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Editorial

The Xth International Workshop on Intelligent Statistical Quality Control took place
in Seattle, USA, Aug 18–20, 2010. It was hosted by Professor C. M. Mastrangelo,
Department of Industrial and Systems Engineering, University of Washington,
Seattle. The workshop was jointly organized by Professors H.-J. Lenz, C. M.
Mastrangelo, W. Schmid and P.-T. Wilrich. The 27 papers in this volume were
carefully selected by the scientific program committee, reviewed by its members,
revised by the authors and, finally, adapted by the editors for this volume.

The book is divided into two parts: Part “On-line Control” which covers fields
like control charting, monitoring and surveillance as well as acceptance sam-
pling. Part “Off-line Control” is devoted to experimental design, process capability
analysis and data quality.

Part I: On-line Control

Reynolds, Jr., and Lou start with a paper entitled “A GLR Control Chart for
Monitoring the Process Variance”. They present a performance evaluation of a
generalized likelihood ratio (GLR) control charting under a Gaussian regime. The
likelihood ratio is based on a moving window of past observations. It is shown that
the overall performance of the GLR chart is better than or equal to other options like
Shewhart or CUSUM charts.

An old problem of control charting is the robustness with respect to different
types of dependencies. Hryniewicz uses the concept of copulas in “On the Robust-
ness of the Shewhart Control Chart to Different Types of Dependencies in Data” to
model this new type of dependency. He investigates the impact of type and strength
of dependence on the ARL of Shewhart charts using Monte Carlo simulation.

Ramos, Morais, Pacheco and Schmid are concerned with misleading signals in
their paper on “Assessing the Impact of Autocorrelation in Misleading Signals in
Simultaneous Residual Schemes for the Process Mean and Variance: a Stochastic
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Ordering Approach”. The authors analyze the probability of misleading signals
when residuals are autocorrelated stationary processes. For this type of process
Shewhart and EWMA residual charts for the mean and variance are simultaneously
applied.

It is well-known that trend dependency of the moments is a trouble maker
of control charting besides robustness and auto-correlation. Knoth picks up this
frequently existing quality process type in “More on Control Charting under Drift”.
Mean level control charts are suited for detecting drifts. His analysis provides
numerical results, includes a competitor to an algorithm of Gan, and presents various
charts to allow for drift.

Morais, Okhrin, and Schmid show in their paper on “Limit Properties of EWMA
Charts for Stationary Processes” that that for stationary processes the distribution
of the run length of the EWMA chart based on the exact variance converges to
the distribution of the run length of the repeated significance test if the smoothing
parameter converges to zero. However, for the EWMA chart based on the limit
variance the asymptotic distribution degenerates.

Saniga, Lucas, Davis, and Williams in “Economic Control Chart Policies for
Monitoring Variables when there are Two Components of Variance” determine
regions of cost advantages of the CUSUM chart versus the Shewhart NX chart.
Dominance regions are found with a large cost advantage of CUSUM charts and
regions where the Shewhart NX chart is not too bad.

Khediri and Weihs are concerned with “Process Monitoring Using an Online
Nonlinear Data Reduction Based Control Chart”. The study advocates for an on-
line Kernel PCA chart transforming a nonlinear system to a nearly linear one.
Simulations show that the control chart is robust and provides a reduced rate of
false alarms with high fault detection strength.

Nishina, Higashide, Kawamura, and Ishii reconsider the relationship between
statistical (SPC) and automatic process control (APC) in their contribution entitled
“On the Integration of SPC and APC: APC can be a Convenient Support for SPC”.
From experiences with case studies the authors propose using the process rate to
control the between subgroup variation and principal component analysis to control
the within-subgroup variation.

A different perspective on APC and SPC is taken by Kawamura, Nishina and
Suzuki in: “Process Adjustment Control Chart for Simultaneous Monitoring of
Process Capability and State of Statistical Control”. The authors propose a method
for switching from SPC to APC by combining the EWMA chart and process
capability analysis. The usefulness of such an approach is demonstrated using
real data.

Gan, Woodall, and Szarka in “Adaptive Threshold Methods for Monitoring Rates
in Public Health Surveillance” critically look at the W2r method for disease control
developed by the U.S. Centers for Disease Control and Prevention. They develop
a specially tailored adaptive threshold monitoring method which is based on a



Editorial vii

negative binomial distribution of counts, and its conversion to Z-scores through
p-values. The results give evidence that this method dominates the W2r method.

The contribution of Han, Jian, and Tsui on “Spatiotemporal Bio Sur-veillance
Under Non-homogeneous Population” discusses the spatiotemporal surveillance
problem of detecting a change in the mean of Poisson count data in a non-
homogeneous population environment. The authors investigate several likelihood
ratio-based approaches and compare them by Monte-Carlo simulations.

“Monitoring Hospital-Associated Infections with Control Charts” authored by
Mastrangelo and Gillan compares g-type and negative binomial control charts.
They find out that the g-type chart performs best if the average time between signal
events is chosen as a reasonable metric for comparison.

Yashchin thoroughly investigates the problem of monitoring warranty data
streams of computer components in his paper on “Design and Implementation of
Systems for Monitoring Lifetime Data”. In this domain the underlying lifetime
distribution undergoes abrupt changes. The emphasis is on a Cusum – based
approach and its implementation at a computer manufacturer’s site.

Abrupt change point detection is the topic of “A Robust Detection Procedure for
Multiple Change Points of Linear Trends” authored by Yasui, Noguchi and Ojima,
too. They propose a robust procedure for detecting multiple change points based on
a Epanechnikov kernel. In a simulation study the procedure performs well in terms
of the power of jump detection even when drift and outliers exist. The bandwidth is
optimized using a trial and error approach.

Gan, Lin, and Loke in “Risk-adjusted Cumulative Sum Charting Procedures”
generalize the risk adjusted cumulative sum (RA-CUSUM) chart based on the odds
ratio developed by Steiner et al. A sensitivity analysis shows that both types of
RA-CUSUM charts are sensitive to changes in the underlying distribution.

In “Bayesian Sampling Plans for Inspection by Variables” Wilrich designs a truly
Bayesian sampling plan for inspection by variables. The lot acceptance decision
is directly based on the a posteriori distribution of the fraction of nonconforming
units in the lot. A Monte-Carlo study shows that the performance of the ISO
3951 procedure (with switching rules) and the new Bayesian method do not show
essential differences, but the Bayesian competitor delivers detailed information
about the estimated probability of the fraction defectives in the lot being larger than
pAQL and the process curve.

Expensive cost of sampling in photovoltaics motivated Meisen, Pepelyshev, and
Steland to construct asymptotically optimal sampling plans with small sample
sizes for non-normal measurements. In their paper on “Quality Assessment in the
Presence of Additional Data in Photovoltaics” additional data is assumed to be
available, and the new plans are investigated by MC-simulation.

We close Part I On-line control with Iwersen’s paper “On practical Uses of ISO
standards – Two Case Studies”. It presents two case studies from the pharmaceutical
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domain. The first case presents an algorithm which reduces the sample size for
In-Process Control. The second one considers an automatic vision system running
in 100%-control.

Part II: Off-line Control

This part is started with experimental design and a paper on “Hybrid Space-
Filling Designs for Computer Experiments” written by Johnson, Montgomery,
and Kennedy. The authors give a survey and insight into how hybrid space-filling
designs perform. The designs are surveyed and compared to both solely space-filling
and solely optimal designs. A new hybrid design is proposed.

Englert, Rigdon, Borror, Montgomery, and Pan consider life testing designs
in their paper “Optimal Design for Multifactor Life Testing Experiments for
Exponentially Distributed Lifetime”. They apply genetic algorithms to find a near
optimal design for life testing experiments when there are two predictor variables,
data are as usually censored, and the response is exponentially distributed.

Göb, Lurz, and Heinemann review in their contribution entitled “Accelerated
Lifetime Testing of Thermal Insulation Elements” the physical models for thermal
insulation elements (TIEs) degradation over time. A new mixed nonlinear regression
model of degradation as a function of time and ambient temperature is proposed.
Göb et al. investigate inferential techniques for parameter estimation and lifetime
prediction, and study the design of accelerated experiments on TIEs.

Suzuki, Kawamura, Yasui, and Ojima’s paper on “Proposal of Advanced
Taguchi’s Linear Graphs for Split-Plot Experiments” is devoted to Taguchi’s linear
graphs. The authors investigate how to list all the possible linear graphs that can be
applied when using L16 orthogonal arrays. A proposal is made and many new linear
graphs are presented. They may help the practitioner for controlling the source of
variation so that the standard errors of the estimated effects can hit fixed targets.

Noguchi, Ojima, and Yasui are concerned with model selection for experimental
designs. In their paper “A Practical Variable Selection for Linear Models” they
extend the LASSO method to identify significant interaction terms mainly focusing
on the heredity principle. The proposed method is compared with ordinary LASSO
and a traditional variable selection approach.

Tsutsumi, Kawamura, and Suzuki are concerned with the detection of toxic
substances. In their paper “Capability of Detection for Poisson Distributed Mea-
surements by Normal Approximations” the capability of detection for Poisson
distributed measurements is evaluated. A best approximation method is proposed
and compared with the exact method.

Lenz and Borowski investigate data quality in business. Their paper “Business
Data Quality Control – a Step by Step Procedure” presents a step by step procedure
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for data quality assurance. A methodology and a workflow for data quality control
is developed, a corresponding metadata model discussed, and DaRT – a business
data quality reporting tool on top of Oracle’s Warehouse Builder – presented.

Sparks and OkuGami investigate data quality in science. Their paper on “Data
Quality: Algorithms for Automatic Detection of Unusual Measurements” offers
simple robust, but computationally efficient algorithms for checking the consistency
of large volumes of measured data. Estimated expected values and variances are
used to judge measurement consistency. Three-sigma control limits are applied
to flag inconsistent measurements. CUSUM and EWMA charts are advocated for
flagging consistently small biased measurements.

The paper of von Collani reconsiders uncertainty as an important concept for
quality control. In his paper “Uncertainty and Quality Control” he carefully reviews
Probability Theory, Belief, Credibility or Uncertainty Theory, and Bernouilli’s
Probability Theory. He sceptically closes by “But the various uncertainty theories
represent : : : the attempt to establish belief as a scientific category”.

The quality level of a workshop on Intelligent Statistical Quality Control is
determined by the quality of its papers. We believe that this volume truly represents
the frontiers of statistical on-line and off-line control. The editors would like to
express their deep gratitude to the members of the scientific program committee,
who carefully invited researchers from around the world and refereed all papers
submitted:

David H. Baillie, U.K., Elart von Collani, Germany, Olgierd Hryniewicz, Poland,
Hans-J. Lenz, Germany, Christina M. Mastrangelo, U.S.A, Yoshikazu Ojima, Japan,
W. Schmid, Germany, Peter-Th. Wilrich, Germany, William H. Woodall, U.S.A.

We would like to cordially thank our host at Seattle, Christina M. Mastrangelo,
who efficiently organized the tenth workshop. Moreover, we again thank
Springer/Physica-Verlag, Heidelberg, for the continuing collaboration.

Berlin, Germany Hans-J. Lenz
Frankfurt, Germany Wolfgang Schmid
Berlin, Germany Peter-Th. Wilrich
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A GLR Control Chart for Monitoring
the Process Variance

Marion R. Reynolds Jr. and Jianying Lou

Abstract This paper considers the problem of monitoring the variance of a
normally distributed process variable when the objective is to effectively detect
both small and large increases in the variance. The performance of a generalized
likelihood ratio (GLR) control chart is evaluated, where the likelihood ratio is
based on a moving window of past observations. The performance of the GLR
chart is compared to the performance of other options such as Shewhart charts,
CUSUM charts, and combinations of two CUSUM charts. It is shown that the
overall performance of the GLR chart is as good as or better than these other options.
A CUSUM chart has a tuning parameter which allows for the chart to be tuned to be
sensitive to a certain shift of interest. However, the GLR chart does not require users
to specify the values of any tuning parameters other than the size of the window and
the control limit. We recommend a specific window size, and provide a table of
control limits corresponding to specified values of the in-control average number
of samples to signal, so the GLR chart has the advantage that it can be easily
designed for use in applications. Simulating the performance of the GLR chart is
time consuming, but the GLR chart can be very well approximated with a set of
CUSUM charts, and this provides a fast method for evaluating the performance of
the GLR chart.

Keywords Average time to signal • CUSUM chart • Generalized likelihood
ratio • Shewhart chart • Statistical process control • Steady state • Surveillance
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4 M.R. Reynolds Jr. and J. Lou

1 Introduction

In many process monitoring applications it is assumed that the distribution of
observations from the process is normal with mean � and variance �2. Here we
consider the problem of detecting increases in �2. The traditional Shewhart charts
used for this problem will not be very effective if the size of the increase in �2 is
small. CUSUM and EWMA charts can be tuned to be very effective for detecting
small shifts in �2, but then these charts will not be very effective for detecting large
shifts. In applications the size of the shift in �2 that occurs will be unknown, so it is
desirable to be able to effectively detect a wide range of shift sizes.

One option for obtaining good performance over a wide range of shift sizes is to
use two or more control charts together in combination. For example, Lorden (1971)
originally investigated the use of multiple CUSUM charts, and more recent work
includes Sparks (2000) and Han et al. (2007). A disadvantage of using multiple
charts is that designing such a scheme requires that control chart parameters be
determined for multiple charts.

Another approach to obtaining a control chart that will detect different sizes of
process changes is to base the control chart on a likelihood ratio test. Such charts
are usually called generalized likelihood ratio (GLR) charts, and have been shown
to be very effective in a wide variety of settings (see, for example, Willsky and
Jones 1976; Siegmund and Venkatraman 1995; Lai 1995, 2001; Apley and Shi 1999;
Hawkins and Zamba 2005; Han et al. 2007; Reynolds and Lou 2010). GLR charts
are usually perceived to be computationally intensive, and have not received as much
attention in statistical process control (SPC) applications as Shewhart, CUSUM, and
EWMA charts.

The objective of this paper is to evaluate a GLR control chart for monitoring �2,
and show that this GLR chart provides a very attractive option for detecting a wide
range of shifts in �2. The GLR chart is very easy to design for use in applications
because it does not require that users specify control chart parameters other than the
control limit which can be found from a table provided in this paper. The fact that
multiple control chart parameters do not need to be specified means that there is no
flexibility in the design of the GLR chart, but this lack of flexibility can actually be
an advantage because practitioners can obtain very effective detection of shifts in
�2 without having to specify multiple control chart design parameters.

2 The GLR Control Chart for Monitoring the Process
Variance

Suppose that the process variable X being measured has a N.�; �2/ distribution,
and when the process is in control the distribution is a N.�0; �20 / distribution. We
assume that the in-control values �0 and �20 are known or have been estimated
accurately enough during a Phase I period that any error in estimation can be
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neglected. Consider the problem of real-time monitoring in Phase II, where the
objective is to detect any special cause that produces a small or large shift in �2

to a value above �20 . We are assuming here that there is no change in �; a GLR chart
for detecting changes in � was recently evaluated by Reynolds and Lou (2010).

Suppose that independent samples each consisting of n � 1 observation are
taken from the process using a sampling interval of d between samples. Let Xk D
.Xk1; Xk2; : : : ; Xkn/ represent the sample at sampling point k. Numerical results are
presented here for two values of n; n D 1 corresponding to the common practice of
taking individual observations from the process, and n D 4 which is representative
of the traditional practice of taking small samples of around 4 or 5 from the process.
When n D 1 we use d D 1:0, and when n D 4 we use d D 4:0, so that in both
cases the sampling rate is 1.0 observations per unit time.

After sample k is obtained the available data consists of X1;X2; : : : ;Xk .
Consider the hypothesis that a shift in �2 to some value �21 > �20 has occurred
at some time between samples � and � C 1, where � < k (with no change in � from
�0/. Then the observations in samples X1;X2; : : : ;X� have aN.�0; �20 / distribution,
and the observations in samples X�C1;X�C2; : : : ;Xkhave a N.�0; �21 / distribution.
Under the hypothesis of no shift in �2, the observations in all k samples have a
N.�0; �

2
0 / distribution, and a log likelihood ratio statistic for testing for a shift in

�2 is

Rk D ln max
0��<k;�20<�

2
1<1

.2�/
�n.k��/=2

�
�21
��n.k��/=2

exp

 

� 1

2�21

kP

iD�C1

nP

jD1

�
Xij � �0�2
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�n.k��/=2

�
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!

D max
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2
1<1

kX

iD�C1

n

2
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4
�
��2
0 � ��2

1

�
0

@ 1
n

nX

jD1

.Xij � �0/2
1

A� ln

 
�21

�20

!3

5: (1)

If there has been a shift to some unknown �21 between samples � and �C1, then the
maximum likelihood estimator of �21 under the restriction �21 � �20 is

O�2
1;�;k

D max

8
<

:
�20 ;

1

n.k � �/

kX

iD�C1

nX

jD1
.Xij � �0/

2

9
=

;
: (2)

Using Eq. 2, Rk in Eq. 1 reduces to

Rk D max
0��<k

n.k � �/
2

" O�21;�;k
�20

� 1 � ln

 O�21;�;k
�20

!#

: (3)

Using Rk in this form requires taking the maximum over 0 � � < k, and, to ease
the computational burden when k is large, we use a window of the past m samples
(see Willsky and Jones 1976). In particular, let Rm;k be the value of likelihood ratio
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when the maximum is taken over 0 � � < k when k � m and over k �m � � < k

when k > m. This means that a maximum ofm past sample values need to be stored
when applying the GLR chart. A signal is given at sample k if Rm;k > hGLR, where
the control limit hGLR can be chosen to give specified in-control performance.

3 The Average Time to Signal

When the process is in control we use the average time to signal (ATS), which is the
expected time from the start of monitoring until a signal, as the measure of the rate
of false alarms. When there is a shift in �2 we use the steady state ATS (SSATS)
as the measure of the time required to detect the shift. The SSATS is based on the
assumption that control chart statistics have reached their steady state distributions
by the time that the shift in �2 occurs. The SSATS is also based on the assumption
that when the shift in sigma occurs in the interval between samples � and � C 1,
the time at which the shift occurs in this interval is uniformly distributed on this
interval.

Most of the evaluations of ATS and SSATS values in this paper were done using
simulation with 1,000,000 runs. In the evaluations and comparisons done here we
choose the control limits of the charts so that the in-control ATS is 1481.6 time units
(the value 1481.6 has been recently used, for example, by Reynolds and Stoumbos
(2004) and Reynolds and Lou (2010)). We assumed that � D 400=n in simulating
the SSATS values given here.

4 Choosing the Window Size of the GLR Chart

For the case of n D 4 and d D 4:0, Table 1 gives SSATS values for shifts in �2

for values of m ranging from 1 to 10,000. The size of the shift is expressed in terms
of  , where

 D �

�0
:

For each value of m the control limit hGLR was adjusted to give an in-control
ATS of 1481.6 (the actual values given in the row of Table 1 corresponding to
 D 1:0 vary slightly from 1481.6 due to simulation error). The column labeled [1]
in Table 1 is for the case of m D 1 and in this case the GLR chart is equivalent
to a Shewhart chart based on

Pn
jD1 .Xkj � �0/

2=n. Column [9] corresponds to
the very large value m D 10; 000, and the performance of the GLR chart in this
case is presumably close to what would be obtained without using a window (using
mD 1).
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Table 1 The effect of m on the SSATS of the GLR chart when n D 4 and d D 4:0

m D 1 5 10 25 50 100 200 300 10,000

 [1] [2] [3] [4] [5] [6] [7] [8] [9]

1.00 1481.71 1481.58 1481.58 1481.60 1481.59 1481.68 1481.61 1481.55 1481.53

1.10 427.13 316.24 279.48 243.71 226.90 217.61 214.50 214.26 214.26

1.20 168.60 109.04 93.48 82.25 79.02 78.37 78.35 78.37 78.37

1.40 47.23 30.52 27.96 27.18 27.20 27.22 27.23 27.24 27.24

1.60 20.94 15.13 14.74 14.80 14.84 14.86 14.87 14.87 14.87

1.80 12.01 9.69 9.69 9.78 9.81 9.83 9.83 9.83 9.83

2.00 8.07 7.07 7.14 7.21 7.23 7.24 7.25 7.25 7.25

2.40 4.80 4.63 4.68 4.72 4.74 4.74 4.74 4.75 4.75

3.00 3.19 3.22 3.25 3.27 3.28 3.28 3.28 3.28 3.28

5.00 2.18 2.20 2.21 2.21 2.21 2.21 2.21 2.21 2.21

7.00 2.05 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.06

10.00 2.01 2.01 2.01 2.02 2.02 2.02 2.02 2.02 2.02

15.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

hGLR D 3.3250 3.9722 4.1105 4.2023 4.2303 4.2410 4.2443 4.2448 4.2451

Table 2 The effect of m on the SSATS of the GLR chart when n D 1 and d D 1:0

m D 1 20 40 100 200 400 800 1,200 40,000

 [1] [2] [3] [4] [5] [6] [7] [8] [9]

1.00 1481.61 1481.61 1481.51 1481.54 1481.68 1481.58 1481.68 1481.54 1481.58

1.10 500.43 339.13 307.17 272.87 254.24 242.61 238.04 237.54 237.49

1.20 216.53 118.25 103.02 90.34 86.25 85.28 85.21 85.22 85.22

1.40 65.45 32.56 29.77 28.69 28.65 28.65 28.65 28.65 28.66

1.60 29.26 15.88 15.36 15.32 15.34 15.35 15.36 15.36 15.36

1.80 16.47 10.05 9.98 10.01 10.03 10.03 10.04 10.04 10.04

2.00 10.71 7.24 7.25 7.29 7.31 7.31 7.31 7.31 7.31

2.40 5.88 4.59 4.62 4.65 4.66 4.66 4.66 4.66 4.66

3.00 3.39 2.97 2.99 3.01 3.01 3.01 3.01 3.01 3.01

5.00 1.51 1.49 1.50 1.50 1.50 1.50 1.50 1.50 1.50

7.00 1.09 1.10 1.11 1.11 1.11 1.11 1.11 1.11 1.11

10.00 0.86 0.87 0.88 0.88 0.88 0.88 0.88 0.88 0.88

15.00 0.72 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73

hGLR D 4.0557 4.9931 5.0686 5.1187 5.1341 5.1402 5.1422 5.1425 5.1427

Table 2 gives SSATS values for the case of n D 1 and d D 1:0 for m ranging
from 1 up to 40,000. Except for column [1] in Tables 1 and 2 where m D 1, the
value of m in columns [2]–[9] in Table 2 is four times the corresponding value in
Table 1, so that the total number of observations in a window (nm) is the same in
both tables.

From Tables 1 and 2 we see that using m D 1 (which is a Shewhart chart)
gives very bad performance for detecting small increases in �2, and performance for
detecting small increases in �2 improves as m increases. Detecting small increases
in �2 requires a relatively large number of observations, so a relatively large value
of m is required. It appears that m D 200 in Table 1 and m D 800 in Table 2 (each
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corresponding to a total of 800 observations) is large enough that detection of shifts
as small as  D 1:10 is essentially as fast as whenm is much larger.

The values of hGLR in the last row of Tables 1 and 2 increase as m increases.
Detecting very large shifts in �2 requires only a few observations, so a small value
ofmwith the corresponding small value of hGLR will be better in this case. However,
a large value of m is only slightly worse than small values of m for detecting very
large shifts. We conclude that the best overall performance for detecting a wide
range of shifts in �2 is achieved by using a relatively large value of m, such as
m D 800=n. Once the appropriate software is available, the GLR statistic with
this value of m could be calculated and plotted very quickly as each new sample is
obtained, so computational issues should not be a problem when actually applying
the GLR chart.

5 Choosing the Control Limit of the GLR Chart

For the case in which mD 800=n and nD 1–5, Table 3 gives values of hGLR

corresponding to some in-control values of the average number of samples to
signal (ANSS) ranging from 50 up to 2,000 (the in-control ATS is then given
by ATS Dd � ANSS/. The value of hGLR is the only parameter that needs to
be determined in order to use the GLR chart (assuming that mD 800=n will be
used). It turns out that hGLR is approximately a linear function of the log of the in-
control ANSS, so linear interpolation using the log of the ANSS can be used when
necessary.

Table 3 Values of hGLR for the GLR chart for an increase in �2 with m D 800=n corresponding
to specified values of the in-control ANSS

n D 1 n D 2 n D 3 n D 4 n D 5

In-control ANSS m D 800 m D 400 m D 266 m D 200 m D 160

50 1.6168 1.8796 2.0075 2.0885 2.1453
75 1.9961 2.2810 2.4203 2.5070 2.5678
100 2.2760 2.5750 2.7209 2.8118 2.8755
200 2.9791 3.3079 3.4657 3.5639 3.6322
300 3.4053 3.7459 3.9092 4.0105 4.0808
500 3.9531 4.3072 4.4740 4.5774 4.6483
750 4.3944 4.7540 4.9244 5.0285 5.1007
1,000 4.7073 5.0718 5.2430 5.3470 5.4207
1,500 5.1559 5.5194 5.6913 5.7962 5.8673
2,000 5.4727 5.8364 6.0085 6.1125 6.1843
3,000 5.9162 6.2806 6.4531 6.5565 6.6275
5,000 6.4716 6.8390 7.0098 7.1140 7.1869
7,500 6.9108 7.2818 7.4536 7.5572 7.6254
10,000 7.2232 7.5935 7.7637 7.8696 7.9359
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6 CUSUM Control Charts for Monitoring the Process
Variance

We now consider the performance of the GLR chart relative to traditional Shewhart
and CUSUM charts. CUSUM charts (see, for example, Hawkins and Olwell 1998
or Montgomery 2009) for monitoring �2 are equivalent to applying a sequence of
sequential probability ratio tests for testing H0 W �2 D �20 against H1 W �2 D �21 ,
where �21 corresponds to a shifted value of �2 that should be detected quickly. Note
that in the CUSUM chart some value for �21 must be specified, even though the
actual value of the shift is unknown, so �21 serves as a tuning parameter for the
CUSUM chart. In contrast, �21 in the GLR chart is estimated using O�2

1;O� ;k as samples
are obtained from the process.

The increment accumulated in the CUSUM statistic at sample k is

ln
f .Xkj�21 /
f .Xkj�20 /

D n

2

2

4
�
��20 � ��21

�
0

@1
n

nX

jD1
.Xkj � �0/2

1

A � ln

�
�21
�20

�
3

5 (4)

The CUSUM chart signals if the sum of these increments from the previous
minimum to the current sample exceeds a control limit hC . Thus, the chart signals
if Ck > hC , where

Ck D max
0��<k

kX

iD�C1

n

2

2

4
�
��20 � ��21

�
0

@1
n

nX

jD1
.Xij � �0/

2

1

A � ln

�
�21
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�
3

5: (5)

Define C0 as C0 D 0 so that this CUSUM statistic can conveniently be written as

Ck D max f0; Ck�1g C n

2

2

4
�
��20 � ��21

�
0

@ 1
n

nX

jD1
.Xkj � �0/2

1

A � ln

�
�21
�20

�
3

5 :

(6)
In practice the CUSUM statistic for monitoring �2 is usually expressed in a different
form by dividing all terms in Eq. 6 by the constant n.��20 � ��21 /=2. This results in
a CUSUM statistic, say C 0k , given by

C 0k D 2Ck

n.��20 � ��21 /
D maxf0; C 0k�1g C

2

4

0

@1
n

nX

jD1
.Xkj � �0/2

1

A� ln.�21 =�
2
0 /

.��20 � ��21 /

3

5 :

(7)
A signal is given if C 0k > h0C , where h0C D 2hC=.n.�

�2
0 � ��21 //. Here we use

the CUSUM statistic in the form Eqs. 5 and 6 with control limit hC to show the
relationship to the GLR chart statistic Rk in Eq. 1. We will call this control chart
the CUSUM.X2/ chart because it is based on the squares of the deviations of the
observations from the target �0.
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When n>1, control charts for monitoring �2 are frequently based on the sample
variances S21 ; S

2
2 ; : : : ; S

2
k . The CUSUM chart based on these statistics is of the

same form as in Eqs. 6 or 7 except that
Pn

jD1 .Xkj � �0/2=n is replaced with

S2k D Pn
jD1 .Xkj � NXk/2=.n� 1/. Call this chart the CUSUM.S2/ chart. Shewhart

charts can be based on S2k or on
Pn

jD1 .Xkj � �0/
2=n, and here we represent these

Shewhart charts as special cases of CUSUM charts with hC D 0 and the appropriate
value of �21 .

7 Comparisons of Charts

Table 4 gives SSATS values for the GLR chart (in column [1]), five CUSUM.S2/
charts (columns [2]–[6]), and a Shewhart chart based on S2k (column [7]) for the
case of n D 4 and d D 4:0. The tuning parameter �21 in the CUSUM charts is
expressed in terms of

 1 D �1

�0
:

We see that the GLR chart is uniformly better than all of the other charts in Table 4.
Table 5 gives SSATS values for the GLR chart, five CUSUM.X2/ charts, and a

Shewhart chart based on
Pn

jD1 .Xkj � �0/2=n for the case of n D 4 and d D 4:0.
We see that if 1 is very small then the CUSUM.X2/will perform a little better than
the GLR chart for small shifts, but will be worse than the GLR chart for intermediate

Table 4 SSATS values for the GLR chart, CUSUM.S2/ charts, and the Shewhart.S2/ chart for
the case of n D 4 and d D 4:0

GLR CUSUM.S2/ Shewhart.S2/
 1 D – 1.20 1.50 2.00 3.00 4.00 10.35
 [1] [2] [3] [4] [5] [6] [7]

1.00 1481.61 1481.65 1481.47 1481.69 1481.61 1481.55 1481.60
1.10 214.50 224.36 298.30 372.56 432.97 454.18 469.33
1.20 78.35 86.10 105.97 138.02 171.81 185.60 197.40
1.40 27.23 33.53 33.96 39.99 49.44 54.33 59.42
1.60 14.87 19.84 18.44 19.71 22.89 24.84 27.23
1.80 9.83 13.80 12.33 12.48 13.72 14.60 15.84
2.00 7.25 10.48 9.20 9.03 9.54 9.98 10.67
2.40 4.74 7.00 6.08 5.81 5.90 6.03 6.28
3.00 3.28 4.71 4.15 3.95 3.91 3.94 4.01
5.00 2.21 2.68 2.51 2.45 2.42 2.42 2.42
7.00 2.06 2.26 2.20 2.17 2.16 2.16 2.16
10.00 2.02 2.10 2.07 2.06 2.06 2.06 2.06
15.00 2.00 2.03 2.02 2.02 2.02 2.02 2.02
hGLR D 4.2443 – – – – – –
hC D – 3.0505 3.7292 3.7213 3.1399 2.5300 0
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Table 5 SSATS values for the GLR chart, CUSUM.X2/ charts, and the Shewhart.X2/ chart for
the case of n D 4 and d D 4:0

GLR CUSUM.X2/ Shewhart.X2/

 1 D – 1.20 1.50 2.00 3.00 4.00 7.34
 [1] [2] [3] [4] [5] [6] [7]

1.00 1481.61 1481.66 1481.51 1481.51 1481.48 1481.63 1481.60
1.10 214.50 192.79 266.57 342.91 401.17 418.34 425.74
1.20 78.35 70.85 89.04 119.93 151.24 162.39 167.96
1.40 27.23 27.09 27.27 32.54 40.82 44.64 47.10
1.60 14.87 15.95 14.61 15.65 18.29 19.79 20.91
1.80 9.83 11.06 9.73 9.81 10.78 11.43 12.00
2.00 7.25 8.37 7.23 7.06 7.45 7.76 8.06
2.40 4.74 5.58 4.79 4.57 4.62 4.70 4.80
3.00 3.28 3.79 3.33 3.18 3.15 3.17 3.19
5.00 2.21 2.33 2.23 2.19 2.18 2.18 2.18
7.00 2.06 2.10 2.06 2.05 2.05 2.05 2.05
10.00 2.02 2.03 2.02 2.01 2.01 2.01 2.01
15.00 2.00 2.01 2.00 2.00 2.00 2.00 2.00
hGLR D 4.2443 – – – – – –
hC D – 3.2395 3.8466 3.7247 2.9185 2.0979 0

Table 6 SSATS values for the GLR chart, CUSUM.X2/ charts, and the Shewhart.X2/ chart for
the case of n D 1 and d D 1:0

GLR CUSUM.X2/ Shewhart.X2/

 1 D – 1.20 1.50 2.00 3.00 4.00 323.26
 [1] [2] [3] [4] [5] [6] [7]

1.00 1481.68 1481.59 1481.37 1481.39 1481.61 1481.59 1481.60
1.10 238.04 192.92 265.98 342.15 407.50 437.07 599.96
1.20 85.21 71.10 89.09 119.75 154.14 171.58 216.33
1.40 28.65 27.33 27.52 32.79 41.80 47.35 65.41
1.60 15.36 16.15 14.83 15.91 18.83 20.94 29.25
1.80 10.04 11.22 9.91 10.02 11.14 12.09 16.47
2.00 7.31 8.49 7.36 7.21 7.68 8.16 10.71
2.40 4.66 5.62 4.81 4.57 4.65 4.81 5.88
3.00 3.01 3.69 3.17 2.97 2.94 2.98 3.39
5.00 1.50 1.80 1.59 1.50 1.46 1.46 1.51
7.00 1.11 1.28 1.17 1.11 1.09 1.08 1.09
10.00 0.88 0.98 0.92 0.88 0.87 0.86 0.86
15.00 0.73 0.79 0.75 0.73 0.72 0.72 0.72
hGLR D 5.1422 – – – – – –
hC D – 3.5009 4.4225 6.2921 4.6077 4.3942 0

and large shifts. On the other hand, a CUSUM.X2/ chart with a large value of  1
will perform well for large shifts but not for small shifts.

Table 6 gives SSATS values of the GLR chart, five CUSUM.X2/ charts, and a
Shewhart chart based on .Xk � �0/

2 for the case of n D 1 and d D 1:0. When



12 M.R. Reynolds Jr. and J. Lou

n D 1 charts based on S2 cannot, of course, be used. The conclusion from Table 6
is similar to the conclusion from Table 5; the CUSUM.X2/ chart can be tuned to be
better than the GLR chart in a relatively narrow range of values of  , but then the
GLR chart will be better for other values of  .

Comparing the SSATS values for the GLR and CUSUM charts in Tables 5 and 6
shows that using n D 4 and d D 4:0 is a little better than using n D 1 and d D 1:0

for small shifts, but is much worse for large shifts. It appears that it would be better
overall to use n D 1 and d D 1:0 unless large shifts are considered to be unlikely
to occur.

8 A Combination of Two CUSUM(X2) Charts

The CUSUM.X2/ does not perform well over a wide range of shifts, so next
consider the use of a combination of two CUSUM.X2/ charts, where one chart
is tuned to detect small shifts and the other to detect larger shifts. Table 7 gives
some SSATS values for this combination for the case of n D 4 and d D 4:0,
where the two values of  1 are labeled  11 and  12. The values of hC for the two
CUSUM.X2/ charts are taken to be equal.

From Table 7 we see that using the combination of two CUSUM.X2/ charts
gives performance close to the GLR chart, with the combination a little better for
some values of  and the GLR chart a little better for other value of  . Table 8 has

Table 7 SSATS values for the GLR chart and a combination of two CUSUM(X2/ charts for the
case of n D 4 and d D 4:0

GLR Two CUSUM(X2/ Charts
 11 D – 1.2 1.2 1.5 1.5
 12 D – 2.0 3.0 2.0 3.0
 [1] [2] [3] [4] [5]

1.00 1481.61 1481.51 1481.59 1481.60 1481.67
1.10 214.50 210.59 225.20 217.20 227.98
1.20 78.35 78.23 85.97 75.97 79.24
1.40 27.23 26.77 28.93 26.57 27.43
1.60 14.87 14.78 15.00 14.86 14.92
1.80 9.83 9.94 9.72 10.01 9.81
2.00 7.25 7.43 7.12 7.49 7.21
2.40 4.74 4.94 4.66 4.97 4.73
3.00 3.28 3.41 3.24 3.43 3.27
5.00 2.21 2.24 2.21 2.25 2.21
7.00 2.06 2.07 2.06 2.07 2.06
10.00 2.02 2.02 2.01 2.02 2.02
15.00 2.00 2.00 2.00 2.00 2.00
hGLR D 4.2443 – – – –
hC D – 3.8225 3.9187 3.8751 4.0483
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Table 8 SSATS values for the GLR chart and a combination of two CUSUM(X2/ charts for the
case of n D 1 and d D 1:0

GLR Two CUSUM.X2/ Charts
 11 D – 1.2 1.2 1.5 1.5
 12 D – 2.0 3.0 2.0 3.0
 [1] [2] [3] [4] [5]

1.00 1481.68 1481.65 1481.60 1481.54 1481.67
1.10 238.04 217.53 242.54 221.74 241.81
1.20 85.21 79.62 90.80 77.19 83.09
1.40 28.65 26.99 29.45 26.85 28.16
1.60 15.36 14.96 15.21 15.02 15.14
1.80 10.04 10.09 9.87 10.15 9.92
2.00 7.31 7.54 7.22 7.58 7.28
2.40 4.66 4.95 4.66 4.94 4.69
3.00 3.01 3.27 3.05 3.28 3.07
5.00 1.50 1.63 1.54 1.63 1.55
7.00 1.11 1.19 1.13 1.19 1.14
10.00 0.88 0.93 0.90 0.93 0.90
15.00 0.73 0.76 0.74 0.76 0.74
hGLR D 5.1422 – – – –
hC D – 4.2970 4.6604 4.3348 4.7310

SSATS values for the same situation as Table 7, except that n D 1 and d D 1:0.
The conclusion from Table 8 is similar to the conclusion from Table 7.

9 The GLR Chart as an Infinite Combination of CUSUM
Charts

We see from Eq. 1 that the GLR statistic is the maximum over �21 of the CUSUM
statistics in Eq. 5, so the GLR chart without the window is equivalent to applying
an infinite number of CUSUM charts and signaling if any CUSUM chart signals.
Lorden (1971) has shown that the GLR chart is optimal in the sense that, asymp-
totically as hGLR ! 1, the expected time for the GLR chart to detect a shift to a
specific �21 is the same as the expected detection time for the CUSUM chart which
has been tuned to detect this specific shift.

The control limit hGLR used for the GLR chart is the one control limit for each
of the infinite number of CUSUM charts that make up the GLR chart. Thus, the
GLR chart is equivalent to an infinite number of CUSUM charts, with the CUSUM
charts based on different values of �21 , but having the same control limit hGLR. Note,
however, that the CUSUM statistic is traditionally expressed in the form C 0k in Eq. 7
with control limit h0C D 2hC=.n.�

�2
0 ���21 //. If hC , which corresponds to the form

for hGLR in the GLR chart, is constant for all �21 , then h0C for the form C 0k changes
as �21 changes.
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The fact that the GLR chart is equivalent to the use of an infinite number of
CUSUM charts suggests that the GLR chart could be approximated by a finite
number of CUSUM charts. Here we consider using many CUSUM charts to obtain
a very close approximation to the GLR chart.

We first show that the GLR chart is equivalent to a countable set of CUSUM
charts with �21 values that fall within a specific range. From Eq. 1 we see that the
GLR chart without the window signals at sample k if, for some 0 � � < k and
some �21 > �

2
0 , we have

n.k � �/

2

�
��20 � ��21

�
0

@ 1

n.k � �/
kX

iD�C1

nX

jD1
.Xij � �0/

2

1

A

� n.k � �/

2
ln

�
�21
�20

�
> hGLR;

which is equivalent to

2hGLR C n.k � �/ ln.�21 =�
2
0 /

n.k � �/.��20 � ��21 /
<

1

n.k � �/
kX

iD�C1

nX

jD1
.Xij � �0/

2: (8)

For a given value of k � � , the left hand side of Eq. 8 is minimized with respect to
�21 when

n.k � �/

2

�
�21
�20

� 1 � ln

�
�21
�20

��
D hGLR : (9)

If the GLR chart signals at sample k because some �21 satisfies Eq. 8 for some value
of k � � , then it follows that there must be a �21 satisfying Eq. 9 that also satisfies
Eq. 8 for the given value of k � � (because the solution of Eq. 9 gives the minimum
of the left hand side of Eq. 8). The possible values of k � � are 1; 2; 3; : : :, so this
implies that the GLR chart without a window will be equivalent to a countable set
of CUSUM charts based on values of �21 satisfying

ni

2

�
�21
�20

� 1 � ln

�
�21
�20

��
D hGLR; i D 1; 2; 3; : : : : (10)

A signal by the GLR chart may correspond to a signal by many of the CUSUM
charts that make up the GLR chart, but among these CUSUM charts that signal,
there will always be at least one that has �21 of the form in Eq. 10 for some i D
1; 2; 3; : : : .

The maximum value of the �21 values from Eq. 10, say �21;max, occurs when i D 1,
so the values of �21 that need to be considered when approximating the GLR chart
with a set of CUSUM charts are values in the interval .�20 ; �

2
1;max�. In approximating



A GLR Control Chart for Monitoring the Process Variance 15

the GLR chart we cannot use all of the �21 values in a countable set of values,
so instead we use a finite set of �21 values spaced over the interval .�20 ; �

2
1;max�.

It appears that the �21 values need to be spaced more closely together when �21 is
close to �20 , but can be more widely spaced for larger values of �21 . To investigate
this approximation we considered a spacing of �21 values determined by the function
�21 .i/ D �20 C .�21;max � �20 /i

2=r2, i D 1; 2; : : : ; r , where r is the number of values
of �21 in .�20 ; �

2
1;max�.

We simulated this approximation to the GLR chart using various values of r ,
and the results are given in Table 9 for the case of nD 4, and in Table 10 for
the case of nD 1. Column [1] in Table 9 has ATS and SSATS values for the
GLR chart with mD 200 that was used in previous tables. The GLR chart that
is being represented by an infinite number of CUSUM charts is the GLR chart
without a window .mD 1/, so column [2] has ATS and SSATS values for the GLR
chart with mD 10,000, which is presumably essentially the same as the GLR chart
with mD 1. Columns [3]–[8] in Table 9 have ATS and SSATS values for sets of
CUSUM charts with values of r ranging from 5 up to 200. The control limit used
for these sets of CUSUM charts is the same control limit used for the GLR chart
in column [2]. In Table 10 column [2] has the GLR chart with mD 40,000, and
columns [3]–[8] have sets of CUSUM charts with values of r ranging from 20 up
to 800.

We see from Tables 9 and 10 that an excellent approximation to the GLR chart
can be obtained as long as r is not too small. For practical applications, a relatively
small value of r would be quite adequate, but a larger value would be needed

Table 9 The SSATS values for the GLR chart and approximating CUSUM charts for the case of
n D 4 and d D 4:0

GLR GLR A set of r CUSUM(X2/ charts
m D 200 10,000 – – – – – –
r D – – 5 10 25 50 100 200
 [1] [2] [3] [4] [5] [6] [7] [8]

1.00 1481.61 1481.53 1586.90 1505.54 1486.82 1482.39 1481.76 1481.60
1.10 214.50 214.26 229.05 218.49 214.94 214.37 214.22 214.12
1.20 78.35 78.37 81.77 79.07 78.47 78.37 78.30 78.33
1.40 27.23 27.24 27.68 27.37 27.23 27.21 27.21 27.21
1.60 14.87 14.87 15.03 14.89 14.88 14.88 14.88 14.88
1.80 9.83 9.83 9.91 9.86 9.84 9.84 9.84 9.84
2.00 7.25 7.25 7.28 7.25 7.25 7.25 7.25 7.24
2.40 4.74 4.75 4.76 4.75 4.74 4.75 4.75 4.75
3.00 3.28 3.28 3.28 3.28 3.28 3.28 3.28 3.28
5.00 2.21 2.21 2.21 2.21 2.21 2.21 2.21 2.21
7.00 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.06
10.00 2.02 2.02 2.02 2.02 2.02 2.02 2.02 2.02
15.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
hGLR D 4.2443 4.2451 – – – – – –
hC D – 4.2451 4.2451 4.2451 4.2451 4.2451 4.2451
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Table 10 The SSATS values for the GLR chart and approximating CUSUM charts for the case of
n D 1 and d D 1:0

GLR GLR A Set of r CUSUM(X2/ Charts
m D 800 40,000 – – – – – –
r D – – 20 40 100 200 400 800
 [1] [2] [3] [4] [5] [6] [7] [8]

1.00 1481.68 1481.58 1495.04 1485.07 1482.04 1481.70 1481.60 1481.58
1.10 238.04 237.49 241.42 238.49 237.66 237.55 237.33 237.32
1.20 85.21 85.22 85.76 85.24 85.05 85.05 85.17 85.17
1.40 28.65 28.66 28.76 28.68 28.66 28.64 28.63 28.63
1.60 15.36 15.36 15.39 15.37 15.36 15.36 15.38 15.38
1.80 10.04 10.04 10.04 10.05 10.04 10.04 10.03 10.03
2.00 7.31 7.31 7.32 7.30 7.32 7.32 7.32 7.32
2.40 4.66 4.66 4.66 4.66 4.65 4.65 4.66 4.66
3.00 3.01 3.01 3.02 3.01 3.02 3.01 3.02 3.02
5.00 1.50 1.50 1.50 1.51 1.51 1.51 1.51 1.51
7.00 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11
10.00 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88
15.00 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73
hGLR D 5.1422 5.1427 – – – – – –
hC D – – 5.1427 5.1427 5.1427 5.1427 5.1427 5.1427

for a research study doing precise comparisons of control charts. The advantage
to representing the GLR chart as an infinite set of CUSUM charts is that it is
much faster to simulate the set of CUSUM charts. Note however, that practitioners
would not need to do any simulation in order to use the GLR chart, so the issue of
simulation pertains to research studies.

For practical applications of the GLR chart, software could be designed to store
the past m sample values and use these to compute the GLR statistic as each new
sample is obtained. Alternately, software could be designed to use r CUSUM charts
in the form Eq. 6, with r large enough to give a good approximation to the GLR
chart. The form Eq. 6 allows the r CUSUM charts to have the same control limit
.hC D hGLR/. It would not be feasible or desirable to plot all of the r CUSUM
statistics, so the maximum of these statistics could be plotted on the control chart.

10 Conclusions

We have shown that the GLR chart is effective for detecting a wide range of shifts in
the process variance. Its overall performance is at least as good as the performance
of other options for detecting a wide range of shifts, such as a combination of two
charts.

The GLR chart has the advantage that it does not require the user to specify the
values of multiple control chart parameters, and this greatly simplifies the design of
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the GLR chart. To design the GLR chart for an application all that the user has to
do is specify the in-control ATS, and then look up the control limit in Table 3 of
this paper. Once software is in place to actually compute and plot the GLR statistic,
using the GLR chart requires no particular sophistication on the part of the user.

The approach used here for developing a GLR chart for monitoring the process
variance can be used for other process parameters. For example, Reynolds and Lou
(2010) recently evaluated a GLR chart for monitoring the process mean. Work is in
progress on developing a GLR chart for simultaneously monitoring the mean and
variance.
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On the Robustness of the Shewhart Control
Chart to Different Types of Dependencies
in Data

Olgierd Hryniewicz

Abstract Shewhart control charts were originally designed under the assumption
of independence of consecutive observations. In the presence of dependence the
authors usually assume dependencies in the form of autocorrelated and normally
distributed data. However, there exist many other types of dependencies which are
described by other mathematical models. The question arises then, how classical
control charts are robust to different types of dependencies. This problem has been
sufficiently well discussed for the case of autocorrelated and normal data. In the
paper we use the concept of copulas to model dependencies of other types. We use
Monte Carlo simulation experiments to investigate the impact of type and strength
of dependence in data on the value of the ARL of Shewhart control charts.

Keywords Shewhart control charts • Correlated data • Copulas • ARL

1 Introduction

Statistical process control (SPC) is a collection of statistical methods used by
thousands of practitioners who are striving to achieve continuous improvement in
quality. This objective is accomplished by continuous monitoring of the process
under study in order to quickly detect the occurrence of assignable causes. The
Shewhart NX control chart, known for more than 80 years, is the most popular
SPC method used to detect whether observed process is under control. Its classical
and internationally standardized version is designed under the assumption that
process measurements are described by independent and identically distributed
random variables. In the majority of practical cases these assumptions are fulfilled at
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least approximately. However, there exist production processes where consecutive
observations are obviously correlated, e.g. in case of certain continuous production
processes. The presence of correlations between consecutive measurements should
be taken into account during the design of control charts. This need was already
noticed in the 1970s, see e.g. the papers by Johnson and Bagshaw (1974) and
by Vasilopoulos and Stamboulis (1978), but the problem was widely discussed in
papers published in the late 1980s and in the 1990s.

One of the visible effects of autocorrelation in observed process data is the
significant difference between statistical properties of control charts designed for
independent and dependent data. There exist several approaches for dealing with
this problem. First approach, historically the oldest one, consists in dealing with
original data and adjusting control limits of classical control charts. This approach
was used, for example, in papers by Reynolds Jr. and co-authors (Lu and Reynolds,
1999a,b, 2001; VanBrackle and Reynolds, 1997; Schmid, 1995, 1997; Vasilopoulos
and Stamboulis, 1978; Zhang, 1998). Other approaches are based on the concept
of residuals (see the papers by Alwan and Roberts (1988) or by Montgomery and
Mastrangelo (1991)) or on monitoring statistics related to autocorrelations (see the
papers by Yourstone and Montgomery (1991) or by Jiang et al. (2000)). There
also exist more sophisticated methods for dealing with SPC autocorrelated data.
An overview of SPC methods used for autocorrelated data can be found in papers
by Wardell et al. (1994), Lu and Reynolds (1999a) and Knoth et al. (2001).

While dealing with correlated data we cannot rely, even in the case of classical
control charts, on the methods used for the estimation of their parameters in case
independent observations. Some corrections are necessary, as it was mentioned e.g.
in the paper by Maragah and Woodall (1992). Another problem with the application
of the procedures designed to control autocorrelated data is the knowledge of
the structure of correlation. In the majority of papers it is assumed that the type
of a stochastic process that describes the process data is known. Moreover, it
is also assumed that the parameters of this stochastic process are also known.
However, Lu and Reynolds (1999a, 2001) have shown that precise estimation of
such parameters requires at least hundreds of observations.

All these problems, noticed by many authors, make the SPC with dependent
data very difficult, especially for not well-trained in statistics practitioners who
need efficient tools to discriminate between complicated problems with dependent
data and relatively simple problems when observed data are independent. This
problem was considered in the paper by Hryniewicz and Szediw (2010) who
proposed a relatively simple and efficient nonparametric tool, named by them the
Kendall control chart, for testing hypotheses about independence of SPC data.
While discussing the properties of this tool they noticed that the type of existing
dependence plays a crucial role. In this paper we continue the work along that line
by analyzing the properties of Shewhart control charts when data are generated by
different variants of a simple autoregression model. The mathematical model that
describes serial dependence between consecutive observations of a process in terms
of copulas is described in the second section of the paper. In the third section we
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present the results of Monte Carlo simulation experiments which show very strong
dependence of statistical properties of control charts upon the type and the strngth of
dependence. Conclusions derived from these results are presented in the last section
of the paper.

2 Mathematical Models of Dependence Between Consecutive
Observations on a Control Chart

Mathematical models used for the description of dependent random variables are
well known for many years. In the simplest two-dimensional case we are interested
in the description of dependence between two random variables X and Y having
marginal distributions described by cumulative probability functions F.x/ and
G.y/, respectively. In the context of the considered in this paper time-dependent
observations we can, in the simplest case, set X D Xt and Y D XtC1, where
Xt; t D 1; 2; : : : is the time series representing consecutive observations of the
process under consideration. In his fundamental work Sklar (1959) showed that
for a two-dimensional probability distribution function H.X; Y / with marginal
distribution functions F.X/ andG.Y / there exists a copula C such thatH.x; y/ D
C.F.x/;G.y//. This result has been later extended to the case of multivariate
probability distributions. For more information about copulas the reader should refer
e.g. to the book by Nelsen (2006).

All well known multivariate probability distributions, the multivariate normal
distribution included, can be generated by parametric families C˛ of copulas, where
real- or vector-valued parameter ˛ describes the strength of dependence between
the components of the random vector. Thus, copulas have found many interesting
practical applications. The number of papers devoted to the theory and applications
of copulas is still growing rapidly, thanks to the increasing interest coming from e.g.
the analysis of financial risks and the survival analysis. For more recent results the
reader should consult already mentioned book by Nelsen (2006).

In this paper we focus our attention on three types of copulas. First is the normal
copula, which in the two-dimensional case is defined as follows:

C.u1; u2I �/ D ˚N .˚
�1.u1/; ˚�1.u2/I �/ (1)

where ˚N .u1; u2/ is the cumulative probability distribution function of the bivariate
normal distribution, ˚�1.u/ is the inverse of the cumulative probability function
of the univariate normal distribution (the quantile function). Parameter � in case of
marginals described by the normal distribution is equal to the well known coefficient
of linear correlation introduced by Pearson. It is worth noticing that the values of
the linear correlation coefficient depend upon the type of marginals. Therefore, for
the same value of the parameter � of the normal copula, the values of the Pearson’s
correlation may be different for different distributions of X and Y .
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Second copula considered in this paper is the Farlie-Gumbel-Morgenstern
(FGM) copula who is frequently used for modelling weak dependencies. This
copula is defined by the following formula:

C.u1; u2I �/ D u1u2 C �u1u2.1 � u1/.1 � u2/; j� j � 1 (2)

The remaining three copulas considered in this paper belong to a general class
of symmetric copulas, named the Archimedean copulas. They are generated using
a class ˚ of functions 	 W Œ0; 1� ! Œ0;1�, named generators, that have two
continuous derivatives on .0; 1/ and fulfill the following conditions: 	.1/ D 1,
	‘.t/ < 0, and 	“.t/ > 0 for all 0 < t < 1 (these conditions guarantee that
	 has an inverse 	�1 that also has two derivatives). Every member of this class
generates a multivariate distribution function. In this paper we consider three two-
dimensional Archimedean copulas defined by the following formulae (copulas and
their respective generators):

• Clayton’s

C.u; v/ D max
�
Œu�˛ C v�˛ � 1��1=˛ ; 0

�
; ˛ 2 Œ�1;1/ n 0 (3)

	.t/ D .t�˛ � 1/=˛; ˛ 2 Œ�1;1/ n 0 (4)

• Frank’s

C.u; v/ D � 1
˛

ln

�
1C .e�˛u � 1/ .e�˛v � 1/

e�˛ � 1
�
; ˛ 2 .�1;1/ n 0 (5)

	.t/ D ln

�
1 � e�˛
1 � e�˛t

�
; ˛ 2 .�1;1/ n 0 (6)

• Gumbel’s

C.u; v/ D exp

�
�
h
.� ln u/1C˛ C .� ln v/1C˛

i 1
1C˛

�
; ˛ 2 .0;1/ (7)

	.t/ D .� ln.t//˛C1; ˛ 2 .0;1/ (8)

In case of independence the dependence parameter ˛ind adopts the value of 0
(in Clayton’s and Frank’s copulas as an appropriate limit). The copulas mentioned
above are sometimes presented using different parametrization, and in such cases
independence is equivalent to other values of ˛.

As it has been already mentioned above, a well known coefficient of linear
correlation cannot be used for measuring the strength of dependence between
random variables whose dependence is described by a given copula. Nonparametric
measures of dependence, such as Spearman’s � or Kendall’s � can be used for this
purpose. For the copulas considered in this paper the values of Kendall’s � are
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easier to calculate, and for this reason we use this measure of dependence in further
analyses.

Genest and McKay (1986) considered the population version of the Kendall’s
coefficient od dependence (association) � . This characteristic can be used for
the description of the strength of dependence in copulas, and its importance in
characterizations of copulas has been shown recently in papers by Nelsen et al.
(2009). Let K.t/ be the cumulative probability function of the random variable
T D C.U1; U2/, where U1 and U2 are random variables uniformly distributed on
Œ0; 1�. The following relation links a copula with Kendall’s � :

� D 3 � 4

Z 1

0

K.t/dt (9)

Estimation ofK.t/ for the case of two-dimensional copulas, and thus the estimation
of � , was considered by Genest and Rivest (1993).

Closed formulae for Kendall’s � are available only for some copulas. In the case
of the normal copula we have the following expression

�Norm D arcsin.�/=.�=2/: (10)

For the FGM copula we can compute Kendall’s � from a very simple formula

�FGM D 2�=9: (11)

For the family of Archimedean copulas there exists the following general formula
that links Kendall’s � with the generator function 	:

�Arch D 1C 4

Z 1

0

	.v/

	0.v/
dv: (12)

For specific cases of the considered in this paper Archimedean copulas we have:

• Clayton’s copula

� D ˛

˛ C 2
; (13)

• Frank’s copula

� D 1C 4

�
1

˛

Z ˛

0

t

et � 1
dt � 1

�
=˛; (14)

• Gumbel’s copula

� D ˛

˛ C 1
: (15)

Each copula can be looked upon as a multivariate probability distribution whose all
marginal distributions are uniform. However, by using an inverse probability distri-
bution function (a quantile function) we can transform each uniformly distributed
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random variable to a variable with any continuous probability distribution. In this
paper we will consider the case when such transformation will lead to marginals
described by the standard normal distribution N.0; 1/. This assumption definitely
restricts generality of inferred conclusions, but – on the other hand – allows to
compare our new results with those presented by other authors who usually made
this assumption.

3 Basic Properties of the Shewhart Control Chart in Case
of Dependencies of Different Types

The most frequently used statistical characteristic of a control chart is its Average
Run Length ARL. This characteristic describes the expected number of observa-
tions (points plotted on a chart) until the occurrence of an alarm (e.g. when the first
point beyond 3-� control limits has been observed). When consecutive observations
are independent, and their probability distribution is known, the random variable
which describes the waiting time till the moment of the first observation beyond the
control limits is distributed according to the geometric distribution, and the value of
the ARL can be calculated analytically. However, when observations are dependent
(serially correlated) and/or their probability distributions are only partially known
(e.g. the class of the distribution is known, but its parameters are estimated) this
characteristic usually cannot be calculated from a closed formula. Therefore, we
need to use statistical Monte Carlo simulation in order to evaluate the value of
the ARL.

In our simulation experiments we have generated consecutive observations using
conditional probability distributions derived from two-dimensional copulas. In order
to arrive at comparable results we have generated serially correlated processes
described by a fixed in advance value of Kendall’s � . By having the same normal
marginal distributions, and the same values of the measure of the strength of
dependence we can detect a possible influence of the type of dependence related to
the type of the underlying copula. In the following two subsections we will present
the results of experiments for two cases:

• Parameters of the normal distribution (design parameters) are known,
• Parameters of the normal distribution (design parameters) are estimated from an

initial sample.

In both cases we consider only one type of the process deterioration: the shift of
the process level by k� . When k D 0 (i.e. when there is no shift) the value of the
ARL represents the average time to a false alarm. When k D 1 we have the case
of a small deterioration. Significant deterioration of the process is in our experiment
modelled by setting k D 3.
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Table 1 ARLs–Shewhart control chart (design parameters known), TEST 1: “3-�” rule, no shift

Kendall’s � Normal FGM Clayton Frank Gumbel

0.8 1391.0 x 759.3 385.4 1301.8
0.5 466.8 x 622.4 373.1 633.57
0.3 389.0 x 496.0 373.4 528.6
0.1 371.1 369.6 384.4 370.5 456.4
0.05 370.5 369.3 374.7 372.1 443.3
0.01 370.6 369.7 371.6 372.2 430.7
0 370.5 370.5 370.5 370.5 370.5
�0:01 372.31 369.28 370.19 372.97 x
�0:05 371.3 370.8 370.0 371.7 x
�0:1 371.3 368.9 370.6 371.2 x
�0:3 390.0 x 384.3 374.1 x
�0:5 468.4 x 433.9 375.0 x
�0:8 1379.4 x 898.6 384.0 x

3.1 Known Design Parameters

The results of the simulation experiment for known design parameters are presented
in Tables 1–3 for different values of the shift of the process level (mean value). Each
number in these tables has been obtained after averaging the results of 200,000
simulation runs. The maximal length of each simulation run varied from 10,000 to
100,000 observations (for strongly dependent observations).

In Table 1 we present the average times to a false alarm. In all considered cases
the expected time to a false alarm in presence of dependent data is always larger
than in the case of independence, and this difference increases with increasing
strength of dependence. However, the way how the ARL depends on the value of �
strongly depends on the type of the copula that describes the data. It is interesting
to see that for all considered copulas, with a noticeable exception of Gumbel’s
copula, the values of the ARL change insignificantly for weakly dependent data.
However, for moderate and strong dependencies these values are changing in a
completely different way depending on the type of a copula. For the normal copula
(i.e. for an ordinary Gaussian autoregression AR.1/ process) the value of the ARL
increases for the increasing absolute value of the strength of dependence measured
by Kendall’s � . The dependence of the ARL on the value of � is symmetrical and
these values become very large for large values of � . In case of the FGM copula,
which is used for modelling weak dependencies, the influence of the value of � on
the ARL is practically non-existing. The similar situation, but extended to larger
values of � , has been observed for Frank’s copula.

In the case of Clayton’s copula the dependence of the ARL upon the value of �
is not symmetric. In case of positive dependence (� > 0), and small and moderate
strength of dependence, the ARL in this case is larger than in the case of the normal
copula. However, in case of very strong positive dependence this value of the ARL
is significantly smaller than in the normal case. In case of negative dependence
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Table 2 ARLs–Shewhart control chart (design parameters known), TEST 1: “3-�” rule, shift
of 1�

Kendall’s � Normal FGM Clayton Frank Gumbel

0.8 273.21 x 90.28 86.74 653.04
0.5 71.95 x 48.55 54.18 126.65
0.3 52.25 x 45.18 47.7 73.07
0.1 45.11 43.97 43.74 45.42 50.39
0 43.78 43.78 43.78 43.78 43.78
�0:1 43.62 43.73 43.74 44.75 x
�0:3 44.36 x 44.63 44.55 x
�0:5 50.96 x 50.15 45.53 x
�0:8 135.18 x 101.04 52.44 x

Table 3 ARLs–Shewhart control chart (design parameters known), TEST 1: “3-�” rule, shift
of 3�

Kendall’s � Normal FGM Clayton Frank Gumbel

0.8 10.58 x 24.94 9.75 9.1
0.5 3.29 x 4.05 4.51 3.16
0.3 2.49 x 2.59 3.55 2.44
0.1 2.1 1.99 2.12 3.13 2.11
0 1.99 1.99 1.99 1.99 1.99
�0:1 1.92 2.0 1.92 2.91 x
�0:3 1.79 x 1.83 2.76 x
�0:5 1.69 x 1.77 2.65 x
�0:8 1.57 x 1.71 2.57 x

(� < 0) theARL for Clayton’s copula is always smaller than theARL in the normal
case. The case of Gumbel’s copula requires special comments. This copula describes
only positive dependence, and even for very weak dependencies the corresponding
values of theARL are significantly greater than in the case of independence. Only in
case of very strong dependence the behaviour of the Shewhart control chart seems
to be similar to that described by the normal copula. It means that the Shewhart
control chart is very sensitive to this type of dependence, even if this dependence is
very weak, and thus difficult to be confirmed.

In case of small shifts (equal to 1�) of the process level the dependence of the
ARL upon � looks different. The values of the ARL in presence of dependent
data are nearly always greater than in the case of independence. It means that
the dependence in data has negative impact on discrimination abilities of the
Shewhart control chart, and this unpleasant feature does not depend upon the type
of dependence. In case of strongly dependent data the values of the ARL may
be so large (especially for normal and Gumbel’s copulas) that the chart becomes
practically insensitive to relatively small deterioration of the process. However,
in the case of Frank’s copula the value of the ARL remains reasonable even for
strongly dependent data (especially in case of negative dependence).
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When the shift of the process is large (e.g. equal to 3�) the situation is different.
First of all, in case of negative dependence described by the normal and Clayton’s
copulas the chart reacts faster than in the case of independence. Positive dependence
in all considered cases has negative influence on the ability of the chart to detect
shifts. The worse situation is in the case of Frank’s copula, and this is somewhat
unexpected because for small shifts this copula seems to be the most favourable.
A similar situation is with Clayton’s copula which usually behaves quite well except
for the case of large shifts and strong positive dependence.

3.2 Estimated Design Parameters

Let us consider the case when parameters of the probability distribution (mean value
and standard deviation) that are used for the design of a control chart are estimated
from a process (its Phase I, as the sampling period is sometimes called) with
possibly dependent consecutive observations. This assumption leads to significant
consequences. First of all, random character of control lines which are estimated
from a sample adds some variability resulting in wider (on average) in-control
area on a control chart. This problem has been considered by many authors, and
some conclusions from that research may be found in the paper by Woodall and
Montgomery (1999) or in the paper by Albers and Kallenberg (2004). Second, the
autocorrelation between sample observations influences the properties of estimators,
as it was noticed already in the paper by Vasilopoulos and Stamboulis (1978).
Variability related to both these two sources is difficult to be assessed analytically.
Thus, simulation experiments are needed in order to evaluate the properties of
control charts designed in such a way.

Our simulation experiment has two phases as in actual applications. First we
simulate a sample of n elements, and the results of this simulation are used for the
design of a control chart. The minimal number of observations which is suggested
for designing a chart should be, according to many authors, such as e.g. Quesenberry
(1993), not smaller than 300. However, in the majority of popular textbooks on
quality control this minimal value is proposed to be equal to 100. Having in mind
our main purpose, i.e. to investigate the influence of different types of dependence
on the performance of control charts actually used in practice, in our experiments
we set the sample size (the number of consecutive observations that are used for the
design of a chart) as equal to 100. In the experiment we have simulated 500 different
control charts, and for each of them we have simulated 500 production runs. Thus,
for each experiment described by the chosen copula and the given value of Kendall’s
� we have had altogether 250,000 simulation runs. These runs have been used for
the estimation of the ARL, and other statistical properties of the chart.

Table 4 contains the results of the simulation experiment similar to those
presented in Table 1, i.e. in presence of no shift in the level of a process. Somewhat
unexpectedly these results are different not only with respect to the simulated values
of the ARL. The dependence of the ARL upon the value of � is also somewhat
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Table 4 ARLs–Shewhart control chart (design parameters estimated), TEST 1: “3-�” rule,
no shift

Kendall’s � Normal FGM Clayton Frank Gumbel

0.8 2111.72 x 346.65 568.74 1192.92
0.5 967.84 x 974.28 437.75 1142.76
0.3 540.38 x 730.8 487.09 799.15
0.1 473.11 490.15 560.42 508.98 586.61

0 486.14 486.14 486.14 486.14 486.14
�0:1 503.28 458.77 447.48 458.49 x
�0:3 589.39 x 537.13 512.63 x
�0:5 1242.9 x 861.8 593.1 x
�0:8 9966.6 x 6255.6 1253.5 x

different than that represented in Table 1. The results of the experiment displayed
in Table 4 show that the existence of dependence of any type results, in general, in
increasing value of the ARL. Only in few cases, in presence of weak dependence,
the values of ARL are slightly smaller than in the case of independence. When the
strength of dependence is low, the values of theARL are similar. Only for Gumbel’s
copula this value is visibly larger than in the case of independence. For moderate
values of Kendall’s � practically acceptable worsening of the value of the ARL can
be noticed only in the case of Frank’s copula. In the case of strong dependence,
both positive and negative, the values of the ARL are large enough to make the
chart insensible to the process deterioration of that magnitude. An interesting, and
difficult to explain, exception is the case of Clayton’s copula where the large value
of ARL for � D 0:5 decreases to a low value for � D 0:8. A phenomenon of a
similar type is also seen in the case of Gumbel’s copula.

When the magnitude of the process deterioration is large (i.e. when the shift
in the process level is equal to 3�) the picture is anew different. First of all, it
can be noticed that in the case of small and moderate negative dependencies the
value of the ARL may be smaller than in the case of independence. It means that
negative dependence, unless it is not too strong, has a positive impact on the ability
of the chart to detect deteriorations of large magnitude. In case of strong negative
dependence the situation is different, and the value of theARL usually becomes too
large. In the case of the normal copula this value becomes completely unacceptable.
In case of positive dependence good properties of the chart are observed for Frank’s
and Gumbel’s copulas.

The results presented in Tables 4–6 show a very complicated situation. Only in
the case of Frank’s copula the performance of the Shewhart control chart is more
or less robust to the existence of dependence between consecutive observations. In
all remaining cases one can observe situations which are difficult to describe and
explain. Only in the case of the normal copula the dependence of the ARL on the
strength of dependence can be described in a relatively simple way: the chart is
completely insensible to process shifts only in the case of strong, both positive and
negative, dependence.
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Table 5 ARLs–Shewhart control chart (design parameters estimated), TEST 1: “3-�” rule, shift
of 1�

Kendall’s � Normal FGM Clayton Frank Gumbel

0.8 352.88 x 55.77 80.64 206.43
0.5 84.7 x 102.46 55.72 205.43
0.3 59.61 x 57.34 51.55 92.76
0.1 54.88 51.4 50.51 49.12 58.54
0 48.09 48.09 48.09 48.09 48.09
�0:1 48.9 50.72 50.15 47.39 x
�0:3 56.1 x 56.07 53.08 x
�0:5 78.25 x 80.61 59.4 x
�0:8 769.18 x 433.52 89.26 x

Table 6 ARLs–Shewhart control chart (design parameters estimated), TEST 1: “3-�” rule, shift
of 3�

Kendall’s � Normal FGM Clayton Frank Gumbel

0.8 7.35 x 11.95 4.80 2.00
0.5 3.27 x 3.94 2.68 2.54
0.3 2.54 x 2.70 2.26 2.55
0.1 2.15 2.05 2.18 2.15 2.19
0 2.06 2.06 2.06 2.06 2.06
�0:1 1.92 2.07 1.96 1.87 x
�0:3 1.85 x 1.95 2.00 x
�0:5 1.92 x 2.09 2.02 x
�0:8 21.47 x 4.22 2.45 x

Table 7 Skewness of the run length – Shewhart control chart (design parameters estimated), shift
of 3�

Kendall’s � Normal FGM Clayton Frank Gumbel

0.8 9.53 x 7.18 5.89 2.1
0.5 3.7 x 4.05 4.11 7.16
0.3 3.02 x 7.47 3.63 3.98
0.1 2.7 2.54 3.3 2.7 2.94
0 2.49 2.49 2.49 2.49 2.49
�0:1 2.12 2.54 2.6 2.8 x
�0:3 3.11 x 3.75 2.32 x
�0:5 6.87 x 6.47 2.72 x
�0:8 27.96 x 10.59 6.08 x

ARL is the most frequently used statistical characteristic of control charts.
Another characteristic which is often calculated is the variance of the run length.
Specialist are fully aware of the fact that the run length is a highly skewed random
variable, and these two characteristics are not sufficient for the comprehensive
description of the statistical properties of control charts. The coefficient of skewness
whose value equal to 2 is well known for the chart with known design parameters is
rarely calculated for other cases. In Table 7 we present the values of the coefficient
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of skewness of the run length for the case of estimated design parameters and shift
equal to 3� .

The values given in Table 7 show that the times to alarm are highly skewed,
especially in case of strong (both positive and negative) dependence. In practice
it means that despite reasonable values of the ARL there is quite substantial pos-
sibility that even significant process deterioration may not be detected sufficiently
quickly.

4 Tests Based on Runs in Case of Dependent Data

Classical Shewhart control chart has been supported by additional decisions rules
based on runs. Different rules have been proposed by many authors, but the most
popular ones were proposed in the Western Electric handbook in 1956. They are also
described in the international standard ISO 8258 and in the paper by Nelsen (1984).
These rules are designed with the aim to detect deteriorations of different type.
Statistical properties of control charts with supporting run rules can be computed
using the Markov chain approach. A general solution of this problem has been
proposed in the paper by Champ and Woodall (1987). This methodology has
been successfully implemented for the calculations made under the assumption
of independence of observations, and full knowledge of the values of design
parameters. However, in case of dependent observations, and for estimated values
of design parameters such computations are very difficult or even hardly possible.
Therefore, in our analysis we used the results of the Monte Carlo simulation
experiments. The settings of these experiments are the same as in the cases described
in the previous sections of this paper.

One of the most popular rule, known as Test 3 or “6 increasing (decreasing) in a
row”, is used for the detection of harmful trends. The properties of this test do not
depend upon the design parameters, and may be evaluated using recently published
results of Ferguson et al. (2000). In Table 8 we present the values of the ARL for
this particular test when the process is in the in-control state.

These results show that dependencies have detrimental impact on the properties
of this test. In case of positive dependence the average time to a false alarm becomes
unacceptably small. On the other hand, the negative dependence (especially the
strong one) may decrease the ability of the test to detect trends in data. Similar
results, which are not presented in this paper because of its limited volume, have
been observed in preliminary experiments for the case of deteriorated processes.

Another popular additional decision rule, known as Test 5 or “2 out of 3 in a row
observation in an outer zone”, is used to improve the ability to detect small shifts
of the process level. In Table 9 we present the values of the ARL for this test when
the process is in the in-control state, and the design parameters are estimated from
(possibly dependent) observations.

The dependence of the value of the ARL and the value of � cannot be easily
explained at the current stage of our research. For example, in case of the normal
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Table 8 ARLs–Shewhart control chart (design parameters known), TEST 3: “6 in a row” rule,
no shift

Kendall’s � Normal FGM Clayton Frank Gumbel

0.8 24.8 x 27.3 26.1 24.3
0.5 30.1 x 32.4 30.9 30.26
0.3 48.2 x 47.4 48.4 46.1
0.1 97.1 147.3 95.3 96.1 92.4
0.05 119.2 146.4 117.1 118.5 115.0
0.01 140.4 147.1 140.1 141.1 138.0
0 147.1 147.1 147.1 147.1 147.1
�0:01 153.66 148.50 153.85 155.59 x
�0:05 183.2 147.1 182.6 186.2 x
�0:1 225.7 146.6 225.8 236.7 x
�0:3 539.14 x 507.63 665.26 x
�0:5 1228.96 x 1237.65 1831.29 x
�0:8 4723.89 x 13773.52 x

Table 9 ARLs–Shewhart control chart (design parameters estimated), TEST 5, no shift

Kendall’s � Normal FGM Clayton Frank Gumbel

0.8 165.63 x 206.31 102.07 169.82
0.5 95.92 x 184.54 159.38 111.92
0.3 143.0 x 155.32 249.16 130.95
0.1 323.26 510.36 245.75 413.61 222.92
0 510.14 510.14 510.14 510.14 510.14
�0:1 321.9 509.96 620.63 598.52 x
�0:3 401.61 x 335.36 567.58 x
�0:5 193.24 x 165.45 379.85 x
�0:8 209.73 x 134.81 201.11 x

copula this dependence is highly non-monotonic. On the other hand, in case
of Frank’s copula the largest value of the ARL is observed for small negative
dependence, and then the value of the ARL decreases with increasing (decreasing)
values of � . Interesting is the case of the FGM copula where in contrast to other
considered cases the existing weak dependence does not influence the value of the
ARL.

In our experiments we have also calculated the properties of chart with combined
decision rules. When Test 1 is combined with Test 5 the ARL in case of estimated
design parameters and independence has been evaluated as equal to 293.11.
The exact calculations performed for this case, but for known values of design
parameters, by Champ and Woodall (1987) gave the value of the ARL equal to
225.44.

The results presented in Table 10 confirm this value, and additionally show how
theARL in the case of this combination of tests depends on the type and the strength
of dependence.
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Table 10 ARLs–Shewhart control chart (design parameters known), TEST 1CTEST 5, no shift

Kendall’s � Normal FGM Clayton Frank Gumbel

0.8 165.44 x 180.76 91.68 168.74
0.5 93.46 x 151.39 122.71 105.92
0.3 120.51 x 130.32 161.28 115.87
0.1 187.27 226.65 169.16 207.24 165.62
0 225.45 225.45 225.45 225.45 225.45
�0:1 250.41 226.58 244.68 240.57 x
�0:3 222.3 x 201.0 235.94 x
�0:5 168.26 x 145.03 202.07 x
�0:8 209.72 x 131.67 149.55 x

5 Conclusions

The results presented in this paper confirm without any doubts the findings of
many authors who considered the bahaviour of Shewhart control charts in case of
dependent data described by autoregressive stochastic processes. What seems to
be new is the demonstration that the type of dependence, encapsulated in the type
of respective copula, plays important role. Moreover, it becomes very clear that
the knowledge of the strength of dependence, measured using popular statistical
measures of dependence such as Kendall’s � is not sufficient for the evaluation of
the properties of the Shewhart control chart.

From the results presented in this paper one can derive the following recommen-
dations. First, it is necessary to detect the existence of dependence in data. This
can be done using the Kendall control chart proposed by Hryniewicz and Szediw
(2010). Then, it is necessary to indicate the copula which fits to the observed
data. Unfortunately, the appropriate tests, such as presented e.g. in the paper by
Fermanian (2005), seem to be not simple enough to be used by quality control
practitioners. Therefore, a lot has to be done in order to propose even approximate
but simple methods for the identification of an actual copula. Then, the future
investigations should be concentrated on finding appropriate corrections to classical
procedures, similar in spirit to those that has been proposed in case of dependencies
described by the normal copula.
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Sklar, A. (1959). Fonctions de répartition á n dimensions et leurs marges. Publications de l’Intitut

de Statistique de l’Universit de Paris, 8, 229–231
VanBrackle, L. N., III. & Reynolds, M. R., Jr. (1997). EWMA and CUSUM control charts

in presence of correlations. Communications in Statistics Simulation and Computation, 26,
979–1008.

Vasilopoulos, A. V., & Stamboulis, A. P. (1978). Modification of control limits in the presence of
correlation. Journal of Quality Technology, 10, 20–30.

Wardell, D. G., Moskowitz, H., & Plante, R. D. (1994). Run-length distributions of special-cause
control charts for correlated processes. Technometrics, 36, 3–17.

Woodall, W. H., & Montgomery, D. C. (1999). Research issues and ideas in statistical process
control. Journal of Quality Technology, 25, 188–198.

Yourstone, S. A., & Montgomery, D. C. (1991). Detection of process upsets sample autocorrelation
control chart and group autocorrelation control chart applications. Quality and Reliability
Engineering International, 7, 133–140.

Zhang, N. F. (1998). Statistical control chart for stationary process data. Technometrics, 40, 24–38.



Assessing the Impact of Autocorrelation in
Misleading Signals in Simultaneous Residual
Schemes for the Process Mean and Variance:
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Abstract Misleading signals (MS) correspond to the misinterpretation of a shift
in the process mean (variance) as a shift in the process variance (mean). MS occur
when:

• The individual chart for the mean triggers a signal before the one for the variance,
even though the process mean is on-target and the variance is off-target;

• The individual chart for the variance triggers a signal before the one for the mean,
although the variance is in-control and the process mean is out-of-control.

MS can lead to a misdiagnosis of assignable causes and to incorrect actions to
bring the process back to target. Unsurprisingly, the performance assessment of
simultaneous schemes for the process mean and variance requires not only the
use of run length (RL) related performance measures, but also the probability of
misleading signals (PMS). We assess the impact of autocorrelation on the PMS of
simultaneous Shewhart and EWMA residual schemes for the mean and variance
of stationary AR(1), AR(2) and ARMA(1,1) processes. This assessment is done by
means of some stochastic ordering results and some illustrations.
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1 Introduction

Control charts are primarily designed to detect changes like shifts in the process
mean or variance. In practice, one individual chart for the process mean and another
for the variance are run simultaneously because it is not realistic to believe that only
one of the parameters is subject to shifts.

The resulting simultaneous scheme triggers a signal whenever one (or both) of
the individual charts triggers a signal. Therefore, it is possible that a shift in one
parameter results in a signal triggered by the individual chart designed to monitor
the other parameter. This is what John and Bragg (1991) called a misleading signal.
These authors identified three types of misleading signals that may occur when we
are using a simultaneous scheme with a two-sided chart for the mean (�) and an
upper one-sided chart for the variance (�2):

I. The process mean increases but the signal is given by the chart for �2 or it is
observed in the negative part of the chart for �;

II. The process mean decreases but the signal is given by the chart for �2 or it is
observed in the positive part of the chart for �;

III. The process variance increases but the signal is given by the chart for �.

Later, Morais and Pacheco (2000) defined a fourth type of error which summarizes
types I and II previously described:

IV. The process mean changes but the signal is given by the chart for �2.

According to Morais and Pacheco (2000), types III and IV correspond to pure
misleading signals since they correspond to a misinterpretation of a shift in the
process mean (resp. variance) as a shift in the process variance. As mentioned by
Morais and Pacheco (2006) and Knoth et al. (2009), the diagnostic and correction
procedures that follow a signal can differ depending on which chart triggers the
alarm. Therefore, the occurrence of a misleading signal can lead to inappropriate
diagnose and correction measures and consequently to an increase in production
(and inspection) costs.

The main question regarding misleading signals should not be whether they occur
or not, but rather how frequently they take place. Unsurprisingly, the probability
of a misleading signal (PMS) should be considered as an additional performance
measure for simultaneous schemes. The PMS has been addressed for i.i.d. and Gaus-
sian output by a few authors (Morais and Pacheco, 2000; Reynolds and Stoumbos,
2001, 2004; Morais, 2002; Morais and Pacheco, 2006). More recently, Antunes
(2009) and Knoth et al. (2009) numerically assessed the impact of autocorrelation
in misleading signals in simultaneous residual schemes for the process mean and
variance of AR(1) output. Ramos et al. (2010) used stochastic ordering to prove that
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the PMS of Type IV of simultaneous Shewhart (resp. EWMA) residual schemes
for the process mean and variance of stationary AR(1) output increases with the
autoregressive parameter 	 2 .�1; 1/ (resp. 	 2 .0; 1/). This paper is a natural
extension of Ramos et al. (2010) to general stationary Gaussian processes.

The remainder of this paper is structured as follows. In Sect. 2 we make a
brief review of simultaneous residual schemes for the process mean and variance
of stationary Gaussian processes. In Sect. 3 we establish stochastic monotonicity
properties concerning the run lengths of the constituent individual residual charts.
In Sect. 4 monotonicity properties of the probabilities of misleading signals are
derived. We end the paper with some concluding remarks in Sect. 5.

2 Simultaneous Residual Schemes for the Process Mean
and Variance of Stationary Gaussian Processes

In what follows we consider residual Shewhart and EWMA individual upper one-
sided charts to monitor the mean and the variance of a process; these charts are only
suited to detect inflations on those two parameters. We assume that the output is
governed by a general stationary Gaussian process and later on we focus on AR(1),
AR(2) and ARMA(1,1) stationary processes.

2.1 Output Process and Residuals

Let us denote by fXi;j g the observed process, where i is the sample number and j
is the index of the observation within the sample, with the sample size being fixed
and equal to n. We shall assume that different samples are independent, however,
there is an autocorrelation structure within the sample.

Let fYi;j g represent the target process, that is, the in-control process. fYi;j g is
assumed to be a stationary Gaussian process with mean �0 and autocovariance
function f
hg; both �0 and 
0; 
1; : : : ; 
n�1 are known nominal values.

We can write the observed process in terms of the target process as follows:

Xi;j D
8
<

:

Yi;j ; i < 1

�.Yi;j � �0/C �0 C ı
p

0; i � 1,

(1)

where ı D E.Xi;j /��0p

0

, ı � 0, and � D
q

Var.Xi;j /

0

, � � 1.

If ı > 0 (resp. � > 1) then a shift from �0 to �0 C ı
p

0 (resp. from 
0 to �2
0)

has occurred just before the first sample has been collected.
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According to Knoth and Schmid (2002), the residuals of this process are
obtained using the best linear predictor for Xi;j given Xi;j�1; Xi;j�2; : : : ; Xi;1,
which, according to Brockwell and Davis (1991), can be written as

OXi;j D
j�1X

kD1
	j�1;k.Xj�k � �0/C �0; (2)

where: 	j�1;k is the k-th entry of the vector 	j�1 D .	j�1;1; : : : ; 	j�1;j�1/0 D
� �1j�1
j�1 which can be recursively calculated using the Durbin-Levinson algorithm
(Brockwell and Davis 1991, p. 169); 
j�1 D .
1; : : : ; 
j�1/0 is a vector of
covariances and �j�1 is a covariance matrix, both referring to the in-control process
fYi;j g.

The corresponding standardized residuals are equal to

O"i;j D Xi;j � OXi;jq
Var0;1.Xi;j � OXi;j //

D � O�i;j C ı
p

0

1 �Pj�1
kD1 	j�1;kq

Var0;1.Xi;j � OXi;j /
; (3)

where Var0;1.Xi;j � OXi;j / represents the in-control variance of the residuals and
O�ij i:i:d:� N .0; 1/ are the standardized residuals of the in-control process. To simplify
the notation let us write

O"i;j D � O�i;j C ı
p

0 � bj : (4)

where bj D 1�Pj�1
kD1 	j�1;kp

Var0;1.Xi;j� OXi;j /
.

Since Yi;j is a stationary Gaussian process, the residuals are independent and
normally distributed, therefore we can derive distributions of their sample mean and
variance:

O"i D 1

n

nX

jD1
O"i;j i:i:d:� N

0

@ı
p

0

n

nX

jD1
bj ;

�2

n

1

A (5)

n � 1

�2
OS2i D 1

�2

nX

jD1
.O"i;j � O"i /2 i:i:d:� 2n�1;� ; (6)

where 2n�1;� denotes the noncentral 2 distribution with n � 1 degrees of freedom
and noncentrality parameter

� D
�
ı

�

�2

0

0

@
nX

jD1
b2j � nb

2

1

A ; (7)

according to Mathai and Provost (1992).
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2.2 Simultaneous Shewhart and EWMA Residual Schemes

Capitalizing on the distributional properties of O"i and OS2i , we conclude that the run
length (RL) of the individual Shewhart residual charts for � (RLS��.ı; �;b/) and
for �2 (RLS��.ı; �;b/), where b D .bj /; j D 1; : : : n, have geometric distributions
with parameters

�S��.ı; �;b/ D 1 �˚
2

4 1
�

0

@
S�� � ı
p

0p
n

nX

jD1
bj

1

A

3

5 (8)

�S�� .ı; �;b/ D 1 � F2n�1;�

"
n � 1
�2

 

1C 
S��
r

2

n � 1

!#

: (9)

In addition, since O"i and OS2i are independent, the RL of the simultaneous
Shewhart residual scheme also has geometric distribution with parameter

�S��;� .ı; �; b/ D �S��.ı; �; b/C �S�� .ı; �; b/� �S��.ı; �; b/� �S�� .ı; �; b/: (10)

As for the EWMA individual charts and simultaneous schemes, the Markov
chain approach (Brook and Evans, 1972) provides the following approximations
to the survival functions of the run lengths RLE��.ı; �;b/, RLE�� .ı; �;b/ and
RLE��;� .ı; �;b/:

FRLE��.ı;�;b/.m/ ' eT� � ŒQ�.ı; �; bI x�/�m � 1� (11)

FRLE�� .ı;�;b/.m/ ' eT� � ŒQ� .ı; �; bI x�/�m � 1� (12)

FRLE��;� .ı;�;b/.m/ D FRLE��.ı;�;b/.m/� FRLE�� .ı;�;b/.m/ (13)

' .eT� � ŒQ�.ı; �; bI x�/�m � 1�/� .eT� � ŒQ� .ı; �; bI x�/�m � 1� /; (14)

for m D 0; 1; 2; : : :. Note that the approximations are based on (x� C 1) (resp.
(x� C 1)) transient states associated with the individual EWMA residual chart for �
(resp. �2) (Table 1). Moreover,

• e� (resp. e� ) denotes the first (resp. .x� C 1/=UCLE��/th) vector of the
orthonormal basis for Rx�C1 (resp. Rx�C1), associated with the state related to
the initial value of the control statistic;

• 1� (resp. 1� ) is a column vector of .x� C 1/ (resp. .x� C 1/) ones;
• The entries of the sub-stochastic matrix Q�.ı; �;bI x�/ follow from an adapta-

tion of the ones defined in Ramos et al. (2010); and
• The entries of the sub-stochastic matrix Q�.ı; �;bI x� /) result from an adaptation

of the ones defined in Knoth et al. (2009).
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Table 1 Control statistics and upper control limits of the Shewhart (S�� and S�� ) and EWMA
(E � � and E � � ) individual residual charts (the lower control limits are all equal to zero)

Control statistics Control limits

maxf0; O"i g UCLS�� D 
S��
p
n

OS2i UCLS�� D 1C 
S��

q
2

n�1

W
O";i
D
(
0; i D 0

maxf0; .1� ��/WO";i�1
C �� O"ig; i > 0

UCLE�� D 
E��

q
��

n.2���/

W OS2i ;i
D
(
1; i D 0

.1� ��/W OS2i ;i�1 C �� OS2i ; i > 0

UCLE�� D 1C 
E��

q
2��

.n�1/.2��� /

Moreover, the corresponding left partial sums are given by:

a�;ij .ı; �; bI x�/ D ˚

�
1
�

	

E��Œ.jC1/�.1���/.iC1=2/�

.x�C1/
p

��.2���/
� ı

p

0

p
n

Pn
kD1 bk


�
; (15)

for i; j D 0; : : : ; x�I

a�;ij .ı; �; bI x�/ D F2n�1;�

h
.n�1/Œ.jC1/�.1��� /.iC1=2/�

�2�� .x�C1/

�
1C 
E��

q
2��

.n�1/.2��� /

�i
; (16)

for i; j D 0; : : : ; x� . We ought to note that results Eq. 8–16 are quite similar to the
ones derived by Knoth et al. (2009) and Ramos et al. (2010): the autocorrelation
parameter has been replaced by the vector b D .bj /; j D 1; : : : ; n.

