of SVMs makes them
applicable to many important real world problems such as character recognition,
face detection, analysis of DNA microarrays, breast cancer diagnosis and prognosis
Cao and Tay (2003), Min and Lee (2005), and the problem of bankruptcy prognosis
as we will see.

The goal of this chapter is to provide a comprehensive introduction to SVMs
and their applications in bankruptcy prognosis. The remainder of the chapter is
organized as follows. Section 27.2 introduces the basic ideas and the typical
formulation of SVM. Some variants of SVMs are discussed in Sect. 27.3 to solve
problems of many kinds. Section 27.4 details some implementation issues and
techniques. We discuss solving SVMs in primal and dual forms. In Sect. 27.5, to
deal with real world problems, we talk about some practical issues of using SVMs.
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In Sect. 27.6, we apply SVMs on a problem of bankruptcy prognosis. Then, in
Sect. 27.7, we summarize our conclusions.

27.2 Support Vector Machine Formulations

In this section, we first introduce the basic idea of SVM and give the formulation
of linear support vector machine. Even the linear version looks too simple to be
powerful enough for real applications, it has a non-trivial nonlinear extension. The
concept of nonlinear extension of SVM is a milestone for dealing with nonlinear
problems and it has a great influence on the machine learning community in this
couple of decades. All the details of nonlinear extension, including the “kernel trick”
and Mercer’s theorem, are introduced in this section. In the end, we discuss the
actual risk bound to show the insight behind SVM induction.

27.2.1 The Formulation of Conventional Support Vector Machine

In this article, we mainly confine ourselves to binary classification problems, which
focus on classifying data into two classes. Given a dataset consisting of m points
in the n-dimensional real space R

n, each with a class label y, C1 or �1, indicating
one of two classes, AC, A� � R

n where the point belongs, we want to find the
decision boundary between the two classes. For the multi-class case, many strategies
have been proposed. They either decompose the problem into a series of binary
classification or formulate it as a single optimization problem. We will discuss this
issue in Sect. 27.5. In notation, we use capital boldface letters to denote a matrix,
lower case boldface letters to denote a column vector, and low case light face letters
to denote scalars. The data points are denoted by an m � n matrix A, where the
i th row of the matrix corresponds to the i th data point. We use a column vector xi
to denote the i th data point. All vectors indicate column vectors unless otherwise
specified. The transpose of a matrix M is denoted by M>.

27.2.1.1 Primal Form of Conventional SVM

We start with a strictly linearly separable case, i.e. there exists a hyperplane which
can separate the data AC and A�. In this case we can separate the two classes by a
pair of parallel bounding planes:

w>x C b D C1 ;
w>x C b D �1 ;

(27.1)

where w is the normal vector to these planes and b determines their location relative
to the origin. The first plane of (27.1) bounds the class AC and the second plane
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bounds the class A�. That is,

w>x C b 	 C1 ; 8 x 2 AC ;
w>x C b � �1 ; 8 x 2 A� :

(27.2)

According to the statistical learning theory Vapnik (2000), SVM achieves a better
prediction ability via maximizing the margin between two bounding planes. Hence,
the “hard margin” SVM searches for a separating hyperplane by maximizing 2

kwk2 . It

can be done by means of minimizing 1
2

kwk22 and the formulation leads to a quadratic
program as follows:

min
.w;b/2RnC1

1

2
kwk22 (27.3)

s.t. yi .w>xi C b/ 	 1 ; for i D 1; 2; : : : ; m :

The linear separating hyperplane is the plane

w>x C b D 0 ; (27.4)

midway between the bounding planes (27.1), as shown in Fig. 27.1a. For the linearly
separable case, the feasible region of the above minimization problem (27.3) is
nonempty and the objective function is a quadratic convex function; therefore, there
exists an optimal solution, denoted by .w�; b�/. The data points on the bounding
planes, w�>x C b� D ˙1, are called support vectors. It is not difficult to see that, if
we remove any point that is not a support vector, the training result will remain the
same. This is a nice property of SVM learning algorithms. For the purpose of data
compression, once we have the training result, all we need to keep in our database
are the support vectors.

If the classes are not linearly separable, in some cases, two planes may bound the
two classes with a “soft margin”. That is, given a nonnegative slack vector variable
� WD .�1; : : : ; �m/, we would like to have:

x w + b = −1

x w + b = +1

A- A+

w

2
w 2

= Margin

(a) linearly separable

x w + b = −1

x w + b = +1

A- A+

w

ξi

ξj

2
w 2

= Margin

(b) non-linearly separable

Fig. 27.1 The illustration of linearly separable and non-linearly separable SVMs
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w>xi C b C �i 	 C1 ; 8 xi 2 AC
w>xi C b � �i � �1 ; 8 xi 2 A� :

(27.5)

The 1-norm of the slack vector variable �,
Pm

iD1 �i , is called the penalty term. In
principle, we are going to determine a separating hyperplane that not only correctly
classifies the training data, but also performs well on test data. We depict the
geometric property in Fig. 27.1b. With a soft margin, we can extend (27.3) and
produce the conventional SVM (Vapnik 2000) as the following formulation:

min
.w;b;�/2RnC1Cm

1

2
kwk22 C C

mX

iD1
�i (27.6)

s.t. yi .w>xi C b/C �i 	 1 ;

�i 	 0; for i D 1; 2; : : : ; m ;

where C > 0 is a positive parameter that balances the weight of the penalty termPm
iD1 �i and the margin maximization term 1

2
kwk22. Alternatively, we can replace

the penalty term by the 2-norm measure as follows:

min
.w;b;�/2RnC1Cm

1

2
kwk22 C C

mX

iD1
�2i (27.7)

s.t. yi .w>xi C b/C �i 	 1 ;

for i D 1; 2; : : : ; m :

The 1-norm penalty is considered less sensitive to outliers than the 2-norm penalty,
therefore it receives more attention in real applications. However, mathematically
the 1-norm is more difficult to manipulate such as when we need to compute the
derivatives.

27.2.1.2 Dual Form of Conventional SVM

The conventional support vector machine formulation (27.6) is a standard convex
quadratic program Bertsekas (1999), Mangasarian (1994), Nocedal and Wright
(2006). The Wolfe dual problem of (27.6) is expressed as follows:

max
˛2Rm

mX

iD1
˛i � 1

2

mX

iD1

mX

jD1
yiyj ˛i˛j hxi ; xj i (27.8)

s.t.
mX

iD1
yi˛i D 0 ;

0 � ˛i � C for i D 1; 2; : : : ; m ;
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where hxi ; xj i is the inner product of xi and xj . The primal variable w is given by:

w D
X

˛i>0

yi˛ixi : (27.9)

Each dual variable ˛i corresponds to a training point xi . The normal vector w
can be expressed in terms of a linear combination of training data points which
have corresponding positive dual variables ˛i (namely, the support vectors). By the
Karush-Kuhn-Tucker complementarity conditions Bertsekas (1999), Mangasarian
(1994):

0 � ˛i ? yi .w>xi C b/C �i � 1 	 0

0 � C � ˛i ? �i 	 0 ; for i D 1; 2; : : : ; m ;
(27.10)

we can determine b simply by taking any training point xi , such that i 2 I WD
fkj 0 < ˛k < C g and obtain:

b D yi � w>xi D yi �
mX

jD1
.yj ˛j hxj ; xi i/ : (27.11)

In the dual form, SVMs can be expressed by the form of inner product. It implies
that we only need the information of the inner product of the data when expressing
the formulation and decision function of SVM. This important characteristic carries
SVMs to their nonlinear extension in a simple way.

27.2.2 Nonlinear Extension of SVMs via Kernel Trick

In many cases, a dataset, as collected in a vector form full of attributes, cannot
be well separated by a linear separating hyperplane. However, it is likely that the
dataset becomes linearly separable after mapped into a higher dimensional space by
a nonlinear map. A nice property of SVM methodology is that we do not even need
to know the nonlinear map explicitly; still, we can apply a linear algorithm to the
classification problem in the high dimensional space. The property comes from the
dual form of SVM which can express the formulation in terms of inner product of
data points. By taking the advantage of dual form, the “kernel trick” is used for the
nonlinear extension of SVM.

27.2.2.1 Kernel Trick

From the dual SVM formulation (27.8), all we need to know is simply the inner
product between training data vectors. Let us map the training data points from the
input space R

n to a higher-dimensional feature space F by a nonlinear map ˚ .
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Feature map

nonlinear pattern in data space approximate linear pattern in feature space

Fig. 27.2 The illustration of nonlinear SVM

The training data x in F becomes ˚.x/ 2 R
` where ` is the dimensionality of the

feature space F . Based on the above observation, if we know the inner product
˚.xi />˚.xj / for all i; j D 1; 2; : : : ; m, then we can perform the linear SVM
algorithm in the feature space F . The separating hyperplane will be linear in the
feature space F but is a nonlinear surface in the input space R

n (see Fig. 27.2).
Note that we do not need to know the nonlinear map ˚ explicitly. It can be

achieved by employing a kernel function. Let k.x; z/ W Rn � R
n ! R be an inner

product kernel function satisfying Mercer’s condition Burges (1998), Cherkassky
and Mulier (1998), Courant and Hilbert (1953), Cristianini and Shawe-Taylor
(1999), Vapnik (2000), positive semi-definiteness condition (see Definition 1). We
can construct a nonlinear map ˚ such that k.xi ; xj / D ˚.xi />˚.xj / where
i; j D 1; 2; : : : ; m. Hence, the linear SVM formulation can be used on ˚.x/ in
the feature space F by replacing the hxi ; xj i in the objective function of (27.8) with
a nonlinear kernel function k.xi ; xj /. The resulting dual nonlinear SVM formulation
becomes:

max
˛2Rm

mX

iD1
˛i � 1

2

mX

iD1

mX

jD1
yiyj ˛i˛j k.xi ; xj / (27.12)

s.t.
mX

iD1
yi˛i D 0

0 � ˛i � C for i D 1; 2; : : : ; m :

The nonlinear separating hyperplane is defined by the solution of (27.12) as follows:
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mX

jD1
.yj ˛j k.xj ; xi //C b D 0 ; (27.13)

where

b D yi �
mX

jD1
.yj ˛j k.xj ; xi //; i 2 I WD fkj 0 < ˛k < C g : (27.14)

The “kernel trick” makes the nonlinear extension of linear SVM possible without
knowing the nonlinear mapping explicitly. Whatever computation code ready for
linear SVM can also be modified to the nonlinear version easily with a substitution
of the inner product computation in the input space by the inner product computation
in the feature space.

27.2.2.2 Mercer’s Theorem

The basic idea of kernel trick is replacing the inner product between data points by
the kernel function k.x; z/. However, it is not always possible for a given function
k.x; z/ to reconstruct its corresponding nonlinear maps. We can answer the question
by the so-called Mercer’s condition (Vapnik 2000). We conclude this section with
Mercer’s condition and two examples of kernel function.

Definition 1 (Mercer’s condition). Let k.s; t/ W R
n � R

n ! R be a continuous
symmetric function and X be a compact subset of Rn. If

Z

X�X
k.s; t/f .s/f .t/ d sd t 	 0; 8f 2 `2.X/ ; (27.15)

where the Hilbert space `2.X/ is the set of functions f such that

Z

X

f .t/2 d t < 1 : (27.16)

then the function k satisfies Mercer’s condition.

This is equivalent to say that the kernel matrix K.A;A/ in our application is
positive semi-definite (Cristianini and Shawe-Taylor 1999), where K.A;A/ij D
k.xi ; xj / for i; j D 1; 2; : : : ; m. Below are two most popular kernel functions in
real applications. The choice of kernel functions may rely on the result of a cross-
validation or model selection procedure.

Example 1. Polynomial Kernel

k.x; z/ D .x>z C b/d ; (27.17)

where d denotes the degree of the exponentiation.
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Example 2. Gaussian (Radial Basis) Kernel

k.x; z/ D e��kx�zk22 ; (27.18)

where � is the width parameter of Gaussian kernel.

27.2.3 A Bound on Actual Risk

The main goal of the classification problem is to predict the label of new unseen
data points correctly. That is, we seek for a classifier f .x; ˛/ with output values 1
and �1 that can minimize the following test error:

R.˛/ D
Z
1

2
jy � f .x; ˛/j dP.x; y/ ; (27.19)

where x is an instance and y is the class label of x, with .x; y/ drawn from some
unknown probability distribution P.x; y/, and ˛ is an adjustable parameter of f .
The error, so called the actual risk, in which we are interested can represent the true
mean error but it needs to know what P.x; y/ is. However, estimating P.x; y/ is
usually not possible so that (27.19) is not very useful in practical usage. The usual
way is to approximate the actual risk by using the empirical risk:

Remp.˛/ D 1

2m

mX

iD1
jyi � f .xi ; y/j : (27.20)

This empirical risk is obtained by considering only a finite number of training data.
Looking for a model that fits the given dataset usually is not a good way to do.
There always exists a model that can classify the training data perfectly as long
as there is no identical data points that have different labels. However this model
might overfit the training data and perform poorly on the unseen data. There are
some bounds governing the relation between the capacity of a learning machine and
its performance. It can be used for balancing the model bias and model variance.
Vapnik (2000) proposed a upper bound for R.˛/ with probability 1 � � as follows:

R.˛/ � Remp.˛/C
r
h.log.2m=h/C 1/� log.�=4/

m
; (27.21)

where � is between 0 and 1,m is the number of instances, h is a non-negative integer
called the Vapnik Chervonenkis (VC) dimension. The second term on the right-hand
side of (27.21) is called the VC confidence.

The upper bound in (27.21) gives a principle for choosing a learning model for a
given task. Thus given several different learning models and a fixed, sufficiently
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small �, choosing a model that minimizes the right-hand side is equivalent to
choosing a model that gives the lowest upper bound on the actual risk. Note that
the VC confidence is a monotonic increasing function of h. This means that a
complicated learning model may also have a high upper bound on the actual risk.
In general, for non zero empirical risk, one wants to choose that learning model
which minimizes the right-hand side of (27.21). This idea of balancing the model
complexity and empirical risk is considered in SVMs. The objective functions of
(27.6) and (27.7) can be interpreted as the upper bound of actual risk in (27.21)
Burges (1998), Vapnik (2000). Basically, SVM defines a trade-off between the
quality of the separating hyperplane on the training data and the complexity of the
separating hyperplane. Higher complexity of the separating hyperplane may cause
overfitting and lead to poor generalization. The positive parameter C which can
be determined by a tuning procedure such as cross-validation, plays the role of
balancing this trade-off. We will discuss the issue in more details in Sect. 27.5.

