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Progress in Theoretical Chemistry and Physics

A series reporting advances in theoretical molecular and material sciences, includ-
ing theoretical, mathematical and computational chemistry, physical chemistry, and
chemical physics

Aim and Scope

Science progresses by a symbiotic interaction between theory and experiment: the-
ory is used to interpret experimental results and may suggest new experiments;
experiment helps to test theoretical predictions and may lead to improved theo-
ries. Theoretical Chemistry (including Physical Chemistry and Chemical Physics)
provides the conceptual and technical background and apparatus for the rationalisa-
tion of phenomena in the chemical sciences. It is, therefore, a wide ranging subject,
reflecting the diversity of molecular and related species and processes arising in
chemical systems. The book series Progress in Theoretical Chemistry and Physics
aims to report advances in methods and applications in this extended domain. It will
comprise monographs as well as collections of papers on particular themes, which
may arise from proceedings of symposia or invited papers on specific topics as well
as from initiatives from authors or translations.

The basic theories of physics – classical mechanics and electromagnetism, rela-
tivity theory, quantum mechanics, statistical mechanics, quantum electrodynamics –
support the theoretical apparatus which is used in molecular sciences. Quantum
mechanics plays a particular role in theoretical chemistry, providing the basis for
the spectroscopic models employed in the determination of structural informa-
tion from spectral patterns. Indeed, Quantum Chemistry often appears synonymous
with Theoretical Chemistry: it will, therefore, constitute a major part of this book
series. However, the scope of the series will also include other areas of theoretical
chemistry, such as mathematical chemistry (which involves the use of algebra and
topology in the analysis of molecular structures and reactions); molecular mechan-
ics, molecular dynamics and chemical thermodynamics, which play an important
role in rationalizing the geometric and electronic structures of molecular assem-
blies and polymers, clusters and crystals; surface, interface, solvent and solid-state
effects; excited-state dynamics, reactive collisions, and chemical reactions.

Recent decades have seen the emergence of a novel approach to scientific
research, based on the exploitation of fast electronic digital computers. Computa-
tion provides a method of investigation which transcends the traditional division
between theory and experiment. Computer-assisted simulation and design may
afford a solution to complex problems which would otherwise be intractable to the-
oretical analysis, and may also provide a viable alternative to difficult or costly
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vi Progress in Theoretical Chemistry and Physics

laboratory experiments. Though stemming from Theoretical Chemistry, Compu-
tational Chemistry is a field of research in its own right, which can help to test
theoretical predictions and may also suggest improved theories.

The field of theoretical molecular sciences ranges from fundamental physical
questions relevant to the molecular concept, through the statics and dynamics of
isolated molecules, aggregates and materials, molecular properties and interactions,
and the role of molecules in the biological sciences. Therefore, it involves the
physical basis for geometric and electronic structure, states of aggregation, phys-
ical and chemical transformation, thermodynamic and kinetic properties, as well as
unusual properties such as extreme flexibility or strong relativistic or quantum-field
effects, extreme conditions such as intense radiation fields or interaction with the
continuum, and the specificity of biochemical reactions.

Theoretical chemistry has an applied branch – a part of molecular engineering,
which involves the investigation of structure–property relationships aiming at the
design, synthesis and application of molecules and materials endowed with spe-
cific functions, now in demand in such areas as molecular electronics, drug design
or genetic engineering. Relevant properties include conductivity (normal, semi-
and supra-), magnetism (ferro- or ferri-), optoelectronic effects (involving nonlin-
ear response), photochromism and photoreactivity, radiation and thermal resistance,
molecular recognition and information processing, and biological and pharmaceu-
tical activities; as well as properties favouring self-assembling mechanisms, and
combination properties needed in multifunctional systems.

Progress in Theoretical Chemistry and Physics is made at different rates in these
various fields of research. The aim of this book series is to provide timely and
in-depth coverage of selected topics and broad-ranging yet detailed analysis of con-
temporary theories and their applications. The series will be of primary interest to
those whose research is directly concerned with the development and application of
theoretical approaches in the chemical sciences. It will provide up-to-date reports
on theoretical methods for the chemist, thermodynamician or spectroscopist, the
atomic, molecular or cluster physicist, and the biochemist or molecular biologist
who wishes to employ techniques developed in theoretical, mathematical or com-
putational chemistry in his research programme. It is also intended to provide the
graduate student with a readily accessible documentation on various branches of
theoretical chemistry, physical chemistry and chemical physics.



Preface

In this volume we have collected some of the contributions made to the Twelfth
European Workshop on Quantum Systems in Chemistry and Physics (QSCP-XII)
in 2007. The workshop was held at Royal Holloway College, the most westerly
campus of the University of London, and situated just a stone’s throw from Windsor
Great Park.

The workshop, which ran from 30 August to 5 September, continued the series
that was established by Roy McWeeny in April 1996 with a meeting held at San
Miniato, near Pisa. The purpose of the QSCP workshops is to bring together, in
an informal atmosphere and with the aim of fostering collaboration, those chemists
and physicists who share a common field of interest in the theory of the quantum
many-body problem. Quantum mechanics provides a theoretical foundation for our
understanding of the structure, properties and dynamics of atoms, molecules and the
solid state, in terms of their component particles: electrons and nuclei. The study
of ‘Quantum Systems in Chemistry and Physics’ therefore underpins many of the
emerging fields in twenty-first century science and technology: nanostructure, smart
materials, drug design – to name but a few.

Members of the workshop were keen to discuss their research and engage in
collaboration centred upon the development of fundamental and innovative theory
which would lead to the exploration of new concepts. The proceedings of all of the
workshops, which have been held annually since 1996, have been published both to
disseminate the latest developments within the wider community and to stimulate
further collaboration.

We welcomed participants not only from most of the member states of the Euro-
pean Union, the United States of America and Canada, but also from China, Japan,
Mexico and Russia. We were also honoured to be joined by Professor Walter Kohn,
Nobel Laureate in Chemistry (1998), who gave a leading-edge lecture on density
functional theory.

The ‘Windsor’ workshop was divided into 18 plenary sessions, during which a
total of 39 lectures were delivered following the usual QSCP ‘democratic’ allocation
of 30 minutes for each lecture. These lectures were complemented by a total of 21
poster presentations. Details of the QSCP-XII, including the abstracts for all lectures
and posters, remain available on the workshop webpages at

quantumsystems.googlepages.com/2007qscpworkshop

The present volume is divided into two parts. The first and shorter part attempts
to capture the essential spirit and dynamism of the workshop. It begins with the
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introduction to the workshop and continues with a ‘workshop report’ which outlines
the central themes of the meeting. In this report, particular attention is focussed
on those lectures for which corresponding contributions are not included in these
proceedings. Part 2 of this volume contains 25 contributions from those who gave
lectures or poster presentations during the workshop. It is hoped that together these
two parts give some insight into the stimulating experience that made the workshop
such a success.

We are grateful to the members of the 2007 workshop not only for the high
standard of the lectures and posters presented during the meeting, which is reflected
in this volume, but also for the friendly and constructive spirit of both the formal
and informal sessions. The QSCP workshops continue to provide a unique forum
for the presentation and appraisal of new ideas and concepts.

We are grateful to other members of the International Scientific Committee
for their continued and invaluable support. Specifically, we thank (in alphabeti-
cal order): Professor V. Aquilanti of the University of Perugia, Italy, Professor
E. Brändas of Uppsala University, Sweden, Professor L. Cederbaum of Heidelberg
University, Germany, Professor A. Mavridis of the National University of Athens,
Greece, and Professor O. Vasyutinskii of the Ioffe Institute in St. Petersburg, Russia,
for their advice and collective wisdom. Undoubtedly, their advice and council
ensured the ultimate success of the workshop.

Finally, we are grateful to the officers of Royal Holloway College for their help
in ensuring the smooth running of the workshop and for allowing access to their
pleasant campus.

It is the editors’ hope that this volume will not only convey some of the dynamism
of the QSCP-XII workshop, but will also seed some innovative ideas in the wider
research community.

April 2008 Stephen Wilson
Peter J. Grout

Gerardo Delgado-Barrio
Jean Maruani
Piotr Piecuch
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Introduction to the Workshop

Stephen Wilson

Abstract Introduction to the twelfth Quantum Systems in Chemistry and Physics
workshop.

Keywords: Workshop introduction

WELCOME TO THE 2007 Quantum Systems in Chemistry and Physics workshop.
Ten years ago the workshop was held in the ancient university city of Oxford. We
met in Jesus College in April, 1997, to hear about the latest developments of the
day1. This year the conference returns to England. The 2007 workshop is being held
at Royal Holloway College (Fig. 1), the most westerly campus of the University of
London, some 19 miles from the capital.

Royal Holloway College lies in an area steeped in English history. The water
meadows of Runnymede beside the River Thames just a mile or so away witnessed
the signing of the Magna Carta. Here, in 1215, King John signed one of the most
important legal documents in the history of democracy. Nearby Windsor Castle, res-
idence of the English monarchs since the time of the Norman Conquest, is situated
in the Great Park a few miles to the north.

The study of quantum systems now has a distinguished history of its own. Eighty
years ago, Heitler and London [1] applied the newly developed quantum mechanics

1 Past venues of the Quantum Systems in Chemistry and Physics workshops are given in
Appendix 1. The published proceedings of previous workshops are listed in Appendix 2.

S. Wilson
Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford
OX1 3QZ, England; Faculty of Mathematics, Physics and Informatics, Comenius University,
84215 Bratislava, Slovakia, e-mail: quantumsystems@gmail.com

S. Wilson et al. (eds.) Frontiers in Quantum Systems in Chemistry and Physics.
c© Springer Science + Business Media B.V. 2008
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4 S. Wilson

Fig. 1 Royal Holloway,
University of London,
venue of the twelfth
Quantum Systems in
Chemistry and Physics
workshop

to the ground state of the hydrogen molecule and chemistry joined physics and the
mathematical sciences. But by 1929, Dirac [2] had recognized that

the difficulty lies only in the fact that application of these laws leads to equations that are
too complex to be solved.

In the hands of Pauling, the nature of the chemical bond was revealed. The under-
standing of molecular structure provided the foundation for the spectacular growth
in molecular biology in the second half of the twentieth century. At the same
time, the advent of the digital computer promised a tool capable of handling the
complexity of the equations governing quantum systems.

Today, we are in the early stages of a revolution in science which has been
described2

as profound as the one that occurred early in the last century with the birth of quantum
mechanics.

The development of new instruments, such as electron microscopy, synchrotron
X-ray sources, neutron scattering, lasers, scanning microscopy and nuclear mag-
netic resonance devices, are already providing complementary probes of matter
and unprecedented understanding. Coupled with the availability of increasingly
powerful computing and information technology these developments have

brought science finally within reach of a new frontier, the frontier of complexity.

Studies of quantum systems will be central to progress. Our workshop3 will provide
a perspective on these new horizons.

Appendix 1 – Past Venues of Quantum Systems in Chemistry
and Physics Workshops

The Quantum Systems in Chemistry and Physics workshops have been held at vari-
ous venues4 around Europe since 1996 – from Paris to St. Petersburg, from Uppsala

2 J.H. Marburger, US President’s Science Advisor, February, 2002.
3 Members of the workshop are listed in Table 1.
4 Past venues of the workshop are listed in Table 2.
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Table 1 Members of the Quantum Systems in Chemistry and Physics workshop held at Royal
Holloway, University of London, 2007

Vincenzo Aquilanti, Università degli Studi di Perugia,
Ioan Baldea, Universität Heidelberg,
Massimiliano Bartolomei, Consejo Superior de Investigaciones Cientificas,
David Bishop, University of Ottawa,
Raymond Bishop, University of Manchester,
Ana Carla Bitencourt, Università degli Studi di Perugia,
Erkki Brändas, Uppsala University,
Kieron J Burke, University of California Irvine,
Jose Campos-Martinez, Consejo Superior de Investigaciones Cientificas,
Garnet Chan, Cornell University,
Ove Christiansen, University of rhus,
Fernando Colmenares, Universidad Nacional Autnoma de México,
Daniel Crawford, Virginia Tech,
Qiang Cui, University of Wisconsin-Madison,
Hubert Cybulski, University of Warsaw,
Gerardo Delgado-Barrio, Consejo Superior de Investigaciones Cientificas,
Francois J. Fillaux, Université Pierre et Marie Curie,
Tamas Gal, University of Debrecen,
Nikitas Gidopoulos, Rutherford Appleton Laboratory,
Vitaly N. Glushkov, National University of Dnepropetrovsk,
Alexander Glushkov, Odessa University,
Peter J. Grout, University of Oxford,
Christopher M. Handley, University of Manchester,
Robert J. Harrison, Oak Ridge National Laboratory,
Trygve Helgaker, University of Oslo,
Katharine L. C. Hunt, Michigan State University,
Ilya G. Kaplan, Universidad Nacional Autnoma de México,
Jacek Karwowski, Nicolaus Copernicus University,
Walter Kohn, University of California, Santa Barbara,
Alexander Kuleff, Universität Heidelberg,
Luis Lain, Universidad del Pas Vasco,
Shuhua Li, Nanjing University,
Glauciete Maciel, Università degli Studi di Perugia,
Svetlana Malinovskaya, Odessa University,
Jean Maruani, Université Pierre et Marie Curie,
Aristides Mavridis, National and Kapodistrian University of Athens,
Salvador Miret-Artes, Consejo Superior de Investigaciones Cientificas,
Robert Moszynski, University of Warsaw,
Hiromi Nakai, Waseda University,
Hiroshi Nakatsuji, Kyoto University,
Jeppe Olsen, University of rhus,
Aristotle Papakondylis, National and Kapodistrian University of Athens,
E. Pérez-Romero, Universidad de Salamanca,
Piotr Piecuch, Michigan State University,
Boris N. Plakhutin, Russian Academy of Sciences,
Kenneth Ruud, University of Tromsø,
Gustavo E. Scuseria, Rice University,
Luis M. Tel, Universidad de Salamanca,
Francis Temme, Queens University,
Alicia Torre, Universidad del Pas Vasco,
Demeter Tzeli, National and Kapodistrian University of Athens,
Carmela Valdemoro, Consejo Superior de Investigaciones Cientificas,
Ad van der Avoird, Radboud University,
Antonio Varandas, Universidade de Coimbra,
Stephen Wilson, University of Oxford
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Table 2 Past Venues of the Quantum Systems in Chemistry and Physics workshopsa

Year Venues Country Organizer

1996 San Miniato, Pisa Italy Roy McWeeny
1997 II Jesus College, Oxford England Stephen Wilson
1998 III Granada Spain Alfonso Hernandez-Laguna
1999 IV Marly-le-Roi France Jean Maruani
2000 V Uppsala Sweden Erkki Brändas
2001 VI Boyana Palace, Sofia Bulgaria Yavor Delchev, Alia Tadjer
2002 VII Casta Paprinicka, Bratislava Slovakia Ivan Hubač
2003 VIII Spetses Island Greece Aristides Mavridis
2004 IX Les Houches France Jean-Pierre Julien
2005 X Tunisian Academy Carthage Tunisia Souad Lahmar
2006 XI Kochubey Palace St. Petersburg Russia Oleg S. Vasyutinskii
2007 XII Royal Holloway, University of London England Stephen Wilson

a For further details consult the Quantum Systems in Chemistry & Physics website at Quantum
Systems.googlepages.com

to Granada, from the Greek Island of Spetses to the mountain retreat of Les Houches
in the French Alps. The workshop has even traveled to the ancient Phoenician port
of Carthage of the North African coast of Tunisia. The 2007 workshop is the twelfth
in a series which began in April, 1996, with a workshop organized by Professor Roy
McWeeny at San Miniato, near Pisa.

Appendix 2 – Published Proceedings of Past Quantum Systems
in Chemistry and Physics Workshops

Each year selected scientific contributions to the workshops have been published.

� 1996
Quantum Systems in Chemistry and Physics Trends in Methods and Applications, ed.
R. McWeeny, J. Maruani, Y.G. Smeyers & S. Wilson, Kluwer Academic Publishers,
1997

� 1997
Advances in Quantum Chemistry 31, Quantum Systems in Chemistry and Physics. I,
eds. P.-O. Löwdin, J.R. Sabin, M.C. Zerner & E. Brändas, Guest editors: S. Wilson, J.
Maruani, Y.G. Smeyers, P.J. Grout & R. McWeeny, Academic Press, 1998

Advances in Quantum Chemistry 32, Quantum Systems in Chemistry and Physics. II,
eds. P.-O. Löwdin, J.R. Sabin, M.C. Zerner & E. Brändas, Guest editors: S. Wilson, J.
Maruani, Y.G. Smeyers, P.J. Grout & R. McWeeny, Academic Press, 1998

� 1998
Quantum Systems in Chemistry and Physics, 1, Progress in Theoretical Chemistry and
Physics 2, ed. A. Hernandez-Laguna, J. Maruani, R. McWeeny & S. Wilson, Kluwer
Academic Publishers, 2000
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Quantum Systems in Chemistry and Physics, 2, Progress in Theoretical Chemistry and
Physics 3, ed. A. Hernandez-Laguna, J. Maruani, R. McWeeny and S. Wilson, Kluwer
Academic Publishers, 2000

� 1999
New Trends in Quantum Systems in Chemistry and Physics, 1, Progress in Theoreti-
cal Chemistry and Physics 6, ed. J. Maruani, C. Minot, R. McWeeny Y.G. Smeyers &
S. Wilson, Kluwer Academic Publishers, 2000

New Trends in Quantum Systems in Chemistry and Physics, 2, Progress in Theoreti-
cal Chemistry and Physics 7, ed. J. Maruani, C. Minot, R. McWeeny Y.G. Smeyers &
S. Wilson, Kluwer Academic Publishers, 2000

� 2000
Advances in Quantum Chemistry 39, New Perspectives in Quantum Systems in Chem-
istry and Physics, Part 1, eds. J.R. Sabin and E. Brändas, Guest editors: E. Brändas,
J. Maruani, R. McWeeny, Y.G. Smeyers & S. Wilson, Academic Press, 2001
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The twelfth European workshop on Quantum Systems in Chemistry and Physics
opened with a reception in the Victorian baroque splendor of the Founders Building
at Royal Holloway, University of London, on 30 August, 2007.

Lectures began the following day in the main Lecture Theatre of the Queen’s
Building. The workshop programme, together with a full set of abstracts, is
available at the Quantum Systems website: quantumsystems.googlepages.com/
2007qscpworkshop. In this report, we provide a brief overview of the lectures
delivered at the workshop, along with a selection of the posters presented.

The programme of lectures delivered on the first full day of the workshop, 31
August, 2007, are listed in Table 1. Two sessions were held in the morning and two
in the afternoon.

Session 1: 09:00, 31 August, 2007

The opening lecture was given by Professor Raymond Bishop of the School of
Physics and Astronomy at the University of Manchester. He addressed the applica-
tion of coupled cluster theory [Bishop 1] to quantum systems defined on an extended
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Table 1 Lectures delivered on the second day of the workshop, Friday, 31 August, 2007

• Session 1 (Chair: D.M. Bishop)

Coupled Cluster Theory of Quantum Spin- Lattice Models of Magnetic Systems and
their Quantum Phase Transitions

R.F. Bishop (University of Manchester)

Study of the electronic structure of the unconventional superconductor Sr2RuO4 by the
embedded cluster method

I.G. Kaplan (Universidad Nacional Autónoma de México)

• Session 2 (Chair: P. Piecuch)

Some Recent Advances in Solving the Schrödinger Equation and in SAC/SAC-CI
Methodology

H. Nakatsuji (Kyoto University)

Ab-initio DMRG and Canonical Transformation Theories of Electronic Structure

G.K.-L. Chan (Cornell University)

• Session 3 (Chair: J. Karwowski)

The calculation of energies and properties of large molecules

T. Helgaker (University of Oslo)

Renormalized Coupled-Cluster Methods: Theoretical Foundations and Applications to
Radicals, Biradicals, and Bond Breaking

P. Piecuch (Michigan State University)

• Session 4 (Chair: J. Maruani)

Four new forms of the contracted Schrödinger equation: Crucial role played by the 4th
order correlation energy terms

C. Valdemoro (Consejo Superior de Investigaciones Cientificas, Madrid)

The contracted Schrödinger equation: imposing S-representability constraints upon the
correlation matrices

L. Tel (Universidad de Salamanca)

Correlated calculations in localized basis sets

J. Olsen (Åarhus Universitet)

regular spatial lattice. Such systems, he explained, may have “novel ground states
which display quantum order in some region of the Hamiltonian parameter space,
delimited by critical values which mark the corresponding quantum phase transi-
tions”. Furthermore, “the subtle correlations present usually cannot easily be treated
by standard many-body techniques”. Bishop described recent work [Bishop 2] on
the systematic inclusion of multispin correlations for a wide variety of quantum
spin-lattice problems [Bishop 3]. Since the method is not restricted to bipartite lat-
tices or to nonfrustrated systems, it can deal with problems for which alternative
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techniques give rise to difficulties [Bishop 2, Bishop 3, Bishop 4, Bishop 5, Bishop
6,Bishop 7]. It can be easily extended to models of strongly interacting electrons on
regular lattices, such as the Hubbard model [Bishop 8]. Further details of the work
of Bishop and his co-workers can be found in the cited references.

In the second lecture of the Session, Professor Ilya Kaplan described a study
of the electronic structure of the unconventional superconductor Sr2RuO4, which
possesses an unconventional spin-triplet symmetry of Coopers pairs, using the
embedded cluster method. A paper by Kaplan and his co-author is included in this
volume.

The Chair for Session 1 was Professor David M. Bishop of the University of
Ottawa.

Session 2: 11:00, 31 August, 2007

Professor Hiroshi Nakatsuji from Kyoto spoke about Some Recent Advances in Solv-
ing Schrödinger Equation and in SAC/SAC-CI Methodology. The symmetry-adapted
cluster approach provides a general method for solving the Schrödinger equation for
atomic and molecular systems [Nakatsuji 1, Nakatsuji 2, Nakatsuji 3]. The method
can also be used to solve the Dirac-Coulomb equation [Nakatsuji 4]. The iterative
complement interaction (ICI ) method is a rapidly converging method leading to the
exact solution of the Schrödinger equation and Dirac-Coulomb equation.

The SAC/SAC-CI method can be used to investigate electron correlation effects
in ground and excited states, and also ionized and electron attached states of
molecules. Code for performing calculations is distributed in GAUSSIAN03 and
further details can be found on the website www.sbchem.kyoto-u.ac.jp/nakatsuji-
lab/sacci.html. Recent achievements include:

(i) direct SAC-CI algorithm [Nakatsuji 5]
(ii) applications to photo-biology such as retinal proteins in vision and proton-

pump [Nakatsuji 6], the mechanism of luminescence in the firefly [Nakatsuji 7]
(iii) formulation and applications of Giant SAC-CI methodology for giant molecu-

lar systems [Nakatsuji 8]

Professor Garnet Chan from Cornell University lectured on ab initio Density
Matrix Renormalization Group (DMRG) [Chan 1] and canonical transformation
theories of electronic structure [Chan 2]. A paper by Chan is included in this volume.

The Chair for Session 2 was Professor Piotr Piecuch.

Session 3: 14:00, 31 August, 2007

Professor Trygve Helgaker of the University of Oslo described the application of
Hartree-Fock and Kohn-Sham self-consistent field methods to large molecular sys-
tems at a cost that scales linearly with system size. In his lecture, which was
co-authored by S. Coriania, S. Høst, B. Jansik, P. Jørgensen, J. Olsen, S. Reine
and P. Salek, he described methods based on an exponential parameterization of
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the one-electron density matrix, which is described in a published paper entitled
Direct optimization of the AO density matrix in Hartree-Fock and Kohn-Sham the-
ories [Helgaker 1]. He discussed the choice of one-electron basis set using Lowdin
orthogonalization of a basis of atomic Gaussian orbitals as presented in a paper
entitled Linear-scaling symmetric square-root decomposition of the overlap matrix
[Helgaker 2]. A linear scaling direct minimization of the density matrix can be
used to avoid matrix diagonalization as described in a paper entitled Linear-scaling
implementation of molecular electronic self-consistent field theory [Helgaker 3].
The calculation of time-dependent molecular properties for large systems, includ-
ing excitation energies and polarizabilities, provides an example of the application
of the approach of Helgaker and his co-workers. Details can be found in a paper enti-
tled Linear-scaling implementation of molecular response theory in self-consistent
field electronic-structure theory [Helgaker 4].

The second lecture in this session was given by P. Piecuch from Michigan State
University. Piecuch described progress with renormalized coupled cluster methods,
such as CR-CCSD(T), CR-CCSD(TQ), and the size extensive formulation of CR-
CCSD(T), termed CR-CC(2,3). According to Piecuch, these methods “represent a
new generation of single-reference approaches that eliminate the failures of conven-
tional coupled-cluster approximations, such as CCSD(T), whenever non-dynamical
correlation effects become more significant”. A paper by Piecuch and his co-authors
is included in this volume.

The Chair for Session 3 was Professor Jacek Karwowski of the Nicholas Coper-
nicus University, Toruń.

Session 4: 16:00, 31 August, 2007

Session 4 opened with a lecture by Professor Carmela Valdemoro from Consejo
Superior de Investigaciones Cientificas, Madrid, entitled Four new forms of the
contracted Schrödinger equation: Crucial role played by the 4th order correla-
tion energy terms. This was followed by a related talk by Professor Luis Tel from
the University de Salamanca on The contracted Schrödinger equation: imposing
S-representability constraints upon the correlation matrices. Valdemoro, Tel and
their co-authors, D.R. Alcoba and E. Pérez-Romero, have contributed a substantial
review to this volume entitled Guidelines on the Contracted Schrödinger Equation
Methodology.

Session 4 closed with a lecture by Professor Jeppe Olsen from Åarhus University.
Olsen spoke about Correlated calculations in localized basis sets.

The Chair for Session 4 was Professor Jean Maruani.
After dinner, the first poster session was held. A selection of the papers presented

is included in this volume.

The programme of lectures delivered on the third day of the workshop, 1
September, 2007, is given in Table 2. Again there were two sessions in the morning
and two in the afternoon.
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Table 2 Lectures delivered on the third day of the workshop, Saturday, 1 September, 2007

• Session 5 (Chair: R.F. Bishop)

Hybrid functionals for solid-state systems

G. Scuseria (Rice University)

The real reason DFT works: the semi-classical origin of modern functions

K.J. Burke (University of California Irvine)

• Session 6 (Chair: T.D. Crawford)

Dirac Coulomb equation: Playing with artifacts

J. Karwowski (Nicolaus Copernicus University)

Relativity and quantum mechanics

E.J. Brändas (Uppsala University)

• Session 7 (Chair: T. Helgaker)

Ab initio intermolecular force fields tested by spectroscopy: State of the art

A. van der Avoird (Radboud University)

Dielectric and optical properties of dilute atomic gases

R. Moszynski (University of Warsaw)

• Session 8 (Chair: H. Nakatsuji)

Computational chemistry at the petascale

R.J. Harrison (Oak Ridge National Laboratory)

Koopmans theorem in the ROHF method: General formulation

B.N. Plakhutin (Russian Academy of Sciences)

Electron Cross Relaxation as a function of Single Relaxation Contributions in 1s-2p-
Double Core Ionization Energies and Spin-orbit Splitting of Atoms from Al to Ba

J. Maruani (Université Pierre et Marie Curie)

Session 5: 09:00, 1 September, 2007

Professor Gustavo E. Scuseria from Rice University, Houston, opened this Session
with a lecture entitled Hybrid functionals for solid-state systems. He described “cur-
rent efforts to develop more accurate exchange-correlation functionals for density
functional theory.” One of the functionals that he discussed was “a screened hybrid
known as HSE [Scuseria 1], which is particularly well suited for calculations of
solids because it is much faster than regular hybrids and can also be used in met-
als. HSE yields an important improvement in band gap predictions [Scuseria 2]
compared to LDA, GGAs, and meta-GGAs.” Scuseria also presented “applications
to transition metal oxides, silicon phase transitions and defects [Scuseria 3] and
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other problems where electron localization seems to play a crucial role [Scuseria 4].
Preliminary results regarding the development of a promising new [Scuseria 5] local
hybrid functional [Scuseria 6] [were] also discussed.”

Professor Kieron Burke from the University of California Irvine spoke on the
Semi-classical Origins of Success of Modern Density Functionals. He explained
“how the successes of modern density functionals can be understood in terms of
semiclassical approximations to the electronic structure problem.” He used this
understanding “to derive the one fit parameter in the Becke-88 exchange functional,”
and showed “how to improve the derivation of the PBE functional to produce a
more appropriate functional for solids: PBEsol.” He concluded by discussing “how
semiclassical methods might yield a usefully-accurate kinetic energy functional,
bypassing all of Kohn-Sham density functional theory.” Papers entitled Relevance
of the slowly-varying electron gas to atoms, molecules, and solids [Burke 1] and
Generalized gradient approximation for solids and their surfaces [Burke 2] can be
consulted for further details. Professor Burke’s co-authors were P. Elliot, D. Lee and
A. Cangi.

The Chair for Session 5 was Professor Raymond F. Bishop of the University of
Manchester.

Session 6: 11:00, 1 September, 2007

Session 6 was chaired by Professor T. Daniel Crawford of Virginia Tech.
In the first lecture entitled Dirac-Coulomb equation: Playing with artifacts,

Professor Jacek Karwowski from Toruń observed that “the [Dirac-Coulomb] equa-
tion constitutes the most important starting point to the development of numerous
variational approaches, which are commonly, and very successfully, used in theoret-
ical modelling of atoms and molecules [Karwowski 1]”. He then described “[t]wo
classes of variational approaches to the eigenvalue problem of the DC Hamiltonian”.
A paper by Karwowski and his co-authors is included in this volume. Further details
can be found in two papers by G. Pestka, M. Bylicki and J. Karwowski published in
Journal of Physics B [Karwowski 2].

The second lecture of this session was given by Professor Erkki Brändas of
Uppsala University who spoke on The Theory of Relativity and Quantum Mechan-
ics. A paper describing this work is included in the present volume.

Session 7: 14:00, 1 September, 2007

Professors A. van der Avoird, from Radboud University, and Robert Moszynski,
from the University of Warsaw, gave the two lectures in Session 7.

In a paper co-authored by G.C. Groenenboom, van der Avoird spoke on Ab initio
intermolecular force fields tested by spectroscopy: state of the art. His abstract,
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which can be found on the Quantum Systems website (quantumsystems.googlepages.
com), is as follows:

In this talk I will review the state of the art in obtaining intermolecular potential surfaces
from ab initio electronic structure calculations, by different methods. A critical test of the
reliability of the resulting potentials is to use them in computations of the bound levels and
spectra of Van der Waals complexes and compare with experimental high-resolution spectra.
Such complexes are very oppy, they exhibit large amplitude vibration, internal rotation, and
tunneling motions, and the spectra are extremely sensitive to the shape of the anharmonic
wells in the potential and to the barriers between these wells.

I will illustrate this by showing the latest knowledge of the pair and many-body potential
of water, the application of some new potentials to the vibration-rotation- tunneling (VRT)
spectra of the normal and perdeuterated water dimer and trimer, and the importance of this
knowledge to establish the role of many-body forces in determining the intriguing properties
of liquid water [Avoird 1].

The lecture by Moszynski was entitled Dielectric and optical properties of dilute
atomic gases. His abstract, which again can be found on the Quantum Systems
website (quantumsystems.googlepages.com), is as follows:

Symmetry-adapted perturbation theory of intermolecular forces can be applied to compute
the components of the interaction-induced polarizability tensor for atomic and molecular
dimers. In my talk I will show on the example of the helium diatom how modern quantum
chemical methods coupled with the quantum-statistical treatment can be applied with trust
to describe the binary collision-induced Raman spectra, second dielectric virial coefficients,
and second Kerr virial coefficients. Special attention will be paid to the state-of-the-art ab
initio techniques for the calculation of the interaction-induced polarizability tensor invari-
ants and to methods needed on the route from the polarizability tensor invariants to various
macroscopic (optical and dielectric) properties of dilute atomic gases. General relations
between the dielectric and Kerr virial coefficients and the thermodynamic (pressure) virial
coefficients will be given, and the exact expressions within the quantum-statistical mechan-
ics will be introduced. Nearly exact calculations of the binary collision-induced Raman
spectra, second dielectric virial coefficients, and second Kerr virial coefficients will be
reported, and compared with the available experimental data.

This paper was co-authored by W. Skomorowski.
The Chair for Session 7 was Professor Trygve Helgaker of the University of Oslo.

Session 8: 16:00, 1 September, 2007

Robert Harrison from Oak Ridge National Laboratory discussed Computational
chemistry at the petascale in the first lecture of this Session. His co-authors were
E. Apra, B.G. Sumpter, W.A. Shelton, V. Meunier, A. Beste and S. Sugiki from
the Computational Chemical Sciences Group at Oak Ridge National Laboratory.
Harrison described work to enable computational science at the petascale. He moti-
vated this work by reference to ongoing scientific applications in chemistry and
nanoscience. His abstract, which can be found on the Quantum Systems website
(quantumsystems.googlepages.com), is as follows:

By mid-2009, one or more institutions around the world will have available for open-
science-use computers with a theoretical peak speed of over 1015 floatingpoint operations



16 S. Wilson

per second (1 PFLOP). By 2011-2, machines with a sustained speed of 1 PFLOP and peak
speeds in excess of 10 PFLOP are anticipated. These machines represent government invest-
ment in theoretical and computational science that for the first time starts to approach that
made in large experimental photon and neutron sources. The potential for scientific dis-
covery is truly profound. To appreciate the true scale of these machines consider a typical
department cluster of 120 processors which provides about 1M cpu-hours per year a PFLOP
computer can deliver that in about 8 hours which represents a dramatic compression of
the time scale required for quantitative and predictive simulation. PFLOP computers are
anticipated to have circa 2-500 terabytes of physical memory that will enable truly huge
data-intensive simulations. However, we chemists are in danger of not being able to benefit
from these exciting capabilties. Once at the forefront of scientific simulation, computa-
tional chemistry codes in general do not function efficiently on present TFLOP computers
and have no credible path forward to machines 1000× larger. Even for those researchers
without immediate access to such machines this is not an academic issue since todays super-
computer is tomorrows departmental resource, and the issues of multi-core technology and
memory hierarchy are present in all modern computers.

In the second lecture of this session, Professor Boris N. Plakhutin, from the
Russian Academy of Sciences in Novosibirsk, spoke on Koopmans theorem in the
ROHF method: General formulation. The paper was co-authored by E.R. Davidson.

The Session closed with a lecture by Professor J. Maruani on Electron Cross
Relaxation as a function of Single Relaxation Contributions in 1s- 2p- Double Core
Ionization Energies and Spin-orbit Splitting of Atoms from Al to Ba. This paper was
co-authored by C. Bonnelle. Maruani has contributed to this volume on a related
topic.

Session 8 was chaired by Professor Hiroshi Nakatsuij from Kyoto University.
After dinner, the second poster session was held. Again, a selection of the papers

presented is included in this volume.

On Sunday, 2 September, members of the workshop enjoyed a trip to Windsor
Castle see (Fig. 1), which lies at the heart of Windsor Great Park. “Windsor Castle
is an official residence of The Queen and the largest occupied castle in the world.

Fig. 1 Windsor Castle, official residence of The Queen and the largest occupied castle in the world,
was the venue for the workshop outing on Sunday, 2 September, 2007. The visit provided an
opportunity for informal discussions
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A Royal home and fortress for over 900 years, the Castle remains a working palace
today”.1 The visit provided an opportunity for informal discussions whilst enjoying
the many unique attractions in the castle complex.

Session 9: 09:00, 3 September, 2007

Session 9 was the first of the four Sessions held on Monday, 3 September, 2007.
The structure of the day is shown in Table 3. Again there were two sessions in the
morning and two in the afternoon.

Professor Antonio Varandas from the University of Coimbra gave the first lecture
which he entitled Highly accurate potential energy surfaces via conventional ab
initio methods: calculation and use in dynamics. The abstract for this paper is as
follows:

This talk consists of two parts. First, we discuss a method to predict the potential energy sur-
face (PES) of a molecule at a high level of ab initio theory by performing calculations with
smaller basis sets and then scaling the electron correlation (in part or in all) at one [Varan-
das 1] or more [Varandas 2] geometries (pivots) calculated with the larger target basis set.
The ability of this correlation scaling (CS) scheme to predict a PES corresponding to a
larger basis set from smaller basis set calculations is then combined [Varandas 2] with the
extrapolation to the complete basis set limit by using the uniform singlet and triplet-pair
extrapolation [Varandas 3] (USTE) method. The full scheme allows a highly accurate PES
to be obtained at a reasonable cost without resorting to any empiricism. Although applied
thus far mostly to ground-state electronic PESs, the method is in principle valid for the com-
plete manifold of electronic states. Since the whole procedure can be analytic, it may open
a way for accurate on-the-fly dynamics studies. In the second part of the talk, we survey
ongoing work on electronic manifolds that been calculated by ab initio methods and mod-
eled using DMBE (double many-body expansion) theory, as well as on the corresponding
nuclear dynamics. The focus will then be on H+

3 (in its lowest singlet and triplet elec-
tronic states [Varandas 4]) and ground-state HN2 [Varandas 5], and the implications of the
geometrical phase.

The second lecture in this Session was delivered by Professor Ioan Bâldea from
the University of Heidelberg. His paper, which is co-authored with L. Cederbaum,
is included in this volume. It is entitled Unusual features in optical absorption and
photo-ionization of quantum dot nanorings.

The Chair for Session 9 was Professor Vincenzo Aquilanti of the University of
Perugia.

Session 10: 11:00, 3 September, 2007

Session 10, which was chaired by Stephen Wilson, consisted of two lectures. The
first by Hiromi Nakai of Waseda University was entitled Novel Linear Scaling
Techniques based on Divide-and-Conquer Method.

1 www.royal.gov.uk/OutPut/Page557.asp.
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Table 3 Lectures delivered on the fifth day of the workshop, Monday, 3 September, 2007

• Session 9 (Chair: V. Aquilanti)

Highly accurate potential energy surfaces via conventional ab initio methods: calculation
and use in dynamics

A.J.C. Varandas (Universidade de Coimbra)

Unusual features in optical absorption and photo-ionization of quantum dot nanorings

I. Bâldea (Universität Heidelberg)

• Session 10 (Chair: S. Wilson)

Novel Linear Scaling Techniques based on Divide-and-Conquer Method

H. Nakai (Waseda University)

New methods for calculating vibrational wave functions, energies and molecular
properties

O. Christiansenn (University of øArhus)

• Session 11 (Chair: G. Delgado-Barrio)

Approximate methods for ab initio calculations of very large molecules

S. Li (Nanjing University)

Combined QM/MM methods: Developments and applications

Q. Cui (University of Wisconsin-Madison)

• Session 12 (Chair: E. Brändas)

The Current State of Ab Initio Calculations of Optical Rotation and Electronic Circular
Dichroism Spectra

T.D. Crawford (Virginia Tech)

A General Scheme for Higher Order SCF Responses

K. Ruud (University of Tromsø)

G-Invariant, QP-Carrier Space Map-theoretic Quantal Completeness of {T k
ν̃ (11.1)}

Tensorial Sets: Role of S-duality in NMR Spin Dynamics

F.P. Temme (Queens University)

The divide-and-conquer (DC) method proposed by Yang et al. [Nakai 1, Nakai 2] is one of
the linear-scaling techniques, which avoids explicit diagonalization of the Fock matrix and
reduces the Fock elements. So far, the DC method has been applied mainly to pure density
functional theory (DFT) or semi-empirical molecular orbital (MO) calculations. We have
applies the DC method to such calculations including the HartreeFock (HF) exchange terms
as the HF and hybrid HF/DFT [Nakai 3]. Reliability of the DC-HF and DC-hybrid HF/DFT
has been confirmed when adopting an adequate cut-off radius, which defines the localization
region in the DC formalism. This dependence on the cut-off radius has been assessed from
various points of view: that is, total energy, energy components, local energies, and density
of states. Next, we have proposed a novel linear-scaling scheme for obtaining the second-
order Mller-Plesset perturbation (MP2) energies based on the DC technique. This method,
which we call DC-MP2 [Nakai 4], evaluates the correlation energy of the total system
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by summing up DC subsystem contributions. The correlation energy corresponding to a
subsystem is calculated from subsystem orbitals based on a scheme for partitioning the cor-
relation energy, which is derived by analogy with the energy density analysis (EDA) [Nakai
5]. Numerical assessments have revealed that the present scheme provides reliable corre-
lation energies with considerably less computational costs than the conventional canonical
MP2 calculations.

Nakai’s co-authors were M. Kobayashi and T. Akama.
The second lecture in Session 10 was given by Professor Ove Christiansenn, from

the University of Åarhus, gave the second lecture of this Session. He subject was
New methods for calculating vibrational wave functions, energies and molecular
properties.

Recently a new formulation for the description of the dynamics of molecular systems has
been developed [Christiansen 1]. The formalism is similar in spirit to the second quan-
tization formulation of electronic structure theory. On the basis of this formalism a new
program package and a number of new quantum mchanical based computational have been
developed [Christiansen 1, Christiansen 3, Christiansen 4] and are currently being further
developed for applications in many different contexts. The primary focus here is on meth-
ods for calculating bound states, in particular vibrational wave functions. In this talk we
shall consider the theory and use of vibrations self consistent field (VSCF) [Christiansen
8], vibrational Møller Plesseth perturbation theory (VMP) [Christiansen 3, Christiansen 9],
vibrational configuration interaction (VCI) [Christiansen 2,Christiansen 10] and vibrational
coupled cluster (VCC) [Christiansen 1, Christiansen 2], as well as vibrational response
theory. I shall describe benchmark calculation relating to various convergence issues [Chris-
tiansen 2,Christiansen 3,Christiansen 4,Christiansen 5,Christiansen 6,Christiansen 7]. I will
describe certain aspects of the implementation in the MidasCpp program aiming at VSCF,
VMP2, VCI, and VCC calculations on large molecular systems. New initiatives towards
using the developed methods in calculating vibrational contributions to molecular proper-
ties shall be discussed [Christiansen 4] as well as new steps towards efficient application to
larger molecules.

Session 11: 14:00, 3 September, 2007

Professor Shuhua Li of the School of Chemistry and Chemical Engineering, Key
Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoret-
ical and Computational Chemistry, Nanjing University opened Session 11 with his
lecture entitled Approximate methods for ab initio calculations of large molecules.
He described “several molecular fragmentation approaches, which enable approx-
imate Hartree-Fock (HF) and post-HF calculations of very large molecules to
become routinely feasible [Li 1, Li 2, Li 3, Li 4]. The essence of these fragmen-
tation methods is to divide a large molecule into a series of capped fragments (or
subsystems), and then obtain the approximate energy or various properties of this
molecule from constructed subsystems in some way. These methods are based on
the high transferability of the localized molecular orbitals, or the fragment ener-
gies between subsystems and the parent molecule, respectively. Our test calculations
demonstrated that these linear scaling techniques are able to reproduce the conven-
tional HF or post-HF energies quite accurately for a wide variety of macromolecules
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and molecular clusters. Especially, the energy-based fragmentation approach, com-
bined with the existing quantum chemistry programs, can be directly employed to
obtain optimized geometries, vibrational frequencies, and some molecular proper-
ties for very large molecules at the ab initio level. Illustrative calculations showed
that this approach provides encouraging results for ground-state energies, structures,
and dipole moments (or static polarizabilities) for various neutral or charged large
molecules.” Li has contributed to this volume.

Development and application of effective QM/MM methods for complex bio-
logical systems was the subject of the second lecture in Session 11 which was
delivered by Professor Qiang Cui of the University of Wisconsin-Madison. His
abstract, which can be found on the Quantum Systems website (quantumsys-
tems.googlepages.com), is as follows:

Motivated by the long-term goal of understanding vectorial biological processes such
as proton transport in biomolecular ion pumps and energy transduction in biomolecu-
lar motors, a number of developments have been made in our group to establish com-
bined quantum mechanical/molecular mechanical (QM/MM) methods suitable for studying
complex chemical reactions in the condensed phase. These developments will be briefly
summarized and discussed with representative applications. Specifically, free energy per-
turbation and boundary potential methods for treating long-range electrostatics have been
implemented to test the robustness of QM/MM results for protein systems. It is shown
that consistent models with sufficient sampling are able to produce quantitatively sat-
isfactory results, such as pKa for titritable groups in the interior of proteins while an
inconsistent treatment of electrostatics or lack of sufficient sampling may produce incor-
rect results. Modifications have been made to an approximate density functional theory
(SCC-DFTB) to improve the description of proton affinity, hydrogen-bonding and phos-
phate chemistry, which are crucial for studying the systems of interest. Applications of
the SCC-DFTB/MM methods generated novel insights into several biological problems,
which include the role of proton hole in long-range proton transfers in the enzyme carbonic
anhydrase and mechanochemical coupling in the molecular motor myosin.

Session 11 was chaired by Gerardo Delgado-Barrio.

Session 12: 16:00, 3 September, 2007

Session 12 began with a lecture entitled The Current State of Ab Initio Calcula-
tions of Optical Rotation and Electronic Circular Dichroism Spectra by Professor
T. Daniel Crawford of Virginia Tech. His abstract, which can be found on the
Quantum Systems website (quantumsystems.googlepages.com), is as follows:

The current ability of ab initio models to yield accurate and reliable chiroptical properties
such as optical rotatory dispersion and electronic circular dichroism spectra is reviewed.
Comparison between coupled cluster linear response theory and experimental data (both
gas- and liquid-phase) yield encouraging results for small to medium-sized chiral molecules
including rigid species such as (S)-2-chloropropionitrile and (P)-[4]triangulane, as well as
conformationally flexible molecules such as (R)-epichlorohydrin. More problematic com-
parisons are offered by (S)-methyloxirane, (S)-methylthiirane, and (1S,4S)-norbornenone,
for which the comparison between theory and experiment is much poorer. The impact of
basis-set incompleteness, electron correlation, zero-point vibration, and temperature are
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discussed. In addition, future prospects and obstacles for the development of efficient and
reliable quantum chemical models of optical activity are discussed.

Professor Kenneth Ruud of the University of Tromsø lectured on A general
scheme for higher-order SCF responses. His abstract is as follows:

In the talk, a general formalism for the calculation of higher-order molecular properties
will be presented. The formalism combines the quasi-energy [Ruud 1] and Lagrangian for-
malisms [Ruud 2] to derive expressions for response functions as derivatives of an SCF
quasi-energy Lagrangian with respect to any external perturbation. The formalism can han-
dle both time-dependent and static perturbations, as well take into account any dependence
in the atomic basis set on the externally applied perturbations (such as perturbations due
to the distortion of the nuclear framework or explicit magnetic-field dependent basis sets
such as London atomic orbitals [Ruud 3] used to obtain magnetic gauge-origin indepen-
dent results). The formalism uses the AO density matrix as the basic parameter, allowing us
to utilize recent advances made in the field of linear-scaling methodology for the calcula-
tion of molecular properties [Ruud 4, Ruud 5]. Care is taken to reduce computational cost,
allowing for maximum efficiency if the formalism is used in a linear-scaling approach. The
implementation is focused on defining generic building blocks, making it straightforward
to implement molecular properties of arbitrary order given that the required one- and two-
electron integrals (and potentially DFT exchange-correlation kernels) are available. The
code can, if computationally most efficient, utilize the 2n+1 rule for higher-order energy
corrections, or instead calculate higher-order perturbed density matrices in cases where
one perturbation has many components, thus avoiding the solution of response equations
for these components (e.g. first-order geometry derivatives of the polarizability of large
molecules). In addition to giving an introduction to the formalism and illustrating how
the elementary building blocks of the formalism allows for the easy implementation of
higher-order molecular properties, a few numerical examples will also be given.

Ruud’s lecture was co-authored by A.J. Thorvaldsen.
The final lecture scheduled for delivery in Session 12 was cancelled. However,

the author, Professor Francis Temme of Queen’s University, has contributed to this
volume.

Professor Erkki Brändas of Uppsala University chaired Session 12.
The four Sessions held on Tuesday, 4 September, 2007, are summarized in

Table 4. Again there were two sessions in the morning and two in the afternoon.

Session 13: 09:00, 4 September, 2007

This session opened with a lecture on Collision-induced absorption and light scat-
tering by hydrogen molecule pairs by Professor Katharine Hunt from Michigan State
University. Her abstract reads as follows:

During collisions between molecules, interactions may break the symmetry of the isolated
molecules, producing transient induced dipoles, and thus allowing the absorption of radi-
ation in spectroscopic processes that are single-molecule forbidden. Similarly, transient
changes in molecular polarizabilities give rise to collision-induced light scattering, impul-
sive stimulated scattering, and subpicosecond induced birefringence; the collision-induced
changes in polarizabilities also affect refractive indices and dielectric functions of com-
pressed gases and liquids. We have determined the dipoles and polarizabilities of pairs of
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Table 4 Lectures delivered on the sixth day of the workshop, Tuesday, 4 September, 2007

• Session 13 (Chair: R.J. Harrison)

Collision-induced absorption and light scattering by hydrogen molecule pairs

K.L.C. Hunt (Michigan State University)

Evidences of Macroscopic Quantum Entanglement of Protons in The Crystal of
KHCO3: Neutron Scattering Studies

F. Fillaux (Universit Pierre et Marie Curie)

• Session 14 (Chair: I.G. Kaplan)

Can quantum mechanics really handle systems consisting of VERY many atoms? Can
Density Functional Theory and Nearsightedness help?

W. Kohn (University of California, Santa Barbara)

Theoretical investigation of the first row transition metal Borides, MB, M = Sc, Ti, V,
Cr, Mn, Fe, Co, Ni and Cu

D. Tzeli (National and Kapodistrian University of Athens)

• Session 15 (Chair: A.J.C. Varandas)

Ab initio Intermolecular Potentials and Dynamics of Rg2-Dihalogen Clusters

G. Delgado-Barrio (Consejo Superior de Investigaciones Cientificas, Madrid)

A simple stochastic theory of line-shape broadening in quasielastic He atom scattering
with interacting adsorbates

S. Miret-Arts (Consejo Superior de Investigaciones Cientificas, Madrid)

• Session 16 (Chair: H. Nakai)

Quantum theory of chemical reactions: potential energy surfaces, resonances, cross
sections, rate constants

V. Aquilanti (Universit degli Studi di Perugia)

The O2 + O2 systems. Some theoretical insights and experiments

J. Campos-Martinez (Consejo Superior de Investigaciones Cientificas, Madrid)

Stability of equilibrium under constraints

T. Gal (University of Debrecen)

hydrogen molecules at the CCSD(T) level, with an aug-cc-pV5Z (spdf) basis set, for 18
different relative orientations of the two molecules, and intermolecular separations ranging
from 2 a.u. to 10 a.u. [Hunt 1] For the two relative orientations of the hydrogen pair (linear
and T-shaped) previously studied by Maroulis [Hunt 2] using a 6s4p1d basis and a fixed
intermolecular separation of 6.5 a.u., we find good agreement of the ∆α values. Our results
for the collision-induced anisotropic polarizability also agree well with those obtained by
Bounds [Hunt 3] using a much smaller basis for six relative orientations of the pair, but the
values of the trace of ∆α differ by factors of 2 or more from Bounds results. For use in
spectroscopic line shape analyses, we have determined the coefficients for the expansions
of the spherical tensor components of the pair dipole and polarizabilities as series in the
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spherical harmonics of the orientation angles of the two molecular axes and the intermolec-
ular vector. As the intermolecular distance increases, the ab initio results for the spherical
tensor components of ∆ µ and ∆α converge to the results from long-range models that
include dipole-induced-dipole interactions, quadrupole-induced dipoles, higher multipole
induction, nonuniformity of the local field acting on each molecule, hyperpolarization, and
van der Waals dispersion. [Hunt 4,Hunt 5] In the collision-induced polarizability, deviations
from the first-order dipoleinduced- dipole model are still evident for molecular separations
between 8 and 10 a.u., in most orientations of the pair. At short range, overlap damping,
exchange, and orbital distortion reduce the trace and anisotropy of the collisioninduced
polarizability below the long-range limiting forms.

Hunt and her co-author, X. Li, are from Michigan State University.
The second lecture of this Session was given by Professor Francois Fillaux of

the Université Pierre et Marie Curie. His paper entitled Evidences of Macroscopic
Quantum Entanglement of Protons in The Crystal Of KHCO3: Neutron Scattering
Studies is contained in this volume.

Session 13 was chaired by Professor Robert Harrison of Oak Ridge National
Laboratory.

Session 14: 11:00, 4 September, 2007

In his lecture, Professor Walter Kohn, Nobel Laureate in Chemistry (1998), asked
the question:

Can quantum mechanics really handle systems consisting of VERY many atoms? Can
Density Functional Theory and ‘Nearsightedness’ help?

He began by reminding us that “80 years ago, Schrödinger published his momentous
equation which, in due course, revolutionized all of chemistry and much of physics.
Properties of atoms, molecules, etc. could, for the first time, be ‘accurately’ cal-
culated.” He continued: “However, there was one important limitation: except for
cases of high symmetry, only systems with less than ∼20 or 30 atoms were man-
ageable.” Beginning about 40 years ago, Density Functional Theory (DFT) extended
this upper limit to ∼200 up to ∼1,000 atoms with fairly good accuracy. Kohn
reported some current work on further extensions and discussed possible “ultimate
limits, taking advantage of a recently recognized fundamental property of fermions,
called ‘nearsightedness”’. (Professor Kohn is shown in Fig. 2 before the Workshop
banquet which was held in the evening.)

The second lecture in this Session was given by Dr. Demeter Tzeli of the National
and Kapodistrian University of Athens. Her paper entitled Theoretical investigation
of the first row transition Metal Borides, MB, M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni and
Cu was co-authored by Professor Aristides Mavridis. Tzeli has contributed to this
volume.

Session 14 was chaired by Professor Ilya Kaplan of Universidad Nacional
Autónoma de México.
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Fig. 2 Professor Walter Kohn (right), Nobel Laureate in Chemistry 1998, is pictured here talk-
ing to Stephen Wilson (Chair, QSCP-XII) before the Workshop banquet. (Photograph by Boris
N. Plakhutin)

Session 15: 14:00, 4 September, 2007

Session 15 began with a lecture entitled Ab initio Intermolecular Potentials and
Dynamics of Rg2-Dihalogen Clusters by Professor Gerardo Delgado-Barrio from
Consejo Superior de Investigaciones Cientificas, Madrid. His co-authors were
R. Prosmiti, A. Valdés, C. Diez-Pardos and P. Villarreal. Delgado-Barrio has con-
tributed to this volume.

The second lecture of this Session, which was chaired by Professor Antonio
Varandas of the University of Coimbra, was entitled A simple stochastic theory of
line shape broadening in quasielastic He atom scattering with interacting adsor-
bates. It was given by Professor Salvador Miret-Artés His co-authors were R.
Martnez-Casadoa,b, J.L. Vega and A.S. Sanz. A paper is also contributed to this
volume.

Session 15 was chaired by Professor Antonio Varandas of the University of
Coimbra.

Session 16: 16:00, 4 September, 2007

The Chair for Session 16 was Professor Hiromi Nakai of Waseda University. Nakai
introduced a lecture on Quantum theory of chemical reactions: potential energy
surfaces, resonances, cross sections, rate constants given by Professor Vincenzo
Aquilanti.

In our laboratory, experimental and theoretical approaches are used for studying elementary
chemical reactions. This presentation will focus on a prototypical example, that of fluorine
atoms with hydrogen molecule or its deuterated isotopomer. Another example is the He +
H2 + reaction giving HeH+ + H: for this reaction, the full route from the potential energy
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surface to the cross section has also been studied. The fluorine reaction presents a variety
of features, which are basic to chemical dynamics and kinetics.

Important aspects of this reaction are the open-shell and spin-orbit interactions in the atomic
fluorine. These effects have been analyzed in detail and the entrance channel characteristics
have been calibrated with respect to molecular beam scattering experiments carried out
in our laboratory, where the atomic fluorine fine structure states have been monitored by
Stern-Gerlach magnetic analysis. This has led to improved potential energy surfaces for
this reaction, and to estimates of the role of non-adiabatic effects.

The exact quantum dynamics on the ground adiabatic potential energy surface has been
carried out using hyperspherical coordinates and the hyperquantization algorithm. This
algorithm has been developed by us to solve the very demanding problem of coupling
among an extremely dense set of channels and yields very accurate scattering matrix
elements.

For the scattering matrix as a function of energy and angular momentum, observable quan-
tities such as cross sections and rate constants are generated: these quantities are compared
with an ample set of experimental data which are available for this reaction. In particular,
the branching ratio for the HD reaction, leading to HF or HD, has been determined as a
prime example of the isotopic effects in chemical kinetics.

The hyperquantization algorithm program generates the full scattering matrix, that can be
transformed in the stereodirected representation, introduced by us to exhibit orientation
effects in quantum dynamics and therefore to provide a tool for the characterization of the
steric effect. An important feature of this reaction is the role of resonances, that have been
studied in detail regarding their energy ad angular momentum dependence, by the analysis
of both the life time matrix in the energy domain and of poles in the complex angular
momentum plane.

Aquilanti and his co-authors, S. Cavalli and D. De Fazio, cited a number of recent
literature references [Aquilanti 1, Aquilanti 2, Aquilanti 3, Aquilanti 4, Aquilanti 5].

Professor José Campos-Martı́nez gave the second lecture of this Session. His
paper, which is co-authored by E. Carmona-Novillo, M.I. Hernández, F. Dayou and
R. Hernández-Lamoneda, is entitled The O2-O2 system: Some theoretical insight
into experimental data and is included in the present volume.

There were two Sessions on the final day of the workshop, Wednesday 5 Septem-
ber, 2007, as summarized in Table 5.

Table 5 Lectures delivered on the seventh and final day of the workshop, Wednesday, 5 September,
2007

• Session 17 (Chair: A. Mavridis)

Tracing Ultrafast Electronic Decay Processes in Real Time and Space

A. Kuleff (Universität Heidelberg)

A fresh viewpoint for the Kohn-Sham potential

N.I. Gidopoulos (Rutherford Appleton Laboratory)

• Session 18 (Chair: P.J. Grout)

Quantum Systems Forum

Closing Remarks
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Session 17: 09:00, 5 September, 2007

The first lecture of Session 17 was given by Professor Alexander Kuleff from the
University of Heidelberg. In a paper co-author by L. Cederbaum, Kuleff spoke
about Tracing Ultrafast Electronic Decay Processes in Real Time and Space.
His abstract, which can be found on the Quantum Systems website (quantumsys-
tems.googlepages.com), is as follows:

An ab initio method for multielectron wave-packet propagation is presented [Kuleff 1]. It
gives the possibility to describe fully ab initio the dynamics of various deexcitation pro-
cesses taking into account all electrons of the system and their correlation. The approach
is equally suitable for tracing in real time and space the electron dynamics of both decay-
ing and non-decaying electronic states. As an example, the evolution of the electronic cloud
throughout the interatomic Coulombic decay [Kuleff 2] (ICD) process in the rare gas cluster
NeAr following Ne2s ionization is computed and analyzed [Kuleff 3].

The final lecture of this Session was given by Dr. Nikitas Gidopoulos of the
Rutherford Appleton Laboratory. This talk replaced the scheduled lecture. Gidopou-
los spoke on A fresh viewpoint for the Kohn-Sham potential.

The Chair for Session 17 was Professor Aristides Mavridis of the University of
Athens.

Session 18: 11:00, 5 September, 2007 – Quantum Systems Forum

The Chair for the final session was Peter Grout of the University of Oxford. Grout
led a wide ranging but informal discussion.

Many members of the workshop felt that QSCP offered a unique perspective
on the study of the quantum many-body problem. Too often meetings concentrate
on the computational aspects of the problem or on specific applications or appli-
cation areas at the expense of the underlying theory. It was felt that the QSCP-XII
workshop succeeded in its aims of bringing together chemists and physicists with a
common interest in the study of many-body systems in an informal atmosphere so
as to encourage discussion and foster collaboration on fundamental and innovative
theory. A number of participants had expressed their appreciation of the specifically
allocated discussion time of 10 or 15 minutes after each talk, which had been a
new feature for the twelfth workshop. It was suggested that, if possible, this feature
should be repeated at future workshops.

Some members suggested that in choosing venues for future workshops consid-
eration should be given to the travel involved given the growing concern about air
transport and its contribution to climate change. It was agreed that in planning future
QSCP workshops their impact on climate change should be taken into account.

The meeting was closed by Stephen Wilson who thanked all who had contributed
to the success of the workshop.
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Study of the Electronic Structure
of the Unconventional Superconductor Sr2RuO4
by the Embedded Cluster Method

Ilya G. Kaplan(✉) and Jacques Soullard

Abstract After a short account of the present state in the superconductivity (SC), the
non-copper perovskite ruthenate, Sr2RuO4, superconductor is discussed. This super-
conductor possesses unconventional spin-triplet symmetry of Cooper’s pairs and has
been a subject of intense researches. It was revealed that the substitution of Ru atoms
by small amount of non-magnetic Ti atoms leads to creation of magnetic order and
destruction of superconductivity. Comparative study of the electronic structure of
pure and Ti-doped Sr2RuO4 was performed by the developed by our group embed-
ded cluster method at the Hartree-Fock and MP2 electron correlation level. The
representative cluster was embedded into the Madelung potential that mimic a real
crystal. Accounting of interatomic interaction in our calculations leads, in contrast
with the tight-binding model usually applied for study Sr2RuO4, to the large elec-
tron transfer from O to Ru. Already at the HF level the ionic model failed. At the
MP2 level, the electron correlation considerably increases the electron transfer mak-
ing the values of charges on atoms far enough from the charges in the formal ionic
model. Calculation at the DFT level gives the similar results.

The Ti substitution induces the essential charge redistribution between d-orbitals
of Ru. A drastic effect of the Ti impurity on the spin density distribution was
revealed. In the Ti-substituted crystals, the local spin density near impurity disap-
pears on Sr and localizes on Ru and four O atoms surrounding it. The NBO analysis
shows that the spin density in doped crystals is localized on orbitals directed along
z axis. These results are in complete agreement with experiments.
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1 Introduction and Background

Superconductivity (SC) was discovered in 1911 in liquid Hg by Kamerlingh-
Onnes and during subsequent 75 years the progress with increasing of the critical
temperature, Tc, was very slow.

Date 1911 1913 1930 1954 1971 1973
Tc, K 4.1 7.2 9.2 18.1 20.3 23.2
Substance Hg Pb Nb Nb3Sn Nb3Ga Nb3Ge

Till 1986 Tc = 23.2K for the alloy Nb3Ge was the maximum critical tempera-
ture. The discovery of high-Tc SC with Tc = appr. 30K in La2−xBaxCuO4 by
George Bednorz and Alex Müller (IBM Zurich Research Lab.) was not expected.
Their paper initially was rejected by Physical Review Letters and published later, in
September 1986, in other journal [1].

Boom or “golden rush”, started only after S. Tanaka (Tokyo University) in
November 1986 confirmed the Bednorz-Müller results. Immediately they were
reproduced in many physical laboratories. Paul Chu (University of Houston) in
February 1987 using Y-ceramics obtained in YBa2Cu3O7−x Tc = 93K that was
above liquid nitrogen temperature. These results were reported on 1987 March APS
meeting in New York at an historical marathon session that is often named “Wood-
stock of physics”, as a reference to the legendary 1969 Woodstock Music and Art
Festival. In the same 1987 year Bednorz and Müller won the Nobel Prize.

At present, it is more than 150 HTSC-compounds with Tc > 23K are syn-
thesized. The maximum Tc = 134K was achieved in 1993 for the Hg-ceramics,
HgBa2CaCu2O6+x, at normal conditions and it is 164 K under pressure, see reviews
[2, 3].

There are many factors that produce an effect on Tc. In high Tc cuprates, one of
the crucial is the oxygen concentration

(a) YBa2CuOx

x 6.9 6.7 6.3

Tc, K 90 60 0

(b) TlBa2CuOx

x 5.90 5.95 6.0

Tc, K 80 60 15

At present, the explanation of such drastic effect does not exist.
HTSC with Tc > 30K was also observed in non-Cu and non-O materials, e.g.

MgB2 (Tc = 39K), and even in organic molecular compounds. In alkali-metal doped
fullerene structures A3C60 Tc = 52K [4]. In 2001 was revealed that Tc rises when
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the single crystal C60 is intercalated by some organic molecules, it “expands” C60-
crystal. For the intercalated crystal C60· CHBr3, a very high transition temperature
was achieved, Tc = 117K [5].

In spite of such progress in the creation of new superconducting materials, the
search has been performed empirically by the trial-and-error method. The predic-
tive theory that connects Tc with peculiarities of the electronic and crystal structure
of superconductor still does not exist. The study of the electronic structure of
superconducting materials must help to understand the mechanism of high-Tc SC.

In this aspect it is instructive to study unconventional superconductors. Among
them Sr2RuO4 discovered by Maeno et al. [6] in 1994 attracts a strong interest
[7]. It has a layered perovskite structure as La2CuO4. But if the latter with a small
Ba substitution belongs to high-Tc SC, Sr2RuO4 is a low-Tc SC with Tc = 1.5K.
However, the main characteristic of Sr2RuO4, which make it unconventional, is the
triplet spin state of its Cooper’s pairs.

The wave function of Cooper’s pair must obey the Pauli principle, that is, be
antisymmetric. In nonrelativistic approach, it can be presented as a product of orbital
and spin wave functions

Ψa(1,2) = Φ[λ ]
orbΩ[λ̃ ]

spin. (1)

Young diagram [λ ] is dual to [λ̃ ].They determine the permutation symmetry. For
two electrons there are only two possibilities

Ψa(S = 0) = Φ[2]
orbΩ[12]

spin =
1√
2

[ϕ1(1)ϕ2(2)+ ϕ1(2)ϕ2(1)] Ω[12]
spin (S = 0) (2)

Ψa(S = 1) = Φ[12]
orb Ω[2]

spin =
1√
2

[ϕ1(1)ϕ2(2)−ϕ1(2)ϕ2(1)] Ω[2]
spin (S = 1) (3)

Φ[2]
orb is symmetric with respect to permutation, that is, it has even parity.

Φ[12]
orb is antisymmetric, it has odd parity.

We obtain

Even parity↔ spin-singlet state.

Odd parity↔ spin-triplet state.

The permutation of pair electrons produces a factor

(−1)L.
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L is the total orbital moment of Cooper’s pair. Thus,

The symmetric Φ[2]
orb corresponds to even L.

The antisymmetric Φ[12]
orb corresponds to odd L.

Hence, the Pauli principle permits only 1S, 1D, . . . and 3P, 3F , . . . states of Cooper’s
pairs. In all known superconductors, except Sr2RuO4, Cooper’s pairs are in the
singlet states: s-wave in the low-Tc and d-wave in high-Tc superconductors.

On the other hand, because of absence of the central field symmetry, s-, p-,
d-wave description is an approximation. In crystal field L is not a good quan-
tum number and instead of L-waves, the crystal group symmetry waves, which are
consistent with the odd parity, must be considered.

The theoretical arguments in favor of the spin-triplet p-wave Cooper pairing
in Sr2RuO4 were formulated by Rice and Sigrist [8] and independently by Bas-
caran [9]. Their arguments were based on the similarity of the ruthenate Fermi-liquid
properties to those of liquid 3He and on the fact that closely related oxides, such as
SrRuO3, are ferromagnetic. The consequent detailed analysis of experimental data
and the possible symmetry properties of this unusual pairing state has confirmed that
it has the odd-parity [10, 11]. The first experimental confirmation of the spin-triplet
pairing in Sr2RuO4 came from the NMR Knight shift measurements [12]. How-
ever, it was realized that the interpretation of the Knight shift results is not unique.
The direct evidence of the spin-triplet nature of Cooper’s pairing in ruthenate was
obtained in phase-sensitive experiments with superconducting quantum interference
devices (SQUID) by Nelson et al. [13].

If the odd-parity and spin-triplet nature of the Cooper pairing state (or the order
parameter) in Sr2RuO4 have been established, the precise orbital symmetry of the
order parameter is still unclear. The p-wave symmetry contradicts some experimen-
tal findings and, as was suggested in Refs. [14–16], the f -wave nature of the order
parameter looks more preferable. However, as was stressed by Zhitomirsky and
Rice [18], f -wave state is also in contradiction with experimental data. It should not
surprise, as we discussed above, because in crystal field the angular momentum L is
not a good quantum number, therefore both p- and f -wave descriptions are approx-
imations. In the crystal field, the order parameter must possess the symmetry of one
of the irreducible odd parity representations of the crystal group. It must possess the
odd parity, because the latter provides the antisymmetry of the total wave function
of Cooper’s pair in the spin-triplet state. The analysis of possible irreducible rep-
resentations of the point group D4h showed that the order parameter should belong
to the two-dimensional representation Eu [10]. Nevertheless, the problem with the
symmetry of the order parameter still remains complicated. The theoretical models
allowing the agreement with experimental data are presented in Refs. [17–19].

A large number of theoretical calculations of the electronic structure of the
Sr2RuO4 crystal have been performed [20–30]. The first theoretical study of the
electronic band structure of Sr2RuO4 was carried out by Oguchi [20] and Singh [21].
Their calculations were based on the local density approximation (LDA) of the
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density functional theory (DFT). It was revealed that there are three bands crossing
the Fermi energy level and they all have the antibonding Ru (4d) – O (2p) coupling:
4dxy− 2pπ, 4dxz− 2pπ, and 4dyz− 2pπ. The calculated Fermi surface was asso-
ciated with these orbitals. It consists of three cylindrical sheets: two electronlike
sheets and one holelike sheet. This electronic band structure can be characterized
as a quasi-two-dimensional Fermi liquid for Sr2RuO4, its properties are reviewed in
Ref. [31].

Almost all subsequent calculations [22–27] were performed by the same rather
crude LDA method, and in some of the studies even a more approximate tight-
binding approach was applied. These calculations confirmed the results of the first
two studies [20, 21]. It is worth-while to mention that although in all theoretical
studies the large hybridization between Ru (4d) and O (2p) was claimed, the charge
distribution was corresponded to the ionic or approximately ionic model; the three
bands, crossing the Fermi energy level, were occupied by 4 electrons (or 2 holes),
the Ru d(x2− y2) and d(z2) orbitals were empty, so they did not participate in the
occupied bands and in the Fermi surface as well. In the last published calcula-
tion [30], LDA was refined by adding dynamical mean-field theory with quantum
Monte-Carlo approach (LDA + DMFT (QMC)) [32]. However, the influence of this
refinement on the orbital population was not considered. As in the previous LDA
studies, the authors [30] assumed that only the t2g level is occupied.

Theoretically predicted at the LDA level the three-sheet structure of the Fermi
surface was confirmed in the de Haas – van Alphen experiments [33, 34]. On
the other hand, from the angle-resolved photoemission spectroscopy experiments
[35–37], a significantly different Fermi-surface topology was predicted. Such dis-
crepancy could be due to a rather approximate level of LDA predictions, however, it
was revealed that it is the surface reconstruction, which is responsible for conflicting
interpretations [38, 39], see also the theoretical study [40].

Recently, the crystal Hartree-Fock (HF) calculations of the electronic structure
of Sr2RuO4 were performed [28, 29]. Remarkable that in Ref. [29], the dx2−y2 and
dz2 orbitals were found partly populated and the total number of holes transferred to
oxygens due to the strong Ru (4d) – O (2p) hybridization turned out to be about 2.
We will discuss these results in Sect. 3 in connection with ours.

At present, the impurity-ion substitution became a powerful tool to study the
nature of superconductivity. The effects of Ru or Sr substitution by different atomic
dopants are discussed in the review [7]. As was revealed by Minakata and Maeno
[41], the substitution of the Ru atoms by the nonmagnetic Ti atoms induces local
magnetic moments on Ru and/or O surrounding the impurity and destroys the super-
conductivity at very small Ti concentrations. The ordered magnetic moment points
along the c-direction. These results were confirmed in subsequent studies [42].
It was established that the Ti-doped samples exhibit incommensurate magnetic
ordering corresponding to the Fermi-surface nesting instability.

In this paper, we present the results of comparative calculations of the electronic
structure of the pure and Ti-doped Sr2RuO4 performed by the electron-correlated
embedded clusters method developed by our group [43, 44]. The embedded cluster
method is the most appropriate method to study the changes in the local electronic
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structure induced by impurities. This method was recently successfully applied to
study the mechanism of Tc suppression by Zn and Ni impurities in high-Tc cuprates
[45].

Our calculations of the spin distribution confirmed the experimental data on the
magnetic ordering in Ti-doped samples [41, 42]. The charge distribution obtained
at the HF and the electron correlated second-order Møller-Plesset perturbation the-
ory (MP2) level revealed the large electron transfer from O to Ru. The latter leads
to Ru (4d6) population instead of Ru (4d4) accepted in the ionic model. The conse-
quences of this electron transfer are discussed. Preliminary results of our study were
published in Refs. [46, 47].

2 Methodology

Clusters representing the crystal were calculated in an external potential simulat-
ing the Madelung potential of the real crystal. The cluster [Sr2Ru4O20]−20, Fig. 1,
was selected to study the local electronic structure of the pure crystal; the cluster
[Sr2Ti2Ru2O20]−20, Fig. 2, was used to study the local electronic structure near the

Fig. 1 Cluster Sr2Ru4O20 used in the ECM calculations of the pure crystal Sr2RuO4
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Fig. 2 Cluster Sr2Ti2Ru2O20 used in the ECM calculation of the Ti-doped crystal Sr2RuO4

Ti impurity. The cluster charge, −20, is determined by the charges of atomic ions
defined by the formal valence rules (ionic model): Sr2+ Ru4+, Ti4+, and O2−.

Selected cluster was embedded into a finite array of background charges located
on each lattice site. This set of charges is divided into core charges correspond-
ing to the ion-model charges and several shells of external charges associated with
charge scaling factors which are adjusted in order to provide the correct value of the
Madelung potential on each cluster site and the electrical neutrality as well [43,44].

In the present case, the scaling factors are solution of a set of 27 linear algebraic
equations. For each cluster a combination of 27 shells could be found so that the
matrix corresponding to the set of equations is non-singular. The set of equations
is solved exactly by means of the standard subroutine package LAPACK; the dif-
ference between the Madelung potential given by our background charges and that
given by the infinite crystal is less than 10−10.

The electronic structure of the embedded finite cluster was calculated by the
restricted (or unrestricted) Hartree-Fock self-consistent field method. Based on
these calculations the second-order Møller-Plesset perturbation theory (MP2) allows



40 I.G. Kaplan, J. Soullard

taking into account the electron correlation. In the present work, we use these meth-
ods as implemented in the Gaussian-03 program [48], they form all together the
ECM-MP2 approach [49]. The core electrons of Ru, Sr, and Ti atoms are described
by the Los Alamos National Laboratory pseudopotential (LANL2) with its proper
DZ basis set. On oxygen atoms all electrons are taken into account, a doubly split
valence basis set 6-31G supplemented by a shell of d functions is used. The orbital
populations are obtained from the natural bond orbital (NBO) analysis.

Generally, the cluster ion charges obtained at the MP2 level are different from
those of the background charges and a self-consistent charge calculation is per-
formed in order to get consistency between background and cluster charges [43,44].
However, in the present work this procedure was not applied. Usually the difference
between the first iteration and the final one is small [43, 44].

3 Results and Discussion

3.1 Pure Sr2RuO4

Charge distribution (without the population in the Rydberg states) obtained at the
HF and MP2 levels in the pure and Ti-doped Sr2RuO4 crystal is represented in
Tables 1–4. In both the total spin cases: S = 0 (Tables 1 and 2) and S = 1 (Tables 3
and 4), the obtained atomic charges are considerably lower than the formal valence
charges following from the one-electron tight-binding model and accepted in DFT
studies (see discussion in Introduction). The reason for these great deviations from
the ionic-model charges has a simple explanation. The Ru – O bond does not have
a pure ionic character and to a considerable degree possesses also a covalent nature

Table 1 Charge distribution at the HF level (NBO analysis) in the pure and Ti-substituted Sr2RuO4
crystal (S = 0) calculated by embedded cluster method

Atomic charge
density

Valence orbital
population

Detailed charge population
on d(Ru) and p(O) orbitals

(a) Pure crystal
Ru 1.74 5s0.254d6.01 d1.71

xy +d1.47
xz +d1.47

yz +d0.63
x2−y2 +d0.73

z2

Sr 1.84 5s0.16

O1 −1.07 2s1.782p5.29 p1.66
x + p1.78

y + p1.85
z

O2 −1.43 2s1.882p5.55 p1.90
x + p1.90

y + p1.75
z

(b) Impure crystal
Ti 1.74 4s0.273d1.99 d0.41

xy +d0.40
xz +d0.38

yz +d0.38
x2−y2 +d0.42

z2

Ru 1.91 5s0.264d5.83 d0.65
xy +d1.97

xz +d0.51
yz +d1.94

x2−y2 +d0.76
z2

Sr 1.84 5s0.16

O1 −1.20 2s1.762p5.44 p1.80
x + p1.79

y + p1.85
z

O2 −1.45 2s1.882p5.57 p1.84
x + p1.87

y + p1.86
z
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Table 2 Charge distribution at the MP2 electron correlation level (NBO analysis) in the pure and
Ti-substituted Sr2RuO4 crystal (S = 0) calculated by the embedded cluster method

Atomic charge
density

Valence orbital
population

Detailed charge population
on d(Ru) and p(O) orbitals

(a) Pure crystal
Ru 1.57 5s0.324d6.11 d1.40

xy +d1.47
xz +d1.47

yz +d0.86
x2−y2 +d0.91

z2

Sr 1.75 5s0.25

O1 −0.94 2s1.762p5.18 p1.71
x + p1.71

y + p1.76
z

O2 −1.13 2s1.872p5.26 p1.82
x + p1.82

y + p1.62
z

(b) Impure crystal
Ti 1.11 4s0.313d2.58 d0.47

xy +d0.55
xz +d0.53

yz +d0.54
x2−y2 +d0.49

z2

Ru 1.41 5s0.314d6.28 d0.75
xy +d1.94

xz +d0.80
yz +d1.93

x2−y2 +d0.86
z2

Sr 1.76 5s0.24

O1 −0.95 2s1.752p5.20 p1.41
x + p2.00

y + p1.79
z

O2 −1.13 2s1.832p5.30 p1.74
x + p1.78

y + p1.78
z

Table 3 Charge distribution at the HF level (NBO analysis) in the pure and Ti-substituted Sr2RuO4
crystal (S = 1) calculated by the embedded cluster method

Atomic charge
density

Valence orbital
population

Detailed charge population
on d(Ru) and p(O) orbitals

(a) Pure crystal
Ru 1.90 5s0.274d5.83 d1.84

xy +d1.27
xz +d1.27

yz +d0.66
x2−y2 +d0.79

z2

Sr 1.59 5s0.41

O1 −1.16 2s1.782p5.38 p1.64
x + p1.85

y + p1.89
z

O2 −1.36 2s1.872p5.49 p1.87
x + p1.87

y + p1.75
z

(b) Impure crystal
Ti 1.71 4s0.273d2.02 d0.42

xy +d0.41
xz +d0.39

yz +d0.38
x2−y2 +d0.42

z2

Ru 1.82 5s0.254d5.93 d0.63
xy +d0.96

xz +d1.65
yz +d1.96

x2−y2 +d0.73
z2

Sr 1.84 5s0.16

O1 −1.18 2s1.762p5.42 p1.80
x + p1.81

y + p1.81
z

O2 −1.40 2s1.852p5.55 p1.83
x + p1.86

y + p1.86
z

due to the hybridization of 4d(Ru) and 2p(O) orbitals. The interatomic interaction
leads to an effective electron transfer from O to Ru (and partly to Sr) at both the HF
and MP2 levels.

According to the definition by Löwdin [50] accepted in molecular and cluster
studies, the electron correlation effects correspond to the calculations beyond the
HF approach. The MP2 calculations give the correlation effects in the second order
of the perturbation theory, since the first order of the Møller-Plesset perturbation
theory corresponds to the HF approximation, see Ref. [51], Appendix 3. Allowing
for the electron correlation at the MP2 level considerably increases the electron
transfer from the O atoms surrounding Ru and Sr making the values of charges
on atoms very far from the ionic-model charges. For the ground state (S = 0) we
obtained +1.57 on Ru (instead of +4), +1.75 on Sr (instead of +2), and −0.94 on
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Table 4 Charge distribution at the MP2 electron correlation level (NBO analysis) in the pure and
Ti-substituted Sr2RuO4 crystal (S = 1) calculated by embedded cluster method

Atomic charge
density

Valence orbital
population

Detailed charge population
on d(Ru) and p(O) orbitals

(a) Pure crystal
Ru 1.31 5s0.394d6.30 d1.75

xy +d1.43
xz +d1.43

yz +d0.80
x2−y2 +d0.89

z2

Sr 1.62 5s0.38

O1 −0.95 2s1.772p5.18 p1.50
x + p1.91

y + p1.77
z

O2 −1.07 2s1.872p5.20 p1.77
x + p1.77

y + p1.66
z

(b) Impure crystal
Ti 1.12 4s0.313d2.57 d0.48

xy +d0.53
xz +d0.52

yz +d0.55
x2−y2 +d0.49

z2

Ru 1.61 5s0.324d6.07 d0.84
xy +d0.75

xz +d1.60
yz +d1.93

x2−y2 +d0.95
z2

Sr 1.76 5s0.24

O1 −0.98 2s1.742p5.24 p1.67
x + p1.68

y + p1.89
z

O2 −1.14 2s1.832p5.31 p1.77
x + p1.77

y + p1.77
z

O1 and −1.13 on O2 (instead of −2). We must not consider the obtained absolute
values of the atomic charges as real ionic charges in the crystal; these values depend
on the cluster chosen and a calculation method. However, they reflect the real trends
in the crystal.

In contrast with the accepted Ru (4d4) population, the 4d Ru population is,
according to Tables 1 and 2, 4d6.11 at the MP2 level and 4d6.01 at the HF level.
Thus, there is a two-electron increase in the 4d-orbital population. In this connec-
tion, it is interesting to compare it with the crystal HF calculation in Ref. [29]. As
follows from their results, the total number of holes transferred to oxygens is about
2. If all holes are transferred from Ru, then it corresponds to two additional electrons
in its 4d shell. Such precise agreement between our cluster HF charge distribution
and the crystal HF charge distribution is very important, since it is a strong evidence
that the results obtained by our embedded cluster method reflect properly the real
charge distribution in the crystal.

In Ref. [29] the eg (dx2−y2, dz2) level, which was assumed empty in previous
studies, was found partly populated (appr. 0.5 e). The population of eg level obtained
in our calculation is considerably larger, at the MP2 correlation level it is more than
three times larger, see Fig. 3a. The charge transfer from O provides the covalent
bonding between O and Ru and populates the eg level.

The comparison of the results obtained at the HF and MP2 levels for the pure
crystal (Fig. 3a) shows that the t2g population at the MP2 level is decreased by
0.31 e with respect to the HF level whereas the eg population is increased by a
slightly greater amount (0.41 e). According to Tables 1 and 2, the decrease of the
dxy population alone accounts for the decrease of the t2g population. Therefore, the
electron correlation contributes to the eg population.

As was discussed in Introduction, in numerous calculations of Sr2RuO4 by DFT
approach, including the more refine LDA + DMFT (QMC) calculation, the charge
population has not been analyzed. Authors postulated that the Ru ion has charge +4
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(a) Pure Crystal

eg (dx2_y2,dz2)

eg (dx2_y2,dz2)

t2g (dxy,dyz,dyz)

t2g (dxy,dyz,dyz)

(b) TI-doped Crystal

HF

HF

1.36e

2.70e 2.79e

3.13e 3.49e

4.65e 4.34e 4.61e 4.66e

1.77e 1.86e 1.69e

MP2

MP2

DFT, LSDA DFT, B3LYP

Fig. 3 The population of the eg and t2g levels obtained at HF, MP2, and DFT approximations in
the pure and Ti-doped Sr2RuO4 crystal in the singlet state

Table 5 Comparative calculation of charge distribution in the ground state (S = 0) of Sr2RuO4
performed by different methods

HF MP2 DFT, LSDA DFT, B3LYP

Atomic Valence Atomic Valence Atomic Valence Atomic Valence
charge population charge population charge population charge population

Ru 1.74 5s0.254d6.01 1.57 5s0.324d6.11 0.92 5s0.614d6.47 1.29 5s0.364d6.35

Sr 1.84 5s0.16 1.75 5s0.25 1.59 5s0.41 1.68 5s0.32

O1 −1.07 2s1.782p5.29 −0.94 2s1.682p5.18 −0.82 2s1.792p5.03 −0.94 2s1.782p5.16

O2 −1.43 2s1.882p5.55 −1.13 2s1.872p5.26 −1.1 2s1.882p5.23 −1.18 2s1.882p5.30

and the eg level is empty. For verification of these conclusions we calculated our
cluster by DFT method using two exchange-correlation functionals: the local-spin-
density approximation (LSDA) and the hybrid functional B3LYP. The results are
presented in Table 5.

As follow from Table 5, the effective charge transfer O
e→ Ru takes place at both

DFT approaches. The eg level is also occupied, as it has to be when the calculation
includes the interaction between atoms, see Fig. 3a.

In crystal the atomic and molecular levels are transformed into appropriate bands.
Thus, in contrast with the accepted concepts, from the obtained essential eg popula-
tion it follows that the dx2−y2 and dz2 orbitals give also a contribution to the Fermi
surface of the Sr2RuO4 crystal.