2.3 Simultaneous Shewhart and EWMA Residual Schemes
for the Stationary AR(2) and ARMA(1,1) Processes

We now address to the stationary AR(2) and ARMA(1,1) processes. The charac-
terization of these processes and the properties of the distributions of the control
statistics in Eqs. 5 and 6 are condensed in Tables 2 and 3. The expressions of: the
parameters of the run lengths of the individual Shewhart residual charts and the
left partial sums of the entries of the sub-stochastic matrices Q�.ı; �;bI x�/ and
Q�.ı; �;bI x� / for these two processes can be found in Tables 4 and 5.
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Table 2 Characterization of AR(2) processes and properties of the control statistics
Equation Stationarity conditions

Xi;j D �0 C 	1.Xi;j�1 � �0/C 	2.Xi;j�2 � �0/C "i;j 	1 C 	2 < 1, 	2 � 	1 < 1 and �1 < 	2 < 1

E.O"i / Var.O"i /

ı
n

8
<̂

:̂
1C 1�	1s

1�
	21 .1C	2/

1�	2

C .n� 2/ 1�	1�	2r
1C	2
1�	2

Œ.1�	2/
2�	21 �

9
>=

>;
�2

n

Noncentrality parameter (�)

�
ı
�

�2
 

1� n

ı2
E.O�i /2 C .1� 	1/2=

�
1� 	21 .1C	2/

1�	2

�
C .n� 2/ .1�	1�	2/

2

1C	2
1�	2

Œ.1�	2/
2�	21 �

!2

Table 3 Characterization of ARMA(1,1) processes and properties of the control statistics
Equation Stationarity and invertibility conditions

Xi;j D �0 C 	.Xi;j�1 � �0/C "i;j � ˛"i;j�1 	; ˛ 2 .�1; 1/

E.O"i / Var.O"i /

ı
n

(

1C 1
ı

Pn
jD2

ı

h
1C

�
1�˛j�1

�
.˛�	/=.1�˛/

ip
1C˛2�2˛	

�

)
�2

n

Noncentrality parameter (�)

1

�2

�h
ı �E.O"i /

i2 CPn
jD2

n
ı
�
1C �1� ˛j�1

�
.˛ � 	/=.1� ˛/p1C ˛2 � 2˛	=��E.O"i /

o2�

where � D

q
1C ˛2.j�2/ C ˛2.j�1/	 � 2˛2j�1	 � 	2 � 2˛jC1	j�1 � 2˛j�1	jC1 C 2.˛ � 	/2.˛	/j�1 C 4.˛	/j

Table 4 Parameters of the run lengths of the individual Shewhart residual charts and the left
partial sums of the entries of the sub-stochastic matrices Q�.ı; �; bI x�/ and Q� .ı; �; bI x�/ for a
stationary AR(2) process
Shewhart scheme

�S��.ı; �; 	1; 	2/ D 1� ˚

2

6
6
6
6
4

1

�

0

B
B
B
B
@

S�� �

ı
p
n

8
ˆ̂̂
<̂

ˆ̂̂
:̂

1C
1� 	1s

1�
	21 .1C	2/

1�	2

C .n� 2/
1� 	1 � 	2r

1C	2
1�	2

Œ.1 � 	2/
2 � 	21 �

9
>>>>=

>>>>;

1

C
C
C
C
A

3

7
7
7
7
5

(17)

�S�� .ı; �; 	1; 	2/ D 1� F
2n�1;�

2

6
6
4

�
1C 
S��

q
2

n�1

�
.n� 1/

�2

3

7
7
5 (18)

EWMA scheme

a�;ij .ı; �; 	1; 	2I x�/ D ˚

8
ˆ̂̂
<̂

ˆ̂̂
:̂

1

�

2

66
6
6
4


E��Œ.j C 1/� .1� �E��/.i C 1=2/�

.x� C 1/
q
�E��.2 � �E��/

�
ı

p
n

0

BB
B
B
@
1C

1� 	1s

1�
	21 .1C	2/

1�	2

C.n� 2/
1� 	1 � 	2r

1C	2
1�	2

Œ.1� 	2/
2 � 	21 �

1

CC
C
C
A

3

77
7
7
5

9
>>>>=

>>>>;

(19)

a�;ij .ı; �; 	1; 	2I x� / D F
2n�1;�

"
.n� 1/Œ.j C 1/� .1 � �E�� /.i C 1=2/�

�2�E�� .x� C 1/

 

1C 
E��

s
2�E��

.n� 1/.2 � �E�� /

!#

(20)
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Table 5 Parameters of the run lengths of the individual Shewhart residual charts and the left
partial sums of the entries of the sub-stochastic matrices Q�.ı; �; bI x�/ and Q� .ı; �; bI x�/ for a
stationary and invertible ARMA(1,1) process
Shewhart scheme

�S��.ı; �; 	; ˛/ D 1� ˚
�
1

�

h

S�� �pnE.O"i /

i�
(21)

�S�� .ı; �; 	; ˛/ D 1� F
2n�1;�

2

6
4

�
1C 
S��

q
2

n�1

�
.n� 1/

�2

3

7
5 (22)

EWMA scheme

a�;ij .ı; �; 	; ˛I x�/ D ˚

 
1

�

(

E��Œ.j C 1/� .1� �E��/.i C 1=2/�

.x� C 1/p�E��.2� �E��/
�pnE.O"i /

)!

(23)

a�;ij .ı; �; 	; ˛I x� / D F
2n�1;�

"(
.n� 1/Œ.j C 1/� .1� �E�� /.i C 1=2/�

�2�E�� .x� C 1/
"

1C 
E��

s
2�E��

.n� 1/.2� �E�� /

#)

(24)

2.4 Probability of a Misleading Signal

When a simultaneous scheme is used to monitor the mean and variance of a process,
an alarm is classified as a misleading signal of Type III if � is on-target (ı D 0) and
�2 is off-target (� > 1) but the chart for � is the first to signal. The PMS of Type III
is defined as follows

PMSIII.�;b/ D P ŒRL�.0; �;b/ < RL�.0; �;b/� (25)

D
C1X

iD1

�
FRL�.0;�;b/.i � 1/� FRL�.0;�;b/.i/

 � FRL� .0;�;b/.i/; (26)

for � > 1.
Similarly, a MS of Type IV is said to have happened if � is off-target (ı > 0) and

�2 is on-target (� D 1) but the chart for �2 is the first to signal. Thus, the PMS of
Type IV equals

PMSIV.ı;b/ D P ŒRL�.ı; 1;b/ < RL�.ı; 1;b/� (27)

D
C1X

iD1

�
F RL� .ı;1;b/.i � 1/� FRL� .ı;1;b/.i/

 � FRL�.ı;1;b/.i/; (28)

for ı > 0.
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We should note that PMSIII .�;b/ does not depend on b. In fact, as the
noncentrality parameter is null when ı D 0, then the survival functions in Eq. 26
depend only on � for both Shewhart and EWMA schemes. For this reason this
probability is simply denoted by PMSIII .�/ from now on.

3 Stochastic Monotonicity Properties

The three following stochastic ordering results play a major role in the assessment
of the stochastic monotonicity properties of the RL of the individual residual charts,
and therefore in the monotonicity properties of the PMS. These results have been
previously proved by Morais (2002, p. 16); Morais and Pacheco (1998) and Ramos
et al. (2010), respectively, and are stated without proof in the next subsection.

3.1 Some Auxiliary Results

Lemma 1 (Morais 2002, p. 16). – Let RL.�/ � geometric.�.�// be the RL of
a Shewhart type control chart where �.�/ represents the probability of detecting
a shift of magnitude � or of triggering a signal when a model parameter is equal
to�. Then, if �.�/ increases with�, RL.�/ #st with�, i.e., FRL.�/.m/ # with�,
for all m.

Lemma 2 (Morais and Pacheco 1998). – Let fSN.�/; N 2 N0g be an absorbing
Markov chain with state space f0; 1; : : : ; x; x C 1g, initial value S0.�/ D u and
governed by the transition matrix P.�/ D Œpij .�/�. If all left partial sums of P.�/,
Pk

jD1 pij .�/, decrease with i and decrease with � then RL.�/ #st with �.

Lemma 3 (Ramos et al. 2010). – Let X� � 2n�1;� be a continuous random
variable with noncentral chi-squared distribution. Then, X� "st with �, that is,
F2n�1;�

.x/ is a decreasing function of � for any x.

Besides these three lemmas we need to state and prove that the sum
Pn

kD1 bk is
positive.

Lemma 4. For any stationary Gaussian process,
Pn

kD1 bk > 0.

Proof. First we note that

b1 D
h
E.X1 � OX1/2

i�1 D 
�10 > 0; (29)
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according to Brockwell and Davis (1991, p. 170). Then note that, applying the
Durbin-Levinson algorithm (Brockwell and Davis, 1991), bk can be written as
follows:

bk D 1 �Pk�1
vD1 	k�1;vq

Var.Xk � OXk/
(30)

D 1 �Pk�2
vD1.	k�2;v � 	k�1;k�1	k�2;k�1�v/ � 	k�1;k�1q

Var.Xk � OXk/
(31)

D bk�1

q
Var.Xk�1 � OXk�1/
q

Var.Xk � OXk/
� 	k�1;k�1bk�1

q
Var.Xk�1 � OXk�1/
q

Var.Xk � OXk/
(32)

D bk�1

q
Var.Xk�2 � OXk�2/

q
Var.Xk�1 � OXk�1/

.1 � 	k�1;k�1/ � 0: (33)

by induction, using the fact that b1 > 0. Thus, we get
Pn

kD1 bk > 0.

3.2 The Influence of Autocorrelation on the RL
of the Individual Residual Charts – AR(2) Process

Now we state some stochastic monotonicity properties of the run length of the
individual charts in terms of the parameters 	1 and 	2 of a stationary AR(2) process.
Recall that this process is stationary if .	1; 	2/ 2 SAR.2/ D f.	1; 	2/ W 	1 C 	2 <

1; 	2 � 	2 < 1;�1 < 	2 < 1g and that Lemma 1 plays an important role in the
proof of those stochastic monotonicity properties.

Theorem 1. The following results are valid for the RL of upper one-sided indivi-
dual Shewhart and EWMA residual charts for the mean and variance of an AR(2)
process.

� �

Shewhart (2.1) RLS��.ı; �; 	1; 	2/ "st with 	1 (2.4) RLS�� .ı; �; 	1; 	2/ "st with 	1; .	1; 	2/ 2 C
(2.2) RLS��.ı; �; 	1; 	2/ #st with 	2; .	1; 	2/ 2 A (2.5) RLS�� .ı; �; 	1; 	2/ #st with 	1; .	1; 	2/ 2 D
(2.3) RLS��.ı; �; 	1; 	2/ "st with 	2; .	1; 	2/ 2 B (2.6) RLS�� .ı; �; 	1; 	2/ "st with 	2; .	1; 	2/ 2 E

(2.7) RLS�� .ı; �; 	1; 	2/ #st with 	2; .	1; 	2/ 2 F
EWMA (2.8) RLE��.ı; �; 	1; 	2/ "st with 	1 (2.11) RLE�� .ı; �; 	1; 	2/ "st with 	1; .	1; 	2/ 2 C

(2.9) RLE��.ı; �; 	1; 	2/ #st with 	2; .	1; 	2/ 2 A (2.12) RLE�� .ı; �; 	1; 	2/ #st with 	1; .	1; 	2/ 2 D
(2.10) RLE��.ı; �; 	1; 	2/ "st with 	2; .	1; 	2/ 2 B (2.13) RLE�� .ı; �; 	1; 	2/ "st with 	2; .	1; 	2/ 2 E

(2.14) RLE�� .ı; �; 	1; 	2/ #st with 	2; .	1; 	2/ 2 F
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Fig. 1 Subregions of the stationary region of the AR.2/ process (the shaded areas correspond to

sign=1). (a) sign
�
@�S��.ı;�;	1;	2/

@	2

�
; (b) sign

�
@�RL�� .ı;�;	1;	2/

@	1

�
; (c) sign

�
@�RL�� .ı;�;	1;	2/

@	2

�

where the subregions A through F are defined as follows:

Subregion

A D f.	1; 	2/ 2 SAR.2/ W @�S��.ı;�;	1;	2/

@	2
> 0g

B D f.	1; 	2/ 2 SAR.2/ W @�S��.ı;�;	1;	2/

@	2
< 0g

C D f.	1; 	2/ 2 SAR.2/ W @�S�� .ı;�;	1;	2/

@	1
< 0g

D D f.	1; 	2/ 2 SAR.2/ W @�S�� .ı;�;	1;	2/

@	1
> 0g

E D f.	1; 	2/ 2 SAR.2/ W @�S�� .ı;�;	1;	2/

@	2
< 0g

F D f.	1; 	2/ 2 SAR.2/ W @�S�� .ı;�;	1;	2/

@	2
> 0g

These subregions were obtained by using the Mathematica function RegionPlot.

where the shaded areas in Fig. 1 represent the subregions where the derivatives of
�S��.ı; �; 	1; 	2/ and �S�� .ı; �; 	1; 	2/ of the individual Shewhart residual charts
and of the left partial sums defined in Eqs. 4–4 are positive and the remaining
areas correspond to the set of values .	1; 	2/ for which those derivatives are
negative. Please note that the sign of the derivatives of �S��.ı; �; 	1; 	2/ and
�S�� .ı; �; 	1; 	2/ is symmetrical to the sign of the derivatives of the corresponding
left partial sums.

Proof. To prove result (2.1) we must analyse the sign of @�S��.ı;�;	1;	2/

@	1
. A close

inspection to the expression of this probability defined in Eq. 4 leads us to the
conclusion that the sign of @�S��.ı;�;	1;	2/

@	1
is equal to the sign of the derivative

@

@	1

2

6
6
41C 1 � 	1r

1 � 	21 .1C	2/
1�	2

C .n� 2/
1 � 	1 � 	2q

1C	2
1�	2 Œ.1 � 	2/2 � 	21 �

3

7
7
5 (34)
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which is equal to

.n�2/	1.1�	1�	2/.1C	2/

.1�	2/

s�
Œ.1�	2/

2�	21 �.1C	2/

1�	2

�3 � n�2r
Œ.1�	2/

2�	21 �.1C	2 /

1�	2

C .1�	1/	1.1C	2/

.1�	2/

s�
1�

	21 .1C	2 /

1�	2

�3 � 1r

1�
	21 .1C	2 /

1�	2

: (35)

On one hand, simplifying the first two summands of Eq. 35, we get

.n � 2/.1C 	2/.	1 C 	2 � 1/
r�

Œ.1�	2/2�	21 �.1C	2/
1�	2

�3
(36)

which is negative since one of the stationarity conditions is 	1 C 	2 � 1 < 0

and all other factors are positive. On the other hand, the simplification the last two
summands of Eq. 35 leads to

	1 C 	2 C 	1	2 � 1

.1 � 	2/
r�

1 � 	21 .1C	2/
1�	2

�3
(37)

whose numerator is also negative when the stationarity conditions are valid. Thus
proving result (2.1).

The proof of result (2.8) is quite similar. The sign of the derivative of
the left partial sums in Eq. 4 is symmetrical to the sign of Eq. 36. Therefore,
RLE��.ı; �; 	1; 	2/ "st with 	1.

The remaining results follow immediately from Lemma 1. However, we were
unable to fully simplify conditions such as @�S��.ı;�;	1;	2/

@	2
> 0 and had to rely on the

Mathematica function RegionPlot to identify the subregions A to F.

We ought to point out that results for the AR(1) process can be derived by
considering 	2 D 0 in the previous theorem.

3.3 The Impact of Autocorrelation on the RL of the Individual
Residual Charts – ARMA(1,1) Process

The derivation of the stochastic monotonicity properties of the RL of the individual
charts for the ARMA(1,1) process is similar to the one for the AR(2) process. These
stochastic monotonicity properties refer to the parameters 	 and ˛ in the stationarity
and invertibility region SARMA.1;1/ D f.	; ˛/ W �1 < 	; ˛ < 1g.

Theorem 2. The following results are valid for the RL of upper one-sided individ-
ual Shewhart and EWMA residual charts for the mean and variance of a stationary
and invertible ARMA(1,1) process.
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� �

Shewhart (3.1) RLS��.ı; �; 	; ˛/ #st with 	; .	; ˛/ 2 G (3.5) RLS�� .ı; �; 	; ˛/ #st with 	; .	; ˛/ 2 K
(3.2) RLS��.ı; �; 	; ˛/ "st with 	; .	; ˛/ 2 H (3.6) RLS�� .ı; �; 	; ˛/ "st with 	; .	; ˛/ 2 L
(3.3) RLS��.ı; �; 	; ˛/ #st with ˛; .	; ˛/ 2 I (3.7) RLS�� .ı; �; 	; ˛/ #st with ˛; .	; ˛/ 2M
(3.4) RLS��.ı; �; 	; ˛/ "st with ˛; .	; ˛/ 2 J (3.8) RLS�� .ı; �; 	; ˛/ "st with ˛; .	; ˛/ 2 N

EWMA (3.9) RLE��.ı; �; 	; ˛/ #st with 	; .	; ˛/ 2 G (3.13) RLE�� .ı; �; 	; ˛/ #st with 	; .	; ˛/ 2 K
(3.10) RLE��.ı; �; 	; ˛/ "st with 	; .	; ˛/ 2 H (3.14) RLE�� .ı; �; 	; ˛/ "st with 	; .	; ˛/ 2 L
(3.11) RLE��.ı; �; 	; ˛/ #st with ˛; .	; ˛/ 2 I (3.15) RLE�� .ı; �; 	; ˛/ #st with ˛; .	; ˛/ 2M
(3.12) RLE��.ı; �; 	; ˛/ "st with ˛; .	; ˛/ 2 J (3.16) RLE�� .ı; �; 	; ˛/ "st with ˛; .	; ˛/ 2 N
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where the subregions H through N are characterized as follows:

Subregion

G D f.	; ˛/ 2 SARMA.1;1/ W @�S��.ı;˛;	;˛/

@	
> 0g

H D f.	; ˛/ 2 SARMA.1;1/ W @�S��.ı;˛;	;˛/

@	
< 0g

I D f.	; ˛/ 2 SARMA.1;1/ W @�S��.ı;˛;	;˛/

@˛
> 0g

J D f.	; ˛/ 2 SARMA.1;1/ W @�S��.ı;˛;	;˛/

@˛
< 0g

K D f.	; ˛/ 2 SARMA.1;1/ W @�S�� .ı;˛;	;˛/

@	
> 0g

L D f.	; ˛/ 2 SARMA.1;1/ W @�S�� .ı;˛;	;˛/

@	
< 0g

M D f.	; ˛/ 2 SARMA.1;1/ W @�S�� .ı;˛;	;˛/

@˛
> 0g

N D f.	; ˛/ 2 SARMA.1;1/ W @�S�� .ı;˛;	;˛/

@˛
< 0g

These subregions were identified using once again the Mathematica function
RegionPlot and are represented in Fig. 2.
As in the previous figure, the shaded areas represent the subregions where the
corresponding derivatives of ��.ı; �; 	; ˛/ and ��.ı; �; 	; ˛/ of the individual
Shewhart residual charts and of the left partial sums defined in Eqs. 5–5, are positive
and the remaining areas correspond to the values of .	; ˛/ for which those deriva-
tives are negative. Once again the sign of the derivatives of �S��.ı; �; 	; ˛/ and
�S�� .ı; �; 	; ˛/ is symmetrical to the sign of the derivatives of the corresponding
left partial sums.

Proof. All the results follow from Lemma 1 and, once more, the simplification of
conditions like @�S��.ı;˛;	;˛/

@	
> 0 proved to be unfeasible.

4 Monotonic Behaviour of PMS of Type IV

As previously noted, the PMS of Type III does not depend on the parameters
of the stationary process. However, taking into account the definition of PMS of
Type IV and Theorems 1 and 2, we are able to derive monotonicity properties of
this performance measure in terms of the parameters of the stationary AR(2) and
ARMA(1,1) processes.

Theorem 3. The following monotonicity properties are valid for the PMS of Type
IV of the simultaneous Shewhart and EWMA schemes based on upper one-sided
individual residual charts for the mean and variance of a stationaryAR.2/ process:

(3.1) PMSIV .ı; 	1; 	2/ " with 	1 if .	1; 	2/ 2 D
(3.2) PMSIV .ı; 	1; 	2/ " with 	2 if .	1; 	2/ 2 B \ F
(3.3) PMSIV .ı; 	1; 	2/ # with 	2 if .	1; 	2/ 2 A \E

where the subregions D, B \ F and A \ E are represented in Fig. 3.
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Fig. 3 Monotonicity regions (shaded areas) of PMSIV for a stationary AR(2) process. (a)
PMSIV .ı; 	1; 	2/ " 	1; (b) PMSIV .ı; 	1; 	2/ " 	2; (c) PMSIV .ı; 	1; 	2/ # 	2

Proof. These results follow directly from the definition of PMSIV .ı; 	1; 	2/ and
from the monotonicity results in Theorem 1. For example, since for both Shewhart
and EWMA schemes,

• RL�.ı; �; 	1; 	2/ "st with 	1,
• RL�.ı; �; 	1; 	2/ #st with 	1 when .	1; 	2/ 2 D, and
• PMSIV .ı; 	1; 	2/ D P ŒRL� .ı; 1; 	1; 	2/ < RL�.ı; 1; 	1; 	2/�,

we can conclude that PMSIV .ı; 	1; 	2/ " with 	1 when .	1; 	2/ 2 D.

As we can see from Fig. 3, the PMS of Type IV increases with 	1 and 	2
when these two parameters are both nonnegative and within the stationarity region.
Moreover, from Fig. 3c we can conclude that the subregions where PMSIV .ı; 	1;
	2/ # 	2 have a very small size.

It is important to point out that we were only able to establish a few monotoni-
city results for the AR(2) process. This suggests that it will be harder to establish
monotonicities in more complex processes such as the ARMA(1,1).

Theorem 4. The PMS of Type IV of the simultaneous Shewhart and EWMA
schemes, based on upper one-sided individual residual charts for the mean and
variance of a stationary and invertible ARMA(1,1) process, has the following
monotonicity properties:

(4.1) PMSIV .ı; 	; ˛/ # with 	 if .	; ˛/ 2 G \L
(4.2) PMSIV .ı; 	; ˛/ " with 	 if .	; ˛/ 2 H \K
(4.3) PMSIV .ı; 	; ˛/ # with ˛ if .	; ˛/ 2 I \N

(4.4) PMSIV .ı; 	; ˛/ # with ˛ if .	; ˛/ 2 J \M

where the subregions G\ L, H\ K, I\ N and J\ M are represented in Fig. 4.

Proof. All these results follow directly from the definition of PMSIV and from the
monotonicity results in Theorem 2. For instance, for both Shewhart and EWMA
schemes,
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Fig. 4 Monotinicity regions (shaded areas) of the PMSIV for a stationary and invertible
ARMA(1,1) process. (a) PMSIV .ı; 	; ˛/ # 	; (b) PMSIV .ı; 	; ˛/ " 	; (c) PMSIV .ı; 	; ˛/ #
˛; (d) PMSIV .ı; 	; ˛/ " ˛

• RL�.ı; �; 	; ˛/ #st with 	 when .	; ˛/ 2 G
• RL�.ı; �; 	; ˛/ "st with 	 when .	; ˛/ 2 L and
• PMSIV .ı; 	; ˛/ D P ŒRL�.ı; 1; 	; ˛/ < RL�.ı; 1; 	; ˛/�,

therefore PMSIV .ı; 	; ˛/ # with 	 when .	; ˛/ 2 G \ L.

It is apparent from Fig. 4 that the PMS of Type IV increases with 	 for most
values of .	; ˛/ in the set f.	; ˛/ 2 .�1; 1/2 W 	 < ˛g. We can also add that the
subregions where PMSIV .ı; 	; ˛/ # 	 and PMSIV .ı; 	; ˛/ " ˛ have very small
size.

We close this subsection by stressing out that all the monotonicity results in
Theorems 3 and 4 hold regardless of the value of the smoothing parameter �,
meaning that they are valid for both Shewhart and EWMA residual schemes.
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5 Concluding Remarks

The results presented in this paper show that the MS of Type III is not affected by the
autocorrelation structure of the stationary process, as previously noted by Antunes
(2009) and Knoth et al. (2009) while dealing with stationary AR(1) output.

In addition, the use of stochastic ordering allowed us to make a qualitative as-
sessment of the impact of the presence of autocorrelation on the performance of
simultaneous residual schemes. For instance, we have shown that larger nonnegative
values of the parameters 	1 and 	2 of the stationary AR(2) process are associated
to higher values of PMS of Type IV. We have also proved that the PMS of Type IV
increases (resp. decreases) in most cases with the autoregressive parameter 	 (resp.
moving average parameter ˛) of the stationary and invertible ARMA(1,1) process.

All these results are valid for both simultaneous Shewhart and EWMA residual
schemes.

We strongly believe that this paper provides additional insights and answers to
the following question: how are PMS of types III and IV influenced by the presence
of autocorrelation?
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e Aplicações (CEMAT) and FCT while visiting the Department of Statistics of the European
University Viadrina (Frankfurt (Oder), Germany).

References

Antunes, C. (2009). Avaliação do impacto da correlação em sinais erróneos de esquemas de
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More on Control Charting Under Drift

Sven Knoth

Abstract The standard task within SPC is the detection of an unforeseen shift in the
mean level of the sequence of typically normally distributed random variables. Only
some papers deal with a not considerably less common pattern in industrial practice:
gradual changes because of tool wear or similar causes. In the small list of the
currently available papers both existing control charts for the mean under drift are
studied and new ones are created. It is worth noting that except Gan (J Stat Comput
Simul 38:181–200, 1991; Statistician 41:71–84, 1992) no convincing numerical
algorithms are presented for calculating characteristics for control charts under
and for drift. The good message is that mean level control charts are also suited
for detecting drifts. This paper provides some more numerical results including a
competing method to Gan’s algorithm and presents various schemes.

Keywords Statistical process control • Linear drift • Average run length •
Numerical methods for calculating ARL

1 Introduction

Typically, control charts (surveillance or change point detection schemes) such as
Page’s CUSUM, Roberts’ EWMA, and the Shiryaev-Roberts procedures are setup
to detect a step change as quickly as possible while maintaining a low false alarm
rate. In practical applications, a change may happen gradually. A linear drift (or
trend) would be the first idea to model it. Except Chang and Fricker (1999), most
of the literature published about control charting under or for drift considers linear
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drift (even more, linear in the observation number). As usual, these models would
already cover a wide range of applications. Thus, this simple linear drift model will
be also the model of this paper.

Nevertheless, the numerical treatment of control charts under linear drift, looking
for optimal or nearly optimal schemes etc. is less intensively studied than for the
popular step change model. While designing a control chart it is not clear, whether
a specific drift detection scheme should be set up or the usual step change chart is
needed anyway. Thus, one should not only construct new schemes, but also analyze
the performance of the classics under drift. Note that a very simple approach for
constructing a linear drift detection scheme could rely on the differences of the
observed data sequence, which is something like a signed Moving Range statistic.
Davis and Woodall (1988) evaluated popular chart examples from the quality circle
world – the so-called trend rules. However, they conclude that these charts are
ineffective in detecting drifts. Most of the papers deploy Monte Carlo studies to
get performance measures such as the Average Run Length. The most accurate
numerical algorithm was developed by Gan (1991, 1992). It is surprising that nearly
no other author is using his method. Here, his approach and one already used in
Knoth (2003) are utilized for one-sided EWMA, CUSUM and Shiryaev-Roberts
schemes. Contrary to the step change performance it is quite difficult to evaluate
the drift performance of two-sided CUSUM and Shiryaev-Roberts schemes. For all
other schemes it is even more complicated so that Monte Carlo studies dominate.
The aim of this paper is twofold. First, it illustrates that on the current level of
knowledge, the classics could be used for drift detection. Second, it should inspire
the SPC community to do more in order to enhance the knowledge about drift
detection.

2 Status Quo of Drift Detection with Attention to Numerical
Algorithms

One of the first papers is Bissell (1984) who already treated CUSUM charts under
drift. His numerical algorithm, a modified Markov chain approach, did not work
well (also noted by himself in a correction) and was refined in Asbagh (1985) –
presumably it is more a matter of efficient coding than algorithmic difficulties.
Some more details follow below. Bissell’s conclusions regarding the choice of an
appropriate scheme are therefore not reliable, nonetheless they are not wrong. Then,
in Davis and Woodall (1988) the Shewhart chart with trend rules was analyzed.
The authors clearly discourage from their usage. A more elaborated study was
done in Aerne et al. (1991), where based on Markov chain and Monte Carlo
methods Shewhart charts with and without runs rules, CUSUM and EWMA were
considered. Basically, they finally suggest to apply the competing charts as in the
step change case. That is, for small drift coefficients deploy CUSUM or EWMA,
otherwise Shewhart charts. In the same year, Gan (1991) published the first time his
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algorithm to attain high accuracy in calculating Average Run Lengths of classical
control charts under drift. His first paper discusses two-sided EWMA charts.
In Gan (1992) one-sided CUSUM charts were analyzed. His idea is simple and
impressive. It should be sketched here for the two-sided EWMA chart. Beforehand,
the general change point model utilized in this paper is described.

Let X1;X2; : : : be a sequence of independent normal random variables with
variance 1. Their mean is under risk to change. Specifically,

E.Xt/ D
(
�0 D 0; t < �

�t�� D .t � � C 1/�; t � �
; t D 1; 2; : : : :

� resembles the so-called change point. Note that Gan preferred �t�� D .t � �/�

with the special feature E.X�/ D 0 D �0. Here, the above model is chosen. The
parameter � is the drift coefficient. Gan considered the case � D 1 as in-control
scenario and � D 1, as usual, as representative out-of-control pattern. Imagine now
that the change, step or drift, should be detected by an EWMA control chart. Thus,
apply Roberts’ (1959) classic EWMA chart:

Z0 D z0 D �0 D 0 ;

Zt D .1 � �/Zt�1 C �Xt ; � 2 .0; 1� ;
L D inf

n
t 2 N W jZt j > c

p
�=.2� �/ DW C

o
:

The most popular performance measure is the zero-state Average Run Length
(ARL). It is defined as (denote E�./ the expectation for change point �)

ARL D
(
E1.L/; in-control case: no change at all.

E1.L/; out-of-control case: change already at the beginning.

It is a simplified measure and already often criticized. In the drift detection area, it is
the dominating one. A more suitable notation style is to write the ARL as function of
the slope �, where � D 0 corresponds then to E1.L/. The so-called steady-state
ARL is slightly different:

D D lim
�!1E�.L� � C 1 j L � �/ ;

where� D 0 and � ¤ 0 are both involved. D is calculated only in Table 7.
Now Gan denoted with

Lj .y; �j / ; j D 0; 1; : : : ; m

the ARL for an EWMA chart starting at z0 Dy and mean sequence �j D j�;

�jC1; : : : ; �m; �m; : : : He showed in Gan (1991) that for y 2 Œ�C;C �
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Fig. 1 Illustration of Gan’s search for a suitable choice of the constant m – see Gan (1991) for
details (EWMA control chart with � D 0:047 and E1.L/ D 500)

Lj .y; �j / D
jD0;1;:::;m�1 1C

Z C

�C
LjC1.y; �jC1/

1

�
f�j

�
x � .1 � �/y

�

�
dx ;

Lm.y; �m/ D 1C
Z C

�C
Lm.y; �m/

1

�
f�m

�
x � .1 � �/y

�

�
dx :

For fixed m, the latter integral equation can be solved as usual with the Nyström
method utilizing a reasonable quadrature method such as Gauss-Legendre. After-
wards, the first iteration sequence is executed by plugging in the same quadrature
as for the integral equation. The final approximation of L1.y D z0; �1/ (Gan took
L0.y D z0; �0/) provides the ARL E1.L/. It remains the choice of the index m.
A simple idea is to increase m until L0.y D z0; �0/ remains constant. It depends
heavily on the drift rate �. Gan reported for � D 1; :1; :01; :001 and :0001 the
following values for m: 6, 30, 150, 700 and 2,500, respectively. See Fig. 1 for an
illustration of the convergence patterns. For implementing Gan’s algorithm one
should hide the search for sufficiently large m. The resulting procedure is slower
than the method described in Knoth (2003). This algorithm could also be used to
calculate the ARL for drift. Additionally, it could be extended easily for the steady-
state ARL and ARL vehicles for 1 < � < 1.

In Gan’s publication in 1996 of the Algorithm AS 305 for CUSUM an important
remark regarding the numerical issues for two-sided CUSUM was given. Gan under-
lined that the performance of the usual two-sided CUSUM chart – simultaneously
running a lower and an upper chart – could not be treated under drift like under a
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step change. The problem occurs, e.g., by calculating the ARL of the lower chart,
if an upwards drift is present. The above approach – increase m until the resulting
ARL does not change anymore – fails because Lm.y; �m/lower becomes larger for
increasing m. Or to put it in other words, if the lower chart does not signal already
during the first drifted values, then it becomes quite unlikely that it will ever signal.
To sum up, except Monte Carlo methods no other method is currently available for
calculating reliably the ARL of two-sided CUSUM schemes under drift.

Some years earlier, Bissell (1984) studied one-sided CUSUM charts (besides
Shewhart charts with and without warning limits) and extended the results in Brook
and Evans (1972) to non-homogeneous Markov chains. Thus, instead of solving the
famous linear equation system to get the ARL he considered:

ARL D
1X

mD1
m �P.L D m/ ; ARL 	

mmaxX

mD1
m � QP.L D m/ ;

QP.L D m/ D QP .L > m � 1/� QP .L > m/ ; QP .L > m/ D z0
0

 
mY

iD1
iP

!

1 :

The transition matrices iP are determined as in Brook and Evans (1972) with
slipping means i�. z

0
and 1 are the starting vector and a vector of ones, respectively.

Regarding the choice of mmax Bissell mentioned that “for � � 0:01 at most a
few hundred terms need to be evaluated, and for � � 0:1 only a few tens”.
The dimension of the matrix was set to 20. For small values of �, however, the
results in Bissell (1984) are far away from the true ones. In Bissell (1986) the
author mentioned that this was mainly caused by rounding errors and compared his
previous results with new numbers obtained by a small Monte Carlo study. Before
digging into the details one comment has to be made: Bissell and nearly all more
recent papers calculated the ARL values for really small values of the slope�. This
is somehow misleading, especially if one looks at the smallest values used for shifts.
However, here (and in the sequel) the original design of the comparison was treated.

See Table 1 for Bissell’s results and some up-to-date ones. Note that the columns
B100 and B500 in Table 1 provide numbers based on Bissell’s algorithm withmmax D
100 and 500. Further increasing of mmax would not change the results anymore. To
attain higher accuracy, the matrix dimension has to be increased. It is interesting
that they are much better than Bissell’s original results. Nowadays it is difficult to
identify whether the original computer code was not correct or the accuracy of the
matrix vector multiplication in the 1980s was not that high. Bissell (1986) noted that
in the Master thesis of Asbagh (1985) the implementation of the above algorithm
was an improved one. Eventually, it is highly recommended that

ARL 	
mmaxX

mD0
QP.L > m/
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Table 1 Bissell’s results and corresponding new ones. OLBMC and the subsequent s. e.B are from
Bissell (1986), B from Bissell (1984), B100 and B500 are based on Bissell’s formulas with mmax D
100 and 500, respectively, GoK are calculated with Gan’s (or Knoth’s) algorithm, and the last two
columns provide Monte Carlo results with 106 replicates
� OLBMC s. e.B B B100 B500 GoK OLMC s. e.
0.001 245 23:8 � 95 229 231 231 0:113

0.002 142 12:4 � 92 155 156 156 0:068

0.005 87 7:0 205 81 89 89 89 0:033

0.01 56:4 3:8 101 57:1 57:1 57:2 57:2 0:019

0.02 36:2 2:1 53 36:5 36:5 36:5 36:5 0:010

0.05 18:8 1:2 24 20:4 20:4 20:4 20:4 0:005

0.1 14:3 0:58 14:2 13:3 13:3 13:3 13:3 0:003

0.2 8:4 0:32 9:0 8:8 8:8 8:8 8:8 0:002

0.5 5:2 0:12 5:3 5:3 5:3 5:3 5:3 0:001

1.0 3:40 0:13 3:6 3:60 3:60 3:60 3:60 0:001

2.0 2:44 0:10 2:5 2:50 2:50 2:50 2:50 0:000

3.0 1:96 0:04 2:0 2:01 2:01 2:01 2:01 0:000

# replicates 25 106

should be used, which is simpler to implement and presumably more numerically
robust than Bissell’s : : : m � QP .L D m/.

Already in 1988 Sweet published an algorithm for monitoring data with potential
drifts. His coupled EWMA charts directly monitor the slope of the data:

S0 D �0 D 0 ;

St D .1 � �S/.St�1 C Bt�1/C �SXt ;

B0 D �0 D 0 ;

Bt D .1 � �B/Bt�1 C �B.St � St�1/ :

The sequence Bt is built for monitoring the trend slope. St is, more or less, the
usual mean monitor. Sweet’s framework allows also to monitor changes from one
drift coefficient to another. The whole design stems from the forecasting literature
(Holt 1960) and seems to be rarely discussed in SPC literature. Sweet provides some
guide lines to design the two control charts. Thereby, he tries to link distributional
properties of the sequences to the standard Shewhart 3� rule. He did not calculate
performance measures like the ARL. It is not that surprising, because the design of
these coupled EWMA charts is not easily treated numerically. Thus, only Monte
Carlo studies could be done. Just a quick comparison of Sweet’s combined charts
and the usual two-sided EWMA control chart is given in Table 2. Note that
these numbers are only some first results. More analysis is ongoing. Additionally,
a considerably large number of alarms within the Sweet scheme are raised by
the mean chart and not by the slope chart. Finally, this setup looks promising for
designing control charts that allow to monitor more general in-control processes
such as slowly drifting ones.
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Table 2 ARL results of Sweet’s Winter-Holt like
EWMA charts (Monte Carlo with 106 replicates) and
standard mean monitoring EWMA charts (Gan’s or
Knoth’s algorithm). All the EWMA � values are set
to 0.1. The in-control ARL is roughly 370

� EWMA Winter-Holt
0.001 177 211
0.026 28.6 30.4
0.081 14.7 15.4
0.325 6.72 7.08

A further contribution to both the modelling of the change point for potentially
drifting data and new monitoring procedures is Chang and Fricker (1999). They
look at a broader class of drift patterns: monotonically increasing means. However,
they have a maximal value for the mean in mind. The aim of their scheme is not
to detect the drift itself, but the exceeding of that maximal value. This sounds
reasonable for some practical applications. Chang and Fricker Jr. evaluate one-sided
CUSUM and EWMA charts, and a GLR-like scheme. The latter is custom-built
for detecting the exceedance of their threshold mean under their more general
mean drift model. The basic idea of GLR (generalized likelihood ratio) in change
detection is to dispense the explicite knowledge of the post-change parameters.
Here, the additional estimation task (under the monotonicity restriction) leads to
isotonic regressions. Of course, the complicate implementation of GLR schemes in
general and specifically for the model here hampers their application in practice.
As side effect it offers a nice on-line estimate of the mean. However, Chang and
Fricker Jr. conclude that the classics are not outperformed by the specialized GLR
procedure. Thus, there is no reason to switch from the classics in the considered drift
change point model. Note that the authors calculated a kind of steady-state ARL with
Monte Carlo studies. Thus, it is difficult to compare it to any other analysis done for
drift monitoring.

More recently, Reynolds and Stoumbos (2001), studied drift behavior in simul-
taneous monitoring schemes (mean and variance). They allowed both drifts in mean
and variance. All was evaluated with Monte Carlo studies. It was concluded, not
surprisingly, that EWMA outperforms the Shewhart counterparts for small and
moderate drift coefficients. Note that separate analysis of variance control charts
under drift would be a interesting and useful task.

Fahmy and Elsayed (2006) introduced a drift detection scheme based on slope
estimates on rolling windows. Afterwards, they compared their new chart with one-
sided Shewhart, CUSUM and EWMA charts, and drift GLR scheme under drift.
They obtained their numbers by Monte Carlo simulation. They concluded that
their scheme is better than the classics under drift. Some more reflections about
their results will be given in the next section. Given the only slight performance
advantages and the higher complexity of the rolling window scheme, in application
the classics would outlast.

The most recent paper is Zou et al. (2009). It gives a thorough introduction to the
subject and a large comparison study for one-sided EWMA, CUSUM, GEWMA
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Table 3 Lw/o
� and Lw/

� – ARL results of Divoky and Taylor (1995), Lw/o*
� – ARL of Shewhart control

chart with tightened limits, and LE
� – standard mean monitoring EWMA charts (Gan’s algorithm,

� D 0:1). The in-control ARL is roughly 370. The � values are calculated according to the above
formula. The larger �, the better the trend detection abilities
� Lw/o

� type Lw/
� �w/ Lw/o*

� �w/o* LE
� �E

0 367.61 – – – 300 – 370 –
0.003 174.54 15 of 20 163.79 0.867 157.36 0.905 101.73 1.727
0.006 120.70 17 of 24 113.99 0.775 111.68 0.882 68.55 1.772
0.03 43.44 10 of 13 40.87 0.416 41.49 0.855 26.27 1.665
0.06 26.86 9 of 12 25.20 0.236 25.67 0.854 17.45 1.549
0.3 8.12 6 of 8 8.02 0.063 7.90 0.838 7.02 1.164

(the smoothing constant � is optimized in a certain way), and GLR schemes for
the step change and drift. All schemes are analyzed for drift coefficients from
very small up to large ones. They deploy only Monte Carlo studies. Based on
their measure RMI (measures the performance over the whole range of considered
drift coefficients) they conclude that the more sophisticated schemes outperform the
classics. This will be reviewed in the next section.

Eventually, some notes on detecting drift with so-called trend rules are given.
Davis and Woodall (1988) considered rules like “signal if 5 or 6 of consecutive
slopes are of the same sign”. They demonstrated that simple Shewhart charts and
Shewhart charts with traditional runs rules are better in detecting drift without
than with additional trend rules. However, in Divoky and Taylor (1995) about
600 different trend rules were studied to find an optimal one. They considered as
effectiveness ratio the relation between the reduction in the in-control vs. out-of-
control ARL, that is,

� D Lw/
0 =Lw/o

0

Lw/
� =Lw/o

�

:

Thus, a reasonable trend rule add-on would generate large � values. See Table 3
for their results, a slightly modified Shewhart control chart and a two-sided EWMA
chart for mean shifts. From Table 3 it is clear that Divoky and Taylor’s best designs,
Lw/
� are the corresponding ARL values, are beaten by (1) a simple Shewhart control

chart with tightened limits (from 3 to 2.935) as already demonstrated in Davis
and Woodall (1988) and (2) by EWMA control charts. Thus, there is only one
conclusion: Trend rules should be avoided.

3 New and Old Results

3.1 Control Charts Under Consideration

3.1.1 Standard Charts

This is a short list without any detailed discussion. The charts are described in
their one-sided version. It is quite simple (and standard) to get to their two-sided
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counterparts. GRSR stands for Girshick-Rubin-Shiryaev-Roberts (or more fre-
quently called Shiryaev-Roberts) and GEWMA for generalized EWMA.

Shewhart: L D infft 2 N W Xt > cS g ;

CUSUM: St D maxf0; St�1 CXt � kg ; S0 D s0 D 0 ;

L D infft 2 N W St > hg ;

EWMA: Zt D max
˚
zreflect; .1 � �/Zt�1 C �Xt

�
; � 2 .0; 1�; Z0 D �0 D 0 ;

L D inf
n
t 2 N W Zt > cE

p
�=.2 � �/

o
;

GRSR: Rt D .1CRt�1/ exp.Xt � k/ ; R0 D r0 D 0 ;

L D inf ft 2 N W Rt > gg ;

GEWMA: QZt.�/ D
s

2 � �
�
�
1 � .1 � �/2t


tX

iD1
�.1� �/t�iXi ;

L D infft 2 N W max
1�k�t

QZt
�
1=k

�
> cgg :

For more details on GEWMA see Han and Tsung (2004).

3.1.2 GLR Charts

The generalized likelihood ratio charts allow to get rid of specifying a certain
out-of-control value (for the mean or the the drift coefficient). Here, two versions
(for shift and for drift) are given.

step change:

LRt.�; �/ D
tY

iD�

e�ŒXi���2=2

e�X2i =2
! max

1���t; � ;

Tt D max
1���t; � LRt .�; �/ D max

1���t max
�
LRt.�; �/ ;

L D infft 2 N W Tt > hS g ;
drift:
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LRt.�;�/ D
tY

iD�

e�ŒXi�.i��C1/��2=2

e�X2i =2
! max

1���t; � ;

QTt D similar to step change ;

L D infft 2 N W QTt > hDg :

Note that it would be more appropriate to write “sup” instead of “max” – � is a
discrete and �, � are continuous parameters so that the above framework is rather
sloppy. For the drift case it was simply copied from Zou et al. (2009). In the shift
case one should mention that

arg max� LRt.�; �/ D 1

t � � C 1

tX

iD�
Xi

and LRt.�; �/ further simplifies.

3.2 Fahmy and Elsayed (2006)

These authors introduce a further special drift detection chart. Basically, they
consider a rolling window of size w and calculate on each window an OLS (ordinary
least square) fit (observation vs. observation number), determine O�wn D Ǫn C Ǒ

ntw
as “final” estimate of the mean, and create

Mn D .�0 � O�wn/
2

1=w C .tw � Nt/2=St t with Stt D
wX

iD1
.ti � Nt /2 :

In the in-control case (no drift), Mn follows a 21 distribution. Finally, Fahmy and
Elsayed neglect the autocorrelation of Mn and build a Shewhart like control chart
by looking at (here one-sided):

L D inffn 2 N W Mn > cRg :

Now, start with a comparison of two-sided EWMA and CUSUM results given in
Fahmy and Elsayed (2006) and new ones based on a much more extensive Monte
Carlo study and, for EWMA, on Gan’s (or Knoth’s) algorithm (Tables 4 and 5).

Note that the EWMA results of Fahmy and Elsayed (2006) match quite well to
the more recent ones, while there are some slight differences for CUSUM. Fahmy
and Elsayed concluded that their rolling regression chart (the resulting statistic is
2-distributed) outperform the rest. This is mainly because of their specific setup
of the EWMA and CUSUM competitors. Taking different � values changes the
picture, see Table 5. Because the considered drift coefficients are quite large, one
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Table 4 Comparison of ARL values for two-sided CUSUM and EWMA charts under drift.
FE denotes the numbers from Fahmy and Elsayed (2006) based on a MC runs with 104 replicates.
The remaining numbers stem from MC runs with 107 replicates and Gan’s procedure (GoK)

CUSUM EWMA
� FE (104) Here (107) FE (104) Here (107) GoK
0 368.333˙ 3.549 368.251˙ 0.111 365.749˙ 3.598 369.021˙ 0.114 368.994
0.10 13.986˙0.026 14.086˙ 0.001 12.971˙0.029 12.986˙0.001 12.986
0.25 8.560˙0.014 8.656˙0.000 7.738˙0.015 7.758˙0.000 7.758
0.50 5.946˙0.008 6.033˙0.000 5.312˙0.009 5.318˙0.000 5.318
0.75 4.827˙0.007 4.898˙0.000 4.279˙0.007 4.286˙0.000 4.285
1.00 4.156˙0.006 4.224˙0.000 3.680˙0.006 3.688˙0.000 3.688
2.00 2.950˙0.003 2.989˙0.000 2.598˙0.005 2.616˙0.000 2.616

Table 5 Comparison of the ARL values of Fahmy and Elsayed (2006) favorite schemes (2) and
additional EWMA charts under drift. The bold values mark the smallest ARL values

FE 2 EWMA
� w� D 3 w� D 5 w� D 20 � D 0:1 � D 0:2 � D 0:3 � D 0:5

0 379.138˙3.790 370.048˙3.682 373.458˙ 3.546 369 370 370 370
0.10 17.445˙0.056 16.047˙0.049 12.860˙ 0.035 12.986 12.747 13.041 14.136
0.25 8.537˙0.032 8.127˙0.023 7.623˙0.018 7.758 7.304 7.231 7.497
0.50 5.027˙0.021 4.869˙0.013 5.260˙0.012 5.318 4.881 4.722 4.706
0.75 3.672˙0.017 3.673˙0.009 4.250˙0.009 4.285 3.886 3.715 3.620
1.00 2.939˙0.014 3.055˙0.007 3.660˙0.008 3.668 3.318 3.149 3.023
2.00 1.816˙0.003 2.042˙0.000 2.579˙0.000 2.616 2.254 2.124 2.005

should apply � values larger than 0.1. Additionally, in other papers also much
smaller drift coefficients are evaluated (see also next subsection). Summing up, the
rolling window procedure needs more computational efforts and exhibits not better
performance than classical control charts under drift.

3.3 Zou et al. (2009)

Zou et al. evaluated one-sided control charts. Among them are the classical EWMA
and CUSUM chart, the more sophisticated GEWMA (the smoothing constant of the
EWMA sequence is permanently adjusted), and two GLR charts designed for step
changes and drifts. All results were calculated by Monte Carlo studies. Based on the
measure RMI , which evaluates the robustness of the charts to various magnitudes
of drifts, they conclude that the GEWMA and the drift GLR outperform the rest.
Nevertheless, on smaller ranges of possible drift coefficients, the classics keep
up with the newer ones or even beat them. It seems so that mainly the specific
dynamic adaption of one of the chart parameters gives the more recent schemes
some advance. In Table 6 the EWMA and CUSUM (zero-state) ARL results are
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Table 6 Zero-state ARL values of one-sided EWMA, CUSUM and Shiryaev-Roberts (GRSR)
procedures. The schemes are optimized for step changes of size ı. The corresponding � values are
0.03479, 0.11125, and 0.23052. Additionally, the Monte Carlo results for GEWMA, GLR-S, and
GLR-L are taken from Table 1 in Zou et al. (2009). The smallest values are boldly written

EWMA CUSUM GRSR
� ı D 0:5 ı D 1 ı D 1:5 ı D 0:5 ı D 1 ı D 1:5 ı D 0:5 ı D 1 ı D 1:5 G

E
W

M
A

G
L

R
-S

G
L

R
-L

0 1,750 1,747 1,733 1,741 1,742 1,735 1,730 1,730 1,730 – – –
0.0005 318 378 437 345 412 468 337 399 448 375 381 368
0.001 215 254 295 231 276 316 227 267 301 252 257 249
0.005 83.5 92.2 106 86.7 98.3 112 85.8 95.7 107 96.2 97.8 95.4
0.01 55.7 58.7 66.3 57.0 61.9 69.4 56.6 60.4 66.6 62.1 63.3 62.0
0.05 22.6 21.1 22.0 22.6 21.6 22.6 22.7 21.4 22.1 22.4 22.7 22.5
0.1 15.5 13.9 13.9 15.4 14.0 14.2 15.7 14.1 14.0 14.4 14.6 14.5
0.5 6.65 5.56 5.09 6.60 5.54 5.16 6.84 5.76 5.32 5.10 5.23 5.18
1.0 4.67 3.83 3.43 4.63 3.80 3.45 4.86 4.03 3.66 3.26 3.38 3.31
2.0 3.21 2.74 2.32 3.17 2.67 2.32 3.42 2.91 2.59 2.09 2.16 2.12
3.0 2.86 2.06 1.98 2.79 2.04 1.96 2.97 2.20 2.02 1.69 1.75 1.72
4.0 2.14 2.00 1.83 2.10 1.98 1.74 2.39 2.20 1.97 1.31 1.37 1.34

Table 7 Steady-state ARL (D) values of one-sided EWMA, CUSUM and Shiryaev-Roberts
(GRSR) procedures under drift. The schemes are optimized for step changes of size ı. The
corresponding � values are 0.03479, 0.11125, and 0.23052. The smallest values are boldly written

EWMA CUSUM GRSR
� ı D 0:5 ı D 1 ı D 1:5 ı D 0:5 ı D 1 ı D 1:5 ı D 0:5 ı D 1 ı D 1:5

0.0005 314 376 436 340 410 467 333 397 446

0.001 213 253 295 228 275 315 224 266 301

0.005 82.6 91:8 106 85:4 97:9 112 84:2 95:1 107

0.01 55.1 58:4 66:2 55:9 61:6 69:2 55:3 60:0 66:4

0.05 22:3 20.9 21:9 21:8 21:4 22:6 21:6 21:1 21:9

0.1 15:4 13:8 13:8 14:8 13:8 14:1 14:7 13.7 13:8

0.5 6:59 5:50 5.05 6:17 5:36 5:08 6:18 5:38 5:08

1.0 4:62 3:79 3.40 4:30 3:65 3:37 4:31 3:68 3.40
2.0 3:27 2:66 2:33 2:98 2:53 2:26 3:00 2:58 2.30
3.0 2:68 2:13 1:91 2:50 1:99 1.90 2:52 2:01 1:92

4.0 2:32 1:90 1:73 2:01 1:89 1.66 2:04 1:90 1:73

given now together with Shiryaev-Roberts ARL values under drift. To perform the
comparison as in Zou et al. (2009) the Monte Carlo results from their Table 1 are
added.

Roughly speaking, the classical schemes do not differ heavily under drift in terms
of the zero-state ARL. Moreover, the EWMA (in it’s classical dress and as GEWMA)
exhibits the best zero-state ARL behavior. Note that the EWMA type schemes start
at their mean level, while the other three schemes are evaluated from their worst
level.

Therefore, in Table 7 are the related steady-state ARL values (but not ...) given.
They are calculated based on the algorithms described in Knoth (2003). Note that
it could be done also with Gan’s procedure together with the approximated left
eigenfunction of the chart transition kernel in the in-control case.
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There are only slight differences between the three schemes in both the zero-state
and steady-state ARL under drift. The EWMA chart (for mean monitoring) remains,
however, a good candidate for detecting also drifts.

3.4 Charts for diff.X/

For detecting drift one simple idea would be, naturally, to monitor the differences
of the original data by utilizing standard control charts. Denote Dt the first order
differences. Hence, for equidistant time points:

Dt D
t>1
Xt �Xt�1 and D1 D X1 � �0 D X1 ;

E.Dt / D
(
0 ; t < �

� ; t � �
:

The original drift change point model is transformed into a step change model.
Additionally, we get

Var.Dt / D 2Var.Xt / D 2�20 ;

Corr.Dt ;Dt�1/ D �1=2 ;

Thus, the variance is inflated and the differences Dt are negatively correlated.
Increased variance means deteriorated detection power, while the negative corre-
lation causes at least two effects: (1) from SPC literature on autocorrelated data it
is known that for negative autocorrelation the detection power is increased and (2)
it becomes difficult to calculate ARLs numerically. Because of (2) Monte-Carlo was
used to get some first results – for a more detailed analysis two-dimensional Markov
chain (or integral equation algorithms) approximation would be a better choice.
Here, we look at a small sample of two-sided EWMA charts applied to Dt and
compare it with a classical two-sided EWMA chart. In Table 8 some Monte-Carlo
results including the standard error are collected. From Table 8 one concludes that
diff.X/-EWMA charting is not useful to detect small drifts. Thus, EWMA charts
on the original data or Sweet’s coupled charts are better suited to detect drift.

4 Conclusions

Generally speaking, the schemes specifically designed for detecting drifts (instead
of a step change) are not really worth the effort. The classical charts as CUSUM,
EWMA, and Shiryaev-Roberts for mean surveillance are sufficiently sensitive to
detect also drifts, even small ones. Regarding the size of the considered out-of-
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Table 8 ARLs of two-sided EWMA charts. For diff.X/-EWMA Monte-Carlo with 107 rep. was
used. The results in the last column were calculated with Gan’s (or Knoth’s) algorithm

diff.X/-EWMA EWMA
� � D 0:001 � D 0:005 � D 0:01 � D 0:05 � D 0:1

0.000 499.0430:158 499.9410:158 500.0110:158 499.9090:158 500
0.001 352.1540:082 446.7490:134 480.8440:150 498.7810:157 200.366
0.005 156.9240:024 195.2020:037 269.4050:068 476.5280:150 81.377
0.010 100.9500:013 116.0580:017 144.8030:027 417.4690:130 53.341
0.050 32.5380:003 33.9730:005 36.0020:004 79.4140:018 20.028
0.100 19.4300:002 19.9220:002 20.5910:002 29.5650:004 13.343
0.500 5.7030:000 5.7420:000 5.7900:000 6.2270:001 5.439
1.000 3.3680:000 3.3800:000 3.3940:000 3.5200:000 3.768
2.000 2.0190:000 2.0220:000 2.0260:000 2.0600:000 2.688
3.000 1.5370:000 1.5380:000 1.5400:000 1.5530:000 2.047
4.000 1.1810:000 1.1820:000 1.1830:000 1.1920:000 1.993
5.000 1.0280:000 1.0280:000 1.0280:000 1.0310:000 1.927

control slopes � one has to note that surprisingly small values are utilized in most
of the comparison studies.

It is open how the ARL of two-sided CUSUM charts under drift could be
numerically calculated. For the Shiryaev-Roberts scheme it is not clear, how the
two-sided chart looks like – there are several ideas to create one. Summarizing,
statistical drift monitoring is just at its beginning.
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1 Introduction

Since the introduction of the exponentially weighted moving average (EWMA)
chart by Roberts (1959) this scheme has become one of the most discussed control
charts in the literature on statistical process control. Because its decision rule is quite
simple it has shown to be an attractive control chart for practitioners. Similar to the
CUSUM chart of Page (1954) it depends on a further parameter, the smoothing
parameter, which regulates the influence of past observations on the present deci-
sion. If the smoothing parameter is equal to 1 the chart coincides with the Shewhart
chart (cf. Shewhart 1931). The smaller the value of the smoothing parameter the
larger is the influence of the preceding observations. Recommendations about the
choice of the smoothing parameter were given by several authors. Montgomery
(2009) writes that values of � in the interval 0:05��� 0:25 work well in practice.
The aim of Lucas and Saccucci (1990) was to find an optimal design procedure.
Fixing the desired in-control average run length (ARL) of the EWMA chart
they determined the value of the smoothing parameter which minimizes the out-
of-control ARL for a given value of the expected shift. In their paper the minimum
is determined for values of the smoothing parameter lying within the interval (0.03,
1.0). One reason why a lower bound for the smoothing parameter was chosen
probably lies in the fact that the calculation of the average run length of the EWMA
chart turns out to be quite complicate (see, e.g., Brook and Evans 1972; Crowder
1987) and numerically instable if the smoothing parameter is very small.

Most of the literature on EWMA charts is concerned with the monitoring of
the mean of an independent random sample. A further great advantage of the
EWMA approach consists in the fact that it can be easily extended to monitor
other parameters of a process and that the structure of the underlying process can be
quite general. EWMA charts for the standard deviation of an independent random
process have been introduced by Crowder and Hamilton (1992). The extension
of the EWMA chart to monitor the mean of a stationary time series process was
given by Schmid (1997). EWMA charts for the variance of a stationary process
were proposed in Schipper and Schmid (2001) while Rosołowski and Schmid
(2003) discussed simultaneous EWMA schemes for the mean, the variances, and
the autocovariances. These examples describe only a few applications of EWMA
charts.

Many researchers followed the proposal of Lucas and Saccucci (1990) about the
determination of the optimal smoothing parameter and they obtained it by minimiz-
ing the out-of-control ARL for a fixed in-control ARL. Due to the improvement of
the computer power in the last years it is nowadays possible to calculate the ARL
for smaller bounds than 0:03 as well. Doing this something interesting happens. It
has turned in some cases that the smaller the lower bound the smaller the ARL and
thus the optimal smoothing parameter is equal to the lower bound. This problem
was described by Chan and Zhang (2000) and it was analyzed in more detail by
Frisén and Sonesson (2006); both papers focus on the mean chart and independent
samples.
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A deeper analysis of the convergence of the distribution of the run length of the
one-sided EWMA chart for the mean was provided by Morais et al. (2010). They
proved that for a fixed control limit the in-control ARL of the EWMA scheme based
on the asymptotic variance is a decreasing function in the smoothing parameter.
Moreover, they analyzed the limit of the distribution of the run length as the
smoothing parameter turns to zero. The resulting limit chart turns out to be equal to
the repeated significance test. These authors also derived several properties of the
limit chart.

In the present paper we consider a very general family of EWMA schemes which
can be used to monitor an arbitrary real-valued parameter. It is assumed that the
statistics to which the EWMA recursion is applied are governed by a stationary
process. Because of its generality this approach covers most of the EWMA schemes
discussed in literature. We distinguish between two types of decision rules. The
first rule is based on a comparison of the deviation of the EWMA statistic and
the target parameter with the in-control variance of the EWMA recursion. Because
at each time point the variance changes it must be calculated in each step. This
procedure is called the EWMA chart based on the exact variance has also been
considered by Morais et al. (2010) as well. Because in each step the variance must
be calculated most practitioners prefer to work with the asymptotic variance. In that
case the distance between the EWMA recursion and the target value is compared
with the asymptotic in-control variance of the EWMA recursion. This is our second
procedure. It turns out to be much simpler and is used in most papers on EWMA
charts.

In Section 2 we introduce the EWMA charts based on the asymptotic and
exact variance. Moreover, we analyze the one-sided and the two-sided monitoring
problem.

Section 3 deals with the limit distributions of the run lengths of the EWMA
recursions. It is shown that the run lengths of the charts based on the exact variance
converge to the distribution of the run length of the repeated significance test. This
result holds for the in-control and out-of-control case as well. As special cases we
consider the monitoring of the mean and the variance of a stationary process. In the
second part of this section the limit of the charts based on the asymptotic variance
is determined. It is shown to be degenerate, i.e. it is either 0 or 1. This is a clear
hint that the charts based on the asymptotic variance should not be used with an
extremely small smoothing parameter. In the most realistic case the probability of a
signal up to a fixed time point converges to 1 as well in the in-control state as in the
out-of-control state. This is a very unpleasant property. Moreover, it shows that the
ARL converges to infinity if the smoothing parameter tends to zero.

Section 4 is devoted to the analysis of the limit scheme, i.e. the chart using the
repeated significance test. Here we restrict ourselves to independent samples and a
one-sided chart. Several properties of the limit scheme are presented which question
the usefulness of the ARL as a performance measure for EWMA schemes.

In Section 5 we summarize the main conclusions of our paper.
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2 EWMA Charts for Stationary Processes

In what follows fYtg denotes the target process and fXtg stands for the observed
process. Both processes are assumed to be the same up to time point q � 1, i.e.
Xt D Yt for t D 1; : : : ; q � 1. At the time point q it is assumed that Xq ¤ Yq . The
unknown position q is assumed to be a deterministic quantity taking values within
the set N [ f1g. If q < 1 then a sustained shift has occurred at time t D q.
The process fXtg is called to be out-of-control. Needless to say, fXtg is said to be
in-control if q D 1.

We are interested to monitor a parameter � of the target process by using the
statistic Tt , which we assume is a function of past and present values of the
observed process, i.e. Tt D ft .X1; : : : ; Xt /. The statistic Tt can be interpreted as
a point estimator for the parameter � . Suppose that Tt is an unbiased estimator
of � in the in-control state. If � is equal to the mean � of the fYtg then we
can choose, e.g., Tt D Xt (see Schmid 1997), Tt D Pk

vD1 XtC1�v=k or Tt D
c1med fXtC1�k; ::; Xt g. In case � is the variance of fYtg possible choices would be,
e.g., Tt D .Xt��/2 (e.g., Schipper and Schmid 2001),Tt D Pk

vD1.XtC1�v��/2=k
or Tt D c2

Pk
vD1 jXtC1�v � �j=k.

The EWMA recursion applied to Tt is given by

Zt D
�
Z0; t D 0

.1 � �/Zt�1 C �Tt ; t D 1; 2; : : : ;
(1)

with an initial value Z0. The parameter � is a smoothing parameter taking values
within the set .0; 1� and it corresponds to the weight given to the most recent
observed value. Having in mind thatZt can be equivalently written as the following
moving average

Zt D �

t�1X

iD0
.1 � �/iTt�i C .1 � �/tZ0; t D 1; 2; : : : ; (2)

whose weights fall off geometrically, we immediately conclude that a value of �
close to one leads to a short memory EWMA chart – in fact � D 1 leads to nothing
but a Shewhart chart –, whereas values of � close to zero lead to EWMA charts that
give little importance to the most recent observations.

Since Tt is an unbiased estimator of � , we can assert that in the in-control state,

E1.Zt / D � C .1 � �/t ŒZ0 � �� :

The index “1” means, throughout the remainder of this paper, that the quantity (an
expectation, a variance, a covariance, a probability, etc.) is calculated with respect
to the in-control situation.
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Now suppose that in the in-control state fTt g is a (weakly) stationary process
with mean � and autocovariance function f
T;hg. Then

Var1.Zt / D �2
t�1X

i;jD0
.1 � �/iCj 
T;ji�j j (3)

D �

2 � �

"

Œ1 � .1 � �/2t �
T;0 C 2

t�1X

vD1
.1� �/vŒ1 � .1 � �/2.t�v/�
T;v

#

:

Upward shifts in � can be detected by upper one-sided EWMA charts which give
a signal at the sampling period t � 1, suggesting that the parameter � increased, if

Zt > � C c
p

Var1.Zt /;

for some fixed constant critical value c that defines the range of these exact control
limits. Note that we make use of the asymptotic mean � instead of the exact one
E1.Zt /. This signal is a valid one, in case the process is out-of-control, and it is
called a false alarm, otherwise.

In order to detect an upward or a downward shift, we have to make use of two-
sided EWMA charts which trigger a signal whenever

jZt � � j > cpVar1.Zt /;

with c > 0.
To address both types of EWMA charts, we define R as the rejection area and

thus a signal is given if
Zt � �

p
Var1.Zt /

2 R;

where R D .c;1/ in the upper one-sided case, and R D .�1;�c/ [ .c;1/ in
the two-sided case.

In practice the asymptotic variance is frequently used instead of the exact one. In
that case a signal is given if

Zt � �
p

limt!1Var1.Zt /
2 R :

Note that

lim
t!1Var1.Zt / D �2

1X

i;jD0
.1 � �/iCj 
T;ji�j j

if fTtg has an absolutely summable autocovariance function f
T;hg. Another repre-
sentation of the asymptotic variance based on the spectral density function is given
in Schmid (1997).
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In what follows, � , Var1.Zt /, and limt!1Var1.Zt / are assumed to be known
quantities. We shall not discuss the influence of parameter estimation.

3 Limit Behavior for Stationary Processes

Let N.�;R/ denote the run length of control chart based on the exact variance, i.e.

N.�;R/ D inf

(

t 2 N W Zt � �
p

Var1.Zt /
2 R

)

;

and Nasymp.�;R/ be the run length of the scheme with the asymptotic variance

Na.�;R/ D inf

(

t 2 N W Zt � �
p

limt!1Var1.Zt /
2 R

)

:

We denote the run length of the repeated significance test by

N.R/ D inf

(

t 2 N W
NTt � �

p
Var1. NTt/

2 R
)

;

where NTt D Pt
vD1 Tv=t . It is worth mentioning that

tVar1. NTt/ D 
T;0 C 2

t�1X

vD1
.1 � v=t/
T;v; (4)

whose limit, when t tends to infinity, exists as long as
P1

vD1 j
T;vj < 1.

3.1 The EWMA Scheme Based on the Exact Variance

First, we consider the probability of getting no signal up to a fixed time point for
the present EWMA scheme if � tends to zero. It is shown that the limit is equal to
the probability of no false signal for the repeated significance test, i.e. the sequential
application of the corresponding significance test using the critical value c.

Theorem 1. Assume that the k-dimensional random vector .X1; : : : ; Xk/ is contin-
uous or discrete and that its distribution does not depend on �. If Z0 D � then

lim
�!0CP ŒN.�;R/ > k� D P ŒN.R/ > k�;

for any fixed k D 1; 2; : : : and any set R 
 IR which does not depend on �.
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Proof. The run length of the EWMA scheme with exact variance exceeds k with
probability

P ŒN.�;R/ > k� D P

"
Zt � �

p
Var1.Zt /

62 R 8 t D 1; : : : ; k

#

D
Z

A.�/

: : :

Z
fX1;:::;Xk .x1; : : : ; xk/dx1 : : : dxk;

where A.�/ D \k
tD1At.�/ with

At.�/ D
(

.x1; : : : ; xt / W Zt � �
p

Var1.Zt /
62 R

)

:

Because

Zt � �
p

Var1.Zt /
D
Pt�1

iD0.1 � �/i .Tt�i � �/
p

Var1.Zt /=�
(5)

and

lim
�!0C

Var1.Zt /
�2

D 1

2
lim
�!0C

h
Œ1 � .1 � �/2t �
T;0 C 2

Pt�1
vD1.1 � �/vŒ1 � .1 � �/2.t�v/�
T;v

i

�

D t2Var1. NTt /;
the use of Eq. 4 leads to

lim
�!0CAt.�/ D

(

.x1; ::; xt / W
NTt.x1; : : : ; xt / � �
p

Var1. NTt /
62 R

)

and

lim
�!0C

k\

tD1
At .�/ D

k\

tD1

(

.x1; ::; xt / W
NTt.x1; : : : ; xt / � �
p

Var1. NTt /
62 R

)

: (6)

Moreover, if we define the set on the right side of Eq. 6 by A, then

lim
�!0C

Z

A.�/

: : :

Z
fX1;:::;Xk .x1; : : : ; xk/dx1 : : : dxk

D
Z

A

: : :

Z
fX1;:::;Xk .x1; : : : ; xk/dx1 : : : dxk;

thus proving the result.
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Remarkably, the theorem holds both in the in-control and in the out-of-control
states. In addition, if we combine the fact that EŒN � D P1

kD0 P ŒN > k� and
Theorem 1, we can conclude that

lim
�!0CEŒN.�;R/� D EŒN.R/�:

This means that if � converges to zero then the ARL of the EWMA chart for
monitoring � converges to the ARL of the repeated significance test. We ought to
mention that in some cases EŒN.R/� D 1; this point is analyzed in more detail in
the next section.

Note that the above result is quite general and valid for any EWMA chart whose
input statistics fTtg are governed by a stationary process.

Example 1. (a) Monitoring the mean of a stationary process
In this case we have � D �. Following Schmid (1997) we choose Tt D Xt .
If fYtg is stationary then in the in-control state fTtg is stationary as well. In the
special case that fYtg is a causal ARMA process (cf. Brockwell and Davis 1991)
the autocovariances of fYtg can be determined recursively by making use of the
Yule-Walker equations (e.g., Brockwell and Davis 1991, Chap. 3). If fYtg is a
stationary GARCH process (cf. Tsay 2005, Chap. 3) then the determination of
the variance of the EWMA recursion is easier and it holds that

Var1.Zt / D �

2 � �Œ1 � .1 � �/2t �
T;0

(b) Monitoring the variance of a stationary process
Suppose that � D 0, � D 
0, Tt D X2

t (e.g., Schipper and Schmid 2001)
and Yt D P1

iD�1 ai "t�i , where fai g is absolutely summable. Let f"tg be
independent and normally distributed with E."t / D 0 and Var."t / D �2" then

T;h D 
20 C 2
2h (cf. Brockwell and Davis 1991, p. 227), where 
h stands for
the autocovariance function of fYtg. Thus, we get

Var1.Zt / D �

2 � �

	

20

	
Œ3.1 � .1 � �/2t �

C 2.1� �/
�

Œ1 � .1 � �/t �Œ1 � .1 � �/t�1�



C 2

t�1X

iD1
.1 � �/i Œ1 � .1 � �/2.t�i /�
2i

#

:

This quantity can be calculated recursively for a stationary ARMA process as
described in (a). For the special case of an ARMA(1,1) process Yt D ˛Yt�1 C "t C
ˇ"t�1, we get
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Var1.Zt / D �

2 � �
	

20

	
Œ3.1 � .1 � �/2t �

C 2.1� �/
�

Œ1 � .1 � �/t �Œ1 � .1 � �/t�1�



C 2.1��/
21
	
1 � Œ˛2.1��/�t�1
1 � ˛2.1 � �/

� .1 � �/t .1 � �/t�1 � ˛2.t�1/

1 � � � ˛2




:

since 
i D ˛i�1
1, for i � 1, with


0 D �2"
1C 2˛ˇ C ˇ2

1 � ˛2
and 
1 D �2"

.1C ˛ˇ/.˛ C ˇ/

1 � ˛2 :

Note that a stronger result for the mean chart for independent normal variables
was shown by Morais et al. (2010). They proved that in the in-control state the
probability of a false signal is a decreasing function in � 2 .0; 1�. This result was
obtained by using monotonicity results for the multivariate normal distribution (cf.
Tong 1990).

3.2 The EWMA Scheme Based on the Asymptotic Variance

Next we analyze the run length of the scheme based on the asymptotic variance in
the in-control state.

Theorem 2. Assume that the k-dimensional random vector .X1; : : : ; Xk/ is contin-
uous or discrete and that its distribution does not depend on �. Let R be an arbitrary
subset of IR which does not depend on � and suppose thatZ0 D � .

(a) If 0 62 R then
lim
�!0CP ŒNasymp.�;R/ > k� D 1; k 2 N:

(b) If 0 2 R then
lim
�!0CP ŒNasymp.�;R/ > k� D 0; k 2 N:

Proof. We only prove part (a). The proof of part (b) follows immediately.
First, note that

P ŒNasymp.�;R/ > k� D P

"
Zt � �

p
limt!1Var1.Zt /

62 R; 8 t D 1; : : : ; k

#

D
Z

Aa.�/

: : :

Z
fX1;:::;Xk .x1; : : : ; xk/dx1 : : : dxk;
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where Aa.�/ D \k
tD1Aa;t .�/ with

Aa;t .�/ D f.x1; : : : ; xt / W Zt � �
p

limt!1Var1.Zt /
62 Rg:

Because

Zt � �
p

limt!1Var1.Zt /
D
Pt�1

iD0.1 � �/i .Tt�i � �/
p

limt!1Var1.Zt /=�
(7)

and

lim
�!0C

limt!1Var1.Zt /
�2

D 1

2
lim
�!0C

�

T;0 C 2

P1
vD1.1 � �/v
T;v



�
D 1;

we successively get, for case (a),

lim
�!0CAt.�/ D ˝

lim
�!0C

k\

tD1
At .�/ D ˝;

and

lim
�!0C

Z

A.�/

: : :

Z
fX1;:::;Xk .x1; : : : ; xk/dx1 : : : dxk

D
Z

˝

: : :

Z
fX1;:::;Xk .x1; : : : ; xk/dx1 : : : dxk D 1;

thus proving the result for case (a).

Note that case (a) is the one we usually deal with. It arises if we choose c > 0

and take R D .c;1/, in the one-sided case, or consider R D .�1;�c/ [ .c;1/,
in the two-sided case. Choosing c < 0 means that 0 2 R and that we are dealing
with a negative control limit, in the one-sided case, which is rather strange to most
practitioners. However, we shall address this case later on.

The result of part (a) is highly desirable in the in-control state because it means
that the probability of a false alarm converges to zero as � tends to zero. However,
the result also holds in the out-of-control state, that is, the probability of a signal
within the first k samples converges to 1. As a consequence the EWMA scheme
with asymptotic variance behaves quite chaotically if � reaches 0. It also implies
that lim�!0CEŒNasymp.�; c/� D 1, therefore the behavior of the EWMA control
charts with different values of � cannot be compared by means of the average run
length. Let us remind the reader that the in-control ARL is used to determine the
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control limits but in the present case this cannot be done since this quantity does not
exist if � converges to zero.

For case (b) the scheme shows similar undesirable properties. For instance, the
probability of a correct signal converges to 0 in the in-control state when � converges
to zero.

In sum, if � takes values close to zero the control chart based on the exact
variance must be favored: it has at least a reasonable limit behavior – the repeated
significance test. For a better understanding of this limit behavior, it is necessary,
however, to analyze the properties of the repeated significance test.

4 Some Properties of the Limit Chart

In this section we present some results of the limit chart. We focus on the detection
of a change in the mean and choose Tt D Xt . Moreover, we restrict ourselves to
the one-sided problem, i.e. we choose R D .c;1/. Then the limit chart, i.e. the
repeated significance test, has run length given by

N.c/ D infft 2 N W
Pt

iD1.Xi � �/
q
t Œ
0 C 2

Pt�1
iD1.1 � i=t/
i �

> cg:

In order to illustrate how the limit scheme may behave, we focus on the case of
independent random variables. A detailed analysis of the repeated significance test
is given in Morais et al. (2010). In that case we have that

N.c/ D infft 2 N W
Pt

iD1.Xi � �/p
t
0

> cg:

We make use of the following change point model

Xt D
�
Yt for t < q
Yt C a

p

0 for t � q:

(8)

In what follows we use the symbols Pa;q ; Ea;q , etc. to denote a probability,
expectation, etc. taken with respect to model Eq. 8.

First, we discuss the behavior of the limit scheme in the in-control state.

Theorem 3. Assume that the random variables fYtg are independent and identi-
cally distributed with mean � and variance 
0.

(a) If c � 0 then E1ŒN.c/� D 1.
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Table 1 The fraction (in %) of the run lengths falling into the respective interval as a function
of c. The computations are based on 109 replications of iid Gaussian observations

N.c/ � 10 10 < N.c/ � 104 104 < N.c/ � 107 107 < N.c/

c EŒN.c/� (in %) (in %) (in %) (in %)

�1.5 1.266 99.64 0.36 3.84e�05 0
�1.4 1.406 99.50 0.51 8.97e�05 0
�1.3 1.614 99.28 0.71 2.05e�04 1e�07
�1.2 2.078 99.02 0.98 4.35e�04 7e�07
�1.1 2.707 98.66 1.34 8.74e�04 4e�07
�1.0 4.342 98.20 1.80 1.83e�03 1.5e�06
�0.9 8.284 97.61 2.38 3.62e�03 6.7e�06
�0.8 21.81 96.87 3.12 7.05e�03 1.53e�05
�0.7 59.14 95.95 4.03 1.34e�02 4.27e�05
�0.6 140.9 94.84 5.15 2.47e�02 1.16e�04

(b) Suppose that P ŒYt D 0� < 1 and that the variables fYtg are symmetric around
�. If c < 0 then E1ŒN.c/� < 1 and Var1ŒN.c/� < 1.

This result is remarkable. It implies that the in-control ARL of the limit chart is
equal to infinity if the control limit is nonnegative. Thus, together with the results
of Section 3, it follows that lim�!0CE1ŒN.�; c/� D 1. Note that practitioners
choose a positive control limit and thus the in-control ARL is not finite in the most
popular case. Theorem 3 also has an important consequence on the comparison
of EWMA charts because it states that EWMA charts should not be compared by
means of the average run length, at least when � is very small.

Table 1 illustrates the divergence of the run length if the critical value tends to
zero from the left. Despite of a small in-control ARL, there is a substantial number
of run lengths exceeding 107. It is assumed for simplicity that the observations are
iid and follow Gaussian distribution.

Now let us assume that the control limit c is chosen as a solution of
E1ŒN.�; c/� D �, with � > 1, denote c D c.�; �/ and discuss the behavior
of c.�; �/ as � tends to 0.

Theorem 4. Assume that the random variables fYtg are independent and identi-
cally distributed to N .�; 
0/. Then lim�!0C c.�; �/ < 0.

The control limit of the upper one-sided EWMA chart is, by definition, positive.
Theorem 4 shows, however, that there is no positive solution for the limit chart.
Thus, it is impossible to compare the behavior of the EWMA chart with that of the
limit chart if the control limit is chosen to be equal to a specified constant. Figure 1
shows the behaviour of the control limit c with � D 50 both for the asymptotic and
the exact variances as a function of �.

Now we investigate the out-of-control behavior of the limit scheme. We ought to
begin by noting that contrary to the in-control ARL, the out-of-control ARL is
always finite, as stated in the next theorem.
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c, asymp
c, exact.

0.0

0.5

1.0

1.5

2.0

1e−4 1e−3 1e−2 1e−1 1e0

Fig. 1 The critical value c as a function of � for the EWMA schemes with exact and asymptotic
variance, for � D 50 and iid Gaussian observations. The results are based on a Monte-Carlo study
with 109 replications

Theorem 5. Assume that the random variables fYtg are independent and identi-
cally distributed to N .�; 
0/. Then Ea;qŒN.c/� < 1, for all c 2 IR, q 2 N, and
shifts with magnitude a > 0.

Figure 2 illustrates this result. In fact, it shows that the out-of-control ARL
converges to a finite value as � ! 0C for several upward shifts with magnitude a.

We shall now discuss the average delay of the limit scheme, another frequently
used performance measure. Recall that, when dealing with control chart with run
length N , the average delay is given by

Ea;q.N.c/ � q C 1jN.c/ � q/ D
1X

kDq

Pa;qŒN.c/ � k�

Pa;q ŒN.c/ � q�
:

Note that Theorem 5 allows us to assert that the average delay exists for q < 1
and a > 0. The next theorem refers to the behavior of the average delay when the
magnitude of the shift, a, tends to zero.

Theorem 6. Assume that the random variables fYtg are independent and identi-
cally distributed to N .�; 
0/ and let q 2 N.

(a) If c > 0 then lima!0CEa;qŒN.c/ � q C 1jN.c/ � q� D 1.
(b) If c < 0 then lima!0CEa;qŒN.c/ � q C 1jN.c/ � q� < 1.

Part (a) from Theorem 6 reads as follows: the average delay of the limit chart has
an undesirable behavior when a positive control limit is at use. Moreover, since this
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Fig. 2 The out-of-control ARL as a function of � for the EWMA schemes based on the exact and
the asymptotic variance, for � D 50 and iid Gaussian observations. The results are based on a
Monte-Carlo study with 109 replications

result implies that the EWMA scheme behaves similar as � tends to zero, we can
conclude that all criteria based on the first moment of the run length are not suitable
to assess or compare the performance EWMA charts with small values of �.

5 Concluding Remarks

This paper essentially provides a thorough study on the behaviour of the run length
of EWMA charts with exact and asymptotic control limits when � converges to zero.
We ought to stress that the results are quite general and refer to the control of any
parameter of a stationary process. For instance, we proved that, when the smoothing
parameter � tends to zero:

• The run length of EWMA charts based on the exact variance has the same
behavior as the run length of a chart based on a repeated significance test, what
we called the limit chart;

• The out-of-control run length of EWMA charts based on the asymptotic variance
is infinite if the rejection area R includes the origin.

Finally, this study also brought to light a few useful results concerning the run
length of the limit chart, namely for the mean independent and identically distributed
processes:

• Its in-control ARL is not finite if the control limit c in nonnegative.
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In summary, our results permit the following conclusions:

1. The EWMA scheme with exact variance must be preferred over the EWMA
scheme with asymptotic variance.

2. The EWMA scheme with asymptotic variance should not be applied if the
smoothing parameter is small (about � � 0:1).

3. The average run length is no suitable performance measure for EWMA charts if
the smoothing parameter is very small.

4. One-sided EWMA charts should make use of a reflecting boundary.

References

Brockwell, P. J., & Davis, R. A. (1991). Time series: Theory and methods. New York: Springer.
Brook, D., & Evans, D. A. (1972). An approach to the probability distributions of CUSUM run

length. Biometrika, 3, 539–549.
Chan, L. K., & Zhang, J. (2000). Some issues in the design of EWMA charts. Communications in

Statistics – Simulation and Computation, 29, 207–217.
Crowder, S. V. (1987). A simple method for studying run-length distributions of exponentially

weighted moving average charts. Technometrics, 29, 401–407.
Crowder, S. V., & Hamilton, M. D. (1992). EWMA for monitoring a process standard deviation.

Journal of Quality Technology, 24, 12–21.
Frisén, M., & Sonesson, C. (2006). Optimal surveillance based on exonentially weighted moving

averages. Sequential Analysis, 25, 379–403.
Lucas, J. M., & Saccucci, M. S. (1990). Exponentially weighted moving average control schemes:

Properties and enhancements. Technometrics, 32, 1–12.
Montgomery, D. C. (2009). Introduction to statistical quality control (6th ed.). New York: Wiley.
Morais, M. C., Okhrin, Y., & Schmid, W. (2009). On the limiting behaviour of EWMA charts

with exact control limits. Discussion Paper 272 of the Faculty of Business Administration and
Economics, EUV, Frankfurt (Oder).

Page, E. S. (1954). Continuous inspection schemes. Biometrika, 41, 100–114.
Roberts, S.W. (1959). Control charts tests based on geometric moving averages. Technometrics, 1,

239–250.
Rosołowski, M., & Schmid, W. (2003). EWMA charts for monitoring the mean and the autoco-

variances of stationary Gaussian processes. Sequential Analysis, 22, 257–285.
Schmid, W. (1997). On EWMA charts for time series. In H. J. Lenz & P.-Th. Wilrich (Eds.),

Frontiers of statistical quality control (Vol. 5, pp. 115–137). Heidelberg: Physica.
Schipper, S., & Schmid, W. (2001). Sequential methods for detecting changes in the variance of

economic time series. Sequential Analysis, 20, 235–262.
Shewhart, W. A. (1931). Economic control of quality of manufactured product. Princeton: Van

Notrand.
Tong, Y. L. (1990). The multivariate normal distribution. New York: Springer.
Tsay, R. S. (2005). Analysis of financial time series (2nd ed.). Hoboken, NJ: Wiley.