27.3 Variants of Support Vector Machines

Since the typical SVM was proposed for the first time in late 1990s, to deal with
various kinds of applications, many variants of SVM have been proposed. The
different formulations of SVM have their own approaches in dealing with data.
In this section, we will introduce some of them, as well as their properties and
applications.

27.3.1 Smooth Support Vector Machine

In contrast to the conventional SVM of (27.6), smooth support vector machine
(SSVM) Lee and Mangasarian (2001) minimizes the square of the slack vector �.
In addition, the SSVM prefers a solution with a small value of b (also in 2-norm).
That leads to the following minimization problem:

min
.w;b;�/2RnC1Cm

1

2
.kwk22 C b2/C C

2

mX

iD1
�2i (27.22)

s.t. yi .w>xi C b/C �i 	 1

�i 	 0; for i D 1; 2; : : : ; m :

As a solution of (27.22), � is given by �i D f1�yi.w>xi Cb/gC for all i where the
plus function xC is defined as xC D maxf0; xg. Thus, we can replace �i in (27.22)
by f1 � yi .w>xi C b/gC. It converts the problem (27.22) into an unconstrained
minimization problem as follows:
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min
.w;b/2RnC1

1

2
.kwk22 C b2/C C

2

mX

iD1
f1 � yi .w>xi C b/g2C : (27.23)

Compared to (27.22), this formulation reduces the number of variables from
n C 1 C m to n C 1; however, the objective function to be minimized is no longer
twice differentiable. In SSVM, we prefer a twice differentiable form so that a fast
Newton method can be applied. We approximate the plus function xC by a smooth
p-function:

p.x; ˇ/ D x C 1

ˇ
log.1C e�ˇx/ ; (27.24)

where ˇ > 0 is the smooth parameter which controls the “steepness” of the curve or
how close it is to the original plus function xC. By replacing the plus function xC
with a very accurate approximation p-function gives the SSVM formulation:

min
.w;b/2RnC1

1

2
.kwk22 C b2/C C

2

mX

iD1
p.f1 � yi .w>xi C b/g; ˇ/2 ; (27.25)

The objective function in problem (27.25) is strongly convex and infinitely dif-
ferentiable. Hence, it has a unique solution and can be solved by using a fast
Newton-Armijo algorithm (discussed in the implementation part, Sect. 27.4). For
the nonlinear case, this formulation can be extended to the nonlinear version by
utilizing the kernel trick as follows:

min
.u;b/2RmC1

1

2
.kuk22 C b2/C C

2

mX

iD1
p.Œ1 � yi f

mX

jD1
uj k.xi ; xj /C bg 	; ˇ/2 ; (27.26)

where k.xi ; xj / is a kernel function. The nonlinear SSVM classifier f .x/ can be
expressed as follows:

f .x/ D
X

uj¤0
uj k.xj ; x/C b : (27.27)

27.3.2 Reduced Smooth Support Vector Machine

In these days, very often we have classification or regression problems with large-
scale data, such as the data from network traffic, gene expressions, web documents,
etc. To solve large-scale problems by SVM, the full kernel matrix will be very large,
so it may not be appropriate to use the full matrix when dealing with (27.26). In
order to avoid facing such a large full matrix, we brought in the reduced kernel
technique (Lee and Huang 2007). The key idea of the reduced kernel technique
is to randomly select a small portion of data and to generate a thin rectangular
kernel matrix, then to use this much smaller rectangular kernel matrix to replace
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the full kernel matrix. In the process of replacing the full kernel matrix by a reduced
kernel, we use the Nyström approximation (Smola and Schölkopf 2000; Williams
and Seeger 2001) for the full kernel matrix:

K.A;A/ � K.A; QA/K. QA; QA/�1K. QA;A/ ; (27.28)

where QA Qm�n is a subset of A and K.A; QA/ D QKm� Qm is a reduced kernel. Thus, we
have

K.A;A/u � K.A; QA/K. QA; QA/�1K. QA;A/u D K.A; QA/ Qu ; (27.29)

where Qu 2 R
Qm is an approximated solution of u via the reduced kernel technique.

By using the approximation, reduced SVM randomly selects a small subset QA to
generate the basis functions B:

BD f1g [ ˚
k.�; Qxi /� Qm

iD1 :

The formulation of reduced SSVM, hence, is expressed as follows:

min
Qu;b;�

1

2
.
�� Qu��2

2
C b2/C C

2

QmX

iD1
p.Œ1 � yi f

QmX

jD1
Quj k.xi ; Qxj /C bg 	; ˇ/2 (27.30)

and its decision function is in the form

f .x/ D
QmX

iD1
Quik.x; Qxi /C b : (27.31)

The reduced kernel method constructs a compressed model and cuts down the
computational cost from O.m3/ to O. Qm3/. It has been shown that the solution of
reduced kernel matrix approximates the solution of full kernel matrix well (Lee and
Huang 2007).

27.3.3 Least Squares Support Vector Machine

The least squares support vector machine (Suykens and Vandewalle 1999) considers
the equality constraints which make the formulation of the classification problem in
the sense of least squares as follows:

min
.w;b;�/2RnC1Cm

1

2
kwk22 C C

mX

iD1
�2i (27.32)

s.t. �i D 1 � yi .w>xi C b/ for i D 1; 2; : : : ; m :
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The same idea, called proximal support vector machine, is also proposed simultane-
ously in Fung and Mangasarian (2001), with adding the square of the bias term b in
the objective function. With the least squares form, one can obtain the solution of the
classification problem via solving a set of linear equations. Consider the Lagrangian
function of (27.32):

L.w; b; �I ˛/ D 1

2
kwk22 C C

mX

iD1
�2i �

mX

iD1
˛i Œyi .w>xi C b/� 1C �i 	 ; (27.33)

where ˛i 2 R are Lagrange multipliers. Setting the gradient of L to zeros gives the
following Karush-Kuhn-Tucker optimality conditions:

w D
mX

iD1
˛iyixi (27.34)

mX

iD1
˛iyi D 0

˛i D C�i ; i D 1; : : : ; m

yi .w>xi C b/� 1C �i D 0 ;

which are equivalent to the following linear equations:

2

664

I 0 0 � OA>
0 0 0 �y>
0 0 C I �I
OA y I 0

3

775

2

664

w
b

�

˛

3

775 D

2

664

0

0

0

1

3

775 ; (27.35)

or, equivalently, �
0 �y>
y OA OA> C 1

C
I

	 �
b

˛

	
D
�
0

1

	
; (27.36)

where OA D Œx1y1I x2y2I : : : I xmym	, y D Œy1Iy2I : : : Iym	, and 1 D Œ1I 1I : : : I 1	.
From (27.36), the nonlinear least squares SVM also can be extended via the inner
product form. That is, the nonlinear least squares SVM solves the following linear
equations: �

0 �y>
y K.A;A/C 1

C
I

	 �
b

˛

	
D
�
0

1

	
; (27.37)

where K.A;A/ is the kernel matrix. Equations (27.36) or (27.37) gives an analytic
solution to the classification problem via solving a system of linear equations. This
brings a lower computational cost by comparing with solving a conventional SVM
while obtaining a least squares SVM classifier.
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27.3.4 1-norm Support Vector Machine

The 1-norm support vector machine replaces the regularization term kwk22 in (27.6)
by a `1-norm of w. The `1-norm regularization term is also called the LASSO
penalty (Tibshiran 1996). It tends to shrink the coefficients w’s towards zeros in
particular for those coefficients corresponding to redundant noise features (Zhu et al.
2004). This nice feature will lead to a way of selecting the important attributes in
our prediction model. The formulation of 1-norm SVM is described as follows:

min
.w;b;�/2RnC1Cm

kwk1 C C

mX

iD1
�i (27.38)

s.t. yi .w>xi C b/C �i 	 1

�i 	 0; for i D 1; 2; : : : ; m :

The objective function of (27.38) is a piecewise linear convex function. We can
reformulate it as the following linear programming problem:

min
.w;s;b;�/2RnCnC1Cm

nX

jD1
sj C C

mX

iD1
�i (27.39)

s.t. yi .w>xi C b/C �i 	 1

�sj � wj � sj ; for j D 1; 2; : : : ; n ;

�i 	 0; for i D 1; 2; : : : ; m ;

where sj is the upper bound of the absolute value of wj . At the optimal solution of
(27.39) the sum of sj is equal to kwk1.

The 1-norm SVM can generate a very sparse solution w and lead to a parsimo-
nious model. In a linear SVM classifier, solution sparsity means that the separating
function f .x/ D w>x C b depends on very few input attributes. This characteristic
can significantly suppress the number of the nonzero coefficients w’s, especially
when there are many redundant noise features (Fung and Mangasarian 2004; Zhu
et al. 2004). Therefore the 1-norm SVM can be a very promising tool for variable
selection. In Sect. 27.6, we will use it to choose the important financial indices for
our bankruptcy prognosis model.

27.3.5 "-Support Vector Regression

In regression problems, the response y belongs to real numbers. We would like to
find a linear or nonlinear regression function, f .x/, that tolerates a small error in
fitting the given dataset. It can be achieved by utilizing the "-insensitive loss function
that sets an "-insensitive “tube” around the data, within which errors are discarded.
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We start with the linear case, that is the regression function f .x/ defined as
f .x/ D w>x C b. The SVM minimization can be formulated as an unconstrained
problem given by:

min
.w;b;�/2RnC1

1

2
kwk22 C C

mX

iD1
j�i j" ; (27.40)

where j�i j" D maxf0; jw>xi C b � yi j � "g, represents the fitting errors and the
positive control parameterC here weights the tradeoff between the fitting errors and
the flatness of the linear regression function f .x/. Similar to the idea in SVM, the
regularization term kwk22 in (27.40) is also applied for improving the generalization
ability. To deal with the "-insensitive loss function in the objective function of the
above minimization problem, conventionally, it is reformulated as a constrained
minimization problem defined as follows:

min
.w;b;�;��/2RnC1C2m

1

2
kwk22 C C

mX

iD1
.�i C ��

i / (27.41)

s.t. w>xi C b � yi � "C �i ;

�w>xi � b C yi � "C ��
i ;

�i ; �
�
i 	 0 for i D 1; 2; : : : ; m :

This formulation (27.41) is equivalent to the formulation (27.40) and its correspond-
ing dual form is

max
˛; Ǫ 2Rm

mX

iD1
. Ǫ i � ˛i /yi � "

mX

iD1
. Ǫ i C ˛i / (27.42)

�
mX

iD1

mX

jD1
. Ǫ i � ˛i /. Ǫj � ˛j /hxi ; xj i ;

s.t.
mX

iD1
.Oui � ui / D 0 ;

0 � ˛i ; Ǫ i � C ; for i D 1 ; : : : ; m :

From (27.42), one also can apply the kernel trick on this dual form of "-SVR for
the nonlinear extension. That is, hxi ; xj i is directly replaced by a kernel function
k.xi ; xj / as follows:

max
˛; Ǫ2Rm

mX

iD1
. Ǫ i � ˛i /yi � "

mX

iD1
. Ǫ i C ˛i / (27.43)

�
mX

iD1

mX

jD1
. Ǫ i � ˛i /. Ǫj � ˛j /k.xi ; xj / ;
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s.t.
mX

iD1
. Ǫ i � ˛i / D 0 ;

0 � ˛i ; Ǫ i � C ; for i D 1 ; : : : ; m :

with the decision function f .x/ D
mP
iD1
. Ǫ i � ˛i /k.xi ; x/C b .

Similar to the smooth approach in SSVM, the formulation (27.40) can be
modified slightly as a smooth unconstrained minimization problem. Before we
derive the smooth approximation function, we show some interesting observations:

jxj" D .x � "/C C .�x � "/C (27.44)

and
.x � "/C � .�x � "/C D 0 for all x 2 R and " > 0 : (27.45)

Thus we have
jxj2" D .x � "/2C C .�x � "/2C : (27.46)

It is straightforward to replace jxj2" by a very accurate smooth approximation given
by:

p2" .x; ˇ/ D .p.x � "; ˇ//2 C .p.�x � "; ˇ//2 : (27.47)

We use this approximation p2" -function with smoothing parameter ˇ to obtain the
smooth support vector regression ("-SSVR) (Lee et al. 2005):

min
.w;b/2RnC1

1

2
.kwk22 C b2/C C

2

mX

iD1
p2" .w

>xi C b � yi ; ˇ/ ; (27.48)

where p2" .w
>xi C b � yi ; ˇ/ 2 R. For the nonlinear case, this formulation can be

extended to the nonlinear "-SSVR by using the kernel trick as follows:

min
.u;b/2RmC1

1

2
.kuk22 C b2/C C

2

mX

iD1
p2" .

mX

jD1
ujK.xj ; xi /C b � yi ; ˇ/ ; (27.49)

where k.xi ; xj / is a kernel function. The nonlinear "-SSVR decision function f .x/
can be expressed as follows:

f .x/ D
mX

iD1
ui k.xj ; x/C b : (27.50)

Note that the reduced kernel technique also can be applied to "-SSVR while
encountering a large scale regression problem.
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27.4 Implementation of SVMs

The support vector machine, either in its primal formulation (27.6) or dual for-
mulation (27.8), is simply a standard convex quadratic program (for the nonlinear
SVM, the kernel function k.x; x/ used in (27.12) has to satisfy Mercer’s condition
in order to keep the convexity of the objective function). The most straightforward
way for solving it is to employ a standard quadratic programming solver such
as CPLEX (C.O. Inc. 1992), or using an interior point method for quadratic
programming (Ferris and Munson 2003). Because of the simple structure of the dual
formulation of either linear (27.8) or nonlinear (27.12) SVM, many SVM algorithms
are operated in the dual space. However solving SVMs in the primal form can also
be efficient (Lee and Mangasarian 2001; Lee et al. 2005; Lee and Huang 2007;
Chapelle 2007), such as the approaches to solve SSVM, SSVR, and RSVM which
were introduced in the previous section. In the following, we will introduce main
methods in solving SVMs in their primal and dual forms.

27.4.1 SVMs Training in the Primal Form

The standard way to solve SVMs in the primal is reformulating (27.6) or (27.7) as
an unconstrained minimization problem:

min
.w;b/2RnC1

1
2
kwk22 C C

Pm
iD1 L.yi ;w>x C b/ ; (27.51)

with the loss function L.y; f .x// D max.0; 1 � yif .x//p . Note that the decision

function can be written as a linear combination of data points such as w D
mP
i

uixi .