3.2 Ti-Doped Sr2RuO4

In Ti-doped crystals in the ground state (S = 0), the Ti substitution does not change
at the MP2 level the charges on Sr and O and leads to a small decrease of positive
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charge on Ru (0.16 e), see Table 2. However, it induces the essential charge redis-
tribution among the 4d orbitals of Ru. The charge on the t2g (dxy, dxz, dyz) level is
decreased on 0.85 e, while the population of the eg level is increased on 1.02 e and
achieved 2.79 e, Fig. 3b. Comparing the eg and t2g populations at the HF and MP2
levels for the Ti-substituted crystal reveals that the electron correlation increases the
orbital population.

On the whole, the charge population on the eg level of the Ru atoms surrounding
the Ti impurity is considerably increased and the dx2−y2 orbital is almost filled. The
charge transfers mostly from the t2g level, the population of dxy and dyz is decreased
by about two times and the orbital dxz is filled. If the electrons of the dxy band are
responsible for the spin triplet superconductivity in Sr2RuO4 [52], a decrease of
the dxy population obtained in our calculations and a consequent increase of the eg

population can be one of the reasons of the destruction of superconductivity induced
by small Ti concentrations. Another reason is connected with the spin redistribution,
which we discuss below.

The study of the triplet state allows finding the spin distribution (see Tables 6
and 7). The spin distribution found at the MP2 level considerably differs from that
found at the HF level. This reflects the great influence of the electron correlation on
the spin distribution. Taking into account the electron correlation leads to qualitative
changes in the spin density, which is located only on Ru and Sr at the MP2 level, in
contrast with the HF spin distribution (compare Tables 6a and 7a). In the undoped
crystal, the MP2 spin density on Ru is twice as much as that on Sr. It is important
to stress that the spin density in the pure crystal is located on Ru2O plane, on the
4dxy(Ru) orbital and partly on the 5s (Sr) orbital.

The Ti-substitution leads to drastic changes in the local spin distribution. The spin
density disappears on Sr and is localized on the neighboring to Ti-impurity Ru atoms
and four O1 atoms surrounding Ru. What is also important is that the spin density
in doped crystals is localized on the orbitals directed along the z-axis; 2pz (O1) and

Table 6 Spin distribution at the HF level (NBO analysis) in the pure and Ti-substituted Sr2RuO4
crystal (S = 1) calculated by embedded cluster method

Atomic spin
density

Valence orbital
spin population

Detailed spin population on d(Ru)
and p(O) orbitals (α−β )

(a) Pure crystal
Ru 0.14 5s0.014d0.13 d0.10

xy +d0.01
xz +d0.01

yz +d0.0
x2−y2 +d0.01

z2

Sr 0.25 5s0.25

O1 0.15 2s0.012p0.14 p0.0
x + p0.13

y + p0.01
z

O2 −0.03 2s0.02p−0.03 p−0.01
x + p−0.01

y + p−0.01
z

(b) Impure crystal
Ti 0.02 4s0.03d0.02 d0.0

xy +d0.01
xz +d0.01

yz +d0.0
x2−y2 +d0.0

z2

Ru 0.96 5s0.014d0.95 d0.03
xy +d0.56

xz +d0.33
yz +d0.0

x2−y2 +d0.03
z2

Sr 0.0 5s0.0

O1 −0.02 2s0.02p−0.02 p0.0
x + p−0.01

y + p−0.01
z

O2 −0.01 2s0.02p−0.01 p−0.01
x + p0.0

y + p0.0
z
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Table 7 Spin distribution at the MP2 electron correlation level (NBO analysis) in the pure and
Ti-substituted Sr2RuO4 crystal (S = 1) calculated by embedded cluster method

Atomic spin
density

Valence orbital
spin population

Detailed spin population on d(Ru) and
p(O) orbitals (α −β )

(a) Pure crystal
Ru 0.28 5s0.054d0.23 d0.19

xy +d0.01
xz +d0.01

yz +d0.01
x2−y2 +d0.01

z2

Sr 0.15 5s0.15

O1 −0.02 2s0.012p−0.03 p−0.02
x + p−0.01

y + p0.0
z

O2 −0.01 2s0.012p−0.02 p−0.01
x + p−0.01

y + p0.0
z

(b) Impure crystal
Ti −0.12 4s−0.013d−0.11 d−0.01

xy +d−0.05
xz +d−0.03

yz +d−0.01
x2−y2 +d−0.01

z2

Ru 0.30 5s0.014d0.31 d0.02
xy +d−0.07

xz +d0.36
yz +d0.0

x2−y2 +d0.0
z2

Sr −0.02 5s−0.02

O1 0.23 2s0.012p0.22 p−0.01
x + p0.0

y + p0.23
z

O2 0.06 2s0.012p0.05 p0.05
x + p0.0

y + p0.0
z

4dyz (Ru). These results are in the complete agreement with the experiment [41,42]
and support their conclusions, since in Ref. [41] the authors were not sure about
location of the spin on oxygen.

The two parallel spins in the cluster triplet state can be associated with the fer-
romagnetic fluctuations in the crystal [53]. As was revealed in Ref. [54], the Ti
impurities induce a magnetic ordering, which corresponds to the spin density wave
(SDW). Our local calculations do not allow us to study a long-range magnetic order.
On the other hand, the obtained magnetic moments in both the pure and Ti-doped
crystals do not contradict SDW.

4 Conclusions

1. The calculations performed by the embedded cluster method revealed at the HF,
MP2, and DFT levels the large electron transfer from O to Ru. At the MP2 corre-
lation level, the NBO population analysis gives Ru1.57+(5s0.32 4d6.11) instead of
Ru4+ (5s0 4d4) in the formal ionic model accepted in all DFT studies. This elec-
tron transfer provides the effective hybridization between Ru(4d) and O(2p) and
makes the Ru – O bond partly covalent. It is also responsible for the population
of the eg level, which is assumed to be empty in most of the previous studies.

The results of the crystal HF calculations performed in Ref. [30] support our
conclusions about a large electron transfer to Ru from neighboring O; they also
obtained a partly populated eg level.

2. From the obtained essential eg population (at all applied calculation levels) fol-
lows that the dx2−y2 and dz2 orbitals contribute to the Fermi surface of the
Sr2RuO4 crystal.
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3. The Ti substitution induces a large charge redistribution among the 4d orbitals
of Ru. The population of eg level formed by the Ru atoms surrounding the Ti
impurity is considerably increased, by 1.02 e, at the expense of the 4dxy popula-
tion on Ru, and the dx2−y2 orbital becomes almost filled. These changes can be
one of the reasons of the destruction of the superconductivity induced by small
Ti doping.

4. The Ti substitution induces drastic changes in the local spin distribution. The
spin density is localized on the neighboring to Ti-impurity Ru atoms and four
O1 atoms surrounding Ru. While in the pure crystal the spin density is localized
predominantly in the basal plane (on the dxy orbitals), in the Ti-doped crystal it
is localized on the orbitals directed toward the z axis. These results are agreed
with the experiment [41, 42] and can also be a reason of the superconductivity
destruction in the Ti-doped crystal, in particular if the pairing mechanism is based
on a magnetic interaction in the basal plane.
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Abstract The Density Matrix Renormalisation Group (DMRG) is an electronic
structure method that has recently been applied to ab-initio quantum chemistry.
Even at this early stage, it has enabled the solution of many problems that would
previously have been intractable with any other method, in particular, multireference
problems with very large active spaces. Historically, the DMRG was not originally
formulated from a wavefunction perspective, but rather in a Renormalisation Group
(RG) language. However, it is now realised that a wavefunction view of the DMRG
provides a more convenient, and in some cases more powerful, paradigm. Here we
provide an expository introduction to the DMRG ansatz in the context of quantum
chemistry.

Keywords: Density Matrix Renormalization Group, multireference, nondynamic
correlation, active space, matrix product state

1 Introduction

The Density Matrix Renormalization Group (DMRG) is an electronic structure
method that has recently been applied to ab-initio quantum chemistry. The method
originated in the condensed matter community with the pioneering work of White
[1, 2]. Although the earliest quantum chemistry implementations are only a few
years old, the DMRG has already been used to solve many problems that would
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have been intractable with any other method, and especially, multireference prob-
lems with very large active spaces. For example, we have used the DMRG to study
systems ranging from molecular potential energy curves [3, 4], to excited states of
large conjugated polymers [5, 6], to metal-insulator type transitions in hydrogen
chains [7]. In each case, we have obtained accuracies close to the (estimated) exact
Complete Active Space Configuration Interaction (CASCI) or Complete Active
Space Self-Consistent-Field (CASSCF) result, for active spaces well outside the
range of traditional algorithms e.g. 100 active electrons in 100 active orbitals [7].
Unlike a traditional CAS (where the active space wavefunction is obtained in a
brute-force Full Configuration Interaction expansion) the DMRG utilises a compact
wavefunction ansatz. However, this ansatz is very flexible, is well-suited to nondy-
namic correlation, and in the cases of long molecules, provides a near optimal, local
description of multireference correlations.

Historically, the DMRG was not originally formulated from a wavefunction
ansatz perspective, but rather in the Renormalisation Group (RG) language of
Wilson’s Numerical RG [1, 2, 8, 9], from which it is descended. The original quan-
tum chemical implementations of the DMRG were also described from an RG point
of view (e.g. [10–14]). Although the mathematical form of the DMRG ansatz has
been known for some time [15–18], only in recent years has it been realised that
the wavefunction view of the DMRG provides a more convenient and in many cases
more powerful paradigm, and this has led to fundamental advances in the DMRG
method itself [7, 19–32].

The current article provides an expository introduction to the DMRG in quantum
chemistry from the wavefunction point of view. This is complementary to earlier
articles that use the RG based formulation and the first-time reader will benefit from
reading such articles alongside the current one. It is not our intention to provide
a comprehensive review of the DMRG method even within the restricted domain
of quantum chemistry. Thus we do not pretend to survey the literature except to
say at the start that the field of quantum chemical DMRG has developed through
the work of White et al. [10, 33, 34], Mitrushenkov et al. [11, 35, 36], our contri-
butions [3–7, 12, 37, 38], the work of Legeza, Hess et al. [13, 39–41], the work of
Reiher et al. [14, 42–44], and most recently the work of Zgid and Nooijen [45].
Also related, but too numerous to cite in full here, are the developments with semi-
empirical Hamiltonians; some representative early works are those in [46–52]. In
addition, we mention again that the DMRG has its origins in the condensed matter
community and thus excellent sources of information which provide this perspective
are the recent reviews of Schollwöck [32] and Hallberg [30, 31].

The structure of our article is as follows. We begin by introducing the underlying
DMRG ansatz and examining some of its special properties in Sects. 2 and 3. In
Sects. 4 and 5 we explain the connection between the wavefunction ansatz, and
the original Renormalisation Group language within which the DMRG is usually
described. In Sect. 6 we describe how the structure of the DMRG wavefunction
allows the efficient evaluation of Hamiltonian matrix elements. Finally, we finish
with some brief thoughts and conclusions in Sect. 7.
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2 Motivation for the DMRG Ansatz

The primary challenge in quantum chemistry is to find a good approximation to the
electronic wavefunction of a quantum state. We can express any N-electron wave-
function in a complete basis of Slater determinants, through the Full Configuration
Interaction (FCI) expansion,

|Ψ〉= ∑
n1n2n3...nk

Ψ n1n2n3...nk |n1n2n3 . . .nk〉, (1)

{ni}= {|0〉, |1α〉, |1β 〉, |2αβ 〉}, (2)

∑
i

ni = N. (3)

Here |n1 . . .nk〉 is the occupation number representation of the Slater determinant
where ni is the occupation of site (i.e. orbital) i. The total number of orbitals is k and
N is the total number of electrons.

The dimension of the coefficient tensor Ψ in the above expansion is 4k, which
is intractable for values of k much larger than 10. Therefore, we would like to find
an ansatz where Ψ is expressed more compactly. In particular, we would want such
an ansatz to require only a polynomial amount of information as a function of the
number of orbitals in the system, k.

A very simple ansatz would be to approximate the high-dimensional coefficient
tensor Ψ by a tensor product of vectors ψ1 . . .ψk, which we shall call site functions,

Ψ ≈ ψ1⊗ψ2⊗ψ3 . . .⊗ψk. (4)

Using the notation ψn1 to denote the nth element of ψ1, i.e. ψn1 = ψ1
n , we can also

write

Ψn1n2n3...nk ≈ ψn1ψn2ψn3 . . .ψnk . (5)

Note that each site function ψ is not an orbital but rather a vector of length 4, and
ψn1 ,ψn2 represent elements of the different vectors ψ1,ψ2. This ansatz contains
only 4k parameters and is certainly tractable. However, it is also not, in general,
very accurate. So, let us try to improve the ansatz by increasing the flexibility of the
site functions ψ . We can introduce additional auxiliary indices, i.e.

ψnp → ψnp

ii′ . (6)

The new indices i, i′ are auxiliary in the sense that they do not appear in the final
coefficient tensor Ψ and must be contracted over in some fashion. The simplest
arrangement is to contract the indices sequentially from one ψ site function to the
next, i.e.

Ψn1n2n3...nk ≈ ∑
i1i2i3...ik−1

ψn1
i1

ψn2
i1i2

ψn3
i2i3

. . .ψnk
ik−1

. (7)
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For simplicity, we will assume that the dimensions of all auxiliary indices are chosen
to be the same, and we shall call this dimension M. Then each site function ψ
is a 3-tensor of dimension 4×M×M, and the total number of parameters in the
wavefunction ansatz is 4M2k.

This is, in essence, the DMRG ansatz for M states. (More precisely, it is the ansatz
used in the one-site DMRG algorithm, as explained later.) Note that by increasing
the dimension M, we can make the approximation arbitrarily exact. Because (for
given n1 . . .nk) the contraction in Eq. (7) is a series of matrix products, this ansatz is
referred to in the literature as the Matrix Product State [15–19,25,53–55]. Combining
the site functions explicitly with the Slater determinants we have

|ΨDMRG〉= ∑
n1n2n3...nk
i1i2i3...ik−1

ψn1
i1

ψn2
i1i2

ψn3
i2i3

. . .ψnk
ik−1
|n1n2n3 . . .nk〉. (8)

Before continuing, let us first establish some notation. The site functions ψ in Eq.
(8) are 3-tensors. However, the notation of linear algebra is designed primarily for
vectors (1-tensors) and matrices (2-tensors). Naturally, any 3-tensor can be con-
sidered as an array of matrices, so long as we specify which two indices are the
matrix indices and which is the 3rd (array) index. When viewing the site function
as an array of matrices, we will write the 3rd (array) index on the top. Thus in this
notation, we have

Matrix : [ψnp ] (dimension M×M )

Elements : ψnp
ip−1ip

(9)

and the DMRG wavefunction (8) is written as

|ΨDMRG〉= ∑
n1n2n3...nk

[ψn1 ][ψn2 ][ψn3 ] . . . [ψnk ]|n1n2n3 . . .nk〉 (10)

(Note that the first and last site functions [ψn1 ], [ψnk ] have dimensions 1×M and
M×1 respectively).

Alternatively, we can view a 3-tensor as a single matrix if we group two indices
together to make a compound index. This view will be useful when discussing the
renormalised basis and canonical representations of the DMRG wavefunction in
sections 4 and 5. Depending on the context, we will either group the n index with
the left or the right auxiliary indices, giving

Matrix : [ψ p] (dimension 4M×M )

Elements : ψ p
ni,i′

or Matrix : [ψ p] (dimension M×4M )

Elements : ψ p
i,ni′ (11)

Note that the superscript p here denotes the pth site function in the DMRG ansatz
(8), not any particular element of the site function.
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3 Properties of the DMRG Ansatz

Let us now examine some properties of the DMRG ansatz.

1. Variational: Since we have an explicit wavefunction, the expectation value of
the energy provides a variational upper bound to the true energy and in practice
DMRG energies are evaluated in this way. As M is increased, the DMRG energy
converges from above to the exact energy.

2. Multireference: There is no division into occupied and virtual orbitals, all orbitals
appear on an equal footing in the ansatz (8). In particular, the Hartree-Fock ref-
erence has no special significance here. For this reason, we expect (and observe)
the ansatz to be very well-balanced for describing nondynamic correlation in
multireference problems (see e.g. [4, 7, 37]). Conversely, the ansatz is inefficient
for describing dynamic correlation, since this benefits from knowledge of the
occupied and virtual spaces.

3. Size-consistency: The DMRG ansatz is size-consistent within a localised basis.
Consider a system AB composed of two spatially separated, non-interacting
subsystems A and B. Associate localised orbitals 1 . . .a with subsystem A and
a + 1 . . .a + b with subsystem B. Then, the DMRG wavefunction for AB fac-
torises into a product of DMRG wavefunctions for A and B. First expand the
DMRG wavefunction

|ΨAB
DMRG〉= ∑

n1...na+b
i1...ia+b−1

ψn1
i1

. . .ψna
ia−1ia

ψna+1
iaia+1

. . .ψna+b
ia+b−1

|n1 . . .nana+1na+b〉

= ∑
ia

(
∑

n1...na
i1...ia−1

ψn1
i1

. . .ψna
ia−1ia

|n1 . . .na〉

× ∑
na+1...na+b

ia+1...ia+b−1

ψna+1
iaia+1

ψna+b
ia+b−1

|na+1 . . .na+b〉
)
. (12)

Then note that we can write a separable wavefunction |Ψ AB〉 = |Ψ A〉|Ψ B〉 for-
mally as |ΨAB〉 = ∑1

i=1 |ΨA
i 〉|ΨB

i 〉 and thus we can take the dimension of index
ia which couples systems A and B above to be 1, giving

|ΨAB
DMRG〉= ∑

n1...na
i1...ia−1

ψn1
i1

. . .ψna
ia−1
|n1 . . .na〉 ∑

na+1...na+b
ia+1...ia+b

ψna+1
ia+1

ψna+b
ia+b−1

|na+1 . . .na+b〉

= |ΨA
DMRG〉|ΨB

DMRG〉. (13)

4. Compactness and efficiency of the ansatz: The number of variational param-
eters in the DMRG ansatz is O(M 2k). How large do we need M to be to
achieve a good accuracy? If we choose, for a given index ip, M = 1, then
the wavefunction factorises into a simple product of contributions from the
spaces {n1 . . .np} and {np+1 . . .nk}. Increasing M then introduces additional
correlations or entanglement between the wavefunction components in the two
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spaces. The M required for a given accuracy thus depends on the correlations
in the specific state of the molecule. However, we have seen in our applications
that for appropriate problems, even modest M = O(100−1,000) can allow us to
obtain very good accuracy and to solve problems that are insoluble with other
techniques. Of course, having a small number of variational parameters does not
guarantee that an ansatz can be manipulated efficiently. (Witness the difficulty
in evaluating the variational energy corresponding to a Coupled Cluster wave-
function!) As we shall see in Sect. 6, the product structure of the DMRG ansatz
enables matrix elements to be evaluated without ever reconstructing the DMRG
coefficients in the full Slater determinant expansion, thus bypassing the exponen-
tial complexity. (Although one can do so if one wishes, e.g. for the purposes of
analysing the DMRG wavefunction, as in [14]). Finally, we note that the DMRG
incorporates correlations between orbital spaces in a sequential manner, i.e. the
first set of auxiliary indices i1 entangles spaces {n1} and {n2 . . .nk}, i2 entan-
gles spaces {n1n2} and {n3 . . .nk} and so on. For this reason, the DMRG ansatz
performs best if strongly-correlated orbitals are placed next to each other in the
ansatz [12, 34, 39, 42].

5. A local multireference ansatz for long molecules: The DMRG wavefunction is
particularly well-suited to long molecules where it can be viewed as a natu-
rally local multireference ansatz. In long molecules (i.e. those where one of the
dimensions is much larger than the other two) with a finite electronic correlation
length, we can divide the molecule at any point along the backbone and expect
the degree of entanglement between the two resulting subsystems to be indepen-
dent of the point of division and the length of the chain. Thus, for such problems,
the M required for a given accuracy is independent of the length of the system
and the number of variational parameters in the DMRG wavefunction is simply
const×O(k), as should be in a local ansatz. However, unlike in other local cor-
relation approaches the DMRG provides a local multireference ansatz. It is this
local nature even in the presence of strong nondynamic correlations which has
allowed us to solve very large active space multireference correlation problems
in long molecules [5–7].

In problems which are large in two or three dimensions, the degree of entan-
glement between two subsystems grows exponentially with the length of the
border, and thus the preceding considerations no longer apply. We might then
ask, can we modify the DMRG ansatz to obtain a naturally local multirefer-
ence description for large systems with arbitrary dimensionality? Recently, this
has been shown to be possible. Consider, for example, two rows of atoms (each
with one localised orbital) arranged as in Fig. 1. The first sub-figure illustrates
the sequential coupling between orbital spaces that is contained in the DMRG
wavefunction, which is inefficient at describing correlations between atoms in
different rows. In the second sub-figure, however, we have added additional aux-
iliary indices to couple the site functions both along the rows as well as along the
columns in a non-sequential manner. This is the basis for the so-called Projected
Entangled Pair State wavefunctions which present one of the most promising new
developments in this area [21–23].
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(a) DMRG

(b) PEPS

Fig. 1 Density Matrix Renormalisation Group and Projected Entangled Pair State wavefunctions
for two rows of atoms. Note in the DMRG ansatz, the site functions are coupled sequentially,
which prevents the efficient description of correlations between the rows. However, in the PEPS
ansatz, addition indices are added to the site functions (e.g. ψn2

i1i2
→ψn2

i1i2 j2
) whose coupling directly

captures the inter-row correlations

4 The Renormalized Basis

As we have discussed above, the auxiliary indices of the site functions introduce
couplings between the orbital spaces in the DMRG ansatz. In addition, they can also
be provided with a direct physical interpretation. Just as the index ni is associated
with the Fock space of orbital i, so can we also associate a set of renormalised many-
body spaces with the auxiliary indices of each site function ψ . This provides the
Renormalisation Group (RG) interpretation of the DMRG wavefunction. Consider,
for example, the first set of auxiliary indices i1. We first perform the summation
in the DMRG wavefunction expression over n1, which couples ψn1

i1
with the set of

states {|n1〉}= {|0〉, |1α〉, |1β 〉, |2αβ 〉}. This formally defines a space {i1}with basis
functions |i1〉

|i1〉= ∑
n1

ψn1
i1
|n1〉 (14)
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or more succinctly
{i1}= ψ̂1 · {n1}. (15)

Of course, the transformation of the {n1} orbital Fock space by the ψ1 site function
is trivial. (Indeed, if, as is usual, we do not allow ψ to mix states with different
particle numbers or spin, we would simply have |i1〉= |n1〉 for all 4 states). However,
things are more interesting, when we consider the spaces associated with later sets
of auxiliary indices. For example, repeating the above exercise for i2

|i2〉= ∑
n1n2

i1

ψn1
i1

ψn2
i1i2
|n1n2〉 (16)

= ∑
n2
i1

ψn2
i1i2
|i1n2〉, (17)

{i2}= ψ̂2 · {i1n2}= ψ̂2 · ψ̂1 · {n1n2}. (18)

In general for the space {ip} and the associated basis |ip〉, we write

{ip}= ψ̂ p · {ip−1np}
= ψ̂ p · ψ̂ p−1 · · · ψ̂1 · {n1n2 . . .np}, (19)

|ip〉= ∑
np

ip−1

ψnp
ip−1ip

|ip−1np〉

= ∑
n1...np

i1...ip−1

ψn1
i1

ψn2
i1i2

. . .ψnp−1
ip−2ip−1

ψnp
ip−1ip

|n1n2 . . .np〉. (20)

Note that the matrix representation of ψ̂ p is simply the matrix form of the site
function [ψ p] described in Eq. (11), i.e.

〈ip|ψ̂ p|ip−1np〉= ψ p
ip,ip−1n1

(21)

and thus we can also write Eq. (20) as

|ip〉= ∑
n1...np

([ψn1 ][ψn2 ] . . . [ψnp−1 ][ψnp ])ip
|n1n2 . . .np〉. (22)

Now the dimension of the ip index and {ip} space is fixed to be at most M in
the original ansatz (8). Thus, the action of ψ̂ p · · · ψ̂1 is a projective transformation
from the full many-body space down into a renormalised many-body space of M
basis states, where each basis state |ip〉 is expressed as a linear combination of many
product functions |n1 . . .np〉 with coefficients given by Eq. (20). The renormalised
spaces have a recursive structure: {ip} is obtained from {ip−1} which is obtained
from {ip−2} and so on.

The construction of one renormalised space from the previous one may be con-
sidered to proceed in two stages. To construct the space {ip}, first we form the
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(a) One site ansatz

(b) Two site ansatz

Fig. 2 Block diagrams for the one and two site DMRG ansaetze

product space
{ip−1}⊗{np}→ {ip−1np} (23)

and then we apply the projective transformation

ψ̂ p · {ip−1np}→ {ip}. (24)

The first step is called “blocking” and the second step “decimation” in the tradi-
tional language of the Renormalisation Group, and therein lies the basic connection
between the DMRG ansatz and its RG interpretation. It is common to represent
these blocking and decimation steps in the pictorial fashion shown in Fig. 2.

5 The Canonical Representation and Sweep Algorithm

The DMRG wavefunction is invariant to a class of transformations of the site func-
tions ψ , since the associated nested many-body spaces {ip} are themselves invariant
with respect to transformations within each space. The original DMRG algorithm,
which was formulated in the language of orthogonal projective transformations
following Wilson’s Numerical Renormalisation Group, in fact corresponds to par-
ticular choices of representation of the site functions within the above invariant
class. We shall call such representations “canonical representations”. All existing
DMRG implementations in quantum chemistry work with canonical representations
of the DMRG wavefunction. In addition, the use of canonical representations is
closely linked with the density matrix interpretation of the DMRG and also with the
DMRG sweep algorithm, which provides a natural algorithm to optimise the DMRG
wavefunction.

Associated with each DMRG wavefunction Ψ there are k canonical representa-
tions, one for each site. At site p, the canonical representation is written as
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|Ψ〉= ∑
n1...np...nk

[Ln1 ] . . . [Lnp−1 ][Cnp ][Rnp+1 ] . . . [Rnk ]|n1 . . .np . . .nk〉 (25)

= ∑
n1...np...nk

l1...lp−1,rp...rk−1

Ln1
l1

. . .L
np−1
lp−2lp−1

C
np
lp−1rp

R
np+1
rprp+1 . . .Rnk

rk−1
|n1 . . .np . . .nk〉. (26)

Here, the site functions to the left of p have been given the symbol L, while those to
the right have been given the symbol R. The L and R site functions, which are in this
context usually called transformation matrices, are each orthogonal matrices when
written in the matrix representation of Eq. (11). We interpret the L site functions as
matrices by grouping the n index with the first auxiliary index,

(q < p : Lq
ln,l′ := L

nq
ll′ ) (27)

and in this form we have

[Lq]T [Lq] = [1], (28)

∑
ln

Lq
ln,l′L

q
ln,l′′ = δl′l′′ . (29)

For the R site functions, we group the n index with the second auxiliary index

(q > p : Rq
r′,rn := R

nq

r′r) (30)

and in this form we have

[Rq][Rq]T = [1], (31)

∑
rn

Rq
r′,rnRq

r′′,rn = δr′r′′ . (32)

The L and R matrices each define a set of orthogonal projective transformations,
which give rise, respectively, to two sets of renormalised spaces {l} and {r} asso-
ciated with the site p representation of the DMRG wavefunction. The {l} spaces,
{l1},{l2} . . . are built up by incorporating the orbitals in the order 1,2 . . . p,

(q < p) : {lq}= L̂q · {lq−1nq}
= L̂q · L̂q−1 · {lq−2nq−1nq}
= L̂q · L̂q−1 · · · L̂1 · {n1 . . .nq} (33)

and the |l〉 functions form an orthogonal renormalised basis (from the orthogonal
nature of the [L] transformation matrices) for each {l} space

|lq〉= ∑
n1...np

[Ln1 ][Ln2 ] . . . [Lnq−1 ][Lnq ]|n1n2 . . .n1〉, (34)

〈lq|l′q〉= δll′ . (35)
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The {r} spaces and |r〉 basis functions are defined similarly, but now the orbitals
are incorporated “backwards” in the order k,k−1 . . . p + 1

(q > p) : {rq}= R̂q · {nqrq+1}
= R̂q · R̂q+1 · {nqnq+1rq+2}
= R̂q · R̂q+1 · · · R̂k · {nq . . .nk}, (36)

|rq〉= ∑
nq...nk

[Rnq ][Rnq+1 ] . . . [Rnk−1 ][Rnk ]|nqnq+1 . . .nk〉, (37)

〈rq|r′q〉= δrr′ . (38)

Having defined the renormalised spaces, we now see that the Cp site function
gives the wavefunction coefficients in the product space formed from the renor-
malised left basis {lp−1}, the orbital space {np}, and the renormalised right basis
{rp}

|Ψ 〉= ∑
lnr

Cp
lnr|lp−1nprp〉 (39)

where we have used the notation Cp
lnr := C

np
lp−1rp

.
We now consider the DMRG wavefunction expressed in the canonical represen-

tations of sites other than p. Since the same wavefunction is simply being expressed
in a different representation, this implies a relationship between the wavefunc-
tion coefficients C and transformation matrices L,R at different sites. Comparing
representations at sites p, p + 1 we see

|Ψ〉= ∑
n1...np...nk

[Ln1 ] . . . [Lnp−1 ][Cnp ][Rnp+1 ][Rnp+2 ] . . . [Rnk ]|n1 . . .np . . .nk〉 (40)

= ∑
n1...np...nk

[Ln1 ] . . . [Lnp−1 ][Lnp ][Cnp+1 ][Rnp+2 ] . . . [Rnk ]|n1 . . .np . . .nk〉. (41)

This implies

[Cnp ][Rnp+1 ] = [Lnp ][Cnp+1 ] (42)

or, switching to the alternative matrix interpretation of Eq. (11) for Cp,Cp+1 and
likewise for Lp,Rp+1

∑
r

Cp
ln,rR

p+1
r,r′n = ∑

l′
Lp

ln,l′C
p+1
l′,n′r′ . (43)

From Cp, we can determine the quantities in the site p + 1 canonical form that do
not explicitly appear in the site p canonical form, namely Cp+1,Lp, by the singular
value decomposition (SVD) of Cp,

Cp
ln,r = ∑

l′
Lp

ln,l′σl′Vl′r, (44)
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Fig. 3 The DMRG sweep algorithm with the one site ansatz. After all L blocks are constructed
going from L→ R, the sweep direction is reversed

Cp+1
l,nr = ∑

r′
σlVlr′R

p+1
r′,rn. (45)

The connection through the SVD between the representations at different sites
leads to the density matrix formulation of the DMRG. Recall that the singular vec-
tors of a matrix M may be related to the eigenvectors of MT M and MMT . Thus from
Cp, we can define a symmetric object [Γ p] = [Cp]T [Cp], i.e.

Γ p
ln,l′n′ = ∑

r
Cp

lnrC
p
l′n′r. (46)

Γ p is none other than the density matrix associated with the left subsystem, or
“block” of orbitals 1 . . . p, and the left transformation matrix Lp is obtained as the
matrix of M eigenvectors

∑
l′n′

Γ p
ln,l′n′L

p
l′n′,l′′ = Lp

ln,l′′σ
2
l′′ . (47)

This corresponds to the traditional density matrix interpretation of the DMRG: to
obtain the canonical representation at a new site requires a basis change into the
eigenvectors of the subsystem density matrix.

The sequential set of transformations from representation to representation along
the sites also yields a natural optimisation procedure for the DMRG wavefunction
known as the sweep algorithm. At each site p, we solve the Schrödinger equa-
tion in the basis {lp−1nprp} to obtain the coefficient matrix Cp, thus (dropping the
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subscripts on the basis functions for simplicity)

〈l′n′r′|Ĥ−E|Ψ〉= 0, (48)

∑
lnr

〈l′n′r′|Ĥ−E|lnr〉Cp
lnr = 0. (49)

From this coefficient matrix, we obtain the new transformation matrix at site p±1
from the SVD in Eq. (44) (or equivalently, in the density matrix formulation, from
the eigenvectors of the density matrix in Eq. (47)). If we move through the sites from
left to right (p → p + 1) in a sweep, we successively determine new Lp matrices,
while moving from right to left (p → p− 1) determines new Rp matrices. After
the sites are traversed in one direction, we traverse in the opposite direction thus
allowing improvement of all the Lp and Rp matrices. (Of course, to initialise the
procedure, requires some starting guess for the Lp and Rp matrices). This is the
basic method that is employed to optimise the DMRG energy.

We usually depict the canonical representation at site p in a block-configuration
diagram as shown in Fig. 2 consisting of a left block of orbitals 1 . . . p−1, the site
p and a right block of orbitals p + 1 . . .k. Then, moving from one site to another
corresponds to moving from block-configuration to block-configuration, sweeping
from left-to-right and then right-to-left as shown in Fig. 3.

So far we have always been working within what is known as the one-site DMRG
algorithm, since, as can be seen from the block diagram in Fig. 2, there is only one
site between the left and right blocks. However, in earlier formulations of the DMRG
algorithm it was common to use the so-called two-site algorithm, corresponding to
the second block configuration in Fig. 2. Here the wavefunction at site p is written
in the renormalised product space as

|Ψ 〉= ∑
lnn′r

Cp
lnn′r|lp−1npn′p+1rp+1〉 (50)

where we see that two complete orbital Fock spaces {np},{np+1} appear in the
wavefunction expansion. Unlike in the one-site configuration, we can only approxi-
mately relate the canonical representations of the two-site wavefunctions at different
sites, and thus there is no single consistent DMRG wavefunction across a two-site
DMRG sweep, but rather a whole family of DMRG wavefunctions, one at each site.
Originally, the two-site algorithm was introduced to eliminate some numerical prob-
lems associated with local minima when optimising the DMRG wavefunction in the
sweep algorithm [2,12,37], but with the introduction of newer methods which avoid
such minima [56], the one-site formulation should now be viewed as preferred.

6 Evaluation of Matrix Elements

For completeness, we now outline briefly how the DMRG wavefunction allows the
efficient evaluation of the matrix elements necessary to solve the Schrodinger equa-
tion in the renormalised product basis (49). We first note that any operator in the
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complete Fock space {n1}⊗{n2}⊗{n3}⊗ . . .⊗{nk} can be expressed as a sum of
products of “local” operators that each act individually in the Fock space of a single
site. For example, the unit operator Î in the full Fock space may be considered as a
single tensor product of local unit operators

Î = Î1⊗ Î2⊗ Î3⊗ . . .⊗ Îk (51)

where e.g. 〈n1|Î1|n1〉= δn1n′1 . To see how the quantum chemistry Hamiltonian

H = ∑
i j

ti ja
†
i a j + ∑

i jkl

vi jkla
†
i a†

jakal (52)

can be written as a sum of products of local operators, it is sufficient to show that
the creation and annihilation operators can be expressed in this form. Note that a
single creation or annihilation operator does not simply act in the Fock space of a
single orbital, because of the anticommutation relations between operators. Instead,
we write for a†

i ,ai

a†
i = ∏

j<i
(−)n j ⊗Pia

†
i Pi, (53)

ai = ∏
j<i

(−)n j ⊗PiaiPi. (54)

Here the operator ∏ j<i(−)n j formally keeps tracks of the anticommutation, since if
we consider e.g. ai acting on a determinant, it counts the number of sign changes
involved in moving orbital i to the front of the orbital string. Pi denotes the projection
of operator onto the {ni} space alone.

Given that all operators can be written as a sum of products of local operators,
we now examine how the matrix elements of a single product of local operators are
obtained. Consider the product

Ô = Ô1⊗ Ô2⊗ . . .Ôk. (55)

In terms of the product basis {|lp1nprp〉} of site p, we can write (dropping the
subscripts on the basis functions for simplicity)

〈l′n′r′|Ô|lnr〉= 〈l′|Ô1⊗ . . .⊗ Ôp−1|l〉〈n′|Ôp|n〉〈r′|Ôp⊗ . . .⊗ Ôk|r〉 (56)

= 〈l′|ÔL|l〉〈n′|Ôp|n〉〈r′|ÔR|r〉. (57)

It is sufficient to demonstrate how the matrix elements 〈l|ÔL|l′〉 are calculated as
those for OR are obtained in a similar manner. From the recursive definitions of the
renormalised basis functions |l〉, |l′〉 in Eqs. (34), (37) we have

〈l′|ÔL|l〉= ∑
n1...np

n′1...n′p

[Ln1 ][Ln2 ] . . . [Lnp−1 ]
(
O1

n1n′1
O2

n2n′2
. . .Op−1

np−1n′p−1

)
[Ln′1 ][Ln′2 ] . . . [Ln′p−1 ].

(58)
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These multiple transformations may be efficiently organised into groups of two step
procedures (corresponding to the familiar blocking and decimation steps of the RG).
Writing

O1
l1l′1

= 〈l1|Ô1|l′1〉= Ln1
l1

O1
n1n′1

Ln1
l1

(59)

the blocking step corresponds to

O1
l1l′1
⊗O2

n2n′2
→ (

O1O2)
l1n1l′1n′1

(60)

while the decimation corresponds to the transformation into the renormalised basis
({l1n2}→ {l2})

∑
l1n2l′1n′2

Ln2
l1l2

(
O1O2)

l1n2l′1n′2
L

n′2
l′1l′2
→ (

O1O2)
l2l′2

. (61)

Each such transformation has the cost of a matrix multiplication i.e O(M3), and
because of the recursive structure of the transformations, the complete matrix ele-
ment 〈l′|OL|l〉 may be efficiently evaluated as a sequence of matrix products with a
total cost O(M3k).

For complicated operators such as the quantum chemical Hamiltonian which
consist of sums over many products of operators, it is clear that there are inter-
mediates which can be reused and saved. For example, the matrix elements of
a†

1a†
2a9a10 and a†

1a†
2a4a5 both involve as an intermediate the renormalised represen-

tation of a†
1a†

2, which may be stored and reused. In practice, therefore, the optimal
implementation of the DMRG algorithm in quantum chemistry requires an efficient
organisation of intermediates and this is primarily where most of the complexity
may be be found. The interested reader is referred to the literature for further details
e.g. [10–14, 37].

7 Conclusions

In this article we have attempted to introduce the Density Matrix Renormalisation
Group (DMRG) primarily from the view that it provides quantum chemistry with
a new kind of wavefunction ansatz. Consequently, we can analyse and manipulate
the ansatz in the way to which we are accustomed in quantum chemistry. By exam-
ining its structure we arrive at an intuitive understanding of the strengths of the
DMRG method e.g. in multireference problems, or in long molecules, where it is a
naturally local multireference approach. A striking feature of the DMRG ansatz as
compared to other quantum chemical wavefunctions is the recursive structure. This
is the connection between the DMRG wavefunction and the traditional language of
the Renormalisation Group, and provides the central mechanism behind the efficient
evaluation of matrix elements in the method.
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Traditionally quantum chemistry has understood electronic structure in terms of
the many-electron wavefunction. We hope that by thinking about the DMRG in this
language, it will not only become more accessible, but new possibilities will arise
for cross-fertilisation between quantum chemical techniques and the Density Matrix
Renormalisation Group.
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18. S. Rommer, S. Östlund, Phys. Rev. B 55(4), 2164 (1997)
19. F. Verstraete, J.J. Garcı́a-Ripoll, J.I. Cirac, Phys. Rev. Lett. 93(20), 207204 (2004)
20. F. Verstraete, D. Porras, J.I. Cirac, Phys. Rev. Lett. 93(22), 227205 (2004)
21. F. Verstraete, J.I. Cirac, arXiv:cond-mat 0407066v1 (2004)
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Abstract A new class of non-iterative single-reference coupled-cluster (CC) and
equation-of-motion CC (EOMCC) methods that combines the idea of energy cor-
rections due to higher-order excitations defining the method of moments of CC
equations (MMCC) with the multi-reference many-body perturbation theory, which
is used to provide information about the most essential correlation effects relevant to
electronic quasi-degeneracies, is described. The key elements of the resulting theory,
termed MMCC/PT, are formulated using diagrammatic methods. The performance
of the basic MMCC/PT approximations, in which inexpensive corrections due to
triple (MMCC(2,3)/PT) or triple and quadruple (MMCC(2,4)/PT) excitations are
added to ground- and excited-state energies obtained with the CC/EOMCC singles
and doubles (CCSD/EOMCCSD) approach, is illustrated by the results of bench-
mark calculations including bond breaking in HF, H2O, and F2, and excited states of
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excited moments of the CCSD/EOMCCSD equations that enter the MMCC(2,3)/PT
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1 Introduction

Not long after the discovery of Schrödinger’s equation [1] in 1926, one of the pio-
neers of quantum mechanics, Dirac, made a widely publicized statement that “the
underlying physical laws necessary for the mathematical treatment of a large part
of physics and the whole of chemistry are thus completely known, and the diffi-
culty is only that the exact application of these laws leads to equations much too
complicated to be soluble” [2]. Because of this statement, chemists at that time
were skeptical about the prospects of quantum theory as a way to study molecular
properties. However, what has not been publicized as broadly, in the same paper
Dirac also wrote that “it therefore becomes desirable that the approximate practical
methods should be developed, which can lead to an explanation of the main fea-
tures of complex atomic system without too much computation” [2]. Inspired by
this less known remark and despite the early reluctance of the chemical commu-
nity, the field of quantum chemistry has undergone revolutionary advances brought
about in part by the advent of computers and in part by much improved understand-
ing of many-electron systems, particularly in recent four decades. The tremendous
improvements in accuracy and predictive power of electronic structure methods and
significant advances in the fundamental understanding of many-electron wavefunc-
tions, which continues to improve every year, have paved the way to widespread
applicability of quantum-chemical methods in solving increasingly complex chem-
ical problems, surpassing what was originally expected in the late 1920s by a wide
margin. Furthermore, because of its rigorous and predictive nature, quantum chem-
istry has become a powerful, important tool not only for theorists but also for
experimentalists, while inspiring similar developments in computational nuclear
physics, biochemistry, molecular biology, and materials science, among others.

Nowadays, highly accurate ab initio (meaning from “first principles”) quantum
mechanical calculations for small and medium size molecular systems, with up to
20–30 light atoms, a few transition metal atoms and about 100 explicitly correlated
electrons, are routine. Theoretical calculations of the energetics and other molecular
properties of smaller molecules can often rival those obtained experimentally.

The above successes of quantum chemistry do not mean that there are no open or
challenging problems in modern electronic structure theory. Indeed, the key to a suc-
cessful description of chemical systems is an accurate assessment of many-electron
correlation effects. Electrons in molecules move in a complicated, highly correlated
fashion and one cannot describe molecular properties by using a simple mean-field
description, which ignores electron correlation effects, as is done in the Hartree-
Fock (H–F) calculations, particularly in cases involving bond breaking, open-shell
systems, and excited electronic states. The least expensive ways of accurately
accounting for electron correlation effects have computational steps that typically
scale as N 6−N 7 with the system size N and this limits the applicability of cor-
related ab initio methods to systems with about 100 correlated electrons (defined as
electrons outside the frozen core). Thus, one of the challenges of modern quantum
chemistry is to go to systems with hundreds or thousands of correlated electrons
and basis functions. Another challenge is an accurate treatment of bond stretching
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or breaking, chemical reaction pathways, and excited states, particularly those dom-
inated by many-electron transitions, i.e., problems where a traditional description
in which one starts from a single Slater determinant and builds the electronic wave-
functions on top of a single determinant through particle-hole excitations, and which
works for non-degenerate states of closed-shell molecules, is no longer adequate.
The present work focuses on the latter challenge.

Generally, there are two types of electron correlation effects: dynamical and
non-dynamical (static). Dynamical correlations can be regarded as short-range cor-
relations due to electrons instantaneously avoiding each other, particularly when
they come close to each other. On the other hand, non-dynamical correlations can
be treated as long-range correlations which arise from the multi-configurational
character of systems having quasi(near)-degenerate states, as in the case of the
electrons constituting an electron pair undergoing the bond breaking process, birad-
icals, and the majority of excited states. A well-balanced account of both dynamical
and non-dynamical electron correlation is important to obtain a uniformly accurate
description of reactants, products, reaction intermediates, and transition states as
well as the precise description of electronic excitations in molecules.

Over the years, there has been tremendous progress in the development of elec-
tron correlation methods. In this chapter, we primarily focus on the wavefunction-
based approaches which can be divided into three main categories: (1) configuration
interaction (CI) approaches [3–5]; (2) many-body perturbation theory (MBPT)
[6–10]; and (3) coupled-cluster (CC) methods [11–15]. The electron correlation
methods can also be classified as single-reference and multi-reference methods.
Single-reference electron-correlation methods, from the name itself, are defined
by building a correlated wavefunction through electronic excitations out of a sin-
gle Slater determinant (e.g. a H–F determinant). Multi-reference (MR) methods, on
the other hand, utilize a multi-determinantal reference wavefunction to build the
desired correlated electronic state or states. In this chapter, we focus on combining
the single-reference CC ideas with low-order methods based on the multi-reference
MBPT (MRMBPT) treatment.

Let us recall that all CC methods are based on the exponential ansatz for the
wavefunction, allowing CC approaches to describe higher-order correlation effects
at the low level approximation by generating higher-order excitations in the wave-
function as products of low-order excitations. Of all single-reference methods, the
single-reference CC approaches [11–15], in which the H–F wavefunction is usu-
ally chosen as a reference state, are generally considered as the best compromise
between high accuracy and relatively low computer cost. Another notable character-
istic of CC theory is its ability to preserve size extensivity at any level of truncation.
These and other attractive features of the CC theory have inspired and continue to
inspire significant research work toward the development of high-accuracy meth-
ods which can be used as general-purpose tools by experts and non-experts (see
[16–23] for selected reviews). In particular, there has been a great deal of inter-
est in extending the single-reference CC methods to quasi-degenerate situations,
such as molecular bond dissociation and excited states dominated by two- and
other many-electron transitions, which are very challenging because of the large
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non-dynamical electron correlation effects that traditional single-reference theories
cannot capture.

The basic ground state CC approach with singles and doubles (CCSD) [24–26]
is reasonably accurate in describing closed-shell systems and dynamical correla-
tion effects with relatively low computer costs that scale as n2

on4
u (no and nu are,

respectively, the numbers of occupied and unoccupied orbitals used in the correlated
calculations), but fails in describing bond breaking because it neglects higher-than-
pair (e.g. triply and quadruply excited or T3 and T4) clusters. The CCSDT [27, 28]
and CCSDTQ [29–32] methods, which incorporate T3 or T3 and T4 clusters, respec-
tively, are capable of giving an accurate description for certain classes of systems
with electronic quasi-degeneracies, in spite of their single-reference character, since
they describe correlation effects to very high orders, often compensating for the
inadequacies of a single-reference description, but the computer costs of the CCSDT
and CCSDTQ calculations are extremely high, limiting their applicability to small
molecular problems with a few light atoms. In particular, the CCSDT and CCSDTQ
methods require iterative steps that scale as n3

on5
u and n4

on6
u, respectively, which make

them applicable to systems with up to ∼10 correlated electrons.
To considerably reduce the computational costs of the CCSDT, CCSDTQ, and

other high-order CC schemes, several CC approaches, in which the effects of
higher-than-doubly excited clusters are included in approximate manner, have been
developed. One of the most popular CC methods in this category is the CCSD(T)
[33] approach, in which the connected triply excited (T3) clusters are incorporated
in a computationally efficient fashion through the suitably designed non-iterative
correction to the CCSD energy derived using arguments that originate from MBPT.
The CCSD(T) method and its CCSD[T] analog [34, 35] are currently available in
the majority of popular quantum chemistry software packages, enabling highly
accurate ab initio calculations of useful molecular properties by experts as well
as non-experts. However, while the CCSD[T] and CCSD(T) methods improve the
description of molecular properties in the region of equilibrium geometry, they com-
pletely fail when chemical bonds are stretched or broken [21,36–67]. The inclusion
of non-iterative quadruples (T4 clusters) using arguments originating from MBPT,
which leads to schemes, such as CCSD(TQ f ) and CCSDT(Q f ) [68], and their vari-
ous modifications, further improves the results in the equilibrium region but cannot
help when the configurational quasi-degeneracy sets in [40–44, 47, 49–52, 59–66].

Similar remarks about the performance and failures of single-reference CC meth-
ods can be made when extending the discussion to excited states calculations. The
most natural extensions of the single-reference CC formalism to excited states are
the linear-response CC theory [69–75] and the closely related equation-of-motion
(EOM) CC [76–80] and symmetry-adapted cluster configuration interaction (SAC-
CI) approaches [81–85]. The basic linear response CCSD [74, 75] and EOMCCSD
[77–79] approximations, which are characterized by the manageable computational
steps that scale as n2

on4
u or N 6 with the system size, and the analogous SAC-CISD

method provide reliable information about excited states dominated by one-electron
transitions. Unfortunately, the linear response CCSD and EOMCCSD methods can-
not describe excited states having significant double excitation components and
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excited-state potential energy surfaces along bond breaking coordinates [52, 55, 56,
60–62, 64, 86–100].

High-order EOMCC methods including higher-than-double excitations, such as
full EOMCCSDT (EOMCC singles, doubles, and triples) [94, 95, 101] and EOM-
CCSDTQ (EOMCC singles, doubles, triples, and quadruples) [100, 102], provide
an excellent description of excited states dominated by doubles [94, 95, 100] as
well as excited-state potential energy surfaces [95], but large costs of the EOM-
CCSDT and EOMCCSDTQ calculations, which are defined by the iterative steps
that scale as N 8 and N 10 with the system size, respectively, limit their appli-
cability to small molecules with a few light atoms and relatively small basis sets
in the same way the ground-state CCSDT and CCSDTQ methods are limited to
small many-electron problems. For this reason, a number of approximate and less
expensive ways of incorporating triple or triple and quadruple excitations in the
EOMCC and linear response CC formalisms have been developed in order to
make these methods applicable to a wider range of molecular sizes. Among those
are the iterative EOMCCSDT-n approaches and their non-iterative EOMCCSD(T),
EOMCCSD(T̃), and EOMCCSD(T′) counterparts [87,88], and the analogous linear-
response CC methods, such as CC3 [86, 90–92] and CCSDR(3) [86, 92], which
use elements of MBPT to estimate triples effects. All of these methods are charac-
terized by the relatively inexpensive N 7 steps of the n3

on4
u type and all of them

improve the EOMCCSD/linear response CCSD results for excited states domi-
nated by two-electron transitions, but there are many cases where the results of
EOMCCSDT-n, EOMCCSD(T), CC3, and similar calculations are far from satis-
factory or become even poor. This can be illustrated by the large 0.4–0.5 and 0.9
eV errors in the description of the lowest 1Πg and 1∆g states of the C2 molecule,
respectively, by the EOMCCSDT-1 and CC3 approaches [86] or the failure of the
CC3 and CCSDR(3) methods to provide accurate information about excited-state
potential energy surfaces along bond breaking coordinates [103] (see also [98] for
an additional analysis).

The above problems encountered in the single-reference CC/EOMCC calculations
for various cases of electronic quasi-degeneracies clearly indicate that a tradi-
tional single-reference description is not sufficient and that more flexible quantum-
chemical models are needed. The conventional wisdom is to turn to multi-reference
approaches, in which instead of using a single-determinantal reference state, one
selects a certain number of reference determinants to construct the appropriate
zeroth-order wavefunction(s) adjusted to the type of bond breaking or excited
states of interest. The less intuitive and yet potentially very useful is an idea of
improved single-reference methods, which completely or largely rely on a single-
determinantal reference state, while being capable of describing at least some of the
most frequent cases of electronic quasi-degeneracies. We first overview the tradi-
tional multi-reference methods, which are classified as multi-reference CI (MRCI),
multi-reference MBPT (MRMBPT), and multi-reference CC (MRCC) approaches.

In CI, the multi-reference formulation is typically accomplished by adopting a
more sophisticated zeroth-order reference in the form of a multi-configuration self-
consistent field (MCSCF) wavefunction instead of using a single H–F determinant.
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The basic MRCISD approach (abbreviated here as MRCI) involves single and dou-
ble excitations out of all reference determinants. The most popular MRCI schemes
using complete active space self-consistent field (CASSCF) reference wavefunc-
tions (CASSCF is a variant of MCSCF obtained by a distribution of a number of
active electrons among a number of active orbitals in all possible ways) provide
potential energy surfaces which are closely parallel to full CI surfaces, at least for
small molecules. Because of this, the MRCI methods are among the most useful
benchmark techniques of quantum chemistry [104–106], particularly in cases where
full CI results are not available, and among the most popular approaches to calcula-
tions of potential energy surfaces of smaller molecular systems. One of the biggest
advantages of the MRCI techniques, in addition to high accuracy in calculations
of potential energy surfaces, is their ability to describe ground and excited states,
near-degeneracy effects, and all kinds of open-shell systems. The fundamental draw-
back of the MRCI methods, their lack of size extensivity, can be addressed through
either the a posteriori Davidson-type energy corrections [107–112] or the a priori
refinements through suitable Hamiltonian dressing techniques, such as, for example,
the multi-reference average coupled pair functional (MR-ACPF) [113] and multi-
reference average quadratic coupled-cluster (MR-AQCC) [114, 115] approaches.
Neither of these propositions is ideal, but benchmark calculations show that at least
the main problems related to inextensivity of MRCI can be addressed in this man-
ner (see, e.g. [116]). Several other approximately extensive modifications of MRCI
have been developed [117–119].

In addition to inextensivity, the main challenge for the MRCI methods is the fact
that the lengths of the corresponding CI wavefunction expansions and the related
computational effort rapidly increase with the system and basis set sizes. Although
several clever ideas, such as the use of the configuration selection thresholds
combined with the appropriate extrapolation techniques [112], and the internal con-
tractions of configuration state functions [120, 121], have been developed to reduce
the costs of MRCI calculations, all MRCI methods are generally very costly in all
aspects of computing resources [122]. Even with the substantial progress in terms
of algorithms, efficient implementation, and parallelization (cf., e.g. [120–128]),
practically all applications of MRCI remain limited to relatively small molecular
systems. In addition, the existing MRCI approaches remain quite complex for the
average end user due to several choices the user has to make to run the MRCI calcu-
lations in a proper manner. This makes MRCI approaches popular among experts,
but much less popular among non-experts.

A cost effective alternative to MRCI is represented by methods based on the
multi-reference extension of MBPT. Historically, the general MRMBPT formalisms
for quasi-degenerate and open-shell states have been formulated in the late 1960s
[129] and early 1970s [130], but much of the development work geared toward prac-
tical computational schemes has been done in the last two decades. Two general
categories of MRMBPT methods are distinguished in the literature: the “per-
turb then diagonalize” and the “diagonalize then perturb” approaches [131–133].
The “perturb then diagonalize” approaches involve deriving the effective Hamil-
tonian in a multi-configurational reference space, which in the case of the most
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popular second-order MRMBPT schemes is truncated at the first-order terms, and
then obtaining the final energies as eigenvalues of the resulting operator [129,
132–137]. The most popular second-order “diagonalize then perturb” methods use
the first-order contributions to the Schrödinger equation to define the perturbed
wavefunctions, and then use the second-order equation to get the energy. Various
methods, particularly in the latter family, differ from one another in the choice
of the zeroth-order Hamiltonian, and other details of the algorithms used in the
computer implementation [138–161]. Among the most popular and widely used
variants of MRMBPT are the complete active space second-order perturbation the-
ory (CASPT2) [138, 139], the multi-reference Moller-Plesset perturbation theory
(MRMP) [140], and the multi-configurational quasi-degenerate perturbation theory
(MC-QDPT) [149].

A general difficulty of MRMBPT is the choice of the zeroth-order Hamiltonian,
which is less straightforward than in the single-reference case. Another difficulty
concerns the choice of reference determinants in some, more demanding, applica-
tions. For example, the underlying CASSCF calculations may generate too many
configurations, and the size of the active space may, in some cases, outgrow the
capacity of the present computer technology, causing difficulty in obtaining con-
verged results, which then strongly vary with the numbers of active electrons and
orbitals, and the number of roots included in the calculations [162–164]. In addi-
tion, at least some MRMBPT methods suffer from lack of size extensivity [165]
and intruder state problems leading to divergent behavior [166–168]. Among the
most promising approaches to eliminate intruders, while retaining size extensivity,
are state-specific MRMBPT methods that start with a multi-determinantal reference
space but target one state of interest at a time. The state-specific MRMBPT method
advocated by Mukherjee et al. [152] seems particularly promising, showing smooth
performance in and around the region of intruders and reasonable accuracy.

Overall, in spite of the aforementioned problems, the MRMBPT methods have
been successfully applied to many chemical and spectroscopic problems and have
established themselves as efficient techniques for treating non-dynamical and lead-
ing dynamical correlations. Compared to MRCI and genuine MRCC methods
discussed below, the second-order MRMBPT approaches are much more practi-
cal. The low-order MRMBPT approaches have a drawback in that they are not as
accurate as MRCI or CC methods in describing dynamical correlations, but this can
be taken care of by combining the low-order MRMBPT theory with the CC theory,
as demonstrated in the present work through the MRMBPT-inspired corrections to
CC energies.

The last type of multi-reference methods are the multi-reference coupled-cluster
(MRCC) approaches. The existing MRCC approaches can be classified into the
following three basic categories: the Fock-space (FS) or the valence-universal
approaches [169–172], the Hilbert-space (HS) or the state-universal methods [173–
182], and the state-specific or state-selective (SS) approaches, such as, for exam-
ple, those described in [183] and [184], the Brillouin-Wigner MRCC approaches
[185–190], and the SSMRCC methods based on the wavefunction ansätze intro-
duced in [31, 32], and [191] for the ground-state problem, [93–95] for excited
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states, and [192–194] for the electron attached and ionized states, which are nowa-
days referred to as the active-space CC/EOMCC methods [66,67,93–95,192–194].
The FSMRCC theories employ a single valence universal exponential wave opera-
tor to generate ground and excited states of a given system and its ions obtained
by removing active electrons, one by one, until one is left with core electrons
only. Thus, the FSMRCC approaches are particularly useful for valence systems
around closed-shells and various differential properties, such as ionization energies
and electron affinities. The HSMRCC theories based on the Jeziorski-Monkhorst
ansatz [173], which employs different particle-conserving cluster operators for dif-
ferent reference determinants, are particularly well suited for severe electronic
quasi-degeneracies due to several interacting states. Both the FSMRCC and HSM-
RCC approaches are genuine multi-root procedures. This should be contrasted by
the SSMRCC theories, which treat one electronic state at a time. We will return to
the SSMRCC methods when we discuss the active-space CC/EOMCC approaches
some more below. With an exception of, perhaps, the active-space CC/EOMCC and
Brillouin-Wigner MRCC methods, the existing MRCC approaches are greatly lim-
ited in the range of chemical applications they can address. Part of the problem
is the fact that no efficient, general purpose MRCC codes have been developed
owing to several recurring issues, such as computational complexity, intruder solu-
tion problem [195], difficulties with retaining size extensivity in incomplete model
space considerations, difficulties in going beyond the basic MRCCSD approxima-
tion, and difficulties in developing robust algorithms for larger reference spaces due
to, for example, excessive numbers of cluster amplitudes in the HSMRCC consid-
erations. Although significant progress has been made in recent few years in all of
these areas (see, e.g. [196–204]), it may be more worthwhile to focus on simpler
methods that rely, at least in part, on a single-reference formalism. In general, the
single-reference CC methods are much easier to implement and use than the genuine
MRCC approaches of the FS or HS type. Thus, it is useful to develop new classes
of single-reference CC methods that eliminate failures of standard CC/EOMCC
approximations in the bond breaking region and for excited states having a man-
ifestly multi-configurational character, without involving the intrinsic complexities
of the FSMRCC and HSMRCC considerations.

As summarized in Table 1, the MRCI and MRCC approaches are the only
existing wavefunction methods that may offer an excellent treatment of both dynam-
ical and non-dynamical correlation effects. As described earlier, these methods
are computationally very expensive and very difficult to use, which greatly limits
their applicability. Thus, we need alternative approaches, which are more practical
than MRCI and MRCC and which are capable of balancing dynamical and non-
dynamical correlations, particularly in studies of bond breaking and excited states
having a significant configuration mixing.

One can think of two general ways of developing such approaches, at least within
the CC formalism. The first way is to improve the existing single-reference CC
methods such that they can describe at least the selected classes of bond break-
ing and excited states in a purely “black-box” fashion, i.e., without using any
elements of a multi-reference calculation. A few ideas of this type have been
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Table 1 The quality of the overall description of the dynamical and non-dynamical electron
correlation effects by selected wavefunction methods of quantum chemistry

Method Type of electron correlations

Dynamical Non-dynamical

MBPT(2), MP2, . . . Low-order Poor
CCSD(T), CCSD(TQ), . . . Excellent Poor
MRMBPT(2) Low-order Excellent
MRCI Excellenta Excellenta

MRCC Excellent Excellent

a MRCI is not size extensive, so there is a loss of accuracy as the system
becomes larger

proposed in recent years, including the non-iterative single-reference CC methods
based on the partitioning of the similarity-transformed Hamiltonian [49, 205–209],
the spin-flip CC approaches [210–212], and the renormalized CC/EOMCC methods
[39–41, 51, 53–55, 57, 60–65, 98, 99]. The latter approaches are particularly promis-
ing. They are based on the idea of correcting the CC (e.g. CCSD) or EOMCC (e.g.
EOMCCSD) energies for the effects of higher-order (e.g. triply excited) clusters
using expressions for the leading terms toward full CI obtained using the formalism
of the method of moments of CC equations (MMCC) [39–41, 51, 53–55, 60–65, 96,
97,201–203]. Renormalized CC/EOMCC methods are particularly useful in calcula-
tions of single bond breaking, reaction pathways involving biradicals, singlet-triplet
gaps in magnetic systems, and excited states dominated by two-electron transitions
[39–65, 98, 99, 133, 162, 163, 213–226].

Renormalized CC/EOMCC methods can be very successful, enabling accurate,
inexpensive, “black-box” CC calculations for some of the most frequent multi-
reference situations, but there are quasi-degeneracy problems that cannot be handled
in this manner. An example is provided by the excited states of a highly degen-
erate Be3 system, where the accuracy of the renormalized EOMCC calculations
is comparable to the small energy spacings between excited states [227, 228]. In
such situations and in other severe cases of electronic quasi-degeneracies, where
pure “black-box” single-reference solutions are no longer effective, it may be use-
ful to look for alternative approaches that mix single- and multi-reference concepts
within a single mathematical theory. One of the best and most successful examples
of such theory is provided by the aforementioned active-space CC and EOMCC
methods [42, 66, 67, 93–95, 192–194, 227, 228], which can be viewed as the SSM-
RCC approaches exploiting a single-reference CC formalism [31, 32, 36, 37, 191,
229–234]. These methods use active orbitals, which are normally exploited to
define reference determinants in a multi-reference calculation, to select the domi-
nant three-body and other higher-than-two-body clusters and excitation amplitudes
within an otherwise conventional single-reference CC or EOMCC formalism. As a
result, they offer a tremendous amount of flexibility, since one can always improve
the results by enlarging the active space. At the same time, they have a well-
defined relationship with higher-order single-reference CC or EOMCC methods.
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For example, the active-space CC/EOMCC approach with up to triple excitations
(CCSDt/EOMCCSDt) becomes equivalent to the full CCSDT/EOMCCSDT the-
ory when all orbitals are active. On the other hand, as demonstrated in numerous
calculations by the original inventors of these methods (Piecuch, Adamowicz, and
co-workers) [31, 32, 36, 37, 42, 66, 67, 93–95, 191–194, 227–234], and others who
adopted active space approaches in recent years (cf., e.g. [235–241]), it is sufficient
to use small numbers of active orbitals in the active space CC/EOMCC calcula-
tions to obtain extremely accurate results for bond breaking and multi-determinantal
excited states. In particular, the active space EOMCC methods lead to the virtu-
ally perfect description of the excited states of the aforementioned Be3 system,
where many other methods, including the renormalized EOMCC approaches, have
significant problems [227, 228].

Active space CC/EOMCC methods mix single- and multi-reference CC concepts,
but one can go even one step further and mix CC and non-CC concepts, so that
the advantages of different kinds of electronic structure theories are utilized to the
utmost. One of the most successful methods in this broad category is the idea of the
externally corrected single-reference CC methods [242–250] in which the T3 and T4

cluster components, instead of being calculated by solving the CCSDT, CCSDTQ,
or other higher-order and expensive CC equations, are obtained by a cluster anal-
ysis of the wavefunctions provided by some external non-CC source, such as the
projected unrestricted Hartree-Fock [242,247], valence bond [243,244], MCSCF or
CASSCF [245, 246, 249], and MRCI [250] wavefunctions.

The MRCI-corrected CC methods, which define the so-called reduced MRCC
approaches [250], are particularly impressive, since the MRCI method itself is
already quite accurate in applications involving potential energy surfaces along bond
breaking coordinates, so that by reading the T3 and T4 clusters extracted from MRCI
calculations and solving the resulting T3- and T4-corrected CCSD equations, one
obtains the virtually perfect description of both dynamical and non-dynamical cor-
relations. The only problem of the reduced MRCC methods is the fact that they
are currently limited to the lowest-energy electronic state of a given symmetry.
Moreover, the MRCI calculations needed to estimate the T3 and T4 clusters for
the subsequent CCSD calculations can be quite expensive if the dimension of the
corresponding multi-determinantal reference space becomes large.

There is, however, a major lesson resulting from the remarkable success of the
reduced MRCC approach in that it is very useful to mix a multi-reference theory,
which can be used to provide information about the non-dynamical and leading
dynamical correlation effects, with a single-reference CC theory, which gives the
information about the remaining many-electron correlation effects. The success
of the reduced MRCC method has inspired the development of the CI (MRCI)-
corrected approaches exploiting the aforementioned formalism of the method of
moments of CC equations (MMCC) [39, 60–62, 96, 97, 251–254]. The MMCC for-
malism enables one to determine the mathematical structure of terms which, when
added to CC or EOMCC (e.g. CCSD or EOMCCD) energies, give, in the exact
limit, the exact full CI energies. One can use the MMCC theory to design the
“black-box” renormalized CC approximation, which we mentioned earlier, or to
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develop the externally corrected MMCC methods, such as the (MR)CI-corrected
MMCC schemes, in which one uses selected components of the (MR)CI wavefunc-
tions to design the MMCC energy corrections due to higher-order correlation effects
on top of CCSD or EOMCCSD. The major advantages of the (MR)CI-corrected
MMCC schemes are their applicability to ground and excited states, not just to the
lowest-energy states of a given symmetry [39,60–62,96,97], and very high accuracy
that can compete with the results of reduced MRCC calculations [252–254]. The
(MR)CI-corrected MMCC methods work extremely well for single, double, or even
triple bond breaking and all kinds of excited states [39,60–62,96,97,251–254], but
they still require additional CI calculations to generate trial wavefunctions that enter
the MMCC corrections to CCSD or EOMCCSD energies. Although the main idea of
the CI-corrected MMCC methods is straightforward, the CI-corrected MMCC cal-
culations can be quite expensive if the CI calculations used in designing the MMCC
corrections use larger active orbital spaces. Undoubtedly, it would be desirable to
examine if one could use another, less expensive, multi-reference method to gener-
ate the wavefunctions that enter the MMCC energy corrections, while retaining the
high accuracy of the CI-corrected MMCC calculations.

In this chapter, we examine, in detail, the possibility of replacing the relatively
expensive (MR)CI-like wavefunctions in the CI-corrected MMCC (MMCC/CI)
schemes by the wavefunctions obtained in the low-order MRMBPT calculations,
introduced, for the first time, at the level of triples corrections to CCSD/EOMCCSD
energies in [55, 56], and extended to corrections due to quadruples in this work. As
described earlier, the low-order MRMBPT methods are known to provide a reason-
able description of non-dynamical and leading dynamical correlation effects in the
presence of electronic quasi-degeneracies (cf., e.g. [133,134,137–140,142,146,148,
149,152,158–160,255–259]). At the same time, the computer costs of the low-order
(e.g. second-order) MRMBPT calculations are very small compared to the analo-
gous MRCI calculations. By combining the wavefunctions obtained in the low-order
MRMBPT calculations, which provide a reasonable description of electronic quasi-
degeneracies, with the MMCC formalism, in which these MRMBPT wavefunctions
are used to design the MMCC corrections to single-reference CC or EOMCC ener-
gies, we obtain a new class of the MRMBPT-corrected MMCC methods, referred to
here and elsewhere in this chapter as the MMCC/PT approaches [55, 56]. Just like
the MMCC/CI methods, which combine the CC and CI concepts, the MMCC/PT
approaches described and benchmarked in this work can be viewed as the externally
corrected MMCC methods. All externally corrected MMCC methods are similar, in
the overall philosophy, to the externally corrected CC methods pioneered by Paldus
and collaborators, in which the CC and non-CC concepts are combined together to
improve the CC results in the presence of electronic quasi-degeneracies. We demon-
strate in this work that by combining the single-reference CC and EOMCC methods
with the low-order MRMBPT-like wavefunctions via non-iterative MMCC/PT cor-
rections to CC or EOMCC energies, we can considerably improve the results of
the standard CC and EOMCC calculations in the bond breaking region and for
excited states dominated by two-electron transitions, while keeping the computer
costs at the low level. Thus, the MRMBPT-corrected MMCC methods may provide



78 M.D. Lodriguito, P. Piecuch

a potentially useful and relatively inexpensive alternative to other CC/EOMCC and
MMCC schemes, and the reduced MRCC approach of Li and Paldus, which in the
long-term may facilitate accurate calculations of reaction pathways and electronic
excitations in larger molecular systems.

The rest of this chapter is organized as follows: In Sect. 2, we summarize the
main objectives of this work. In Sect. 3, we provide a formal background needed
to formulate the MMCC/PT methods. In particular, we outline the single-reference
CC theory for ground states and its extension to excited states via the EOMCC
formalism. We also introduce the basic elements of the MMCC theory, on which
the MMCC/PT work is based. The existing MMCC approaches, such as the CI-
corrected MMCC methods and the selected renormalized CC/EOMCC schemes,
and the key concepts of the MRMBPT methodology are reviewed in Sect. 3 as well.
In Sect. 4, we describe the details of the MRMBPT-corrected MMCC (MMCC/PT)
methods. One of the most essential parts of that section is the diagrammatic for-
mulation and factorization of the central components of the MMCC/PT equations,
called the generalized moments of CC/EOMCC equations, which leads to a highly
efficient computer implementation of the MMCC/PT and other MMCC methods,
and which has not been described in the earlier papers on the MMCC methodology.
In Sect. 5, we present selected benchmark calculations to illustrate the performance
of the MMCC/PT approximations developed in this work. In the last Sect. 6, we
present a summary and future perspectives of this work. An overview of the dia-
grammatic methods exploited in this work and the relevant diagrams representing
the key components of the CC, EOMCC, and MMCC equations that are used to
formulate the MMCC/PT and other MMCC methods are provided in Appendices
1–3.

2 The Main Objectives of the Present Work

The main goal of this chapter is to describe how to combine the low-order multi-
reference many-body perturbation theory (MRMBPT) with the coupled-cluster
(CC) and equation-of-motion CC (EOMCC) methodologies via the method of
moments of CC (MMCC) equations. In addition to the relevant review material on
the CC, EOMCC, MMCC, and MRMBPT methodologies, the specific objectives
addressed of this work are:

A. Development of the MRMBPT-corrected MMCC (MMCC/PT) theory and the
underlying low-order MRMBPT formalism used in the present implementation
of the MMCC/PT methods.

B. Derivation of the key elements of the MMCC/PT theory and other MMCC
approaches, which are the generalized moments of the CC/EOMCC equations,
using diagrammatic methods.

C. Efficient formulation and computer implementation of the leading MMCC/PT
approximations, termed MMCC(2,3)/PT and MMCC(2,4)/PT, which enable one
to correct the CCSD and EOMCCSD energies for the effects of triples
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(MMCC(2,3)/PT) or triples and quadruples (MMCC(2,4)/PT), using the idea of
diagram factorization and recursively generated intermediates.

D. Benchmarking the basic MMCC/PT approaches in calculations of ground and
excited states of selected molecular systems, for which the exact, full CI data can
be generated.

In addition to the above objectives, we provide an overview of the diagrammatic and
diagram factorization techniques used in our considerations.

3 Theory

In this section, we review the single-reference coupled-cluster (CC) theory and
its extension to excited states via the equation-of-motion (EOM) CC formalism.
We also introduce the method of moments of CC equations (the MMCC theory)
and discuss the selected existing MMCC approximations, namely, the CI-corrected
MMCC methods and a few examples of the completely renormalized CC/EOMCC
approaches.

3.1 An Overview of Single-Reference Coupled-Cluster (CC) Theory

3.1.1 Ground-State Formalism

The single-reference CC theory is based on the exponential ansatz for the ground-
state wavefunction,

|Ψ0〉= |Ψ (CC)
0 〉 ≡ eT |Φ〉, (1)

where T is a particle-hole excitation operator referred to as the cluster operator
and |Φ〉 is the reference determinant (usually, the Hartree-Fock determinant). In the
exact CC theory, T is a sum of all many-body cluster components that one can write
for a given N-electron system,

T =
N

∑
n=1

Tn , (2)

where the n-body cluster component Tn is defined in a usual way as

Tn =
(

1
n!

)2

ti1...in
a1...an

aa1 . . .aanain . . .ai1 , (3)

with ti1...in
a1...an representing the corresponding antisymmetrized cluster amplitudes,

i1 . . . in (a1 . . .an) referring to the single-particle states (spin-orbitals) occupied (unoc-
cupied) in the reference determinant |Φ〉, and ap (ap) designating the standard
creation (annihilation) operators associated with the orthonormal spin-orbitals |p〉.
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Here and elsewhere in this paper, the Einstein summation convention over repeated
upper and lower indices is employed, so that the summation symbols corresponding
to the unrestricted summations over occupied and/or unoccupied spin-orbitals are
omitted.

In all standard CC approximations, the many-body expansion for the cluster oper-
ator T is truncated at a given excitation level mA < N (usually, mA << N). The
general form of the truncated cluster operator defining a standard CC approximation
A, characterized by the excitation level mA, is

T (A) =
mA

∑
n=1

Tn. (4)

An example of the standard CC approximation is the CCSD method. In this case,
mA = 2 and the cluster operator T is approximated by

T (CCSD) = T1 + T2, (5)

where
T1 = ti

aaaai (6)

and
T2 = 1

4 ti j
abaaaba jai (7)

are the singly and doubly excited cluster components and ti
a and ti j

ab are the cor-
responding singly and doubly excited cluster amplitudes. In accordance with our
general notation, i, j . . . (a,b . . .) are the occupied (unoccupied) spin-orbitals in the
reference determinant |Φ〉.

In all conventional CC approximations, the cluster amplitudes ti1...in
a1...an are deter-

mined by solving a coupled system of energy-independent non-linear algebraic
equations of the form:

〈Φa1...an
i1...in |H̄(A)|Φ〉 = 0, i1 < · · ·< in, a1 < · · ·< an, (8)

where n = 1, . . . ,mA,

H̄(A) = e−T (A)
HeT (A)

= (HeT (A)
)C (9)

is the similarity-transformed Hamiltonian of the CC/EOMCC theory, subscript
C designates the connected part of the corresponding operator expression, and
|Φa1...an

i1...in 〉 ≡ aa1 · · ·aanain · · ·ai1 |Φ〉 are the n-tuply excited determinants relative to
reference |Φ〉. In particular, the standard CCSD equations for the singly and doubly
excited cluster amplitudes ti

a and ti j
ab, defining T1 and T2, respectively, can be written

as
〈Φa

i |H̄(CCSD)|Φ〉= 0, (10)

〈Φab
i j |H̄(CCSD)|Φ〉= 0, i < j, a < b, (11)
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where
H̄(CCSD) = e−T (CCSD)

HeT (CCSD)
= (HeT (CCSD)

)C (12)

is the similarity-transformed Hamiltonian of the CCSD/EOMCCSD approach. The
explicit and computationally efficient form of H̄(CCSD) and other equations used in
the CC calculations, in terms of one- and two-body matrix elements of the Hamil-
tonian in the normal-ordered form, f q

p ≡ 〈p| f |q〉 and vrs
pq ≡ 〈pq|v|rs〉− 〈pq|v|sr〉,

respectively, where f is the Fock operator and v is the operator representing the
electron-electron interaction energy, and cluster amplitudes ti1...in

a1...an or, in the CCSD
(mA = 2) case, ti

a and ti j
ab, can be derived by applying the powerful diagrammatic

techniques of many-body theory [260, 261] combined with technique of diagram
factorization, which yields highly vectorized computer codes [29, 30]. The alge-
braic and diagrammatic structure of H̄(CCSD) is presented in detail in Appendix 2
and the factorized form of H̄(CCSD) is shown in Appendix 3. The introduction to
diagrammatic methods used in this work is given in Appendix 1.

Unlike in the CI approaches, which use the expectation value of the Hamiltonian
to define the energy, the CC energy is obtained by projecting the connected clus-
ter form of the Schrödinger equation on the reference configuration |Φ〉. In other
words, once the system of equations, Eq. (8), is solved for T (A) or ti1...in

a1...an (or, in
the CCSD case, Eqs. (10) and (11) are solved for T1 and T2 or ti

a and ti j
ab), the CC

energy corresponding to approximation A, characterized by the excitation level mA,
is calculated using the equation

E(A)
0 = 〈Φ|H̄(A)|Φ〉 ≡ 〈Φ|H̄(A)

closed|Φ〉, (13)

where H̄(A)
closed is a “closed” part of H̄(A), which is represented by those diagrams

contributing to H̄(A) that have no external (uncontracted) Fermion lines (as opposed
to the “open” part of H̄(A) which is represented by the diagrams having external or
uncontracted Fermion lines).

3.1.2 Extension to Excited States via the Equation-of-Motion Formalism
(EOMCC)

The ground-state CC theory has a natural extension to excited electronic states |Ψµ〉
via the EOMCC formalism, in which we write

|Ψµ〉= |Ψ (CC)
µ 〉 ≡ RµeT |Φ〉, (14)

where T is obtained in the ground-state CC calculations and Rµ is a linear particle-
hole excitation operator, similar to T , obtained by diagonalizing the similarity-
transformed Hamiltonian H̄ = e−T HeT in the space of excited determinants |Φ i1...in

a1...an〉
that typically correspond to excitations included in T .

In the following, we use a notation where µ = 0 refers to the ground state, while
µ > 0 designates excited states. Thus, the excitation operator Rµ is defined as a
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unit operator for µ = 0, that is, r0(µ = 0) = 1 and ri1...in
a1...an(µ = 0) = 0 for n ≥ 1,

where r0(µ) is a coefficient defining the zero-body component of Rµ and ri1...in
a1...an(µ)

are the excitation amplitudes defining the n-body components of Rµ when n > 1
(see the explicit definitions below). In this way, the EOMCC ansatz, Eq. (14),
reduces to the ground-state CC ansatz, Eq. (1), when µ = 0.

In the exact EOMCC theory, the cluster operator T and the excitation operators
Rµ are sums of all relevant many-body components that can be written for a given N-
electron systems. As in the ground-state case, the standard EOMCC approximations
are obtained by truncating the many-body expansion for the operator Rµ at a given
excitation level mA < N, which typically is the same as the excitation level used to
define the truncated form of T . In the majority of applications of EOMCC, when T
is approximated by T (A), Eq. (27), the corresponding excitation operator Rµ defining
the EOMCC method A is approximated by

R(A)
µ = R(A)

µ,0 + R(A)
µ,open, (15)

where
Rµ,0 = r0(µ)1, (16)

and the “open” part of R(A)
µ is defined as

R(A)
µ,open =

mA

∑
n=1

Rµ,n, (17)

with

Rµ,n =
(

1
n!

)2

ri1...in
a1...an

(µ)aa1 · · ·aanain · · ·ai1 (18)

representing the n-body component of R(A)
µ . For instance, in the EOMCCSD theory,

which is a basic EOMCC approximation where mA is set at 2, the excitation operator

R(CCSD)
µ is approximated by

R(CCSD)
µ = Rµ,0 + Rµ,1 + Rµ,2, (19)

where Rµ,0 is given by Eq. (16) and

Rµ,1 = ri
a(µ)aaai (20)

and
Rµ,2 = 1

4 ri j
ab(µ)aaaba jai (21)

are the one- and two-body components of R(CCSD)
µ , with ri

a(µ) and ri j
ab(µ) represent-

ing the corresponding excitation amplitudes (1 in Eq. (16) is a unit operator).

The excitation amplitudes ri1...in
a1...an(µ) defining the excitation operator R(A)

µ,open,
Eq. (17), are obtained by solving the eigenvalue problem involving the
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similarity-transformed Hamiltonian H̄(A) in the space spanned by the excited
determinants |Φa1...an

i1...in
〉 with n = 1, . . . ,mA, i.e.,

〈Φa1...an
i1...in |(H̄

(A)
open R(A)

µ,open)C|Φ〉 = ω(A)
µ ri1...in

a1...an
(µ),

i1 < · · ·< in, a1 < · · ·< an, (22)

where
H̄(A)

open = H̄(A)− H̄(A)
closed = H̄(A)−E(A)

0 1 (23)

is the “open” part of H̄(A), represented by the diagrams of H̄(A) that have external
Fermion lines, and

ω(A)
µ = E(A)

µ −E(A)
0 (24)

is the vertical excitation energy obtained with the EOMCC method A. In particular,
the ri

a(µ), and ri j
ab(µ) amplitudes of the EOMCCSD theory and the corresponding

excitation energies ω(CCSD)
µ are obtained by diagonalizing the similarity-transformed

Hamiltonian H̄(CCSD),Eq. (12), in thespaceofsinglyanddoubly exciteddeterminants,
|Φa

i 〉 and |Φab
i j 〉, respectively. Equation (22) alone does not provide information about

the coefficient r0(µ) at the reference determinant |Φ〉 in the corresponding EOMCC

excited-state wavefunction R(A)
µ eT (A) |Φ〉. This coefficient is determined a posteriori

using the equation

r0(µ) =
〈Φ|(H̄(A)

open R(A)
µ,open)C|Φ〉

ω(A)
µ

, (25)

once the excitation amplitudes ri1...in
a1...an(µ) defining R(A)

µ,open are determined (Eq. (25)
is valid for µ > 0, meaning excited states only; for µ = 0, r0(µ = 0) = 1, as
explained above). As mentioned earlier, diagrams representing the many-body com-
ponents of H̄(A) for the EOMCCSD case (i.e., H̄(CCSD)) are given in Appendices 2
and 3. The EOMCCSD equations (Eq. (22) for mA = 2) use one- and two-body, and
selected three-body components of H̄(CCSD) [79, 80].

3.2 Method of Moments of CC Equations (MMCC)

3.2.1 An Overview of the Exact MMCC Formalism

We are now equipped with the basic elements of the CC/EOMCC theory which are
necessary to explain the non-iterative MMCC approaches to ground and excited
electronic states. We now describe the exact MMCC formalism. In this work,
we focus on the original form of the MMCC theory introduced in 2000 for the
ground-state problem [39–41] and extended to excited states in 2001 [96]. The
alternative formulations of the MMCC theory, including the generalized MMCC
formalism which applies to non-standard CC methods [50, 62], the numerator-
denominator-connected MMCC expansions [51], the multi-reference extensions of
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MMCC [201–203], and the most recent biorthogonal MMCC formalism which
leads to rigorously size extensive renormalized CC methods [53–55, 57], are of no
use for the MRMBPT-corrected MMCC methods and are not discussed here.

As described in Sect. 3.1, the standard CC and EOMCC equations are obtained

by projecting H̄(A)|Φ〉 and H̄(A)R(A)
µ |Φ〉 on the excited determinants |Φa1...an

i1...in
〉 with

n = 1, . . . ,mA that correspond to the particle-hole excitations included in the cluster

operator T (A) and linear excitation operator R(A)
µ . The corresponding ground-state

CC energy is obtained by projecting H̄(A)|Φ〉 on the reference determinant |Φ〉.
It is, therefore, quite natural to expect that in order to correct the results of the
standard CC/EOMCC calculations employing the cluster and excitation operators

truncated at mA-body terms, the projections of H̄(A)|Φ〉 and H̄(A)R(A)
µ |Φ〉 on the

excited determinants |Φa1...an
i1...in

〉 with n > mA, which span the orthogonal comple-
ment of the subspace of the N-electron Hilbert space spanned by the reference
determinant |Φ〉 and the excited determinants |Φa1...an

i1...in 〉 with n = 1, . . . ,mA, have to
be considered. These projections, which are the essence of the MMCC formalism,
designated by M

i1...in
µ,a1...an(mA), define the generalized moments of the CC/EOMCC

equations corresponding to method A.
The original single-reference MMCC theory [39–41,96,97], which is particularly

useful in this work, is based on a simple idea that the exact, full CI, energies of the
electronic states µ , Eµ , can be recovered by adding the state-selective, non-iterative
energy corrections

δ (A)
µ ≡ Eµ −E(A)

µ

=

N
∑

n=mA+1

n
∑

k=mA+1
〈Ψµ |Cn−k(mA)Mµ,k(mA)|Φ〉

〈Ψµ |R(A)
µ eT (A) |Φ〉

(26)

to the ground (µ = 0) and excited (µ > 0) states energies E(A)
µ obtained in the stan-

dard CC/EOMCC calculations, such as CCSD/EOMCCSD, etc. The T (A) and R(A)
µ

operators entering Eq. (26) are the truncated cluster and linear excitation operators
used in the underlying CC and EOMCC calculations defining approximation A, and
in the exact theory |Ψµ〉 are the full CI states. The

Cn−k(mA) = (eT (A)
)n−k (27)

quantity is the (n− k)-body component of the wave operator eT (A)
, defining the CC

method A, which is trivial to determine. The zero-body term, C0(mA), equals 1; the
one-body term, C1(mA), equals T1; the two-body term, C2(mA), equals T2 + 1

2 T 2
1 if

mA ≥ 2; the three-body term C3(mA) equals T1T2 + 1
6 T 3

1 if mA = 2 and T3 + T1T2 +
1
6 T 3

1 if mA ≥ 3, etc. The

Mµ,k(mA) =
(

1
k!