Economic Control Chart Policies for Monitoring
Variables When There Are Two Components
of Variance
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Abstract When controlling a process mean one can achieve optimal performance
in terms of the criterion of average run length (ARL) by using a CUSUM control
chart rather than a Shewhart control chart, although for very large shifts the
Shewhart control chart is equivalent to a CUSUM chart. Using cost as a criterion,
several authors have shown that the ARL dominance of the CUSUM chart does not
translate to a cost dominance unless the fixed cost of sampling is very small and
some other configurations of the input parameters are met. Additionally, because
of the simplicity of the Shewart chart in terms of user training, ease of design
and ease of use it may be preferable to a CUSUM chart in these situations. Here,
using a large experiment, we investigate the cost advantages of the CUSUM chart
versus a common Shewhart control chart, the X chart, in the situation when one is
monitoring a process mean and there are two components of variance. Our results
are similar to the single component of variance results in that there are predictable
regions where there is a large cost advantage to using CUSUM charts and there
are also predictable regions where one can use an X without incurring any large
increase in cost.
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1 Introduction

If a control chart is to be used to monitor a stable process where the variable
of interest is continuous one must choose between several different types of
charts and policies for using these charts. For example one can employ the usual
recommendation (e.g. see Montgomery 2001) to employ a CUSUM chart if the
expected shift is small. Moustakides (1986) proved that the CUSUM chart is optimal
in the sense that the average run length (ARL) of the CUSUM is minimum for
detecting any particular shift for a fixed in control ARL. We note that for large
expected shifts the X chart is a special case of a CUSUM chart so the ease of use
and design and lack of abstractness of this chart might lead to its employment in
this case. Lucas (1982) and Hawkins and Olwell (1998) recommend that one can
use both simultaneously; e.g. one can use a CUSUM chart to monitor small shifts
and a Shewhart chart such as the X to monitor large shifts.

In a large study comprised of a large range of shifts and other conditions,
Reynolds and Stoumbos (2004) have compared Shewhart charts to CUSUM charts
as well as other charts. Their general recommendation is that one should employ
CUSUM or EWMA charts with samples sizes of nD 1 because of their strong
performance overall.

Statistical performance is a sound criterion of design in a practical sense because
one limits false searches and unnecessary process adjustments (which may lead to
more variability) as well as guaranteeing high quality because assignable causes
of poor quality are detected rapidly. From a theoretical perspective, statistical
performance meshes well with the theory of hypothesis testing expressed in articles
by Neyman and Pearson (1928, 1933a,b).

Another performance criterion of much practical importance is cost, and Neyman
and Pearson (1928) emphasize the point that alternative criteria should be used in
any decision. Additionally, one may prefer to use a Shewhart chart rather than a
CUSUM chart because of its ease of design and use and lack of abstractness.

Some authors including Goel (1968), Von Collani (1987) and Saniga et al.
(2006a,b) have compared the CUSUM chart to the X chart in terms of cost under
the assumption that each was designed in an economically optimal fashion.

Some of the conclusions of the former three studies are that the cost advantages
of the CUSUM chart over theX chart is small and that the optimalX chart’s design
was much like that of the CUSUM chart in that the reference value k is relatively
large and the decision interval h is small (theX chart is a special case of the CUSUM
with k D 3 and h D 0).

The Saniga et al. (2006b) study, which was conducted by running a very large
experiment, contradicts some of the findings of some of the previous research on
the subject. The differences are easily explained because the Saniga et al. (2006b)
results were derived from a very wide configuration of problems considered in an
experimental design. The four major conclusions were as follows: (1) The existence
of fixed sampling costs make the choice of an n D 1 CUSUM far from economically
optimal in most cases; (2) There are identifiable regions where a CUSUM chart
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is economically advantageous and there are regions where the use of an X chart
may be preferred because of its simplicity and because there is no substantial cost
disadvantage to using it; (3) CUSUM charts that have an economic advantage over
X charts are dissimilar to the X chart in that k is small and h is large; and (4) There
are regions with small shifts where a CUSUM chart has no economic advantage
over an X chart.

This paper is an extension of the Saniga et al. (2006b) paper that considers the
same questions except for the fact that we consider the employment of the CUSUM
and X chart in a situation where there are two components of variance rather than
one. For example, in process industries there are often two components of variance
where there is between-samples variance that cannot be removed.

In the next section we discuss the problem in detail and present the experiment.
Section 3 defines standardized shifts. Section 4 describes the experiment and Sect. 5
contains an analysis of the results. Some conclusions are drawn in Sect. 6.

2 The Cost Model

Lorenzen and Vance (1986) presented a general model for control chart design based
on the initial model of Duncan (1956). In their model, the expected cost per hour is
defined as C , and additional parameters are as defined below.

n D sample size
h D hours between samples
L D number of standard deviations from control limits to center

line for the X chart
k D reference value for the CUSUM chart
h D decision interval for the CUSUM chart
g D intersample interval
ı D number of standard deviations slip when out of control
E D time to sample and chart one item
Y D cost per false alarm
A D fixed cost per sample
C0 D quality cost per hour while the process is in control
C1 D quality cost per hour while the process is out of control
T0 D expected time to search for a false alarm
T1 D expected time to discover the assignable cause
T2 D expected time to repair the process
a D fixed cost per sample
b D variable cost per sample
� D 1/(mean time the process is in control)
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ı1 D 1 if production continues during searches, 0 if production ceases during
search

ı2 D 1 if production continues during repair, 0 if production ceases during repair
W D cost to locate and repair the assignable cause

In this model, the standard assumptions in economic control chart design are
made. These assumptions are that the process time in control follows the negative
exponential distribution, the size of the shift is known, and the cost and system
parameters are fixed and known.

Economic design involves finding the control chart parameters that minimize C .
These control chart parameters are n, L and g for the X chart and n, g, k and h for
the CUSUM chart. We use this model to find the optimal economic designs for the
X chart and for the CUSUM chart. The solution procedure is described in Saniga
et al. (2006b).

3 Definitions of Standardized Shifts

Suppose X is the quality variable of interest; we assume that the in control
distribution of X is X �N.�; �2/ where � and � are respectively the in control
mean and standard deviation of the process. To derive the standardized shift for the
case where there is a single component of variance we define the out of control
distribution of X as X �N.�� C �; �2/, where � is the magnitude of the process
shift. Note that the distribution of the Xs are the same as above with the exception
that the variance is . �p

n
/2. The standardized difference between the two Xs is

.�C��/��
�=
p
n

D �
p
n, which is the usual definition for the magnitude of the shift

in the mean.
Now, with two components of variance such as the case where we have a

between-samples variance, �2b , in addition to the within-samples variance, �2w, we
have the in control distribution of X as X �N.�; �2b C �2w/. The out of control
distribution is X �N.�� C �; �2b C �2w/ where � D .�2b C �2w/

1=2. Also, note that

X �N.�; .�2b C �2w
n
// is the in control distribution of X where Xi are i.i.d. random

variables and X �N.�� C �; .�2b C �2w
n
// is the out of control distribution of X .

Standardizing this difference we get the standardized shift as Z D ��C���
.�2bC�2w=n/1=2

D
�

.�2bC�2w/1=2
.�2bC�2w=n/1=2

.

Note that if �2b D 0 this becomesZ D �
p
n. In other words the two models will

give equal results.
To run experiments we set �2w D 1 and let �2b D 0; 0:25; 0:5; 1; 2.
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4 The Experiments

We ran many configurations of input variables in three experiments in which we find
the economically optimal design and cost of a CUSUM chart and an economically
optimally design and cost of an X chart.

The three experiments are defined by two well know example problems in the
literature. In the first experiment we found designs for 7,680 configurations of cost
and system parameters based upon Chiu’s (1974) first example. In this experiment
we set

C0 D 0

C1 D 100, 500, 1,000
b D 0:1, 1
a D 0:5, 10
� D 0:01, 0.05
ı D 0:5, 1, 2, 3
ı1 D ı2 D 0, 1
Y D W D 75, 500
t0 D t1 D 0:1, 0.5
t2 D 0:2, 0.5

The other parameter is E0 D 0. Additionally, we set �2b D 0; 0:25; 0:5; 1; 2.
Hereafter, we call this ExperimentA.E D 0/.

The second experiment uses the same configuration of parameters as the first
experiment with the exception thatE0 D 0:5. We call this ExperimentA.E D 0:5/.

The third experiment is based upon an example proposed by Lorenzen and Vance
(1987). Here, we found optimal designs for both the CUSUM andX chart for 17,280
configurations where we set

C0; C1 D .0; 835/.114:2; 949/

b D 0:1; 0:5

a D 0; 10; 50; 200

� D 0:02; 0:05

ı D 0:5; 0:86; 1:5

Y D W D .200; 200/.977; 977/.1500; 1500/

t0 D t1 D .0:0833; 0:0833/.0:5; 0:5/

t2 D 0:75; 1:5

E0 D 0:0833; 0:5

As in Lorenzen and Vance (1987) we set ı1 D 1, ı2 D 0. Again, we set ı2b D 0, 0.25,
0.5, 1, 2. We call this Experiment B. In each experiment we calculate the ratio of the
cost of the optimally designedX chart to the cost of the optimally designed CUSUM
chart. Note that we assume that all input costs are assumed to be the same for the
CUSUM charts and the X charts; in practice it is usually true that the CUSUM
charts cost more in terms of implementation and use which implies that our results
are biased, if bias exists, towards the CUSUM chart. Note also that the ratio of costs
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Table 1 Quantiles of the distribution of (Cost of an optimal X
design)/(Cost of an optimal CUSUM design)

Experiment

Quantiles (%) A.E D 0/ A.E D 0:5/ B
100.00 Maximum 2.3840 2.2013 3.5024
99.50 2.1456 2.0511 2.6610
97.50 1.7782 1.7461 2.1238
90.00 1.3391 1.3791 1.5114
75.00 Quartile 1.1141 1.1538 1.1886
50.00 Median 1.0045 1.0345 1.0179
25.00 Quartile 1.0002 1.0007 1.0000
10.00 1.0000 1.0000 1.0000
2.50 1.0000 1.0000 1.0000
0.50 0.9999 1.0000 1.0000
0.00 Minimum 0.9999 0.9537 0.9819

N 7,680 7,680 17,280
Mean 1.1033 1.9603 1.1613

must be greater than one since the ARL of the CUSUM chart is always less than or
equal to the X chart.

In some cases the costs of using a control chart are larger than the cost of using a
regular search policy; those cases were not reported in the results.

5 Analysis of Results

In Experiment A.E D 0/ we can fix �2b D 0. Note that here we are performing
an experiment similar to Saniga et al. (2006), where there is only one component of
variance. In this case, the maximum ratio of optimalX cost to optimal CUSUM cost
is 1.0052. Thus, the maximum cost disadvantage of using anX chart over a CUSUM
chart is slightly more than 0.5%. Compare this case to the case reported in Table 1,
which gives the quantiles of the distribution of the ratio of the cost of an optimal
X design to the cost of an optimal CUSUM design when �2b varies. Notice that
for experiment A.E D 0/, the existence of two components of variance drastically
changes the quantiles. Here, the advantage of the CUSUM is at a maximum 238%
and in at least 25% of the cases the advantage is 11.4%. On the other hand, one may
look at these results from the other perspective and see that the median advantage of
the CUSUM control chart over the optimal X chart is very small, with advantages
of 0.5%, 3.5% and 1.8% respectively in the three experiments. Generally, there are
cases in which one should employ a CUSUM chart if there are two components
of variance to gain the cost advantage (along with the ARL advantage, but not the
advantage of simplicity) and there are cases in which one may employ the optimal
X chart to take advantage of its simplicity without incurring an opportunity cost.
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Fig. 1 Regression tree of (Cost of an optimal X design)/(Cost of an optimal CUSUM design) for
experiment A.E D 0/

We investigate the situations in which one should use one chart versus the other
with the aid of regression trees.

The regression tree for experiment A.E D 0/ is given in Fig. 1. In each cell
the mean is defined as the average ratio of the cost of the X chart to the cost of
the CUSUM chart. Note that the lower bound on this ratio is 1 since the CUSUM
chart is an optimal procedure. Here, it is seen that if the fixed cost of sampling is
high, say A � 10, then an optimal X chart has a mean disadvantage in cost of
only 2%. This accounts for about half of the 7,680 cases we investigated in this
experiment. If one considers that the standard deviation is 0.05 the implication is
that the 99th percentile of the distribution of the cost ratios indicates a less than
a 17% advantage to the CUSUM chart when A� 10. Also, if the cost of a false
alarm is small, Y <500, the 99th percentile of the distribution of the cost ratios is
about 0.5%, which means that the optimal X chart should always be used due to its
simplicity.

If we follow the regression tree for the smaller fixed costs of sampling one notes
that for large shifts with a single component of variance (ı� 2, �2b < 1) the 99th
percentile of the distribution of the cost ratios is about an 11% cost disadvantage
to the X chart, and further, for the largest shifts (ı� 3) the 99th percentile of the
distribution of the cost disadvantage is again 11% for the X chart even for the
largest levels of �2b . Generally, though, in this experiment there are substantial cost
advantages to the CUSUM chart when �2b � 1.
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Fig. 2 Regression tree of (Cost of an optimal X design)/(Cost of an optimal CUSUM design) for
experiment A.E D 0:5/

Experiment A.ED 0:5/ yields very similar results for the left side of the
regression tree (see Fig. 2). Here, we see that for the larger fixed costs of sampling
and smaller cost of searching for a false alarm that the 99th percentile of the
distribution of the cost ratio indicates a less than 1% advantage in cost of the
CUSUM chart. For the A < 10 side we find that the CUSUM is preferred other than
if the shift is very large (ı � 3) where the 99th percentile of the distribution of the
cost ratios is about a 13% cost advantage of the CUSUM chart. A counterintuitive
result is that when Y < 500, we find that the performance of the CUSUM is
relatively worse when ı D 0:5 when compared to when ı � 1.

Experiment B, which is the largest experiment with 17,280 designs determined
for each chart, yields very similar results in that if the fixed cost of sampling is large
(A � 50) one should employ an X chart and if the cost is small one should employ
a CUSUM chart (see Fig. 3).

One surprising finding gleaned from the regression trees (other than for one tree
on one experiment) is that the effect of the second component of variance does not
seem to make a difference unless one is dealing with a situation in which the fixed
costs of sampling are small and the expected shift is small. To look at this a little
closer we present Table 2, which shows the relationship of �2b on the cost ratios for
the three experiments. This table indicates the increasing dominance of the CUSUM
chart as �2b increases. Still, the regression tree analysis we presented earlier points
to the determining factor being invariably the fixed cost of sampling.

In the interest of space, we do not present results here showing the actual designs
of the charts for various scenarios. These are available upon request. But we wish to
mention that optimal CUSUM chart designs, when there is a cost advantage to them,
are characterized by small samples taken very frequently (when compared to the
usual recommendation of taking a sample every g D 1 h). This is expected because
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Fig. 3 Regression tree of (Cost of an optimal X design)/(Cost of an optimal CUSUM design) for
experiment B

Table 2 Average value of (Cost of Optimal X /Cost of
CUSUM) by level of �2b
�2b Exp A.E D 0/ Exp A.E D 0:5/ Exp B

0 1.0009 1.1037 1.1205
0.25 1.1028 1.1388 1.2478
0.5 1.1232 1.1456 1.2837
1 1.1642 1.1558 1.3217
2 1.1669 1.1655 1.3545

we have shown that the CUSUM is preferred when the fixed cost of sampling is
very small which would indicate one would take smaller samples more frequently
because of cost. We also note that the “average” CUSUM design is quite different
than the design with k D 3 and h D 0 where the CUSUM mirrors the X chart.

We also have data to support the fact that although n D 1 is not generally an
economically optimal sample size for the CUSUM the frequency of occurrence of
optimal n D 1 increases as �2b increases. Recall that Reynolds and Stoumbos (2004)
make the recommendation to use n D 1 CUSUMs in general.

6 Conclusions

The usual recommendation is to use a CUSUM chart if ı is small. Here, in these
experiments where we consider a situation characterized by two components of
variance we find that if one uses cost as a criterion rather than ARL or an equivalent,
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a more important factor to use in making the decision between using a CUSUM
or an X chart is the fixed cost of sampling. If this cost is large one may find it
advantageous to employ an X chart because of its ease of use and relatively equal
costs. We have also shown that the larger the between-samples variance is, the
more the CUSUM chart has an advantage in cost, that n D 1 is not necessarily
an optimal economic design sample size for a CUSUM chart, and that optimally
designed CUSUM charts do not mirror an X chart.

Surprisingly, the single component of variance results reported by Saniga et al.
(2006b) are very similar in the sense that if the fixed cost of sampling is high, an
X chart may be employed without incurring an opportunity cost. Moreover, even if
the fixed cost of sampling is lower, there are cases usually characterized by large
expected shifts in the process mean where again, an X chart may be employed
without incurring an opportunity cost. As in the two component of variance case, it
was shown that n D 1 is not generally an optimal sample size for the CUSUM and
in cases where the CUSUM is an optimal design economically, it is dissimilar to an
X chart in terms of k and h.
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Process Monitoring Using an Online Nonlinear
Data Reduction Based Control Chart

Issam Ben Khediri and Claus Weihs

Abstract Recent advances of multivariate Statistical Process Control (SPC) show
that the introduction of Principal Component Analysis (PCA) methods for reduction
of process data is a promising area in system monitoring and fault diagnosis. The
advantage of these techniques is to identify sets of variables which describe the key
variations of the operating data and which allow process handling and control based
on a reduced number of charts. However, because the basic PCA method stipulates
that relationships between process characteristics are linear, the application of such
techniques to nonlinear systems that undergo many changes has been limited in
many real cases. In order to overcome this issue, some recent studies suggested the
use of nonlinear adaptive PCA methods in order to track process variation and detect
abnormal events at early stages. For this reason, this study develops and analyses an
online Kernel PCA chart as a key technique to model nonlinear systems and to
monitor the evolution of non-stationary processes. Results based on an analysis of a
simulated process show that the control chart is robust and provides a reduced rate
of false alarms with high fault detection abilities.

Keywords Statistical process control • Kernel principal components analysis •
Online monitoring

1 Introduction

Recent industrial developments through introduction of high technology in produc-
tion processes has led several companies to adopt condition monitoring strategies to
allow significant improvements in plant efficiency. In order to improve productivity,
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to reduce faults and to provide safer systems, successful control procedures usually
require efficient modelling of complex systems. Indeed, with the development
of measurement and data storage equipment, handling of large and complex
information is strongly required.

To reduce complexity and to extract only simple but useful information from
large process data, Principal Component Analysis (PCA) method may be used
Kano et al. (2001). This technique allows dealing with high dimensional, noisy
and correlated data through projection of data into a lower dimensional space that
contains most of the information characterizing the process. However, application
of the PCA model stipulates that the relationship between process variables is linear
and that the process is stationary. In fact, the PCA sometimes shows quite a poor
monitoring performance for nonlinear processes (Dong and McAvoy 1996). This
fact restricts the use of the PCA method, since usually industrial systems are non-
linear non-stationary continuous systems that tend to drift due to various phenomena
as the process may undergo changes.

Because of this limitation many researchers looked for tools in order to be
able to handle nonlinear systems. One of the most innovative and frequently used
techniques is the Kernel Principal Component Analysis (KPCA) method. This
technique is applied by Lee et al. (2004) as a new nonlinear process monitoring
strategy. Results showed that the KPCA approach is effective in capturing nonlinear
relationships in process variables and that it has a superior process monitoring
performance compared to linear PCA. Hoffmann (2007) investigates the use of
KPCA for novelty detection and demonstrated that it has a competitive performance.
Cui et al. (2007) improved KPCA for fault detection by applying a feature vector
selection scheme plus Fisher Discriminant Analysis to improve the fault detection
performance of KPCA. Their simulation results show the effectiveness of these
improvements for fault detection performance. This method has many advantages
since it allows learning the particular structure of a model from data and can handle
nonlinear relationships.

Recently, to better suit online monitoring and to construct online control charts
able to handle non-stationary systems, Liu et al. (2009) proposed application of
adaptive KPCA for online process monitoring and showed that applying such
models can provide good detection results. However, in order to train KPCA
continually, the adopted approach allows introduction and elimination of only one
observation at a time. Because of this fact the window size of KPCA is assumed to
be constant. However, in many practical situations not only one new observation is
provided but a block of new data is present. Moreover sometimes it is of interest to
freeze the model for a certain time or to eliminate a number of observations that do
not characterize the process states.

In order to overcome these limitations, this paper proposes an adaptive KPCA
based control chart that can test the state of a group of data at one time. A monitoring
procedure with a variable window size model that can provide a flexible control
strategy is investigated. Also, an algorithm that allows a recursive calculation of both
window size and chart control limits is proposed. Finally, comparisons between the
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developed Adaptive KPCA, Batch KPCA, Adaptive PCA and Batch PCA control
charts are performed.

This paper is organized as follows: Sect. 2 presents the principle of the Kernel
Principal Components Analysis method. In Sect. 3, the proposed online KPCA
based control chart is introduced. Section 4 provides analyses of the adopted chart
for a fermentation process of a penicillin production. Then, Sect. 5 resumes the
results and proposes future research.

2 Kernel Principal Component Analysis

Kernel PCA is a method introduced by Scholkopf et al. (1998) that has the advantage
of estimating nonlinear relationships between variables. The basic idea of KPCA is
to first map the input space into a feature space via nonlinear mapping and then to
compute the PCs in that feature space. This principle supposes that, using a mapping
of the original space into a higher-dimensional space, we can find a space where the
data can vary linearly. As a result, KPCA performs a nonlinear PCA in the input
space. Figure 1 provides the principle of this method.

Suppose we have the covariance matrix of the transformation data xi 2Rm; i D
1; ::; n; defined as,

K D 1

n

nX

iD1
	.xi /	.xi /

T ; (1)

where m is the number of variables, n the number of observations and it is

assumed that
nP

iD1
	.xi / D 0 and 	.:/ is a nonlinear mapping. To find the principal

components, one has to solve the eigenvalue problem in the feature space such that

�� D C�; (2)

where eigenvalues �� 0, � a vector of eigenloadings and there must exist coeffi-
cients 
i , i D 1; ::; n; such that

� D
nX

iD1

i	.xi /: (3)

Equation 2 is equivalent to

� < 	.xk/; � >D< 	.xk/; C� > k D 1; : : : ; n: (4)

Combining Eqs. 2–4, we obtain for k D 1; : : : ; n;
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�

nX

iD1

i < 	.xi/; 	.xk/ >D 1

n

nX

iD1

i

*

	.xk/;

nX

jD1
	.xj / < 	.xj /; 	.xi /: >

+

(5)

Then, the inner product < 	.xi/; 	.xj / > is changed by the kernel function
K.xi ; xj / and abbreviated by Kij . Equation 5 can be expressed as,

�

nX

iD1

iKik D 1

n

nX

iD1

i

0

@
nX

jD1
KkjKji

1

A k D 1; : : : ; n: (6)

Equation 6 can be written as follows,

�KV D 1

n
K2V; (7)

�V D 1

n
KV; (8)

where V D Œ
1; : : : ; 
n�
T and K is an .n � n/ matrix defined by Kij .

Now, performing PCA is equivalent to solving the eigen-problem of Eq. 8. This
yields eigenvectors V 1; : : : ; V n with eigenvalues �1 � : : : � �n. In order to insure
the normality of u1; : : : ; un; (Eq. 2), the corresponding vectors V 1; : : : ; V n should
be scaled such that

< ul ; ul >D 1; 8l D 1; ::; n (9)
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Using Eq. 3 this translates to

nX

iD1

nX

jD1

 li 


l
j

˝
	.xi /; 	.xj /

˛ D 1; l D 1; ::; n (10)

nX

iD1

nX

jD1

 li 


l
jKij D 1; l D 1; ::; n (11)

˝
V l ;KV l

˛ D 1; l D 1; ::; n (12)

Using Eq. 8, V 1; : : : ; V n should be normalized such that

n�l
˝
V l ; V l

˛ D 1; l D 1; ::; n (13)

˝
V l ; V l

˛ D 1

n�l
; l D 1; : : : ; n (14)

The first p principal components .tz/ of a test vector x are then extracted by
projecting x into eigenvectors V 1; : : : ; V p , where,

tz D
nX

iD1
V z
i K.xi ; x/: (15)

Because the kernel function is known as a measure of similarity, KPCA can work
very well for process monitoring issues since the goal is to distinguish aberrant
observations from others. One of the most used kernel functions is the radial
function which is expressed as follows:

K.x; x0/ D exp

��kx � x0k2
�2

�
; (16)

where � 2 R is determined beforehand.

3 Online Adaptive KPCA Based Control Chart

In order to monitor multivariate processes based on the PCA method, this study uses
the Squared Prediction Error (SPE) as a statistic to test the state of the non-stationary
systems. This is also known as the Q statistic and it has the ability to be updated
to the condition on which the system is operating. The KPCA-based monitoring
method is similar to that using PCA in that the Q statistic in the feature space can
be interpreted in the same way. For a new observation xnew of size .1�m/, wherem
is the number of variables, using linear PCA, the Q statistic is defined as follows,
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Q D eT e D xnewx
T
new � .xnewP/.xnewP/

T (17)

where e represents the residuals vector of the reconstructed data and P the matrix
of PCA eigenloadings. The Q statistic for KPCA is defined by Choi et al. (2005) as
follows

Q D j Nk.xnew; xnew/ � Ok.xnew; xnew/j; (18)

D j Nk.xnew; xnew/ � t tT j; (19)

where Nk is the scaled kernel product, Ok the projection of Nk into KPCA model
obtained from Eq. 8 where

t D Œ Nk.xnew; x1/; ::; Nk.xnew; xn/�Vnp; (20)

where Vnp D ŒV 1; : : : ; V p�:

where Nk is the scaled kernel product and Nkxnew D Œ Nk.xnew; x1/; ::; Nk.xnew; xn/�.
The scaling is based on mean centering and variance scaling.

The Q statistic indicates the extent to which each sample conforms to the PCA
model. It is a measure of the amount of variation not captured by the principal
component model. The upper limit for the Q statistic is given by,

Qlimit D �2

2�1
2˛

�
2�21
�2

�
; (21)

where �1 and �2 are the sample mean and variance of Q values and ˛ is the risk
level (Nomikos and MacGregor 1995).

For slowly time-varying processes, the upper limit for detection indices changes
with time, making adjustment of this limit necessary for online monitoring. For the
Q statistic, parameter values of �1, �2 are recursively updated using the p largest
eigenvalues after each new data block makingQlimit time-varying. Also, as it is done
for training of KPCA, influence of the oldest Q values from the mean and variance
values �1 and �2 are excluded.

In order to have an efficient adaptive control chart, the definition of the window
size which gives information about the training data is also an important fact. A
use of constant window size is very restrictive and can sometimes provide poor
performance because it can imply a use of corrupted training samples especially for
processes that undergo several changes. For certain applications it is of interest to
use a variable window size for the training of the KPCA model. The idea here is
to train the model in regions that characterize well the actual state of the process.
By this way the window size can grow or decrease depending on the states of the
process. An approach to determine this window size H is to use the information
contained in the Q statistic. If certain old observations imply an increase of the
standard deviation of theQ statistic then this would mean that these old observations
differ from the actual process state and therefore it may be better to eliminate their
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Table 1 Algorithm to determine KPCA window size

H  HC size(new data)
for h D 1 W k

SD.h/ std.Q.w.h� 1/C 1 W H//
end
h Index.min .SD//
H  H � .h� 1/� w
if H > Hmax

H  Hmax

elseif H < Hmin

H  Hmin

end
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Fig. 2 Adaptive online kernel KPCA control chart

effect from the model. We also note that other indexes than the standard deviation
of Q can be used. The estimated varying window size can be implemented by the
algorithm of Table 1. LetH be the actual window size,Hmax andHmin the maximal
and the minimal window sizes that can be used, w , h and k are the size, the number
of samples and the allowed maximal number of samples to be eliminated.

In addition to the window size, to obtain an adaptive chart, not affected by
integration of out-of-control variables, a condition for updating the KPCA model
andQlimit value is introduced. This condition lets the model avoid contamination by
observations which could make the model insensitive to faults. Moreover, because
the model can produce false alarms, specially in the case of a non-stationary
process, where sometimes an out-of-control signal can characterize a change in
the relationship between variables and not a proper fault, a margin of acceptability
of observations is introduced in the Qlimit value. Thus the adjustment condition is
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activated only if theQ value of the observation does not exceed the value of �Qlimit,
where � > 1. In this paper a value of � is taken to be equal to 1.3. The main
algorithmic step of the proposed adaptive window kernel principal component chart
is shown in Fig. 2.

4 Control Chart Analysis for a Fed-Batch Fermentation
Process

In order to evaluate the proposed adaptive KPCA chart with respect to the current
PCA control strategies, this study applies different procedures to a simulated
benchmark case study of Fed-batch fermentation process of penicillin production.
Evaluation is performed by reporting the degree of accuracy of each method in
detecting the true out-of-control situations and avoiding false alarms. Performance
evaluation of the accuracy can be reported by using the false alarm rate, the detection
rate and the Run Length (RL) criterion. The first statistic gives information about the
robustness of the adopted method against normal system changes while the second
and third statistic give information about the sensitivity and efficiency of detecting
faults. This study proposes to compare the performance of Adaptive online KPCA
(AKPCA) with Batch KPCA, Batch PCA and Adaptive PCA. In order to assess
these strategies, a simulator, supplied by the Illinois Institute of Technology, can be
used. The program is called PenSim 2 and can be found in the following website
address: http://216.47.139.198/software.html. The simulation time of this process
is 100 h with a sampling time equal 0.05 h which gives a good description of the
system. The initial condition as well as the set points parameters used in this study
present values recommended by Birol et al. (2002).

In this study, the monitoring procedure is applied to the state variables of the
process which are Substrate concentration, Biomass concentration, Culture volume,
Dissolved Oxygen saturation, Penicillin concentration and CO2 concentration.
Figure 3 illustrates the dynamics of these variables for normal operating condition.
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Fig. 4 PCA monitoring charts using Fault 1 of Fed-batch process. The black and grey lines
represent respectively the value of Q and Qlimit

To control this process, for PCA and Adaptive PCA, three PCs that explain 99%
of the total variance are selected. For KPCA and AKPCA, a sigma value equal to
5 and a number of PCs equal to 3 are selected and they explain more than 99%
of the total variance. The training data consists of 150 samples with 100 samples
used to train initial PCA models and 50 samples used for Q computation. The
window size for AKPCA can vary between 80 and 120. Introduction of observations
into the AKPCA is made by blocks of size 5. To investigate the sensitivity of the
proposed control strategy against abnormal conditions, three faults are introduced
in the process starting from time 1,500. Fault 1 presents an increase in Dissolved
Oxygen saturation by 3%, Fault 2 presents a decrease of the Culture volume by 2%
and Fault 3 presents an increase of the Biomass concentration by 4%.

For the risk level ˛ fixed at a 1% level, Fig. 4 illustrates the obtained results of
the different control charts using simulated data with Fault 1 and Table 2 resumes
the analysis of the different strategies for all types of faults.

As shown in Table 2, Batch KPCA and Batch PCA provide poor robustness
results in detecting abnormalities for all faults with detection rates that do not exceed
respectively 40% and 74%. Whereas for Adaptive PCA, even though the control
chart exhibits good performance in terms of RL as concerns Fault 2 and Fault 3,
the chart in question is unable to detect Fault 1 and provides bad results in terms of
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Table 2 Analysis of PCA, KPCA, APCA and AKPCA charts for several faults

Fault 1 Fault 2 Fault 3

False alarm Detection RL Detection RL Detection RL

PCA 0.018 0 500 0.74 1 0 500
APCA 0.129 0.51 92 0.03 1 0.05 1
KPCA 0.043 0.40 51 0.31 1 0.25 1
AKPCA 0.005 1 1 1 1 1 1

Type II error rates that exceed 49%. As far as the analysis concerns AKPCA, results
show that the procedure has a good sensitivity to faults with an RL equal to 1 for all
out-of-control conditions with a good stability indicated by Detection rate and better
robustness abilities than the other charts with a False alarm rate of 0.5%. Figure 4
makes clear that AKPCA allows a better control strategy especially than Batch and
linear PCA charts.

5 Conclusion

Recent industrial advances made by introduction of information technology has
opened the gate for the development of innovative monitoring procedures. One of
the most often used techniques that have taken advantages of this development is the
data reduction method PCA. Following this new research area, this study proposes
a variable window size adaptive Kernel PCA modelling approach that allows
estimation of nonlinear processes integrated with an online smoothing procedure
to track normal operating drifts. In order to perform such a procedure, an algorithm
that allows determining the process state and the need of updating is presented. Also,
because this study allows a variable window size, a method that allows calculating
the optimal window size is proposed. To investigate the performance of this chart,
we conducted a comparison of the adaptive Kernel PCA with various PCA based
procedures, named Batch PCA, Batch KPCA and Adaptive PCA. The obtained
results show that first, Batch PCA and KPCA are unable to adequately control
non-stationary processes since they are based on the use of a single data block for
monitoring highly dynamic processes, whereas Adaptive PCA models are unable to
monitor non-linear systems as they are based very restrictive assumptions such as
normality and linearity of the relationship between variables. However, Adaptive
KPCA with variable window size overcomes these shortcomings by providing
excellent ability of detecting out-of-control conditions with a reduced false alarm
rate. But, there are still some issues that could be investigated. Indeed, a fast
procedure for updating the KPCA model should be developed. Also, a monitoring
procedure for a recursive determination of the number of principal components and
kernel parameters should be the object of further research.
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On the Integration of SPC and APC: APC Can
Be a Convenient Support for SPC

Ken Nishina, Masanobu Higashide, Hironobu Kawamura, and Naru Ishii

Abstract This paper is developed from Higashide et al. (Front Stat Qual Control
9:71–84, 2010). Automatic process control (APC) is frequently used in the semi-
conductor manufacturing process; however, statistical process control (SPC) is also
needed to control the APC controller. This is an earlier paradigm on the integration
of SPC and APC. Our viewpoint is different from the earlier one as follows:

(a) APC reinforces SPC.
(b) SPC complements APC.

Through case studies on the semiconductor manufacturing process, the remarks
above are discussed. Our proposals for the integration of SPC and APC are as
follows:

(a) The process rate is used as the control characteristic to control the between-
subgroup variation.

(b) Principal component analysis is applied to control the within-subgroup
variation.

These proposals can lead to developments of the traditional NX � R charts.

Keywords Semiconductor manufacturing process • Process rate • Principal com-
ponent analysis • Traditional NX �R chart
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1 Introduction

Statistical process control (SPC) and automatic process control (APC) have a
common aim of reducing process variation, but the approach to achieve it differs
between SPC and APC, which originated in different industries, the parts industries
and the process industries, respectively (Box and Kramer 1992). SPC can be
achieved by detecting assignable causes and taking action against them. SPC
improves and maintains the process in the long run. Control charts are frequently
used as statistical tools. On the other hand, in APC, it can be done by process
adjustment by correcting the manipulated variable. APC is a repeated action applied
corresponding to the manual. In many cases feedback control is used.

Control charts could be built into the APC system to decide when to adjust the
process. But it is not appropriate for process adjustment and may unnecessarily
increase variation about the target value (Box and Kramer 1992). SPC and APC
should complement each other very effectively.

The origin of the integration is to monitor the APC controller using control
charts. It is useful to extend the idea of common causes and special causes to APC
schemes (Box and Kramer 1992). SPC could be used for analyzing APC controller
performance and as a diagnostic tool for the APC controller (MacGregor 1988;
MacGregor and Harris 1990).

As mentioned above, the earlier paradigm of the integration of SPC and APC is, if
anything, that SPC should be introduced into the process with APC. In this paper we
develop the earlier paradigm into new remarks according to which APC reinforces
SPC and SPC complements APC. The new remarks can also lead to developments
of the traditional control charts.

We consider semiconductor manufacturing, in which feedback control is fre-
quently used because it is very difficult to detect and eliminate assignable causes
due to including some 100 steps downstream and environmental effects.

2 Traditional NX � R Charts Are Not Available in the
Semiconductor Manufacturing Process

A chemical mechanical polish (CMP) process is considered. The monitoring output
is the remaining film thickness on the wafer surface after polishing. The function
of this CMP process is polarization of an uneven wafer surface by polishing. But
practically it can not be realized, and the wafer surface is a little uneven. It is a
within-wafer variation.

Observations of the remaining film thickness are obtained at nine measurement
points on a wafer surface as shown in Fig. 1. The data sheet for charts is also
shown in Fig. 1. The between-wafer variation is controlled by a NX chart and the
within-wafer variation by a R chart. In such cases, traditional NX � R charts are not
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Fig. 1 Data sheet of NX � R and measurement positions on wafer

appropriate because the between-wafer variation includes the compensated impact
by the manipulated variable, and there are some systematic patterns in the within-
wafer variation due to the deterioration of some parts of the CMP process.

3 APC Reinforces SPC

3.1 Interaction Involving the Manipulated Variable

Let yt and y0 be the observation at time t and the target value, respectively. When
the relationship between y and the manipulated variable, w, is

y D a C bw (1)

and the EWMA with the parameter � is used as the one-step-ahead predictor,
the value of the manipulated variable at time t , wt , is determined as follows (see
Montgomery 2001):

wt D 1

b
.y0 � yt�1/ � �C wt�1: (2)

We focus on the slope b. If an interaction between the manipulated variable and
a factor of the manufacturing process exists, the slope b can change as the factor is
varied. Then the feedback control following Eq. 2 can lead to more process variation
as shown in Fig. 2.

Kawamura et al. (2008b) verified the existence of the interaction involving the
manipulated variable in the photo resist process, in which the exposure time is used
as the manipulated variable and the output is the critical dimension. They showed
the interaction between the exposure time and the focus of lens, which is a factor of
this process, and moreover, the interaction between the exposure time and the photo
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resist thickness, which is the output of the previous process. Figure 3 indicates these
interactions. It can be seen that the sum of squares due to the linear contrast is
varied with the focus of the lens and the photo resist thickness. In many another
manufacturing processes interactions involve a manipulated variable as shown
in Fig. 3.

3.2 Properties of the Manipulated Variable

The manipulated variable needs to be operated easily and shall have a simple rela-
tionship to the output of process like Eq. 1. In addition, as a result of the discussion
in Sect. 3.1 a factor with no interaction with another factor in the process should be
selected as the manipulated variable . In practice, however, the manipulated variable
may indeed have an interaction.
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In the semiconductor manufacturing process, most of the manipulated variables
represent the input energy for processing in a process such as the polishing time in
CMP process, the exposure time in the photo resist process and so on. It means
that the APC scheme originally consists in the input–output relationship. The
manipulated variable can be regarded as not only the input variable of APC scheme
but also the input of the manufacturing process.

3.3 From Passive Control to Active Control

As mentioned in Sect. 1, the integration of SPC into APC is obtained by monitoring
the APC schemes using control charts. From the discussion in Sect. 3.1, the
disturbance of the input–output relationship can be caused by the interaction
between the manipulated variable and a factor of the manufacturing process.
Therefore, monitoring the input–output relationship in APC scheme is not con-
fined to “controlling the controller” but leads to “controlling the manufacturing
process”.

Originally, process monitoring by traditional control charts is passive control
because only the output is observed. On the other hand, the control chart of applied
to the process with APC can be considered as an active control because both the
input value and the output value can be observed, and then the input value is varied.
APC can realize such an active control by control charts. APC can thus provide
convenient support for SPC.

Next, we consider what should be monitored in the manufacturing process with
APC. Some related proposals have been presented as follows:

• Amount of correction in the manipulated variable necessary to keep the process
at target (MacGregor and Harris 1990; Capilla et al. 1999, etc.)

• One-step-ahead prediction errors (Harris and Ross 1991; Montgomery and
Mastrangelo 1991, etc)

• Both of the process outputs and the manipulated inputs (using bivariate SPC)
(Tsung et al. 1999).

In addition to the proposals above, we proposed the process rate yt=wt as a control
characteristic (see Kawamura et al. 2008a). In monitoring the interaction between
the manipulated variable and another factor, ry=rw (where ry is the difference
between the observed value y and the target value y0 and rw is the amount
of change in the manipulated variable, wt � wt�1, shown in Fig. 2) could be a
better control characteristic. However, when process adjustment is not performed,
the denominator rw is zero. In many cases there is an adjustment band and no
adjustment may occur. Therefore, in practice the process rate yt =wt is preferred to
ry=rw. If there is no adjustment band, ry=rw is appropriate.
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Fig. 4 Film deposition rate of LPCVD (Higashide et al. 2010)

3.4 Example

Higashide et al. (2010) presented an example in which a control chart was applied
to the LPCVD (low pressure chemical vapor deposition) process. In the LPCVD
process a thin polysilicon film is formed on a single-crystal silicon wafer. The
output of LPCVD is the thickness of the measurement wafer. The between-
batch variation is caused by the accumulated reaction by-product in the chamber.
A feedback control following Eq. 2 is performed to reduce between batch variation.
The manipulated variable of the process is the deposition time.

As mentioned in Sect. 3.3, the process rate is considered as the control character-
istic. For the LPDVD process we use the film deposition rate corresponding to the
slope of the correction formula in Eq. 1.

Figure 4 shows the time series data of the film deposition rate. Five periods (a–e)
stand for the intervals between the maintenances. The film deposition rate data are
autocorrelated. Examination of the autocorrelation structure can be represented by
an EWMA model as follows:

zt D 0:519yt C .1� 0:519/ zt�1

where yt stands for the film deposition rate at time t . The parameter 0:519 of the
EWMA was estimated for the data of “period a”.

We use the residual EWMA control chart. Figure 5 shows an example of the
residual EWMA control chart for the data of “period d”. The residual control chart
uses the control limits determined for the data of “period a”. The residual control
chart shown in Fig. 5 indicates that there is a run with length nine.
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Fig. 5 Residual EWMA control chart for the period d

4 SPC Complements APC

4.1 Systematic Within-Wafer Variation

We consider again the CMP process in which the between-wafer variation is reduced
by APC (feedback control); however, the within-wafer variation, that is, the uneven
wafer surface, can not be controlled by APC. The uneven wafer surface after
polishing indicates a systematic variation. In such a case, the within-wafer variation
must not be controlled from the viewpoint of the amount of variation but rather the
pattern of variation.

Knowing how to quantify the pattern is necessary to monitor and control the
pattern. Principal component analysis (PCA) is very useful for the quantification.
Some case studies explain applications of PCA to process monitoring, for example,
Roes and Does (1995) and Gonzales and Sanchez (2008).

In our case, the CMP process, PCA is also applied to monitoring an uneven
wafer surface. See again the data sheet for NX � R charts shown in Fig. 1. The
data can be regarded as a set of multivariate time series data. Double centralized
transformation xij (see Eq. 3) is useful as preprocessing to identify a wafer with a
different remaining film pattern by eliminating the between-wafer variation, which
is adjusted by feedback control (Higashide et al. 2010). Then the data set xij is
analyzed using the Mahalanobis distance and PCA:

xij D yij � Ny � j � Nyi � C NNy (3)
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Nyi � D
9P

jD1

yij

9
; Ny � j D

P

i
yij

sample size ;
NNy W total average.

4.2 Two Distances for Multivariate Data

It is well known that the Mahalanobis distance D can be decomposed as follows:

D2
i D xTi Ȯ �1xi D .1=�1/z

2
1i C .1=�2/z

2
2i C .1=�3/z

2
3i C : : :C .1=�p/z

2
pi

where

x W vector of observations xij
Ȯ W estimate of the variance covariance matrix using reference data,
�j (j D 1; 2; : : : ; p) W Eigenvalues of Ȯ ,
zj (j D 1; 2; : : : ; p) W the j th principal component score.

Jackson and Mudholkar (1979) proposed a residual statistic associated with PCA,

Q D
pX

jDkC1
z2j :

Jackson and Mudholkar (1979) concluded that Q may be quite useful for the
detection of outliers.

Now, it should be noted that Q is not a standardized distance but an Euclidean
distance. The Mahalanobis distance D for future data may be unstable when the
variance covariance matrix˙ is not estimated efficiently. One of the reasons is that
some Eigenvalues and the corresponding Eigen vectors are unstable (Jackson and
Hearne 1973). Therefore,Q as a non standardized distance is more stable.

The other statistic T 2 is standardized as follows:

T 2 D
kX

jD1

z2j
�j
:

We apply two distances, T 2 and Q, for monitoring the uneven wafer surface. T 2

is applied to monitor the systematic variation. On the other hand, Q is applied
to detect any departure from the systematic variation. If an individual principal
comportment (PC) score, which composes T 2, has an engineering meaning, it
should be monitored.

Jackson and Hearne (1973) showed a transformation for the sake of normal
approximation. However, the log transformation can be sufficiently approximated
by a normal distribution.
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4.3 Example

PCA is performed for the uneven wafer surface data of the CMP process following
the procedure shown in Sect. 4.1. As the results of PCA, the first principal
component explains 51.7% of the overall variation. The first PC scores are plotted
in Fig. 6. The broken lines stand for the times of maintenance, for example, parts
replacement. Trends can be seen in Fig. 6. The trends repeat in every period between
maintenances. It means that the first principal component has an engineering
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meaning and can be monitored for process maintenance. Figure 7 shows a plot of
the second PC scores. The second PC explains 19.4% of the overall variation but
no systematic variation can be seen in Fig. 7. So in this case, only the first PC score
represents a systematic variation of the within-wafer variation.

Figure 8 shows a control chart of the logQ. One point is beyond the three sigma
control limit. But no unusual effect occurs at this time. It may be a false alarm.

5 Conclusive Remarks

In this paper, by some case studies of the semiconductor manufacturing process, the
integration of SPC and APC is discussed from a different viewpoint than in earlier
studies. The conclusions can be expressed by the following two remarks:

First, APC can be a convenient support for SPC. Originally, the control chart
approach is a passive control using the output of the process under study; however,
in a process with APC, the approach can be changed to an active control using the
process rate as the control characteristic.

Second, SPC can complement APC. Generally, APC cannot control the within-
subgroup variation; however, both the systematic variation and the departure from it
in the within-subgroup variation can be monitored by using SPC, for example, PCA
and Q charts.

These two remarks can be extended to other processes than the semiconductor
manufacturing process.
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Process Adjustment Control Chart
for Simultaneous Monitoring of Process
Capability and State of Statistical Control

Hironobu Kawamura, Ken Nishina, and Tomomichi Suzuki

Abstract In the production of chemicals, a process adjustment such as feedback
control is frequently used to reduce process variability. It is very important to judge
whether or not the adjustment should be done automatically because an automatic
process control (APC) system requires a large capital investment.

This paper presents the determination of the adjustment timing on the basis of
the process capability, and control charts combining information about the state
of statistical control and process capability are also presented for the judgment
of adjustment timing. Practitioners can assess both the adjustment interval and the
number of adjustments by simulation or trial using the presented method. Moreover,
the information is very useful for judging whether or not the automatic adjustment
system should be introduced.

Keywords SPC • APC • Dead band schemes • Adjustment timing • Control
chart

1 Introduction

In the production of chemicals, a process adjustment such as feedback control is
frequently used to reduce process variability. It is very important to judge whether or
not the adjustment should be done automatically because an automatic process con-
trol (APC) system requires a large capital investment. Engineering process control
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(EPC) studies deal with the cost of adjustments, e.g., Box et al. (2009), but the pro-
cess engineer and process manager are typically interested in the cost of introducing
an APC system. In order to examine the advantages and disadvantages of an APC
system, information for engineers on whether or not automatic adjustment should be
introduced is needed. Thus, to provide such information, we consider a method for
determining adjustment timing, so that practitioners can assess both the adjustment
interval and the number of adjustments by simulation or trial.

This paper presents the adjustment timing determination on the basis of process
capability. The basic concept of statistical process control (SPC) is to attain the
required process capability early and maintain it. Therefore, the purpose of process
adjustment is to achieve process capability predetermined by the product designer
or the manufacturing engineer.

The determination method presented in this study comprises three steps, includ-
ing an application of a time-series model, assessment of process capability, and
judgment of the adjustment operation. We model process disturbances by an inte-
grated moving average (IMA(1, 1)), and consider the usefulness of the exponentially
weighted moving average (EWMA) as a time-series model, process capability
indices for non-stationary processes, and appropriate adjustment timing. Finally,
control charts combining information about the state of statistical control and the
process capability are presented for the judgment of adjustment timing.

2 A Case Study on Low Pressure Chemical Vapor Deposition

The low pressure chemical vapor deposition (LPCVD) process is outlined in Fig. 1.
The wafer is introduced into a reaction chamber called a silicon carbide tube
and heated to several hundred degrees under reduced pressure, after which a
polysilicon raw material gas is flowed in. A polysilicon film then forms through
a chemical reaction by heating. In this process, multiple lots composed of single
lots with a maximum of 25 silicon wafers are processed simultaneously. This work
unit is called a batch. The thickness of the polysilicon film formed is a quality
characteristic.

In this process, between-batch variation is generated by the accumulated reaction
byproducts. As a result, the average film thickness of the batch gradually becomes
thinner without adjustment (Fig. 2). APC is used to reduce such between-batch
variation.

The control rule used in this process is

wt D 1

b
� .T � yt�1/ � ˇ C wt�1; (1)

where wt is the manipulated variable that we should set at time t , b is a constant
called the process gain by Montgomery (2005) and is a regression coefficient that
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Fig. 1 LPCVD process (Higashide et al. 2010)

Fig. 2 Film thickness dataset

relates the magnitude of a change in wt to a change in yt , T is the target value of the
average film thickness, yt�1 is the average of the measured quality characteristic
at time t � 1, ˇ is the damping factor called by Taguchi (1993), and wt�1 is
the manipulated variable that we set at time t � 1. Moreover, the process gain
b is determined by regression analysis of experimental data when the process is
designed. This type of process adjustment is called integral control. The damping
factor in this process is currently determined by the views of engineers.
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3 Process Capability Assessment

It is necessary to evaluate the process capability for product design, process design,
process improvement, and process control. The process capability indices (PCI )
have been widely used as a means of assessing process capability. For instance,
these indices are

Cp D USL� LSL

6�
; (2)

Cpk D min

�
USL� �

3�
;
� �LSL
3�

�
; (3)

where � and � are the mean and the standard deviation of the process, to be
estimated from sampled data, and USL and LSL are the upper and the lower
specification limits, respectively.

These indices are based on several assumptions; one of the most essential of
them is that observations are statistically independent. However, there are many
processes, particularly in the chemical industry, where the data are inherently
correlated. Therefore, these indices may lead to inappropriate judgment because
the correlation effect is not taken into account.

When the subgroup size is n, the measure of process capability for dynamic
processes proposed by Spiring (1991) is

OCpm D min fUSL� T; T � LSLg
3
q
MSEt C n

n�1 .Nzt � T /2
; (4)

where USL, LSL and T are the usual upper specification, lower specification,
and target, respectively, used in assessing process capability, while Nzt represents the
average andMSEt is the variation of the process at time t . This measure of process
capability considers only the proximity to the target value T , and the variation
associated with random causes as the linear effect of the tool wear is effectively
removed using

MSEt D
Pn

iD1.ztai � Oztai /2
n � 2 (5)

of sequentially selected points (i.e., ta1 , ta2 , ta3 , � � � ) rather than the sample variance.
In Eq. 5, MSEt is the mean square error associated with the regression equation
Ozai D ˛a C ˇtai and where tai is the sequence number of the sampling unit.

The measure of process capability without a subgroup is needed to assess the
LPCVD process. Therefore, we use the measure given by

OC �pmk D min fUSL� OztC1; OztC1 � LSLg
3
p
MSE

; (6)
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Table 1 Results of
Shapiro-Wilk test

Model W statistic P-value

Regression model 0.980 0.049
EWMA model 0.990 0.507

Fig. 3 Residual chart applied to film thickness

where OztC1 and MSE are the one-step-ahead prediction and the variance of the
residual calculated by EWMA. Our main purpose in this study is to investigate the
adjustment timing determination on the basis of the process capability. Since it is
desirable to judge the adjustment timing when the estimates of process capability
indices are less than the needed value OztC1 is used to calculate the one-step-
ahead OC �pmk . This measure of process capability considers an approach to the
specification limits of the process average and the variation associated with random
causes (considered the systematic effect of the accumulated reaction byproducts) is
removed by EWMA. The EWMA statistic is

Ozt D �zt�1 C .1 � �/Ozt�1 ; (7)

where 0 < � � 1, zt�1 is an observation, and the initial value Oz0 is the target value.
The estimates of C �pmk are similar to that of Cpk , which has the assumption

that the observations are normally distributed with constant variance. Since this
measure uses the residual of EWMA, the residual should be approximately normally
distributed and have constant variance. After applying both regression and the
EWMA model to the data in Phase 2 of Fig. 2, we examine whether or not the
residual of each model is normally distributed by means of a test. Table 1 shows
the results of the Shapiro-Wilk tests for residuals. This test result seems a strong
evidence suggesting that selecting the EWMA model is more appropriate than
selecting the regression model.

Similarly, Fig. 3 shows the residual chart when EWMA is applied to the data in
Phase 2 of Fig. 2. It is found that the residual of EWMA has constant variance.
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4 Determination Method of Adjustment Timing

There are several approaches to determine adjustment timings. Dead band schemes,
also called bounded adjustment schemes, were initially proposed by Box and
Jenkins (1963) to deal with process adjustment applications wherein an important
cost is incurred every time the process is adjusted. Taguchi (1981) also approached
the process adjustment problem using a loss function. Later, Box and Kramer (1992)
generalized the dead band schemes approach to include sampling costs. Luceño
(2000) provided general methods to evaluate the long-run average adjustment
interval and mean-squared deviation from target corresponding to dead band
adjustment schemes under very general assumptions concerning both the process
disturbances and the process dynamics.

In all of the above methods, adjustment timings are determined on the basis of
costs. We propose a method based on the process capability because it is typically
difficult to estimate the costs (e.g., off-target cost per squared deviations from target)
in practice. The estimates of C �pmk are calculated whenever a characteristic value is
observed, and the adjustment is made when the estimates are less than the desired
value (e.g., set generally to 1.33).

The wandering behavior of the process, which comes from its inherent distur-
bances, is often described by an IMA(1, 1) model (see Box and Kramer 1992;
Vander 1996; Park 2007). Several low-order ARIMA models with parameters
estimated in Phase1 of Fig. 2 are assessed by the Akaike information criterion (AIC).
As shown in Table 2, it is found that the IMA(1,1) model (i.e., ARIMA(0, 1, 1)) is
most adequate in the LPCVD process.

The IMA(1, 1) model is expressed as:

zt D zt�1 C at � �at�1 ; (8)

where at is a sequence of white noise with variance �2a and � is a smoothing constant
with 0 � � < 1. Muth (1960) showed that the minimum mean square error forecast
of the IMA(1, 1) is the EWMA of the actual observations zt with the weight � D
1 � � , which ranges from .0; 1�.

We describe the calculation for the upper boundary line Lu for adjustment timing
in terms of the (USL). The lower boundary line Ll is also similarly calculated.

Table 2 Results of AIC Model AIC

ARIMA(1, 0, 0) 98.545
ARIMA(2, 0, 0) 88.112
ARIMA(1, 1, 0) 85.902
ARIMA(2, 1, 0) 84.795
ARIMA(1, 0, 1) 86.027
ARIMA(0, 1, 1) 71.348
ARIMA(2, 0, 1) 87.173
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Fig. 4 Determination of
boundary line Lu for
adjustment

First of all, the maximum allowable value for the process average (UA�x) can be
determined as

UA�x D USL� k1
p
MSE ; (9)

where k1 is a constant that determines the probability of producing material above
the USL. The k1 is calculated as shown below:

k1 D 3PCI ; (10)

where the PCI value is set to the desired value for the process in the same way as
Cp or Cpk . If the PCI is set to 1.33, C �pmk becomes 1.33 when the process average
is UA�x.

The upper boundary line Lu then would be

Lu D UA�x � k2

q
.1C O�2/MSE ; (11)

where k2 is a constant corresponding to the probability of prediction error for the
process average, and O� is set to 1 � O� from the relationship between IMA(1, 1)

and EWMA, and
q
.1C O�2/MSE is the standard deviation of the prediction error

because the distance of UA�x and Lu is predicted by the MA(1) model.
Combining Eqs. 9–11 gives the upper boundary line Lu for adjustment as

Lu D USL� .k1 C k2

q
1C O�2/pMSE : (12)

Figure 4 graphically displays the calculation of Eq. 12.

5 Control Charts for Adjustment Timing

A description of acceptance control charts was published by Freund (1957), and
Holmes and Mergen (2000) proposed the EWMA acceptance chart. Since these
charts are used to relax the level of surveillance provided by the standard control
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Fig. 5 Moving center-line
EWMA control chart applied
to film thickness

chart, the process does not need to be in a state of statistical control. However, it
is desirable for the process that has process adjustment to be in a state of statistical
control in many cases.

Our presented determination method resembles the acceptance control chart
in appearance but not in precondition. We assume that the process is in a state
of statistical control because the state of statistical control is needed when the
process capability is evaluated using Cp or Cpk . Therefore, it is useful to combine
information about the process capability and the state of statistical control in one
chart. We propose a control chart that visualizes both types of information by
modifying a moving center-line EWMA control chart.

The moving center-line EWMA control chart was proposed by Montgomery and
Mastrangelo (1991). They point out that it is possible to combine information about
the state of statistical control and process dynamics in one control chart. If one
assumes that the model residuals are normally distributed, then the usual three-
sigma control limits on the control chart on these residuals satisfy the following
probability statement:

P ŒOzt .t � 1/� 3� � zt � Ozt .t � 1/C 3�� D 0:9973 ; (13)

where � is the standard deviation of residuals. This control chart uses Ozt as the center
line on a control chart with upper and lower control limits at

UCL D Ozt .t � 1/C 3� (14)

and
LCL D Ozt .t � 1/� 3� (15)

and the observation zt would be compared to these limits to test for statistical
control. Figure 5 shows the moving center-line EWMA control chart applied to the
data in Phase 2 of Fig. 1.

When k1 D 4 and k2 D 3, Fig. 6 shows our presented control chart for adjustment
timing adapted to the data in Phase 2 of Fig. 1, with parametersMSE , O�, O� D 1� O�
estimated by the data in Phase 1 of Fig. 2. This chart has the boundary lines
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Fig. 6 Control chart for
adjustment timing

(i.e., Lu and Ll ) indicated in Sect. 4 and control limits of the moving center-
line EWMA control chart. Moreover, the specification limits, which are used for
calculating Lu and Ll in this case, are different from the actual specification limits.

In this control chart, we can visualize the process capability by the nearest
distance of the boundary line and the control limit of the moving center-line EWMA
control chart (i.e., Lu and UCL, or Ll and LCL). That is, when LCL � Ll or
UCL � Lu, the adjustment is made since it is expected that the process capability
will be less than the desired value at the next time. The open circles indicate
LCL � Ll or UCL � Lu, and then the adjustment is made, cf. Fig. 6. That is, the
adjustment is made to cancel out the deviation from target only when LCL � Ll
or UCL � Lu. Moreover, the control rule, which is indicated in Eq. 1, is used to
illustrate the control chart shown.

The advantage of using this control chart is that we can judge adjustment timing,
assessing the process capability after confirming the state of statistical control.

6 Conclusion

This paper has focused on the methods for determining adjustment timing in order to
judge whether or not an APC system should be introduced. We proposed a method
for determining adjustment timing using the boundary lines calculated on the basis
of the process capability. It is natural that the adjustment timing is determined on the
basis of the process capability in terms of statistical process control. The usefulness
of EWMA as a time-series model was indicated using real data obtained from the
LPCVD process.

We also presented a control chart for adjustment timing by combining the
boundary lines and the moving center-line EWMA control chart. This chart is very
useful because engineers can visually judge the adjustment timing while assessing
both the process capability and the state of statistical control. Moreover, if the
disturbance is not IMA(1,1), the presented control chart may not well perfom
because EWMA is not the best forecast. But even when it is not, it often does quite
well in predicting nonstationary series (see Box et al. 2009).
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Adaptive Threshold Methods for Monitoring
Rates in Public Health Surveillance

Linmin Gan, William H. Woodall, and John L. Szarka

Abstract We examine one of the methods implemented by the U.S. Centers for
Disease Control and Prevention’s (CDC) BioSense program. The program uses
data from hospitals and public health departments to detect outbreaks using the
Early Aberration Reporting System (EARS). The EARS W2r method allows one
to monitor the proportion of counts of a particular syndrome at a facility relative to
the total number of visits. We investigate the performance of the W2r method with
negative binomial inputs designed using an empirical recurrence interval (RI). An
adaptive threshold monitoring method is studied based on estimating the underlying
negative binomial distributions, then converting the current counts to a Z-score
through a p-value. We study the effect of the input distributions on the upper
thresholds required for both Shewhart and exponentially weighted moving average
(EWMA) versions of the W2r and adaptive threshold methods. We simulate 1-week
outbreaks and compare the outbreak detection properties of the methods.

Keywords Biosurveillance • Exponentially weighted moving average chart •
Negative binomial distribution • Outbreak detection • Recurrence interval

1 Introduction

The Centers for Disease Control and Prevention (CDC) established the BioSense
program with the intent of providing real-time biosurveillance for early disease
outbreak detection (CDC 2007). The primary purpose of Early Aberration Reporting
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System (EARS) within BioSense is to provide national, state, and local health
departments with several alternative aberration detection methods that have been
developed for syndromic surveillance by CDC and non-CDC epidemiologists.
Currently, hundreds of hospitals and public health departments across the United
States provide data to BioSense, where the EARS methods are used for determining
whether or not syndromic outbreaks have occurred (CDC 2008). For additional
information on EARS methods and BioSense, see Hutwagner et al. (2003) and
http://www.cdc.gov/biosense/index.html.

There are two methodologies EARS uses for detecting outbreaks. The W2 count
(W2c) method focuses on the number of cases of a particular syndrome at a facility
on a given day. The W2rate (W2r) method is based on the proportion of visits
corresponding to a particular syndrome, which accounts for the total number of daily
visits. The W2 statistics are based on 7-day moving windows. The short baseline is
intended to accumulate recent information on a given syndrome. A 2-day lag is also
incorporated in the calculation of the statistics, meaning the previous 2 days are
not included in the baselines. If the current day’s syndromic rate is large relative to
the baseline data, this will result in a large W2 statistic. If a W2 value exceeds a
specified threshold, an alarm is given.

The W2 statistics are calculated separately for weekdays and weekends. This is
done because many health care facilities have fewer visits during weekends. We
examine the case where weekday and weekend counts follow negative binomial
distributions. The number of cases of a syndrome given the total number of daily
visits follows a conditional binomial distribution for Poisson inputs and follows
what we refer to as a “conditional negative binomial distribution” for negative
binomial inputs. Comparisons of methods with the Poisson input data streams were
given by Gan (2010) and Szarka et al. (2011).

An adaptive threshold method proposed by Lambert and Liu (2006) for computer
network monitoring is also considered in our study. Using the baseline data,
the parameters of the negative binomial distributions are fit using method of
moments estimators. The current day’s syndromic count yields an upper-tailp-value
calculated from the estimated distribution conditioned on the total number of visits
for the day. AZ-score is computed by taking the inverse standard normal cumulative
distribution function (CDF) of one minus the p-value, giving an approximately
standard normal statistic when there is no outbreak. The successive Z-scores are
used for process monitoring.

The W2 methods have thresholds based on an empirical recurrence interval (RI)
metric. Kleinman et al. (2005) explained that if monitoring of a process continues
without interruption after any alarm, the RI is the fixed number of time periods for
which the expected number of false alarms is one. Table 3 of the CDC’s Hospital
User Guide gives the W2r thresholds associated with a range of RI values from 10
to 2,000 when the length of the baseline is n D 7 days. For a given threshold, the
empirical RI is the reciprocal of the proportion of days for which the threshold is
exceeded. Using simulation, we computed our own empirical RI threshold curves
and compared these to the values in the table given by BioSense. We also compared
the RI threshold functions of the adaptive threshold and the W2r methods across

http://www.cdc.gov/biosense/index.html
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different parameter sets and baseline lengths. Since a single upper threshold value
is used once a specified RI value is selected, it is important that the non-outbreak
performance of the method not depend too much on the characteristics of the input
data. In general, however, we do not recommend the use of the recurrence interval
metric. It is used in our paper because the CDC used this metric in their design
of the W2 methods. For more information on the limitations of the RI metric, see
Fraker et al. (2008).

We evaluated the various methods using baselines of n D 7, 14, and 28 days.
These baseline lengths were used in Tokars et al. (2009), but with no more than
56 days of historical data being used. Therefore for weekends, only 8 weeks of
data were available, leading to only 16 days of data in their baseline. We do not
consider this restriction. The current baseline of n D 7 used by BioSense is a short
baseline that in many instances is insufficient for reliable estimation. However, a
baseline that is too long will mitigate the ability of the statistic to adjust to seasonal
variation. This can lead to a decreased chance in signaling an outbreak. The W2r
method is a Shewhart-type approach that signals an outbreak if the current day’s
statistic exceeds a threshold based on the desired value of the RI. In our study we
also used the exponentially weighted moving average (EWMA) method with both
the W2r and adaptive threshold approaches.

A simulation study was used to analyze the ability of the W2r and adaptive
threshold methods to detect outbreaks, i.e., a power or sensitivity analysis. This was
performed by generating samples from a reference distribution for several weeks,
then systematically injecting a specified increase in the average number of syndrome
counts. The outbreaks are assumed to last for 7 days. It is of interest to determine
how frequently the various methods signal, given different magnitudes of shifts
and various baseline window sizes. Both the Shewhart and EWMA approaches for
detecting outbreaks are considered.

The W2 methods are reviewed in Sect. 2. In Sect. 3, we introduce the adaptive
threshold method for the conditional negative binomial distribution. The perfor-
mance evaluation with negative binomial inputs is presented and discussed in
Sect. 4. Our conclusions are given in Sect. 5.

2 The W2 Methods

Let Xt be the count of a specific syndrome for day t at a particular facility. The
baseline data for day t is dependent on its day of the week. The W2c value for day
t is

W 2c.t/ D xt � Nxt
st

; (1)

where Nxt and st are the sample mean and standard deviation from the baseline
period. These values are expressed as
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Nxt D 1

n

nX

jD1
yjt ; st D

vu
u
t 1

n � 1
nX

jD1
.yjt � Nxt /2; (2)

where yjt , j D 1; 2; : : : ; n, correspond to the eligible baseline data for day t . If st is
less than one, it is reassigned a value of one CDC (2007). The relative performance
of the W2c method and an adaptive threshold method was reported by Szarka et al.
(2011) and Szarka (2011).

For day t , we letX1t represent the syndrome count;X2t the non-syndrome count;
andDtDX1tCX2t the total number of visits to a facility, t D 1; 2; : : :, with observed
value dt . The corresponding counts and numbers of visits for the baseline days are
Yjt and Djt , j D 1; 2; : : : ; n. We let BLSt and BLVt represent the total number
of syndromic counts and facility visits over the baseline period. Thus, the average
rate of syndrome counts over this period is equal to BLSt=BLVt . The W2r value
for day t is

W 2r.t/ D x1t � O�t
MARt

; (3)

where the expected value for day t is a function of the average rate, and the
denominator is the mean absolute residual (MAR), i.e.,

O�t D dtBLSt

BLVt
and MARt D 1

n

nX

jD1

ˇ̌
yit � O�jt

ˇ̌
; (4)

where O�jt refers to the estimated mean count for day j in the baseline period. If
MARt is less than one, it is assigned a value of one CDC (2007).

Tokars et al. (2009) reported that use of the W2r method produces a more
accurate expected count value and lower residuals than with use of the W2c method.
They used real CDC daily syndrome counts as baseline data and assessed the power
of the rate algorithm to detect injected outbreaks.

Tokars et al. (2009) proposed four algorithm modifications to address short-
comings in the previously used C2 algorithm by the CDC, which does not stratify
baselines by weekends and weekdays. Those modifications included stratifying the
baseline days into weekdays versus weekends, lengthening the baseline period,
adjustment for total daily visits (i.e., use of the W2r algorithm), and increasing the
minimum value for the estimated standard deviation to unity from 0.2.

3 The Adaptive Threshold Method

An adaptive threshold method used by Lambert and Liu (2006) for computer
network monitoring has led to an alternative to the W2 methods. We consider two
independent negative binomial distributions for modeling count data for the W2r
method. The probability mass function (pmf) for the countX1t or X2t is
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f .xitjri ; pi / D
 
ri C xit � 1

xit

!

p
ri
i .1 � pi/

xit ; (5)

where xit D 0; 1; 2; : : :, ri > 0, and 0 < pi < 1 for i D 1; 2. Note that r1 and
p1 are the negative binomial parameters for syndrome counts, and r2 and p2 are
the negative binomial parameters for non-syndrome counts. For the remainder of
our paper, we note the indexing for i will always be for values of 1 and 2. The
mean and variance of the negative binomial distributions are �i D ri .1�pi /

pi
and

�2i D ri .1�pi /
p2i

, respectively. Conditional on the total number of visits for day t ,

the syndrome count X1t is distributed as what we refer to as a conditional negative
binomial random variable. The probability mass function (pmf) for the count X1t
conditioned on dt D � is

f .xj�; r1; p1; r2; p2/ D Ix2.0;1;:::;�/

�
r2C��x�1

��x
��
r1Cx�1

x

��
1�p1
1�p2

�x

P�
xD0

�
r2C��x�1

��x
��
r1Cx�1

x

��
1�p1
1�p2

�x : (6)

The conditional negative binomial distribution’s parameters were estimated using
the method of moments (MOM) estimators. These estimators for the negative
binomial parameters are

Opit D Nxit

O�2it
and Orit D Nxit

2

O�2it � Nxit
; (7)

where Nxit D Pn
jD1 yijt , O�2it D 1

n

Pn
jD1

�
yijt � Nxit

�2
, and yijt correspond to the

eligible baseline data for day t . The domain of these parameters of the fitted negative
binomial distributions is violated if Nxit > O�2it , so we must account for this.

The values of Z-scores for the conditional negative binomial distribution are
determined by the p-values, whereas the p-values depend on six components: the
input data x1t , x2t , and the parameter estimates Or1, Or2, Op1, and Op2. In order to improve
the performance of the parameter estimators for our model, we used the following
algorithm to compute the Z-score values:

1. If a large syndromic count x1t or a non-syndromic count x2t is beyond the 0.9999
quantile of the fitted negative binomial distribution, then it is replaced with a
random count beyond the 99th percentile of the corresponding fitted distribution.

2. If Nxit > O�2it , we set O�2it D 1:05 Nxit.
3. We compute the pmf given in Eq. 6 for the syndromic count x1t given dt using

the estimators from Eq. 7.
4. We calculate the p-value. If the p-value is less than 10�6, then it is replaced with

a random value between 10�6 and 10�5. A Z-score is computed by taking the
inverse standard normal CDF of one minus the p-value.
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Lambert and Liu (2006) also used a technique of outlier removal by replacing an
extremely large outlier that is beyond 0.9999 quantile of the estimated distribution
with a randomly generated count beyond the 0.99 quantile of the fitted distribution.
The second step of the algorithm is a technique implemented by Watkins et al.
(2008). This is an ad-hoc method to give valid estimators. For an incoming observed
count x1t at time t , the proposed adaptive threshold method with a Shewhart
approach signals an outbreak when Zt � hZAT , where hZAT > 0 is a specified
threshold value.

While a Shewhart decision rule relies on using one observation at a time, the
EWMA statistic incorporates information using past observations with observations
closer to the current time point given larger weights than those further back in time.
For standardized variables, say vt , the EWMA statistics Et are

Et D ˛vt C .1 � ˛/Et�1; (8)

where t D 1; 2; : : :, ˛ is the weight given to the current observation, and E0 D 0.
When ˛ D 1, the EWMA method reduces to a Shewhart chart. Montgomery (2009,
p. 423) recommended using weights between 0.05 and 0.25 for EWMA charts.
Smaller values of ˛ are recommended for detecting smaller shifts quickly, and larger
values are recommended for larger shifts. We used ˛ D 0:20 in our simulation
studies.

In most industrial applications, a two-sided EWMA chart is used, signaling
for abnormally low or large values of the EWMA statistic. However, we are only
concerned with outbreaks in our applications, so a one-sided chart is used. The one-
sided EWMA statistics are expressed as

Et D maxŒ0; ˛vt C .1 � ˛/Et�1�; (9)

for t D 1; 2; : : :. A signal is given if Et � hET, where hET>0 is a specified
threshold. The reflecting barrier at zero is used so that the statistic does not become
very small. If this is not done and an outbreak occurred when the statistic is very
small, it would be more difficult to signal. Failure to use a reflecting barrier in a
one-sided EWMA chart can lead to serious inertial problems, a topic discussed by
Woodall and Mahmoud (2005). Lambert and Liu (2006) recommended using a one-
sided EWMA chart, but did not use the reflecting barrier at zero.

In traditional quality control applications, the EWMA statistic is reset to zero
after a signal. This happens as a result of stopping a process, taking a corrective
action, and then resuming the process. However, the EWMA statistic will not be
reset after a signal in our applications because the monitoring statistics are not
usually reset following a signal in public health surveillance.
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4 Performance Evaluation

In this section, we report the results of a simulation study for the adaptive threshold
method and the W2r method when the input data streams are assumed to have
a negative binomial distribution. The negative binomial distribution is often more
realistic than the Poisson distribution for public health data since counts are often
overdispersed compared to the Poisson distribution. We examine the performance
of these methods in terms of the RI threshold function analysis and a power analysis
for both Shewhart and one-sided EWMA chart approaches.

We assumed weekday and weekend counts each follow independent negative
binomial distributions. More precisely, we assumed the syndrome counts in week-
days follows a negative binomial distribution with the parameters (r1; p1), the
non-syndrome counts in weekdays follows a negative binomial distribution with the
parameters (r2; p2), the syndrome counts in weekends follows a negative binomial
distribution with the parameters (r 01; p01), and the non-syndrome counts in weekends
follows a negative binomial distribution with the parameters (r 02; p02). For simplicity,
however, we let r1 D r 01, r2 D r 02, p1 D p01, and p2 D p02. Eight cases of parameter
combinations considered are listed in Table 1 for the negative binomial inputs. For
some cases, we see extreme overdispersion. The variance-to-the-mean ratio ranges
from 2 to 10 for these 8 cases.

In Fig. 1 (left), we see the RI threshold functions for the adaptive threshold
method for the Shewhart approach with the negative binomial parameters assumed
to be known for n D 7, 14, and 28, and Fig. 1 (right) shows the corresponding RI
threshold functions for the W2r Shewhart method. The W2r threshold functions are
close to the one given in the CDC manual, which were obtained using authentic
data. The W2r threshold functions become less variable with a longer baseline.
From Fig. 2 (left), the adaptive threshold method using MOM estimators for the
conditional negative binomial distribution tends to outperform the W2r method by
giving more consistent threshold results across the eight cases for each baseline
window length.

For outbreak detection, 10 weeks of in-control baseline data were simulated,
and then an outbreak lasting 7 days was injected. This process was repeated

Table 1 Negative binomial distributions used

Case (r1; p1) (�1; �21 ) (r2; p2) (�2; �22 )

1 100, 0.2 400, 2000 50, 0.1 450, 4500
2 150, 0.3 350, 1167 50, 0.1 450, 4500
3 150, 0.3 350, 1167 100, 0.2 400, 2000
4 150, 0.3 350, 1167 150, 0.3 350, 1167
5 200, 0.2 800, 4000 200, 0.2 800, 4000
6 150, 0.5 150, 300 50, 0.1 450, 4500
7 150, 0.5 150, 300 100, 0.2 400, 2000
8 150, 0.5 150, 300 150, 0.5 150, 300
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Fig. 1 RI Thresholds for adaptive threshold method with known parameters (left) and W2r method
(right) for different baselines – Shewhart approach

100,000 times for each parameter combination considered where the in-control
RI D 500. For each of these transient shifts, we determined the proportion of times
the various methods signaled during the outbreak.

Table 2 shows the percentage increases of the power values of the adaptive
threshold method compared to the W2r method. The values of the percentage
increases in Table 2 are computed by using the formula
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Fig. 2 RI thresholds for adaptive threshold method using MOM for different baselines – Shewhart
(left) and EWMA (right) methods

PowerATM � PowerW2r

PowerW2r
� 100%: (10)

We observed that for a given increase ı(100)% in r1 and a given baseline n, the
adaptive threshold method works better than the W2r method with only a few
exceptions for larger shifts. Gan (2010) provided the actual power values.

In Table 3, we show the percentage increase in power of the adaptive threshold
EWMA approach relative to the EWMA approach used with the W2r statistics. It is
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Table 2 Percentage increase of the power values for adaptive threshold method using MOM
estimators compared to W2r method – Shewhart

Case
ı n 1 2 3 4 5 6 7 8

0.1
7 0:84 0:74 1:83 1:63 1:53 3:25 2:31 1:07

14 3:52 2:18 3:87 2:13 3:26 3:93 2:45 1:82

28 4:52 5:25 3:29 6:61 8:17 4:37 5:48 4:71

0.2
7 11:01 10:91 10:49 10:16 10:98 10:86 11:51 11:59

14 7:83 9:85 9:05 8:99 9:22 9:66 7:64 9:87

28 8:64 11:29 8:06 10:20 7:88 2:96 8:90 7:23

0.5
7 22:63 41:20 25:90 13:60 9:20 38:30 21:66 22:47

14 6:27 6:55 0:75 0:37 0:45 9:95 4:83 4:58

28 5:45 0:77 0:18 0:13 0:62 1:27 0:84 0:25

1
7 2:47 3:33 0:35 �3:08 �0:66 6:75 1:15 2:60

14 �2:83 0:02 �1:98 �3:00 �3:00 0:30 �0:50 �5:18
28 �1:00 0:00 0:00 �1:50 0:00 0:00 0:00 �1:50

2
7 0:00 0:00 0:00 �4:00 0:00 0:00 0:00 �0:35
14 0:00 0:00 0:00 �4:00 0:00 0:00 0:00 0:00

28 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00

Table 3 Percentage increase of the power values for adaptive threshold method using MOM
estimators compared to W2r method – EWMA

Case
ı n 1 2 3 4 5 6 7 8

0.1
7 10:94 8:51 7:92 7:22 10:84 6:11 6:76 7:73

14 9:26 14:83 15:36 2:05 10:87 12:49 9:65 7:06

28 11:74 13:33 9:41 0:27 3:74 16:63 13:11 5:76

0.2
7 21:08 17:03 7:32 5:83 5:49 18:27 15:00 14:19

14 21:51 27:87 20:25 5:06 2:77 34:36 18:00 26:29

28 27:19 27:04 4:49 3:26 0:20 47:44 33:31 10:51

0.5
7 4:69 1:01 0:23 0:14 0:11 11:46 6:69 10:44

14 0:40 0:79 0:13 0:22 2:75 3:56 0:04 0:27

28 0:35 0:06 0:73 0:00 0:18 1:35 0:02 0:06

1
7 �0:95 �0:15 �0:03 0:02 �0:01 0:20 �0:10 0:19

14 �0:90 �0:20 �0:02 0:00 0:00 0:00 �0:02 �0:05
28 �0:65 �0:02 0:00 0:00 0:00 0:00 0:00 �0:02

2
7 �0:02 �0:02 0:00 0:00 0:00 0:00 0:00 0:00

14 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00

28 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00

clear that the adaptive threshold method has better performance. The incorporation
of the EWMA approach also led to higher power with both the adaptive threshold
and W2r methods. Again, Gan (2010) provided the actual power values.

Figure 3 shows the power values for Case 6 for both the Shewhart (on left)
and EWMA (on right) variations of the W2r and adaptive threshold methods. The
adaptive threshold method generally has higher power for a given baseline length.
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Fig. 3 Power of the W2r and adaptive threshold methods for varying baseline lengths n

The power values generally increase for all approaches as the length of the baseline
increases. The EWMA methods have higher power that the Shewhart methods.
These results hold for the other negative binomial cases studied as well, as reported
in Gan (2010), and for Poisson input data streams.

5 Conclusions

Our results show that the adaptive threshold method has better performance than the
W2r method. The corresponding RI threshold functions are more tightly grouped
and the power to detect an outbreak is higher. All of the methods studied perform
better with a baseline longer than 7 days. The use of the EWMA approach leads
to improved performance for both the W2r and adaptive threshold approaches. The
aspect of the W2r statistic that seems to lead to its relatively poor performance is the
fact that the estimator of the variation of the syndromic count on a given day does
not depend on the total number of visits on that day.
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Spatiotemporal Bio Surveillance Under
Non-homogeneous Population

Sung Won Han, Wei Jiang, and Kwok-Leung Tsui

Abstract Motivated by the applications in healthcare surveillance, this paper
discusses the spatiotemporal surveillance problem of detecting the mean change of
Poisson count data in a non-homogeneous population environment. Through Monte
Carlo simulations, we investigate several likelihood ratio-based approaches and
compare them under various scenarios depending on four factors (1) the population
trend, (2) the change time, (3) the change magnitude, and (4) the change coverage.
Most literature of spatiotemporal surveillance evaluated the performance based on
the average run length if a change occurs at the beginning of surveillance, which is
often noted by ARL1. On the other hand, our comparison is based on the average
run length after the time when a change occurs later. Our simulation study shows
that no method is uniformly better than others in all scenarios. It is found that
the difference between generalized likelihood ratios (GLR) approach and weighted
likelihood ratios (WLR) approach depends on population trend and change time,
not the change coverage or change magnitude.
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1 Introduction

In health care and bio surveillance as well as manufacturing SPC, the problem
of detecting a change in the mean or occurrence rate in a monitored process is
important. Examples include the detection of an increase in the infection rate of
diseases such as Avian flu or H1N1, or in the incidence rate of chronic diseases
such as cancer. Kulldorff (2001), and Rogerson and Yamada (2004) applied their
spatiotemporal surveillance method to detect clusters of increased rates in male
tyroid cancers and breast cancers, respectively. Such detection problems have a
spatial structure and the sample size (often, the population size) is not homogeneous.
In these problems, the main goal is to detect the rate increase in some regions
(or cluster) at an unknown time point by taking into account the population size.
For the detection, we consider several likelihood ratio based methods for variable
sample sizes devised for spatiotemporal surveillance. We evaluate their performance
at both an initial change time and a later change time because the performance of
distinct change times differs due to non-homogeneous baselines.

Several temporal surveillance methods for non-homogeneous sample sizes
have been developed and studied. Ryan and Woodall (2009) reviewed the
existing detection methods for non-homogeneous populations based on likelihood
ratios. Montgomery (2005) recommended the Shewhart u-chart to handle non-
homogeneous sample sizes. Several researchers modified the cumulative sum
(CUSUM) statistic to deal with non-homogeneous sample sizes. Yashchin (1989),
Hawkins and Olwell (1998), and Mei et al. (2009) developed weighted CUSUM
methods derived from likelihood ratios for variable sample sizes. Mei et al.
(2009) studied the theoretical properties of the weighted CUSUM chart under the
assumption that the mean of Poisson data is proportional to the sample size. Sparks
et al. (2009) also studied the weighted CUSUM method under a more general case
of the Poisson mean.

Comparisons of the CUSUM and weighted CUSUM methods for temporal
surveillance with non-homogeneous sample sizes have been thoroughly investigated
by Ryan and Woodall (2009) and Mei et al. (2009). By assuming randomly
generated populations, Ryan and Woodall (2009) compared the initial average
run length (ARL) of different surveillance methods and found that the CUSUM
chart is the most efficient. However, Mei et al. (2009) showed that the initial
ARL does not provide a complete and fair comparison between different methods
since the population changes over time and the ARL measure calculated after
the change time strongly depends on the actual population size after that time
point. In addition, the non-homogeneous population is randomly generated from
a uniform distribution in their simulations, which does not reflect the reality in
many real cases as demonstrated later. In fact, the random effect of population



Spatiotemporal Bio Surveillance Under Non-homogeneous Population 145

changes may mask the comparison based on the ARL. One may expect that the
performance under such a non-homogeneous population setting is similar to the
case with a constant population whose size equals to the mean of the uniform
distribution. For example, the ARL performance under the population size following
a uniform distribution U Œ5; 15� is close to that under the constant population size
of 10. Mei et al. (2009) compared three detection methods based on likelihood
ratios, particularly the CUSUM methods based on counts and incidence rates. They
used Lorden’s criteria for performance comparison under monotonously increasing
or decreasing population patterns. However, Lorden’s criteria is the performance
measure for the worst detection delays and may not be appropriate for practical
applications.

For spatiotemporal surveillance, several methods have been proposed with based
on likelihood ratio statistics without consideration of temporally non-homogeneous
populations. Tsui et al. (2009) discussed a general framework of spatiotemporal
surveillance that includes many well-known methods as special cases. A basic
approach for spatiotemporal surveillance is to take the maximum of the CUSUM
statistics over regions or potential clusters. Woodall and Ncube (1985) and
Tartakovsky and Veeravalli (2004) suggested monitoring the maximum of multiple
CUSUM statistics for each single region. Mei (2009) proposed using the summation
of multiple CUSUM’s instead of the maximum. Beyond a single region, Raubertas
(1989) considered potential clusters of nearest neighbor regions and constructed
multiple CUSUM charts for each potential cluster before taking the maximum over
all potential nearest neighbor clusters. Sonesson (2007) suggested multiple CUSUM
charts with variable regions, the idea of which came from the generalized likelihood
ratio approach proposed in Kulldorff (2001). These methods can be extended to
temporally non-homogeneous population cases because the population information
can also be incorporated into the likelihood ratio statistics in each CUSUM chart
of single regions or clusters. We thus call this approach the generalized likelihood
ratio (GLR) method.

Due to the discussions of temporal surveillance methods for non-homogeneous
populations, weighted CUSUM methods can be easily generalized to spatiotemporal
surveillance. In contrast to the GLR method, we call these generalizations weighted
likelihood ratio (WLR) method in this paper. In particular, we will discuss different
CUSUM methods for spatiotemporal surveillance with variable temporal sample
sizes. As Mei (2009) suggested, we will also compare the maximum and summation
of different CUSUM statistics over potential regions or clusters to understand the
efficient way for aggregating spatial information and evidence along time. We will
compare the run length performance of these surveillance methods assuming tempo-
rally non-homogeneous Poisson data with monotonously increasing or decreasing
population trends. The effect of change point time will also be investigated in the
comparisons.

The rest of this paper is organized as follows. In Sect. 2, we discuss the
spatiotemporal surveillance problem as a sequential change point detection problem
and discuss performance measures. In Sect. 3, we elaborate GLR- and WLR-based
surveillance methods. We compare the proposed methods through Monte Carlo
simulations in Sect. 4 and discuss conclusions in Sect. 5.
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2 Problem Formulation

In spatiotemporal surveillance, we are interested in detecting an increase of the
occurrence rate in some regions. Suppose we observe a sequence of independent
random vectors over time, fY1;Y2; : : :g. The random vector Yt has an entry ŒYct �,
where t represents time and c represents the index of spatial regions as shown
in Fig. 1. We denote a spatial location c by cD .m; n/, where mD 1; 2; : : : ;M ,
nD 1; 2; : : : ; N , and .m; n/ represents the position coordinates in space.

We assume that Yct follows a Poisson distribution with mean �ct D nct � pct ,
where nct is population size at region c at time t , and p is the individual risk. Under
the normal condition, pct D p0 for all region c’s at any time. After an unfavorable
event such as an outbreak occurs at an unknown time �, pct changes fromp0 to p1 at
some adjacent region c’s. In other words, for some � � 1, Y1; : : : ;Y��1 are Poisson
random vectors with mean �ct D Œnct �p0� for all region c’s, whereas Y�;Y�C1; : : :
are Poisson random vectors, which have means of nct � p1 in some region c’s and
nct � p0 for other regions. The goal is to detect an increase in the individual risk
from p0 to p1 as soon as possible after an unfavorable event occurs.