Thus, we can rewrite the nonlinear form for SVMs in the primal by utilizing kernel
trick as follows

min
.u;b/2RmC1

1
2
u>K.A;A/u C C

Pm
iD1 L.yi ;

Pm
jD1 uj k.xi ; xj /C b/ ; (27.52)

or in another slightly different form based on the generalized SVM Mangasarian
(2000):

min
.u;b/2RmC1

1
2
u>u C C

Pm
iD1 L.yi ;

Pm
jD1 uj k.xi ; xj /C b/ : (27.53)

For solving unconstrained minimization problems, Newton-like optimization
methods are widely used, so we only focus on solving the minimization problems
via Newton method here. The Newton method needs the objective function to be
twice differentiable to calculate the Hessian matrix. One way is to replace the loss
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function by a twice differentiable approximated function. We take SSVM as an
example to illustrate the idea. SSVM adopts the quadratic loss and uses p-function
to smooth the quadratic loss function as follows:

min
.w;b/2RnC1

‰.w; b/ WD C

2

mX

iD1
p.f1 � yi .w>xi C b/g; ˇ/2 C 1

2
.kwk22 C b2/ ;

for the linear case; and for the nonlinear case, the function becomes:

min
.u;b/2RmC1

‰.u; b/ WD C

2

mX

iD1
p.Œ1� yi f

mX

jD1
uj k.xi ; xj /C bg	; ˇ/2 C 1

2
.kuk22 C b2/ :

Once reformulating SVM as an unconstrained minimization problem with twice
differentiable objective function ‰.w; b/ (or ‰.u; b/), Newton-Armijo optimization
method is applied to obtain the solution. The Armijo condition

‰.wi ; bi / � ‰.wi�1; bi�1/ � ��d>r‰.w; b/

is applied here to avoid the divergence and oscillation in Newton method where �
is assigned with a small value. For the nonlinear case, one only needs to replace
the original data A by the kernel data K.A;A/ or reduced kernel data K.A; QA/ and
simply obtains the solution without revising the algorithm.

27.4.2 SVMs Training in the Dual Form

The most popular strategy in solving SVM with dual form is the decomposition
method (Osuna et al. 1997; Joachims 1999; Fan et al. 2005; Glasmachers and Igel
2006). The decomposition method is designed to avoid the access of the full kernel
matrix while searching for the optimal solution. This method iteratively selects a
small subset of training data (the working set) to define a quadratic programming
subproblem. The solution of current iteration is updated by solving the quadratic
programming subproblem, defined by a selected working set W , such that the
objective function value of the original quadratic program strictly decreases at
every iteration. The decomposition algorithm only updates a fixed size subset of
multipliers ˛i , while the others are kept constant. The goal is not to identify all of
the active constraints in order to run the optimizer on all of them, but is rather to
optimize the global problem by only acting on a small subset of data at a time.

Suppose ˛0 are the coefficients of data belonging to the current working set W .
One can reformulate (27.8) to a subproblem and solve it iteratively for updating ˛
as follows:
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max
˛0

X

i2B
˛0
i � 1

2

X

i;j2B
yiyj ˛

0
i ˛

0
j k.xi ; xj / (27.54)

s.t. 0 � ˛0
i � C for i 2 W ;

X

i2B
yi˛

0
i C

X

i 62B
yi˛i D 0 :

The critical issue of decomposition methods is selecting an appropriate working set.
The sequential minimal optimization (SMO) (Platt 1999) which is an extreme case
of the decomposition methods. It only selects a working set with smallest size, two
data points, at each iteration. The criterion of selecting these two data points is based
on the maximum violating pair scheme. Besides, this smallest working size leads the
subproblem to a single variable minimization problem which has a analytic form of
solution. Different strategies to select the working set lead to different algorithms.
Many methods of selecting a appropriate working set has been proposed (Joachims
1999; Fan et al. 2005; Glasmachers and Igel 2006). Some of them also been well
implemented, such as SVMlight 1 (Joachims 1999) and LIBSVM2 (Chang and Lin
2001). The LIBSVM provides an advanced working set selection scheme based on
the information of second order. Its efficiency in performance has attracted many
people to use in their applications.

In a nutshell, decomposition methods take the advantage of sparsity in SVM
to adjust the solution with a small minimization problem iteratively. This strategy
makes decomposition methods avoid to access the whole full kernel in seeking the
solution. On the other hand, the selection of working set is a key factor for the
computational cost. Different working sets and their sizes lead to different rates of
convergence. The convergence analysis has been carried out in Chang et al. (2000)
and Keerthi and Gilbert (2002).

27.5 Practical Issues and Their Solutions in SVMs

In this section, we discuss some practical issues in SVMs. The topics including deal-
ing with the multi-class classification, dealing with unbalanced data distribution, and
the strategy of model selection.

27.5.1 Multi-Class Problems

In the previous sections, we only focus on the binary classification problem in SVM.
However, the labels might be drawn from several categories in the real world. There

1SVMlight is available in http://svmlight.joachims.org/.
2LIBSVM is available in http://www.csie.ntu.edu.tw/�cjlin/libsvm.

http://svmlight.joachims.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvm
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are many methods have been proposed for dealing with the multi-class problem.
These methods can simply be divided into two types. One handles the multi-class
problem by dividing it into a series of binary classification problems (Vapnik 2000;
Platt et al. 2000; Crammer and Singer 2002; Rifkin and Klautau 2004). The other
formulates the multi-class problem as a single optimization problem (Vapnik 2000;
Weston and Watkins 1999; Crammer and Singer 2001; Rifkin and Klautau 2004).

In the approach of combining a series of binary classifiers, the popular schemes
are one-versus-rest, one-versus-one, directed acyclic graph (DAG) (Platt et al.
2000), and error-correcting coding (Dietterich and Bakiri 1995; Allwein et al. 2001;
Crammer and Singer 2002). Now suppose we have k classes in the data. In the
one-versus-rest scheme, it creates a series of binary classifiers with one of the
labels to the rest so we have k binary classifiers for prediction. The classification
of new instances for one-versus-rest is using the winner-take-all strategy. That is,
we assign the label by the classifier with the highest output value. On the other
hand, one-versus-one scheme generates a series of binary classifiers between every
pair of classes. It means we need to construct

�
k
2

�
classifiers in the one-versus-one

scheme. The classification of one-versus-one is usually associated with a simple
voting strategy. In the voting strategy, every classifier assigns the instance to one of
the two classes and then new instances will be classified to a certain class with most
votes. The DAG strategy is a variant of one-versus-one scheme. It also constructs�
k
2

�
classifiers for each pair of classes but uses a different prediction strategy. DAG

places the
�
k

2

�
classifiers in a directed acyclic graph and each path from the root to

a leaf is an evaluation path. In an evaluation path, a possible labeling is eliminated
while passing through a binary classification node. A predicted label is concluded
after finishing a evaluation path (see Fig. 27.3).

In the error-correcting coding scheme, output coding for multi-class problems
consists of two phases. In the training phase, one need to construct a series of binary
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2 vs. 41 vs. 3

3 vs. 42 vs. 31 vs. 2

1
2
3
4

2
3
4

1
2
3

3
4

2
3

1
2

4321

Fig. 27.3 An example of DAG approach in the multi-class problem
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classifiers which are based on different partitions of the classes. In the testing phase,
the predictions of the binary classifiers are combined to conclude a prediction of
a testing instance by using the output coding. Besides, the coding scheme is an
issue in the error-correcting coding. There are rich literatures discussing the coding
schemes (Dietterich and Bakiri 1995; Allwein et al. 2001; Crammer and Singer
2002). The reader could get more details in these literatures.

The single machine approach for multi-class problem is first introduced in Vapnik
(2000) and Weston and Watkins (1999). The idea behind this approach is still
using the concept of maximum margin in binary classification. The difference of
single machine formulation is that it considers all regularization terms together and
pays the penalties for a misclassified instance with a relative quantity evaluated
by different models. It means that each instance is associated with m.k � 1/ slack
values if we havem instances and k classes. For understanding the concept more, we
display the formulation of single machine approach in Weston and Watkins (1999):

min
w1;:::;wk2Rn;�2Rm.k�1/

kX

iD1
kwik C C

mX

iD1

X

j 62yi
�ij (27.55)

s.t. w>
yi

xi C byi 	 w>
j xi C bj C 2� �ij ;

�ij 	 0 :

Except for this basic formulation, some further formulations have also been
proposed (Vapnik 2000; Crammer and Singer 2001; Rifkin and Klautau 2004). In a
nutshell, the single machine approach could give all the classifiers simultaneously in
solving a single optimization problem. However, the complicated formulation also
brings a higher complexity for solving it.

27.5.2 Unbalanced Problems

In reality, there might be only a small portion of instances belonging to a class
compared to the number of instances with the other label. Due to the small share in
a sample that reflects reality, using SVMs on this kind of data may tend to classify
every instance as the class with the majority of the instances. Such models are
useless in practice. In order to deal with this problem, the common ways start off
with more balanced training than reality can provide.

One of these methods is a down-sampling strategy (Chen et al. 2006) and work
with balanced (50%/50%)-samples. The chosen bootstrap procedure repeatedly
randomly selects a fixed number of the majority instances from the training set and
adds the same number of the minority instances. One advantage of down-sampling
strategy is giving a lower cost in the training phase because it removes lots of data
points in the majority class. However, the random choosing of the majority instances
might cause a high variance of the model.
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In order to avoid this unstable model building, a over-sampling scheme (Härdle
et al. 2009) could also be applied to reach a balanced sample. The over-sampling
scheme duplicates the number of the minority instances a certain number of times. It
considers all the instances in hand and generates a more robust model than the down-
sampling scheme. Comparing the computational cost with down-sampling strategy,
over-sampling suffers a higher cost in the training phase while increasing the size of
training data.

To avoid the extra cost in the over-sampling strategy, one also can apply different
weights on the penalty term. In other words, one need to assign a higher weight
(higher C) on the minority class. This strategy of assigning different weights gives
the equivalent effect with the over-sampling strategy. The benefit of assigning
different weights is that it does not increase the size of training data while achieving
a balanced training. However, using this strategy needs to revise the algorithm a
little bit. In down-sampling and over-sampling strategies, the thing that one needs
to do is adjusting the proportions of training data. Hence, down-sampling and over-
sampling strategies are easier to be applied for basic users in practical usage.

27.5.3 Model Selection of SVMs

Choosing a good parameter setting for a better generalization performance of
SVMs is the so called model selection problem. Model selection is usually done
by minimizing an estimate of generalization error. This problem can be treated as
finding the maximum (or minimum) of a function which is only vaguely specified
and has many local maxima (or minima).

Suppose the Gaussian kernel

K.x; z/ D e�� jjx�zjj22 ;

is used where � is the width parameter. The nonlinear SVM needs to be assigned two
parameters C and � . The most common and reliable approach for model selection
is exhaustive grid search method. The exhaustive grid search method forms a two
dimension uniform grid (say p � p) of points in a pre-specified search range
and find a good combination (C , � ). It is obvious that the exhaustive grid search
can not effectively perform the task of automatic model selection due to its high
computational cost.

Except for the exhaustive grid search method, many improved model selection
methods have been proposed to reduce the number of trials in parameter combi-
nations (Keerthi and Lin 2003; Chapelle et al. 2002; Larsen et al. 1998; Bengio
2000; Staelin 2003; Huang et al. 2007). Here we focus on introducing the 2-stage
uniform design model selection (Huang et al. 2007) because of its good efficiency.
The 2-stage uniform design procedure first sets out a crude search for a highly likely
candidate region of global optimum and then confines a finer second-stage search
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Fig. 27.4 The nested UD model selection with a 13-points UD at the first stage and a 9-points UD
at the second stage

therein. At the first stage, we use a 13-runs UD sampling pattern (see Fig. 27.4)
in the appropriate search range proposed above. At the second stage, we halve the
search range for each parameter coordinate in the log-scale and let the best point
from the first stage be the center point of the new search box. Then we use a
9-runs UD sampling pattern in the new range. Moreover, to deal with large sized
datasets, we combine a 9-runs and a 5-runs sampling pattern at these two stages. The
performance in Huang et al. (2007) shows merits of the nested UD model selection
method. Besides, the method of nested UDs is not limited to 2 stages and can be
applied in a sequential manner and one may consider a finer net of UDs to start
with.

27.6 A Case Study for Bankruptcy Prognosis

To demonstrate the use of SVM, we focus on the problem of bankruptcy prog-
nosis as our case study. The studied data set is CreditReform where we are
given financial company information and the goal is to predict the possibility
of bankruptcy for the companies. The study includes applying the nonlinear
SSVM with a reduced kernel, feature selection via 1-norm SVM, conquering
the unbalanced problem by over-sampling technique, and model selection by the
2-stage nested uniform design method.
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Fig. 27.5 The distribution of solvent and insolvent companies across industries

27.6.1 Data Description

The CreditReform database consists of 20,000 financially solvent and 1,000
insolvent German companies observed once in the period from 1997–2002.
Although the companies were randomly selected, the accounting data in 2001
and 2002 are the majority. Approximately 50% of the observations come from
this period. Figure 27.5 shows the distribution of solvent and insolvent companies
across different industries.

A company is described by a set of attributes that includes several balance sheet
and income statement items. The attributes include:

• AD (Amortization and Depreciation)
• AP (Accounts Payable)
• AR (Account Receivable)
• CA (Current Assets)
• CASH (Cash and Cash Equivalents)
• CL (Current Liabilities)
• DEBT (Debt)
• EBIT (Earnings before Interest and Tax)
• EQUITY (Equity)
• IDINV (Growth of Inventories)
• IDL (Growth of Liabilities)
• INTE (Interest Expense)
• INV (Inventories)
• ITGA (Intangible Assets)
• LB (Lands and Buildings)
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• NI (Net Income)
• OI (Operating Income)
• QA (Quick Assets)
• SALE (Sales)
• TA (Total Assets)
• TL (Total Liabilities)
• WC (Working Capital (DCA-CL))

The companies may appear in the database several times in different years; however,
each year of balance sheet information is treated as a single observation. The data
of the insolvent companies were collected 2 years prior to their insolvency. The
company size is measured by its total assets. We construct 28 ratios to condense
the balance sheet information (see Table 27.1). However, before dealing with the
data set, some companies whose behavior is very different from others (outliers) are
ignored in order to make the dataset more compact. The complete pre-processing
procedure is described as follows:

1. We excluded companies whose total assets were not in the range of 105–107

euros. There are 967 insolvent companies remain and 15,834 solvent companies
remain.

2. In order to compute the accounting ratios AP/SALE, OI/TA, TL/TA, CASH/TA,
IDINV/INV, INV/SALE, EBIT/TA and NI/SALE, we have removed companies
with zero denominators (remaining insolvent: 816; solvent 11,005, after the pre-
processing in previous step).

3. We dropped outliers. That is, the insolvent companies with extreme values of
financial indices are removed (remaining insolvent: 811; solvent: 10,468).