)2

M
i1...ik
µ,a1...ak

(mA)aa1 . . .aak aik . . .ai1 (28)
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operator in Eq. (26) is the particle-hole excitation operator defined through the
aforementioned generalized moments of the CC/EOMCC equations of method A,

M
i1...ik
µ,a1...ak

(mA) = 〈Φa1...ak
i1...ik

|(H̄(A)R(A)
µ )|Φ〉, (29)

which represent the projections of the CC/EOMCC equations of method A on the
excited determinants |Φa1...ak

i1...ik
〉 with k > mA that are normally disregarded in the

standard CC/EOMCC calculations. Consistent with our notation in which R(A)
µ=0 =

1, Eq. (29) includes the ground-state (µ = 0) case as well. In this case, moments
M

i1...ik
µ,a1...ak

(mA) reduce to the generalized moments of the ground-state CC equations,

M
i1...ik
0,a1...ak

(mA), defining approximation A, i.e.,

M
i1...ik
0,a1...ak

(mA) = 〈Φa1...ak
i1...ik

|H̄(A)|Φ〉. (30)

As demonstrated, for example, in [61,62,96–98], the generalized moments of the
CC/EOMCC equations can be calculated using the following expression:

M
i1...ik
µ,a1...ak

(mA) = 〈Φa1...ak
i1...ik

|(H̄(A)
openR(A)

µ,open)C|Φ〉

+
k−1

∑
p=mA+1

〈Φa1...ak
i1...ik

|(H̄(A)
p R(A)

µ,k−p)DC|Φ〉

+ r0(µ)M
i1...ik
0,a1...ak

(mA), (31)

where r0(µ) is the coefficient at the reference determinant |Φ〉 in the many-

body expansion of R(A)
µ |Φ〉, defined by Eq. (25), subscripts “open,” C, and DC

refer to open (i.e., having external lines), connected, and disconnected parts of
a given operator expression, O j represents the j-body component of operator O,

and M
i1...ik
0,a1...ak

(mA) are the generalized moments of the ground-state CC equations
defined by Eq. (30).

In particular, if the goal is to recover the full CI energies Eµ by correcting the

CCSD/EOMCCSD energies E(CCSD)
µ (the mA = 2 case), then the following a poste-

riori corrections δ (CCSD)
µ ,

δ (CCSD)
µ =

N
∑

n=3

n
∑

k=3
〈Ψµ |Cn−k(2)Mµ,k(2)|Φ〉

〈Ψµ |R(CCSD)
µ eT (CCSD) |Φ〉

, (32)

have to be added to the E(CCSD)
µ energies. Here, the generalized moments M

i1...in
µ,a1...an

(2) of the CCSD/EOMCCSD equations corresponding to projections of these equa-
tions on triply, quadruply, etc., excited determinants, i.e.,

M
i jk
µ,abc(2) = 〈Φabc

i jk |(H̄(CCSD)R(CCSD)
µ )|Φ〉, (33)

M
i jkl
µ,abcd(2) = 〈Φabcd

i jkl |(H̄(CCSD)R(CCSD)
µ )|Φ〉, (34)
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etc., should be evaluated. Again, H̄(CCSD) is the similarity-transformed Hamiltonian

of the CCSD method defined by Eq. (12) and R(CCSD)
µ is the EOMCCSD excitation

operator described in Eq. (19).
Equation (26) defines the exact MMCC formalism for ground and excited states.

This equation can formally be derived by considering the asymmetric energy expres-
sion,

Λ [Ψ ] =
〈Ψ |(H−E(A)

µ )R(A)
µ eT (A) |Φ〉

〈Ψ |R(A)
µ eT (A) |Φ〉

, (35)

referred to as the MMCC functional, which was introduced for the first time in the
original MMCC papers by Kowalski and Piecuch in [40] for the ground-state case
and [96] for the excited-state generalization. This expression satisfies the property

Λ [Ψµ ] = Eµ −E(A)
µ , (36)

where Eµ is the exact, full CI, energy, if |Ψµ〉 is a full CI state. The details of the
derivation of Eq. (26) using functional Λ [Ψ ], Eq. (35), can be found in [40] and [96]
(see, also, the appendices in [61]).

To this point we have focused the discussion on the exact forms of the MMCC
energy expansions, Eqs. (26) and (32). However, in order to develop practical
MMCC methods based on these equations, the following two issues must be

addressed. First, the exact MMCC corrections δ (A)
µ , Eq. (26), or δ (CCSD)

µ , Eq. (32),
are represented by complete many-body expansions including the N-body contribu-
tions, where N is the number of electrons in a system, corresponding to all many-
body components of the wavefunctions |Ψµ〉 that enter Eqs. (26) and (32) (cf. the
summations over n in Eqs. (26) and (32)). In order to use Eqs. (26) or (32) in practi-

cal calculations, the many-body expansions for δ (A)
µ or δ (CCSD)

µ must be truncated at
some, preferably low, excitation level mB > mA. This leads to the MMCC(mA,mB)
schemes [39–41, 60–65, 96–98]. The second issue that has to be addressed is the
fact that the wavefunctions |Ψµ〉 entering the exact Eqs. (26) and (32) are the full
CI states, which are normally not available. To resolve this dilemma, wavefunctions
|Ψµ〉 must be approximated in some way. Depending on the form of |Ψµ〉, we can
distinguish between externally corrected MMCC methods where |Ψµ〉 is obtained
in the non-CC (e.g. CI) calculations, and renormalized CC approaches, in which the
form of |Ψµ〉 is determined using CC arguments. The CI-corrected MMCC(2,3) and
MMCC(2,4) approaches, which are the basic CI-corrected MMCC approximations,
and the CR-CCSD(T)/CR-EOMCCSD(T) methods, which are examples of renor-
malized CC/EOMCC approaches, are reviewed in Sect. 3.3. The theoretical details
of the new variant of the MMCC theory, the MRMBPT-corrected MMCC method,
abbreviated as MMCC/PT, which is based on the idea of approximating |Ψµ〉 by the
relatively inexpensive, low-order, MRMBPT-like expansions, and which is explored
in this work, is presented in Sect. 4 and its performance is tested in Sect. 5. First,
however, we discuss the formal considerations that lead to all MMCC(mA,mB)
truncations.
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3.2.2 An Overview of the Approximate MMCC Approaches:
The MMCC(mA, mB) Truncation Schemes

The main goal of all approximate MMCC calculations, including the CI-corrected
MMCC approaches and the renormalized CC/EOMCC methods overviewed in this
section, as well as the MRMBPT-corrected MMCC schemes discussed in detail in
Sects. 4 and 5, is to approximate the exact corrections δ (A)

µ , Eq. (26), such that the
resulting energies, defined as

E(MMCC)
µ = E(A)

µ + δ (A)
µ , (37)

are close to the corresponding full CI energies Eµ . A systematic hierarchy of approx-
imations called the MMCC(mA,mB) schemes that allows us to achieve this goal is
described below.

All MMCC(mA,mB) schemes are obtained by assuming that the CI expansions
of the ground- and excited-state wavefunctions |Ψµ〉 entering Eq. (26) do not con-
tain higher–than–mB-tuply excited components relative to the reference |Φ〉, where
mA < mB < N. This requirement reduces the summation over n in Eq. (26) to

mB

∑
n=mA+1

. The resulting MMCC(mA,mB) energies, E(MMCC)
µ (mA,mB), can be given

the following form:

E(MMCC)
µ (mA,mB) = E(A)

µ + δµ(mA,mB), (38)

where E(A)
µ is the energy of the µ-th electronic state, obtained with some standard

CC/EOMCC method A, and

δµ(mA,mB) =

mB

∑
n=mA+1

n
∑

k=mA+1
〈Ψµ |Cn−k(mA)Mµ,k(mA)|Φ〉

〈Ψµ |R(A)
µ eT (A) |Φ〉

(39)

is the relevant MMCC correction to E(A)
µ .

We restrict our discussion to the MMCC(mA,mB) schemes with mA = 2, which
enable us to correct the results of the CCSD or EOMCCSD calculations. In this cat-
egory, two MMCC(mA,mB) schemes are particularly useful, namely, MMCC(2,3)
and MMCC(2,4). These schemes can be used to correct the results of the
CCSD/EOMCCSD calculations for the effects of triple (the MMCC(2,3) case)
or triple and quadruple (the MMCC(2,4) case) excitations. The MMCC(2,3) and
MMCC(2,4) energy expressions are as follows:

E(MMCC)
µ (2,3) = E(CCSD)

µ +
〈Ψµ |Mµ,3(2)|Φ〉

〈Ψµ |R(CCSD)
µ eT (CCSD) |Φ〉

, (40)
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E(MMCC)
µ (2,4) = E(CCSD)

µ +
〈Ψµ |Mµ,3(2)+ [Mµ,4(2)+ T1Mµ,3(2)]|Φ〉

〈Ψµ |R(CCSD)
µ eT (CCSD) |Φ〉

, (41)

where E(CCSD)
µ is the CCSD (µ = 0) or EOMCCSD (µ > 0) energy, T (CCSD) is

the cluster operator obtained in the CCSD calculations (cf. Eq. (5)), R(CCSD)
µ is the

corresponding EOMCCSD excitation operator (cf. Eq. (19); when µ = 0, R(CCSD)
µ =

1), and Mµ,3(2) and Mµ,4(2) are defined as

Mµ,3(2) = 1
36 M

i jk
µ,abc(2)aaabacaka jai, (42)

and
Mµ,4(2) = 1

576 M
i jkl
µ,abcd(2)aaabacadalaka jai, (43)

with M
i jk
µ,abc(2) and M

i jkl
µ,abcd(2) representing the triply and quadruply excited

moments of the CCSD/EOMCCSD equations, respectively.
The explicit expression for the triply excited moment M

i jk
µ,abc(2), entering the

MMCC(2,3) and MMCC(2,4) approximations and corresponding to the projections
of the CCSD/EOMCCSD equations on the triply excited determinants |Φabc

i jk 〉, in
terms of the many-body components of the CCSD/EOMCCSD similarity-

transformed Hamiltonian H̄(CCSD), Eq. (12), and operator R(CCSD)
µ , Eq. (19), is

M
i jk
µ,abc(2) = 〈Φabc

i jk |(H̄(CCSD)
2 Rµ,2)C|Φ〉+ 〈Φabc

i jk |[H̄(CCSD)
3 (Rµ,1 + Rµ,2)]C|Φ〉

+ 〈Φabc
i jk |(H̄(CCSD)

4 Rµ,1)C|Φ〉+ r0(µ)Mi jk
0,abc(2), (44)

where the ground-state moment M
i jk
0,abc(2), obtained by projecting the CCSD equa-

tions on the triply excited determinants, is given by

M
i jk
0,abc(2) = 〈Φabc

i jk |[HN(T2 + T1T2 + 1
2 T 2

2 + 1
2 T 2

1 T2 + 1
2 T1T 2

2 + 1
6 T 3

1 T2)]C|Φ〉. (45)

The analogous expression for the quadruply excited moments M
i jkl
µ,abcd(2), entering

the MMCC(2,4) approximation, has the form

M
i jkl
µ,abcd(2) = 〈Φabcd

i jkl |(H̄(CCSD)
3 Rµ,2)C|Φ〉+ 〈Φabcd

i jkl |[H̄(CCSD)
4 (Rµ,1 + Rµ,2)]C|Φ〉

+ 〈Φabcd
i jkl |(H̄(CCSD)

3 Rµ,1)DC|Φ〉+ r0(µ)Mi jkl
0,abcd(2), (46)

where the ground-state moment M
i jkl
0,abcd(2), obtained by projecting the CCSD

equations on the quadruply excited determinants, is expressed as

M
i jkl
0,abcd(2) = 〈Φabcd

i jkl |[HN( 1
2 T 2

2 + 1
2 T1T 2

2 + 1
6 T 3

2 + 1
4 T 2

1 T 2
2 )]C|Φ〉. (47)

The operators H̄(CCSD)
p in Eqs. (44) and (46) represent the p-body components of

H̄(CCSD) and HN = H−〈Φ|H|Φ〉 is the Hamiltonian in the normal-ordered form.
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The diagrammatic techniques of many-body theory greatly facilitate the deriva-
tion of the explicit expressions for M

i jk
µ,abc(2) and M

i jkl
µ,abcd(2). The diagrams and

algebraic expressions representing the triply and quadruply excited moments of
the CCSD/EOMCCSD equations, in terms of molecular intergrals f q

p and vrs
pq and

cluster and excitation amplitudes ti
a, ti j

ab, ra
i , and rab

i j , are shown in Sect. 4.3 and

Appendix 2. The fully factorized expressions for M
i jk
µ,abc(2) and M

i jkl
µ,abcd(2), which

can be used in the efficient implementations of all MMCC(2,3) and MMCC(2,4)
approximations, including the CI-corrected MMCC methods and the renormalized
CC/EOMCC approaches overviewed in Sect. 3.3 as well as the MRMBPT-corrected
MMCC methods discussed in Sects. 4 and 5, are described in Sect. 4.4.

3.3 The CI-Corrected MMCC(mA,mB) Approximations
and the Renormalized CC and EOMCC Methods

Depending on the form of |Ψµ〉 in the MMCC energy equations, the MMCC(mA,mB)
methods fall into one of the following three categories: (i) the CI-corrected
MMCC(mA,mB) schemes, (ii) the renormalized CC methods for the ground-state
problem, and their excited-state extensions based on EOMCC, and (iii) the
MRMBPT-corrected MMCC(mA,mB) approaches. In this section, we overview a
few basic CI-corrected MMCC(mA,mB) schemes and renormalized CC/EOMCC
methods.

3.3.1 The CI-Corrected MMCC(2,3) and MMCC(2,4) Methods

In the CI-corrected MMCC(2,3) and MMCC(2,4) calculations, the wavefunctions
|Ψµ〉 in Eqs. (40) and (41) are replaced by the wavefunctions obtained in the active-
space CISDt [39,60,96,97,251] and CISDtq [97,251] calculations, respectively, as
shown below:

E(MMCC/CI)
µ (2,3) = E(CCSD)

µ +
〈Ψ (CISDt)

µ |Mµ,3(2)|Φ〉
〈Ψ (CISDt)

µ |R(CCSD)
µ eT (CCSD) |Φ〉

, (48)

E(MMCC/CI)
µ (2,4) = E(CCSD)

µ +
〈Ψ (CISDtq)

µ |Mµ,3(2)+ [Mµ,4(2)+ T1Mµ,3(2)]|Φ〉
〈Ψ (CISDtq)

µ |R(CCSD)
µ eT (CCSD) |Φ〉

.

(49)

In order to define the relevant CISDt and CISDtq wavefunctions, |Ψ (CISDt)
µ 〉 and

|Ψ (CISDtq)
µ 〉, respectively, we follow the philosophy of multi-reference calculations,

i.e., we first divide the available spin-orbitals into four groups (see Fig. 1) of core
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Fig. 1 The orbital classification used in the active-space CI, MRMBPT, and the CI- and
MRMBPT-corrected MMCC methods, such as MMCC(2,3)/CI, MMCC(2,4)/CI, MMCC(2,3)/PT,
and MMCC(2,4)/PT. Core, active, and virtual orbitals are represented by solid, dashed, and dot-
ted lines, respectively. Full and open circles represent core and active electrons of the reference
determinant |Φ〉 used in the CC/EOMCC and MMCC calculations (the closed-shell reference
determinant |Φ〉 is assumed)

spin-orbitals (i1, i2, . . . or i, j, . . . ), active spin-orbitals occupied in reference |Φ〉
(I1, I2, . . . or I, J, . . . ), active spin-orbitals unoccupied in reference |Φ〉 (A1, A2,
. . . or A, B, . . . ), and virtual spin-orbitals (a1, a2, . . . or a, b, . . .). The choice
of active spin-orbitals (typically, a few highest-energy occupied spin-orbitals and
a few lowest-energy unoccupied spin-orbitals) is dictated by the dominant orbital
excitations in the ground and excited states that we would like to calculate. A few
examples of reasonable choices of active orbitals in calculations involving bond
breaking and excited states are discussed in Sect. 5. Once the active orbitals are
selected, the CISDt and CISDtq wavefunctions are defined as follows:

|Ψ (CISDt)
µ 〉= (Cµ,0 +Cµ,1 +Cµ,2 + cµ,3)|Φ〉, (50)

|Ψ (CISDtq)
µ 〉= (Cµ,0 +Cµ,1 +Cµ,2 + cµ,3 + cµ,4)|Φ〉, (51)

where
Cµ,0 = c0(µ)1, (52)

Cµ,1 = ci
a(µ)aaai = ∑

i,a
ci

a(µ)aaai, (53)

and
Cµ,2 = 1

4 ci j
ab(µ)aaaba jai = ∑

i< j,a<b

ci j
ab(µ)aaaba jai (54)

are the operators defining the usual reference, singly, and doubly excited contribu-

tions, respectively, to |Ψ (CISDt)
µ 〉 and |Ψ (CISDtq)

µ 〉, and

cµ,3 = ∑
i< j<K,A<b<c

ci jK
Abc(µ)aAabacaKa jai (55)
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and
cµ,4 = ∑

i< j<K<L,A<B<c<d

ci jKL
ABcd(µ)aAaBacadaLaKa jai (56)

define the corresponding triply and quadruply excited components. Thus, in the
CISDt approach, used in the CI-corrected MMCC(2,3) calculations (cf. Eq. (48)),
the wavefunctions |Ψµ〉 are constructed by including all singles and doubles from
|Φ〉, and a relatively small set of internal and semi-internal triples containing at
least one active occupied and one active unoccupied spin-orbital indices defined by
Eq. (55). For the CISDtq approach, used for the CI-corrected MMCC(2,4) calcula-
tions, an additional relatively small set of quadruples containing at least two active
occupied and at least two active unoccupied spin-orbital indices is also required.
The CI coefficients defining the CISDt and CISDtq wavefunctions are determined
variationally, as in all CI calculations.

One of the main advantages of the CI-corrected MMCC schemes, including the
MMCC(2,3)/CI and MMCC(2,4)/CI methods, is a very good control of the quality
of wavefunctions |Ψµ〉 used to construct the non-iterative corrections δµ(mA,mB),
which is accomplished through the judicious choice of active orbitals that can
always be adjusted to the type of bond breaking or excited excited states of inter-
est. Another advantage of the CI-corrected MMCC methods is their relatively low
computer cost, which is a consequence of the fact that it is often sufficient to use
small active orbital spaces to obtain accurate results [39, 60–62, 96, 97, 251]. If No

(Nu) is the number of active orbitals occupied (unoccupied) in |Φ〉, the most expen-
sive steps of the CISDt and CISDtq methods scale as NoNun2

on4
u and N2

o N2
u n2

on4
u,

respectively, which are considerable savings in the computer effort compared to the
n3

on5
u and n4

on6
u scalings of the parent CISDT (CI singles, doubles, and triples) and

CISDTQ (CI singles, doubles, triples, and quadruples) approaches, respectively.
Furthermore, the numbers of triples and quadruples considered in the CISDt and
CISDtq calculations are∼NoNun2

on2
u and ∼N2

o N2
u n2

on2
u, respectively, which is signif-

icantly less than the numbers of all triples and quadruples if the number of active
orbitals is small. For instance, the number of triples used in the CISDt-corrected
MMCC(2,3) calculations is usually very small (no more than ∼30% of all triples,
in many cases even less than that). Additionally, the CPU times required to con-
struct the relevant δµ(2,3) corrections are often on the order of the CPU time of a
single CCSD/EOMCCSD iteration. Similar remarks apply to the CISDtq-corrected
MMCC(2,4) calculations.

Thus, the CI-corrected MMCC methods can be regarded as useful approaches
to accurate calculations of ground- and excited-state potential energy surfaces. One
may contemplate, however, an idea of reducing the costs of the CISDt-corrected
MMCC(2,3) and CISDtq-corrected MMCC(2,4) calculations even further by replac-
ing the CISDt or CISDtq wavefunctions in the MMCC(2,3) and MMCC(2,4)
expressions by the wavefunctions obtained with low-order MRMBPT approaches,
as in the MMCC/PT schemes discussed in Sects. 4 and 5.

In the next subsection, we describe an alternative to the externally corrected
MMCC schemes using nothing else but the cluster and excitation operators obtained
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in the CC/EOMCC calculations instead of non-CC wavefunctions to define the
relevant wavefunction |Ψµ〉.

3.3.2 The Renormalized CC and EOMCC Methods Based on the Original
MMCC Theory

An interesting alternative to the CI-corrected MMCC methods, discussed in Sect.
3.3.1, is offered by the completely renormalized (CR) CC/EOMCC approaches
which can be considered as purely single-reference, “black-box” methods based
on the MMCC(mA,mB) truncation schemes.

Let us begin with the ground-state CR-CC methods. The basic CR-CCSD(T)
method is an example of the MMCC(2,3) scheme, whereas the higher-level CR-
CCSD(TQ) approach is an example of the MMCC(2,4) approximation. The energy
formula defining CR-CCSD(T) method is [39–41]

E(CR-CCSD(T))
0 = E(CCSD)

0 +
〈Ψ (CCSD(T))

0 |M0,3(2)|Φ〉
〈Ψ (CCSD(T))

0 |eT (CCSD) |Φ〉
. (57)

Here, again, T (CCSD) refers to the cluster operators obtained in the CCSD calcula-
tions and M0,3(2) is given by Eq. (42) using the generalized moments M

i jk
0,abc(2)

defined by Eq. (44). The |Ψ (CCSD(T))
0 〉 wavefunction, entering Eq. (57), is a simple

MBPT-like expression

|Ψ (CCSD(T))
0 〉= [1 + T1 + T2 + R(3)

0 (VNT2)C + R(3)
0 VNT1]|Φ〉, (58)

with R(3)
0 representing the three-body component of the MBPT reduced resolvent

and VN designating the two-body part of the Hamiltonian in the normal-ordered
form. The CR-CCSD(T) approach reduces to standard CCSD(T) method when

the 〈Ψ (CCSD(T))
0 |eT (CCSD) |Φ〉 denominator in the CR-CCSD(T) energy formula is

replaced by 1 and moments M
i jk
0,abc(2) entering Eq. (57) through the M0,3(2) oper-

ators (cf. Eq. (42)) are replaced by 〈Φabc
i jk |(VNT2)C|Φ〉 (one can easily show that

〈Φabc
i jk |(VNT2)C|Φ〉 is the leading contribution to M

i jk
0,abc(2)).

The idea of renormalizing the CCSD(T) approach can also be extended to
the CCSD(TQ) method. Two variants of the CR-CCSD(TQ) approach, which are
labeled “a” and “b”, are mentioned here. The CR-CCSD(TQ) energy formulas can
be given in the following form [39–41]:

E(CR-CCSD(TQ),x)
0 = E(CCSD)

0

+
〈Ψ (CCSD(TQ),x)

0 |[M0,3(2)+ T1M0,3(2)+ M0,4(2)]|Φ〉
〈Ψ (CCSD(TQ),x)

0 |eT (CCSD) |Φ〉
(x = a,b), (59)
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where

|Ψ (CCSD(TQ),a)
0 〉= |Ψ (CCSD(T))

0 〉+ 1
2 T2T (1)

2 |Φ〉 (60)

and

|Ψ (CCSD(TQ),b)
0 〉= |Ψ (CCSD(T))

0 〉+ 1
2 T 2

2 |Φ〉 , (61)

with T (1)
2 representing the first-order MBPT estimate of T2. The M0,3(2) opera-

tor is defined by Eq. (42) and M0,4(2) is defined by Eq. (43). As in the case of
the CR-CCSD(T) method, one can obtain the conventional CCSD(TQ) approaches,
including, among them, CCSD(TQf) [68], by replacing the overlap denominator

〈Ψ (CCSD(TQ),x)
0 |eT (CCSD) |Φ〉 in the CR-CCSD(TQ) energy expressions by 1, drop-

ping the T1M0,3(2) term in Eq. (59), and replacing the M
i jk
0,abc(2) and M

i jkl
0,abcd(2)

moments that enter the definitions of M0,3(2) and M0,4(2), respectively, by their
lowest-order estimates resulting from the MBPT analysis. We refer the reader to the
original papers [39–41] for further details.

The standard CCSD(T) and CCSD(TQ) approaches, and their (C)R-CCSD(T)
and (C)R-CCSD(TQ) counterparts, have nearly identical computer costs. For exam-
ple, the costs of the conventional CCSD(T) calculations are n2

on4
u in the iterative

CCSD steps and n3
on4

u in the non-iterative steps defining the triples correction while
the CR-CCSD(T) approach scales as n2

on4
u in the iterative CCSD steps and 2n3

on4
u

in the non-iterative triples correction part. Similar remarks apply to other CR-CC
methods. In particular, the CR-CCSD(TQ),x approaches have computational steps
that scale as n2

on4
u in the CCSD part, 2n3

on4
u in the triples correction parts, and 2n2

on5
u in

parts that deal with the quadruples corrections. This should be compared to the costs
of conventional CCSD(TQ) calculations which are very similar, namely, n2

on4
u in the

CCSD steps, n3
on4

u in the (T) part, and n2
on5

u in the (Q) parts. As already mentioned,
the renormalized CC methods, such as CR-CCSD(T) and its recently formulated
size extensive extension (not discussed here), termed CR-CC(2,3) [53–55, 57], are
particularly useful in studies of reaction pathways involving single bond breaking
and biradicals [39–42,44–46,48,49,51–55,57–65,133,162,163,213,214,216,217,
221, 223–225]. They remove or considerably reduce the failures of conventional
CCSD(T), CCSD(TQ), and similar approximations without making the calculations
more complex or considerably more expensive.

The idea of renormalizing conventional CC methods via the MMCC formal-
ism can be extended to excited states. For example, in the CR-EOMCCSD(T)
approach [61, 62, 98, 99] which is an example of the excited-state MMCC(2,3)
scheme, the energies of ground and excited states Eµ are calculated as follows:

E(CR-EOMCCSD(T))
µ = E(CCSD)

µ +
〈Ψ (CR-EOMCCSD(T))

µ |Mµ,3(2)|Φ〉
〈Ψ (CR-EOMCCSD(T))

µ |R(CCSD)
µ eT (CCSD) |Φ〉

. (62)
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Depending on the specific form of the wavefunction |Ψ (CR-EOMCCSD(T))
µ 〉 in

Eq. (62), several variants of the CR-EOMCCSD(T) approach can be considered.
Here, only one variant, called ID (the CR-EOMCCSD(T), ID method), which rep-
resents one of the most complete versions of the CR-EOMCCSD(T) approach and
which usually provides the most accurate description of excited states compared

to other variants, is presented. The |Ψ (CR-EOMCCSD(T))
µ 〉 wavefunction entering Eq.

(62) is defined in this case as

|Ψ (CR-EOMCCSD(T)
µ 〉 = P̄(Rµ,0 + Rµ,1 + Rµ,2 + R̃µ,3)eT (CCSD) |Φ〉

= {Rµ,0 +(Rµ,1 + Rµ,0T1)

+ [Rµ,2 + Rµ,1T1 + Rµ,0(T2 + 1
2 T 2

1 )]

+ [R̃µ,3 + Rµ,2T1 + Rµ,1(T2 + 1
2 T 2

1 )

+ Rµ,0(T1T2 + 1
6 T 3

1 )]}|Φ〉, (63)

where P̄ is a projection operator on the subspace spanned by the reference |Φ〉 and
all singly, doubly, and triply excited determinants. The triple excitation operator
R̃µ,3, entering Eq. (63), is calculated as

R̃µ,3 = 1
36 r̃i jk

abc(µ)aaabacaka jai, (64)

where

r̃i jk
abc(µ) =

M
i jk
µ,abc(2)

Di jk
µ,abc

(65)

are the approximate values of the triple excitation amplitudes ri jk
abc(µ) resulting from

the analysis of the full EOMCCSDT eigenvalue problem [98]. As implied by Eq.
(65), the approximate amplitudes r̃i jk

abc(µ) are calculated using exactly the same

set of triply excited moments M
i jk
µ,abc(2) of the CCSD/EOMCCSD equations that

enters the MMCC(2,3) energy expression, Eq. (40). This greatly facilitates the com-
puter coding effort, since one can reuse the moments M

i jk
µ,abc(2), which are needed

to construct the triples correction of CR-EOMCCSD(T) anyway, to determine the
r̃i jk

abc(µ) amplitudes. The Di jk
µ,abc quantities that enter Eq. (65) represent the perturba-

tive denominators for triple excitations, which are defined (if we assume that there
are no orbital degeneracies [57, 65]) as follows:

Di jk
µ,abc = E(CCSD)

µ −〈Φabc
i jk |H̄(CCSD)|Φabc

i jk 〉
= ω(CCSD)

µ −〈Φabc
i jk |H̄(CCSD)

1 |Φabc
i jk 〉

− 〈Φabc
i jk |H̄(CCSD)

2 |Φabc
i jk 〉

− 〈Φabc
i jk |H̄(CCSD)

3 |Φabc
i jk 〉, (66)
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where H̄(CCSD)
p , p = 1− 3, are the one-, two-, and three-body components of the

CCSD/EOMCCSD similarity-transformed Hamiltonian H̄(CCSD), respectively, and

ω(CCSD)
µ is the EOMCCSD vertical excitation energy.
One of the main advantages of all renormalized CC/EOMCC methods is the

fact that these methods are as easy to use as the standard “black-box” approaches
of the CCSD(T) type while considerably improving the description of the bond
breaking region and excited states without the need to define active orbitals or
other elements of multi-reference theory. We have already mentioned the benefits
of using the CR-CC approaches in the ground-state applications. Similar benefits
apply to the use of the CR-EOMCCSD(T) method in calculations for the elec-
tronically excited states [61, 62, 98, 99, 215, 218–222, 226]. However, as mentioned
earlier, there are cases, where the degree of quasi-degeneracy is so big that one
would be better off by using elements of multi-reference theory within the MMCC
formalism (cf., e.g. [227, 228]). The CI-corrected MMCC methods are one possi-
ble way of incorporating multi-reference concepts into the MMCC considerations.
The MRMBPT-corrected MMCC methods, which are the main focus on this work,
represent another way. Brief information about the basic elements of MRMBPT is
presented next.

3.4 The Basic Elements of Multi-Reference Many-Body
Perturbation Theory (MRMBPT)

All genuine multi-reference theories involve two fundamental concepts, namely, that
of the model or reference space M0 and that of the wave operator U . The model
space M0,

M0 = {|Φp〉}M
p=1, (67)

is spanned by M determinants or configuration state functions |Φp〉 (p = 1, . . . ,M)
that provide a reasonable zeroth-order description of the target space

M = {|Ψµ〉}M−1
µ=0 , (68)

spanned by M quasi-degenerate eigenstates |Ψµ〉 (µ = 0,1, . . . ,M− 1) of the elec-
tronic Hamiltonian H,

H|Ψµ〉= Eµ |Ψµ〉 . (69)

In order to define the reference configurations |Φ p〉, the employed molecular orbital
basis set is partitioned into core, active, and virtual orbitals in a similar manner as
in Fig. 1. The core orbitals are occupied and the virtual ones are unoccupied in
all reference configurations. The references |Φ p〉 differ in the occupancies of active
orbitals. All possible distributions of active electrons among the active orbitals result
in a complete model or active space (CAS). The use of CAS is essential to obtain
size extensive results in the MRMBPT calculations, if the “perturb then diagonalize”
MRMBPT method, summarized below, is considered.
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The wave operator U : M0 → M is defined as a one-to-one mapping between
M0 and M that satisfies the intermediate normalization condition,

PU = P, (70)

and the relation determining its kernel, i.e.,

UQ = 0 . (71)

Here, P and Q are the projection operators onto the model space M0 and its
orthogonal complement M⊥

0 , respectively, in the N-electron Hilbert space,

P =
M

∑
p=1

P(p), P(p) = |Φp〉〈Φp|, (72)

Q = 1−P . (73)

Based on Eqs. (70) and (71), U is idempotent, U2 = U , which is a property of
projection operators, including P and Q. However, unlike the orthogonal projectors
P and Q, the wave operator U is not Hermitian, U �= U†.

The MRMBPT wavefunctions |Ψµ〉 are calculated using the formula,

|Ψµ〉=
M

∑
p=1

cpµ |Φp〉+
∞

∑
n=1

(
M

∑
p=1

cpµU (n)|Φp〉
)

, (74)

where U (1), U (2), etc., represent perturbative corrections to the wave operator U
(expressed in terms of excited configurations from M⊥

0 , i.e., configurations other
than |Φp〉, p = 1, . . . ,M). These corrections describe dynamical correlation effects.

The coefficients cpµ , which describe the non-dynamical correlation effects,
define the zeroth-order states belonging to M0,

|Ψ (0)
µ 〉=

M

∑
p=1

cpµ |Φp〉 . (75)

In the “perturb then diagonalize” MRMBPT methods that follow the ideas laid down
in [129], these coefficients and the corresponding energies Eµ of the ground and
excited states |Ψµ〉, µ = 0,1, . . ., M−1, are obtained by diagonalizing the effective
Hamiltonian,

Heff = PHUP = PHP+
∞

∑
n=1

PHU (n)P , (76)

in the model space M0,

Heff|Ψ (0)
µ 〉= Eµ |Ψ (0)

µ 〉. (77)

In the practical implementations of such MRMBPT theories, the wave operator
U is truncated at some, preferably low, perturbation theory order n. When U is
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truncated at the first-order term U (1), i.e., U = P+U (1), the second-order MRMBPT
(MRMBPT(2)) wavefunction is obtained; second-order since the resulting energies
Eµ are correct through second order.

One can considerably simplify the above considerations, which are based on
the generalized Bloch formalism [262], in which the wave operator U is deter-
mined by solving the multi-root generalized Bloch equation HU = UHU (in the
case of MRMBPT, using perturbation theory), by formulating the “diagonalize
then perturb” MRMBPT methods. In those methods, one continues to use Eq. (75)
to determine the zeroth-order states, but the coefficients cpµ of the zeroth-order
states are obtained by diagonalizing the bare Hamiltonian H rather than the effec-
tive Hamiltonian Heff. Perturbative corrections to the zeroth-order energies E(0)

are calculated a posteriori in a state-selective manner without using the multi-root
generalized Bloch formalism. As mentioned in the Introduction, several methods,
including the popular CASPT2 and MC-QDPT approaches, are in this category.
The MRMBPT approach used to define the MRMBPT-corrected MMCC schemes
discussed in detail in the next section belongs to the category of the “diagonalize
then perturb” methods as well.

4 The MMCC Methods Employing Multi-Reference Many-Body
Perturbation Theory (MMCC/PT)

In this section, an alternative variant of the MMCC theory, referred to as the
MRMBPT-corrected MMCC approach or, for brevity, MMCC/PT, in which the
wavefunctions |Ψµ〉 in Eqs. (26) or (39) are approximated by the wavefunctions
obtained from the low-order MRMBPT calculations, is described. The approximate
MRMBPT wavefunctions used in the MMCC(mA,mB)/PT approaches implemented
in this work are discussed. Moreover, the diagrammatic formulation of the result-
ing MMCC(2,3)/PT and MMCC(2,4)/PT schemes is presented. The details of the
algorithm that enables one to achieve a high degree of code vectorization for the
generalized moments of CC equations defining the MMCC methods are described
as well.

4.1 The Multi-Reference Many-Body Perturbation Theory
Wavefunctions Used in the MMCC/PT Approaches

As in all multi-reference considerations and in analogy to the CISDt and CISDtq
methods discussed in Sect. 3.3.1, in order to define the computationally simple

form of the low-order MRMBPT wavefunctions |Ψ (MRMBPT)
µ 〉 for the MRMBPT-

corrected MMCC calculations, we begin by partitioning the molecular orbital basis
set into four groups of (cf. Fig. 1) core spin-orbitals, active spin-orbitals occupied
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in reference |Φ〉, active spin-orbitals unoccupied in reference |Φ〉, and virtual spin-
orbitals. As in the CI-corrected MMCC schemes, reference |Φ〉 is one of the many
reference determinants that we choose as a Fermi vacuum for the CC/EOMCC and
MMCC considerations. By distributing active electrons among active spin-orbitals
in all possible ways, we generate a certain number (designated here by M) of refer-
ence determinants |Φp〉, which include, among them, the Fermi vacuum state |Φ〉
and which span the complete model space or P-space M0. Then, we define the

zeroth-order wavefunctions of the ground and excited states of interest, |Ψ̄ (P)
µ 〉, as

linear combinations of the reference configurations |Φp〉,

|Ψ̄ (P)
µ 〉=

M

∑
p=1

cpµ |Φp〉, (78)

where the coefficients cpµ and the corresponding zeroth-order eigenvalues Ēµ are
obtained by diagonalizing the Hamiltonian H in the model space M0.

Once the model space M0 is defined, we introduce the Q-space which in the
MMCC/PT method pursued here is a subspace of the orthogonal complement M⊥

0
spanned by all singly and doubly excited determinants with respect to each refer-
ence |Φp〉 (p = 1, . . . ,M), as is done, for example, in the MRCISD calculations.
After eliminating the repetitions in the list of Q-space configurations, the resulting

MRMBPT wavefunctions |Ψ (MRMBPT)
µ 〉, which will eventually be used to design

the MMCC/PT (e.g. MMCC(2,3)/PT and MMCC(2,4)/PT) energy corrections, are
defined as linear combinations of the P-space and Q-space configurations,

|Ψ (MRMBPT)
µ 〉=

M

∑
p=1

cpµ |Φp〉+
R

∑
q=M+1

cqµ |Φq〉, (79)

where |Φp〉 (p = 1, . . . ,M) are the reference determinants and |Φq〉 (q = M +
1, . . . ,R) are the Q-space determinants, as expressed above. In principle, we could
use any of the existing low-order MRMBPT methods to determine the approxi-
mate values of the coefficients cpµ and cqµ that enter Eq. (79) and perform the
corresponding MMCC(mA,mB)/PT calculations. In the simplified MRMBPT model
used in the present implementation of the MMCC(2,3)/PT method [55, 56] and the
MMCC(2,4)/PT scheme developed in this work, we evaluate the relevant coeffi-
cients cpµ (p = 1, . . . ,M) and cqµ (q = M + 1, . . . ,R) in Eq. (79) by applying the
Löwdin-style partitioning technique [263, 264] to the Hamiltonian matrix in the
space spanned by the P-space and Q-space determinants, |Φp〉 and |Φq〉, respec-
tively. Thus, if CPµ and CQµ are the column vectors of coefficients cpµ with
p = 1, . . . ,M and cqµ with q = M + 1, . . . ,R, respectively, and if HPP, HPQ, HQP,
and HQQ are the corresponding PP, PQ, QP, and QQ blocks of the Hamiltonian, we

can write the Hamiltonian eigenvalue problem for the wavefunctions |Ψ (MRMBPT)
µ 〉,

Eq. (79), in the following manner:
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HPP HPQ

HQP HQQ

)(
CPµ
CQµ

)
= Eµ

(
CPµ
CQµ

)
. (80)

In other words, we obtain

HPPCPµ + HPQCQµ = EµCPµ , (81)

HQPCPµ + HQQCQµ = EµCQµ . (82)

If we approximate the QQ block of the Hamiltonian matrix entering Eq. (80), HQQ,
by the diagonal matrix elements 〈Φq|H|Φq〉, we can write

CQµ ≈ (Eµ1−DQ)−1 HQPCPµ , (83)

or, more explicitly,

cqµ ≈
M

∑
p=1

(Eµ −〈Φq|H|Φq〉)−1 〈Φq|H|Φp〉cpµ , (q = M + 1, . . . ,R), (84)

where DQ in Eq. (83) is the diagonal part of HQQ. In practice, we obtain the work-
ing equation for the approximate values of the coefficients cqµ (q = M + 1, . . . ,R)
by replacing the energies Eµ and coefficients cpµ (p = 1, . . . ,M) in Eq. (84) by the
zeroth-order energies Ēµ and coefficients cpµ , respectively, resulting from the diag-
onalization of the Hamiltonian in the model space M0 (diagonalization of HPP; cf.
Eq. (78)). We use the resulting approximate values of the coefficients cqµ ,

cqµ =
M

∑
p=1

(Ēµ −〈Φq|H|Φq〉)−1 〈Φq|H|Φp〉cpµ , (q = M + 1, . . . ,R), (85)

along with the coefficients cpµ obtained by diagonalizing HPP, to define the per-
turbed states of the MRMBPT theory exploited in the present work, which are
defined as

|Ψ̄ (MRMBPT)
µ 〉=

M

∑
p=1

cpµ |Φp〉+
R

∑
q=M+1

cqµ |Φq〉. (86)

The wavefunctions |Ψ̄ (MRMBPT)
µ 〉, Eq. (86), are used instead of the exact |Ψµ〉 states

in the MMCC(mA,mB) energy expressions, Eqs. (38) and (39), to define the family
of the MMCC(mA, mB)/PT approximations.

The above perturbative procedure based on the partitioning of the Hamiltonian
into the P-space and Q-space contributions equivalent to the MRCISD problem has
an advantage that we only have to consider the QP matrix elements of the Hamilto-
nian (the 〈Φq|H|Φp〉matrix elements) and the diagonal 〈Φq|H|Φq〉matrix elements
in the process of defining |Ψ̄µ〉. Another advantage of this procedure is the fact that
the zeroth-order states are obtained by simply diagonalizing the Hamiltonian in M0

to obtain the relevant coefficients cpµ .



100 M.D. Lodriguito, P. Piecuch

We have developed computer codes for the MRMBPT model defined by Eqs.
(78), (85), and (86). In the actual construction of the MRMBPT wavefunctions
|Ψ̄µ〉, we use a complete model space obtained by all possible distributions of active
electrons among active orbitals allowed by the spin and spatial symmetries. As dis-
cussed earlier, we limit ourselves to the Q spaces corresponding to the MRCISD
problem. Because of the fact that we are mainly interested in the MMCC(2,3) and
MMCC(2,4) approximations and to further simplify our MRMBPT calculations, we
decided to consider only those Q-space configurations that are at most quadruply
excited with respect to the Fermi vacuum |Φ〉 used in the CCSD/EOMCCSD and
subsequent MMCC(2,3) and MMCC(2,4) calculations. Furthermore, the allowed
singly excited Q-space configurations from M0 to M⊥

0 are

a. core −→ active
b. core −→ virtual
c. active −→ virtual

and for all three cases the allowed excitations are of the α → α and β → β types
(at this time, our codes are limited to the Sz = 0 states obtained out of the restricted
Hartree-Fock (RHF) reference). Similarly, the doubly excited Q-space configura-
tions from M0 to M⊥

0 can be divided into the following eight categories:

a. core, core −→ active, active
b. core, core−→ active, virtual
c. core, core −→ virtual, virtual
d. core, active −→ active, active
e. core, active −→ active, virtual
f. core, active −→ virtual, virtual
g. active, active −→ active, virtual
h. active, active −→ virtual, virtual

Again, due to the conservation of spin Sz, the allowed Q-space double excitations
are αα → αα , β β → β β , αβ → αβ , αβ → β α , β α → β α , and β α → αβ , if
the RHF determinant is used as reference |Φ〉.

We have implemented the simplified MRMBPT scheme described above and
tested its usefulness in the MMCC calculations by examining the performance of the
resulting MMCC(2,3)/PT and MMCC(2,4)/PT approximations in a few benchmark
calculations for ground and excited states discussed in Sect. 5. The MMCC(2,3)/PT
and MMCC(2,4)/PT approaches are discussed next.

4.2 The MRMBPT-Corrected MMCC(2,3) and MMCC(2,4)
Approaches: MMCC(2,3)/PT and MMCC(2,4)/PT

As already mentioned, in this paper we focus on the basic MMCC(2,3)/PT and
MMCC(2,4)/PT approaches in which the CCSD/EOMCCSD energies are corrected
for the leading triples or triples and quadruples effects via non-iterative corrections
δµ(2,3) and δµ(2,4), respectively, calculated with the MRMBPT wavefunctions

|Ψ̄ (MRMBPT)
µ 〉 defined by Eq. (86). In order to use the multi-reference wavefunctions



Method of Moments of Coupled-Cluster Equations 101

|Ψ̄ (MRMBPT)
µ 〉 in the single-reference MMCC formalism, first, we have to rewrite

the |Ψ̄ (MRMBPT)
µ 〉 states in the form of CI expansions relative to the reference

determinant |Φ〉 used in the CC/EOMCC and MMCC calculations, as shown below:

|Ψ̄ (MRMBPT)
µ 〉= (C̄µ,0 + C̄µ,1 + C̄µ,2 + C̄µ,3 + C̄µ,4 + · · ·)|Φ〉, (87)

where
C̄µ,0 = c0(µ)1, (88)

C̄µ,1 = ci
a(µ)aaai = ∑

i,a
ci

a(µ)aaai, (89)

C̄µ,2 = 1
4 ci j

ab(µ)aaaba jai = ∑
i< j,a<b

ci j
ab(µ)aaaba jai, (90)

C̄µ,3 = 1
36 ci jk

abc(µ)aaabacaka jai = ∑
i< j<k,a<b<c

ci jk
abc(µ)aaabacaka jai, (91)

and

C̄µ,4 = 1
576 ci jkl

abcd(µ)aaabacadalaka jai = ∑
i< j<k<l,a<b<c<d

ci jkl
abcd(µ)aaabacadalaka jai

(92)
are the corresponding particle-hole excitation operators relative to |Φ〉 defining the

reference, singly, doubly, triply, and quadruply excited contributions to |Ψ̄ (MRMBPT)
µ 〉,

respectively. In the specific case of the MMCC(2,3)/PT and MMCC(2,4)/PT approx-

imations explored in this work, we further simplify the wavefunctions |Ψ̄ (MRMBPT)
µ 〉,

Eq. (87), by truncating the CI expansions for |Ψ̄ (MRMBPT)
µ 〉 at the triply excited

determinants (the C̄µ,3|Φ〉 term) in the MMCC(2,3)/PT case and at the quadru-
ply excited determinants (the C̄µ,4|Φ〉 term) in the MMCC(2,4)/PT case. The final
energy expressions for the MMCC(2,3)/PT and MMCC(2,4)/PT energies, obtained

by replacing |Ψµ〉 in Eqs. (40) and (41) by |Ψ̄ (MRMBPT)
µ 〉, Eq. (87), truncated at the

triply (the MMCC(2,3) case) or triply and quadruply (the MMCC(2,4) case) excited
determinants, respectively, relative to |Φ〉, are

E(MMCC/PT)
µ (2,3) = E(CCSD)

µ + ∑
i< j<k,a<b<c

[ci jk
abc(µ)]∗ M

i jk
µ,abc(2)

Dµ
(93)

and

E(MMCC/PT)
µ (2,4) = E(CCSD)

µ + ∑
i< j<k,a<b<c

[ci jk
abc(µ)]∗ M

i jk
µ,abc(2)

Dµ

+ ∑
i< j<k<l,a<b<c<d

[ci jkl
abcd(µ)]∗ (Mi jkl

µ,abcd(2)+Aabc/dM
i jk
µ,abc(2)tl

d)

Dµ
, (94)
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respectively, where the triply excited moments M
i jk
µ,abc(2) are defined by Eqs. (44)

and (45) and the quadruply excited moments M
i jkl
µ,abcd(2) are defined by Eqs. (46)

and (47). The Aabc/d partial antisymmetrizer is defined as

Aabc/d = 1− (ad)− (bd)− (cd) , (95)

where (pq) is a usual transposition of indices p and q, and

Dµ ≡ 〈Ψ̄ (MRMBPT)
µ |R(CCSD)

µ eT (CCSD) |Φ〉
= ∆̄µ,0 + ∆̄µ,1 + ∆̄µ,2 + ∆̄µ,3 + ∆̄µ,4 + . . . (96)

is the overlap denominator 〈Ψµ |R(CCSD)
µ eT (CCSD) |Φ〉 entering Eq. (40), written for

the wavefunction |Ψµ〉 = |Ψ̄ (MRMBPT)
µ 〉, Eq. (87), truncated at triples (∆̄µ,3) for

MMCC(2,3)/PT and at quadruples (∆̄µ,4) for MMCC(2,4)/PT. The ∆̄µ,0, ∆̄µ,1, ∆̄µ,2,
∆̄µ,3, and ∆̄µ,4 contributions to the denominator Dµ , Eq. (96), are calculated as

∆̄µ,0 = [c0(µ)]∗ r0(µ), (97)

∆̄µ,1 = ∑
i,a

[ci
a(µ)]∗ β i

a(µ), (98)

∆̄µ,2 = ∑
i< j,a<b

[ci j
ab(µ)]∗β i j

ab(µ), (99)

∆̄µ,3 = ∑
i< j<k,a<b<c

[ci jk
abc(µ)]∗β i jk

abc(µ), (100)

and
∆̄µ,4 = ∑

i< j<k<l,a<b<c<d

[ci jkl
abcd(µ)]∗ β i jkl

abcd(µ), (101)

where c0(µ), ci
a(µ), ci j

ab(µ), ci jk
abc(µ), and ci jkl

abcd(µ) are the CI coefficients obtained

by rewriting the MRMBPT wavefunction |Ψ̄ (MRMBPT)
µ 〉, Eq. (86), in the single-

reference CI form of Eq. (87), and the coefficients r0(µ),

β i
a(µ) = 〈Φa

i |(Rµ,1 + Rµ,0T1)|Φ〉, (102)

β i j
ab(µ) = 〈Φab

i j |[Rµ,2 + Rµ,1T1 + Rµ,0(T2 + 1
2 T 2

1 )]|Φ〉, (103)

β i jk
abc(µ) = 〈Φabc

i jk |[Rµ,2T1 + Rµ,1(T2 + 1
2 T 2

1 )+ Rµ,0(T1T2 + 1
6 T 3

1 )]|Φ〉, (104)

and

β i jkl
abcd(µ) = 〈Φabcd

i jkl |[Rµ,2(T2 + 1
2 T 2

1 )+ Rµ,1(T1T2 + 1
6 T 3

1 )

+ Rµ,0( 1
2 T 2

2 + 1
2 T2T 2

1 + 1
24 T 4

1 )]|Φ〉 (105)
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are the coefficients at the reference determinant |Φ〉 and singly, doubly, triply, and
quadruply excited determinants, |Φa

i 〉, |Φab
i j 〉, |Φabc

i jk 〉, and |Φabcd
i jkl 〉, respectively,

in the CI expansion of the CCSD/EOMCCSD wavefunction R(CCSD)
µ eT (CCSD) |Φ〉,

which can be easily determined using the CCSD/EOMCCSD cluster and excitation
amplitudes ti

a, ti j
ab, r0(µ), ri

a(µ), and ri j
ab(µ).

Although the summations over i < j < k, a < b < c in Eqs. (93) and (100)
and over i < j < k < l, a < b < c < d in Eqs. (94) and (101) have the form
of the complete summations over triples and quadruples, respectively, in reality

the wavefunctions |Ψ̄ (MRMBPT)
µ 〉, Eq. (86), contain only small subsets of all triples

and quadruples, once we rewrite each |Ψ̄ (MRMBPT)
µ 〉 in the form of the single-

reference CI expansion, Eq. (87). This is a consequence of using active orbitals

in designing the MRMBPT wavefunctions |Ψ̄ (MRMBPT)
µ 〉, which limit the triple and

quadruple excitations relative to the reference |Φ〉 to a small class of triple and
quadruple excitations that carry a certain number of active spin-orbital indices.

Although the actual number of triples and quadruples in the |Ψ̄ (MRMBPT)
µ 〉 wave-

functions depends on the dimension of the active space used in the MRMBPT
calculations, one usually needs a small fraction of all triples and quadruples in
the MMCC(2,3)/PT and MMCC(2,4)/PT considerations. As a result of using active
orbitals in the MMCC(2,3)/PT and MMCC(2,4)/PT methods, we only need a small
subset of all triexcited coefficients β i jk

abc(µ), Eq. (104), and a similarly small subset

of triply excited moments M
i jk
µ,abc(2), Eqs. (44) and (45), which match the nonzero

coefficients ci jk
abc(µ), to calculate the MMCC(2,3)/PT energy, Eq. (93). Similarly,

for the MMCC(2,4)/PT approach, one only needs a small subset of all quadruply
excited coefficients β i jkl

abcd(µ), Eq. (105), and a similarly small subset of all quadru-

ply excited moments M
i jkl
µ,abcd(2), Eqs. (46) and (47), which match the nonzero

coefficients ci jkl
abcd(µ), in the MMCC(2,4)/PT energy expression, Eq. (94).

One of the main advantages of the MRMBPT-corrected MMCC schemes, such
as MMCC(2,3)/PT and MMCC(2,4)/PT, is their low computer cost, compared
to the already relatively inexpensive CI-corrected MMCC methods described in
Sect. 3.3.1. As in the case of the CI-corrected MMCC approaches, such as the
MMCC(2,3)/CI and MMCC(2,4)/CI methods discussed in Sect. 3.3.1, in the
MMCC(2,3)/PT and MMCC(2,4)/PT methods we have a good control of accuracy
through active orbitals defining model space M0, which can always be adjusted
to the excited states or the bond breaking problem of interest, but unlike in the
MMCC/CI schemes, we do not have to solve the iterative CISDt and CISDtq

equations to generate the wavefunctions |Ψ (MRMBPT)
µ 〉 that enter the corrections

δµ(mA,mB) of the MRMBPT-corrected MMCC theories. We calculate the relevant

CI-like coefficients, such as c0(µ), ci
a(µ), ci j

ab(µ), ci jk
abc(µ), and ci jkl

abcd(µ), by simply

converting the expressions that define the MRMBPT wavefunctions |Ψ̄ (MRMBPT)
µ 〉,

Eq. (86), into the single-reference CI form defined by Eq. (87). Thus, the main com-
puter effort of the MMCC(2,3)/PT approach goes into the calculations of a small
subset of triexcited moments M

i jk
µ,abc(2), leading to the significant reduction of the
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n3
on4

u steps that are normally needed to calculate all moments M
i jk
µ,abc(2). Likewise,

the main computer effort of the MMCC(2,4)/PT approach goes into the calcula-
tions of a small subset of quadruply excited moments M

i jkl
µ,abcd(2). In the efficient

computer implementation, little effort is needed to determine the wavefunctions

|Ψ̄ (MRMBPT)
µ 〉 and the corresponding coefficients c0(µ), ci

a(µ), ci j
ab(µ), ci jk

abc(µ), and

ci jkl
abcd(µ).

At this point, the remaining issue that we have to address before calculating the
MMCC(2,3)/PT and MMCC(2,4)/PT energies is how to obtain the explicit alge-
braic expressions for the triply and quadruply excited moments M

i jk
µ,abc(2) and

M
i jkl
µ,abcd(2). As in all CC/EOMCC considerations, the best way to handle these

quantities is through the use of the diagrammatic methods of the many-body theory
which are described in the subsequent section.

4.3 Diagrammatic Formulation and Factorization of the Triply
and Quadruply Excited Moments of the CCSD
and EOMCCSD Equations

In this section, the diagrammatic derivation of the explicit equations for the triply
and quadruply excited moments of the CCSD/EOMCCSD equations, M

i jk
µ,abc(2)

and M
i jkl
µ,abcd(2), respectively, is presented. The procedure of diagram factorization,

which is deemed necessary to obtain highly efficient computer code, is discussed as
well.

Historically, the use of diagrams originated in quantum field theory using the
time-dependent formalism. However, as advocated by Čı́žek and Paldus already in
the late 1960s and 1970s [11, 12, 261] (cf. [19, 23, 260] for additional remarks and
further details), the time-independent formulation is sufficient in the development of
quantum chemical and other many-body methods that rely on the time-independent
Schrödinger equation. Diagrams are a graphical representation of Wick’s theo-
rem, which is a basic theorem for the algebraic manipulations involving operators
in the second-quantized form. They carry information about interesting physics
(e.g. connected vs. disconnected clusters), while providing powerful tool to derive
and organize numerous algebraic expressions that almost any accurate many-body
theory generates.

The entire discussion of diagrammatic methods used in this paper focuses on the
time-independent formulation. It is important to note that the sequence in which the
operators act (i.e., from right to left) is relevant; this is indicated in the diagram by
means of a so-called formal time axis as shown below:
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Thus, if we want to represent the operator product VNT1 diagrammatically, we begin
with a diagrammatic representation of T1 at the bottom, followed by a diagram rep-
resenting the operator VN drawn above the T1 diagram. This bottom-top convention
is the convention we will be using throughout this chapter (another common con-
vention, which was pioneered by Čı́žek and Paldus, is to place the formal time axis
for the operator ordering horizontally, from right to left, corresponding to the way
we normally write a sequence of operators acting on a function; the only differ-
ence between the conventions used here and the convention introduced by Čı́žek
and Paldus is the 90◦ rotation of the diagrams).

The general steps in deriving the explicit algebraic expressions for
M

i jk
µ,abc(2) and M

i jkl
µ,abcd(2), Eqs. (44) and (46), in terms of the individual cluster

and linear excitation amplitudes as well as one- and two-body integrals defining
the Hamiltonian, include representing the formulas, as given by Eqs. (44) and (46),
in a diagrammatic form, obtaining the so-called resulting diagrams by contractions
of fermion lines representing the relevant creation and annihilation operators that
enter the second-quantized forms of the operators, and applying the diagrammatic
rules to convert the resulting diagrams back into algebraic language. Figure 2 shows
the basic diagrams used to derive the equations for the generalized moments of
the CCSD/EOMCCSD equations. A brief overview of the diagrammatic methods of
many-body theory, describing the basic elements of the diagrammatic language used
here, is presented in Appendix 1. The diagrammatic and algebraic structure of the
one-, two-, three-, and four-body components of the CCSD similarity-transformed
Hamiltonian H̄(CCSD), which are the key elements for all CCSD-based methods, are
shown in Appendix 2.

(a) (b) (c) (d)

(e) (f)

Fig. 2 Diagrammatic representation of (a) T1 as defined by Eq. (6); (b) T2 as defined by Eq. (7);
(c) Rµ,1 as defined by Eq. (20); (d) Rµ,2 as defined by Eq. (21); (e) FN = f p

q N[apaq], and (f) VN =
1
4 vrs

pqN[apaqasar], where FN and VN are the one- and two-body components of the Hamiltonian in
the normal-ordered form (HN ) and N[. . .] stands for the normal product of the operators. As shown
in Appendix 1, the external fermion lines of FN and VN can point up or down. In (e) and (f), we
show an example where they point down. The fermion lines in the cluster and excitation operators
shown in (a)–(d) always point up
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We use the Hugenholtz and the corresponding Brandow diagrams [260] to derive
the explicit many-body expressions for all terms that correspond to the triply and
quadruply excited moments of the CCSD/EOMCCSD equations, M

i jk
µ,abc(2) and

M
i jk
µ,abc(2), respectively. Other representations, such as that of Goldstone, could be

used as well, but Hugenholtz diagrams are best whenever we rely on the second-
quantized operators using antisymmetrized matrix elements [260], as is the case
here. There are several methods of obtaining all non-equivalent resulting diagrams.
The usual approach, which is followed up here, is to first draw all of the elementary
and then the resulting non-oriented Hugenholtz skeletons. The arrows are subse-
quently added to the resulting skeleton lines in all distinct ways to produce all of the
distinct resulting diagrams. In the case of expressions for the generalized moments

of CCSD equations, where we have to project (HNeT (CCSD)
)C|Φ〉 on the excited

determinants |Φa1...an
i1...in

〉, we do not draw the diagram representing the bra state

〈Φa1...an
i1...in

|. Instead, we draw all permissible resulting diagrams for (HNeT (CCSD)
)C|Φ〉

with n incoming and n outgoing external fermion lines labeled by fixed indices
i1, . . . , in and a1, . . . ,an, corresponding to the determinant |Φa1...an

i1...in 〉 on which we
project [260]. Similar applies to moments of the EOMCCSD equations. This greatly
facilitates the process of drawing the resulting diagrams and makes the resulting
diagrams much less complicated [260].

The diagrams may be interpreted algebraically using the following rules [260,
261]:

a. Each upgoing external line is labeled with a “particle” (unoccupied) spin-orbital
label a, b, c, d, . . . and each downgoing external line with a “hole” (i.e., occupied)
spin-orbital label i, j, k, l, . . . . In the CC and EOMCC equations and diagrams
representing the generalized moments of these equations, external lines should
always be labeled in a canonical sequence defining the particle-hole excitations
in the |Φa1...an

i1...in
〉 determinants on which we project, i.e., as a,i ; b,j ; c,k ; etc. The

internal hole lines are labeled with m, n, . . . , whereas the internal particle lines
are labeled with e, f, . . . .

b. The one-body vertex representing the one-body component FN = f q
p N[apaq] of

HN carries the numerical value of the Fock matrix element 〈p| f |q〉 = f q
p , where

p is an outgoing line and q is an incoming line. For example,

a

b

carries a value of matrix element f b
a .

c. The two-body vertex representing the two-body component VN = 1
4 vrs

pqN[apaq

asar] of HN carries the numerical value of the antisymmetrized interaction matrix
element vrs

pq = 〈pq|v|rs〉− 〈pq|v|sr〉, where p and q are the outgoing lines and r
and s are the incoming lines. For example,
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a b

c d

in a Brandow diagram carries a value of vcd
ab = 〈ab|v|cd〉− 〈ab|v|dc〉. In general,

vrs
pq =−vsr

pq =−vrs
qp = vsr

qp.
d. The one- and two-body vertices representing the T1 and T2 cluster operators and

the linear excitation vertices representing Rµ,1 and Rµ,2, i.e.,

a i a i b j a a b ji i

carry the numerical values of the ti
a, ti j

ab, ri
a(µ), and ri j

ab(µ) amplitudes, respec-

tively. The two-body amplitudes are antisymmetric so that, for example, ti j
ab =

−t ji
ab =−ti j

ba = t ji
ba (similar applies to ri j

ab(µ)).
e. All the spin-orbital labels are summed over internal lines, which are obtained by

contracting the external lines of FN , VN , T1, T2, Rµ,1, and Rµ,2.
f. The sign of the diagram is determined from (−1)l+h, where l is the number of

loops and h is the number of internal hole lines in a Brandow representation.
g. The combinatorial weight factor of the connected diagram is specified by ( 1

2 )m,
where m is the number of pairs of “equivalent” lines. A pair of equivalent lines is
defined as being two lines beginning at the same vertex and ending at another, but
also same vertex, and going in the same direction. This weight rule is specific to
a Hugenholtz/Brandow representation used here, and lines that carry fixed labels
(such as the external lines defining the 〈Φa1...an

i1...in
| bra states on which we project

in the CC/EOMCC equations and the generalized moments of these equations)
are always regarded as non-equivalent.

h. The algebraic expression for each diagram should be preceded by a suitable com-
plete or partial antisymmetrization operator, permuting the external lines in all
distinct ways to keep the full antisymmetry of a final expression for a quantity,
such as the moments M

i1,...,in
µ,a1,...,an(mA), which are antisymmetric with respect to

permutations of indices i1, . . . , in and a1, . . . ,an.

The procedure outlined above (cf., also, Appendix 1 for further details) can be
greatly simplified if we realize that the generalized moments of CCSD/EOMCCSD
equations, such as M

i jk
µ,abc(2) and M

i jkl
µ,abcd(2), are defined in terms of H̄(CCSD). As

shown in Appendix 2, various many-body components of H̄(CCSD) contain several
diagrams of the (FNeT1+T2)C and (VNeT1+T2)C types, which are part of more com-
plex diagrams representing M

i jk
µ,abc(2) and M

i jkl
µ,abcd(2). By treating the many-body

components of H̄(CCSD) as more basic diagrams, which we represent by effective
vertices with wavy lines, we can express moments M

i jk
µ,abc(2) and M

i jkl
µ,abcd(2) in

terms of matrix elements h̄q
p, h̄rs

pq, h̄stu
pqr, etc. that define the one-body, two-body,
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three-body, etc., components of H̄(CCSD). In this way, instead of drawing large
numbers of resulting diagrams corresponding to the original definitions of M

i jk
µ,abc(2)

and M
i jkl
µ,abcd(2) in terms of FN , VN , T1, T2, Rµ,1, and Rµ,2, Eqs. (44)-(47), we can

draw the relatively small number of diagrams in terms of the precomputed matrix
elements of H̄(CCSD), which serve as natural intermediates (cf. Appendix 2). All
of the diagrams representing M

i jk
µ,abc(2), obtained in this way, are shown in Fig. 3.

Note that all of the diagrams in Fig. 3 have six external lines corresponding to the
projections of the triply excited determinant |Φabc

i jk 〉. The diagram

that shows up as the last term by Fig. 3 is the ground-state moment M
i jk
0,abc(2)

defined by Eq. (45). The fact that we can represent the entire ground-state moment
M

i jk
0,abc(2) in this compact way is a consequence of the fact that M

i jk
0,abc(2) can be

regarded as one of the three-body components of H̄(CCSD); the complete set of dia-
grams corresponding to M

i jk
0,abc(2) is shown in Fig. 24 in Appendix 2. The squared

dot, �, at M
i jk
0,abc(2) in Fig. 3 represents the constant r0(µ).

For the quadruply excited moments M
i jkl
µ,abcd(2), Eq. (46), all of the resulting

diagrams should have eight external lines extending to the top and corresponding to
the projection onto the quadruply excited determinant |Φabcd

i jkl 〉. We can see this in

Fig. 4, where all diagrams representing M
i jkl
µ,abcd(2) are presented. Again, in analogy

to M
i jk
µ,abc(2), the diagram

that shows up as the last term in Fig. 4 corresponds to the ground-state moment
M

i jkl
0,abcd(2) defined by Eq. (47), which can also be regarded as one of the four-body

components of H̄(CCSD); the complete set of diagrams corresponding to M
i jkl
0,abcd(2)

is shown in Fig. 25 in Appendix 2. Again, the squared dot, �, represents the
coefficient r0(µ). All of the diagrams that represent the two-, three-, and four-
body components of H̄(CCSD), which enter M

i jk
µ,abc(2) and M

i jkl
µ,abcd(2), including

the ground-state triply and quadruply moments of the CCSD equations described
above, are given in Appendix 2 (see Figs. 20–25). The diagrams representing the
one-body components of H̄(CCSD) do not show up in Figs. 3 and 4 directly, but do
show up indirectly as intermediates when the diagram factorization discussed in
Sect. 4.4, which leads to efficient computer codes, is fully carried out (see, also,
Appendix 3).

Diagrams shown in Figs. 3 and 4, with two-, three-, and four-body components
of H̄(CCSD) represented diagrammatically in Figs. 20–25, provide correct algebraic
expressions for moments M

i jk
µ,abc(2) and M

i jkl
µ,abcd(2), but these expressions, if coded
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Fig. 3 Diagrammatic representation of M
i jk
µ,abc(2) using the Brandow forms of the relevant Hugen-

holtz diagrams. Vertices with wavy lines correspond to many-body components of H̄(CCSD). � in
the last term represents r0(µ)
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Fig. 4 Diagrammatic representation of M
i jkl
µ,abcd(2) using the Brandow forms of the relevant

Hugenholtz diagrams. As in Fig. 3, vertices with wavy lines corresponds to many-body components
of H̄(CCSD) and � represents r0(µ)
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(a)

(b)

(c)

(d)

(e)

Fig. 5 Factorized forms of the three-body components of H̄(CCSD) required in the derivation
of M

i jk
µ,abc(2), expressed as products of two-body matrix elements of H̄(CCSD) and T2 cluster

amplitudes
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where

(f)

Fig. 5 (Continued)

term by term, do not yield efficient computer programs. In order to reduce the num-
ber of CPU operations that are required to calculate M

i jk
µ,abc(2) and M

i jkl
µ,abcd(2) in

the most efficient manner, one has to factorize those M
i jk
µ,abc(2) and M

i jkl
µ,abcd(2) dia-

grams shown in Figs. 3 and 4 that relate M
i jk
µ,abc(2) and M

i jkl
µ,abcd(2) to the expensive

three- and four-body components of H̄(CCSD), shown in Figs. 20-25 in Appendix 2.
The main ideas behind diagram factorization that lead to considerable reduction in
the number of CPU operations characterizing the resulting many-body expressions
are explained in Appendix 3. We illustrate the key steps that lead to the factorized,
computationally efficient form of M

i jk
µ,abc(2) in Figs. 5–8.

In the initial step, shown in Fig. 5, we rewrite the expensive three-body matrix
elements of H̄(CCSD) that enter the M

i jk
µ,abc(2) diagrams shown in Fig. 3 (see dia-

grams I–V in Fig. 3) as tensor products of two-body matrix elements of H̄(CCSD)

and T2 cluster amplitudes. We also rewrite diagram VI of Fig. 3, which uses a four-
body component of H̄(CCSD), in a more explicit form in terms of VN , T2, and Rµ,1.
As a result of these operations, the original diagrams shown in Fig. 3 acquire a new
form shown in Fig. 6. The first two diagrams in Fig. 6 are in their final, computa-
tionally efficient, form. However, diagrams IA–VI are no longer linear in T or Rµ
and represent multiple tensor products that need to be factorized further by bring-
ing them to a linearized (vectorized) form and by reusing, as much as possible, the
one- and two-body matrix elements of H̄(CCSD), which are easy to generate. This is
accomplished in Fig. 7 in three steps shown in Fig. 7 (a), (b), and (c), where we first
factor out T2 vertices (Fig. 7 (a) and (b)) and then group terms that have a similar
overall structure to define the final set of intermediates linear in Rµ,1 and Rµ,2 and
shown in Fig. 7 (c). As a result of all these operations, all of the diagrams in Figs. 3
or 6 acquire a compact, computationally, efficient form shown in Fig. 8.

A similar procedure can be performed for the original diagrams representing
M

i jkl
µ,abcd(2) shown in Fig. 4. Again, by replacing the three-body matrix elements of

H̄(CCSD) that enter diagrams in Fig. 4 (diagrams VIII and IX) by their factorized
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IB IIA IIB

III IV VA

VIVB

VIIA VIIB

IAIA

IB IIA IIB

III

Fig. 6 Diagrammatic representation of M
i jk
µ,abc(2) obtained by substituting the three-body compo-

nents of H̄(CCSD) in Fig. 3 entering diagrams I–V by their factorized analogs shown in Fig. 5 and
by expressing the four-body component of H̄(CCSD) that defines diagram VI in terms of VN , T2, and
Rµ,1
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IA IB IIA

IVIIIIIB

VA VB VI

(a)

IA IB IIA IIB

VBVAIVIII

VI

(b)

Fig. 7 Process of diagram factorization for the nonlinear terms in M
i jk
µ,abc(2) shown in Fig. 6

(diagrams IA–VI). (a) and (b) The T2 vertex is factored out. (c) Diagrams in parentheses in (b) that
have a similar structure are grouped together to define two intermediate vertices that are linear in
Rµ,1 and Rµ,2
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IA IIB III VA

VBIVIIAIB

VI

where

(c)

Fig. 7 (Continued)

analogs shown in Fig. 5 and by replacing the four-body H̄(CCSD) vertices in the dia-
grams in Fig. 4 (diagrams X–XVI) by their factorized analogs shown in Fig. 9, we
obtain the set of diagrams representing M

i jkl
µ,abcd(2) shown in Fig. 10. The factor-

ization of diagrams that are non-linear in the T and Rµ components in Fig. 10 by
factoring out common terms, grouping the diagrams that have a similar structure,
and reusing recursively generated one- and two-body matrix elements of H̄(CCSD)

and other intermediates gives the final, computationally efficient and compact form
of M

i jkl
µ,abcd(2) shown in Fig. 11.

Figures 8 and 11 show the most compact, fully factorized, diagrammatic forms
of M

i jk
µ,abc(2) and M

i jkl
µ,abcd(2), that yield the highly efficient computer codes that

are characterized by the n3
on4

u steps in the M
i jk
µ,abc(2) case and n4

on5
u steps in the

M
i jkl
µ,abcd(2) case. Figures 12–14 show the diagrams representing all recursively gen-

erated intermediates that are needed to calculate M
i jk
µ,abc(2) and M

i jkl
µ,abcd(2) using

diagrams shown in Figs. 8 and 11. The explicit algebraic expressions for the inter-
mediates shown in Figs. 12–14 are given in Table 2. The final algebraic expressions
for M

i jk
µ,abc(2) and M

i jkl
µ,abcd(2) used in this work and the remaining details of the

computer implementation of the MMCC(2,3)/PT and MMCC(2,4)/PT methods are
discussed next.
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Fig. 8 Final factorized form of M
i jk
µ,abc(2). The two-body vertices marked with the thick single and

thin double lines are defined in Figs. 5 (f) and 7 (c), respectively (cf., also, Fig. 13 (i), (j), and (k))

4.4 Final Equations for M
ijk
µ,abc(2) and M

ijkl
µ,abcd(2)

and the Remaining Details of the Implementation of the
MMCC(2,3)/PT and MMCC(2,4)/PT Approaches

The final, fully factorized expression for the triply excited moments of the
CCSD/EOMCCSD equations M

i jk
µ,abc(2), in terms of the amplitudes defining the

CCSD/EOMCCSD cluster and excitation operators, T1, T2, Rµ,0, Rµ,1, and Rµ,2,
and molecular integrals f q

p and vrs
pq, obtained from the diagrams shown in Fig. 8,

which can be used in the highly efficient, vectorized, computer implementations of
all MMCC(2,3) approximations, including the externally corrected MMCC(2,3) and
MMCC(2,4) schemes, such as the MMCC(2,3)/PT and MMCC(2,4)/PT approaches
pursued to this work, and their CI-corrected MMCC and renormalized CC/EOMCC
analogs, can be given the following compact form:

M
i jk
µ,abc(2) = Aabc T

i jk
µ,abc(2), (106)

where

T
i jk
µ,abc(2) = A i/ jk [ ( 1

2 h̄ie
abr jk

ec − 1
2 h̄ jk

mcrim
ab− 1

2 I jk
mctim

ab + Iie
abt jk

ec )

+ 1
2 r0(µ)(h̄ie

abt jk
ec − I′ jk

mc tim
ab) ]. (107)

For simplicity, we dropped the symbol µ in the amplitudes r jk
ec(µ), rim

ab(µ), and r0(µ)
entering Eq. (107). The final, fully factorized and computationally highly efficient
expression for the quadruply excited moments of the CCSD/EOMCCSD equations
M

i jkl
µ,abcd(2), obtained from the diagrams shown in Fig. 11, can be written as
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(a)

(b)

(c)

Fig. 9 Factorized forms of the four-body components of H̄(CCSD) required in the derivation
of M

i jkl
µ,abcd(2), expressed as products of two-body matrix elements of H̄(CCSD) and T2 cluster

amplitudes

M
i jkl
µ,abcd(2) = Aabcd T

i jkl
µ,abcd(2) , (108)

where

T
i jkl
µ,abcd(2) = A i j/kl I′ i j f

abc tkl
f d−A i jk/l I′ i jk

abn tnl
cd + 1

6A i jk/lM
i jk
0,abc(2)rl

d

+r0(µ)(A i j/kl Ii j f
abct

kl
f d− 1

2A i jk/l Ii jk
abntnl

cd) , (109)

with M
i jk
0,abc(2) representing the ground-state triexcited moments of the CCSD equa-

tions (see Table 2). The antisymmetrizers Apq, Apqr, Apq/r, Apqr/s, Apq/rs, Apq/r/s,
and Apqrs, which enter Eqs. (106)–(109) directly or through the matrix elements of
H̄(CCSD), and other intermediates that are needed to construct Eqs. (107) and (109)
and that are listed in Table 2, are defined in a usual way,
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VIIIA VIIIB

IXBIXA

XA XB

XIBXIA

XII

(a)

Fig. 10 Diagrammatic representation of M
i jkl
µ,abcd(2) obtained by substituting the three- and four-

body components of H̄(CCSD) in Fig. 4 by their factorized analogs shown in Figs. 5 and 9
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XIII XIV

XVBXVA

XVIA XVIB

XVIC

(b)

Fig. 10 (Continued)

Apq ≡A pq = 1pq− (pq), (110)

Apqr ≡A pqr = 1pqr− (pq)− (pr)− (qr)+ (pqr)+(prq), (111)

Ap/qr ≡A p/qr ≡Aqr/p ≡A qr/p = 1pqr− (pq)− (pr), (112)

Apqr/s ≡A pqr/s ≡As/pqr ≡A s/pqr = 1pqrs− (ps)− (qs)− (rs), (113)

Apq/rs ≡A pq/rs = 1pqrs− (pr)− (ps)− (qr)− (qs)+ (pr)(qs), (114)
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Fig. 11 Final factorized form of M
i jkl
µ,abcd(2). The three-body vertices marked with the thick single

and thin double lines are defined in Fig. 14 (a), (b), (d), and (e). The thick line in the three-body
intermediate entering diagram (XVIA,XVIB), which is shown in Fig. 14 (a), could be replaced by
the wavy line, since the corresponding vertex represents the three-body matrix element of H̄(CCSD),
but since we do not use this intermediate in a conventional way and rearrange the associated
numerical factors and antisymmetrizers in a non-traditional manner to obtain the computation-
ally efficient Eqs. (108) and (109), we use the thick line and symbol I rather than h̄ to represent
this intermediate (cf. Eq. (109))

Apq/r/s ≡ A pq/r/s ≡Ar/pq/s ≡A r/pq/s ≡Ar/s/pq ≡A r/s/pq

= 1pqrs− (pr)− (ps)− (qr)− (qs)+ (pr)(qs)− (rs)
+(prs)+ (psr)+ (qrs)+ (qsr)− (pqrs)

= Apq/rs Ars, (115)

Apqrs ≡A pqrs = 1pqrs− (pq)− (pr)− (ps)− (qr)− (qs)− (rs)+ (qrs)
+(qsr)+ (pqr)+ (pqs)+ (prq)+ (prs)+(psq)
+(psr)+ (pq)(rs)+ (pr)(qs)+ (ps)(qr)− (pqrs)
−(pqsr)− (prsq)− (prqs)− (psrq)− (psqr), (116)

with (pq), (pqr), and (pqrs) representing the cyclic permutations of two, three,
and four spin-orbital indices, respectively. As mentioned in the previous section,
the explicit spin-orbital expressions for the one- and two-body matrix elements
of H̄CCSD, h̄q

p and h̄rs
pq, respectively, and other recursively generated intermediates

entering Eqs. (107) and (109), in terms of cluster amplitudes ti
a and ti j

ab, excitation

amplitudes ri
a ≡ ri

a(µ) and ri j
ab ≡ ri j

ab(µ), and molecular integrals f q
p and vrs

pq, are
given in Table 2.



Method of Moments of Coupled-Cluster Equations 121

a i a i
a i

e m

(a) h̄a
i

a i
a i e m

(b) Ia
i

a

b b

a

b

a

e m

b
me

a

n

b

n
a

(c) h̄b
a

j

i i

j
e

i

jj

i e m j

e m
i

f

(d) h̄ j
i

Fig. 12 One-body matrix elements of H̄(CCSD) and other one-body intermediates needed to
construct M

i jk
µ,abc(2) and M

i jkl
µ,abcd(2), Figs. 8 and 11, respectively

By using the idea of recursively generated intermediates and by reusing, as much
as possible, the one and two-body matrix elements of H̄(CCSD), which are generated
in the CCSD/EOMCCSD calculations that precede the calculations of moments
M

i jk
µ,abc(2) and M

i jkl
µ,abcd(2), we achieve a very high degree of code vectorization,

while avoiding the explicit construction and storing of the most expensive three-
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Fig. 13 Two-body matrix elements of H̄(CCSD) and other two-body intermediates needed to con-
struct M

i jk
µ,abc(2) and M

i jkl
µ,abcd(2), Figs. 8 and 11, respectively. The proper use of the intermediates

other than two-body matrix elements of H̄(CCSD), shown in (k)–(m), may require the incorpora-
tion of the additional numerical factors that cannot be read directly from diagrams (k)–(m). These
additional numerical factors have been included in the algebraic expressions listed in Table 2
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Fig. 13 (Continued)

and four-body matrix elements of H̄(CCSD). Since the final factorized expressions
defining M

i jk
µ,abc(2) and M

i jkl
µ,abcd(2), and the corresponding recursively generated

intermediates are binary tensor (matrix) products, one can very effectively cal-
culate M

i jk
µ,abc(2) and M

i jkl
µ,abcd(2) and the required intermediates with fast matrix

multiplication routines available in the BLAS library.
Once the CCSD/EOMCCSD equations are solved for ti

a, ti j
ab, r0(µ), ri

a(µ) and

ri j
ab(µ), and the relevant moments M

i jk
µ,abc(2) and M

i jkl
µ,abcd(2) and the corresponding

coefficients ci
a(µ), ci j

ab(µ), ci jk
abc(µ), ci jkl

abcd(µ), β i
a(µ), β i j

ab(µ), β i jk
abc(µ), and β i jkl

abcd(µ)
are determined using Eqs. (106)-(109), the MRMBPT wavefunctions, |Ψ̄ (MRMBPT)

µ 〉,
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and Eqs. (102)-(105), we construct the overlap denominators Dµ , as in Eqs. (96)-
(101), and, finally, the energy corrections due to triples or triples and quadruples
defining the MMCC(2,3)/PT and MMCC(2,4)/PT methods, using Eqs. (93) and
(94). Our MMCC(2,3)/PT and MMCC(2,4)/PT computer programs are interfaced
with the RHF and integral transformation and sorting routines available in the
GAMESS package [265].
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Fig. 14 Three-body intermediates needed to construct M
i jkl
µ,abcd(2), Fig. 11. The three-body matrix

element h̄i jk
abc ≡M

i jk
0,abc(2) shown in (c) also enters the definition of M

i jk
µ,abc(2), as in Eq. (44) (cf. the

last two diagrams in Fig. 8). The proper use of these intermediates may require the incorporation
of the additional numerical factors and/or a non-standard way of handling some antisymmetrizers
to obtain the computationally efficient Eqs. (108) and (109), and expressions listed in Table 2
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5 Numerical Examples

We illustrate the performance of the MRMBPT-corrected MMCC approaches devel-
oped in this work by discussing the results of the benchmark MMCC(2,3)/PT
and MMCC(2,4)/PT calculations for the single bond breaking in the HF and F2

molecules, the simultaneous dissociation of both O–H bonds in the H2O molecule,
and the valence excited states of the CH+ ion. We focus on a comparison of the
MMCC(2,3)/PT and MMCC(2,4)/PT results with a few other ways of incorporat-
ing the triple and quadruple excitations in the CC and EOMCC formalisms, and the
exact, full CI data, also obtained with GAMESS.

5.1 Bond Breaking in HF

In order to test the ability of the MRMBPT-corrected MMCC approaches to improve
the poor description of bond breaking by the standard CCSD and CCSD(T) meth-
ods, we applied the MMCC(2,3)/PT approach to the potential energy curve of HF.
We used a double zeta (DZ) basis set [266], for which the exact, full CI energies [36]
and several other useful results, including, for example, the full CCSDT ener-
gies [36] and their standard and completely renormalized CCSD(T) analogs [40],
are available. We also compare the MMCC(2,3)/PT results with the results of the
CI-corrected MMCC(2,3) (MMCC(2,3)/CI) calculations [251], which provide yet
another way of correcting the CCSD energies for the most essential effects due
to triple excitations. We focus on the triples methods because generally the triply
excited clusters along with the singly and doubly excited clusters are sufficient
to obtain a virtually exact description of single bond breaking. In all calculations
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Table 2 Explicit algebraic expressions for one- and two-body matrix elements of H̄CCSD (desig-
nated by h̄) and other intermediates (designated by I or ϑ ), shown in Figs. 12–14, used to construct
the triply and quadruply excited moments of the CCSD/EOMCCSD equations, M

i jk
µ,abc(2) and

M
i jkl
µ,abcd(2), respectively

Expressiona Figure
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i + tm
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i rm
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a f b
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a Summation over repeated upper and lower indices is assumed; f q
p = 〈p| f |q〉 and vrs

pq =
〈pq|v|rs〉−〈pq|v|sr〉 are the one- and two-electron integrals in a molecular spin-orbital basis {p}
corresponding to the Fock operator ( f ) and the two-body part of the Hamiltonian (v).
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reported in this work, we used the ground-state RHF determinant as reference |Φ〉.
The active space employed in the CI- and MRMBPT-corrected MMCC calculations
consisted of the three highest-energy occupied orbitals, 3σ , 1π , and 2π , and the
lowest-energy unoccupied orbital 4σ that correlate with valence shells of the H and
F atoms. This is a natural choice of active space for the description of bond break-
ing in HF, since for larger internuclear separations RH-F the ground-state full CI
wavefunction of HF is dominated by the RHF configuration,

|Φ〉= |(1σ)2(2σ)2(1π)2(2π)2(3σ)2|, (117)

the doubly excited configuration,

|Φ ′〉= |(1σ)2(2σ)2(1π)2(2π)2(4σ)2|, (118)

corresponding to the (3σ)2→ (4σ)2 excitation, and the (3σ)→ (4σ) singly excited
configuration.

The results of our MMCC(2,3)/PT calculations for the potential energy curve
of HF are shown in Table 3. In this particular case, there is a 1.634 millihartree
difference between the CCSD and full CI energies at the equilibrium geometry,
RH-F = Re, which increases to 12.291 millihartree at RH-F = 5Re (for most practical
purposes, RH-F = 5Re can be regarded as a dissociation limit). As in other cases of
single bond breaking, the large differences between the CCSD and full CI energies
at larger values of RH-F are primarily caused by the absence of the connected T3

clusters in the CCSD wavefunction. Indeed, the full CCSDT method, which includes
T3 clusters, reduces large errors in the CCSD results, relative to full CI, to as little
as 0.173 millihartree at RH-F = Re and 0.431 millihartree at RH-F = 5Re.