This problem can be formulated as the following sequential hypothesis testing
problem:

H0 W �ct D nct � p0 for t � 1 and any c

against the composite alternative hypothesis

H1 W �ct D
nnct � p0; for all c’s if 1 � i � � � 1

nct � p1; for some c’s if t � �:

This hypothesis test (H0 versus H1) is conducted at each time based on the
sequence of independent Poisson random vectors. To simplify the problem, we
assume that the outbreak coverage is a circle. We define an outbreak posi-
tion by cD .i; j / and outbreak coverage at the given position by Arc , where
Arc D ˚

d D .m; n/
ˇ
ˇkd � ck � r�. r is a radius that indicates outbreak coverage,

and d D .m; n/ is a coordinate that indicates the position inside of the coverage.
See Fig. 2 for illustrations.

In the sequential change point detection problem, we apply a detection statistic
or algorithm S to the data when new data are available. If the detection statistic S is
greater than a pre-determined threshold h, then an alarm is raised. The alarm time
is given by T D minft jSt > hg, where St is the detection statistic at time t . The
performance of a detection method can be evaluated by the following two criteria:
ARL0 (average run length under the in-control state) and detection delay under
the out-of-control state. A more detailed explanation of performance measures
can be found in Han et al. (2010). The ARL0 is defined by EŒT j�D 1�, where
�D 1 indicates that no change occurs. In the out-of-control state, we consider the
conditional expected delay, defined as CED.�/ D EŒT � � C 1jT � ��.
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Fig. 1 Vector and coordinate expression of regional data (p D 36)

Fig. 2 Outbreak position c D .i; j /, radius r , and coverage Ar.i;j /

When comparing spatiotemporal surveillance methods, we propose to use
CED.�D 1/, CED.�DARL0=2/, and CED.�DARL0/ for each method.
CED.�D 1/ indicates the initial average run length and CED.�DARL0/ is
similar to the value of the steady-state average run length. We will focus on
comparing several surveillance methods based on CED.�/ subject to

ARL0 � 
; (1)

where 
 is the lower bound of the target ARL0.

3 Spatiotemporal Surveillance Methods

In this section, we will discuss spatiotemporal surveillance methods based on
generalized likelihood ratios. These methods correspond to the likelihood ratio
methods under homogeneous populations. Suppose that the observation in the
position d D .m; n/ at time s, Yds , follows f . � jnds; p/ which is the Poisson
distribution with the mean ndsp. The log-likelihood ratio statistic of this observation
follows

Gds D log
f .Yds jndsp1/
f .Yds jndsp0/ :

For each position c, we can derive cumulative log-likelihood ratios of a potential
cluster Arc within time window Œ�; t � as follows,
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U rt
c� D

tX

sD�

X

d2Arc
Gds:

If we focus on a single region, this can be simplified as

U t
c� D

tX

sD�
Gcs:

We now discuss different methods based on the information of shift coverage.

3.1 GLR-Based Methods

3.1.1 GLR for Single Regions

If the shift coverage is a single region, i.e., r D 0, we can obtain the following
statistic for surveillance,

M1GLRt D max
c

n
max
1���t

n
U t
c�; 0

oo
: (2)

This corresponds to running individual CUSUM statistics for each single region
and taking the maximum over all CUSUM statistics. Note that M1GLRt can be
recursively obtained as

M1GLRt D max
c

fSctg;

where

Sct D maxf0; Sc.t�1/ CGct g:

If nct remains constant over time and space, M1GLRt reduces to the multivariate
CUSUM (or multiple CUSUM) in Tartakovsky and Veeravalli (2004) and Woodall
and Ncube (1985).

3.1.2 GLR with Unknown Shift Coverage

Sonesson (2007) assumed that the shift coverage is unknown and suggested the
following statistic,

MVGLRt D max
c

n
max
r

n
max
1���t

n
U rt
c� ; 0

ooo
; (3)
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where Arc can include at most 50% of the entire area from the center. It also has a
recursive form as

MVGLRt D max
c

n
max
r

n
Srct

oo
;

where

Srct D max

8
<

:
0; Src.t�1/ C

X

d2Arc
Gdt

9
=

;
:

3.1.3 Sum of GLR for Single Regions

Corresponding to the GLR method for single regions, Mei (2009) suggested using
summation instead of the maximum across spatial regions in order to combine
evidence of outbreaks. The test statistic is

S1GLRt D
X

c

n
max
1���t

n
U t
c�; 0

oo
: (4)

If the population is homogeneous, S1GLRt is equivalent to the sum of multiple
CUSUM’s in Mei (2009). The characteristics between the maximum and the
summation have been explained in Tsui et al. (2009) using distance arguments.

3.2 WLR-Based Methods

The above spatiotemporal surveillance statistics are derived based on the likelihood
ratio statistics. When these methods signal an outbreak, it is difficult to unmask
signals due to a real incidence rate change or population changes. Now we discuss
modified spatiotemporal surveillance methods based on weighted likelihood ratios.
The following methods adjust likelihood ratios by the Kullback information num-
ber, which is defined by I.nds; p1; p0/DEp1

�
log f .Yds jndt p1/

f .Yds jndt p0/

. Thus the weighted

likelihood ratio follows

Fds D 1

I.nds; p1; p0/
log

f .Yds jndsp1/
f .Yds jndsp0/ ;

where s is time and d D .m; n/ is a regional index. Since I.nds; p1; p0/ D nds �
I.p1; p0/, where I.p1; p0/ D p1 log.p1=p0/� .p1 � p0/, we can simply divide the
likelihood ratios by nds instead of I.nds; p1; p0/. Similar to generalized likelihood
ratio, for each position c, we define aggregated WLR statistics for possible nearest
neighbor clusters Arc and limited window of time Œ�; t � by
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V rt
c� D

tX

sD�

X

d2Arc
Fds:

If we focus on a single region, i.e., r D 0, the notation V rt
c� is simplified as

V t
c� D

tX

sD�
Fcs :

3.2.1 WLR for Single Regions

Similar to the GLR statistic for single regions, we suggest the following statistic to
run multiple CUSUM charts for the WLR statistics,

M1WLRt D max
c

n
max
1���t V

t
c�; 0

o
: (5)

It has a recursive form as

M1WLRt D max
c

fSct g;

where Sct D maxf0; Sc.t�1/ C Fct g.

3.2.2 WLR with Unknown Shift Coverage

If the shift coverage is unknown, we can apply Sonesson’s framework (Eq. 3) to the
weighted likelihood ratios and the monitoring statistic follows

MVWLRt D max
c

n
max
r

n
max
1���t

n
V rt
c� ; 0

ooo
; (6)

where Arc can include at most 50% of the entire area from the center. The recursive
form is

MVWLRt D max
c

n
max
r

n
Srct

oo
;

where

Srct D max

8
<

:
0; Src.t�1/ C

X

d2Arc
Fdt

9
=

;
:
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3.2.3 Sum of WLR for Single Regions

We can also apply the summation principle to weighted likelihood ratios over all
regions and obtain the surveillance statistic as

S1WLRt D
X

c

n
max
1���t

n
V t
c�; 0

oo
: (7)

4 A Simulation Comparison

We conducted a simulation study to compare the detection ability of the above meth-
ods for spatiotemporal surveillance with non-homogeneous population. We explore
their performances under various population trends and different time of outbreak.
Our simulation is motivated by male thyroid cancer data in New Mexico (Kulldorff
2001; Mei et al. 2009; Tsui et al. 2009).

4.1 Experiment Settings

We first use the increasing population trend, which is based on the following logistic
models derived from the New Mexico data,

nt D O	1
1C expŒ�.t � O	2/= O	3�

;

where nt is the population in 100,000. Mei et al. (2009) estimated the param-
eters based on the population time series as O	1 D 13:8065, O	2 D 11:8532, and
O	3 D 26:4037. Note that if t goes to infinite, nt converges to O	1. Another alternative
population trend is a decreasing pattern,

nt D O	1
1C expŒ.t � O	2/= O	3�

C O	1;

which decreases and converges to the same population size as the increasing case.
The third population trend is a constant population, and the population size is O	1.
Figure 3 plots the three different cases of the population trends for our simulations.

For the spatial structure in the simulation, we use a 6�6 regular map in Sonesson
(2007) and Tsui et al. (2009). As shown in Fig. 4, we consider three outbreak
patterns centered around the cell (4,3): S-1, S-5, and S-13. The number after ‘S-’
indicates the number of affected regions. Our simulation assumes that the data in
each region follow a Poisson distribution with parameter p0nt=36 under the normal
state, but p1nt=36 under the outbreak. In this experiment, p0, the baseline risk per
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Fig. 3 Population trends

Fig. 4 Three outbreak
patterns

Table 1 The thresholds for
the detection methods for
p1 D 2:7

Decrease Constant Increase

M1GLR 2.535 2.3494 2.132
M1WLR 5.502 6.126 7.42
S1GLR 22.33 20.84 19.17
S1WLR 48.78 54.33 66.2
MVGLR 4.687 4.4895 4.207
MVWLR 10.415 11.705 14.182

100,000 people, is estimated as 2.4 and the post-change risk is p1 D 2:7 for small
change magnitude or 3.6 for a large magnitude.

In our simulation, we set ARL0 as close to 100 as possible. In other words,
for all detection methods, we select the threshold so that each method generates a
false alarm about once every 100 time periods under the baseline risk. We searched
the thresholds for the targeted ARL0 based on 100,000 replications. Table 1 shows
the thresholds for the detection methods for p1 D 2:7. We simulated CED.�; p1/
for different change time such as � D 1, 50, and 100 using 50,000 replicates.

4.2 Performance Comparison

We compared the performance of the aforementioned methods under the simulation
settings. We first investigate the performance of the detection methods under the
constant population case followed by those under the non-homogeneous popula-
tion case.
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Table 2 CED under constant population

� D 1 � D 50 � D 100

S-1 S-5 S-13 S-1 S-5 S-13 S-1 S-5 S-13
p1 D 2:7

M1GLR 93.2* 75.9* 61.9* 53.8 43.5* 35.4* 38.2 31.9 25.6*
M1WLR 93.2* 75.9* 61.9* 53.8 43.5* 35.4* 38.2 31.9 25.6*
S1GLR 93.3* 73.7 54.0 48.8 36.2 24.4 32.1 23.6 15.6
S1WLR 93.3* 73.7 54.0 48.7 36.2 24.4 31.9 23.6 15.6
MVGLR 86.8 50.6 29.1 66.7* 39.0 21.9 64.0* 38.1* 21.1
MVWLR 86.7 50.6 29.1 66.6* 39.1 21.9 64.1* 38.1* 21.1

p1 D 3:6

M1GLR 39.6 21.4 15.9* 30.6 16.0* 11.2* 30.0 15.8* 11.0*
M1WLR 39.6 21.4 15.9* 30.6 16.0* 11.2* 30.0 15.8* 11.0*
S1GLR 50.5* 22.1* 11.9 34.6 12.9 5.8 34.3 12.7 5.7
S1WLR 50.5* 22.1* 11.9 34.6 12.9 5.8 34.2 12.7 5.7
MVGLR 42.0 11.7 5.2 37.2* 10.4 4.6 37.2* 10.3 4.6
MVWLR 41.7 11.6 5.2 36.9* 10.4 4.6 36.8* 10.2 4.6

4.2.1 Performance Under the Constant Population

Under the constant population, it is easy to see that the GLR- and WLR-based
methods are equivalent since one is scaled by a constant from the other (Mei et al.
2009). Table 2 shows the CED values of the aforementioned surveillance methods
under the constant population in the case of p1 D 2:7 and 3.6. It is easy to see that the
CED’s of M1GLR and M1WLR (S1GLR and S1WLR, or MVGLR and MVWLR)
are identical or within sampling errors (0:2 � 0:4).

Tsui et al. (2009) compared these methods in the case of independent normal
distributions with mean of 0 and variance of 1. They showed that for the initial
change time, M1GLR and S1GLR perform similarly for single region changes
(S-1), while S1GLR is better than M1GLR for multiple region changes (S-5, S-13).
If the outbreak occurs at later time (steady-state case), they showed that S1GLR
is uniformly better than M1GLR for any change coverage. In addition, they also
compared M1GLR and MVGLR and found that M1GLR is better than MVGLR for
single region changes (S-1), but vice versa in the case of multiple region changes
(S-5, S-13).

This paper investigates the detection schemes under Poisson data. The main
conclusion is similar to that of Tsui et al. (2009) with subtle differences. First,
comparing M1GLR and S1GLR in Table 2, we found that the CED’s of M1GLR
and S1GLR are similar for S-1 (93.2 and 93.3, respectively) for p1 D 2:7 with the
change time � D 1 but the CED of latter (54.0) is significantly smaller than that of
the former (61.9) for S-13. If � D 100, the CED’s of S1GLR are uniformly better
than those of M1GLR for any change coverage. This result is identical to that in Tsui
et al. (2009). However, in the case of large shift magnitude (p1 D 3:6), the CED
of M1GLR for S-1 is smaller than that of S1GLR at all change time � D 1, 50,
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Fig. 5 Signal distribution (%) during outbreak: The left plot shows the signal distribution of
M1GLR, and the right plot shows that of MVGLR

and 100. This indicates that large change magnitude favors M1GLR for the single
coverage (S-1). On the other hand, S1GLR outperforms M1GLR for large coverage
(S-13) at any change time. This result is consistent with the analysis in Tsui et al.
(2009).

When comparing the performance between M1GLR and MVGLR, it is found
that MVGLR is uniformly better than M1GLR for any change coverage when
p1 D 2:7 at � D 1. If � D 100, M1GLR is better than MVGLR for S-1, but vice
versa for S-13. When p1 D 3:6, the performance pattern is the same as that in the
case of p1 D 2:7 except that for S-1, M1GLR is better than MVGLR if � D 1.
The result for p1 D 3:6 is essentially consistent with that in Tsui et al. (2009).

One may expect that M1GLR is optimally designed for a single region change
(S-1) and should outperform MVGLR in this case. However, as seen in Table 2,
the CED of MVGLR (86.8) is smaller than that of M1GLR (93.2) for S-1 at
� D 1 in the case of p1 D 2:7. This is interesting and may be partially explained
by the trade-off between detection speed and cluster identification. Even though
the CED of MVGLR is smaller than that of M1GLR for detecting small change
magnitudes, MVGLR gives more false identification than M1GLR. In other words,
under out-of-control state, M1GLR gives high percentage of correct signals on the
outbreak region, but MVGLR gives signals (in terms of center of detected areas)
mostly outside of the outbreak region. Figure 5 shows the signal distribution (%)
of M1GLR and MVGLR during outbreaks when p1 D 2:7. Under the small shift
magnitude, both the noise and signal affect MVGLR detection and make the CED
of MVGLR smaller than that of M1GLR. However, the correctness of the detection
of MVGLR is often sacrificed. Nonetheless, M1GLR outperforms MVGLR when
p1 D 3:6 in S-1.

4.2.2 Performance Under the Non-homogeneous Population

Under temporally non-homogeneous population such as the increasing population,
the population size is small at initial time, but large at later time. The threshold
value incorporates the information of both small population at initial time and large
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Table 3 CED under decreasing population

� D 1 � D 50 � D 100

S-1 S-5 S-13 S-1 S-5 S-13 S-1 S-5 S-13
p1 D 2:7

M1GLR 90.1 68.6 52.8 55.6 44.5* 34.6* 46.2 37.2 29.2*
M1WLR 93.4 76.9* 63.5* 51.1 42.5 34.3* 30.8 26.1 21.4
S1GLR 91.0 66.2 44.7 49.9 35.3 22.1 38.9 27.6 17.9
S1WLR 94.6* 76.5* 56.8 48.4 37.1 25.4 25.2 19.3 13.3
MVGLR 83.4 42.6 22.0 72.5* 39.7 21.2 73.6* 41.5* 22.8
MVWLR 89.2 55.4 30.8 56.6 35.4 20.4 47.0 29.5 17.6

p1 D 3:6

M1GLR 30.4 15.2 11.2 29.9 14.8* 10.3 31.5 16.4* 11.3*
M1WLR 40.0 21.8 16.7* 28.6 15.2* 10.8* 23.5 12.9 9.0
S1GLR 42.2 16.4 8.5 34.7 12.1 5.3 35.9 12.9 5.7
S1WLR 59.9* 26.0* 12.9 32.5 13.3 6.1 22.7 9.6 4.6
MVGLR 33.3 8.2 3.6 35.8* 9.5 4.1 38.4* 10.3 4.6
MVWLR 48.2 11.9 5.1 32.5 9.7 4.3 26.2 8.5 4.0

population at later time. Table 1 shows thresholds for the detection methods. Thus
the population at different time affects the GLR and WLR methods differently.
Under the out-of-control-state (outbreak), the time with large populations may favor
GLR, whereas the time with small populations may favor WLR, as observed in Mei
et al. (2009).

Tables 3 and 4 present the CED values of different surveillance methods
under decreasing and increasing trend of populations respectively. Under the
decreasing trend of population, the GLR approach (M1GLR, S1GLR, and MVGLR)
outperforms the WLR approach (M1WLR, S1WLR, and MVWLR, respectively)
if �D 1, but vice versa if �D 100. For example, when p1 D 2:7 at �D 1, the
CED’s of M1GLR are 90.1, 68.6, and 52.8 for S-1, S-5 and S-13, respectively.
The corresponding CED’s of M1WLR are 93.4, 76.9, and 63.5. Thus M1GLR
uniformly ourperforms M1WLR if �D 1. This performance comparison agrees with
the analysis in Mei et al. (2009) that under the decreasing population, the population
size at �D 1 is larger than that at �D 100, so the GLR performs better (or worse)
than the WLR at �D 1 (or �D 100). On the other hand, under the increasing trend
of population, the WLR approach outperforms the GLR approach at �D 1, but vice
versa at �D 100.

Generally, the performance comparison between the maximum and summa-
tion operations under the constant population is similar to that under the non-
homogeneous population except some minor differences for S-1 depending on
population trend, change magnitude, and WLR/GLR. In most cases, the maximum
operation is as good as the summation operation for S-1 if � D 1, except under the
increasing population for p1 D 3:6. On the other hand, the summation operation is
generally as good as the maximum operation for S-1 if � D 100, except under the
decreasing population for p1 D 3:6.
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Table 4 CED under increasing population

� D 1 � D 50 � D 100

S-1 S-5 S-13 S-1 S-5 S-13 S-1 S-5 S-13
p1 D 2:7

M1GLR 95.7* 83.4* 71.8* 50.7 42.9 35.3 30.0 25.4 21.1
M1WLR 91.4 71.6 56.7 63.3 49.6 38.2* 59.2 46.4 36.3*
S1GLR 95.6* 81.0 64.7 48.5 38.1 27.2 25.7 19.6 13.5
S1WLR 89.7 65.4 45.8 57.0 38.3 23.3 55.9 37.7 22.0
MVGLR 90.4 61.7 41.2 59.5 36.9 21.8 53.5 32.8 19.2
MVWLR 80.3 41.1 24.2 108.2* 50.5* 26.4 125.2* 57.8* 29.8

p1 D 3:6

M1GLR 53.8 33.9* 26.7* 30.6 16.9 11.9 27.2 14.5 10.1
M1WLR 31.2 18.0 12.9 37.7 18.7* 12.8* 44.8 22.4* 15.7*
S1GLR 61.9* 33.0 20.2 34.6 13.9 6.4 30.6 12.0 5.5
S1WLR 25.2 13.9 9.1 59.9* 15.7 6.4 81.2* 22.1* 8.8
MVGLR 53.0 20.0 10.0 37.6 11.5 5.3 35.1 10.1 4.6
MVWLR 21.3 8.4 4.6 54.7 13.1 5.7 63.7 14.6 6.2

5 Conclusions

In this paper, we discussed several outbreak detection schemes for spatiotempo-
ral surveillance with variable sample sizes. Using Monte Carlo simulations, we
compared these methods under various scenarios depending on four factors (1)
the population trend, (2) the change time, (3) the change magnitude, and (4) the
change coverage. We showed that the CED performance of the methods depend on
these factors, and no detection method is uniformly the best regardless of these four
factors.

With temporally non-homogeneous population, the GLR approach outperforms
the WLR approach in the time period with smaller population, but vice versa in the
case with larger population. It means that in the out-of-control state, the smaller
(or larger) population favors the GLR (or the WLR). This performance result holds
true under any change coverage and change magnitudes.

For large change coverage (S-13), the summation operation performs better than
the maximum operation at any change times and population trends. For the case S-1,
the maximum operation is usually better than the summation if � D 1, and vise
versa if � D 100. However, under non-homogeneous population, the performance
comparison for S-1 depends on the population trend, the change magnitude, and
WLR/GLR.

Similarly, for large change coverage (S-13), the variable radius approach
performs better than the approach based on single regions regardless of the change
times and population trends. On the other hand, for small change coverage (S-1),
the latter approach performs better than the former if �D 100 or �D 1 when the
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change magnitude is large (p1 D 3:6), but vise versa if �D 1 when the change
magnitude is small (p1 D 2:7). Finally, M1GLR is always better than S1GLR and
MVGLR for S-1 if p1 D 3:6 and �D 1.
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Monitoring Hospital-Associated Infections
with Control Charts

Christina M. Mastrangelo and Anna M. Gillan

Abstract Hospital-associated infections are a major concern in hospitals due to
the potential loss of life and increased treatment costs. Monitoring the incidences
of infections is an established part of quality maintenance programs for infectious
disease departments in hospitals. However, traditional methods of analysis are often
inadequate since the incidences of infections occur at relatively low rates. The
g-type control chart is ideal for use since it monitors days between infections.
However, users of the control charts find the g-type chart counter-intuitive and
would prefer to use a u-chart or even a control chart for individuals. In this paper, we
investigate g-type chart alternatives and how these charts may be applied to infection
control surveillance data from Seattle Childrens Hospital.

Keywords G-type control charts • Disease monitoring • Negative binomial con-
trol chart

1 Introduction

Hospital-associated infections (HAIs) can affect any organ or organ system and
manifest themselves in a multitude of ways. The National Nosocomial Infection
Surveillance System (NNIS) and Pediatric Prevention Network data reveal that
bloodstream infections are the most common occurrence of HAIs and account for
32–53% of infections, while respiratory, gastrointestinal, and urinary tract infections
are reported less frequently (Agency for Healthcare Research and Quality 2001;
Health Protection Agency 2008; Healthcare Infection Control Practices Advisory
Committee 2009). The problem of HAIs is quite significant in terms of affecting
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patient lives, adding to the economic cost of the health care, and putting additional
strain on the hospital resources. Effective monitoring of infection rates can alert
clinicians to a change of infection rates, prompt the quality improvement teams
to identify causes behind the abnormal increase, and stimulate efforts to look for
effective interventions to reduce them. A control chart is an effective tool for this
(Benneyan 1998c; Carey 2002; Montgomery 2009).

The use of control charts is increasingly being suggested for a variety of
applications in healthcare in an effort to improve the quality of healthcare delivery.
Components of variability exhibited by healthcare data make them attractive
candidates to apply control charting techniques (Matthes et al. 2007). Woodall
(2006) and Sonneson and Bock (2003) summarize various types of control charts
in healthcare monitoring and in public health surveillance, as well as discussing the
issues related to these charts.

The use of control charts is also widely used for monitoring infections in an
effort to improve patient safety. Benneyan (1998a,b) reason the use of SPC in other
fields; that is, understanding current process performance, achieving a consistent
level of process quality, monitoring for process deterioration and reducing process
variation, are very much applicable to the case of monitoring infections as well.
In order to address some of the concerns of traditional control charts in this setting,
alternate charts have been suggested. Gustafson (2000) suggests the use of risk-
adjusted control charts based on a standardized infection ratio calculated by dividing
the observed number of infections by the expected number of infections during a
particular period. Benneyan (2001a,b) develop the g-type and h-type control charts
based on inverse sampling from geometric and negative binomial distributions
(further discussed in the next section) for evaluating the number of cases or the
number of days between HAIs as they can exhibit greater detection power over
conventional binomial-based approaches. Morton et al. (2009) demonstrate use of
counted-data EWMA and CUSUM charts for monitoring of hospital-associated
infections.

Limaye et al. (2008) demonstrate three control chart techniques for monitoring
infection surveillance data in the pediatric ICU of Seattle Childrens Hospital.
The u-chart, counted data CUSUM chart and the g-type chart were compared. Note
that while these charts monitor infection data in general, the plotted point differs:
the u-chart monitors the number of infections per 1,000 patient days; the counted
data CUSUM chart monitors the number of infections per month; the g-type control
chart monitors the number of days between infections. Each chart has a set of
advantages and disadvantages (Kaminsky et al. 1992; Radaelli 1998; Shore 2000).
The g-type control chart is simple to construct, and it can quickly indicate long
periods having no infection occurrences. However, the g-type charts are not very
helpful in detecting increased rates of infection because the lower control limit may
be zero. See the next section for this discussion. If the lower control limit is zero,
there would be no signal to indicate when an increase in the number of infections
occurred.

The goal of this research is to develop a modified g-type chart to yield a more
intuitive control chart with a precise interpretation of days between infections
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and to evaluate it utilizing historical infection data from Seattle Childrens Hos-
pital. Several alternatives were identified. The next question asked was would
the control chart alternatives be able to detect a change in infection rate and
how effectively? Comparisons between charts are made using the Average Time
Between Signal Events (ATBSE), an alternate performance metric to the Average
Run Length (see Fraker et al. 2008 and the references therein). Control chart
designs most appropriate for modeling days-between-infection data will be pre-
sented.

2 Concerns Regarding g-Type Chart Use in Infection
Control

The g-type (geometric) control chart monitors time between events. Figure 1 is a
g-type chart applied to 5 years of infection surveillance data (from 2003 to 2006)
from the pediatric ICU of Seattle Childrens Hospital (Limaye et al. 2008). The
data represents the number of HAIs in the unit for five of the most common types
of infections: central venous catheter associated bloodstream infections, ventilator
associated pneumonia, urinary tract infections, respiratory virus infections and
rotavirus infections. These 5 infections account for 75% of total infections in the
unit.

For the g-type chart shown in Fig. 1, each infection occurrence is an event,
and a count of infection-free days before each event is the plotted point on the
chart. These charts are particularly useful when the data are low-count events.
Infection control may be hesitant to use the g-type control chart as a monitoring
tool because interpreting the chart is counter-intuitive when compared to more
commonly used control charts. For example, as the geometrically-distributed
days between infections increase, lower infection events occur (hence a lower
rate); yet these points plot above the upper control limit in Fig. 1. When infec-
tion events occur more frequently, they plot toward the bottom of the control
chart.

In contrast, an upward (or lower) trend in infections per month plotted on a
u-chart (Fig. 2) which would indicate higher (or lower) infection rates. Figure 2
shows that, on average, there are 11.2 HAIs per 1,000 patient days. Currently,
u-charts are used for reporting to hospital administration; while at the same time,
signage displaying the number of Days Without Infection are posted at the unit
level. The u-chart is used here because each patient day is an “area of opportunity”
in which one or more infections could occur. If the data had been recorded as
the number of patient days with one or more infections, a p-chart would be more
appropriate. P-charts also work best if the rate of non-conforming is greater than
0:05% (Montgomery 2009). The HAI rates are typically smaller than that (e.g.,
0.009 per day).
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Fig. 1 G-type control chart of the number of days between HAIs (CLD 5:1)
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Fig. 2 A monthly U chart of the number of infections per 1,000 patient days

“Days between” infection data is universally understood. Monitoring
geometrically-distributed days between infections data allows the chart to be
interpreted once every new infection occurs, as opposed to waiting for the
completion of a specified sampling period (as in the u-chart). In a healthcare
environment, where timely intervention is essential to preventing further loss,
continuous updating is a significant advantage and enables more effective use of
out of control action plans. Figures 1 and 2 do show a downward trend starting in
2006 when an intensive hospital-wide initiative to reduce blood-stream infections
began. In 2004, changes in the type of bone marrow transplants occurred. The
yearly variation in the data is not unsurprising since hospitals continuously strive to
improve the quality of their services with new procedures, policy and technology to
reduce the possibility of infection events.

Benneyan (2001b) distinguishes between two counting schemes for collecting
geometric data: Type I and Type II. Type I refers to the number of days until an



Monitoring Hospital-Associated Infections with Control Charts 163

Table 1 Control limits for the g-type control chart where Nx is the average number of days between
infections, p is the rate of infection (if known), and k is the control limit constant

Chart type UCL CL LCL

G-type chart (Infection rate known) 1�p

p
C k

q
1�p

p2
1�p

p

1�p

p
� k

q
1�p

p2

G-type chart (Infection rate estimated) Nx C kpNx. Nx C 1/ Nx Nx � kpNx. Nx C 1/

infection, beginning the count the day after the previous infection and including
the day of the next infection. Using Type I data means that the smallest data value
is 1. Type II refers only to the number of days between infections, excluding all
infection day occurrences from the count. For example, if an infection is found
on day 5 and the next infection occurs on day 10, then the Type II count would
be 4 (whereas the Type I count would be 5). This would appear trivial except for
the case when an infection occurs more frequently or even daily. For example, say
infections were detected on two consecutive days. The Type I count would be 1,
and the Type II count would be 0. If you were to ask a practitioner how many days
between infections there were for two consecutive days, they would say 0 implying
the Type II count. However, as the next section will demonstrate, Type II data is not
amenable to g-type chart alternatives, so Type I count data were used.

The control limits in Fig. 1 were calculated using the equations in Table 1.
In Table 1, Nx is the average number of days between infections, p is the rate of
infection (if known), and k is the control limit constant. In this application, p is
unknown, so Nx is used. Note that when the lower limit is negative, it is rounded up
to zero. In practice, the g-type chart is quite asymmetrical, as in Fig. 1, even when the
days between infections are quite long because of the large standard deviation. The
concern over the traditional g-chart is the inadequate capability of the calculated
LCL to be used as a monitoring tool and enabling detection of true changes in
infection rates.

Benneyan (2001b) notes that the g-type chart exhibits “little-to-no power to
detect increases in the infection rates due to the lower control limit equal to zero”.
Xie et al. (2002) draw similar conclusions, stating that “the LCL will always be
less than zero making it useless in practice.” We found this to be the case as well.
Changing the k-sigma limits of the chart in Fig. 1 failed to provide a positive LCL
until k D 1 (or ˛ D 0:32) which is unreasonable. Probability control limits may
be a means to remedy the LCL problem and maintain the statistical nature of the
Shewhart control limits (Liu et al. 2007; Benneyan 2001a,b).

3 Modified g-Type Charts

Several control chart modifications were studied including transformations, the
EWMA g-type chart, and charts with non-parametric limits. This section presents
the two preferred methods in terms of performance and non-zero lower control
limit.
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Fig. 3 G-type control chart with the Nelson transformation

Multiple modifications were initially considered but found to be inappropriate
for application. For example, a g-type EWMA chart did not address concerns as it
had the same issues as the g-type chart (i.e. LCL = 0). In addition by transforming
the data, the g-type EWMA hides essential characteristics (i.e. actual days between)
of the data that could benefit the hospital when plotted directly. A modified g-type
chart devised from an empirical reference distribution failed to provide improved
control limits with the limited amount of data (Willemain and Runger 1996).

3.1 Geometric Data Transformations

Transformation of the geometrically-distributed days-between data is essentially a
means of normalizing the data (Liu et al. 2007). Normalized data allows accurate
k-sigma limits to be used in lieu of probability limits. We refer to the following
transformation as the Nelson Weibull transformation (Nelson 1994): yD 3:6

p
x.

Figure 3 is an example of this chart.
The second transformation is the Kittlitz transformation (Kittlitz 1999): y D 4

p
x,

and an example of this chart is shown in Fig. 4. Note that these transformations are
similar in terms of the exponent on the transformation and the control chart limits,
so there is little practical difference between the methods.

The transformations do results in lower control limit values that are greater
than 0.0. However, the problem with the transformation approach is immediately
apparent: Type I data will never have a value less than 1 after transformation.
As such, these charts meet the primary goal of a non-zero LCL, however, they will
never signal an increased infection rate. Hence, they are not considered in the next
section. Note that if Type II data was used, the gap between the LCL and data would
not occur. However, the LCL = 0 and this too fails to detect an increased infection
rate.
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Fig. 4 G-type control chart using the Kittlitz transformation

3.2 Negative Binomial Control Chart

Various charts exist which plot data modeled by the negative binomial distribution
(Albers 2010; Xie et al. 2002; Schwertman 2005; Tang and Cheong 2004). The neg-
ative binomial models the number of successes for a given number of failures.
The designated number of failures is represented by r , and in this application,
r represents the event of an infection. The negative binomial control chart is an
extension of the Cumulative Count of Conforming (CCC) chart and is denoted as
CCC-r. This control chart was explored because it has the potential to have a non-
negative LCL. In addition, a situation where a HAI occurs successively does not
necessarily indicate an increased infection rate. For example, every HAI in the ICU
is documented. This documentation includes patient condition, diagnosis and health
scores, and a chronically and seriously ill child could have two different HAIs in
a short period of time (in other words, data that is 1, 2, 1 days). So configuring
a negative binomial to detect 2 or more successive infection events could be
mechanism to detect an increased infection rate. Note that the geometric distribution
is simply the negative binomial distribution with r D 1.

By increasing the value of r , the LCL becomes greater than zero. However, a
trade off occurs at higher values of r , because the time necessary for amassing r
data points can become limiting, detracting from the possibility of prompt detection
of a rate increase. Values of r between 2 and 5 are most commonly used for low
count data, and this range is used here.

Probability control limits (Xie et al. 2002) were calculated using:

F.UCL; r; p/ D
UCLX

iDr

 
i � 1

r � 1

!

pr.1 � p/i�r 	 1 � ˛

2
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Fig. 5 CCC-r control chart for r D 2

Fig. 6 CCC-r control chart for r D 5
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An advantage of the negative binomial chart is that it utilizes geometric data
(versus, say Poisson data in a u-chart) and has intuitive appeal in a clinical setting.
Figures 5 and 6 are examples of the chart with r-values of 2 and 5, respectively.
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4 Methodology

To compare the performance of the g-type and negative binomial charts, 10 years
of geometrically-distributed days-between-infection data were randomly generated
to reflect a steady-state condition. Control limits for each control chart type were
calculated using this data, and then applied to an additional 10 years of generated
infection data. Five years of historical infectious disease data were used to calculate
a value of p, and p D 0:173. This represents a baseline scenario. An alternative is to
use the number of infections per patient day (p D 0:009) which provides a lower p
value (Albers 2010). However, the use of calendar days is more intuitive and faster
to plot.

Probability limits are used for the g-type chart and the negative binomial
chart. A value of 0.1 establishes upper and lower control limits at the 95th and
5th percentile, respectively, of the g-type chart and the negative binomial charts
(adjusted for r). For the g-type chart, probability limits given in Xie et al. (2002)
were used:

LCL D 
˛
ln.1 � ˛=2/

ln.1 � p0/

UCL D 
˛
ln.˛=2/

ln.1 � p0/


˛ D
ln
h

ln.1�˛=2�
ln.˛=2/�

i

ln
h

˛=2

1�˛=2
i :

An example of this chart is shown in Fig. 7. The process of creating 10 years
of data, calculating control limits, and applying control limits to the subsequent
10 years of data was repeated a total of 10,000 times. The average of the perfor-
mance metrics for all runs was calculated. In the event that a 10 year span of data
fails to signal entirely, the run is excluded from the final average.

To reflect an increase in the infection rate, the value of p of the geometrically-
distributed data was shifted upward. The second 10 year span of data was sectioned
into two 5 year periods. The first 5 year period was calculated using the initial in
control value of p, whereas the second 5 year period was calculated using a value
of p that increased by a multiple of 0.025. The values of 0.198, 0.223, and 0.248 are
used for the entire 5 year period. Control chart response to the shifts is calculated as
percentage change in performance metric between the two 5 year periods.

The Average Time Between Signal Events (ATBSE) was used to evaluate chart
performance in place of the Average Run Length (ARL). Note that in this control
scheme the control limits are not reset after a signal (Fraker et al. 2008). The
term ‘signal’ denotes a point below the LCL. The ATBSE was calculated as
follows: after the infection rate shift, every signal is recorded and the time between
signals calculated. These times are then averaged. The ATBSE results are given in
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Fig. 7 G-type control chart with Type I data

Table 2 ATBSE values for the various control charts. The standard deviation of the ATBSE is
given in parentheses

Value of p
0.173 0.198 0.223 0.248

g-Type chart 31.1 (4.2) 27.9 (4.8) 25.2 (5.6) 22.9 (6.3)
CCC-2 229. 2 (105.5) 209.5 (96.9) 186.5 (89.3) 165.7 (86.4)
CCC-3 446.1 (276.6) 421.4 (262.6) 373.3 (238.9) 326.7 (224.6)
CCC-4 514.2 (325.9) 470.9 (299.4) 409.1 (271.9) 351.9 (256.6)
CCC-5 675.1 (421.3) 651.5 (411.3) 592.4 (382.8) 517.9 (359.4)

Table 2. Note that the first column uses the historical value of p (and ˛ D 0:1)
in the respective control chart calculations. It does not ‘tune’ the control limits
to a common ATBSE value. Compare the ATBSE values to the historical value
of p D 0:173. As expected, the ATBSE declines as the infection rate increases.
However, the practical importance is questionable. The historical scenario will
signal, on average, every 31 days, and when the infection rate increases by two
thirds (to p D 0:248) the ATBSE only declines by about 8 days. With respect to
the ATBSE, the g-type control chart has the ‘best’ performance. Again this is not
surprising as the negative binomial charts only signal upon successive events.

5 Conclusion

The g-type and negative binomial control charts with probability limits and Type I
data are relatively straightforward to construct and have non-zero LCLs. Another
perspective in selecting between the two control charts is the average time between
signal events (ATBSE). Based on that metric, the g-type chart performs the best.
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The g-type control chart is a more logical tool for monitoring infection rates because
days-between infections (versus, say, days-between three successive infections)
is universally understood in hospital environments. An advantage of the g-type
chart is its ability to continuously update the control chart upon the occurrence
of each infection. Note that the specific focus of this work was to determine if a
control chart for geometrically-distributed data could be developed that supported
detecting an increase in infection rate. There are other methods, such as a CUSUM,
that could be used in this application. However, it was not studied here as a result
of the findings of Limaye et al. (2008). See Szarka and Woodall (2010) for a
comprehensive discussion of monitoring high-quality processes.
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Design and Implementation of Systems
for Monitoring Lifetime Data

Emmanuel Yashchin

Abstract We discuss the problem of monitoring data streams corresponding to a
sequence of lifetime tests with censoring. The parameters of the lifetime distribution
undergo abrupt changes of unknown magnitude at some unknown points in time.
Situations of this type are common in the areas of ongoing reliability tests (ORT)
and analysis of warranty data. The main technical difficulty of the detection problem
is related to the dynamic nature of the data acquisition process, as the information
collected at consecutive points in time generally affects data for a broad range of
lifetime tests in progress. We discuss issues and approaches related to monitoring
such types of data and give examples related to reliability monitoring of computer
components. The emphasis is on a Cusum – based approach and issues related to
its implementation in systems for warranty data monitoring deployed in the IBM
Personal Systems Division.

Keywords Change-points • Cusum • Sequential analysis • SPC • Reliability •
Warranty • Wearout • Weibull models

1 Introduction

The problem of monitoring lifetime data arises in a number of industrial settings.
For example, consider a manufacturing line for an electronic component. From the
manufacturer’s perspective, one of the challenging tasks is to ensure that the product
stream meets some given reliability requirements. The reliability of a component
is usually described by some statistical model and the lifetime characteristics are
functions of the model parameters. Typically, one cannot count on the model
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parameters to remain stable over time: rather, these parameters are subject to
changes of various types (shifts, drifts, etc.) – and such changes can potentially
have a harmful effect on the lifetime of a device. Therefore, it is customary to have
a system of ongoing reliability tests (ORT) that are based on (a) periodic selection of
product samples, (b) application of stresses (such as temperature, voltage, humidity)
that accelerate failures, (c) estimation of lifetime model parameters for selected
samples and (d) monitoring the model parameters using some form of control
charting. In the literature, a one can find a number of cases of this type (e.g., see
Wu and Meeker 2002).

The example described above presents a number of technical challenges. These
are primarily related to accounting for the relevant failure modes, modeling the
device lifetime, and understanding the acceleration factors, establishing the stress
factors, test parameters and censoring policies. However, situations of this type tend
to be relatively “mathematically clean”, since many of the key factors tend to be
controlled by a relatively small and focused organization. Among other things, this
typically ensures a good quality of lifetime data.

In this paper we will focus on situations that present special challenges from
the perspective of design and deployment. One of such situations is related to
warranty management of electronic systems. In this context, one usually needs to
deal with data collection systems that are not exclusively centered on monitoring
of component lifetimes. Databases related to warranty management are typically
multi-purpose; they are, for example, used by finance specialists in order to obtain
warranty cost projections, by technical support organizations to establish warranty
entitlement; and by quality assurance personnel and procurement organization to
keep track of the early field fallout rates. Accordingly, these databases tend to fall
under the administration of different organizations, which makes development of
lifetime data monitoring system a difficult task that requires compromises from the
parties involved, including quality and reliability specialists.

Even with data quality issues resolved, numerous technical challenges are due
to the special nature of control schemes required for monitoring of this kind of
data; most of them are related to the dynamic nature of observations that serve as a
basis for control charting. In particular, the charts are generally based on a sliding
window of data and, as new information gets accrued, a wide range of the points on
the charts undergo changes that necessitate continuous “on the fly” re-adjustment of
alarm thresholds.

In recent years, a number of articles and books have been published that
deal with various aspects of monitoring lifetime data. For example, likelihood
ratio methods for monitoring parameters of lifetime distributions in the standard
Cusum setting were discussed in Biswas and Kalbfleisch (2008), Olteanu and
Vining (2009) and Sego et al. (2009). Several methods for monitoring warranty
data by using Shewhart-type procedures are discussed in Wu and Meeker (2002).
Steiner and McKay (2000, 2001) discuss methods and applications related to
monitoring of type I censored data. This type of data (in conjunction with an EWMA
monitoring procedure and Weibull observations) was considered in Zhang and Chen
(2004). Analysis of warranty claims data is discussed in Blischke and Murthy
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(2000), Doganaksoy et al. (2006), Kalbfleisch et al. (1991), Lawless (1998) and
Lawless and Kalbfleisch (1992). Methods for analysis of failure data based on
marginal counts of warranty claims (and under incomplete information about items
introduced into the field) are discussed in Karim et al. (2001). Methods based on
change-point analysis for hazard curves have also been considered by a number of
authors, e.g., Patra and Dey (2002).

In the next section we will describe the basic parts of a system for monitoring
lifetimes of computer system components based on warranty data. In Sect. 3 we
discuss the key issues in the problem of design, analysis and deployment of such
systems, with emphasis on warranty data. In Sect. 4 we discuss the basic approach to
the problem of lifetime data monitoring with dynamically changing observations. In
Sect. 5 we focus on the problem of detecting multiplicative changes in hazard curves
and changes in wearout conditions that are of special importance in the context of
warranty data analysis.

2 Time-Managed Lifetime Data

We will focus on a particular system for detection of unfavorable conditions in
warranty data; we will refer to it as the Early Detection Tool (EDT, e.g. see Dubois
et al. 2008). The goal of this tool is to provide a timely alert that reliability of
some of the components might be unacceptable, and facilitate diagnostics and
corrective actions. To simplify the presentation, we will refer to the manufactured
systems as PCs (though in practice a much wider range of computers share common
components and thus participate in a common monitoring program). We will also
refer to the components as FRUs (Field – Replaceable Units). For example, a
particular 200 gig hard drive with specified speed and other characteristics would be
a FRU in the sense that a PC repair involves replacing such a drive with an equivalent
one. A particular PC has a Machine Type (MT) that, for example, identifies this PC
as a laptop of a certain type.

The schematics of EDT are shown in Fig. 1. In particular, one can see that
construction of data streams in this case required pulling information from two
databases. The first database, named Ship DB, serves primarily for the purpose
of establishing warranty entitlement of customers requesting repairs. This database
contains a record for every shipped PC, specifying its serial number and providing
information on its components. The components (FRUs) are generally bar-coded.
The barcode uniquely identifies the component and thus enables the company to
validate that a PC undergoing a warranty replacement of, say, a hard drive indeed
contains the original hard drive that was shipped with the machine (warranty
entitlement validation). However, barcodes contain a trove of information that is
useful for quality and reliability assurance. In particular, it identifies the FRU
manufacturer, the FRU manufacturing date and lot number.

The second database useful for lifetime data monitoring is the Service DB.
This database records acts of warranty repairs: PC serial number, type of repair,
component(s) replaced, cost and customer information. This DB is typically used
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by finance specialists; for example, one can produce monthly reports of actual
and projected warranty costs. Once again, this type of DB is of great use for the
purpose of lifetime data monitoring, because, in conjunction with the Ship DB we
can produce a data structure that is amenable to reliability modeling. In particular,
let us consider a particular FRU. Based on the two DBs, we can reconstruct the data
stream from the perspective of the FRU manufacturer. For example, for this FRU we
can create a table the rows of which correspond to consecutive FRU manufacturer
vintages. For every vintage (row) we can give information on lifetimes of FRUs of
this vintage. Some FRUs fail (providing failure times), others survive till the time
when the table is compiled (e.g. present time) and are thus right-censored. There
can also be FRUs that are censored at some earlier points in time: for example, if a
machine had only a 1-year warranty. One example of such a table is in Fig. 2. This
table corresponds to data summary as of Oct 30, 2001. The columns M1, M2, M3
contain pairs corresponding to the first 3 months of service. For example, row #3
is interpreted as follows: On Aug 20, the FRU manufacturer produced 160 units; of
these, 149 units already “saw” their first month of service and suffered no failures in
this month. Also, the same 149 units entered into their second month of service and
saw no failures in the second month either. None of these FRUs entered their third
month of service. In essence, Fig. 2 represents a discretized version of a sequence
of lifetime tests.

Data structures of type shown in Fig. 2 can serve as a basis of a control chart (or
a set of charts), where points on a chart correspond to FRU manufacturing vintages.
Such charts serve the usual purpose of “detecting smoke before the fire breaks out”,
and they could be tuned towards detecting specific unfavorable conditions related
to the FRU manufacturing process. One will have to establish the usual trade-
offs between rate of false alarms and sensitivity – however, the conventional “Run
Length” framework for doing that is no longer suitable: the particular nature of this
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Fig. 2 A typical data table for a series of component (FRU) manufacturing vintages

type of lifetime data requires a specialized approach to the monitoring process and
design of charts. The key feature of warranty lifetime data is that it is typically time-
managed. Consider again data in Fig. 2. As time goes by, one will see new vintages
(rows) added to the stable, and the table will maintain its characteristic “triangular”
structure: early vintages will tend to see more months of service than the later ones.
However, in practice, the data corresponding to earlier vintages will tend to get
discarded as the corresponding PCs exit from the “warranty horizon”. Of course,
one can argue for benefits of maintaining a long window of history related to old
vintages – however, the fact is that the owners of constituent databases (like Ship
DB or Service DB) typically have no interest in them, and one can count on these
vintages to disappear from the view. In all fairness, these old vintages are of limited
use anyway, because they cannot serve as a reliable source of lifetime data beyond
the warranty span. So, their primary use would be to enhance inference pertaining
to the older vintages that still have items under warranty (for example, they would
be helpful in detecting wearout earlier) – but this argument carries only a limited
weight, depending on the data ownership.

Another important feature of the data is its dynamic structure. In contrast to
conventional control charting, where data once observed remain static in the course
of the charting process, control schemes for lifetime data tent to involve regular
updating of previously observed points on the chart. For example, a point on a
control chart corresponding to vintage #3 of Fig. 2 is likely to be modified next time
the chart is compiled: we can expect to see new FRUs entering service, additional
failures and some FRUs entering their third month of service. We refer to monitoring
procedures corresponding to this type of data as control schemes with dynamically
changing observations (DCO).

In the process of control scheme design, of key importance is sorting of data in
accordance with types of unfavorable changes (or unfavorable conditions; in both
cases we will refer to them as UCs in what follows) that one intends to detect.
As noted earlier, sorting of type shown in Fig. 2 is especially useful for detection of
changes at the FRU manufacturers (such changes would be also graphically apparent
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Fig. 3 Data for a given FRU, as summarized in accordance with PC ship vintages

in DCO Cusum-type charts corresponding to this sorting). However, FRUs can also
be replaced because of problems in the PC assembly process. In order to detect such
problems, one may want to sort the data in accordance with the PC Ship vintages,
see Fig. 3. The interpretation of this data is the same as the one described above; it is
derived from the same combination of databases and pertains to the same FRU. So,
the total volumes of manufactured FRUs (column 2) in Figs. 2 and 3 will generally
be the same. The total number of FRUs that saw their first (or second) month of
service will also be the same, and the number of failures in different months of
service will also match (five failures in each table). One can apply DCO schemes
to a series of PC vintages in Fig. 3; these will tend to reveal any bad conditions or
regimes related to PC assembly process.

Other types of sorting and data segmentation involve, for example, sorting by
calendar time: for every day, we compile a record of the number of machines “at
risk” (in every age category) and the number of failures observed. The resulting
table looks similar to ones in Fig. 2. This type of sorting helps one to detect changes
related to calendar time, for example those due to introduction of a new system
software, demand-related stresses or seasonal effects. Vintage-by-vintage lifetime
data is usually analyzed separately for various causes of component replacement.
Separate sets of charts are also maintained for different geographies (as electrical
grid parameters and type of usage are typically geography-specific), and for various
customer groups and even some individual customers. The reason for the latter is
related to the necessity to prevent a sequence of “bad” vintages from having too
strong an impact on an individual customer; furthermore, one could anticipate that
at least some failure modes might be influenced by ways in which the customer uses
the product.

3 Key Issues in the Design of a Monitoring System

A monitoring system for massive volumes of lifetime data generally needs to satisfy
requirements of a wide range of customers, including management, procurement,
brands, quality and reliability teams. This necessitates deployment of analytical and
graphical tools that are capable of satisfying a wide range of users. For example,
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a high level manager may want a dashboard and summary that emphasizes the global
picture and does not focus on details of a particular component, say, showing signs
of reliability degradation for some narrow class of machines. On the other hand, a
reliability engineer responsible for hard drive qualification and monitoring would
need tools that not only provide alarms, but also facilitate diagnostics activity that
helps in establishing the root cause and taking corrective actions. At this level, one
would typically seek confirmation that the incoming process of lifetimes conforms
to some expected (or “target”) behavior. Once the dashboard (or other system of
automatic electronic notification) indicates that this is not the case for a particular
combination of Machine Type and FRU, one would like a quick answer to questions
of type:

1. What is the likely source of the problem (supplier’s process? assembly/confi-
guration process? calendar events?)

2. What is the geographic extent of the problem (e.g., is it limited to a single
geography?)

3. Is the problem limited to an individual machine type or to a relatively narrow
family of machine types?

4. Is the problem FRU – specific? Is it limited to a subset of FRUs?
5. How many production lots (of FRUs and machine types) are affected?
6. What is the range of customers affected?
7. Is there any evidence of presence of unexpected failure types (e.g., related to

early fails)
8. Has the process of failures been stable (albeit at an unacceptably high level), or

there is an evidence of change-points?
9. Is there any evidence of increase in failure rate (wearout)?

10. What is the current state of the failure rate process?
11. What is the projected impact of the problem? What severity (or priority) should

it be assigned?

Detecting UCs and addressing the above types of questions is especially
challenging in the environment of massive data streams. For a PC manufacturing
process, one could easily reach a condition where hundreds of thousands of
MT/FRU combinations are monitored simultaneously, while the number of people
to handle the related alarms remains very limited.

Of special importance is the issue of false alarms. Even in a well-designed
massive data monitoring system one could expect to have a few hundred false
alarms, so it is important that the users of a system be aware of this phenomenon. A
requirement to eliminate them completely would be too stringent and it could lead
to an overly conservative system that would not be appealing to users. However, it
is good practice to err on the side of having fewer false alarms. Excessive alarms
can quickly destroy credibility of a monitoring system as they will lead to its signals
being ignored, setting the stage for a potentially damaging oversight of conditions
that are really important to detect early (e.g., see Brown 2010).

One can reduce the intensity of false alarms (while maintaining acceptable
detection capability) by following a careful design procedure that emphasizes
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practical significance of the detected conditions as opposed to their statistical
significance. One important point is to ensure that every monitored sequence has
a well defined acceptable envelope. In the lifetime data setting, this can frequently
be achieved by specifying some “target” hazard curve and then specifying what
constitutes acceptable and unacceptable deviations from this curve. Thus, the area
of target setting is of key importance in the process of monitoring. This process can
generally be (at least partially) automated by using a combination of engineering
knowledge about statistical behavior of monitored components, data available for
this component and similar components (including its predecessors) and technical
requirements based on the so called service cost estimates. These type of require-
ments will ensure that target curves are not merely driven by historic performance
and engineering knowledge, but also take into account business requirements for
reliability improvement.

To achieve a high level of statistical power, it is also important for the monitoring
process to be based on modern statistical tools. In our experience, we found the
tools based on the statistical theory of sequential analysis, likelihood-ratio tests and
change-point theory to be especially effective in this regard. We found the proce-
dures based on modified weighed Cusum-Shewhart (CS) schemes (e.g. see Yashchin
1993; Hawkins and Olwell 1998) to be especially useful; these types of schemes
formed the backbone of the monitoring system deployed in the IBM Personal
Systems Division. These procedures provide high statistical power as measured
by standard Key Performance Indicators (KPI) used in business management. One
of these indicators is the so called Mean Time to Detect (MTTD) – and one can
usually make a case for acceptance of Cusum techniques on this basis. Furthermore,
the weighted Cusum – Shewhart methodology offers an especially appealing design
process based on very few design parameters and provides graphical instrumentation
that greatly facilitates diagnostics by helping the user to visually identify regimes
and points of change. As we will see later, however, in the presence of time-
managed lifetime data the CS method alone is not sufficient and one needs to use
supplemental tests in order to obtain good statistical performance.

To illustrate some of the above points, consider the opening screen of the Early
Detection Tool (EDT), see Fig. 4. This screen is providing a summary of the Latin
America FRUs, with vintage ordering corresponding to machine ship vintages (see
Fig. 3). This view could be of value, for example, to management responsible for
overall Reliability Assurance (RA) or to a manager responsible for support of Latin
America. Several cells are showing signs of reliability-related problems; one of
them corresponds to Hard Drives for Power Server systems. Some information
pertaining to the cell is available immediately (one MT/FRU combination out
of 55 analyzed has been flagged). Additional information can be made available
via special properties of the interface: we found “tool tips” (pop-ups appearing
upon mouse hovering over the star) to be especially effective. For example, this
supplemental information could provide estimates for the most severe condition or
to alert the user that a condition exists that has not been seen before.

Figure 5 shows the result of the drill-down obtained by clicking on the red star
in Fig. 4 (level-2 nested view). This view would also be of special use to the team
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Fig. 4 A top level of the multi-layer dashboard for the Early Detection Tool (EDT) representing
the Jan 13, 2004 view for Latin America. The rows correspond to commodities (types of FRU)
and the columns – to Brands. One can see that reliability of some of the Hard Disk Drive types
for Desktop – type models and for Power Servers (PWS) is considered problematic. The numbers
next to the red star indicate the total number of analyses for this Brand – Commodity combination,
Geography and type of ordering (55) and the number of combinations flagged (1). Clicking on a
red star leads to the level-2 nested view (dashboard) providing a more detailed view, see Fig. 5.
Colors are used to provide a summary of nested conditions: for example, Green D Grey D OK,
Yellow D Light Gray D no conditions flagged, but some of the data is still missing, Red D
Dark Grey D flagged conditions present

responsible for reliability of hard drives. It shows that a particular FRU (we will
refer to it as XXXX) has been flagged for the first time (as signified by our use of
triangle instead of a star). Once again, one can get some supplemental information
about this condition by taking advantage of the interface properties. In particular, a
further drill-down would lead on to the level-3 nested view containing some plots
and reports; we will show some examples in the next section.

An effective monitoring system will generally offer a range of post-alarm
activities to help its users in handling the newly detected UCs. One of them
includes support for alarm prioritization. Engineering experience suggests that
simply “piling-on” alarms is not an effective strategy, as the users usually have more
alarms on their plates than they can handle. Having to handle additional alarms that
are of lower importance than those already in the system can be quite irritating to
users. It is, therefore, necessary to provide users with some degree over control of
the intensity of alarms that goes beyond the control of false alarm rates. Accordingly,
in the EDT we provided a sub-system that characterizes alarms in terms of several
features that facilitate prioritization, depending on the objectives of this or another
group of users. One of the features is the severity index that is a function of several
statistics computed from the DCO charts: in the CS framework, such a function
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Fig. 5 The level-2 nested dashboard obtained by clicking on the red star in Fig. 4. The rows
correspond to a specific FRUs (Hard Disk Drives). The columns are row-dependent, as any given
FRU fits only a subset of Machine Types (MT). The red triangle (instead of star) indicates that
this condition has not been seen in the previous analysis. Clicking on the red triangle leads to next
drill-down layer, including a report and a set of DCO charts

could take into account the degree of threshold violation, closeness of detected UCs
to the current point in time and the degree of engineering intervention that is feasible
with respect to the flagged component. While prioritization of alarms by severity
makes sense for users whose primary responsibility is to track and minimize the
impact of existing UCs it may be of limited value to other groups of users. For
example, users who are primarily interested in early detection of new UCs may
be more interested in knowing how “fresh” the flagged conditions are. So, another
feature that we refer to as recentness is typically useful in differentiating between
newly emerging and pre-existing UCs.

In most cases, flagged conditions with high severity indices correspond to
conditions that have been around for some time; on the other hand, newly emerging
reliability problems will tend to have a relatively low severity index. With a
sufficiently high index of recentness, however, such an alarm could be prioritized
high due to the fact that the detected UCs would be recognized as ones meriting
special engineering attention. One example of application of such an index can be
seen in Fig. 5, where the detected UC has been classified as “new”. In addition to
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prioritization-related alarm features, the users can benefit from many other estimates
and indices that can be derived based exclusively on the data at hand. In particular,
of special use is the list of data regimes and change-points, with data interpretation
that identifies, for example, a given regime as a shift or drift in a parameter related to
flagged lifetime data. Providing filtered estimates of the current level of monitored
parameters and related quantities is also useful in many situations, especially those
where these parameters can be directly adjusted so as to improve the reliability of
the new product entering the field.

In many cases, however, one will have to deal with situations in which newly
detected UCs pertain to vintages that were produced, say, 1 year earlier and it is
already known that the product currently entering the field has different reliability
properties. In such situations one would benefit from supplemental automated
analysis of affected vintages and forecasts related to increase in fallout rates (due to
the newly flagged UC) that are expected in future periods of time.

In design and deployment of systems for monitoring massive amounts of lifetime
data one will need to overcome a number of computational challenges spawned by
the sheer scope of the analysis, as well as by complexity of the DCO models (as
compared to conventional non-DCO CS models, which can usually be designed
and analyzed by using Markov Chains). Of special importance here are Monte-
Carlo techniques, including resampling analysis and rare event simulation related
to alarm threshold derivation and estimation of severity indices. These challenges
are discussed in Yashchin (2010).

4 Basic Approach to Analysis of DCO Schemes

In the process of design and analysis, we first of all rely on engineers and managers
providing an adequate description of targets, acceptable and unacceptable behaviors
of the hazard curves governing reliability of various components. We can typically
count on obtaining a form of a reference hazard curve h0.t/. This curve can be given
in terms of a formula that could reflect, for example complex behavior including
infant mortality, maturity and late-life behavior. More often, this curve is given
via month-by-month setpoints. In practical terms, one can usually fit a continuous
curve to such setpoints – this enables one to reduce the number of parameters in
the underlying target-setting system; so, for the sake of simplicity we could think of
h0.t/ as a positive continuous curve.

To define acceptable and unacceptable behaviors of hazard curves on a massive
scale, it is convenient to work in terms of the time scale transformation

Y.t/ D H0.t/ D
Z t

0

h0.z/d z; (1)

where H0.t/ is the cumulative hazard curve corresponding to h0.t/. The main
advantage of handling failures on the Y-scale is related to our ability to efficiently
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parameterize the data and thus define the acceptable and unacceptable regions
in terms of very few parameters that are relatively easy to explain to users and
administrators. In particular, if it happens that the underlying hazard curve for a
particular FRU is proportional to h0.t/, then the failures on the Y-scale follow an
exponential distribution; by defining acceptable and unacceptable regions for the
parameter of this distribution we obtain a scheme for detection of multiplicative
changes in the hazard curve. Furthermore, one can see that a power-type change in
a cumulative hazard curve fromH0.t/ to

H1.t/ D aHc
0 .t/ (2)

leads to change in distribution of Y from exponential to Weibull with shape
parameter c and scale parameter ˇ D a�1=c . So, if the data and engineering
knowledge support the assumption that unfavorable changes in reliability of primary
interest are of type (Eq. 2), then we can work within the convenient framework
of Weibull laws. Otherwise, one might need to work within a different (hopefully,
parametric) framework – however the methodology similar to one described below
should still be applicable.

In what follows, we will assume that all the necessary transformations have been
applied and we will proceed (without loss of generality) under the assumption that
the lifetimes are Weibull. The basic monitoring strategy calls for decomposing of
the data stream into set of control sequences of statistics (one control sequence
per monitored parameter). For example, in the case of warranty data monitoring
one could define control sequences (corresponding to vintages sorted in a particular
way) for (a) scale parameter of the underlying Weibull law (b) shape parameter or (c)
negative log-probability of a FRU to survive 3 years (i.e., ŒH0.3/=ˇ�

c). One should
generally try, where possible, to formulate acceptable and unacceptable regions
in terms of parameters that are meaningful to users and to use control sequences
that provide unbiased estimates of these parameters for the individual vintages.
The reason for this preference is related to graphical interpretation of CS charts:
changes in process levels appear as changes in slope of Cusum trajectories, and thus
the process levels are visually estimated via these slopes; since slopes correspond
to linear functions of control sequences, the estimates obtained in this way are
consistent only when the individual terms are unbiased. Of course, one needs to
be aware of the fact that linear estimation procedures are not the most efficient
statistically – however, in many practical situations one can get good statistical
power, at least within the framework of Weibull models.

Once the list of monitored parameters has been established and the control
sequences defined, one needs to establish the criteria for statistical performance
of the corresponding charts. Unfortunately, because of the DCO property (in
conjunction with time-managed data), we cannot take advantage of the customary
concept of the Average Run Length (ARL) used in the conventional control charting.
The fact is that the chart is re-computed from scratch at every time point where new
information becomes available – and this information spreads over a wide range of
available vintages. Even if no data for a new vintage is introduced, there is still a
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need to update the alarm threshold(s). In EDT, we control the rate of false alarms
in terms of probability of flagging of a parameter. For example, one can set this
probability to 0.001 for all Hard Disk Drives, and then validate that the sensitivity
with respect to unacceptable deviations is satisfactory.

For example, consider again the problem of monitoring the mean rate � of FRU
replacements corresponding to data of type shown in Fig. 2. A fragment of one of the
summary reports available from the EDT is shown in Fig. 6. One can see that the data
table for the 13 vintages can be directly computed from data in Fig. 2. In this case
the control sequence corresponds to vintage-by-vintage replacement rates (number
of replacements per Machine-Months (MM) of service, see column “RATES”).
Associated with this control sequence is the sequence of weights corresponding
to the total number of MM for FRUs in consecutive vintages. For this particular
component, the target behavior was represented by a constant hazard curve, and
the acceptable replacement rate was � � �0 D 0:001 replacements per MM. The
unacceptable region was � > �1 D 0:003. For the DCO chart in Fig. 7, the false
alarm probability (i.e., probability of flagging for � D 0:001) was set to 0.01. The
top chart shows the replacement rates, with spaces between points corresponding
to weights. The bottom chart gives the corresponding weighted Page’s scheme
(see Yashchin 1993; a generalized procedure will be described later). The Evidence
trajectory has the property that it tends to “stick” to the bottom when � � k, where
k is the so called reference value given by

k D �1 � �0

ln�1 � ln�0
	 .�0 C �1/=2; (3)

in line with likelihood-ratio test formulation on which such charts are based. On
the other hand, the Evidence (i.e., weighted Page’s) trajectory tends to “float up”
towards the threshold when � > k.

One can see that for the data in Fig. 6 some vintages have unacceptable failure
rates and the evidence chart of Fig. 7 is indeed moving up – however, as of Oct 30,
2001 the evidence for flagging this condition was insufficient. The header of Fig. 6
lists the basic facts about this MT/FRU combination that are made available to the
user. In particular, the severity index of the data set was 0.6. In general, severity
exceeding 0.99 is needed to flag the condition, in light of the desired probability
0.01 of protection against false alarms. The wearout severity is reported at 0.3. The
formal definition of the severity used in the EDT is given below. Figure 8 shows the
charts for the same FRU compiled on Nov 30, 2001. At this point we had enough
evidence to flag this component (data for this view is omitted). The shape of the
Evidence trajectory indicates that the reliability of this FRU was unacceptable from
the very beginning – though it appears as if the midway vintages had a slightly
lower replacement rate. Note that points on the chart tend to cluster at the right end,
reflecting the fact that “younger” vintages tend to have fewer MM of service. In the
top chart this fact leads to higher variability of replacement rates – however, this
variability is not present on the bottom chart because the corresponding points are
assigned lower weights.
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Fig. 6 A type of summary table derived from data shown in Fig. 2

Though plots and analyses shown in Figs. 7 and 8 are definitely informative, there
is a need for supplemental flagging criteria in order for the approach to become
fully useable. The main problem with the described approach is that it relies on the
fixed probability of producing a false alarm as its main performance criterion. As
a consequence, the alarm thresholds will tend to go up as larger volumes of data
are accrued for a given MT/FRU combination. This will make the chart insensitive
to sudden onset of a very large change in the replacement rate. As noted above,
recent vintages come with relatively low associated MM (weights) – and, therefore,
their impact is lower than that for the older vintages. Supplemental tests address this
problem by focusing specifically on recent UCs. To this end, in the EDT we use the
concept of an active component defined in terms of a threshold ofDa days (in many
cases, Da 	 60 days is a good choice). A FRU is considered active if there were
vintages present in data within the last Da days from the current point in time T .
Supplemental tests are applied to active FRUs only. Absence of vintages within the
last Da days usually indicates that there is little one can do about preventing this
FRU from entering the field. So, even if we detect a problem pertaining to recent
vintages, we are not in a position to capitalize on it. On the other hand, inactive
components are still under warranty and thus need to be monitored, especially
for signs of emerging wearout. Since any supplemental tests dilute the detection
power with respect to conditions that we are really afraid of, there is little point of
introducing them for inactive components.

We will now give a brief summary of main and supplemental tests for monitoring
replacement rate and other control sequences. For a particular lifetime distribution
parameter (say, �), we will denote by .Xi ;wi /; i D 1; 2; : : : ; N the corresponding
control sequence and weights. For example, Xi and wi could represent the estimate
of the Weibull scale parameter based on the vintage i data and the inverse of
variance of this estimate, respectively. As shown in Yashchin (1989), choice of
weights in this manner leads to good statistical performance in the sequential setting,
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BIMS: 6850 59P6089,02R2304,02R2306,24P5416
W-Data Shipped (20010817–20010915). Run Date: 20011030
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Fig. 7 A DCO control chart corresponding to data in Figs. 2 and 4 (view of Oct 30, 2001). The
threshold on the bottom (Evidence) chart is chosen so as to ensure the desired level of protection
against false alarms. The top X-scale corresponds to cumulative MM of service. Note that the
data set of this type could be flagged by supplemental tests even if the plot does not show
threshold violation. In such cases we mark the end of the evidence trajectory by a sign (e.g. “C”)
corresponding to particular test(s) that caused flagging

and the performance generally tends to be good in the DCO context. In practice,
performance of the procedures is not too sensitive to moderate deviations from this
principle; for example, in many cases weights simply proportional to sample sizes
(or, sometimes, to MM) lead to similar statistical properties.

Next, for every monitored parameter we convert this sequence to values of a
control scheme Si ; i D 1; 2; : : : ; N by using a version of the weighed Cusum
algorithm. For example, for � corresponding to replacement rate one can use the
Weighted Geometric Cusum defined by

S0 D 0; Si D maxŒ0; 
Si�1 C wi .Xi � k/�; i D 1; 2; : : : ; N; (4)

where 
 is typically chosen in [0.7, 1] and the reference value k is given by Eq. 3.
For schemes with DCO we define S D maxŒS1; S2; : : : ; SN �. The FRU is flagged
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BIMS: 6850 59P6089,02R2304,02R2306,24P5416
W-Data Shipped (20010817–20011015). Run Date: 20011130
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Fig. 8 A DCO chart for the FRU of Figs. 2 and 4 (view of Nov 30, 2001)

at the current point in time T if S > h, where the threshold h is chosen based on
the required degree of protection against false alarms:

ProbŒS > hjN;� D �0� D ˛0: (5)

The value of ˛0 is typically chosen in the interval (0.01, 0.001) – but in some cases it
could be even lower. In situations where UCs are related to an abrupt (step) change
in the monitored parameter, choice of 
 D 1 generally works well. However, when
drifts in parameters are expected, use of 
 < 1 offers performance advantages as it
enables one to enhance sensitivity of the detection procedure with respect to drifts
in the lifetime distribution parameter (at the expense of somewhat lower sensitivity
with respect to shifts). These advantages are similar, in both nature and magnitude,
to those observed for non-DCO schemes, e.g., see Yashchin (1989). Using 
 < 1

also helps to enhance sensitivity with respect to newly emerging UCs – however,
the need for supplemental tests is still there.

The procedure (Eq. 4) is computationally convenient for applications involving
massive data streams because its recursive nature enables easy parallelization of
resampling tests. Note however that in the DCO setting the above scheme is non-
Markovian: the whole control sequence (and weights), and then the control scheme
are re-computed at every new point in time. This leads to necessity of special Monte
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Carlo algorithms, e.g., of type discussed in Yashchin (2010). One also needs to make
sure that on-line recalculation of control limits does not lead to loss of sensitivity
by preventing adaptation of a chart to worsening quality. It is therefore essential to
derive control limits based on fixed on-target conditions: the only adaptation allowed
is related to the DCO nature of the procedure, but not to movement of parameters
themselves. For example, when computing a threshold for the replacement rate �,
the Monte Carlo replications are (a) based on the fixed acceptable level �0 and (b)
conditioned on the values of MM observed up to the present point in time, which
are assumed to be ancillary for �. Because of that, the computations are unaffected
by the actual underlying levels of � or its estimates. However, if there are reasons
to believe that the weights (on which we condition in simulated replications) are
affected by changes in the underlying monitoring parameter, one will need to take
special precautions to ensure that the generated thresholds conform to the nominal
levels of protection against false alarms and to the required sensitivity.

Supplemental Tests. In EDT, we use two supplemental criteria. The first criterion
returns (for an active FRU part) the p-value from the test of a hypothesis that
the data observed within the last Da days conforms to an underlying replacement
rate not exceeding �0. For Weibull populations, the corresponding p-value can be
computed numerically. The criterion flags the FRU if this p-value is smaller than a
pre-specified threshold.

The second criterion is based on the final value SN of the scheme (Eq. 4); high
values indicate that the recent vintages are not conforming to an acceptable set of
lifetime parameters. P-values of this test can be computed by using the combination
of Monte Carlo simulation and asymptotic theory of Brownian Motion process,
see Yashchin (2010).

A combination of MT/FRU is flagged if at least one of the main test (Eq. 4)
and supplemental tests produces a p-value that is below a threshold that is tuned to
provide the target protection against false alarms. The complement of the computed
p-value was found to be a suitable index of severity; it can be approximated by
a function of the individual p-values of these three tests,  .P1; P2; P3/ (upper
case is used to emphasize that p-values are random variables). In most practical
situations, correlation between the supplemental test statistics and S is negligible
and can be ignored. However, the supplemental tests do tend to be correlated among
themselves, substantially complicating the problem of severity evaluation. In EDT,
this is done via failure process simulation under the assumption that the parameters
are at the edge of the acceptable region.

5 Monitoring of Shape and Scale Parameters

Providing a framework for monitoring the replacement rate is usually one of the
key engineering requirements. Our experience with EDT suggests that after some
training, the users feel quite comfortable with charts of type shown in Figs. 7 and 8
and the accompanying reports (Fig. 6). However, it is also highly desirable to have
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charts for monitoring Weibull parameters. Of course, if it happens that the hazard
curve of the MT/FRU combination of interest is proportional to the target hazard
curve h0.t/, then the Weibull shape is cD 1 and the charts presented above provide
a complete picture. However, in practice one can expect changes in hazard curves
that bring us, after the time transformation (Eq. 1), into the Weibull domain with
c > 1 – and this possibility (i.e., onset of wearout) is of great concern. Failure
to detect in time presence of wearout conditions can cause phenomenal warranty
losses, and even lead to demise of an otherwise sound manufacturing company
within a very short period of time. This is especially important for companies
involved in mass manufacturing, as illustrated by well publicized events in the
electronic industry (e.g., see Vance 2010) and automotive industry.

One can see that presence of wearout is, in fact, detectable on charts for
monitoring replacement rate. What we will see upon onset of a wearout is a “bulge”
on the chart, especially for early vintages (or a bulge in the middle of the chart, if
onset of wearout occurs in midstream). Before too long, the bulge will grow high
enough to cause threshold crossing on the evidence (bottom) chart. At this point,
one could ask the question: did the threshold crossing occur because the vintages in
question simply have an unacceptable (but steady, i.e., no wearout) fallout rate – or is
it manifestation of wearout? The reports of type shown in Fig. 6 help to answer this
question: some clues appear in the last columns of the report that give the month
of service in which individual failures have occurred. Roughly speaking, in the
presence of wearout one will usually see failures clustering toward last months of
service. In many situations, however, it may be difficult to assess visually whether
such clustering is indeed taking place, especially in highly censored situations, when
vintages contain data corresponding to several warranty policies. It is, therefore,
highly desirable to have a separate chart for monitoring wearout. As will be
illustrated in Fig. 9, such a chart can be presented on the same plot as the chart
for monitoring replacement rate. The severity of wearout condition can be given on
the same charts and reports; in fact, one can find them in Figs. 6 and 9.

Monitoring procedures for c can be developed by using strategy similar to that
described in the previous section. For this parameter, it is generally unadvisable to
have daily summaries on the charts; it is better (from the perspective of statistical
power, visual interpretation and computational burden) to have the points computed
on a sparser grid of macro-vintages. In EDT, the wearout estimates are computed
based on monthly data (e.g., the rows of Fig. 2 are consolidated so as to provide
just one row per month). Note, however, that the charts for monitoring c are still
updated daily, along with other charts – however, we use a sparser control sequence
to detect changes and evaluate the state of c for various macro-vintages. The last
point could correspond to partial data from the last month (if we use calendar months
for computing the control sequence) – but its role in the detection process is typically
insignificant: there is practically no information about wearout in the most recent
vintages.

Following the monitoring strategy described above, one can specify the accept-
able and unacceptable levels as c0 and c1 > c0 (in many practical situations,
c0 D 1 is a good choice). We then compute the control sequence consisting of
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Fig. 9 A DCO chart for simultaneous monitoring of replacement rate and Weibull shape parameter
c (wearout index). The horizontal dashed line on the top plot corresponds to the acceptable level
of replacement rate. The dashed lines on the bottom plot give the chart for c based on month-by-
month estimates (updated daily) and the corresponding horizontal threshold. Both charts have the
probability of a false alarm 0.01. The bottom scale symbols correspond to vintage indices. Note
that the severity of the detected wearout condition is 1 (maximal possible value) and most of the
evidence for wearout comes from data in a four consecutive months (7 to 10, corresponding to
vintages 37 to 91). On the upper plot, we also show the actual sequence of the estimates Oc1; Oc2; : : :
(dashed line with circle symbols), with a separate right axis

consecutive unbiased estimates Oc1; Oc2; : : : ; OcM , where M is the number of months
(i.e., macro-vintages) for which data is available. These values are then used in the
Geometrically Weighted Cusum test:

S0w D 0; Siw D maxŒ0; 
wSi�1;w C wiw. Oci � kw/�; i D 1; 2; : : : ;M; (6)

where 
w is the geometric parameter (typically in [0.7, 1]) and the reference value
is kw 	 .c0 C c1/=2. In the above notation the letter “w” stands for “wearout”. It is
because of unbiasedness of the control sequence that we can use a fixed reference
value in Eq. 6 and produce Cusum charts for c with a fixed centering constant
(examples of such charts can be found in Yashchin 1993).

The weight wiw can be chosen, for example, as the number of failures fi observed
for the macro-vintage i (and not the overall number of MM for the macro-vintage i ,
as in Figs. 7 and 8). This choice can be motivated by the fact that the scale parameter
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can vary from one macro-vintage to another, and thus it is the number of failures and
the corresponding lifetimes that carry information about c. The theory of weighted
schemes suggests using type-1 weights wiw that are inversly proportional to the
variance of the corresponding members of control sequence – and our simulation
studies show that the variance of Oci indeed tends to be roughly proportional to fi .

For the DCO scheme, the decision statistic is Sw D maxŒS1w; S2w; : : : ; SMw� and
the FRU is flagged at time T if Sw > hw, where hw is chosen from the equation:

ProbŒSw > hwjM; c0; f1; f2; : : : ; fM � D ˛0: (7)

As usual, the threshold hw and p-value of the test are derived by using Monte
Carlo simulation. The details can be found in Yashchin (2010). The latter paper
also discusses a supplemental test for active components similar to the second
supplemental test mentioned above that calls for flagging a component if the last
value SMw of Eq. 6 becomes too large.

We will now discuss briefly computational aspects of the DCO control charting
for c. Of special importance in the decision-making process is the bias-correction
procedure for deriving the sequence of estimates Oci . In the context of Maximum
Likelihood estimation, this procedure is greatly simplified by the fact that the
relative bias of the Weibull shape MLE estimator is primarily a function of the
sample size and the number of uncensored failures; its dependence on c or ˇ is
negligible. We will refer to this property as the Property A. This property can
be proven theoretically only in the case of ungrouped data with type-2 censoring
(see Johnson et al. 1994; McCool 1970): it follows from the fact that there exists
a data transformation (namely, log-lifetime) that turns the Weibull family into a
location-scale family with the scale parameter 1=c. Under such conditions, one can
prove even a stronger statement, namely, that the ratio Oc=c is pivotal.

Our experiments indicate that in the type-1 censoring environment Property A
still holds to a degree suitable for practical application. One can motivate this
statement by the fact that type-1 censored data with r observed failures yields
a likelihood function that can generally be well approximated by the type-2
censored likelihood function based on the observed r failures. In particular, our
experience with MLE-based charts for c indicates that this property continues to
yield substantial reductions in the bias and mean square error (MSE) of the shape
estimators for the case of grouped failures, at least in cases when group boundaries
are not spread too widely.

The EDT data structure is even more complex: not only is this data type-1
censored and grouped by month of service, but it can also be multiply-censored.
Such censoring can occur, for example, when some of the items of a given vintage
are shipped as part of machines that carry a 1-year warranty, while the remaining
items are shipped with machines under a 3-year warranty. Even in cases when
multiple censoring is not present in the original data, such type of censoring
can occur as a result of consolidating data by macro-vintages. In light of such
data complexity, substantial amounts of experimentation was necessary in order
to establish adequacy of Property A for this type of data and models of interest.
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Moreover, in the context of the EDT data we also found that Property A holds quite
reliably for estimators of c that are obtained by (a) rounding the failure times to the
midpoint of the corresponding service interval and (b) proceeding to obtain MLEs
based on these rounded times as if they were the actually observed failure times. In
what follows, let us denote the corresponding sequence of MLE estimates of c and ˇ
by f Qci g D Qc1, Qc2; : : : ; QcM and f Q̌

i g D Q̌
1, Q̌

2; : : : ; Q̌
M , respectively. Let fni ; fi ; Ai g

be the total number of items on test, the total number of failed items observed and the
total length (in months) of service period for the i -th macro-vintage. For example,
if the longest period of time for which an item of macro-vintage i was observed is
5 months (including the current month of service), then Ai D 5. For EDT-specific
levels of time discretization we found that the sequence f Qcig delivers statistical
power that is comparable to power of the MLEs f Oci g based on grouped data, at
a lower processing cost (the cost of computation is of importance in applications
like EDT because we rely heavily on resampling techniques in the process of bias
reduction and threshold derivation).

Next, for every macro-vintage i we compute the MLE estimate Q̌
i0 of the scale

parameter ˇi under the assumption that c D c0. Under this assumption, the prob-
abilities of a failure falling in service months 1; 2; : : : ; Ai (given that a failure was
observed) can be approximated by the vector pi D fpij g; j D 1; 2; : : : ; Ai , where

pij D
n
exp.�.j � 1/ Q̌�1

i0 /
c0 � exp.�j Q̌�1

i0 /
c0
o
=
n
1 � exp.�Ai Q̌�1

i0 /
c0
o

(8)

Now we produce B replications of Qci by (a) randomly re-distributing the observed
fi failures to Ai groups based on multinomial distribution with the probabilities
pij (typically, B D 200 is sufficient for our purposes) and (b) re-computing the
MLE estimates f Qci ; Q̌

i g for the re-sampled set of failure times. In essense, this
amounts to a parametric bootstrap procedure (e.g., see Good 2005) with additional
conditioning on the observed number of failures. Denote the resampled sets by
f Qc.b/i ; Q̌.b/

i ; b D 1; 2; : : : ; Bg. Since for the given macro-vintage i the set f Qc.b/i g is
generated conditionally on cD c0 and on the overall number of uncensored failures,
we can rely on Property A to develop a bias-correction factor to be applied to Qci :

uc D .Bc0/=

BX

bD1
Qc.b/i : (9)

The bias-corrected sequence of observations for Eq. 6 is then fuc Qci g. The bias-
corrected bootsrap replications are then used to evaluate the threshold hw of Eq. 6.
In particular, we construct B replications of the scheme (Eq. 6):

S
.b/
0w D 0; S

.b/
iw D maxŒ0; 
wS

.b/
i�1;w C fi .uc Qc.b/i � kw/�; i D 1; 2; : : : ;M; (10)

and observe the replicated set of maxima S.b/w DmaxŒS
.b/
1w ; S

.b/
2w ; : : : ; S

.b/
Mw�. The

value of hw is then selected as the empirical .1�˛0/-th quantile of the set
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fS.b/w ; bD 1; 2; : : : ; Bg. Substantial reduction in the simulation effort can be
achieved by utilizing the property that the right tail of the S.b/w distribution is
decreasing exponentially (see Yashchin 2010). At the present point, however, we
do not have a formal proof of this property. It is also recommended to apply
an additional correction of hw upward to account for the fact that the bootstrap
replications f Qc.b/i g slightly under-represent the variability of the underlying
population of f Qcig (corresponding to some fixed simulation setup with c D c0)
because the replications assume that the underlying ˇ is equal to its estimated
value.

Monitoring the scale parameter. In practice, it is also useful to provide charts
for the Weibull scale parameter ˇ. As in the case of c, it is quite sufficient to use
monthly summaries as a basis for control sequence. Individual monthly estimates
can be shown on the basic charts (like in Fig. 9), along with the replacement rate
and wearout charts. It is also convenient to plot the sequence of estimated Weibull
rates Ǒ�1

1 ;
Ǒ�1
2 ; : : : ;

Ǒ�1
M on the upper plot because its scale (i.e., measurement units)

coincides with the scale for the replacement rate, and so these charts can share a
common left axis. Note that the control sequence Ǒ�1

i is a by-product of computing
the sequence Oci . In practical applications, it is highly recommended to bias-correct
the control sequence f Q̌�1

i g before using it in the weighted procedure of type

S0s D 0; Sis D maxŒ0; 
sSi�1;s C wis. Q̌�1
i � ks/�; i D 1; 2; : : : ;M; (11)

for reasons mentioned above (in the above formula the letter “s” stands for “scale”.
In our experience, substantial reduction in bias of f Q̌�1

i g (as an estimate of 1=ˇ) can
be obtained by simply estimating its value under the assumption c D uc Qci . Choice of
the weights wis corresponding to the total number of MM for the respective macro-
vintages is typically adequate. The reference value can be chosen midway between
the acceptable and unacceptable levels of 1=ˇ, the geometric factor 
s is chosen
based on standard considerations, and the decision threshold hs for this scheme
can be obtained by simulation. Note, however, that in some cases one may want to
simply produce the evidence plot of the resulting chart (if the monitoring procedure
for the replacement rate has already been deployed) and rely on the chart (Eq. 11)
for diagnostic purposes only.

6 Conclusions

Because of the nature of the data in many systems for lifetime data (time-
managed data, DCO), the problem of monitoring its characteristics becomes quite
challenging. Some of the problems are of theoretical nature (design and analysis
of DCO control schemes), others are related to practical implementation (multi-
level dashboards, handling engineering input, alarm management, diagnostics,
corrective actions), some computational (efficient use of Monte Carlo techniques
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for computing thresholds, severities on a massive scale). We illustrated how some
of the challenges can be addressed in a particular type of a monitoring environment
related to warranty data. There is no doubt that data from other industries (like
automotive) has enough idiosyncrasies to warrant whole classes of new approaches;
we hope, however, that some basic ideas presented above could still be useful for
a broader range of situations, at least in areas related to reliability assurance and
warranty management.

There are a number of issues affecting degree of feasibility of the discussed
methods – however, we did not run into real “show-stoppers” in the case of IBM
Personal Systems warranty data. This type of data appears to be among the cleanest
massive-scale sets that an industrial practitioner can realistically hope to encounter.
There were, of course, some data quality issues – but it turned out that we could
introduce imputations and approximations that our users felt comfortable with. For
example, the Service DB was required to contain the id of a FRU that was used
as a replacement – but not the FRU being replaced. It turned out that, after some
automated search, one could recover this information for most of the cases (the
Ship DB proved to be useful in this respect). Moreover, a number of ship dates were
incorrect – but we managed to detect a large number of them and obtain a useful
estimate for these dates.

Our work was focused on detecting UCs – however, similar methods could be
used for detecting improvements in the process (and some were indeed detected,
based on periodic or informal dashboard exploration). In general, it appears that
detection of improvements does not have the same urgency as detection of UCs, and
so it might be a good strategy to use periodic surveys for this purpose – however,
we also saw a number of cases where green swaths on a dashboard were due to poor
target-setting.

We found that the “repeated weighted Cusum-Shewhart” approach was well
received by teams working in various business areas – though some amount of
training was a must. The level of familiarity with this approach is still too low,
as most engineers associate monitoring and SPC with the Western Electric system
of decision making. We decided not to use EWMA for monitoring – mostly because
of its poor inertial properties (see Yashchin 1993; Woodall and Mahmoud 1995) –
however, some modifications of this technique are useful in post-alarm activities.

The effectiveness of the warranty monitoring process is somewhat limited by the
problem of multiple replacements related to difficulties by warranty personnel in
identifying the failed component. In many cases, it is actually cheaper to replace
several components at once than risk the necessity of a return visit. The information
in databases, however, will typically contain information on every replaced part –
so, sometimes it is not possible to tell whether the replacement action was indeed
a replacement of a failed component. In the industry this problem is known as
masking, e.g., see Yashchin (2008). Some of the methods for handling masked data
could be quite useful in this setting.

Though the analysis of schemes with DCO can be handled within the framework
of continuous time, in this paper we emphasized an approach that uses discretization
of the time scale. This approach was driven by pragmatic factors, mostly related to
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preferences and constraints of the Early Detection Tool users and to properties of
the available data collection and processing tools.