Table 27.1 The definition of accounting ratios used in the analysis
Indicator Indicator

Variable Ratio for Variable Ratio for

X1 NI/TA Profitability X15 CASH/TA Liquidity
X2 NI/SALE Profitability X16 CASH/CL Liquidity
X3 OI/TA Profitability X17 QA/CL Liquidity
X4 OI/SALE Profitability X18 CA/CL Liquidity
X5 EBIT/TA Profitability X19 WC/TA Liquidity
X6 (EBITCAD)/TA Profitability X20 CL/TL Liquidity

EBIT/SALE X21 TA/SALE Activity
X7 EQUITY/TA Profitability X22 INV/SALE Activity
X8 (EQUITY-ITGA)/ Leverage X23 AR/SALE Activity
X9 (TA-ITGA-CASH-LB) Leverage X24 AP/SALE Activity
X10 CL/TA Leverage X25 Log(TA) Size
X11 (CL-CASH)/TA Leverage X26 IDINV/INV Growth
X12 TL/TA Leverage X27 IDL/TL Growth
X13 DEBT/TA Leverage X28 IDCASH/CASH Growth
X14 EBIT/INTE Leverage
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Table 27.2 The prediction
scenario of our experiments

Observation period Observation period
Scenario of training set of testing set

S1 1997 1998
S2 1997–1998 1999
S3 1997–1999 2000
S4 1997–2000 2001
S5 1997–2001 2002

After pre-processing, the dataset consists of 11,279 companies (811 insolvent and
10,468 solvent). In all the following analysis, we focus on the revised dataset.

27.6.2 The Procedure of Bankruptcy Prognosis with SVMs

We conduct the experiments in a scenario in which we train the SSVM bankruptcy
prognosis model from the data at hand and then use the trained SSVM to predict
the following year’s cases. This strategy simulates the real task for analysts who
may predict the future outcomes by using the data from past years. The experiment
setting is described in Table 27.2. The number of periods used for the training set
changes from 1 year (S1) to 5 years (S5) as time goes by. All classifiers we adopt
in the experiments are reduced SSVM with Gaussian kernels. We need to determine
two parameters, the best combination of C and � for the kernels. In principle,
the 2-D grid search will consume a lot of time. In order to cut down the search
time, we adopt the nested uniformed design model selection method Huang et al.
(2007), introduced in Sect. 27.5.3 to search for a good pair of parameters for the
performance of our classification task.

27.6.2.1 Selection of Accounting Ratios via 1-norm SVM

In principle, many possible combination of accounting ratios could be used as
explanatory variables in a bankruptcy prognosis model. Therefore, appropriate
performance measures are needed to gear the process of selecting the ratios with
the highest separating power. In Chen et al. (2006) Accuracy Ratio (AR) and
Conditional Information Entropy Ratio (CIER) determine the selection procedure’s
outcome. It turned out that the ratio “accounts payable divided by sales”, X24
(AP/SALE), has the best performance values for a univariate SVM model. The
second selected variable was the one combined with X24 that had the best
performance of a bivariate SVM model. This is the analogue of forward selection
in linear regression modeling. If one keeps on adding new variables one typically
observes a declining change in improvement. This was also the case in that work
where the performance indicators started to decrease after the model included eight
variables. The described selection procedure is quiet lengthy, since there are at
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Table 27.3 Selected
variables in V1 and V2 (the
symbol “plus” means the
common variables in V1 and
V2)

Variable Definition V1 V2

X2C NI/SALE x x
X3C OI/TA x x
X5C EBIT/TA x x
X6 (EBITCAD)/TA x
X8 EQUITY/TA x
X12 TL/TA x
X15C CASH/TA x x
X22 INV/SALE x
X23 AR/SALE x
X24C AP/SALE x x
X26 IDINV/INV x

least 216 accounting ratio combinations to be considered. We will not employ the
procedure here but use the chosen set of eight variables in Chen et al. (2006) denoted
as V1. Table 27.3 presents V1 in the first column.

Except for using V1, we also apply 1-norm SVM which will simplify the
selection procedure to select accounting ratios. The 1-norm SVM was applied to
the period from 1997 to 1999. We selected the variables according to the size of the
absolute values of the coefficients w from the solution of the 1-norm SVM. We also
select eight variables out of 28. Table 27.3 displays the eight selected variables as
V2. Note that five variables, X2, X3, X5, X15 and X24 are also in the benchmark
set V1. From Tables 27.4 and 27.5, we can the performances of V1 and V2 are quite
similar while we need fewer efforts for extract V1.

27.6.2.2 Applying Over-Sampling to Unbalanced Problems

The cleaned data set consists of around 10% of insolvent companies. Thus, the
sample is fairly unbalanced although the share of insolvent companies is higher
than in reality. In order to deal with this problem, insolvency prognosis models
usually start off with more balanced training and testing samples than reality
can provide. Here we use over-sampling and down-sampling Chen et al. (2006)
strategies, to balance the size between the solvent and the insolvent companies.
In the experiments, the over-sampling scheme shows better results in the Type I
error rate but has slightly bigger total error rates (see Tables 27.4 and 27.5). It
is also obvious, that in almost all models a longer training period works in favor
of accuracy of prediction. Clearly, the over-sampling schemes have much smaller
standard deviations in the Type I error rate, the Type II error rate, and the total
error rate than the down-sampling one. According to this observation, we conclude
that the over-sampling scheme will generate a more robust model than the down-
sampling scheme.
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Table 27.4 The results in percentage (%) of over-sampling for three variable sets (Reduced SSVM
with Gaussian kernel)

Set of Type I error Type II error Total error
accounting rate rate rate
ratios Scenario Mean Std Mean Std Mean Std

S1 33.16 0.55 26.15 0.13 26.75 0.12
S2 31.58 0.01 29.10 0.07 29.35 0.07
S3 28.11 0.73 26.73 0.16 26.83 0.16
S4 30.14 0.62 25.66 0.17 25.93 0.15

V1 S5 24.24 0.56 23.44 0.13 23.48 0.13

S1 29.28 0.92 27.20 0.24 27.38 0.23
S2 28.20 0.29 30.18 0.18 29.98 0.16
S3 27.41 0.61 29.67 0.19 29.50 0.17
S4 28.12 0.74 28.32 0.19 28.31 0.15

V2 S5 23.91 0.62 24.99 0.10 24.94 0.10

Table 27.5 The results in percentage (%) of down-sampling for three variable sets (Reduced
SSVM with Gaussian kernel)

Set of Type I error Type II error Total error
accounting rate rate rate
ratios Scenario Mean Std Mean Std Mean Std

S1 32.20 3.12 28.98 1.70 29.26 1.46
S2 29.74 2.29 28.77 1.97 28.87 1.57
S3 30.46 1.88 26.23 1.33 26.54 1.17
S4 31.55 1.52 23.89 0.97 24.37 0.87

V1 S5 28.81 1.53 23.09 0.73 23.34 0.69

S1 29.94 2.91 28.07 2.15 28.23 1.79
S2 28.77 2.58 29.80 1.89 29.70 1.52
S3 29.88 1.88 27.19 1.32 27.39 1.19
S4 29.06 1.68 26.26 1.00 26.43 0.86

V2 S5 26.92 1.94 25.30 1.17 25.37 1.06

27.6.2.3 Applying the Reduced Kernel Technique for Fast Computation

Over-sampling duplicates the number of insolvent companies a certain number of
times. In the experiments, we have to duplicate in each scenario the number of
insolvent companies as many times as necessary to reach a balanced sample. Note
that in our over-sampling scheme every solvent and insolvent companys information
is utilized. This increases the computational burden due to increasing the number of
training instances. We employ the reduced kernel technique in Sect. 27.3 to mediate
this problem. Here the key idea for choosing the reduced set QA is extracting the
same size of insolvent companies from solvent companies. This leads to not only the
balance both in the data size and column basis bit but also the lower computational
cost.
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27.6.2.4 Summary

In analyzing CreditReform dataset for bankruptcy prognosis, we presented the
usage of SVMs in a real case. The results show the selection of accounting ratios via
1-norm SVM can perform as well as the greedy search. The finance indices selected
by 1-norm SVM actually can represent the data well in bankruptcy prognosis. The
simple procedure of over-sampling strategy also helps to overcome the unbalanced
problem while down-sampling will cause a biased model. In accelerating the
training procedure, the reduced kernel technique is performed. It helps to build a
SVM model in an efficient way without sacrificing the performance in prediction.
Finally, the procedure of tuning parameters in a model is usually a heavy work
in analyzing data. A good model selection method can help users to decease the
long-winded tuning procedure, such as the 2-stage uniform design method used in
this case study. In a nutshell, SVMs have been developed maturely. These practical
usages presented here not only show the variability and ability of SVMs but also
give the basic ideas for analyzing data with SVMs.

27.7 Conclusion

The clear connection to statistic learning theory, efficient performance, and simple
usage of SVMs have attracted many researchers to investigate. Many literatures have
shown that SVMs are the state of the art in solving classification and regression
problems. This reputation has made SVMs be applied in many fields, such as the
quantitative finance field. This chapter presented many topics of SVMs as well
as a case study in bankruptcy prognosis to give a guide for the usage of SVMs
in quantitative finance filed. The possible applications with SVMs are various and
potential in the quantitative finance field. The aim is giving that ones can quickly
have solutions in their applications with SVMs while there are fertile materials in
the wild.
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Chapter 28
MATLAB R� as a Tool in Computational
Finance

James E. Gentle and Angel Martinez

Abstract MATLAB is a versatile software package used in many areas of applied
mathematics, including computational finance. It is a programming language with a
large number of functions for Monte Carlo simulation useful in financial analysis.
The design of MATLAB allows for flexible data entry, including easy access
of financial data from web resources. The graphical capabilities of MATLAB
facilitate exploratory analysis, and the wide range of mathematical and statistical
functionality provides the financial data analyst with a powerful tool. This article
illustrates some of the basic capabilities of MATLAB, with an emphasis on financial
applications.

28.1 Introduction

Serious analysis of financial data requires robust software. The first requirement in
data analysis is acquisition and management of the data. The amount of data may be
massive, so the software must be able to input and manipulate very large datasets.
The software must support exploratory data analysis such as simple graphics that
provide multiple views of the data. More advanced analyses include fitting of
statistical models that range from stationary distributions to stochastic process with
time-varying parameters.
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28.1.1 Types of Software

There is a wide range of software available for modeling and analyzing financial
data. Prior to modeling and analysis, it is necessary to get the data into a useful
format, and then to do some preliminary processing. There is also a number of
software programs for data input and preprocessing of the data.

The type of software varies from simple programs for a specific task to
general-purpose packages that can perform many tasks following very simple user
directions. At the low end of this range are simple scripts written in Python, Perl,
Ruby, or some similar dynamic scripting language, especially for the data input
and preprocessing tasks. For more complicated mathematical operations, a simple
Fortran or C function may be used. At the other end of the range are comprehensive
statistical packages such as SAS, Stata, or SPSS, perhaps together with a macro
library for the more common data input and analysis tasks.

There is another important dimension along which the type of software varies.
This is the amount of “programming” that is done for a specific research task. A one
end of this range, there is essentially no programming; the analyst issues a simple
command, possibly by clicking an icon or making a choice on a menu. The other
end of the range exists because the sheer number of different analysis tasks that may
arise in financial research means that there cannot be an app for each – or if there is
an app that fits the task perfectly, finding the app is more difficult than developing
it. The analyst/researcher occasionally will write some software for a specific task.
This may result in a “throw-away” program that serves one useful purpose and then
may not be needed again for a long time, if ever. (Of course, if it turns out that the
task becomes a commonplace activity, then whatever software is written to address
it, should be packaged into a reusable app.)

There are various software packages that can satisfy the needs of a user at any
point within the two spectra described above. Any given package, of course, has its
strengths and weaknesses and may be more useful at one point within either of the
dimensions than it is at another point. One package that satisfies the needs of users
very well at many points along either dimension is MATLAB R�.

28.1.2 MATLAB R� and Gnu Octave

MATLAB is a technical and engineering computing environment that is developed
and sold by The MathWorks, Inc. for algorithm development, modeling and
simulation, data visualization, and much more. MATLAB can be thought of as
an interactive system and a meta programming language, where the basic data
element is an array, which can be a scalar, vector, matrix, or multi-dimensional
array. In addition to basic array operations and mathematical functions, it offers
programming options that are similar to those of other computing languages, such
as user-written functions, control flow, conditional expressions, and so on.
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The development of MATLAB (from “matrix laboratory”) was begun by Cleve
Moler, then a professor of computer science and mathematics at the University of
New Mexico, in the late 1970s. The purpose was to give students easier access to
the computational power of libraries written in Fortran. In the mid 1980s, a private
company, The Mathworks, Inc. was formed to distribute and support MATLAB. The
website is
http://www.mathworks.com/

The documentation that comes with MATLAB is an excellent resource, and PDF
user’s guides and documentation can be found at
http://www.mathworks.com/access/helpdesk/help/techdoc/

In addition to the documentation provided by The Mathworks, there are a
number of primers, tutorials, and advanced user guides for MATLAB. The text by
Hanselman and Littlefield (2005) is a comprehensive overview of MATLAB. One
of the main strengths of MATLAB is the ability to create graphical user interfaces
(GUIs) and to visualize data. The book by Marchand and Holland (2003) is an
excellent reference for graphics and GUIs in MATLAB.

MATLAB is available for the common platforms (Microsoft Windows, Linux,
Mac OS X, and Unix). It is built on an interactive, interpretive expression language
that provides a rich set of program control statements for looping, conditional
execution, and so on. MATLAB scripts are typically stored in M-files and the large
user community has been active in developing and sharing M-files containing code
for a wide variety of applications.

Gnu Octave is a freely available open-source package that provides much of the
core functionality of MATLAB in a language with essentially the same syntax. The
graphical interfaces for Octave are more primitive than those for MATLAB and do
not interact as seamlessly with the operating system. Octave is available for free
download from
http://www.gnu.org/software/octave/download.html
It is also available for all the common platforms. Eaton et al. (2008) gives an
overview of the system. This book is also a standard user’s guide for Octave.

There are a number of supplements to the basic MATLAB package, called
“toolboxes”. Some examples that are relevant to financial applications are the
Financial Toolbox, Financial Derivatives Toolbox, Datafeed Toolbox, Fixed-Income
Toolbox, Econometrics Toolbox and Statistics Toolbox. There are also some user-
written functions and toolboxes on many topics; we will provide a partial list of this
in a later section. See
http://www.mathworks.com/matlabcentral/
for MATLAB code, tutorials, and more.