Table 3 A comparison of the CC and MMCC ground-state energies with the corresponding full
CI results obtained for a few geometries of the HF molecule with a DZ basis set.The full CI total
energies are given in hartree. The remaining energies are reported in millihartree relative to the
corresponding full CI energy values. The non-parallelity errors (NPE), in millihartree, relative to
the full CI results are given as well

Method Re
a 2Re 3Re 5Re NPE

Full CIb −100.160300 −100.021733 −99.985281 −99.983293
CCSD 1.634 6.047 11.596 12.291 10.657
CCSDTb 0.173 0.855 0.957 0.431 0.784
CCSD(T)c 0.325 0.038 −24.480 −53.183 53.508
CR-CCSD(T)c 0.500 2.031 2.100 1.650 1.600
MMCC(2,3)/CId,e 1.195 2.708 3.669 3.255 2.474
MMCC(2,3)/PTe 1.544 1.116 0.025 −0.889 2.433

a Re = 1.7328 bohr is the equilibrium value of the internuclear H–F distance.
b From [36].
c From [40].
d From [251].
e The active space consisted of the 3σ , 1π , 2π , and 4σ orbitals.
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The full CCSDT approach works, but, CCSDT is a rather impractical method.
Unfortunately, the much more practical CCSD(T) approach completely fails at large
internuclear separations RH-F. Indeed, the small, 0.325 millihartree, error in the
results of the CCSD(T) calculations at RH-F = Re increases (in absolute value) to
24.480 millihartree at RH-F = 3Re and 53.183 millihartree at RH-F = 5Re (cf. Table
3). As shown, for example, in [36, 39, 40, 61, 62], the CCSD(T) potential energy
curve lies significantly below the full CI curve at larger internuclear separations and
is characterized by an unphysical hump in the region of intermediate RH-F values.

The CR-CCSD(T) approach, which is one of the “black-box” variants of the
MMCC theory, considerably improves the results of the CCSD(T) calculations,
eliminating the unphysical hump on the CCSD(T) curve and reducing the 53.183
millihartree error in the CCSD(T) results at RH-F = 5Re to 1.650 millihartree
[39, 40, 61, 62]. The errors in the CR-CCSD(T) energies, relative to full CI, do
not exceed 2.1 millihartree over the entire range of RH-F values. The CI-corrected
MMCC(2,3) approach, employing the 3σ , 1π , 2π , and 4σ orbitals as active orbitals,
provides similar improvements [39, 61, 62, 251] (see Table 3).

As shown in Table 3, the MMCC(2,3)/PT calculations employing the same set
of active orbitals, namely, the 3σ , 1π , 2π , and 4σ orbitals, used in the more expen-
sive MMCC(2,3)/CI calculations reported, for example, in [251], provide the results
which are better in the RH-F > Re region than the already very good results of the
CR-CCSD(T) and MMCC(2,3)/CI calculations. In particular, the MMCC(2,3)/PT
approach reduces the large errors in the CCSD(T) results at RH-F = 3Re and
RH-F = 5Re to small errors that do not exceed 1 millihartree. The signed errors
in the MMCC(2,3)/PT results vary between 1.544 millihartree at RH-F = Re and
−0.889 millihartree at RH-F = 5Re. The overall qualities of the MMCC(2,3)/PT
and MMCC(2,3)/CI results, as measured by the corresponding non-parallelity error
(NPE) values, are quite similar (NPE is defined as the difference between the signed
maximum and minimum errors along a potential energy curve). Indeed, the NPE val-
ues characterizing the MMCC(2,3)/PT and MMCC(2,3)/CI calculations are 2.433
and 2.474 millihartree, respectively. An obvious issue that may need further atten-
tion is the quality of the MMCC(2,3)/PT energy at RH-F = Re, which is only slightly
better than that obtained with CCSD. This is related to the fact that we use the
ground-state RHF orbitals and a small active space which is designed to describe
the most essential non-dynamical correlation effects in the region of larger H–F
distances. The suitable orbital optimization scheme would have to be developed to
improve the results of the MMCC(2,3)/PT calculations at RH-F = Re. One possiblity
could be to use CASSCF orbitals. Another possibility might be to utilize natural
orbitals of CCSD. We plan to explore the issue of orbital optimization in the future
work.

5.2 Bond Breaking in F2

We now turn to the more challenging case of single bond breaking in F2. The results
for the F2 molecule, as described by the cc-pVDZ basis set [267], are shown in
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Table 4. Again, the ground-state RHF determinant was used as a reference. In the
post-RHF calculations, the lowest two orbitals were kept frozen. The active space
used in the MRMBPT-corrected MMCC calculation consisted of the five highest-
energy occupied orbitals, 3σg,1πu,2πu,1πg, and 2πg, as well as the lowest-energy
unoccupied orbital, 3σu. No CI-corrected MMCC and full CI calculations were per-
formed for this system, so we rely on the full CCSDT energies, reported in [42], to
assess the performance of the MMCC(2,3)/PT approach.

In this case, the CCSDT energies can serve as reference values, since it is well
known that the full CCSDT approach provides an excellent description of a sin-
gle σ -bond breaking (the previously discussed case of the HF molecule was an
illustration of this statement). As one can see, the CCSD approach provides very
poor results at all values of the F–F distance RF-F, even at the equilibrium geom-
etry Re, where the difference between the CCSD and CCSDT energies is already
9.485 millihartree. The CCSD results become even worse for larger values of RF-F.
In fact, even the relatively small stretches of the F–F bond, such as RF-F = 1.5Re,
lead to very large, >30 millihartree, errors in the CCSD energies relative to full
CCSDT. The failure of the CCSD approach illustrates the important role played by
the triply excited clusters in describing the F2 molecule. The CCSD(T) method is
very successful in describing the effects due to triply excited clusters at the equilib-
rium geometry, reducing the large error in the CCSD result relative to full CCSDT
to 0.248 millihartree but, unfortunately, the CCSD(T) approach completely fails at
larger F–F distances, where the unsigned errors in the CCSD(T) energies become as
large as 39.348 millihartree at RF-F = 5Re.

The MRMBPT-corrected MMCC theory, explored in the present work, dra-
matically improves the CCSD and CCSD(T) results. As shown in Table 4, the
MMCC(2,3)/PT method employing the small active space described above reduces
the 9.485 millihartree error in the CCSD energy relative to CCSDT at RF-F = Re

to 3.725 millihartree. In contrast to CCSD(T), the MMCC(2,3)/PT method remains
accurate in the bond breaking region. It is capable of producing the reasonably accu-
rate results along the entire potential energy curve of F2 from RF-F = 0.75Re to
RF-F = 5Re. The largest error relative to CCSDT characterizing the MMCC(2,3)/PT
calculations along the whole curve is 5.618 millihartree. Errors on the order of
3–5 millihartree are, perhaps, not as small as one would like them to be, but the
NPE value characterizing the MMCC(2,3)/PT energies (calculated relative to the
full CCSDT results) is only 2.698 millihartree, demonstrating the ability of the rel-
atively inexpensive MMCC(2,3)/PT approach to produce potential energy curves
that accurately mimic the full CCSDT potential curve. The MMCC(2,3)/PT method
seems to perform better in this regard than the CR-CCSD(T) approach, which works
well at larger F-F separations but is characterized by a larger NPE value. Only the
recently formulated size extensive version of CR-CCSD(T), termed CR-CC(2,3)
(not discussed in this chapter), can lower the NPE value to less than 3 millihartree
in calculations for F2 [53–55].
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5.3 Double Dissociation in H2O

5.3.1 The DZ Basis Set

Similar improvements in the relatively poor CCSD and CCSD(T) results are ob-
served when the MMCC(2,3)/PT approach is applied to the simultaneous dissoci-
ation of both O–H bonds in H2O. As explained in [37] (cf., also [251]), in this
case a reasonable choice of active orbitals, which is needed to obtain a fairly uni-
form description of the equilibrium and bond breaking regions, is provided by the
1b1, 3a1, 1b2, 4a1, 2b1, and 2b2 orbitals. We used these orbitals to determine the
MRMBPT-like wavefunctions that enter the MMCC/PT corrections to CCSD ener-
gies. Since double bond dissociations may be characterized by more significant
quadruple effects, in addition to large effects due to triples, we also performed the
MMCC(2,4)/PT calculations to explore the effects of quadruples. The simultaneous
stretching or breaking of both O–H bonds in water provides us with an example of a
situation where both T3 and their T4 counterparts are sizable and difficult to describe
with the approximate CCSDT and CCSDTQ approaches.

As shown in Table 5, the MMCC(2,3)/PT method employing a small set of the
1b1, 3a1, 1b2, 4a1, 2b1, and 2b2 active orbitals reduces the 9.333 and 7.699 mil-
lihartree unsigned errors in the CCSD and CCSD(T) results at RO-H = 2Re (RO-H

is the O–H distance and Re is the equilibrium value of RO-H) to 0.335 millihartree.
The overall description of the simultaneous stretching of both O–H bonds in H2O
by the MMCC(2,3)/PT approach, which produces the relatively small errors that
do not exceed 2.2 millihartree in the entire RO-H = Re− 2Re region, is very good.
The CR-CCSD(T) and MMCC(2,3)/CI methods (the active orbital space used in the
MMCC(2,3)/CI calculations, which were originally reported in [251], was the same
as that used in the present MMCC(2,3)/PT calculations) provide similar results.
We also examined the effect of quadruples on the MMCC/PT results by consid-
ering higher-order MMCC corrections to CCSD energies employing the selected
triples and quadruples contributions relative to the RHF determinant |Φ〉 that orig-

inate from the low-order MRMBPT wavefunctions |Ψ̄ (MRMBPT)
µ 〉, Eq. (86). The

MMCC(2,4)/PT method reduces the error in the MMCC(2,3)/PT result at RO-H =
1.5Re further, from 2.174 to 0.380 millihartree. However, the MMCC(2,4)/PT over-
estimates the absolute value of the ground-state energy of the H2O molecule at
RO-H = 2Re by 1.815 millihartree. We believe this is due to the simplified version of
the MRMBPT theory used in this work. Clearly, it is encouraging to observe that the
inexpensive MMCC calculations, in which the simple MRMBPT-like wavefunctions

|Ψ̄ (MRMBPT)
µ 〉, Eq. (86), truncated at triple excitations relative to the RHF deter-

minant |Φ〉, are inserted into the MMCC(2,3) energy corrections, provide a much
better overall description of the double bond breaking in H2O than the standard
CCSD and CCSD(T) approaches.
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Table 5 A comparison of the CC and MMCC ground-state energies with the corresponding full
CI results obtained for the equilibrium and two displaced geometries of the H2O molecule with the
DZ basis set. The full CI total energies are given in hartree. The remaining energies are reported in
millihartree relative to the corresponding full CI energy values

Method Re
a 1.5Re

b 2Re
b

Full CI −76.157866a −76.014521b −75.905247b

CCSD 1.790 5.590 9.333

CCSDTc 0.434 1.473 −2.211
CCSD(T)d 0.574 1.465 −7.699
CR-CCSD(T)d 0.738 2.534 1.830
MMCC(2,3)/CIe,f 0.811 2.407 1.631
MMCC(2,3)/PTf 1.265 2.174 0.335

CCSDTQg 0.015 0.141 0.108
CCSD(TQf)d 0.166 0.094 −5.914
CR-CCSD(TQ),ad,h 0.195 0.905 1.461
CR-CCSD(TQ),bi 0.195 0.836 2.853
MMCC(2,4)/CIe,f 0.501 0.942 2.416
MMCC(2,4)/PTf 1.069 0.380 −1.815

a The equilibrium geometry and full CI result from [268].
b The geometry and full CI result from [269].
c From [27].
d From [40].
e From [251].
f The active space consisted of the 1b1, 3a1, 1b2, 4a1, 2b1, and 2b2 orbitals.
g From [30].
h The “a” variant of the completely renormalized CCSD(TQ) method. The
results are from [61].
i The “b” variant of the completely renormalized CCSD(TQ) method. The
results are from [61].

5.3.2 The cc-pVDZ Basis Set

To explore the effect of a basis set and to examine the performance of the MRMBPT-
corrected MMCC theory in a somewhat more complete scan of the potential energy
surface of the doubly dissociating H2O molecule, we tested our methods on the H2O
system as described by the cc-pVDZ basis set.

Though the CCSDT method provides an excellent description of the equilib-
rium region, producing an error relative to full CI of only 0.493 millihartree at
RO-H = Re, it fails at larger O–H separations (RO-H > 2Re), where the errors in the
CCSDT energies grow up to 40.126 millihartree at RO-H = 3Re. These results show
that even the full inclusion of T3 clusters is not sufficient to guarantee the proper
description of the double dissociation of water if we go to very large stretches of
both O–H bonds. As both O–H bonds in H2O are simultaneously stretched, the
effects of triples as well as quadruples (T4 clusters) become very important due to
a significant increase of a multi-reference character of the ground-state electronic
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Table 6 A comparison of various CC ground-state energies obtained for the H2O molecule, as
described by the cc-pVDZ basis set, at the equilibrium geometry and several non-equilibrium
geometries obtained by stretching both O–H bonds, while keeping the H–O–H angle fixed. The
spherical components of the d orbitals were used. In all post-RHF calculations, all electrons were
correlated. The full CI total energies are given in hartree. The remaining energies are reported in
millihartree relative to the corresponding full CI energies

Method Re
a 1.5Re 2Re 2.5Re 3Re

Full CIb −76.241860 −76.072348 −75.951665 −75.917991 −75.911946
CCSD 3.744 10.043 22.032 20.307 10.849
CCSDTb 0.493 1.423 −1.405 −24.752 −40.126
CCSD(T)b 0.658 1.631 −3.820 −42.564 −90.512
CR-CCSD(T)c 1.025 3.355 7.252 −2.270 −15.040
MMCC(2,3)/PTd 2.780 3.329 4.251 −7.607 −21.456

a The equilibrium value of the O–H distance Re equals 1.84345 bohr and the H-O-H bond angle is
fixed at 110.6◦. For further details of the equilibrium and non-equilibrium geometries used in this
work, see [270].
b From [270].
c From [49].
d The active space consisted of the 1b1, 1b2, 3a1, 4a1, 2b2, 5a1, and 3b2 orbitals.

wavefunction. The MMCC(2,3)/PT approach provides a very good description of
the double dissociation of H2O up to RO-H = 2Re, reducing the 10.043 and 22.032
millihartree errors in the CCSD results at RO-H = 1.5Re and RO-H = 2Re, respec-
tively, to 3.329 and 4.251 millihartree. The errors in the MMCC(2,3)/PT results
increase as we enter the RO-H > 2Re region, where quadruples (neglected in the
MMCC(2,3)/PT calculations) become important, but it is more interesting to com-
pare the errors relative to full CI produced by the MMCC(2,3)/PT approach with
the errors produced by the full CCSDT method. As one can see in Table 6, the
use of the MRMBPT-like wavefunction in determining the ground-state triples cor-
rection δ0(2,3) of the MMCC(2,3)/PT approach seems to reduce the degree of the
failure of the CCSDT method in the RO-H > 2Re region. We plan to perform the
MMCC(2,4)/PT calculations in the future.

5.4 Excited States of CH+

One of the main advantages of the MMCC/PT formalism is that we can study
ground and excited states. In principle, for a given M-dimensional model space

M0, we can calculate up to M different MRMBPT wavefunctions |Ψ̄ (MRMBPT)
µ 〉,

Eqs. (86) or (87), which represent the approximate forms of ground and excited
states |Ψµ〉 that enter the MMCC (e.g. MMCC(2,3) and MMCC(2,4)) correc-
tions to CC and EOMCC (e.g. CCSD and EOMCCSD) energies. If we have an
a priori knowledge about the dominant orbital excitations that define the excited
states of interest (and the leading EOMCCSD amplitudes ri

a and ri j
ab may help us

in this regard), we can use the corresponding orbitals as active orbitals for the
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MRMBPT and subsequent MMCC/PT calculations. There is, however, an issue

of matching the MRMBPT wavefunctions |Ψ̄ (MRMBPT)
µ 〉, Eq. (86) or (87), with

the corresponding EOMCC states R(A)
µ eT (A) |Φ〉 (in the case of the MMCC(2,3)/PT

and MMCC(2,4)/PT calculations, the EOMCCSD states R(CCSD)
µ eT (CCSD) |Φ〉), so

that we read the correct wavefunctions |Ψ̄ (MRMBPT)
µ 〉 into the MMCC corrections

δ (A)
µ . This issue can be resolved by constructing, for example, the overlaps of

all zeroth-order states |Ψ̄ (P)
µ 〉, Eq. (78), obtained by diagonalizing the Hamilto-

nian in the model space M0, with all EOMCC states R(A)
µ eT (A) |Φ〉 of interest. In

most cases, only one specific zeroth-order state |Ψ̄ (P)
µ 〉 gives a large overlap with

a given EOMCC state R(A)
µ eT (A) |Φ〉. If there are two or more states |Ψ̄ (P)

µ 〉 that

form similar overlaps with a given EOMCC state R(A)
µ eT (A) |Φ〉, we can calculate

the more complete MRMBPT wavefunctions |Ψ̄ (MRMBPT)
µ 〉, Eq. (86) or (87), that

correspond to these zeroth-order states |Ψ̄ (P)
µ 〉 and search for the |Ψ̄ (MRMBPT)

µ 〉 state

that gives the maximum overlap with a given EOMCC state R(A)
µ eT (A) |Φ〉. The

resulting overlap enters the MMCC correction δ (A)
µ anyway (see, e.g. the overlap

denominator 〈Ψ (MRMBPT)
µ |R(A)

µ eT (A) |Φ〉 in Eq. (26)), and we can see now that the
same denominator serves as a very important diagnostic for matching the EOMCC

states R(A)
µ eT (A) |Φ〉 and the MRMBPT wavefunctions |Ψ̄ (MRMBPT)

µ 〉 for the pur-

pose of determining the corresponding energy corrections δ (A)
µ . In the specific case

of the MMCC(2,3)/PT and MMCC(2,4)/PT approaches tested in this work, we

matched the MRMBPT wavefunctions |Ψ̄ (MRMBPT)
µ 〉 with the EOMCCSD states

R(CCSD)
µ eT (CCSD) |Φ〉 by analyzing first the overlaps of the zeroth-order states |Ψ̄ (P)

µ 〉,
Eq. (78), with the EOMCCSD wavefunctions of interest. If this was not sufficient
for determining the matching pairs of the MRMBPT and EOMCCSD states, we cal-

culated the complete overlap denominators 〈Ψ̄ (MRMBPT)
µ |R(CCSD)

µ eT (CCSD) |Φ〉, which
we need to determine the MMCC(2,3)/PT and MMCC(2,4)/PT corrections to the
EOMCCSD energies anyway (see the denominators Dµ in Eqs. (93), (94), and (96)).

We illustrate the performance of the MRMBPT-corrected MMCC theory in
excited-state calculations by analyzing the results of benchmark MMCC(2,3)/PT
and MMCC(2,4)/PT calculations for the valence excited states of the CH+ ion (see
Table 7). We compare the MMCC(2,3)/PT and MMCC(2,4)/PT results for a few
low-lying excited states of CH+ of the 1Σ+, 1Π , and 1∆ symmetries, obtained with
the [5s3p1d/3s1p] basis set described in [271] and the ground-state RHF orbitals,
with the results of the corresponding full CI calculations reported in [271, 272].
Along with the MMCC/PT and full CI data, we show the EOMCCSD and full
EOMCCSDT results (the latter ones obtained in [95]) and the results obtained
with the perturbative triples response CC3 model [91]. In addition to the equilib-
rium geometry RC-H = Re (RC-H is the C–H separation and Re is the equilibrium
value of RC-H), we consider two stretched geometries of CH+, so that we can see
how good the MMCC/PT theory can be in calculations of excited-state potential
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energy curves along bond breaking coordinates. We also compare the MMCC/PT
results with the results of the MMCC/CI calculations reported in [96, 97]. In

calculating the MRMBPT wavefunctions |Ψ̄ (MRMBPT)
µ 〉, Eq. (86), that enter the

MMCC(2,3)/PT and MMCC(2,4)/PT energy formulas, Eqs. (93) and (94), we used
the same set of active orbitals as used in the previously reported MMCC(2,3)/CI
and MMCC(2,4)/CI calculations [96, 97]. Thus, the active space employed in the
calculations for CH+ consisted of the highest-energy occupied orbital, 3σ , and
the three lowest-energy unoccupied orbitals, 1πx ≡ 1π , 1πy ≡ 2π , and 4σ . This
choice of active space reflects the nature of orbital excitations defining the valence
excited states of CH+ shown in Table 7 and the nature of the bond breaking in
this system (see [93, 94, 96, 97] for details). Finally, we compare the results of
the MMCC(2,3)/PT and MMCC(2,4)/PT calculations with the CR-EOMCCSD(T)
results reported in [98] as well as with the corresponding MMCC/CI results [96,97].
Let us recall that the CR-EOMCCSD(T) method is a “black-box” variant of the
MMCC(2,3) approximation, in which we do not have to select active orbitals to
determine the triples corrections to CCSD/EOMCCSD energies derived from the
general MMCC formalism.

We begin our discussion with the vertical excitation energies at the equilibrium
geometry. In this case, the doubly excited nature of the first-excited 1Σ+ (2 1Σ+)
state and the lowest-energy 1∆ (1 1∆ ) state, and the partially biexcited character of
the second 1Π (2 1Π ) state (cf., e.g. [79, 93, 94, 96, 97,271]) cause significant prob-
lems for the EOMCCSD approach. The errors in the EOMCCSD excitation energies
for these three states, relative to the corresponding full CI values, are 0.560, 0.924,
and 0.327 eV, respectively. The conventional linear response CC approach to triple
excitations via the CC3 method of Jørgensen and co-workers [86, 90–92] reduces
these large errors to 0.219–0.318 eV [91], which is a significant improvement, but
if we want to obtain errors which are less than 0.1 eV with the standard EOMCC
methodology, we must use the full EOMCCSDT approach (or its active-space EOM-
CCSDt variant [94,95]). The full EOMCCSDT approach reduces the relatively large
unsigned errors in the EOMCCSD results for the 2 1Σ+, 1 1∆ , and 2 1Π states to
0.074, 0.040, and 0.060 eV, respectively.

As shown in Table 7, the CR-EOMCCSD(T), MMCC(2,3)/CI, and MMCC
(2,3)/PT methods, which represent three different flavors of the MMCC(2,3) the-
ory and which are all much less expensive than the iterative CC3 and EOMCCSDT
approaches, are capable of providing the results of near-EOMCCSDT quality.
Indeed, the errors in the vertical excitation energies calculated at RC-H = Re for
the 2 1Σ+, 1 1∆ , and 2 1Π states of CH+, which have significant double excitation
components, obtained with the non-iterative CR-EOMCCSD(T), MMCC(2,3)/CI,
MMCC(2,3)/PT approximations, are 0.084–0.117 eV for the 2 1Σ+ state, 0.027–
0.090 eV for the 1 1∆ state, and 0.105–0.176 eV for the 2 1Π state. This should be
compared to the 0.560, 0.924, and 0.327 eV errors, respectively, in the EOMCCSD
results and the 0.230, 0.318, and 0.219 eV errors, respectively, obtained with the
CC3 method. For the remaining two states shown in Table 7 (the third 1Σ+ state and
the lowest-energy 1Π state), which at RC-H = Re are dominated by single excita-
tions [79, 93, 94, 96, 97, 271], the errors in the CR-EOMCCSD(T), MMCC(2,3)/CI,
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and MMCC(2,3)/PT results are 0.000–0.051 eV and 0.007–0.015 eV, respectively.
In this case, the CR-EOMCCSD(T), MMCC(2,3)/CI, and MMCC(2,3)/PT meth-
ods provide the results of the CC3 or near-EOMCCSDT quality. The standard
EOMCC methods, including the basic EOMCCSD approximation, have no trou-
bles with describing excited states dominated by one-electron transitions, but it
is encouraging to observe that even in this case all three MMCC(2,3) methods,
including the MMCC(2,3)/PT approximation developed in this work, improve the
EOMCCSD results. The MMCC(2,4)/PT approach provides small improvements in
the MMCC(2,3)/PT results for the 2 1Σ+ and 1 1∆ states, while keeping the high
accuracy of the MMCC(2,3)/PT calculations for the remaining states.

The very good performance of the MMCC(2,3)/PT and other MMCC(2,3) meth-
ods is not limited to vertical excitation energies at the equilibrium geometry. As
shown in Table 7, the CR-EOMCCSD(T), MMCC(2,3)/CI, and MMCC(2,3)/PT
approaches are capable of providing an accurate description of excited-state poten-
tials of CH+ at larger values of RC-H, where all excited states listed in Table 7 gain a
considerable multi-reference character [93–97]. The very large (even∼ 1 eV) errors
in the EOMCCSD results for the excited-state potential energy curves of CH+, rel-
ative to the corresponding full CI potentials, are reduced in the CR-EOMCCSD(T),
MMCC(2,3)/CI, and MMCC(2,3)/PT calculations to 0.1 eV or less. Indeed, the
errors in the EOMCCSD excitation energies, relative to full CI, for the two low-
est excited states of the 1Σ+ symmetry, the two lowest 1Π states, and the lowest
1∆ state are 0.668, 0.124, 0.109, 0.564, and 1.114, respectively, at RC−H = 1.5Re,
and 0.299, 0.532, 0.234, 0.467, and 1.178 eV, respectively, at RC−H = 2Re. The
MMCC(2,3)/PT method reduces these large unsigned errors to 0.102, 0.053, 0.083,
0.022, and 0.085 eV, respectively, at RC−H = 1.5Re, and 0.079, 0.021, 0.133, 0.123,
and 0.005 eV, respectively, at RC−H = 2Re. As in the RC−H = Re case, the only stan-
dard EOMCC approach that can provide the results of similar quality is the very
expensive full EOMCCSDT method (cf. Table 7). The MMCC(2,4)/PT approach
provides further improvements in a few cases or does not change the already very
good MMCC(2,3)/PT energies.

The results in Table 7 show that all three MMCC(2,3) approximations, including
CR-EOMCCSD(T), MMCC(2,3)/CI, and MMCC(2,3)/PT, provide similar improve-
ments in the EOMCCSD energies. The improvements are particularly substantial
for the excited states dominated by doubles and for the excited-state potentials at
stretched internuclear geometries, where all excited states of CH+ gain a significant
multi-reference character. It is interesting to learn that the basic and relatively sim-
ple MMCC(2,3) approximation is capable of providing considerable improvements
in the EOMCCSD results, independent of the form of the wavefunction |Ψµ〉 used in
the MMCC(2,3) correction formula. The CR-EOMCCSD(T) approach uses the per-
turbative, EOMCCSDT-like, wavefunctions |Ψµ〉, the MMCC(2,3)/CI method uses
the MRCI-like wave functions |Ψµ〉, and the MMCC(2,3)/PT scheme described in
detail in this work uses the MRMBPT-like wavefunctions |Ψµ〉 defined by Eqs.
(86) or (87), and yet the resulting MMCC(2,3) excitation energies for CH+ are
very similar. This demonstrates the robustness of the MMCC formalism, which
is capable of improving the results of conventional CC and EOMCC calculations
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independent of the specific form of |Ψµ〉 used to calculate the energy corrections

δ (A)
µ or δ (CCSD)

µ . From the point of view of this work, it is encouraging to observe
that we can considerably improve the CCSD and EOMCCSD results using the low-
order MRMBPT-like wavefunctions |Ψµ〉 defined by Eq. (86). As explained earlier,
the MMCC(2,3)/PT is much less expensive than the MMCC(2,3)/CI approach, since
we do not have to solve iterative MRCI-like equations to obtain the wavefunctions
|Ψµ〉 that enter the MMCC(2,3)/PT energy expression. Also, if the active space is
small, the MMCC(2,3)/PT method is less expensive than the CR-EOMCCSD(T)
approach, since the summation over i < j < k, a < b < c in Eq. (93) includes only the
selected types of triple excitations relative to |Φ〉 that are included in the MRMBPT

wavefunctions |Ψ̄ (MRMBPT)
µ 〉, Eqs. (86) or (87). Finally, it is worth noticing that

there is no apparent need to reoptimize orbitals to obtain an accurate description
of excited states of CH+ in the MMCC(2,3)/PT calculations (the ordinary RHF
orbitals seem to suffice), although it would be interesting to examine the role of
orbital optimization in MRMBPT calculations that precede the MMCC(2,3)/PT cal-
culations. The MMCC(2,4)/PT method improves the description of the CH+ system
somewhat, but not to a degree that would favor this approach over the less expensive
MMCC(2,3)/PT approximation.

6 Summary, Concluding Remarks, and Future Perspectives

In this chapter, a novel electronic structure theory, termed MMCC/PT, which com-
bines the CC/EOMCC method with the low-order multi-reference perturbation
theory, has been described. The MMCC/PT approaches have been formulated using
diagrammatic methods. The key elements of the MMCC(2,3)/PT and MMCC(2,4)/
PT methods, including the generalized moments of the CCSD and EOMCCSD
equations that enter the MMCC(2,3)/PT and MMCC(2,4)/PT energy corrections,
have been efficiently implemented using the idea of diagram factorization. This
has given us an opportunity to discuss the most essential steps in diagrammatic
considerations that lead to highly efficient implementations of all CC, EOMCC,
and MMCC methods. The performance of the basic MMCC/PT approximations
has been illustrated by the results of test calculations for the bond breaking in
HF, F2, and H2O, and the excited states of CH+. The test calculations show that
the MMCC(2,3)/PT and MMCC(2,4)/PT approaches provide a good description of
bond breaking and excited states dominated by doubles, eliminating failures of the
conventional CC/EOMCC methods at larger internuclear distances and for excited
states dominated by two-electron transitions without invoking expensive steps of
high-order CC/EOMCC methods.

Clearly, several issues need further study. The role of different choices of active
orbitals should be examined. The majority of multi-reference calculations are per-
formed with the orbitals optimized at the CASSCF level. In this work, we have only
used the ground-state RHF orbitals. It would be also interesting to examine different
types of the MRMBPT wavefunctions that enter the MMCC/PT corrections. In this
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work, we have tested a simplified, “home-grown”, MRMBPT-like scheme based on
the partitioning of the Hamiltonian into the model-space (P-space) and Q-space
components (the latter component originates from single and double excitations
from a multi-dimensional model space). The majority of contemporary MRMBPT
calculations are performed with schemes, such as CASPT2, MC-QDPT, or MRMP2
mentioned in the Introduction. Several other low-order MRMBPT have been pro-
posed in literature, as discussed in the Sect. 1. It would be useful to test how the
conclusions of this work depend on the particular form of the MRMBPT theory
used to provide wavefunctions |Ψµ〉 for MMCC calculations.
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Appendix 1. An Introduction to the Diagrammatic Methods
of Many-Body Theory

To introduce the diagrammatic methods of many-body theory, we begin our consid-
erations with selecting a Fermi vacuum state |Φ〉, which is a single-determinantal
state that is typically chosen to provide a reasonable approximation to the ground
electronic state of a given many-fermion system of interest. The Fermi vacuum state
(reference state) is diagrammatically represented by an empty space. All other Slater
determinants are represented with the help of oriented lines, pointing either upward
for particle states (spin-orbitals unoccupied in the reference |Φ〉) or downward for
hole states (spin-orbitals occupied in the reference |Φ〉), with labels associated with
the corresponding spin-orbital excitations relative to |Φ〉, and outgoing or incoming
into a simple vertex.

We represent the second-quantized operators entering a given operator product
with basic diagrams. In the design of these diagrams, we use vertices with incom-
ing lines representing annihilation operators and outgoing lines representing the
creation operators. Each basic vertex contains information about matrix elements
in a spin-orbital basis defining the operator. For instance, the Slater determinant
|Φa

i 〉= aaai|0〉 is represented by

a i
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and 〈Φa
i |= 〈0|(aaai)† = 〈0|aiaa is represented by

i a

We assign different vertices to represent different operators. Since the one-body
operator brings a pair of creation and annihilation operators, its diagrammatic rep-
resentation contains only two oriented lines. Likewise, the diagram representing the
two-body operator, which brings two pairs of creation and annihilation operators,
contains four oriented lines, and so on and so forth.

There are several diagrammatic representations [260, 261]; the most popular
are the Hugenholtz and Goldstone representations. The Hugenholtz representation
employs the antisymmetrized matrix elements in the second-quantized definitions of
operators (e.g. vrs

pq = 〈pq|v|rs〉− 〈pq|v|sr〉 for the two-body operator VN) while the
Goldstone representation is based on the second-quantized form of operators that
uses non-symmetric matrix elements (e.g. 〈pq|v|rs〉 in the case of VN). In our anal-
ysis, we use the Hugenholtz representation, which produces fewer distinct resulting
diagrams than the Goldstone representation. The Goldstone representation is useful
in developing spin-adapted formalisms for spin-free Hamiltonians [260, 261].

The basic diagrams (in the Hugenholtz representation) for the one- and two-body
parts of the electronic Hamiltonian in the normal-ordered form, FN and VN ,

FN = ∑
p,q

f q
p N[apaq]≡ f q

p N[apaq] (119)

and
VN = 1

4 ∑
p,q,r,s

vrs
pqN[apaqasar]≡ 1

4 vrs
pqN[apaqasar] , (120)

respectively, and the cluster and excitation operators T1, T2, Rµ,1, and Rµ,2 are shown
in Fig. 15.

The spin-orbitals that are attached to the oriented lines are referred to as free if
they represent summation indices and as fixed otherwise. As shown in Fig. 15, the
cluster operators and the linear excitation operators have the same diagrammatic
form, the only difference is in the way we draw the corresponding vertices. In par-
ticular, T1 and T2 use unfilled oval vertices, while Rµ,1 and Rµ,2 use circled dots. A
diagram stripped of the free labels is called a skeleton or, better, an oriented skeleton.
The oriented skeleton determines the weight of a diagram (a combinatorial coeffi-
cient that enters the algebraic expression). The spin-orbital indices p,q,r,s can either
be occupied or unoccupied in the Fermi vacuum. According to standard convention,
the indices i, j, . . . label occupied spin-orbitals, while a,b, . . . refer to unoccupied
spin-orbitals in the Fermi vacuum |Φ〉. For example, the one-body component of
the Hamiltonian in the normal-ordered form, HN , can be expressed as

FN = ∑
a,b

f b
a N[aaab]+∑

i, j

f j
i N[aia j]+∑

i,a

f a
i N[aiaa]+∑

i,a

f i
aN[aaai]. (121)
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j

(f)(e)

Fig. 15 The Hugenholtz representation of (a) FN ; (b) VN ; (c) T1; (d) T2; (e) Rµ,1; and (f) Rµ,2

a

b

j

i
i ia a

Fig. 16 The Hugenholtz representation of FN

The corresponding diagrams are shown in Fig. 16. The two-body component of HN ,
VN , can be partitioned in a similar way, as shown in Fig. 17.

After assigning skeletons (or diagrams) to the basic operators, the diagrammatic
calculation proceeds as follows:

1. Represent the operators by appropriate skeletons following the vertical time axis
(as described in Sect. 4.3), that is, placing the operators from the bottom to the top
corresponding to the right to left order of the operators in the algebraic expression
when they act on the functions (vectors) in the Fock space. For instance, the
operator 1

2(VNT 2
1 ) is represented as
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a b

c d i j

k l
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b

j

i a

c

b

i
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i
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a

a

k

i j

k

a

j

i

bi

j

Fig. 17 The Hugenholtz representation of VN

2. Form all permissible resulting skeletons by connecting the lines in all possible
ways. Then, form all nonequivalent resulting diagrams, in which the oriented
lines are labeled with their corresponding spin-orbital indices, representing only
the non-vanishing contraction schemes that result when the Wick’s theorem is
applied, that is,

(b)(a)

q q
q

q

p
p

p p

where (a) ap aq = δpqH(q) and (b) ap aq = δpq[1−H(q)].
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The H(q) step function is equal to 1 for q being a hole and 0 for q representing
a particle and δpq is the usual Kronecker delta.

3. Lastly, assign the algebraic expressions to all nonequivalent permissible result-
ing diagrams. The final expression for the operator product of interest is a sum of
the algebraic expressions corresponding to all nonequivalent resulting diagrams
allowed by a given many-body theory. In general, the algebraic expression cor-
responding to a given diagram is a product of (a) the weight factor, (b) the sign
factor, (c) the scalar factor, and (for example, in the wavefunction expressions)
(d) the operator part, accompanied by a summation over all relevant hole and
particle indices, if such summations exist in the operators. For the connected
Hugenholtz diagrams, the weight factor is specified by ( 1

2 )m, where m is the
number of pairs of “equivalent” lines. A pair of equivalent lines is defined as
being two lines originating at the same vertex and ending at another, but same
vertex, and going in the same direction. We must remember, however, that the
identically oriented lines carrying fixed (i.e., not summed) spin-orbital indices
can never be regarded as equivalent lines. The scalar factor is a product of matrix
elements associated with the individual vertices entering the resulting diagram.
The operator part (if it appears in the expression) is a product of the creation and
annihilation operators associated with the uncontracted external lines.

The drawback of the Hugenholtz representation is that Hugenholtz diagrams do
not specify the overall sign of the contribution of the diagram. This is due to the fact
that the basic Hugenholtz diagrams, such as VN or T2, use antisymmetrized matrix
elements vrs

pq, ti j
ab, etc. In order to determine the sign, it is necessary to draw one

Goldstone representative, called the Brandow diagram, for each Hugenholtz dia-
gram [260]. This can be done by “expanding” the Hugenholtz vertices. In other
words, we replace all basic Hugenholtz vertices by Brandow vertices (the Brandow
representations of FN and VN are shown in Figs. 18 and 19), while keeping the
directions of the lines and the connectivity intact. Usually more than one possibility
exists, since one can usually draw several Goldstone diagrams for each Hugenholtz
diagram, but this is not a problem here: we can choose any Goldstone representa-
tive of a given Hugenholtz diagram as a Brandow diagram. The final results do not
depend on that choice. Once the Brandow diagram is drawn, we determine the sign
factor for it by counting the number of loops (l) and the number of internal hole
lines (h), and by using the sign formula (−1)l+h.

a

b

x

i
i a a i

j

Fig. 18 The Brandow representation of FN corresponding to Fig. 16
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Fig. 19 The Brandow representation of VN corresponding to Fig. 17

Appendix 2. The Structure of the Similarity-Transformed
Hamiltonian of the CCSD Theory

By using the Campbell-Hausdorff-Baker formula, one can easily show that the
H̄ = e−T HeT operator can be written as a sum of the bare Hamiltonian H and
commutators of H with one or more T operators (cf., e.g. [19, 21, 39, 260]. This
is equivalent to the expansion of H̄ in terms of the connected diagrams obtained
by connecting zero, one, or more T vertices to H, as in Eqs. (9) and (12). This
means that H̄ is represented by a finite set of connected diagrams independent of
the number of fermions in a system and truncation in T (cf. [19, 21, 39, 260]).

In order to construct the H̄(CCSD) diagrams, we follow the diagrammatic rules
discussed in Appendix 1. Thus, we contract the Hamiltonian in the normal ordered
form, HN , with a number (zero, one or more) of T (CCSD) operators appearing in the

eT (CCSD)
expansion to obtain the connected the product of HN and eT (CCSD)

. Since
the Hamiltonians used in chemistry contain at most two-body interactions, HN can
be contracted with at most four cluster operators T (CCSD) to produce the connected

diagrams of H̄(CCSD)
N .

The one- and two-body components of H̄(CCSD) have similar diagrammatic forms
as the one- and two-body components of the Hamiltonian HN . The only difference
is in the manner we draw the interaction lines; the similarity transformed Hamil-
tonian H̄(CCSD) uses the wavy interaction line, as in Figs. 20–23, while the bare
Hamiltonian HN uses the dashed line, as in Figs. 18 and 19.
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Fig. 20 One-body components of H̄(CCSD) (the h̄i
a component is not shown, since h̄i

a represents
the CCSD equations projected on a singly excited determinant |Φa

i 〉 and, as such, vanishes)

To illustrate how we use the diagrammatic methods in deriving the explicit
algebraic expressions for H̄(CCSD),

H̄(CCSD) = 〈Φ|H|Φ〉+(HNeT1+T2)C = 〈Φ|H|Φ〉+ h̄q
papaq + 1

4 h̄rs
pqapaqasar + . . . ,

(122)
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Fig. 21 Two-body components of H̄(CCSD) (the h̄i j
ab component is not shown, since h̄i j
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the CCSD equations projected on a doubly excited determinant |Φab

i j 〉 and, as such, vanishes)
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Fig. 21 (Continued)
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Fig. 21 (Continued)

we show an example on how one can obtain the diagrams contributing to the matrix
elements h̄b

a,

which define one specific (particle-particle) type of the one-body components of
H̄(CCSD). In this case, our goal is to generate diagrams of the above particle-particle

form from the connected product of HN and eT (CCSD)
. The resulting diagrams must

contain an oriented line above and below the vertex; both lines should be directed
upward as particle lines a and b, as in the above graph. We can expand the H̄(CCSD)

operator in the following manner:
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Fig. 22 Three-body components of H̄(CCSD) other than h̄i jk
abc ≡M

i jk
0,abc(2)

H̄(CCSD) = 〈Φ|H|Φ〉+(HNeT (CCSD)
)C

= 〈Φ|H|Φ〉+[(FN(1 + T1 + T2 + 1
2 T 2

1 + . . .)+

VN(1 + T1 + T2 + 1
2 T 2

1 + . . .)]C. (123)

Let us identify which terms in Eq. (123) contribute to h̄b
a by forming first the non-

oriented Hugenholtz skeletons. We begin with the first term, FN , which is represented
diagrammatically in Fig. 16. As shown in Fig. 16, the leftmost diagram in that figure
satisfies the above criteria and hence contributes to h̄b

a. Next, we consider the (FNT1)C
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(b) h̄k ji
lba

Fig. 22 (Continued)

term, which produces one resulting non-oriented Hugenholtz skeleton that contains
one line above the vertex as well as one line below the vertex, as shown below:

When we analyze other terms in Eq. (123) in the same fashion, we obtain all of the
resulting non-oriented Hugenholtz skeletons of h̄b

a, which are
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Fig. 22 (Continued)

The corresponding oriented Hugenholtz diagrams for h̄b
a with their respective

weights are as follows:

w=1

b

a

a
m

b

e
m

b

a

e

b
m
n

a
a

n
b

me

w=1 w=1 w w=1=1/2

The corresponding Brandow diagrams for h̄b
a with their corresponding sign factors

are shown below
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Fig. 23 Four-body components of H̄(CCSD) other than h̄i jkl
abcd ≡M

i jkl
0,abcd(2)

These diagrams yield the following algebraic expression for h̄b
a:

h̄b
a = f b

a − f b
mtm

a + veb
matm

e − 1
2 veb

mntmn
ea − veb

mntm
e tn

a . (124)

All of the resulting diagrams for one-, two-, three-, and four-body components
of H̄(CCSD) are obtained in a similar way. They are shown in Figs. 20–23. Figs. 24
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Fig. 23 (Continued)

and 25 show all of the resulting diagrams corresponding to the ground-state triply
and quadruply excited moments of the CCSD equations, Mi jk

0,abc(2) and M
i jkl
0,abcd(2),

respectively, which can also be regarded as the particular examples of the three- and
four-body components of H̄(CCSD). Tables 8–11 summarize all the algebraic expres-
sions of the one-, two-, three-, and four-body components of H̄(CCSD), including
M

i jk
0,abc(2) and M

i jkl
0,abcd(2), which are obtained by reading the diagrams shown in

Figs. 20–25.
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Fig. 23 (Continued)

Appendix 3. Factorization of Coupled-Cluster Diagrams

The diagrammatic technique is a very powerful tool. However, if we program the
resulting diagrams in a naive manner, i.e., one by one and with the explicit loops that
correspond to summations over spin-orbital indices that label internal lines, this will
give an inefficient and hence impractical computer code. In this section, we rederive

the expressions for the one- and two-body components of H̄(CCSD), H̄(CCSD)
1 and

H̄(CCSD)
2 , respectively, in such a way that only linear terms (binary tensor products)

with redefined vertices are retained. Ultimately, the factorized forms of H̄(CCSD)
1

and H̄(CCSD)
2 are used to define the higher-rank components of H̄(CCSD), such as the

three- and four-body components H̄(CCSD)
3 and H̄(CCSD)

4 , as well as other interme-

diates entering the CC expressions of interest, such as M
i jk
µ,abc(2) and M

i jkl
µ,abcd(2),

which are naturally expressed via H̄(CCSD)
3 and H̄(CCSD)

4 .
To illustrate the diagrammatic factorization technique and the computational

benefits that it offers, we analyze an example of h̄b
a, which is expressed in a diagram-
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Fig. 24 Diagrammatic representation of M
i jk
0,abc(2)

matic form in Fig. 26. Clearly, the diagram A in Fig. 26 is a nonlinear contribution.
Hence, diagram A is a good candidate for demonstrating the idea and the benefits
of factorization. The cost of evaluating this diagram scales as N 5 with the system
size N or n2

on3
u.

Figure 27 presents the factorization of diagram A and its decomposition, for com-
putational efficiency, into independently calculated parts. After factorization, the
original computational cost associated with diagram A, n2

on3
u, is reduced to non2

u (the
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(b)

Fig. 24 (Continued)

cost associated with diagram D) plus n2
on2

u (the cost associated with the intermediate
C which is defined as diagram B). Furthermore, if we realize that the intermedi-

ate C actually takes one of the forms of H̄(CCSD)
1 , which may have been calculated

already, we can take advantage of this fact by extending the definition of the above
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Fig. 25 Diagrammatic representation of M
i jkl
0,abcd(2)

intermediate C as one of the one-body components of H̄(CCSD)
1 , in this case h̄b

n,
which is defined in part (a) of Fig. 20. As a result, diagram D, which has initially
represented a single diagram A in Fig. 27, becomes now equivalent to
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Table 8 Explicit algebraic expressions for the one- and two-body body matrix elements of H̄(CCSD)

(designated by h̄) shown in Figs. 20–21. The h̄i
a and h̄i j

ab matrix elements are not shown, since they
represent the CCSD equations projected on singly and doubly excited determinants, |Φa

i 〉 and
|Φab

i j 〉, respectively, and, as such, vanish

Expressiona Figure

h̄a
i f a

i + vae
imtm

e 20 (a)

h̄b
a f b

a + vbe
amtm

e − 1
2 veb

mntmn
ea − veb

mntm
e tn

a − f b
mtm

a 20 (b)

h̄ j
i f j

i + v je
imtm

e + 1
2 ve f

mit
m j
e f + ve f

mit
m
e t j

f + f e
i t j

e 20 (c)

h̄bc
ai vbc

ai − vbc
mit

m
a 21 (a)

h̄ka
i j vka

i j + vea
i j tk

e 21 (b)

h̄cd
ab vcd

ab + 1
2 vcd

mntmn
ab −Aabvcd

amtm
b + vcd

mntm
a tn

b 21 (c)

h̄kl
i j vkl

i j + 1
2 ve f

i j tkl
e f +A klvke

i j t l
e + ve f

i j tk
e t l

f 21 (d)

h̄ia
jb via

jb + vae
b jt

i
e− via

jmtm
b − vae

m jt
mi
be − vae

m jt
i
et

m
b 21 (e)

h̄ic
ab − f c

mtim
ab + vic

ab + vec
abti

e−Aabvic
amtm

b +Aabvec
mbtim

ae 21 (f)

+ 1
2 vic

mntmn
ab + vic

mntm
a tn

b −Aabvec
amti

et
m
b + vec

mntm
a ti

et
n
b

−vec
mntm

e tin
ab−Aabvec

mntim
ae tn

b + 1
2 vec

mntmn
ab ti

e

h̄ jk
ia f e

i t jk
ea + v jk

ia − v jk
imtm

a +A jkvek
ia t j

e +A jkv je
imtmk

ea 21 (g)

+ 1
2 v f e

ia t jk
f e−A jkvek

imtm
a t j

e + v f e
ia t j

f t
k
e − v f e

imtm
a tk

e t j
f

+v f e
imtm

e t jk
f a +A jkv f e

imtmk
ea t j

f − 1
2 v f e

imt jk
f et

m
a

a Summation over repeated upper and lower indices is assumed; f q
p = 〈p| f |q〉

and vrs
pq = 〈pq|v|rs〉 − 〈pq|v|sr〉 are the one- and two-electron integrals in a

molecular spin-orbital basis {p} corresponding to the Fock operator ( f ) and
the two-body part of the Hamiltonian (v).

D A E

corresponding to diagrams A and E in the original, not factorized, diagrammatic
formulation of h̄b

a, shown in Fig. 26. Thus, the fully factorized version of h̄b
a, shown

in Fig. 28, uses four diagrams, which are considerably less expensive to calculate
than the original five diagrams shown in Fig. 26.
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Table 9 Explicit algebraic expressions for the three- and four-body body matrix elements elements
of H̄(CCSD) (designated by h̄) shown in Figs. 22–23

Expressiona Figure

h̄i jd
abc Aa/bcvde

nmtn
c tm

b t ji
ea +Aab/cA

i jvde
nmtn

c t j
e tmi

ba 22 (a)

−Aa/bcA
i jvde

nmt jn
bc tmi

ea + 1
2 Aa/bcvde

nmtnm
cb t ji

ea

+Aab/cA
i jvd j

nmtn
c tmi

ba −Aabcvde
mbtm

c t ji
ea−Aac/bA

i jved
bmt j

e tmi
ca

+Aa/bcvde
cbt ji

ea−Aab/cA
i jvd j

cmtmi
ba

h̄k ji
lba −AabA

i j/kv f e
lmtk

f t
m
b t ji

ea−A i/ jkv f e
lmtk

f t
j
e tmi

ba 22 (b)

+AabA
i/ jkv f e

lmt jk
b f t

mi
ea − 1

2 A i/ jkv f e
lmtk j

f et
mi
ba

−A i jkve j
lmtk

e tmi
ba +AabA

i j/kve f
bl tk

e t ji
f a

−AabA
ik/ jv je

mlt
m
b tki

ea +AabA
i j/kvke

lbt ji
ea−A i/ jkvk j

lmtmi
ba

h̄dei
cba −Aab/cved

cmtmi
ba +Aab/cved

nmtn
c tmi

ba 22 (c)

h̄k ji
mla A i j/kvke

mlt
ji
ea +A i j/kv f e

mlt
k
f t

ji
ea 22 (d)

h̄c ji
bka Aabvce

bkt ji
ea−Aabvce

mktm
b t ji

ea 22 (e)

−A i jv jc
kmtmi

ba −A i jvec
kmt j

e tmi
ba

h̄lk ji
mcba −Aab/cA

i/ jk/lvle
mntk j

ce tni
ba +Aac/bA

i j/klv f e
mbti j

aet lk
f c 23 (a)

−Aab/cA
i/ jk/lv f e

mntl
f t

k j
ce tni

ba−Aac/bA
i j/klv f e

mntkl
c f t

n
b t ji

ea

h̄ek ji
dcba −Aab/c/dA i/ jkve f

dmtk j
c f t

mi
ba +Aab/cdA

ik/ jv je
mntim

abtnk
dc 23 (b)

+Aab/c/dA i/ jkve f
nmtn

d tk j
c f t

mi
ba +Aab/cdA ik/ jve f

nmtkn
cd t j

f t
mi
ba

h̄ f e ji
dcba Aad/bcve f

mnt jm
bc tni

da 23 (c)

h̄lk ji
nmba A ik/ jlve f

nmt jl
betki

f a 23 (d)

h̄dk ji
lcba −Aab/cA

i/ jkvde
lmtk j

ce tmi
ba 23 (e)

a Summation over repeated upper and lower indices is assumed; f q
p = 〈p| f |q〉 and vrs

pq =
〈pq|v|rs〉−〈pq|v|sr〉 are the one- and two-electron integrals in a molecular spin-orbital basis {p}
corresponding to the Fock operator ( f ) and the two-body part of the Hamiltonian (v).

The same factorization and cost reduction procedure can be applied to other
components of H̄(CCSD). The computational savings offered by the factorization
procedure in the case of the two-body and other many-body components of H̄(CCSD)

are even more substantial than in the above example. Figures 29 and 30 show the
factorized diagrams of the one- and two-body components of H̄(CCSD), which can
be generated in a recursive, fully vectorized (linearized) manner.
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Table 10 Explicit algebraic expressions for M
i jk
0,abc(2) obtained by reading the diagrams shown in

Fig. 24

Term Expressiona

1 −Aab/c A i/ jk f e
m tim

ab t jk
ec

2a −Aab/c A i/ jk v jk
mc tim

ab

2b Aab/c A i/ jk vie
ab t jk

ec

3a −Aabc A i/ jk vie
mb tm

a t jk
ec

3b −Aa/bc A i jk ve j
am ti

e tmk
bc

3c Aab/c A i/ jk v jk
mn tim

ab tn
c

3d Aab/c A i/ jk ve f
ab ti

e t jk
f c

4a Aab/c A i/ jk vie
mn tm

a tn
b t jk

ec

4b −Aab/c A i/ jk ve f
mc tim

ab t j
e tk

f

4c −Aabc A i/ jk v f e
bm t jk

f c t i
e tm

a

4d Aa/bc A i jk v je
nm ti

e tm
a tnk

bc

5a −Aa/bc A i jk ve j
mn tim

ae tnk
bc

5b Aabc A i/ jk ve f
mb tim

ae t jk
f c

5c 1
2 Aab/c A i/ jk vie

mn tmn
ab t jk

ec

5d − 1
2 Aab/c A i/ jk ve f

mc tim
ab t jk

e f

6a Aab/c A i/ jk ve f
mn tm

a ti
e tn

b t jk
f c

6b Aab/c A i/ jk ve f
mn tim

ab t j
e tk

f tn
c

7 −Aab/c A i/ jk ve f
mn t jk

f c t in
ab tm

e

8a 1
2 Aab/c A i/ jk ve f

mn tim
ab t jk

e f tn
c

8b 1
2 Aab/c A i/ jk ve f

mn t jk
ec tmn

ba ti
f

8c −Aabc A i/ jk ve f
mn tim

ae t jk
b f tn

c

8d −Aab/c A i jk ve f
mn ti

f tn j
ab tmk

ec

a Summation over repeated upper and lower indices is assumed; f q
p = 〈p| f |q〉 and vrs

pq =
〈pq|v|rs〉−〈pq|v|sr〉 are the one- and two-electron integrals in a molecular spin-orbital basis {p}
corresponding to the Fock operator ( f ) and the two-body part of the Hamiltonian (v).
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Table 11 Explicit algebraic expressions for M
i jkl
0,abcd(2) obtained by reading the diagrams shown

in Fig. 25

Term Expressiona

9a Aab/cd A jk/il v jk
mn tim

ab tnl
cd

9b Abc/ad A i j/kl ve f
bc t i j

ae tkl
f d

9c −Aa/b/cd A i j/k/l vek
bm ti j

ae tml
cd

10a Aa/bc/d A i j/k/l vel
mn ti j

ae tmk
bc tn

d

10b −Aa/b/cd A i j/k/l ve f
mb ti j

a f tkm
cd tl

e

10c Aab/cd A ik/ j/l ve j
mn tin

ab tkm
cd tl

e

10d −Aac/b/d A i j/kl ve f
mb ti j

a f tkl
ce tm

d

11a −Aa/bc/d A i j/k/l ve f
mn ti j

a f tnk
bc tml

ed

11b 1
2 Aab/cd A il/ jk ve f

mn tim
ab t jk

e f tnl
cd

11c 1
2 Aad/bc A i j/kl ve f

mn ti j
ae tmn

bc tkl
f d

12a Aab/cd A il/ jk ve f
mn tim

ab t j
e tk

f tnl
cd

12b Aab/c/d A i/ jk/l ve f
mn tim

ab t jk
ec t l

f tn
d

12c Aad/bc A i j/kl ve f
mn ti j

am tm
b tn

c tkl
f d

a Summation over repeated upper and lower indices is assumed; f q
p = 〈p| f |q〉 and vrs

pq =
〈pq|v|rs〉−〈pq|v|sr〉 are the one- and two-electron integrals in a molecular spin-orbital basis {p}
corresponding to the Fock operator ( f ) and the two-body part of the Hamiltonian (v)

A E

Fig. 26 Diagrammatic representation of h̄b
a
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Fig. 27 Example of diagram factorization

Fig. 28 Fully factorized diagrammatic formulation of h̄b
a
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Fig. 30 Factorized two-body components of H̄(CCSD)
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13. J. Čı́žek, J. Paldus, Int. J. Quantum Chem. 5, 359 (1971)
14. F. Coester, Nucl. Phys. 7, 421 (1958)
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186. J. Mášik, I. Hubač, Adv. Quantum Chem. 31, 75 (1999)
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Guidelines on the Contracted Schrödinger
Equation Methodology

Carmela Valdemoro(✉), Diego Ricardo Alcoba, Luis Maria Tel, and
Encarnación Pérez-Romero

Abstract In this article the aim is to provide a guide to the Contracted Schrödinger
Equation (CSE) methodology for those readers who are not yet familiar with it.
Therefore, the accent is put on giving a clear outlook of the two methods which
are now being sucessfully applied: The iterative solution of the second-order CSE
and the variational and also iterative solution of the second-order hypervirial equa-
tion which can be identified with the continuity equation, or contracted Liouville
equation, and with the Antihermitian form of the 2-CSE (2-ACSE). This is not,
therefore, a proper revision of the subject but an introduction to an accurate and
competitive ab-initio methodology for the study of atoms, molecules and clusters.
The results obtained when applying both these methods to the study of the BeH2

and Li2 molecules are also given here.

Keywords: Contracted Schrödinger equation, anti-Hermitian Contracted
schrödinger equation, reduced density matrix, Correlation matrix, electronic cor-
relation effects, N- and S- representability

1 Introductory Remarks and Plan of This Article

Several reviews on the theory of the second-order Contracted Schrödinger Equation
(2-CSE) as well as on its methodology have recently been published in [1, 2]. In
this article the aim is not, therefore, to carry out a proper revision of the research

C. Valdemoro
Instituto de Fı́sica Fundamental, Consejo Superior de Investigaciones Cientı́ficas, Serrano 123,
28006 Madrid, Spain, e-mail: c.valdemoro@imaff.cfmac.csic.es

D.R. Alcoba
Departamento de Fı́sica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,
Ciudad Universitaria, 1428 Buenos Aires, Argentina

L.M. Tel and E.Pérez-Romero
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on the 2-CSE but to provide a guide to a not yet well known, although competitive,
ab-initio methodology to study the electronic structure of atoms and molecules. In
order to attain this aim whenever possible the technical derivations will be avoided
while emphasis will be placed on comunicating as clearly as possible the chain of
arguments which constitute the essence of the method such as it is now used in
our laboratory. Emphasis will also be placed in signalling the open questions where
further research may still improve the performance of the method and extend the
field of its applications.

A brief history of the development of the method for solving iteratively the
second-order Contracted Schrödinger equation will be described in the following
general Introduction. Then, the basic theoretical notions needed in order to under-
stand the rest of the paper will be described in Sect. II. There are two main distinct
parts in the method for solving the 2-CSE, such as it is applied in our group. The first
part concerns the set of operations needed for performing a complete iteration of the
2-CSE. The second part of the method is formed by the sequence of necessary oper-
ations aimed at correcting the mathematical-physical defects of the second-order
Reduced Density Matrix (2-RDM). These two parts will be described in Sects. III
and IV, respectively. In Sect. V the method which consists in solving the second-
order Hypervirial equation, which is closely related to the 2-CSE, will be described.
In Sect. VI the results of various calculations which illustrate the previous theoreti-
cal developments will be reported. In the final Section a discussion of the questions
which we still consider open will be given.

2 General Introduction

To look directly for the 2-RDM instead of searching first for N-electron wave-
function from which it derives when studying the electronic structure of atoms
and molecules is a theoretical line of research which started more than half a cen-
tury ago with Husimi [3], Löwdin [4], Ayres [5] and Mayer [6]. The highlights
of the contributions in this field ocurred with the paper by Coleman in 1963 [7]
where he described the main 2-RDM properties and defined what was from then
oncalled the N-representability problem. This problem consists in determining the
set of conditions which would be sufficient to guarantee that a matrix, represented
in a two-electron space and satisfying these conditions, derives by integration over
the variables of N-2 electrons from an N-electron wave-function. Both Löwdin
and Coleman’s work, as well as Sanibel School and Symposiums, stimulated the
search for a solution to the N-representability problem. There are several revisions
and books where this rich litterature is analysed [1, 2, 8, 10–12, 23]. In particular,
the important contribution by Garrod and Percus [13] about what they called the
G -matrix, directly related to the 2-RDM, followed by the penetrating analysis of
the G -matrix structure by Garrod, Mihailovich and Rosina [14, 15] are important
milestones in RDM theory.
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In 1976 a remarkable advance in the 2-RDM theory ocurred. Two important
papers were published by Cohen and Frishberg [16] and by Nakatsuji [17]. These
authors reported an integro-diferential equation which was obtained by integrating
the Scrödinger equation, in its first quantization form, over the variables of (N−2)
electrons. The matrix representation of this equation in the two-electron space, can
be schematically expressed as:

E 2D = f unction(0H, 2D, 3D, 4D)

where E is the system energy in the state considered, and pD represents the p-RDM.
Although this equation is represented in the two-electron space it depends not only
on the 2-RDM but also on the 3- and 4-RDMs which contribute in an averaged
way to the equation. The matrix 0H is formed by the usual one- and two-electron
integrals expressed in an orthonormal finite basis set. This equation (called density
equation by Nakatsuji and hierarchy equation by Cohen and Frishberg), which by
itself is extremely attractive, becomes a fundamental one in view of Nakatsuji’s the-
orem which states that when the RDMs involved in the equation are N-representable
then there is a one to one correspondence between the solutions of Schrödinger’s
equation and those of this equation. Unfortunately, due to the dependence of the
equation on the 3- and 4-RDMs, there are more unknowns (the RDM’s elements)
than equations. This caused this equation to be ignored for nearly ten years.

By applying a matrix contracting mapping reported in 1983 by Valdemoro
[18, 19] to the Schrödinger and to the Liouville equations, both represented in the
N-electron space, a second-order Contracted Schrödinger equation (2-CSE) and a
Contracted Liouville Equation (CLE) were respectively obtained. When Valdemoro
presented this result at Coleman’s Symposium in 1985 [20], Löwdin pointed out that
the 2-CSE reminded him of Nakatsuji’s density equation and wondered whether
they were related. Indeed, both equations, although derived within two different
mathematical frameworks (integration in first-quantization and matrix contraction
in second-quantization) can be shown to be equivalent.

In 1992, Valdemoro proposed [21] an approximated method for evaluating the
2-RDM in terms of the 1-RDM. This method was then extended for approximating
the 3- and 4-RDMs in terms of the 1- and 2-RDMs [22]. These approximations
permited to approach the problem of solving the 2-CSE in an iterative form [23]. The
first account of the method for solving the 2-CSE in a spin-free representation was
reported by Colmenero and Valdemoro in 1994 [24]. When applying this method to
the study of the Berillium ground-state, the resulting 2-RDM satisfied the second-
order hypervirial equation (or contracted Liouville equation for the state considered)
with a reasonable accuracy; the values of the 1- and 2-RDM elements approximated
quite closely the values of the corresponding FCI matrices except for three elements
which showed non negligible errors. Finally, the energy error was of the order of
10−3 Hartrees.

This, and other similar calculations showed that the convergence pattern and rate
of the iterative process had to be improved. Also, the fact that the energy obtained
was lower than the FCI one indicated that the RDMS entering as data at each
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iteration were not sufficiently N-representable. In spite of these shortcomings the
results were very encouraging since there was a large margin for improving: the
overall iterative process, the consistency among the approximated 2-, 3-, and 4-
RDMS as well as their construction algorithms. It was also clear to us that the spin
had to be explicitly taken into account.

The research in the following years in order to correct these defects was intense.
Thus, since 1996 the contributions of the groups headed by Nakatsuji [25–27],
Mazziotti [28–30], Harriman [31] and Valdemoro [32–38], have yielded several
versions of the method which, although they may still be improved, can be now
considered competitive. Recently Mazziotti [39], who noticed that the second-order
hypervirial or Liouville equation is the anti-hermitian part of the 2-CSE, has pro-
posed an effective method for solving this equation which he denotes 2-ACSE.
Although we have not been able to show that Nakatsuji’s theorem can be applied
to this equation [40], the results which have been obtained with Mazziotti’s method
for the ground-state of several systems have been comparable with those obtained
with the 2-CSE [41]. The advantage of the 2-ACSE over the 2-CSE is that it does
not involve the 4-RDM, while the disadvantage is that the optimization included in
Mazziotti’s method favours the obtention of the exact solution but limits its use to
the study of the system ground-state.

3 Notation, Definitions and Basic Theoretical Background

3.1 Notation and Definitions

The number N of electrons of the system is considered fixed as well as the
finite number K of one-electron orthonormal orbitals which, jointly with the spin-
functions α and β , form our spin-orbitals basis set. These orbitals are denoted by the
letters i, j,k, l.. or iσ .. according to whether or not the spin-function is made explicit.
All developments are expressed in the Second-Quantization language in the occupa-
tion number representation. In order to render simpler the formulae appearance the
creator/annihilator operators are schematically represented by the letters denoting
the spin orbital with or without a dagger according to whether it is a creator or an
annihilator.

The Hamiltonian

Let us define the reduced Hamiltonian matrix 0H [42–45] whose elements groups
the one-, hi, j, and two electron integrals, 〈i j|kl〉, as follows:

0Hi, j;k,l =
[

1
N−1

(
hi;kδ j,l + h j;lδi,k

)
+ 〈i j|kl〉

]
(1)
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then, the many-body Hamiltonian operator may be written as

Ĥ = ∑
r<s,k<l

0Hαα
r,s;k,l r†

α ,s†
α lα kα + ∑

u,v,m,n

0Hαβ
u,v;m,n u†

α v†
β nβ mα

+ ∑
r<s,k<l

0Hβ β
r,s;k,l r†

β s†
β lβ kβ

where

0Hαα
r,s;k,l = 0Hr,s;k,l − 0Hr,s;l,k (2)

0Hαβ
u,v;m,n = 0Hu,v;m,n (3)

0Hβ β
r,s;k,l = 0Hr,s;k,l − 0Hr,s;l,k (4)

The Reduced Density Matrices

The general expression for an m-order Reduced Density Matrix (m-RDM) is defined
as:

mDΦΦ ′
i1,i2,...,im,; j1, j2,..., jm =

1
m!
〈Φ| i1

† i2
† ... im

† jm ... j2 j1 |Φ ′〉 (5)

Where Φ and Φ ′, are N-electron states. This formula represents a Transition
Reduced Density Matrix (m-TRDM) when Φ �= Φ ′ [4]. When there is no ambiguity
about the state/states with respect to which one is taking the expectation value the
upper indices referring to the N-electron states will be omitted. For instance, when
we are referring in the text to a 2-RDM corresponding to state Φ we will simply
denote it by the symbol 2D.

The m-order Hole Reduced Density Matrix (m-HRDM) corresponding to state Φ
is:

mD̄i1,i2,...,im,; j1, j2,..., jm =
1

m!
〈Φ| jm ... j2 j1 i1

† i2
† ... im

† |Φ〉 (6)

Here the creators destroy holes on state Φ , which is the ket state considered, i.e. the
holes are referred to state Φ which, in general, is not the Fermi sea.

Both the RDM and the HRDM are by definition Hermitian, positive semidefinite
matrices. Also due to the properties of the creators/annihilators they are antisym-
metric under permutations of the row/column indices. These are basic RDM/HRDM
necessary N-representability conditions.

The 2-RDM Contractions

The RDM’s contractions are necessary N-representability conditions that any RDM
must satisfy. Thus, any high-order RDM may be contracted into a lower-order one.
For instance

∑
k

2! 2Di,k; j,k ≡ ∑
k

〈Φ| i† k† k j |Φ〉 = (N−1) 1Di; j (7)
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where definition of the number operator N̂

N̂ = ∑
i

i† i (8)

has been applied. Clearly, a further contraction gives the 2-RDM trace
(N

2

)
. This

type of contraction, based on the properties of the number operator N̂ or N̂σ , is the
most usual one. It should however be noted that the Ŝ+/− operators play also an
important role when imposing spin-representability conditions upon the 2-RDM.
Let us for instance consider:

∑
k

〈Φ|k†
β i†α kα jβ |Φ〉 ≡ 1Diβ ; jβ − 〈Φ| Ŝ− i†α jβ |Φ〉 (9)

The second term of the r.h.s. of this expression will vanish whenever the spin-
quantum numbers S and Ms of state Φ do not permit an increase of the Ms value:
e.g. when Φ is a singlet state.

General Matrix Contracting Mapping

When one wishes to contract a general reduced matrix of order t into a space of
v electrons, such that v < t < N, the operations to be carried out are given by the
general Matrix Contracting Mapping reported by Valdemoro in 1983 [18–20, 44].
The form of this contracting algorithm is

vMλ ;ω ≡ C ∑
Π ,Γ

vDΠ Γ
λ ;ω

tMΠ ;Γ (10)

where tM is the t-order matrix to be contracted into its reduced form represented
in the space of v-electrons. The Π and Γ letters represent t-electron configurations
while λ and ω are v-electron configurations. The factor C depends on the particular
choice for the normalization of the matrices; for the case of RDMs with the normal-

ization expressed in Eq. (5) C = (N
v)

(N
t )(t

v)
. As will be seen in the next Section, this

mapping plays an important role in the derivation of the 2-CSE.

The Correlation and the G Matrices

Two other matrices which play an important role in the RDM methodology are the
Correlation (C ) and the G matrices. The structure of the second-order C -matrix is:

Ci, j;m,l = ∑
Φ ′ �=Φ

〈Φ| i† m |Φ ′〉〈Φ ′| j† l |Φ〉

≡ 〈Φ| i† m P̂ j† l |Φ〉
(11)

where P̂ is the operator which projects upon the complementary space to |Φ〉〈Φ|.
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The matrix C arises when decomposing the 2-RDM [13–15, 37, 38, 46, 47]

2! 2Diσ , jσ ′ ;mσ ,lσ ′ = 1Diσ ;mσ
1D jσ ′ ;lσ ′ − δσ ,σ ′ δ j,m

1Diσ ;lσ + Ciσ , jσ ′ ;mσ ,lσ ′ (12)

The elements of the correlation matrix –whose rows and columns labels are the
same as those of the 2-RDM from which it is derived– form the well-known G -
matrix when rearranged. Thus,

Ciσ , jσ ′ ;mσ ,lσ ′ = Giσ ,mσ ;lσ ′ , jσ ′ (13)

The important property of the G -matrix is that it is an hermitian positive semidef-
inite matrix. This is not the case of the C -matrix. The positive semidefinite character
of the G -matrix is an important N-representability condition. Both the C and G
matrices describe the virtual transitions ocurring in the system due to the electron
correlation.

Let us consider the Kronecker δ appearing in equation (12). Due to the anti-
commuting property of fermion operators, it can be written in terms of the 1-RDM
and the 1-HRDM. Thus,

δσ ,σ ′ δ j,m = 1D jσ ;mσ + 1D̄ jσ ;mσ (14)

It should be underlined that this important equation, together with the positive
semidefinite character of the 1-RDM and 1-HRDM, establish the necessary and
sufficient N-representability conditions for the 1-RDM [7].

The term involving this Kronecker δ in equation (12) can therefore be decom-
posed into the two following terms:

δσ ,σ ′ δ j,m
1Diσ ;lσ = 1D jσ ;mσ

1Diσ ;lσ + 1D̄ jσ ;mσ
1Diσ ;lσ (15)

These two terms describe respectively the exchange and a particle-hole product
representing a second type of correlation mechanism.

3.2 Basic Relations Linking the 2-RDM, the 2-HRDM
and the G Matrices

In the two-electron space the commuting relation of two creator operators with two
annihilator operators jointly combined with relation (14), generates an equation
linking a 2-RDM and the same 2-HRDM element with products of two 1-RDMs
elements. Thus one has

2! 2D̄i, j;p,q

−
2!2Di, j;p,q

⎫⎪⎪⎬⎪⎪⎭ =

⎧⎪⎪⎨⎪⎪⎩
1D̄i;p

1D̄ j;q − 1D̄i;q
1D̄ j;p

−
1Di;p

1D j;q − 1Di;q
1D j;p

(16)
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In 1992, Valdemoro [21] proposed to consider the duality holes-particles in order to
approximate the 2-RDM by:

2! 2Diσ , jσ ′ ;pσ ,qσ ′ = ∑
P

(−1)P P ( 1Diσ ;pσ
1D jσ ′ ;qσ ′ ) + 2! 2∆iσ , jσ ′ ;pσ ,qσ ′ (17)

where ∑
P

(−1)P P antisymmetrizes the column labels of the 1-RDMs and where

2! 2∆iσ , jσ ′ ;pσ ,qσ ′ is a term to be approximated indirectly by rendering the 2-RDM
positive semidefinite and normalized.

From equations (12) and (15) it follows that the 2∆ closed form is

2∆iσ , jσ ′ ;pσ ,qσ ′ = − δσ ;σ ′
1D̄ jσ ;pσ

1Diσ ;qσ + Ciσ , jσ ′ ;pσ ,qσ ′ (18)

That is, this matrix gathers the two terms describing electronic correlation. The first
term is a product of an element of the 1-RDM times an element of the 1-HRDM
and therefore its calculation does not imply any difficulty. The second term is a real
two-electron term involving information about the whole spectrum of the system
which in principle is not known.

Equation (17) can also be interpreted as describing the moment expansion of the
2-RDM where the 1-RDM is the moment and the 2∆ matrix is the cumulant [48–50].

It is easy to prove that the 2-HRDM correlation error is equal to the correlation
error of the 2-RDM; which is why in the difference 2D̄ − 2D (equation (16)) all
correlation effects cancel out.

4 The Second-Order Contracted Schrödinger Equation
and Our Updated Method for Its Iterative Solution

The theoretical tools given in the previous Section provide the basis for understand-
ing the general lines of this method. Consequently, what will be emphasized here
are those steps, approximations, etc which are critical in determining the success of
the method and whose effectiveness can probably still be improved.

4.1 The Second-Order Contracted Schrödinger Equation

The matrix representation of the Schrödinger equation is:

〈Ω |Φ〉 〈Φ| Ĥ |Λ〉 = EΦ
NDΦ

ΛΩ (19)

where Λ ,Ω .. are elements of an orthonormal N-electron basis set; i. e. N-electron
Slater determinants. Let us now apply to both sides of the equation the matrix
contracting mapping given in equation (10). The result of this contraction is:
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〈Φ|Ĥ i†σ j†
σ ′ lσ ′ kσ |Φ〉= EΦ

2Diσ , jσ ′ ;kσ ,lσ ′ (20)

This is the compact form of the 2-CSE. When the explicit form of Ĥ is replaced into
this equation and the operators appearing in its l.h.s. are re-ordered so as to have
terms involving normal products of creator and annihilator operators, one obtains
an equation which has the functional form:

EΦ
2D = Function

( 0H, 2D, 3D, 4D
)

(21)

In what follows, in order to simplify the spin-notation, a bar above the letter
indicates that the orbital involved represents a β spin. Thus, for instance,

2! 2Diα jβ ;mα lβ ≡ 〈Φ|i† j̄† l̄ m|Φ〉 ≡ 2! 2Di, j̄;m,l̄ (22)

Using this simplified notation and assuming an implicit sum over repeated
indices, the explicit form of the 2-CSE is:

EΦ
2Di, j;p,q

(i< j,p<q)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2Di, j;r,s
0Hαα

r,s;p,q

− 3Di, j,m;q,r,s
0Hαα

r,s;p,m + 3Di, j,m;p,r,s
0Hαα

r,s;q,m

+ 3Di, j,m̄;p,u,v̄
0Hαβ

u,v;q,m − 3Di, j,m̄;q,u,v̄
0Hαβ

u,v;p,m

+ 4Di, j,k,l;p,q,r,s
0Hαα

r,s;k,l + 4Di, j,k̄,l̄;p,q,r̄,s̄
0Hβ β

r,s;k,l

+ 4Di, j,m,n̄;p,q,u,v̄
0Hαβ

u,v;m,n

(23)

EΦ
2Di, j̄;p,q̄ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2Di, j̄;u,v̄
0Hαβ

u,v;p,q

− 3Dm,i, j̄;r,s,q̄
0Hαα

r,s;p,m + 3Di, j,m̄;p,r,s̄
0Hβ β

r,s;q,m

− 3Dm,i, j̄;p,u,v̄
0Hαβ

u,v;m,q − 3Di, j̄,n̄;u,v̄,q̄
0Hαβ

u,v;p,n

+ 4Dk,l,i, j̄;r,s,p,q̄
0Hαα

r,s;k,l + 4Di, j̄,k̄,l̄;p,q̄,r̄,s̄
0Hβ β

r,s;k,l

+ 4Di,m, j̄,n̄;p,u,q̄,v̄
0Hαβ

u,v;m,n

(24)

EΦ
2Dī, j̄; p̄,q̄

(i< j,p<q)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2Dī, j̄;r̄,s̄
0Hβ β

r,s;p,q

− 3Dm̄,ī, j̄;q̄,r̄,s̄
0Hβ β

r,s;p,q

− 3Dm̄,ī, j̄; p̄,r̄,s̄
0Hβ β

r,s;q,m

− 3Dm,ī, j̄;u,v̄, p̄
0Hαβ

u,v;m,q + 3Dm,ī, j̄;u,v̄,q̄
0Hαβ

u,v;m,p

+ 4Dī, j̄,k̄,l̄; p̄,q̄,r̄,s̄
0Hβ β

r,s,k,l + 4Dk,l,ī, j̄;r,s, p̄,q̄
0Hαα

r,s;k,l

+ 4Dm,n̄,ī, j̄;u,v̄, p̄,q̄
0Hαβ

u,v;m,n

(25)

with the restriction that r < s and k < l when the orbitals have the same spin.
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Note that the three spin-blocks of this equation are not independent since differ-
ent spin-blocks involve the same p-RDM spin-block.

In his 1976s paper [17] Nakatsuji reported a powerful theorem; he proved that
when the 2-, 3-,and 4-RDMs appearing in this equation are N-representable, the
solutions of this equation coincide with those of the Scrödinger equation. Another
proof of this theorem was also reported in 1998 by Mazziotti [28]. Unfortunately, the
2-CSE has more apparent unknowns, the elements of the 2-, 3- and 4-RDMs, than

the number of equations,
(K

2

)2
. Consequently, the system only becomes determinate

when all the corresponding N-representability conditions linking the unknown ele-
ments are taken into account. A way out of this problem consists in approximating
the 3- and 4-RDM in terms of a trial 2-RDM and solving it iteratively until conver-
gence. In 1994, Colmenero and Valdemoro [24] reported the first iterative solution
of the 2-CSE. This was possible because Valdemoro’s approximative method for
the 2-RDM as a function of the 1-RDM, which has been sketched in the previous
Section, was extended in order to approximate any high-order RDM as a function
of the lower ones, jointly with some of the main N-representability conditions.

Main Lines of the Iterative Procedure

Let us represent symbolically the 2-CSE given in (21) as:

EΦ
2D ≡ M (26)

In order to construct the second-order matrix M , the trial 2-RDM as well as the
3- and 4-RDMs which are approximated are replaced in the 2-CSE analytic form
given above (23,24,25). In a following paragraph the approximating algorithms for
the high-order matrices will be described. Therefore, we will focus our attention
here on the main steps of the iterative solution.

• Once the M has been evaluated, the trace of both sides of the equation is
calculated in order to obtain a new value of the energy E ′Φ

E ′Φ =
Tr(M )(N

2

) (27)

• The new 2-RDM is obtained:

2D′ =
M

E ′Φ
(28)

Should the RDMs on the right of Eq. (21) exactly correspond to an eigenstate
of the Hamiltonian, this new matrix would be identical to the previous 2-RDM.
But for approximate matrices it may not even be symmetric and, hence, it is
symmetrized. This new 2-RDM becomes in principle the new trial matrix for the
new iteration.
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These were the main operations which constituted the original iterative method
proposed by Colmenero and Valdemoro. In order to render the process convergent
they added fine spin constraints and several tests, such as the degree of fulfillment of
the second-order hypervirial theorem. Since then, the following three very effective
improvements have been incorporated to this iterative scheme.

• Originally the method was developed in a spin-free basis set. At present, the
2-CSE form used is a combination of that given in (21) and that of the second-
order Spin Contracted equation [32]. This latter equation is obtained in a similar
way to the 2-CSE one, the only difference being that the Ŝ2 operator replaces the
Hamiltonian one.

• A regulating convergence device [35] consisting in a shift of the Energy origin
has been introduced at each iteration. This device, which acts as either a damping
or an accelerating agent, greatly fosters the convergence of the iterative process.

• One of the more critical points determining a good convergence and removal of
final divergencies is the need for a 2-RDM as closely N- and S-representable as
possible. Initially, only the positive semidefiniteness, the symmetry, and the trace
of the trial 2-RDM as well as the ensemble N-representability of the 1-RDM were
tested and corrected at each iteration. At present, at each iteration, we carry out
an iterative 2-RDM purification procedure in order to ascertain that the 2-RDM
entering as data in the next 2-CSE iteration is as closely N- and S-representable
as possible [21, 24, 38, 51–55].

The next Section is dedicated to describe the main points concerning the purifi-
cation procedure which we now consider an essential part of this methodology.

High-Order RDM’s Constructing Algorithms

In this paragraph the approximating algorithms for the higher-order RDMs will be
described. This is an important and also involved subject. It is not our aim here
to consider in detail the more technical aspects which have been reported in detail
in [37]. On the other hand, we will try to explain as clearly as possible the ideas
which are at the base of these algorithms. Here, we will consider separately two
different aspects of the algorithms. In the next sub-paragraph the general or zero-
order approximation for the 3- and 4-RDMs will be described. The groups headed by
Nakatsuji, Mazziotti, Harriman and Valdemoro have proposed different approaches
in order to improve upon this zero-order approximation [25, 28, 29, 31, 36, 37, 41].
In what follows, only the improvements which are currently applied in our group
and with which the different calculations reported in Section 5 have been carried
out will be considered in detail.

Zero-Order Algorithms’ Approximations

The arguments leading to the approximation of the 2-RDM according to equation
(17) were extended in order to approximate the 3- and the 4-RDM. The spin-free
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version of these zero-order approximations was initially reported [22–24]; and later
on the zero-order algorithms in a spin-orbitals basis of representation was given.
This last version of these algorithms was reported by Valdemoro, Tel and Pérez-
Romero [32] and in what follows will be referred to as VTP. The VTP algorithm for
the 3-RDM can be expressed as:

3! 3Di, j,k;p,q,r = − 2 ∑
P

(−1)P P (1Di; p
1D j;q

1Dk;r)

+∑
P ′

(−1)P
′
P ′ 2! ( 1Di;p

2D j,k;q,r

+ 1D j;q
2Di,k;p,r + 1Dk;r

2Di, j;p,q)
+ 3! 3∆i, j,k;p,q,r

(29)

where the operations involving the permutation operator P antisymmetrize the
column indices of the three 1-RDM elements and the operations involving the
permutation operator P ′ antisymmetrize the column index of the 1-RDM with the
column indices of the 2-RDM.

The VTP construction algorithm for the 4-RDM is [22, 32]:

4! 4Di, j,k,l; p,q,r,s = ∑
P

(−1)P P 3! (1Di;p
3D j,k,l;q,r,s + 1D j;q

3Di,k,l;p,r,s

+ 3Di, j,l;p,q,s
1Dk;r + 3Di, j,k;p,q,r

1Dl;s)

+ 3 ∑
P ′

(−1)P
′
P ′ (1Di;p

1D j;q
1Dk;r

1Dl;s)

− ∑
P ′′

(−1)P
′′
P ′′ 2! (1Di;p

1D j;q
2Dk,l;r,s

+ 1Di;p
2D j,l;q,s

1Dk;r + 1Di;p
2D j,k;q,r

1Dl;s

+ 2Di,l;p,s
1D j;q

1Dk;r + 2Di,k;p,r
1D j;q

1Dl;s

+ 2Di, j;p,q
1Dk;r

1Dl;s )

+ 4! 4∆i, j,k,l;p,q,r,s

(30)

In these VTP algorithms the 3∆ and 4∆ matrices represent the unknown error of the
approximation.

Approximating the ∆ Matrices

Nakatsuji approached the study of the 3- and 4-RDM’s algorithms by analogy with
the Green-function perturbation expansion [25]. On the other hand, Mazziotti [50]
derived a generating functional from which he deduced a Taylor series whose coef-
ficients were the different RDMs. By analogy with Kubo’s cumulant expansion,
Mazziotti identified the p-RDM with the p-order moment of this expansion and the
connected part of this expansion with the p∆ .
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In both these approaches another term,4T , was added to the 4-RDM VTP
algorithm. In our notation, this extra term may be expressed as:

4Ti, j,k,l;p,q,r,s = ∑
P ′′′

(−1)P
′′′

P ′′′ 2! 2!

⎛⎝ 2∆i, j;p,q
2∆k,l;r,s

+ 2∆i,l;p,s
2∆ j,k;q,r

+ 2∆i,k;p,r
2∆ j,l;q,s

⎞⎠ (31)

Although, when calculating excited states, the VTP algorithm performs better in
many cases, adding this extra term generally lowers the value of the unknown 4∆
error. In what follows the VTP algorithm to which this extra term, proposed both by
Nakatsuji and Mazziotti, has been added will be called VTPNM.