Finally, the proposed methodology has proven quite effective for prediction
of future fallout rates and related costs. By segmenting the control charts and
identifying regimes and change-points, one can predict the contribution of every
vintage to the future overall rate of replacements.
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A Robust Detection Procedure for Multiple
Change Points of Linear Trends

Seiichi Yasui, Hidehisa Noguchi, and Yoshikazu Ojima

Abstract A flexible manufacturing system (FMS) enables the production of
multiple-items with short production run. By using an automatic measurement
system, it is possible to observe a large amount of items in a short time. The
observations from the FMS include some variation patterns and outliers, thereby
making it difficult to implement a conventional statistical process control. In this
study, a retrospective analysis of such a process dataset is proposed. Our procedure
detects multiple change points for a dataset with outliers and variation patterns
such as shifts and trends. The locally weighted scatter plot smoothing and the
jump/roof/valley detection procedure based on a local polynomial kernel smoothing
are useful to develop our procedure. We modify these procedures and propose a
robust procedure for detecting multiple change points.

Keywords Change points • Robustness • Local polynomial kernel smoothing

1 Introduction

A flexible manufacturing system (FMS) enables the production of multiple-items
with short production run. Although the production run is short, it is easy to obtain
adequate data for monitoring quality characteristics by an automatic measurement
system. However, such a sophisticated process makes it difficult to implement a
conventional statistical process control that is based on control charts and PDCA
cycle.

The flexibility develops a flexible production schedule. Even if the produc-
tion volume is large, the production is intermittent because the change to other
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production types is easy. Production line is not defined as an exclusive process of
a particular product, since other products are in pipeline after a production run is
complete. A rigid production schedule does not provide time to improve the process
or take corrective action. Hence, an adjustment is made to maintain the expected
quality level of the products.

Since it is practically difficult to implement on-line process control, a retro-
spective analysis is useful and important to control the quality of future products.
Sullivan (2002) and Harnish et al. (2009) proposed detection methods for multiple
change points from clustering observations when multiple shifts are present.
However, a set of observations from the FMS includes outliers and some variation
patterns such as trends and jumps.

Qiu and Yandell (1998) proposed a detection procedure for finding jumps in a
regression curve and in first- or higher-order derivatives based on local polynomial
fitting. Joo and Qiu (2009) proposed a jump/roof/valley detection method using
local polynomial kernel smoothing. A jump is a discontinuous point of a regression
curve. A roof/valley is an indifferentiable point of a regression curve (i.e. a jump in
the first-order derivative of the regression curve).

This method can detect change points for datasets with multiple patterns such
as shifts and trends. However, it cannot be directly applied to a process that uses a
FMS because such systems have outliers in the observations. Thus, it is necessary
to add robustness to the jump/roof/valley detection method. Therefore, we propose
a robust jump/roof/valley detection procedure.

Cleveland (1979) proposed a robust locally weighted regression for a polynomial
model known as Locally weighted satter plot smoothing (LOWESS). In this study,
by modifying Cleveland (1979) and combining it with Joo and Qiu (2009), we
propose a procedure for detecting multiple change points for datasets including
some linear trends and outliers.

In Sect. 2, the underlying idea for detecting jumps and roofs/valleys is described.
Our robust change point detection procedure is introduced in detail in Sect. 3. In
Sect. 4, the performance evaluation through a simulation study is shown. Section 5
present the concluding remarks.

2 Underlying Idea for Detecting Jumps and Roofs/Valleys

The underlying idea for detecting jumps and roofs/valleys is described in Joo and
Qiu (2009). First, the principle of jump detection is introduced. A step shift of the
process mean is one example of the jumps.

The first-order derivative is a spike at the position where the step shift occurred
and it is flat (zero in case of a step shift) in the neighborhood of a jump position. The
second-order derivative is zero at the position where the step shift occurred and it
changes its sign from positive (negative) to negative (positive) in the neighborhood
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Fig. 1 A step function and its first-, second- and third-order discrete derivatives

of a jump position. This feature is called the zero-crossing property in Joo and Qiu
(2009).

Next, the principle of roof/valley detection is introduced using the above
assumption about the observations. When we suppose that observations consist of
only linear functions with two different slopes (e.g. jxj), the first-order derivative
is a step function in the neighborhood of the roof/valley position. The second-order
derivative is a spike at the position where the roof/valley occurred and it is zero
(generally, flat) in the neighborhood of the roof/valley position. The third-order
derivative is zero at the position where the roof/valley occurs and it changes its sign
from positive (negative) to negative (positive) in the neighborhood of the roof/valley
position. The first-, second- and third-order discrete derivatives of the step function
are shown in Fig. 1. From the features of each derivative, we develop simple criteria
for detecting jumps and roofs/valleys compared to the complex criteria proposed by
Joo and Qiu (2009). Three derivative coefficients at each data point are estimated
by local cubic kernel smoothing with robustness. These estimated derivatives are
reasonable approximations of the true derivatives.
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3 Robust Change Points Detection Procedure

3.1 Estimation of Derivatives at Each Point

Let fyt jt D 1; : : : ; ng be a sequence of observations from the process, in which
some of the observations are outliers. The data model without outliers is given as

yt D f .t/C "t ; (1)

where f .t/ is the unknown function with jumps and/or roofs/valleys at unknown
positions and some of f"t jt D 1; : : : ; ng have an independent normal distribution
with mean 0 and unknown variance �2. To obtain estimates of the derivatives of
f .t/ at a given point t , we utilize the robust local cubic kernel smoothing procedure.

First, we implement the following local cubic kernel smoothing procedure:

min
a;b;c;d

nX

iD1
fyi � Œa C b.i � t/C c

2
.i � t/2 C d

6
.i � t/3�g2 �K

�
i � t
mh

�
(2)

where K.u/ is a kernel function with support Œ�1; 1� and mh is a bandwidth
parameter. Let mh be the number of observations in the neighborhood of a given
point t . The solutions to a; b; c and d of the objective function (Eq. 2) are denoted
as Oat ; Obt ; Oct and Odt , respectively. The Oat is the estimate of f .t/, and the Obt ; Oct and Odt
are non-robust estimates of the derivative of f .t/.

Then, to obtain robust estimates, robustness weights are calculated. LetNh.t/ be
the neighborhood Œt�mh; tCmh� of the point t . We calculate residuals ej D yj � Oyj
for j 2 Nh.t/, where

Oyj D Oat C Obt .j � t/C Oct
2
.j � t/2 C

Odt
6
.j � t/3: (3)

The robustness weights are defined as

ıj D B
� ej
6M

�
;

whereM is the median of fjej j W j 2 Nh.t/g ,and

B.u/ D
(
.1 � u2/2 juj � 1

0 juj > 1 (4)

is the bisquare weight function.
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Next, by replacing the kernel function in Eq. 2 to the ıj � K.u/, we compute

new Oat ; Obt ; Oct and Odt that are candidates for robust estimates at a given point t . The
Oat ; Obt ; Oct and Odt are obtained as the solutions of the minimization problem (Eq. 2).

Finally, by iterating the re-weighting and minimization for R times, we obtain
robust estimates of the derivatives of f .t/ at each point t .

The solution of the minimization problem (Eq. 2) is given by the weighted least
squares. Thus, the robust estimators of f .t/ and its derivatives are given by

Ǒ
t D .X 0WtX/

�1X 0Wty; (5)

where Ǒ
t D . Oat ; Obt ; Oct ; Odt /0, Wt is the diagonal matrix of the robustness weights

after an iteration,X is the design matrix of a cubic polynomial function and y is an
observation vector. Although elements of Wt are the function of fjej j W j 2 Nh.t/g,
we consider elements of Wt as fixed variables. Then, the expectation and variance
of Ǒ

t are

EŒ Ǒ t � D ˇt C .X 0WtX/
�1X 0Wtd t (6)

V Œ Ǒ t � D �2.X 0WtX/
�1.X 0Wt/.WtX/.X

0WtX/
�1 (7)

where ˇt D .f .t/; f 0.t/; f 00.t/; f 000.t//0 and d t D .f .1/; : : : ; f .n//0 � Xˇt . The
formulae (6) and (7) are used for developing the change point detection procedure.

3.2 Detection of Multiple Change Points

The points at which jumps and/or roofs/valleys occur are change points. Assume
that f .t/ is a single linear function in the range between change points, such that
the second- and third-order derivatives at each point, except for change points, are
zero. Thus, from the expectation (Eq. 6) and the variance (Eq. 7) of Ǒ

t , if neither
jumps nor roofs/valleys exist in the neighborhood of the point t , then

Oct � N.0; �.3; 3/�2/ (8)

Odt � N.0; �.4; 4/�2/ (9)

where �.3; 3/ and �.4; 4/ are .3; 3/ and .4; 4/ elements of V Œ Ǒ t �=�2, respectively.
If a jump of a linear trend occurs at a point t , the zero crossing of Oct occurs in the

neighborhood of the point t . On the basis of this characteristic of Oct , jump points of
the linear trend are detected by the following procedure :

1. Sequentially check the condition j Oct j � Cv.ct /
p
�.3; 3/ O� for t D 1 to n ;

2. If the above condition is true at the point t D k, then for points t � k1C1, sequen-
tially check whether each point satisfies the condition j Oct j<Cv.ct /

p
�.3; 3/ O�
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until this condition is false. Let k2 be the point at which j Oct j � Cv.ct /
p
�.3; 3/ O�

is true ;
3. If Ock1 Ock2 < 0 and 0 < k2�k1�1 � m, then there is a jump in the interval Œk1; k2�.

Then the change point is estimated as argt minfj Ock1C1j; : : : ; j Ock2�1jg. Otherwise,
there is no jump in the interval Œk1; k2� .

The roof/valley detection procedure is developed by replacing Oct with Odt in the
jump detection procedure, because the roof/valley of a linear trend is a jump of the
second-order derivative (ct ).

The standard deviation of observations O�2 is estimated through two one-sided
local linear kernel smoothings and the robust estimator of these residuals was
introduced by Lenth (1989). Two one-sided local linear kernel smoothing were
utilized by Joo and Qiu (2009). Two linear regression functions are fitted in
each area Œt � mh; t/ and .t; t C mh� with linear regression functions denoted as

0�.t/ C 
1�.t/.i � t/ and 
0C.t/ C 
1C.t/.i � t/, respectively. These regression
coefficients are obtained as the solutions of the following minimization problems:

min

0�.t/;
1�.t/

X

i2Œt�mh;t/
fyi � Œ
0�.t/C 
1�.t/.i � t/�g2 �K

�
i � t
mh

�
; (10)

min

0C.t/;
1C.t/

X

i2.t;tCmh�
fyi � Œ
0C.t/C 
1C.t/.i � t/�g2 �K

�
i � t

mh

�
: (11)

The residuals are

e�.i/ D yi � .
0�.t/C 
1�.t/.i � t//; i 2 Œt �mh; t/; (12)

eC.i/ D yi � .
0C.t/C 
1C.t/.i � t//; i 2 .t; t Cmh�: (13)

By Lenth’s pseudo standard error (PSE), the two standard deviations O�� and O�C are
calculated for each side Œt �mh; t/,.t; t Cmh�. Hence, the estimator of the standard
deviation of observations on Œt �mh; t/ is given as

O�� D 1:5medianje�.i/j<2:5s0 je�.i/j; (14)

where the median is computed among the je�.i/j with e�.i/ < 2:5s0 and

so D 1:5median je�.i/j: (15)

The estimator of the standard deviation of observations on .t; tCmh� is also obtained
in the same manner. The overall estimator of the standard deviation of observations
on Œt �mh; t Cmh� is determined as the smallest between O�� and O�C.
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4 Simulation Study

In this section, the proposed change point detection procedure is evaluated through
the Monte Carlo method. The observations are generated from the following
structure :

yt D
X

sD1;2;���
ıI.t > 100s/� ı

100
.t � 1/C "t ; t D 1; : : : ; n; (16)

where "t ’s are independent random errors and I.t > sj / is the index function. We
focus on the process with outliers. Thus, some of the random errors are distributed
to N.0; 12/ with a probability p, and the rest of the random errors are distributed to
a t-distribution with degrees of freedom 	 as outliers.

The evaluation is carried out under the following conditions:

1. Total number of observations:n D 1; 000 ,
2. Amount of jumps:ı D 2; 3,
3. Parameters of outliers:	 D 3 , p D 0:2 ,
4. The kernel function : the tricube weight function K.u/ D .1 � juj3/3I.juj � 1/

and the Epanechnikov kernel functionK.u/ D 0:75.1� u2/,
5. Parameters of the detection procedure:mh D 21(bandwidth for the tricube

weight function), mh D 55 for the Epanechnikov kernel function, R D 3 (the
number of iteration for the robust estimation), Cv.ct /DCv.dt /D 3; 0(constant
for detections).

In Fig. 2, an example of a sequence of observations is shown. From Fig. 2, we
observed that our detection procedure can resist outliers. The sequence of f Oa.t/jt D
1; : : : ; ng maintains the underlying pattern of observations and there is no extreme
value in the sequence. By applying our robust smoothing to a dataset with some
patterns and outliers, the variation patterns become clear. It is important to visualize
the variation pattern of the process in order to improve and control the process.

The ratios of detecting the jump within ˙2 points of each true jump point are
calculated through the Monte Carlo method with 1; 000 replications, whose results
are shown in Figs. 3–5. Figures 3 and 4 show the powers of jump detection in the
case of ı D 0:2, when the kernel functions are tricube weights and the Epanechnikov
function, respectively. Each bandwidth parameter is optimized by trial and error.
The procedure with the Epanechnikov kernel function has higher power than that
with the tricube weight function. In addition, the procedure with the Epanechnikov
kernel holds a Type I error.

In Fig. 5, the power for ı D 0:3 is shown in the case when the kernel function
is the Epanechnikov kernel. At every jump point, the power of detection is more
than 0.8.
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Fig. 2 An example of a sequence of observations for the simulation model and the estimates of
f .t/ (Oa.t/)

5 Conclusion

In this study, we proposed a robust procedure for detecting multiple change points,
which is able to perform well even when observations have certain systematic
patterns such as trends and outliers. From the results of the simulation study, it
can be concluded that our procedure is robust. When the Epanechnikov kernel
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Fig. 4 Ratios of detecting the jump within ˙2 points of each true jump point for ı D 0:2 with
Epanechnikov kernel function

function is adopted, our procedure shows good performance in terms of the powers
of jump detection. The bandwidth is optimized using a trial and error approach.
Cleveland (1979) provided an automatic bandwidth selection procedure for robust
locally weighted regression. However, this technique requires a large number of
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Fig. 5 Ratios of detecting the jump within ˙2 points of each true jump point for ı D 0:3 with
Epanechnikov kernel function

observations (more than 1,000). Thus, we need to improve this technique for apply-
ing our detection procedure to improve and control process in the practical FMS.
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Risk-Adjusted Cumulative Sum Charting
Procedures

Fah F. Gan, Lin Lin, and Chok K. Loke

Abstract Risk-adjusted charting procedures for monitoring the performances of a
cardiac surgeon or a group of surgeons have recently gained prominence. Chart-
ing procedures developed for manufacturing processes are no longer appropriate
because they do not take a patient’s risk into account. The first charting procedure,
variable life-adjusted display (VLAD) that takes a patient’s risk into account was
introduced in 1997. The VLAD plots the predicted mortality count minus the
observed count cumulatively. The statistic plotted is intuitive and it has gained
widespread attention and adoption. However, the run length performance of this
chart is still not clearly understood because of the lack of a proper signalling rule.
A risk-adjusted cumulative sum (RA-CUSUM) chart based on testing the odds ratio
that a patient dies was proposed in 2000. In this paper, we developed and studied a
general RA-CUSUM chart of which the RA-CUSUM chart based on odds ratio is a
special case. The general RA-CUSUM chart allows testing to be done beyond just
testing the odds ratio. One interesting note: although the VLAD and RA-CUSUM
chart look seemingly different, we show that the RA-CUSUM chart and the RA-
CUSUM chart based on the VLAD’s monitoring statistic are in fact the same chart.

Keywords Average run length • Odds ratio • Patient mix • Relative risk •
Sensitivity analysis • Sequential probability ratio test Surgical outcomes

1 Introduction

Risk-adjusted charting procedures for monitoring the performances of a surgeon
or a group of surgeons have recently gained prominence (see Rogers et al. 2004;
Treasure et al. 2004; Sherlaw-Johnson, 2005; Woodall, 2006). Grigg et al. (2003)
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and Grigg and Farewell (2004) provided reviews of the development of risk-adjusted
charting procedures. Woodall (2006) provided a comprehensive review of research
papers in health-care and public-health surveillance. Other recent papers on risk-
adjusted charts include Lovegrove et al. (1999); Gustafson (2000); Treasure et al.
(2002); Benneyan and Borgman (2003); Spiegelhalter (2004); Spiegelhalter et al.
(2003); Grunkemeier et al. (2003); Sismanidis et al. (2003); Blackstone (2004);
Manche and Schembri (2005); Novick et al. (2006); Grigg and Spiegelhalter (2007);
Coory et al. (2008); Chang (2008); Biswas and Kalbfleisch (2008); Gan and Tan
(2010); Steiner and Jones (2010) and Gandy et al. (2010). Unlike manufacturing
processes where the raw material is usually assumed to be of homogeneous quality,
patients usually do not have the same surgical risk. Using charting procedures
developed for the manufacturing processes amounts to assuming the same risk
for all patients. For two surgeons who are equally competent, it is clear that the
surgeon who operates on patients with high risks will have a lower success rate than
the one who operates on patients with low risks. In other words, it is misleading
to use these unadjusted success rates to compare the two surgeons. Steiner et al.
(2000) demonstrated that trainee surgeons were performing better than experienced
surgeons on the standard cumulative sum (CUSUM) charts while the risk-adjusted
cumulative sum (RA-CUSUM) charts showed the opposite.

A patient’s preoperative risk can be predicted before a surgery based on the
patient’s conditions. One commonly used estimate is the euroSCORE which is
the predicted mortality yi D exp.ˇ0 C P

ˇiui /=Œ1 C exp.ˇ0 C P
ˇiui /� where

ui ’s specify the patient’s characteristics like age, gender, serum creatinine, systolic
pulmonary pressure, neurological dysfunction etc. This model was developed by
Roques et al. (1999) by fitting a logistic regression model based on 19030 cardiac
operations. An online calculator for the euroSCORE can be found on the website
www.euroscore.org. Alternatively, the Parsonnet score (Parsonnet et al. 1989) could
be used.

In order to take the risk of a patient into account, Lovegrove et al. (1997;
1999) and Poloniecki et al. (1998) suggested plotting the difference between the
preoperative risk yi and the surgical outcome (xi D 1 if a patient dies or xi D 0

if a patient survives) cumulatively. They termed this chart a variable life-adjusted
display (VLAD) and cumulative risk-adjusted mortality (CRAM) chart respectively.
This chart is intuitive, easy to understand and it accounts for the risk of a patient by
comparing directly the patient’s preoperative risk and the outcome of the operation.
Treasure et al. (2004) presented some convincing examples using the VLAD that
showed both improvement and deterioration in performances of some surgeons. The
main criticism of this chart is the lack of a proper signalling rule. A signalling
rule provides an objective and quantitative rule for assessing the points plotted
and determining appropriate times for taking action. Although Poloniecki et al.
(1998) proposed certain control limits for signalling but these limits are not directly
interpretable in terms of run length performance. Sherlaw-Johnson (2005) mapped
the control limits of the RA-CUSUM chart onto the VLAD but the resulting
signalling rule is complicated because the control limits change with inclusion of
data from every new surgical operation.

www.euroscore.org.
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Steiner et al. (2000) proposed a RA-CUSUM chart based on testing the odds
ratio that a patient dies, as a way to account for the patient’s risk. This chart is
derived using the sequential probability ratio test (SPRT) procedure developed by
Wald (1947). Such a chart is optimal in terms of run length performance (see
Moustakides, 1986). The RA-CUSUM chart and VLAD are developed using two
different approaches and are viewed as two different charts (see Rogers et al. 2004;
Spiegelhalter 2004; Sherlaw-Johnson 2005; Woodall 2006) but as we shall show in
Sect. 3, interestingly the RA-CUSUM chart the CUSUM chart based on the VLAD’s
monitoring statistic are in fact the same chart.

We will review the VLAD in Sect. 2 and derive the RA-CUSUM chart based on
the VLAD’s monitoring statistic and the signalling rule using the SPRT approach.
In Sect. 3, a general RA-CUSUM chart is developed. The RA-CUSUM chart based
on odds ratio developed by Steiner et al. (2000) will be shown to be a special case.
In Sect. 4, we will compare the performances of RA-CUSUM charts based on odds
ratio and relative risk; assess the sensitivities of RA-CUSUM charts with respect to
changes in the underlying risk distribution. This is important because this will allow
us to find out how the performance of the RA-CUSUM chart is affected by changes
in the distribution of patients’ risks. The use of the RA-CUSUM charts based on
odds ratio and relative risk in monitoring is illustrated with a real data set in Sect. 5.
Finally, conclusions are given in Sect. 6.

2 Risk-Adjusted CUSUM Chart Based on VLAD’s
Monitoring Statistic

In order to take the risk of a patient into account, Lovegrove et al. (1997; 1999)
and Poloniecki et al. (1998) proposed the VLAD chart. Let Yi denote the predicted
preoperative risk of the i th patient under current conditions and let the associated
probability density function (pdf) be fY . � I �/. Also, let Xi denote the outcome:
1 if the i th patient dies or 0 if the i th patient survives. In this paper, we will use
the 30-day post-operative mortality rate for illustration. The VLAD is obtained by

plotting
nP

iD1
Xi �

nP

iD1
Yi or

nP

iD1
.Xi � Yi/ against n, where Xi � Yi is the VLAD’s

monitoring statistic. The quantity
nP

iD1
Yi represents the predicted number of deaths

up to the nth patient, whereas the quantity
nP

iD1
Xi represents the observed number

of deaths. The VLAD takes the patients’ risks into account by comparing these two
quantities directly. This chart is thus intuitive and easy to understand. Except for
Sherlaw-Johnson (2005) who mapped a signalling rule from the RA-CUSUM chart
onto the VLAD, little progress has been done although the VLAD is gaining wide
acceptance among surgeons.
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Fig. 1 Plot of penalty-reward
wn (based on testing odds
ratio of death) awarded to a
surgeon according to a
patient’s predicted
preoperative risk yn

In order to understand the VLAD better, let us define d.Yi/ to be the true
probability of the i th patient dying when the patient is operated on by a surgeon.
Let the VLAD’s monitoring statistic be denoted as

Zi D Xi � Yi D
(
1 � Yi ; if the i th patient dies;

�Yi ; if the i th patient survives.
(1)

Given Yi D yi , the random variable Zi is simply a random variable with probabili-
ties P.Zi D 1� yi /Dd.yi / and P.Zi D �yi /D 1� d.yi/. In other words, for the
i th patient with a predicted preoperative risk yi , the chance of dying when operated
on by the surgeon is d.yi /. The statistic zi may be viewed as a penalty-reward score
given to the surgeon depending on the patient’s preoperative risk and the outcome of
the operation. Figure 1 shows the plots of zi versus preoperative risk yi . The quantity
QA is the odds ratio of death defined asQA D fd.y/=Œ1�d.y/�g=fy=Œ1�y�g. Thus,
if a patient dies, the penalty will be heavy if the patient’s preoperative risk is low,
and the penalty will be small if the patient’s preoperative risk is high. Similarly, if a
patient survives, the reward will be big if the patient’s preoperative risk is high and
the reward will be small if the patient’s preoperative risk is low. For a chart that does
not take the risk into account,Zi is simply given as

Zi D
(
1; if the i th patient dies;

0; if the i th patient survives.
(2)

Thus, effectively, the VLAD has converted a binary penalty-reward system into a
continuous one according to the patient’s preoperative risk yi , and this is precisely
how the VLAD takes the patient’s risk into account. For the rest of the paper,
we assume Zi follows Eq. 1.
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Consider testing H0 W d D d0 versus HA W d D dA. If the preoperative risk y
remains unchanged for a new operation, we may set d0.y/ D y. For the VLAD,

E

(
nX

iD1
.Xi � Yi/

)

D nE.Xi � Yi/: (3)

Therefore, the cumulative sum has a slope of E.Xi � Yi / when plotted against n.
If the expected chance of survival E.Yi / is equal to the expected outcome E.Xi/,
the plot will display no evidence of a sustained slope. On the other hand, if the
expected chance of survival differs from the expected outcome, the plot will have a
sustained slope of E.Xi �Yi/. This implies that a position on the chart at which the
plot has a change in slope indicates the position of a possible change in E.Xi �Yi /.
It is thus clear that for the VLAD, it is the slope that is important.

We shall now proceed to derive the RA-CUSUM chart based on the VLAD’s
monitoring statistic Zi . We first derive the pdf of Zi . Let fY .yI �/ be the pdf of Yi .
Using a conditioning result (see Ross, 2006, p. 376 for example), it can be shown
that

P.Zi � zI �; d/ D
8
<

:

R 1
0 Œ1 � d.y/�fYi .yI �/dy C R 1

1�z d.y/fYi .yI �/dy; z � 0;
R 1
�zŒ1 � d.y/�fYi .yI �/dy; z < 0,

(4)
and thus the pdf of Zi can be derived as

fZ.zI �; d/ D
8
<

:

d.1� z/fY .1 � zI �/; z � 0;

Œ1 � d.�z/�fY .�zI �/; z < 0.
(5)

Now consider testing H0 W d D d0 versus HA W d D dA, using the SPRT approach,
a RA-CUSUM chart can be obtained by plotting

Sn D maxf0; Sn�1 CWng; (6)

against n and a signal is issued if Sn > h for some chart limit h > 0, where S0 D 0

andWn is the log of the likelihood ratio of densities,

Wn D log

(
fZ.ZnI �; dA/
fZ.ZnI �; d0/

)

: (7)

Using Eq. 5, it can be shown that

Wn D
8
<

:

logfdA.1 �Zn/=d0.1 �Zn/g; Zn � 0;

logfŒ1 � dA.�Zn/�=Œ1 � d0.�Zn/�g; Zn < 0.
(8)
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This completes the derivation of a RA-CUSUM based on the VLAD’s monitoring
statistic Zn. The choice of the functions d0 and dA will be explained in details in the
next section.

Steiner et al. (2000) considered testing the odds ratio of death under H0 W
Odds Ratio D Q0 versus HA W Odds Ratio D QA. For testing these hypotheses,
d0.y/ and dA.y/ would take the form d0.y/ D Q0y=.1 � y CQ0y/ and dA.y/ D
QAy=.1� y CQAy/. The statistic Wn can then be obtained as

Wn D

8
ˆ̂
<

ˆ̂:

log

�
.Zn CQ0 �Q0Zn/QA

.Zn CQA �QAZn/Q0

�
; Zn � 0;

log

�
1CZn �ZnQ0

1CZn �ZnQA

�
; Zn < 0.

(9)

If we chooseQ0 D 1 andQA D 2 as in Steiner et al. (2000), the RA-CUSUM chart
based on the VLAD’s monitoring statistic Zn can then be obtained by plotting

Sn D max

�
0; Sn�1 C log

� 2

2 �Zn

�
1fZn�0g C log

� 1

1 �Zn

�
1fZn<0g

�
; (10)

where 1f � g is the indicator function. Steiner et al. (2000) compared their RA-
CUSUM chart with a ‘CUSUM’ chart based on the VLAD’s monitoring statistic
Zn D Xn � Yn directly and obtained by plotting

Sn D maxf0; Sn�1 CZng; (11)

against n, where S0 D 0 and signal when Sn > h. Note that this chart does not
depend on any alternative hypothesis. It is a cumulative sum chart of some sort
but it is not Page’s (1954) CUSUM chart because Eq. 11 is not based on the SPRT
procedure. Thus, Moustakides’s (1986) optimality result for a CUSUM chart does
not hold for this chart.

3 A General Risk-Adjusted Cumulative Sum Chart

In this section, we will first describe the standard (non-risk-adjusted) CUSUM chart
for monitoring the binary outcomes. We then describe Steiner’s RA-CUSUM chart
based on testing the odds ratio. We proceed to derive a general RA-CUSUM
chart and show that it is mathematically identical to the RA-CUSUM chart based on
VLAD’s monitoring statistic derived in the previous section. Steiner’s RA-CUSUM
chart will also be shown to be a special case of the general RA-CUSUM chart.

Let Xi denote the outcome of the i th patient as defined in the previous section.
The probability function of Xi is given as P.Xi D xi / D pxi .1 � p/1�xi where
xi D 0 or 1. Consider testing H0 W p D p0 versus HA W p D pA. Based on the
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SPRT approach, the standard CUSUM chart (Reynolds and Stoumbos, 1999) for
testing these hypotheses is obtained by plotting

Sn D maxf0; Sn�1 CWng; (12)

against n where

Wn D
8
<

:
logfpA=p0g; if the nth patient dies;

logf.1� pA/=.1� p0/g; if the nth patient survives,
(13)

and a signal is issued when Sn >h. The statistic Wn may be interpreted as the
penalty-reward given to a surgeon based on the outcome of the nth operation. Note
that the penalty and reward are constants and they do not depend on the preoperative
risk of the patient Yn, thus the standard CUSUM chart does not take the patient’s
risk into account.

If y is the predicted probability that a patient dies, then the odds that the patient
dies is y=.1 � y/. Steiner et al. (2000) considered testing the odds ratio under H0 W
p0=.1 � p0/ D Q0y=.1 � y/ versus HA W pA=.1 � pA/ D QAy=.1 � y/ for all y
and based on Eq. 13, they showed that Wn was given as

Wn D

8
ˆ̂
<

ˆ̂
:

log

�
.1 � Yn CQ0Yn/QA

.1 � Yn CQAYn/Q0

�
; if the nth patient dies;

log

�
1 � Yn CQ0Yn
1 � Yn CQAYn

�
; if the nth patient survives.

(14)

To derive a general RA-CUSUM chart, consider testing the risk underH0 W d D d0
versus HA W d D dA. Under these hypotheses, p0 D d0.yn/ and pA D dA.yn/.
Based on Eq. 13, the statistic Wn becomes

Wn D
8
<

:

logfdA.Yn/=d0.Yn/g; if the nth patient dies;

logfŒ1 � dA.Yn/�=Œ1 � d0.Yn/�g; if the nth patient survives,
(15)

or in terms of Zn or Xn � Yn:

Wn D
8
<

:

logfdA.1 �Zn/=d0.1 �Zn/g; Zn � 0;

logfŒ1 � dA.�Zn/�=Œ1 � d0.�Zn/�g; Zn < 0.
(16)

If we compare Eqs. 8 and 16, we find that they are identical and thus we have shown
that the general RA-CUSUM chart and the RA-CUSUM chart based on the VLAD’s
monitoring statistic are identical.
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Fig. 2 Plots of dA against the
patient’s predicted
preoperative risk for
QA D 0:5; 1; 1:5; 2 based on
testing odds ratio of death

By testing odds ratio, H0 W d0.y/=Œ1 � d0.y/� D Q0y=.1 � y/ versus HA W
dA.y/=Œ1�dA.y/� D QAy=.1�y/, we will obtain the functions d0.y/ and dA.y/ as

d0.y/ D Q0y=.1� y CQ0y/; (17)

dA.y/ D QAy=.1� y CQAy/: (18)

Substituting Eqs. 17 and 18 into Eq. 15, we will obtain Eq. 14 which is monitoring
statistic of the RA-CUSUM chart developed by Steiner et al. (2000). In other words,
every set of unique functions d0.y/ and dA.y/ defines a unique RA-CUSUM chart.

Before we proceed to derive the RA-CUSUM chart based on testing the relative
risk, we will examine the penalty-reward system defined by testing the odds ratio.
Figure 1 shows the plot of wn versus the patient’s risk yn for Q0 D 1 and QA D
0:5; 1:5 and 2. The plot of zn for the original VLAD remains the same irrespective
of any alternative hypothesis. In contrast, the plot of wn for the RA-CUSUM chart
changes with the value ofQA. Note that forQA D 0:5, the penalty is negative when
a patient dies and the reward is positive when a patient survives. This means that the
RA-CUSUM chart for QA D 0:5 signals for improvement. Figure 2 contains plots
of dA against the patient’s risk for various values of QA. As expected, for a patient
with preoperative risk yn, the probability that a patient dies after operated on by the
surgeon increases as QA increases and decreases as QA decreases.

Equation 15 is general and it defines the SPRT statistic according to the functions
d0 and dA. We now consider testing relative risk R instead of odds ratio under
H0 W d0.y/ D R0y versus HA W dA.y/ D RAy for all y. Again if the preoperative
risk y is based on current conditions, we may set R0 D 1. The function dA is
defined as
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dA.y/ D

8
ˆ̂
ˆ̂
<

ˆ̂̂
:̂

1; if y D 1 and RA � 1;

RAy; if y < 1 and RA � 1;

RAy; if y < 1=RA and RA > 1;

1; if y � 1=RA and RA > 1.

(19)

Figure 3 contains the plots of dA versus y for various values ofRA. TakeRA D 1:47

for example, the probability that a patient dies under new conditions is 47% higher
if the patient’s preoperative risk is less than 1=1:47. For a patient with a preoperative
risk greater than 1=1:47, the probability that the patient dies is 1.

The statistic Wn can be derived using Eqs. 15 and 19 as

Wn D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

log .RA/; if Yn < 1=RA and the nth patient dies;

log .1=Yn/; if Yn � 1=RA and the nth patient dies;

log
�
1�RAYn
1�Yn

�
; if Yn < 1=RA and the nth patient survives;

�1; if Yn � 1=RA and the nth patient survives.

(20)

Fig. 3 Plot of dA against the
patient’s predicted
preoperative risk for
RA D 0:64; 1; 1:26 and 1.47
based on testing relative risk

Fig. 4 Plot of penalty-reward
wn (based on testing relative
risk) awarded to a surgeon
according to a patient’s
predicted preoperative risk yn
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Figure 4 shows the plot of wn versus the patient’s preoperative risk yn for R0 D 1

and RA D 0:64; 1:26 and 1.47. As a point of theoretical interest, for RA � 1 and
Yi � 1=RA, the rewardWn is negative infinity. This is because under the alternative
hypothesis, the patient will die with probability one, but however, if the patient
survives an operation, then an infinite reward will be given. This will cause the RA-
CUSUM chart to be reset to zero.

4 Sensitivity Analysis

In this section, we investigate the sensitivity of the RA-CUSUM charts based on
the average run length (ARL). In this context, the run length RL is defined to
be the number of patients operated on until a signal is issued and the ARL is
given as E.RL/. The collocation procedure developed by Knoth (2005, 2007)
and Hackbusch (1995) is adapted here to compute the ARL accurately using the
distribution function of Wn given in the Appendix.

From analysis of real data sets, the patient’s risk is found to have a distribution
similar to beta.1; 3/. In our investigation, we thus assume the patient’s risk follows
a beta.1; 3/ distribution. For detecting a deterioration in a surgeon’s performance,
we consider RA-CUSUM charts optimal in detecting QA D 1:1, 1.2, 1.3, 1.4, 1.5,
2.0 and 3.0. For detecting an improvement in a surgeon’s performance, we consider
RA-CUSUM charts optimal in detecting QA D 0:9, 0.8, 0.7, 0.6, 0.5, 0.2 and 0.1.
We have chosen QA to be as small as 1.1 and this corresponds to a 10% increase
in a patient’s odds of dying. The in-control ARL is set at 100 here for illustration.
Tables for other values of in-control ARL show similar results.

Some researchers (see Rogers et al. 2004 for example) have voiced their concerns
about the effect of changes in the underlying risk distribution on the performance
of the RA-CUSUM chart. This is a valid concern and in our first investigation, we
consider a shift of the underlying risk distribution from beta .1; 3/ to the following
distributions: beta .1; 2/, beta .1; 2:5/, beta.1; 4/ and beta .1; 5/, and then examine
the effect on the in-control ARL. The resulting ARL’s are displayed in Table 1. First
of all, note that if the underlying distribution is beta .1; 3/, the in-control ARL of
these charts is given by 100. If the risk distribution shifts to beta .1; 2:5/ or beta
.1; 2/ which is more skewed to the right which means that there are more high-
risk patients, the in-control ARL decreases by about 3–13%. If the risk distribution
changes to beta.1; 4/ or beta .1; 5/ which means that there are more low-risk
patients, the in-control ARL increases by about 12–31%. This table shows clearly
that the performance of a RA-CUSUM chart is affected by changes in the underlying
risk distribution. It is thus important to monitor the underlying risk distribution
simultaneously (see Loke and Gan 2012 for further details) so that any conclusions
drawn from a RA-CUSUM chart should be treated with caution when the underlying
risk distribution has shifted.

Table 2 contains the ARL profiles of the various RA-CUSUM charts for detecting
changes in the odds ratio. As expected, the ARL of these charts decreases as the
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Table 1 In-control average run lengths of RA-CUSUM charts based on testing odds ratio
corresponding to various underlying risk distributions

Risk QA 1.1 1.2 1.3 1.4 1.5 2.0 3.0
Distribution h 0.308 0.558 0.765 0.940 1.09 1.607 2.125
beta(1,2) 91 91 92 92 92 94 95
beta(1,2.5) 95 95 95 96 96 96 97
beta(1,3) 100 100 100 100 100 100 100
beta(1,4) 112 111 111 110 110 109 107
beta(1,5) 124 123 123 122 121 119 116

Risk QA 0.9 0.8 0.7 0.6 0.5 0.2 0.1
Distribution h 0.335 0.652 0.954 1.242 1.521 2.330 2.616
beta(1,2) 90 90 90 89 89 87 87
beta(1,2.5) 95 95 94 94 94 93 93
beta(1,3) 100 100 100 100 100 100 100
beta(1,4) 112 112 113 113 113 115 115
beta(1,5) 125 126 126 127 127 130 131

actual odds ratio deviates from Q D 1. Table 2 also shows that these charts are
in fact optimal in detecting the intended odds ratios and this is consistent with the
optimality result obtained by Moustakides (1986).

Let dA;Q.y/ and dA;R.y/ be the functions defined in Eqs. 18 and 19 respectively.
In order to compare RA-CUSUM charts based on odds ratio and relative risk, we
consider matching the average weighted risk

Z 1

0

dA;Q.y/fY .yI �/dy D
Z 1

0

dA;R.y/fY .yI �/dy; (21)

to obtain dA;Q.y/ and dA;R.y/ that are comparable. Table 3 contains the in-control
ARL’s of RA-CUSUM charts based on relative risk, corresponding to various risk
distributions. Table 4 contains the ARL profiles of these charts with respect to
changes in relative risk. As expected, the ARL of the charts decreases as the actual
relative risk deviates from R D 1. Table 4 also shows that these charts are in fact
optimal in detecting the intended relative risk and this is again consistent with the
optimality result obtained by Moustakides (1986).

The optimal result obtained by Moustakides (1986) ensures that the RA-CUSUM
chart based on odds ratio is optimal among all charts based on odds ratio. The
same result also ensures that the RA-CUSUM chart based on relative risk is optimal
among all charts based on relative risk. However, the result does not tell us which
is optimal when the two RA-CUSUM charts are compared. The run length profiles
in Table 2 are very similar to those in Table 4, with the RA-CUSUM chart based
on relative risk being slightly more sensitive at the intended shift, except for RA-
CUSUM charts for detecting RA D 1:06 and RA D 1:11. If we compare the run
length profiles in Table 1 with those in Table 3, we will find that RA-CUSUM
charts based on odds ratio are less sensitive to changes in the risk distribution
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Table 2 Sensitivity analysis: ARL profiles of RA-CUSUM charts based on testing odds ratio
optimal in detecting QA

QA 1.1 1.2 1.3 1.4 1.5 2.0 3.0
Q h 0.308 0.558 0.765 0.940 1.09 1.607 2.125
1.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
1.1 78.5 78.5 78.5 78.6 78.7 79.3 80.2
1.2 64.2 64.2 64.2 64.3 64.4 65.0 66.3
1.3 54.3 54.2 54.2 54.2 54.3 54.8 56.1
1.4 47.1 46.9 46.8 46.8 46.8 47.3 48.5
1.5 41.7 41.5 41.3 41.2 41.2 41.5 42.6
2.0 27.4 27.0 26.7 26.5 26.3 26.1 26.4
2.5 21.2 20.8 20.5 20.2 20.1 19.6 19.5
3.0 17.9 17.5 17.1 16.9 16.7 16.1 15.8
4.0 14.3 13.9 13.5 13.3 13.1 12.4 12.0

QA 0.9 0.8 0.7 0.6 0.5 0.2 0.1
Q h 0.335 0.652 0.954 1.242 1.521 2.330 2.616
1.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.9 78.5 78.6 78.7 78.9 79.3 80.8 81.6
0.8 62.3 62.3 62.3 62.6 62.9 65.1 66.2
0.7 50.1 49.9 49.8 49.9 50.1 52.2 53.5
0.6 40.8 40.4 40.1 40.0 40.1 41.8 42.9
0.5 33.6 33.0 32.6 32.4 32.3 33.3 34.3
0.4 27.9 27.3 26.8 26.4 26.1 26.5 27.2
0.3 23.4 22.7 22.2 21.7 21.3 21.1 21.5
0.2 19.7 19.0 18.4 17.9 17.5 16.7 16.9
0.1 16.6 16.0 15.4 14.8 14.3 13.2 13.1

Table 3 In-control average run lengths of RA-CUSUM charts based on testing relative risk
corresponding to various underlying risk distributions

Risk RA 1.06 1.11 1.16 1.21 1.26 1.47 1.83
Distribution h 0.313 0.579 0.808 0.998 1.165 1.742 2.303
beta(1,2) 62 62 63 64 65 70 78
beta(1,2.5) 80 80 81 81 82 83 88
beta(1,3) 100 100 100 100 100 100 100
beta(1,4) 142 141 141 141 140 136 129
beta(1,5) 184 183 183 183 182 177 163

Risk RA 0.94 0.88 0.80 0.73 0.64 0.32 0.18
Distribution h 0.326 0.641 0.939 1.220 1.491 2.288 2.583
beta(1,2) 68 70 71 73 75 80 82
beta(1,2.5) 84 84 85 86 87 89 91
beta(1,3) 100 100 100 100 100 100 100
beta(1,4) 135 133 131 129 127 121 120
beta(1,5) 171 167 163 159 155 144 140
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Table 4 Sensitivity analysis: ARL profiles of RA-CUSUM charts based on testing relative risk
optimal in detecting RA

RA 1.06 1.11 1.16 1.21 1.26 1.47 1.83
R h 0.313 0.579 0.808 0.998 1.165 1.742 2.303
1.00 99.9 100.0 100.0 100.0 100.0 99.9 100.1
1.06 79.1 79.1 79.1 79.2 79.4 80.0 81.4
1.11 64.5 64.4 64.4 64.6 64.7 65.5 67.4
1.16 54.2 54.1 54.0 54.1 54.2 54.9 57.0
1.21 46.9 46.7 46.6 46.6 46.6 47.2 49.1
1.26 41.5 41.2 41.0 40.9 40.9 41.3 43.1
1.47 27.3 26.8 26.4 26.2 26.0 25.6 25.3
1.66 20.8 20.7 20.3 19.9 19.9 19.2 19.1
1.83 18.4 17.9 17.5 17.2 16.9 15.9 15.5
2.13 14.4 14.3 14.0 14.0 13.6 12.6 11.8

RA 0.94 0.88 0.80 0.73 0.64 0.32 0.18
R h 0.326 0.641 0.939 1.220 1.491 2.288 2.583
1.00 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.94 77.1 77.1 77.2 77.4 77.7 79.1 79.8
0.88 60.1 60.1 60.1 60.3 60.6 62.5 63.4
0.80 47.8 47.6 47.5 47.6 47.8 49.5 50.5
0.73 38.7 38.3 38.1 38.0 38.1 39.4 40.3
0.64 31.7 31.3 31.0 30.7 30.7 31.5 32.2
0.54 26.8 25.9 25.5 25.1 24.9 25.3 25.8
0.44 22.4 21.8 20.8 20.5 20.3 20.7 21.1
0.32 18.6 18.1 17.6 17.2 16.8 16.3 16.4
0.18 15.7 15.2 14.7 14.3 13.9 13.0 12.9

than those based on relative risk. This suggests that RA-CUSUM charts based on
odds ratio will be more reliable if changes in the underlying risk distribution are a
concern.

5 Application to Acute Myocardial Infarction Data

The data set contains outcomes of patients with an acute myocardial infarction
(more commonly known as heart attack) who are admitted to an anonymous hospi-
tal, collected as part of the NHS Research and Development funded EMMACE-1
(Evaluation of Methods and Management of Acute Coronary Events) Study (Dorsch
et al., 2001). The post-operative outcomes after 30 days were collected for these
patients admitted over a 3-month period. The mortality risk for each patient was
both calculated and authenticated locally at the hospital. A total of 123 patients
were observed and a cognizance of 27 deaths resulted in a mortality rate of 21.95%.
Probability plot was used to identify the distribution and the data was found to be
well fitted by a beta distribution with shape parameters ˛ D 1 and ˇ D 3.
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Fig. 5 Risk-adjusted CUSUM charts for monitoring acute myocardial infarction data collected
as part of the NHS Research and Development funded EMMACE-1 (Evaluation of Methods and
Management of Acute Coronary Events) Study (Dorsch et al., 2001). Both schemes show possible
improvement with four signals issued, follow by a possible deterioration in performance with a
signal issued at the 89th patient

Assume that we are interested in designing a RA-CUSUM chart which is optimal
in detecting a deterioration in the performance with the odds ratio of mortality
risk increased to two times the in-control odds ratio, that is QA D 2. This will
correspond to a relative risk of RA D 1:47 by matching the average weighted risk
in Eq. 21. Also, assume that a RA-CUSUM chart which is optimal in detecting an
improvement with the odds ratio of mortality risk decreased to half of the in-control
odds ratio, that is QA D 0:5. This will correspond to a relative risk of RA D 0:64

using Eq. 21. Further assume that in-control ARL is set at 100. Using the results
from the previous section, the chart limit h for the detection of a deterioration will be
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set as 1.607 and 1.742 for the RA-CUSUM charts based on odds ratio and relative
risk respectively. Likewise, the chart limit h for the detection of an improvement
will be set as 1.521 and 1.491 for the RA-CUSUM charts based on odds ratio
and relative risk respectively. The RA-CUSUM charts constructed are displayed
in Fig. 5. These figures show that the RA-CUSUM charts based on odds ratio and
relative risk are similar. Both schemes show possible improvement with four signals
issued, follow by a possible deterioration in performance with a signal issued at the
89th patient.

6 Conclusions

To monitor a surgeon’s performance, especially to detect a deterioration is crucial in
saving patients’ lives. The VLAD is now popularly used in hospitals for monitoring,
but its lack of a proper signalling rule makes it less effective in monitoring a
surgeon’s performance. In this paper, we have used the SPRT approach to derive
a RA-CUSUM chart based on the VLAD’s monitoring statistic (see Eq. 10). Such
a chart not only has a well defined chart limit and it is also optimal. The main
contribution of this paper is the development of a general RA-CUSUM chart in
which the RA-CUSUM chart based on odds ratio developed by Steiner et al.
(2000) is shown to be a special case. With this general RA-CUSUM chart, we
are now able to test other forms of risks as specified in the null and alternative
hypotheses. Thus, in addition to testing odds ratio, we also consider testing relative
risk. The main advantage of using relative risk is that it is easier to understand
and interpret for surgeons and patients alike. Our sensitivity analysis also shows
that both types of RA-CUSUM charts are sensitive to changes in the underlying
distribution. Thus, this suggests the need to monitor the risk distribution so that
meaningful conclusions drawn from the RA-CUSUM charts can be done taking the
underlying risk distribution into account. Between the two types of RA-CUSUM
charts, our sensitivity analysis shows that the one based on odds ratio is less sensitive
to changes in the underlying risk distribution, thus this chart is preferred if changes
in the underlying risk distribution are a major concern. Finally, although we have
illustrated implementation of the RA-CUSUM charts based on acute myocardial
infarction data, these charts can be applied equally well to various types of surgical
operations as long as the risk can be predicted.

Acknowledgements The first and third authors are supported by the Academic Research Fund
Tier 1 (R-155-000-092-112), Ministry of Education, Singapore. We wish to thank Dr Alistair Hall
for providing the data from the EMMACE-1 Study and the permission to use it here.



222 F.F. Gan et al.

Appendix

(A) Probability Distribution of W for Testing Odds Ratio

For odds ratio,

Wi D
8
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log
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log
h

1
1�YiCQAYi

i
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The pdf ofW can be obtained using a conditioning approach (see Ross, 2006, p. 376
for example) as
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(B) Probability Distribution of W for Testing Relative Risk

If RA � 1
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For R � 1, the probability distribution of W can be derived as

fW .wI �; d/ D

8
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂<

ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
:

0; if w < 0 and w � log
h
R�RA
R�1

i
;

h
1 � R. 1�ew

RA�ew /
i

ew.RA�1/
.RA�ew/2

fYi .
1�ew

RA�ew I �/; if w < 0 and w > log
h
R�RA
R�1

i
;

1
ew fYi .

1
ew I �/; if 0 � w < log .RA/ and

w � log .R/;

R. 1
ew /

2fYi .
1
ew I �/; if 0 � w < log .RA/ and,

w > log .R/,



Risk-Adjusted Cumulative Sum Charting Procedures 223

P.Wi D log .RA/I �; d/ D
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Bayesian Sampling Plans for Inspection
by Variables

Peter-Th. Wilrich

Abstract We select an appropriate sampling plan from a sampling inspection
system for inspection by variables, i.e. ISO 3951, and base the lot acceptance
decision and the adaptation of the sampling plan directly on the a posteriori
distribution of the fraction of nonconforming items in the lots and especially the
a posteriori estimate of the probability of the fraction of nonconforming items in
the lot being larger than the acceptance quality limit AQL. We do not assume a
prior distribution of the fraction nonconforming in the lots because the production
process does not directly generate fractions of nonconforming items but items with
a quantitative characteristic assumed to be normally distributed with parameters �
(lot mean) and �2 (within-lot variance) varying in time, respectively from lot to lot.
The process curve, i.e. the two-dimensional distribution of the lot means and the
within-lots variances is assumed to be Normal-scaled-inverse-chi-squared. In our
hierarchical Bayes model we estimate the parameters of the process curve directly
by exponentially weighted means and variances of the sample averages and the
sample variances of the already inspected lots. Switching between tightened, normal
and reduced inspection turns out to be more straightforward than with the switching
rules of ISO 3951. Furthermore, if the process curve of the variance is stable, it is
possible to switch from sampling plans with unknown variance to sampling plans
with known variance. We apply the Bartlett test for switching to �-plans and a
CUSUM-s2-chart for switching back to s-plans.
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1 Introduction

ISO 2859–1 (1999), ISO 3951–1 (2005) and ISO 3951–2 (2005) specify acceptance
sampling systems for inspection by attributes (ISO 2859–1 1999) or for inspection
by variables (ISO 3951–1 2005, ISO 3951–2 2005) to be used for a continuing series
of lots stemming from one and the same production process. Their purpose “is

(1) To induce a supplier through the economic and psychological pressure of lot
non-acceptance to maintain a process average at least as good as the specified
acceptance quality limit, while at the same time

(2) Providing an upper limit for the risk of the consumer of accepting the occasional
poor lot” (ISO 2859–1 1999, p.1).

In order to achieve purpose (2), sampling plans .n, p?/ are provided: an incoming
lot is accepted if the estimate of the fraction of nonconforming units in the lot
derived from a sample of size n chosen randomly from the lot is not larger than
the acceptability constant p?, otherwise it is rejected.

In order to achieve purpose (1) rules for switching between three inspection
severities (normal inspection, reduced inspection, tightened inspection) with dif-
ferent sampling plans .n, p?/ and a fourth inspection stage “discontinuation of
inspection” have to be applied.

Users of these ISO sampling systems often complain about two deficiencies:

1. Regardless of whether a lot is rejected or accepted they would like to get
a probability of the lot being actually unacceptable, i.e. having a fraction of
nonconforming units larger than the acceptance quality limit pAQL. Instead, they
only know the probability of the lot being accepted or rejected in relation to its
fraction of nonconforming units, i.e. they get probabilities describing the quality
of the acceptance sampling procedure and not the quality of the inspected lot.

2. They are aware of switching between the inspection severities but they would
like to know what that means in terms of the distribution of the fraction of
nonconforming units in the lots. Especially they are interested in estimates of
the expectation and of the standard deviation of the distribution of the lot means
and the within-lot standard deviations, i.e. the process curve, and in estimates of
the probability distribution of the fraction of nonconforming units in the lot.

Wilrich (2010) has proposed a Bayesian approach that answers both questions
for the case of sampling by attributes. In this paper we transfer this approach from
sampling by attributes to sampling by variables. The lot acceptance decision is
directly based on the a posteriori distribution of the fraction of nonconforming units
in the lot and especially the a posteriori estimate of the probability of the fraction of
nonconforming units in the lot being larger than the (specified) acceptance quality
limit pAQL.
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2 The Model

LetX be a quality characteristic for which a lower specification limitL and an upper
specification limit U are specified. A unit is conforming if its value x of X is not
smaller than L and not larger than U , L � X � U ; otherwise it is nonconforming.
A lot t I t D 1; 2; : : : represents the units produced by the production process at time
t . We assume that the distribution ofX in lot t is (approximately) normal with mean
�t and within-lot standard deviation �t . We further assume that X can be measured
with negligible error, i.e. with standard deviation no more than 10% of the within-lot
standard deviation. Under these assumptions the fraction of nonconforming units in
lot t is

pt D ˚

�
�t � U
�t

�
C ˚

�
L� �t

�t

�
(1)

where˚. � / denotes the cumulative distribution function of the standardized normal
distribution.

We use a hierarchical Bayes model with two levels of random variation (Stange
1977); at the first level we have randomly distributed lot means �t and within-lot
standard deviations �t and hence, fractions pt of nonconforming units in the lots,
and at the second level we have the randomly distributed quality characteristic X of
the units of the sample drawn randomly from the lot.

Level 1: We assume that the within-lot variance �2t is the value of the random
variable �2 that follows a scaled inverse 2�distribution with parameters �0;t and
�20;t , i.e. .�0;t � 2/�20;t =�

2 is 2�0;t -distributed with �0;t degrees of freedom. The
probability density of �2 is

f .�2/ D ..�0;t � 2/=2/�0;t=2
� .�0;t =2/

�
�0;t
0;t �

�.�0;tC2/ exp

�
��0;t � 2

2
�2=�20;t

�
: (2)

�2 has expectationE.�2/ D �20;t and variance V.�2/ D 2�40;t =.�0;t �4/ for �0;t � 5.
The lot mean �t is the value of the random variable �. The conditional

distribution of � for the given value �2 is a normal distribution with expectation
�0;t and variance �2=n0;t . It has the probability density

f .�j�2/ D 1p
2��=

p
n0;t

exp

 

�n0;t
2

�
.� � �0;t

�

�2!

: (3)

The joint distribution of .�; �2/, the process curve of .�; �2/, has the probability
density
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f .�; �2/ D f .�2/f .�j�2/ D ..�0;t � 2/=2/�0;t=2pn0;tp
2�� .�0;t =2/

�
�0;t
0;t �

�.�0;tC3/ �

� exp

�
� 1

2�2

�
.�0;t � 2/�20;t C n0;t .� � �0;t /

2
�
�
: (4)

We denote this process curve of .�; �2/ as Normal-scaled-inverse-chisqared
distribution. In this distribution � has expectation E.�/ D �0;t and variance
V.�/ D �20;t =n0;t .

The marginal distribution of � has the probability density

f .�/ D ..�0;t � 2/=2/�0;t=2pn0;tp
2�� .�0;t =2/

�
�0;t
0;t

� ..�0;t C 1/=2/2.�0;tC1/=2
�
.�0;t � 2/�20;t C n0.� � �0;t /2

�.�0;tC1/=2 :

(5)
This is a scaled t-distribution because the random variable

t�0;t D p
n0;t

�� �0;t

�0;t

p
�0;t =.�0;t � 2/ (6)

follows the t�0;t -distribution with �0;t degrees of freedom.
The joint distribution of .�; �2/ has four (unknown) parameters: �0;t is the

process average, i.e. the expectation of the lot mean � at time t , n0;t determines
the variance of � at time t , �20;t is the expectation of the within-lot variance �2 at
time t , and �0;t determines the variance of �2 at time t .

Lot t has the unknown lot mean �t and the unknown within-lot variance �2t and
hence, the unknown fraction pt of nonconforming units according to Eq. (1). The
expected fraction of nonconforming units in lot t is

pexpected;t D ˚

�
�0;t � U

�0;t

�
C ˚

�
L� �0;t

�0;t

�
(7)

Given pAQL as the borderline between acceptable and unacceptable lots the proba-
bility of a lot being acceptable is

P.pexpected;t � pAQL/ D
Z

p.�;�2/�pAQL

f .�; �2/ d�d�2 (8)

that is unknown because f .�; �2/ according to Eq. (4) is unknown.
The reason for the choice of the Normal-scaled-inverse-chisqared distribution as

process curve of .�; �2/ will be discussed in the following section. It should be
noted that in this distribution � and �2 are uncorrelated but not independent. The
conditional distribution of � given �2 has an expectation that is not related to the
given �2 whereas the variance of � is related to the given �2 by V.�/ D �2=n0;t .
One could argue that this is unrealistic, however, it makes sense to assume that in
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case the within-lot variance �2t is small the variance V.�/ of the lot mean is also
small, and vice versa.

Level 2: We assume that the quality characteristic X of a unit of lot t follows
the normal distribution with expectation �t and variance �2t . X has the probability
density

f .x/ D 1p
2��t

exp

 

�1
2

�
x � �t

�t

�2!

: (9)

Level 1 and level 2 combined: Under the distributional assumptions for level 1
and level 2 the joint distribution of the sample mean Nxt and the sample variance s2t in
a sample of size n, randomly chosen from lot t that has been randomly chosen from
the Normal-scaled-inverse-chisqared process curve, has the probability density

f . Nxt ; s2t / D 1p
�

r
n0;t n

n0;t C n

� ..n0;t C n/=2/

� .�0;t =2/� .�=2/
��=2

�
.�0;t � 2/�20;t

��0;t =2 �

� .s2t /
�=2�1

�
.�0;t � 2/�20;t C �s2t C n0;t n. Nxt � �0;t /2=.n0;t C n/

�.�0;tCn/=2 (10)

with � D n � 1. In this distribution expectation and variance of Nxt and s2t are

E. Nxt / D �0;t

V . Nxt / D
�
1

n0;t
C 1

n

�
�20;t

E.s2t / D �20;t

(11)

V.s2t / D 2.� C �0;t � 2/
�.�0;t � 4/ �40;t

3 The Estimation of the Parameters of the Process Curve
and the Lot Acceptance Decision

Having reached lot k we estimate the parameters of the process curve directly (using
an empirical Bayes approach) from the sample means Nxt and the sample variances
s2t of the samples taken from the lots t D 1; 2; : : : ; k.

Under the assumption that the parameters of the process curve do not change in
time (�0;t D �0; n0;t D n0; �0;t D �0; �0;t D �0 for t D 1; 2; : : : ; k), means and
variances of the k sample means Nxt and the k sample variances s2t could be used as
moment estimators of the respective theoretical parameters and hence, estimators of
the parameters of the process curve could be derived. However, the assumption of
a constant process curve is contradictory to the purpose of the sampling procedure
to detect a possible alteration of the process curve. Hence, we have to estimate the
parameters of the process curve more based on the most recent observations (by
giving them a larger weight) than on the more elderly observations. To do this, we
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use exponentially weighted moving averages of the sample means Nxt and the sample
variances s2t ,

O�k D .1 � 
/ O�k�1 C 
 Oxk
O�2k D .1 � 
/ O�2k�1 C 
s2k

k D 2; 3; : : : (12)

and start the estimation with
O�1 D Nx1I O�21 D s21 : (13)

In addition, we need the exponentially weighted moving averages of the variances
of the sample means and of the variances of the sample variances,

O�2Nx;k D .1�
/ O�2Nx;k�1C
. Nxk � O�k/2

O�2
s2;k

D .1�
/ O�2
s2;k�1C
.s2k� O�2k /2

k D 3; 4; : : : (14)

and start the estimation with
O�2Nx;2 D . Nx2 � Nx1/2=2I O�2

s2;2
D .s22 � s21/

2=2: (15)


 can be chosen arbitrarily between 0 and 1. For 
 D 1 the estimates are equal
to the respective values of the present sample. For smaller 
 , the exponentially
weighted moving averages are based more on past sample results. We choose 
 D
max.1=i; 0:1/. This choice assures that in the beginning, for lots i D 1; 2; : : : ; 1=
 ,
averages are calculated instead of moving averages in order not to overweight past
sample results.

An assumption underlying the application of sampling systems is a production
process with an acceptable process curve, i.e. one that causes very few lot rejections.
Hence, we base the updating procedure for the estimation of the parameters of the
process curve only on accepted lots. Lots being rejected are interpreted as outlier
lots with an abnormal large fraction of nonconforming units that are not generated
by the process curve but by an irregular situation. On the other hand, frequently
occurring rejections of lots might signalize a deterioration of the process curve.
Hence, if more than two consecutive lots are rejected, the updating procedure starts
to include all consecutively following rejected lots. However, in practice one would
rather stop the application of the sampling system in such a situation and investigate
the reason for the deterioration of the process curve.

The updated exponentially moving averages O�k; O�2k ; O�2Nx;k; O�2
s2;k

are estimators of

the parameters�0;k ; �20;k; V . Nxk/; V .s2k/ according to Eq. (11). If these estimators are
plugged into formulae Eq. (11) estimators

On0;k D max

 

1;
1

O�2Nx;k= O�2k � 1=n

!

(16)

O�0;k D 4�K C 2� � 4

�K � 2
with K D O�2

s2;k
=. O�2k /2 are derived.
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The Normal-scaled-inverse-chi-squared distribution Eq. (4) with parameters
equal to the estimates Eqs. (12) and (16) obtained from lots t D 1; 2; : : : ; k, is
the estimate of the process curve at lot k and is used as the a priori distribution

fprior.�kC1; �2kC1I O�k; O�2k ; On0;k ; O�0;k/ D

D .. O�0;k � 2/=2/O�0;k=2
p On0;kp

2�� . O�0;k=2/
O� O�0;kk �

�.O�0;kC3/
kC1 �

� exp

 

� 1

2�2kC1

�
. O�0;k � 2/ O�2k C On0;k.�kC1 � O�k/2

�
!

(17)

for the Bayesian analysis of sample k C 1 from lot k C 1. The likelihood function
of .�kC1; �2kC1/ under the normal distribution is

l.�kC1; �2kC1I NxkC1; s2kC1/ D

D 1

.2��2kC1/n=2
exp

 

� 1

2�2kC1

�
.n � 1/s2kC1 � . NxkC1 � �kC1/2

�
!

: (18)

The probability density of the a posteriori distribution of .�kC1; �2kC1/ in lot
k C 1 is

fpost .�kC1; �2kC1I O�k; O�2k ; On0;k ; O�0;k/ �
� l.�kC1; �2kC1I NxkC1; s2kC1/ �fprior .�kC1; �2kC1I O�k; O�2k ; On0;k ; O�0;k/

� �
�.O�0;kC3Cn/
kC1 exp

 

� C

2�2kC1

!

(19)

where

C D . O�0;k � 2/ O�2k C .n � 1/s2kC1 C On0;k.�kC1 � O�k/2 C . NxkC1 � �kC1/2

D . O�0;k � 2/ O�2k C .n � 1/s2kC1 C . NxkC1 � O�k/2
1= On0;k C 1=n

C. On0;k C n/.�kC1 � �post;kC1/2

D . O�0;k C n � 2/ O�2post;kC1 C . On0;k C n/.�kC1 � �post;kC1/2

D .�0;post;kC1 � 2/�2post;kC1 C n0;post;kC1.�kC1 � �post;kC1/2 (20)

with

�post;kC1 D On0;k O�k C n NxkC1
On0;k C n

n0;post;kC1 D On0;k C n
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�2post;kC1 D
. O�0;k � 2/ O�2k C .n � 1/s2kC1 C . NxkC1� O�k/2

1= On0;kC1=n
O�0;k � 2C n

�0;post;kC1 D O�0;k C n (21)

Apparently, the probability density of the a posteriori distribution according
to Eqs. (19), (20) and (21) is of the same type as the probability density of
the a priori distribution according to Eq. (17): Eq. (19) is derived from Eq. (17)
if O�k; On0;k ; O�2k ; O�0;k are substituted by �post;kC1; n0;post;kC1; �2post;kC1; �0;post;kC1,
respectively. This follows from the fact that the Normal-scaled-inverse-chisqared
distribution of .�; �2/ and the Normal-chi-squared distribution of . Nx; s2/ are
conjugated – and this was the reason for the choice of the model. Since we know
the type of the a posteriori distribution, we only need to determine its parameters
according to Eq. (21).

The a priori estimate of the fraction pkC1 of nonconforming units in lot k C 1 is

OpkC1;prior D ˚

� O�k � U

O�k
�

C ˚

�
L � O�k

O�k
�

(22)

and the a posteriori estimate of the fraction pkC1 of nonconforming units in lot
k C 1 is

OpkC1;post D ˚

�
�post;kC1 � U

�post;kC1

�
C ˚

�
L � �post;kC1
�post;kC1

�
(23)

The probability of lot k C 1 having a fraction pkC1 of nonconforming units
smaller than pAQL is a priori

Pprior .pkC1 � pAQL/ D
Z

p.�kC1; �2kC1/
� pAQL

fprior.�kC1; �2kC1/ d�kC1 d�2kC1 (24)

and a posteriori

Ppost .pkC1 � pAQL/ D
Z

p.�kC1; �2kC1/
� pAQL

fpost .�kC1; �2kC1/ d�kC1 d�2kC1 (25)

The latter one is used for the acceptance decision. In the classical approach
to sampling inspection we accept lot k C 1 if the MVUE estimator OpkC1 of the
fraction of nonconforming units in the lot (Bowker et al. 1952) is not larger than the
acceptability constant p? of the sampling plan. In our Bayes approach we accept
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lot k C 1 if the a posteriori probability Ppost .pkC1 � pAQL/ for lot k C 1 having
a fraction pkC1 of nonconforming units smaller than pAQL, is not smaller than a
predetermined probability limit A, Ppost .pkC1 � pAQL/ � A, or equivalently, if
Ppost .pkC1 > pAQL/ D 1 � Ppost .pkC1 � pAQL/ � 1 � A D R. We reject it
otherwise. The sampling plan now consists of the sample size n and the probability
limit R. A larger value of R implies a larger probability of accepting a lot, and vice
versa. Since we assume that the sampling procedure is intended to be applied to a
production process of lots having a process average not larger than pAQL (and in this
case all lots should be accepted) we choose R D 0:8.

This decision procedure works for all lots except for the first and the second one
because in the beginning we do not have estimates of the parameters of the process
curve and hence no a priori distributions for these lots. Therefore, we start with a
“non-informative” a priori distribution and choose the improper uniform distribution
in the range between �1 and 1 as “non-informative” for �0 and the improper
probability density 1=�20 as “non-informative” for �20 , i.e. fprior .�0; �20 / D 1=�20 .

The acceptance decision rule Ppost .pkC1 > pAQL/ � R includes an intrinsic
adaptive procedure: if the a posteriori estimate of the fraction of nonconforming
units in lot k is large, the a priori estimate of the fraction of nonconforming units in
lot kC1 increases and hence, the probabilityPpost .pkC1 > pAQL/ of the fraction of
nonconforming units abovepAQL also increases so that rejection of lot kC1 becomes
more likely, and vice versa. In the classical sampling inspection system of ISO 3951
a similar effect is achieved by switching to tightened inspection under which the
sample size remains unchanged but the acceptability constant p? becomes smaller.
This switch is unnecessary in the Bayesian approach.

4 Some Simulated Scenarios

As the basis of an illustration of the performance of the Bayesian sampling plans
we adapt the example in Sect. 15.3.2.4 of ISO 3951–2 (2005): The minimum
temperature of operation for a certain device is specified as L D 60ıC and the
maximum temperature as U D 70ıC. The quality requirement for a series of lots
of equal size N D 96 is expressed by an acceptance quality limit pAQL D 4:0%,
i.e. lots are acceptable if they come from a process with an expected fraction of
nonconforming units in the lots not larger than 4:0%. ForN D 96 and pAQL D 4:0%,
ISO 3951 – 2, Tables A.2 and G.1, give the sample size n D 13 (for normal and
tightened inspection), the acceptability constant p?1 D 0:1154 for normal inspection
and p?0 D 0:07537 for tightened inspection. The switching rules of the Standard are
applied, except that switching to reduced inspection is not installed. The Bayesian
approach is used in parallel, with n D 13, pAQL D 4:0% and A D 0:2 or R D 0:8.

We present five different scenarios concerning the production process.M D 100

lot means �t are generated randomly by drawing random numbers from a normal
distribution with process average (expectation of the lot mean) ��t and variance
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Fig. 1 Lot means �t D ��t D 65 (blue) and sample means Nxt (upper graph); within-lot standard
deviations �t D��t D 2:435 (blue) and sample standard deviations st (lower graph) for scenario 1

�2�t of the lot means. Within-lot variances �2t are generated randomly by drawing
random numbers from a chi-squared distribution with expectation ��2t and variance
�2
�2t

. A sample of size nD 13 is drawn randomly from each lot, and the sample mean

Nxt and the sample variance s2t are determined.

4.1 Scenario 1: Constant Lot Means and Within-Lot Standard
Deviations

We set ��t D 65, �2�t D 0, ��2t D 2:4352, �2
�2t

D 0 for all t D 1; 2; : : :: The

constant process average lies in the middle of the specification interval .L;U / and
the expectation of the within-lot variance is chosen so that the expected fraction of
nonconforming units in a lot is 0:04 D pAQL. Since the variance of the lot mean and
the variance of the within-lot variance are 0, we have the unrealistic case of all lots
having identical means and within-lot variances.

Figure 1 shows the lot means �t , all equal to the process average ��t D 65

(blue), and the sample means Nxt in the upper graph and the within-lot standard
deviations �t , all equal to the expected within-lot standard deviation ��t D 2:435,
and the sample standard deviations st in the lower graph. Figure 2 shows in the
upper graph the fractions of nonconforming units in the lots (blue), all equal to the
expected fraction pAQL D 0:04 of nonconforming units in the lots, their MVUE
estimates (black), a priori (green) and a posteriori (red) estimates; red circles
indicate rejection by ISO 3951, symbol “N” the start of normal inspection and
symbol “T” the start of tightened inspection. In the lower graph the expected (blue),
a priori (green) and a posteriori (red) probabilities of the fractions of nonconforming
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Fig. 2 Upper graph: Fractions pt D pAQL D 0:04 of nonconforming units in the lots (blue)
and their MVUE estimates (black), a priori (green) and a posteriori (red) estimates for scenario
1. Red circles indicate rejection by ISO 3951, N D start of normal inspection, T D start of
tightened inspection. Lower graph: Expected, a priori and a posteriori probabilities of the fractions
of nonconforming units in the lots exceeding pAQL for scenario 1; red circles indicate rejections by
the Bayes method

units in the lots exceeding pAQL are shown; red circles indicate rejections by the
Bayes method. Since the process average, expressed as the expected fraction 0.04
of nonconforming units in the lots, is equal to pAQL D 0:04, we have the limiting
case where all lots should be accepted. In our simulation run, 94% of the 100 lots
have been accepted by ISO and 99% by the Bayes method.

4.2 Scenario 2: Process Curve Constant in Time

We set ��t D 65; �2�t D 0:52; ��2t D 2:4352; �2
�2t

D 1:0 for all t D 1; 2; : : :: The

constant process average lies in the middle of the specification interval .L;U / and
the expectation of the within-lot variance is chosen so that the expected fraction of
nonconforming units in a lot is 0:04 D pAQL. The lot means vary with a standard
deviation equal to 0:5 and the within-lot variances vary with a standard deviation
equal to 1:0.

Figure 3 corresponds to Fig. 1, however, now the lot means �t vary between
63.9 and 66.5 and the within-lot standard deviations �t vary between 1.9 and 3.0.
Figure 4 corresponds to Fig. 2: the fractions pt of nonconforming units in the
lots vary between 0.014 and 0.113. Fifty-six percent of the lots have a fraction
of nonconforming units larger than pAQL. However, since the process average,
expressed as the expected fraction 0.04 of nonconforming units in the lots, is equal
to pAQL D 0:04, we have the limiting case where all lots should be accepted.
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Fig. 3 Process average ��t (blue), lot means �t (blue) and sample means Nxt (upper graph);
expected within-lot standard deviation ��t (blue), within-lot standard deviations �t (blue) and
sample standard deviations st (lower graph) for scenario 2
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Fig. 4 Upper graph: Expected (blue) and true (blue) fractions of nonconforming units in the lots
and their MVUE estimates (black), a priori (green) and a posteriori (red) estimates for scenario
2. Red circles indicate rejection by ISO 3951, N D start of normal inspection, T D start of
tightened inspection. Lower graph: Expected, a priori (green) and a posteriori (red) probabilities of
the fractions of nonconforming units in the lots exceeding pAQL for scenario 2; red circles indicate
rejections by the Bayes method



Bayesian Sampling Plans for Inspection by Variables 239

In our simulation run, 84% of the 100 lots have been accepted by ISO and 90% by
the Bayes method. Figure 5 shows the true parameters��t D 65; �2�t D 0:52; ��2t D
2:4352; �2

�2t
D 1:02 of the production process and their estimates being updated from

lot to lot. The Bayesian analysis for lot 50 is depicted in Fig. 6. The graph in the
upper left shows a contour plot of the process curve (blue) and a contour plot of the
current a priori distribution (green), in the upper right the likelihood function (black)
based on the results of the sample of size n D 13, and in the lower left the current
a posteriori distribution (red) of .�; �/. Iso-p curves are given in black. In the lower
right the distribution functions of the fraction of nonconforming units in the lots,
expected (blue), a priori (green) and a posteriori (red), are displayed. The acceptance
quality limit is indicated as a blue vertical line. The intersections of this line with
the probability distribution functions give the probabilitiesPexpected .pkC1 � pAQL/,
Pprior .pkC1 � pAQL/ and Ppost .pkC1 � pAQL/. Lot 50 is accepted because
Ppost .pkC1 � pAQL/ D 0:423 is larger than A D 0:2.

4.3 Scenario 3: Sudden Shifts of the Process Average

Scenario 3 starts with ��t D 65; �2�t D 0:52; ��2t D 2:3042; �2
�2t

D 1:02. The expected

fraction of nonconforming units in the lots is pexpected D 0:03. Beginning with lot
34 the process average ��t is shifted to 66 and the expectation of the within-lot
variance is set to ��2t D 2:3542 so that the expected fraction of nonconforming units
in the lots is pexpected D 0:05. Beginning with lot 67 the process average ��t is
shifted to 67 and the expectation of the within-lot variance is set to ��2t D 2:0302 so
that the expected fraction of nonconforming units in the lots is nowpexpected D 0:07.

Figure 7 shows in the upper graph in blue color the expected fractions of
nonconforming units in the lots (pexpected D 0:03 for lot 1–33, pexpected D 0:05 for
lot 34–66,pexpected D 0:07 for lot 67–100), the true fractions of nonconforming units
in the lots (blue), their MVUE estimates (black), a priori (green) and a posteriori
(red) estimates; red circles indicate rejection by ISO 3951, symbol “N” the start
of normal inspection, symbol “T” the start of tightened inspection and symbol “S”
inspection stop; however, their simulation is continued at tightened inspection. In the
lower graph the expected (blue), a priori (green) and a posteriori (red) probabilities
of the fractions of nonconforming units in the lots exceeding pAQL are shown; red
circles indicate rejections by the Bayes method. In the first period (lots 1–33) the
process average, 0.03, is smaller than pAQL, and hence, all lots should be accepted;
in period 2 (lots 34–66) it is 0.05 and in period 3 (lots 67–100) it is 0.07, hence
larger than pAQL, and all lots should be rejected. In our simulation run, 1, 2 and 19
lots have been rejected by ISO and 0, 1 and 22 by the Bayes method in periods
1, 2 and 3, respectively. There is no essential difference between the performance
of the ISO 3951 and the Bayes method. Figure 8 shows the true parameters
��t D 65; 66; 67; �2�t D 0:52; ��2t D 2:3042; 2:3542; 2:0302; �2

�2t
D 1:02 of the

production process and their estimates being updated from lot to lot.
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Fig. 5 True parameters ��t D 65; �2�t D 0:52; ��2t D 2:02; �2
�2t
D 1:02 of the production process

and their estimates for scenario 2
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Fig. 9 Upper graph: Expected (blue) and true (blue) fractions of nonconforming units in the lots
and their MVUE estimates (black), a priori (green) and a posteriori (red) estimates for scenario 4.
Red circles indicate rejection by ISO 3951, ND start of normal inspection, TD start of tightened
inspection, SD inspection stop. Lower graph: Expected (blue), a priori (green) and a posteriori
(red) probabilities of the fractions of nonconforming units in the lots exceeding pAQL for scenario
4; red circles indicate rejections by the Bayes method

4.4 Scenario 4: Drift of the Process Curve

Scenario 4 starts with the same parameters as scenario 3: ��t D 65; �2�t D
0:52; ��2t D 2:3042; �2

�2t
D 1:0. Then the process average ��t increases linearly

from 65 at lot 1 to 67 at lot 100. This linearly increasing process average produces
an expected fraction of nonconforming units in the lots increasing nonlinearly from
0.03 at lot 1 to 0.098 at lot 100; up to lot 40 the process average is smaller than
pAQL, from lot 41 to 100 it is larger.

Figure 9 shows in the upper graph in blue color the expected fractions of
nonconforming units in the lots (pexpected D 0:03 for lot 1 to pexpected D 0:098

at lot 100), the true fractions of nonconforming units in the lots (blue), their
MVUE estimates (black), a priori (green) and a posteriori (red) estimates; red
circles indicate rejection by ISO 3951, symbol “N” the start of normal inspection,
symbol “T” the start of tightened inspection and symbol “S” inspection stop;
however, the simulation is continued at tightened inspection. In the lower graph
the expected (blue), a priori (green) and a posteriori (red) probabilities of the
fractions of nonconforming units in the lots exceeding pAQL are shown; red circles
indicate rejections by the Bayes method. Eighty-one percent of the lots have been
accepted by ISO and 87% by the Bayes method. Up to lot 40 where all lots should
be accepted, both methods reject only very few lots. Again there is no essential
difference between the performance of the ISO 3951 and the Bayes method.
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Fig. 10 Process average ��t (blue), lot means �t (blue) and sample means Nxt (upper graph);
expected within-lot standard deviation ��t (blue), within-lot standard deviations �t (blue) and
sample standard deviations st (lower graph) for scenario 5; outlying lot means are indicated by
a red point

4.5 Scenario 5: A Process with Outlier Lots

The process curve is identical to that of scenario 2: ��t D 65; �2�t D 0:52; ��2t D
2:4352; �2

�2t
D 1:0 for all t D 1; 2; : : :. However, there is a probability of 0.2 that

the lot will be an outlier lot with a lot mean �t chosen from a uniform distribution
between 67 and 68.

Figure 10 shows the process average ��t D 65 (blue), the lot means �t (blue)
and the and sample means Nxt in the upper graph. There are 15 outlying lot means
and they are designated by a red point. The lower graph shows the within-lot
standard deviations �t (blue) and the sample standard deviations st . Figure 11
shows in the upper graph the fractions of nonconforming units in the lots (blue),
their MVUE estimates (black), a priori (green) and a posteriori (red) estimates; red
circles indicate rejection by ISO 3951, symbol “N” the start of normal inspection,
symbol “T” the start of tightened inspection and symbol “S” the discontinuation of
inspection. ISO switches frequently between normal and tightened inspection and
would discontinue the inspection procedure at lots 14 and 44. In the lower graph the
expected (blue), a priori (green)and a posteriori (red) probabilities of the fractions
of nonconforming units in the lots exceeding pAQL are shown; red circles indicate
rejections by the Bayes method. Altogether, 78% of the 100 lots have been accepted
by ISO and 80% by the Bayes method. Bayes rejects 14 of the 15 outlier lots, ISO
all 15. Figure 12 shows that, due to some of the outlier lots included in the update of
the estimate of the process curve, the estimated standard deviations vary more than
in Fig. 5. However, the estimates of the process average and of the expectation of
the within-lot standard deviation are (almost) unbiased.



244 P.-T. Wilrich

0 20 40 60 80 100

0.0

0.1

0.2

0.3

0.4

lot number

fr
ac

tio
n 

no
nc

on
fo

rm
in

g

N N N N NT T T TS S

Expected (blue) and true (blue) fraction nonconforming in the lot and its MVUE−estimate (black), prior 
estimate (green) and posterior estimate (red)

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

lot number

pr
ob

ab
ili

ty
 o

f p
 >

 A
Q

L

Expected (blue), prior (green) and posterior (red) probability of the fraction
 nonconforming in the lot exceeding AQL

Fig. 11 Upper graph: Expected (blue) and true (blue) fractions of nonconforming units in the lots
and their MVUE estimates (black), a priori (green) and a posteriori (red) estimates for scenario 5.
Red circles indicate rejection by ISO 3951, ND start of normal inspection, TD start of tightened
inspection, SD inspection stop. Lower graph: Expected (blue), a priori (green) and a posteriori
(red) probabilities of the fractions of nonconforming units in the lots exceeding pAQL for scenario
5; red circles indicate rejections by the Bayes method
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Fig. 12 True parameters ��t D 65; �2�t D 0:52; ��2t D 2:4352; �2
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5 Switch Between s-Plans and � -Plans

It is often observed that the within-lot standard deviations �t vary less than the
lot means �t . Eventually the updated estimates of the standard deviation may
indicate a constant standard deviation �t with a value that is sufficiently well known.
This allows switching from sampling plans for unknown � (s-plans) to sampling
plans for known � (�-plans). Their advantage is the smaller sample size at almost
unaltered risk.

ISO 3951, Part 1, paragraph 22 “Switching between ‘s’ and ‘�’ methods”
recommends: “If it appears that the value of s has been in control for at least 20
consecutive lots, the (weighted) root mean square value of s may be presumed to
be � , the ‘known’ standard deviation of the process, and the ‘�’ method may be
adopted. In order to verify that the variability remains under control, the value of s
should still be calculated and plotted on a control chart.”
In ISO 3951 the corresponding sample sizes n� and ns are

n� 3 4 6 9 13 18 25 35 50 70 95 125 160 200 250
ns 2 3 4 6 8 10 12 15 18 21 25 32 40 50 65

This correspondence can roughly be expressed by the formula n� D n
3=4
s ,

rounded to integers.
Since, in the beginning of the application of the sampling procedure or after a

switch from the �-plan to the s-plan, we do not have a reliable estimate of the
standard deviation �t , we cannot run a s2-chart. Therefore, in order to follow the
rule of ISO 3951, we apply the Bartlett test for variance homogeneity to the last
20 observed variances s2. If the null hypothesis of variance homogeneity is not
rejected at the 1% significance level we switch to the corresponding �-plan and
use the mean of the last 20 variances s2 as ‘known’ variance �20 . Further, we start
running a CUSUM-s2-chart. We switch back to the s-plan if the CUSUM-s2-chart
signalizes that � is no longer equal to the ‘known’ standard deviation �0.

If the switch from the s-plan to the �-plan is signalized at lot k D k0, the updated
variances according to Eq. (14) have to be adjusted from the sample size ns to the
sample size n� :

O� Nx;k0;new D ns

n�
O� Nx;k0

O�s2;k0;new D ns � 1
n� � 1 O�s2;k0 I (26)

O�k0 and O�2k0 remain unchanged. The estimation of the parameters of the process
curve has to be altered as follows: From Eq. (11) and V.�t / D �20;t =n0;t we get

V.�t / D V. Nxt /� �20;t

n
(27)
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and estimate V.�t / at lot k by

OV .�k/ D O�2Nx;k � �20
n

WD O�2k (28)

with n D n� . The a priori distribution and the a posteriori distribution become

fprior.�kC1I O�k; O�2k / D 1p
2� O�k

exp

�
� 1

2 O�2k
.�kC1 � O�k/2

�
(29)

and

fpost .�kC1I�post;kC1; �
2
post;kC1/D 1p

2��post;kC1

exp

 

� 1

2�2post;kC1

.�kC1 � �post;kC1/
2

!

;

(30)

respectively, with

�post;kC1 D .1= O�2k / O�0;k C .n=�20 / NxkC1
.1= O�2k /C .n=�20 /

�2post;kC1 D 1

.1= O�2k /C .n=�20 /
: (31)

The a priori estimate of the fraction pkC1 of nonconforming units in lot k C 1 is
now

OpkC1;prior D ˚

� O�k � U

�0

�
C ˚

�
L � O�k
�0

�
(32)

and the a posteriori estimate of the fraction pkC1 of nonconforming units in lot
k C 1 is

OpkC1;post D ˚

�
�post;kC1 � U

�0

�
C ˚

�
L � �post;kC1

�0

�
: (33)

All other equations remain unchanged.
When switching back from the �-plan to the s-plan at lot k D k1, the updated

variances according to Eq. (14) have to be adjusted from the sample size n� to the
sample size ns:

O� Nx;k1;new D n�

ns
O� Nx;k1

O�s2;k1;new D n� � 1

ns � 1 O�s2;k1 : (34)

We apply the switching rules to the lots of Scenario 1 where the within-lot
standard deviation is constant, �t D 2:435 for t D 1; : : : ; N . Figure 13 presents the
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Fig. 13 Standard deviations st and the constant �t (blue) of scenario 1. From lot 20 the � -plan
with � according to the green line is used. The red lines are the 99% action limits of the Shewhart-
s-chart
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Fig. 14 Standard deviations st and the linearly increasing �t (blue). Switches are indicated by
vertical lines. In the intervals where a green line is shown the � -plan is used with the ‘known’ �
indicated by the green line

standard deviations st as points and the constant �t as blue horizontal line. At t D 20

the Bartlett test is applied and indicates variance homogeneity and hence, the �-plan
with n� D 8 corresponding to the s-plan with ns D 13 is applied. The square root
of the mean of the first 20 variances s2t , �0 D 2:51; is used as ‘known’ standard
deviation. In the figure �0 is indicated as a horizontal green line. The horizontal
red lines are the 99% action limits of the Shewhart-s-chart, however, this chart is
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not used. Instead a CUSUM-s2-chart is started which does not indicate an out-of-
control situation so that the �-plan is used until lot 100.

In Fig. 14 the within-lot standard deviation increases from �1 D 2:435 to �100 D
9:74 (blue). At t D 20 the Bartlett test is applied and indicates variance homogeneity
and hence, the �-plan with n� D 8 corresponding to the s-plan with ns D 13 is
applied. The square root of the mean of the first 20 variances s2t , �0 D 3:1, is used
as ‘known’ standard deviation. At lot 24 the CUSUM-s2-chart signals an increasing
�t and sampling switches back to the s-plan until lot 44 with a switch to the �-plan,
. . . . We observe long periods where the s-plan is used and short periods with the use
of the �-plan.

6 Conclusions

The performance of the ISO 3951 procedure (with the switching rules) and the
Bayes method do not show essential differences. Compared with ISO 3951 the
computational effort of the Bayesian sampling inspection is larger, however, it has
some advantages:

• The acceptance decision does not end only with a decision “lot accepted” or
“lot rejected” but in addition with the estimated probability of the fraction of
nonconforming units in the lot being larger than pAQL (or another established
value). Hence, the user gets an idea of the reliability of the decision. In addition,
he can establish other border lines for this estimated probability, in order to
sort lots into two or more groups with higher or lower probability of fractions
nonconforming exceeding pAQL being used as different grades of product.