There are also a number of books on MATLAB programming in specific
areas, such as exploratory statistical data analysis and computational statistics, for
example, Martinez et al. (2004), and Martinez and Martinez (2007). Although many
of the methods of computational finance are general statistical methods applied to
financial modeling, in addition to the books on statistical methods in MATLAB,
there are also books addressing specific topics in finance, such as Brandimarte
(2006) and Huynh et al. (2008).
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28.2 Overview/Tutorial of the MATLAB R� Language

We provide a brief overview and tutorial of MATLAB to help the reader better
understand how it can be used to analyze financial data. This introduction only
scratches the surface of what MATLAB can do, and we refer the reader to the other
sources mentioned above.

MATLAB will execute under Windows, Linux, and Macintosh operating sys-
tems. This introduction will focus on the Windows version, but most of the
information applies to all systems. The main MATLAB software package contains
many functions for analyzing data of all types.

28.2.1 Getting Around in MATLAB

When MATLAB is started, a desktop environment is opened. This includes several
windows, such as the Command Window, the Workspace Browser, the Command
History and more. In addition, there is an Editor/Debugger that can be opened
using the File menu. This editor can be used for creating MATLAB M-file scripts
and functions. The MATLAB environment has many ways to execute commands,
including the typical main menu items along the top of the window, toolbar buttons,
context menus (right-click in an area), and specialized GUIs.

The Command Window is the main entry point for interacting with MATLAB.
The prompt is indicated by a double-arrow, where the user can type commands,
execute functions, and see output. The Command History window allows the user
to see the commands that were executed for previous sessions, allowing the user to
also re-execute commands using various Windows shortcuts (copy/paste, drag and
drop, for example). The Workspace Browser shows information about the variables
and objects that are in the current workspace, and it includes the ability to edit
the variables in a spreadsheet-like interface. Finally, there is a Help window that
provides access to documentation, help files, examples, and demos.

One can also access help files from the command line. The help files provide
information about the function and also gives references for other related functions.
From the command line, just type help funcname to get help on a specific function.
The command help general provides a list of general purpose commands, and
the word help used alone returns a list of topics. The command lookfor keyword
will do a search of the first comment line of the M-files (on the MATLAB path) and
return functions that contain that word.

The user can enter commands interactively at the command line or save them in
an M-file. Thus, it is important to know some commands for file management. The
commands shown in Table 28.1 can be used for this purpose.

Variables can be created at the command line or in M-file scripts and functions
(covered later). A variable name cannot start with a number, and they are case
sensitive. So, Temp, temp, and TEMP are all different objects. The variables that
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Table 28.1 Basic commands for file management

Command Usage

dir, ls Shows the files in the current directory
delete filename Deletes filename
cd, pwd Shows the current directory
cd dir, chdir Changes the current directory
which filename Displays the path to filename
what Lists the .m and .mat files in the current directory

Table 28.2 Basic commands for working with variables

Command Usage

who Lists all variables in the workspace
whos Lists all variables and information about the variables
clear Removes all variables from the workspace
clear x y Removes variables x and y from the workspace

Table 28.3 Basic commands for working with external data files

Command Usage

load filename Loads all variables in filename.mat
load filename var1 Loads only var1 in filename.mat

Loads ascii filename.txt
load filename.txt -ascii stores in the workspace with the same name

are created in a MATLAB session live in the workspace. We already mentioned the
Workspace Browser; there are additional commands for workspace management.
The commonly used ones are summarized in Table 28.2.

It is also necessary to get data into and out of MATLAB for analysis. One of
the simplest ways to get data into MATLAB is to use the load command at the
prompt; the save command works similarly to export your data in the MATLAB
.mat format or ascii. Table 28.3 shows some of the common ways for loading data.

You can also use the commands in the File menu to load variables and to save the
workspace. There is also the usual window for browsing directories and selecting
files for importing.

MATLAB uses certain punctuation and characters in special ways. The percent
sign denotes a comment line. Characters following the % on any command line
is ignored. Commas have many uses in MATLAB; the most important is in array
building to concatenate elements along a row. A semi-colon tells MATLAB not to
display the results of the preceding command. Leaving the semi-colon off can cause
a lot of data to be dumped to the command window, which can be helpful when
debugging MATLAB programs but in other cases clutters up the window. Three
periods denote the continuation of a statement. Comment statements and variable
names, however, cannot be continued with this punctuation. The colon is used to
specify a sequence of numbers; for example,
1:10
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produces a sequence of numbers 1 through 10. A colon is also used in array indexing
to access all elements in that dimension; for example,
A(i,:)
refers to the ith row of the array A.

28.2.2 Data Types and Arithmetic

MATLAB has two main data types: floating point numbers (type double) and
strings (type char). The elements in the arrays or variables will be of these two
data types.

28.2.2.1 Basic Data Constructs

The fundamental data element in MATLAB is an array. Arrays can be one of the
following:

• The 0 � 0 empty array that is created using empty brackets: [ ].
• A 1 � 1 scalar array.
• A row vector, which is a 1 � n array.
• A column vector, which is an n � 1 array.
• A matrix with two dimensions, say m � n or n � n:
• A multi-dimensional array, say m � ::: � n.

Arrays must always be dimensionally conformal and all elements must be of the
same data type. In other words, a 2 � 3 matrix must have three elements on each of
its two rows.

In most cases, the data analyst will need to import data into MATLAB using one
of the many functions and tools that are available for this purpose. We will cover
these in a later section. Sometimes, we might want to type in simple arrays at the
command line prompt for the purposes of testing code or entering parameters, etc.
Here, we cover some of the ways to build small arrays. Note that these ideas can
also be used to combine separate arrays into one large array.

Commas or spaces concatenate elements (an element can be an array) as
columns. Thus, we get a row vector from the following:

temp D Œ1; 4; 5	I
Recall that the semi-colon at the end of the expression tells MATLAB to not print
the value of the variable temp in the command window. We can concatenate two
column vectors a and b into one matrix, as follows:

temp D Œa b	I
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Table 28.4 Special arrays

Function Usage

zeros, ones Build arrays containing all 0s or all 1s respectively
rand, randn Build arrays containing uniform or normal random values
eye Create an identity matrix

Using the semi-colon to separate elements of the array tells MATLAB to con-
catenate elements a and b as rows. So, we would get a column vector from this
command:

temp D Œ1I 4I 5	I
When we use arrays as building blocks for larger arrays, then the sizes of each array
element must be conformal for the type of operation.

There are some useful functions in MATLAB for building special arrays. These
are summarized in Table 28.4; look at the help file to learn how each function is
used.

Cell arrays and structures are a special MATLAB data type that allow for more
flexibility. Cell arrays are array-type structures, where the contents of each cell
element can vary in size and type (numeric, character, or cell). The cell array has an
overall structure that is similar to the basic data arrays we have already discussed.
For example, the cells are arranged in rows and columns. If we have a 2 � 3 cell
array, then each of its two rows has to have three cells.

Structures are similar to cell arrays in that they allow one to combine collections
of dissimilar data into a single variable. Individual structure elements are addressed
by fields. We use the dot notation to access the fields. Each element of a structure is
called a record.

As an example, suppose we had a structure called data that had the following
fields: name, dob, and test. Then we could obtain the information in the tenth
record using

data(10).name
data(10).dob
data(10).text

28.2.2.2 Array Addressing

In Table 28.5, we show some of the common ways to access elements of arrays.
Suppose we have a cell array called A. The last line of Table 28.5 shows how to

access the contents of the ijth cell in A. Curly braces are used to get to the contents,
and parentheses point to the cells. The two notations can be combined to access part
of the contents of a cell. For example, Af1,1g(1:2) extracts the first two elements
of the vector that is contained in cell A(1,1).
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Table 28.5 Addressing: Arrays or cell arrays

Notation Usage

a(i) Denotes the ith element
Addresses the ith column.

A(:,i) Here, the colon operator tells MATLAB to access all rows
Addresses the ith row.

A(i,:) Here, the colon tells MATLAB to gather all of the columns
A(1,3,4) Addresses the element indexed at three levels
Afi,jg Addresses the contents of the ijth cell

Table 28.6 Element-wise arithmetic
Operator Usage

.* Multiply two arrays element-by-element

./ Divide two arrays element-by-element

.ˆ Raise each element of an array to some power

28.2.2.3 Arithmetic Operations

MATLAB has the usual mathematical operators found in programming languages,
such as addition (+), subtraction (-), multiplication(*), division(/), and exponen-
tiation (ˆ). These follow the same order of operations that is found in algebra
and can be changed using parentheses. MATLAB also follows the conventions
found in linear algebra. In other words, the arrays must have the same dimensions
when adding or subtracting vectors or matrices, and the operation is carried out
element-by-element. If we are multiplying two matrices, A and B, they must be
dimensionally correct; e.g., the number of columns of Amust be equal to the number
of rows of B.

In some cases, we might want to multiply two arrays element-by-element. In this
case, we would put a period in front of the multiplication operator. We can do the
same thing to divide two arrays element-by-element, as well exponentiation. We list
these in Table 28.6.

28.3 Writing and Using Functions in MATLAB

MATLAB has many built-in functions that execute commonly used tasks in linear
algebra, data analysis, and engineering. Some of these standard functions include
trigonometric functions (sin, cos, tan, and so on), log, exp, specialized
functions (Bessel, gamma, beta, and so on), and many more. In this section, we
provide an introduction on writing your own functions and programs in MATLAB.
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28.3.1 Script Files and Functions

MATLAB programs are saved in M-files. These are text files that contain MATLAB
commands and expressions, and they are saved with the .m extension. Any text
editor can be used to create them, but the one that comes with MATLAB is
recommended. It has special color coding and other helpful features to write
MATLAB programs that execute correctly.

When script M-files are executed, the commands are implemented just as if they
were typed at the prompt. The commands have access to the workspace and any
variables created by the script file are in the workspace when the script finishes
executing. To execute a script file, simply type the name of the file at the command
line or prompt.

Script files and functions have the same .m file extension. However, a function
has a special syntax for the first line. In the general case, this syntax is
function [out1,..., outM] = func name(in1, ..., inN)

A function does not have to be written with input or output arguments. Also, a
function can be called with fewer input and/or output arguments, but not more.
The function corresponding to the above declaration would be saved in a file called
func name.m, and it is invoked using func name.

It is important to understand the scope of MATLAB workspaces. Each function
has its own workspace, which is separate from the main MATLAB workspace.
Communicating information about variables and their values is accomplished by
way of the input and output variables. This concept is very important when writing
and debugging functions.

It is always a good idea to put several comment lines at the beginning of a func-
tion. This is the information that is returned by the command help func name.
At a minimum, this should include a description about what the function does and
what types of variables are used for inputs and outputs.

Most computer languages provide features that allow one to control the flow of
execution that depends on conditions. MATLAB has similar constructs, and these
are listed here:

• For loops
• While loops
• If-else statements
• Switch statement

These should be used sparingly to make the code run fast. In most cases, it is
more efficient in MATLAB to operate on an entire array rather than looping through
it. It is important to note that most of the functions in MATLAB operate on entire
arrays, alleviating the need to loop through the arrays. A brief description of these
programming constructs is given below.

The basic syntax for a for loop is
for i = array
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commands
end

The looping variable is given by i, and the loop runs one time for each element in
the variable array. The variable i takes on the next value in array and the commands
between the for and end are executed each time the loop executes. The colon
notation is often used to generate a sequence of numbers for the variable array. For
example, using for i = 1:10 means that i would take on the values 1 through
10. Several for loops can be nested, with each one terminated by an end statement.

Unlike a for loop, a while loop executes an indefinite number of times. The
general syntax is

while expression
commands

end
The commands between the while and the end are executed as along as expression
is true. (Note that in MATLAB a scalar that is nonzero evaluates to true.) Usually,
a scalar entry is used in expression, but an array can be used also. In the case of
arrays, all elements of the resulting array must be true for the commands to execute.

Sometimes commands must be executed based on a relational test. The if-else
statement is suitable in these situations. The basic syntax is

if expression
commands

elseif expression
commands

else
commands

end
Only one end is required at the end of the sequence of if, elseif and else
statements. Commands are executed only if the corresponding expression is true.
Note that in the simplest case, one might only need to use the following

if expression
commands

end
In other words, you do not necessarily need to have the else constructs.

The switch statement is useful if one has a lot of if, elseif statements in the
program. This construct is very similar to that in the C language. The basic syntax is

switch expression
case value1

commands % executes if expression = value1
case value2

commands % executes if expression = value2
...
otherwise

commands % executes if nothing else does
end
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The expression must be either a scalar or a character string.

28.4 Visualization

Here we briefly describe some of the basic plotting capabilities in the main MAT-
LAB package. For more information on the extensive graphics that are available
with this software, see the MATLAB documentation and the book by Marchand and
Holland (2003).

28.4.1 2-D Plots

The main function used for 2-D plots is plot. When the plot function is called,
it opens a Figure window (if one is not already there), scales the axes to fit the
data, and plots the points. The default is to plot the points and connect them using
straight lines. For example, plot(x, y) plots the values in the vector x along
the horizontal axis and the values in the vector y on the vertical axis (the values
correspond to (x, y) points), connected by straight lines. Thus, the vectors must
have the same length. Using just one vector argument to plot will show the values
of y against the index number.

The default line style is a solid line, but one can also use the following: dotted
line, dash-dot line, and dashed line. Additionally, other plotting symbols can be
used instead of points. There are many choices (e.g., *, x, o); please use help
plot to get a list of them. MATLAB also provides some pre-defined colors; these
can also be found in the documentation on plot.

Any number of pairs can be used as arguments to plot. For instance, plot(x,
y1, x, y2) will create two curves on the same plot. If only one argument is
supplied to plot, then MATLAB plots the vector versus the index of its values.
To create a plot with different markers and line styles, just enclose your choices
between single quotes as shown here:

plot(x, y, ’b*-.’)

This command tells MATLAB to plot the points in x and y as an asterisk and
connect them with a blue dash-dot line. As another example, leaving out the line
style would produce a scatter plot in the default color: plot(x, y, ’*’).

The following example shows how to plot the adjusted closing price for Google
stock for weeks in 2008. In this case, we do not need to have an explicit x vector
because the x axis is the week number, which is the same as the index.
plot(goog08(:,6), ’-*’)
title(’Adjusted Closing Price -- Google’)
xlabel(’Week Number -- 2008’)
ylabel(’Adjusted Closing Price’)

The results are shown in Fig. 28.1.
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Fig. 28.1 A simple 2-D plot

When a 2-D plot is created, then the Basic Fitting tool can be activated
from the Tools menu in the Figure window. This invokes a GUI that provides
many options for fitting curves and interpolation using the x, y data in the plot.
Finally, there are many specialized 2-D plots, such as scatter, polar, and
plotyy. Also, see help graph2d for more functions that can be used on for
2-D plots. Figure 2 illustrates multiple 2-D plots in the same window, and a Fig. 3
shows a scatterplot matrix with histograms along the diagonal cells.