In order to improve upon the VTPMN algorithm we replace by “0” any negative
diagonal element of each of the resulting 4-RDM spin-blocks, and subsequently
the corresponding diagonal is renormalized in order to ascertain that each 4-RDM
spin-block has the correct trace [32, 33, 35].

It is important to note, before considering how to improve upon the VTP for
approximating the 3-RDM, that this matrix plays a double role in this methodology.
Thus, the 3-RDM is entered as data at two different stages which will be denoted
respectively A and B. Thus, in stage A, it enters as data when approximating the
4-RDM; and in stage B, it enters as data when evaluating the M part involving
explicitly the 3-RDM. In our experience, it is extremely important that the three
RDMs entering into the calculation of M should be consistent. This implies that
the lower-order ones should result from the contraction of the higher-order ones.
In order to solve this consistency problem we employ two different approximating
algorithms [32, 33, 37]. In stage B, when calculating the 3-RDM off-diagonal ele-
ments we use an algorithm resulting from the contraction of the 4-RDM algorithm;
while the 3-RDM diagonal elements are obtained by contracting explicitly the pos-
itive and normalized 4-RDM diagonal which was previously evaluated and kept in
the computer memory. In stage A, we use the VTP algorithm and approximate the
3∆ with an algorithm [36] which has proved to be very efficient in the study of
quite different states, provided there is no ambiguity when defining the occupied
and empty spin-orbitals in the reference state.

The various approaches [25, 29, 31, 36] both for consistency among the different
RDMs and for going beyond the VTP algorithm in the 3-RDM case differ sig-
nificantly. In spite of what the results obtained in all the approximations compare
reasonably well.

Before describing the algorithm that we use for approximating the 3∆ elements
in stage A, let us remark that in our experience the value of the 3∆iσ , jσ ,kσ ;pσ ,qσ ,rσ
elements is very small and may be neglected. This may be due to the fact that, when
all the spin-orbitals have the same spin-function, the exchange mechanism may be
dominant, and the purely 3-body correlation effects are thus negligible.

On the other hand, some of the 3∆i, j,k̄;p,q,r̄ and 3∆i, j̄,k̄;p,q̄,r̄ elements had far from
negligible values. When analysing which property characterized the elements whose
error could not be ignored, we found that the elements involving frontier-orbitals
in the zero-order reference configuration for each space symmetry had rather high
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values. Let us consider, for instance, the minimal basis set, with seven orbitals, used
in the calculation of the ground-state of the BeH2. In this case, the symmetry of the
orbitals is: 1,2,3 are σg; 4,5 are σu and 6,7 are degenerate πu. Since the reference
configuration in the ground-state is |11̄22̄44̄〉. The generalized frontier-orbitals are:
2, 4, 3, 5, 6, 7, where 2 and 4 are occupied (o) and 3, 5, 6, 7 are empty (e). Elements
of the type 3∆o,e,o;o,e,o and 3∆e,o,e;e,o,e are those which have to be evaluated. Since
3∆ is antisymmetric one has:

3∆e,o,e;o,e,e = − 3∆e,o,e;e,o,e (32)

The approximating algorithm, which we are about to describe, was obtained by
analysing the different terms which were summed up in Nakatsuji’s algorithm [36,
56, 57]. This analysis showed that only one of the terms entering the algorithm had
non-negligible value, and this term was of the type just described. The two formulae
resulting from this analysis are:

3! 3∆o1,e1,ō2;e2,o3,ō4 = − 2! 2∆o1,ō2;e2,x̄ 2! 2∆ē1,x̄;o3,ō4 (33)

and

3! 3∆e1,o1,ē2;o2,e3,ē4 = 2! 2∆e1,ē2;o2,ȳ 2! 2∆o1,ȳ;e3,ē4 (34)

where x/y is an empty/occupied frontier orbital. When, due to symmetry reasons,
the product is null, the index x/y to be selected should be the next empty/occupied
frontier orbital.

5 The 2-RDM Purification Procedure

In 1956 McWeeny [58] proposed an algorithm in order to purify the 1-RDM. In
this context, the term purification means correcting those N-representability defects
that a RDM may present. In this sense, the corrections applied to the 2-RDM
in [21,24,32] as well as those mentioned above can be considered as RDM’s purifi-
cation operations. In [53] Mazziotti proposed to apply a far more elaborated method
for imposing that both the 2-RDM and the 2-HRDM be positive semidefinite (D
and Q N-representability conditions) while keeping fixed a given initial 1-RDM. By
applying his procedure to the 2-RDM obtained at each 2-CSE iteration, the accu-
racy of the results was significantly improved. Alcoba and Valdemoro [55] and later
on Alcoba [38] proposed two purification procedures which, although different in
their approach, they both succesfully succeded in imposing upon the 2-RDM not
only the D and Q N-representability conditions but also the G-condition either in
a direct or indirect manner. The requisite for the 2-RDM to be S-representable was
manisfest in several ways; in particular, when calculating the expectation value of
the Ŝ2, using the 2-RDM resulting from the 2-CSE iterative solution, the error was
far from negligible. The idea was therefore to study how to impose simultaneously
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the S-representability and the D-, Q- and G-conditions as well as the traces and dif-
ferent contractions of the 2-RDM and of the G -matrix spin-components. In order to
impose the spin-conditons, we focused on imposing the positive semidefiniteness to
the G -matrix by acting upon its spin-components.

At present, two different strategies may be followed in order to build up a 2-RDM
purification procedure. In the singlet-state case both strategies led to a computation-
ally very effective purification procedure. Here, we will only describe the basic and
general ideas of both approaches and refer the interested reader to [55] and [38],
where a detailed account of each of these procedures is respectively given. Although
the 2-RDM purification procedure for a doublet-state is being completed [59] and
that of the triplet-states has already been initiated, we will only specifically refer
here to the two procedures for purifying a singlet 2-RDM.

The Basic Ideas underlying the Purification Procedures

The first requirement in the two purification approaches is that we have a good,
ensemble N-representable 1-RDM which will be considered fixed during the the
purification process of the approximate 2-RDM from which this 1-RDM is derived.

In view of equations (12) and (13), it is clear that, if the 2-RDM is not N-
representable this must be due to the correlation matrix G . The central role played by
this matrix is also due to its spin properties determining the 2-RDM S-representability.
Moreover, the G -matrix is one of the matrices which must be rendered positive
semidefinite in the 2-RDM purification process. Consequently, the strategy which is
at the base of one of our purification procedures is to look directly for corrections
on the 2-RDM, the 2-HRDM and the G -matrix. These three matrices’ corrections
should be consistent among themselves. Moreover, these three matrices’ contrac-
tions should generate the 1-RDM which is kept fixed. Also, the properties of the
G -matrix spin-components as well as their inter-relations must be those of a pure
singlet state. The second 2-RDM purification strategy is based in the unitarily invari-
ant decomposition of a second-order tensor. This 2-RDM decomposition, which was
reported by Coleman [60], offers the possibility of correcting the two-body part of a
tensor without modifying its 0- and 1-body parts. This decomposition is at the base
of the 2-RDM purification procedure reported by Mazziotti [53]. This approach is
effective when imposing the D- and Q-conditions, but it is not appropriate for impos-
ing the G - and S-conditions because two of the G -matrix physically well defined
contractions are not natural tensor contractions; while two of its tensor contractions
involve two creators and two annihilators, which do not have any physical mean-
ing. Alcoba [61] proposed a generalization of the Coleman’s second-order invariant
decomposition, which permitted its application not only to the G -matrix but also to
its spin-components.

The approaches just sketched led to very efficient purification codes in the singlet
case but, since the results shown in Section 6 have been obtained with the procedure
based on the the 2-RDM decomposition reported in (12,13), in what follows we will
only describe the main features of this purification method.



190 C. Valdemoro et al.

Our purification procedure is subdivided into two closely inter-related parts:
in one of these parts the 2-RDM and the 2-HRDM are simulataneously rendered
positive semidefinite (D- and Q-conditions) and in the other part the G -matrix spin-
components are rendered positive or negative semidefinite according to each of the
spin-component properties.

5.1 First Part of the 2-RDM Purification Procedure: Imposing
the D- and Q-Representability Conditions

The 2-HRDM can be obtained by combining relations (6), (14) and (16). Let us start
by diagonalizing both the 2-RDM and the 2-HRDM. Most of the eigenvalues of
these matrices will be positive, but usually both these two matrices will initally have
some negative eigenvalues. Let us denote the eigenvalues of the 2-RDM/2-HRDM
by λ /γ , which correspond to eigenvectors x/y respectively. In the new matrices, the
negative eigenvalues will be replaced by zero. Thus, the new matrices take the form

2D(1)
i, j;k,l = ∑

p
λp 〈i j|xp〉〈xp|kl〉 (35)

and

2D̄(1)
i, j;k,l = ∑

q
γq 〈i j|yq〉〈yq|kl〉 (36)

where p/q label only positive eigenvalues.
Recalling now that the correlation matrix G is a common two-body part of both

the 2-RDM and the 2-HRDM the new G (1) may be approximated as

G
(1)
i,k;l, j = C

(0)
i,k;l, j +

1
2

(
εi, j;k,l + ε̄i, j;k.l

)
(37)

where ε, ε̄ are the 2-RDM and 2-HRDM errors respectively.

5.2 Second Part of the 2-RDM Purification Procedure: Imposing
the S- and G-Representability Conditions

In 2005, Alcoba and Valdemoro [55] reported the general formulae describing the
spin-structure and properties of the G -matrix. These formulae, when applied to the
singlet case, provide a set of relations linking the elements of the different spin-
components. The derivation of these relations, which will be given now, will be
omitted here, but the interested reader may find all the relevant details in [55] and
in [38].
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Basic Properties of the G Spin-Components

According to relations (11) and (13), when the state Φ is a singlet, the spin quantum
numbers of the states Φ ′ can only be S′ = 0,M′

s = 0 and S′ = 1 with M′
s = 0,1,−1.

The G -matrix may therefore be written in terms of its spin-components, which are
denoted as {S′,M′

s}G . Thus,

Gi,l;k, j = {0,0}Gi,l;k, j + {1,0}Gi,l;k, j

Gi,l;k̄, j̄ = {0,0}Gi,l;k̄, j̄ + {1,0}Gi,l;k̄, j̄
Gi,l̄;k, j̄ = {1,−1}Gi,l̄;k, j̄

(38)

It can be shown [38, 55] that in the singlet case all the spin-components matrix
elements can be determined as a function of the {1,−1}Gα ,β ;α ,β elements and, in
some cases, as a function also of the 1-RDM.

The relations which permit to determine the spin-components in terms of the
initial G -matrix are:

{0,0}Gi,k;l̄, j̄ = Gi,k;l̄, j̄ +
1
2

(
1Di;l

1D̄ j̄;k̄ − Gi,l;k̄, j̄

)
(39)

and

{1,0}Gi,k;l̄, j̄ =
1
2

(
Gi,l;k̄, j̄ − 1Di;l

1D̄ j̄;k̄

)
(40)

And, conversely, once the G spin-components have been corrected, the new G -
matrix may be obtained according to the relations

Gi,k;l̄, j̄ = − 2
3

(
1Di;k

1D̄ j̄;l̄ +
1Di;l

1D̄ j̄;k̄− 2 {0,0}Gi,k;l̄, j̄ − {0,0}Gi,l;k̄, j̄

)
(41)

and

Gi,k;l̄, j̄ =
1
2

(
1Di;k

1D̄ j̄;l̄ +
1D j;l

1D̄ī;k̄

)
+ {1,0}Gi,l;k̄, j̄ + {1,0}G j,k;l̄,ī (42)

These relations show that the 1-RDM is directly connected with the G spin-
components. Indeed, the 1-RDM may be obtained by contracting different spin-
components. Thus, it can be shown that:

∑
j
{0,0}G j,k; j̄,ī =

N
4

(
δi,k − 1Dī;k̄

)
+

(
1D− 1D

2
)

ī;k̄
(43)

∑
j
{0,0}Gi, j;k̄, j̄ =

(2 K − N )
4

1Di;k +
(

1D− 1D
2
)

i;k
(44)

∑
j
{1,0}Gi, j;k̄, j̄ =− (2K−N)

4
1Di;k (45)
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∑
j
{1,0}G j,k; j̄,ī =−N

4

(
δi,k − 1Dī;k̄

)
(46)

Consequently, the traces are:

∑
i, j

{0,0}Gi, j;ī, j̄ =
N
8

(2K−N + 4) − ∑
i

(
1D

2
)

i,i
(47)

∑
i, j

{1,0}Gi, j;ī, j̄ =− N
8

(2K−N) (48)

In this procedure the different spin-components are corrected sequentially.

1. The {0,0}G spin-component.

The G
(1)
α ,α ;β ,β is built up from the matrix C

(1)
α ,β ;α ,β determined in part I.

G
(1)
i,k;l̄, j̄

= C
(1)
i, j̄;k,l̄

(49)

and then, the {0,0}G
(1)
α ,α ;β ,β is obtained through relation

{0,0}G
(1)
i,k;l̄, j̄

= G
(1)
i,k;l̄, j̄

+
1
2

(1Di;l
1D̄ j̄;k̄ − G

(1)
i,l;k̄, j̄

) (50)

This matrix is rendered positive semidefinite by eliminating the negative eigen-
values and renormalizing the new resulting matrix. The renormalizing factor has
to be such that the trace has the value:

N
8

(2 K −N + 4) −∑
i

(1D2)
i;i (51)

Let us mention here that the contractions of the spin-components into the one-
electron space are functionals of the 1-RDM. At convergence of the procedure
all these contractions yield the same 1-RDM which is fixed. However, they yield
different matrices until convergence is attained. In view of this, we decided to use
the different forms of the 1-RDM, in the intermediate steps in the following form:
we denote 1Dp, 1Dq, 1Dr and 1Ds the 1-RDM derived from equations (43–46)
respectively. Then one obtains a new G (2) using equation (41) in the following
way:

G
(2)
i,k;l̄, j̄

= − 2
3

( 1Dp
i;k

1D̄q
j̄;l̄

+ 1Dp
i;l

1D̄q
j̄;k̄
− 2 {0,0}Gi,k;l̄, j̄− {0,0}Gi,l;k̄, j̄ ) (52)

Clearly, at convergence 1Dp = 1Dq = 1D.
2. The {1,0}G spin-component.

Here, the arguments are similar to those applied for the {0,0} spin-component,
but the relations to be used are (40), (45) and (46).
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In this case, however, the matrix {1,0}G ≤ 0 and must be renormalized so as to
have

∑
i, j

{1,0}Gi, j;ī, j̄ = − N
8

(2K−N) (53)

also the form of equation (42) used at this point is

G
(3)
i,k;l̄, j̄

=
1
2

(
1Dr

i;k
1D̄s

j̄;l̄ + 1Dr
j;l

1D̄s
ī;k̄

)
+ {1,0}Gi,l;k̄, j̄ + {1,0}G j,k;l̄,ī (54)

Clearly, at convergence 1Dr = 1Ds = 1D.

Once we have the new form of G (3), it is transformed into the corresponding C (3)

which generates a new 2-RDM and 2-HRDM and a new iteration starts again.
In order to verify the degree of convergence attained, the following tests are

carried out:

• The RMS deviation with respect to the 1D of the 1Dp, 1Dq, 1Dr and 1Ds is
calculated.

• The larger negative/positive eigenvalue of each of the matrices which had to be
diagonalized and rendered positive/negative semidefinite is calculated at each
iteration. The homogenous convergence of these values towards zero is verified.

In all the cases studied this procedure was very effective and only a few iterations
were necessary for attaining convergence.

6 The Second-Order Antihermitian Contracted
Schrödinger Equation

In the 2-CSE compact form reported in Sect. 3, equation (20), the Hamiltonian
operator acts on the left of the density operator

Γ̂iσ jσ ′ kσ lσ ′ ≡ i†σ j†
σ ′ lσ ′ kσ (55)

but the Hamiltonian may also operate on the right of Γ̂ and when considering the
difference of these two forms of the 2-CSE one obtains the second-order hypervirial
condition first deduced by Hirschfelder [62] in the early 1960s. This condition was
extensively discussed in the context of variational methods by Epstein [63], Aslan-
gul et al. [64, 65], Harriman [66], Kutzelnigg [67] and Fernández and Castro [68].
Although its usefulness is obvious, its sufficiency for ensuring its solution for being
in one to one correspondence with those of the Schrödinger equation was not – to
our knowledge – established. In second-quantization this equation is identical to
the contracted Liouville equation reported by Valdemoro [20]. Very recently, Mazz-
iotti has identified this equation with the Antihermitian form of the 2-CSE, which
this author denoted 2-ACSE [39]. The interesting feature of this equation is that
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the fourth-order terms appearing in equations (23–25) disappear, which renders the
equation much simpler. Many authors realized the importance of this equation but no
practical way for solving it while avoiding the explicit use of the N-electron wave-
functions was available until very recently, when Mazziotti proposed to introduce a
variational parameter into the method. The iterative method for solving the 2-ACSE
given by Mazziotti [39, 69] can be described in a compact form by the formula:

〈Φ|[Ŝ ,Γ̂ ]−|Φ〉 = 0 (56)

where

Ŝ = ∑
i, j,k,l

〈Φ| [ Γ̂i, j;k,l, Ĥ ]− |Φ〉 Γ̂i, j;k,l (57)

When this equation is not satisfied the error is a function of the 2-RDM error, which
permits to correct the 2-RDM from which the 3-RDM is derived and both matrices
enter as data in the new iteration for computing the operator Ŝ.

Another advantage of this approach is that the 2-RDM is much closer, at each iter-
ation, to be N-representable than the 2-RDM resulting from the 2-CSE. In practice,
a purification procedure is not only unnecessary in this case but, in fact, it hampers
the process. On the other hand, an important shortcoming of this method is that, due
to its variational character it cannot be applied in the study of excited states of a
given symmetry.

An important question which has not yet been settled is whether the variational
optimization introduced by Mazziotti is sufficient to guarantee that the 2-ACSE’s
solution coincides with that of the Schrödinger equation. This question arises from
the fact that Nakatsuji’s theorem, enunciated in Section 3, has not been shown to be
applicable to the 2-ACSE. Indeed, as will now be shown, to satisfy the hypervirial
theorem does not imply, by itself, an exact solution.

Relations which Condition the 2-CSE and the 2-ACSE to be Satisfied

In an analysis recently carried out by Valdemoro et al. [40] it was shown that

〈Φ|[Ĥ , Γ̂ ]−|Φ〉 = 0 = (4;2,2)
r Θ − (4;2,2)

l Θ (58)

where
(4;2,2)

r Θ = ∑
Φ ′ �=Φ

〈Φ| Γ̂ |Φ ′〉 〈Φ ′ |Ĥ |Φ〉 (59)

and
(4;2,2)

l Θpq;rs ≡ ∑
Φ ′ �=Φ

〈Φ|Ĥ |Φ ′〉 〈Φ ′| Γ̂ |Φ〉 (60)

Now, the terms (4;2,2)
r Θ and (4;2,2)

l Θ involve high-order correlation energy effects.
Either of these terms cancel out iff the state Φ is an eigenstate of the Hamiltonian;
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or, equivalently, iff the 2-CSE is satisfied [70]. The hypervirial being satisfied only
implies that these two high-order correlation matrix energy terms are equal, which
does not however imply that each of the Θ separately vanishes.

In spite of this reservation, the solution method proposed by Mazziotti, probably
due to its variational nature, gives very satisfactory results, as will be reported in the
following section.

7 Performance of the Iterative 2-CSE and 2-ACSE Methods

In order to show the performance of the iterative 2-CSE and 2-ACSE methods we
report now a set of results obtained in the study of the ground-state of two molecules:
the linear BeH2 and the Li2. For the sake of comparison, in all the cases the Hartree-
Fock, (HF), and the FCI calculations are also shown.

1. The BeH2 molecule.
In this calculation we used a minimal basis set of HF orbitals. Figures 1 and 2
present the rate of convergence of the ground state energy with respect to the
number of iterations at equilibrium geometry. In one case the energy has been
calculated with the 2-CSE algorithm, whereas in the other case the 2-ACSE one
has been used. As can be appreciated when comparing with the FCI value, the
error is in the fourth decimal.

In Fig. 3 the performance in the calculation of the potential energy curve
describing the symmetric stretching of the Be-H bonds is shown, as well as
the HF and FCI corresponding curves. Here, both the 2-CSE and the 2-ACSE
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Fig. 3 Comparison of different approximations for the symmetric stretching of linear BeH2

methods perform equally well. A slight separation from the FCI curve appears
for bond distances larger than 2.7 a.u., and this error is more noticeable in the
2-CSE method.

2. The Li2 molecule.
Here also, we used a minimal basis set of HF orbitals. In Figures 4 and 5 the rate
of convergence of the energy with respect to the number of iterations is shown
for the ground state at equilibrium geometry with CSE and ACSE algorithms. In
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this case, the convergence is slower than in the calculation of the BeH2 molecule;
but the accuracy at convergence is also very high and of the same order as in the
BeH2 case.

In Figure 6 the results obtained in the calculation of the Li2 dissociation
energy curve are shown. The HF and FCI corresponding curves are also rep-
resented in this figure. In this case, although both methods perform well, the



198 C. Valdemoro et al.

-14.85

-14.845

-14.84

-14.835

-14.83

-14.825

-14.82

-14.815

 4.5  5  5.5  6  6.5  7  7.5

E
ne

rg
y 

(a
.u

.)

Li-Li Bond Stretching (a.u.)

Stretching Potential Energy Curve of Li2

HF
FCI

2-CSE
2-ACSE

Fig. 6 Comparison of different approximations for the stretching of Li2 bond

performance of the 2-CSE method at large internuclear distances is substantially
better than that of the 2-ACSE.

The computational codes used are not optimized from an informatic point of
view but, notwithstanding, they are very efficient. Thus, the results reported above
have been rapidly obtained in a standard tabletop PC. From the theoretical point
of view, these computational codes are continuously being updated. Indeed, there
is still research going on in order to improve the 3-RDM approximation algorithm
which has been described in Section 3. In our opinion, a highly accurate approxima-
tion of the 3-body correlation effects is necessary in order to be able to study with
high accuracy all kind of excited and transition states.
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33. C. Valdemoro, L. M. Tel, E. Pérez-Romero and A. Torre, “The iterative solution of the con-
tracted Schrödinger equation: a new quantum chemical method.”, J. Mol. Struct. (Theochem)
537, 1–8 (2001).

34. D. R. Alcoba and C. Valdemoro, “Family of modified-contracted Schrödinger equations.”,
Phys. Rev. A 64, 062105 (2001).

35. D. R. Alcoba, F. J. Casquero, L. M. Tel, E. Pérez-Romero and C. Valdemoro, “Convergence
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Molecular Energy Decompositions
in the Hilbert-Space of Atomic
Orbitals at Correlated Level

Diego R. Alcoba, Roberto C. Bochicchio(✉), Luis Lain, and Alicia Torre

Abstract This work describes a new model to partition the molecular energy into
one- and two-center contributions in the Hilbert-space of atomic orbitals at cor-
related level. Our proposal makes explicit use of the pairing nature of chemical
bonding phenomena to accommodate appropriately the correlation effects within
these contributions. The model is based on the treatment of the kinetic energy as
contributing to both one- and two-atom terms, according to the pairing or unpairing
character of the electron cloud, and on the appropriate assignment of the den-
sity cumulant dependent contributions. Numerical results for selected systems are
reported and compared with those arising from other models, showing the reliability
of our predictions.

Keywords: molecular energy, partition, Hilbert space, paired density, unpaired
density, cumulants

1 Introduction

The energy decomposition of a molecular system attempts to describe how the
energy is distributed into its components [1, 2]. There are mainly two groups of
methods to perform this task. Within a first group the atoms are defined by means
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of the one-electron basis functions centered at the nuclei; these methods constitute
the techniques of partitioning in the Hilbert-space of atomic orbitals [3,4]. A second
type of methodology is based on the partitioning of the three dimensional physical
space (3D), where an atom is defined as a nucleus surrounded by a surface. This sur-
face can also be defined in different ways, i.e., the “fuzzy” atom approach [5–8] uses
atomic radii and “cutoff” parameters to partition the whole 3D physical space into
atomic domains. Aternatively, the Bader’s Atoms in Molecules (AIM) [9] and the
Electron Localization Function (ELF) [10,11] models employ topological properties
of the electron distribution to define these atomic domains.

Results of energy decompositions arising from both methodological schemes
have been reported as at Hartree-Fock level [8,12,13] as at correlated one [2,14–16].
When we deal with correlated wave functions new terms associated with correla-
tion effects appear. These terms must be appropriately examined and interpreted
to obtain both numerically reliable and physically feasible results, as was reported
in our previous population analysis studies [17–19]. In this work, we will use the
quantum theory of chemical bonding as a guide for the treatment of the terms arising
from the electronic correlation effects. The central idea we follow in this treatment
is based on the universally admitted pairing nature of bonding phenomena, i.e., the
electrons are paired in bonds and the non-pairing electrons are located only at atomic
regions that are not involved in bondings. It indicates the energy decomposition must
fulfill the same criteria as the chemical indicators for the bond orders [17], i.e., no
energy terms arising from the non-pairing part of our tools may contribute to two-
center terms related to bonding energies but only to one-center ones. This approach
makes that this partitioning be adjusted to physical arguments.

In the present attempt to perform an energy partitioning scheme in the Hilbert-
space of atomic orbitals with correlated wave functions, we split the kinetic energy
term into one- and two-center contributions. Likewise, we also make explicit use of
the cumulant of the second-order reduced density matrix (2-RDM), separating its
contributions to the energy into appropriate terms. In previous works [2] the crite-
rion to discriminate between atomic and bonding contributions has been to associate
orbitals belonging to identical or different centers with one- or two-center contribu-
tions, respectively. However, in this work we follow physical criteria in the treatment
of this problem, so that the model described here is based on two key ideas as fol-
lows. On the one side we decompose the first-order reduced density matrix [20]
(1-RDM) into its effectively paired and effectively unpaired parts [21–23] and thus
the kinetic energy becomes naturally splitted into one- and two-center contributions.
The paired part of the 1-RDM provides kinetic energy contributions to one- and
two-center terms while the unpaired part only contributes to the one-center energies
because, as the chemical bonding theory states, this unpaired part is not involved in
bond formation. On the other hand, the cumulant of the 2-RDM, that describes the
statistically irreducible many-body effects, is of non-pairing nature [16, 17, 21, 24]
and hence it cannot be involved in the formulation of the two-center or bonding
terms. These considerations provide a physical foundation to previous heuristically
proposed cumulant treatments [2]. Our modifications of the traditional partition-
ing schemes in the Hilbert-space of atomic orbitals have led us to accurate results
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that fulfill all the properties usually required to consider the corresponding energy
partitioning is applicable to chemical problems.

The article is organized as follows. Section 2 presents the details of the energy
decomposition model into one- and two-center terms according to the above men-
tioned physical arguments for closed and open shell systems. Section 3 is devoted
to the computational aspects of the calculations performed over a selected set of
molecules; it also reports a comparison with other numerical results and the corre-
sponding discussion. Section 4 is dedicated to the final remarks and conclusions.

2 Energy Decomposition Scheme for Correlated State Functions

The total energy for an N-electron molecular system, in the Born-Oppenheimer
approximation, expressed in an atomic orbital (AO) basis set, {µ ,ν,λ . . .}, is given
by

Etotal = ∑
A<B

ZAZB

RAB
+∑

µν

1Pµν(ν|h|µ)+ ∑
µνλ σ

2Pµνλ σ (µν|λ σ) (1)

where (ν|h|µ) stands for the matrix elements of the one-electron operator h = T −
∑M

A=1
AV and M the number of nuclei in the system. T is the kinetic energy operator

(− 1
2 ∇2

i ) and AV = ZA
riA

is the electron-nucleus interaction energy operator between
the electron i and the nucleus A having a charge ZA; riA is the electron-nucleus
distance. (µν|λ σ) are the standard matrix elements of the two-electron repulsion
energy in the convection (11|22) and ZAZB

RAB
is the nucleus-nucleus repulsion energy

with RAB the distance between the nucleus A and B [25]. 1P, 2P stand for the spin-
free one-particle and two-particle reduced density matrices respectively, which may
be expressed by

1Pµν =
K

∑
i=1

nic
∗
µicνi (2)

where {cµi : µ = 1, . . . ,K} and {ni : i = 1, . . . ,K} are the sets of expansion coef-
ficients and occupation numbers for the natural orbitals (NO) in the AO basis set,
respectively [25]. K is the size of the basis set, and

2Pµνλ σ =
1
2

1Pµν
1Pλ σ −

1
4

1Pµσ
1Pνλ +

1
2

Λµνλ σ (3)

where the symbol Λµνλ σ stands for the matrix elements of the cumulant of the
second-order reduced density matrix [26,27]. Therefore Eq. (1) can be formulated as

Etotal = ∑
A<B

ZAZB

RAB
+∑

µν

1Pµν (ν|T |µ)−∑
A

∑
µν

1Pµν (ν|AV |µ)

+
1
2 ∑

µν
∑
λ σ

[
1Pµν

1Pλ σ −
1
2

1Pµσ
1Pνλ

]
(µν|λ σ)+

1
2 ∑

µνλ σ
Λµνλ σ (µν|λ σ) (4)
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where (ν|T |µ) and (ν|AV |µ) stand for the matrix elements of the kinetic energy
and the nucleus-electron interactions, respectively. Equation (4) expresses the non-
relativistic total molecular energy arising from a general wave function.

Let us point out the foundations of our energy decomposition model, namely,
the assignments of the correlation effects within a partitioning scheme into one-
and two-center contributions. Two main proposals are introduced that follow the
physical ideas arising from bonding theory and differ from previous heuristically
proposed partitioning schemes. These proposals are strongly supported by previ-
ous results from the local partitioning of electronic density into effectively paired
and effectively unpaired contributions and from the nature of the cumulant of
the 2-RDM, which are consequences of the spin and correlation effects in the
molecule.

2.1 Closed Shell Case

The first of our proposals is that the one-particle charge and bond order density
matrix may be split into two terms of well-defined nature

1Pµν = 1P
(p)
µν + 1P

(u)
µν (5)

with
1P

(p)
µν =

1
2 ∑

σλ

1Pµσ Sσλ
1Pλ ν (6)

and
1P

(u)
µν = 1Pµν − 1P

(p)
µν (7)

where 1P
(p)

and 1P
(u)

mean the effectively paired and effectively unpaired parts of
the density, respectively [21, 23] and Sσλ stand for overlap matrix elements in the
AO basis. This structure will allow us to split the kinetic energy into one- and two-
center contributions according to the physical nature of each density part. The paired

electron cloud described by 1P
(p)

is delocalized over the whole system while the

unpaired electron cloud described by 1P
(u)

is localized only on the atomic regions
not involved in bondings. Hence, we may follow that the first one contributes to
both atomic and bonding energies while the latter one only contributes to the atomic
regions in which the unpaired electrons are localized [21].

The foundation of our second proposal is that, as it has been shown in previous
works, the density cumulant does not contribute to bondings due to its unpaired
electron nature [21]. Hence, we propose that its contributions will only be consid-
ered as part of the one-center energy terms. These two features define on physical
grounds the considerations to take into account for the decomposition scheme into
one- and two-center energy contributions. Let us now give the expressions of these
ideas into the mathematical framework of Eq. (4).
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The kinetic energy from the second r.h.s. term of Eq. (4) yields

∑
µν

1Pµν(ν|T |µ) = ∑
µν

1P
(p)
µν (ν|T |µ)+∑

µν

1P
(u)
µν(ν|T |µ) (8)

and therefore each contribution of one-center or two-center type is given by

TA = ∑
µ∈A

∑
ν∈A

1P
(p)
µν (ν|T |µ)+ ∑

µ∈A
∑
ν

1P
(u)
µν(ν|T |µ) (9)

or
TAB = 2 ∑

µ∈A
∑

ν∈B

1P
(p)
µν (ν|T |µ) (10)

respectively.
The treatment of the density cumulant arising from the last r.h.s. term of Eq. (4)

leads to one-center contributions as

1
2 ∑

µ∈A
∑

νλ σ
Λµνλ σ (µν|λ σ) (11)

because, as has been aforementioned, this term is not involved in bondings due to
its non-pairing nature. It is important to note that the effectively unpaired part of
the density arises from the contraction of the density cumulant into the one-electron
space and consequently both quantities share this non-pairing character [24].

All these considerations lead us to write the energy decomposition in terms of
one- and two-center contributions as

Etotal = ∑
A

EA + ∑
A<B

EAB (12)

with

EA = ∑
µ∈A

∑
ν∈A

1P
(p)
µν (ν|T |µ)+ ∑

µ∈A
∑
ν

1P
(u)
µν(ν|T |µ)− ∑

µ∈A
∑
ν

1Pµν(ν|AV |µ)

+ ∑
µ∈A

∑
λ∈A

∑
νσ

(
1
2

1Pµν
1Pλ σ −

1
4

1Pµσ
1Pνλ )(µν|λ σ)+

1
2 ∑

µ∈A
∑

νλ σ
Λµνλ σ (µν|λ σ)

(13)
and

EAB =
ZAZB

RAB
+2 ∑

µ∈A
∑

ν∈B

1P
(p)
µν (ν |T |µ)− ∑

µ∈A
∑
ν

1Pµν (ν |BV |µ)− ∑
µ∈B

∑
ν

1Pµν(ν |AV |µ)

+2 ∑
µ∈A

∑
λ∈B

∑
νσ

(
1
2

1Pµν
1Pλσ −

1
4

1Pµσ
1Pνλ )(µν |λσ ) (14)
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Eqs. (13) and (14) fulfill all the above discussed physical requirements and thus
they represent a true energy partitioning scheme. Although in these equations the
density cumulant contributions are assigned to one-center terms, correlation effects
are also present in two-center ones through 1P, which arises from a correlated
wave function. We must point out that the proposed partitioning has a general
character, i.e. Eqs. (12)–(14) are applicable to any level of theory: correlated level
[perturbative methods (MPn), couple-cluster (CC), self-consistent multiconfigura-
tional (MCSCF) and configuration interaction (CI) among others] and uncorrelated
restricted Hartree-Fock [self-consistent field (SCF)] one. In this latter case the

terms ∑µ∈A ∑ν
1P

(u)
µν(ν|T |µ) and 1

2 ∑µ∈A ∑νλ σ Λµνλ σ (µν|λ σ) in Eq. (13) vanish
identically.

The above equations provide the molecular energy exactly as a sum of one- and
two-center energy components through the appropriate management of the density
cumulant for closed shell systems.

2.2 Open Shell Case

The above proposals need to be modified for open shell systems due to spin effects
arising from the pairing and non-pairing terms of the one-particle charge and bond
order density matrix as well as from the cumulant of the two-particle reduced density
matrix. Therefore Eqs. (6) reads

1P
(p)
µν =

1
2 ∑

σλ
(1Pµσ Sσλ

1Pλ ν + 1P
(s)
µσ Sσλ

1P
(s)
λ ν) (15)

where 1P(s) stands for the spin density matrix, 1P
(u)

remains defined by Eq. (7) and
the cumulant may be expressed explicitely by its contributions as

Λµνλ σ = ∆µνλ σ −
1
2

1P
(s)
µσ

1P
(s)
νλ (16)

where ∆ is the many-body cumulant contribution and the last term in the r.h.s. of
Eq. (16) stands for the spin density exchange term. It may be noted that the spin
density appears as the new element in the theory as expected. Hence the energy
contributions of Eq. (12) are

EA = ∑
µ∈A

∑
ν∈A

1P
(p)
µν (ν|T |µ)+ ∑

µ∈A
∑
ν

1P
(u)
µν(ν|T |µ)− ∑

µ∈A
∑
ν

1Pµν(ν|AV |µ)

+ ∑
µ∈A

∑
λ∈A

∑
νσ

(
1
2

1Pµν
1Pλ σ −

1
4

1Pµσ
1Pνλ −

1
4

1P
(s)
µσ

1P
(s)
νλ )(µν|λ σ)

+
1
2 ∑

µ∈A
∑

νλ σ
∆µνλ σ (µν|λ σ) (17)
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and

EAB =
ZAZB

RAB
+2 ∑

µ∈A
∑

ν∈B

1P
(p)
µν (ν |T |µ)− ∑

µ∈A
∑
ν

1Pµν (ν |BV |µ)− ∑
µ∈B

∑
ν

1Pµν(ν |AV |µ)

+2 ∑
µ∈A

∑
λ∈B

∑
νσ

(
1
2

1Pµν
1Pλσ −

1
4

1Pµσ
1Pνλ −

1
4

1P
(s)
µσ

1P
(s)
νλ )(µν |λσ ) (18)

In the present case we have considered the spin exchange term as contributing to
both one-center and two-center terms because of its pairing nature. The remaining
spin and correlation effects considered into the cumulant density only contribute to
one-center terms.

In the next section we report numerical results derived from these equations.
These results are compared with those arising from a previously reported model
by Vyboishchikov and Salvador [2] (VS) of molecular energy partitioning in the
Hilbert space in which the density cumulant is also explicitly used.

3 Computational Details, Numerical Results and Discussion

Our calculations have been carried out at restricted Hartree-Fock (RHF) and restri-
cted open shell Hartree-Fock (ROHF) levels of SCF and at configuration interaction
with single and double excitations (CISD) wave functions, using the 6-31G basis
sets. The correlated 1-RDMs and 2-RDMs in the AO basis sets were calculated
from the version 3.2 of the PSI package [28]. The computational implementation
of our partitionings requires the calculation of the one-electron integrals (ν|T |µ)
and (ν|AV |µ) as well as the two-electron ones (µν|λ σ). All these integrals have
been computed using a modified version of GAMESS program [24]. For all systems
experimental geometries have been used [30].

Table 1 gathers results obtained at RHF-SCF and CISD levels for simple sys-
tems (H2), hydrocarbons with different bond multiplicities (CH4, C2H6, C2H4, and
C2H2) and some second-row hydrides (NH3, H2O and HF) all of them in the sin-
glet ground state. This set has been chosen to show covalent bondings with different
polarity. The results reported in the fourth column correspond to the RHF-SCF level
while those reported in column five arise from the model for the energy decomposi-
ton by the authors of this work (ABLT) at CISD approximation. For the sake of
comparison, we collect, in columns six and seven, the results at CISD level from
the above mentioned energy partitioning models VS(M1) and VS(M2) of Ref. [2],
which have been calculated with our own codes. At the RHF-SCF approach both
VS(M1) and VS(M2) models and ABLT model are coincident for singlet states.
Although it is not obvious to establish a simple correspondence between the dis-
sociation energies and the two-center results derived from the energy partitionings
proposed in this work and in other reported treatments [2,8,31], we have included in
column eight the experimental values [30] in order to take into account a reference.
As can be observed in the Table, the two-center energies for classical bonds show
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Table 1 Energy partitioning in the Hilbert space of atomic orbitals for several molecular systems
at RHF-SCF and CISD levels, using the 6-31G basis sets. All energies are expressed in atomic
units

System Fragment Bond ERHF Ea
ABLT Eb

V S(M1) Eb,c
V S(M2) Ed

exp

H2 H −0.4706 −0.4908 −0.4922
HH −0.1855 −0.1702 −0.1673 −0.1826 −0.1661

CH4 C −37.6504 −37.7449 −37.7377
H −0.4558 −0.4737 −0.4765

CH −0.2035 −0.1881 −0.1841 −0.1981 −0.1657
H...H 0.0176 0.0162 0.0142 0.0161

C2H6(D3d) C −37.6326 −37.7266 −37.7148
H −0.4580 −0.4731 −0.4771

CC −0.1809 −0.1777 −0.1778 −0.1980 −0.1402
CH −0.1964 −0.1831 −0.1761 −0.1927 −0.1562
C...H 0.0036 −0.0044 0.0003 0.0042
H...H (CH3) 0.0184 0.0171 0.0145 0.0169
H...He 0.0066 0.0059 0.0061 0.0059
H...Hf 0.0012 0.0004 0.0005 0.0004

C2H4 C −37.5835 −37.6984 −37.6622
H −0.4550 −0.4670 −0.4758

CC −0.3030 −0.2782 −0.3099 −0.3292 −0.2741
CH −0.2011 −0.1858 −0.1814 −0.1950 −0.1721
C...H 0.0081 0.0092 0.0042 0.0087
H...H (CH2) 0.0192 0.0183 0.0165 0.0182
H...Hg 0.0078 0.0072 0.0075 0.0072
H...Hh 0.0021 0.0003 0.0002 0.0003

C2H2 C −37.4163 −37.5784 −37.5087
H −0.4113 −0.4151 −0.4510

CC −0.7263 −0.6211 −0.7137 −0.7325 −0.3665
CH −0.1614 −0.1553 −0.1493 −0.1588 −0.1992
C...H −0.0506 −0.0337 −0.0272 −0.0350
H...H 0.01330 0.0085 0.0087 0.0085

NH3 N −54.2866 −54.4123 −54.3993
H −0.4162 −0.4346 −0.4396

NH −0.2545 −0.2314 −0.2295 −0.2389 −0.1753
H...H 0.0459 0.0416 0.0404 0.0413

H2O O −74.8071 −74.9403 −74.9304
H −0.3824 −0.4002 −0.4061

OH −0.2418 −0.2192 −0.2180 −0.2242 −0.1896
H...H 0.0715 0.0651 0.0645 0.0648

HF F −99.4590 −99.5842 −99.5802
H −0.3444 −0.3624 −0.3683

HF −0.1800 −0.1637 −0.1619 −0.1659 −0.2166
a Model reported in this work (ABLT) at CISD level.
b Models 1 and 2 of Vyboishchikov and Salvador (VS) (Ref. [2]) at CISD level.
c Atomic energy formulas are unavailable from the authors in Ref. [2].
d Experimental energies.
e Closer H atoms in different CH3 groups.
f More distant H atoms in different CH3 groups.
g Closer H atoms in different CH2 groups.
h More distant H atoms in different CH2 groups.
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negative values while they are positive or slightly negative for non-bonded atoms in
all reported treatments.

The differences between the ABLT model proposed in this work and the men-
tioned VS(M1) and VS(M2) models are two-fold. The first one is related with the
decomposition of the kinetic energy terms. The ABLT and both VS models split
this term into one- and two-center contributions. The VS models associate with
one-center terms the contributions arising from kinetic energy with two AO indices
centered at the same nucleus. Likewise, these models assign the contributions with
two indices each centered at a different nucleus to two-center terms, so that [2]

∑
µν

1Pµν(ν|T |µ) = ∑
A

∑
µ∈A
ν∈A

1Pµν(ν|T |µ)+ 2 ∑
A<B

∑
µ∈A
ν∈B

1Pµν(ν|T |µ) (19)

However, the ABLT model splits the kinetic energy by means of Eqs. (9) and (10),
according to the physical character of each part of the electronic density, i.e., the
effectively paired density contributes to both one- and two-center terms, while the
effectively unpaired part only causes atomic energies, as has been explained above.

The second difference is the treatment of the cumulant term. The VS(M1) model
splits this term in the same manner as the kinetic energy one, i.e., into one- and
two-center contributions according to the atomic localization of some orbitals, such
as [2]

1
2 ∑

µνλ σ
Λµνλ σ (µν|λ σ) =

1
2 ∑

A
∑
µ∈A
ν∈A

∑
λ σ

Λµνλ σ (µν|λ σ)+ ∑
A<B

∑
µ∈A
ν∈B

∑
λ σ

Λµνλ σ (µν|λ σ)

(20)
The VS(M2) model neglects the two-center cumulant contributions (cf. text just
below Eq. (11) of Ref. [2]) proposed in the VS(M1) one and therefore it cannot pro-
vide neither a complete description of correlation effects nor the exact total energy.
However, our model shifts the cumulant terms into only one-center contributions
according to Eq. (11), in agreement to the fact that this term is the origin of the
effectively unpaired density matrix [24] and does not contribute to form bondings
as has been shown in Refs. [17, 21, 22].

Both ABLT and VS(M1) models predict similar results for all systems with single
bonds but interesting differences appear in the C2H4 and C2H2 systems, which pos-
sess multiple bonds. These diferences lie between 0.03–0.09 a.u. for carbon atoms
and CC bonds while they are even greater for VS(M2) model. These systems reflect
the correlation effects throughout these strong bonds as expected, and this allows
one to note the differences between the ABLT model and both VS models; the
atomic energies are similar while the CC energies are notably different, i.e., the
VS energies are close to RHF-SCF ones while those arising from the ABLT model
are closer to experimental energies. In relation with the energies of the bonds C−C,
all the approaches fulfill the tendency of the series C2H6, C2H4 and C2H2, according
to the multiplicity of the bond.

Table 2 shows the results for systems in open-shell states, in order to discuss the
capability of our partitioning model to describe such situations. To carry out this task
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Table 2 Energy partitioning in the Hilbert space of atomic orbitals for several systems in open-
shell states at levels ROHF-SCF and CISD, using the 6-31G basis sets. All energies are expressed
in atomic units

System Fragment Bond EROHF Ea
ABLT Eb

V S(M1) Eb,c
V S(M2) Ed

exp

O2 O −74.6018 −74.7613 −74.7350
(triplet) OO −0.3243 −0.2517 −0.3043 −0.2987 −0.1898

CH3 C −37.6127 −37.7051 −37.6947
(doublet) H −0.4563 −0.4738 −0.4761

CH −0.2070 −0.1881 −0.1869 −0.2002 −0.1753
HH 0.0197 0.0176 0.0151 0.0175

CH2 C −37.6238 −37.6974 −37.6823
(triplet) H −0.4485 −0.4655 −0.4697

CH −0.2028 −0.1848 −0.1870 −0.1968 −0.1625
H...H 0.0202 0.0190 0.0169 0.0189

a Model reported in this work (ABLT) at CISD level.
b Models 1 and 2 of Vyboishchikov and Salvador (VS) (Ref. [2]) at CISD level.
c Atomic energy formulas are unavailable from the authors in Ref. [2].
d Experimental energies.

we must indicate that our model and both VS(M1) and VS(M2) models are coinci-
dent at ROHF-SCF level. At correlated level the cumulant splits into a many-body
term (first term in the r.h.s. of Eq. (16)) describing the effectively unpaired electron
effects due to the electron correlation and a term related with the spin contributions
(second term in the r.h.s of Eq. (16)). Therefore our model differs from VS(M1) and
VS(M2) in the same way as for the closed shell case, i.e., the many-body effects are
collected only in atomic sites while in the present case spin effects from exchange
terms (cf. Eq. (16)) are considered as contributing to both one-center and two-center
terms due to its pairing nature. Numerical calculations have been performed for the
O2 and CH2 systems in triplet states and for the CH3 radical in doublet state within
the ABLT, VS(M1) and VS(M2) models at ROHF and CISD levels of approxima-
tion. Both schemes lead to values which are different numerically and conceptually.
To discuss these numerical results we will focus attention on the calculated bonding
energies and the experimental ones. In the case of the O2 molecule, the results for
both schemes of partitioning (ABLT and both VS models) at ROHF and CISD levels
are lower than the experimental value. Physically it may be interpreted as strongly
bounded electrons as expected experimentally. The differences between the corre-
lated values from both VS models and the ROHF value are small, while ABLT
model shows a clear trend of its value towards the experimental one. This differ-
ent behaviour is due to the management of the unpairing effects coming from the
kinetic energy of the effectively unpaired electrons cloud and from the many-body
cumulant density, confirming that the kinetic energy terms may be divided into both
one-center and two-center contributions and the contributions from the many-body
cumulant density may not be assigned to two-center terms. For both CH2 and CH3

radicals the correlated values are close to the experimental energies in both schemes
indicating that the many-body effects are less important than in the O2 molecule.
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4 Concluding Remarks

In conclusion, this work presents a new model for the decomposition of the energy
of molecular systems, at correlated level, in the Hilbert space of atomic orbitals for
both closed and open shell systems. This decomposition produces chemically mean-
ingful atomic and bonding energy terms. The partitioning scheme is based on the
concepts of effectively paired and unpaired electron contributions to the first-order
density matrix and on the non-bonding nature of the density cumulant. Although the
results turn out to be comparable with those obtained in previously reported heuris-
tic methods for simple systems, our method provides the incorporation of physical
ideas for the assignment of contributions to atomic and bonding energies and leads
to better results for systems in which the correlation and/or spin effects are impor-
tant. It may be noted that the present work constitutes the first attempt – from a
computational point of view – of partitioning the molecular energy for open shell
systems.
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Grzegorz Pestka, Mirosław Bylicki, and Jacek Karwowski(✉)

Abstract Recent developments based on the application of the Hylleraas-CI (Hy-
CI) method to the variational solving the Dirac-Coulomb equation are reviewed.
Three modes of the implementation of the Hy-CI method are discussed: a plain
Hy-CI approach in which the effects related to the Brown-Ravenhall disease are
treated by the appropriate selection of the model space, the Hy-CI approach com-
bined with the complex coordinate rotation, in which these effects are controlled
by the separation of the discrete and continuous spectra in the complex plane, and
the positive-energy-space projected approach in which the influence of the effects
of coupling with the continuum are removed by an appropriate restriction of the
model space. Limits of applicability of these approaches as well as their advan-
tages and disadvantages are discussed on the example of the ground states of helium
isoelectronic series atoms.

Keywords: Dirac-Couloumb equation, complex coordinate rotation, variational
methods, Hylleraas-CI method, continuum dissolution, Brown-Ravenhall disease,
positive-energy-space projection

1 Introduction

The eigenvalue problem of the Dirac-Coulomb (DC) Hamiltonian has been a sub-
ject of many discussions and controversy, since Brown and Ravenhall noticed
that the eigenvalues corresponding to the bound-state solutions are embedded in
a continuum spreading from −∞ to +∞ and that the discrete and the continuum
spectra are coupled by the electron-electron interaction [5]. For many years, dif-
ferent ways of dealing with this issue divided the community involved in solving
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the problem to two groups. One of them claimed that the only legitimate approach
has to be based on a projection of the DC Hamiltonian onto the positive-energy
space (PES), i.e. the subspace composed of the positive-energy states [44–46].
According to the other group the projection is not necessary and securing the
relations between the components of the wavefunction specific for the positive-
energy bound states together with imposing the bound-state boundary conditions
is sufficient [14–16, 19, 40]. Several years ago Grant and Quiney [15] wrote: “It is
commonly believed that variational methods cannot be used with Dirac-Coulomb
operators (...). Computational problems experienced by many of those studying the
matter between 1970 and 1980 were readily attributed to this fact (...) Sucher’s
warnings [45] were generally interpreted to mean that one should try to eliminate
negative energy states by surrounding every operator by projection operators on to
positive energy states. (...) Projection operators used in this way play no part in our
formulation.”. Several years earlier Indelicato [20] reported: “The necessity of using
projection operators to avoid mixing of positive and negative energy Dirac eigen-
states in multiconfiguration Dirac-Fock calculations is discussed. It is shown that
convergence problems observed at high Z (...) are completely due to the absence of
such projection operators in previous calculations”. From the formal point of view
the bound states of a system described by a DC Hamiltonian are resonances. Thus,
in the DC model the bound states are unstable and can autoionize. In a recent review
Johnson, Cheng and Chen [21] wrote: “The stability of atomic ground states is, of
course, explained by the fact that the negative-energy sea is filled and that sponta-
neous pair production is prohibited by the Pauli exclusion principle. Here lies the
real problem of the many-electron Dirac-Coulomb Hamiltonian: it has no provision
to account for this fact (...) The standard cure is to use the no-pair Hamiltonian
which excludes negative-energy states entirely”.

Johnson et al. in their review [21] state: “It should be noted that errors in EDirac

from incorrect treatments of electron-positron and positron-positron terms can be
very subtle and EDirac may look perfectly normal (...) when negative-energy basis
functions are also included. Nevertheless, it is very difficult, if not impossible, to
identify and correct the intrinsic errors in EDirac and the use of many-electron Dirac
Hamiltonian without the projection operators should be avoided (...)”. In order
to record and to analyse these effects we used a very precise computational tool:
the relativistic complex-coordinate rotated Hylleraas-CI (R-CCR-Hy-CI) method.
Since in each of these two approaches the DC Hamiltonian is represented in a
different model space, the results derived from them at the limit of a saturated
variational basis, have to be different – the PES-projection removes all contribu-
tions from the virtual pairs. This difference has been estimated in a recent series
of papers [6, 32, 33]. A similar analysis has also been performed by Watanabe et
al. [48]. As one might expect [45], it is proportional to (Zα)3, i.e. it is of the same
order as QED corrections.

The original idea of Sucher advocating the use of the free-particle projectors
[17, 44], and other operator-based approaches, appeared to be either incorrect or
infeasible [18, 19]. Therefore, in practical calculations the no-pair Hamiltonian is
usually obtained by constraining the model space in which the DC Hamiltonian
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is represented. To our knowledge, the trial functions of the variational methods
based on the no-pair approximation were always constructed from one-electron
spinors.1 Thus, in these methods the no-pair model space is composed of antisym-
metrized products of the Dirac spinors corresponding to the PES only. While the
positive-energy spinors are relatively easy to identify, the procedure becomes less
straightforward in the case of relativistic geminals. The construction of a no-pair
approach within a non-orbital (R-CCR-Hy-CI) method has been presented in [6]. In
this construction the complex coordinate rotation plays a crucial role: it makes the
identification of the functions belonging to the positive energy space possible.

In the present paper the difficulties associated with the variational treatment of
the DC eigenvalue problem within approaches utilizing geminal-containing trial
functions are briefly reviewed. In particular, the recent developments on R-CCR-
Hy-CI are summarised. In Sect. 2 some specific features of the one-electron Dirac
variational problem essential for this discussion are presented. Then, in Sect. 2 the
properties of the DC eigenvalue equation are discussed. In Sect. 3 the relativistic
Hy-CI method is described. In Sect. 5 the idea of CCR is introduced and some
illustrative examples are presented. The PES projected R-CCR-Hy-CI is described
in Sect. 6. In a brief Sect. 7 the results derived from the non-projected methods
are compared with the ones obtained using PES-projected approaches. The paper is
concluded with final remarks. The Hartree atomic units are used and the energies
are expressed in milihartree, unless otherwise stated. The fine structure constant has
been taken as α = 1/137.0359895.

2 Variational Approach to the Dirac Equation

The Dirac equation may be written as[
(V−E)I2, c(σ ·p)
c(σ ·p), (V−E−2mc2)I2

][
Ψ l

Ψ s

]
= 0, (1)

where Ψ l and Ψ s are two-component spinors, σ are 2× 2 Pauli matrices, I2 is a
2×2 unit matrix and the remaining symbols have their usual meaning. In the non-
relativistic limit (c→ ∞) equation (1) transforms to the Lévy-Leblond equation:[

(V−E)I2, (σ ·p)
(σ ·p), −2mI2

][
Ψ l

Ψ s
L

]
= 0, (2)

where

Ψ s
L = lim

c→∞
cΨ s. (3)

From here one gets
Ψ s

L =
1

2m
(σ ·p)Ψ l. (4)

1 In the following, for briefness, the names spinor and orbital will be used for one-electron
Dirac spinor. Similarly, by orbital/non-orbital method we understand a method in which the
configuration state functions are constructed from orbitals/geminals.
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The elimination of Ψ s
L from equation (2) results in the spin-dependent Schrödinger

equation: [
(σ ·p)2

2m
+(V−E)I2

]
Ψ l = 0, (5)

Since (σ ·p)2 = p2 I2, we get two identical Schrödinger equations. Their solutions
ψ correspond to two spinorbitals with spins α and β :

Ψ l
α = ψ

[
1
0

]
, and Ψ l

β = ψ
[

0
1

]
.

The spectrum of the one-electron Dirac Hamiltonian is composed of two con-
tinua: the upper (or the positive) one, Σ+

c , spreading from 0 to +∞ and the lower
(or the negative) one, Σ−c , spreading from−2mc2 to −∞. The discrete (bound-state)
energy levels are located in the energy gap below the lower threshold of Σ+

c . A
schematic diagram of this spectrum is shown in the left panel of Fig. 1.

The energy functional corresponding to the Dirac eigenvalue problem may be
expressed as the appropriate Rayleigh quotient

K[Φ] =
〈Φ|H|Φ〉
〈Φ|Φ〉 , (6)

where Φ is a trial function which may be expressed in the form:

Φ =
[

caΦ l

cbΦs

]
.

After the elimination of ca and cb, the functional, expressed in terms of Φl and Φs,
reads:

KD[Φ] = W+ +
√

W 2−+ 2mc2T , (7)

S
−
c

S
+
c

−2mc2

0

E ED

−mc2

mc2

0

−2mc2

0

E ED

−mc2

mc2

0

Fig. 1 The exact spectrum of a Dirac Hamiltonian (left). The same spectrum in the algebraic
approximation is shown in the right panel. The solid lines correspond to the discrete energy lev-
els and the broken ones represent the continua. In this example the algebraic representation does
not reflect the structure of the real spectrum. The necessary conditions for a correct algebraic
representation of the discrete part of the Dirac spectrum are described in the text
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where

W± =
1
2

( 〈Φ l|V|Φ l〉
〈Φ l|Φ l〉 ±

〈Φs|V|Φs〉
〈Φs|Φs〉

)
∓ mc2, (8)

and

T =
1

2m
〈Φ l|σ ·p|Φs〉〈Φs|σ ·p|Φ l〉

〈Φ l|Φ l〉〈Φs|Φs〉 . (9)

In the non-relativistic limit, as described by the Lévy-Leblond equation,

KL[Φ] = T +
〈Φ l|V|Φ l〉
〈Φ l|Φ l〉 . (10)

The last equation should be equivalent to the one derived from the Schrödinger
equation (5), i.e. to

KS[Φ] =
1

2m
〈Φ l|(σ ·p)2|Φ l〉

〈Φ l|Φ l〉 +
〈Φ l|V|Φ l〉
〈Φ l|Φ l〉 .

As one can easily see, this may be fulfilled only if

Φs ∼ (σ ·p)Φ l. (11)

Condition (11) is known as the kinetic balance condition and its fulfillment is nec-
essary for obtaining reliable variational results from both Dirac and Lévy-Leblond
equations [40].

Usually, the variational approach to the Dirac equation is implemented within
the algebraic approximation. In the algebraic approximation the trial functions are
basis-set expanded:

Φ l =
Nl

∑
k=1

Cl
k φ l

k, Φs =
Ns

∑
k=1

Cs
k φ s

k , (12)

where φ l
k and φ s

k are members of some predefined basis sets. The kinetic balance
condition implies [11, 40]

H {Φs} ⊇H {(σ ·p)Φ l}, (13)

where H {Φ} is the model space in which Φ is expanded. In the algebraic approx-
imation the Dirac and the Lévy-Leblond equations are represented as relations
between finite-dimensional matrices. In the case of the Dirac equation it is a matrix
representation of equation (1):(

Hll−ESll cHls

cHsl Hss−ESss

)(
Cl

Cs

)
= 0, (14)

where the labels l and s refer to the appropriate components of the trial function,
matrices Hab stand for the representations of the appropriate operators in equation
(1) and Sab are the overlap matrices, with a,b ∈ {l,s}. The Lévy-Leblond equation
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is represented by an Nl×Nl eigenvalue problem:

(H−ESll)Cl = 0, (15)

where

H = Hll +
1

2m
HlsS−1

ss Hsl. (16)

Obviously, in the algebraic representation the entire spectrum is discrete. A part
of it represents the Dirac continua and another part gives an approximation to the
genuine discrete eigenvalues of the Dirac Hamiltonian. The exact Dirac spectrum is
compared with its algebraic representation in Fig. 1.

Spectra of the algebraic representations of the Dirac Hamiltonian strongly depend
on the choice of the basis set of the trial functions and may be essentially different
from their exact counterparts. If H {Φ l} = H {Φs} then spurious roots, located
below the roots describing the real states, may appear. In particular, spectra of the
hydrogenic s1/2 and p1/2 manifolds are then the same and, consequently, a spuri-
ous root located below the 2p1/2 energy level appears [10, 12]. A detailed analysis
of this problem shows that the spurious roots correspond to incorrectly represented
states of the positive continuum and they enter the continuum for sufficiently large
Ns [30]. A schematic behaviour of a spurious root in the case of a fixed H {Φ l} and
systematically enlarging H {Φs} is shown in Fig. 2.

Probably the first formally justified formulation of the relativistic variational
principle is due to Grant et al. [13, 50]. It has been structured into a universal mini-
max principle by Talman [47] and by Datta and Deviah [8]. The minimax principle
has been formulated as a recipe for reaching the appropriate stationary point in the
energy hypersurface defined in the space of variational parameters:

E = min
{l}

[
max
{s}

〈Ψ |H|Ψ〉
〈Ψ |Ψ〉

]
, (17)

where Ψ = (Ψ l,Ψ s)T. A broad review of the subject has been given by Kutzelnigg
[24].

Fig. 2 The ground-state
energy (solid line) and the
position of the spurious root
(broken line) as a function
of the dimension of H {Φ s}
when H {Φ l} is fixed; E0 is
the exact ground-state energy
and E∞

0 is the ground state
energy obtained in the fixed
H {Φ l} space when H {Φ s}
is saturated

E0

E0

Erel

−2mc2

NS = NL NS >> NL

0

S+
c

c
−S

8
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A theorem saying that the variational approximations are the upper bounds to the
exact Dirac eigenvalues if the relations between the components of the wavefunction
are the same as in the exact solution has been proved by Dolbeault et al. [9]. A proof
that the eigenvalues of the algebraic approximation fulfil the Hylleraas-Undheim-
McDonald bound conditions if

Nl⋃
ν=1

H {(Eν + 2mc2−V
)−1

(σ ·p) Φ l} ⊂H {Φs}, (18)

where Eν are solutions of equation (14) corresponding to PES, and V is a negative-
defined external potential, has been presented in [31]. Consequently, the minimax
procedure may be effectively reduced to a minimalization with respect to the large
component variational space. In practical calculations the exact fulfilment of condi-
tion (18) may be difficult. However, in the case of Coulomb-like potentials it may
be approximated by the asymptotic balance condition

H {(σ ·p) Φ l}∪H {r (σ ·p) Φ l} ⊂H {Φs} , (19)

which in most cases is sufficient for securing the correct behaviour of the spectrum
in the algebraic approximation [31].

3 Two-Electron Dirac-Coulomb Equation

The DC Hamiltonian

HDC(1,2) = HD(1)+HD(2)+
1

r12
, (20)

with HD(j), j = 1,2 standing for the one-electron Dirac Hamiltonians is a rather
strange hybrid composed of a relativistic one-electron part and a non relativistic
two-electron term. Its eigenvalue equation

HDC(1,2)Ψ(1,2) = EDCΨ(1,2), (21)

is referred to as the Dirac-Coulomb (DC) equation. The effects of coupling of
the bound-states with the ones corresponding to continuum, known as the Brown-
Ravenhall disease, results in numerous difficulties associated with solving this equa-
tion. Let us note that the essence of the difficulties is not due to the degeneracy of the
discrete and continuous spectra. Such kind of degeneracy is common also in non-
relativistic models. For example, it appears in the case of an electron moving in an
axial external magnetic field and by no means obstructs finding the Landau levels. A
special treatment is necessary when, in addition to this degeneracy, the Hamiltonian
contains an interaction term coupling the bound states to the continuum ones.

A schematic diagram showing the structure of the spectrum of a two-electron DC
Hamiltonian is shown in Fig. 3. Apart of the discrete energy levels and two continua
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Fig. 3 Spectra of one-electron (A) and two-electron (B) DC Hamiltonian

denoted as Σ++
c (both electrons in Σ+

c ) and Σ−−c (both electrons in Σ−c ), we have the
Brown-Ravenhall (BR) continuum Σ+−

c (one electron in Σ+
c and another one in Σ−c )

and Σ+
g /Σ−g (one electron in a bound state and another one in Σ+

c /Σ−c ). Let us note
that Fig. 3 is not complete. For example, only two cases of one electron occupying
a discrete level with another one in a continuum are shown.

As a consequence of the peculiar properties of the DC equation, its solutions,
when compared to the physical reality, suffer from numerous artifacts. In particular:

• Since the electron-electron interaction term couples the bound and the con-
tinuum states, the eigenvalues of the DC Hamiltonian corresponding to the
physically bound states (for example to the ground state of a helium-like atom)
are autoionizing.

• The DC Hamiltonian does not have normalizable eigenfunctions.
• The presence of the unphysical BR continuum causes a shift of the bound state

eigenvalues. On the other hand, removing the BR continuum by a projection
results in an incomplete model space.

Nevertheless the most successful and commonly used relativistic models of atoms
and molecules have been derived from variational methods applied to the DC equa-
tion. In fact, a large part of the relativistic quantum chemistry as well as of the
atomic and molecular spectroscopy is based on the non-projected DC equation [14].

The two-electron DC Hamiltonian for a helium-like atom may be expressed as

H(1,2) =

⎛⎜⎜⎝
V0(1,2) t2 t1 0

t2 V2(1,2) 0 t1

t1 0 V2(1,2) t2

0 t1 t2 V4(1,2)

⎞⎟⎟⎠ , (22)
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where t1 = c(σ1 ·p1), t2 = c(σ2 ·p2), σ1 = σ ⊗ I2, σ2 = I2⊗σ ,

Vn(1,2) =
(
− Z

r1
− Z

r2
+

1
r12
−nmc2

)
· I4, (23)

and I4 is a 4×4 unit matrix. The 16-component wavefunction is composed of four
4-component two-electron spinors

Ψ(1,2) =

⎛⎜⎜⎝
Ψ ll(1,2)
Ψ ls(1,2)
Ψ sl(1,2)
Ψ ss(1,2)

⎞⎟⎟⎠ , (24)

with the antisymmetry condition Ψ(1,2) =−Ψ(2,1) implying that

Ψ ll(1,2) = −Ψ ll(2,1),
Ψ ls(1,2) = −Ψ sl(2,1),
Ψ ss(1,2) = −Ψ ss(2,1).

The non-relativistic approximation results in the two-electron Lévy-Leblond equa-
tion:

(σ2 ·p2)Ψ ls
L +(σ1 ·p1)Ψ sl

L = (E0
ν −V)Ψ ll,

(σ2 ·p2)Ψ ll = 2mΨ ls
L ,

(σ1 ·p1)Ψ ll = 2mΨ sl
L ,

which transforms to the two-electron Schrödinger equation if

Ψ ls
L =

1
2m

(σ2 ·p2)Ψ ll, Ψ sl
L =

1
2m

(σ1 ·p1)Ψ ll

[for the definition of ΨL see equation (3)].
In many-electron cases the DC Hamiltonian eigenvalue problem is usually re-

placed by an eigenvalue problem of its matrix representative in a properly con-
structed model space [34, 35, 40]. In a two-electron case it is convenient to split the
model space to three subspaces. Each of these subspaces is spanned by a separate
basis set of the variational functions:

1. The two-electron variational functions Φ ll describe the cases when both electrons
are in the PES:

H ll = AH {Φ ll}, (25)

where A is the antisymmetrization operator. In the non-relativistic limit it is the
model space of the spin-dependent Schrödinger equation.

2. In the variational functions one electron occupies PES and the other one the
negative energy space:
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H [ls] = A
[
H {Φ ls}⊕H {Φsl}

]
. (26)

3. In the variational functions both electrons occupy the negative-energy space:

H ss = AH {Φss}. (27)

The basis sets have to be related by the two-electron kinetic balance conditions.
These conditions may be derived in similar way as in the one-electron case. How-
ever, they have to establish relations between all three subspaces of the model space.
As it was demonstrated in [33,36], the kinetic balance conditions may be expressed
as (

(σ2 ·p2)
(σ1 ·p1)

)
H ll∪

(
(σ1 ·p1)
(σ2 ·p2)

)
H ss ⊂H [ls], (28)

and
(σ1 ·p1) , (σ2 ·p2)H [ls] ⊂H ss. (29)

The two-electron wavefunctions are obtained as a result of the diagonalisation of the
Hamiltonian matrix. Each wavefunction contains contributions from all subspaces
of the model space. The eigenvalues form a finite and discrete set. Some of them
represent the bound states, but the majority correspond to the three continua of the
DC Hamiltonian.

As it was already mentioned, the computational difficulties are related to the
coupling between the bound states and the ones corresponding the BR continuum.
There are several ways of stabilising the influence of the BR continuum on the ener-
gies of the bound states. Conceptually the simplest one is the PES projection which
is intended to completely eliminate this influence. Another approach, free of many
defects of the PES projection, is based on a very careful construction of the space of
the trial functions so that it is relatively small, contains the solution we are looking
for and remains invariant with respect to the action of the Hamiltonian. Of course,
an exact fulfilment of these conditions is equivalent to an exact solving of the perti-
nent eigenvalue problem and, in general, is not feasible. However, these conditions
may be fulfilled to a high degree of accuracy, as it has been done in an approach
recently developed by Nakatsuji [27]. Then the trial space may be constructed in
such a way that the spectrum is divided to three separated sections so that each of
them may be linked to one of the subspaces of the model space. This kind of sep-
aration is possible under condition that the contribution from one of the spaces is
dominant in each eigenvector. If the model space is constructed in such a way then
the eigenvectors of the Hamiltonian matrix may be assigned to specific subspaces
of the model space [18]. The sets of eigenvalues corresponding to H ll, H [ls] and
H ss are denoted, respectively as Σ++, Σ+− and Σ−−.

The structure of the algebraic spectrum of a two-electron DC Hamiltonian is
shown in Fig. 4. The uppermost bundle is composed of Σ++ eigenvalues and
its lower edge describes the ground state. The middle bundle, representing Σ+−,
describes the BR continuum which in the case of a complete space would spread
from −∞ to +∞. The lowest bundle corresponds to the negative continuum. In the
limit of a complete space it spreads from −4mc2 to −∞.
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Fig. 4 Eigenvalues of the
Dirac Hamiltonian matrix
for helium-like atoms ver-
sus Z. The bundles of lines
represent Σ++, Σ+− and
Σ−− and correspond to the
appropriate subspaces of a
1,131-dimensional Hy-CI
model space. The number of
the eigenvalues in each bundle
is equal to the dimension of
the corresponding subspace
of the model space
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If the energy gap between the discrete states and the highest eigenvalues repre-
senting the BR continuum is large enough then the influence of the continuum may
be negligibly small. This can be seen in Fig. 4, where the gap is large for Z < 25,
however for larger values of Z it disappears. The correct structure of the space of
the trial functions2 is crucial for retaining a large energy gap and, consequently,
for a sufficiently high accuracy of variational solutions within an approach without
PES-projection. The perturbation due to the BR continuum becomes essential in the
case of near-degeneracy. This may be seen in figure 4. The penetration of the eigen-
values belonging to Σ+− to the PES area is a numerical manifestation of the BR
disease. The apparent degeneracies of the energy levels belonging to Σ+− and the
ones belonging to Σ++ are, in fact, very narrow avoided-crossings responsible for
numerical instabilities in variational calculations.

In the following we shall analyse the issues related to the artifacts of the DC
equation. They are connected with the genuine two-electron effects, i.e. with the
effects beyond the Dirac-Fock model. The following terminology is used hereafter.
The non-relativistic correlation energy is defined as the difference between the
eigenvalue of the Schrödinger Hamiltonian and the corresponding Hartree-Fock
energy:

Ecorr
nr = ESchr−EHF.

Similarly, the relativistic correlation energy is the difference between the eigenvalue
of the DC Hamiltonian and the corresponding Dirac-Fock (DF) energy:

Ecorr
rel = EDC−EDF.

The difference between the relativistic and the non-relativistic correlation energies
is referred to as the relativity-correlation cross correction:

Ex = Ecorr
rel −Ecorr

nr .

2 By the correct structure of the trial functions we understand the relations between their com-
ponents, the behaviour at the singular points, the boundary conditions, etc., consistent with the
structure of the DC equation.
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Table 1 Relativistic and correlation corrections to the ground-state energies of helium-like atoms.
∆EBR is the difference between the non-projected and PES-projected energies, i.e. the energy shift
due to the interaction with the BR continuum (all-order contribution to the non-relativistic part of
Coulomb interaction). For the explanation of the remaining symbols see text. All energies are in
milihartree

Z EHF EDF−EHF Ecorr
nr Ex ∆EBR

2 −2,861.67999 −0.13331 −42.0444 0.0035 0.0001
20 −387,611.057 −2,055.707 −46.177 0.351 0.164
40 −1,575,111.03 −34,794.26 −46.42 1.36 1.57
60 −3,562611.02 −188,364.94 −46.50 2.70 4.70
80 −6,350,111.01 −656,335.85 −46.55 3.16 10.54
100 −9,937,611.00 −1,859,249.0 −46.6 0.0 21.6
118 −13,850,361.0 −4,494,444.1 −46.6 −18.4 36.4

Hartree-Fock energies as well as relativistic and correlation corrections for the
ground states of several members of He isoelectronic series are collected in Table 1.

4 Relativistic Hylleraas-CI

Due to the singularity of the electron-electron interaction operator, the two-electron
wavefunction has a cusp at r12 = 0, referred to as the electron correlation cusp [25].
If r12 → 0 then

Ψ(r1,r2)∼ arq
12 + brq+1

12 , (30)

where a,b are state-dependent constants and q =
√

1−α2/4−1≈−1.3∗10−5. In
the non-relativistic theory q = 0. Due to a poor representation of the cusp by expan-
sions in the orbital space, a fast convergence of CI expansions may only be obtained
if r12-dependent terms are present in the trial function. Probably the most pre-
cise approach utilising explicitly correlated, i.e. r12-dependent, trial functions is the
Hy-CI method [43, 51]. A non-relativistic Hy-CI trial function may be expressed as

ΨHyCI = A∑
k

rk
12 ∑

i

CkiΦk
i ({φ}) , (31)

where Cki are variational parameters, and Φk
i ({φ}) are products of spinorbitals

(spinors in the relativistic formulation). The relativistic formulation of Hy-CI
(R-Hy-CI) proved to be very promising [22,23] however, with the increasing lengths
of the expansion, i.e. with the increasing accuracy, the results became unstable [36].
It has been shown that the main reason of this instability is the perturbation due to
the BR continuum [32].

In order to construct a model space in which the BR continuum states are as
much as possible separated from the ones describing the bound states, apart from
the assurance of the correct behaviour of the trial functions in the singular points
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of the Hamiltonian, the relations between the components of the wavefunction have
to be fulfilled up to a high degree of accuracy. This implies, in particular, that the
kinetic balance conditions have to be fulfilled. The most appropriate form of the
basic correlation factor in R-Hy-CI is

f [0]
s (r12) = rs

12, (32)

where s is a real parameter chosen to satisfy the relativistic cusp condition. The
kinetic balance conditions generate new correlation factors:

f [1]
s (r12)1 = i

[
(σ1 ·p1) f [0]

s (r12)
]
(σ1 · r̂1),

f [1]
s (r12)2 = i

[
(σ2 ·p2) f [0]

s (r12)
]
(σ2 · r̂2), (33)

f [2]
s (r12) =

[
(σ1 ·p1)(σ2 ·p2) f [0]

s (r12)
]
(σ1 · r̂1)(σ2 · r̂2).

In fact, in this way an infinite chain of the correlation factors is generated and a
cut-off of this sequence is necessary. In practical calculations retaining only the
lowest-order correlation factors, as defined in (33), appears to be sufficient [36].

In the calculations for the ground states of helium-like atoms the trial functions
have been taken as [32, 33, 36]

Φ [r],JMΠ
s,Γ ;λ1,λ2

(x1,x2) = f [r]
s (r12)r

γ1+n1
1 rγ2+n2

2 e−(β1r1+β2r2)Ω JMΠ
λ1,λ2

(r̂1, r̂2), (34)

where Γ = {n1,n2,γ1,γ2,β1,β2} is a collective index composed of the non-linear

parameters and r is equal to the number of (σ ·p) operators acting on f [0]
s (r12). The

angular spinors have been defined as

Ω JMΠ
λ1λ2

(r̂1, r̂2) = ∑
m1,m2

(
j1 j2 J

m1 m2 −M

)
φλ1λ2

(r̂1, r̂2), (35)

where r̂ = r/r, λ j ≡ { j j,m j,π j}, J,M,Π are the angular momentum and parity
quantum numbers, and

φλ1λ2
(r̂1, r̂2) = ϕ j1m1π1(r̂1)⊗ϕ j2m2π2(r̂2), (36)

with ϕ jmπ(r̂) standing for the spin-angular part of the one-electron Pauli spinor. The
resulting matrix elements may be expressed in terms of the primitive two-electron
integrals 〈B| f (r12)τ̂|K〉, where

τ̂ = 1, (σ1 ·σ2) , (σa · r̂a) , (σa · r̂b) , [(σ1 · r̂1) (σ2 · r̂2)] (37)

with a,b ∈ {1,2} and f (r12) = rs
12, where s ≥ −1 may be either integer or real, or

f (r12) = ln(r12). Details of the algorithms for the evaluation of the integrals have
been published in [29, 37].
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Fig. 5 The pattern of con-
vergence of the MCDF
correlation energies (in mili-
hartree) of the ground states
of helium-like atoms to the
Hy-CI values. The thick
solid line corresponds to the
R-Hy-CI energy. The thin
solid lines are the MCDF
energies (the configuration
basis is displayed as a label
of each of these lines). The
non-relativistic correlation
energies (the exact and the
MCDF ones) are shown by
the dotted lines 0 20 40 60 80 100 120
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Fig. 6 R-Hy-CI relativity-correlation cross-term energies (milihartree) in He isoelectronic series.
Dotted line: 502 functions. Solid line: 1,131 functions. The coupling of the ground-state with the
BR continuum wavefunctions results in the instabilities. The right panel shows an enlargement of
the small-Z part. The circles correspond to the extrapolated MCDF results [28]

The results of the R-Hy-CI calculations have been reported in [38]. In Fig. 5 one
can see how the multiconfiguration Dirac-Fock (MCDF) energies approach the R-
Hy-CI ones. The process of convergence of the MCDF results to the R-Hy-CI ones
appears to be very slow. Besides, for large expansions the solutions of the MCDF
equations were possible to obtain only for Z ≤ 26 [28]. It seems that the problems
with stability of the MCDF procedure may be related to the interference of the BR
continuum (c.f. a discussion by Indelicato [20]).

The effects of an enlargement of the R-Hy-CI model space are presented in Fig. 6.
As one can see, the extension of the dimension of the R-Hy-CI basis from 502 to
1,131 functions results in strong instability of the eigenvalues for medium and large
values of Z. On the other hand, an inspection of the results obtained for small Z
shows that the enlargement of the basis set results in a considerable improvement of
the accuracy. We conclude that the requirement of very high accuracy implies using
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very large R-Hy-CI basis. In the next section we present a simple way of solving
this controversy.

5 Complex-Coordinate-Rotation

The approach known as the complex coordinate rotation (CCR) method has origi-
nally been developed to study the autoionizing states also referred to as resonances
[1,2,41]. These are the states whose discrete energies are embedded in a continuum.
The basic theorem of the method says that the bound state energies of a Hamiltonian
do not change under the complex rotation of the coordinates,

r→ reiΘ , (38)

whereas the continua move to the complex plane. The CCR Hamiltonian matrix is
non-Hermitian and its eigenvalues z are complex. The energies of the resonant states
are equal to

E = Re(z)

and the widths of the energy levels are

Γ =−2Im(z).

From the formal point of view the bound-state eigenvalues of a many-electron
DC Hamiltonian are resonances. To our knowledge, in the relativistic quantum
mechanics the CCR method was used in studies on the one-electron Dirac eigen-
value equation only [42,49]. It is surprising that it has not been applied in studies on
the artifacts of the DC equation until very recently [6,32,33]. The effects of the CCR
on the spectra of a one-electron Dirac Hamiltonian and of a two-electron DC Hamil-
tonian with the electron-electron interaction neglected, are shown, respectively, in
Figs. 7 and 8. Due to the CCR the one-electron continua are moved to the complex
plane, while the discrete eigenvalues remain in the real axis. In the two-electron
case the picture is slightly more complicated. In figure 8 one can see a separation
of the three main continua: Σ++

c , Σ+−
c and Σ−−c , where the subscript c is to identify

the sets of energies of these states in which both electrons are unbound. Since the
interaction term is neglected, the discrete states are not coupled to the continuum.
Therefore also in this case the discrete eigenvalues remain in the real axis. If one
electron occupies a bound state and the other one is in Σ+

c then the origin (the low
energy threshold) of the continuum of the unbound electron is shifted to the position
of the one-electron bound-state energy, forming a Σ+

g band (for simplicity only one
Σ+

g and one Σ−g continuum is shown in Fig. 8). Thus, the CCR completely removes
the degeneracy of the discrete states with the continuum and allows for a simple
identification of the discrete eigenvalues in the algebraic spectrum.

Since the electron-electron interaction introduces a coupling between the dis-
crete and the continuum states, also the eigenvalues of the CCR DC Hamiltonian
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Fig. 8 The same as in Fig. 7 but for a two-electron system. For explanation see text and Fig. 3

corresponding to the bound states are complex. However, the behaviour of these
eigenvalues, in terms of the rotation angle Θ , is different than the behaviour of the
continua. The bound-state eigenvalues of the rotated Hamiltonian, when represented
in the complex plane, are isolated from the continuum and, in a range of Θ , are
Θ -independent. On the contrary, all components of the continuum depend on Θ in a
regular way. Therefore the bound-state eigenvalues can easily be distinguished from
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Fig. 9 R-CCR-Hy-CI spectrum of a Z = 90 helium-like atom in a basis of 1,826 explicitly cor-
related functions with Θ = 0.3. The dots represent the computed eigenvalues. The lines mark
the areas covered by the continua. The right panel shows an enlargement of the bound- and the
resonance-state-energy region without CCR (part a) and with Θ = 0.3 CCR (part b)

the continuum ones [32]. This behaviour may be seen in Fig. 9 where the results of
a specific calculation are shown. All features of a CCR spectrum marked in Fig. 8
are also seen in Fig. 9. In particular, in the enlargements of the part of the spectrum
containing the bound- and the resonance-state energies one can identify the dots
located near the real axis and corresponding to the specific bound states.

CCR removes the degeneracy between the eigenvalues corresponding to the
bound states and to the continuum [32, 33]. Therefore it stabilizes the bound-state
eigenvalues. This can be seen in Fig. 10 – the application of CCR removed all spikes
corresponding to the near-degeneracies and avoided crossings between the ground-
state and the BR-continuum eigenvalues, being a nuisance to the plain R-Hy-CI
calculations.

The appearance of the bound states as resonances is one of the artifacts of the
DC model. The probability of their fictitious autodecay is finite and is represented
by Γ . In order to estimate this effect we calculated Γ for the helium isoelectronic
series as a function of Z and, additionally, we performed a series of calculations
for Z = 90 with several values of the fine structure constant α . Plots of Γ /2 versus
Z for the physical value of α and versus α for Z = 90 are shown in Fig. 11. The
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Fig. 10 Hy-CI correlation
energies in the ground states
of helium-like atoms. Dash-
dotted line corresponds to
R-Hy-CI results in a small
(502 function) basis. Thin and
thick solid lines correspond,
respectively, to R-Hy-CI and
R-CCR-Hy-CI in a large
(1,826 function) basis. The
non-relativistic correlation
energy is represented by the
dotted line
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Fig. 11 The half-widths Γ /2
(in milihartree) of the R-
CCR-Hy-CI eigenvalues as a
functions of α (broken line)
and Z (thin solid line). Thick
solid line represents a fit:
6.4(Zα)3 ·10−3. The vertical
line marks (Zα)F =
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3/2, i.e.

the limit of the applicability
of the method
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best monomial least-square fit has been obtained as 6.4 · 10−3 · (Zα)3. In Fig. 11
it is represented by the smooth line. Except for some numerical instabilities of the
computed values of Γ , the fit is very good and shows that Γ behaves as (Zα)3.

6 PES-Projected R-CCR-Hy-CI

The CCR-based approach facilitates a separation of the PES from the rest of the
model space independently of the form of the trial function. Also if this function
contains geminals. Figure 12 shows the CCR spectrum of a DC Hamiltonian with
the electron-electron interaction neglected. Due to the rotation in the complex plane
the PES eigenvalues are separated from the rest of the spectrum. In a complete basis
set all eigenvalues with imaginary parts not larger than 0 and to the left of the border
line shown in Fig. 12 correspond to PES. Then, by selecting a subspace of the entire
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Fig. 12 The CCR spectrum
of Z = 90 He-like atom with
electron-electron interaction
neglected, in a 1,826-function
R-Hy-CI basis. Full circles –
PES eigenvalues; Solid line –
the theoretical border between
the PES eigenvalues and the
BR continuum

model space which is spanned by the PES eigenvectors, we effectively perform the
PES projection. The representation of the DC Hamiltonian in the PES-projected
basis gives a PES-projected DC Hamiltonian matrix. Its eigenvalues correspond to
the PES-projected R-Hy-CI energies. A detailed description of this approach and
the numerical results are given in [6].

7 Non-Projected Versus PES-Projected Results

Very recently by means of two different approaches (a large scale configuration
interaction [48] and R-CCR-Hy-CI [6, 32, 33]) the difference between the ground
state energies derived from the non-projected and from the PES-projected methods,
∆EBR, has been evaluated (cf. Table 1). As one could expect, this difference, up
to a high accuracy, is equal to the virtual pair contribution to the nonrelativistic
electron-electron Coulomb repulsion energy. Thus, up to the first order, [3, 26]

∆E0
BR =

(Zα)3

6π
.
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Fig. 13 Relativity-correlation cross-term energies: Thick solid line – R-CCR-Hy-CI energies in
1,826-function basis; broken line – R-Hy-CI in a 502-function basis; +/× – CI/MBPT PES-
projected energies [7, 39]; ◦ – MCDF [28]; thin solid line – R-CCR-Hy-CI energy in a 1,826-
function basis shifted by (Zα)3/(6π)

Fig. 14 Ratio ∆EBR/∆E0
BR versus Z. Solid line – R-CCR-Hy-CI in 1,826-function basis [6, 33];

dotted line – CI in a large Gaussian basis set [48]; broken line – R-Hy-CI in 502-function basis [32];
+/× – the difference between the non-projected 1826-function R-CCR-Hy-CI and PES projected
CI/MBPT [7, 39]

The effect is shown in Figs. 13 and 14. As one can see, the increasing accuracy of
the calculations results in a more precise fit of the difference between the two sets
of results to ∆E0

BR.