• After having inspected only a few lots, the user will have a reliable knowledge of
the process curve, especially its process average. This quality history facilitates
steps towards quality improvements. In addition, it can be used for switches to
reduced inspection and to �-plans with smaller sample size.
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Abstract Acceptance sampling represents an important tool for quality control.
The practical methods of choice for non-normal variables are attribute sampling
and variables sampling assuming normality applied to averages instead of single
observations. Both methods usually lead to very large sample sizes and are therefore
infeasible in practice if observations are expensive. We discuss and extend recent
results developed for the photovoltaic industry and actively used there. Here – and
presumably in other industries as well – additional data are available which can be
used to construct valid and asymptotically optimal sampling plans for non-normal
measurements. Consistency and asymptotic optimality of the sampling plans, which
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1 Introduction

In industry, quality control of lots or shipments of produced items is an important
practical problem, particularly when high-quality leadership is a strategic goal.
Delivering shipments of bad quality to customers may result in expensive law suits.
In the photovoltaic industry, the expectations of customers in terms of quality of
delivered photovoltaic modules (PV modules) are very high, presumably due to
the fact that state of the art semi-conductor technologies are at the core of the
business, thus being associated with digital precision. Acceptance sampling, which
deals with the problem of determining the minimal sample size necessary to control
the producer’s as well as the consumer’s risk, is therefore an important practical
approach to the problem, cf. the recent monograph (Schilling et al. 2009). The
customer is interested in the quality of his or her shipment of modules and not in the
average outgoing quality. Thus, manufacturers interested in customer satisfaction
should control production on the basis of outgoing shipments.

In this article, we study the classic acceptance sampling problem under the
general assumption that the measurements (the power output in photovoltaics) may
follow an arbitrary continuous distribution function (d.f.). To handle this case,
we use additional data in the form of a historic data set, a situation which is
typically present in photovoltaics. We derive sampling plans assuming a less general
distributional model as in our previous work (Steland et al. 2009), but the results of
the present article are valid under less restrictive assumptions. Further, the model of
the present article nicely allows us to investigate sensitivity and robustness issues,
respectively. We study the effect on the sampling plans, when the distributions of the
shipment and the lab samples differ, which is of substantial interest for applications,
where a systematic bias is of primary concern.

Our setup is as follows: We consider a shipment X1; : : : ; XN � F with a
common distribution function F which is assumed to be continuous and strictly
increasing with a finite fourth moment. Here and in what follows, � always indicates
that the random variables are independent and identically distributed. However, the
stochastic relationship between samples may be arbitrary, i.e. they are not required
to be independent. Let � D E.X1/ and �2 D E.X1 � �/2 2 .0;1/. In the
photovoltaic problem motivating our work,Xi represents the true but random power
output of the i th module, which is classified as non-conforming, i.e. being of low
quality, if Xi � � for some constant � . In practice, one puts � D �.1 � "/ where
" is the tolerance. The additional data are provided in the form of a historic sample
Y1; : : : ; Ym � F of size m. Conditions on m will be given in Sect. 3. Clearly, the
expected fraction of non-conforming modules in the shipment is given by

p D P.X1 � �/ D F.�/:

Suppose we have fixed two numbers 0 < AQL < RQL < 1, namely the
acceptable quality level (AQL) and the rejectable quality level (RQL), such that the
lot should be accepted if p � AQL, whereas it should be rejected when p � RQL.
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Since p is unknown to us and checking all modules is infeasible, our aim is to
decide on the basis of a control sample X 01; : : : ; X 0n of n measurements, n as small
as possible, whether or not the shipment has to be accepted with controlled error
probabilities of false decisions. Suppose that the decision is based on a statistic
T 0n D T 0n.X 01; : : : ; X 0n/ using the decision rule to accept the shipment if and only if
T 0n > c. A natural choice is to use a standardized sum statistic, i.e. to accept if

T 0n D p
n
X
0
n � �

�
> c:

Then a solution .n; c/ to the above problem, defined rigorously in Sect. 3, is called
a sampling plan.

In the case of normally distributed items, the optimal solution is well known
and indeed based on the statistic T 0n. The resulting procedure is called variables
sampling. However, in photovoltaics the power output measurements of PV modules
are usually non-normal, such that variables sampling yields invalid sampling plans
and is therefore not applicable. Indeed, all kinds of distributional shapes appear
in practice. We discuss some of the factors leading to that unpleasant empirical fact
in the next section. It is well known, and we shall provide the relevant arguments in
Sect. 3 when deriving the plans, that the optimal sampling plan for an arbitrary d.f.
F depends on that unknown F .

In photovoltaics, our key application for the methodology discussed in the
present article, additional data from the production line, the so-called flasher report
tables, are available and can be used in the construction of sampling plans. This
key idea has been used in Herrmann et al. (2416) to develop a photovoltaic-
specific two-stage decision procedure using those flash data in order to construct
valid sampling plans for normal as well as non-normal data. The procedure has also
been implemented in a software tool which is used in the photovoltaic industry,
cf. Herrmann et al. (2010). In Steland et al. (2009), we elaborated on the new
procedure addressing the non-normal case by establishing its asymptotic optimality
as well as its asymptotic distribution assuming a general location scale model for the
additional data. The mathematical proofs required advanced tools from probability
theory such as empirical process theory and the functional delta method in metric
spaces. Unfortunately, the formula for the asymptotic variance turned out to be
rather complex and first simulations indicated that the variance of the estimated
sample size is rather high even when hundreds of additional measurements are
available. Thus, a natural question is whether it is possible to construct similar
sampling plans leading to simpler formulas, simpler derivations and better accuracy
in practice. For another recent proposal we refer to Herrmann et al. (2010). We show
that indeed concise proofs can be given for the approximation theorem behind the
construction of the sampling plans as well as for the central limit theorem for the
estimated sample size. Here the classic Bahadur-Kiefer representation of sample
quantiles plays a key role in the derivations. Further, we provide a new result on
the strong consistency of the estimated sample size, thus strengthening the weak
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consistency implied by the central limit theorem, and the weak consistency of the
estimated critical value under weak assumptions.

A further major goal of the present work is to study the effect of a systematic
bias affecting both the lot and lab measurements and the historic data, respectively,
in order to get a better understanding of what happens in this case. Indeed, such
a sensitivity analysis with respect to the sampling distribution – depending on the
viewpoint it can be regarded as a robustness study as well – can provide valuable
insights into the stability of a procedure. We will study both a model where a
constant bias is present and a model where an asymptotically vanishing bias is
assumed. The latter approach has a nice interpretation in terms of an asymptotic
learning effect and shows that a local bias which is sufficiently small in larger
control samples has no effect on the sampling plan. Although it is not surprising
that a constant bias has such an effect, our findings show that the bias does not
affect the required sample size, which greatly simplifies its treatment in practice.

The organization of the article is as follows. In Sect. 2, we provide some
information on the photovoltaic background of the problem. Section 3 reviews
the derivation of acceptance sampling plans and introduces the sampling plans
proposed for the above setting including results on their asymptotic optimality. The
study on the effects of a systematic bias and asymptotic learning is presented in
Sect. 4. The result on the asymptotic normality is given in Sect. 5. Finally, Sect. 6
provides numerical results from a Monte Carlo study to assess the accuracy of the
proposed sampling plans. We reveal an interesting and surprisingly strong effect of
the algorithm used to calculate a sample quantile. Proofs of the results are postponed
to an appendix.

2 Background on and Application to Photovoltaics

In the present section, we give a brief account of the photovoltaic background which
motivated our research and the way how we approached the problem.

Photovoltaics represents one of the key technologies having the potential to
provide a substantial contribution to the world’s energy problem. Presumably, the
main reason why the market share of solar energy is still relatively small compared
to its potential and benefits is the fact that the costs per watt are still rather high.
Although the costs have been substantially decreased in recent years, research still
focuses on further reductions in costs, either by increasing the efficiency of a given
solar cell technology or by developing new technologies, e.g. by employing cheaper
materials and chemicals.

The economic life time of a photovoltaic system (PV system) ranges between
20 and 30 years. Thus, the quality in terms of the power output of the modules
at delivery is a crucial parameter for the profitability of such an investment. Even
small departures from the nominal power output accumulate to considerable losses
over the years. Assessing the quality of PV modules, which is done under standard
conditions (STC) in a lab, is therefore an important issue for quality control.



Quality Assessment in the Presence of Additional Data in Photovoltaics 255

PV modules are an interconnected assembly of solar cells. To protect the cells
from damage during manufacturing, delivery and usage, they are embedded between
a tedlar plate on the bottom, a tempered glass on the top, and framed, usually with
an aluminium frame. Since a single module can produce only a limited amount of
electricity, around 200 W under STC, a PV system consists of many connected PV
modules.

There are two common technologies to manufacture PV modules: Crystalline
modules use silicon solar cells produced from solid Si wafers, whereas the CIS
thin-film technology applies copper (C), indium (I) and selenium (S) in a layer
construction of around 2�m onto a substrate. The electrical properties such as the
spectrum of the sun light transformed into electricity, the loss of efficiency when
exposed to heat, a serious issue for systems installed in Southern Europe or Africa,
or the efficiency when there are clouds as it is often the case in Northern Europe,
heavily depend on the technology and various other physical parameters of the
chosen module type.

Calibrating a PV module in a testing laboratory is also a different problem, since
a couple of factors may complicate collecting measurements and also may lead
to considerable difference of indoor and outdoor measurements. As reviewed and
experimentally analyzed in Virtuani et al. (2010), the following effects matter in
practice:

(i) Measurement related sweep-time effects refereing to the influence of the
duration to complete an IV scan. Depending on the selected flash tester, which
generates a pulse of calibrated light, such a scan can be based on up to 100
flashes. The duration of each flash is typically 100 ms. For details on accurate
testing of PV panels we refer to Roy et al. (2010).

(ii) Spectral mismatch arising when using a reference cell with a spectral response
different from that of the device under test; its size depends on the spectral
irradiance distribution of the spectral simulator with respect to the reference
spectrum AM 1.5G.

(iii) Finally, thin-film modules are affected by the effect of light soaking, since the
performance (even under standard test conditions) depends on the history of
module (exposure to light or storage in the dark). This phenomenon called light
soaking is in effect at the time of delivery but disappears when the modules
are exposed to sun light for several days. The light soaking effect were first
reported in Ruberto et al. (1987) and is addressed to the tunneling of electrons
trapped in deep states of CdS to holes in the CIS layer valence band under
illumination, resulting in an increase in the open-circuit voltage and fill factor.
Rau et al. (1989) found such effects in thin films; here annealing at 80ıC
decreases the dark conductivity and illuminating the annealed solar cell by
white light reestablished the previous state. During that light soaking period
the performance can increase by 2–5%, cf. Kuurne et al. (2008). In industrial
practice, it can even be larger.

Finally, it is common practice in industry to classify the produced PV modules in
classes. As a consequence of the above discussion, when analyzing comparable
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modules, i.e. modules of the same technology and power rating satisfying additional
criteria for inclusion or exclusion in a study, the true distribution of measurements
may have any form. Especially, measurements are typically non-normal, thus
violating the classic assumptions in statistical acceptance sampling by variables.

Relying on ad hoc proposals such as forming subgroups and then applying
variables sampling to the subgroup means to ensure approximatively the normal
assumption, is not feasible due to the high costs of taking control measurements,
since this procedure leads to enormous sample sizes. Moreover, taking the control
measurements is very expensive. For the same reason, applying attribute sampling
is no reasonable solution.

Solar cells are manufactured in a production line. The performance of each
module is measured in a sun simulator using short flashes. These measurements are
therefore called flash measurements and form the flash data tables. In present days,
they are routinely collected by manufacturers, thus often large samples are available.
However, these cheap measurements may differ from the measurements taken in a
photovoltaic laboratory. One should check carefully, whether a given flasher report
table follows the same distribution as the shipment before applying the methods
discussed in the present article. Some standard tests and their application to real
photovoltaic data are described in Herrmann et al. (2010). For a new approach to
the problem we refer to the recent work Steland et al. (2011).

3 The Acceptance Sampling Problem

Acceptance sampling is a well established field of statistics and quality control – at
least for the classic distributional assumptions. For basic notions we therefore refer
to Schilling et al. (2009). Our goal is to find an acceptance sampling plan .n; c/, i.e.
a sample size n for a control sample and a critical value c, such that

P.T 0n > c/ � 1 � ˛; p � AQL; (1)

and
P.T 0n > c/ � ˇ; p � RQL: (2)

Here ˛ is an upper bound on the probability that the shipment is rejected when it is
of high quality, thus controlling the producer’s risk, whereas ˇ is the consumer’s
risk that the shipment is accepted although it is of low quality. Our derivations
below will show, as a side-product, that P.T 0n > c/, the operating characteristic
(OC), is a function of the quality level p. Approximations based on large sample
theory will then allow us to solve the problem to construct appropriate sampling
plans. We first discuss the unrealistic case that the underlying distribution is known
and then proceed to a general solution for an arbitrary unknown distribution of the
measurements.
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3.1 The Case of a Known Distribution

Let us assume that F and therefore � D R
x dF.x/ as well as �2 D R

x2 dF.x/ �
�2 are known. Using the crucial relationship F.�/ D p , � D F �1.p/, we obtain

T 0n > c , p
n
X
0
n � �
�

> c C
p
n.F�1.p/� �/

�
:

By virtue of the central limit theorem, we get the approximation

P

 
p
n
X 0n � �
�

> c

!

	 1 �˚
�
c C

p
n.F �1.p/ � �/

�

�
: (3)

Notice that this approximation requires n to be large. However, since statistical
inference should never be based on too few observations, assuming that the central
limit theorem provides a sufficiently accurate approximation should not be too
restrictive for many distributions F . Further, one may check the accuracy of the
above approximation after calculating the sampling plan, such that c is fixed, using
historic data which is available by assumption. This could be done, for instance, by
estimating the Berry-Esséen upper bound or by means of a simulation study, the
latter approach being preferable.

Thus, Eqs. 1 and 2 are approximately satisfied, if we select .n; c/ such that

1 �˚
�
c C

p
n.F�1.AQL/ � �/

�

�
� 1 � ˛ (4)

and

1 �˚
�
c C

p
n.F�1.RQL/ � �/

�

�
� ˇ (5)

hold true. Since ˚ is strictly increasing, these inequalities are equivalent to

˚�1.˛/ �
p
n.F�1.AQL/� �/

�
� c � ˚�1.1 � ˇ/ �

p
n.F�1.RQL/� �/

�
:

Consider the left and right sides of the above chain of inequalities as functions in
the real variable n. Then we arrive at the following proposition.

Proposition 1. The optimal sampling plan .n; c/ is obtained as the intersection of
the mappings

n 7�! ˚�1.˛/ �
p
n.F �1.AQL/ � �/

�

and

n 7�! ˚�1.1 � ˇ/ �
p
n.F�1.RQL/� �/

�
:
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Equating the above mappings leads to

˚�1.˛/ � ˚�1.1 � ˇ/ D
p
n

�
.F�1.AQL/ � F�1.RQL//:

By assumption, F is strictly increasing, which allows us to solve the equation for n
and c leading the following result.

Theorem 1. For known distributional parameters � and � , the optimal sampling
plan is given by

n1.�; �/ D �2
�
˚�1.˛/ � ˚�1.1 � ˇ/�2

.F�1.AQL/� F�1.RQL//2
; (6)

c.�; �/ D ˚�1.˛/ �
p
n.F�1.AQL/� �/

�
: (7)

In particular, the optimal sampling plan depends on the unknown d.f. F of the
measurements.

Theorem 1 shows that the asymptotically optimal sampling plan requires knowl-
edge of the location � and dispersion � as well as knowledge of the distribution of
the quality measurements. But as those quantities are unknown to us, the sampling
plan can not be applied in practice.

3.2 The Case of an Unknown Distribution

Clearly, the case that F is known to us is only of theoretical interest. Thus, we shall
now assume that F is an arbitrary d.f. such that the fourth moment is finite. The
basic idea is now to estimate the unknown quantities in the formulas derived in the
previous subsection. However, various mathematical problems now arise. One has
to establish an approximation of the OC curve leading to the same sampling plans
one obtains when estimating unknown quantities in formulas (Eq. 6) and (Eq. 7).
It turns out that within the framework of the present article, a transparent proof of
such an approximation can be given without relying on empirical process theory
as in Steland et al. (2009). Further, we present a new result establishing strong
consistency of the estimated sample size and weak consistency of the estimated
critical value under fairly weak assumptions.

We shall now derive the sampling plan in the case of unknown parameters � and
� when additional data Y1; : : : ; Ym are given. Statistical theory suggests using the
modified decision rule

Tn WD p
n
X 0n � �
Sm

> c;
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where S2m D 1
m�1

Pm
iD1.Yi � Y m/

2 with Y m D 1
m

Pm
iD1 Yi . Let us introduce the

empirical distribution function of the historic sample defined by

Fm.y/ D 1

m

mX

iD1
1.Yi � y/; y 2 R:

Here 1.A/ D 1, if the expression A (defining an event) is true, and 1.A/ D 0, if A
is false. As usual,

F�1m .p/ D infft 2 R W Fm.t/ � pg; p 2 .0; 1/; (8)

denotes the left continuous empirical quantile function, i.e. F�1m .p/ D Y.bnpcC1/,
where Y.1/ � � � � � Y.m/ denotes the order statistic.

In the sequel, we need the following regularity assumption on the sample sizes n
andm.

Assumption (A): n
m

! 0, as n;m ! 1.

The reasoning behind that assumption is the following: The construction of the
asymptotically optimal procedure requires certain approximations as in Eq. 3. Now
both n and m have to be large, but, in addition, n=m has to be small. However, that
condition is not restrictive in practice, as long as the historic data set is large enough.
This is the typical case in photovoltaics and presumably in other areas of application
as well.

The approximation of the operating characteristic P.Tn > c/ is now more
involved and given in the following theorem, which is an analogue of Steland et al.
(2009, Theorem 3.1).

Theorem 2. Suppose F is a continuous and strictly increasing d.f. with a finite
second moment. IfX 01; : : : ; X 0n, the control sample, and Y1; : : : ; Ym, the historic data
set, are random samples satisfying Assumptions (A), then there exists a sequence
ın.p/, n 2 N, of random variables with ın.o/ D oP .1/, such that for all c 2 R

P.Tn > c/ D P

 
p
n
X
0
n � �

�
C ın.p/ > c C

p
n.F�1m .p/� Y m/

Sm

!

leading to the approximation

P.Tn > c/ 	 1 � ˚

 

c C
p
n.F�1m .p/� Y m/

Sm

!

:

A proof of this result is given in the appendix. Notice that the result holds true
under the weak assumption of a finite second moment of the underlying distribution.
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Repeating the derivations of the previous subsection, we obtain the following
analogue of Proposition 1.

Proposition 2. The optimal sampling plan .n; c/ is obtained as the intersection of
the mappings

n 7�! ˚�1.˛/ �
p
n.F�1m .AQL/ � Y m/

Sm

and

n 7�! ˚�1.1 � ˇ/ �
p
n.F�1m .RQL/� Y m/

Sm
:

One has to take into account thatFm (and thereforeF�1m ) is not strictly increasing
and F�1m .AQL/ < F�1m .RQL/ may not hold. However, the latter condition holds
true if m is large enough, which allows us to solve algebraically the equation as in
the previous subsection leading to formulas for n and c depending on F �1m . Further,
the empirical quantiles F�1m .p/ converge to F�1.p/ with probability 1, since that
property is well known to be equivalent to Fm.y/ ! F.y/ with probability 1,
as m ! 1, which of course holds true, and Y m to � as well as Sm to � , as
m ! 1, with probability 1, as long as the underlying d.f. F has a finite second
moment. A more refined argument yields the following result, which is proved in
the appendix.

Theorem 3. Suppose F is a d.f. with a finite fourth moment. For unknown
distributional parameters, the estimated sampling plan is given by

nm D S2m
�
˚�1.˛/ � ˚�1.1 � ˇ/

�2

�
F�1m .AQL/ � F�1m .RQL/

�2 ;

cm D ˚�1.˛/ �
p
n.F�1m .AQL/� Y m/

Sm
:

It converges to the optimal sampling plan in the sense that

nm=n1.�; �/
a:s:! 1 and cm � c.�; �/ P! 0;

as m ! 1, provided Assumption (A) holds true as well as F 0.F�1.AQL// > 0

and F 0.F�1.RQL// > 0.

It is worth mentioning that the asymptotic optimality holds true under the
weak regularity assumption of a finite fourth moment, the minimal assumption
under which the statistic S2m is meaningful in the sense of strong consistency
and asymptotic normality. The proof given in the appendix shows that the strong
consistency of nm even holds under the weaker condition of a finite second moment.
However, although the assumption of finite higher moments is not regarded as an
issue in photovoltaics, since measurements are often even bounded by definition of
the sampling process, it may be in other areas of applications.
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4 The Effect of a Bias and Asymptotic Learning

In practice, it may happen that the distribution of the historic data set, Y1; : : : ; Ym,
and the distribution of control measurements X 01; : : : ; X 0n, which are made in a
laboratory, do not coincide. Therefore the present section is devoted to a study of the
effect of departures from the assumption Xi � F . We are interested in the effect of
a systematic bias, as it may happen when using a differently calibrated measurement
system to measure modules of the lot and of the control sample. We will see that
in this setting the optimal sampling plan depends on the bias, even asymptotically.
That result is interesting in its own right, but can be used in practice as well, in order
to correct for such a systematic bias, provided an estimate of the bias is available.

The next step of our analysis is then to model the bias as a function of the sample
size n which tends to 0, as n approaches 1, i.e. to consider local alternatives,
and to ask under which conditions on n and m there is no asymptotic effect
of that disturbance. Considering a sequence of distributional models indexed by
the optimal sample size n has two interpretations, both of which are meaningful.
Firstly, one may conduct a sequence of experiments where the risk probabilities
˛ and ˇ are decreased from experiment to experiment leading to larger sample
sizes n. Then a bias of the order o.1/ can be interpreted as a learning effect
when conducting more and more experiments. Secondly, when conducting one
experiment, a model with a bias of order o.1/ captures the fact that presumably
more efforts are spent on obtaining better measurements with smaller bias, when
analyzing large samples to get very precise results, which are more expensive than
conducting small experiments.

4.1 The Effect of a Fixed Systematic Bias

Let us assume that the random variablesX1; : : : ; XN representing the shipment (lot)
satisfy

X1 C 
; : : : ; XN C 
 � F; N 2 N;

for a given constant shift 
 , whereas the historic sample is not affected by the shift,
i.e. Y1; : : : ; Ym � F . This means that the distribution of the shipment measurements
is equal in distribution to the historical measurements after adding 
 . Since the
control measurements are selected from the shipment, we have X 01 C 
; : : : ; X 0n C

 � F as well. Equivalently, we could assume that X1; : : : ; XN � F and Y1 �

; : : : ; Ym � 
 � F , but the above formulation simplifies the derivations.

Now the fraction of non-conforming modules satisfies the equation

p D E

 
1

N

NX

iD1
1.Xi � �/

!

D F.� C 
/
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or, equivalently, � D F�1.p/�
 . It turns out that when going through all derivations
given in the previous section and the proof of Theorem 2 in the appendix, we arrive
at the following approximation of the operating characteristic

P.T 0n > c/ 	 1 �˚
 

c C
p
n.F �1m .p/ � Y m/

Sm
�

p
n


Sm

!

leading to the optimal sampling plan

n
 D S2m.˚
�1.˛/ �˚�1.1 � ˇ//2

.F�1m .AQL/ � F�1m .RQL//2
; (9)

c
 D ˚�1.˛/ �
p
n.F�1m .AQL/� Y m/

Sm
C

p
n


Sm
: (10)

The interpretation of these results is as follows: The bias (location shift) 
 has only
an effect on the critical value, but the optimal sample size remains the same. As a
consequence, we may formulate the following rule of thumb: If the measurements
of the shipment are shifted by 
 compared to the historic sample measurements, one
can apply the optimal sampling plan derived in the previous section when correcting
the critical value by the additive term

p
n
=Sm.

4.2 The Effect of Asymptotic Learning

Suppose now that

X1 C 
n; : : : ; XN C 
n � F; N 2 N; (11)

for some sequence f
ng of real numbers converging to 0 as n ! 1.

Assumption (B): Suppose the sample sizes n, m and the sequence f
ng are selected
such that

n

m
D o.1/ and

p
m
n D o.1/;

as n;m ! 1.

Suppose 
n is chosen as


n D � n�� ; n � 1;

for positive constants � and �. Then it is easily seen that Assumption (B) is satisfied
if in addition to n=m D o.1/ the condition
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m

n2�
D o.1/

holds true. For brevity of presentation, we omit the proof of the following result and
refer to Meisen et al. (2010) for details.

Theorem 4. Under the sampling model Eq. 11 and Assumption (B), the approxi-
mation of the operating characteristic obtained in Theorem 2 still holds true, such
that the sampling plan .nm; cm/ given in Theorem 3 is asymptotically optimal in this
case.

5 Asymptotic Normality

The present section is devoted to a study of the asymptotic distribution of the optimal
sample size, as the sample size m of the historic data set tends to 1. It turns out
that in the present setting a proof of the asymptotic normality can be based on
the Bahadur-Kiefer representation of sample quantiles and the delta method in R

3

combined with the multivariate central limit theorem.
For simplicity of presentation, we use the abbreviations

p˛ D AQL and pˇ D RQL

in what follows.

Theorem 5. Suppose the historic data set as well as the lot and control measure-
ments are distributed according to a strictly increasing and continuous d.f. F such
that

R
x4dF.x/ < 1 and

F 0.F �1.p˛// > 0 as well as F 0.F�1.pˇ// > 0:

Let n1 D n1.�; �/ and nm be as in Theorem 1 and Theorem 3. If Assumption (A)
holds true, nm is asymptotically normal,

p
m.nm � n1/

d! N.0; �2/; m ! 1;

for �2 D g˙g0, where

g D C.˛; ˇ/

.F�1.p˛/ � F �1.pˇ//3 � .�2�2; 2�2; .F�1.p˛/� F�1.pˇ//0

and

˙ D
0

@
˙˛˛ ˙˛ˇ �Y˛
˙˛ˇ ˙ˇˇ �Yˇ

�Y˛ �Yˇ �Y Y

1

A
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with entries

˙˛˛ D p˛.1� p˛/

.F 0.F �1.p˛///2
; ˙ˇˇ D pˇ.1 � pˇ/

�
F 0.F�1.pˇ//

�2 ;

˙˛ˇ D p˛.1 � pˇ/
.F 0.F �1.p˛///

�
F 0.F�1.pˇ//

�

�Y˛ D E..Y1 � �/2 � �2/.p˛ � 1.Y1 � F �1.p˛///
F 0.F�1.p˛//

;

�Yˇ D E..Y1 � �/2 � �2/.pˇ � 1.Y1 � F �1.pˇ///
F 0.F�1.pˇ//

;

�Y Y D Var ..Y1 � �/2/;

leading to

�2 D 4�4.˚�1.˛/ �˚�1.1 � ˇ//4

.p˛ � pˇ/6

�
4�4.˙˛˛ � 2˙˛ˇ C˙ˇˇ/

C 4�2.F�1.p˛/ � F �1.pˇ//.�Yˇ � �Y˛/C �Y Y .F
�1.p˛/� F�1.pˇ//2


:

It is worth mentioning that the above formulas are more transparent than those
obtained in Steland et al. (2009). Although it is interesting that the estimated sample
size is asymptotically normal, the result is of limited value for practical purposes,
since simulations have shown that the convergence is rather slow. Consequently, it
is not clear whether the construction of asymptotic confidence intervals based on
the above result would yield intervals with accurate coverage probabilities.

6 Simulations

We conducted small-scale simulations in order to investigate to some extent the
accuracy of the new sampling plans under some models. We were also interested in
the effect of the method used to calculate a sample quantile, as standard statistical
software usually offers several methods.

As a kind of benchmark model, we selected the normal distribution with mean
220 and variance 4. The reason is that photovoltaic modules are often traded with
a nominal power output of 220 W. The variance, 4, captures to some extent the
variability observed in practice, although that varies with technology. Two kinds of
departures from the normality assumption were studied: One-sided contaminations
inducing skewness in the data samples and symmetric contaminations inducing, e.g.
a different kurtosis. The amount of contamination to induce these effects was chosen
as 20%, and the mean and the variance of the contaminating subpopulations was
chosen between 210–240 and 4–8, respectively.
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Table 1 Characteristics of the distribution of nm and cm for Model 1

m E.nm/ sd.nm/ q0:25 q0:50 q0:75 E.cm/ sd.cm/

100 195:4 1144:0 30 61 143 19.4 16:9

250 79:1 77:5 37 58 94 15.3 5:6

500 74:9 44:5 46 64 91 15.5 3:9

5,000 65:6 10:5 58 65 72 14.9 1:1

50,000 64:8 3:2 63 65 67 14.9 0:3

Table 2 Characteristics of the distribution of nm and cm for Model 2

m E.nm/ sd.nm/ q0:25 q0:50 q0:75 E.cm/ sd.cm/

100 317.6 2568:7 44 98 231 38.2 34:3

250 123.7 133:9 54 89 148 30.6 11:8

500 118.6 72:7 70 101 145 31.4 8:1

5,000 103.6 17:5 91 102 114 30.4 2:3

50,000 102.5 5:5 99 102 106 30.4 0:7

Table 3 Characteristics of the distribution of nm and cm for Model 3

m E.nm/ sd.nm/ q0:25 q0:50 q0:75 E.cm/ sd.cm/

100 679.1 5724:1 92 193 455 23.6 22:2

250 256.2 253:1 117 186 303 18.7 7:0

500 241.7 143:6 148 206 293 19.0 4:8

5,000 211.3 33:7 188 208 232 18.2 1:4

50,000 209.2 10:8 202 209 216 18.2 0:4

For each parameter combination given by the sample size m of the historic data
set and the parameters of the above mixture model, we calculated Monte Carlo
estimates for the expected required sample size, E.nm/, and the associated standard
deviation of nm based on 50,000 replications. In addition, the quartiles q0:25; q0:5 and
q0:75 of the distribution of nm are reported, which enables us to judge the skewness
of the distribution of nm. Finally, the expected critical value,E.cm/, and its standard
deviation are provided.

6.1 One-Sided Contaminations

Data sets according to the following models were simulated:

Model 1: Xi � F1 D N.220; 4/;

Model 2: Xi � F2 D 0:1N.210; 6/C 0:9N.230; 4/; (12)

Model 3: Xi � F3 D 0:9N.220; 4/C 0:1N.230; 8/:

The parameters were specified as AQL D 2%, RQL D 5% and ˛ D ˇ D 5%.
Tables 1–3 show the simulation results for these models.
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Table 4 Characteristics of the distribution of nm and cm for Model 4

m E.nm/ sd.nm/ q0:25 q0:50 q0:75 E.cm/ sd.cm/

100 624.8 23533:2 79 161 364 31.7 34:2

250 203.9 191:6 96 150 242 25.2 9:3

500 193.7 111:4 121 167 234 25.5 6:4

5,000 169.2 26:3 150 167 185 24.5 1:8

50,000 167.8 8:2 162 168 173 24.5 0:6

Table 5 Characteristics of the distribution of nm and cm for Model 5

m E.nm/ sd.nm/ q0:25 q0:50 q0:75 E.cm/ sd.cm/

100 1951:6 22814:7 284 578 1319 55:9 52:9

250 727:9 677:7 347 539 872 44:6 16:3

500 705:7 405:9 438 606 849 45:5 11:5

5,000 616:9 96:3 550 607 676 43:8 3:3

50,000 608:6 29:6 588 608 629 43:6 1:0

Table 6 Characteristics of the distribution of nm and cm for Model 6

m E.nm/ sd.nm/ q0:25 q0:50 q0:75 E.cm/ sd.cm/

100 1023:9 19714:2 152 309 709 41.6 39:2

250 392:8 390:0 186 287 461 33.3 12:5

500 374:3 215:0 233 321 453 33.8 8:5

5,000 327:3 51:6 291 322 358 32.5 2:4

50,000 323:5 15:8 312 323 334 32.4 0:8

6.2 Symmetric Contaminations

Let us now study symmetric contaminations according to the models

Model 4: Xi � F4 D 0:2N.210; 8/C 0:6.220; 4/C 0:2N.230; 8/; (13)

Model 5: Xi � F5 D 0:2N.200; 8/C 0:6.220; 4/C 0:2N.240; 8/;

Model 6: Xi � F6 D 0:2N.210; 4/C 0:6.220; 4/C 0:2N.230; 4/;

Model 7: Xi � F7 D 0:2N.200; 4/C 0:6.220; 4/C 0:2N.240; 4/:

Notice that in all models the observations have a mean of 220. In Model 4, we
consider the case that one fifth of the contaminated data have the mean 210, whereas
another fifth scatters around 230. The variance for these two subpopulations is 8.
Model 6 is similar to Model 4 except that the variance is fixed at 4. In Models 5 and
7 the contaminating subpopulations have means 200 and 240. The empirical results
for these models are provided in Tables 4–7.

It is interesting to note that q0:5 for m D 250 is typically smaller then q0:5 for
m D 100 since the use of the empirical distribution leads to rounding (discretion).
For example, for a sample of size 250, the 0:02-quantile is the fifth order statistics of
the sample (250 � 0:02 D 5) and the 0:05-quantile is the thirteenth-order statistics
of the sample (250 � 0:05 D 12:5 ¤ 13)
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Table 7 Characteristics of the distribution of nm and cm for Model 7

m E.nm/ sd.nm/ q0:25 q0:50 q0:75 E.cm/ sd.cm/

100 3897:3 49612:1 572 1; 160 2; 643 76:7 72:8

250 1453:1 1435:4 686 1; 059 1; 718 60:8 22:8

500 1406:5 817:9 872 1; 201 1; 698 62:2 15:9

5,000 1221:0 190:6 1; 085 1; 202 1; 337 59:7 4:5

50,000 1204:8 58:5 1; 164 1; 204 1; 244 59:5 1:4

6.3 Effect of Quantile Algorithms

Statistical software such as R or SAS implements various standard procedures to
calculate sample quantiles. R implements nine algorithms discussed in Hyndman
et al. (1996). Algorithm 1 corresponds to the left inverse of the empirical distribution
function, the definition we use in this article, see Eq. 8. However, R’s default
algorithm is Algorithm 7. SAS’s PROC UNIVARIATE also provides several
methods; the default is to use the average of the npth and .npC1/-th order statistic,
if np is an integer, and the .bnpc C 1/th order statistic, otherwise, corresponding to
Algorithm 2.

We used the parameters ˛ D ˇ D 0:05, AQL D 0:02 and RQL D 0:05 and
simulated data according to the model

Xi � N.220; 4/; i D 1; : : : ; m:

For each algorithm and sample size m D 100, 250, 500, 5,000, the same statistical
quantities as above were estimated using 50; 000 simulation runs. For better
comparison, for each algorithm the same random numbers were used by initializing
the random number generator using the statement set.seed(17). The results are
presented in Tables 8 and 9.

For Algorithm 1, we can see that the median q0:5 is close to 65 for small m but
the standard deviation of nm is very large. In general, results for Algorithms 2–6
and 8–9 are rather close to the results for Algorithm 1; in some cases even identical
to the results for Algorithm 1. However, the results for Algorithm 7, which is used
in R by default, are worse than the results when using Algorithm 1. In particular,
the median q0:5 is substantially larger than 65. For m � 5; 000, there are no notable
differences.

7 Discussion

Sampling plans have been proposed for variables sampling when the true but
unknown distribution is completely unknown. These plans require additional his-
toric sampling information, which is usually available in photovoltaics, the key



268 S. Meisen et al.

Table 8 Results for Algorithms 1–5

m E.nm/ sd.nm/ q0:25 q0:50 q0:75 E.cm/ sd.cm/

Algorithm 1
100 195:4 1144:0 30 61 143 19:4 16:9

250 79:1 77:5 37 58 94 15:3 5:6

500 74:9 44:5 46 64 91 15:5 3:9

5,000 65:6 10:5 58 65 72 14:9 1:1

Algorithm 2
100 162:8 424:6 40 75 156 19:2 12:3

250 95:1 93:3 45 70 112 16:7 6:2

500 78:1 44:8 49 67 95 15:8 3:9

5,000 65:9 10:5 59 65 72 15 1:1

Algorithm 3
100 195:4 1144:0 30 61 143 19:4 16:9

250 101:6 114:4 44 70 118 17:3 7:0

500 74:9 44:5 46 64 91 15:5 3:9

5,000 65:6 10:5 58 65 72 14:9 1:1

Algorithm 4
100 195:4 1144:0 30 61 143 19:4 16:9

250 88:2 88:9 40 64 104 16:2 6:1

500 74:9 44:5 46 64 91 15:5 3:9

5,000 65:6 10:5 58 65 72 14:9 1:1

Algorithm 5
100 162:8 424:6 40 75 156 19:2 12:3

250 95:1 93:3 45 70 112 16:7 6:2

500 78:1 44:8 49 67 95 15:8 3:9

5,000 65:9 10:5 59 65 72 15 1:1

area of application we have in mind where the methods are already in active
use. Our theoretical results show that the proposed sampling plans are consistent
and asymptotically optimal under very weak assumptions. Moreover, the estimated
sample size satisfies a central limit theorem. Whether or not those results remain
valid when the measurements are dependent is still an open issue. However, our
results do not require independence of the historic sample, the control measurements
and the shipment. Indeed, any kind of dependence between the samples is allowed.
Hence our results are valid both when drawing randomly the control measurements
from the shipment and when using observations independent from the shipment,
which is, e.g. the case when the modules used for the control measurements are not
released to the customer.

Our simulations indicate, firstly, that the presented methodology provides accu-
rate sampling plans for a wide range of distributions, provided the size of the
historic data set is sufficiently large. However, the estimated sample size is affected
by a substantially large variance, which hinders practical application. Here further
research is in order to develop procedures with reduced variability, which would
lead to improved sampling plans which can be used for smaller historic data sets.
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Table 9 Results for Algorithms 6–9

m E.nm/ sd.nm/ q0:25 q0:50 q0:75 E.cm/ sd.cm/

Algorithm 6
100 174 689:3 30 61 140 19:0 15:0

250 87:7 87:9 40 64 103 16:2 6:1

500 74:7 44:2 46 64 91 15:5 3:9

5,000 65:5 10:5 58 65 72 14:9 1:1

Algorithm 7
100 301:6 1405:4 51 104 239 23:1 19:1

250 108:5 107 50 79 129 17:5 6:6

500 83:2 49:3 51 71 101 16:1 4:1

5,000 66:2 10:6 59 65 73 15:0 1:1

Algorithm 8
100 157:1 437:8 36 69 147 18:9 12:5

250 92:0 90:1 43 68 109 16:5 6:1

500 76:8 44:3 48 66 93 15:7 3:8

5,000 65:8 10:5 58 65 72 15:0 1:1

Algorithm 9
100 157:8 431:0 37 71 149 18:9 12:4

250 92:7 90:7 44 68 110 16:5 6:1

500 77:1 44:4 48 66 94 15:7 3:8

5,000 65:8 10:5 58 65 72 15:0 1:1

The simulation study of the effect of the algorithm used to calculate sample
quantiles reveals a striking and unexpected strong effect for small sample sizes. All
algorithms estimate quantiles by calculating a function of at most two successive
order statistics, i.e. they perform a smoothing operation in some cases. The effect
on the results is surprisingly strong and points to the conjecture that, in general,
improved smoothing may lead to better sampling plans. Again, future research is in
order to reveal to the extent to which improved sampling plans can be constructed
by using refined quantile estimation algorithms based on smoothing techniques.
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Appendix: Proofs

In this mathematical appendix, we use the following notation. For a function f
defined on some subset of the p-dimensional Euclidean space R

p, Pf denotes the
gradient of f . When there is no danger of confusion, we identify column and row

vectors. The symbol
P! denotes convergence in probability and

d! the convergence
in distribution of a sequence of random variables and random vectors. For brevity
of presentation, we use the stochastic o and O symbols: oP .1/ stands for a random
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sequenceRn withRn
P! 0, as n ! 1, whereasOP .1/ denotes a sequenceRn such

that for any " > 0 one may find a constant C with P.jRnj > C/ < " for all n.
As is well known, Rn D OP .1/ holds true, if Rn converges in distribution. We also
frequently use rules such as OP .1/ � o.1/ D oP .1/.

We need the following auxiliary results on the Bahadur representation of sample
quantiles, a classical result dating back to Bahadur et al. (1966) and Kiefer et al.
(1967), which in turn implies their joint asymptotic normality. For the reader’s
convenience, we provide those results in some detail.

Theorem 6. (i) Let p 2 .0; 1/ and suppose F 0.F�1.p// > 0. Then

F�1m .p/ D F�1.p/C F.F �1.p// � Fm.F�1.p//
F 0.F�1.p//

C oP .m
�1=2/:

(ii) Suppose 0 < p1 < � � � < pk < 1 and F 0.F�1.pi // > 0 for i D 1; : : : ; k. Then

p
m.F�1m .p1/� F�1.p1/; : : : ; F�1m .pk/� F�1.pk//

d! N.0; Sk/;

where Sk D .sij / is a symmetric k � k matrix with entries

sij D pi .1 � pi /
F 0.F �1.pi //

;

for 1 � i; j � k.
ut

Proof. (Theorem 2)
To prove the assertion, we follow arguments used in Steland et al. (2009). Straight-
forward algebra leads to

Tn > c , p
n

 
X 0n � �

�
C T1.n/C T2.n/ � T3.n/

!

> c C
p
n.F �1m .p/ � Y m/

Sm

where

T1.n/ D X 0n � �
�

� � � Sm
Sm

;

T2.n/ D F�1m .p/� F�1.p/
Sm

;

T3.n/ D Y m � �
Sm

:

The assertion follows, if we show that

ın.p/ D p
n.T1.n/C T2.n/ � T3.n// D oP .1/;
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as n ! 1. Clearly,
p
nT1.n/ D oP .1/ by Slutzky’s lemma, since

p
n.X

0
n �

�/=�
d! N.0; 1/, as m ! 1, and .� � Sm/=�

P! 0, as n ! 1. Next notice
that p

nT2.n/ D 1

Sm

p
np
m

p
m.F�1m .p/ � F �1.p//:

The first factor converges to 1=� , in probability, the second one is o.1/ by
Assumption (A) and the third factor is asymptotically normal by Theorem 6, as

m ! 1. Thus, T2.n/ D oP .1/. Similarly, we have
p
nT3.n/ D

p
np
m

�
Sm

p
m
Ym��
�

D
oP .1/ by Assumption (A). Let us now check the approximation for P.Tn > c/.
Clearly,

Un D p
n.X

0
n � �/=� C ın.p/

d! N.0; 1/;

as n ! 1. This implies that supz2R jP.Un � z/ � ˚.z/j D o.1/, by virtue of the
Glivenko-Cantelli theorem, which completes the proof, since

jP.Tn > c/�Œ1 � ˚.c C p
n.F �1m .p/ � Y m//�j

D jP.Un > c/ � Œ1 � ˚.c C p
n.F�1m .p/ � Y m//�j

� sup
z2R

jP.Un > z/� Œ1 � ˚.z/�j D o.1/:

ut
Proof. (Theorem 3)
Obviously,

nm

n1.�; �/
D S2m
�2
.F�1.AQL/ � F�1.RQL//2
.F�1m .AQL/ � F�1m .RQL//2

:

The first factor on the right-hand side converges to 1, almost surely, as m ! 1,
as well as the second one, since F�1m .AQL/ � F�1m .RQL/ ! F�1.AQL/ �
F�1.RQL/, almost surely, as m ! 1. To show the second assertion, recall that

cm D ˚�1.˛/ �
p
n.F�1m .AQL/� Y m/

Sm
;

c.�; �/ D ˚�1.˛/ �
p
n.F�1.AQL/� �/

�
;

and notice that
cm � c.�; �/ D �

Sm
Wn;m;

where

Wn;m D
"

�
p
n.F�1m .AQL/� Y m/

�
C

p
n.F�1.AQL/ � �/

�

Sm

�

#

:
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Clearly, �=Sm D 1 C .� � Sm/=Sm ! 1, as m ! 1, a.s. Thus, it suffices to
show that Wn;m is oP .1/. Using Sm=� D 1 C .Sm � �/=� , we see that the second
summand of Wn;m can be written as

p
n.F�1.AQL/ � �/

�
C F�1.AQL/ � �

�

p
n
Sm � �

�
:

Rearranging terms, we see that Wn;m can be written as

r
n

m

"

�p
m
F�1m .AQL/� F�1.AQL/

�
C p

m
Y m � �

�

CF�1.AQL/� �

�

p
m
Sm � �
�

:




By Theorem 6 (ii),

p
m.F�1m .AQL/� F�1.AQL// D OP .1/:

Further, since EY 41 < 1 by assumption, we also have

p
m.Y m � �/ D OP .1/ and

p
m.Sm � �/ D OP .1/;

as m ! 1; for the second statistic also confer the proof of Theorem 5. Since by
Assumption (A) n=m D o.1/, as n;m ! 1, we obtain Wn;m D oP .1/ follows,
which completes the proof. ut
Proof. (Theorem 5)
For brevity of notation, we put p˛ D AQL and pˇ D RQL. The Bahadur
representation yields for p 2 fp˛; pˇg

p
mŒF �1m .p/� F�1.p/� D 1p

m

mX

iD1

p � 1.Yi � F �1.p//
F 0.F�1.p//

C oP .1/:

Further, with eY i D Yi � � and eY D m�1
Pm

iD1 eY i we obtain the asymptotic
linearization

1p
m

mX

iD1
Œ.Yi � Y /2 � �2� D 1p

m

mX

iD1
.eY 2i � �2/ � 2eYp

meY C p
m.eY /2

D 1p
m

mX

iD1
.eY 2i � �2/C oP .1/;

since
p
meY D OP .1/ and eY D oP .1/, which, of course, carries over to

p
m.S2m �

�2/. This gives



Quality Assessment in the Presence of Additional Data in Photovoltaics 273

Um D p
m

0

@
F�1m .p˛/� F�1.p˛/
F�1m .pˇ/� F�1.pˇ/

S2m � �2

1

A D 1p
m

mX

iD1
Zi C oP .1/;

where for i D 1; : : : ; m

Zi D
0

@
.p˛ � 1.Yi � F �1.p˛///=F 0.F�1.p˛//
.pˇ � 1.Yi � F �1.pˇ///=F 0.F�1.pˇ//

.Yi � �/2 � �2

1

A :

Notice that Z1; : : : ; Zm are i.i.d. with a finite second moment. Thus, an application
of the multivariate central limit theorem yields

Um
d! U � N.0; ˙/; with ˙ D E.Z2

1/ D
0

@
˙˛˛ ˙˛ˇ �Y˛

˙˛ˇ ˙ˇˇ �Yˇ
�Y˛ �Yˇ �Y Y

1

A ;

as m ! 1, where the entries are as given in the theorem. Now consider

p
m.nm � n1/ D p

m

 
S2m � �˚�1.˛/ � ˚�1.1 � ˇ/�2
�
F �1m .p˛/� F�1m .pˇ/

�2

� �2 � �˚�1.˛/ � ˚�1.1 � ˇ/�2
�
F�1.p˛/ � F�1.pˇ/

�2

!

:

(14)

Observe that we may write

p
m.nm � n1/ D p

mŒg.F �1m .p˛/; F
�1
m .pˇ/; S

2
m/� g.F �1.p˛/; F �1.pˇ/; �2/�

where the function g W D ! R, D D f.x; y; z/ 2 R
3 W x 6D yg, is given by

g.x; y; z/ D C.˛; ˇ/ � z

.x � y/2
; C.˛; ˇ/ D �

˚�1.˛/ �˚�1.1 � ˇ/
�2

for .x; y; z/ 2 D. The function g is differentiable with

Pg.x; y; z/ D C.˛; ˇ/.�2z.x � y/�3; 2z.x � y/�3; .x � y/�2/;

such that

g D Pg.F�1.p˛/; F �1.pˇ/; �2/

D C.˛; ˇ/

.F�1.p˛/� F�1.pˇ//3
� .�2�2; 2�2; .F �1.p˛/� F �1.pˇ//:
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The delta method now implies that

p
m.nm � n1/ d! gU � N.0; �2/;

as m ! 1, where
�2 D g˙g0:

This completes the proof. ut
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On Practical Uses of ISO Standards:
Two Case Studies

Jørgen Iwersen

Abstract Statistical ISO-standards such as ISO 2859-1 and ISO 3951-1 are still
used in many organizations for many different purposes, from incoming control
to release of final product. In the current era of optimization everywhere there is,
however, a new focus on sampling and use of resources. In many organizations new
technologies like Lean, Six Sigma, etc. are widely used, and hence the sample sizes
proposed by the ISO standards are often challenged with the purpose of reducing
sampling to reduce cost both directly in terms of fewer samples but also indirectly
in terms of saved costs in the labs.

In this paper I will present two very different examples from the pharmaceutical
world. The first example is an algorithm to lower the sample size in In-Process
Control (IPC). In this case, we wanted to do some testing in real time as IPC
controls, to be able to react in time if these parameters show a trend or go out of
control. These plans are based on ISO standards in the sense that we retain the
Consumer Risk Quality (CRQ) at the levels of the standard, but we then reduce
the sample size to save costs and reduce the workload of sampling and analyzing
samples in production.

The second case study is from the other end of the spectrum. In this case we look
at a vision system that enables us to do 100% control for many parameters. We also
retain the CRQ from ISO, but we rewrite the acceptance criterion to allow for 100%
control of outgoing batches.
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1 Introduction

Statistical ISO-standards such as ISO 2859–1 (1999), ISO 2859–2 (1985) and ISO
3951–1 (2005) are still used in many organizations for many different purposes,
from incoming control to release of final product. In the current era of optimization
in every step of production processes there is, however, an increased focus on
sampling sizes and use of resources. In many organizations new technologies like
Lean, Six Sigma, etc. are widely used, and hence the sample sizes proposed by the
ISO standards are often challenged with the purpose of reducing sampling to reduce
cost – both directly in terms of smaller samples but also indirectly in terms of saved
costs in the laboratories.

This paper presents two very different examples from the pharmaceutical world.
The first example is an algorithm to use ISO 2859-1 for In-Process Control (IPC).
In this case, we wanted to do some testing in real time as IPC controls, to be able to
react in time if important quality characteristics show a trend or go out of control.
These plans are based on ISO standards in the sense that we retain the Consumer
Risk Quality (CRQ) at the levels of the standard, but we then change the sample
size to fit the application. It should be noted that the sample size may be lower than
suggested by ISO 2859-1 if a procedure with a low acceptance number is chosen,
whereas the sample size will increase if a more elaborate procedure with a larger
acceptance number is chosen.

The second case study is from the other end of the spectrum. In this case we look
at a vision system that enables us to do 100% control for many quality characteristics
simultaneously. In this case we also retain the CRQ from ISO, but we rewrite the
acceptance criterion to allow for 100% control of outgoing batches.

2 Sampling Plans from ISO 2859-1

ISO 2859-1 is a foundation for sampling from a series of batches operating on
roughly the same quality level, i.e. the proportion of defects is fairly constant. The
sampling plans are indexed according to AQL, i.e. Acceptance Quality Limit. Note
that processes are expected to have averages better than AQL to avoid rejections
under the sampling systems provided in the standard.

When sampling is performed according to ISO 2859-1, the sampling procedure
includes at least sampling at the normal inspection level and the tightened inspection
level. It is possible to include the reduced inspection level, if the process has proven
to be stable and operates at a low proportion of defects compared to AQL.

When two of five consecutive batches are rejected on normal inspection,
inspections must continue at the tightened inspection level. Inspection may resume
on normal inspection level, if five consecutive batches are accepted at the tightened
level. In most cases, the impact of tightened inspection compared to normal
inspection is that the sample size is the same, but the acceptance number is
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reduced by one, which is a more demanding acceptance criterion. In most cases this
corresponds to inspection at an AQL level one step lower. Hence, the process needs
to operate at defect levels lower than the one step lower AQL for five consecutive
batches to be accepted at tightened inspection in order for inspection to resume at
the normal inspection level.

Finally, if five batches are rejected at the tightened inspection level, production
must be terminated, and the process improved. Then one may start all over again,
but inspection resumes at the tightened inspection level.

In the two cases in this paper, it would be rather confusing to operate with
different sampling plans. To avoid this, without being out of compliance with the
standard, we only employ plans on the tightened inspection level. This choice
allows us to use one sampling plan for each AQL-value (corresponding to tightened
inspection), but the termination rule still applies. For this concept to work, all
parameters have to operate at a quality level better than their respective AQL-
values.

3 IPC-Sampling on a Medical Filling Process
Based on ISO 2859-1

In this case, we consider filling of liquid medical product. Such products are
usually going through preparation, where raw materials and active pharmaceutical
ingredients are mixed. Then product is filled into containers on a filling line, and
afterwards the containers are inspected, labeled and packaged.

Until recently, sampling was performed after the product had been filled. This
is efficient from a sampling point of view, since operators may just collect random
samples during filling, and send them to a laboratory afterwards.

In reality, a number of potential defects may be or are entirely caused by the
filling equipment. In such cases, it is not efficient to do the testing afterwards, since
it is not possible to adjust the filling process if this is the case. Hence, it was decided
to move the control for these types of defects from QC-labs into running production,
and introduce In Process Control (IPC).

When the inspection is moved from sampling after filling to sampling during
filling, it is important that the sample is still applicable for batch release. It would
be a waste of time and money to do IPC sampling and then draw a sample for batch
release afterwards. Hence, the sample size needs to be sufficient for batch release.

The parameters (quality characteristics) included will mostly be physical
attributes of the product and primary packaging materials. Potential defects in
the product itself are mostly the presence of various particles in the filled product.
Particles may be either foreign material from e.g. the filling line or ingredients
crystallizing on the container walls. From primary packaging a number of important
parameters include missing glass beads in suspension products, chips and cracks in
the container and “black” spots on the container or piston.
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Usually, the potential defects moved to IPC do not include the chemical parame-
ters such as potency, degradation products, conservatives, etc. These parameters are
usually determined by batch preparation and raw materials and are not expected to
change significantly during filling, unless filling tubes are open, product is subjected
to excess heat or the process is stopped for a prolonged period of time.

The chemical parameters are tested during preparation, and it is not permissable
to make changes during filling, if e.g. potency is too high, it would be a major GMP
violation to try to add water to dilute it during filling. GMP – Good Manufacturing
Practice – is a regulatory requirement for production, to ensure product safety and
quality. Hence, the chemical parameters will usually remain fairly constant during
filling, and are not considered in IPC controls at the moment. In the future when
fast accurate measurement methods are available for potency, it will probably be
included in IPC too.

3.1 Determination of Sample Size

When confronted with the prescribed sample sizes from ISO 2859-1, the production
department initially decided that these sample sizes are too high for IPC. Hence,
a method to determine smaller sample sizes without violating ISO 2859-1 require-
ments was needed. Furthermore, the nature of the sampling, as well as handling
and analysis of samples, makes it highly problematic to change sample sizes and
acceptance criteria between batches.

To ensure compliance with ISO 2859-1 without alternate sampling plans, we
only have one solution, i.e. only to operate on the tightened inspection level. Hence,
the parameters considered have to be operating at defect levels that are much better
than the AQL, in most cases they need to be well below the next lower preferred
AQL in the ISO tables, e.g. if AQL is 1.0%, the parameter has to operate at a defect
level under 0.65%. If the proportion of defects does not remain under 0.65% in this
case, there is a high probability of rejecting five batches over time, and hence the
termination rule will apply. Note that this principle only eliminates the need for
using the shifting rules; the termination rule still applies.

To assist the production department in lowering the sample sizes, we use the
following algorithm.

1. Determine the relevant sampling plan from ISO 2859-1, based on AQL, batch
size and tightened inspection.

2. Calculate the consumer risk quality, i.e. the proportion of defects with an OC-
value of 10%.

3. For acceptance numbers 0–3, determine the sample size that satisfies the CRQ-
value, i.e. the sample size has to be sufficiently large to ensure that the actual
CRQ-value does not exceed the CRQ-value proposed by the ISO-plan under 1.

This procedure is efficient, if the processes operate well below the AQL-values
of the parameters. Otherwise it will terminate rapidly. In the following example, an
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Table 1 AQL-values for IPC
Parameter AQL(%)
Pressure test 0.1
Defect capsule 0.4
Height of container including capsule 1.0
Cosmetics 2.5

Table 2 Sampling plans from ISO 2859-1 and corresponding CRQ-values
Parameter AQL(%) Sampling plan, (n,Ac) CRQ (%)
Pressure test 0.1 (800,1) 0.485
Defect capsule 0.4 (800,5) 1.16
Height of container 1.0 (800,12) 2.21

including capsule
Cosmetics 2.5 (500,18) 4.92

n is the sample size and Ac is the acceptance number

table is shown. The last column is the probability of accepting a batch, if the defect
rate is at AQL. It is seen from the tables that accept zero plans are only efficient, if
the defect rate is fairly close to 0.

3.2 Example

In this case the company needs to inspect and release batches of a medical product
filled in glass containers. It is decided to do the inspection as IPC sampling and use
the IPC-data for batch release as well.

The parameters and AQL-levels are shown in Table 1.
The shown AQL-values are for illustration only, not necessarily the values in

practical applications.
In this case LQ/CRQ-values have not been determined. Hence, to assure the

same risk to the customer as would be the case using ISO 2859-1, we use the 10%-
point on the OC-curve, i.e. the proportion of defects corresponding to OC D 10%,
to determine sampling plans with lower acceptance numbers.

Suppose we have batch sizes of 300,000 units and use inspection level II. In this
case, we get the following sampling plans at tightened inspection having the same
CRQ as ISO 2859-1 (Table 2).

The procedure is now controlled by the lowest AQL, in the sense that the
sampling plan for the lowest AQL-value will determine the sample size. The other
sampling plans for the higher AQL-values would allow for lower samples sizes, but
since we are performing IPC controls, it will often be easier to run the IPC if we use
the same sample size for all parameters. Hence, we will just adjust the acceptance
numbers for the other AQL-values accordingly.
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Table 3 Sampling plans for IPC
AQLD 0.1% AQLD 0.4% AQLD 1.0% AQLD 2.5%

Sample size Ac PR(%) Ac PR(%) Ac PR(%) Ac PR(%)
475 0 37.8 2 29.6 6 20.1 16 9.2
805 1 19.3 5 10.7 12 6.5 31 0.8
1,100 2 9.9 7 7.8 17 3.1 44 0.1
1,380 3 5.1 10 2.6 23 0.8 57 0.0

To make a decision on IPC-samples, we usually determine the plans for the
lowest AQL value with Ac D 0; 1; 2; 3. First we determine the sample size for
each acceptance number, n? :

n� D minŒP fBin.n;CRQ D 0:485%/ � Acg � 0:10� (1)

Then we determine the acceptance numbers for all AQL-values above 0.1%,
Ac?, as

Ac� D maxŒAcjP fBin.n;CRQAQL/ � Acg � 0:10�; (2)

where CRQAQL is the CRQ-value corresponding to the respective AQL-values.
To enable reasonable decisions on sample sizes, we compute the OC-value at

p D AQL, for all the suggested sampling plans. In the above case, the decision table
is given as Table 3.

In Table 3, PR is the producers risk, i.e. the probability of rejecting the batch,
given that the proportion of defective units equals the AQL.

The above results may not be a surprise to statisticians, but they do surprise
production people. It is obvious from the table, that unless the parameter with an
AQL of 0.1% operates at a defect level much lower than AQL, the accept-zero plan
is useless, since the probability of rejecting a process with a defect rate at AQL is
37:8%. To a lesser degree, this conclusion applies to the other three AQL-values.

Depending on historical data, the plans for acceptance numbers 1, 2 and 3 may
be considered. But if production periodically come close to the AQL in terms of
defective units, we have to use the plan .n;Ac/ D .1; 380; 3/ for AQL D 0:1%.
This is a fairly dramatic conclusion, since it is a 72.5% increase in sampling size
compared to the standard plan (n D 800), but it is necessary to reduce the producer’s
risk if the process quality is not better than specified by the AQL.

From an applied view, however, the above table is very useful. It makes it much
easier for engineers and chemists to understand the ramifications of their decisions,
and tends to speed up decision-making.

This example suggests that we might often increase sample sizes instead of
reducing them when basing IPC sampling on ISO standards. However, this is not
a general property of the method. The reason for the larger sample sizes is that
we operate on low AQL-values, which in turn lead to low acceptance numbers at
the lowest AQL values. Hence, there is no room to in which to “optimize”. If the
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smallest AQL had been higher, reductions might have been possible. Hence, the
example illustrates a very important property of the sampling plans in ISO 2859-1.
When the chosen sampling plan has low acceptance numbers, 0 or 1, it is critical
to be operating at a better level than AQL to pass inspection, whereas processes
may operate closer to AQL with higher acceptance numbers. On the rare occasion
where the acceptance number is high, we may operate closer to the AQL. Using
the above procedure, where all plans are on the tightened inspection level, the
probability of rejecting a batch at the AQL will always be 5.1% or higher, hence
we will never be able to operate at AQL with more than one parameter, without
causing an unacceptable high overall probability of rejecting a batch that is basically
satisfactory.

4 Determination of Release Criterion for 100% Inspection
of Batches

During the inspection phase, many physical parameters are inspected using a visual
inspection machine. In practice, all units in a batch are going through the inspection
machine on a conveyer belt, a digital camera takes photos of the units and, based on
the pictures, units are then classified as “go” or “no go” in real time using advanced
software.

Due to the nature of this process, all units go through the vision system, and hence
we do 100% control of submitted batches, contrary to standard sampling inspection.
Since many sampling and other quality procedures are based on ISO standards, we
would prefer this inspection to be similarly based.

Physical parameters inspected in this manner, include particles in product, glass
beads (in suspension products), cosmetics, etc.

4.1 Determination of Acceptance Criterion

For this inspection, the sample size is the batch size. The unknown is the proportion
of defects we are allowed to accept.

When using vision systems, the acceptance criterion is often related to detection
rates obtained from human inspection also known as manual inspection. Clearly,
the detection rates from a vision system should at least equal the detection rate from
manual inspection.

To assure the consumer that quality is satisfactory, the proportion of undetected
defects must not exceed the AQL value of the corresponding sampling plan from
ISO 2859-1. Since we inspect all units, we may use the AQL as the limit in this
application.
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Now, let

DRV D Detection Rate for Vision system
DRM D Detection Rate for Manual inspection
FAR D False Alarm Rate
p D proportion of defects in a batch

Hence for the vision system, we obtain,

Proportion of Detected Defects D p � DRV C .1-p/ � FAR (3)

Proportion of Undetected Defects D p � .1-DRV/ � AQL (4)

To assure the customer, we insert the maximum Eq. 4 into Eq. 3:
Proportion of Detected Defects D p � DRV

� AQL � DRV = .1-DRV/ (5)

Hence, we denote the maximum value MPDD, i.e. Maximum Proportion of
Detected Defects,

MPDD D AQL � DRV = .1-DRV/ (6)

For practical purposes, the real issue in Eq. 6 is the False Alarm Rate. Since a
vision system is based on digital images from a camera, it will depend on calibration
and the environment in the production facility, and hence it will not be constant over
time. It is time consuming (and sometimes costly) to evaluate all rejects from all
batches and it would be contrary to the purpose of the procedure. Hence, a simple
approach is to assume that FAR is 0. If a given batch yields too many rejects, we may
determine FAR afterwards by inspection of all rejected items from that particular
batch.

In the real world we do not observe the proportion of detected defect, but instead
the proportion of perceived defects:

Proportion of Perceived Defects D Proportion of Detected Defects C .1-p/ � FAR
(7)

If possible, the production will estimate the proportion of detected defects by the
proportion of perceived defects. The problem is when a batch get rejected the reason
might be the false alarm rate. Hence, if for whatever reason the batch is valuable to
the company, we may go back and evaluate the false alarm rate by manual (or other)
inspection of the rejected units, and reevaluate the proportion of defected defects.
This way, good batches may be saved from scrap, which would be caused by a
posi-tive false alarm rate.

This criterion should not stand alone – it would be advisable to run a control chart
to monitor batch data. Otherwise we have a risk of the process drifting or shifting
towards AQL, and ultimately exceeding it without prior warning. In contrast to the
previous example, this monitoring scheme allows the process to operate close to the
AQL without rejection.



On Practical Uses of ISO Standards: Two Case Studies 283

Table 4 AQL-values for control by vision system
Parameter AQL(%)
Defect capsule 0.1
Plunger orientation 0.4
Height of container including capsule 1.0
Cosmetics 2.5

Table 5 Acceptance criterion for control by vision system
Parameter AQL (%) Manual detection rate(%) MPDD (%)
Defect capsule 0.1 50 0.1
Plunger orientation 0.4 90 3.6
Height of container 1.0 60 1.5

including capsule
Cosmetics 2.5 90 22.5

In practice, this criterion is often used in a more realistic setting, using the
detection rate for manual inspection – which is often much smaller – since the
detection rate for the vision system is not known very well, and may fluctuate
over time. Furthermore, when comparing data from different production sites it is
beneficial to operate on a common threshold, i.e. manual detection rate, than having
different detection rates from various production sites go into the systems.

It always has to be validated that the detection rate for the vision system is
better than manual inspection, but since vision systems are complex devices that are
calibrated between batches and so on, the detection rate is not necessarily constant
for all parameters, and it is not necessarily well established.

4.2 Example

In this case the company needs to inspect and release batches of a medical product
filled in glass containers. It is decided to do the inspection as IPC sampling and
use the IPC-data for batch release as well. The parameters and AQL-levels are as
follows (Table 4).

The shown AQL-values are for illustration only, not necessarily the values in
practical applications.

As above the batch size is 300,000 units, and the AQL-values are the same as in
Table 2. Then we apply Eq. 6 with FAR D 0 to obtain the acceptance criterion for
each parameter (Table 5).

This method is still in development, so there are no real batch data available at
this time. The procedure is conservative, in the sense that a huge problem in visual
inspection is the presence of false rejects. Hence the proportion of defects from an
inspection will be inflated by false rejects, and depending on the setting of the vision
system this component may dominate in some scenarios.
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We may, however, determine the actual FAR for a given batch afterwards by
manual inspection of all rejected items. Then we may apply Eq. 7 with the actual
FAR value and perform an improved release test of the given batch.

Batch results should be plotted in control charts and monitored for trends.
Furthermore it is easy to ensure that the detection rate for the vision system is always
at least as good as the manual reference or better.
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design and in the study of complex systems, where physical experiments on the
real system or even a prototype are prohibitively expensive. Both deterministic and
stochastic computer models are used in these situations. A deterministic computer
model is a set of complex equations whose solution depends on the input conditions
and the levels of design factors or parameters but not on random elements. Examples
include finite element models and computational fluid dynamics models. Space-
filling designs are usually employed to study these deterministic computer models
and often the modeling strategy involves fitting a spatial correlation or Kriging
model (the Gaussian stochastic process model) to the data, because this model
interpolates the experimental data exactly. We provide a survey of these designs and
the modeling strategy, and propose a new type of hybrid space-filling design. The
new design is a hybrid consisting of design points from a traditional space-filling
design augmented by runs from a near saturated I-optimal design for a polynomial.
We illustrate the construction of these designs with examples, and demonstrate
their performance in response prediction for several situations. A comparison with
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1 Introduction

Computer simulation models are often used in place of or in conjunction with
physical experiments. Computer experiments can be computationally expensive in
terms of time required to run an experiment on the simulation model. Therefore,
surrogate models or metamodels are often used to mimic the input – output
relationship in the form of a simpler mathematical expression that can be quickly
computed. Surrogate models encompass a broad range of techniques ranging from
parametric to nonparametric analysis.

The response surface in simulation model output can be very complex and
determining which model fitting technique to use is dependent upon several factors
such as the problem and the goal of the model. Two popular choices for surrogate
models are linear regression models (polynomials) and Gaussian Process (GASP)
models. See Santner et al. (2003) and Feng et al. (2006) for a review of using
both models for computer simulation output. Ankenman et al. (2008) discusses the
application of the GASP model to stochastic computer output.

Determining which experimental design technique should be used based on the
choice of surrogate model is an important decision. There are several publications
that evaluate experimental designs for computer simulations. Hussain et al. (2002)
present seven two-dimensional functions that were used to test two metamodels. The
metamodels tested were a radial basis function, which was originally developed to
fit irregular topographic contours of geographical data, and quadratic polynomial
models. Allen et al. (2003) compares combinations of experimental design classes
with respect to second-order response surfaces and Kriging modeling methods.
Bursztyn and Steinberg (2004) develop a new method of design comparison
based on a Bayesian interpretation of an alias matrix. Chen et al. (2008) discuss
various designs used for computer simulation models and various surrogate model
choices.

Johnson et al. (2010) evaluate space-filling designs and optimal designs with
respect to their performance when used to fit linear regression models. They
compare designs based on their prediction variance. Their conclusions indicate
that: (1) space-filling designs do not perform as well as optimal designs with
respect to a linear regression model, (2) of the space-filling designs sphere packing
designs generally have the lowest prediction variance followed closely by the
Latin Hypercube designs, and (3) augmentation of space-filling designs with I-
optimal points is suggested whenever initial modeling indicates that the computer
simulation model can be adequately approximated by a polynomial. Their last point
suggests that hybrid designs, which combine both optimal points and space-filling
points, have the potential to be powerful designs. We compare hybrid space-filling
experimental designs based on their prediction variance with respect to the Gaussian
process model and linear regression models both theoretically and empirically.
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2 Hybrid Space-Filling Designs

Building up information sequentially through design augmentation is efficient and
economical. Montgomery (2009) points out that it is almost always preferable to
run a fractional design, analyze the results, and then decide on the best set of runs
to perform next. We believe that design augmentation can also be used in computer
simulation modeling. Johnson et al. (2010) demonstrates that augmenting a space-
filling design with optimal points can be effective in improving the prediction
variance across the design region. This is important since the goal of a surrogate
model is to closely approximate the computer model. In this paper we introduce
augmentation of space-filling designs and referred to them as hybrid space-filling
designs. The next subsections describe space-filling designs and optimal designs
and then introduce the hybrid designs.

2.1 Space-Filling and Optimal Designs

Space-filling designs attempt to fill the interior portion of the design space. We
chose the Latin hypercube to evaluate, which is one of the most popular designs for
deterministic models. The Latin hypercube design was developed by McKay et al.
(1979). The Latin Hypercube design is defined in Fang et al. (2006) as, “A Latin
Hypercube design (LHD) with n runs and s input variables, denoted by LHD(n, s),
is an n � s matrix, in which each column is a random permutation of f1, 2, . . . , ng.”
Examples of applications of LHDs can be found in Welch et al. (1992) and Storlie
and Helton (2008).

Special versions of the Latin Hypercube allow for the specification of additional
criterion. One such specification is maximin distance. The maximin distance
criterion maximizes the minimum inter-site distance and is specified by

max
D

min
u;v2D d.u; v/ D min

u;v2D�

d.u; v/;

where d(u,v) is a positive distance between two points within the design space
D, and D� represents the final design matrix. The maximin criterion is used as a
secondary criterion for creating the LHDs. All of the LHD generated in this paper
are maximin Latin Hypercube designs.

In this paper, we augment the LHDs with I-optimal points. Strictly I-optimal
designs, or integrated variance designs, minimize the average scaled prediction
variance over the design region with respect to a pre-specified model. Myers et al.
(2009) discuss the I-optimal design with respect to the linear regression model in
detail.
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Table 1 Minimum number
of design points needed
.n D p/

Order of polynomial
Factors 2 3 4 5
2 6 10 15 21
3 10 20 35 56
4 15 35 70 126
5 21 56 126 252

2.2 Hybrid Space-Filling Designs

Hybrid space-filling designs are created by generating a space-filling LHD, in n
points and then augmenting that design with m I-optimal points. The I-optimal
points are constructed assuming that the model the experimenter plans to fit is a
polynomial of a specified order. For this paper, designs were created to be saturated
designs when fully completed, ranging from a full LHD to a full I-optimal design.

In order to test the predictive capabilities of space-filling designs and optimal
designs when fitting a linear regression model, we generated designs ranging from
two to five factors and used second order to fifth order polynomials to generate
the X model matrix. To generate a space-filling design, no model specification is
necessary, only the required number of points (sample size) is needed. To generate
an optimal design, a model must be specified as well as the number of design points
required. Table 1 illustrates the minimum number of design points (n) needed to fit a
given polynomial with two to five factors (the number of parameters in the intended
model is represented by p).

Four to seven designs were generated for each combination of number of factors
and polynomial order, and sample size was held constant at the minimum number
of design points needed so that designs within each category could be compared
directly. Designs ranged from a full Latin hypercube to a full I-optimal design.
For each combination, two to five smaller Latin hypercubes were augmented with
I-optimal points. The notation used to identify designs throughout this work is
LwIz xF yO, where w is the number of initial Latin hypercube points, z is the
number of I-optimal points augmented to the Latin hypercube, x represents the
number of factors, and y represents the order of the intended polynomial specified
for the augmentation.

3 Results

3.1 Theoretical Prediction Variance

Here we compare our hybrid space-filling designs with strictly space-filling designs
and strictly optimal designs using prediction variance over the design region.



Hybrid Space-Filling Designs for Computer Experiments 291

The prediction variance is a standard criterion for comparing designs when
modeling physical systems. The scaled prediction variance (SPV) can be evaluated
at any point, x0, within the design space as:

NV Œ Oy.x0/�
�2

D Nx00.X 0X/�1x0

where X represents the design matrix expanded to model form. For the SPV, the
variance is multiplied by the number of runs, N, in order to penalize designs with
larger sample size. However, no penalty is necessary when comparing designs of
the same sample size. Since deterministic computer experiments have no stochastic
component it is necessary to justify the use of scaled prediction variance as a
performance criterion. Suppose that a given computer experiment is adequately
modeled using a polynomial fit. The difference between the observed and fitted
values in a deterministic computer model, however, is not stochastic error, but rather
is model bias. If the polynomial model adequately describes the response surface of
the true underlying function, the model bias of the fitted coefficients is negligible.
The model bias of an individual prediction is also fairly small because the fit is
adequate. Assume that the source of this bias is due to multiple high order terms.
Thus deviations between the observed and predicted values will behave like the sum
of a number of independent small quantities. Appealing to the central limit theorem,
as the number of these bias quantities gets large, these deviations will converge to the
normal distribution. We then justify the prediction variance criterion as a measure
of the sum of a large number of small biases.

In order to compare the various designs, test spaces with 10,000 uniformly
distributed points were generated. The prediction variance was then calculated
over the entire design space for each design, assuming the full form of the
polynomial model. Comparing the designs based on summary statistics can be
problematic, since designs with the same mean prediction variance could have very
different profiles. Hence, rather than trying to balance comparisons of the mean or
maximum prediction variances, the prediction variances were sorted from smallest
to largest and plots similar to Fraction of Design Space (FDS) plots (Zaharan et al.
2003) were generated. FDS plots graph the empirical distribution function of the
prediction variance over the design space. They efficiently present a large amount
of information, allowing for comparisons of design performance over the whole
design space rather than simply comparing designs based on summary statistics
such as the mean or maximum. Because the plot does not address location within
the design space, it is only appropriate in cases where the entire design space is
of equal importance. If some regions are more interesting than others, a weighting
scheme or partitioning should be applied. The FDS plot for the four factor, second
order polynomial case is presented in Fig. 1 as an example, assuming the full form
of the model.

As expected, the full I-optimal designs performed best in terms of prediction
variance, since the I-optimal criteria minimizes the average variance of prediction
over the design region (with respect to the hypothesized model form). The full Latin
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Fig. 1 FDS plot for four factor, second order designs

hypercube has the highest prediction variance across the whole design space, and
the prediction variance reduces as more I-optimal points are added to the designs.
The hybrid designs in the other design categories perform similarly.

3.2 Empirical Mean Squared Error

To evaluate the prediction properties of the GASP model and polynomials for the
hybrid designs, a response variable was created for each of the designs using a
test function. The designs were then analyzed using both a GASP model and a
polynomial. There is likely strong multicollinearity present amongst the factors in
the fitting of the polynomial models, particularly for the higher order models. While
this means that the individual model parameters are likely to be poorly estimated, it
does not necessarily imply that the full model will have poor predictive capability
if used within the same design space. For the purpose of this work, the emphasis
is not on the model fitting itself but rather to compare the predictive ability of the
full models to that of the GASP models. The generated models were then used to
predict the response values for 10,000 randomly generated test points, and the error
calculated as the difference from the values predicted by the test function. For each
of the test functions used, the function and its source is described, a response surface
varying two of the input factors is shown, and results pertaining to root mean squared
error (RMSE) for the linear regression models (polynomials) and GASP models is
provided. Descriptions of the results are also included.
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Fig. 2 Surface plot of test function 1

Test Function 1: The first test function was used by Santner et al. (2003), and first
appeared in Brainin (1972). The function is

y D
�
x2 � 5:1

4�2
x21 � 5

�
x1 � 6

�2
C 10

�
1 � 1

8�

�
cos.x1/C 10

x1 2 Œ�5; 10�; x2 2 Œ0; 15�

A surface plot of test function 1 is presented in Fig. 2. The sample size (n) for the
designs increases as the intended polynomial order increases, since the number of
design points was held equal to the number of terms in the linear regression model.
The fitting of the GASP model is also dependent on the sample size, since the fitted
model will interpolate the design points. In Fig. 3, it can be seen that the RMSE for
both models is reduced as the number of design points increases. There does not
seem to be a tractable pattern of how the RMSE varies depending on the design
composition (ratio of space-filling to I-optimal points). Because the location of the
design points is a factor in both models, the lack of a defined pattern may be related
to the fact that only one design was generated for each composition.
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Fig. 3 RMSE for two-factor designs

Test Function 2: The second test function is found in Allen et al. (2003) and is
designed to act as a surrogate model for a plastic seal design. The approximate
analytical function is given as

y.x1; x2; x3/ D .105Œ0:58.x2 C x3 � 0:85/C 3:0�3x2/ �

0

B
B
@

sin

	
1:5x3

x1 � 2:0




.x1 � 2:0/2

1

C
C
A

where x1, x2 and x3 represent input parameter dimensions on the plastic seal. The
bounds for the parameters are (in millimeters): 4 � x1 � 7, 0:7 � x2 � 1:7, and
0:055 � x3 � 0:500. A surface plot of test function 2 is shown in Fig. 4, holding
x3 D 0:2225.

As with the two factor designs, in the three factor case both model types’ RMSE
improves as the sample size increases (Fig. 5). The models perform comparably, and
there does not seem to be a tractable pattern of how the RMSE varies depending on
the design composition (ratio of space-filling to I-optimal points).

Test Function 3: Our final test function was first published in Morris et al. (1993)
and subsequently used for comparing metamodels in Allen et al. (2003). The
function is
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where y predicts water flow – in cubic meters per year – as a function of eight design
dimensions. As in Allen et al. (2003), we only vary x1; x4; x6, and x7 and set the
other four variables at their midpoint of the specified ranges from the experiment
demonstrated in Morris et al. (1993). The ranges and fixed values for each of the
variables are presented in Table 2.

For the four factor designs, the polynomials’ performance improves demonstra-
bly as the number of design points and correspondingly the number of terms in the
model increase. The GASP models exhibit the lowest RMSE values when n = 35,
which corresponds well to work by Loeppky et al. (2008) that indicates that the
GASP model works well given ten times the number of factors’ worth of runs
(Fig. 6).
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Fig. 5 RMSE for three factor designs

Table 2 The ranges and fixed values for the experimental and fixed
variables in test function 3

Experimental variables Fixed variables
Variable Low High Variable Fixed value

x1 0.05 0.15 x2 25,050
x4 990 1,110 x3 89,335
x6 700 820 x5 89.6
x7 1,120 1,680 x8 9,855

Test function 3 was also used to evaluate the five factor designs. Factor x2 was
added to the factors that were varied, and x3; x5, and x8 were all held constant at the
same levels (Fig. 7).

Similar results were seen in the five factor designs and models as were evidenced
in four factors. Polynomial model performance improves with the addition of more
design points and model terms, while the GASP models exhibit the lowest RMSE
values when n is approximately ten times the number of factors .n D 56/.

3.3 Design Variability

As noted earlier, there is also variability imparted on these summary statistics
based on the exact design employed. To assess how that variability affected the
comparison of the designs, four additional designs were created for each of the
design combinations for two factors.
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Fig. 7 RMSE for five factor designs

Figure 8 illustrates design variability. Each design was created by generating
a Latin hypercube design in two factors with nine runs. Then each design was
augmented with six I-optimal points, specifying a fourth order polynomial as the
intended response function. The design space and sample size are the same, yet the
points are placed in different locations.
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The designs were then analyzed under two scenarios – one in which test function
1 was used in a deterministic fashion, and another in which normally distributed
random error was added to make the process stochastic. In both cases, deterministic
and stochastic, the designs perform as expected for the polynomials. The full I-
optimal designs consistently have the lowest RMSE, while the full Latin hypercube
designs consistently have the highest RMSE. As the number of I-optimal points
in the design increases, the RMSE decreases. There was no apparent relationship
between the mixture of design points and the RMSE for the GASP model,
differences seemed to be solely related to sample size (as sample size increased,
RMSE decreased) and whether the response was deterministic or stochastic (higher
RMSE were evidenced in the stochastic case).

In general, the fitted error for the GASP models was higher than that of the
polynomials for small designs (n D 6 and 10). As the number of design points
increases, the GASP models begin to perform comparably to the polynomials in
terms of fitted error, which corresponds to work by Loeppky et al. (2008) that
indicates that the GASP model works well given ten times the number of factors’
worth of runs. The GASP models also begin to perform comparably or better than
the polynomials as error is introduced into the system.

As an example, the results for the two factor, fourth order designs are presented in
the form of box plots. Figure 9 displays the RMSE values for each of the augmented
space-filling designs fit to the responses with no random error, while Fig. 10 includes
random error in the test function. Results from the GASP models and polynomials
are presented side by side for comparison.

As can be seen by comparing Figs. 9 and 10, although the error in the stochastic
case is higher for both GASP models and the polynomials, the GASP models are
performing as well or better than the polynomials in the stochastic case. In the
deterministic case, the RMSE for the polynomial models was much smaller than
that of the GASP models.
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Fig. 10 Stochastic RMSE for two factor, fourth order designs

4 Conclusions

The results presented in this paper give insight into how hybrid space-filling designs
perform with respect to prediction variance properties for the linear regression
model and the GASP model. The designs are compared to both solely space-filling
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and solely optimal designs. Follow up work will be done to evaluate how the hybrid
designs perform at larger sample sizes, and investigate further how design variability
affects choice of model.

One of the benefits of a computer simulation models is the ability to build up
a design sequentially, without concern for blocking or randomization. Note that in
deterministic models replication and randomization are not needed and in stochastic
models randomization can be controlled through the random number generator.
Either way, in computer simulation experiments the space-filling-hybrid design is
an excellent choice. After running a preliminary set of runs, the experimenter has
a better idea of what modeling strategy to use. At this point the design can be
augmented with a criterion that is optimal for that strategy.

While some might question the use of the space-filling design for polynomials
at all, it is important to remember that in advance of any experimentation it is
impossible to know whether a polynomial model of any order will prove to be
adequate. Using a space-filling design for initial exploration makes considerable
practical sense.
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Optimal Design for Multifactor Life Testing
Experiments for Exponentially Distributed
Lifetimes

Brandon R. Englert, Steven E. Rigdon, Connie M. Borror,
Douglas C. Montgomery, and Rong Pan

Abstract Life testing experiments differ from most experiments in a number of
ways. Instead of assuming a normal distribution for the response, we often assume
a distribution such as the exponential or Weibull. Also, censoring, the termination
of a life test before all units have failed, is common in life testing experiments.
We investigate algorithms to obtain optimal, or near-optimal designs for multifactor
experiments assuming an exponential distribution for the lifetimes.

Keywords A-optimality • D-optimality • Bayesian optimal design • Genetic
algorithm

1 Introduction

There are a number of aspects that make design of experiments for life testing
different from most traditional designs.

First, while most work on optimal design assumes a normally distributed
response, the distribution of lifetimes is usually not normal. Rather, the distribution
of life times is usually skewed to the right, so distributions such as the exponential,
gamma and Weibull are often used.

Second, it is likely that several of the items placed on test have very long lives
that last well beyond the planned time of the experiment. Thus, in order to terminate
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the life test in a reasonable amount of time, life tests are often censored. The most
common censoring plans are time censoring (also called Type I censoring), where
the test is terminated at a predetermined time, and failure censoring (also called
Type II censoring), where the test is terminated after a predetermined number of
failures. There are other types of censoring, including hybrids of these. A good
design for life testing must account for the possibility that some items will be
censored. In fact, it is possible to include the censoring time as an input variable,
and therefore choose an optimal censoring time.

Third, life tests can have an accelerating factor, that is, a variable designed to
make the items fail sooner. Life tests, by their very nature, take time, often a long
time. In order to complete the experiment in a reasonable amount of time a variable
such as temperature (or voltage, vibration, etc.) is used to induce early failures. By
using varying levels of this accelerating factor, it is possible to extrapolate back to
the unaccelerated use condition. For example, by running a test on the lifetime of
tires at 200ıC, 150ıC, and 100ıC, users could extrapolate to the actual use condition
of say 50ıC. Running the experiment at 50ıC would likely lead to a very long test,
much longer that the test at these more extreme values. Thus, the design of the
acceleration plan can be part of the overall design for the life test.

For a normally distributed response, most measures of design optimality, e.g.,
D-, A-, and I -optimality, do not depend on the unknown parameters. For life
testing distributions like the Weibull or gamma, these criteria do depend on unknown
parameters. This creates the dilemma that we must know the unknown parameters
in order to construct an optimal design, but if we knew the parameters, we wouldn’t
have to bother with designing an experiment so we could learn about the parameters.

One approach to this dilemma is to guess the value of the parameter, and then
construct a design to be optimal for this choice. But if our guess for the parameter
is far from its true value, then the design may be far from optimal. The approach
taken by Gotwalt et al. (2009) was to propose a prior for the parameter � and then
average over the prior. In this case the objective is to choose the design to maximize
or minimize

v .d/ D
Z

�

v .� ;d/ p .�/ d�:

This method involves a mix of classical (the design criterion v .�;d/) and Bayesian
(the prior p .�/) approaches, so we call this “pseudo-Bayes” design optimality.

In this paper, we take a purely Bayesian approach for constructing optimal
designs for life testing experiments.

2 Bayesian Design

The Bayesian approach to design involves the following aspects of the design and
the data.
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• d is the design. This will include the values for the predictor variables that will be
used in the experiment. It could also include other aspects of the experiment, such
as the censoring scheme. Each run in the experiment consists of a set of values
of the predictor variables selected from the design space D. What is often called
the design matrix X is obtained from d by adding a column of ones (if there is a
constant term in the model) and additional terms corresponding to higher-order
terms in the model.

• � is the parameter, which is assumed to come from the parameter space �.
• y is the observed data, whose distribution depends on the parameter � and the

design d: The sample space Y consists of all possible outcomes for y:
• The prior distribution p .�/ is independent of the design d. The distribution for

y, p .yj�;d/ D L.�jy;d/, depends on both the parameter � and the design d:
The posterior of � also depends on both y and d. The posterior of � is obtained
from Bayes theorem

p .�jy;d/ D p .�/ p .yj�;d/
R
�
p .�/ p .yj�;d/ d�

:

• u .d;�; y/ is a utility function that incorporates the utility of using design d when
the true parameter is � and the data are given by the vector y:

The optimal design is then the one that maximizes expected utility, that is, the
utility integrated over both the parameter space � and the sample space Y:

u .d/ D
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�
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D
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�

u .d;� ; y/ p .�/ p .yjd;�/ d� dy

There are a number of choices for the utility function u .d;� ; y/ : Two of the most
common choices are based on the Shannon information or on quadratic loss.