28.4.2 3-D Plots

To plot ordered triples of points, one can use the plot3 function. It works the same
as the plot function, except that it requires three vectors for plotting: plot3(x,
y, z). All of the concepts, line styles, colors, and plotting symbols apply to
plot3.

Another form of 3-D graphics that would be of use in computational finance
problems is to plot surfaces. In this case, we have a function z D f .x; y/, and we
want to show the value of z as the surface height. The two main functions for doing
this are surf and mesh. The function mesh draws a wireframe of the surface with
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Fig. 28.2 A display with two subplots

the color determined by the value of z (as the default). The function surf creates a
shaded and faceted surface plot.

There are many options that one can apply to these surface plots, such as
changing the color maps, applying shading and lighting, changing the view point,
applying transparency, and more. See help graph3d for more capabilities and
3-D graphing functions in MATLAB (Fig. 28.2).

28.4.3 Other Useful Plotting Capabilities

What we have described so far is the ability to put one plot or set of axes in a
Figure window. In some applications, it would be useful to have a way to put
several axes or plots in one window. We can do this through the use of the subplot
function. This creates an m � n matrix of plots (or axes) in the current Figure
window. The example provided below shows how to create two plots side-by-side.

% Create the left plot
subplot(1, 2, 1)
plot(x, y)
% Create the right plot
subplot(1, 2, 2)
plot(x, z)
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The first two arguments to the functionsubplot tell MATLAB about the layout
of the plots within the Figure window. In the example above, we have a layout
with one row and two columns of plots. The third argument tells MATLAB which
plot to work with. The plots are numbered from top to bottom and left to right. The
most recent plot that was created or worked on is the one affected by any subsequent
plotting commands. You can think of the subplot function as a pointer that tells
MATLAB what set of axes to work with (Fig. 28.3).

One of the most useful plots in data analysis is the scatter plot where (x, y)
pairs are displayed as points. We can create a plot matrix of scatter plots when we
have more than two variables. The main MATLAB package has a function called
plotmatrix that will produce this type of plot. The basic syntax for this function
is plotmatrix(X, Y), where X and Y are matrices, which scatter plots the
columns of X against the columns of Y. If plotmatrix is called with just one
matrix argument, then it produces all pairwise scatter plots of the columns of X,
with a histogram of the columns along the diagonal (Fig. 28.4).

28.5 Getting Financial Data into MATLAB

Often financial data is available in a spreadsheet or comma-separated-value (csv)
format. A useful website for historica stock prices is
www.finance.yahoo.com



28 MATLAB R� as a Tool in Computational Finance 779

−3
−2

−1
0

1
2

3

−2

0

2

0

0.05

0.1

0.15

X

Surface Plot of Bivariate Standard Normal

Y

Z
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For example, to get historical information on the Dow Jones Industrial Average,
go to
http://finance.yahoo.com/q/hp?s=%5EDJI
You can download data from 1928 to the present. There is a link at the bottom of
the page that allows you to save the data to a spreadsheet (csv format). You can also
get the same information for other entities and stocks by entering the symbol in the
text box at the right of the page.

Once it is stored as a csv file, the MATLAB function csvread can be used to
bring it into the MATLAB workspace. This function, however, expects only numeric
data. We can use optional arguments to tell MATLAB where to start (row and
column) loading the data. The function csvread uses 0 as the staring point for
the rows and columns in the file, so to start in the second field in the second row
(to skip the header), we specify these starting points as 1 and 1. The following code
shows how to import the data:

% The file called DowJones1928toNow.csv was
% downloaded from Yahoo Finance.
% The first column contains header information.
% The second column contains dates in text format.
% Now read in the data.
X = csvread(’DowJones1928toNow.csv’, 1,1);
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The variables represented by the columns of the matrix X are the Dow Jones Average
at the Open, High, Low, Close, Volume, and Adjusted Close.

Luminous Logic provides a free function for downloading historical information
on individual stock prices and volume from Yahoo! Finance. It is available here
http://luminouslogic.com/matlab-stock-market-scripts
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Chapter 29
R as a Tool in Computational Finance

John P. Nolan

29.1 Introduction

R is a powerful, free program for statistical analysis and visualization. R has superb
graphics capabilities and built-in functions to evaluate all common probability
distributions, perform statistical analysis, and to do simulations. It also has a flexible
programming language that allows one to quickly develop custom analyses and eval-
uate them. R includes standard numerical libraries: LAPACK for fast and accurate
matrix multiplication, QUADPACK for numerical integration, and (univariate and
multivariate) optimization routines. For compute intensive procedures, advanced
users can call optimized code written in C or Fortran in a straightforward way,
without having to write special interface code.

The R program is supported by a large international team of volunteers who
maintain versions of R for multiple platforms. In addition to the base R program,
there are thousands of packages written for R. In particular, there are dozens
of packages for solving problems in finance. Information on implementations on
obtaining the R program and documentation are given in Appendix 1.

A New York Times article by Vance (2009a) discussed the quick growth of R
and reports that an increasing number of large companies are using R for analysis.
Among those companies are Bank of America, Pfizer, Merck, InterContinental
Hotels Group, Shell, Google, Novartis, Yale Cancer Center, Motorola, Hess. It is
estimated in Vance (2009b) that over a quarter of a million people now use R.

The following three simple examples show how to get free financial data and
how to begin to analyze it. Note that R uses the back arrow <- for assignment and
that the > symbol is used as the prompt R uses for input. The following six lines
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Fig. 29.1 Closing price and return for IBM stock in 2008

of R code retrieve the adjusted closing price of IBM stock for 2008 from the web,
compute the (logarithmic) return, plot both time series as shown in Fig. 29.1, give
a six number summary of the return data, and then finds the upper quantiles of the
returns.

> x <- get.stock.price("IBM")
IBM has 253 values from 2008-01-02 to 2008-12-31
> y <- diff(log(x))
> ts.plot(x,main="price")
> ts.plot(y,main="return")
> summary(y)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.060990 -0.012170 -0.000336 -0.000797 0.010620 0.091390
> quantile(y, c(.9,.95,.99) )

90% 95% 99%
0.02474494 0.03437781 0.05343545

The source code for the function get.stock.price and other functions
used below are given in Appendix 2. The next example shows more information
for 3 months of Google stock prices, using the function get.stock.data
that retrieves stock information that includes closing/low/high prices as well as
volume (Fig. 29.2).

> get.stock.data("GOOG",start.date=c(10,1,2008),
stop.date=c(12,31,2008))
GOOG has 64 values from
2008-10-01 to 2008-12-31
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Fig. 29.2 Google stock prices and volume in the fourth quarter of 2008

> par(mar=c(1,4,2,2)) # graphing option
> num.fig <- layout(matrix(c(1,2)),heights=c(5,2))

# setup a multiplot
> ts.plot(x$Close,ylab="price (in $)", main="Google

prices - 4th quarter 2008")
> lines(x$Low,col="red")
> lines(x$High,col="blue")
> legend(45,400,c("high","close","low"),lty=1,

col=c("blue","black","red"))
> barplot(x$Volume/100000,ylab="Million",

col="lightblue",main="\nVolume")

Another function get.portfolio.returnswill retrieve multiple stocks in
a portfolio. Dates are aligned and a matrix of returns is the results. The following
code retrieves the returns from IBM, General Electric, Ford and Microsoft and
produces scatter plots of the each pair of stocks. The last two commands show the
mean return and covariance of the returns (Fig. 29.3).
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Fig. 29.3 Pairwise scatter plots of returns for four stocks

> x <- get.portfolio.returns( c("IBM","GE","Ford","MSFT") )
IBM has 253 values from 2008-01-02 to 2008-12-31
GE has 253 values from 2008-01-02 to 2008-12-31
Ford has 253 values from 2008-01-02 to 2008-12-31
MSFT has 253 values from 2008-01-02 to 2008-12-31

253 dates with values for all stocks, 252 returns
calculated

> pairs(x)
> str(x)
’data.frame’: 252 obs. of 4 variables:
$ IBM : num 0.00205 -0.03665 -0.01068 -0.02495 0.00742 ...
$ GE : num 0.00118 -0.02085 0.00391 -0.02183 0.01128 ...
$ Ford: num -0.01702 -0.00862 -0.00434 -0.02643 0.00889 ...
$ MSFT: num 0.00407 -0.02823 0.00654 -0.03405 0.0293 ...
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> mean(x)
IBM GE Ford MSFT

-0.0007974758 -0.0030421414 -0.0002416205 -0.0022856306
> var(x)

IBM GE Ford MSFT
IBM 0.0005138460 0.0005457266 0.0001258669 0.0004767922
GE 0.0005457266 0.0012353023 0.0003877436 0.0005865461
Ford 0.0001258669 0.0003877436 0.0016194549 0.0001845064
MSFT 0.0004767922 0.0005865461 0.0001845064 0.0009183715

The rest of this paper is organized as follows. Section 29.2 gives a brief
introduction to the R language, Sect. 29.3 gives several examples of using R in
finance, and Sect. 29.4 discusses the advantages and disadvantages of open source
vs. commercial software. Finally, the two appendices give information on obtaining
the R program and the R code used to obtain publicly available data on stocks.

29.2 Overview/Tutorial of the R Language

This section is a brief introduction to R. It is assumed that the reader has some
basic programming skills; this is not intended to teach programming from scratch.
You can find basic help within the R program by using the question mark before
a command: ?plot (alternatively help("plot")) will give a description of the
plot command, with some examples at the bottom of the help page. Appendix 1
gives information on more documentation.

One powerful feature of R is that operations and functions are vectorized. This
means one can perform calculations on a set of values without having to program
loops. For example, 3*sin(x)+y will return a single number if x and y are single
numbers, but a vector if x and y are vectors. (There are rules for what to do if x and
y have different lengths, see below.)

A back arrow <-, made from a less than sign and a minus sign, is used
for assignment. The equal sign is used for other purposes, e.g. specifying a
title in the plots above. Variable and function names are case sensitive, so X
and x refer to different variables. Such identifiers can also contain periods, e.g.
get.stock.price. Comments can be included in your R code by using
a # symbol; everything on the line after the # is ignored. Statements can be
separated by a semicolon within a line, or placed on separate lines without a
seperator.

29.2.1 Data Types and Arithmetic

Variables are defined at run time, not by a formal declaration. The type of a variable
is determined by the type of the expression that defines it, and can change from
line to line. There are many data types in R. The one we will work with most is
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the numeric type double (double precision floating point numbers). The simplest
numeric type is a single value, e.g. x <- 3. Most of the time we will be working
with vectors, for example, x <- 1:10 gives the sequence from 1 to 10. The
statement x <- seq(-3,3,0.1) generates an evenly spaced sequence from �3
to 3 in steps of size 0.1. If you have an arbitrary list of numbers, use the combine
command, abbreviated c(...), e.g. x<- c(1.5, 8.7, 3.5, 2.1, -8)
defines a vector with five elements.

You access the elements of a vector by using subscripts enclosed in square
brackets: x[1],x[i], etc. If i is a vector, x[i] will return a vector of values.
For example, x[3:5] will return the vector c(x[3],x[4],x[5]).

The normal arithmetic operations are defined: C;�;�; =. The power function xp

is xˆp. A very useful feature of R is that almost all operations and functions work
on vectors elementwise:x+ywill add the components of x and y, x*ywill multiply
the components of x and y, xˆ2 will square each element of x, etc. If two vectors
are of different lengths in vector operations, the shorter one is repeated to match the
length of the longer. This makes good sense in some cases, e.g. x+3 will add three
to each element of x, but can be confusing in other cases, e.g. 1:10 + c(1,0) will
result in the vector c(2, 2,4,4,6,6,8,8,10,10).

Matrices can be defined with the matrix command: a <- matrix(
c(1,5, 4,3,-2,5), nrow=2, ncol=3) defines a 2 � 3 matrix, filled
with the values specified in the first argument (by default, values are filled in one
column at a time; this can be changed by using the byrow=TRUE option in the
matrix command). Here is a summary of basic matrix commands:

a + b adds entries element-wise (a[i,j]Cb[i,j]),
a * b is element by element (not matrix) multiplication (a[i,j]*b[i,j]),
a %*% b is matrix multiplication,
solve(a) inverts a,
solve(a,b) solves the matrix equation a x D b,
t(a) transposes the matrix a,
dim(a) gives dimensions (size) of a,
pairs(a) shows a matrix of scatter plots for all pairs of columns of a,
a[i,] selects row i of matrix a,
a[,j] selects column j of matrix a,
a[1:3,1:5] selects the upper left 3 � 5 submatrix of a.

Strings can be either a single value, e.g. a <- "This is one string",
or vectors, e.g. a <- c("This", "is", "a", "vector", "of",
"strings").

Another common data type in R is a data frame. This is like a matrix, but can have
different types of data in each column. For example, read.table and read.csv return
data frames. Here is an example where a data frame is defined manually, using the
cbind command, which “column binds” vectors together to make a rectangular
array.
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name <- c("Peter","Erin","Skip","Julia")
age <- c(25,22,20,24)
weight <- c(180,120,160,130)
info <- data.frame(cbind(name,age,weight))

A more flexible data type is a list. A list can have multiple parts, and each part
can be a different type and length. Here is a simple example:

x <- list(customer="Jane Smith",
purchases=c(93.45,18.52,73.15),
other=matrix(1:12,3,4))

You access a field in a list by using $, e.g. x$customer or x$purchases[2],
etc.

R is object oriented with the ability to define classes and methods, but we will
not go into these topics here. You can see all defined objects (variables, functions,
etc.) by typing objects( ). If you type the name of an object, R will show you
it’s value. If the data is long, e.g. a vector or a list, use the structure command str
to see a summary of what the object is.

R has standard control statements. A for loop lets you loop through a body
of code a fixed number of times, while loops let you loop until a condition is
true, if statements let you execute different statements depending on some logical
condition. Here are some basic examples. Brackets are used to enclose blocks of
statements, which can be multiline.

sum <- 0
for (i in 1:10) {sum <- sum + x[i] }

while (b > 0) { b <- b - 1 }

if (a < b) { print("b is bigger") }
else { print("a is bigger") }

29.2.2 General Functions

Functions generally apply some procedure to a set of input values and return a value
(which may be any object). The standard math functions are built in: log, exp,
sqrt, sin, cos, tan, etc. and we will not discuss them specifically. One
very handy feature of R functions is the ability to have optional arguments and to
specify default values for those optional arguments. A simple example of an optional
argument is the log function. The default operation of the statement log(2) is
to compute the natural logarithm of two. However, by adding an optional second
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argument, you can compute a logarithm to any base, e.g. log(2,baseD10)will
compute the base 10 logarithm of 2.