8 Final Remarks

If the quality of the basis set is sufficiently high relative to its dimension and to
the value of Z, so that there is a sufficiently large energy gap between the ground
state energy and the eigenvalues representing the BR continuum, then neither PES
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projection nor CCR are necessary. However, for very high accuracy and, particu-
larly, for large values of Z, when the disturbing influence of the BR states becomes
noticeable, CCR offers an adequate way of removing this influence and, simulta-
neously, allowing for the asymptotic completeness of the model space. One should
note that a vast majority of relativistic results for atoms containing more than two
electrons and, probably, for nearly all molecules have been obtained at the level
of accuracy which is manageable by the basis set selection using non-projected
approaches.

The PES projected (no-pair) and the non-projected approaches converge to dif-
ferent limits. The difference is of the order (Zα)3. Thus, it is beyond the limits
of validity of the DC model. The corresponding term can either be included or
neglected while introducing QED corrections. This gives another confirmation of
a twenty-year-old statemnt by Brown [4], that both approaches are correct if they
are applied in a consistent way.

The truncation of the R-Hy-CI model space, facilitating a PES projection, is
feasible but it is not necessary and has some disadvantages:

• The absence of the negative energy states in the PES-projected methods has to
be corrected if we are interested in quantities other than energy.

• The PES projection is not unique even if the original space is complete. Therefore
the results depend on the one-electron potential and the basis-set [19].

There are also some advantages of the PES projection:

• The PES-projected eigenvalue problem is bounded from below and for the same
quality of the energy a smaller model space is necessary.

• Combining PES projection with CCR may be simpler than using CCR alone:
In the non-projected CCR methods we need several diagonalisations of H (for
several values of Θ ) while in the PES-projected CCR approach a single diago-
nalisation, for one value of Θ , is sufficient in order to construct the basis for the
PES-projected space.

In the DF calculations we have an effective one-electron problem and the rela-
tions between the components of the spinors consistent with the structure of the
pertinent equation, combined with the bound-state boundary conditions, are always
sufficient. Therefore, the results of correctly designed DF programs never suffered
from any kind of the DC equation artifacts and no PES projection is necessary in
this case. However, in MCDF calculations a PES projection (or CCR) may allow for
a higher accuracy limit [20].

An implementation of CCR-based approaches to QED calculations for high-Z
atoms seems to be the most attractive challenge.
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Are Einstein’s Laws of Relativity
a Quantum Effect?

Erkki J. Brändas

Abstract The problem of unifying quantum mechanics with special and general
relativity is reconsidered from a relativistically invariant first principles theory. The
ingredients are: (i) analytic extension of quantum mechanics into the complex plane
via a complex symmetric ansatz, involving (ii) particle- antiparticle states inter-
acting through a kinematical law including (iii) dynamical features such as time-
and length-scale contractions and examining (iv) the likelihood of the so-called
general Jordan block formations. The extended formulation has a wider set of
solutions compared to standard mechanics, with general gauge invariance appro-
priately embedded. In the present development we establish connections with the
Klein-Gordon-Dirac relativistic theories and confirm dynamical features like space
and time contractions, Einstein’s law of light deflection in a gravitational field,
and the appearance of the Schwarzschild-gravitational radius associated with every
mass-matter object.

Keywords: Klein-Gordon-, Dirac equation, particle-antiparticles, complex sym-
metry, non-positive metric, Jordan blocks, special- and general relativity, electro-
magnetic- and gravitational fields, Schwarzschild radius, supersymmetry

1 Introduction

In this study we reconsider the old problem of the purported inconsistency between
quantum mechanics and the theory of relativity. To give further details on this sub-
ject, we emphasize that while the Dirac and Klein-Gordon equations [1–3], in spite
of giving an almost perfect description of microscopic quantum effects, yet do not
account for dynamical effects like the time- and length-scale contractions in the
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special theory of relativity or could be rigorously integrated with the general gravi-
tational theory. Additional benefits from obtaining such a general unification with
quantum mechanics would be to obtain the well-known Schwarzschild solution (or
rather the correct Schwarzschild radius) along with a deduction of the Einstein law
for the gravitational deviation of light.

A rigorous quantum many-body relativistically invariant theory is moreover lack-
ing although excellent practical and valuable schemes exist today [4]. For a recent
update on the study of molecules containing heavy elements demanding a relativistic
formulation, see Ref. [5].

We will present here a description which is essentially of quantum mechani-
cal origin. However, there is an important generalization built-in. This addition
brings about the capability to analytically extend quantum mechanical quantities
like, resolvents, Green’s functions, S-matrices and general spectral properties, when
appropriate, into the complex plane. Furthermore, there is an important quality pro-
vided, i.e., the means to include the dynamical characteristics such as time-, length-
and temperature scales into the theory. The insertion of standard quantum mechan-
ics into a complex symmetric arrangement with a wider set of broken symmetry
solutions leads to the appearance of merged structures like Jordan blocks. The latter
will turn out to be a “blessing in disguise”. In general it is important to remem-
ber that proper invariance laws, like gauge invariance and covariance may be found
appropriately embedded when necessary.

In the present article we will build upon such a quantum mechanical model
using the flexibility of a complex symmetric ansatz. First we will briefly review the
background, explanation and need to develop the representation under consideration.
The relationship with the Klein-Gordon equation is identified displaying well-known
formulas for the usual time and length contractions within the special theory of
relativity. It will also be demonstrated how to incorporate gravitational interactions in
the picture including dynamical features of the general theory of relativity. The model
is finally extended to rigorously include fermions establishing the connection with
the Dirac equation. With respect to the query given in the title we have represented
the laws of relativity as a quantum effect based on the super-position principle.

2 The Complex Symmetric Ansatz

The feature to be discussed here emerges from the so-called complex scaling tech-
nique. Using well-known rigorous mathematical theorems on so-called dilatation
analytic interactions Balslev and Combes proved important spectral properties of
many-body Schrödinger operators [6]. The theorem led to a flurry of quantum the-
oretical applications in quantum chemistry and nuclear physics, for more details
see e.g. [7]. The possibility to “move” the cut corresponding to the absolutely con-
tinuous spectrum of dilation analytic (or other appropriate classes) operators was
successfully used both in accurate numerical applications based on Weyl’s theory [8]
and in analytic basis set expansions [9]. The complex scaling process in conjunction
with a complex symmetric ansatz became a natural choice as a result of applying
dilatation methods in e.g. quantum chemistry [10].
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The permission to include complex symmetric interactions actually supports a
transition from firmly quantum mechanical non-local behaviour to a decidedly clas-
sically local appearance. In this generalized picture a supposed class of resonance
states can be defined, computed and analysed - compare for instance the illustrious
Gamow waves – albeit standard quantum mechanical states remain embedded [6].
Although general Hamiltonians (or Liouvillians) may not every time subscribe to
dilatation analyticity, complex symmetric perturbations, as the specific situation dic-
tates, nevertheless have an additional appeal. In the forthcoming description, basic
quantum mechanical physical law will rule, and at the same time localized features,
cf. those of classical mechanics, take over when and where appropriate.

As an example we will take a simple 2×2 matrix problem in order to demonstrate
the necessity, together with the associated consequences, of transforming the secular
equation to complex symmetric form. In so doing we will also attach importance to
the appearances of Jordan blocks off the real axis as an immediate result of the
analytic extension. We will moreover refer to an analytic problem that has been
considered in some detail in Ref. [13]. In addition to the attainment of complex
eigenvalues one may here demonstrate the existence of crossing points on and/or
off the real axis and investigate what type of degeneracy exhibited.

The Hamiltonian discussed in [13]

H = H0 + aV =−1
2

d2

dr2 −
1
r

+ a
e2

4
r2e−r (1)

describes the hydrogen atom perturbed by a barrier potential modelled by a barrier
height parameter a displaying how the Coulomb spectrum varies with a.

Combined with the complex scaling method, see Ref. [6] and Eq. (2) below,
complex eigenvalues are exposed as the scale factor η , defined by

r→ ηr; η = eiϑ ; | ϑ |> 1
2
| arg(Eres) |, (2)

has an angle ϑ sufficiently large to uncover the complex resonance energy Eres. In
addition one might examine the spectrum for complex values of a. For a general dis-
cussion on resonances and their characterization in n-body systems with dilatation
analytic potentials see Ref. [14].

As anticipated, the non-crossing rule is obeyed for real-valued barrier heights
[13]. However, it was determined that for a = a0 = 0.5928± 0.0166i two eigen-
values of the Hamiltonian (truncated to 13th dimensional problem) cross. In fact
the full (non-truncated) problem leads to an infinity of branch points piling up at
the threshold (E = 0). The perturbed ground state of the hydrogen atom will run
through all unperturbed states and finally be expelled as a resonance state above the
threshold. It is interesting to note that the resonance state, for all practical purposes,
has the character of a ground state “moving through” all the bound states of the
hydrogen atom; for more details see Ref. [13].

In order to understand the crossing situation a bit further we rewrite it as a two-
state problem; employing standard multi-dimensional partitioning techniques, see
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e.g. Ref. [15]. The 2×2 effective Hamiltonian matrix is hence a function of a (and
the energy parameter, here evaluated at the crossing point). For simplicity the scaling
parameter η is not explicitly indicated. The energy component E(a) and the matrix
elements Hi j(a); i, j = 1,2 are basically given by (for details on crossing conditions,
reference and complement manifolds, and related similarity transformations, see
Ref. [16])

E(a) =
〈Ψ (a∗) |H |Ψ(a)〉
〈Ψ (a∗) |Ψ(a)〉 ; 〈Ψ(a∗) |Ψ (a)〉0 (3)

where Ψ(a) = c1ψ1 + c2ψ2 obtains from the secular equation associated with
the matrix, see Eq. (4) below, via a complex symmetric similarity transformation
producing the diagonal form(

H11(a) H12(a)
H21(a) H22(a)

)
→

(
E1(a) 0

0 E2(a)

)
(4)

with
Hi j(a) = 〈ψi(a∗) |H | ψ j(a)〉; 〈ψi(a∗) | ψ j(a)〉= δi j. (5)

Note that a∗ (and η∗ not explicitly displayed) must occur in the bra position in
order to produce matrix elements of the Hamiltonian that are analytic in the param-
eter(s) a (and η). Equation (4), nevertheless, illustrates the expectation that the
matrix at all times can be diagonalized and self-orthogonality amongst the solutions
avoided, which is easily proven for Hermitean or self-adjoint problems. However,
even if our secular equation derives from a so-called self-adjoint analytic family of
operators [6], there is no guarantee that one will find simple eigenvalues, i.e. with
Segrè characteristics equal to one. This complication can be demonstrated in the
following way. First by noting that we have a general complex symmetric prob-
lem under study we consider a general complex symmetric non-Hermitean case
with

H12 = H21 = ıν; ı =±i (6)

where the indicator ι is introduced to express Schwarz’ reflection principle.
To understand the manifestation of Jordan blocks in more detail, we will deter-

mine the condition for a degenerate eigenvalue of the matrix, see Eq. (4), As a result
we find the anomalous but correct result that (4) can not always hold and instead(

H11 −iν
−iν H22

)
→

(
E 2ν
0 E

)
(7)

with the eigenvalue(s) given by

λ± =
1
2
(H11 + H22)±

√
(H11−H22)2−4ν2 (8)

exhibiting the degeneracy for

H22 = H11±2ν; λ+ = λ− = E =
1
2
(H11 + H22) = H11±ν. (9)
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Note that any given value of ν (or prescribed difference between the two diago-
nal elements) results in two different sets of degenerate solutions in Eq. (9), one
of which should be unphysical/erroneous (for more on this see Ref. [17]). For
appropriate values of a, such crossing conditions were examined in Ref. [13].

Moreover, if H11,H22, and H12 = H21 = ıν; ν ∈ ℜ; ı = ±i then the result is
somewhat surprising in that the degenerate solution of the non-self-adjoint secular
equation, sometimes referred to as “off the real axis”, turns out to be real!

Thus we conclude the following from this analysis: (i) avoided crossings in
e.g. standard molecular dynamics are accompanied by branch points in the com-
plex plane corresponding to Jordan blocks in the classical canonical form of the
associated matrix representation of the actual operator, (ii) the non-crossing rule
is not observed when the picture is extended to unstable resonance states, (iii) the
“complex resonance eigenvalues” may appear on the real axis and (iv) unphysical
solutions may appear in the secular equation.

In the next section we will develop an analogous complex symmetric model for
a suitable quantum mechanical formulation of the theory of relativity.

3 The Klein-Gordon Equation

Following the discussion of the previous section we will devise a simple, yet basic,
complex symmetric ansatz. A Klein-Gordon-like equation will be obtained with
precise restrictions and constraints. The starting point is, cf. example above, a 2×2
matrix that (without interaction) displays perfect symmetry between the states of
the particle and of its antiparticle image [18]. To be more specific we write

H =
(

m −iν
−iν −m

)
(10)

where, using mass units, the diagonal matrix elements are the energies associated
with a particle being either in a particle- or its antiparticle state (they may be
fermions although the Dirac equation would be required for a rigorous treatment, see
more in a following section) respectively, and −iν is the complex symmetric inter-
action, to be defined later; the minus sign is only by convention. Thus the matrix
element H11 describes a quantum particle with mass m and state vector | m〉, and
H22 the associated antiparticle with negative energy –m corresponding to state vec-
tor | m̄〉. For no interaction the diagonal elements are±m0, i.e., the correspondent to
the particle rest mass. The associated quantum vectors |m0〉 and |m̄0〉 can be chosen
orthonormal with no loss of generality. Note, however, that |m〉 and |m̄〉 are gen-
erally biorthogonal. The ansatz Eq. (10) can also be derived using a non-positive
definite metric [18].

Transforming the matrix, Eq. (10), to canonical form, yields, (note that the roots
become λ± =±m0 according to the definition made above)

λ 2 = m2−ν2 (11)
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or
m2

0 = m2−ν2. (12)

By admitting the kinematical perturbation ν = p/c, where c is the velocity of light,
p the momentum of the particle, we find the well-known expression

m2c4 = m2
0c4 + p2c2. (13)

Note that the quantities in Eq. (13) above are operators and further that we have
not considered the character of the wave vectors and the structure of the associated
spaces in any detail. For instance p is (normally) a self-adjoint operator, which in
its extended form may not exhibit this property. Yet to link up with established rep-
resentations it will be consistent with the relationship p = mυ , (υ is the velocity
relative a system in rest, wherever the rest mass of the particle is m0) with appropri-
ate modifications made for a particle in an electromagnetic or other field. As a result
our general secular equation generates familiar relationships, which by usual opera-
tor substitutions leads to e.g. a Klein-Gordon type equation. Proceeding further one
obtains in an obvious notation

|m0〉= c1 |m〉+ c2 | m̄〉; λ+ = m0

| m̄0〉=−c2 |m〉+ c1 | m̄〉; λ− =−m0
(14)

or
| m〉= c1 | m0〉− c2 | m̄0〉;
| m̄〉= c2 | m0〉+ c1 | m̄0〉

(14′)

with

c1 =

√
1 + X

2X

c2 =−i

√
1−X

2X

m =
m0

X
; c2

1 + c2
2 = 1. (15)

In Eq. (15) X =
√

1−β 2; β = p/mc = (“classical particles”) = υ/c. Since the
matrix H is complex symmetric, the eigenvectors are biorthogonal and hence the
absolute values squared of c1 and c2 do not sum up to unity. Note that υ/c → 1
implies

|c1 |2 / | c2 |2→ 1. (15′)

Before continuing we stress again that the secular equation contains operator quan-
tities, which means that the order of non-commutative products should be respected
in general, for more on this see later sections. It is also important to realize that
m is the input quantity in the formulation from which m0 is computed. To find m
expressed in m0 and vice versa is then trivial except when conflicting singularities
occur. The latter case will be discussed in connection with the appearance of Jordan
blocks.

As already made clear in the preceding section the current resonance
model, might, under proper contiguous perturbations, allow fundamental complex
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resonance energies commensurate with stringent mathematical boundary conditions
and/or precise domain and range characteristics of appropriate families of operators
[6–8, 14], i.e.

m0c2 → m0c2− i
Γ0

2
; τ0 =

h̄
Γ0

mc2 → mc2− i
Γ
2

; τ =
h̄
Γ

(16)

where Γ ,τ and Γ0,τ0 are respectively, the half width and lifetime of the state and h̄
is Planck’s constant divided by 2π . Inserting the definitions (16) into Eqs. (10–13)
and separating the real and imaginary parts the following contractions obtains

Γ0 = Γ
√

1−β 2; τ = τ0

√
1−β 2 (17)

By comparing times in the two scales we directly obtain

t =
t0√

1−β 2
. (18)

Enforcing Lorentz-invariance analogous relations for length scales hold. In sum-
mary we have derived the well-known relations of the special theory of relativity
as a superposition of matter-antimatter quantum states within a general complex
symmetric framework

l =
l0√

1−β 2
; t =

t0√
1−β 2

; m =
m0√

1−β 2
. (19)

In passing, we point out that one can easily incorporate appropriate electromag-
netic fields [18] into the formulation, e.g.

(Eop− eA0)2 = m2
0c4 +(p− e

c
A)2c2 (20)

where in Eq. (20) (A0,A) are the usual vector and scalar potentials. The question
of gauge invariance, in connection with analytic extensions of quantum mechanics,
will not be considered explicitly here see Ref. [19] for some comments regarding
dilatation analytic Hamiltonians. Here it is enough to say that solutions that meet
appropriate invariance requirements are implicitly embedded.

Since the present model accepts a general complex symmetric interaction bet-
ween particles and anti-particles, one may in principle also include the gravitational
field. In the following sections we will merge the gravitational field to the Klein-
Gordon type formalism [12] as well as to the Dirac equation.

4 The Gravitational Field

We will first extend the formulation of Sect. 3 to include gravitational interactions.
Although there exists a plethora of scalar gravity theories, we will try to go beyond
this constraint by a most straightforward approach. By augmenting the present
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complex symmetric model, in the basis | m,m̄〉, with the “scalar” interaction (the
word scalar is placed in quotation marks since the potential is built into a 2×2 or a
4×4 matrix formalism, see next section):

mκ(r) = mµ/r; µ =
f ·M
c2 (21)

we end up with

H =
(

m−mκ(r) −iν
−iν −(m−mκ(r))

)
(22)

with µ the gravitational radius, f the gravitational constant, M a “classical non-
rotating mass” (which does not change sign when m→−m) and ν = p/c as before.
For more details on the fundamental nature of M and the emergence of black hole
like objects within a strongly correlated framework exhibiting off-diagonal longe-
range order, see Ref. [12]. Suffice it to say that our model concerns a quantum
particle (for a discussion on spin see next section) in a gravitational field created by
a black hole object M, containing a multidimensional quantum formulation. In anal-
ogy with the occurrence of the electromagnetic field, general invariance properties
like covariance and general gauge invariance are not automatically fulfilled. Never-
theless solutions with various symmetry properties are by and large embedded. In
this particular case we will see that our approach is not in conflict with the exterior
geometry of Schwarzschild’s gauge.

Note that κ(r)≥ 0 depends on the coordinate r of the particle m, with the origin
at the center of mass of M. It is important to make the distinction between the
coordinate r (and t) of a flat Euclidean space and the corresponding scales defining
a curved space-time geometry obtained by the (operator)-secular problem Eq. (19),
see also further discussions below. From Eq. (22) (and the associated characteristic
equation) we get directly

H =
(

m(1−κ(r)) −iν
−iν −m(1−κ(r))

)
;

λ 2 = m2(1−κ(r))2− p2/c2

λ = m0(1−κ(r));ν = p/c

(23)

with the eigenvalues λ± (properly scaled for convenience), i.e.

m2
0 = m2− p2/(1−κ(r))2c2

λ±/(1−κ(r)) =±m0 =±
√

m2− p2/(1−κ(r))2c2

m = m0/
√

1−β ′2; β ′ ≤ 1; 1 > κ(r)
β ′ = p/mc(1−κ(r)) = υ/c(1−κ(r)).

(24)

In passing we see that the equations above can be simply written in the dynamic
representation
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H =
(

m −ip′/c
−ip′/c −m

)
; p′ = p/(1−κ(r)). (25)

So far nothing has been said about the restrictions incurred by complex symme-
try, i.e. of the magnitude of kinematical interactions, of the discontinuous variation
of eigenvalues as the mass increases with momentum and of the related manifes-
tation of so-called Jordan blocks. In the following we will demonstrate how this
feature emerges by the interaction with the gravitational field. Note that similar
effects can also be generated by the electromagnetic field [12, 18].

To put this flexibility into practice we will implement a relationship obtained
from standard quantum mechanics. Although the present model derives from a quasi
stationary standpoint it is important to realize that many features of conventional
quantum theory are still valid in the present generalized setting, i.e. constants of
motion and commuting operators specifying the state of the system etc., albeit with
an oblique yet unambiguous physical content. In Ref. [12] it was proven that the
energy law, including the gravitational potential, is consistent with a given central
force. The trick is to make a υ → υ ′ = υ/(1−κ(r)) replacement and use υ ′ and r
as independent variables. Hence we find that the following “classical consistency”
relations hold. For particles with a non-zero rest mass, the energy law gives

d
(
mc2(1−κ(r))

)
= dr · dp′

dt
+ mc2 κ(r)

r2 r ·dr = 0 (26)

p′ = mυ ′; υ ′ =
υ

(1−κ(r))

and since we employ central forces

f′ =
dp′

dt
= n

κ(r)
r

mc2; n =− r
r

(27)

In deriving (26–27) we demand r > µ = rκ(r), which follows from the definition
of p′. Quantum conditions, see below, will in addition request r ≥ 2µ . There is,
in addition, an inconsistency between the force law, the momentum law and the
energy, law defined by the theory of special theory of relativity, cf. Eqs. (27, 28) and
Ref. [20]. Thus the law

f =
dp
dt

= n
κ(r)

r
mc2; n =− r

r
(28)

is not consistent with the energy law. For an interesting discussion and analysis
on these aspects see Löwdin [20]. The pseudo problem defined by (27) is non-
contradictory in this respect but on the other hand it is easy to see that υ ′ may
exceed the velocity of light. Fortunately this paradox is eliminated by reference to
our present quantum mechanical model. First we stress that the Hamiltonian behind
Eq. (26) refers to an open system, where the degrees of freedom related to the
mass object M are left out. Hence the variational principle becomes a stationary
one without extremum properties.
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Next, since our system is characterized by a central potential, we are justified in
assuming that the velocity υ is a function(al) of r (certainly true for a stationnary
situation when centrifugal and centripetal forces balance each other). For this reason
the operators m, υ and r commute, and consequently the angular momentum mυr
can be chosen as a constant of motion. It also means that the order of the operators
in the generalized secular equation is of no importance as convenient extensions to
complex symmetry can be made at the most appropriate level of operator relations.
Observing now that commuting operators have simultaneous eigenvalues we obtain
equation (29) below, where the conserved angular momentum has been evaluated for
the limiting velocity c assumed at the limiting distance µ , the gravitational radius
(m0 �= 0),

m0υr = m0cµ (29)

This leads to the simple relation

υ = κ(r)c = µc
/

r (30)

For a non-zero mass particle one finds directly that a degeneracy with a Segrè char-
acteristic of 2 (Jordan block) occurs for r = RLS (provided the mass M is entirely
localized inside the sphere with radius RLS)

m
2

= mυ/c = mκ(r); r = RLS = 2µ (31)

where RLS is the familiar Schwarzschild radius of the general theory of relativity.
As we have seen, the equations of the special theory become generalized, cf. Eqs.
(23, 24), replacing p by p′, β → β ′; β ′ = p′/mc, and β ′ → 1, as r → RLS = 2µ
displaying a singularity in Eq. (24). It is also worth noting that p′ appears to be
generally r- dependent, which can be circumvented by using Eq. (30). Nevertheless,
at r = RLS, Eq. (22) may be directly written as

Hdeg =
1
2

(
m −im
−im −m

)
→Hdeg =

(
0 m
0 0

)
| 0〉= 1√

2
| m〉− i

1√
2
| m̄〉

| 0̄〉= 1√
2
| m〉+ i

1√
2
| m̄〉

(32)

explicitly displaying the Jordan block structure and associated similarity (also
unitary !) transformation. From Eqs. (23, 24, 30) we find

m =
m0(1−κ(r))√

1−2κ(r)
(33)

with the singularity at the Schwarzschild radius. As stated earlier the singularity
in Eq. (33) indicates that either m → ∞ adiabatically (or nonadiabatically from
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e.g. an electromagnetic fluctuation) with m0 finite or m0 → 0 adiabatically or
non-adiabatically with m finite.

The present approach is quite surprising yet simple. The ansatz Eq. (10) implies
first of all that a fundamental quantum particle has the choice to occupy one of two
possible quantum states. When the preference is made the associated antiparticle
state will only be indirectly recognised through (a) the kinematical interaction ν ,
and (b) the appearance of length and time scale contractions. Mirror- (anti-) particles
are observed provided such particles are bodily excited in its mirror state.

It can also be proven that “zero rest-mass particles” obey the gravitational law
commensurate with the effect of light deflection in a gravitational field. This follows
easily from Eq. (23)

λ 2 = m2(1−κ0(r))2− p2/c2 = 0 (34)

where κ0(r) is indexed to indicate that it concerns particles with zero rest mass, i.e.
λ0 = m0 = 0. To be consistent with the degeneracy condition, see Eqs. (31, 32) , we
demand the photon to be “bound” to the black hole object M. Taking the expectation
values of both sides of Eq. (34), i.e. 〈p〉= 0 at 〈r〉= RLS, one concludes that

κ0(r) = 2µ/r (35)

Note that we have not employed any explicit coordinates for the analysis except
making use of the assumption of an empty space outside a spherically symmetric
black hole object. It is hence interesting to find out that Eq. (34) is commensurate
with the Schwarzschild gauge in the minimal two component metric or

ds2 = (1−κ0(r))c2dt2− (1−κ0(r))−1dr2− r2dΩ 2 (35′)

where as usual Ω contains the co-latitude and longitude angles.
In the section below, we will generalize the discussion to fermions, particles with

non-integral spin.

5 The Dirac Equation

We have in previous sections presented a generalized quantum description which
transcends classical features like the contraction of scales, and also integrates some
general dynamical features of general gravitational interactions. As pointed out, we
need to address the problem of half-integral spin and hence to extend our model
correspondingly, i.e. by including an ansatz that “transmits” the Dirac equation.
In other words, we need to enlarge our formulation to a 4× 4 complex symmetric
matrix problem.

To begin let us first in analogy with Eq. (10) make an attempt to rewrite the Dirac
equation based on the matrix
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hD =
(

mc2 cσ ·p
cσ ·p −mc2

)
(36)

or written out in more detail in the standard basis

hD =
(

mc2 cσ ·p
cσ ·p −mc2

)
=

⎛⎜⎜⎝
mc2 0 cpz c(px− ipy)

0 mc2 c(px + ipy) −cpz

cpz c(px− ipy) −mc2 0
c(px + ipy) −cpz 0 −mc2

⎞⎟⎟⎠ (37)

where, as usual, the ingredients are the Pauli spin matrices

σx =
(

0 1
1 0

)
; σy =

(
0 −i
−i 0

)
; σz =

(
1 0
0 −1

)
. (38)

In comparison with Sect. 3, we thus invoke the complex symmetric ansatz:

hSD =
(

mc2 −icσ ·p
−icσ ·p −mc2

)
(39)

Suppose now that we want to describe a(n) (almost) free particle, subject to a weak
gravitational field created by the mass object M. Before explicitly incorporating the
gravitational interaction we will make some simplifying assumptions and conclu-
sions. We will employ a local coordinate system on the (fermion) particle, with the
y-axis pointing towards the (far away) center of mass and the x-axis perpendicular to
it in the plane of the motion. Under the straightforward conditions of circular motion
around the far away object M, the linear momentum will be p = px and py = pz = 0.
Here it is of course clear that the particle spin must be pointing in the z-direction
perpendicular to the x−y plane, since the inclusion of a weak gravitational potential
corresponds to a weak measurement (extracting information from a quantum system
in the limit of vanishing disturbance to its state) of the spin direction. The matrix
hSD then reads

hSD =
(

mc2 −icσ ·p
−icσ ·p −mc2

)
=

⎛⎜⎜⎝
mc2 0 0 −ipxc

0 mc2 −ipxc 0
0 −ipxc −mc2 0

−ipxc 0 0 −mc2

⎞⎟⎟⎠ (40)

If we permute the basis vectors appropriately we may write Eq. (40) or h̃SD as

h̃SD =
(

H 0
0 H

)
(41)

The possibility to write the Dirac equation in the form (40–41) is obviously com-
mensurate with the complex symmetric form seen in previous sections. Here we
obtain two separate Klein-Gordon type problems, one for the large component and
one for the small one. The secular equation and associated transformations factorize



Are Einstein’s Laws of Relativity a Quantum Effect? 251

accordingly. In a more general setting the full complex symmetric form correspond-
ing to a 4× 4 matrix problem containing Segrè characteristics larger than 2 needs
further examination.

Following the formulation in Sect. 3, the inclusion of a gravitational potential
follows analogously. The deductions regarding the emergence of the Jordan blocks
and related consequences continue for the large and small components separately.
In connection with the analysis of the break-down of the equations at r = RLS, we
note that for 1

2 RLS < r < RLS the mass m becomes purely imaginary, see (24) or (33),
since X in (15) becomes (for one of the branches)

X ′ =
√

1−β ′2 = i
√

β ′2−1; β ′ > 1 (42)

and for 1
2 RLS > r the branches interchange. In order to reflect this behaviour we add

the following block (ad hoc imposition) to the ansatz by defining the vector |m〉 =
|m,m̄,mi,m̄i〉 (here m,m̄ and mi,m̄i corresponds to particle- antiparticle states and
equivalent imaginary states respectively) in which the matrix HS can be represented
as

HS =
(

H 0
0 iH

)
(43)

cf. Eq. (41) above. This leads directly to the characteristic equation

(λ 2−m2 + ν2)(λ 2 + m2−ν2) = 0 (44)

with the additional solutions:

λ 2 =−(m2−ν2) = (im0)2 (45)

|mi0〉 = c1 |mi〉+ c2 |m̄i〉 ; λ+ = im0

|m̄i0〉 = −c2 |mi〉+ c1 |m̄i〉 ; λ− =−im0
(46)

|mi0〉 = c1 |mi0〉− c2 |m̄i0〉 ;
|m̄i0〉 = c2 |mi0〉+ c1 |m̄i0〉 (47)

and
c1 =

√
1+X ′
2X ′

c2 = −i
√

1−X ′
2X ′

m =
m0

X ′
; c2

1 + c2
2 = 1 (48)

Hence we get inside the Swarzschild radius, i.e. when β ′ > 1 that

m0 → mi0; m→ mi

m̄0 → m̄i0; m̄→ m̄i

mi0 → m̄0; mi → m̄
m̄i0 → m0; m̄i → m

(49)
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Changing the basis again to |Hd〉 = |m,mi,m̄i,m̄〉 the matrix (43) in the gravitation
free case becomes

HD =

⎛⎜⎜⎝
m 0 0 −iν
0 im ν 0
0 ν −im 0
−iν 0 0 −m

⎞⎟⎟⎠ (50)

with straightforward generalizations to the general situation including gravity.
In a certain sense we have introduced a representation that reminds of a so-called

supersymmetric structure, although it is not what one usually means with supersym-
metric order. The particle states described by the vectors indicated by mi,m̄i refer
to particles with zero (real) mass and no charge. The symmetry is expected, since
inside the Schwarzschild radius, i.e. for 1

2 RLS < r < RLS, real and imaginary masses
interchange after “passing” the singularity at RLS, cf. the formulation based on Eq.
(43). Note also that we can make this extension both to the Klein-Gordon formal-
ism Eqs. (22, 41) as well as the Dirac equivalent, i.e. in the latter case demanding
an 8×8 construction

H̃SD =
(

h̃SD 0
0 ˜ihSD

)
. (51)

One could also speculate whether the lower block in Eq. (43) might be a modi-
fication of the small component in the Dirac equation analytically continued by a
90-degree rotation. We will not dwell more on these aspects here except pointing
out that the present development should be flexible enough to match the degrees of
freedom of the nuclear structure inside the atomic nucleus. In the final section we
will summarize our findings and inferences as well as consider potential scenarios.

6 Conclusion and Suggestion

As emphasized in this report, the present structure predicts, for the most part, the
main physical laws of relativity theory. Yet, the remarkable feature is that, contrary
to accepted classical beliefs, the physical laws derived are a direct consequence of
the (extended) quantum mechanical superposition principle.

The present non-classical model is surprising in its simplicity, leading to well
known equations, yet with a very different interpretation. The straightforward
ansatz, Eq. (10), see also Eqs. (39–43, 50, 51), implies that every quantum parti-
cle, fermion or boson, will have the possibility to occupy several principal quantum
states. Being excited in a (by definition) particle state, the interrelated anti-particle
occupation will be recognised through the kinematical interaction ν and the appear-
ance of length and time scale reductions. Mirror- (anti-) particles will not be
experienced unless they are bodily physically excited. This description therefore
projects a generalized quantum description transcending classical features, like
the contraction of scales in the special relativity theory and the emergence of
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the Schwarzschild radius and gravitational law of light deflection in the general
relativity theory.

We have also incorporated, without contradiction, the electromagnetic field in the
special theory. It has been observed that the extension of standard quantum mechan-
ics to a complex symmetric description in general breaks gauge invariance. How-
land [19] has discussed the question of gauge transformations in connection with
dilatation analytic extensions (complex scaling) of Hamiltonians including an elec-
tromagnetic field. He proved that the essential spectrum of Floquet Hamiltonians
rotate about a certain set of thresholds when subject to a suitable gauge. Never-
theless the present description is commensurate with embedded symmetry adapted
solutions and appropriate invariance properties of the Klein-Gordon-Dirac funda-
mental formulation. Similar conclusions obtain for the shape of the Schwarzschild
geometry in connection with the Jebsen-Birkoff theorem [22, 23].

The appearance of Jordan blocks, see Eq. (32), has been explicitly connected with
the gravitational field, but an electromagnetic fluctuation could also be the cause. In
particular the photon (or any zero rest-mass particle) trivially fulfils the conditions
for a Jordan block. Hence the appearance of “triangular structures” might lead to
important relations with the various properties of the vacuum as well as the mass
generation puzzle. In fact the restriction p/m ≤ c (in the gravitational free case)
obtains from the singular behaviour of the matrix eigenvalues. To briefly re-examine
the situation we consider the matrix, Eq. (10), for ν = m (m finite), where e.g. the
nonadiabatic interaction could be brought about by an electromagnetic fluctuation,
see also the discussion in Sect. 3 following Eq. (3).

Hfield
deg =

(
m −im
−im −m

)
(52)

Comparing the description following Eq. (32) it follows directly that Hfield
deg after the

(unitary) transformation becomes

H̄field
deg =

(
0 2m
0 0

)
(53)

It is important to realize that that the vectors |m0〉and |m̄0〉 may be orthonormal,
while |m〉 and |m̄〉 in general are biorthogonal. Taking the complex conjugate of
Eq. (52) (time reversal in this simple picture) yields under the same transformation

H̄+
deg

field =
(

0 0
2m 0

)
(54)

Analogous formulas obtain for m→−m.
It is tempting to consider the present Jordan form, cf. Eq. (32), as a description of

the vacuum as a “particle antiparticle superposition”, which may or may not lead to
particle excitations. Obviously there appear no particle states corresponding to the
diagonal of Eqs. (53, 54). The energy is concealed, i.e. appended to the transition
between the states |0〉 and

∣∣0̄〉, see also Eq. (32).
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It has been demonstrated, see Ref. [12], that a strongly correlated manybody
theory (including ODLRO [21]), based on particles (and anti-particles), will lead to
enormous energy reductions, provided a fundamental interaction operates inside a
principal radius (Schwarzschild radius). Whether these characteristics have anything
to do with the puzzling dark-energy-matter enigma should be an inviting possibility.
It has also been observed [12,18] that the repeated addition of the Hamiltonians (53)
and (54), followed by diagonalization and appropriate energy exchange, creating
new Jordan blocks etc., and so on, yield processes reminiscent of e-doubling.

In summary the model, as described here, allows for basically three types of
interactions between the mirror spaces: the kinematical perturbation, the electro-
magnetic interaction and the mass dependent gravitational potential including the
adiabatic and sudden limits equivalent to Eq. (20) or Eqs. (23–32). We have further
seen how the model based on the Klein-Gordon formalism could be extended to a
Dirac 4×4 ansatz, including a modification of the small component, allowing par-
ticle structures inside the Schwarzschild radius. Further extensions to higher order
nilpotencies should be examined incorporating all known forces outside RLS.

The huge abundance of particles over antiparticles in the Universe is present-
ly conjectured as an energy-particle balance, in our quantum mechanical picture,
associated with the selection of the particular particle state occupied. Note also
that the famous Minkowski metric of special relativity theory is compatible with
a non-positive definite metric [12, 18], instigating a quantum model with a com-
plex symmetric ansatz. Although this may result in broken symmetry solutions, it is
nevertheless compatible with general gauge invariance embeddings as well as quite
unexpectedly, the finding that unitary transformations relate canonical Jordan block
representations with its corresponding complex symmetric forms, see e.g. Eq. (32).

A different question concerns whether the present picture would allow or predict
gravitational waves. It is clearly obvious that the quantum model advocated here
should not be in opposition to “action at a distance”. Furthermore it also supports
Birkoff’s theorem [23] saying that a spherically symmetric mass object should not
emit gravitational waves, Whether the graviton as a quantum particle in general
possibly would produce such waves is not completely ruled out, since one might not
exclude the possibility of diverse soliton-like mechanisms producing the latter.
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11. C. E Reid and E. Brändas, Lecture Notes in Physics, Vol. 325, 476 (1989).
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15. P.-O. Löwdin, J. Mol. Spectry. 10, 12–33 (1963).
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18. E. Brändas, Int. J. Quant. Chem. 106, 2836–2839 (2006).
19. J. S. Howland, J. Math. Phys. 24, 1240–1244 (1983).
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Electron Correlation and Nuclear Motion
Corrections to the Ground-State Energy
of Helium Isoelectronic Ions from Li to Kr

Rossen L. Pavlov(✉), Jean Maruani, L.M. Mihailov, Ch.J. Velchev,
and M. Dimitrova-Ivanovich

Abstract Nonrelativistic energies for the ground state of helium isoelectronic ions
with Z = 2−54 are computed. Calculations are performed using explicitly corre-
lated wavefunctions of a generalized Hylleraas type. The variational procedure used
allows solving the two-electron Schrödinger equation with a practically unlimited
number of parameters, for trial wavefunctions expanded in products of positive
powers of the Hylleraas coordinates. A non-conventional optimization procedure,
involving nonlinear programming, is applied. The contribution of the various terms
is assessed, including nuclear finite mass and polarization corrections. Our results
are compared to other theoretical results. Combined with noncorrelated relativistic
energies, they yield good agreement with available experimental data.

Keywords: Helium isoelectronic ions, explicitly correlated wavefunctions, finite
nucleus corrections, electron-electron and nucleus-electron correlations

1 Introduction

When investigating many-electron systems, one often applies ab-initio approaches
while using a determinant class of trial wavefunctions. Hartree-Fock (HF) meth-
ods [1] have yielded reasonable values for the ground-state energy of atoms with
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atomic number Z > 3 [2]. For the helium atom, the Hartree-Fock scheme yields
a ground-state energy of 2.86168 au [2], while the experimental value is 2.90357
au [3, 4]. The discrepancy between the HF and experimental values results from
the neglect of various terms, mainly electron correlation for lighter atoms but more
and more, for heavier atoms, various relativistic, quantum electrodynamics (qed)
and nuclear size and motion (nuc) effects [3]. Hartree-Fock results can be improved
by applying configuration interaction, coupled cluster or other schemes to account
for electron correlation. But for atoms with few electrons, the best account of
correlation is obtained using explicitly correlated wavefunctions [3, 5].

For He, the nuclear size effect was calculated to be 1.1095× 10−10 au [3], but
it increases steadily with increasing atomic number. However, for atoms with a
small number of electrons, nuclear motion gives a more significant correction to
the energy [3]. Taking this into account yields two specific contributions: the finite
mass effect and nucleus-electron correlation. On one hand, both nucleus and elec-
trons revolve around their common inertial center and, on the other hand, just as the
behavior of each electron depends on the position of other electrons, it also depends
on the exact location of the moving nucleus [3, 4].

Explicitly correlated wavefunctions (ECWF) provide precise numerical solutions
for the few-particle Schrödinger equation [5]. The earliest ECWF were proposed by
Hylleraas [6,7], Pekeris [8–10], and their generalizations [11–28], but other ECWF
were also used by various authors [29–34]. Even though these are not exact wave-
functions, results obtained for both 1S and 3S ground and excited states of He [6–15,
18,19,28], as well as of some He isoelectronic ions (Z = 3−12) [8,13,23–25], prac-
tically coincide with available experimental data. In some computations, nuclear
size and motion effects were included [6–9, 12, 15, 16, 26].

In the present paper, an ECWF of a generalized Hylleraas type is used to
study the non-relativistic ground-state energy of He isoelectronic ions, with Z =
2−54. The behavior of the correlated energy versus Z, including nuclear motion
corrections, is investigated. The variational procedure devised allows solving the
Schrödinger equation for a virtually unlimited number of coefficients, in the expan-
sion series of a trial wavefunction with positive powers of the Hylleraas coordinates.
A non-conventional optimization method is developed, making use of nonlinear pro-
gramming. For each value of Z, a specific set of coefficients yields the minimal
energy of the system, with no need to discuss the open question of the divergence
of the variational procedure [3, 15, 35–37]. Our results are compared with other
theoretical results, and with available experimental data.

2 Variational Procedure

The classical Hamiltonian operator of a two-electron system interacting with a fixed
nucleus of charge Z can be written (in atomic units):

Ĥ = T̂+ Û =−1
2

∇2
1−

1
2

∇2
2−

Z
r1
− Z

r2
+

1
r12

(1)
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where r1 and r2 are the distances of the two electrons to the nucleus center and r12 is
their relative distance. The stationary wavefunction Ψ (r1, r2) of the two electrons,
in spinless 6D configuration space, can be derived from the variational equation:

δE = δ
〈Ψ|Ĥ |Ψ〉
〈Ψ |Ψ〉 = 0 (2)

As a trial wavefunction for the (singlet) ground state of the He isoelectronic ions,
we use the (spinless) ECWF of generalized Hylleraas type [4, 13]:

ψ
(
s′,t ′,u′

)
= e−

s′
2 F

(
s′,t ′,u′

)
(3)

with the function F defined as:

F
(
s′,t ′,u′

)
=

∞

∑
n,l,m=0

cn,l,m s′n t ′2l u′m (4)

where s′ = ks, t ′ = kt, u′ = ku; s, t, u are the generalized Hylleraas coordinates,
s = r1 + r2, t = r1− r2, u = r12; k is a scaling factor, which depends on Z, and the
cnlm are the coefficients of the power series in s′, t ′, u′. The problem of determining
Ψ(r1, r2) in 6D space is then reduced to that of deriving ψ (s, t, u) in the 3D space
of the internal variables s, t, u.

After switching from r1, r2, r12 to s, t, u in Eq. (1) and substituting ψ (s′, t ′,
u′) given by Eqs. (3, 4) into Eq. (2), one deduces an explicit expression for the
energy functional by using a procedure similar to those described in Refs. (4–7).
The scaling factor k is obtained by solving the equation ∂E/∂k = 0. After some
tedious analytical manipulation, the following expression is obtained for the energy
functional, in a form suitable for numerical computation:

E =−(EP/2EN)(EP/2EK) (5)

where EP and EK are the potential and kinetic energy functionals built from the
unnormalized wavefunction (3) with k = 1, and EN is the overlap integral. These
functionals take the form:

EL =
∞

∑
r,p,q=0

c2
r,p,q RL

r,p,q +AL ∑
n,l,m
r,p,q

cn,l,m cr,p,q SL
n,l,m
r,p,q

, L = P,K,N (6)

where AL = 1 for L = K and AL = 2 for L = P or L = N, and the second summation
sign (with l even) has the following, explicit form:

∑
n,l,m
r,p,q

=
∞

∑
r,p,q=0

⎛⎜⎜⎜⎝r−1

∑
n=0

∞

∑
l=0

∞

∑
m=0

+
p−1

∑
l=0

∞

∑
m=0
n=r

+
q−1

∑
m=0
n=r
l=p

⎞⎟⎟⎟⎠ .
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In Eq. (6) the RL and SL (with L = P, K, N) have the following forms:

RP
r,p,q = 4Z I

⎧⎨⎩2r + 1
4p

2q + 1

⎫⎬⎭−I

⎧⎨⎩2r + 2
4p
2q

⎫⎬⎭+I

⎧⎨⎩ 2r
4p + 2

2q

⎫⎬⎭ ,

RK
r,p,q = (r2−4p2 + 2rq−4pq)I

⎧⎨⎩ 2r
4p

2q + 1

⎫⎬⎭
− r2I

⎧⎨⎩2r−2
4p + 2
2q + 1

⎫⎬⎭+ 0.25I

⎧⎨⎩2r + 2
4p

2q + 1

⎫⎬⎭
−0.25I

⎧⎨⎩ 2r
4p + 2
2q + 1

⎫⎬⎭+ 4p2I

⎧⎨⎩2r + 2
4p−2
2q + 1

⎫⎬⎭+
(
q2 + 4pq

)
I

⎧⎨⎩2r + 2
4p

2q−1

⎫⎬⎭ ,

− (
q2 + 2rq

)
I

⎧⎨⎩ 2r
4p + 2
2q−1

⎫⎬⎭− (r + q)I

⎧⎨⎩2r + 1
4p

2q + 1

⎫⎬⎭
+ r I

⎧⎨⎩
2r−1
4p + 2
2q + 1

⎫⎬⎭+ q I

⎧⎨⎩
2r + 1
4p + 2
2q−1

⎫⎬⎭
RN

r,p,q = I

⎧⎨⎩
2r + 2

4p
2q + 1

⎫⎬⎭−I

⎧⎨⎩
2r

4p + 2
2q + 1

⎫⎬⎭ ;

SP
n,l,m
r,p,q

= 4Z I

⎧⎨⎩
n + r + 1
2l + 2p

m+ q + 1

⎫⎬⎭−I

⎧⎨⎩
n + r + 2
2l + 2p
m+ q

⎫⎬⎭+I

⎧⎨⎩
n + r

2l + 2p + 2
m+ q

⎫⎬⎭ ,

SK
n,l,m
r,p,q

= 2(mr + nr−4l p−2mp + nq−2l p)I

⎧⎨⎩
n + r

2l + 2p
m+ q + 1

⎫⎬⎭
−2nr I

⎧⎨⎩
n + r−2

2l + 2p + 2
m+ q + 1

⎫⎬⎭− (n + m+ r + q)I
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SN
n,l,m
r,p,q

= I

⎡⎣ n + r + 2
2l + 2p

m+ q + 1

⎤⎦−I

⎧⎨⎩ n + r
2l + 2p + 2
m+ q + 1

⎫⎬⎭ , (7)

where the integral I {U,V,W} (U,V,W being arbitrary integers) takes the simple
algebraic form:

I

⎧⎨⎩
U
V
W

⎫⎬⎭ =
∞∫

0

ds

s∫
0

du

u∫
0

e−s sU tV uW dt =
(U +V +W + 2)!

(V + 1)(V +W + 2)
. (8)

Applying the Ritz variational principle, the determination of the coefficients cn,l,m is
reduced to solving the differential equations: ∂E/∂cn,l,m = 0. This procedure leads to
a set of non-linear algebraic equations, yielding the generalized Hylleraas functions.
No investigation was made on the convergence of this procedure relative to the num-
ber of coefficients, but we studied the variation of the speed of convergence with the
number of coefficients when increasing Z [15]. Energy minimization was performed
using a home-made algorithm for the numerical solution of systems of nonlinear
algebraic equations involving an arbitrary number of coefficients. Frequently used
methods are based on the determination of polynomial roots: each trial set of coeffi-
cients corresponds to a different polynomial; the number of coefficients used in the
literature varies from 6 [15] to 308 [13]. However, according to Fock [37], results
for the ground-state energy do not necessarily converge when increasing the num-
ber of coefficients in Hylleraas functions. Our program automatically omits those
coefficients not improving the convergence. However, care must be taken to avoid
local minima being taken as an absolute minimum in some particular cases.

3 Nuclear Motion Corrections

In a system described by a two-electron Schrödinger equation, taking into account
nuclear motion entails two corrections:

(i) As in the one-electron case, a corrective term ε1 appears because the expression
of the kinetic energy involves reduced masses instead of electron masses, due
to the shift of the inertial center.

(ii) An additional corrective term ε2 appears, referred to as ‘mass polarization’.
This term is different for various atomic states, as it depends on the mutual
disposition and space correlation of the electrons. For the ground state, the
Pauli principle does not give any contribution to ε2, and the ‘mass polarization’
correction is solely due to electrostatic repulsion.

Taking into account nuclear motion in the ground-state energy of a two-electron
system, we thus add the perturbative corrections ε1 and ε2 to the unperturbed energy
E0 [3, 4]:

ε1 =− ε
1 + ε E0 ≈−εE0 (9)
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ε2 = ε
∫

∇1 Ψ∗(r1,r2)∇2 Ψ(r1,r2)d r1 d r2 (10)

where ε = me/M, me being the electron mass and M the nucleus mass. The correction
ε1 increases the atomic energy by about (me/M)|E0|, independently of the atomic
state.

The ‘mass polarization’ effect requires accounting for the dependence of the
wavefunction on the distance between the electrons, as is indeed the case with
ECWFs. For the ground state, the electrons are located at relatively small distance
from each other, and this effect may be significant. The term ε2 can be derived by
perturbation from the unperturbed Ψ0. Following the procedure described in Sect. 2,
we obtain:

ε2 =
εk2

EN

⎛⎜⎝ ∞

∑
r,p,q=0

c2
r,p,q RQ

r,p,q + ∑
n,l,m
r,p,q

cn,l,m cr,p,q S
Q
n,l,m
r,p,q

⎞⎟⎠ (11)

with k being introduced in Eq. (4), EN being defined in Eq. (6), the second summa-
tion sign is expressed in Eq. (6), and RQ, SQ are given by the following expressions,
the integral I {U,V,W} being expressed as in Eq. (8):
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⎫⎬⎭ (12)

The nuclear masses used in our computations were derived from recent mass
tables [38], choosing for each element the isotope most frequent (or most stable) in
Nature. In order to obtain ε2, we substitute in Eq. (11) the values of cnlm yielded by
the variational procedure. As ε > 0, and E0 < 0 in Eq. (9) while the integral in Eq.
(10) is positive, both ε1 and ε2 are positive and decrease the absolute value of E0.
Thus for a given element (with atomic number Z and uncorrected energy E0), the
absolute value of the corrected energy E ′0 increases with increasing isotope mass M.
It will be seen however that ε2 is about two orders of magnitude smaller than ε1.

4 Algorithm and Program

The ground-state energy of the He isoelectronic ions without mass corrections is
derived by solving numerically the nonlinear system of integro-differential equa-
tions: ∂E/∂cnlm = 0. An algorithm and a program were developed on this purpose.
The algorithm converts the variational procedure into a determination of ECWF
coefficients. The optimization method employed is non-conventional, in that it
involves nonlinear programming. The resulting optimization algorithm implies such
methods as 1-D search, many-D random search (so-called Price method, using a
heuristic algorithm with elements of cluster analysis), and gradient search (with
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fixed or variable metric). Programs were written in C++, using object-oriented
programming.

There are many deep minima with no physical meaning in the considered func-
tion. The minimization procedure was thus complicated in looking for the right local
minimum. First we looked for minima by varying the parameters one by one. Then
we switched to many-D optimization, varying the cnlm in a small range around the
best values. An important feature is that the energy may be quite sensitive to some
coefficients. In those cases we perform a more careful search of the local minimum
around the zero value of the corresponding coefficient.

5 Results and Discussion

Tables 1, 2 and 3 display the ground-state energies computed for He isoelectronic
ions, using various approximations. In Table 1 there are gathered correlated ground-
state energies, excluding nuclear motion corrections, for ions with Z = 2−10.
Tables 2 and 3 provide some of the results obtained including nuclear motion correc-
tions for the most abundant or stable isotopes, as well as some energy values, E′0SD,
derived by extrapolation from spectroscopic data [9, 39]. For comparison, there
are also given noncorrelated, Hartree-Fock values, E0FF (without nuclear motion
corrections) and Dirac-Fock values, E′0BB (including qed and nuc effects).

In order to figure out the relative importance of the various types of correc-
tions to plain Hartree-Fock energies, we plotted in Fig. 1 the corrections computed
by Christiane Bonnelle using Bruneau’s MCDF code [40]. Upper left, relativistic
corrections (including the Breit perturbative term). Upper right, quantum electrody-
namics corrections (including vacuum polarization and self energy terms). Lower
left: nuclear motion and size corrections in both the relativistic and nonrelativis-
tic cases; lower right: correlation contribution, computed as the difference between

Table 1 Correlated ground-state energies E0/au for helium isoelectronic ions with Z = 2−10,
omitting nuclear motion corrections: E0BS – computed using Bethe and Salpeter’s semi-empirical
formula [3]; E0TK – yielded by Thakkar and Koga’s optimized ansatz [13]; E0Pk – Pekeris’ results
[9], and E0PM – our results. For comparison, we also give the Hartree-Fock energies, E0FF, yielded
by Froese-Fischer’s code [1]. For simplicity, the sign ‘−’ in all energies is omitted

ZIon E0BS E0TK E0Pk E0PM E0FF

2He 2.9037283 2.9037244 2.9037242 2.9037244 2.8616800
3Li+ 7.2799088 7.2799088 7.2799132 7.2799134 7.2364152
4Be2+ 13.655565 13.655566 13.655566 13.655566 13.611299
5B3+ 22.030973 22.030972 22.030971 22.030972 21.986235
6C4+ 32.406248 32.406247 32.406246 32.406247 32.361193
7N5+ 44.781447 44.781445 44.781445 44.781445 44.736164
8O6+ 59.156596 59.156595 59.156595 59.156595 59.111143
9F7+ 75.531713 75.531712 75.531712 75.531712 75.486126
10Ne8+ 93.906806 93.906807 93.906806 93.906807 93.861114
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Table 2 Correlated ground-state energies E ′0/au for helium isoelectronic ions with Z = 2−10,
including nuclear motion corrections: E ′0BS and E ′0TK – computed using Bethe and Salpeter’s for-
mula [3] and yielded by Thakkar and Koga’s ansatz [13], including only the (largest) correction
ε1; E ′0Pk and E′0Pk – Pekeris’ nonrelativistic and relativistic results, including both corrections ε1
and ε2 [9]; E ′0PM – our (nonrelativistic) results, including both corrections ε1 and ε2; E′0BB – for
comparison, noncorrelated relativistic results, including all qed and nuc corrections, computed by
C. Bonnelle using Bruneau’s MCDF code [40]; E′0SD1 [9] and E′0SD2 [39] – some energy values
derived by extrapolation from spectroscopic data. For simplicity, the sign ‘−’ in all energies is
omitted
ZIon E ′0BS E ′0TK E ′0Pk E’0Pk E ′0PM E’0BB E’0SD1 E’0SD2

2He 2.9033303 2.9033264 2.9035715 2.9035629 2.9033045 2.8613417 2.90356 2.90331
3Li+ 7.2793395 7.2793441 7.2796516 7.2797057 7.2793215 7.2362914 7.27970 7.27963
4Be2+ 13.654734 13.654735 13.655152 13.655550 13.654709 13.612215 13.6554 13.6562
5B3+ 22.029875 22.029874 22.030395 22.031795 22.029846 21.989981 22.0316 22.034
6C4+ 32.404766 32.404765 32.405444 32.409030 32.404733 32.370641 32.4091 32.4151
7N5+ 44.779692 44.779690 44.780460 44.788101 44.779658 44.755914 44.7883 44.8007
8O6+ 59.154567 59.154566 59.155419 59.169832 59.154533 59.147504 59.1692 59.1917
9F7+ 75.529531 75.529531 75.530396 75.555307 75.529500 75.547667 75.5534 75.5907
10Ne8+ 93.904229 93.904229 93.905225 93.945532 93.904196 93.958495 ****** 94.0106

the Froese-Fischer HF results and either Bethe-Salpeter results (dotted line) or our
results (solid line) (see Table 4). It can be seen that for Krypton, for instance, rel-
ativistic corrections amount to about 600 eV, qed corrections to 22 eV, and nuclear
corrections to 0.26 eV, while the correlation contribution approaches its maximum
value of about 1.26 eV.

The correlation contribution has the effect of lowering the relative noncorre-
lated energy (increasing its absolute value). The relativistic corrections also have
the effect of lowering the relative nonrelativistic energy, while both qed and nuc
corrections tend to raise the level energy. The relativistic and qed corrections tend
to increase as about Z4, while the nuc corrections increase quasi-linearly and the
correlation contribution first increases sharply and then reaches a plateau for larger
values of Z.

The set of graphics displayed in Fig. 2 compares our results with those available
from other authors. On the upper left side is shown the increase of our nuclear
motion corrections with Z compared to that of isotope number A, showing how small
irregularities in the increase of ε1 + ε2 relate to jumps in the number of nucleons, for
the selected isotopes (see Fig. 1, lower left for the BB set of isotopes; where nuclear
size effects were also included). The lower left diagram displays the quasi-linear
dependence of the nuclear motion corrections on the isotope number A, which is
similar to that appearing in the hydrogen isoelectronic series [3, 4]. This is because,
in Eq. (9), the increase (grossly as Z2) of E0 is partly compensated by the decrease
(grossly as 1/A∼ 1/Z) of ε . The quadratic inflexion mainly stems from the nonlinear
variation of ε2 adding to the quasi-linear variation of ε1 (Table 4 and Fig. 3).

Results given in Table 4 dispaly anomalies in the variation of the mass correction
ε1 for the element isotopes 18Ar (A = 40), 21Sc (A = 45), 29Cu (A = 63), 31Ga
(A = 69), 32Ge (A = 74), 34Se (A = 80), and 36Kr (A = 84) (Fig. 3, left diagram).
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Table 3 Correlated ground-state energies E ′0/au for helium isoelectronic ions with Z = 11−36,
including nuclear motion corrections: E ′0BS – computed using Bethe and Salpeter’s formula [3],
including only the (largest) correction ε1; E ′0PM – our (nonrelativistic) results, including both cor-
rections ε1 and ε2. For comparison, we also give the Hartree-Fock energies, E0FF, yielded by
Froese-Fischer’s code [1], and the noncorrelated relativistic energies, E′0BB, including all qed and
nuc corrections, computed by C. Bonnelle using Bruneau’s MCDF code [40]. For simplicity, the
sign ‘−’ in all energies is omitted

ZIon E ′0BS E ′0PM E0FF E′0BB

11Na9+ 114.27916 114.27912 114.23610 114.38326
12Mg10+ 136.65382 136.65379 136.61109 136.82448
13Al11+ 161.02873 161.02870 160.98609 161.28618
14Si12+ 187.40337 187.40334 187.36108 187.77167
15P13+ 215.77827 215.77823 215.73608 216.28558
16S14+ 246.15290 246.15287 246.11107 246.83191
17Cl15+ 278.52778 278.52775 278.48607 279.41598
18Ar16+ 312.90289 312.90286 312.86106 314.04293
19K17+ 349.27729 349.27726 349.23606 350.71744
20Ca18+ 387.65191 387.65188 387.61106 389.44626
21Sc19+ 428.02703 428.02700 427.98605 430.23589
22Ti20+ 470.40189 470.40186 470.36105 473.09222
23V21+ 514.77674 514.77671 514.73605 518.02244
24Cr22+ 561.15137 561.15134 561.11105 565.03367
25Mn23+ 609.52623 609.52620 609.48605 614.13395
26Fe24+ 659.90085 659.90083 659.86104 665.33092
27Co25+ 712.27571 712.27568 712.23604 718.63332
28Ni26+ 766.65009 766.65006 766.61104 774.04937
29Cu27+ 823.02519 823.02516 822.98604 831.58891
30Zn28+ 881.39981 881.39978 881.36104 891.26065
31Ga29+ 941.77488 941.77486 941.73604 953.07746
32Ge30+ 1004.1499 1004.1499 1004.1110 1017.0500
33As31+ 1068.5246 1068.5245 1068.4860 1083.1882
34Se32+ 1134.8996 1134.8996 1134.8610 1151.5038
35Br33+ 1203.2740 1203.2740 1203.2360 1222.0090
36Kr34+ 1273.6491 1273.6491 1273.6110 1294.7160

This is because, for these isotopes, A (which determines the decrease of ε in Eq. 9)
gains 5 units while Z (which determines the increase of E0) gains only 1 unit. These
anomalies are likely to occur more frequently when Z increases, but their impact on
mass corrections will become smaller.

The variation of ε2 differs from that of ε1 in two respects: (i) the anomalies are
more frequent and take the form of a complex oscillatory behavior; (ii) the cor-
rection reaches a maximum about Z = 20 (Fig. 3, right diagram). This is because,
while E (Eqs. 5, 6) – and then ε1 in Eq. (9) – is a product of EP/EN and EP/EK ,
ε2 (Eqs. 10, 11) is simply proportional to EQ/EN and then increases slower with Z.
The correction ε2 is therefore more sensitive to oscillations in the number of neu-
trons relative to that of protons, especially for Z = 18 (A = 40), and to the increase
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Fig. 1 Various corrections to the ground-state energy of He isoelectronic ions, from Z = 2 to 54.
Upper left: absolute value of the relativistic corrections (these are negative and decrease the nonrel-
ativistic value). Upper right: quantum electrodynamics corrections (they are positive and increase
the ground-state energy). Lower left: nuclear size and motion corrections in the relativistic and
nonrelativistic cases (they are also positive and increase the energy). Lower right: nonrelativistic
correlation contributions computed from Bethe-Salpeter and from our results

of the ratio A/Z, which departs more and more from 2 after Z = 20 (A = 40): for
Z = 36, A−Z = 48, and for Z = 54, A−Z = 78.

The upper right diagram of Fig. 2 compares our mass corrections (dotted line)
with those computed by Pekeris (solid line), in the range Z = 2−10. Our values,
more consistent with the BB values (Fig. 1, lower left), are clearly larger, due to a
different choice of isotope masses. On the other hand, the correlation contributions
computed from our results and from Pekeris’ results for Z = 2−10 (Fig. 2, lower
right) are in excellent agreement, as well as the agreement between our values and
BS values outside this range (Fig. 1, lower right).

It may be tempting to use the nonrelativistic correlated energies of the present
paper to extract correlation values by difference with the Froese-Fischer Hartree-
Fock results, and then add these correlation energies to the Bonnelle-Bruneau Dirac-
Fock noncorrelated relativistic energies to obtain accurate ground-state energies
for He isoelectronic ions. For these ions, the correlation energy was shown to rise
rapidly from about 1.114 eV to a limit of 1.265 eV. For the records, Table 5 gives
the resulting 1s ionization energies for some He isoelectronic ions. However, just
as nuclear motion corrections (Fig. 1, lower left), electron correlation contributions
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Table 4 Correlation contributions and nuclear motion corrections (in eV) for helium isoelectronic
ions with Z = 2−36

ZIon BS correl. Our correl. A ε1/eV ε2/eV
energy/-eV energy/-eV

2He 1.144193 1.144086 4 0.010831 0.000593
3Li+ 1.183522 1.183647 7 0.015492 0.000615
4Be2+ 1.204539 1.204562 9 0.022623 0.000697
5B3+ 1.217388 1.217359 11 0.029878 0.000750
6C4+ 1.226016 1.225975 12 0.040322 0.000853
7N5+ 1.232205 1.232165 14 0.047749 0.000872
8O6+ 1.236852 1.236825 16 0.055223 0.000888
9F7+ 1.240474 1.240459 19 0.059361 0.000852
10Ne8+ 1.243372 1.243372 20 0.070134 0.000909
11Na9+ 1.245744 1.245759 23 0.074223 0.000877
12Mg10+ 1.247721 1.247751 24 0.085073 0.000923
13Al11+ 1.249394 1.249438 27 0.089113 0.000895
14Si12+ 1.250831 1.250885 28 0.100020 0.000934
15P13+ 1.252074 1.252140 31 0.104021 0.000908
16S14+ 1.253162 1.253239 32 0.114959 0.000942
17Cl15+ 1.254123 1.254210 35 0.118931 0.000918
18Ar16+ 1.254976 1.255073 40 0.116911 0.000880
19K17+ 1.255743 1.255846 39 0.133850 0.000926
20Ca18+ 1.256430 1.256541 40 0.144843 0.000952
21Sc19+ 1.257052 1.257171 45 0.142163 0.000891
22Ti20+ 1.257618 1.257744 48 0.146487 0.000877
23V21+ 1.258135 1.258267 51 0.150878 0.000864
24Cr22+ 1.258609 1.258747 52 0.161315 0.000886
25Mn23+ 1.259046 1.259189 55 0.165660 0.000874
26Fe24+ 1.259450 1.259597 56 0.176156 0.000894
27Co25+ 1.259823 1.259975 59 0.180463 0.000882
28Ni26+ 1.260171 1.260326 58 0.197588 0.000932
29Cu27+ 1.260492 1.260653 63 0.195280 0.000889
30Zn28+ 1.260794 1.260958 64 0.205862 0.000907
31Ga29+ 1.261077 1.261244 69 0.204016 0.000870
32Ge30+ 1.261340 1.261513 74 0.202826 0.000838
33As31+ 1.261590 1.261765 75 0.212948 0.000853
34Se32+ 1.261824 1.262002 80 0.212038 0.000825
35Br33+ 1.262044 1.262226 79 0.227658 0.000860
36Kr34+ 1.262254 1.262438 84 0.226632 0.000833

differ in the relativistic and nonrelativistic cases. Values computed using this ansatz
start departing from experimental values when Z gets larger (Table 5).

To summarize our results, we display in Fig. 4 the relative magnitudes of the
various corrections computed for ionization energies of He isoelectronic ions. It can
be seen that up to Z = 10 (left diagram), the correlation contribution overcomes
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relativity corrections, while the quasi-exponential increase of qed corrections, an
order of magnitude smaller than the relativity corrections, overcomes the quasi-
linear increase of nuc corrections about Z = 7. For Z > 10 (right diagram), the
correlation contribution, while remaining much larger than the nuc corrections,
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Table 5 Calculated ionization potentials (in au) for some helium isoelectronic ions, using either
corrected Dirac-Fock values [40] with correlation corrections from the present paper (Cal. 1) or
Pekeris results [9] (Cal. 2). A few measured values, Exp. 1 [39] and Exp. 2 [9], are also given for
comparison

IP/au 2He 3Li+ 4Be2+ 5B3+ 6C4+ 7N5+ 8O6+ 9F7+

Cal. 1 0.90357 2.77968 5.65547 9.53165 14.4088 20.2877 27.1692 35.0545
Cal. 2 0.90356 2.77971 5.65555 9.53179 14.4090 20.2881 27.1698 35.0553
Exp. 1 0.90356 2.77964 5.65535 9.53130 14.4087 20.2878 27.1688 35.0530
Exp. 2 0.90356 2.77970 5.65539 9.53160 14.4091 20.2883 27.1692 35.0534

IP/au 10Ne8+ 11Na9+ 12Mg10+ 13Al11+ 14Si12+ 15P13+ 16S14+ 17Cl15+

Cal. 1 43.9443 53.8404 64.7439 76.6568 89.5805 103.5174 118.4694 134.4391
Cal. 2 43.9455 ****** ****** ****** ****** ****** ****** ******
Exp. 1 43.9522 54.0919 64.7401 76.7590 ****** ****** ****** ******
Exp. 2 ****** ****** ****** ****** ****** ****** ****** ******
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Fig. 4 Relative magnitudes of the various corrections to the ionization energies of He isoelectronic
ions. Left side: all elements in the range Z = 2−10. Right side: all rare gases in the range Z = 2−54

becomes two orders of magnitude smaller than the relativity corrections close to
Z = 50, the second main contribution being the qed corrections.

6 Conclusion

In this paper we have computed nonrelativistic energies for the ground state of
helium isoelectronic ions, with Z = 2−54. Calculations were performed using a
generalized Hylleraas type of explicitly correlated wavefunction. The variational
procedure that was used allows solving the two-electron Schrödinger equation with
a practically unlimited number of parameters for trial wavefunctions expanded
in products of positive powers of the Hylleraas coordinates. A non-conventional
optimization procedure, involving nonlinear programming, was applied. The con-
tributions of the various terms, including nuclear finite mass and polarization
corrections, were assessed. Our results were compared to other theoretical results.
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It was shown that, except for nuclear motion corrections with Pekeris results (in the
range Z = 2−10), our values are in excellent agreement with those computed by
other authors (Pekeris and Bethe-Salpeter for electron correlation, Bethe-Salpeter
and Bonnelle-Bruneau for nuclear corrections), while providing a more rigorous
theoretical background for including the nonrelativistic correlation. Combined with
noncorrelated relativistic energies, they yield a good agreement with available
experimental data. However, as the 1s-1s term is the main correlation contribution to
1s-core ionization energies, it may be worth extending our treatment to the relativis-
tic case, in order to allow more accurate reproduction of XPS or XAS experimental
data for heavy atoms.
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Unusual Features in Optical Absorption
and Photo-Ionisation of Quantum Dot
Nano-Rings

Ioan Bâldea(✉) and Lorenz S. Cederbaum

Abstract We present theoretical results on nano-rings consisting of silver quantum
dots (QD’s) described within the extended Hubbard model. The parameter values,
taken from literature, can be tuned in a controlled way in wide ranges, a fact that
makes QD assemblies particularly interesting. As a result, such nano-systems can be
smoothly driven from a weak correlation to a strong correlation regime. To reveal
the cross-over between these two regimes, we present results on optical absorp-
tion and photo-ionisation. Astonishingly, although the picture based on molecular
orbitals (MO’s) completely breaks down in the strong correlation regime, both opti-
cal absorption and ionisation spectra are surprisingly simple, and can be rationalised
within the MO picture. Therefore, the information obtained in this way is scarce,
and we show that, by partially covering the nano-rings, is can be considerably
enriched. In the nano-rings investigated here we observe the phenomenon called
avoiding crossing by molecular physicists and anti-crossing by the solid state com-
munity. Unlike in all other cases of avoiding crossings of which we are aware, we
often encounter situations where more than two states of identical symmetry are
involved.
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1 Introduction

Modern nano-technologies succeeded to fabricate quantum dots (QD’s) of semicon-
ductors or metals, often considered as “artificial” atoms. Typical semiconducting
QD’s are nearly two dimensional, with a height of a few nanometers and a basal
length of the order ∼10−100 nm. Due to the large number of atoms (∼105) they
contain, even the problem of a single dot is non-trivial, of interest of its own. Assem-
blies of semiconducting QD’s were also investigated so far, but the most of the exist-
ing studies were devoted to two (or at most a few) dots that are vertically coupled.

By contrast, considerable smaller metallic QD’s (nearly spherical, with diame-
ter of a few nanometers) were prepared and, most important in the context of the
present lecture, assembled in regular arrays, counterparts of ordinary molecules or
solids. A few (“valence” or π) electrons can hop from one dot to another (lateral
coupling) and become delocalised over the whole nano-structure. By means of a
Langmuir technique, monolayers of silver QD’s have been prepared and reversibly
compressed [1–4], yielding electronic properties that can be varied almost continu-
ous. The wide tunability makes these nano-structures showcase systems for studying
effects of electron correlations at nano-scale.

In the present work, we present results on electron correlations obtained by
extensive studies based on full CI (configuration interaction) exact numerical diag-
onalisation for N QD nano-rings (point group DNh) using parameters for QD’s of
silver taken from literature.

The remaining part of this lecture is organised as follows. In Sect. 2, we expose
the model and the parameters used for QD nano-rings. To give further support to
the model we employ, namely the extended Hubbard model, we next show (Sect. 3)
a variety of results demonstrating that it provides a reasonable good description for
cyclic polenes (annulenes). These molecules are counterparts of the nano-rings con-
sidered here. In Sect. 4, we present results demonstrating that the nano-rings can be
smoothly driven from a regime of weak correlations to a regime of very strong corre-
lations. As tools for possible experimental investigation, we show a variety of results
for optical absorption (Sect. 5) and photo-ionisation spectra (Sect. 6). Surprisingly,
both spectra are extremely scarce, and this seriously limits the information one can
gather in such experiments. In Sect. 7 we present results on optical spectra for par-
tially covered nano-rings, which demonstrate that much more information can be
obtained when only a part of the nano-structure is irradiated. Finally, in Sect. 8 we
summarise the results of this work.

2 Parameters for QD Nano-Rings

Assemblies of QD’s are particularly interesting because their properties can be tuned
by modifying parameters that can be easily controlled experimentally: dot size,
interdot spacing, and electron number.
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A “valence” electron in a spherical isolated QD of a few nanometers represents a
textbook example of a particle in a box, possessing a discrete spectrum controlled by
the dot diameter 2R (εα ∼ −Aα/R2). In addition, the dot diameter controls another
important quantity, the charging energy (or Coulomb blockade) U , representing the
energy to be paid for adding an electron to a QD where an excess electron already
exists. It can be expressed in terms of the dot capacity C (U = e2/C). Importantly,
the dot capacity can and has been measured experimentally by means of scanning
transmission microscopy. For QD’s of silver with 2R = 2.6 nm a value U = 0.34 eV
has thus been determined [5]. By assuming a spherical dot (and the Ag-QD’s appear
spherical even when imaged in high resolution transmission electron microscopy
[1]), one gets a theoretical estimate U = 0.3 eV (C = κrR, κr being the dielectric
constant of the medium) in good agreement with measurements.

By means of a Langmuir technique, films on which regular arrays of QD’s
are deposited can be compressed reversibly [1–4]. In this way, the interdot sep-
aration can be (almost) continuously varied within a broad range, 1.1 <∼d <∼ 1.9
(d ≡ D/(2R), the interdot distance D being measured between adjacent dot cen-
tres). The parameter d is very important, especially because the hoping integral t0
depends exponentially on it. This result was obtained [4] by fitting the second har-
monic response measured experimentally [6]. In the range of experimental interest t0
varies within about two order of magnitude. Besides electron hoping, QD’s are cou-
pled electrostatically, and the interdot Coulomb repulsion V , related to the mutual
elastance (remember that elastance is the inverse of capacity), is also controlled
by d.

Because the inter-level energy separation is larger than all the other energy scales
discussed above, one can consider only the highest occupied level ε of electrons in
isolated dots (single AO approximation).

Similar to other studies, e.g. Refs. [7–10], we shall describe nano-rings consisting
of N QD’s by means of an extended Hubbard Hamiltonian

H = − t0
N

∑
l=1

∑
σ=↑,↓

(
a†

l,σ al+1,σ + a†
l+1,σal,σ

)
+

N

∑
l=1

(
ε0 n̂l +Un̂l,↑n̂l,↓+Vn̂ln̂l+1

)
, (1)

where, a (a†) denote creation (annihilation) operators for electrons, n̂l,σ ≡ a†
l,σ al,σ ,

n̂l ≡ n̂l,↑ + n̂l,↓, For QD’s, all the parameters ε, t0, U , and V are tunable. In addi-
tion to these, the number of electrons Ne can also be varied within wide ranges, by
changing the voltage of a gate electrode, which is placed on the top of the electron
gas [11]. Therefore, it is also interesting to examine nano-rings with a given number
of QD’s and a variable number of electrons.

In the present considerations, we shall assume an ideal situation, where the
parameters ε0, t0, U , and V are dot (l) independent. This can be considered a rea-
sonable first-order approximation in view of the narrow size distributions (∼2−5%)
achieved in the arrays of Ag QD’s assembled by Heath’s group [1, 2, 5, 6, 12].
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3 How Good Is the Extended Hubbard Model for Annulenes?

Equation (1) represents a version of what chemists call the Pariser-Parr-Pople (PPP)
model [13–17], where the Coulomb repulsion Vl,m between the sites l and m (l < m)
is restricted to next neighbours, Vl,m = Vδm, l+1.

Before applying it to QD nano-rings, we shall show in this section that the
extended Hubbard model is able to provide a reasonably good description of
polyenes, the molecules for which the PPP model has been proposed. We shall
consider the case of cyclic polyenes (annulenes) CNHN , the molecules that are the
counterparts of the QD nano-rings investigated here. In these molecules, there are
as many sites (CH-units) N as π electrons Ne, that is, half of the molecular orbitals
(MO’s) are occupied (half-filling case).

In the literature, most studies used t0-values close to the “spectroscopic” value
2.5eV [18–26] and that deduced from ab initio studies on small molecules [27] and
experiments on polyacetylene [28] 3.0 eV, but significantly different values (e.g.
1.6 eV [29, 30]) also exist. The on-site Hubbard strength deduced from ionisation
potential and electron affinity of carbon atoms is U = 11.26eV [25] but consider-
ably different values have been deduced from fitting various properties (7−9 [31],
5eV [30] or even smaller than 4.5eV [32]). Estimations for V derived by apply-
ing the extended Hubbard model (0.4 [24], 0.3eV [33], and 1.75eV [30]) are
much smaller than the nearest-neighbor term (Vl,l+1) of the Pariser-Parr-Pople (PPP)
model: one gets Vl,l+1 ≈ 7.6 eV and Vl,l+1 ≈ 5.3 eV by employing Ohno [34] and
Mataga-Nishimoto’s [35] parametrizations, respectively.

We shall use the benzene molecule (C6H6) to determine the model parameters.
In view of the fact that all C–C bonds are equivalent in benzene, it is reasonably to
assume that the electron-phonon coupling plays no significant role for the present
considerations.

Below, we shall fix the hopping integral close to the “spectroscopic” value t0 =
2.5eV [18–26] used for polyacetylene and adjust the Hubbard strengths U and V
to fit all the π−π∗ excitation energies measured experimentally in benzene. They
are listed in Table 1. As seen in Table 1, by using only two adjustable parameters,
U = 4.5eV and V = 1.27eV, it is possible to reproduce successfully both singlet and
triplet π−π∗ excitation energies within an accuracy comparable to those of ab initio
methods. Concerning the latter, we present in Table 1 CASSCF3- and CASPT2-
results taken from literature along with those computed by us using the extended-
ADC(2)-scheme [36,37]. The latter successfully provides accurate results for many
medium-size molecules (e.g. Refs. [38, 39]).

Let us now consider an open-shell molecule, double ionised benzene. In view of
the fact that the pair of degenerate e1g MO’s is (half) occupied by two electrons,
one expects a triplet ground state 3A2g, in accordance with Hund’s rule. Ab initio
ADC(2) calculations [51] confirm this fact, and found the two lowest excitations
as being the singlet states 1E2g and 1A1g. Their excitation energies were predicted
to be 0.62 and 0.79 eV, respectively. The extended Hubbard model yields the same
ordering of these three states. With the parameter values for neutral benzene, the
two excitation energies are 0.40 and 0.80 eV, respectively.
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Table 1 Excitation energies in benzene: experiment, ab initio (CASSCF3, CASPT2, and ADC(2))
versus extended Hubbard model (EHM) with: t0 = 2.5 eV, U = 4.5 eV, and V = 1.27 eV (point
group D6h; all energies in eV)

State Exp. CASSCF3a CASPT2b ADC(2)l EHM

3B1u 3.94c; 3.9d 3.9 3.89 3.86 3.89
3E1u 4.7c 4.9 4.49 4.39 4.58
1B2u 4.90e,f; 5.0c 4.9 4.84 4.31 4.61
3B2u 5.60c 6.7 5.49 5.48 5.56
1B1u 6.20c,g,h; 6.3f 7.4 6.30 6.28 5.66
3E2g 6.55i; 7.5±0.25b 7.2 7.12 6.85 6.42
1E1u 6.98g; 7.00f; 6.94h,k 7.8 7.03 6.92 6.43
1E2g 7.3j; 7.8±0.2b 8.1 7.90 7.22 7.24

aMatos et al., Ref. [40]; bLorentzon et al., Ref. [41]; cDoering, Ref. [42]; dKing and Pinnington,
Ref. [43]; eCallomon et al., Ref. [44]; fLassettre et al., Ref. [45]; gKoch and Otto, Ref. [46]; hHiraya
and Shobatake, Ref. [47]; iAstier and Maier, Ref. [48]; jBonneau et al., Ref. [49]; kWilkinson,
Ref. [50]; lResults obtained by means of the extended ADC(2) method using the Heidelberg ADC-
package

Cyclo-octatetraene C8H8 (COT) is another open-shell molecule. It possesses a
distorted ground state geometry, revealing the important role played by electron-
phonon couplings in this state. Since N(= 8) is a multiple of four, COT is an
anti-Hückel molecule unstable towards bond alternation [52–54]. This reduces the
symmetry from D8h to D4h. In addition, COT is also unstable to ring inversion,
which yields a further symmetry reduction from D4h to D2d , the actual symmetry
of the ground state [55,56]. But most interesting for the present purpose is the exis-
tence of a transition state of COT, in which the molecule is planar and all bonds are
equivalent (D8h symmetry) [55]. Electron-phonon couplings are less important for
the transition state.

Planar COT has two electrons partially occupying the degenerate e2u pair of
(nonbonding) MO’s [55], and according to Hund’s rule, the ground state should
be a triplet (3A2u) state. Confirming earlier ab initio calculations, transition state
spectroscopy experiments found that the ground state is a singlet (1B1g) state, a fact
which violates Hund’s rule [55]. Experimentally, the lowest triplet state was found to
be located∼0.34−0.39eV (8−9 kcal/mol) above the singlet ground state [55]. With
the above parameter set, the extended Hubbard model (1) correctly predicts a singlet
ground state. Moreover, for the singlet-triplet splitting it yields a value of 0.31eV
(7.16kcal/mol), much closer to the experimental value than that of 20.08kcal/mol,
as predicted by the MP2-CASSCF method [56]. The latter method represents the
state-of-art of ab initio quantum chemical calculations for molecules like COT. To
explain why the singlet lies below the triplet, a non-uniform distribution of electron
spins in the ground state of D8h COT was claimed previously [55]. Interestingly, this
fact is also supported by the results obtained within the extended Hubbard model:
in the phase diagram of anti-Hückel systems, the value of U/V = 3.54 > 2 is sit-
uated in the spin-density-wave region, characterised indeed by non-uniform spin
distribution [57].



278 I. Bâldea, L.S. Cederbaum

To conclude this section, the extended Hubbard model provides a surprisingly
good descriptions of the ground state and π − π∗ excitations of annulenes. In the
next sections we return to QD nano-rings, the systems of our present interest.

4 Cross-Over Between Weak and Strong Correlation Regimes

Intuitively, one expects that electrons are weakly correlated if the interaction
strengths (U and V ) are smaller than the bandwidth 4t0, and strongly correlated in
the opposite case. By inspecting Fig. 1, one can see that these two situations corre-
spond to QD’s that are close enough of each other (d >∼ 1) and to sufficiently distant
QD’s, respectively. Results on the MO populations for 10 electrons over 10 QD’s
are shown in Fig. 2. (Notice that populations for degenerate e-MO’s are summed
up.) As one can see there, the MO picture holds for nearly touching QD’s (d >∼ 1):
the lower half of MO’s is occupied, whereas the upper half is empty. The MO pic-
ture worsens gradually with increasing d. At large d, the lower and upper MO’s
tend to become democratically occupied (0.5 electrons per MO). This behaviour
can be qualitatively understood, by noting that at small d electron hoping dominates

Fig. 1 Dependence on inter-
dot spacing d = D/(2R) of
the parameters entering the
extended Hubbard model (U
and V are given in eV) 1.2 1.4 1.6 1.8 2
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Fig. 2 MO scheme for the ground state of 10 electrons on 10 QD’s (left panel) and MO populations
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over interaction (4t0 > U, V ), while at large d the situation is reversed: the height of
the picture in the left panel of Fig. 2 (equal to 4t0) falls exponentially with d, and
elementary interaction processes (∼U, V ) easily spread almost uniformly electrons
over all MO’s.