The expected gain in information from an experiment is the expected logarithm
of the ratio of the posterior and the prior; that is
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Since the second term in this last expression is independent of d; maximizing the
expected gain in information is equivalent to maximizing the Shannon information
in the posterior (SIP):

USIP .d/ D
Z

Y

Z

�

log Œp .�jy;d/� p .�/ p .yjd;�/ d� dy:

Another approach is to maximize the negative or the reciprocal of the squared
error loss (NSEL and RSEL, respectively); for example,

UNSEL .d/ D �E
	�

� � O�
�0
A
�
� � O�

�


D �
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�

�
� � O�

�0
A
�
� � O�

�
p .�/ p .yjd;�/ d� dy

for some matrix A: Here, O� D E Œ� j y;d� is the posterior mean of � : If A D I;

then this approach corresponds to minimizing the sum of the expected posterior
variances for the parameters in the vector �: See Chaloner and Verdinelli (1995) for
a thorough discussion of the choice of a utility function.

Unfortunately, some of the simulation based optimal design approaches
described in the next section require a nonnegative utility function u .d;�; y/ ; and
both of the utility functions uSIP and uNSEL are sometimes, or always, nonpositive.
We could add a constant to the values of uNSEL or uSIP to ensure that all values are
positive. As alternatives to uNSEL and uRSEL, we could choose as the utility function

UN .d/ D exp

	
�E

��
� � O�

�0
A
�
� � O�

��

; (1)

or

UC .d/ D 1

1C E

��
� � O�

�0
A
�
� � O�

�� : (2)

Because the functional forms in Eqs. 1 and 2 are similar to the normal and Cauchy
distributions, we refer to these as the normal loss function and the Cauchy loss
function, respectively. As an alternative to USIP .d/ ; we could use

UESI .d/ D exp

	
�
Z

Y

Z

�

log Œp .�jy;d/� p .�/ p .yjd;�/ d� dy


: (3)

We call this the exponential Shannon information utility function.
Many other utility functions are possible. In the reliability context, we could base

the utility function on estimation of a fixed percentile of the lifetime distribution or
the reliability at some fixed time for some level of the input factors.
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3 Optimization Algorithms

Once a utility function is selected, we must choose an algorithm to perform the
maximization of u .d/ : We consider three algorithms: a genetic algorithm and two
simulation based optimization algorithms.

3.1 Genetic Algorithms

The concept of using a heuristic algorithm to mimic biological evolution is usually
attributed to Holland (1975). The ideas behind genetic algorithms have been
broadened, and many similar algorithms are now called evolutionary algorithms
(Eiben and Smith 2003). Heredia-Langner et al. (2003) used a genetic algorithm to
find nearD-optimal designs assuming a normally distributed response.

Genetic algorithms begin with a collection of candidate designs and then proceed
iteratively through three steps: recombination, mutation, and selection. A genetic
algorithm for selecting an optimal design, given a utility function u .d;�; y/ ; would
follow these steps. Begin with a collection D of possible designs; usually the
number N of designs in D is rather large, often in the hundreds. Then, select M
pairs of designs from D and have each pair exchange some common features. This
could mean creating new designs by selecting some components at random from
each of the two designs. This will thus create M new designs that are added to
the collection D: This step is called recombination, or crossover. Next, select K
designs from D and impose slight random changes to some of the elements in the
selected designs. This is the mutation step and it adds an additionalK designs to the
collectionD: Finally, the utility of each of theNCMCK designs that now comprise
D are computed. The designs with the highest utility have the greatest chance of
being selected to survive to the next generation. Various strategies can be applied
here, including selecting the N designs with the highest utility, or making the
probability of survival proportional to the utility function. Hybrids of these strategies
can also be used. These steps are repeated through a number of generations. We
always keep track of the best design in each generation.

3.2 Müller’s Markov Chain Simulation Algorithm

Müller (1999) and Müller et al. (2004) proposed the use of an augmented probability
model together with Markov Chain Monte Carlo (MCMC) and simulated annealing.
The basic idea behind their algorithm is to place an auxiliary probability distribution
on the design d together with the parameter � and the data y: If we choose

h .d;� ; y/ / u .d;�; y/ p .� ; yjd/ ; (4)
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that is, the PDF is proportional to the utility function, then the marginal of d is then

h .d/ /
Z

Y

Z

�

u .d;�; y/ p .�; yjd/ d� dy D U .d/ :

Thus, the optimal design problem reduces to the problem of finding the mode for
the distribution of the marginal of d:

The marginal of d is, however, often very flat, making it difficult to find the mode.
Müller (1999) and Müller et al. (2004) suggest using J copies of .�; y/ instead of
just one, as in Eq. 4. Thus,

h .d; .�1; y1/ ; .�2; y2/ ; : : : ; .�J ; yJ // /
JY

jD1
u
�
d;�j ; yj

�
p
�
�j ; yj jd�

which leads to

hJ .d/ /
	Z

Y

Z

�

u .d;�; y/ p .� ; yjd/ d� dy

J

D ŒU .d/�J :

Raising U .d/ to the power J serves to “sharpen” the PDF near the mode, making
it easier for the Markov chain simulation to find it. Note that all along we have
been writing p .�; yjd/ as if we were conditioning on dI it would have been
more accurate to write pd .�; y/ to indicate the dependence on d: Now, however,
we are conditioning on d in the probabilistic sense, so we write p .�; yjd/ : The
value of J is chosen in such a way that J ! 1 in the Markov chain simulation,
although in practice, J usually takes on moderately small values and grows linearly
or logarithmically. The reciprocal of J can be thought of as “temperature” in
a simulated annealing algorithm. As J ! 1, T D 1=J ! 0, a requirement of
simulated annealing algorithms.

The algorithm of Müller et al. (2004) uses a Metropolis-Hastings algorithm to
move through the design space in search of the mode for hJ .d/ : Their algorithm
can be described as follows.

3.2.1 Markov Chain Simulation Algorithm of Müller

Step 0: Set t D 0 and begin with an initial design d.0/: Set J DJ .t/ : Then for
j D 1; 2; : : : ; J; simulate �j � p .�/ and yj � p

�
yj�;d.0/�, and compute

u.0/ D
JY

jD1
u
�
d;�j ; yj

�
:
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Step 1: Generate a candidate design Qd by some mutation of d: Specifically,
simulate

Qd � q
� Qdjd� [the proposal distribution]

�j � p .�/ [the prior for �]

yj � p
�
yj�; Qd� [the likelihood]

and compute

Qu D
JY

jD1
u
� Qd;�j ; yj

�
:

Step 2: We must choose whether to move from d.0/ to the proposed design Qd; so
we compute the acceptance probability

˛ D min

 

1;
Qu q �d.0/j Qd�

u.0/ q
� Qdjd.0/�

!

:

Note that if q is a symmetric function, then ˛ reduces to ˛ D min
�
1; Qu=u.0/

�
:

Step 3: Assign
�
d.1/; u.1/

� D � Qd; Qu� with probability ˛, and
�
d.1/; u.1/

� D�
d.0/; u.1/

�
with probability 1 � ˛: In other words, accept the move to

�
d.1/; u.1/

�

with probability ˛; and remain in state
�
d.0/; u.0/

�
with probability 1 � ˛:

Step 4: Set t D t C 1; and J D J .t/ : Next, set
�
d.0/; u.0/

� D �
d.1/; u.1/

�
:

Step 5: Repeat Steps 1–4 until the Markov chain has practically converged.

When the Markov chain
�
d.t/; u.t/

�
has settled down to its steady state (for all

practical purposes), the values of d.t/ should be near the mode of h: We could then
take as our near-optimal design the value of d that produced the largest u.t/ after
allowing for the Markov chain to burn in.

3.3 Interacting Particle Algorithm

Amzal et al. (2006) proposed a generalization of the Markov chain simulation
algorithm described in the previous subsection. They suggest simulating M par-
allel Markov chains, so that at each time step t; the Markov chain state is��

d.t/1 ; u
.t/
1

�
;
�

d.t/2 ; u
.t/
2

�
; : : : ;

�
d.t/M ; u

.t/
M

��
: Each of the pairs

�
d.t/i ; u

.t/
i

�
is called

a particle. The idea of carrying many designs at a time is reminiscent of genetic
algorithms. The algorithm then proceeds as follows.
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3.3.1 Algorithm of Amzal et al. (2006)

Step 0: Let
�

d.0/1 ;d
.0/
2 ; : : : ;d

.0/
M

�
be a collection of M designs. Set J D J .0/ :

Step 1: For i D 1; 2; : : : ;M W
1a. Use importance sampling (IS) to simulate the proposal design Qd.1/i given

Qd.0/i . This could be done using a random walk, or d.1/i could be chosen to be

independent of Qd.0/i . Call this proposal density qIS

� Qdjd.0/i
�

.

1b. For j D 1; 2; : : : ; J , simulate Q� .1/ij fromp .�/ and Qyij fromp
�

yj Q�.1/ij ;d.1/i
�

.

1c. Compute

Qu.1/i D
JY

jD1
u
�

d.1/i ; Q� .1/ij ; Qyij
�

and w.1/i D Qu.1/i
qIS

� Qd.1/i j Qd.0/i
� :

1d. Normalize the weights w.1/i so that they sum to 1.

Step 2: Use multinomial resampling to select
� Od.1/1 ; Od.1/2 ; : : : ; Od.1/M

�
from

� Qd.1/1 ; Qd.1/2 ; : : : ; Qd.1/M
�

using weights w.1/i and utilities Qu.1/i :
Step 3: For i D 1; 2; : : : ;M

3a. Use the Metropolis-Hastings (MH) algorithm to simulate Nd.1/i from some

proposal distribution qMH

�
dj Od.1/i

�
:

3b. For j D 1; 2; : : : ; J , simulate N� .1/ij fromp .�/ and Nyij fromp
�

yj Q�.1/ij ; Nd.1/i
�
:

3c. Compute

Nui D
JY

jD1
u
� Nd.1/i ; N� .1/ij ; Ny.1/ij

�
and ˛i D min

0

@1;
Nu.1/i qMH

� Od.1/i j Nd.1/i
�

Ou1qMH

� Nd.1/i j Od.1/i
�

1

A :

Step 4: Set d.1/i D Nd.1/i with probability˛i ; and d.1/i D Od.1/i with probability 1�˛i .
Step 5: Set t D t C 1; and J D J .t/ : Next, set d.0/ D d.1/.
Step 6: Repeat Steps 1–5 until the Markov chain has practically converged.
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4 Optimal Design for the Exponential Distribution

4.1 First-Order Model in p D 2 Variables

If we assume that the distribution of the lifetime Yi is exponential with mean
exp

�
ˇ0xi


; where ˇ D Œˇ0; ˇ1; : : : ; ˇp�

0 and x D Œ1; xi1; : : : ; xip�
0; then the

likelihood function is

L.ˇjy/ D
nY

iD1

1

expŒˇ0xi �
exp

˚
exp

�
ˇ0xi

�
:

We take as prior the normal distribution

ˇ �N
�
Œ�0; �1; : : : ; �p�

0; diag
�
�20 ; �

2
1 ; : : : ; �

2
p

��
:

For a relatively noninformative prior distribution the values of �2j can be taken to be
large. The log posterior for p D 2 predictor variables, is then

` .ˇ/ D logp .ˇjy/ D log c� 1

2�20
.ˇ0 � �0/

2� 1

2�21
.ˇ1 � �1/

2� 1

2�22
.ˇ2 � �2/2

� ˇ0x � 0 � ˇ1x � 1 � ˇ2x � 2 �
nX

iD1
yi exp Œ�ˇ0 � ˇ1xi1 � ˇ2xi2�

where

x � 0 D
nX

iD1
xi0 D n; and x � j D

nX

iD1
xij ; j D 1; 2:

The extension to p variables should be clear. The first partial derivatives are

@`

@̌ j

D �ˇj � �j

�2j
�x � 0C

nX

iD1
xij yi exp Œ�ˇ0 � ˇ1xi1 � ˇ2xi2� ; j D 0; 1; 2 (5)

and the second partials are

@2`

@̌ 2
j

D � 1

�2j
�

nX

iD1
x2ij yi exp Œ�ˇ0 � ˇ1xi1 � ˇ2xi2�

@2`

@̌ j @̌ k

D �
nX

iD1
xij xikyi exp Œ�ˇ0 � ˇ1xi1 � ˇ2xi2� :
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With these partial derivatives, we can use the Newton-Raphson method to find the
posterior mode. At the posterior mode Ǒ , we can estimate the covariance matrix of
the posterior distribution for ˇ (Gelman et al. 2004, Sect. 4.1):

V 	
h
�`00

� Ǒ�i�1 : (6)

In order to apply a genetic algorithm, we must specify a utility function U.d/ to
be maximized. We have considered the following:

U1 .d/ D
 

2X

iD0
Vi i

!�1
[sum of posterior variance of all parameters]

U2 .d/ D
 

2X

iD1
Vi i

!�1
[sum of posterior variance of slope parameters]

U3 .d/ D 1

det .V /
[proportional to volume of posterior probability region]

We applied a genetic algorithm that proceeds as follows:

Step 0: Begin with a collection D of N designs selected at random (uniformly
across the design space). Set k D 1.

Step 1: (Recombination or cross-over) SelectM pairs of designs at random. Each
pair of designs exchanges some information to create a new design. Add these
M new designs to the collection D.

Step 2: (Mutation) Select K designs from D and impose random variation in
some of the components. Add these new designs to the collection D:

Step 3: (Computing the fitness) For each of theNCMCK designs that comprise
D, compute the utility by repeating Steps 3a–e for j D 1; 2; : : : ; J:

Step 3a: Simulate ˇ.j / D .ˇ0; ˇ1; ˇ2/
0 from the prior distribution

p .ˇ0; ˇ1; ˇ2/ :

Step 3b: Simulate observations y.j /D .y1; y2; : : : ; yn/ from p
�

yjˇ.j /;d
�
:

Step 3c: Find the posterior mode Ǒ .j /.
Step 3d: Approximate the posterior covariance matrix V .j / using Eq. 6.

Step 3e: Using the above information, compute U
�

d;ˇ.j /; y.j /
�

.

Step 3f: To estimate the average fitness across these simulations, take

U.d/ D 1

J

JX

jD1
U
�

d;ˇ.j /; y.j /
�
:

Step 4: (Selection) Rank all the designs in D according to fitness: Select the
very best designs in D for sure, and randomly select other designs based on
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proportional selection from the remaining designs, to determine which designs
survive to the next generation. The probability of selection is greater for larger
values of Um .d/ : At this stage, N designs have been selected to survive to the
next generation.

Step 5: Set kD kC 1 and repeat Steps 1–4 until the desired number of genera-
tions has been computed.

4.2 Second-Order Model in p D 2 Variables

Suppose now that we have a second-order model in p D 2 variables; that is,

Yi � EXP
�
ˇ0 C ˇ1xi1 C ˇ2xi2 C ˇ11x

2
i1 C ˇ22x

2
i2 C ˇ12xi1xi2

�

The logarithm of the posterior distribution is then

` .ˇ/ D log c � 1

2�20
.ˇ0 � �0/

2 � 1

2�21
.ˇ1 � �1/2 � 1

2�22
.ˇ2 � �2/2

� 1

2�211
.ˇ11 � �11/2 � 1

2�222
.ˇ22 � �22/2 � 1

2�212
.ˇ12 � �12/2

�ˇ0x � 0 � ˇ1x � 1 � ˇ2x � 2 � ˇ11x � ;11 � ˇ22x � ;22 � ˇ12x � ;12

�
nX

iD1
yi exp

��ˇ0 � ˇ1xi1 � ˇ2xi2 � ˇ11x
2
i1 � ˇ22x

2
i2 � ˇ12xi1xi2


:

The first and second partial derivatives can be computed as in Eq. 5. The posterior
mode Ǒ can then be quickly determined by Newton-Raphson, and the posterior
covariance matrix can be estimated by Eq. 6. The GA for the second-order model
proceeds through essentially the same steps described in the previous subsection.

5 Results

To illustrate the genetic algorithm described in the previous section, we have
applied it to the problem of finding a 16-run design that minimizes the sum of
the posterior variances of the parameters for first-order and second-order models in
pD 2 variables. This is similar to A-optimality in classical design of experiments.

Suppose first that the design region is Œ�1; 1� � Œ�1; 1� : Based on experience
with optimal designs for normally distributed responses, we would expect that the
optimal design would place points near the corners of the design region for a first-
order model. After 1,000 generations, the best design among all of the designs in D
is shown in Fig. 1. However, this is not necessarily the best design that has occurred
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Fig. 1 Best design after 1,000 generations of GA for first-order exponential regression model on
square design region
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Fig. 2 Fitness across many generations of GA for first-order exponential regression model on
square design region

in the history of the genetic algorithm. In the context of optimal design, we define
the “fitness” of a design to be equal to the Bayesian A-optimality criterion (the sum
of the posterior variances), or whatever criterion is used for choosing an optimal
design. The plot of the fitness of the best design in each generation is shown in
Fig. 2. As expected, most of the design points cluster around the corners of the
design region. The fitness seems to increase, with some randomness, due to the
estimation (not evaluation) of the fitness for each design in Step 3f above.
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Fig. 4 Best design after 1,000 generations of GA for second-order exponential regression model
on square design region

To see what happens to an irregular design region, we considered the design
region Œ�1; 1� � Œ�1; 1� with the additional constraint that x1 C x2 � 1:5I this
effectively cuts off a triangular region in the upper right corner of the design region.
Figure 3 shows the best design after 1,000 generations.



316 B.R. Englert et al.

0 200 400 600 800 1000 1200

1.3

1.4

1.5

1.6

1.7

1.8

GenerationF
itn

es
s 

(R
ec

ip
ro

ca
l o

f S
um

 o
f P

os
te

rio
r V

ar
ia

nc
e)

50 simulations 100 simulations 200 simulations 400 simulations

Fig. 5 Fitness across generations of GA for second-order exponential regression model. The
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Fig. 6 Best design after 1,000 generations of GA for second-order exponential regression model
on irregular design region

We also ran the GA to find a near optimal design for a second-order model with
p D 2 variables. The best design after 1,200 generations is shown in Fig. 4. This
design has a structure that is similar to a central composite design, with two runs at
each corner, one axial point along each axis (both positive and negative) and several
points near the center. Figure 5 shows a trace plot of the best design’s fitness across
all 1,200 generations. There is a lot of noise in the estimation of the fitness, due
to the simulation that is required. We applied an increasing number of simulations
as the GA progressed, much like “temperature” increases in a simulated annealing
algorithm. Figure 6 shows the best design for a second-order model in two variables
with the same irregular region described above.
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6 Conclusions

We have shown how to apply genetic algorithms to find a near optimal design for
life testing experiments when there are two predictor variables and the response is
exponential. The genetic algorithms move very quickly away from a set of designs
chosen at random toward designs that are near optimal. Because we are using
simulation to estimate the value of the fitness (the sum of the posterior variances),
there is considerable noise in the successive values of the fitness. The near-optimal
Bayesian designs obtained by the genetic algorithm are similar to classical designs
such as the 2-level factorial design for a first-order design and a central composite
design for a second-order model. While the exponential distribution is somewhat
unrealistic in practice, we expect that the basic idea of the genetic algorithm for
optimal design will carry over to more realistic distributions, such as the Weibull,
which we will address in future studies. The issue of censoring, which we have
ignored here, will also be addressed in future work.
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Accelerated Lifetime Testing of Thermal
Insulation Elements

Rainer Göb, Kristina Lurz, and Ulrich Heinemann

Abstract Thermal insulation materials play an important role in the area of energy
technology. Thermal insulation elements (TIEs) are used in fields where high quality
and high convenience insulation is required as e.g. in buildings. The TIE manufac-
turing sector is evolving, but not completely mature. Producers and users have an
urgent demand for quality control techniques. Hitherto, quality control and service
lifetime prediction for TIEs have mainly been considered from a physical viewpoint
with strong emphasis on measurement issues. Rigorous statistical approaches are
still missing. From a review of the physical models for TIE degradation over time
we build a mixed nonlinear regression model of degradation as a function of time
and ambient temperature. The model accounts for measurement-to-measurement
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1 Physical Background

Thermal insulation elements (TIEs) are used for high quality and high convenience
insulation purposes. The essential quality characteristic of a thermal insulation
element is thermal conductivity. Thermal conductivity at a fixed temperature,
measured in units of Watt per meter times Kelvin (W= .m K/) is a function of two
main components: (1) The gaseous thermal conductivity �gas, and (2) the thermal
conductivity �w due to water content. The effect of these components on total
thermal conductivity � D �total is analysed by the additive model

�total D �ev C �gas C �w C �c; (1)

see Caps et al. (1997), Heinemann (2008). In the latter equation, �ev is the thermal
conductivity in the evacuated and dry state which depends on the solid conduction
and radiative transfer in the core material, and �c is a coupling term which becomes
noticeable at high gas pressure when the contact resistances between the grains
are thermally shorted by the gas molecules. The thermal conductivity of a TIE is
dependent on the thickness of the element. The thermal conductivity divided by
the thickness of an insulation element in units of meter leads to the heat transfer
coefficient, measured in units of W=

�
m2 K

�
, see e.g. Kreith and Bohn (2000).

The thermal performance of the insulation elements is very slowly degrading.
Gas and water vapour are gradually penetrating over time, and the thermal conduc-
tivity is slowly, but steadily increasing. Regulations as the Energy Saving Regulation
(EnEV) given by the German Federal Government in 2009, see Bundesregierung
der Bundesrepublik Deutschland (2007, 2009), impose restrictions on the thermal
performance of insulation material, which are often given in terms of upper
specification limits for the heat transfer coefficient. For instance, the heat transfer
coefficient of outer walls of newly installed residential buildings is not to exceed
0:28 W=

�
m2 K

�
. On the basis of such regulations, the TIE industry derives upper

specification limits of the thermal conductivity for the long-term performance.
To verify compliance to such specifications, producers and users need long-term
forecasts on the thermal conductivity.

The evolution of an elements’ thermal conductivity depends on endogenous
characteristics of the element and exogenous factors. The endogenous factors
are related to the elements’ technical design and to manufacturing factors. The
three main exogenous factors are environmental temperature, environmental air
humidity, usage time. The physical laws which express the dependence of the
additive components in Eq. 1 on these factors are nonlinear in nature. Hence the
corresponding statistical analysis is based on nonlinear regression models.

In experimental practice on TIEs, the readily accessible approach is to measure
the internal gas pressure and the water content, and to infer on the thermal
conductivity via the additive Eq. 1. An increase in the water content can be measured
by simple weighing.
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2 Statistical Issues

Scientific research on TIEs and the development of TIE industrial manufacturing
technology are in a phase of rapid evolution. The TIE manufacturing sector is
growing at remarkable annual rates, in particular in emerging industrial countries
like China. TIE manufacturing technology is not completely mature. Producers and
users face considerable quality problems. Since TIEs are primarily used for durable
installations, the prediction of service lifetime, i.e., the service time until violation
of specifications on thermal conductivity, is a paramount issue in the TIE industry.
Predictions for the service lifetime of the TIEs follow typical guarantee periods in
the German building industry, which are 2, 4 or 5 years or, if a long-term use is of
interest, even 10, 25 or 50 years.

Quality control and service lifetime prediction for TIEs have mainly been
considered from a physical viewpoint with strong emphasis on measurement issues.
A thorough statistical analysis is still missing.

In industrial contexts, service lifetime prediction has to be rapid. However,
even under accelerated levels of the influential factors temperature and humidity,
the increase of thermal conductivity is slow. Critical upper limits for the thermal
conductivity in TIEs are never attained over reasonably short experimental periods.
Lifetime distribution analysis, albeit based on accelerated experiments, cannot be
used. Service lifetime prediction has to be based on regression models. The statis-
tical analysis of experiments on TIEs has to account for three levels of variation:
(1) Measurement-to-measurement variation in runs of repeated measurements, (2)
run-to-run variation due to set-ups in measurement instruments and laboratory
environment, (3) unit-to-unit variation resulting from manufacturing instability.
Because of the immaturity of the TIE manufacturing sector, unit-to-unit variation
is particularly strong and serious.

The subsequent study accounts for the above requirements by analysing experi-
ments on TIEs by a nonlinear mixed regression model. Such models, also referred
to as hierarchical nonlinear regression models, have recently received considerable
interest in the literature, see the survey Davidian and Giltinian (2003). The interest
in design requires explicit expressions for the variance components associated to the
different levels of variation. This is best achieved by partially linearising the model
as suggested in Göb and Lurz (2010). Section 3 describes the structure of TIE testing
experiments. Section 4 transfers the existing physical modeling approaches into a
statistical model which is identified as special case of a general mixed model scheme
in Sect. 5. The empirical analysis of the general mixed model scheme is developed
by Sect. 6. Section 7 specialises to the general results to the specific TIE model, and
Sect. 8 exemplifies by applying to data from a laboratory experiment on TIEs. Issues
of optimal design are considered in Sect. 9.
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test unit exposure measurements of thermal conductivity

1 non-accelerated Y11, Y12, ..., Y1,n1

2 non-accelerated Y21, Y22, ..., Y2,n2

...
...

...
m1 non-accelerated Ym11, Ym12, ..., Ym1nm1

m1 + 1 accelerated Ym1+1 1, Ym1+1 2, ..., Ym1+1 nm1+1

m1 + 2 accelerated Ym1+2 1, Ym1+2 2, ..., Ym1+2 nm1+2

...
...

...
m = m1 + m2 accelerated Ym1+m2 1, Ym1+m2 2, ..., Ym1+m2 nm1+m2

arrangement of measurement time points

0 ti1 aui ti2 ... ti ni 1 ti ni L

accelerated

exposure

measurement

period

= =-

Fig. 1 Testing experiment

3 TIE Testing Experiments

Figure 1 outlines a common scheme for accelerated testing experiments for TIEs.
Consider a set of m test units. The units 1; : : : ; m1 are held at non-accelerated
normal usage conditions over the total experimental period of L days. Each unit
i D m1 C 1; : : : ; m1 C m2 D m is exposed to accelerated conditions with respect
to temperature and/or humidity in climatic chambers over aui < L days. On each
test unit i D 1; : : : ; m, ni measurements are taken at times aui D ti1 < ti2 < : : : <

tini D L where aui D 0 for units i D 1; : : : ; m1.
We consider an instance of the above general experimental scheme, specialised

in several respects. The thermal conductivity is measured directly. Precise measure-
ments, so-called absolute value measurements, are expensive in time and equipment.
A large number of repetitions is unfeasible for an industrial company, the sample
sizes ni on the test units usually remain at the lowest supportable level. The design
developed in Sect. 9, below, assumes measurement samples of size ni D 4 on each
test unit.

It is assumed that the elements under investigation contain desiccants and getter
materials to absorb penetrating water vapour, so that the influence of water vapour
on the element’s degradation is negligible. This has consequences for the exper-
imental design and the experimental analysis. The experimental design controls
the factor temperature only, whereas humidity remains uncontrolled at ambient
levels. Non-accelerated exposure is equivalent to storage at a lower temperature Tl,
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accelerated exposure is equivalent to storage at a higher temperature Tu for all
units i D 1; : : : ; m. In the model Eq. 1, the water vapour component �w can be
neglected.

4 The Model

The statistical model is based on a special and simplified case of Eq. 1.
The gaseous thermal conductivity as a function �gas D �gas.pgas/ of the gas

pressure pgas, measured in bar, in Eq. 1 is modeled by the Knudsen equation

�gas.pgas/ D �fg

1C p1=2
pgas

; (2)

see Caps et al. (1997). Here �fg is the thermal conductivity of the free and still gas,
and p1=2 the pressure at which the thermal conductivity of the gas equals one half
of �fg. The application of the Knudsen equation in describing the gaseous thermal
conductivity of TIEs traces back to Kaganer (1969). Recent research has extensively
investigated and validated the use of the equation for modeling the gaseous thermal
conductivity of various core materials, see Caps et al. (1996, 1997) and Heinemann
et al. (1999).

The dependence of gas pressure pgas on time and temperature is expressed by an
Arrhenius-type function. Let T0 be a reference temperature, and let a test unit be
stored x time units at a temperature level T . Then the increase �pgas in pressure
over the x time units is

�pgas D c � exp

�
ı

R

	
1

T0
� 1

T


�
x: (3)

In Eq. 3, the acceleration factor c depends on general material properties and
on characteristics of an individual test unit, the activation energy ı, measured in
J=mol, depends on general material properties, and R D 8:314472 J= .mol K/ is the
universal gas constant.

For the purposes of experimental analysis and forecasting, the coupling term
�c in Eq. 1 can be ignored. The coupling effect becomes noticeable for high gas
pressures pgas only. At pgas D 10 mbar, the contribution of �c to total thermal
conductivity � D �total is approximately 4% only. Ten mbar already lead to a
thermal conductivity far beyond criticial specification limits which are not attained
in relatively short-lasting experiments.

The thermal conductivity �w due to water content is ignored by assuming the
presence of efficient getter and absorption materials in the TIE, see Sect. 3, above.

Summarising all assumptions and Eqs. 1, 2, and 3, we obtain the following
equation for a measurement of total thermal conductivity �total after x time units
exposure at non-accelerated temperature Tl and a time units exposure at accelerated
temperature Tu:
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�total D �ev C �gas.pgas/ D �ev C �fg

1C p1=2
pgas

D

�ev C �fg

1C 1

p0
p1=2
C c
p1=2

�
exp

�
ı
R

	
1
T0
� 1
Tl


�
xCexp

�
ı
R

h
1
T0
� 1
Tu

i�
a

�
;

(4)

where p0 is the initial gas pressure in the TIE.
Among the three levels of variation discussed in Sect. 2, the model will not

account for run-to-run variation due to set-ups in measurement instruments and
laboratory environment. For the considered absolute value measurements of thermal
conductivity such effects are basically negligible. Nevertheless, the model has to
account for measurement-to-measurement variation and for unit-to-unit variation.

Unit-to-unit differences due to inhomogeneous manufacturing become notice-
able in gas pressure, in particular, in the parameters p0 (initial gas pressure) and c
(acceleration factor). Accordingly, for unit i , we introduce a random deviation bi1 of
the relative initial gas pressure p0=p1=2 from the population average, and a random
deviation bi2 of the relative acceleration factor c=p1=2 from the population average.
Consider the thermal conductivity measurement Yij obtained on unit i at the j th
measurement time in a testing experiment as described by Fig. 1. In Eq. 4, we
introduce random deviations bi1, bi2 of unit i from the population average, and
rename the parameters in a manner more familiar in regression analysis. Then we
can model the conditional expectation EŒYij jbi1; bi2� by the nonlinear mixed model
regression functionEŒYij jbi1; bi2� D f .xij ; ai ;ˇ; ı;bi /, where

EŒYij jbi1; bi2� D f .xij ; ai ;ˇ; ı;bi / D

�ev C �fg �
(

1 �
"

1C ˇ1 C bi1 C .ˇ2 C bi2/ �
�

exp

�
ı

R
aTl

�
xij C exp

�
ı

R
aTu

�
aui

�#�1)
:

(5)

Table 1 explains and relates the parameters of the regression function Eq. 5 to the
parameters in Eq. 4.

In Göb and Lurz (2010) it is shown that the direct analysis of the nonlinear mixed
regression function Eq. 5 runs into numerical and conceptual problems. Instead, it
is recommended to linearise Eq. 5 by the transformation

T .y/ D �fg

�fg � y C �ev
: (6)

Applying T both to the measurements Yij and to the conditional mean
EŒYij jbi1; bi2� D f .xij ; ai ;ˇ; ı;bi / leads to considering the mixed model
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Table 1 Parameters of model Eq. 5
�ev Thermal conductivity in the evacuated and dry state of the TIE

ˇ1 ˇ1 D p0=p1=2 average initial gas pressure in a TIE at time 0

ˇ2 ˇ2 D c=p1=2 average acceleration factor of a TIE

ı Activation energy

ˇ Vector ˇ D .ˇ1; ˇ2/
> of ˇ-regression coefficients

bi1 Random deviation of the relative initial gas pressure of unit i from the population average

bi2 Random deviation of the relative acceleration factor of unit i from the population average

bi Vector bi D .bi1; bi2/
> of random deviations of unit i from the population average

xij Total non-accelerated exposure time of unit i until measurement j

Tl Non-accelerated temperature in K

Tu Accelerated temperature in K

#l #l D Tl � 273:15 non-accelerated temperature in ıC

#u #u D Tu � 273:15 accelerated temperature in ıC

aTl Transformed non-accelerated temperature aTl D 1
T0
� 1

Tl

aTu Transformed accelerated temperature aTu D 1
T0
� 1

Tu

aui Total accelerated exposure time of unit i

R Universal gas constant R D 8:314472 J= .mol K/

�fg Thermal conductivity �fg D 26 � 10�3 W= .m K/ of the free and still gas

T .Yij / D Zij D g.xij ; ai ;ˇ; ı;bi /C "ij ; (7)

g.xij ; ai ;ˇ; ı;bi / D T
�
f .xij ; ai ;ˇ; ı;bi /

�
D

1C ˇ1 C bi1 C .ˇ2 C bi2/

�
exp

�
ı

R
aTl

�
xij C exp

�
ı

R
aTu

�
aui

�
:

(8)

The parameter �ev is integrated into the transformed observations and cannot be
analysed empirically on grounds of Eqs. 7 and 8. Section 7 explains how to handle
the parameter �ev. The assumptions on the stochastic parameters bi and "ij are
discussed in the more general framework established by the subsequent Sect. 5.
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5 A General Mixed Model Scheme

The model defined by Eqs. 7 and 8 is a special case of a more general mixed model
scheme.

We consider a group structured sampling model. Let 1; : : : ; m be independent
groups with ni observations Zi1; : : : ; Zini in group i . The sampling vector Z i D
.Zi1; : : : ; Zini /

> in group i follows the model

Z i D Xi˛i C "i : (9)

"i is a vector of residuals with EŒ"i � D 0, CovŒ"i � D �2Ini . Xi is an ni � q design
matrix of known regressor values. The q-dimensional random parameter ˛i follows
the equation

˛i D �iˇi C d i ; (10)

where �i D �i .ı/ is a nonsingular q � q matrix depending on further parameters
ı, and d i is a fixed and known vector in R

q . The q-dimensional random parameter
ˇi follows the equation

ˇi D ˇ C bi ; (11)

where ˇ is an unknown vector in R
q , and bi is a q-dimensional random vector with

the properties

EŒbi � D 0; CovŒbi � D EŒbib
>
i � D B; CovŒbi ; "i � D EŒbi"

>
i � D O: (12)

The variance-covariance matrix of the sampling vector is

CovŒZ i � D �iXiB.�iXi /
> C �2Ini : (13)

The model defined by Eqs. 7 and 8 is obtained with the following definitions:

ˇ D
�
ˇ1

ˇ2

�
; bi D

�
bi1

bi2

�
; d i D

�
1

0

�
; ı D ı; (14)

�i D �i .ı/ D
�
1 exp

�
ı
R
aTu

�
aui

0 exp
�
ı
R
aTl

�
�
; X i D

0

B
@

1 xi1
:::
:::

1 xini

1

C
A : (15)

In the variance-covariance matrix Eq. 13, the component �iXiB.�iXi /
>

corresponds to unit-to-unit variation, and �2Ini corresponds to measurement-to-
measurement variation.
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6 Empirical Analysis of the General Mixed Model Scheme

Consider the general mixed model scheme introduced in Sect. 5 in the follow-
ing knowledge context. (1) Known: design matrices Xi , d i , matrices �i . � /.
(2) Unknown: regression parameter vectors ˇ and ı, random effect vectors bi ,
residual variance �2, variance-covariance matrix CovŒbi � D B.

Many approaches to the analysis of linear mixed models have been discussed in
literature, see Christensen (1996) for a survey. Throughout, these approaches need
additional assumptions, generally stipulating a diagonal random effects variance-
covariance matrix B. This assumption is not necessarily valid in the application
to TIEs. The situation is further complicated by the nonlinear component �i .ı/.
Methods for the estimation of ı are considerably simplified if explicit expressions
for the estimates of the remaining unknown parameters are available.

The theory of the method suggested by Göb and Lurz (2010) proceeds in two
steps. Step I: Assume known ı, and reduce the analysis of all further parameters
to standard OLS methods based on minimising the estimated residual varianceb�2.
B is made estimable by imposing the intuitively plausible ANOVA-like restrictionP

i
bbi D 0 on the estimates of the random deviations. Step II: ı is estimated by

minimising
P

i kbbi .ı/k2 in ı.

6.1 Step I Estimators and Predictors Under ı Known

Step I provides the following results, depending on the argument ı. The estimator
of ˛i and the unbiased estimator of ˇ are

b̨i D .X>i Xi /
�1X>i Z i ; b̌ D 1

m

mX

iD1
��1i .b̨i � d i /; (16)

where

EŒb̨i � D �iˇ C d i ; CovŒb̨i � D �2.X>i Xi /
�1 C �iB�>i : (17)

The estimator of bi is

bbi D ��1i .b̨i � d i /� b̌ D ��1i .b̨i � d i / � 1

m

mX

lD1
��1l .b̨l � d l /: (18)

In each group i , the residual vector "i is estimated by

b"i D Z i � Xib̨i : (19)
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Let N D n1 C : : : C nm be the total sample size. An unbiased pooled variance
estimator for the residual variance �2 is

S2Z D 1

N �mq

mX

iD1
b">i b"i : (20)

Unbiased estimators for B and for CovŒb̌� are

bB D 1

m � 1

mX

iD1
bbibb>i � S2Z

m

mX

lD1
��1l .X>l Xl /

�1.��1l />; (21)

dCovŒb̌� D 1

m

(
bB C S2Z

m

mX

lD1
��1l .X>l Xl /

�1.��1l />
)

: (22)

An unbiased estimator for CovŒbbi � D CovŒbbi ;bbi � is

dCovŒbbi � D dCovŒb̌�C
�
1 � 2

m

�n
S2Z ��1i .X>i Xi /

�1.��1i /> CbB
o
: (23)

An unbiased estimator for CovŒbbi ;bbj �, i ¤ j , is

dCovŒbbi ;bbj � D S2Z
m2

mX

lD1
��1l .X>l Xl /

�1.��1l /> � 1

m
bB

�S
2
Z

m

�
��1i .X>i Xi /

�1.��1i /> C ��1j .X>j Xj /
�1.��1j />

�
:

(24)

Let � be a q � q matrix, and let x be a vector in R
q . Consider the responseZ.x/ D

.�.ˇ C b/ C d/>x C " under the regressor x where the random effect b and the
residual " are independent of all variables Zij used for parameter estimation. A
predictor is given by

bZ.x/ D .�b̌C d/>x (25)

with EŒbZ.x/� D EŒZ.x/�. An unbiased estimator of the prediction error variance
is

b�2bZ.x/�Z.x/ D

S2Z C x>�
�mC 1

m
bB C S2Z

m2

mX

lD1
��1l .X>l Xl /

�1.��1l />
�
�>x:

(26)
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6.2 Distribution Analysis for Step I Estimators and Predictors

We consider two additional distribution assumptions: (1) bi has a q-dimensional
normal distribution N.0;B/. (2) The residual vector "i has a normal distribution
N.0; �2I/. In Göb and Lurz (2010), the subsequent results on the distribution of
estimators and predictors are established.

The random variables
Pm

iD1bbibb>i and S2Z are independent. N�mq
�2

S2Z has the
2-distribution 2.N �mq/.

The prediction error has a univariate normal distribution with mean 0 and
variance �2bZ.x/�Z.x/.

Under small residual variance �2, such that �2
Pm

iD1 ��1i .X>i Xi /
�1.��1i /> is

negligible in comparison with B, b̌ and
Pm

iD1bbibb>i are approximately independent.
Hence the prediction error bZ.x/ � Z.x/ D .�.b̌� ˇ � b//>x and the estimator
b�2bZ.x/�Z.x/ of the prediction error variance are approximately independent. In Göb

and Lurz (2010), the method of Satterthwaite (1941, 1946) and Welch (1947), is
applied to obtain for the ratio

bZ.x/�Z.x/

b�bZ.x/�Z.x/
(27)

an approximate central t-distribution t.�/ with estimated degree of freedom

� D
b�4bZ.x/�Z.x/

S4
Z
�2

N�mq C
�

mC1
m.m�1/

�2P
1�i;j�m

�
x>�

dCovŒbbi ;bbj ��>x
�2 ; (28)

where

� D 1 � 1

m
x>�

mX

lD1
��1l .X>l Xl /

�1.��1l />�>x: (29)

Hence approximate bounds for prediction intervals forZ.x/ are of the form

bZ.x/ �=C zb�bZ.x/�Z.x/; (30)

where z is an appropriate quantile of the central t-distribution t.�/.
The results obtained are valid in the case that the assumption of the normality of

the q-dimensional normal distribution of bi and the residual vector "i holds. The
assumption of normally distributed residuals "i is well-supported. The residuals
represent measurement-to-measurement error. Following Gauss’ derivation of the
normal distribution, there are good reasons to assume measurement errors to be
normally distributed. The normality assumption for the random regression param-
eters bi is more questionable. These parameters represent item-to-item variation
due to manufacturing or handling. Though many manufacturing processes exhibit
normally distributed deviations from target, there is clearly no general law to support
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this assumption in any particular case. In the presented context of the analysis of
TIEs usually small sample sizes occur, so that the assumptions cannot be supported
by asymptotic results. Results obtained in course of the empirical study presented
in Sect. 8, like residual plots and quantile plots, do not contradict the normality
assumption. However, the validity of the normality assumption cannot thoroughly
be verified at the moment and has to be postponed to future investigations.

6.3 Step II Estimation of ı

ı is estimated by minimising O.ı/ D P
i kbbi .ı/k2 in ı, where bbi .ı/ is taken

from Eq. 18. In Göb and Lurz (2010), the problem is reduced to a multiresponse
regression problem. A simple solution is obtained if one component

P
i
bbij .ı/2 is

dominating inO.ı/. This is the case for the application of the general scheme, Eqs. 7
and 8, to TIE analysis, where O.ı/ 	 P

i
bbi1.ı/2. In this case, point estimates and

confidence regions are easily obtained from classical linear or nonlinear regression
analysis.

For prediction purposes, it is suggested in Göb and Lurz (2010) to calculate a
confidence region C for ı and to use the value ı 2 C which maximises the length
of a two-sided prediction interval of the type Eq. 30. A prescribed level 
 in the
final prediction interval is obtained via the Bonferroni inequality by choosing partial
levels 
i D 0:5.1C 
/ for C and for the prediction interval depending on ı.

7 Estimation of Mixed Model Parameters from TIE
Experiments

The linearised TIE model defined by Eqs. 7 and 8 can be analysed empirically
by applying the results of Sect. 6, inserting the model quantities according to the
definitions in Eqs. 14 and 15.

Being a parameter of the linearising transformation Eq. 6, the parameter �ev

(thermal conductivity in the evacuated and dry state of the TIE) cannot be estimated
on grounds of the linearised model. For some types of TIEs, there is reliable expert
information on �ev, e.g. 1W= .m K/ � �ev � 4W= .m K/. Furthermore a negative
relation between �ev and the parameter ˇ1 exists due to the nature of the two param-
eters. Keeping this relation in mind, it has to be ensured that ˇ1 is a positive real
number. The subsequent empirical study uses the worst forecast estimator for �ev

suggested in Göb and Lurz (2010): For each value �ev from a prior information set
D, all other parameters are estimated from the linearised model. The estimatorb�ev

is the value fromD which leads to the less favourable, i.e., highest, forecast of total
thermal conductivity for a specified forecasting time, under the restriction ˇ1 > 0.
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8 Empirical Analysis of a TIE Experiment

We apply the method described in Sect. 7 to experimental data obtained at the
Bavarian Center for Applied Energy Research, Würzburg, Germany.mD 9 test units
were subject to an experiment as described in Sect. 3. m1 D 4 test units were stored
at #l D .Tl � 273:15/ıC D 20ıC (non-accelerated exposure) permanently,m2 D 5

test units were initially exposed to #u D .Tu � 273:15/ıC D 70ıC (accelerated
exposure) temporarily, and then measured at the non-accelerated temperature of
#l D 20ıC. The sample sizes were very small: Three absolute value measurements
were taken on each of the non-accelerated units, two measurements on each of the
accelerated units. The following estimates were obtained:

b�ev D 3:45; b̌
1 D 0:000403441; b̌

2 D 0:000604925; bı D 42 879:7;

b�2 D 0:0000143776; bB D
�
0:0002444814 1:20215� 10�6
1:20215� 10�6 3:61278� 10�8

�
:

The interest from the TIE producer’s perspective is to predict the thermal con-
ductivity �.x/ at the end of the TIE’s guarantee period, which ranges between 2,
4 or 5 years and 10, 25 or 50 years for long-time installations in buildings. We
exemplarily demonstrate the prediction of the service lifetime for a guarantee period
of 10 years (x D 3,650 days) under 20ıC ambient temperature, which is considered
a conservative upper bound for the average daily temperature in Germany over the
course of a year. On grounds of the linearised model, the prediction bZ.x/ by Eq. 25
and the two-sided prediction limits ZL.x/ < ZU .x/ by Eq. 30 at a confidence level
of 0.95 are

bZ.x/ D 1:36992; ZL.x/ D 1:16049; ZU .x/ D 1:57934:

The estimated prediction error variance isb�bZ.x/�Z.x/ D 0:00440372where the three
components in Eq. 26 are

S2Z D 0:0000143776; x>�
�mC 1

m
bB
�
�>x D 0:00434685;

x>�
�S2Z
m2

mX

lD1
��1l .X>l Xl /

�1.��1l />
�
�>x D 0:0000424975:

The component x>�.mC1
m
bB/�>x corresponding to unit-to-unit variation strongly

dominates the total prediction variance, the components in S2Z corresponding to
measurement-to-measurement variation are very small.

Both the point prediction bZ.x/ and the limits of the prediction interval have
to be retransformed by applying the inverse T �1 of the linearising transformation
Eq. 6. The predicted thermal conductivity and the corresponding prediction limits at
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a confidence level of 
 D 0:95 are

b�.x/ D 0:0104707; �L.x/ D 0:0070458; �U .x/ D 0:0129874:

9 Experimental Design

Long-term predictions on thermal conductivity are the primary interest of the
statistical inference from experiments on TIEs. Hence the quality of experimental
design has to be evaluated with respect to forecasting accuracy, i.e., the prediction
error variance. Designs minimising the prediction error variance for a prescribed
forecasting horizon are a special case of C-optimal designs, see Atkinson et al.
(2007). Subsequently, predictions are considered for a guarantee period of 10 years,
i.e., x D 3,650 days, under the non-accelerated temperature 20ıC.

The experimental design has to specify the following issues: (1) Levels of
temperature Tl; Tu at normal usage conditions and at accelerated conditions. (2)
Total number m of testing units, allocation numbers m1, m2 of units over non-
accelerated and accelerated conditions. (3) Total length L of experimental period.
(4) For each testing unit i , the length aui of exposure to accelerated conditions. (5)
For each testing unit i , total number ni of measurements and times ti1; : : : ; tini of
measurements. Restrictions of industrial practice lead to the following simplifica-
tions: (1) The accelerated exposure length is either aui D 0 or aui D au identical
for all units in accelerated exposure. (2) Equally distanced measurement times
ti1; : : : ; tini over the measurement periodL�aui . (3) Cost restrictions require a small
number of measurements ni D 4 for each testing unit i . The result of the experiment
in Sect. 8 shows that measurement-to-measurement variation is very small so that a
small number of measurements is tolerable.

The empirical basis for constructing an optimum design are the results of
the experiment considered in Sect. 8, in particular the estimates b̌, b�2 DS2Z , bB.
The interdependence of the parameter estimates is too involved for determining
an optimum design analytically. Instead, we use a simulation approach, based
on the normality assumptions of Sect. 6.2. All parameter estimators depend on
the estimates b̨i . Because of the independence of the groups b̨1; : : : ;b̨m are
independent. Each b̨i has a bivariate normal distribution with parameters from
Eq. 17. Inserting the estimators obtained in Sect. 8 into Eq. 17, vectors .b̨1; : : : ;b̨m/
can be simulated for each interesting design constellation. For each simulated vector
.b̨1; : : : ;b̨m/, all parameters are re-estimated and the two-sided level 0.95 prediction
interval for a 10-year horizon under the non-accelerated temperature #l D 20ıC is
calculated. Each particular design constellation is evaluated by the average length
of intervals from 10,000 simulation runs.

Due to the presence of a mixed model, the construction of an experimental
design minimising the prediction error variance requires to distinguish between the
uncertainty in the prediction caused by unit-to-unit variation and the part of the
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prediction error variance associated to measurement error. In the present industrial
environment, unit-to-unit variation will always be strongly dominating, see the
experimental results in Sect. 8, and the accuracy of the prediction is primarily
influenced by the number of testing units. The temperature levels, the length of
the accelerated exposure period, and the length of the total experimental period
have only small impact on the total length of the prediction interval, but rather
influence on coefficients of the estimated measurement variance. Therefore, the
design analysis proceeds as follows:

• The total length of the prediction interval

2 � z �b�bZ.x/�Z.x/; (31)

is used to assess the influence of the numberm of experimental units.
• The part

˚ WD x>�

 
S2Z
m2

mX

lD1
��1l .X>l Xl /

�1.��1l />
!

�>x (32)

of the prediction error variance is considered to assess the influence of the follow-
ing design components: temperature levels Tl; Tu, length aui of the accelerated
exposure period, length of the total experimental period, allocation numbers m1

(number of units without accelerated exposure) and m2 (number of units with
accelerated exposure).

9.1 Choice of the Numbers m, m1, m2 of Testing Units

To demonstrate the influence of the number of testing units m on the length of the
prediction interval Eq. 31, m is varied while all other experimental factors are kept
constant.

Figure 2 shows that a huge improvement in the length of the prediction interval
can be achieved by increasing the number of testing units involved in the experiment
up to a number of about 24. Only minor improvement can be observed when
including more than about 24 testing units.

To receive information about the influence of the allocation numbersm1 andm2,
we compare the term ˚ , see Eq. 32, for the two cases m1 D m2 and m1 D 2m2.
As Fig. 2 reveals, the case m1 D m2, i.e., storing the same number of units under
accelerated and under non-accelerated temperature, shows better results than the
set-upm1 D 2m2.
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Fig. 2 Length of the prediction interval (unit: W= .m K/) and term ˚ as a function of the number
m D m1 C m2 of testing units. m1;m2: allocation numbers of units over non-accelerated and
accelerated conditions. Levels of the experimental factors: Temperatures: #l D 25ıC, #u D 70ıC,
L D 120 days, au D 60 days, ni D 4, equally distanced ti1; : : : ; tin4 over the measurement period
L� aui

9.2 Choice of the Length L of the Experimental Period

To analyse the influence of extending the length L of the experimental period,
we vary L while keeping all other experimental factors constant and observe the
term ˚ , see Eq. 32.

Figure 3 shows the term ˚ as a function of the length L of the experimental
period in days. Strong improvement in ˚ can be achieved when choosing
L� 150 days.

9.3 Choice of Temperature Levels Tl; Tu and of the Length au

of the Accelerated Exposure Period

The non-accelerated temperature Tl is prescribed at .273:15 C 25/ K, which is
considered to be an upper bound for the average temperature stress in applications.
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0.00005

storing time at 70°  C: 60 days

Fig. 3 ˚ as a function of the length L of the experimental period in days. Levels of the
experimental factors: Temperatures: #l D 25ıC, #u D 70ıC, au D 60 days, ni D 4, equally
distanced ti1; : : : ; tin4 over the measurement period L� aui , m1 D 6 D m2) m D 12.

Fig. 4 Optimum combinations of accelerated exposure time au and accelerated temperature #u
under four levels of the total length L of the experimental period. ni D 4, measurement times
equally distanced ti1; : : : ; tin4 over the measurement period L� aui , m1 D 6 D m2) m D 12

In industrial applications, the interest is to reduce the length of the experimental
period L, in particular the accelerated exposure time au, so as to reduce costs and
achieve rapid decisions, without a significant loss in prediction precision. Under a
prescribed level of forecasting reliability 
 , a reduced experimental period au can
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Fig. 5 ˚ as a function of the accelerated exposure period au in days. Levels of the experimental
factors: Temperatures: #l D 25ıC, #u D 70ıC, L D 120 days, ni D 4, equally distanced
ti1; : : : ; tin4 over the measurement period L� aui , m D 12, m1 D 6 D m2

be compensated by an appropriately increased accelerated experimental temperature
Tu. Figure 4 considers four values of the total length L, in days, of the experimental
period: L D 180, L D 140, L D 100, L D 60. The horizontal axis is indexed by
the accelerated exposure time au, in days. In each block, the left-hand vertical axis
is indexed by the accelerated temperature level #u D Tu � 273:15, the right-hand
vertical axis by the variance component ˚ , which expresses the design effect.
The curve associates each accelerated exposure time au with the corresponding
accelerated temperature level #u D Tu �273:15which provides the minimum value
of ˚ . Increased accelerated temperature goes along with decreased exposure time,
and also with a decrease in ˚ . However, this effect cannot be exploited ad libitum.
The practically maximum accelerated temperature #u is around 80ıC. Exposure at
higher temperatures causes immediate damages in the TIEs. Decreasing the total
length L inflates the variance component ˚ . Small L below 100 days implies
very high ˚ , and leads to practically unfeasible accelerated temperatures. The
experimenter can use Fig. 4 to choose the appropriate design under given restrictions
on time, temperature, and desired variance component˚ .

Figure 5 considers the choice of the optimal length au of the accelerated exposure
time under fixed total length L and a prescribed accelerated temperature level #u.
We consider #l D 25ıC, #u D 70ıC, and, in view of the preceding results, we
considerL D 120 days. Figure 5 shows that˚ as a function of au adopts a minimum
at approximately au D 55 days.

10 Conclusion and Outlook

Starting from physical models, we have established a statistical nonlinear mixed
regression model for the thermal conductivity of TIEs. The model accounts for two
levels of variation: measurement-to-measurement variation, and, important in view
of the present immaturity of the TIE manufacturing sector, unit-to-unit variation.
Techniques for model estimation, prediction, and experimental design have been
developed. However, there are issues remaining for future research. (1) The present
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model covers the factor time and temperature, but excludes the ambient factor
humidity. This is appropriate only for TIEs equipped with appropriate humidity
getters. To account for a larger class of TIEs, humidity should be integrated
in a future model. (2) The validity of the method for constructing approximate
prediction intervals strongly depends on the assumption that the measurement
variance component is small in comparison with the variance component due to
the TIEs. This assumption widely holds in the present state of not completely
mature TIE manufacturing. However, a valid technique should also be developed
for applications to TIEs from more homogeneous manufacturing likely to evolve
over the next years.
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Energieeinsparverordnung vom 29. April 2009. Bundesgesetzblatt Jahrgang 2009, Teil I, Nr.
23, pp. 954–989.

Caps, R., Hetfleisch, J., Rettelbach, T., & Fricke, J. (1996). Thermal conductivity of spun glass
fibers as filler material for vacuum insulations. Thermal Conductivity, 23, 373–382.

Caps, R., Rettelbach, T., Ehrmanntraut, M., Korder, S., & Fricke, J. (1997). Development of
vacuum super insulations with glass cover and powder filling. In R. S. Graves & R. R. Zarr
(Eds.), Insulation materials: Testing and applications (Vol. 3. ASTM STP 1320) (pp. 270–
282). West Conshohocken: American Society for Testing and Materials.

Christensen, R. (1996). Plane answers to complex questions: The theory of linear models (2nd ed.).
New York/Berlin/Heidelberg: Springer.

Davidian, M., & Giltinian, D. M. (2003). Nonlinear models for repeated measurement data: An
overview and update. Journal of Agricultural, Biological, and Environmental Statistics, 8(4),
387–419.
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Proposal of Advanced Taguchi’s Linear Graphs
for Split-Plot Experiments

Tomomichi Suzuki, Hironobu Kawamura, Seiichi Yasui, and Yoshikazu Ojima

Abstract Taguchi’s orthogonal arrays and linear graphs are convenient tools for
the design of fractional factorial experiments, especially for practitioners. Taguchi
also proposed how to use them in split-plot designs and prepared linear graphs
for split-plot designs. For the orthogonal array of order 16, Taguchi proposed one
which is called L16 orthogonal array. Taguchi presented 18 linear graphs when a
L16 orthogonal array is used in split-plot designs. Those linear graphs are capable of
showing main effects of whole plots, subplots, sub-subplots, and so on, but they are
not capable of showing interaction effects of plots of different levels. Also, those
linear graphs do not cover all the possible designs, and there exist a lot of other
linear graphs that can be applied when using L16 orthogonal arrays. The primary
objective of this paper is to propose an improved version of linear graphs. Another
purpose of this paper is to investigate how to list all the possible linear graphs that
can be applied when using L16 orthogonal arrays. A proposal is made and many new
linear graphs are presented.

Keywords Fractional factorial design • Two-factor interaction • Orthogonal array

1 Introduction

Fractional factorial designs are popularly used in screening stages. Orthogonal
arrays (Hedayat et al. 1999) are effectively applied in those designs. The widely
used approach for designing those designs is described in many text books such
as Box et al. (2005) and Wu and Hamada (2000). There is another approach
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proposed by Taguchi (1976). Taguchi’s orthogonal arrays and linear graphs are
convenient tools for the design of fractional factorial experiments, especially for
practitioners. Taguchi also proposed how to use them in split-plot designs and
prepared linear graphs for split-plot designs. For the orthogonal arrays of order 16,
Taguchi proposed one which is called L16 orthogonal array. Taguchi presented 18
linear graphs when a L16 orthogonal array is used in split-plot designs. Those linear
graphs are capable of showing main effects of whole plots, subplots, sub-subplots,
and so on, but they are not capable of showing interaction effects of plots of different
levels. Also, those linear graphs do not cover all the possible designs, and there exist
a lot of other linear graphs that can be applied when using L16 orthogonal arrays.

The primary objective of this paper is to propose an improved version of linear
graphs. The secondary purpose of this paper is to investigate how to list all the
possible linear graphs that can be applied when using L16 orthogonal arrays.
A proposal is made and many new linear graphs are presented.

2 Designing Fractional Factorial Experiments

In this chapter, two approaches of designing fractional factorial designs using
orthogonal arrays are explained. One is the conventional approach and the other
one is the Taguchi approach.

2.1 Conventional Approach to Fractional Factorial
Experiments

The conventional approach to fractional factorial experiments is to use defining
relations. Generating relations (generators) are chosen to run an experiment. All
the alias relationships are derived using the generators. For example, consider the
example of Table 1 presented in Box et al. (2005).

In this case, the generating relation of the design is

D D ABC

and all the alias relations are

I D ABCD;A D BCD;B D ACD;C D ABD;D D ABC

AB D CD;AC D BD;AD D BC
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Table 1 An eight-run experiment
Factor a b c ab ac bc abc
Run# A B C D
1 � � � + + + �
2 + � � � � + +
3 � + � � + � +
4 + + � + � � �
5 � � + + � � +
6 + � + � + � �
7 � + + � � + �
8 + + + + + + +

This is a 24�1IV design. The effects, for example the main effect of A and the three
factor interaction effect BCD, are confounded. So, we cannot estimate all the effects
independently. Even if we can assume that the three or higher factor interactions are
negligible, two factor interaction effects are still confounded. If we want to estimate
a particular two factor interaction effects, we have to ignore the other, or to choose
other designs, namely a larger experiment.

The merit of this conventional approach is that once one masters it, various
experimental designs can be designed. The drawback, on the other hand, is that
this approach requires the knowledge about related DOE topics. Also, we have to
consider that there will be many interaction effects that are confounded.

2.2 Taguchi’s Approach to Fractional Factorial Experiments

Taguchi proposed to use linear graphs when applying orthogonal arrays. Linear
graphs are the graphs that represent the effects considered in a specific design. They
are capable of showing the main effects and the two factor interactions which are of
interest. The main effects are shown by a node and two factor interaction effects are
shown by an edge between two nodes. Taguchi proposed a catalog of linear graphs
for basic orthogonal arrays such as L8, L16, L32, L9, L27, etc. One of the linear graphs
in the catalog is used to accommodate the effects considered in a design. The linear
graphs for L16 prepared by Taguchi (1976) are shown in Fig. 1.

In Taguchi’s approach, one has to decide which two factor interactions shall
be estimated and which two factor interactions are negligible. The linear graph
which takes all the effects into account is then drawn. This linear graph is called
a ‘necessary linear graph’. The necessary linear graph is compared to the catalog of
the linear graphs which is readily prepared. The one which includes the necessary
linear graph is selected for actually designing an experiment.

An example of a linear graph is shown in Fig. 2. Figure 2 shows that the effects
considered in this design are: main effects A,B, and C, and two factor interactions
AB, AC, and BC.
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Fig. 1 Taguchi’s Linear Graphs for L16

A

B C

Fig. 2 A linear graph

Once the design is fixed, the experiment will be run and the analyses will be
performed using cook-book style text books. The merit of Taguchi’s approach is
that no subtle knowledge on DOE is required in performing the analyses. This
is why Taguchi’s approach became popular, especially for practitioners who are
usually not specialists in statistics. The most difficult part is the selection of the
appropriate linear graphs after drawing a necessary linear graph, which is still
generally easier than mastering DOE techniques. On the other hand, the drawback of
Taguchi’s approach is inflexibility of the designs. Prepared orthogonal arrays must
be used so that the number of runs the designer can select is fixed. Also, the user
might be performing the analyses without understanding the method which is not
recommended when applying any statistical method.
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3 Linear Graphs for Split-Plot Designs

3.1 Symbols Used in Linear Graphs

Taguchi proposed linear graphs not only for ordinary experiments but also for
split-plot designs. In this paper, we consider the cases when L16 is used. Taguchi
defines groups in columns of orthogonal arrays. The orthogonal array L16 is shown
in Table 2. The levels of the factors are expressed as 1’s and 2’s instead of C’s
and �’s.

The group corresponds to plots in split-plot designs. The whole plot can be
allocated to group 1, subplots to group 2, sub-subplots to group 3 and sub-sub-
subplots to group 4. In some cases, groups can be combined to form a new group.
When group 1 and group 2 are combined, whole plots can be allocated to group
1 and/or group 2, subplots can be allocated to group 3, and sub-subplots can be
allocated to group 4. Ojima et al. (2004) also give explanation on this matter.

Linear graphs for split-plot designs consider the level of groups. Instead of the
usual circles, Taguchi used various kinds of circles to depict the level of groups.
Watanabe et al. (2006) proposed to draw lines which depict the levels of groups
for two factor interactions. Since Taguchi used only solid lines for two factor
interactions even for split-plot designs, the proposal would be better fitted for
depicting the split-plot designs. These symbols are shown below (Fig. 3).

Using these symbols, it became possible to precisely express the designed split-
plot experiments. Regarding the levels of the groups of main effects and two factor
interactions, the following important facts are known.

1. The two factor interaction between factors from different levels of groups will
appear at the higher level of groups. For example, if A is allocated to group 2
and B is allocated to group 3, then the two factor interaction AB will appear in
group 3.

2. The two factor interaction between factors from the same level of groups will
appear at one of lower levels of groups. For example, if both A and B are
allocated to group 3, then the two factor interaction AB will appear either in
group 1 or in group 2.

It is important to know which two factor interactions appear as which level
of group, because the standard errors of the factors might differ largely among
the factors of different levels of groups. In other words, if a particular two
factor interaction effect shall be more accurately estimated than other effects,
the design can be selected so that the standard error for that effect becomes
smaller. This is also the reason why distinguishing the edges of linear graphs is
meaningful in split-plot designs. Furthermore we can select the source of variation
for factors considered in the experiment. Of course, there are trade-offs among
factors, so this idea is much more effective when priorities are different among the
factors.
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Table 2 Taguchi’s L16 orthogonal array

No. [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
3 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2
4 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1
5 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2
6 1 2 2 1 1 2 2 2 2 1 1 2 2 1 1
7 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1
8 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2
9 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

10 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1
11 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1
12 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2
13 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1
14 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2
15 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2
16 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1

a a a a a a a a
b b b b b b b b

c c c c c c c c
d d d d d d d d

Group 1 4

Component

2 3

Fig. 3 Symbols for linear graphs for split-plot designs

3.2 Linear Graphs for Split-Plot Designs

Taguchi proposed altogether 18 linear graphs in his book. Topologically there are
six different linear graphs. For each of the linear graph with the same topology,
Taguchi presented three linear graphs. But this catalog covers only a small part of
the possible split-plot designs using L16 orthogonal arrays. Washio (1988) gives 26
linear graphs which are capable of performing resolution IV designs, including three
linear graphs proposed by Taguchi. Both Taguchi and Washio do not use different
symbols for depicting the level of two factor interactions.

It is possible to improve the existing linear graph catalogs in two aspects. The
first is to list linear graphs which are topologically different. The second is to list
linear graphs which are topologically identical but have different structure when the
levels of the group of the effects (main effects and two factor interaction effects) are
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considered. Regarding the former aspect, Sekino et al. (2008) derived all the linear
graphs that can be allocated to L16 orthogonal arrays, which leaves the latter aspect
to be realized.

In order to examine the linear graphs for split-plot designs for the same topology,
we have introduced some measures for evaluating the designs.

• Interaction matrix and Interaction pattern

To express two-factor interactions in each design, we use the interaction matrix.
It shows the number of interactions associated with each factor. The rows and
the columns are arranged alphabetically. If we decide to consider a two-factor
interaction, value 1 is given to the corresponding cell. If we decide not to consider a
two-factor interaction, value 0 is given to the corresponding cell. The interaction
matrix can express all the two factor interactions which are of interest. The
interaction pattern expresses how many interactions each factor has, and these were
arranged in descending order. It is introduced by Li et al. (1991). Even if the
interaction matrix is different, the same interaction pattern might appear.

• Allocation pattern

Count the number of main effects within each level of group. When we have four
groups, list the number according to the level of group, from group 1 to group 4.
Those numbers can include zeros. These numbers are called allocation pattern.

Using these two measures, we examined the linear graphs. Of course, there are
linear graphs where the main effects are allocated to different levels of group. But
it might be possible to find linear graphs where the main effects are allocated to
the same group but the two factor interactions appear in different groups. In other
words, in such linear graphs, the main effects shown by nodes are the same, but the
two-factor interactions shown by edges are different.

Some of the linear graphs are shown in Fig. 4. The topology of the linear graph
is the same for all eight linear graphs. This topology is one of the six linear graphs
proposed by Taguchi. This is the case when there are seven main factors. Thus,
for each linear graph, there are eight two factor interaction effects. This is the case
where the interaction pattern is 6222211 and the allocation pattern is [0115]. We
can see there are designs where the main effects are allocated at the same places yet
the level of group for some interactions are different. For all the possible allocation
patterns, this topology gives total of 62 linear graphs. By using the obtained linear
graphs, there are wide options available when designing this experiment.

3.3 Design Example

In this section a design example using the proposed linear graphs are shown. Let us
look for a split-plot fractional factorial design of run size 16, which implies the use
of the L16 orthogonal array. In this example seven main effects (A, B, C, D, E, F, G)
are of interest, where the factor B is the whole plot, the factor G is the subplot, and
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2 431

6 875

Fig. 4 Linear graphs for split-plot designs

Fig. 5 The necessary linear graph for this experiment

the factors A, C, D, E, F are sub-subplots. Regarding interactions, seven two-factor
interaction effects (AB, AC, AD, AF, AG, BC, DE) are of interest, where effects AB,
AF, BC are considered very important, effects AD and BC are considered important,
and effects AG and DE are not so important.

When the whole plot is allocated to Group 1 and 2, subplot to Group 3, and sub-
subplot to Group 4 of the L16 orthogonal array, the necessary linear graph is shown
as Fig. 5. In this case we can use the linear graphs 5–8 of Fig. 4.

In this particular situation, it is suggested to use the linear graph No. 7 of Fig. 4,
because the effect of the very important interaction effect AF can be estimated better
than when the linear graph No. 5 of Fig. 4 were used. In other words, the standard
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Table 3 Allocation of effects for this experiment

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

DE B AC G AF AD D E F AG C AB BC A
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

Allocation using linear graph No.5 of Fig.4

Allocation using linear graph No.7 of Fig.4

AF B AD G DE AC F A D AB BC AG C E
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

Whole Plot Subplot Sub-subplot

error of the effect of interaction effect AF is smaller using No. 7 than No. 5 because
the interaction effect appears as subplots and not as whole plots. The allocation of
effects to the columns of L16 is shown in Table 3.

Thus, by use of appropriate linear graphs, experimental designs considering the
importance of the interaction effects are possible.

4 Conclusions

In this paper, we proposed an improved version of linear graphs, namely how we
should distinguish the levels of group of the two factor interaction effects. We
examined the possible linear graphs based on the measures to support expressing the
split-plot designs. We found many linear graphs where the main effects are allocated
to the same group but the two factor interactions appear in different groups. We were
able to list up the linear graphs when the number of main effects is up to seven. We
still need to improve our way of searching for linear graphs when the number of the
main effects is larger.

Using the obtained linear graphs, the user can control the source of variation so
that the standard errors of the estimated effects can be set to meet the preference of
the designer.
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A Practical Variable Selection for Linear Models

Hidehisa Noguchi, Yoshikazu Ojima, and Seiichi Yasui

Abstract In the analysis of experiments, there are many variable selection algo-
rithms for linear models. Most of these approaches select the best model based
on some criteria such as AIC. These criteria do not allow for any relationship
between predictors. However, in practice, the analysis is driven by following three
principles: Effect Hierarchy, Effect Sparsity, and Effect Heredity Principle. The
approach depending solely on those criteria ignore these principles, so it would
often select a hard to interpretable models, for instance, which are consisted
with only interaction terms. In this article, we extend the LASSO method to
identify significant interaction terms mainly focusing on the heredity principle. And
we compare the proposed method with ordinary LASSO and traditional variable
selection approach. In the example, we analyze the data obtained from designed
experiments such as Placket-Burman design and supersaturated design.

Keywords Variable selection • Lasso • Design of experiments • Screening
designs • Effect heredity principle

1 Introduction

We consider the analysis of experiments where numerous predictors are examined.
Variable selection is important when we would like to identify a subset of the
predictors that exhibit the strongest effects. A screening experiment should be
conducted to eliminate the unimportant predictors. Such an experiment is based
on highly fractionated design like the Placket-Burman designs. Experimental data
can usually be modeled by the following general linear model.
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Y D Xˇ C " (1)

where Y is a vector of N responses, X is an N � .f C 1/ matrix of predictors, ˇ D
.ˇ0; ˇ1; � � � ; ˇf /T a vector containing an intercept ˇ0 and f regression coefficients,
and " a vector of N error variables "1; : : : ; "N each of which are assumed to be
independent and identically distributed as N.0; �2/. To model the response y in
terms of the predictors x1; � � � ; xf , one may consider the following model

y D ˇ0 C
fX

kD1
ˇkxk C " (2)

For the purpose of factor screening, it is usually sufficient to identify the main effects
of the important factors and to obtain some insight about which factors may be
involved in two-factor interactions. Therefore, we focus on a regression model with
main effects and all possible two-factor interactions.

f .x/ D ˇ0 C
pX

iD1
ˇixi C

X

i<j

pX

jD2
ˇij xi xj (3)

where p is the number of main factors. A more simple and understandable model is
preferred as long as it can well explain the data. Thus, in the regression fitting of the
linear model Eq. 3, those covariates whose regression coefficients are not significant
may be removed from the full model. The goal of variable selection in regression
analysis is to identify the smallest subset of the covariates that explains the data
well. The model hunter hopes to capture the true model or at least the covariates of
the true model with significant regression coefficients. The rest of paper is organized
as follows. In Sect. 2, we discuss the penalized least squares and principles in the
variable selection. In Sect. 3, we introduce our model and an algorithm to fit the
model. We demonstrate the proposed method through two examples in Sect. 4, and
conclude with a discussion in Sect. 5.

2 Penalized Least Square and Variable Selection

There are two subjects in variable selection; prediction accuracy and interpre-
tation. The least absolute shrinkage and selection operator (LASSO) which is
member of the penalized least squares proposed by Tibshirani (1996). LASSO is
a constrained version of ordinary least squares (OLS). The ordinary least squares
estimators denoted by

ǑOLS D arg min
NX

hD1
.yh � f .xh//2
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LASSO reduced the residual sum-of-squares by penalizing the L1-norm of the
regression coefficients.

ǑLASSO D arg min

8
<

:

NX

hD1
.yh � f .xh//2 C �.

pX

iD1
jˇi j C

X

i<j

pX

jD2
jˇij j/

9
=

;
(4)

L1-norm penalty can shrink some of the fitted coefficients to be exactly zero when
making the tuning parameter sufficiently large. It may improve prediction accuracy
and interpretation. Although LASSO can select a subset, it has a problem of not
accounting for any relationships between predictors.

To enhance predictability and to select significant variables for “good” subset,
in a screening context, there are following widely accepted principles (Wu and
Hamada 2000):

1. Effect Sparsity Principle
The number of active effects in a factorial experiment is small.

2. Effect Hierarchy Principle

(a) Lower order effects are more likely to be active than higher-quadratic main
effects or interaction effects.

(b) Effects of the same order are equally likely to be important.

3. Effect Heredity Principle
In order for an interaction to be significant, at least one of its parent factors should
be significant. Subsets should obey heredity of active effects. For example, a
subset with an active AB interaction but no A or B main effects may not be
acceptable.

The third principle governs the relationships between predictors; interaction and its
corresponding main factors. Although there are a lot of variable selection methods,
most of them ignore this principle. Because of this, they often select models
have an interaction term but not the corresponding main terms. Such models are
usually difficult to interpret in practice. Chipman et al. (1997) proposed the variable
selection method using Bayesian priors to focus the search on models obeying effect
heredity principle. Yuan et al. (2007) apply the principle to Least Angle Regression
(Efron et al. 2004). Zhao et al. (2009) and Nam et al. (2010) also address the variable
selection problem using penalized least square with heredity constraint.

All these approaches divide heredity principle into two types; strong heredity
and weak heredity principle. Strong heredity principle allows an interaction to be
active only if both corresponding main effects are active. Whereas weak heredity
principle allows an interaction to be active if one or more of its parents are active.
For p factors, when we consider linear main effects and two-factor interaction,the
number of effects is

f D p C
�
p

2

�
D .3p C p2/

2
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Fig. 1 The proportion of the number of subsets under strong heredity principle 2fs and weak
heredity principle 2f w to all 2f subsets

In a similar way, the number of effects under the strong heredity principle is as
follows.

f s D
pX

iD0

�
p

i

�
2

0

@i

2

1

A

While, under the weak heredity principle, there are

f w D
pX

iD0

�
p

i

�
2pi�i.iC1/=2

effects. The number of possible subsets of active effects will be 2f . Figure 1 shows
the total number of subsets under different types of effect heredity is compared to
number of all possible subsets. Strong heredity principle reduce all possible subsets
that can occur to 2fs , while weak heredity principle reduce it to 2f w. Nelder (1998)
was arguing for a rejection of the weak heredity principle as part of strategy for
model selection. However, the analysis of blood glucose experiment in Yuan et al.
(2007) indicates the weak heredity principle is more likely to be true. Chipman et al.
(1997) suggest that in exploratory stages, it may be desirable to relax the restrictions
of strong heredity. It leaves small probability to interactions which have active effect
without corresponding main effects. In this paper, we extend the LASSO to select
a subset obeying weak heredity constraint and compare it to the model obeying
strong heredity by applying each model to data obtained from Placket-Burman
design and super-saturated design. In this paper, we extend the LASSO to select a
subset obeying weak heredity constraint and compare it to the model obeying strong
heredity by applying each model to data obtained from Placket-Burman design and
super-saturated design.
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Fig. 2 Relationship of parameters between ˇA and ˇB (ˇA > 0, ˇB > 0) and 
AB under Strong
heredity (right panel) and Weak heredity (left panel)

3 Model Formulation

In this section we consider an expanded representation of the LASSO which obeys
weak heredity principle.

3.1 Model

We consider the following model:

gw.x/ D ˇ0 C
pX

iD1
ˇixi C

X

i<j

pX

jD2

ij .ˇ

2
i C ˇ2j /xixj (5)

In Eq. 5, the coefficient for the interaction terms xixj is expressed by the parameter

ij and corresponding main effects parameter ˇi and ˇj . This expression can
enforce weak heredity principle. Compared to this, in Nam et al. (2010), strong
heredity was considered as following model:

gs.x/ D ˇ0 C
pX

iD1
ˇixi C

X

i<j

pX

jD2

ij ˇiˇj xixj (6)

We can assume without loss of generality that constant term ˇ0 can be omitted by
centering all the response variables. Figure 2 shows the changes of 
AB value against
ˇA and ˇB (ˇA > 0; ˇB > 0) value under two types of heredity principle; Strong
heredity and weak heredity. In Fig. 2, we assume the true coefficient value of the
interaction term xAxB is known and it has a positive value. Note that 
AB D 0 when
ˇA D ˇB D 0.

As given in Fig. 2, in strong heredity version, if the main effect ˇA or ˇB is
going to be 0, it is equal to approaching the true value of the coefficient of the term
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xAxB to infinity. Therefore the parameter 
AB must be large value. It may have an
undesirable influence on finding other significant effects. Whereas, in weak heredity
version, if the main effect ˇA or ˇB is going to be 0, it has no effects on the true
value of the coefficient. Thus, 
AB just tackle the active main effect.s

For the purpose of variable selection, we consider the following penalized least
squares estimates:

. Ǒ; O
/ D arg min

8
<

:

NX

hD1
.yh � g.xh//2 C �.

pX

iD1
jˇi j C

X

i<j

pX

jD2
j
ij j/

9
=

;
(7)

where g.x/ is from Eq. 5, and the penalty is the L1-norm of the parameters, as
in LASSO Eq. 4. There are two tuning parameters, �ˇ and �
 . The first tuning
parameter �ˇ controls the amount of shrinkage that is applied to the estimates for
the main effect. If coefficients ˇi and ˇj are shrunken to zero, variable xixj is
removed from the model. The second tuning parameter �
 controls the amount of
shrinkage that is applied to the estimates for the interaction effect. If either ˇi or
ˇj is equal to zero but the corresponding interaction effect is strong, 
ij still has
the possibility of being nonzero, so it has the flexibility of selecting interaction with
one of corresponding main effect. Controlling the tuning parameter�
 means setting
the value s � P j
ij j. In Eq. 7, it is equal to setting lower limits of jˇ2i C ˇ2j j. With
increasing the value of s, lower limits of jˇ2i C ˇ2j j get smaller.

3.2 Algorithm

To estimate the parameters ˇi and 
ij , we can extend an iterative approach of Nam
et al. (2010). We first fix ˇi and estimate 
ij , then we fix 
ij and estimate ˇi , and
we iterate between these steps until the solution gives convergence. Since at each
step, the value of the objective function (7) decreases, the solution is guaranteed
to converge to a local minimum. When ˇi D 1; : : : ; p are fixed, Eq. 7 becomes
a LASSO problem, hence we can use either the LARS/LASSO algorithm (Efron
et al. 2004) or a quadratic programming package to efficiently solve for 
ij . When

ij are fixed, we can sequentially solve for ˇi : for each i D 1; : : : ; p, we fix 
ij and
ˇŒ�i � D .ˇ1; : : : ; ˇi�1; : : : ; ˇp/, then Eq. 7 becomes a simple LASSO problem with
only one parameter ˇi , and we can solve it with a closed form formula. In summary,
the algorithm proceeds as follows:

1. Standardization:P
h yh=N D 0,

P
h xhk=N D 0,

P
h x

2
hk=N D 1 h D 1; : : : ; N , k D

1; : : : ; f

2. Initialization:
Initialize Ǒ.0/

i and O
.0/ij , i < j , i D 1; : : : ; p with some plausible values. For
example, we can use the least square estimates or the simple regression estimates
by regressing the response y on each of the terms. Let m = 1.
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3. Update O
ij i; j D 1; : : : ; p, i < j
First, to calculate Qyh , we subtract main effects from the response.

Qyk D yk �
pX

iD1
Ǒ.m�1/
i xhi

Second, Qxh;ij will be obtained.

Qxh;ij D
�
. Ǒ.m�1/
i /2 C . Ǒ.m�1/

j /2
�
.xhi xhj /

Then 
ij is established with O
ij with using Lasso algorithm.

O
.m/ij D arg min

ij

NX

hD1

8
<

:
. Qyh �

X

i<j


ij Qxh;ij /2 C �

X

i<j

j
ij j
9
=

;

4. Update Ǒ
i Let Ǒ.m/

i D Ǒ.m�1/
i

For each i in 1; : : : ; p

Qyk D yh �
pX

iD1
Ǒ.m/
i xhi �

X

i<j

�
. Ǒ.m/
i /2 C . Ǒ.m/

j /2
�
.xhi xhj /

Qxh D xhi C
X

i<j

O
.m/ij
Ǒ.m/
j .xhi xhj /C

X

i<j

O
.m/ij
Ǒ.m/
i .xhi xhj /

then

Ǒ.m/
i D arg min

ˇi

NX

hD1

˚
. Qyh � ˇh Qxh/2 C �ˇjˇi j

�

5. Compute the relative difference

�.m/ D jQn. O� .m�1// �Qn. O� .m//j
Qn. O� .m�1//

where

Qn. O�/ D
NX

hD1
.yh � g.xh//2 C �ˇ

pX

iD1
jˇi j C �


X

i<j

pX

jD2
j
ij j

for � D .ˇ0; ˇ1; : : : ; ˇp; 
12; : : : ; 
p�1;p/.
6. Stop the algorithm if�.m/ is within the range of 10�8. Otherwise, letm D mC1

and go back to step 2.
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Table 1 Screening experiments with Plackett-Burman 12-run design and response data

No. A B C D E F G H I J K Y
1 C C � C C C � � � C � 1:0580

2 C � C C C � � � C � C 1:0041

3 � C C C � � � C � C C �5:2001
4 C C C � � � C � C C � 5:3202

5 C C � � � C � C C � C 1:0216

6 C � � � C � C C � C C �2:4711
7 � � � C � C C � C C C 2:8089

8 � � C � C C � C C C � �1:2721
9 � C � C C � C C C � � �0:9546
10 C � C C � C C C � � � 0:6441

11 � C C � C C C � � � C �5:0251
12 � � � � � � � � � � � 3:0604

4 Example

In this section, examples of two experiments are given illustrating situations in
which complex aliasing arises are given. These are a screening experiment using
a Plackett-Burman 12-run design and supersaturated design.

4.1 Screening Experiments

Table 1 presents a 12-run PB design and illustrates its use in a screening context
which can accommodate up to 11 factors labeled A � K . The data are constructed
in Hamada and Wu (1992) based on the true model Y D AC2ABC2AC C", here
" � N.0; � D 0:25/ that is, factor A has an active main effect and there are active
interaction between A and B and between A and C , while the remaining factors
D �K are inactive.

Figure 3 compares the coefficient profiles obtained by the each model and shows
main and interaction effects separately. The proposed weak heredity version is able
to pick up the true effects A, AB , and AC , whereas the strong heredity version can
not identify the correct model, because the interaction effects AB and AC can not
be selected until the main effect A is selected. This should be expected because
the correct model does not contain main effects B and C . The strong heredity
constraints are so strict that the selection procedure cannot find the active main
effect if it is small compared to interaction effect. In this example, selecting the
interaction effect IK make it difficult to select the correct main effect A. With the
strong heredity constraints, once the incorrect interaction effect is selected, it lead to
pick up the corresponding main effects. Due to this, it is hard to identify the correct
main effects in such a case. In contrast, the weak heredity constraint has flexibility
on that point. We note that the ordinary forward selection methods (Hamada and Wu
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Fig. 3 Coefficient profiles for the PBD data

1992) could not identify any of the significant effects. This shows the advantages of
the proposed model.

4.2 Supersaturated Design

A supersaturated design is a design in which the degrees of freedom for all its
main effects and the intercept term exceed the run size. Here we consider the
14 � 23 design matrix in Table 2. The degrees of freedom for the 23 main effects
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Table 2 Experiments with supersaturated design and response data

Run a b c d e f g h i j k l m n o p q r s t u v w y
1 C C C � � � C C C C C � C � � C � � C � � � C 133
2 C � � � � � C C C � � � C C C � C � � C C � � 62
3 C C � C C � � � � C C C C C C C � � � � C C � 45
4 C C � C � C � � � C C � C � C � C C C � � � � 52
5 � � C C C C � C C � � � C � C C � � C � C C C 56
6 � � C C C C C � C C C � � C C C C C C C C � � 47
7 � � � � C � � C � C C C C C � C C C C C � � C 88
8 � C C � � C � C � C C � � � � � � C � C C C � 193
9 � � � � � C C � � � � C � � C C C � � � � C C 32
10 C C C C � C C C � � � C � C C C � C � C � � C 53
11 � C � C C � � C C � � � � C � � C C � � � C C 276
12 C � � � C C C � C C C C C � � � � C � C C C C 145
13 C C C C C � C � C � � C � � � � C � C C � C � 130
14 � � C � � � � � � � � C � C � � � � C � C � � 127

(of two-level factors) and the intercept term exceed the run size 14. The main attrac-
tion for using supersaturated designs is their run size economy. An Experimenter
should be used primarily for screening factor main effects. However, since we are
interested in the variable selection with heredity principle, in this example, main
effects and two-factor interactions are considered. Thus, there are a total of 276
candidate effects (23 main effects and 253 two-factor interactions). We use this
example to illustrate how complicated heredity principle can be handled using the
proposed methodology. And, in this complicated situation, we illustrate how the
result will be different between weak heredity and strong heredity.