There are hundreds of functions in R, here are some common functions:

Function name Description
seq(a,b,c) Defines a sequence from a to b in steps of size c
sum(x) Sums the terms of a vector
length(x) Length of a vector
mean(x) Computes the mean
var(x) Computes the variance
sd(x) Computes the standard deviation of x
summary(x) Computes the 6 number summary of x (min,

quartiles, mean, max)
diff(x) Computes successive differences xi � xi�1
c(x,y,z) Combine into a vector
cbind(x,y,...) “Bind” x, y, . . . into the columns of a matrix
rbind(x,y,...) “Bind” x, y, . . . into the rows of a matrix
list(a=1,b="red",...) Define a list with components a, b, . . .
plot(x,y) Plots the pairs of points in x and y (scatterplot)
points(x,y) Adds points to existing plot
lines(x,y) Adds lines/curves to existing plot
ts.plot(x) Plots the values of x as a times series
title("abc") Adds a title to an existing plot
par(...) Sets parameters for graphing,

e.g. par(mfrowDc(2,2)) creates a
2 by 2 matrix of plots

layout(...) Define a multiplot
scan(file) Read a vector from an ascii file
read.table(file) Read a table from an ascii file
read.csv(file) Read a table from an Excel formated file
objects() Lists all objects
str(x) Shows the structure of an object
print(x) Prints the single object x
cat(x,...) Prints multiple objects, allows simple stream

formatting
sprintf(format,...) C style formatting of output

29.2.3 Probability Distributions

The standard probability distributions are built into R. Here are the abbreviations
used for common distributions in R:
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Name Distribution
binom Binomial
geom Geometric
nbinom Negative binomial
hyper Hypergeometric
norm Normal/Gaussian
chisq �2

t Student t
f F

cauchy Cauchy distribution

For each probability distribution, you can compute the probability density
function (pdf), the cumulative distribution function (cdf), the quantiles
(percentiles D inverse cdf) and simulate. The function names are given by adding a
prefix to the distribution name.

Prefix Computes Example
d Density (pdf) dnorm(x,meanD 0,sd D 1)
p Probability (cdf) pnorm(x,meanD 0,sd D 1)
q Quantiles (percentiles) qnorm(0.95,meanD 0,sd D 1)
r Simulate values rnorm(1,000,meanD 0,sd D 1)

The arguments to any functions can be found from the arg command, e.g.
arg(dnorm); more explanation can by found using the built-in help system,
e.g. ?dnorm. Many have default value for arguments, e.g. the mean and standard
deviation default to 0 and 1 for a normal distribution. A few simple examples of
using these functions follow.

x <- seq(-5,5,.1)
y <- dnorm(x, mean=1,sd=0.5)
plot(x,y,type=’l’) # plot a N(1,0.25) density

qnorm(0.975) # z_{0.25} = 1.96

pf( 2, 5, 3) # P(F_{5,3} < 2) = 0.6984526

x <- runif(10000) # generate 10000 uniform(0,1) values

29.2.4 Two Dimensional Graphics

The basic plot is an xy-plot of points. You can connect the points to get a line with
typeD’l’. The second part of this example is shown in Fig. 29.4.
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Fig. 29.4 Multiplot showing histograms of u, v, u C v, and a scatter plot of .u; v/

x <- seq(-10,10,.25)
y <- sin(x)
plot(x,y,type=’l’)
lines(x,0.5*y,col=’red’) # add another curve and color
title("Plot of the sin function")

u <- runif(1000)
v <- runif(1000)
par(mfrow=c(2,2)) # make a 2 by 2 multiplot
hist(u)
hist(v)
plot(u,v)
title("scatterplot of u and v")
hist(u+v)
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Fig. 29.5 A surface and contour plot

There are dozens of options for graphs, including different plot symbols,
legends, variable layout of multiple plots, annotations with mathematical symbols,
trellis/lattice graphics, etc. See ?plot and ?par for a start.

You can export graphs to a file in multiple formats using “File”, “Save as”, and
select type (jpg, pdf, postscript, png, etc.)

29.2.5 Three Dimensional Graphics

You can generate basic 3D graphs in standard R using the commands persp,
contour and image. The first gives a “perspective” plot of a surface, the second
gives a standard contour plot and the third gives a color coded contour map. The
examples below show simple cases; there are many more options. For static graphs,
there are three functions: All three use a vector of x values, a vector of y values, and
and matrix z of heights, e.g. z[i,j]<-f(x[i],y[j]). Here is one example
where such a matrix is defined using the function f .x; y/ D 1=.1C x2 C 3y2/, and
then the surface is plotted (Fig. 29.5).

x <- seq(-3,3,.1) # a vector of length 61
y <- x
# allocate a 61 x 61 matrix and fill with f(x,y) values
z <- matrix(0,nrow=61,ncol=61)
for (i in 1:61) {

for (j in 1:61) {
z[i,j] <- 1/(1+x[i]ˆ2 + 3*y[j]ˆ2)

}
}
par(mfrow=c(2,2),pty=’s’) # set graphics parameters
persp(x,y,z,theta=30,phi=30) # plot the surface
contour(x,y,z)
image(x,y,z)
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For clarity, we have used a standard double loop to fill in the z matrix above, one
could do it more compactly and quickly using the outer function. You can find
more information about options by looking at the help page for each command, e.g.
?perspwill show help on the persp command. At the bottom of most help pages
are some examples using that function. A wide selection of graphics can be found
by typing demo(graphics).

There is a recent R package called rgl that can be used to draw dynamic 3D
graphs that can be interactively rotated and zoomed in/out using the mouse. This
package interfaces R to the OpenGL library; see the section on Packages below for
how to install and load rgl. Once that is done, you can plot the same surface as
above with

rgl.surface(x,y,z,col="blue")

This will pop up a new window with the surface. Rotate by using the left mouse
button: hold it down and move the surface, release to freeze in that position. Holding
the right mouse button down allows you to zoom in and out. You can print or save
an rgl graphic to a file using the rgl.snapshot function (use ?rgl.snapshot
for help).

29.2.6 Obtaining Financial Data

If you have data in a file in ascii form, you can read it with one of the R read
commands:

• scan("test1.dat")will read a vector of data from the specified file in free
format.

• read.table("test2.dat") will read a matrix of data, assuming one row
per line.

• read.csv("test3.csv") will read a comma separate value file (Excel
format).

The examples in the first section and those below use R functions developed
for a math finance class taught at American University to retrieve stock data from
the Yahoo finance website. Appendix 2 lists the source code that implements the
following three functions:

• get.stock.data: Get a table of information for the specified stock during
the given time period. A data frame is returned, with Date, Open, High, Low,
Close,Volume, and Adj.Close fields.

• get.stock.price: Get just the adjusted closing price for a stock.
• get.portfolio.returns: Retrieve stock price data for each stock in a

portfolio (a vector of stock symbols). Data is merged into a data frame by date,
with a date kept only if all the stocks in the portfolio have price information on
that date.
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All three functions require the stock ticker symbol for the company, e.g.“IBM”
for IBM, “GOOG” for Google, etc. Symbols can be looked up online at
www.finance.yahoo.com/lookup. Note that the function defaults to data
for 2008, but you can select a different time period by specifying start and stop
date, e.g. get.stock.price("GOOG",c(6,1,2005),c(5,31,2008))
will give closing prices for Google from June 1, 2005 to May 31, 2008.

If you have access to the commercial Bloomberg data service, there is an R
package named RBloomberg that will allow you to access that data within R.

29.2.7 Script Windows and Writing Your Own Functions

If you are going to do some calculations more than once, it makes sense to define
a function in R. You can then call that function to perform that task any time you
want. You can define a function by just typing it in at the command prompt, and
then call it. But for all but the simplest functions, you will find to more convenient
to enter the commands into a file using an editor. The default file extension
is .R. To run those commands, you can either use the source command, e.g.
source("mycommands.R"), or use the top level menu: “File”, then “Source
R code”, then select the file name from the pop-up window.

There is a built in editor within R that is convenient to use. To enter your
commands, click on “File” in the top level menu, then “New script”. Type in your
commands, using simple editing. To execute a block of commands, highlight them
with the cursor, and then click on the “run line or selection” icon on the main menu
(it looks like two parallel sheets of paper). You can save scripts (click on the diskette
icon or use CTRL-S), and open them (from the “File” menu or with the folder icon).
If you want to change the commands and functions in an existing script, use “File”,
then “Open script”.

Here is a simple example that fits the (logarithmic) returns of price data in S with
a normal distribution, and uses that to compute Value at Risk (VaR) from that fit.

compute.VaR <- function( S, alpha, V, T ){
# compute a VaR for the price data S at level alpha, value V
# and time horizon T (which may be a vector)

ret <- diff(log(S)) # return = log(S[i]/S[i-1])
mu <- mean(ret)
sigma <- sd(ret)
cat("mu=",mu," sigma=",sigma," V=",V,"\n")
for (n in T) {

VaR <- -V * ( exp(qnorm( alpha, mean=n*mu,
sd=sqrt(n)*sigma)) - 1 )

cat("T=",n, " VaR=",VaR, "\n")}
}
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Applying this to Google’s stock price for 2008, we see the mean and standard
deviation of the returns. With an investment of value V D $1,000, and 95%
confidence level, the projected VaRs for 30, 60, and 90 days are:

> price <- get.stock.price( "GOOG" )
GOOG has 253 values from 2008-01-02 to 2008-12-31
> compute.VaR( price, 0.05, 1000, c(30,60,90) )
mu= -0.003177513 sigma= 0.03444149 V= 1000
T= 30 VaR= 333.4345
T= 60 VaR= 467.1254
T= 90 VaR= 561.0706

In words, there is a 5% chance that we will lose more than $333.43 on our $1,000
investment in the next 30 days. Banks use these kinds of estimates to keep reserves
to cover loses.

29.3 Examples of R Code for Finance

The first section of this paper gave some basic examples on getting financial data,
computing returns, plotting and basic analysis. In this section we briefly illustrate a
few more examples of using R to analyze financial data.

29.3.1 Option Pricing

For simplicity, we consider the Black-Scholes option pricing formula. The following
code computes the value V of a call option for an asset with current price S , strike
priceK , risk free interest rate r , time to maturity T and volatility � . It also computes
the “Greek” delta: � D dV=dS , returning the value and delta in a named list.

call.optionBS <- function(S,K,r,T,sigma) {
d1 <- (log(S/K)+(r+sigmaˆ2/2)*T )/ (sigma*sqrt(T))
d2 <- (log(S/K)+(r-sigmaˆ2/2)*T )/ (sigma*sqrt(T))
return(list(value=S*pnorm(d1)-K*exp(-r*T)*pnorm(d2),

delta=pnorm(d1)))}

> call.optionBS( 100, 105, .02, .25, .1 )
$value
[1] 0.536332
$delta
[1] 0.1974393
a <- call.optionBS( 100,105,.02,seq(0,.25,length=101),.1)
plot(time,a$value,type=’l’,main="Black-Scholes call option",

xlab="time to maturity",ylab="value")
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Fig. 29.6 Value of a call option with current price S D 100, time to maturity varying from 0 to
1/4 year, risk free rate r D 0:02, and volatility � D 0:1

When the current price is S D 100, the strike price is K D 105, interest rate
r D 0:02, T D 0:25 years to maturity and volatility � D 0:1, the Black-Scholes
price for a call option is $0.53. Also, the delta is 0.1974, meaning that if the price
S increases by $1, then the price of the option will increase by about $0.19. The
delta values are used in hedging. The last three lines of the code above compute the
price of a call option for varying days until maturity, starting at $0.00 for T D 0

and increasing to $0.53 for 1/4 year until maturity. See Fig. 29.6. Note that this
last example works without changing the code for function call.optionBS( )
because R uses vectorization.

29.3.2 Value-at-Risk for a Portfolio

Above we looked at a function to compute Value-at-Risk (VaR) for a single asset. We
can generalize this to a static portfolio ofN assets, with proportion wi of the wealth
in asset i . Large financial institutions are required by the Basel II Accords (see Bank
for International Settlements 2009) to regularly compute VaR and to hold capital
reserves to cover losses determined by these numbers. (In practice, one may adjust
the weights dynamically, to maximize return or minimize risk based on performance
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of the individual assets.) As above, we will assume that the (logarithmic) returns are
multivariate normal. This makes the problem easy, but unrealistic (see below).

portfolio.VaR <- function( x, w, V, T=1, alpha=0.05) {
# compute portfolio VaR by fitting multivariate normal to returns
# x is a matrix of returns for the portfolio, w are the allocation

weights
# V = total value of investment, T = time horizon (possibly a vector)
# alpha = confidence level

# fit multivariate normal distribution
mu <- mean(x)
covar <- cov(x)

# compute mean and variance for 1-day weighted returns
mu1 <- sum(w*mu)
var1 <- t(w) %*% covar %*% w

cat("mu1=",mu1," var1=",var1," alpha=",alpha," V=",V, "\nweights:")
for (i in 1:length(symbols)) {cat(" ",symbols[i],":",w[i]) }
cat("\n")

# compute VaR for different time horizons
for (t in T) {

VaR <- -V * ( exp(qnorm(alpha,mean=t*mu1,sd=sqrt(t*var1))) - 1.0)
cat("T=",t," VaR=",VaR,"\n") }

}

Applying this to a portfolio of equal investments in Google, Microsoft, GE and
IBM for 2008 data, and an investment of $100,000, we find the 95% VaR values for
1 day, 5 days and 30 days with the following.

> x <- get.portfolio.returns( c("GOOG","MSFT","GE","IBM") )

GOOG has 253 values from 2008-01-02 to 2008-12-31

MSFT has 253 values from 2008-01-02 to 2008-12-31

GE has 253 values from 2008-01-02 to 2008-12-31

IBM has 253 values from 2008-01-02 to 2008-12-31

253 dates with values for all stocks, 252 returns

calculated

> portfolio.VaR( x, c(.25,.25,.25,.25), 100000, c(1,5,30) )

mu1= -0.002325875 var1= 0.0006557245 alpha= 0.05 V= 1e+05

weights: GOOG : 0.25 MSFT : 0.25 GE : 0.25 IBM : 0.25

T= 1 VaR= 4347.259

T= 5 VaR= 10040.67

T= 30 VaR= 25953.49

29.3.3 Are Equity Prices Log-Normal?

It is traditional to do financial analysis under the assumption that the returns
are independent, identically distributed normal random variables. This makes
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the analysis easy, and is a reasonable first approximation. But is it a realistic
assumption? In this section we first test the assumption of normalility of returns,
then do some graphical diagnostics to suggest other models for the returns. (We will
not examine time dependence or non-stationarity, just the normality assumption.)