5 Optical Absorption

Let us now examine the effect of electron correlations on the optical absorption.
The absorption coefficient in the ground state |G〉 of a nano-ring irradiated by light
linearly polarized along j-direction ( j = x, y) in the ring plane can be expressed as
a sum of contributions of various excited states {|Ψλ 〉}

α j(ω) = ρ−2ω ∑
λ
|〈Ψλ |µ j|G〉|2δ (ω− ελ + ε0) , (2)

where {ελ} stand for excitation energies, and the operator of electric dipole momen-
tum µ reads

µ =−|e|ρ ∑
l

n̂l [x̂cos(2π l/N)+ ŷsin(2π l/N)] . (3)

e and ρ = D/2 sin(π/N) denote elementary charge and ring radius, respectively.
It is also helpful to express µ in terms of MO- (or Bloch-) operators cp,σ =

1/
√

N ∑l al,σ exp(−2π pli/N)

µx = −|e|ρ/2 ∑
p,σ

(
c†

p+1,σ cp,σ + c†
p,σcp+1,σ

)
,

(4)
µy = i|e|ρ/2 ∑

p,σ

(
c†

p+1,σcp,σ − c†
p,σcp+1,σ

)
,

An important quantity characterising the optical absorption is the optical gap, i.e.
the lowest frequency ε in the spectrum (2). The curves ε6 and ε10 depicted in Fig. 3
are obtained for nano-rings consisting of 6 and 10 QD’s at half filling (Ne = N),
respectively. They clearly display a cross-over between two regimes. For small d,
these curves exhibit an exponential decay (note the logarithmic scale on ordinate).
This is the regime of weak correlations, where the optical gap scales as the hopping
integral t0. It is nothing but the HOMO-LUMO gap (or, in the solid state physics
nomenclature, the band gap), the energy required to excite an electron from the
highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular
orbital (LUMO). At large d, electron hoping is ineffective and electron correlations
become strong. At half filling, all QD’s are occupied by one electron in the ground
state. The lowest optical process requires to create a double occupied dot, and for
this one has to pay an energy U and one gains an energy amount V . As one can
see in Fig. 3, the value U −V obtained thereby (Hubbard-Mott gap) is approached
asymptotically both for 6 and for 10 QD’s. In this limit the hoping ceases to play a
significant rôle. The only coupling is between adjacent dots via V , and therefore the
excitation energy becomes independent of the number of QD’s in the nano-ring.
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d. Left panel: the optical gap for nano-rings with 6 (ε6) and 10 (ε10) QD’s. The dotted line repre-
sents the asymptotic limit U −V of vanishing hopping (t0 → 0). Right panel: spectral intensities
for 10 QD nano-rings. Note the logarithmic scale on ordinate

The presence of indices p and p + 1 in Eq. (4) indicates that only electronic
transitions from adjacent MO’s can contribute to optical absorption. Consequently,
only a single optical transition is allowed within the MO picture for closed-shell
systems, namely the HOMO-LUMO transition. But we have seen above that at
larger d all MO’s become partially occupied and the MO picture completely breaks
down. Unless d is very close to unity, there is no dominant contribution to the
ground state from a certain Slater determinant. For six electrons over 6 QD’s,
we checked by straightforward calculations that practically all Slater determinants
with A1g-symmetry contribute significantly to the A1g-ground state. Therefore, one
would expect a multitude of lines in the optical spectrum in the regime of strong
correlation.

Strikingly is that, despite of strong correlations, out of the very numerous E1u-
excitations allowed by spatial symmetry, only a single state possesses significant
spectral weight. Many other states give small but nonvanishing contributions (cf. the
right panel of Fig. 3). This behaviour is a manifestation of a hidden dynamical quasi-
symmetry in optical absorption of QD nano-rings, as we discussed recently [10] for
the half-filling case.

Let us next examine another nano-ring, a closed-shell system, but not a half-filled
one. This is the case, for instance, of six electrons on 10 QD’s. The results for the
significant optical transitions are collected in Fig. 4. Most interesting for this case
is the region very close to d ≈ 1.87, where a phenomenon called avoiding crossing
by molecular physicists and anti-crossing by the solid-state community can be seen.
This phenomenon corresponds to a situation where, by varying a certain parameter
(d in our case) around a certain value (dc), the energy difference δE = E2−E1 of
two eigenstates S1 and S2 of identical symmetry increases with increasing |d−dc|.
At d = dc, δE possesses a nonvanishing minimum (repulsion effect due to sym-
metry). Concomitantly, these states smoothly interchange their physical properties
around d = dc. For instance, S1 possesses significant spectral weight for d <∼ dc,
which becomes practically vanishing for d >∼ dc. For S2, the situation is reversed: its
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of interdot spacing d. Left panel: absorption frequencies of the optical transitions with significant
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the other three curves, build a curve that varies smoothly with d

spectral weight is negligible for d <∼ dc, but becomes important for d >∼ dc. Rather
than this adiabatic description, a diabatic description, in terms of a bright diabatic
state S̃1 (approximating S1 for d < dc and S2 for d > dc) and a dark diabatic state S̃2

(approximating S2 for d < dc and S1 for d > dc), is often more useful in practice [58].
What makes the difference between the situation presented in Fig. 4 from other

cases of avoiding crossings discussed in the literature is that, in our case, three
states are involved. Besides the spectral intensities of the relevant eigenstates, we
added in Fig. 4 their individual intensities. The fact that the curve obtained in this
way (represented by triangles) smoothly varies with d suggests that the diabatic
description can be also useful for avoiding crossings involving more than two states.
The occurrence of such complex avoiding crossings, with the participation of three
or even more states of identical symmetry is not an exception, but rather the rule
for assembled QD’s like those investigated here. As a global characterisation, this
behaviour is due to the fact that, for sufficiently distant QD’s, electron hopping
becomes less important, and numerous eigenstates (including those with identical
symmetry) come energetically closer.

From a pragmatical point of view, one can conclude that a hidden dynamical
quasi-symmetry in optical absorption also exists for closed-shell QD nano-rings
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away from half filling. Because the states involved in an avoiding crossing like that
depicted in Fig. 4 are energetically very close (∼meV), what one can measure in an
experiment are not the individual intensities but their sum; that is, the optical is also
practically monochromatic. This represents a generalisation of the result reported in
Ref. [10].

6 Photo-Ionisation

In this section we shall consider effects of electron correlations on the photo-
ionisation spectra of QD nanorings. For the analysis of ionisation spectra, the
single-particle picture represents the common framework, successful or at least
very helpful to describe electrons in many cases, e.g. in atoms, or in ordinary
three-dimensional solids. Within the single-particle (MO) picture, there are as many
ionisation signals as occupied (molecular) orbitals. This is normally the case for
core and outer valence electrons in molecules.

As a particular case of the latter, the MO picture is very good for the so-called
HOMO ionisation (i.e. process of lowest ionisation energy). In molecules, the
single-particle (MO) picture breaks down only for the inner valence electrons, as
amply documented in the literature [38, 59]. Therefore, our results of Ref. [60],
demonstrating the failure of the orbital picture even for HOMO ionisation in
QD nano-rings, represented a surprise. They pointed out that the assignment of
assembled QD’s as “artificial” molecules should be taken with caution.

A ionisation process is characterised by an ionisation energy εα and a spectro-
scopic factor (see e.g. Ref. [59])

wα ,k ≡
∣∣〈Ψ α

Ne−1

∣∣ck,↑
∣∣Ψ0

Ne

〉∣∣2 . (5)

The result of removing of an electron from a certain occupied MO (k) of an uncorre-
lated neutral system is a unique eigenstate of the ionised system. For that eigenstate,
the spectroscopic factor is equal to unity (wSCF = 1) and vanishes for all other eigen-
states. For (strong) correlated systems, this is no more the case. The removal of an
electron from an MO (k) of a given symmetry Γ will bring the neutral system from
its ground state Ψ0

Ne
into various eigenstates Ψα

Ne−1 of the ionised system. The sym-
metries of the k-th MO and α are correlated for wα ,k �= 0. In the case of closed
shells, Ψ0

Ne
has A1g symmetry, and the symmetry of Ψα

Ne−1 coincides with Γ . For all
these eigenstates, 0≤ wα < 1, and the following sum rule for spectroscopic factors,
straightforwardly resulting from Eq. (5), holds

∑
α

wα ,k =
〈

c†
k,↑ck,↑

〉
≡ nk. (6)

Above, nk (0 ≤ nk ≤ 1) represents the occupancy of the k-th MO. For a strongly
correlated system one expects a rich ionisation spectra, corresponding to the large
number of eigenstates with a certain symmetry.
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However, similar to optical absorption, the ionisation spectrum is surprisingly
scarce. To illustrate this, we show in Fig. 5 results on A1g-ionisation for six valence
electrons in 10-QD nano-rings. Out of all the 170 A1g-processes allowed by sym-
metry, practically only a few processes possesses significant spectroscopic factors.
In the upper left panel of Fig. 5 we depict the spectroscopic factors for all the
significant A1g-states. The careful inspection of these results reveals that there
are contributions originating from states exhibiting the phenomenon of avoiding
crossing; see the upper right panel of Fig. 5. Similar to optical absorption (cf. Sect.
5), of experimental interest in such cases is to sum up contributions of almost degen-
erate states (amounting to consider the bright diabatic state). The results for these
diabatic bright states are presented in the lower panels of Fig. 5, revealing that,
practically, there are only five significant contributions.

A more detailed analysis (which we defer to a separate publication) demonstrates
that this is precisely the number of A1g-processes possible in the configuration space
that includes one hole and two-hole—one-particle processes. In this way, one can
say that the ionisation spectra can also be rationalised by starting from the MO
picture, in spite of strong electron correlations.

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
0

0.2

0.4

0.6

0.8

5a
5b
5c

w

d

n
A
1

1

2a 2b

3a

3b 3d

3c4a

4b

4c

4d

1.6 1.7 1.8 1.9

4.45

4.5

4.55

e (eV)

d

1

2a

2b

3b 3d

3c

3a 4a

4b

4c

4d

5a

5b

5c

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

0.2

0.4

0.6

0.8

w
diab

d

n
A
1

1

2
5

3

4

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

4.5

5

5.5

e
diab

(eV)

d

1 2

3

4

5
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7 Method of Partial Covering

Recently, we proposed a new method enabling one to get valuable information
on nano-systems, namely by partially covering them (for instance, by using a
mask), and irradiate only a part thereof [10, 60]. By applying this method for
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Fig. 6 Optical absorption spectra for 10-QD nano-rings at half filling by shining the whole ring
(upper panel), and only two adjacent QD’s. In the latter, the electric field is polarised perpendicular
(middle panel) and parallel (lower panel) to the direction of the two QD’s. The values of interdot
spacing (d = 1.1; 1.2; 1.4; 1.6; 1.7) are inserted
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photo-ionisation, interesting connections with the localisation-delocalisation tran-
sition observed in experiments have been established [60].

In view of the hidden quasi-symmetry discussed above, the information one can
get on the excited states is rather scarce: only a single excited state can be studied by
optical absorption. By applying the method of partial covering to optical absorption
in systems with high symmetry (like the nano-rings examined here), more excited
states can be targeted simply because the electromagnetic perturbation reduces the
symmetry of the problem. To demonstrate this, we reported in Ref. [10] results in
the limiting case where all but one QD are covered.

To give further support to the method of partial covering, we consider here the
case where all but two adjacent QD’s of the nano-ring are covered, and these two
QD’s and exposed to radiation. Results for nano-rings covered in this manner are
depicted in Fig. 6 along with those for the case where the whole ring (upper panel
in Fig. 6) is shone. As expected from the above reason, the absorption spectra of
partially covered rings a richer than that of uncovered rings. For the same reason,
the spectra for light polarised parallel to the segment joining the two uncovered
QD’s (lower panel) is richer than that where the polarisation is perpendicular to this
segment (middle panel): in the former case, the symmetry is lower than in the latter.

8 Conclusion

Tunable QD nano-structures offer the fascinating opportunity of construction of
materials with designer specified functional properties. Although the initial expec-
tation of using QD’s for quantum computing was not realised so far, they motivate
physicists and chemists to further investigate basic quantum mechanical phenomena
at nano-scale without limitations encountered in ordinary systems, e.g. instability
against certain molecular distortions, or studies only at fixed (optimised) geome-
tries. We hope that the results presented in this work will motivate experimentalists
to prepare and investigate nano-rings consisting of quantum dots.

Acknowledgements Financial support for this work provided by the Deutsche Forschungsge-
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Relative Energies of Proteins and Water
Clusters Predicted with the Generalized
Energy-Based Fragmentation Approach

Wei Li, Hao Dong, and Shuhua Li(✉)

Abstract A generalized energy-based fragmentation (GEBF) approach we devel-
oped recently [57] is applied to investigate the relative energies of many conformers
of two proteins (PDB id: 2ETI and 1CMR) and one water cluster (H2O)20. The
GEBF results are compared with those from conventional quantum chemistry meth-
ods, empirical molecular mechanics (MM), and semi-empirical quantum mechani-
cal methods (AM1, PM3). Our computational results show that for all three systems,
not only the total energies but also the relative stabilities of their different con-
formers predicted by the GEBF approach are fairly consistent with those from the
corresponding conventional quantum chemistry method, while the widely used MM
and semi-empirical QM methods give poor descriptions for the relative energies of
different conformers.

Keywords: generalized energy-based fragmentation, protein conformers, water
clusters

1 Introduction

For large systems such as biological molecules and molecular clusters, empirical
molecular mechanics (MM) methods are still the most commonly used theoretical
tools for studying their structures and properties. For example, MM methods have
been employed for gradient-based structural optimizations, intermolecular forces,
molecular dynamics (MD) and Monte Carlo (MC) simulations [1–4]. However, the
accuracy of MM approaches is not good enough in many cases. It is also difficult for
MM methods to describe the chemical reactions because electrons are not explicitly
treated. On the other hand, conventional quantum chemistry methods can treat the
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chemical reactions with high precision, but are limited to medium-sized systems due
to their high computational scaling with respect to the system size. In recent years,
a variety of hybrid QM/MM methods, which combine a quantum mechanical (QM)
method with a MM method, have been developed to investigate the chemistry of
very large systems, especially the mechanism of enzymatic reactions in biological
systems [5–8]. Nevertheless, there are still many cases in which the active region of
the system is too large for conventional quantum chemistry treatments.

The extension of quantum chemistry calculations to large systems has been an
active field for about two decades. Many linear scaling algorithms for carrying
out Hartree-Fock (HF), density functional theory (DFT), and post-HF calculations
have been proposed for computing the ground-state energies and molecular prop-
erties of large molecules [9–33]. However, although quantum chemistry methods
implemented with these algorithms scale linearly with the molecular size in the
large molecule asymptote, a large pre-factor for these algorithms has hindered their
extensive applications to systems with a few hundreds of atoms. Instead, many
fragment-based approaches, although less rigorous than standard linear scaling
approaches, have been suggested as alternative approaches for performing ab ini-
tio quality calculations on large molecules in the recent years [34–58]. For example,
fragment molecular orbital (FMO) method developed by Kitaura and his coworkers
have been applied to obtain ground-state energies, optimized geometries, dynamic
polarizability, solvation free energies, and interaction energies for a variety of large
systems [44–47]. In comparison with the FMO method, an even simpler but still
effective energy-based fragmentation approach was developed independently by
us and Collins’s group [39, 52]. Within this approach, the total energy of a large
molecule can be approximately calculated from energy calculations on a series of
small subsystems. This approach was found to give quite accurate ground-state
energies and optimized geometries for neutral or less charged systems. Recently,
we have suggested a generalized energy-based fragmentation (GEBF) approach for
various large systems (for both neutral or charged) [57]. In GEBF approach, each
subsystem is placed in the presence of background point charges so that long-range
electrostatic interaction or polarization effects between remote fragments can be
approximately taken into account. This approach has been shown to yield quite satis-
factory results for ground-state energies, dipole moments, and static polarizabilities
of a variety of large molecules [57]. In order to extend the GEBF approach to geome-
try optimizations, MD or MC simulations of large biological molecules or molecular
clusters, we will investigate the performance of this approach on the estimate of rel-
ative energies for many different conformers of two protein molecules and a water
cluster in the present work. The GEBF results will be compared with the results from
full system calculations with conventional HF (or MP2 if available), semi-empirical
AM1 or PM3, MM methods (AMBER99 [59] and CHARMM27 [60]).

This paper is organized as follows. In Sect. 2, the basic idea of the GEBF
approach is described briefly. In Sect. 3, the GEBF approach is applied to com-
pute relative energies of ten conformers of two proteins and a water cluster, and
the results are compared with those from other theoretical methods. Finally, a brief
summary is given in Sect. 4.
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2 Methodology

The procedure of the GEBF approach [57] adopted in this work is basically the
same as described before, but some steps are slightly modified. The present pro-
cedure includes: (1) Divide a target system into a series of fragments; (2) For
each fragment, form a primitive subsystem by connecting its neighboring frag-
ments (hydrogen atoms may be added if necessary). It should be mentioned that
the neighboring fragment is successively added according to the distance between
it and the central fragment. The coefficients of these primitive subsystems are all
set to be unity. To save the computational time (without much loss of accuracy),
we limit the maximum number of fragments in a subsystem to a given value (η),
which is the only parameter to be set in the GEBF approach. Usually, a larger η
value will lead to more accurate results. For convenience, a GEBF calculation with
the parameter η is denoted as GEBF(η). (3) Construct derivative subsystems with m
fragments (m = η−1) and determine their coefficients according to the guiding rule
that the net number of each specific m-fragment interaction term in the many-body
energy expansion of all subsystems is unity. (4) Repeat the process described above
to construct m− fragment (m = η−2, · · · ,2,1) derivative subsystems. (5) For each
subsystem, replace those remote atoms, which are not included in this subsystem,
with point charges (in the positions of nuclei centers). Thus, each subsystem is elec-
tronically embedded in the presence of background point charges. By this way, the
long-range electrostatic interaction and polarization effects between remote frag-
ments are approximately treated. These point charges can be obtained from natural
population analysis (NPA) [61, 62] for all primitive subsystems. The details of this
step can be found in our previous work. Finally, from conventional quantum chem-
istry calculations on all “embedded” subsystems, the ground-state energy of the
target system can be expressed as [57]

ETot =
M

∑
m

CmẼm−
(

M

∑
m

Cm−1

)
∑
A

∑
B>A

QAQB

RAB
(1)

where Ẽm is the total energy of the m-th subsystem including the self-energy of point
charges, Cm is the coefficient of the m-th subsystem, and QA is the point charge on
atom A.

3 Results and Discussion

In this section, we will apply the present GEBF approach to investigate the rel-
ative stabilities of some conformers for two proteins and one water cluster. Two
proteins are trypsin inhibitor II (PDB id: 2ETI) [63] and charybdotoxin (PDB
id:1CMR). For each protein, we first perform a MD simulation with the TINKER
package [64] for 800 ps after 200 ps of equilibration (with a time step of 2 fs) at
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298 K. The AMBER99 force field is employed for simulations. Along the trajecto-
ries ten conformers with the lowest energies are selected for our study. For a water
cluster (H2O)20, its ten conformers with the lowest energies at the TIP4P level are
from a systematic study by Kazimirski and Buch [65]. For these three systems and
their subsystems, we perform conventional quantum chemistry calculations with the
GAUSSIAN03 package [66]. The GEBF calculations are achieved by combining
our LSQC package [ [67] with the GAUSSIAN03 package [66]. The Cartesian coor-
dinates of all studied structures are released in the web and available from authors
on request [68].

Before doing GEBF calculations, we should specify how to fragment the studied
systems. For water clusters, we take each water molecule as a fragment. For pro-
teins, we cut the C–C bond between α–carbon and the carbonyl group in the central
residues, the S–S bond between two residues, and the C–C bond between β – and
γ–carbons in five residues with large side chains (Arg, Lys, Phe, Trp and Tyr).

First, the total energies of ten conformers calculated with the MM methods
(AMBER99 and CHARMM27), semi-empirical QM methods (AM1 and PM3),
GEBF-HF/6-31G(d) and conventional HF/6-31G(d) methods are listed in Table 1
for 2ETI and in Table 2 for 1CMR, respectively. For better comparison, the rel-
ative energies of ten conformers from different methods are displayed in Figs. 1
and 2, respectively. From Table 1 and Fig. 1, one can see that the AMBER99,
CHARMM27, AM1 and PM3 methods predict the relative energies quite differ-
ent from those obtained with the conventional HF method, whereas the GEBF-HF
method can reproduce the relative energies with good accuracy. Among various
theoretical methods, only the GEBF-HF method predicts the same lowest-energy
conformer as the conventional HF method. In comparison with the total energies
from the conventional HF/6-31G(d) method, the largest deviation of the GEBF-HF
energies is 6.25 and 6.04 millihartrees (mH) for η = 5 and η = 6, respectively.

Table 1 The total energies for ten conformers of 2ETI calculated with the AMBER99,
CHARMM27, AM1, PM3, GEBF-HF/6-31G(d), and conventional HF/6-31G(d) methods

No AMBER99
(kcal/mol)

CHARMM27
(kcal/mol)

AM1 (au) PM3 (au) HF

Conventional
(au)

GEBF(5)
(mH)a

GEBF(6)
(mH)a

1 −586.54 −528.75 −1.089 23 −1.208 34 −11993.203 06 −4.97 6.04
2 −579.35 −528.18 −1.162 41 −1.254 68 −11993.200 10 4.95 1.72
3 −577.75 −527.31 −1.142 30 −1.230 59 −11993.168 42 4.46 4.57
4 −577.54 −526.99 −1.073 64 −1.198 91 −11993.227 96 5.47 1.89
5 −577.31 −527.85 −1.089 53 −1.214 28 −11993.264 45 4.98 5.19
6 −577.06 −525.99 −1.067 63 −1.215 48 −11993.193 34 2.55 1.56
7 −576.78 −525.94 −1.121 80 −1.231 41 −11993.230 27 4.97 2.67
8 −576.70 −524.42 −1.153 06 −1.255 04 −11993.207 36 6.25 2.89
9 −576.61 −526.95 −1.076 23 −1.213 71 −11993.199 93 −0.66 4.20

10 −576.21 −528.83 −1.144 36 −1.202 16 −11993.162 65 −0.25 3.99

a The relative energies with respect to the conventional HF energies.
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Table 2 The total energies for ten conformers of 1CMR calculated with the AMBER99,
CHARMM27, AM1, PM3, GEBF-HF/6-31G(d), and conventional HF/6-31G(d) methods

No AMBER99
(kcal/mol)

CHARMM27
(kcal/mol)

AM1 (au) PM3 (au) HF

Conventional
(au)

GEBF(5)
(mH)a

GEBF(6)
(mH)a

1 −603.22 −420.59 −1.019 70 −1.202 51 −14044.532 75 −2.37 6.08
2 −597.38 −385.86 −1.042 14 −1.204 91 −14044.503 96 −2.74 3.47
3 −596.99 −382.28 −0.991 31 −1.179 24 −14044.492 99 −1.86 4.33
4 −596.75 −389.83 −0.996 86 −1.147 89 −14044.481 63 −7.51 1.76
5 −591.87 −397.25 −1.052 03 −1.210 05 −14044.480 96 −6.33 0.46
6 −591.59 −399.37 −1.033 20 −1.155 82 −14044.514 64 −3.99 0.99
7 −591.29 −379.36 −0.971 99 −1.128 56 −14044.510 43 −8.64 3.55
8 −591.00 −382.32 −0.988 61 −1.159 73 −14044.444 79 −13.53 1.61
9 −590.11 −366.55 −0.950 48 −1.116 33 −14044.469 76 −8.23 2.96

10 −589.98 −399.13 −0.997 91 −1.146 72 −14044.495 70 −12.42 1.83

a The relative energies with respect to the conventional HF energies.
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Fig. 1 The total energies of ten conformers of 2ETI, with the energy of conformer 1 being set
to zero: (a) Comparison between AMBER99 (or CHARMM27) and conventional HF/6-31G(d)
results. (b) Comparison between AM1 (or PM3) and conventional HF/6-31G(d) results. (c) Com-
parison between GEBF(η = 5, 6) and conventional HF/6-31G(d) results. (d) The structure of the
lowest-energy conformer predicted by the conventional HF/6-31G(d) calculation
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Fig. 2 The total energies of ten conformers of 1CMR, with the energy of conformer 1 being set
to zero: (a) Comparison between AMBER99 (or CHARMM27) and conventional HF/6-31G(d)
results. (b) Comparison between AM1 (or PM3) and conventional HF/6-31G(d) results. (c) Com-
parison between GEBF(η = 5, 6) and conventional HF/6-31G(d) results. (d) The structure of the
lowest-energy conformer predicted by the conventional HF/6-31G(d) calculation

Correspondingly, the mean deviation is 5.14 and 3.91 mH, respectively. For this
molecule (2ETI), the GEBF-HF energies are almost convergent for η = 6, and in
this case, the largest subsystem contains only 98 atoms, much less than the total
number of atoms (382) in this system. For another protein molecule 1CMR, the per-
formance of various theoretical methods is almost the same as observed in 2ETI (see
Table 2 and Fig. 2). Thus, one can see that the MM (AMBER99 and CHARMM27)
methods and semi-empirical QM methods (AM1 and PM3) give poor descriptions
for the relative energies of large biological molecules (compared with the full ab
initio HF results), while the GEBF-HF approach can be used to give fairly accurate
predictions.

Second, for a water cluster (H2O)20, we collect the total energies of its ten lowest-
energy conformers (see Fig. 3) calculated with TIP4P, HF or GEBF-HF, B3LYP or
GEBF-B3LYP, MP2 or GEBF-MP2 methods in Table 3. The aug-cc-pVDZ basis set
is employed for all quantum chemistry calculations. The relative energies of these
conformers obtained from different methods are displayed in Fig. 4 for compari-
son. Because the relative energies of these structures are quite small, we set the
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Fig. 3 Ten lowest-energy conformers of (H2O)20 calculated with the TIP4P force field method

parameter η = 7 for the corresponding GEBF calculations. Thus, the largest sub-
system in GEBF calculations contains only seven water molecules with 287 basis
functions. As seen from Table 3 and Fig. 4, the relative energies with the TIP4P
force field method are quite different from those with the conventional HF, B3LYP
and MP2 methods, while the relative energies from the GEBF approach are quite
consistent with their corresponding conventional results. Within each method (HF,
B3LYP, MP2), GEBF calculations give correct predictions for the lowest-energy
and highest-energy conformers, consistent with those from the conventional calcu-
lations. But, one can see from Fig. 4 that for some conformers their relative order
predicted by the GEBF approach is different from that obtained by the conven-
tional calculations. This is because the energy difference between these conformers
is smaller than the accuracy of the GEBF approach. With respect to the total ener-
gies from the conventional method, the largest deviation of the GEBF energies is
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Fig. 4 The total energies of ten conformers of (H2O)20, with the energy of conformer 1 being set
to zero: (a) Comparison between the TIP4P results, the GEBF-HF and conventional HF results. (b)
Comparison between the GEBF-B3LYP and conventional B3LYP results. (c) Comparison between
the GEBF-MP2 and conventional MP2 results

Table 3 The total energies for ten conformers of (H2O)20 calculated with the TIP4P method,
conventional and GEBF methods at the HF, B3LYP, and MP2 levels (with the aug-cc-pVDZ basis
set)

No TIP4P
(kcal/mol)

HF B3LYP MP2

Conventional
(au)

GEBF(7)
(mH)a

Conventional
(au)

GEBF(7)
(mH)a

Conventional
(au)

GEBF(7)
(mH)a

1 −208.73 −1521.042 04 −0.54 −1529.179 42 −0.80 −1525.550 03 0.03
2 −207.88 −1521.033 87 −0.37 −1529.171 21 −0.27 −1525.545 89 0.37
3 −207.37 −1521.037 49 −0.72 −1529.173 63 −0.71 −1525.546 28 −0.31
4 −207.10 −1521.039 93 −0.08 −1529.177 63 0.28 −1525.547 56 0.65
5 −206.99 −1521.034 54 −0.44 −1529.171 63 −0.49 −1525.545 59 0.28
6 −206.88 −1521.039 92 −0.30 −1529.177 46 −0.41 −1525.547 34 0.32
7 −206.87 −1521.035 24 −0.75 −1529.171 98 −1.06 −1525.543 31 −0.24
8 −206.80 −1521.036 03 −0.64 −1529.173 22 −0.78 −1525.544 29 0.04
9 −206.67 −1521.037 64 −0.42 −1529.174 42 −0.46 −1525.545 18 0.22

10 −206.61 −1521.039 02 −0.30 −1529.175 33 −0.49 −1525.546 01 0.36

a The relative energies with respect to the conventional energies.
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0.46, 0.58 and 0.28 mH for HF, B3LYP and MP2, respectively. Within each quan-
tum chemistry method, the GEBF approach can provide fairly reliable predictions
for the relative stabilities of different conformers of water clusters, although the
energies of these conformers are distributed in a narrow range. Regarding the com-
putational cost (all the calculations are carried on a single workstation with dual
dual-core Xeon 5150 CPU), the GEBF approach requires more computational time
(by 2–3 times) than the conventional methods at the HF and B3LYP levels, whereas
at the MP2 level the GEBF approach (with 0.6 GB memory) is about 2–3 times
faster than the conventional MP2 method (with 1.6 GB memory). Of course, if the
system under study becomes larger and larger, the GEBF approach should be even-
tually faster than the conventional method even at the HF or DFT level, because it
computationally scales linearly with the system size.

4 Conclusions

In this work, we have applied the GEBF approach to investigate the relative energies
for many conformers of two proteins (2ETI and 1CMR) and a water cluster (H2O)20.
From our calculations, we found that for proteins the MM methods (AMBER99 and
CHARMM27), and semi-empirical QM methods (AM1 and PM3) could not quan-
titatively reproduce the results from the conventional HF/6-31G(d) calculations,
while for water clusters the TIP4P force field method is also not able to make quan-
titative predictions for the relative stabilities of many conformers. In contrast, for
three systems, not only the total energies but also the relative stabilities of their dif-
ferent conformers predicted by the GEBF approach are fairly consistent with those
from the corresponding conventional method. The GEBF approach exhibits similar
performance at various theoretical levels (HF, DFT, MP2). Since GEBF calcula-
tions can be readily achieved with a parallel code (with a message-passing interface
technique), the GEBF approach is expected to be applicable for the geometry opti-
mizations, MC (or MD) simulations for general large molecules at the ab initio
level, once a large number of compute nodes are available.
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Generalised Spin Dynamics and Induced
Bounds of Automorphic [A]nX, [AX]n NMR
Systems via Dual Tensorial Sets: An Invariant
Cardinality Role for CFP

Francis P. Temme

Abstract For uniform spins and their indistinguishable point sets of tensorial bases
defining automorphic group-based Liouvillian NMR spin dynamics, the role of
recursively-derived coefficients of fractional parentage (CFP) bijections and Schur
duality-defined CFP(0)(n) ≡ |GI|(n) group invariant cardinality is central both to
understanding the impact of time-reversal invariance(TRI) spin physics, and to
analysis as density-matrix formalisms over democratic recoupled (DR) dual ten-
sorial sets, {T k

{ṽ}(11.1)(SU2×Sn)}. Over abstract spin space, these tensorial sets
are (ṽ) invariant-theoretic forms which lie beyond the Liouvillian graph recou-
pling and Racah-forms envisaged by Sanctuary [1]. This is a direct consequence
of the dominance of the Sn group. It leads to new views on the value of projec-
tive group actions as mappings over specialised Liouvillian carrier spaces, and
on the need for the replacement of Racah-Wigner (R-W) orthogonality for distinct
point sets, by criteria based on explicit properties of invariants [J. Phys.: Math. &
Theor. A 41, 015210 (2008)] for multiple invariant systems. Ũ×P group actions
over disjoint (L) carrier subspaces, leading to exclusively combinatorial views of
the nature of quantal completeness for indistinguishable point-based tensorial sets.
Such generalised invariant-theoretic approaches lie beyond the range of Lévi-Civitá
generator views, or of Lévy-Leblond and Lévy-Nahas [9] with its additional cyclic-
commutators defining mono-invariant DR forms. Comparison of the latter with
generalised multiple-invariant techniques provides an answer to the question of pre-
cisely why [A]n≥4(X) and [AX ]n≥4 NMR system spin dynamics are not ameniable to
conventional R-W analysis of recoupled discrete-point tensorial systems. Our work
augments earlier Hilbert space views, both of Louck and Biedenharn [21] on boson
pattern projective mapping, and of Corio [19]. The roles of recent Sn group action
and (λ � n)-Schur combinatorial concepts, as well as of polyhedral-combinatorial
modelling over invariance algebras, contribute significantly to our understanding of
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invariant-based techniques of Liouville dual tensorial sets for automorphic NMR
spin physics.1

Keywords: NMR spin dynamics, dual tensorial sets, automorphic spin symme-
try, group invariants in Liouvillian projective mapping, CFP factors from bijective
mapping

1 Introduction

The concepts of Schur duality, based on the unitary and permutation groups both
being subgroups of the general linear group, G L d , is central to theoretical physics
and thus to the theory of NMR spin dynamics. Additional ideas of simple reducibil-
ity (SR) (over a space) and of groups having invariants (GI) is equally important
in the quantal spin physics from which the latter is derived. Conventional graph-
theoretic views of recoupled bases in Liouvillian quantum physics [1] allow a role
for Racah-Wigner(R-W) algebra [2] in density-matrix formalisms of NMR spin
dynamics [3]. The adequacy of R-W methods in representing dual tensorial set for-
malisms has been questioned of late, as a consequence of Atiyah and Sutcliffe [4]
pointing out that graphical recoupling methods are properly restricted to gener-
alised tensors based on distinct point sets. In consequence, once an NMR system(s)
is one based on generalised multiple invariants over uniform spin (inner ki rank)
tensorial sets, the classic R-W techniques are then regarded as simply no longer
pertinent. This arises because such bases introduce the concept of indistinguish-
able spin sets [5–8] and also formalisms pertinent to democratic recoupling(DR)
[9, 10]. A further important consequence of this realisation is that the generalised
automorphic-group multispin NMR systems, such as those discussed by Whitman
[5] – or more recently, Balasubramanian [6] – need to be treated by (multiple) group-
invariant (G-invariant(GI)), and |GI|(n) cardinality based theoretic methods [9–12],
in contrast to mono-invariant ones.

For the simplest of [A]n ([A]n(X)) type NMR systems, it follows [7], that whilst
it is the dominant intra-cluster spin (Liouvillian) interaction JAA′ here, which gen-
erates the automorphic Liouvillian-based spin symmetry, this term itself does not
appear in the [ñ] principal subdomain. Its effect is constrained to the inaccessi-

ble [ñ−1,1], ... (non-symmetric) subdomain(s) which constitutes a spin-coherence
inaccessible region – a result in agreement with a classic NMR theorem from the
Hilbert space NMR era [13–15], as well as in accord with a recently revisited exper-
imental result [16]. Conceptually it is the dominance of the permutation group in
these n-fold automorphic spin systems which determines that the related NMR
tensorial set bases constitute indistinguishable point sets. For tensorial structures

1 Dedicated in memoriam to:
Profs. Johannes P. Colpa [1925–2005], of Queen’s University, Kingston, Canada, and Paul L. Corio
[1928–1998], of the University of Kentucky, Lexington, USA.
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over more than three identical spins constituting a point set, or other examples
of DR beyond explicit tridentate Lévi-Civitá operator forms of wider G L n ⊃ G
tensorial structure [17], the DR basis problem of Liouvillian NMR now involves
multiple group-invariants, within the criteria that |GI|(n≥4) ≥ 3. Clearly in handling
automorphic NMR tensorial problems over their abstract spin-alone space(s), only
invariant-theoretic (non-graphical) approaches are mathematically appropriate.

Beyond the maximal mono-invariant uniform three-fold [A](Ii)3 spin case for
generalised (identical) Ii spin magnitudes, first discussed by Lévy-Lebond and
Lévy-Nahas [9] in terms of specialised additional auxiliary cyclic commutator for-
malisms that in the Hilbert formalism yield a Jacobian matrix form (from the
retention of some elements of R-W algebra), all further identical n-fold NMR
systems are no longer ameniable to any form of modified graphical recoupling
R-W approach. Subsequent progress thereafter rests on deriving the group invari-
ant set and its cardinality, where the latter draws on the role of time-reversal
in spin physics and a well-established Weyl (TRI vs permutational pair) equiv-
alency condition [18, 19]. In addition the presence of Schur duality ensures that
CFP(0)(n), the zeroth-order coefficient of fractional parentage(CFP) for n-fold sys-
tem, is identical to the Sn group -derived invariant cardinality [12, 20], despite the
limitations of unitary recoupling and R-W methods noted above. Thereafter Sn

combinatorical methods determine the NMR quantal basis sets and their complete-
ness, boson (or superboson) pattern algebras and their related unit operators [21],
(unit-superoperators [10, 22]) contributing to recent modelling applications involv-
ing automorphic NMR spin systems [11, 23–26]. The original work of Weyl [18],
as applied to NMR (e.g.) by Corio [19] and others [11], highlights the fact that, in
studying invariants by group theoretic techniques, one is essentially examining the
role of time-reversal invariance(TRI) [27] in particle physics.2 Finally, no overview
of DR-based tensorial set structures would be complete without some brief mention
of iso-scalar factors (ISF) based on group subduction chains and their role in particle
physics, as reviewed by Chen et al. [28].

Beyond the early study of the uniform DR three-spin system as a theoreti-
cal problem [9] – or else its inter correlated work [33, 34], including our recent
quasi-geometric approach to invariant cardinality [20] – one of the specific focii
of this report is concerned with the nature of group actions over carrier space as
a projective mapping and just how such established phenomena correlate with the
invariant-theoretic aspects of NMR. By its nature this stands in marked contrast to
the non-spin Hamiltonian structure-based group theoretic DR problem examined by
Galbraith [35] in the 1970s. The idea of Liouvillian NMR quantal basis set com-
pleteness being defined by its invariant cardinality is central to these questions and
to much of the subsequent discussion.3

2 One should remark here that the single spin tensorial formalism of NMR spin dynamics has given
rise to analogous approaches for both NQR [29, 30] and NAR [31, 32].
3 E.g., for higher uniform individual spin Ii magnitudes involved in [A]n(X), [AX ]n automor-
phic system problems, the additional question of spin symmetry branching (implicit in group
embedding) and its mathematical determinacy also becomes of some importance [24, 25].
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It is clear that any formalism treating the role of multiple group invariants in
automorphic NMR also introduces difficult questions concerning the limitations of
the physical applicability of R-W algebra. This fact is clear in Galbraith’s orig-
inal 1971 group-theoretic work [35]; equally, it is central to the recent assertion
establishing indistinguishability criteria for uniform point sets [4]. Since both views
disallow the use of graphical recoupling R-W techniques, the alternative possibil-
ity of quasi-renormalisation of some automorphic spin systems to certain simpler
partitioned subset-type problems (known from studies in the Hilbert space era for
certain restricted automorphic group-defined NMR spin systems) is a welcome
development in NMR spin dynamics. The early Whitman (composite particle) NMR
technique [5] provides useful examples.

At its most fundamental level, the study of Weyl-type correlation between TRI
and specific forms of permutational-exchange action defines the concept of group
invariant cardinality. TRI thereby plays an analogous role to that of permutational
cycle operations (over Weyl bracket algebra [18]) within the wider generality of
group theory – including that of character tables, as cycle-based structures. It is
the permutational role of TRI acting over the structure of Liouvillian tensorial sets
which allows a unifying role for Schur duality. The unitary aspects allow for a (Zn0

type) recursive bijection processes for the CFPs, as {CFP(i)(n)} coefficient sets.
They also provide an alternative Z22-like invariant cardinality enumeration-based
on the smaller n-index {CFP(i)(n)} sets, which yield the 2n-th indexed single zeroth
CFP, invariant cardinality term, on forming the sum of squares of the original series.
The subsequent use of even-pair polyhedral lattice-point modelling concepts (itself
derived from the lattice techniques of Erdös et al. [36]) in the context of Weyl TRI
scalar-pair technique over a linear bracket-algebra provide a Sn group formulation
of the tensorial set, invariant cardinality problem. Although originally reported [20]
in terms of a geometric-based view, more generalised modelling is preferable in
deriving the GI cardinality, such as that based on S2n/Sn abstract space lattices.
The validity of the quasi-geometric model to a specific number of (Î• Î) vertex
pairs, corresponding to the (quasi-R3-space) icosahedral limit of 12 pairs, in hind-
sight is seen as predictable. The Schur properties inherent in spin dynamics clearly
arise because automorphic NMR is essentially a SU2×Sn group phenomena. It
is its retention in these GI cardinality formulations, despite R-W techniques being
inadmissible under tensorial ki sub-rank indistinguishability, that is interesting.

The work set out here describes a generalised recursive bijection. As a type of
mapping, it is used to generate the full n-index range of dual tensorial set structures
T k
{ṽ}(111..11), as integer rank, (ki = 1) sub-rank Liouvillian tensors characterised

by their invariants, alias GIs. Thereafter, Sect. 2 draws on the interrelationship
between CFP(i)(n) set and CFP(0)(2n) result. This is a powerful n/2n-indexed map-
like property that allows for the derivation of the |GI|(2n) cardinalities directly from
the primary i ≤ n initial n-fold CFP sets. Whilst it is an important internal check
on the recursive bijection process itself, it is particularly valuable in deriving the
GI-cardinality of ‘nano-structured’ n ≥ 20 systems with multiple invariants. Also,
these results are useful in the context of a specific type of Sn group character sum-
based result (as given in Appendix B, e.g.) for |GI|(n) – a technique demonstrated
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in more detail elsewhere [12]. Sect. 3 subsequently treats the role of Liouvillian
carrier projective mappings and quantal completeness (cf. to their less informative
Hilbert analogues). The structured carrier subspaces and their mappings presented
here are closely related to the role of Sn actions in combinatorics as an aspect of
spin physics. Sect. 4 completes the discussion of specific details concerning Liou-
villian projections, before moving on to outline the range of NMR systems to which
quantal renormalisation (with recovery of applicable R-W algebraic properties) may
be applied. In Sect. 5 (as the penultimate item), various examples of invariant car-
dinalities associated with more extensive (quasi-polyhedral ‘nano-’) related model
NMR systems are given. Finally for brevity, whilst retaining some degree of com-
pleteness, various important but subsidiary matters are outlined in the appendices,
Appendices A–D; in particular, Appendix B presents symmetric group character
sum technique for GI cardinality and Appendix D sets out the notation adopted in
the main text.

2 Group Actions over Hilbert and Liouville Spaces: CFP(i)(n)

and |GI|(n) of {Tk
{ṽ}(11.1)} Liouville Sets

The well-established respective bi/tri-dentate schematic propagations over Hilbert
and Liouville space of density-matrix formalisms derive from the inter-relationship
between corresponding unitary group actions over these distinct spaces, as given by
the expression:

Ũ|kqv >> ≡ U|kqv >> U† . (1)

In describing the respective group actions as mappings over their respective Hilbert
or Liouville carrier spaces, we denote these by H (H̃), where for Hilbert space:

U : H→H
{

D j(U)| U ∈ SU2
}

, (2a)

whereas for integer-rank Liouville space the corresponding simple mapping process
is simply:

Ũ : H̃→ H̃
{

Dk(Ũ)| Ũ ∈ SU2
}

. (2b)

On recalling that SR is only retained over respective SU(2) product spaces,4 this
leads to the fundamental classic propagative schemata over their j = (1/2), and
subsequent k = 1, (integer) Liouvillian, spaces being described by:

D(1/2)⊗D(1/2) ≡ 1D0(U)+ 1D1(U) , (3)

D1(Ũ)⊗D1(Ũ) ≡ 1D0(Ũ)+ 1D1(Ũ)+ 1D2(Ũ) ; (4)

4 It should be noted here that Liouvillian SU(2)×Sn symmetries span p ≤ 4 partite irreps, cf. to
the propagative formalisms of Hilbert space.
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however, it is only for ⊗D(k=1)(Ũ) Liouvillian density-matrix based sequence [17]
(or subsequently on taking a sum of squares of RHS (lower n-index) CFP(i)s) that
one obtains the multiplicities inclusive of the zeroth CFP terms, or scalar invariants,
such that:

D1(Ũ)⊗D1(Ũ)⊗D1(Ũ) → (1 : 3 : 2 : 1)

⎛⎜⎜⎝
D0(Ũ)
D1(Ũ)
D2(Ũ)
D3(Ũ)

⎞⎟⎟⎠ , (5)

Over a full rank sequence this schemata behaves as a Zn0 type process and is a
retained property, common to both distinct and indistinguishable point-set tensorial
systems. The process of taking squares of both sides of the (n = 2) Liouville space
example, Eq. (4), yields the lone value of the zeroth CFP factor of the n′ = 2n (=
4) fold problem, whose full rank Zn0-linear unitary mapping is simply the further
bijective result:

(⊗D1(Ũ))(4) → (3 : 6 : 6 : 3 : 1)

⎛⎜⎜⎜⎜⎝
D0(Ũ)
D1(Ũ)
D2(Ũ)
D3(Ũ)
D4(Ũ)

⎞⎟⎟⎟⎟⎠ . (6)

Clearly these additional enumerative CFP(i)(n) →CFP(0)(n
′=2n) map-like process

that arise from taking the sum of squares of all CFP(i) components for 0≤ i≤ n may
be likened to a Z22 recoupling. Likewise, an analogous treatment of the (initial) i≤
n = 4 full component CFP set in this Z22-like context directly yields the higher-index
zeroth rank term, CFP(0)(2n=8) = |GI|(8) = 91 as a dual group invariant.

Further mathematical inspection of these contrasting schemata leads one to
recognise, that in place of the tedious classic propagative tensorial schematic struc-
ture, a simple 1:1 bijection (with the column-vector of (Dk′(Ũ)) understood) should
be utilised to automate the Zn0 process into an enumerative bijection mapping. Up
to the index values n = 20, (...), 24, this is presented in Table 1, within an internal
self-consistency in it, – i.e. on comparing the 2n index column |GI| on the far right
with values of the main bijective scheme. Naturally, the zeroth CFP-derived cardi-
nalities for these even ⊗Dk(Ũ) operations are useful independent checks, based on
the alternative Z22-like propagation from the lower n-fold complete CFP(i)(n) set.
In addition to the k = 0 rank CFPs being derivable equally by either simple bijective
mapping processes or summation of i-component squares of the n-fold set to sole
zeroth CFP of 2n-fold set as unitary group processes, the corresponding (numeri-
cally identical )Sn-invariant cardinality is a readily accessible quantity. This arises
from a consideration of time-reversal invariance (TRI) over Weyl bracket algebras
as (Î • Î)...(Î • Î)-based models that underlie automorphic spin physics of NMR.
The above-reported n → 2n unitary group Z22 technique is particular valuable in
allowing for the derivation of (e.g.) the higher n ≥ (20),24,40-fold cases, via the
various n-based sequences (e.g.) {3:6:12:24},{ 4:8:16}, or {5:10:20:40}, with these
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being typical of (automorphic) 13Cn,20≤ n ≤ 60, fullerene-based model, invariant
cardinalities, or else its [A]60−n[X ]n-systems, related to (e.g.) the boraza-substituted
fullerenes as uniform quasi-polyhedral multispin models.

In the context of recursively obtained CFP sets of bijectional map results of
Table 1, the sum of squares, for the full initial n-fold i-th component CFP set(s),
by providing the 2n-indexed CFP(0)(.) ≡ |GI|(.) values yield an invaluable running
check on subsequent bijective hierarchy. The n → 2n mapping (progressively for
4, 5, 6, 8, 10, 12, and 20 index-sequence) GI-cardinalities provides the following
sequence of inter-related sets of zeroth-CFP values:

|GI|(2n) ≡ {3,6,15, . . . ,91, . . . ,603, . . . ,4213, . . . ,13,393689}. (7)

Conceptually however, there is a further independent confirmation of the above,
beyond the Zn0,Z22 comparative mapping results noted here. This is in the form of
the Sn group specialised ‘even’ character sum which directly draws on Weyl view
of |GI|(n) enumeration [18] to give a direct route to the |GI|(n) invariant cardinali-
ties. Of necessity, it utilises standard generalised hooklength methods for evaluating

χ (λ )
1n (Sn) group characters [37] – a viewpoint clearly beyond the classic G L d form

for a related fundamental tensorial property derived by Littlewood [38]. The dis-
tinctly similar forms of these separate properties of Schur-duality related groups
is hardly coincidental. Three example calculations, deriving GI(n) values by the
specific Sn character-sum method, are discussed briefly in Appendix B.

In the context of tensoral structure, these numerical values are simply the cardi-
nality of the additional ṽ labels associated with generalised tensorial sets, so that for
the first multi-invariant (n = 4) indexed set becomes:

(⊗T 1(1))(4) ≡
{

T k
{ṽ}(1111)

}
(SU2×S4), (8)

where specific zeroth CFP value is now 3. Further, in accord with automorphic group
view of NMR Liouvillian structures, these three unique invariants may be repre-
sented by subgroup chain structures established in iso-scalar factor particle physics
discussions of Ref. [28], namely:

{[31]⊃ [3]⊃ [2]}
{[31]⊃ [21]⊃ [2]}
{[22]⊃ [21]⊃ [2]}

, (9)

which extends an earlier density matrix algebraic view [17].
In contrast to classic graph recoupling conventionally utilised to define (e.g.)

T 1⊗T 1 ≡ {T k(11)} via the earlier (distinct point set) formalisms implicit in Sanc-
tuary’s 1976 work [1], the automorphic group [A]n(X) or [AX ]n NMR problems here
are specifically concerned with dual groups and with sets of indistinguishable inner
recoupled ki components. The latter point tensorial sets have their origins in spe-
cialised automorphic NMR spin symmetries that have specific properties, which are
in contrast with those of the distinct k’ sets under graph recoupling. However the
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}(

11
.1

n
)s

et
s

to
n

=
24

,b
as

ed
on

(⊗
D

1
(Ũ
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latter are in general use in other types of spectroscopic applications.5 The limita-
tions of 6-j, 9-j, or 12-j or higher R-W algebras to distinct point-set graph modelling
follows directly from recent mathematical remarks of Atiyah and Sutcliffe [4]. In
consequence, the analytic properties of indistinguishable point sets (tensorial sets)
which underlie democratic recoupling are problematic. Such arguments strongly
imply that the automorphic NMR spin symmetries represent group-theoretic models
that permit (or depend on) the direct use of (Sn)-invariant theory in spin parti-
cle physics, as discussed in the following two sections that focus on the important
property of quantal completeness.

3 Projective Mappings Properties and Hilbert Quantal
Completeness

It is useful to compare Hilbert and Liouville space mapping properties under the
dual group SU2×Sn and thereby draw on the distinct combinatorial statements
of quantal completeness which apply in the two contrasting spin spaces. From the
original boson pattern algebras of Louck and Biedenharn [21], the carrier space-
based projective mapping associated with dual group actions takes the form:

U×P : H→H
{

D j(U)Γ (P)| U ∈ SU2;P ∈Sn
}

, (10)

(i.e., as extension of Eq. (2a) above) which exhibits no explicit group invariant
dependency in this Hilbert space format. Louck, in this original 1979 Bielefeld work
[21] (with his co-author Biedenharn), draws on this formal carrier-space mapping
to obtain the Hilbert space quantal completeness condition, namely,

max j=n/2

∑
j

D j(U)Γ [(n/2)+ j,(n/2)− j] , j ≥ (0),1/2 ; (11)

this implies that Hilbert automorphic spin [A]n(X) problems (e.g.) span a (progres-
sive) set of (non-Abelian) (bi)partite Sn irreps:

{[n], [n−1,1], [n−2,2]...}≡ {< 0 >,< 1 >,< 2 >,..} ,

where the latter represents the form associated with the Wybourne reduced notation,
in which the leading portion of the number partition is omitted – as given (e.g.) in
Refs. [40, 41]).

The corresponding Liouvillian carrier space-based projective mapping given
below has a quite specific structure, with its explicit dependence on the auto-
morphic group invariants and their cardinality. It is these aspects of Liouvillian
projective mapping structures that strongly stress many of the specific properties
of indistinguishable point sets related to DR-based NMR problems.

5 As discussed by Silver in his classic spectroscopic monograph [39] on role of applicable R-W
algebra in graph theoretic viable problems.
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4 Dual Mapping Over Explicit Liouville Carrier Spaces

Generalised tensorial structure of automorphic spin symmetry-based NMR prob-
lems are seen to arise within the context of dual group action, itself associated with
superboson mapping over carrier spaces which derive from indistinguishable point
sets. One stresses here the role of dual group actions and group invariants, in which
the latter act as Schur duality-like properties (as between pairings of the Un vs Sn

groups, rather than related to the classic G L d vs Sn) groups. Hence the properties
are equally derivable from either unitary or permutational group considerations. As
a direct consequence of this, the set structure inherent in the Liouville abstract space
furnishes a full description of quantal basis set completeness. Clearly, this is a pri-
mary requirement for fuller spin dynamics treatment of [A]n(X) or more extended
NMR systems.

In contrast to Hilbert space mappings, here one find that the group invariant plays
an explicit role in defining group actions over Liouvillian carrier spaces associated
with dual tensorial sets, with the projective mappings now taking the form:

Ũ×P : H̃−→ H̃
{

Dk(Ũ)Γ̃ [λ ](ṽ)(P) |Ũ ∈ SU2;P ∈Sn; ṽ, GI
}

, (12)

within which the distinct ṽ GI terms define a disjoint set of carrier subspaces, as
shown here by the specialised sum in the expression:

H̃ ≡
⊕

ṽ H̃ṽ , (13)

where ṽ represents one of the {ṽ} complete set of invariants. The number of these
disjoint subspaces naturally is identical to the cardinality associated with the GI
set itself, as defined by |GI|(n) ≡ CFP(0)(n). Clearly, these carrier subspaces are
those of specific invariant-related superboson actions, with the superboson quasi-
particles (QPs)s themselves being simply components of the Liouvillian unit-tensor
set – conveniently represented by (augmented) double Gel’fand patterns. The actual
(augmented) pattern basis components, |(2k .

(k+q) 0.) >>, arise from the action of
specific unit-tensors (superbosons) on the Liouvillian null basis (see discussion of
Eqs. (19–21), Appendix A), a form of action directly analogous to that established
for boson QPs acting on Hilbert null-spaces [21].

On taking Eqs. (11–13) together with the expression:

∑̃
v

T k
ṽ (11.1) ≡ ∑̃

v

{
Dk(Ũ)Γ̃ [λ ](ṽ)(P)

}
, (14)

one has a useful combinatorial statement of Liouvillian quantal completeness,
which is applicable quite generally over internally recoupled (DR) {T k

{ṽ}(111..1)}
basis sets, as representational set forms described by multiple GIs of the sets {ṽ} –
more especially to those for which |GI|(n) ≥ 3 to which DR applies. These expres-
sions signify that over each of the disjoint carrier subspaces H̃ṽ, the property of
SR over the individual {[λ̃ ]} irreps is retained. From the point of view of (dual)
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density-matrix algebraic theory [17], the mapping properties of Eqs. (12, 13) defin-
ing quantal completeness are more general than the earlier schematic formalisms,
that involve DR properties typically based on a Lévi-Civitá-like operator. This is
a consequence of the nature and restricted definition of the latter to the (identical)
3-fold case.

The questions on equivalence for analogous forms of 3-fold recoupling were
noted [34] prior to the recognition and full realisation [9] of the specific proper-
ties of the Lévi-Civitá operator(s) in DR recoupling. The value of these operators
to DR (Hilbert formulated) problems lies in their generating additional commuta-
tor relationships and a generalised-Ii spin Jacobian matrix formalism. The auxiliary
commutators and the Hilbert space matrix forms permit the limited retention of
applicable R-W algebra [9]. The augmented structure of the corresponding Liouville
problem would seem to preclude the formation of the specialised matrix form from
which the original mono-invariant-based Hilbert space solution was obtained. In the
context of the wider multi-invariant problem, no further multi-dentate analogues to
Lévi-Civitá (super) operator are known that would apply either to multi-invariant
theory generally, or to the corresponding density-matrix formalism [17] – to the
best of the author’s knowledge. The authors of the latter 1965 schematic recoupling
work related to Liouville density-matrix formalisms, stress that only a single usage
of a tridentate Lévi-Civitá form is permissible; this clearly precludes (on the face
of it) hierarchical use of these specialised operators in generalised invariant theory.
Hence it only remains to stressed here that the 6-j, 9-j, 12-j or higher, applicable
R-W functions are exclusively concerned with distinct-point sets, under their appro-
priate recoupling diagrams. These are excluded from the DR problems involving
multi-invariant-based indistinguishable point sets and automorphic dual tensorial
bases discussed here, by reason of Atiyah and Sutcliffe’s mathematical assertion
[4] that applications of graphical techniques are only valid for distinct point-set-
based systems. In consequence such R-W graphical techniques are clearly excluded
from generalised invariant theory, of recent years largely based on (polyhedral)
combinatorics, or G L d , Sn Schur function techniques.

5 Disjoint Carrier Subspace Structure in Liouville
Multi-Invariant NMR

Analytic treatment of the spin dynamics of the [A]2 spin system, which under-
lies all [A]2(X) , [A]n(X)-type systems, has demonstrated the origins of the Hilbert
era rule [7] concerned with the non-observation of (dominant) intra-cluster inter-
actions in automorphic group-based spin systems. This asserts that the [ñ](Sn)
forms in analytic dynamical terms are actually null subspatial domains, whereas

the [ñ−1,1] (etc.)-containing subspaces, though retaining the dominant Jintra−cluster

term(s), remain unobservable, for the reason that the corresponding initial coher-
ences represent non-preparable forms. This was demonstrated in Ref. [7], – as an
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extension to the Sanctuary analysis of the distinct spin AX case [42] – and some
further details of the analysis are given in Appendix C, below.

In the context of renormalisation, retention of the disjoint structure of carrier sub-
spaces allows for spin dynamics calculations here to be pursued for some restrictive
DR forms of system, such as that for [A]n(X) within which only a single exter-
nal cluster interaction is definable. This follows because the spin dynamics than
becomes partitioned into a series of possibly weighted (say) B(I≥1)X , .. spin sys-
tems, whose spin dynamical behaviour mirroring that of a AX system as given by
Sanctuary [42], both in the latter work and as reviewed [3], in the wider context of
general I spin dynamics and relaxation. Additional problems specifically involving
higher I spins were analysed subsequently by Füro et al. [43]. Whilst it may well be
convenient to regard the process that invokes a series of subsets of differing I ≥ 1/2
spin angular momenta, (replacing a set of n-fold equivalent particles), as being a
form of quasi-renormalisation to series of higher unitary groups. There is an impor-
tant caveat to the use of this process; its applicability is limited to applications in
which multiple {JAX} (etc.) couplings do not occur. It does not apply to generalised
[AX ]n DR NMR systems, in which the overall invariant cardinality is derived as
||GI|(n)|2, This general result simply corresponds to taking all possible pair-product
forms of ṽṽ′ subinvariant pairings.

6 Some Brief Conclusions: Limitations Induced by ki Sub-Rank
Indistinguishability

The invariant-theoretic approach utilised here explains the origins of certain well-
known difficulties associated with generalised automorphic many-spin formalisms
in NMR based on dual tensorial sets. Unlike earlier distinct point set Hilbert
spaceproblems, as treated by Corio [19], or the single spin (or AX) Liouvillian
formalisms, developed by Sanctuary and Halstead [3] and their coworkers, cited
therein, the automorphic systems introduce indistinguishability so that the dual ten-
sorial sets hence retain a dependency on multiple invariants. Whilst this gives rise to
disjoint carrier subspaces under dual group actions by generating the (super)boson
projective mapping in which the invariants provide for the completeness of the
Liouvillian tensorial quantal bases, it also results in the dominance of the Sn

group. In treatments based on density-matrix approaches utilising dual tensorial sets,
these automorphic spin symmetric NMR problems are not Racah-Wigner algebra-
compatible. This is attributed directly to R-W algebras being graph-theoretic-based,
unitary group aspects of theoretical physics [2], despite their Gel’fand and Schur
implied dependencies [21].

The specific results given in Table 1 show interrelationship between the direct
recursive CFP bijection and the alternative Z22 analogue of squaring a set of lower-
index based CFPs, which are especially useful in providing one with various higher-
index invariant cardinalities, implicit in 13C-fullerene, or [A]60−n[X ]n borazafullene
cluster modelling of automorphic spin systems. The following additional |GI(n)|
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results (respectively) for n = 24, n = 36, n = 40:

|GI|(24) = 834,086421 , (15)

|GI|(36) = 245,613,376,802185 , (16)

|GI|(40) = 17,047,255,430,494497 , (17)

demonstrate the value of the two form of bijective mapping. That all of these |GI|s
may be derived equally by the use of hooklength enumerative methods [37] within
a representational Sn-character sum approach, as demonstrated elsewhere [11],
[25], simply affirms the value of Schur duality and invariant-theoretic, polyhedral
combinatorial methods.

In the physical science context of defining tensorial quantal bases, the above
invariant-theoretic viewpoint lies beyond that given earlier [20] (or in Ref. [36]
dealing with generalised lattice points approaches), or in material in the accessi-
ble discrete mathematics or theoretical physics (i.e. Hilbert space based) literature
[40,41,44] is clearly a direct consequence of Atiyah and Sutcliffe’s recent work [4]
which strictly limits the use of graph theoretic recoupling in tensorial construction to
(inner recoupled) distinct point set derived tensors. Various contrasting methods for
determining the invariant cardinality of automorphic spin dynamics [A]n(X) prob-
lems have been presented including a recent Sn representational one [25] based
on Weyl’s original views of bracket pair-permutation and TRI being equivalent
properties [18]. Questions about the limited applicability of R-W to monoinvari-
ant (cf. multi-invariant indistinguishable) point sets (over dynamical abstract spin
space) are consistent with the maximal nature of conventional Lévi-Civitá (super)
operators [9], as well as with recent point set-based assertions [4] that graph-
theoretic-based apparatus and modelling is restricted to distinct point sets. This
view reinforces a much earlier assertion due to Galbraith [35] based on group theo-
retic considerations. The latter’s 1971 work was concerned with a 4-body (non-spin)
Hamiltonian-structured spectral problem. This was shown to depart from all R-W
matrix-analytic applicable forms, essentially on the basis of group chain subduction-
based reasoning; invariant theory and combinatorial approaches were considerably
less-developed then, as compared to their status to-day.

The present work has stressed that the question of the role of invariants raised
by considering the impact of DR in tensorial formalism of NMR spin dynamics in
general remains a largely open question of considerable physical significance. This
is quite apart from the use of mapping in fully defining the quantal tensorial basis
completeness – via combinatorial forms in both Hilbert and Liouville space. The
work has shown how invaluable and insightful are invariant theoretic and projec-
tive mapping techniques in deriving tensorial set structural overviews, especially in
wider Schur function and duality contexts of Refs. [40, 41]. It useful to recall that
some of the earliest dynamical NMR studies (from 1960s) were based on wreath-
product group structure (today cf. especially pertinent (e.g.) to the field of reaction
dynamics). Of course, these generalised forms [44] and the methods advocated by
Wybourne and King (cited above) are much more powerful than those of simple
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permutation groups. Both the bijectional derivation of Table 1 and the specific repre-
sentational character sum methods summarised in Appendix B deserve to be widely
known for their conceptual simplicity, with the latter drawing on the hooklength
enumeration of χ<λ>

1n permutational group characters [37, 45]. The value to phys-
ical science of elegant combinatorial methods due to (e.g.) Sagan [45] and Kerber
et al. [46] deserves a wider recognition, since they provide direct access to invariant
theory as well as to the automorphic NMR spin modelling discussed here.
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invaluable early discussions of the specifics of spin dynamics, and also to K. Balasubramanian,
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Appendix A: (Super)Boson QPs as Unit-Tensors

The Hilbert boson pattern QPs may be represented in following terms as a set of
unit operators:

{a1;a2; ā1,(−)ā2} ≡
{〈

1
1
1

0

〉
,

〈
1

1
0

0

〉
;

〈
1

0
1

0

〉
,

〈
1

0
0

0

〉}
, (18)

from which, within properties of Eq. (1), the Liouvillian QP subset (and the corre-
sponding conjugate subset) in their unit-tensor forms become (as given in detail in
Eqs. (9–14) of Ref. [22]), where ∆̃ ≤ k is a Liouvillian shiftoperator:{〈〈

2k
k + ∆̃
k + q

0

〉〉}
;

{〈〈
2k

k− ∆̃
k−q

0

〉〉}
, (19)

or as equivalently realised for single spin-(1/2) by:{〈〈
2

2
k + q

0

〉〉}
;

{〈〈
2

0
k−q

0

〉〉}
, (20)

where the action of each such unit tensor (superboson) on (Liouvillian) null space
generates the pattern basis, now defined for the k = 1 (integer rank), −k ≤ q ≤ k
Liouvillian bases as: ∣∣∣∣(2k

.

(k + q)
0

)〉〉
≡ |kq >>, (21)

where this is analogous to the corresponding Louck and Biedenharn, Hilbert space
definitions, as given in Ref. [21].
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Appendix B: ∑even λ χ<λ>
1n (Sn)-TRI |GI|(n) Invariant Cardinality

It has been shown elsewhere [12] how the recognised equivalence between
(Î• Î)...(Î• Î) permutational operations and time-reversal invariance (TRI) of Refs.
[18, 19] governs GI cardinality, which has been derived here from unitary group
considerations in Table 1. A more direct S2n representational approach has been
postulated in which a specific sum of even characters with analogous form to TRI
equivalent permutational forms within hooklength enumerations [37] of Sn charac-
ters which yields a direct combinatorial route (see further proof in [12]) to |GI|(n)

enumeration as:

|GI|(2n) ≡ χ<0>
12n +

n−1

∑
i=1

χ<2i>
12n , (22)

as in the following examples, whose realisations are based on standard hooklength
combinatorial character enumerations – cited above:

|GI|2n=6 ≡ 1 + χ<2>
16 + χ<22>

16 , realised as ,

(1 + 9 + 5) = 15 , (23)

|GI|2n=10 ≡ 1 + χ<2>
110 + χ<22>

110 + χ<222>
110 + χ<24>

110 , for which ,

(1 + 35 + 225 +300+42)= 603 , (24)

|GI|2n=12 ≡ 1 + χ<2>
112 + χ<22>

112 ....+ χ<25>
112 , for which ,

(1 + 54 + 616 +1925+ 1485+132)= 4213 , (25)

which by their equivalence to tabulated unitary results simply re-affirms the duality
properties inherent in this map-based invariant cardinality. It is stressed that this
TRI-based result is quite distinct from a more general tensorial polynomial product
decompositional property – due to Littlewood [38], which also is derived over even
characters of G L n, but without the restrictions implicit in Weyl’s TRI condition.

Appendix C: Formal Analysis of [A]2 Spin System

It is well-established that the relationships between T kq(k1k2) and the pair of indi-
vidual Y k1q1Y k2q2 NMR multipoles is governed by a summation over

(−1)k−q
(

k
−q

k1
q1

k2
q2

)
where last bracket form is a 3-j coefficient, and that this

relationship has strong similarities to the transformation between Y kq individual
multipole basis and the product basis |IM >< IM′|. A comparative dynamical anal-
ysis of the [A]2 automorphic spin cluster, cf AX spin system, in a rotating frame has
been presented in earlier work, based on Liouvillan of the (symmetric) form, [7]:

L /h̄ = [i
√

2ωT 10([2̃])+
√

(3/2)JAA′T
0(11), ]− . (26)
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The rotating-frame dynamical description of Eq. (4) of Ref. [42] shows that the
eigenfrequencies, from some suitable initial condition span two subsets, take the
forms:

{λi}= { /0}k=±1,±2
[2̃] (27)

for symmetric sub-salient, and

{λ ′i }= {±J/2}k=±1
[1̃1]

, (28)

over the corresponding anti-symmetric sub-salient, with the latter unobservable
because of the absence of a physically-creatable initial coherence condition; the for-
mal expression (i.e., Eq. (7) in the cited work above) depicts the JAA′ only occurring
associated with the development of the φ̂1

q ([1̃1])[t] rotating frame coherence. The
analysis suggests that the [ñ] salients of the wider [A]n cluster problems represent
null subspaces, in accord with earlier criteria, cf. to A[B]z spin system of Ref. [16].

It is stressed here that our presentation is one concerned with model conditions;
actual molecular spin systems may deviate from automorphic symmetry condition
and become AX or network-like systems, in which heteronuclear spin interactions
are then dominant terms within the Liouvillian, as in AA′A′′XX ′X ′′ system dis-
cussed in Ref. [15] where only the CP/CPT fundamental symmetries are retained.
It is important to be clear on these initial matters before drawing any conclusions
from NMR observations and to note that the only possible involvement of 3-space
symmetry considerations arises on account of P parity considerations.6

Appendix D: Summary of Notation Utilised:

SR: simply-reducible; DR: Democratic recoupling (cf graph recoupling);
GI, or G-Invariant: group invariant with specific cardinality;
R-W algebra: Racah - Wigner algebra, as in Ref. [2];
CFP: coefficient of fractional parentage; QP: quasiparticle in boson pattern mapping
sense [21];
TRI: time-reversal invariance, one of the CP/TCP fundamental particle invariances;
χ<λ>

1n (Sn): a group character in the Butler-Wybourne reduced irrep notation [40,
41];
I, Ii,(Î • Î): respectively, spin angular momenta, cluster component spin, Weyl
bracket algebra notation.
k,q,v : the Liouvillian tensor rank, z-projection and auxiliary labels;
< (2 j [.] 0.) >,<< (2k [.] 0) >>: denote unit-tensors in Hilbert and Liouville
spaces, respectively.
Finally the ṽ notation here is reserved for components of the group invariant set.

6 Unless the problem being examined is an actual rotomeric NMR (or quantum rotational tun-
nelling) example which would then draw on wreath-product group symmetry, as a mixed ‘abstract –
R3 space’ problem.
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The Macroscopic Quantum Behavior of Protons
in the KHCO3 Crystal: Theory and Experiments

François Fillaux(✉), Alain Cousson, and Matthias J. Gutmann

Abstract For hydrogen bonded crystals exhibiting proton transfer along hydrogen
bonds, namely O1−H · · ·O2 ←→ O1 · · ·H−O2, there is a dichotomy of interpre-
tation consisting in that while the crystal lattice is a quantum object with discrete
vibrational states, protons are represented by a statistical distribution of classical
particles with definite positions and momenta at any time. We propose an alter-
native theoretical framework for decoherence-free macroscopic proton states. The
translational invariance of the crystal, the adiabatic separation of proton dynamics
from that of heavy atoms, the nonlocal nature of proton states, and quantum interfer-
ences, are opposed to statistical distributions and semiclassical dynamics. We review
neutron scattering studies of the crystal of potassium hydrogen carbonate (KHCO3)
supporting the existence of macroscopic quantum correlations, from cryogenic to
room temperatures. In addition, quantum fluctuations calculated for superposition
states in thermal equilibrium are consistent with measurements of the correlation
time. There is no temperature induced transition from the quantum to the classical
regime. The crystal can be therefore represented by a state vector and the dichotomy
of interpretation must be abandoned.
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1 Introduction

The linear formalism of quantum mechanics extrapolated from the level of electrons
and atoms to that of everyday life leads to conclusions totally alien to commonsense,
such as Schrödinger’s Cat in a superposition of “alive-dead” states and nonlocal
observables [12]. Such conflicts lead to a dichotomy of interpretation consisting
in that, while at the microscopic level a quantum superposition indicates a lack of
definiteness of outcome, at the macroscopic level a similar superposition can be
interpreted as simply a measure of the probability of one outcome or the other, one
of which is definitely realized for each measurement of the ensemble [6, 30–34].
For open systems, this can be legitimated by decoherence [50] stipulating that an
initial superposition state should lose its ability to exhibit quantum interferences via
interaction with the environment. However, since the quantum theory does not pre-
dict any definite dividing line between quantal and classical regimes, macroscopic
quantum behavior is possible for systems decoupled from, or very weakly coupled
to, the surroundings [7]. In principle, there is no upper limit in size, complexity, and
temperature, beyond which such systems should be doomed to classicality.

For example, it is a matter of fact that defect-free crystals are macroscopic
quantum systems with discrete phonon states at any temperature below melting or
decomposition. This is an unavoidable consequence of the translational invariance
of the lattice. However, the dichotomy of interpretation arises for the so-called “pro-
ton disorder” in crystals containing O–H· · ·O hydrogen bonds. The coexistence of
two configurations at thermal equilibrium, say O1−H · · ·O2 and O1 · · ·H−O2, has
been thoroughly investigated in many systems [40]. Although the light mass of pro-
tons suggests that dynamics should be quantum in nature, semiclassical approaches
are widely used to rationalize correlation times measured with solid-state NMR and
quasi-elastic neutron scattering (QENS). Semiclassical protons are thought of as
dimensionless particles, with definite positions and momenta, moving in a double-
wells coupled to an incoherent thermal bath. These protons undergo uncorrelated
jumps over the barrier and “incoherent tunneling” through the barrier. In fact, these
models describe a liquid-like surroundings, at variance with the spatial periodicity
of the crystal, and strong interaction with the thermal bath is supposed to lead to
fast decoherence. By contrast, vibrational spectra provide unquestionable evidences
that the translational invariance and the quantum nature of lattice dynamics are not
destroyed by proton transfer. Our purpose is therefore to elaborate a purely quantum
rationale avoiding any mixture of quantum and classical regimes.

We shall concentrate on the crystal of potassium hydrogen carbonate (KHCO3)
composed of centrosymmetric dimers of hydrogen bonded carbonate ions (HCO−3 )2

separated by K+ entities. At elevated temperatures, the coexistence of two configu-
rations for dimers is commonly conceived of as a statistical distribution [5, 11, 45,
46]. By contrast, systematic neutron scattering experiments measuring a large range
of the reciprocal space have revealed the macroscopic quantum behavior of protons,
from cryogenic to room temperatures, and the theory suggests that this behavior is
intrinsic to the crystal state [15,18,19,24]. The present contribution is a preliminary
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attempt to elaborate a consistent presentation of experimental and theoretical works
currently in progress.

In Sect. 2 we present the crystal structure and the thermally activated interconver-
sion of dimers. We emphasize why this crystal is unique to observing macroscopic
quantum effects. In Sect. 3, we show that the adiabatic separation of proton dynam-
ics leads to decoherence-free states. Then, we introduce the theoretical framework
for macroscopic proton states in Sect. 4 and the double-well for protons in Sect. 5. In
Sect. 6, the calculated scattering cross-section allows us to interpret neutron scatter-
ing experiments in terms of quantum correlations. In Sect. 7, quantum beats arising
from the superposition of macroscopic proton states in thermal equilibrium are
compared with the correlation time determined with QENS. In the conclusion, we
emphasize that the crystal is a macroscopic quantum object that can be represented
by a state vector.

2 The Crystal Structure of KHCO3

The crystal at 14 K is monoclinic, space group P21/a (C5
2h), with four equivalent

KHCO3 entities per unit cell (Fig. 1). Centrosymmetric dimers (HCO−3 )2 linked by
moderately strong OH· · ·O hydrogen bonds, with lengths RO···O ≈ 2.58 Å, are well

Fig. 1 Schematic view of the crystalline structure of KHCO3 at 14 K. Dashed lines through protons
are guides for the eyes. a = 15.06(2) Å, b = 5.570(15) Å, c = 3.650(8) Å, β = 103.97(15)◦ . The
ellipsoids represent 50% of the probability density for nuclei
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Fig. 2 Probability densities for protons in the KHCO3 crystal at various temperatures, determined
with single-crystal neutron diffraction. The ellipsoids represent 50% of the probability density for
nuclei

separated by K+ ions. All dimers lie practically in (103) planes, hydrogen bonds are
virtually parallel to each other, and all protons are crystallographically equivalent
(indistinguishable). This crystal is unique to probing proton dynamics along direc-
tions x, y, z, parallel to the stretching (νOH), the in-plane bending (δOH), and the
out-of-plane bending (γOH) vibrational modes, respectively.

From 14 K to 300 K, there is no structural phase transition. The increase of
the unit cell dimensions and of the hydrogen bond length are marginal, but the
population of proton sites changes significantly (Fig. 2). Below ≈150 K, all dimers
are in a unique configuration, say L. At elevated temperatures, protons are progres-
sively transferred along the hydrogen bonds to the less favored sites (configuration
R) at ≈0.6 Å from the main position. The center of symmetry is preserved and all
proton sites remain indistinguishable. There is a general agreement that the pop-
ulation of the less favored site (or interconversion degree ρ) is determined by an
asymmetric double-well potential along the hydrogen bonds [5, 11, 13, 22], but an
in-depth examination of proton dynamics is necessary to distinguishing statistical
disorder or quantum delocalization.

3 The Adiabatic Separation

Within the framework of the Born-Oppenheimer approximation, the vibrational
Hamiltonian can be partitioned as

Hv = HH +Hat +CHat, (1)

where HH and Hat represent the sublattices of protons (H+) and heavy atoms,
respectively, while CHat couples the subsystems. For OH· · ·O hydrogen bonds, cou-
pling terms between OH and O· · ·O degrees of freedom are rather large [38, 40],
and beyond the framework of the perturbation theory. Two approaches, either
semiclassical or quantum, are commonly envisaged.
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In the semiclassical view, protons are thought of as dimensionless particles, with
definite positions and momenta, moving across a potential hypersurface [3,4,23,42,
44]. Complex trajectories involving heavy atoms lead to mass renormalization, and
to incoherent phonon-assisted tunnelling [5, 11, 41]. This approach is quite natural
when the Born-Oppenheimer surface is calculated from first principles, but quantum
effects can be severely underestimated.

Alternatively, if the classical concept of “trajectory”, totally alien to quantum
mechanics, is abandoned, adiabatic separation of the two subsystems, namely HH

and Hat, may lead to tractable models [18,21,23,37,40,47]. Then, light protons in a
definite eigen state should remain in the same state in the course of time, while heavy
atoms oscillate slowly, in an adiabatic hyperpotential depending on the proton state,
through the coupling term. This separation is relevant for KHCO3 because adiabatic
potentials for different protons states do not intersect each other. Then, protons are
bare fermions and quantum correlations should occur [18].

In fact, the separation is rigorously exact in the ground state, since protons should
remain in this state for ever, if there is no external perturbation. Furthermore, for
asymmetric double-wells, with wave functions largely localized in each well (see
below Sect. 5), the adiabatic separation should also hold for the lowest state of the
upper minimum and long-lived superposition states should interfere.

4 Macroscopic Proton States

Consider a crystal composed of very large numbers Na, Nb, Nc (N = NaNbNc)
of unit cells labelled j,k, l, along crystal axes (a), (b), (c), respectively. The two
dimers per unit cell are indexed as j,k, l and j′,k, l, respectively, with j = j′. For
centrosymmetric dimers, there is no permanent dipolar interaction, so that inter-
dimer coupling terms and phonon dispersion are negligible [22, 25, 26]. The eigen
states of the sublattice of protons can be therefore represented in a rather simple
way with the basis sets of eigen states for isolated dimers.

A H1–H2 dimer is modelled with coupled centrosymmetric collinear oscillators
in three dimensions, along coordinates α1jkl and α2jkl (α = x,y,z), with respect to
the center at α0jkl. The mass-conserving normal coordinates independent of j,k, l,
and their conjugated momenta,

αs =
1√
2

(α1−α2 + 2α0), Psα =
1√
2

(P1α−P2α),

αa =
1√
2

(α1 + α2), Paα =
1√
2

(P1α + P2α),
(2)

lead to uncoupled oscillators at frequencies h̄ωsα and h̄ωaα, respectively, each
with m = 1 amu. The difference (h̄ωsα − h̄ωaα) depends on the coupling term
(say λα). The wave functions, Ψ a

njkl(αa), Ψ s
n′jkl(αs −

√
2α0), cannot be factored

into wave functions for individual particles, so there is no local information avail-
able for these entangled oscillators. Consequently, the degenerate ground state of
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indistinguishable fermions must be antisymmetrized. For this purpose, the wave
function is rewritten as a linear combination of those for permuted oscillators as

Θ0jkl± =
1√
2

∏
α

Ψ a
0jkl(αa)

[
Ψ s

0jkl(αs−
√

2α0)±Ψ s
0jkl(αs +

√
2α0)

]
, (3)

and the antisymmetrized state vectors as:

|0 jkl+〉⊗ |S〉 =
∣∣Θ0jkl+〉⊗ 1√

2
[| ↑1↓2〉− | ↓1↑2〉] ;

|0 jkl−〉⊗ |T 〉 = |Θ0jkl−〉⊗ 1√
3

[
| ↑1↑2〉+ | ↓1↓2〉+ 1√

2
[| ↑1↓2〉+ | ↓1↑2〉]

]
.

(4)

The oscillators are now entangled in position, momentum, and spin. In contrast to
magnetic systems [9], there is no level splitting, so the symmetry-related entan-
glement is energy-free. It is also independent of λα . Furthermore, contrariwise to
Keen and Lovesey [29], or Sugimoto et al. [43], we argue, as an experimental fact,
that there is no significant exchange integral for protons separated by ≈2.2 Å [17].
Neutron diffraction and spectroscopy show that protons in KHCO3 are neither
delocalized nor itinerant particles and there is no sizable energy band structure.

In quantum mechanics, normal coordinates (2) define nonlocal pseudoprotons
(m = 1 amu), say Psjkl and Pajkl, with an internal degree of freedom corresponding
to symmetric or antisymmetric displacements of two “half-protons”, respectively.
Each dimer site is a superposition of two such half-protons. Obviously, pseudo-
protons are totally alien to the intuitive conception of particles, based on classical
mechanics, but they are the actual observables, whereas individual particles are not.

Consider now the sublattice of protons. The spatial periodicity leads to collective
dynamics and nonlocal observables in three dimensions. With the vibrational wave
function for the unit cell j, k, l, namely Ξ0jklτ = Θ0jklτ±Θ0j′klτ, where τ = “+” or
“−”, usual phonon waves can be written as

Ξ0τ(k) =
1√
N

Nc

∑
l=1

Nb

∑
k=1

Na

∑
j=1

Ξ0jklτ exp(ik ·L), (5)

where k is the wave vector and L = ja + kb + lc, with the unit cell vectors a,
b, c. This equation represents collective dynamics of H–H dimers thought of as
composed bosons. This would be correct if the crystal was composed of indistin-
guishable dimer entities (KHCO3)2. However, neutron diffraction shows that the
crystal structure is composed of KHCO3 entities related to each other through the
appropriate symmetry operations. The probability density of each atom is equally
distributed over all equivalent sites and, conversely, the probability density at each
site includes contributions from all indistinguishable atoms of the same kind. Con-
sequently, the sublattice of protons must be thought of as a sublattice of nonlocal
indistinguishable fermions and antisymmetrization of the plane waves (5) leads to

k ·L≡ 0 modulo 2π . (6)
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Consequently, there is no phonon (no elastic distortion) in the ground state and
this symmetry-related “super-rigidity” [18] is totally independent of proton–proton
interaction. Then, the lattice state vectors in three dimensions can be written as:

|Ξ0+(k = 0)〉⊗ |S〉;
|Ξ0−(k = 0)〉⊗ |T 〉. (7)

Each macroscopic state of the sublattice represents a nonlocal pseudoparticle with a
mass m = 1 amu, namely a pseudoproton, Pa or Ps, with a definite spin-symmetry
and an occupation number of (4N )−1 per site. There is no local information
available for these entangled states and the wave functions Ξ0τ(k = 0) represent
collective oscillations of the super-rigid lattice as a whole with respect to the center
of mass of the crystal. Finally, the ground state of the sublattice is a superposition
of the pseudoproton states as:

√
N |Ξ0+(k = 0)〉⊗ |S〉;√
N |Ξ0−(k = 0)〉⊗ |T 〉. (8)

This ground state is intrinsically steady against decoherence. Irradiation by plane
waves (photons or neutrons) may single out some excited pseudoprotons. Entan-
glement in position and momentum is preserved, while the spin-symmetry and
super-rigidity are destroyed. However, the spin-symmetry is reset automatically
after decay to the ground state, presumably on the time-scale of proton dynam-
ics. Consequently, disentanglement reaches a steady regime such that the amount of
transitory disentangled states is determined by the ratio of the density-of-states for
the surrounding atmosphere and external radiations, on the one hand, and for the
crystal, on the other. This ratio is so small that disentangled states are too few to be
observed, but they allow the super-rigid sublattice to be at thermal equilibrium with
the surroundings, despite the lack of internal dynamics. The main source of dis-
entanglement is actually the thermal population of excited proton states. However,
even at room temperature, the thermal population of the first excited state (<1% for
γOH ≈1000 cm−1) is of little impact to effective measurements.

For the sublattice of bosons in the isomorph crystal of KDCO3, (3) and (6) are
not relevant. There is neither spin-symmetry nor super-rigidity. Dynamics are rep-
resented with normal coordinates (2) and phonons (5). Needless to say, the H and
D atoms have the same number of 12 degrees of freedom per unit cell, but the sym-
metrization postulate shrinks the size of the allowed Hilbert space from ∼12N for
bosons to ∼12N for fermions.

5 Proton Dynamics

The interconversion degree at thermal equilibrium (Fig. 2) is determined by the
potential function for protons. On the one hand, the bending modes do not play any
significant role, since they show rather modest anharmonicity and the population
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Fig. 3 Potential function and wave functions for the OH stretching mode along the hydrogen bond
in the KHCO3 crystal. V (x) = 374x + 0.4389× 106 + 5516 exp(−30.8x2). V and x are in cm−1

and Å units, respectively [13, 22]. The oscillator mass is 1 amu

of excited states is negligible. On the other hand, the double-wells for the OH
stretching (Fig. 3) is known from experiments. The distance between minima (2x0≈
0.6 Å) is given by the crystal structure. The upper states at hν02 and hν03 were deter-
mined from infrared and Raman band profiles [13,14], and the ground state splitting
(hν01) was observed with incoherent inelastic neutron scattering (IINS) [22, 26].
The potential obtained through best fitting exercises is over determined and largely
model independent. In addition, the oscillator mass of 1 amu is not a free parameter.
It is determined by 2x0 for a given set of energy levels.

For the |0〉 and |1〉 states, the potential asymmetry leads to substantial localization
of the wave functions in the lower and upper wells, respectively. However, tunneling
is possible through the tiny delocalized fraction (ε ≈ 0.05) visible in Fig. 3.