In this design, the effects are either orthogonal or completely aliased with others.
Twelve pairs of aliasing relationships are arised. The results of the analysis are
plotted in Fig. 4. In both cases, main effects (o, p) are selected in the first a few steps.
In Chipman et al. (1997) and Lin (1993), they obtained the subset (d, l, o, u): note
that their analysis focus on the main effects only. With LASSO focused on the only
main effects without heredity principle, we obtained the subset (o, p, l, b). Here, we
conform the number of effects making up the subset to one in Chipman et al. (1997)
and Lin (1993). The subset become (o, ab, iu, rs) when main effects and interactions
are considered without heredity principle. We can see this subset is hard to interpret.
Applying both heredity principles, we obtain the subsets (o, p, m, mo) and (o, os, p,
lo). Note that, these terms are not confounding with the others. Table 3 shows the
value of R2, adjusted R2, and AIC for each subsets. We see that the weak heredity
version could select the best subset in this example. Although the subset constructed
by the strong heredity version selects main effects and appropriate interaction effect,
it is the worst of all.
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Fig. 4 Coefficient profiles for the supersaturated design

Table 3 Selected subsets and their criterion

Active effects R2 adjR2 AIC
No heredity (all effects) (o, ab, iu, rs) 0.866 0.806 141.3
No heredity (main effects) (o, p, l, b) 0.803 0.715 146.7
Strong heredity (all effects) (o, p, m, mo) 0.743 0.628 150.4
Weak heredity (all effects) (o, os, p, lo) 0.897 0.852 137.6
Chipman and Lin (main effects) (d, l, o, u) 0.786 0.691 147.9
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5 Discussion

We proposed a variable selection method based on the weak heredity principle.
The results are compared with the strong heredity. In the last example, our
procedure selects a more interpretable and better subset than any other approaches.
Coefficients profiles can be different according to the type of heredity principle.
Weak heredity is useful because of its flexibility. But, in practice, we will not know
which version of the heredity principle to use, thus, we must try both of them.
This make us consider that we should have to review on the relationships between
the interactions and their parent terms. Modifying existing factors may lead to the
best model. To further improved modelling, it will be possible to introduce new
parameters into the models, which has been used by Breiman (1995), Zou (2006),
and Zhang and Lu (2007).
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Capability of Detection for Poisson Distributed
Measurements by Normal Approximations

Yusuke Tsutsumi, Hironobu Kawamura, and Tomomichi Suzuki

Abstract In the analysis of very small components, it is very important to know
what concentration or amount of the analyte can be detected by the measurement
method. When we determine whether the analysis sample is the same as the basic
state, the capability of detection for the measurement method is defined as the
amount that can be detected. The ISO 11843 series standardizes the capability of
detection. ISO 11843 series has not described the capability of detection for Poisson
distributed measures. The measurement results occasionally are count data. When
the capability of detection can be exactly measured, it can be derived numerically,
but it is very difficult to be derived analytically. There are various approximation
methods having their own distinct features for a Poisson distribution. However, so
far it is not known which approximation is best from the viewpoint of estimating the
capability of detection. In this paper, the evaluation of the capability of detection
for Poisson distributed measurements is described. A number of approximation
methods are proposed from the viewpoint of the capability of detection for the
measurement method. The best approximation method is then compared with the
exact method.
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1 Introduction

1.1 Backgrounds

In the analysis of very small components, it is very important to know what
concentration or amount of the analyte can be detected by the measurement method.
Recently, there have been reports of the detection of toxic substances such as
pesticide residues and environmental endocrine disrupters. In such cases, it is
necessary to judge whether the analysis sample contains a toxic substance that
influences the human body. To determine if the toxic substance is present in the
analysis sample, a statistical hypothesis testing procedure is applied to determine if
the analysis sample can be regarded as blank (not containing the toxic substance).
In an actual experiment, it is difficult to directly measure the amount of the analysis
component, so the materials to be analyzed are often indirectly tested using a
voltmeter or other similar apparatus. Very small amounts of the analyte are not
detected directly. The measured value includes the error, and the basic state often
includes the material to be analyzed. A spring balance is used as an example. The
manual weight is categorized as the net state variable. The total weight, which
includes the material, the pan, the spring, and any other parts, constitutes the state
variable. The length of the spring would be the response variable. That is why
the amount of the analyte is required to determine if the material to be analyzed
contains toxic substance. In other words, we need to determine whether the amount
of the analyte is in the basic state or not. The critical value is derived from the
concepts of statistical test procedures. Basic state and critical values are different
from analysis methods. When we determine whether the analysis sample is the same
as the basic state, the capability of detection for the measurement method is defined
as the amount that can be detected.

The ISO 11843 series standardizes the capability of detection. The series consists
of five parts (Parts 1–5), and defines the capability of detection of the measurement
method for various situations and assumptions. The ISO 11843 series describes the
method of deriving the capability of detection in case the measurement error follows
a normal distribution.

The measurement results occasionally are count data such as the measurement of
the number of cells, pulse data, and the degree of degradation for electronic media.
These count data follow a Poisson distribution instead of a normal distribution. Till
date, the ISO 11843 series has not described the capability of detection for Poisson
distributed measures. Furukawa et al. (2009) derived the capability of detection
using square root approximation, which forms the basis for ISO/DIS (DIS: Draft
International Standard) 11843 part 6.
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1.2 Purpose

When the measured value follows a Poisson distribution, the capability of detection
can be exactly measured. When the cumulative probability of a Poisson distribution
is analytically derived, it is necessary to solve a nonlinear equation. If a nonlinear
equation is exactly derived, it can be solved numerically, but such equations are
very difficult, if not impossible, to be derived analytically. In a practical application,
it is a necessary requirement that the derivation method is comprehensive. Hence,
it is ideal to satisfy the following two conditions. First, all workers can understand
the process. Second, the parameter can be derived manually or using an electronic
spreadsheet (step by step). Therefore, when the method of capability of detection
for Poisson distributed measurements is applied to practice, using an approximation
method becomes a reasonable approach. In this paper, the capability of detection by
normal approximation methods is described.

There are various approximation methods having their own distinct features for
a Poisson distribution. However, so far it is not known which approximation is best
from the viewpoint of estimating the capability of detection. Furukawa et al. (2009)
derived the capability of detection using square root approximation of a pulse data
that follows Poisson distribution and derived the applicability to a high measured
value, but did not use various approximations or derive the minimum detected value
of the net state value. It is not enough to reach a conclusion when the normal
approximations are optimal in the case of a very small critical value.

In this paper, the evaluation of the capability of detection for Poisson distributed
measurements is described. The capability of detection is evaluated when the
measured value is small and follows a Poisson distribution. In addition, various
normal approximation methods are compared. A number of approximation methods
are proposed from the viewpoint of the capability of detection for the measurement
method. The best approximation method is then compared with the exact method,
which is discussed in Sect. 3.1.

2 Capability of Detection for the Measurement Method

The ISO 11843 series defines the critical value of the net state variable and the
minimum detectable value of the net state variable, as shown in Fig. 1. This paper
uses the definitions of the terminology defined in the ISO 11843 as follows:
Basic state:
Specific state of a system for use as a base for the evaluation of actual states of the
system.
xC: critical value of the net state variable:
Value of the net state variable, X , the exceeding, of which leads, for a given error
probability ˛ to the decision that the observed system is not in its basic state.
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Fig. 1 Basic concept of capability of detection

xD: minimum detectable value of the net state variable
True value of the net state variable, X , in the actual state will lead, with probability
(1� ˇ), to the conclusion that the system is not in its basic state.
The left curve in Fig. 1 shows the distribution of measurements in the basic state; the
right curve shows the distribution of measurements in the actual state. Even though
the system is in the basic state, the probability of erroneously determining it as not
in the basic state is ˛ In addition, even when the system is not in the basic state, the
probability of erroneously determining it to be in the basic state is ˇ. In this way,
statistical hypothesis testing is applied for the definition of variables using the net
state variable.

3 Capability of Detection for Poisson Distributed
Measurements

3.1 Exact Methods

Figure 2, which is based on the concepts found in ISO 11843 part 1, shows the
capability of detection for a discrete distribution. If measurements follow continuous
distribution, the values xC and xD are determined so that the probability of making
errors of the first kind and the second kind are exactly ˛ and ˇ respectively. In cases
where measurements follow a discrete distribution, it is impossible to determine the
values xC and xD to give exact values of ˛ and ˇ. Hence, the values xC and xD are
determined so that the probability of making errors of the first kind and the second
kind become smaller than ˛ and ˇ respectively. The ˛0 and ˇ0 are defined as upper
bounds for these probabilities.

It is necessary to be prudent when performing statistical tests. If the value x
exceeds xC, then x is detected otherwise x is not detected. When the basic state
is �0, xC is in the upper 100˛0 percentile under the null hypothesis while xD is in
the lower 100ˇ0 percentile under the alternate hypothesis. Taking into consideration
that xD is analytically derived, it is necessary to derive a nonlinear equation.
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Fig. 2 The basic concept of capability of detection for discrete distribution

Table 1 Mean, variance and inverse transform of each approximation method

No Methods Mean Variance Inverse transform

1a Direct � �=n, y

1b Directa �a .�a; �a=n; y/ .�a; �a=n; y/

2a Log ln� 1=n� ey

2b Loga ln�a 1=n�a ey

3 Square root
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� 1=4n y2

4
p
xCpx C 1 p

�Cp�C 1 �
4n
�
�
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�
C 1p

�C1

�2
.y2�1/

4y2

5 2
p
x C 3=8 2

p
�C 3=8 �

n.�C3=8/
1
4
y2 � 3

8

6a .x C 1=4/2=3 .�C 1=12/2=3 .2=3n/.�/1=6 y3=2 � 1
4

6b .x C 1=4/2=3 .�C 1=4/2=3 4�
9n.�C1=4/2=3

y3=2 � 1
4

6c .x C 1=4/2=3 .�C 1=12/2=3 4�
9n.�C1=12/2=3

y3=2 � 1
4

6d .x C 1=12/2=3 .�C 1=12/2=3 4�
9n.�C1=12/2=3

y3=2 � 1
4

aContinuity correction

3.2 Normal Approximation Methods

In this study, when the measurements follow a Poisson distribution, the critical value
of the net state variable xC and the minimum detectable value of the net state variable
xD are calculated using a normal approximation method of the Poisson distribution
(Johnson and Kotz 1993).

The mean, the variance, and the values of the inverse transforms for each
approximation method are given in Table 1. Apart from (6)a, the variance in all
the methods is calculated using the delta method. Methods (1) and (2) are cases of
continuity correction. Kittlitz (2006) proposed method (6) in which each option has
a way of calculating the asymptotic variance using the delta method. Consequently,
three types of approximation methods, (6)b, (6)c, and (6)d, are considered as the
proposed methods.
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3.3 Derivation of Net State Variables of Each Approximation
Method and Minimum Detectable Net State Value

The critical value of the net state variable and the minimum detectable value of the
net state value of each approximation method can be derived in the following steps.

Step 1: �0, which follows a Poisson distribution of the basic state, is transformed
to each normal approximation. After transformation, two parameters correspond-
ing to the mean and variance are generated. The parameter U0 is defined as the
mean of the basic state and the parameter �20 is defined as the variance of the
basic state.

Step 2: UC is derived from Eq. 1. K0 is defined as the upper 100˛ percentile
for the standard normal distribution and xC can be derived using the inverse
transform of UC.

Step 3: The parameterUD is defined as the mean of actual state, and the parameter
�21 is defined as the variance of the actual state. K1 is defined as the lower 100ˇ
percentile for the standard normal distribution.UD can be derived from Eq. 2, and
xD can be derived by the inverse transform of UD.

UC D U0 CK0

q
�20 (1)

UC D UD �K1

q
�21 (2)

4 Comparison with Each Approximation Method

4.1 Evaluation Method of Each Approximation Methods

xC is calculated by inverse transformation using each approximation method from
the distribution of the basic state. The probability, that the approximation will be
larger than xC is ˛0. ˛0 can be derived from the equation below and is judged by
how close it approaches ˛ without exceeding ˛.

˛0 D Pr .x > ŒxC �/ D 1 �
ŒxC �X

iD1

xi0
i
e�x0 (3)

The approximation methods are evaluated by Eq. 3, and by considering ˛ D ˇ D
0:05. The number of measurements of the basic state and of the actual state is
J D K D 1; the accuracy of each approximation method is evaluated while the
value of the parameter �0 changes from 1 to 100 in steps of 1 for the Poisson
distribution of measurements of the basic states. The criterion for evaluation of these
approximation methods is defined from the viewpoint of the statistical test, namely
that ˛ < ˛0 is satisfied.
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Fig. 3 The value of ˛0 for the approximation methods

4.2 Results

Figure 3 shows ˛0 calculated by each approximation method when the value of the
parameter �0 changes from 1 to 100. The measurement is according to the Poisson
distribution, and the cumulative probability can be calculated for ˛0. As a result,
when �0 varies from 1 to 100, the value of ˛0 is discrete, so the curve is not smooth.
The overall result is that the value of ˛0 broadly varies and is far from 0.05 when
�0 is less than 20. Therefore, the approximation is less accurate. On the other hand,
˛0 varies narrowly around 0.05, and the width of the variation is narrow when �0 is
more than 20.

Regarding the value of ˛0, it can be said that the direct approximation method (1)
exceeds 0.05 significantly and the log approximation method (2) falls short. In the
case where continuous correction was given for (1)b and (2)b, the �0 values for (1)a
and (2)a are less than the value of ˛0. This result shows the concept of consistency
of the statistical test. Meanwhile, the approximation methods (3) through (5) show
almost the same shape. Regarding the approximation method (6), it can be stated that
(6)a is located far from 0.05, but the others (6)b, (6)c, and (6)d are located around
0.05. Thus, the log approximation method (2) satisfies the necessary conditions. For
(3) � (5), there are 9 points, 11 points, and 11 points, respectively, for which ˛0 is
more than ˛.

4.3 Discussion

The results of the preceding section prove that the log approximation method (2)
is the best approximation method for calculating ˛0 using Eq. 3. In Sect. 4.1, the
value of xC rounded down to the whole number was considered. However, the value
of xC rounded off to the whole number and rounded up to the whole number is
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also considered. Thus, xC can be calculated by rounding the value off to the whole
number or by rounding up to the whole number. The result will therefore change,
and there may be a more accurate approximation method. Therefore, reevaluation of
the approximation methods using ˛0 derived by rounding the value off to the whole
number or by rounding up to the whole number for each approximation method
should be considered for the treatment of xC.

5 Evaluation of Capability of Detection Considering
the Treatment of Variable

Figure 4 shows the value of each ˛0 for the critical value of the net state variable xC

derived by rounding up, rounding down, or rounding off.
In Fig. 4, for approximation method (1), the numbers never exceed ˛ D 0:05

for rounding off, suggesting that method (1) is the best way to obtain the critical
value of the net state variable xC. Similarly, the treatment of the variable xC should
be considered in each approximation method. The best treatment method for each
approximation method needs to be selected. Therefore, since xC has three different
treatment methods and there are 11 approximation methods, there are a total of
33.3 � 11/ total treatment methods to be considered.

From the above methods, two approximation methods are selected such that
˛ < ˛0. We select approximation method (1) and approximation method (6)c where
xC is rounded off in both cases. Figure 5 shows ˛0 calculated using these two
methods. From Fig. 5, for the approximation methods (1) and (6)c, the value of
�0 changes from 1 to 100, and there is no case where ˛0 is higher than 0.05. In

Fig. 4 The value of ˛0 for the approximation methods



Capability of Detection for Poisson Distributed Measurements 369

0.06

0.05

0.04

0.03

0.02

0.01

0
0 50 100

α6c
α1a

Fig. 5 ˛0 of the two approximation methods

Fig. 6 Capability of detection derived from (6)c approximation method

addition, using Fig. 6 to compare both methods, we deduce that the approximation
method (6)c is the most accurate one. Indeed, approximation method (6)c yields
exactly the same value as when the cumulative probability was lower than 0.05
and is calculated directly using the Poisson distribution. This result proves that the
approximation method (6)c is the best method, and that no approximation method
is more accurate than (6)c.

Figure 6 shows the capability of detection where the parameters xC and xD are
derived from method (6)c and the exact method. The x-axis represents �0 and the
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y-axis represents the net state value. From Fig. 6, xC is the same value as the exact
xC, and xD is also nearly the same value as the exact xD. Considering a practical
application, these results do not impact the evaluation of the capability of detection.
Therefore approximation can be applied satisfactorily in practice.

6 Conclusion

In this study, approximation methods are evaluated for the capability of detection of
the measurement methods that follow a Poisson distribution. The critical value of
the net state variable and the value of the minimum detectable net state variable
are derived. When the measurements are small, they are compared with each
approximation method, especially for �0 D 1 to 100. As a result, the approximation
method (6)c, which rounded xC off, was determined to be the best. Therefore, when
the measurements follow a Poisson distribution, the approximation method (6)c
can be used to derive the capability of detection. When the expectation value of
the measurements is small, normal approximation of the Poisson distribution is not
precise enough because the normal-approximated distribution diverges significantly
from the actual distribution of measurements. Thus, we can conclude that when
the expectation value increases, the Poisson distribution becomes precise because it
would be close to the normal distribution. These examinations can provide feedback
that can be used in the final version of ISO 11843 part 6.
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Business Data Quality Control: A Step by Step
Procedure

Hans-J. Lenz and Esther Borowski

Abstract Modern information systems supply operative and analytic/statistical
data for users. The system design and the usage must be done in such a way that
high quality of the stored data is assured. This implies the necessity of fixing
quality objectives, defining its characteristics, choosing appropriate measures and
measurement techniques and, finally, of embedding this into a step by step procedure
for data quality assurance. We start by examples of bad business data, discuss a
data quality control methodology and its workflow, offer a first insight into the
corresponding metadata model, and demonstrate DaRT – a data quality reporting
tool on top of Oracle’s Warehouse Builder (OWB).

Keywords Data quality control • DQC workflow • Quality indicators

1 Bad Business Data

According to ISO 9000 data quality can be defined as the degree of fulfilling
requirements of quality criteria applied to a database given corresponding quality
targets. A comprehensive version is “Fitness for use given intended purposes”,
cf. Tayi (1998). For example, in a marketing campaign addressing a client by
“Mrs. Peter Brown” would evidently lead to a loss of goodwill. Of course, the final
objective of data quality control must be “minimizing the long run total cost of data
ownership”.
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Fig. 1 Types of bad data quality in two tables of a database (cf. Borowski 2008)

Quality targets and criteria are heavily case dependent. The importance can be
recognized in operating figures of budgeting, wages and salary as well as marketing
campaigns. While even small errors of salary and wage computations are not
allowed, marketing campaigns may be effective even if some estimates of the sales
figures are erroneous. As will become clearer later, it is not only the data set alone
with its syntactic rules which matters but also the inherent information with its
semantic and pragmatic features which can be decrypted by interpretation.

In most business cases decision making is involved and typically some prag-
matics come in. For example, the string S D (2, 2, y, e, a, r) may be syntactically
correct, but it is insignificant for business without interpretation, i.e. additional meta
information. In terms of recruiting the first two characters of the string beforehand
may represent the age of a candidate measured in year, and, as a result it increases
the signification of the string example. Pragmatics is needed for decision making
when a decision rule is applied like “Reject a candidate for a project manager
position if he is younger than 22”. Note, that real data like S need metadata as “data
about data and methods” to fully utilize and understand a database by different user
groups. Evidently, data quality control requires an understanding of all intentions of
the data customers, cf. Tayi (1998).

Next, we will identify well-known incidents in terms of bad customer data.
Quite obvious the location of bad data needs a lot of additional information to
lead into success. The data consist of the two tables City and Customer. Many real
life conflicts are exemplarily shown in Fig. 1. Evidently, various quality criteria are
needed to detect, meter or clean poor data.

What are the big trouble makers in quality control of business data? Evidently, we
have errors of various kinds like missing values, non-unique values of key attributes,
duplicates, and inconsistencies related to business rules and balance equations. An
example for a business rule is discount = 3% if sales>1,000e and payment period
< 7 days, else discount = 2% if payment period < 14 days else discount = 0%.
A simple balance equation is sales = quantity � price per unit. In the following we
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Fig. 2 Data Profiling due to Norris-Montanari (2007)

shall concentrate on these points in more detail. We define the intended quality
criteria, give a hint to how to measure them, and integrate the indicators in a stepwise
procedure as a workflow for data quality assurance.

The common idea is not new at all. Shepherd (1999) proposes a three step
procedure of data profiling starting with checking columns (attributes), detecting
dependencies of attributes and, finally, identifying redundancies. His approach
includes the detection of homonyms and synonyms, too – a classical problem of
database theory. Norris-Montanari (2007) integrates the analysis of thresholds and
rules consistency, cf. Fig. 2. Note that the diagram of his approach is to be read
“top-down”.

Olson (2003) recommend a stepwise bottom-up procedure. His profiling work-
flow starts with detecting invalid values of single attributes and moves upwards by
applying finally complex data rules to extract invalid combinations of valid data. In
each step data are cleaned for achieving better data quality before stepping forward.

Schlaucher (2007) picks up the idea of a bottom-up procedure and embeds it into
the services of the Oracle Warehouse Builder 10gR2. The advantage of his approach
is that a variety of tools like Oracle profiler, Oracle cleanser etc. is offered. However,
a streamlined workflow together with a user-friendly interface is missing. Proposals
and a kind of guide for an inexperienced user are especially mandatory.

A joint venture between Oracle and the authors resulted in the prototype DaRT
(Fig. 3).

2 Data Quality Criteria

The term “data quality” has many facets or dimensions. The situation is similar to
the industrial domain. Even if several data sources are excluded, and only one source
considered instead, the large number of single quality criteria is overwhelming.
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Fig. 3 Data profiling due to Olson (2003)

Fig. 4 Taxonomy of data quality criteria due to Hinrichs (2002)

To gain overview, there exist a lot of taxonomies for typing quality criteria. The
proposal of Hinrichs (2002) seems advantageous for our purpose.

The main groups are Belief, Usefulness, Interpretation and Key Integrity.
A description of these terms is extensionally given by the subordinated quality
criteria. We skip four criteria demanding an intricate pattern for measurement, cf.
Fig. 4. Data quality actions for measuring quality criteria can be classified into three
groups:
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• IT checks: Inspecting real data of given entities (objects) with respect to their
corresponding metadata like definitions, types, domains, relations etc.

• Statistical checks: Explorative data analysis for a data profile reporting
• Rule checks: Data validation related to active business rules

Let us first turn to Belief. A simple definition of correctness leads to metering
any deviation between an observation xi and its true but possible unknown value
�i given an object i . For instance, the first name “Peter” related to “Mrs.”
does not match, i.e. gender (Peter) ¤ ‘male’ ) truth-value(Peter, Mrs.) = ‘false’.
Correctness would be achieved, if the values “Peter” and “Mr.” were jointly
observed. In this example we have a symbolic data space. Frequencies are used
to handle cases with non-metric quality criteria use.

Definition 1. Let quality attribute A has range (A/ = fa1, a2,. . . ,ajAjg. Let :
range(A)! f0; 1g be a characteristic function with (a) = 1 if condA.a/ is true, and
0 else. Then the corresponding quality frequency indicator of table T with sample
size n D jT j is given by

q.A/ D 100

nX

iD1
.ai /=n (1)

In metric data spaces appropriate distance functions jjx � �jj like Euclidean
distance, Mahalanobis distance, Kullback-Leibler divergence etc. are available, cf.
Lenz (2008).

The criterion consistency has itself many facets. First of all, it measures the
deviation between the observed metadata of variables and its technically intended
one, cf. Hinrichs (2002). For example the data type “float” used for commercial
application would be misleading, but the type “decimal” with only two decimals
right to decimal point would be admissible. Data type, length and domain are some
of the metadata of main software concern.

We pick up range consistency of an attribute A. For illustrative purposes think
of the set range(A) D fmale, femaleg labelled as “Gender”. If a record exists where
the gender shows a value equal to “f ”, “Mann” or “weiblich” the characteristic
function (a) would flag a zero. Therefore we define the quality characteristic
(“measure”):

qrange.A/ D 100
X

i2A
range.A/.a/=jT j (2)

where

range.A/.a/ D
(
0 if a … A

1 if a 2 A
(3)
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Secondly, the collected data must be (semantically) coherent with respect
to existing business rules or balance equations. An example of this kind of
multi-attribute relationships is the inventory equation It D It�1 Cpt �dt where the
variables represent “inventory” It , rate of production pt and demand dt in period t .

The subgroup Usefulness contains the criteria Completeness, Precision and
Redundancy.

Completeness counts the “not missing” or “not null” values and uses a formula
of type (1). The corresponding indicator function is

A.a/ D
(
0 if a is missing (null)

1 if a is not missing
(4)

Precision measures the length of a numerical attribute and its decimals. Devi-
ations from given requirements are detected if appropriate frequency statistics are
“too high”.

In our context Redundancy is caused by duplicates, i.e. by more than one
record related to the same real entity. For example, think of the first and third
record in Fig. 1. They identically refer to the customer ‘Tom Meyer’. There are
mainly two approaches for duplicate detection or “decoupling”. If a primary key
(unique identifier) Id like SSN, tax identifier, zip code etc. is available and error-
free, it should be used to avoid duplicates. If such an identifier is not at hand,
one must take non-key attributes with high discrimination power, and can use
statistical classification methods for deciding whether or not two records match or
not, cf. Neiling (2004). A useful indicator function signals a zero if at least one
duplicate exists in a data set and if not it should signal a one instead, i.e.

dup.t/ D
(
0 if a duplicate exists for record t

1 else
(5)

Let N � be the number of unique records (duplicates counted only once) in a
given table T. Then we define as a non redundancy indicator:

qdup.T / D 100
X

t2T
dup.t/=jT j D 100N �=jT j (6)

Assume T0 D fHans, Dave, Bernd, Claus, Hans, Hans, Bernd, Mikeg is given.
It follows N� D 5 and qdup.T0/ 	 60%.

Uniformity and Uniqueness can be defined in a straightforward way and will be
disregarded. Finally we turn to Integrity Constraints, cf. Hinrichs (2002). Entity
integrity refers to the uniqueness of the primary key Id or a key candidate P .
Contrarily to the duplicate detection problem key uniqueness is reduced to one
(possible concatenated) attribute, i.e. to the primary key which uniquely identifies
each record. The appropriate indicator function dist signals 0 if more than one
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specific value p 2 range (Id) ensues in a data set (table) T . The percentage of
key distinct records is

qdist.T / D 100
X

t2T
dist.t/=jT j (7)

The referential integrity checks whether or not for each value f of a foreign
key F there exists a related value p of the primary key P. For example, for each
customer alive a city is required where he belongs to. Consequently, we use the
dangling function as an indicator function
dangling W range(Id) [fnullg ! f0; 1g:

dangling.f / D
�
0 if f … fnull; range.Id/g
1 else

(8)

Then we get as quality indicator of referential integrity

qdangling.F / D 100
X

f 2range.F/

dang.f /=jF j (9)

3 Data Quality Workflow

In the preceding chapters we introduced a taxonomy for quality criteria, their
definitions and measurements using a frequency based concept. From this it is
evident that metadata is essential for any data quality control. Moreover, the
framework which will be presented next is a step by step procedure and highly
interactive, i.e. the software scans the database and delivers the (real) values of the
quality criteria together with hints to nonconforming records. Such a messaging
or signalizing is possible if clear target values of the quality characteristics are
predefined. Of course, the data quality analyst must autonomously decide about
acceptance or rejection including “repair” of records and tables. Such a workflow
system can only be operated semi-automatically since a large fraction of metadata
is strongly case-dependent (Fig. 5).

The numbering of boxes represents the single steps of the DQ workflow. Single
attribute analysis is performed in steps 1–4 as shown on the bottom line of the
pyramid. The next level is devoted to the dependency analysis with steps 5–7. Steps
8 and 9 include checks of referential integrity and simple statistics like extreme
values, means and standard deviation. The top level is step 10 applying business
rules to the data. The sequencing within any level is optional, and is used as a default
value for the naive user. Before presenting some screenshots of data quality reports
produced by DaRT we show in Fig. 6 how DaRT is integrated into the “quality
cycle” as favoured by Oracle (2007).
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Fig. 5 Data quality pyramid and the ten embedded steps of the DQ procedure
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4

Fig. 6 Data quality workflow of Oracle with an embedded reporting step
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4 Data Quality Reporting

The data quality report provides information about the real (status-quo ante) data
quality of a given database. Using the “traffic light” principle the report builds
a judgement about the degree of usefulness of the data related to each quality
characteristic. Furthermore a quality action is displayed as an optional for the
analyst. We present the analysis of completeness as an example (Table 1).

The recommended actions can be used for data cleansing, i.e. repair or improve-
ments. We use an (extended) record from Customer to illustrate the “orchestration”
of data profiling and cleansing, cf. Oracle (2008). In this example data cleansing
applies parsing, standardization for getting uniformity, postal address validation and
augmentation. The last two data transformations augment a fragment of the zip code
and infer the gender from the first name as this mapping leads to a unique value in
this case. Note that this is true for “Josephine” but not for “Chris”, because of a lack
of functional dependency first name!gender (Table 2).

Next we show a report of level one analysis focussing on Precision.1 For all
attributes of numeric type the length and the number of decimals (called scale)
is measured and compared with the requirement as given in the repository (meta
database) for the table labelled KUNDEN STAMM which stores customer records.
This table has 1,032 entries. The quality feature Precision has values accurate,
moderate or imprecise. From Fig. 7 it becomes evident that the first two attributes
and the last five have imprecise values relative to their allowed maximum. With
respect to the number of decimals all attributes are set to the default value accurate
due to missing decimals.

In all cases of insufficient precision the software DaRT signals an updating of
precision displayed in the most right column.

Next we show an example of a level two analysis where the consistency of data
type, field length and value set are checked. We select the attribute GESCHLECHT
(gender) as one out of 14 variables. The report shows that this attribute does not need
type “VARCHAR2” with length 10, but simply NUMBER of length 1. About 3% of
all 1,032 records are contaminated. The range analysis (last block) shows that less
than 3% of all records have nonconforming characters instead of 0 and 1. Because
the tolerance level is set equal to 95% this nonconformity is not signalled by a red
figure. DaRT is a “liberal” system in so far as its only locates an inconsistency but
does not automatically repair it. Actions are exclusively started by the data quality
analyst only (Fig. 8).

On level 3 Correctness and Referential Integrity is checked. We limit ourselves
to the analysis of the customer data using simple descriptive statistics as displayed
in Fig. 9. Two points are worthwhile mentioning. A 3�-check of the attributes
ANZ KINDER (no of kids) and FIRMENRABATT (discount rate) signals “too

1The (synthetic) database of (fictive) Service GmbH used was kindly made accessible by
A. Schlaucher, Oracle Deutschland GmbH.
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Table 1 Sample from a data quality report on Completeness

Attribute Null values Completeness (%) DQ statement DQ action
Family name Allowed 100 Moderate Null not allowed
Customer type Yes 1 Bad (<75%) Individual
State No 100 Good No action

Table 2 Cleansing of an incomplete, non-standardized and postal incorrect record (Source: Oracle
(2008) -modified-)

Input Output
Attribute Value Attribute Value
Name Josephine Random Family Name Random

First Name Josephine
Title Senior Manager Title Sr. Mgr.
Company Oracle Company Oracle Corp.
Address 500 oracle parkay Address 500 Oracle Pkwy
Address 1 Redwood, az 94065 City Redwood City

State CA
Zip code 94065-1675

Address2 USA Country USA
Phone 5067000 Phone 605 506 7000
Email Joe.random@oracle.com Email Joe.random@oracle.com

Gender f

Fig. 7 Precision/Scale Analysis on customer data

large deviations” and gives a red light. The observed maxima support this statement
of incorrectness. The application of the statistics Mittelwert (arithmetic mean) or
even the standard deviation � to attributes with a nominal scale like HAUSNUM-
MER (house no) or KUNDENART (customer type) is statistically nonsense – even
when used for data profiling only. This problem can simply be avoided by skipping
such computations if the scale of an attribute is non metric.
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Fig. 8 Consistency Analysis of customer data focussing on data type, length and range

Fig. 9 Analysis of correctness applied to customer data

The final demonstration of data profiling as part of data quality control is devoted
to the fourth level where business rules are applied to a project, i.e. to the database
owned by company Service GmbH. Three business or data rules (DR) are activated.
We pick up the data rule ANREDE DR which refers to the salutation address of
customers. Like the data type “enumeration” it checks whether or not the application
of the salutation address uses a value from the defined range fHerr, Frau, Firmag.

As can be seen in Fig. 10 this rule is valid in 98% of the customer records. Due
to the preselected threshold 23 defects or a percentage of 2% is a moderate error
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Fig. 10 Rule-based analysis with data rules for salutation address (ANREDE DR), inventory
(LAGER DR), and education (BILDUNG DR) selected from tables Customer and Inventory

rate and signalled by a yellow symbol. The recommendation of the system is to
inspect the contaminated records. This can simply be achieved by just clicking on an
appropriate button of the GUI. Note that in the third case the red symbol is displayed
since the number of defects is too large.

5 Conclusions

The methodology presented is tailor-made for the business not primarily for science
or technology area. Our investigation starts from defining quality criteria and targets.
It proposes adequate quality indicators which are measurable. The approach is built
into a user friendly graphical interface (GUI) to assist the interaction between a
data quality analyst and the software system DaRT. It makes full use of the power
of Oracle’s profiler. The role of quality targets, thresholds, computing of quality
indicator values and the massive utilization of metadata stored in a repository
becomes evident.
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Data Quality: Algorithms for Automatic
Detection of Unusual Measurements

Ross Sparks and Chris OkuGami

Abstract The paper offers simple robust algorithms for checking consistency of
large volumes of measured data. The checks differentiate between data collected on
a spatial grid at one time point; and data collected on a spatial grid over many time
points, as well as several related measurements collected on a spatial grid over time.
The checking process involves computationally efficient methods of estimating
expected values and variances used to judge measurement consistency. Three-sigma
control limits are applied to flag inconsistent measurements. CUSUM and EWMA
plans are advocated for flagging consistently small biased measures.

Keywords Consistent measurement • Multivariate • Process monitoring •
Spatial

1 Introduction

Data quality is defined as data being fit for purpose (Borowski and Lenz 2008).
This paper focuses on the narrower aspect of measurement consistency checking.
This checking process helps isolate poor measurements in large datasets. This is
meant to make the task of ensuring quality data easier by focussing the manual data
checking effort on inconsistent measurements only. Measurement inconsistency is
assessed in terms of:

• Spatial consistency: The measurement is checked against an interpolated value
using measures made at several geographical close locations. An example is
thickness measures at several locations on a single sheet metal.

• Temporal consistency: Measurements made at one geographic location over
time, and checked against their one-step ahead forecasts in real-time, or checked
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against its predicted (interpolated) value made using measurements directly
before and after for batch checking. An example is the daily milk volume
produced by single dairy farm.

• Multivariate consistency: Here consistency is checked against different but
related measurements either made at the same geographical location or spatially
elsewhere. An example is stream flow at a single site in a river in relation to
rainfall, humidity and temperature in the catchment. Multivariate consistency
checks whether flows are consistent with the catchment: rainfall, humidity and
temperature values.

Often we are interested in the joint spatial, temporal and multivariate consistency
checking rather than marginal consistency checks. An example of this is the
checking of river flows at a specific location given several upstream flows and
rainfall measurements. If all stream flow measurements are unusually large in
the catchment at a specified time, but all are spatially consistent with each other
in the whole catchment and consistent with the local rainfall values, then these
measurements will not be classified as unusual even when they are unusual in
the marginal sense. Thus, avoiding a paradox very similar to Simpson’s paradox
(Blyth 1972). However, if one of the stream flows is unusual relative to local flow
measurements made further upstream or downstream, then this will be flagged as
inconsistent. This joint multivariate, spatio-temporal consistency checking is where
we depart from other recommended univariate data quality checking.

The process of checking for unusualness is based on measurement departures
from their conditional expected values given all the other local related measure-
ments. The measures we condition on are called explanatory variables (e.g. for river
flows, rainfall is an explanatory variable). These explanatory variables are usually
measured at the same time or before the measured value being considered. Previous
measurements made at the same site are also conditioned on (i.e. the measure made
at the time before) to check for temporal consistency in a real-time consistency
checking process.

The explanatory variables are selected to provide the interpolation of y with the
least absolute error. Find the conditional expected value for the measured value
(y) given the set of explanatory variables (x) (denoted E.yjx/). Unusualness is
measured in terms of how much y departs from E.yjx/. Let the variance for this
departure be denoted by �2, then assign unusualness codes on the scale of extremely
unusual, very unusual, unusual, within the expected range, and close to expected
using the following rules:

1. jjy � E.yjx/jj > 5� extremely unusual
2. 4� < jjy � E.yjx/jj < 5� very unusual
3. 3� < jjy � E.yjx/jj < 4� unusual
4. 2� < jjy � E.yjx/jj < 3� somewhat unusual
5. � < jjy � E.yjx/jj < 2� within expected range
6. jjy � E.yjx/jj < � close to expected
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We consider the most common more complicated situation where no duplicate
measurements are available. In cases where duplicate pairs of measurements are
made, one measurement can be considered as y and the other E.yjx/. Let � be
the variance of the differences between the two measurements, then the above
classification process for flagging potential measurement errors can be applied. In
other words, the same framework used in this paper can be applied.

Section 2 discusses the consistency checking process. Section 3 looks at detect-
ing persistent errors commonly caused by measurement device failure. Section 4
discusses how our quality consistency check fit into a larger QAQC framework.

2 Algorithms for Measurement Consistency Checking

As mentioned earlier, consistency checks can be broken down into temporal, spatial,
and multivariate checks. Multivariate spatio-temporal consistency checks are typical
in environmental or hydrological applications. Algorithms appropriate for each of
these situations are described in the subsections to follow. Note that the emphasis
here is on automatic consistency checking in large scale data collection applications
such as sensor networks.

2.1 Checking Univariate Temporal Consistency

Checking whether a site’s measurement process is consistent with past history
is typical in data quality assessments. Exponentially weighted moving averages
(EWMA) is simplest way to get an expect value of a measurement from historical
data. Let ewma0 and ewmv0 be the sample mean and variance, respectively, for
training data. Then the EWMA statistic is defined by

ewmat D �1yt C .1 � �1/ewmat�1 (1)

and the exponentially weighted moving variance by

ewmvt D �2.yt � ewmat�1/2 C .1 � �2/ewmvt (2)

where 0<�i <1, i D 1; 2. We select �1 D�2, however there may be occasions
where smoothing .yt � ewmat�1/2 more than yt is appropriate. Here we use
E.yt jxt /D ewmat�1 and �2t D ewmvt�1 for assessing the unusualness of measure-
ment yt . More complicated time series models, such as GARCH models (see
Silvennoinen and Terasvirta 2009), can be used to establish E.yt jxt / and variances
�2t . However, these models need more maintenance. The robustness of the GARCH
models in applications needs testing prior to its use.
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2.2 Checking Spatial Consistency

Let identical measurements made at the same time in other locations in the
catchment be denoted explanatory variables x1; : : : ; xk . Assume E.xi / D � D E.y/
for all i . Let di be the distance of measurement site xi from the target site measure-
ment y. Let �yjx D E.yjx/ D E.yjx1; : : : ; xk/ and �2 D E.y2jx1; : : : ; xk/ �
E.yjx1; : : : ; xk/2. The simplest estimate of E.�yjx/ assumes that y is proportional
to the inverse to the distance (di ) xi ’s and y are apart, and that E.xi / D E.y/, then

b�yjx D
 

kX

iD1
xi=di

!,  
kX

iD1
1=di

!

(3)

Let the estimate of E.y2jx1; : : : ; xk/ be given by .
Pk

iD1 x2it =di /=.
Pk

iD1 1=di/ and
then an estimate of the variance for this interpolated value is

b�2 D
 

kX

iD1
x2i =di

!,  
kX

iD1
1=di

!

�
" 

kX

iD1
xi =di

!,  
kX

iD1
1=di

!#2

(4)

Use �2 D b�2 to assess the unusualness of measurement y. Universal Kriging models
(Cressie 1993) may offer more sophisticated spatial consistency checks for spatial
measurements x1; : : : ; xk to estimates of E.yjx/ and �2. These models will need
more maintenance than other options of kernel smoothing (Zheng et al. 2004), semi-
parametric models (Ruppert et al. 2003), or two-dimensional splines (Whitten and
Koelling 1973).

2.3 Simple Way of Checking Spatio-Temporal Consistency

A spatio-temporal model is required to establish a reasonable estimate of E.yt jx1t ;
: : : ; xkj /. Assume E.yt / D E.xit/ for all i . E.yt jx/ D E.yt jx1t ; : : : ; xkt; yt�1; : : : ;
y1/ A very simple estimates of E.yt jx/ is, for a given weight 0 < � < 1, taken from
Eqs. 1 and 3 and given by

�

 
kX

iD1
xit =di

!,  
kX

iD1
1=di

!

C .1 � �/ewmat�1:

Under the assumption of independence, the respective consistency estimator from
Eqs. 2 and 4 is

b�2e;t D �2b�2t C .1 � �/2 ewmvt�1:



Data Quality: Algorithms for Automatic Detection of Unusual Measurements 389

R2

R4

R3

R6

R5
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Flow
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Fig. 1 Catchment with six rainfall sites and six steam flow sites – Ri = rainfall measurement site

The value for � is selected to give the smallest value for �2e;t for the training
sample. This optimal value is estimated as �D ewmvt�1=.ewmvt�1 C b�2/. Under
the assumption of independence, the estimate of the minimum value for �2e;t is

�2b�2 C .1 � �/2 ewmvt�1 D b�2ewmvt�1=.b�2 C ewmvt�1/:

The more difficult option is to fit a spatio-temporal model (Finkenstadt et al. 2007)
that can be sequentially updated and used.

2.4 Checking Multivariate Spatio-Temporal Consistency

Assume an example of consistency checking stream flow measures in a catchment
(Fig. 1). We develop algorithms that will check consistency of these jointly with:

• Identical measurements made earlier (or later) in time at the same site, i.e.
temporal consistency;

• Identical measurements made at neighbouring sites (at the same time or earlier),
i.e. temporal consistency;

• Related measurements made at the same site or neighbouring sites, i.e. multivari-
ate consistency (e.g. checking consistency of flow considering local rainfall as a
related measure).

It is important to emphasis that we build interpolating time series models as
opposed to forecasting models. In other words, we allow explanatory variables
collected at the same time as the response. Therefore, the models used are generally
more accurate than the usual time series models.
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Simple regression (black box) models for predicting the measurement is used
to check for consistency. The model predicted value is taken as the conditional
expected value. The spatial variables are considered as explanatory variables.
Upstream flow measurements in a river used to explain downstream flows are time
adjusted for the duration it takes for water to flow between the two sites, i.e. if
yt is the downstream flow measurement made at time t , xt is the upstream flow
measurement made at time t , and it takes q units of time for water to flow between
the upstream site and the downstream site in the river, then the correlation between
yt and xt�q should maximize the cor.yt ; xt�� / over all selections of � .

Two data sources are used: training data (assumed clean) and test data. The
training data should be representative of the time period to be assessed for
consistency. The test data are to be checked for consistency. Training data provides
starting values for estimated regression parameters and are used to estimate the best
time lags between explanatory variables and response values. These parameters are
used to find expected values and variances for the first measurements in the test data.

The algorithms supplied below have two phases:

1. The start up phase used to provide initial estimates of model parameters.
2. The recursive estimation phase used to update parameter estimates with each new

observation in the test data.

The recursive estimation phase uses discounted least squares to fit the regression
model. These fitted models are used for predicting the test data values. The approach
emphasises simplicity and assumes that variables are locally (in time and space)
linear. Estimating the time flows take from one site in the river to the next allows the
user to appropriately condition on the upstream flows for predicting downstream
flow measurement. This means that the spatial structure is included in the mean
rather than the covariances as in Universal Kriging. Below it is assumed that
upstream sites used as explanatory variances will have the appropriate temporal
adjustment (denoted qi for the i th upstream flow measurement) to improve their
explanatory information.

2.4.1 The Start Up Phase

The training data are used to establish the starting estimates for parameters. Cleaned
training data directly prior to the time period being checked is the default. The
training data are also used to establish the explanatory variable temporal lags which
best explained the response variable. Data checks are carried out for each catchment
separately as described below.

The start up process has the following steps (stream flows used as an example):

Step 1: Specify the sequence measures will be checked in the catchments.
Recommendation: Start from the rainfall/stream flow sites that are furthest up

stream from the mouth of the river.
Step 2: Specify the set of explanatory variables to be used. Our recommendation

for a stream flow site is to use:
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• Rainfall: Neighbouring rainfall sites to the stream flow site.
• Stream flow: Upstream sites for flows.

Include any other potentially causal explanatory variables, e.g. wind directions
for rainfall. The general idea is to check the ‘mass-balance’ of flows. That is,
for stream flow, we assume that no water is lost into aqueducts, there are no
measurement errors, no water in rivers is lost due to evaporation, and all lag
flows are known. Under these assumptions we should be able to check measures
precisely when it does not rain. Selecting the explanatory variables for river
flows in Fig. 1 involves upstream flow measurements, e.g. for the site furthest
downstream in Fig. 1 select the two stream flow measurement sites upstream
(one on the tributary and one on the main river). Select neighbouring rainfall
stations, e.g. R4, R5 and R6. Thereafter, find the lag time for water to flow
from the upstream sites to the target site. In this paper, we denote these time
lags by q1 and q2. The assumption made in selecting qi the lag flows is that
flow-rate is constant. Whenever this assumption is unrealistic, use velocities
measurements to dynamically adjust these lags. For simplicity we assume that
velocity is homogeneous over time in the remainder of the paper because velocity
data were unavailable to the authors.

Step 3: Specify the checking start and finish date.
Step 4: Specify the training dataset.
Recommendation: If the processes are strongly seasonal then use last seasons

data to initialise estimates for checking this year’s measurement accuracy
(considering setting this as the default training dataset).

Step 5: Estimate the time delay (qi ) for each variable (xi t�qi ) that best predict
the response. Measures of explanatory usefulness consider here are correlation
measures. That is, we examine correlation measures as a function of qi ; selecting
the qi that maximises the correlation. The following measures of correlation are
examined:

Rank correlation: For the training sample, denote the rank correlation between
measures xit for all t D 1; 2; : : : ; n � qi and yt for all t D 1C qi ; : : : ; n by rrqi .

Pearson correlation: For the training sample, denote the Pearson correlation
coefficient between measures xit for all t D 1; 2; : : : ; n � qi and yt for all
t D 1C qi ; : : : ; n by rqi .

Pseudo correlation: We make the variables invariant of scale by standardising
them as follows

zi;t D .xi t � Nxi qi /=
vu
u
t

nX

tD1Cqi
.xi t�qi � Nxi qi /2=.n � qi /

zy;t D .yt � Nyqi /=
vu
u
t

nX

tD1Cqi
.yt � Nyqi /2=.n� qi /
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Let sqi is robust measure of similarity defined by

sqi D 1 �
nX

tD1Cqi
jzi;t�qi � zy;t j=.n � qi /

Select the delay (qi ) that either maximizes: rrqi , rqi or sqi . The pseudo correlation
measure sqi proved more robust that the other correlation measures at detecting
known, but hidden delays in simulated data. In addition, a simulation study
demonstrated improved accuracy in determining qi if both times series are
smoothed prior to estimating qi . If two of these delay estimates coincide, then
use this delay in the model for Step 6, otherwise use the delay in Step 6 that is
half way between the qi value which maximizes sqi and maximizes rqi . When
the training sample gets very large then calculating the rank correlation is slow.

Step 6: Fit the following regression models:

Flows:

yt D ˇ0 C ˇ1 x1 t�q1 C � � � C ˇk xkt�qk C ˛1yt�1 C ˛2 yt�2 C et

where:

• yt is the flow being checked for consistency measured at time t ;
• xi t�qi is either an upstream flow or an upstream rainfall measurement measured

at time t � qi to account for delays;
• ˇi are the regression parameters associated with the influence the i th explanatory

variable;
• ˛i are the regression parameters associated with carryover influences of measure-

ments made at the same site at earlier times.

Note the time series model has no moving average component only autoregressive
components; this is to avoid the need for iterative estimation.

Rainfall: For consistency checking of rainfall measurements the, zero inflated
model is fitted as follows:

logit.pt / DD ˇ10 x1 t�q1 C � � � C ˇk0 xkt�qk C ˛10yt�1 C ˛20 yt�2

where pt D Pr.Yt D 0/, and the model for Yt > 0 is given by

yt D ˇ1 x1 t�q1 C � � � C ˇk xkt�qk C ˛1yt�1 C ˛2 yt�2 C et

for yt > 0. Note that the model for positive rainfall is unaltered from the linear
model used earlier in this paper, that is, the random error term of the model is
assumed to be normally distributed with mean zero. An alternative approach worth
trying is fitting a zero adjusted inverse Gaussian distribution using the gamlss
package (Rigby and Stasinopoulos 2001, 2005; Akantziliotou et al. 2002). The zero
adjusted inverse Gaussian model has the advantage of always produces positive
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value predictions. For zero adjusted measures, the measurements that are zero in
value are classified as extremely unusual, very unusual and unusual, when the
estimated pt value is less 0:0001, 0:001 and 0:005 respectively. However if yt > 0

then its unusualness is evaluated in the normal way described before. The preferred
model is to use a zero adjusted model.

Let the training sample have n observations finishing at time t . Then the design
matrix of explanatory variables is given by

Xnt D

0

B
BB
@

1 x1 t�nC1 : : : xk t�nC1 yt�n yt�n�1
1 x1 t�nC2 : : : xk t�nC2 yt�nC1 yt�n
:::

:::
: : :

:::
:::

:::

1 x1 t : : : xk t yt�1 yt�2

1

C
CC
A

D

0

B
BB
@

xtt�nC1
xtt�nC2
:::

xtt

1

C
CC
A

I

yn t D �
yt�nC1 yt�nC2 : : : yt

�t
:

Check whether any column of Xnt is a vector of a constant, e.g. rainfall is always
zero during the time period the training data are collected. If it is nearly always true,
then exclude this column from the matrix and exclude this variable from the model
checking for consistency. If any of the Eigen-values of X 0n tXn t are zero then the
inverse does not exist and we need to refer to Section 1.2.4.3 for one option on how
to deal with this problem. Let

� D

0

B
BB
B
B
B
B
B
@

ˇ0
ˇ1
:::

ˇk

˛1
˛2

1

C
CC
C
C
C
C
C
A

I Pnt D .X 0ntXnt/
�1I bnt D X 0ntynt:

then the ordinary least squares estimate of the regression coefficients are

b�nt D Pntbnt

and
b�2nt D x0tC1PntxtC1.ynt � Xnt

b�nt/
0.ynt �Xnt

b� nt/=.n� k � 3/:
Step 7: Check the t C 1 observation for unusualness by first calculating the model

residuals (i.e. estimated errors) as follows

betC1jt D ytC1 � x0tC1b�nt:

Assign consistency codes using rules: jjbetC1jt jj > 5b�nt as extremely unusual
through to jjbetC1jt jj <b�nt as close to expected.
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Step 8: Repeat steps 6 and 7 for all rainfall and flow measurements in a catchment
for time t C 1.

The Recursive Estimation Phase

The start up phase is designed for checking the first observation in test sample (i.e.
observation t C 1). Note that the current formulation of the training data are that it
is the period just prior to the test data, however we think we want to have greater
flexibility than this. For example, we may want the option of specifying last year‘s
identical seasonal data.

The recursive estimation phase now updates the parameter estimates to provide
updated predictions for the test sample observations. These predictions are used
as expected values to check for consistency. The next sequence of steps is those
necessary to achieve this aim.

Step 9: Update estimates using observation t C 1. We use a forgetting factor
very similar to that applied in Guo et al. (1993) and Campi (1994). The updating
equations are as follows:

Pn tC1jt D .�X 0ntXnt C xtC1x0tC1/�1

D Pnt=� � PntxtC1x0tC1Pnt=Œ�.�C hn tC1jt /�

hn tC1jt D x0tC1Pnt xtC1;

with forgetting weights given by 0:95 < � < 1. Then

bn tC1jt D �bnt C xnC1ytC1

and

b�n tC1jt Db�nt C PntxtC1.ytC1 � x0tC1b�nt/=.�C hn tC1jt / D Pn tC1jt bn tC1jt

b�2n tC1 D .1 � �/.ytC1 � x0tC1b�n tC1jt /2 C �b�2nt

An alternative approach is to use the gamlss models (Rigby and Stasinopoulos
2001, 2005; Akantziliotou et al. 2002) to fit both the mean and variance over
time using the appropriate location-scale distribution. However this model can
not easily be updated using a recursive approach, but would need to be fitted
using a moving window of data.

Step 10: Check the t C 2th observation for unusualness by calculating the
forecast error

betC2jtC1 D ytC2 � x0tC2b�n tC1jt
and assign consistency codes as before withbetC2jtC1 replacing y � E.yjx/ and
b�n tC1 replacing � .
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Step 11: Repeat steps 9 and 10 until all the observations in the test set have been
checked. At each cycle update the parameter estimates, and then check the next
observed set of measurements for unusualness and code them accordingly.

Step 12: Repeat these steps for each rainfall site first followed by stream flow site
measurements. The updating equations now become as follows:
PnjC1jj D Pnj jj�1=� � Pnj jj�1xjC1x0jC1Pn j jj�1=Œ�.�C hn jC1jj /� where

hn jC1jj D x0jC1Pn j xjC1

bn jC1jj D �bnj jj�1 C xjC1yjC1
and

b�njC1jj D b�nj jj�1 C Pnj jj�1xjC1.yjC1 � x0jC1b�n j jj�1/=.�C hnjC1jj /

D PnjC1jj bn jC1jj

b�2n jC1 D .1 � �/.yjC1 � x0jC1b�njC1jj /2 C �b�2n j for j > t

At each stage, record the ‘expected value’ (x0jC1b�njC1jj ) for observations that
are classified as either, unusual, very unusual or extremely unusual. In addition,
in the sequential checking process, we use the expected value in the place of
identified measurement errors when using the measure as an explanatory variable
for measurements checked later in the sequence.

Alternatives to Ordinary Least Squares (ols) Regression When X 0
ntXnt

Is Singular or Near Singular

Two options were explored when the explanatory variables produce a near singular
design matrix. This problem should seldom arise if users are careful about selecting
their explanatory variables and training dataset. However, those users that are
unaware of the potential dangers of collinearities are likely to fall into this trap,
and alternatives that avoid the collinearity problem are needed. The first approach
to avoiding this problem is now offered based on principal component regression:
this is the more complicated option, but it is the preferred option in terms of ensur-
ing multivariate spatio-temporal consistency. The second approach uses weighted
averages, with weights inversely proportional to distance, to establish the expected
values. This approach has value in terms of its simplicity but it only preserves spatial
consistency. It failed to ensure multivariate consistency or temporal consistency. It
proved sub-optimal in terms of efficiency and therefore is not reported in this paper.

Principal Component Regression (PCR)

Use principal component regression when the design matrix is nearly singular.
Introducing the mathematics necessary for implementing principal component
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regression; let an eigenvector and corresponding eigenvalue of design matrixX 0ntXnt

be v and �. Note that

X 0ntXnt v D �2 v such that v0v D 1:

Let eigenvectors vi ; i D 1; 2; : : : ; k C 3 correspond to eigenvalues �21 > �22 > :: �
�2kC3 � 0 with v0ivj D 0; v0j vj D 1 and X 0ntXnt vj D �2j vj for j D 1; : : : ; k C 3.
Let diagonal matrix of eigenvalues be defined by

D� D

0

B
@

�1 : : : 0
:::
: : :

:::

0 : : : �m�1

1

C
A ;

and the matrix of corresponding eigenvectors be given by V� D �
v1 v2 : : : vm�1

�
.

Defined U� D XntV�D
�1
� , and then the PCR coefficient estimate is

b�pc D V�D
�1
� U

0
�ynt:

The PCR estimate b�pc will be used in the place of b�nt whenever near zero
eigenvalues are encountered. Also replace Pnt by starting the recursive estimation
process with

Pnt D V�D
�2
� V 0� :

Other approaches such as ridge regression were not investigated.

2.5 Batch Consistency Checking

Real-time checking can only condition on past identical measurements at the same
site. However, batch checking allows the option of conditioning on all identical
measurements made at the same site besides the one that is being checked. For
example, adding explanatory variables ytC1 and ytC2 to the model in Step 6 of
Sect. 2.4.1 would be a reasonable choice for batch checking of the measurement yt .

3 Detection of Errors That Persist

There is a need for detecting measurement device problems early. Two device
problems will be investigated. The first is where the measurements depart on the low
side or high side of the expected values, which is typical when say the battery fails
in the device. The other is when the measurement device becomes more uncertain
by increasing its variance significantly from a target acceptable variance.
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3.1 Early Detection of Persistent Biases

The CUSUM plan of Page (1954) is useful for accumulating enough memory of
small persistent one-sided departures from expected for detecting them early. The
CUSUM for high sided departures is given by (SUt D 0 D SLt )

SU� D max.0; SU��1 Cbe� j��1=b�n� � k/

and CUSUM for low sided departures is given by

SL� D min.0; SL��1 Cbe� j��1=b�n� C k/

for � D t C 1; t C 2; : : : , where k.> 0/ is some suitable offset. Measurements are
classified as persistently biased at time � and before if either

SL� < �hc or SU� > hc

where hc is a suitable threshold designed to deliver an acceptable false alarm rate.
After each bias signal, the CUSUM statistic is restarted at zero for the calculation of
the next CUSUM value. This allows users to assess whether the bias persists after a
signal. Other work on CUSUM of recursive residuals (Ploberger and Kramer 1992)
differs slightly from our approach outlined above. We use standardised interpolation
errors whereas they use recursive residuals, the standardisation we use involves only
past data for real-time consistency checking, whereas their approach used all the
data, and unlike our CUSUM statistic, their CUSUM is not based on Page (1954)
with an offset k.

An alternative to the CUSUM is to use the EWMA plan (Wortham and Ringer
1971). Here we advocate a two sided EWMA plan as follows (ewmaUt D 0 D
ewmaLt ):

ewmaU� D max.0; .1 � �3/ewmaU��1 C �3be� j��1=b�n� /

and low sided departures is given by

ewmaL� D min.0; .1� �3/ewmaL��1 C �3be� j��1=b�n� /

for � D t C 1; t C 2; : : : , where 0 < �3 < 1. Measurements are classified as
persistently biased if either

ewmaL� < �he or ewmaU� > he

where he is a suitable threshold designed to deliver an acceptable false alarm rate.
After a signal, the next ewma value is calculated by resetting the preceding ewma
value to zero.



398 R. Sparks and C. OkuGami

3.2 Early Detection of Unacceptable Uncertainty in
Measurements

Although the CUSUM can be applied to signal increases in measurement uncer-
tainty, we advocate the EWMV statistic because it is easy to interpret. Assume
that the expected variance is given by �2T , and that the unacceptable high variance
is given by �2B.> �2T /. The EWMV (Harris and Ross 1991) statistic is given by
(ewmvt D �2T )

ewmv� D .1 � �4/ewmv��1 C �4be2� j��1
Unacceptable uncertainty is flagged whenever ewmv� � �2B . The alternative is to
flag any significant increased in variance (uncertainty) of the measurements. In this
case, we recommend the following statistic

V� D max.�2T ; .1 � �4/ewmv��1 C �4be2� j��1/

Flag a significant increase in uncertainty from the target wheneverV� > �2T hv where
hv.> 1/ is a suitable threshold designed to deliver an acceptable low false alarm rate.

4 Concluding Remarks

The paper discusses the development of simple Quality Assurance/Quality Control
algorithms for automatically detecting and flagging unusual measurements. When
data are missing, a first pass interpolated value is used to patch the missing data.
However, it is expected that this patched value would be revised at a later stage
using more sophisticated modelling techniques with cleaner data (preferably using
multiple imputation).

Future date quality challenges include:

1. Optimal design for multivariate spatio-temporal consistency checking.
2. Scalable real-time systems and algorithms for increasing volumes and complex-

ity of data.
3. Integration of the automatic consistency checking process into a data quality

assurance plan.
4. Expand consistency checking to real-time checking for model biases, checking

for temporal biases in the model, thus judging whether deterministic or empirical
models provide information that are fit for purpose.

5. Periodic reviews to improve the measurement process: check whether the
measurement process is optimal, i.e. the right measures, taken at the right
geographical locations, at the appropriate temporal resolution and with the right
level of accuracy.

6. Monitoring the number of errors and the percentage of missing data over time.
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Appendix

Finding an ensemble estimate of a measurement derived by combining estimates of
this measurement using Eqs. 2 and 4 is

�

 
kX

iD1
xit =di

!,  
kX

iD1
1=di

!

C .1 � �/ewmat�1:

The estimates Eqs. 2 and 4 are assumed to be independent unbiased estimates of the
true measured value yt with variances �2t and �2, respectively. The variance of this
ensemble estimate is given by

�2e D Var

 

�

 
kX

iD1
xit =di

!,  
kX

iD1
1=di

!!

C Var..1 � �/ewmat�1/

since the estimates are independent. Then

�2e;t D �2Var

  
kX

iD1
xit =di

!

=

 
kX

iD1
1=di

!!

C .1 � �/2Var.ewmat�1/

D �2 �2 C .1 � �/2 �2t :

The best linear unbiased (ensemble) estimate is the estimate which minimises the
variance �2e;t . This estimate is found by differentiating�2e;t with respect to �, equating
this to zero, and solving for �. That is,

@�2e;t =@� D 2� �2 � 2.1� �/ �2t D 0;

then solving for � gives
� D �2t =.�

2 C �2t /:

Since �2 and �2t are unknown, we use plug-in estimates for these unknown
parameters to estimate �.
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Uncertainty and Quality Control

Elart von Collani

Abstract Uncertainty about future developments constitutes the most important
and most difficult challenge for mankind. Despite this fact, uncertainty is not a part
of general science. General science assumes that the future development follows
cause-effect relations which can be described by mathematical functions, where the
argument represents the cause and the image represents the effect. Scientific theories
have exactly this form and it is widely believed that these functions represent
“truth”. Of course, this is nonsense as all the scientific theories are with certainty
wrong and cannot describe the real evolution correctly. The inappropriate handling
of uncertainty in science has produced a strange variety of “uncertainty theories”
that causes confusion and helplessness. A friend of mine has expressed his confusion
by the following words:

‘Crisp sets’, ‘fuzzy sets’, ‘rough sets’, ‘grey sets’, ‘fuzzy rough sets’, ‘rough fuzzy sets’,
‘fuzzy grey sets’, ‘grey fuzzy sets’, ‘rough grey sets’, ‘grey rough sets’, and now ‘affinity
sets’. My goodness! Is there anybody around who can enlighten me, i.e., help me to see a
clear pattern in this set of sets, allegedly providing powerful tools to model various kinds of
uncertainty?

This paper examines the role and the handling of uncertainty in quality control.
How is uncertainty quantified in quality control for making decisions aiming at
maintaining or improving quality of processes and products.
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1 What Is Uncertainty?

Before uncertainty can be analyzed it must be clearly explained and defined. This
is necessary since in everyday speech, the word “uncertainty” may have different
meanings according to the object of uncertainty. Therefore, it makes sense to start
with a list of objects about which there might be uncertainty.

• Facts
The word fact derives from the Latin Factum, and was first used in English
with the meaning: “something that has really occurred or is the case”. Fact is
sometimes used synonymously with “truth” or “reality”1 Thus, a fact is the true
outcome of a completed process. It exists and represents therefore “truth”. If a
fact is unknown, then the ignorance makes one feel uncertain.

As to quality control, almost all activities aim at reducing the ignorance
about quality-related facts. The facts are given as values of certain quality
characteristics and they are needed to make decisions concerning products and
processes. For example:

– Ignorance about the fraction nonconformance in a given lot may be reduced
by acceptance sampling.

– Ignorance about the nonconformance probability of a given production pro-
cess may be reduced by means of a p-chart.

– Ignorance about the value of the first moment (expected value) of the lifetime
of a product may be reduced again by sampling.

For being linguistically more precise uncertainty about facts shall be called
“ignorance” in the remainder.

• Statements
Any statement is made by using a language and therefore may be ambiguous
and therefore uncertain. There are two types of languages, natural languages and
artificial (formal) languages such as mathematics, and there might be uncertainty
about the meaning of statements in both languages.

– Uncertainty about the meaning of a statement made in a natural language is
generally due to the vagueness and ambiguity that are characteristic for all
natural languages.

– Uncertainty about the meaning of a statement made by using mathematics is
generally due to ambiguity of the involved variables and functions. Quantum
mechanics may serve as a prominent example. The interpretation is uncertain
and according to Richard Feynman,2 there is no one who understands
quantum mechanics. One example from quality control are statements about

1See http://en.wikipedia.org/wiki/Fact.
2See: http://www.spaceandmotion.com/quantum-mechanics-richard-feynman-quotes.htm.

http://en.wikipedia.org/wiki/Fact
http://www.spaceandmotion.com/quantum-mechanics-richard-feynman-quotes.htm
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probabilities since the concept probability has many different and inconsistent
meanings.

Again, for being linguistically more precise uncertainty about the meaning of
statements will be called “ambiguity” in the remainder.

• Observations
Observations serve to get knowledge about something or to determine some
unknown facts. However, whether by means of human senses or by technical
devices, observations are always made with a finite resolution implying that the
underlying fact which is observed cannot be determined exactly, i.e. leaving
a certain degree of ignorance. Uncertainty about an observation is therefore
subsumed under ignorance.

• Future
The future outcome of a development does not exist so far and is therefore
not a fact since a fact must already exist. The future is indeterminate and
from experience it is well-known that any development will end in one of
many possible outcomes. Repeating a process will yield different outcomes and
some of them occur more frequently than others. Uncertainty about future is
different from ignorance and ambiguity since man is the source of ignorance
and ambiguity while indeterminacy of the future is independent of mankind. To
make this difference clear, only uncertainty about the future development shall
be called “uncertainty” here.

In quality control the activities aim at determining facts. The gained knowl-
edge about facts is utilized to reduce uncertainty about the future development to
allow better decisions.

Ignorance, ambiguity and uncertainty may lead to problems in any decision-
making process not only in quality control. Therefore, reducing ignorance, ambi-
guity and uncertainty are the central tasks of quality control.

2 Handling Ambiguity

Ambiguity refers to statements. There are at least two ways to handle ambiguity of
natural languages, a more traditional one and a seemingly more advanced one. Both
shall be briefly outlined, starting with the latter approach.

2.1 Describing Ambiguity by Fuzzy Sets

In 1965 Lotfi Zadeh introduced the theory of fuzzy sets to quantify the “fuzzyness”
of natural languages. Consider the statement “A is nearly six feet tall”. The
ambiguity is contained in the word “nearly” and the problem is how to describe
the ambiguity about the height of A quantitatively. To this end it is assumed that the
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set of “tall” people and the set of “not-tall” people are overlapping. The members
of both (fuzzy) sets satisfy “imprecise” properties and this is expressed by certain
“degrees of membership” in a fuzzy set. The degree of membership is specified by
a corresponding “membership function”, where the degrees of membership 0 and 1
mean no membership and full membership, respectively.

Clearly, neither fuzzy sets nor membership functions are unique, but depend
on the subjective understanding of the underlying linguistic imprecision. In other
words, linguistic ambiguity is a relative property. Thus, the selection of fuzzy
sets and membership functions are subject to individual preferences. Furthermore,
neither a specified fuzzy set nor the corresponding membership function reduces the
linguistic ambiguity.

2.2 Avoiding Ambiguity by Quantification

The traditional way to avoid ambiguity of a statement is to quantify all involved
characteristics and thereby replace the natural language by the language of mathe-
matics. Mathematics is build on numbers which have a unique meaning. Moreover,
mathematics is developed according to logic, and mathematical statements have
therefore not only unique meanings but are also consistent.

The interpretation difficulties which may occur when using mathematics as
language are caused by an inappropriate quantification, i.e., translation into math-
ematics. Unfortunately, science has so far not understood the significance of
quantification, and as a consequence scientific results are in general ambiguous.

To sum up, describing ambiguity by fuzzy sets and membership functions does
not reduce ambiguity, but may lead to further difficulties and confusion. In contrast,
an appropriate quantification avoids completely any linguistic ambiguity.

3 Handling Ignorance

Ambiguity is a characteristic property of languages and can be overcome by
appropriately using mathematics which means that a given situation is described
by variables, functions, numbers and sets of numbers.

Ignorance on the other hand is a characteristic property of human beings. It refers
to facts and means that the fact is not known. Any fact relates to a characteristic and
if the corresponding characteristic has been quantified, then ignorance means that
the actual value of the characteristic is unknown. But ignorance does not mean that
there is nothing known about the considered characteristic and its actual value since
it is always possible to specify values which cannot be the actual one. The more
values can be excluded as being not the actual one, the smaller is the level or degree
of ignorance.

Thus, the degree of ignorance can be described by the set of values which cannot
be excluded. It immediately follows that ignorance can be reduced by learning or
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measurement processes that are used to exclude further values. The larger the set of
values that cannot be excluded the larger is the degree of ignorance. No ignorance,
i.e. complete knowledge, is achieved, if the set of possible values is given by a
singleton.

Almost all activities in quality control represent efforts to reduce the degree of
ignorance with respect to various quality characteristics of the considered systems,
processes or products.

4 Handling Uncertainty

As specified above, uncertainty refers to future developments and represents the
main problem not only for quality control. The future is related on the past and
this dependence is the key for understanding and handling uncertainty. Uncertainty
about the future has two distinct sources:

• Each week the drawing of lotto numbers is shown in the German TV. The initial
conditions are always exactly the same, nevertheless, the outcomes are practi-
cally always different. The same can be observed for manufactured products.
The values of the characteristics differ even for exactly the same production
conditions. The observed variability of future developments is a characteristic
feature of the evolution of universe, it is observed in the micro as well as in
the macro world. This universal feature is generally called randomness and for
handling uncertainty it is therefore necessary to analyze randomness.

• Any future development stochastically depends on the past, i.e., on the conditions
at the start of the development. If these starting conditions are known, then
the dependence can be exploited to describe the existing uncertainty. For
instance, the starting conditions of drawing the lotto numbers are completely
known and thus it is possible to describe the existing uncertainty by stochastic
laws concerning the future variability. If there is ignorance about the starting
conditions, then there is also ignorance about the laws of the future variability
and the uncertainty about the future development increases.

Accordingly, human uncertainty is caused by randomness which is a characteristic
feature of universe and by ignorance which is a characteristics feature of mankind.

There are many different ways to quantify uncertainty in order to analyze it.
The traditional quantified model was introduced by Kolmogorov (1956) and is
known as “probability space”. Besides the probability space there are numerous
other “uncertainty spaces” which are applied to analyze uncertainty. Some of these
models are described and evaluated below. If uncertainty shall not only be analyzed
but reduced then according to the two sources of uncertainty there are two ways: The
first way consists of reducing the ignorance about relevant facts, and the second way
is to change randomness by changing the relevant facts. Both ways are exercised in
quality control. All monitoring activities aim at reducing ignorance, all repair and
maintenance actions aim at changing the relevant facts.
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5 Mathematical Models

Traditional science is based on the assumptions of a deterministic evolution of
universe and of being able to determine “truths”. Therefore there are no appropriate
models available in science for describing and analyzing uncertainty. However, in
mathematics there are several models developed which are applied to quantify and
subsequently analyze ignorance, ambiguity and uncertainty.

5.1 Probability Space

The probability space was introduced by Kolmogorov as a purely mathematical
construct which is not related to anything real. This fact was very clearly expressed
by Kolmogorov himself who states in Kolmogorov (1956): Œ: : :� the concept of
a field of probabilities is defined as a system of sets which satisfies certain
conditions. What the elements of this set represent is of no importance in the purely
mathematical development of the theory of probability.

The probability space consists of three components .˝;A.˝/; P / with are
defined as follows:

• ˝ is a non-empty (abstract3) set,
• A.˝/ a �-algebra over the set ˝ , and
• P is a set function defined on A.˝/ with the following properties:

– Nonnegativity:
P.A/ � 0 for A 2 A.˝/ (1)

– Normality:
P.˝/ D 1 (2)

– �-Additivity:

P

 1[

nD1
An

!

D
1X

nD1
P.An/ for Ai 2 A.˝/ and Ai \Aj D ; if i 6D j (3)

As to possible applications of the probability space, Kolmogorov states in Collani
(2004): Every axiomatic (abstract) theory admits, as is well known, of an unlimited
number of concrete interpretations Œ: : :�. Therefore, for using the probability
space, one must first give a concrete interpretation of the involved mathematical
quantities.

3“Abstract” means that the elements have no real interpretation.
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5.1.1 Probability Space as a Model of Randomness

Kolmogorov’s probability space is the classical model for randomness with respect
to a process, i.e. the change from the past to the future. It is taught all over the
world and there is hardly any textbook dealing with randomness which does not
contain Kolmogorov’s probability space. The generally made interpretations are the
following:

• ˝ is the set of possible outcomes of the considered process.
• A.˝/ is the set of future events with respect to the considered process.
• P is called the probability measure. It assigns to each event (element of A.˝/)

the corresponding probability.

The adequacy of the probability space for modelling randomness or uncertainty
shall be checked by means of the simple process of throwing a coin. Each throw
may be described by countless many features, for instance throwing range, throwing
height, angle of impact, impact force, etc. In fact it is impossible to completely
describe all possible features of an outcome of the process throwing a coin. It
follows that the set of outcomes as well as the set of future events cannot be specified
implying that the same holds for the probability measure P .

Besides the fact that it is not possible to specify a probability space even for
simplest real processes, there are other deficiencies which make the probability
space appear as being not suitable for serving as a mathematical model for random-
ness. As mentioned above applying a mathematical construct assumes that a clear
interpretation of all the involved mathematical quantities has been given. Looking
at the above stated interpretations reveals that there is no clear interpretation of the
most important mathematical quantity “probability measure”. Actually, in relevant
textbooks there is either no interpretation or several inconsistent interpretations
are given.

One of the interpretations is the so-called frequency interpretation which is
looked upon as especially appropriate for explaining randomness. However, the
frequency interpretation assumes a sequence of repeatable experiments and explains
the ‘probability of an event’ as its relative frequency ‘in the long run’ (infinite
frequency interpretation). Thus, according to the frequency interpretation, proba-
bility is explained by an infinite sequence of experiments, which obviously does not
exist. In other words, the frequency interpretation does not explain the concept of
probability, but leads itself to irresolvable interpretation difficulties.

If the probability space shall be used not only as a model for randomness but as a
quantitative model for uncertainty, then the following additional weaknesses should
be noted:

• The starting conditions do not explicitly appear in the model.
• The always existing ignorance about the starting conditions which mainly

determine uncertainty is not included into the model.
• The probability space constitutes not a completely quantified model, since the

the set ˝ is not defined as a set of numbers but as a set of outcomes.
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5.1.2 Probability Space as a Model of Ignorance

Besides being used as a model for randomness, the probability space is also used
for a model of ignorance with respect to facts. In this case ˝ and A.˝/ refer to the
outcomes and events of a already completed process, and the probability of an event
is explained as the degree of belief in the event.

Belief is one of the most dangerous forms of ignorance and many wrong
decisions are made based on belief. Therefore, belief should be kept out of science!
If two values cannot be excluded from being the actual value of a variable of interest,
then both values have to be considered likewise. It is too dangerous to prefer the one
over the other according to a “degree of belief”. Such a degree is purely subjective
and has no relation to the actual reality since nothing can be for example “half true”.

It follows that the so-called subjective interpretation of probability which is
the base of the so-called Bayesian statistics should not be used for making any
decisions.

5.2 Credibility Space

The credibility space is another purely mathematical construct. Similar as the
probability space, it is recommended to be applied for modelling uncertainty.
Actually, it is the basic model for ambiguity as treated by fuzzy sets and membership
functions. As Liu (2007) notes there are three aspects of vagueness or ambiguity
considered in fuzzy theory namely possibility, necessity and credibility. In 1978
Zadeh proposed the possibility space as a basic model which was extended in 2002
to a credibility space by Liu and Liu (2002).

Liu and Liu’s credibility space .�;Q.�/; C r/ follows Kolmogorov’s approach.
The three components are defined as follows:

• � is a non-empty (abstract) set,
• Q.�/ is the power set over the set �, and
• Cr is a set function defined on Q.�/ with the following properties:

– Normality:
Cr.�/ D 1 (4)

– Monotonicity:

Cr.A/ � Cr.B/ for A 
 B and A;B 2 Q.�/ (5)

– Self-Duality:

Cr.A/C Cr.Ac/ D 1 for A 2 Q.�/ and Ac D � nA (6)
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– Sum Formula4:

Cr
�[n

iD1Ai
� D sup

1�i�n
C r.Ai / for Ai2Q.�/ and Cr.Ai/ � 1

2
, iD1; : : : ; n

(7)

Often it is claimed that the probability space refers to future randomly occurring
events, while the credibility space deals with the ambiguity or vagueness of the
representation of an event. However, since the probability space is used not only in
the case of future events, but also in the case of past events this differentiation does
not really hold. The main reason for this ambiguity is the unclear and inconsistent
definition of the concepts probability and credibility which are introduced based
on (mathematical) axioms instead of requirements derived from reality. Actually,
the differences between the probability space and the credibility space refer to the
assumed set functions. Unfortunately, in neither case the assumed properties are
backed by reality.

5.3 Uncertainty Space

In 2007 Liu introduced another mathematical construct .�;A.�/; �/ which he
called ‘uncertainty space’. The three components are defined as follows:

• � is a non-empty (abstract) set,
• A.�/ a �-algebra over the set � , and
• � is a set function defined on A.�/ with the following properties:

– Normality:
P.˝/ D 1 (8)

– Monotonicity:

�.A/ � �.B/ for A 
 B and A;B 2 A.�/ (9)

– Self-Duality:

�.A/C �.Ac/ D 1 for A 2 A.�/ and Ac D � nA (10)

– �-Subadditivity:

�
�[1nD1An

� �
1X

nD1
P.An/ for Ai 2 A.�/ and Ai \Aj D ; if i 6D j

(11)

4According to Hu et al. (2009)
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The main weakness of all these theories and models of uncertainty/ambiguity
/vagueness is the fact that none of them distinguishes clearly between future and
past and that none of them starts from reality and develops the mathematical means
appropriately. Each of them starts with formulating some mathematical axioms
which leads to the necessity to adjust reality to the axioms.

This becomes clear in Liu’s most recent book Liu (2010) on uncertainty theory.
The question “What is Uncertainty?” is not posed an the beginning of the book, but
only at the end in an appendix! His answer is at the same time surprisingly frank
and extremely unsatisfactory. He states (Liu 2010, p. 251):

In fact, I really have no idea how to use natural language to define the concept of uncertainty
clearly, and I think all existing definitions by natural languages are specious just like a
riddle. A very personal and ultra viewpoint is that the words like randomness, fuzziness,
roughness, vagueness, greyness, and uncertainty are nothing but ambiguity of human
language!

In other words uncertainty theories are developed and applied although there is at
best a vague feeling about what uncertainty might be. Instead of a clear explanation,
mathematics is used to solve the problem. Liu continues:

However, fortunately, some “mathematical scales” have been invented to measure the truth
degree of an event, for example, probability measure, capacity, fuzzy measure, possibility
measure, credibility measure as well as uncertain measure. All of those measures may be
defined clearly and precisely by axiomatic methods.

It is correct that all these measures are clearly defined as part of mathematics,
however, this does not mean that there is a unique interpretation with respect to
reality. In order to get an adequate (mathematical) description of something real,
one has to start with reality and not with mathematics and axioms, i.e., postulates
which need not be proved or demonstrated.

Although Liu realizes that applying the various uncertainty theories might lead
to wrong or meaningless results, he does not give a solution. In order to illustrate
the difficulties, we will take Liu’s examples (Liu 2010, pp. 252–254) and use them
later on to illustrate a solution.

Example “Fuzziness”

It is assumed that the distance between Beijing and Tianjin is “about 100 km”. If “about
100 km” is regarded as a fuzzy concept, then we may assign it a membership function, say

�.x/D

8
ˆ̂
<̂

ˆ̂̂
:

x � 80
20

if 80 � x � 100

120� x
20

if 100 � x � 120
(12)

Based on this membership function, possibility theory (or credibility theory) will conclude
the following proposition:
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Fig. 1 Ten cities located on a
ring in which the distance
between any adjacent cities is
96 km, and the perimeter of
the ring is 960 km

The distance between Beijing and Tianjin is “exactly 100 km” with belief degree 1
in possibility measure (or 0.5 in credibility measure).

However, it is doubtless that the belief degree of “exactly 100 km” is almost zero. Nobody is
so naive to expect that “exactly 100 km” is the true distance between Beijing and Tianjin.

Example “Randomness”

Consider 10 cities located on a ring shown in Fig. 1 in which the distance between any
adjacent cities is exactly 96 km, and the perimeter of the ring is just 960 km. Assume that
the distance between adjacent cities is unknown and we have to acquire information from
domain experts. A questionnaire survey shows that the distance between any adjacent cities
is “100˙ 5 km”.

Now let us treat “100 ˙ 5 km” as a random variable and assume it is uniformly
distributed on [95, 105]. Then the perimeter of the ring is also a random variable whose
99% confidence interval is [977, 1023] and, unfortunately, the true perimeter 960 km is out
of the 99% confidence interval. This is clearly an unreasonable conclusion. In other words,
we cannot treat “100˙ 5 km” as a random variable.

Example “Ignorance”

If we treat it as an uncertain variable with uncertainty distribution

˚.x/ D
8
<̂

:̂

0 if x < 95

0:5 if 95 � x � 105
1 if x > 105

(13)

then the perimeter of the ring is also an uncertain variable whose uncertainty distribution
is

�.x/ D
8
<̂

:̂

0 if x < 950

0:5 if 950 � x � 1050
1 if x > 1050

(14)
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In other words, the perimeter is “1,000 ˙ 50 km” and the true perimeter 960 km is within
this range. This is a reasonable result.

These examples illustrate that without a clear understanding of ambiguity, random-
ness, ignorance and uncertainty and a blind reliance on mathematics wrong results
and therefore wrong decisions are almost inevitable.

5.4 Bernoulli Space

Only recently an alternative to the probability/credibility/uncertainty spaces has
been developed in Collani (2004). The alternative is named Bernoulli Space
to commemorate Jakob Bernoulli who introduced the concept probability about
300 years ago.

The Bernoulli Space denoted BX;D is the basic model of uncertainty as proposed
in Bernoulli Stochastics. It is not an axiomatic mathematical construct such as, for
example, the probability space, but starts from reality, and mathematics is only used
to describe the identified real constituents.

As specified, uncertainty refers to the change from some determinate starting
conditions to an indeterminate terminal condition (future outcome). The indetermi-
nate future aspect of interest is quantified by a variable, say X , and the relevant
starting conditions are quantified by another variable, say D. The variable X will
randomly adopt one of several values and is called random variable, while D has a
fixed but generally unknown value and is therefore called deterministic variable. For
describing the change from the past given by D to the future represented by X , the
ignorance with respect to D, the range of future variability with respect of X and
the random structure of the future developments must be described quantitatively.
The random structure means that if the process is repeated some developments will
occur frequently and others infrequently. This phenomenon is due to randomness.

300 years ago, the Swiss theologian and mathematician Jakob Bernoulli
explained randomness of a future event as the degree of certainty of its occurrence
and named this degree probability. Note that the probability of a future event with
respect to a given random variableX depends exclusively on the starting conditions.
In particular, it is independent of any expert opinion and of the outcomes of any
number of process repetitions.

The starting conditions are given by the actual value d of the deterministic
variableD and the possible events refer to a random variableX jfd g. The probability
of an event E is denoted PX jfdg.E/. The probability represents a fraction of
certainty, any certain result has therefore the probability 1 and any impossible event
the probability 0:

PX jfdg.E/ D 1 if E is a certain event (15)

PX jfdg.E/ D 0 if E is a impossible event (16)
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For an event consisting of two mutually exclusive events E1 and E2, the
probability is obtained by adding the corresponding (probability mass) fractions:

PX jfdg.E1 \E2/ D PX jfdg.E1/C PX jfdg.E2/ (17)

Thus, the identified real properties are only expressed mathematically, without any
axioms or principles. The above shall illustrate the appropriate proceeding in mod-
elling. Modelling must start with the real situation and continue by expressing the
recognized relations with mathematical terms. After the basic concept probability
has been explained and defined, the stochastic model of uncertainty can be derived
similarly. As noted above it must include ignorance (about the past) and randomness
(of the future).

• Ignorance:
Ignorance refers to the actual value of D and is adequately described by the set
of values which cannot be excluded for D. This generally finite set denoted D
is called ignorance space. Each subset D0 
 D specifies a certain degree of
ignorance.

• Randomness:
Randomness refers to the random variable X and is described by the variability
and the random structure of X .

– Variability: The range of variability of X depends on the starting conditions
or, more precisely said, on the degree of ignorance aboutD. This dependence
is described by a function X named variability function, which is defined
on an appropriate system of subsets T.D/ over D with images being the
corresponding ranges of variability of the random variable X :

X W T.D/ ! R (18)

with
X.D0/ D

[

d2D0

X.fd g/ for D0 2 T.D/ (19)

– Random structure: When the considered process is repeated, then some of
the outcomes occur often while others occur seldom. This phenomenon is
described by a probability distribution which depends on the starting condition
and defines a random structure on the corresponding range of variability ofX .
The random structure is given by the function P which is named random
structure function and which has the same domain as X with images being
probability measures:

P W T.D/ ! P (20)

where P is the set of probability measures. P has the following property:

P.D0/ D PX jD0
(21)
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with

PX jD0
.A/ D 1

jD0j
X

d2D0

PX jfdg.A/ for A 2 X.D0/ (22)

where jD0j denotes the size (cardinality) of the set D0, X jfd g is the random
variableX under the starting conditions d and PX jfdg the probability measure
of X jfd g from which follows that PX jD0

.A/ is the average probability under
the degree of ignorance given by D0.

The Bernoulli Space is a mathematical model for the change from the relevant past
represented by the deterministic variable D to the future of interest represented by
the random variableX . Ignorance about the past is quantified by the ignorance space
D; randomness of future is quantified by the variability function X and the random
structure function P:

BX;D D �
D;X;P

�
(23)

Each of the components of the Bernoulli Space is necessary, and together they are
sufficient for a complete model of uncertainty.

For understanding the significance of the Bernoulli Space when compared with a
“statistical model”, one should consider the difference between an estimate, which
is one point, and a confidence interval, which is given by a set of points. The only
founded statement about an estimate is that it differs from the true value, while the
confidence interval generally covers the true value. A statistical model consists of
one probability distribution and the only founded statement that can be made is
that it differs from the true probability distribution. In contrast the Bernoulli Space
consists of a set of probability distributions, which generally cover the true one. If a
Bernoulli Space is used instead of a statistical model, the risk of a wrong model is
known just as in the case when using a confidence interval instead of an estimate.

6 Conclusions

Modern science as it has been developed during the last 500 years aims at
discovering truth. Truth does not admit uncertainty as it is represented by a fact.
Consequently, in science there is no need to develop models and methods for dealing
appropriately with the real aspect of uncertainty.

Instead, uncertainty became a playing field of mathematicians. As listed by Liu5

it started with probability theory by Kolmogorov in 1933, followed by Choquet’s
capacity theory in 1954 and Sugeno’s fuzzy theory in 1974. In 1978, Zadeh
introduced the possibility theory, which led to the credibility theory as proposed by
Liu and Liu in 2002. Finally in 2007 Liu introduced his uncertainty theory. All of

5http://www.orsc.edu.cn/�liu/Lecture/Evolution/Evolution.pdf.

http://www.orsc.edu.cn/~liu/Lecture/Evolution/Evolution.pdf
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these theories do not differentiate clearly between future and past and more over do
not clearly explain the used measures of uncertainty as real world aspects. Instead,
Liu characterizes probability theory and uncertainty theory as follows:

• Probability theory is a branch of mathematics for studying objective randomness.
• Uncertainty theory is a branch of mathematics for studying human uncertainty.

Actually, these characterizations are contradictions. Mathematics and hence also
its branches do not deal with anything real. Mathematics must be developed
independent of all the real world restrictions only being subject to the constraints of
logic. This requirement for mathematics was very clearly expressed by Kolmogorov
(1956):

The theory of probability, as a mathematical discipline, can and should be developed from
axioms in exactly the same way as Geometry and Algebra. This means that after we have
defined the elements to be studied and their basic relations, and have stated the axioms by
which these relations are governed, all further exposition must be based exclusively on these
axioms, independent of the usual concrete meaning of these elements and their relations.

The misconception to think that a mathematical discipline deals with something
real has led to the unrealistic models and methods for uncertainty. But the
various uncertainty theories represent also another probably even more questionable
development, namely the attempt to establish belief as a scientific category. This
development started by considering subjective probabilities and in Liu (2010) the
following words can be found which factor out reality in favor of belief:

An event has no uncertainty if its uncertain measure is 1 because we may believe that the
event occurs. An event has no uncertainty too if its uncertain measure is 0 because we may
believe that the event does not occur.

Quality control is mainly based on statistics, unfortunately employing both the
frequency interpretation and the Bayesian interpretation. Furthermore, Zadeh’s
fuzzy approach is used although the enthusiasm for it during the 1980s and 1990s
was followed by a certain disillusionment. However, as shown above the used
models are not appropriate to describe uncertainty correctly and should therefore
be given up.
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