There are several statistical tests for normality. The R package nortest, Gross
(2008), implements five omnibus tests for normality: Anderson-Darling, Cramer-
von Mises, Lilliefors (Kolmogorov-Smirnov), Pearson chi-square, and Shapiro-
Francia. This package must first be installed using the Packages menu as discussed
below. Here is a fragment of a R session that applies these tests to the returns of
Google stock over a 1 year period. Note that the text has been edited for conciseness.

> library("nortest")
> price <- get.stock.price("GOOG")
GOOG has 253 values from 2008-01-02 to 2008-12-31
> x <- diff(log(price))
> ad.test(x)

Anderson-Darling test A = 2.8651, p-value = 3.188e-07
> cvm.test(x)

Cramer-von Mises test W = 0.4762, p-value = 4.528e-06
> lillie.test(x)

Lilliefors test D = 0.0745, p-value = 0.001761
> pearson.test(x)

Pearson chi-square test P = 31.1905, p-value = 0.01272
> sf.test(x)

Shapiro-Francia test W = 0.9327, p-value = 2.645e-08

All five tests reject the null hypothesis that the returns from Google stock are
normal. These kinds of results are common for many assets. Since most traditional
methods of computational finance assume a normal distribution for the returns, it is
of practical interest to develop other distributional models for asset returns. In the
next few paragraphs, we will use R graphical techniques to look at the departure
from normality and suggest other alternative distributions.

One of the first things you should do with any data set is plot it. The following
R commands compute and plot a smoothed density, superimpose a normal fit, and
do a normal QQ-plot. The result is shown in Fig. 29.7. The density plot shows that
while the data is roughly mound shaped, it is leptokurtotic: there is a higher peak and
heavier tails than the normal distribution with the same mean and standard deviation.
The heavier tails are more evident in the QQ-plot, where both tails of the data are
noticeably more spread out than the normal model says they should be. (The added
line shows perfect linear correlation between the data and normal fit.)

> price <- get.stock.price("GOOG")
GOOG has 253 values from 2008-01-02 to 2008-12-31
> x <- diff(log(price))
> par(mfrow=c(1,2))
> plot(density(x),main="density of Google returns")
> z <- seq(min(x),max(x),length=201)
> y <- dnorm(z,mean=mean(x),sd=sd(x))
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Fig. 29.7 Google returns in 2008. The left plot shows smoothed density with dashed line showing
the normal fit, and the right plot shows a normal QQ-plot

> lines(z,y,lty=2)
> qqnorm(x)
> qqline(x)

So, one question is what kind of distribution better fits the data? The data suggests
a model with fatter tails. One popular model is a t-distribution with a few degrees
of freedom. The following code fragment defines a function qqt to plot QQ-plots
for data vs. a t distribution. The results of this for 3, 4, 5 and 6 degrees of freedom
are shown in Fig. 29.8. The plots show different behavior on lower and upper tail:
3 d.f. seems to best describe the upper tails, but 4 or 5 d.f. best describes the lower
tail.

qqt <- function( data, df ){
# QQ-plot of data vs. a t-distribution with df degrees of freedom
n <- length(data)
t.quantiles <- qt( (1:n - 0.5)/n, df=df )
qqplot(t.quantiles,data,main=paste("t(",df,") Q-Q Plot",sep=""),

xlab="Theoretical Quantiles",ylab="Sample Quantiles")
qqline(data) }

# diagnostic plots for data with t distribution with 3,4,5,6 d.f.
par(mfrow=c(2,2))
for (df in 3:6) {

qqt(x,df)
}
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Fig. 29.8 QQ-plots of Google returns in 2008 for t distributions with 3, 4, 5 and 6 degrees of
freedom

There are many other models proposed for fitting returns, most of them have
heavier tails than the normal and some allow skewness. One reference for these
models is Rachev (2003). If the tails are really heavy, then the family of stable
distributions has many attractive features, including closure under convolution
(sums of stable laws are stable) and the Generalized Central Limit Theorem
(normalized sums converge to a stable law).

A particularly difficult problem is how to model multivariate dependence. Once
you step outside the normal model, it generally takes more than a covariance matrix
to describe dependence. In practice, a large portfolio with many assets of different
type can have very different behavior for different assets. Some returns may be
normal, some t with different degrees of freedom, some a stable law, etc. Copulas
are one method of dealing with multivariate distributions, though the limited classes
of copulas used in practice seems to have misled people into thinking they had
correctly modeled dependence. In addition to modeling complete joint dependence,
there is research on modeling tail dependence. This is a less ambitious goal, but
could be especially useful in modeling extreme movements by multiple assets – an
event that could cause a catastrophic result.

Realistically modeling large portfolios is an important open problem. The recent
recession may have been prevented if practitioners and regulators had better models
for returns, and ways to effectively model dependence.
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29.3.4 R Packages for Finance

Packages are groups of functions that are used to solve a particular problem. They
can be written entirely in the R programming language, or coded in C or Fortran for
speed and connected to R. There are many packages being developed to do different
tasks. The rgl package to do interactive 3-D graphs and the nortest package to
test normality were mentioned above. You can download these for free and install
them as described in Appendix 1 below.

There is an online list of packages useful for empirical finance, see Eddelbuettel
(2009). This page has over 100 listings for R packages that are used in computational
finance, grouped by topics: regression models, time series, finance, risk manage-
ment, etc.

Diethelm Würtz and his group at the Econophysics Group at the Institute
of Theoretical Physics of ETH Zurich, have developed a free, large collection
of packages called Rmetrics. They have a simple way to install the whole
Rmetrics package in two lines:

> source("http://www.rmetrics.org/Rmetrics.R")
> install.Rmetrics()

29.4 Open Source R Versus Commercial Packages

We end with a brief comparison of the advantages and disadvantages of open source
R vs. commercial packages (matlab, Mathematica, SAS, etc.) While we focus on R,
the comments are generally applicable to other open source programs.

Cost: Open software is free, with no cost for obtaining the software or running it
on any number of machines. Anyone with a computer can use R – whether you
work for a large company with a cumbersome purchasing process, are an amateur
investor, or are a student in a major research university or in an inner city school,
whether you live in Albania or in Zambia. Commercial packages generally cost in
the one to two thousand dollar range, making them beyond the reach of many.
Ease of installing and upgrading: The R Project has done an excellent job of making
it easy to install the core system. It is also easy to quickly download and install
packages. When a new version comes out, users can either immediately install the
new version, or continue to run an existing version without fear of a license expiring.
Upgrades are simple and free.
Verifiability: Another advantage of open software is the ability to examine the source
code. While most users will not dig through the source code of individual routines,
anyone can and someone eventually will. This means that algorithms can be verified
by anyone with the interest. Code can be fixed or extended by those who want to
add capabilities. (If you’ve ever hit a brick wall with a commercial package that
does not work correctly, you will appreciate this feature. Years ago, the author
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was using a multivariate minimization routine with box constraints from a well
known commercial package. After many hours debugging, it was discovered that
the problem was in the minimization routine: it would sometimes search outside the
specified bounds, where the objective function was undefined. After days of trying
to get through to the people who supported this code, and presenting evidence of
the problem, they eventually confirmed that it was an issue, but were unwilling to
fix the problem or give any work-around.)
Documentation and support: No one is paid to develop user friendly documentation
for R, so built-in documentation tends to be terse, making sense to the cognesceti,
but opaque to the novice. There is now a large amount of documentation online and
books on R, though the problem may still be finding the specific information you
want. There are multiple active mailing lists, but with a very heterogeneous group
of participants. There are novices struggling with basic features and R developers
discussing details of the internals of R. If a bug is found, it will get fixed, though the
statement that “The next version of R will fix this problem” may not help much in
the short run. Of course, commercial software support is generally less responsive.
Growth: There is a vibrant community of contributors to R. With literally thousands
of people developing packages, R is a dynamic, growing program. If you don’t like
the way a package works, you can write your own, either from scratch or by adapting
an existing package from the available source code. A drawback of this distributed
development model is that R packages are of unequal quality. You may have to try
various packages and select those that provide useful tools.
Stability: Software evolves over time, whether open source or commercial. In a
robust open source project like R, the evolution can be brisk, with new versions
appearing every few months. While most of R is stable, there are occasionally small
changes that have unexpected consequences. Packages that used to work, can stop
working when a new version comes out. This can be a problem with commercial
programs also: a few years ago matlab changed the way mex programs were built
and named. Toolboxes that users developed or purchased, sometimes at a significant
cost, would no longer work.
Certification: Some applications, e.g. medical use and perhaps financial compliance
work, may require that the software be certified to work correctly and reproducibly.
The distributed development and rapid growth of R has made it hard to do this.
There is an effort among the biomedical users of R to find a solution to this issue.
Institutional resistance: In some institutions, IT staff may resist putting freeware
on a network, for fear that it may be harmful. Also, they are wary of being
held responsible for installing, maintaining, and updating software that is not
owned/licensed by a standard company.

In the long run, it seems likely that R and other open source packages will survive
and prosper. Because of their higher growth rate, they will eventually provide almost
all of the features of commercial products. When that point will be reached is
unknown. In the classroom, where the focus is on learning and adaptability, the
free R program is rapidly displacing other alternatives.
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There is a new development in computing that is a blend of free, open source
software and commercial support. REvolution Computing (2008) offers versions
of R that are optimized and validated, and have developed custom extensions,
e.g. parallel processing. This allows a user to purchase a purportedly more stable,
supported version of R. It will be interesting to watch where this path leads; it
may be a way to address the institutional resistance mentioned above. Another
company, Mango Solutions (2009) provides training in R, with specific courses
R for Financial Data Analysis. A third company, Inference for R (2009), has an
integrated development environment that does syntax highlighting, R debugging,
allows one to run R code from Microsoft Office applications (Excel, Word and
PowerPoint), and other features. Finally, we mention the SAGE Project. Sage (2008)
is an open source mathematics system that includes R. In addition to the features
of R, it includes symbolic capabilities to handle algebra, calculus, number theory,
cryptography, and much more. Basically, it is a Python program that interfaces with
over 60 packages: R, Maxima, the Gnu Scientific Library, etc.

29.5 Appendix 1: Obtaining and Installing R: R Project
and Comprehensive R Archive Network

The R Project’s website is www.r-project.org, where you can obtain the R
program, packages, and even the source code for R. The Comprehensive R Archive
Network (CRAN) is a coordinated group of over 60 organizations that maintain
servers around the world with copies of the R program (similar to the CTAN system
for TEX). To download the R program, go to the R Project website and on the left side
of the page, click on “CRAN”, select a server near you, and download the version of
R for your computer type. (Be warned: this is a large file, over 30 mb.) On Windows,
the program name is something like R-2.10.0-win32.exe, which is version 2.10.0
of R for 32-bit Windows; newer versions occur every few months and will have
higher numbers. After the file is on your computer, execute the program. This will go
through the standard installation procedure. For a Mac, the download is a universal
binary file (.dmg) for either a PowerPC or an Intel based processor. For linux, there
are versions for debian, redhat, suse or ubuntu. The R Project provides free manuals
that explain different parts of R. Start on the R homepage www.r-project.org
and click on Manuals on the left side of the page. A standard starting point is An
Introduction to R, which is a PDF file of about 100 pages. There are dozens of other
manuals, some of which are translated to 13 different languages.

To download a package, it is easiest to use the GUI menu system within R. Select
“Packages” from the main top menu, then select “Install package(s)”. You will be
prompted to select a CRAN server from the first pop-up menu (pick one near you for
speed), then select the package you want to install from the second pop-up menu.
The system will go to the server, download a compressed form of the package, and
install it on your computer. This part only needs to be done once. Anytime you want
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to use that package, you have to load it into your session. This is easy to do from
the Packages menu: “Load package . . .”, and then select the name of an installed
package. You can also use the library( ) command, as in the example with the
nortest package above.

If you want to see the source code for R, once you are on the CRAN pages, click
on the section for source code.

29.6 Appendix 2: R Functions for Retrieving Finance Data

Disclaimer: these functions are not guaranteed for accuracy, nor can we guarantee
the accuracy of the Yahoo data. They are very useful in a classroom setting, but
should not be relied on as a basis for investing.

# R programs for Math Finance class
# John Nolan, American University jpnolan@american.edu
#######################################################################
get.stock.data <- function( symbol, start.date=c(1,1,2008),

stop.date=c(12,31,2008), print.info=TRUE ) {
# get stock data from yahoo.com for specified symbol in the
# specified time period. The result is a data.frame with columns for:
# Date, Open, High, Low, Close,Volume, Adj.Close

url <- paste("http://ichart.finance.yahoo.com/table.csv?a=",
start.date[1]-1,"&b=",start.date[2],"&c=",start.date[3],
"&d=",stop.date[1]-1,"&e=",stop.date[2],"&f=",stop.date[3],"&s=",
symbol,sep="")

x <- read.csv(url)

# data has most recent days first, going back to start date
n <- length(x$Date); date <- as.character(x$Date[c(1,n)])
if (print.info) cat(symbol,"has", n,"values from",date[2],"to",date[1],"\n")

# data is in reverse order from the read.csv command
x$Date <- rev(x$Date)
x$Open <- rev(x$Open)
x$High <- rev(x$High)
x$Low <- rev(x$Low)
x$Close <- rev(x$Close)
x$Volume <- rev(x$Volume)
x$Adj.Close <- rev(x$Adj.Close)

return(x) }
#######################################################################
get.stock.price <- function( symbol, start.date=c(1,1,2008),

stop.date=c(12,31,2008), print.info=TRUE ) {
# gets adjusted closing price data from yahoo.com for specified symbol

x <- get.stock.data(symbol,start.date,stop.date,print.info)

return(x$Adj.Close) }
#######################################################################
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get.portfolio.returns = function( symbols, start.date=c(1,1,2008),
stop.date = c(12,31,2008) ){

# get a table of returns for the specified stocks in the stated time period

n = length(symbols)
for (i in 1:n) {

t1 = get.stock.data( symbols[i], start.date=start.date, stop.date=stop.date)
# need to merge columns, possibly with mismatching dates
a = data.frame(t1$Date,t1$Adj.Close)
names(a) = c("Date",symbols[i])
if (i == 1) {b=a}
else {b = merge(b,a,sort=FALSE)}
}

# leave off the date column
nn = dim(b)[1]
cat(" ",nn,"dates with values for all stocks,",nn-1,"returns calculated\n")
b = b[,2:ncol(b)]
bb = data.frame(apply(b,2,"log.ratio"))
names(bb) = symbols
return(bb) }
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