This potential has been a puzzle ever since it was determined because the upper
minimum was naively thought of as corresponding to the transfer of a proton.
However, this is unlikely, for this would lead to unrealistic dimers composed of
di-protonated (H2CO3) and non-protonated (CO2−

3 ) entities [20]. Such entities are
ruled out by the centrosymmetric character of proton dynamics established by the
symmetry-related selection-rules observed in the infrared and Raman [36]. It is now
clear that, if pseudoprotons are the observables, this nonlocal potential accounts
for pseudoproton dynamics along xa or xs. The |0〉 ←→ |1〉 transition corresponds
to the through-barrier transfer (tunneling) of a pseudoproton as a rigid entity, with
no energy transfer to the internal degree of freedom. The IINS bandwidth, very
close to the spectrometer resolution [22], shows that this transition is virtually
dispersion-free and there is no visible splitting suggesting any difference for the
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transfer of Pa or Ps [22,26]. On the other hand, the upper states |2〉 and |3〉 corre-
spond to excitations of internal stretching coordinates, νa (infrared) or νs (Raman).
They are slightly different, but this is unimportant for interconversion since thermal
populations are strictly negligible for these states.

The interconversion dynamics involving Pa and Ps can be rationalized with the
potential surface along coordinates xa and x′s = xs±

√
2x0:

V (xa,x
′
s) = V (xa)+V(x′s). (9)

The energy level scheme comprises three states at 0, hν01 (with twofold degen-
eracy) and 2hν01. The non-symmetrized local wave functions (Fig. 4) are simple
product of the local wave functions in one dimension (Fig. 3). Proton configurations

Fig. 4 Schematic view of the tunneling wave functions. For the sake of clarity, the weak
component of the wave function in one dimension is multiplied by a factor of 2
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Fig. 5 Schematic view of proton configurations for the tunnelling states. In the ground state LL
and in the upper state RR at 2hν01, protons are fully entangled. In the intermediate state LR (or
RL) at hν01 all proton sites are equally occupied. The spin symmetry and the super-rigidity are
destroyed

for the three states are tentatively sketched in Fig. 5. The ground state corre-
sponds to the structure observed at low temperature, with both Pa and Ps in the
L configuration. The antisymmetrized macroscopic state analogous to (7), namely
|0+〉|S〉|0−〉|T〉, can be obtained via (3) to (6). Similarly, the upper state vector
at 2hν01 with both pseudoprotons in the R configuration is |1+〉|S〉|1−〉|T〉. In the
intermediate state at hν01, only one pseudoproton (either Pa or Ps) is transferred
to the R configuration, so the spin-symmetry and the super-rigidity are destroyed.
Then, plane waves (5) lead to state vectors |1+,0−,k10〉 and |0+,1−,k01〉. Note
that the |0〉←→ |1〉 transition is effectively observed with IINS, thanks to energy and
momentum transfer, whereas the |0〉 ←→ |2〉 transition cannot be probed directly,
according to the quantum theory of measurements.

The proton transfer degree calculated supposing the three levels at thermal
equilibrium is

ρ(T ) = [p01(T )+ 2p2
01(T )][1 + p01(T )+ p01(T )2]−1, (10)

where p01(T ) = exp(−hν01/kT ) is the probability for the transfer of a pseudopro-
ton. The dashed line in Fig. 6 clearly shows that this equation is at variance with
observations.

In fact, owing to the adiabatic separation of proton dynamics, energy exchange
with the surroundings occurs exclusively via photons, with the momentum conser-
vation rule k10 + k01 ≡ 0. Consequently, re-entanglement occurs spontaneously in
the intermediate state as

|1+,0−,k10〉+ |0+,1−,k01〉= 2−1/2[|0+〉|S〉|0−〉|T〉+ |1+〉|S〉|1−〉|T〉] (11)
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Fig. 6 Temperature effect on
the proton transfer degree in
the KHCO3 crystal. Stars:
experimental according to
[18]. Solid line: Eq. (12) for
two-levels. Dashed line: Eq.
(10) for three-levels

and the transfer degree

ρ(T ) = 2p2
01(T )[1 + p2

01(T )]−1, (12)

is in reasonably good agreement with measurements (see the solid line in Fig. 6).
The energy difference of 2hν01 between RR and LL configurations is therefore con-
firmed and Fig. 6 is an indirect evidence that the degenerate intermediate state
observed with IINS is not thermodynamically stable, thanks to the purely quantum
re-entanglement mechanism (11).

However, the interpretation of Bragg diffraction is ambiguous because the LL
and RR configurations of the proton sublattice are crystallographically equivalent,
as they are related through a translation vector (a/2, b/2, 0) (see Fig. 5). The recip-
rocal lattices are identical and it is unknown whether neutrons were diffracted by
either sublattice, with probability 1− ρ and ρ , respectively, or by a superposition
state, (1−ρ)1/2|0+〉|S〉|0−〉|T〉+ ρ1/2|1+〉|S〉|1−〉|T〉. The former case is a mix-
ture of LL and RR configurations analogous to disorder under consideration in many
crystallographic [27, 45, 46], solid-state NMR [5, 39] and QENS [11] works. Alter-
natively, a superposition should give rise to quantum interferences corresponding to
coherent fluctuations of the probability density at proton sites.

6 Probing Quantum Entanglement with Neutrons

Neutrons (spin 1/2) are unique to observing the spin-symmetry of macroscopic
states (7). However, quantum entanglement is extremely fragile, because it is
not stabilized by any energy. Consequently, only “noninvasive” experiments, free
of measurement-induced decoherence, are appropriate [34]. For neutron scatter-
ing, this means (i) no energy transfer (ii) no spin-flip and (iii) particular val-
ues of the neutron momentum transfer vector Q preserving the super-rigidity.
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(By definition, Q = ki−k f , where ki and k f are the initial and final wave vectors,
respectively.)

The dotted lines in Fig. 1 enhance the network of double-lines of proton sites in
dimer planes. We present below neutron scattering experiments for (i) double-lines
of protons, (ii) arrays of double-lines in two dimensions, and (iii) the sublattice
in three dimensions. For the sake of simplicity, it should be born in mind that
elastic scattering events are identical for LL and RR configurations and, therefore,
independent of the interconversion degree.

6.1 Double-Lines of Entangled Protons

Consider an incoherent elastic neutron scattering (IENS) experiment conducted
with: (i) the best resolution in energy, in order to reject inelastic scattering events,
(ii) a modest resolution in Q, so Bragg peaks merge into a continuum and long-range
correlations are overlooked. For momentum transfer Qα along α , the scattering
function for an entangled pair (4) can be written as:

Sτiτf (Qα,ωα) = ∑
τf

∑
τi

|〈0 jklτi|expiQα
(
α2jkl−α0jkl

)
+ τiτf expiQα

(
α2jkl + α0jkl

) |0 jklτf〉
×〈0 jklτf|expiQα

(
α1jkl−α0jkl

)
+ τfτi expiQα

(
α1jkl + α0jkl

) |0 jklτi〉|2
×exp(−2WLα)δ (ωα).

(13)

Each bracket represents a scattering event by a pseudoproton located at both sites
(±α0jkl). The product of two brackets means that each neutron is scattered simulta-
neously by the two pseudoprotons superposed at the same sites, either in-phase,
|±〉 ←→ |±〉 (τfτi = +1), or anti-phase, |±〉 ←→ |∓〉 (τfτi = −1). The spin-
symmetry is probed along the neutron-spin direction with 100% probability and
there is no spin-flip because the initial and final states are |0 jklτi〉 and |0 jklτf〉,
respectively, for one scattering event and vice-versa for the other one. Thanks to adi-
abatic separation, the lattice Debye-Waller factor exp(−2WLα) can be factored. The
energy transfer is h̄ωα and δ (ωα) accounts for energy conservation. In the harmonic
approximation, the scattering function is [15, 24]

S±± (Qα,ωα) =

cos4 (Qαα0)
[

exp− Q2
αu2

0α√
1 + 4λα

+ exp−Q2
αu2

0α

]
exp(−2WLα)δ (ωα),

S±∓ (Qα,ωα) =

sin4 (Qαα0)exp

[
−Q2

α

(
u2

0α
2
√

1 + 4λα
+

u2
0α
2

)]
exp(−2WLα)δ (ωα).

(14)

Here, u2
0α = h̄/(2mω0α) is the mean square amplitude for uncoupled harmonic oscil-

lators in the ground state. The intensity is proportional to the incoherent nuclear
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Fig. 7 (a): Comparison of the theoretical profiles S(Q,0) for a non-entangled pair (dot-dashed),
and for an entangled pair of fermions, according to (11) (solid line). The doted and dashed curves
represent interference fringes for in-phase and out-of-phase scattering. (b): S(Qy,0) measured at
20 K for a single-crystal of KHCO3 (solid curve with error bars). Comparison with the best fit
(dashed line) obtained with (14) convoluted with a triangular resolution function. The dashed line
with error bars is the difference spectrum. *: Triangular functions due to other scattering events

cross-section for protons, σHi ≈ 80.26 b (1 barn = 10−24 cm2), and the gaussian-like
profiles for uncorrelated scatterers are modulated by cos4(Qα α0) and sin4(Qα α0)
(Fig. 7a).

Such interference fringes were effectively observed with the MARI spectrom-
eter [1] at the ISIS pulsed-neutron source (Fig. 7b) [24]. Best fit exercises yield
α0-values in reasonable accordance with the crystal structure and the estimated
oscillator mass is virtually equal to 1 amu. These experiments are positive evidences
of pseudoproton states with spin-symmetry (4).

In fact, neutron plane waves are scattered coherently by double-lines of entangled
pairs perpendicular to Qα, which are reminiscent of Young’s double-slits. However,
the interference fringes (14) are clearly different from those anticipated for dis-
tinguishable (classical) double-slits, which should be proportional to cos2(Qαα0)
[10, 48, 49]. Equation (14) is also at variance with the scattering function for pro-
tons delocalized in a symmetric double-wells. In this case, there is no definite
spin-symmetry for the tunneling states |0+〉 (ground state) and |0−〉 (at h̄ωt). The
scattering functions for elastic scattering |0±〉 ←→ |0±〉 and inelastic scattering
|0±〉←→ |0∓〉 are

S±± (Qα,ωα) = cos2 (Qαα0)exp
(−Q2

αu2
0α−2WLα

)
δ (ωα),

S±∓ (Qα,ωα) = sin2 (Qαα0)exp
(−Q2

αu2
0α−2WLα

)
δ (ωα−ωt).

(15)

Then, interferences evidence that a single proton is located in two wells. They
are visible if the instrument can effectively resolve the tunnel splitting. Other-
wise, complementary fringes would merge into the gaussian profile anticipated for
a single-well.

Clearly, scattering by a superposition of entangled double-lines with spin cor-
relations cannot be confused with other double-slits experiments. The fringes are
evidences of nonlocal pseudoprotons and there is no means whatever to probe the
local particle behavior.
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Since (13) and (14) hold in the same way for LL and RR configurations, inter-
ferences are independent of the interconversion degree. However, at elevated tem-
peratures, the intensity at large Qα-values is depressed by the lattice Debye-Waller
factor and fringes are less visible.

Needless to say, interferences are neither expected, nor observed, for KDCO3

[24].

6.2 Diffraction

A necessary condition for noninvasive neutron diffraction is that Qx, Qy, Qz, should
match a node of the reciprocal sublattice of protons, so neutrons probe super-rigid
states without any induced distortion. The only information conveyed by such events
is the perfect periodicity of the sublattice, so the Debye-Waller factor is equal to
unity at any temperature. In addition, thanks to the spin-symmetry, the scattered
intensity is proportional to the total cross-section σH ≈ 82.0 b [18, 35]. Otherwise,
the spin-symmetry is destroyed, so the intensity scattered by protons is proportional
to the coherent cross-section σHc ≈ 1.76 b and to the Debye-Waller factor for non-
rigid lattices. The enhancement factor σH/σHc ≈ 45 is quite favorable to observing
quantum correlations. Furthermore, the intensity scattered by the sublattice of heavy
atoms, proportional to σcKCO3 ≈ 27.7 b, is depressed by the Debye-Waller factor
exp−2WKCO3(Q). Therefore, the contribution of heavy atoms at large Q-values is
rather weak, compared to that of the entangled sublattice, especially at elevated
temperatures.

The dashed lines in Fig. 1 show that proton sites are aligned along x and y, but
not along z. Consequently, the noninvasive condition can be realized for Qx and
Qy exclusively, whereas Qz never coincides with a node of the reciprocal lattice of
protons. Then, the diffraction pattern depends on whether we consider incoherent or
coherent scattering along Qz.

6.2.1 Super-Rigid Arrays in Two Dimensions

Consider diffraction by super-rigid arrays in (103) planes and incoherent scattering
along Qz. In the unit cell, there are two indistinguishable double-lines parallel to
y, so the periodicity of the grating-like structure is Dx/2, with Dx ≈ a/cos42◦ ≈
20.39 Å. On the other hand, the spatial periodicity of double-lines parallel to x is
Dy = b. The differential cross-section for a superposition of pseudoproton states (7)
can be then written as

dσ2

dΩ
∝

Nc

∑
l=1

∑
τi

∑
τf

∣∣∣∣∣N′a
∑
j=1

Nb

∑
k=1

{[
expiQy

(
kDy− y0

)
+ τiτf expiQy

(
kDy + y0

)]
× [expiQx ( jDx/2− x0)+ τiτf expiQx ( jDx/2 + x0)]}2

∣∣∣∣2 exp−2Wz(Qz),

(16)
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with N′a = 2Na. Neutrons are scattered either in-phase (τfτi = +1) or anti-phase
(τfτi =−1) by orthogonal pairs of lines separated by 2x0 ≈ 0.6 Å and 2y0 ≈ 2.2 Å,
respectively. The phase matching condition, namely x0 (y0) commensurable with
Dx/2 (Dy), is intrinsic to the crystal structure. {· · ·}2 accounts for simultaneous
scattering by the superposed pseudoproton states, without neutron-spin flip. The
compound Debye-Waller factor exp−2Wz(Qz), including contributions from all
atoms, corresponds to incoherent scattering along Qz. The permutation x0 ←→
−x0,y0 ←→−y0 gives the same equation for RR and LL configurations.

The diffraction pattern is composed of rods of diffuse scattering parallel to Qz,
cigar-like shaped by the Debye-Waller factor, at Qx, Qy-values corresponding to
divergences of (16). Such divergences occur at Qy = nyπ/y0 ≈ ny × 2.86 Å−1

(Table 1), since QyDy/π ≈ 5ny is integer. Contrariwise, there is no divergence for
anti-phase scattering at Qy = ±(ny + 1/2)π/y0, because QyDy/π ≈ 5(ny + 1/2) is
not integer. For ny even, QyDy/π is also even, τi = τf, and ridges are anticipated at
Qx = nxπ/x0 ≈ nx× 10 Å−1, since QxDx/π ≈ 68nx is even. Alternatively, for ny

odd, QyDy/π is also odd, τi �= τf, and ridges are anticipated at Qx = (nx +1/2)π/x0,
since QxDx/π ≈ 68(nx + 1/2) is even.

The cigar-like shaped rods were effectively observed with the SXD [2,28] instru-
ment at the ISIS pulsed neutron source (Figs. 8–10). For k = 0, they appear at
Qx = 0 and ±(10.00 ± 0.25) Å−1, in accordance with 2x0 ≈ 0.6 Å. For k = 1,
they are barely visible. For k = 2 or 3, we observe ridges at Qx = ±(5 ± 0.2) and
±(15± 0.2) Å−1, still along Qz. These features are best visible in Fig. 9 for k = 2.6,
in accordance with Table 1. There is no visible ridge at k = 4. Then, from k = 5 –
9, we observe in Fig. 8 the same sequence as for k = 0 – 4, and rods at k = 7.7 in
Fig. 9.

Similar diffuse scattering was observed at low temperature in the k = 0 plane,
at 14 K [19] and 30 K [18] (Fig. 10). As anticipated, the rods are unaffected by
the interconversion degree. However, at low temperatures, they are partially hidden
by the anisotropic diffuse intensity, centered at Q = 0, due to elastic and inelastic
incoherent scattering by protons. This continuum precludes observation of the ridges

Table 1 Orders ny, nx, and positions Qy, Qx, of rods of intensity arising from the entangled
array of orthogonal doubles lines of protons in two dimensions. Obs. Qx: positions in Å−1 of the
observed rods of intensity along Qz in Figs. 8 and 9. QyDy/π is rounded to integers

ny Qy (Å−1) QyDy/π τiτf k = Qy/b∗ Qx Obs. Qx (Å−1)

0 0
0

+1 0 nxπ/x0 0,±10

1 2.86
5

−1 2.57 (nx +1/2)π/x0 ±5,±15

2 5.71 10 +1 5.14 nxπ/x0 0,±10
3 8.57 15 −1 7.71 (nx +1/2)π/x0 ±5,±15



334 F. Fillaux et al.

Fig. 8 Cuts of the diffraction pattern of KHCO3 at 300 K in various (a∗, c∗) planes. The arrows
emphasize ridges of intensity parallel to Qz and perpendicular to dimer planes (dash lines along Qx)

at ±5 Å−1 for 2≤ k≤ 3. Quite paradoxically, quantum correlations are best visible
at elevated temperatures.

As anticipated from Sect. 4, the same experiments performed with a crystal
of KDCO3 do not evidence any cigar-like shaped ridge of enhanced intensity, in
addition to regular Bragg peaks, for the sublattice of bosons [19].
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Fig. 9 Diffuse scattering of KHCO3 at 300 K in between (a∗, c∗) reciprocal planes. The arrows
emphasize ridges of intensity parallel to Qz and perpendicular to dimer planes (dashed lines
along Qx)

Fig. 10 Diffraction pattern of
KHCO3 at 30 K in the (a∗, c∗)
reciprocal plane at k = 0. The
arrows emphasize ridges of
intensity parallel to Qz and
perpendicular to dimer planes
(dash lines along Qx)

6.2.2 Super-Rigid Arrays in Three Dimensions

From (16), the differential cross-section for the LL or RR pseudoproton states is
written as

dσ3

dΩ
∝ ∑

τi

∑
τf

∣∣∣∣∣N′a
∑

j=1

Nb

∑
k=1

Nc

∑
l=1

{[
expiQy

(
kDy− y0

)
+ τiτf expiQy

(
kDy + y0

)]
× [expiQx ( jDx/2− x0)+ τiτf expiQx ( jDx/2 + x0)]expiQzlDz}2

∣∣∣∣2
(17)
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This equation describes no spin-flip scattering events that do not destroy the spin-
symmetry. Divergences occur along the previous rods of intensity at Qz =
±nz2π/Dz, with Dz≈ c×cos28◦ ≈ 3.28 Å and 2π/Dz≈ 1.92 Å−1. These enhanced
peaks are visible in Figs. 8–10, even at rather large Qz-values, thanks to super-
rigidity. At elevated temperatures, they clearly emerge from the rods of diffuse
scattering (16) depressed by the Debye-Waller factor. These enhanced peaks were
not observed for the deuterated crystal [19].

Experiments presented above, in this present section, are clearly consistent
with pseudoprotons forming decoherence-free macroscopic single-particle states
with spin-symmetry. The underlying theoretical framework presented in Sect. 4 is
based on fundamental laws of quantum mechanics. There is no ad hoc hypothesis
or parameter. The adiabatic separation, clearly validated by observations, can be
regarded as an intrinsic property of hydrogen bonds in this crystal.

7 Quantum Interferences

Superposition of decoherence-free proton states must lead to quantum interferences,
or quantum beats. The non-antisymmetrized wave functions for the states |0〉 and |1〉
(Fig. 3) can be written as [20]:

Ψ0jkl = cosφ ψ0(x− xm) +sinφ ψ0(x + xm);
Ψ1jkl =− sinφ ψ0(x− xm) +cosφ ψ0(x + xm); (18)

where x stands for xa or x′s and ψ0(x± xm) are harmonic eigen functions for
the second-order expansion of the potential around the minima at ±xm; tan2φ =
ν0t/(ν01 − ν0t), where hν0t ≈ 18 cm−1 is the tunnel splitting for the symmetric
potential. Then, cosφ ≈ 1 and sinφ = ε ≈ 5× 10−2. Superposition leads to har-
monic oscillations of the probability density at the beating frequency ν0b = 8εν01 ≈
4ν0t ≈ 2.5×1012, in proton per second units (H s−1) [8, 16, 20].

The LL ←→ RR fluctuation rate can be rationalized with two distinct mech-
anisms, either single-step or two-stepwise (Fig. 4). The single-step mechanism
corresponds to superposition of the states at 0 and 2hν01, corresponding to LL and
RR configurations (Fig. 5), respectively. The interconversion rate due to quantum
beats is:

ν1b = 2εν0b exp(−2hν01/kT ). (19)

For the two-stepwise process, firstly, either Pa or Ps is transferred at k = 0 to
the LR configuration (Fig. 5) with probability exp(−hν01/kT ). Secondly, this state
undergoes fast re-entanglement (11) leading to the upper state (configuration RR)
with probability exp(−2hν01/kT ). The interconversion rate is then

ν2b = 2ν0b exp(−3hν01/kT ). (20)
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These theoretical rates must be compared to QENS measurements of a KHCO3

crystal, from 200 to 400 K [11]. The scattering geometry (Q ‖ x) was selected in
order to probe proton dynamics specifically along the hydrogen bonds. The inverse
relaxation time (or attempt frequency), τ−1

0 = 2× 1012 s−1, is sufficiently close to
ν0b to suggest that (i) QENS and vibrational spectroscopy techniques probe the
same dynamics and, (ii) the two-stepwise mechanism (20) is prevailing, in accor-
dance with the larger pre-factor. In addition, the measured rate follows an Arrhenius
law with an activation energy Ea = (336± 32) cm−1 significantly different from
3hν01 ≈ 648 cm−1. In fact, (20) accounts for coherent fluctuations of two pseudo-
protons, with probability exp(−3hν01/kT ), and pre-factor 2ν0b, while QENS probes
the fluctuation rate of a pseudoproton with probability exp(−3hν01/2kT ), and pre-
factor ν0b. Hence, 3hν01/2 = 324 cm−1 accords with Ea. It transpires that the QENS
technique is an incoherent probe of coherent oscillations of the proton probability,
because neutrons are plane waves, rather than a particle-like probe of incoherent
stochastic jumps [11].

In fact, semiclassical models [5, 11, 41] are based on inappropriate premises. (i)
The potential asymmetry supposedly due to static effects of neighbouring dimers
should be temperature dependent. This is at variance with the interconversion degree
(12) and Fig. 6. (ii) Coupling to phonons is posited to be necessary to mediate the
through-barrier proton transfer at low temperatures. This is not relevant within the
framework of the adiabatic separation. (iii) A smooth transition to the Arrhenius
behaviour of classical jumps is supposed to occur at elevated temperatures. Con-
trariwise, neutron diffraction shows that there is no transition to the classical regime
(Figs. 8–10). In addition, (19) and (20) show that an Arrhenius behavior is not nec-
essarily an evidence of the semiclassical regime. Logically, these incorrect premises
lead to confusing the activation energy Ea with the potential barrier [11].

8 Conclusion

It is often argued that a complex system in continuous interaction with its envi-
ronment should be in a significantly mixed state that cannot be represented by a
state vector. In marked contrast to this widespread opinion, we have accumulated
consistent experimental evidences that the sublattice of protons can be represented
by a state vector at any temperature up to 300 K. This macroscopic object exhibits
all features of quantum mechanics: nonlocality, entanglement, superposition and
quantum interferences. There is no transition to the classical regime because the
plane waves of the thermal bath cannot destroy entanglement intrinsic to the lattice
periodicity. The spin-symmetry of proton states can be transitorily destroyed but the
decoherence degree is insignificant because the density-of-states of the surroundings
is negligible compared to that of the crystal.

The cornerstones of the theoretical framework are: (i) adiabatic separation; (ii)
the fermionic nature of protons; (iii) indistinguishability and degeneracy. There
is no ad hoc hypothesis or parameter. Entanglement is intrinsic to the crystal
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symmetry, irrespective of the strength of proton–proton interactions. Dynamics is
rationalized with pseudoprotons forming macroscopic single-particle states with
remarkable spin-symmetry and super-rigidity. These quantum correlations are effec-
tively probed with neutrons and quantum interferences arising from entangled
double-lines or long-range correlations in three dimensions emphasize that pro-
tons in the crystal field are not individual particles possessing properties on their
own right. Collective dynamics suggest that the whole crystal should be conceived
of as a matter field that is a superposition of macroscopic single-pseudoparticle
states. In addition, super-rigidity adds a new item, along with superfluidity and
superconductivity, to the list of quantum “super” properties in the condensed matter.

The interconversion degree at thermal equilibrium is consistent with the double-
well potentials for pseudoprotons determined from vibrational spectra and quantum
beats accord with QENS measurements of the fluctuation rate. The double-wells
for protons is invariant over the whole range of timescales from νOH vibrations
(∼10−15 s) to diffraction, through QENS, and at any temperature.

This review emphasizes that the dichotomy of semiclassical protons in a quan-
tum crystal lattice should be abandoned. There is every reasons to suppose that
this conclusion holds for many hydrogen bonded crystals and macroscopic quantum
behaviors open up new vistas for further investigations.
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10. Dürr, S., Nonn, T., Rempe, G.: Origin of quantum-mechanical complementarity probed by
“which-way” experiment in an atom interferometer. Nature 395, 33–37 (1998)

11. Eckold, G., Grimm, H., Stein-Arsic, M.: Proton disorder and phase transition in KHCO3.
Physica B 180–181, 336–338 (1992)

12. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality
be considered complete? Phys. Rev. 47, 777–780 (1935)



The Macroscopic Quantum Behavior of Protons 339

13. Fillaux, F.: Calculation of infrared and raman band profiles of strong hydrogen bonds. OH
stretching band and proton dynamics in crystalline potassium hydrogen carbonate. Chem.
Phys. 74, 405–412 (1983)

14. Fillaux, F.: Theoretical model for calculation of infrared and raman band profiles of strong
hydrogen bonds in ordered media. Chem. Phys. 74, 395–404 (1983)

15. Fillaux, F.: The pauli principle and the vibrational dynamics of protons in solids: A new spin-
related symmetry. Physica D 113, 172 (1998)

16. Fillaux, F.: Proton transfer in the KHCO3 and benzoic acid crystals: A quantum view. J. Mol.
Struct. 844–845 (2007)

17. Fillaux, F., Cousson, A.: Comment on “quantum correlations between protons in potassium
bicarbonate”. J. Phys.: Cond. Matter 16, 1007–1010 (2004)

18. Fillaux, F., Cousson, A., Gutmann, M.J.: Macroscopic quantum entanglement and “super-
rigidity” of protons in the KHCO3 crystal from 30 to 300 K. J. Phys.: Cond. Matter 18,
3229–3249 (2006)

19. Fillaux, F., Cousson, A., Keen, D.: Observation of the dynamical structure arising from spa-
tially extended quantum entanglement and long-lived quantum coherence in the KHCO3
crystal. Phys. Rev. B 67, 054301 and 189901(E) (2003)

20. Fillaux, F., Limage, M.H., Romain, F.: Quantum proton transfer and interconversion in the
benzoic acid crystal: vibrational spectra, mechanism and theory. Chem. Phys. 276, 181–210
(2002)

21. Fillaux, F., Romain, F., Limage, M.H., Leygue, N.: Extended tunnelling states in the benzoic
acid crystal: Infrared and raman spectra of the OH and OD stretching modes. Phys. Chem.
Chem. Phys. 8, 4327–4336 (2006)

22. Fillaux, F., Tomkinson, J., Penfold, J.: Proton dynamics in the hydrogen bond. the inelastic
neutron scattering spectrum of potassium hydrogen carbonate at 5 K. Chem. Phys. 124(3),
425–437 (1988)
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A DFT Study of Adsorption of Gallium
and Gallium Nitrides on Si(111)

Demeter Tzeli(✉), Giannoula Theodorakopoulos, and Ioannis D. Petsalakis

Abstract Adsorption of gallium (Ga, Ga+) and gallium nitrides (GaN, GaN+,
GaN2, GaN+

2 ) on a model Si(111) surface was studied by density functional theory
calculations. In total 30 structures were determined. The binding energies (corrected
for basis set superposition error) of the lowest structures were found to be 2.13
for Ga, 2.39 for Ga+, 4.23 for GaN, 6.13 for GaN+, 1.90 for GaN2, and 2.13 eV
for GaN+

2 . Low-lying bridged structures, with the adsorbate bridging the Si rest
atom and adatom were found for the diatomic and the triatomic neutral and cationic
nitrides. Moreover, for the diatomics, structures with Ga-N vertical, attached to a Si
adatom or a Si rest atom were also found. From electron charge distribution analysis
it is confirmed that the Si cluster acts as a pool of electronic charge resulting in the
adsorbed Ga and Ga+ to have similar net charges.

Keywords: DFT calculations, gallium nitrides, Si(111), adsorption

1 Introduction

There is great interest in the study of chemisorption of group III metals and their
nitrides at Si surfaces, especially in the geometric and electronic structure of the
interface [1–3], in the change of the surface associated with metal diffusion on the
surface and in the formation of metal-adsorbate atomic wires as well as the self-
assembly of perfectly ordered nanocluster arrays [4, 5]. Moreover, the growth of
GaN films on Si surfaces [6, 7] has great potential for application in optoelectronic
devices and high-power, high-temperature electronic devices [6–8]. Although there
are many experimental studies of gallium nitrides at Si(111) [4–8], as far as we
know, there have not been as many theoretical studies, and most of them are on Ga
at Si [1, 3].
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The present work is a continuation of our previous study of chemisorbed
structures of gallium (Ga, Ga+) and gallium nitrides (GaN, GaN+, GaN2, GaN+

2 )
on Si(111) using density functional theory (DFT) calculations and a Si26H22 model
of the Si(111) surface [9]. In the present work more structures are presented and the
distribution of the electron charges is analyzed confirming that the Si cluster acts as
a pool of electronic charge resulting in the adsorbed Ga and Ga+ to have similar net
charges for all three neutral or charged adsorbates.

2 Computational Approach

Chemisorbed structures of Ga, Ga+, GaN, GaN+, GaN2, and GaN+
2 , at Si (111) are

calculated at a 5-layer one-rest one-adatom (1R-1A) cluster model of Si(111) (see
Fig. 1) constructed as before [9, 10] using the dimer-adatom-stacking fault (DAS)
structure [11] and the LEED data of Tong et al. [12] for the Si(111) reconstructed
surface. Hydrogen atoms (white spheres in Fig. 1) have been added to terminate the
26-Si atom cluster (grey spheres ≡ Si) at the sides as well as below the lowest Si
level, while the adatom and rest atom are left with one dangling bond each, i.e., one
unpaired electron.

Preliminary calculations were carried out on parts of the structures of inter-
est in order to determine an adequate combination of functional and basis set.
The diatomic GaN, GaN+, SiGa, and SiN and triatomic GaNSi, GaN2 and
GaN+

2 molecules were investigated using different kinds of basis sets such as
LANL2DZ, 6-31+, 6-31(d), 6-311+G(2df), DGDZVP and functionals such as
B3LYP, UB3PW91, UPBEPBE and LSDA. The results were compared with avail-
able experimental values and existing medium or high quality calculations in the
literature. In the case of the GaSi and GaNSi molecules, where there is no theoretical
or experimental work in the literature, calculations were carried out employing the
second and fourth order perturbation theory (MP2, MP2(full), MP4) and the coupled
cluster technique CCSD(T), combined with the augmented correlation-consistent
basis aug-cc–pVTZ [9]. Calculations on the Si(111) cluster were done using the
LANL2DZ, 6-31+, 6-31(d), and DGDZVP basis sets and the B3LYP functional.

Thus, we concluded that the best and computationally tolerable (since the sys-
tems studied have about 50 atoms) combination of functional and basis set for

Fig. 1 5-layer one-rest
one-adatom (1R-1A) cluster
model of Si(111)



A DFT Study of Adsorption of Gallium and Gallium Nitrides on Si(111) 343

diatomics and triatomics and consequently for the chemisorbed gallium nitrides on
Si(111) is the B3LYP/DGDZVP. B3LYP is a DFT functional using Becke’s three
parameter gradient corrected functional [13] with the gradient corrected correlation
of Lee et al. [14]. The DGDZVP basis set is a double-zeta valence plus polarization,
i.e., [3s2p1dN/4s3p1dSi/5s4p2dGa] [15].

Employing the B3LYP/DGDZVP technique the electronic and geometric struc-
tures of chemisorbed gallium (Ga, Ga+) and gallium nitrides (GaN, GaN+,
GaN2, GaN+

2 ) on the 5-layer 1R-1A cluster (cf. Fig. 1) were investigated. Three
chemisorbed structures for each of Ga-Si(111); four for Ga+-Si(111); eight for
GaN-Si(111); six for GaN+-Si(111); two for GaN2-Si(111); and seven for GaN+

2 -
Si(111) were determined by energy optimization with respect to the coordinates of
the Si rest and Si adatom as well as those of the adsorbed species. The remaining
cluster was kept fixed in order to retain the Si(111) surface structure.

For all stable geometries, binding energy (BE) and the corrected values with
respect to the basis set superposition error (BEBSSE) [16] of each species on the
surface were calculated. All calculations were done using the Gaussian 03 program
package [17].

3 Results and Discussion

The structures which were calculated for Ga- and Ga+-Si(111) are given in Fig. 2,
for GaN- and GaN+-Si(111) in Fig. 3, and for GaN2- and GaN+

2 -Si(111) in Fig. 4.
The minima which have been determined are labeled by 2 characters followed by the
name of the adsorbed species. The first character is refers to the spin multiplicity,
and the second to the geometric structure. E.g., 2a-Ga, means that the minimum

Fig. 2 Four structures of
Ga-Si(111) and Ga+-Si(111)
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Fig. 3 Six structures of GaN-Si(111) and GaN+-Si(111)

Fig. 4 Four structures of
GaN2-Si(111) and GaN+

2 -
Si(111)

is a doublet corresponding to the a structure shown in Fig. 2 of the Ga-Si(111)
cluster. The geometry, the binding energy and the natural population analysis of the
structures determined are given in Table 1 for Ga- and Ga+-Si(111), in Table 2 for
GaN- and GaN+-Si(111), and in Tables 3 and 4 for GaN2- and GaN+

2 -Si(111).
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Table 1 Geometry (bond distance R in Å, angle φ in degrees), binding energies BE and corrected
values for BSSE BEBSSE in eV and net charges of the Ga-Si(111) and Ga+-Si(111) structures

Structures R1 R2 φ BE(BEBSSE) Si-rest Si-adat Ga

Si(111) +0.08 +0.22
2a-Ga 2.55 2.91 56 2.16(2.13) +0.06 −0.21 +0.59
2b-Ga 2.62 122 2.15(2.10) −0.57 +0.20 +0.63
2c-Ga 2.58 141 1.72(1.69) +0.06 −0.42 +0.65
3b-Ga+ 2.66 103 2.43(2.39) −0.59 +0.30 +0.67
3d-Ga+ 2.79 2.73 107 2.35(2.27) −0.33 −0.04 +0.79
3c-Ga+ 2.63 140 1.95(1.90) +0.06 −0.35 +0.83
1d-Ga+ 2.65 1.69 111 1.88(1.81) −0.27 −0.08 +0.84

Table 2 Geometry (bond distance R in Å, angle φ in degrees), binding energies BE and corrected
values for BSSE BEBSSE in eV and net charges of the GaN-Si(111) and GaN+-Si(111) structures

Structures R1 R2 R3 φ1 φ2 BE(BEBSSE) Si-rest Si-adat Ga N

Si(111) +0.08 +0.22
GaN(X3Σ−) 2.046 +0.66 −0.66
GaN(A3Π) 1.884 +0.75 −0.75
3e-GaN 2.50 1.78 1.73 133 119 4.32(4.23) +0.75 −0.16 +1.14 −1.65
3f-GaN 2.47 1.77 1.73 143 106 4.10(3.95) −0.30 +0.86 +1.27 −1.63
1e-GaN 2.48 1.78 1.74 137 117 3.98(3.89) +0.74 −0.16 +1.18 −1.64
3g-GaN 1.89 1.70 161 3.93(3.84) +0.73 +0.22 +0.77 −1.46
3h-GaN 1.85 1.63 159 3.79(3.70) +0.09 +0.96 +0.78 −1.71
1f-GaN 2.47 1.77 1.73 143 107 3.78(3.64) −0.30 +0.86 +1.27 −1.62
3i-GaN 2.40 1.78 179 1.72(1.62) −0.39 +0.18 +1.10 −0.89
3j-GaN 2.41 1.78 179 1.50(1.41) +0.09 −0.21 +0.97 −1.68
GaN+(X4Σ−) 2.740 +0.99 +0.01
GaN+(2Π) 1.872 +1.39 −0.39
4g-GaN+ 1.90 1.70 161 6.19(6.13) +0.69 +0.32 +0.84 −1.46
2f-GaN+ 2.45 1.78 1.71 138 112 6.12(6.00) −0.29 +0.89 +1.31 −1.62
2e-GaN+ 2.51 1.78 1.74 133 119 5.96(5.81) +0.73 −0.14 +1.24 −1.61
2h-GaN+ 1.95 1.66 164 5.73(5.66) +0.10 +0.84 +0.85 −1.44
4i-GaN+ metastable
4j-GaN+ metastable

3.1 Ga-Si(111) and Ga+-Si(111)

Four geometric structures, a, b, c and d (see Fig. 2), were examined with doublet
and quartet spin symmetry for the Ga-Si(111) cluster and singlet and triplet spin
symmetry for the Ga+-Si(111) cluster. The geometry, the binding energy and the
natural population analysis of only the lowest lying structures are given in Table 1.

The lowest minimum of Ga-Si(111), (2a-Ga), has the Ga atom connected to Si
adatom. Moreover, Ga is directly above a 2nd layer Si atom, adjacent to the adatom.
The BSSE corrected binding energy of adsorbed Ga is BEBSSE = 2.13 (2a-Ga),
2.10 (2b-Ga) and 1.69 (2c-Ga) eV. The natural population analysis shows that the
Si surface pulls electron charge from the Ga atom, leaving Ga with a positive partial
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charge of +0.59 to +0.65 electrons, in the different structures. In all cases the Si
atom connected to the Ga atom has a negative charge and the most negative charge,
−0.57 electrons, is found on the Si rest atom of the 2b-Ga structure.

The lowest 3b-Ga+ structure of Ga+-Si(111) has Ga+ connected to the Si rest
atom. The BSSE corrected binding energy of adsorbed Ga+ is BEBSSE = 2.39 (3b-
Ga+), 2.27 (3d-Ga+), 1.90 (3c-Ga+) and 1.81 (1d-Ga+) eV. Minima 3d-Ga+ and
1d-Ga+ have the same structure but different spin multiplicity with the triplet being
lower by 0.5 eV, see Table 1. The natural population analysis shows that the Si
surface transfers electron charge to Ga+, and as a result the adsorbed Ga+ has a
positive partial charge of +0.67 to +0.84, rather than +1. In all cases the Si atom
connected to Ga+ cation has a negative charge and the most negative charge is found
on the Si rest atom of the 3b-Ga+ structure, −0.59 as in the case of the 2b-Ga of
the Ga-Si(111). Hence, the partial charges on Ga and Ga+ are very similar, with the
surface withdrawing from Ga or providing to Ga+ electron charge, while the Si rest
and Si adatoms have negative charges−0.21 to −0.59.

3.2 GaN-Si(111) and GaN+-Si(111)

Six geometric structures, e, f, g, h, i, and j (see Fig. 3), were calculated with singlet
and triplet spin symmetry for GaN-Si(111) and doublet and quartet spin symmetry
for GaN+-Si(111). The geometry, the binding energy and the natural population
analysis of the lowest lying structures are given in Table 2.

Eight local minima (3e-GaN, 3f-GaN, 1e-GaN, 3g-GaN, 3h-GaN, 1f-GaN,
3i-GaN, and 3j-GaN) have been determined for adsorbed GaN. In the lowest min-
imum (3e-GaN) Ga is connected to Si adatom and N to the rest atom, and in
3f-GaN, the GaN molecule is connected the opposite way. The BEBSSE with respect
to Si(111) + GaN(X3Σ−) are calculated at 4.23 (3e-GaN) and 3.95 eV (3f-GaN).
Structures 1e-GaN and 1f-GaN have a BEBSSE about 0.3 eV smaller than the cor-
responding triplet structures. The geometries of 3e-GaN, 3f-GaN, 1e-GaN, and
1f-GaN minima are similar (cf. Table 2). In the remaining four structures GaN is
nearly perpendicular to the surface with the N atom attached to either the Si-rest
atom or to the Si adatom in 3g-GaN and 3h-GaN, respectively, while in 3i-GaN
and 3j-GaN the Ga atom is attached to the Si-rest atom or to the Si adatom, respec-
tively. The BEBSSE of 3g-GaN is 3.84 and of 3h-GaN 3.70 eV larger about 2 eV
than the BEBSSE value of 3i-GaN and 3j-GaN.

The lowest minimum of the GaN+-Si(111) cluster, 4g-GaN+, has the adsorbed
GaN+ with N attached to the Si rest atom with BEBSSE = 6.13 eV with respect to
Si(111) cluster + GaN+(X4Σ−); while in the second minimum 2f-GaN+, the GaN+

forms a bridge between the Si rest and adatom with a BEBSSE = 6.00 eV. These two
minima lie very closely. The next two minima have a BEBSSE value of 5.81 (2e-
GaN+) and 5.66 (2h-GaN+) eV. The vertical structures with Ga atom connected to
Si (4i-GaN+ and 4j-GaN+) are higher in energy by ∼2.5 eV above 4g-GaN+ but
they are not stable because they can easily changeover to a bridged structure.
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In all 14 species calculated for adsorbed GaN and GaN+, the Ga-N bond distance
is significantly smaller than in the free diatomic GaN and GaN+ systems. This is
consistent with the transfer of electronic charge from the surface to GaN and GaN+

with the result that adsorbed GaN and GaN+ resemble free diatomic GaN−, which
was calculated to have a shorter bond than the neutral by 0.25 Å [18]. It appears that
the same adsorbed GaN species is found in all the adsorbed structures calculated.
This is consistent with the net charges on the Ga and N atoms in these structures,
where N atom practically the same net charge obtains in all structures about −1.6
with the exception of 3i-GaN while for Ga and Ga+ the net charge ranges from
+0.8 (when the Ga is not attached to Si(111)) to between +1.0 and +1.3 (when the
Ga is attached to Si(111)). The above results show that the surface acts as a pool of
electronic charge, (as in the case of adsorbed Ga and Ga+ cf. Sect. 3.1 and Table 1)
providing the required electronic charge to give nearly the same Ga-N adsorbed
species in both cases, see Table 2. Furthermore, the significant shortening of the
internuclear distance in adsorbed GaN and GaN+ at Si(111), as compared to the
free diatomic systems, makes this case a counter example to the general expectation
that upon adsorption, the binding within the adsorbate is weakened, as, for exam-
ple, is the case of adsorption of halobenzenes at Si(111) [10], where the C–X bond
weakens and breaks.

3.3 GaN2-Si(111) and GaN+
2-Si(111)

Four geometric structures, k, l, m and n (see Fig. 4), were calculated with dou-
blet and quartet spin symmetry for the GaN2-Si(111) cluster and singlet and triplet
spin symmetry for the GaN+

2 -Si(111) cluster. The geometry of the lowest energy
structures is given in Table 3 while their binding energy and the natural population
analysis are given in Table 4.

Two local minima of the chemisorbed GaN2 molecule are found, with the
adsorbate occupying bridging positions over the Si rest and Si adatom. Structure
2k-GaN2, has the outer N atom of GaN2 just barely connected to the Si adatom,
while structure 2l-GaN2, has the outer N atom tightly connected to the rest atom
and its Ga interacts with a lower-layer Si atom, adjacent to the adatom (as in 2a-
Ga), see Tables 1 and 3. The BEBSSE of 2k-GaN2 and 2l-GaN2 with respect to
Ga+N2+Si(111) are 1.98 and 1.62 eV, respectively. It should be noted that both
structures are higher in energy than the lowest adsorbed Ga atom structure (2a-
Ga), thus they are metastable structures (with respect to adsorbed Ga at Si plus free
N2) [9].

In all local minima (3k-GaN+
2 , 3l-GaN+

2 , 3l′-GaN+
2 , 3n-GaN+

2 , 1l-GaN+
2 , and

1n-GaN+
2 ) of chemisorbed GaN+

2 with the exception of 3m-GaN+
2 the cation

bridges over the Si adatom and Si rest atom. In the lowest energy structure, 3k-
GaN+

2 , Ga+ is connected to the rest atom, while in the other six structures Ga+ is
connected to the adatom. The BEBSSE of 3k-GaN+

2 is 2.13 eV with respect to the
separated Si cluster and GaN+

2 and 2.45 eV with respect to Si cluster + Ga+ + N2
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Table 3 Geometry (bond distance R in Å, angle φ in degrees) of the GaN2-Si(111) and GaN+
2 -

Si(111) structures

Structures R1 R2 R3 R4 R5 φ1 φ2 φ3 φ4

GaN2(X2Π) 2.447
2k-GaN2 2.61 2.89 1.11 3.34 94 148 99
2l-GaN2 2.59 2.74 1.18 1.93 3.00 90 146 128 55
GaN+

2 ( X4Σ−) 2.798
3k-GaN2

+ 2.67 3.54 1.11 3.75 106 168 82
3m-GaN2

+ 2.65 3.04 1.11 92 175
3l-GaN2

+ 2.56 4.19 1.11 2.00 2.95 79 86 179 56
3l′-GaN+

2 2.73 2.55 1.17 1.91 3.36 92 149 133 47
3n-GaN2

+ 2.56 3.32 1.12 1.95 102 111 172
1l-GaN2

+ 2.56 4.74 1.11 2.00 3.19 102 107 174 52
1n-GaN2

+ 2.66 3.73 1.11 3.07 75 141 139

Table 4 Binding energies BE and corrected values for BSSE BEBSSE in eV [BE(BEBSSE) with
respect to GaN2- or GaN+

2 -Si(111) and BE1(BE1BSSE) with respect to Ga or Ga+ + N2-Si(111)]
and net charges of the GaN2-Si(111) and GaN+

2 -Si(111) structures

Structures BE(BEBSSE) BE1(BE1BSSE) Si-rest Si-adat Ga N N

Si(111) +0.08 +0.22
GaN2(X2Π) +0.18 −0.21 +0.03
2k-GaN2 1.96(1.90) 2.10(1.98) −0.56 +0.19 +0.60 −0.02 +0.05
2l-GaN2 1.64(1.53) 1.78(1.62) +0.42 −0.19 +0.58 −0.10 −0.37
GaN2

+( X4Σ−) +0.98 −0.14 +0.16
3k-GaN2

+ 2.19(2.13) 2.47(2.45) −0.60 +0.27 +0.68 −0.01 +0.04
3m-GaN2

+ 1.94(1.91) 2.23(2.20) +0.07 −0.37 +0.76 −0.06 +0.08
3l-GaN2

+ 1.69(1.52) 1.98(1.78) +0.35 −0.22 +0.63 −0.10 +0.24
3l′- GaN+

2 1.61(1.51) 1.90(1.74) +0.40 −0.16 +0.72 −0.07 −0.26
3n- GaN2

+ 1.60(1.47) 1.89(1.71) +0.36 −0.40 +0.66 +0.17 −0.13
1l- GaN2

+ 1.35(1.23) 1.64(1.50) +0.36 −0.30 +0.69 +0.24 −0.09
1n- GaN2

+ 1.30(1.23) 1.58(1.55) +0.28 −0.42 +0.73 +0.04 +0.01

species, which is larger than the binding energy of adsorbed Ga+ (structure
3b-GaN+

2 ). Structures 3k-GaN+
2 and 3l′-GaN+

2 of GaN+
2 -Si(111) resemble 2k-

GaN2 and 2l-GaN2 of GaN2-Si(111), while the rest five minima are found only for
the cation. In 3l′-GaN+

2 , GaN+
2 is more tightly connected to Si-rest and Si adatom,

but it is more strained compared to the free GaN+
2 cation, which favours a linear

Ga+-N-N geometry.
Structure 3m-GaN+

2 is an open structure where a GaN+
2 molecule is connected

to the Si adatom with a BEBSSE = 1.91 eV and a BEBSSE = 2.20 eV with respect to
Ga+ + N2 + Si(111).

In some minima such as 3l-GaN+
2 the Ga+...N distances are long, thus, there is

only a slight interaction between Ga+ and N2, but they are both stabilized through
the Si surface. Moreover, in all l-GaN+

2 (3l, 3l′, and 1l) structures the Ga atom is
connected to the Si adatom and it is directly above a 2nd layer Si atom.
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As in the case of adsorbed Ga and Ga+ (cf. Table 1) or GaN and GaN+ (cf.
Table 2), the Ga and Ga+ of the triatomic adsorbed species have similar net charge
(+0.58 to +0.76) showing that the surface acts as a pool of electron charge (see
Table 4).

Finally, it should be noted that the Ga+ of the adsorbed GaN+
2 , which forms a

weak bond with the N2, results in the stabilization of the N2 molecule on the surface,
which would not occur otherwise. This is consistent with our calculations on the
adsorption of N2 on Si(111) which yielded only unbound metastable structures with
slight barriers to dissociation [9].

4 Remarks and Conclusions

The electronic and geometric structures of gallium (Ga, Ga+) and gallium nitrides
(GaN, GaN+, GaN2, GaN+

2 ) adsorbed on Si(111) were studied by DFT calcula-
tions. A 5-layer 1R-1A Si cluster model of the Si(111) surface, terminated with H
atoms was used. Three stable structures were determined for adsorbed Ga, four for
Ga+, eight for GaN, six for GaN+, two for GaN2 and seven for GaN+

2 . The binding
energies to the Si surface (corrected for basis set superposition error) of the low-
est structures were found to be 2.13 for Ga, 2.39 for Ga+, 4.23 for GaN, 6.13 for
GaN+, 1.90 for GaN2, and 2.13 eV for GaN+

2 . The diatomic neutral and cationic
nitrides form low lying bridged structures, with the adsorbate bridging between the
Si rest atom and Si adatom, as well as structures with only one bond with the surface
and the molecular axis nearly perpendicular to the surface. The triatomic adsorbates
form mostly bridged structures. The geometry as well as the electron population
analysis of the adsorbed species and of the Si rest atom and Si adatom demon-
strate the equivalence of bonding in the neutral and charged structures indicating
that the charge can be drawn from or delivered to the surface as required to make
the adsorbates studied have similar charges. Of course, there exist differences in the
corresponding binding energies of the adsorbed neutral and cationic species, since
the zero of the energy (i.e. the dissociation products) are quite different.

Acknowledgements Financial support has been provided by the Greek General Secretariat for
Research and Technology through a Greece-Slovakia collaboration program (GGET-764).

References

1. T. Thundat, S. M. Mohapatra, B. N. Dev, W. M. Gibson, and T. P. Das, J. Vac. Sci. Technol. 6,
681 (1998).

2. S. Tang, A. J. Freeman, Y. Qian, G. E. Franklin, and M. J. Bedzyk, Phys. Rev. B 51, 1593
(1995).

3. S.-F. Tsay, M.-H. Tsai, M. Y. Lai, and Y. L. Wang, Phys. Rev. B 61, 2699 (2000).
4. J. Cechal, M. Kolı́bal, P. Kostelnı́c, and T. Šikola, J. Phys.: Condens. Matter 19, 016011
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Viscosity of Liquid Water via Equilibrium
Molecular Dynamics Simulations

Gerardo Delgado-Barrio(✉), Rita Prosmiti, Pablo Villarreal, Gabriel Winter,
Juan S. Medina, Begoña González, Jóse V. Alemán, Juan L. Gomez,
Pablo Sangrá, Jóse J. Santana, and Marı́a E. Torres

Abstract Molecular dynamics simulations were carried out for liquid water in the
NVE ensemble for calculating shear and bulk viscosities. We used two different
intermolecular potential functions for the water dimer: the empirical SPCE model
and the ab initio NCC one. The results obtained are compared with the available
experimental values, and show that for a more accurate description of these macro-
scopic liquid properties a polarizable (rigid or flexible) interaction potentials should
be employed. Such models, based on ab initio data, have been recently developed,
and their incorporation for the viscosity calculations is discussed.

Keywords: molecular dynamics, theoretical simulations, electronic structure
calculations, potential energy surfaces, liquid water

1 Introduction

Liquid water is perhaps the most popular system in computational chemistry in
terms of the effort spend to model its chemical, transport, and solvation proper-
ties [1, 2]. Although, much attention has been devoted in the past to understand
its microscopic properties, an accurate description of liquid water still remains a
great challenge for both experiment and theory [3]. A number of experimental
techniques have been developed, such as X-ray [4] and Neutron [5] diffractions,
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as well as vibrational IR and Raman spectroscopy [6], NMR experiments [7], and
ultrafast vibrational spectroscopy [8], to provide information about local structure
in liquid water. More recently interpretation of X-ray absorption, X-ray Raman, and
X-ray emission spectroscopy experiments has been quite controversial [9–14]. The
general accepted picture for the local structure of water, with more o less tetrahedral
arrangement with approximately 3.5 H bonds per molecule, has been questioned by
the analysis of the X-ray absorption spectra, complemented with ab initio results.
These investigations proposed a coordination number in liquid water close to 2 for
each molecule, and a structural organization with H-bonded chains or rings of water
molecules in a disordered H-bonded network.

The success of such investigations depends critically on the availability of inter-
molecular potential functions. Numerous force fields have been designed ranging
from empirical models, with parameters fitted to experimental data [15, 16], to ab
initio ones, which have been parameterized using the results of quantum chem-
istry calculations mainly of the water dimer and larger clusters [17–21]. Molecular
dynamics (MD) simulation based on empirical force fields has been a usual method
of choice to investigate the properties of liquid water. The quality and accuracy
of such force fields have improved, leading to sophisticated descriptions of the
interactions, and can reproduce with impressive accuracy the experimental radial
distributions. However, results for dynamic properties obtained from classical cal-
culations with empirical force field have been questioned [49]. At the same time, and
in order to overcome the force field approach, simulations based on Car- Parrinello
ab initio molecular dynamics (CPMD) methods have been applied to investigate
the properties of liquid water [23]. In such type of simulations the atomic forces
are computed on the fly from first principles electronic structure calculations, such
as density functional theory (DFT), with no adjustable parameters. However, the
reproducibility and accuracy of ab initio molecular dynamics methodology has been
criticized in the literature. The discrepancies in structural and dynamic properties
have been attributed to the different density functional models chosen to com-
pute the molecular interactions, and to more technical factors, such as system size,
duration of the run, convergence criterion for the electronic structure calculation,
ensemble, time step or value of fictitious mass [24, 25]. Moreover, due to the com-
putational cost a relative small number of molecules (32–64 molecules) has been
employed to reproduce the properties of liquid water [23].

In this context, simulations based on so-called ab initio force fields [20, 21, 26–
28], in which a many-body interaction potential is constructed from high quality ab
initio potential surfaces of small water clusters, i.e. monomer, dimer, trimer, etc. pro-
vide an alternative for studying liquid water from first principles. Such force fields
are exclusively fitted to ab initio data, thus their accuracy is limited by the level of
theory, incompleteness of basis sets, and number of calculated grid points, as well
as the form of the fitting function. Ab initio-based force fields have usually been
employed in classical simulations, although more recently quantum calculations
have been also reported with polarizable water models [29–33]. Such simulations
are computationally less demanding than the ab initio CPMD ones, and thus a
larger number of molecules can be involved for a more statistical description of
liquid water.
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As part of this study we aim to elucidate the importance of empirical and ab
initio based force fields in determining transport properties, such as viscosities,
performing MD simulations in pure liquid water. Shear viscosity is the one that
can be easily determined by experiment [34], while experimental data on bulk vis-
cosity of water are rather scarce [35]. Both shear and bulk viscosities are important
transport properties [36], and their calculation can provide valuable information on
intermolecular forces. Experimental observations on shear viscosity have proposed
that the cause of the thermal anomalies in this property may be traced to structural
transitions in ordered water structures near interfaces [37]. In the light of the new
experimental data [9] on the structural configurations of liquid water, invites fur-
ther investigation on this subject. Several methods are described in the literature for
determining viscosities based on equilibrium (EMD) and non-equilibrium (NEMD)
molecular dynamics simulations [38].

In this article, we first report in Sect. 2 on the potential models used to treat the
intermolecular interactions of the liquid water. Then, in Sect. 3 we outline details on
the molecular dynamics simulations, and on the computation of the stress autocor-
relation functions. Results obtained for the shear and bulk viscosities are presented
and discussed in Sect. 4, while conclusions are given in Sect. 5.

2 Model Potentials for Liquid Water

There is the broad classification of existing models for interaction potentials for
water into pairwise additive (two-body) and polarizable (many-body) ones. Studies
on static and dynamic properties of liquid water have confirmed, that many-body
corrections are essential [39–42]. Additionally, the above mentioned categories of
water models are subdivided to rigid or flexible depending on whether the model
allows the individual monomers to interact with other molecules, and thus to deform
geometrically. Combinations between these groups yield four types of interac-
tion potentials, which by increasing the degree of complexity are: rigid/pairwise,
rigid/polarizable, flexible/pairwise, and flexible/polarizable [43]. The majority of
the existing potentials for water are within these categories, and are being con-
structed by parameterizing the model in order to reproduce properties/values of a
specific environment, e.g. gas-phase or bulk, and for a limited thermodynamic range.

Based on the previous discussion, we are interested to investigate the reliability
of such models in calculating viscosities of the liquid water in a range of tempera-
tures. As there is a long way from properties of, for example, any water cluster in
understanding the properties of liquid water, a systematic study of such property by
employing different interaction models is a rational route to follow. Here, we chose
to compare results on shear and bulk viscosities obtained from two rigid/pairwise
additive potentials of the first group: the empirical SPCE [15], and an ab ini-
tio one, namely NCC [17]. The first has 3-site electrostatic interactions between
point-charges on the O, H, and H atoms, and one van der Walls (vdW) interaction
between O–O, given by a Lennard-Jones form. This model has been extensively
used in equilibrium and non-equilibrium molecular dynamic simulations [44, 45],
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so we chose it among several empirical model as a point of reference. The second
one is a 3-site electrostatic model, with point-charges at M (fictitious massless site),
and hydrogen atoms, and 4-site interactions between M, O, H, and H atoms repre-
sented by a MCY functional form [17]. The vdW two-body part has been fitted to
MP4 ab initio data of water dimer [17], while for the electrostatic (two-body) and
the polarization part of the NCC model, that includes the many-body corrections,
the Hartree-Fock energies have been used. We should mentioned that for a direct
comparison of the models the polarization term of the NCC model is omitted in our
present study.

3 Equilibrium Molecular Dynamics Simulations

Classical molecular dynamics simulations are carried out using the program
MOLDY [46]. All simulations are performed in the NVE ensemble for systems of
256 water molecules, in a cubic box with a density of 0.999 gr/cm3, imposing peri-
odic boundary conditions. For the long-range electrostatic interactions, the standard
Ewald summation technique was employed, and the values of the Ewald parame-
ters k and α are chosen as 3.0 Å−1 and 0.4 Å−1, respectively. For the van der Waals
interactions a cutoff of rc = 10.0 Å is assumed, and shifted force potential is applied.
First, an equilibration period of 8 ps in NVT ensemble at 303 K using the velocity-
scaling procedure, and 5 ps in NVE is used. Second, the modified Beeman algorithm
was used to propagate the trajectories for a total time of 200 ps, and a time step of
0.1 fs is chosen. The use of the NVE ensemble requires the conservation of the total
energy of the system during the simulation. In the present calculations we adopted
a tolerance of ∆E/E < 10−4, with ∆E the deviation in energy during the total time
of a simulation. The value of the total energy, E , was estimated for each potential
model, according to the temperature value in the NVT simulation.

From an equilibrium molecular dynamic simulation, the viscosity for a liquid can
be obtained from pressure fluctuations using the Green-Kubo equation:

ηX = lim
t→∞

V
kBT

∫ t

0
XACF(t ′)dt ′, X = K,G,E (1)

which is the relation between the transport coefficient (viscosity in our case), and
the integral of the equilibrium time correlation function. V is the volume, T the
temperature of the system, and kB the Boltzmann constant. In Eq. (1) XACF are the
autocorrelation functions of the stress tensor,

KACF(t) = 〈〈δP(t)δP(0)〉〉 (2)

GACF(t) =
1
5 ∑

α ,β
〈〈Pαβ (t)Pαβ (0)〉〉 (3)

EACF(t) =
1
3 ∑

a=x,y,z
〈〈δPαα(t)δPαα(0)〉〉 (4)
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with K, G, E for the bulk, shear, and longitudinal viscosities. In Eq. (2) δP(t) rep-
resents the fluctuations of the pressure, δP(t) = P(t)−P, where P(t) is the instan-
taneous pressure, computed as the average of the diagonal elements of the stress
operator, i.e. 〈 1

3 tr(Pαβ )〉, and P the pressure of the system, i.e. the ensemble aver-
age of P(t). In Eq. (3) Pαβ are the off-diagonal elements of the stress tensor,
with five independent components, (Pxx − Pyy)/2,(Pyy − Pzz)/2,Pxy,Pyz,Pzx, while
in Eq. (4) Pαα represents the diagonal elements of the stress tensor, which has three
independent components, namely Pxx,Pyy, and Pzz.

An alternative way to estimate the viscosity values is by fitting the autocorre-
lation functions using a functional form. The stress autocorrelation functions for
liquid water show an initially oscillatory fast decay followed by a long-time tail.
Based on this behavior a 6-parameter function using the Kohlrausch law to describe
both fast and slow relaxation processes has been proposed to fit the ACFs [44]. The
analytical form is given by,

cX(t) = (1−C)exp−(t/τKf )
β f cos(ωt)+C exp−(t/τKs)

βs (5)

where, the first and second term correspond to fast and slow timescale relaxations,
respectively. C is the fraction of the slow relaxation, and (1−C) for the fast one.
The circular frequency of the oscillation is ω , while β and τK are the Kohlrausch
parameters [47]. The total relaxation time is given by τX = τ f + τs, where τ f and τs

are the average relaxation time for fast, and slow relaxations, respectively, and are
calculated by numerical integration of the area under the adjusted cX ACFs curves.
The shear and bulk viscosities are then obtained by the expressions [48],

ηX =
V

kBT
XACF(0)τX (6)

with X = G and K, respectively.

4 Results and Discussion

As we mentioned above, we carried out simulations using two different types of
model potential for liquid water. For each of them, we first evaluated the qual-
ity of the NVE simulations, and then the stress autocorrelation functions and the
viscosities are calculated.

In Fig. 1 the normalized K′ACF , G′ACF , and E ′ACF stress autocorrelation functions,
obtained from the simulations, are plotted up to 10 ps. For both SPCE (see Fig. 1a)
and NCC (see Fig. 1b) models the XACF functions show a two-step relaxation,
with different damped oscillations for the short-time part (<1 ps), and a mono-
tonically slow decay for the long-time. We should mention that the corresponding
X ′ACF functions obtained with the SPCE potential show a faster relaxation for short
characteristic time, and a much more oscillating response with a significant long
characteristic time in comparison with the ones calculated using the NCC model.
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Fig. 1 Normalized autocorrelation functions, X ′ACF , for bulk (K), shear (G) and longitudinal (E)
viscosities: (a) for SPCE model and (b) for NCC one

Fig. 2 Bulk (ηK ), and shear (ηG) viscosities as a function of time. GK stands for viscosity values
obtained from the original XACF (t ′) functions using the Green-Kubo equation, while aK for values
obtained using the Kohlrausch law. (a) for SPCE model and (b) for NCC one

The bulk (ηK) and shear (ηG) viscosities are then computed by the Eq. (1), and
Eq. (6) by fitting the corresponding XACF functions to the Kohlrausch law expression
of Eq. (5).

In Fig. 2 the integrals for the bulk and shear viscosity as a function of time are
presented, and in Table 1 their plateau values (the three mean-values of the XACF
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Table 1 Calculated viscosities and block average values of the EMD simulations

Property SPCEa NCCa NCC Expt.

N molecules/Ensemble 256/NVE 256/NVE 256/NVE –
Density (ρ/Kg m−3) 999.00 999.00 999.00 995.64b

Temperature (T/K) 301.5±0.2 302.89±0.42 303.08±0.11 300.2/302.2/303.2c

Energy (E/KJ mol−1) −9833.362±0.856 −12281.320±0.006 −5697.992±0.003 –
Pressure (P/MPa) 39.71±2.11 −40.78±5.22 376.27±1.41 0.101
Dipole moment (µ/D) 2.35 2.35 1.85 –
Shear Visc. (ηG/10−4 Pa·s) 6.73 9.78 2.52 8.51/8.15/7.98c

Bulk Visc. (ηK /10−4 Pa·s) 14.11 24.99 5.21 ≈24.0/21.5d

a Dipole moment as in SPCE model
b From Ref. [50]
c From Ref. [51]
d From Refs. [52, 53]

functions reach to zero at time e.g. 3.3± 0.2 ps for the SPCE), corresponding to
the viscosity values with the smallest uncertainty, are given. The negative pressure
value obtained by the MD simulations for the NCCa implies that this model should
predict a higher value for the liquid density than the experimental one at P = 0.101
MPa and T = 300 K.

Our results compare very well with previous theoretical studies using the SPCE
model [44, 45] for both shear and bulk values. The shear viscosity value obtained
here using the NCC model is very close to the one reported for the MCY form (∼0.3
mPa·s ) [49]. Unfortunately, no more data on liquid water viscosities are available
in the literature on such ab initio based potentials. As it can be seen the calculated
values for both SPCE and NCC models are smaller than the experimental values,
with the SPCE values to be closer to the experimental ones. Both models fail to
reproduce the real liquid water viscosities, that demonstrate substantial deviation
from a realistic description of the interaction potential. On one hand, the SPCE
predicts quite accurately single-particle properties of water, only considers the O–O
vdW interactions, and presents difficulty in predicting collective properties of water,
such as viscosities. On the other hand, the NCC model reproduce well the structure
of liquid water (e.g. radial distribution functions), includes polarizability, and a wide
number of site vdW interactions, such as O–O, H–O, H–H, M–O, M–H ones. Thus,
NCC can describe subtle changes in molecular orientations, as function of O–O
distance, which account to the behavior of the stress tensor under fluctuations.

In order to evaluate the importance of such interactions on the viscosity, we
assume the point hydrogen charge value as parameter in the NCC model, and sim-
ulations are carried out to calculate viscosities as a function of the total dipole
moment of the system. The SPCE model predicts a dipole moment value of 2.35
D, while the NCC and NCCa employed here, correspond to values of µ = 1.85 and
2.35 D, respectively [54]. In Fig. 3 the results obtained for bulk (see Fig. 3a) and
shear (see Fig. 3b) viscosities with the NCC potential form are plotted for three
dipole moment values, µ , in the range of 1.85−2.35 D at T = 303 K.
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Fig. 3 (a) Bulk, ηK , and (b) shear, ηG, viscosities obtained with SPCE and NCC water model as a
function of dipole moment. Solid lines are for the experimental values

We can see, that a wide range of viscosity values are obtained, and a direct com-
parison with the viscosity values for SPCE and NCC models is given in Table 1. For
example shear viscosity values of 2.52×10−4, 5.55×10−4 and 9.78×10−4 Pa·s are
obtained for dipole moments of 1.85, 2.27 and 2.35 D, respectively. The accord with
the experimental values seems to improved comparing the NCCa with the original
NCC model. As it was expected larger dipole moment has a significant contribution
to the dynamic response of the XACF functions (specially to the shear one), and
thus to the viscosity calculation. We found that, by increasing the dipole moment,
the larger range interaction of the coulombic forces comparing with the short range
interaction of vdW ones, implies the rise of the oscillatory part in the XACF functions.
Also, we show that the frequency of the short time is increasing, and the long time
response becomes more significant. As a consequence, the NCCa model overesti-
mates both shear and bulk viscosity values, and this can be attributed to the existence
of multipole electrostatic moments, (e.g. quadrupole moment), in the coulombic
interaction. In this point, we should note that the polarization (many-body) interac-
tions are expected to reduce this effect. Further, viscosity values obtained of NCCa

and SPCE models shows different behavior in comparison with the experimental
values. The SPCE underestimates both shear (by 21%) and bulk (by 34%) viscosi-
ties, while NCCa overestimates them, by 20% the shear, and 16% the bulk viscosity
values. In principal, the main difference of these two models is the representation of
the vdW term, and this may indicates that such interactions are better described by
the ab initio-based NCC model.

What is clear, however, is that these preliminary findings suggest that the com-
plexity of the model potential should be increased, e.g. rigid/polarizable or flex-
ible/polarizable types of interaction should be considered. There are at least two
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more issues to be addressed: the effect of the polarization (many-body) terms, and
the dependence of viscosity values with the temperature. Polarization effects are
expected to play an important role in viscosity MD calculations, thus their contri-
bution should be first evaluated, and then the dependence of the viscosity values, as
a function of the temperature, should be investigated. Experimental values on shear
viscosity are available down to −35◦C at 1 bar [55] and up to 100◦C [34], while on
bulk viscosity only down to −27◦C [56], for supercooled water [57]. Additionally,
recent experimental data, from X-ray absorption spectroscopy and X-ray Raman
scattering [9], have proposed different structural configurations, based on H bonds,
of liquid water depending on temperature, e.g. tetrahedral structure for low values
(≈10−35◦C), and H-bonded chains arrangement for temperatures up to 90◦C. In
this vein, comparison of MD calculated viscosities using different types of water
potential, (based on dimer – NCC model – or monomer – SPCE model – species),
and for different temperature ranges, with the experimental values could serve to
understand the intermolecular interactions in liquid water.

5 Conclusions

Molecular dynamics simulations, in the NVE ensemble and T = 303 K, were car-
ried out using two different water model potentials of the rigid/pairwise additive
category: the empirical SPCE, and the ab initio based NCC ones. The stress autocor-
relation functions and viscosities (bulk and shear) for both models were calculated,
and compared with previous theoretical studies, as well as with experimental data.
Our results show that both SPCE and NCC models have faster structural relaxation
than the real liquid water, and underestimate both shear and bulk viscosities. The
importance of vdW interactions on the viscosity is evaluated using the modified
NCCa potential, which has the same total dipole moment as in the SPCE. The vis-
cosities obtained with NCCa water model are overestimated in comparison with the
experimental ones. This behavior is mainly attributed to the existence of multipole
moments in the electrostatic part, which is expected to be minimize by including the
polarization terms, and to the representation of the vdw interaction.

In order to clarify the effect of such different contributions, further simulations
with ab initio-based, rigid/flexible and polarizable water force fields [17, 20, 21, 58]
are necessary, and over a wide range of temperatures. Analysis of the temperature
dependence, and potential model on the calculated viscosities would be certainly
useful to gain a better understanding in the dynamics of liquid water. Currently,
work in this direction is in progress.
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Stochastic Description of Activated Surface
Diffusion with Interacting Adsorbates
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and Salvador Miret-Artés

Abstract Activated surface diffusion on metal surfaces is receiving much attention
both experimentally and theoretically. One of the main theoretical problems in this
field is to explain the line-shape broadening observed when the surface coverage
is increased. Recently, we have proposed a fully stochastic model, the interacting
single adsorbate (ISA) model, aimed at explaining and understanding this type of
experiments, which essentially consists of considering the classical Langevin for-
mulation with two types of noise forces: (i) a Gaussian white noise accounting for
the substrate friction, and (ii) a shot noise simulating the interacting adsorbates at
different coverages. No interaction potential between adsorbates is included because
any trace of microscopic interaction seems to be wiped out in a Markovian regime.
This model describes in a good approximation, and at a very low computational cost,
the line-shape broadening observed experimentally. Furthermore, its mathematical
simplicity also allows to derive some analytical expressions which are of much help
in the interpretation of the physics underlying surface diffusion processes.
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1 Introduction

The diffusion of atoms, molecules or small clusters on metal surfaces is a process of
paramount importance in many technological and industrial applications. Molecular
beam epitaxy, heterogeneous catalysis, crystal growth, chemical vapor deposition,
associative desorption or the fabrication of nanostructures are just a few examples
where the kinetics of diffusion plays a fundamental role. Different experimental
techniques have been used to study activated surface diffusion [1–5], the quasi-
elastic He atom scattering (QHAS) being a gentle and inert one commonly applied
in this type of experimental research [6, 7]. This technique has been used to charac-
terize different adsorbate/metal systems. Among them, the diffusion of Na atoms (at
different coverages) on Cu(001) has been one of the most extensively studied sys-
tems [6, 7]. This is the reason why the Na/Cu(001) has become a paradigm system
in theoretical studies on surface diffusion.

In general, adsorbate dynamics at low coverages can be described within the
so-called single adsorbate approximation and analyzed in terms of the motional nar-
rowing effect [8–10]. This effect governs the profile displayed by the line shapes as a
function of different parameters, such as the substrate friction, the parallel momen-
tum transfer, and/or the lattice structure (activation barrier, surface periodicity, etc.).
In this type of studies, the adsorbates are always regarded as isolated and only the
interaction with the substrate is taken into account. However, when the coverage
is increased, adsorbate-adsorbate interactions can no longer be neglected. In such
cases, pairwise interaction potentials are usually introduced into Langevin molec-
ular dynamics (LMD) simulations [7], where the number of coupled equations to
be solved is, in general, relatively large (it increases as 2N, where N is the number
of adparticles considered, typically of the order of 400–500). In most of systems,
the Markovian–Langevin approximation is assumed because the Debye energy of
the substrate excitations is greater than the lowest frequency mode of the adsorbate
(or frustrated translational mode or T–mode) and therefore the damping can be con-
sidered as instantaneous (memory effects are negligible). The adsorbate–adsorbate
interaction is given by a repulsive dipole–dipole potential. The so–called Topping’s
depolarization formula relates the dipole strength with the coverage [11]. This type
of interaction is attributed to the electrostatic repulsion between the dipoles due
to the charge transfer from the adatoms to the substrate. Numerical discrepancies
between the experimental and molecular dynamic results for the broadening of the
quasi–elastic peak as a function of the parallel wave vector transfer and the T–mode
frequency are obtained. The discussion about the origin of such discrepancies is
still an open problem [12]. In addition to the high computational demand, simple
interpretations of the numerical results obtained from LMD simulations are also a
hard task; analytical treatments are difficult to carry out and, in the end, additional
statistical-like approaches have to be considered. To overcome this problem within
the LMD perspective, it has been shown [13] that a good agreement with the exper-
iment can be achieved using simple models where the adsorbate is allowed to also
move perpendicularly to the surface.

In order to provide a theoretical and numerical alternative to the standard LMD
procedure at intermediate coverages, we have proposed the so-called interacting
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single adsorbate (ISA) approximation [14–17]. Within this approach, diffusion is
described by means of the standard Langevin equation, where three contributions
characterize the adsorbate dynamics:

1. The deterministic, adiabatic potential, V , which models the adsorbate-substrate
interaction at T = 0

2. A Gaussian white noise accounting for the lattice vibrational effects that the
surface temperature induces on the adsorbate

3. A white shot noise that stands for the adsorbate-adsorbate collisions and replaces
the pairwise (dipole-dipole) interaction potential generally considered in LMD
simulations

In this way, a typical LMD simulation where N adsorbates are involved at a time
is substituted by the dynamics of a single adsorbate, with the action of the remain-
ing N − 1 adparticles being accounted for by a white shot noise. This is possible
because any trace of the true interaction potential seems to be wiped out at very
long times, which are the timescales relevant to the diffusion and low-frequency
vibrations described by the line-shape peaks around or near zero energy transfers.
Within the ISA approximation we have been able to obtain a good agreement (in
comparison with that found with standard LMD calculations) with the experimen-
tal results for coverages up to ∼20%. Although further investigation at microscopic
level and calculations from first principles are needed, at moderate coverages the
ISA model is therefore able to provide a complementary view of both diffusion and
low-frequency vibrational motions.

To present a broad perspective of the ISA model as well as its applicability and
potentiality, we have organized this chapter as follows. In Sect. 2 we present the rel-
evant magnitudes in surface diffusion. In Sect. 2 a brief overview of the two types of
noise sources, Gaussian white noise and shot noise, is provided. Moreover, the sim-
ple model used in our calculations relating the coverage with the collisional friction
of the shot noise is also introduced at the end of the section. The description of the
adsorbate dynamics in terms of a Langevin equation and its relationship with the
observable magnitude (the line shapes) are explained in Sect. 3. In particular, two
corrugation models (representing low and high corrugation regimes) are examined
analytically. Numerical results illustrating the dynamics within these two corruga-
tion regimes are presented and discussed in Sect. 5. Finally, in Sect. 6 we summarize
the main features of the ISA model and advance some of our future work.

2 Dynamic Structure Factor and Intermediate Scattering
Function

In QHAS experiments one is usually interested in measuring the differential reflec-
tion coefficient, which can be expressed as

d2R(∆K,ω)
dΩdω

= ndFS(∆K,ω) (1)
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in analogy to neutron scattering by crystals and liquids [18]. This magnitude gives
the probability that the probe He atoms scattered from the diffusing collective of
adsorbates (spread out on the surface) reach a certain solid angle Ω with an energy
exchange h̄ω = E f −Ei and a parallel (to the surface) momentum transfer ∆K =
K f −Ki. In (1), nd is the (diffusing) surface concentration of adparticles; F is the
atomic form factor, which depends on the interaction potential between the probe
atoms in the beam and the adparticles on the surface; and S(∆K,ω) is the dynamic
structure factor or scattering law, which consists of a series of peaks. Here, in par-
ticular, our interest focusses in the line shapes displayed by two types of these peaks:
(i) the quasi-elastic (Q) peak ruling the diffusion process and (ii) the T-mode peaks
related to the so-called frustrated translational modes or low frequency motions of
the adsorbate. Other peaks also important (but that go beyond the scope of the work
presented here) are the inelastic ones, associated with surface phonon excitations.

By studying the line shape of the dynamic structure factor, S(∆K,ω), one can
obtain a valuable and complete information about the dynamics and structure of
the adsorbates as well as their distribution on the surface. Experimental informa-
tion about long-distance correlations is obtained from S(∆K,ω) when considering
small values of ∆K, while information about long-time correlations is available at
small energy transfers, h̄ω . Apart from this type of information, S(∆K,ω) can also
be used to determine the adiabatic adsorption potential, V (R), which describes the
adsorbate-substrate interaction. The standard procedure employed consists in start-
ing with a model potential that contains some adjustable parameters and that has to
fit the experimental QHAS measurements [i.e., S(∆K,ω)] after deconvolution with
the apparatus response function [7].

From a theoretical-numerical viewpoint, S(∆K,ω) is studied through particle
distribution functions, which takes advantage of the fact that surface diffusion is a
problem that can be tackled by means of classical mechanics when dealing with
heavy adsorbates. Let us consider an ensemble of interacting classical particles on
a surface. Their distribution function is described by means of the so-called van
Hove or time-dependent pair correlation function G(R,t) [18], which is the Fourier
transform in space and time of S(∆K,ω), i.e.,

S(∆K,ω) =
∫ ∫

G(R,t)ei(∆K·R−ωt) dR dt. (2)

Given an adparticle at the origin at some arbitrary initial time, G(R, t) represents
the average probability for finding a particle (the same or another one) at the surface
position R = (x,y) at a time t. This function is a generalization of the well-known
(static) pair distribution function g(R) from statistical mechanics [19, 20], since it
provides information about the interacting particle dynamics.

In order to obtain some analytical results and therefore a guide for the interpre-
tation of the numerical Langevin simulations, instead of computing S(∆K,ω) from
G(R,t), one can also express the dynamic structure factor [18] as

S(∆K,ω) =
∫

e−iωt I(∆K,t)dt, (3)
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where
I(∆K,t)≡ 〈e−i∆K·[R(t)−R(0)]〉= 〈e−i∆K·∫ t

0 v(t′) dt′ 〉 (4)

is the intermediate scattering function – which is the space Fourier transform of
G(R, t). In (4) the brackets denote an average over realizations and particles, and v
is the adparticle velocity parallel to the surface. Now, we note that the intermediate
scattering function can also be expressed as a second order cumulant expansion in
∆K,

I(∆K,t)≈ e−∆K2 ∫ t
0(t−t′)C∆K(t′)dt′ , (5)

where

C∆K(τ)≡ 〈v∆K(0) v∆K(τ)〉 ≡ lim
T →∞

1
T

∫ T

0
v∆K(t) v∆K(t + τ)dt (6)

is the autocorrelation function of the velocity projected onto the direction of the par-
allel momentum transfer (whose length is ∆K≡‖∆K‖). Only differences τ between
two times are considered because this function is assumed to be stationary. This is
the so-called Gaussian approximation [19], which is exact when the velocity corre-
lations at more than two different times are negligible, thus allowing to replace the
average acting over exponential functions in the right hand side (r.h.s.) of the sec-
ond equality in (4) by an average over their arguments. This approximation results
of much help in the interpretation of the numerical results as well as in getting an
insight into the underlying dynamics.

In general, calculating S(∆K,ω) through G(R,t) implies using the standard
LMD approach, the most standard technique to obtain the particle dynamics –
the same happens if we want to obtain I(∆K,t). This means to consider a Gaus-
sian white noise simulating the effects (friction) due to the surface temperature
and a dipole-like force depending on the coverage mediating the interaction among
adsorbates. In reference [8] an analytical treatment based on a Markovian-Langevin
approach with Gaussian white noise was derived within the single adsorbate approx-
imation to study diffusion at low coverage, showing that the dynamical-statistical
magnitudes given above could be well described analytically within the Gaussian
approximation framework. When the coverage increases, adsorbate-adsorbate inter-
actions can no longer be neglected and they have to be also taken into account to
describe the diffusion process. We showed that the previous Markovian-Langevin
treatment for single adsorbates could also be extended to the case of interacting
adsorbates by including into the corresponding Langevin equation a new noise
source accounting for the collisions among adsorbates: a white shot noise. That
is, the dynamics of many interacting adsorbates is replaced by the dynamics of a
single adsorbate subjected to a series of random pulses within a Markovian regime
(i.e., pulses of relatively short duration in comparison with the system relaxation), a
shot noise like force, which mimics the collisions with other surrounding adsorbates
leading to the introduction of a collisional friction. This is what we have called the
interacting single adsorbate (ISA) approximation [15,16]. Note that, consequently,
within this approach the averaging in (4) is carried out over realizations, but not over
particles.
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3 The Noise-Like Forces Acting on the Adsorbates

The ISA model is based on considering that, provided memory effects are not rele-
vant, the adsorbate dynamics observed on a surface can be studied using the standard
Langevin formalism. In this case, any interaction can be substituted by a noise-
like force (except the adsorbate-substrate interaction): the action of surface thermal
fluctuations (thermal phonons) by a Gaussian white noise and the dipole-dipole
interactions among adsorbates by a shot noise. Here we present a brief overview
of these two types of noise sources. Moreover, we also introduce a simple model
that can be used to relate the coverage with the collisional friction of the shot noise
in an easy manner when carrying out the corresponding simulations.

3.1 Gaussian White Noise and Surface Thermal Fluctuations

In 1930 Orstein and Uhlenbeck [21] formulated a stochastic model for Brownian
motion based on considering the particle velocity as the (stochastic) variable of
interest – this model contrasts with the Einstein-Wiener stochastic model, where
the variable of interest is the particle position. The basic equation in the Orstein-
Uhlenbeck model is the Langevin equation

mv̇ =−mγv + mRG(t). (7)

This equation is the simplest expression to describe the Brownian motion of a
particle of mass m in one dimension. As can be seen, the r.h.s. of this equation
is constituted by two contributions: (i) a deterministic part, characterized by the
friction force−mγv, with γ being the friction coefficient depending on the fluid vis-
cosity; and (ii) a stochastic part governed by the random force mRG(t), where RG(t)
is a Gaussian white noise source. This type of noise satisfies two conditions:

1. Its mean value is zero: 〈RG(t)〉= 0.
2. The associate force-force time correlation function has an infinitely short dura-

tion: m2〈RG(0)RG(τ)〉= Kδ (τ).

Generally speaking, the particle is regarded as the system (of interest) while the
stochastic force is the effect of a surrounding thermal bath, the constant K being
related to the system-bath coupling strength. The validity of this model thus relies
on the fact that the system-bath coupling is relatively weak, although the action
of the bath over the system is continuous along time. In this way, although the
perturbations caused by the bath over the system are negligible when considered
individually, their combine effect affects dramatically the system dynamics. The
random noise source is Gaussian because in the long-time limit the continuous
action of the bath satisfies the central limit theorem. On the other hand, note that
the detailed dynamical evolution of the bath degrees of freedom is not taken into
account. Bath correlations, described by the second condition, decay in timescales
shorter (fast decays) than the characteristic times involved in the system dynamics.
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The first contribution in (7) describes the collective or overall effect observed in
the system and is due to the second contribution, which refers to individual (ran-
dom) events. In other words, there is a relationship between the macroscopic or
average dynamical behavior of the system (the friction, in this context) and the
“microscopic” cause that produces it (due to the bath fluctuations). The relation-
ship between the friction and the fluctuations of the random force in (7) is given by
the fluctuation-dissipation theorem [22], which reads as

γ(ω) =
m

kBT

∫ ∞

0
〈δRG(0)δRG(τ)〉 e−iωτ dτ

=
m

2kBT

∫ ∞

−∞
〈δRG(0)δRG(τ)〉 e−iωτ dτ (8)

where
δRG(t)≡ RG(t)−〈RG(t)〉 (9)

is the fluctuation due to the random noise function RG(t). Making use of the
aforementioned properties 1 and 2 above, the r.h.s. of (8) becomes

γ(ω) =
K

2mkBT
. (10)

As seen from this expression, the frequency spectrum of the friction force is “flat”
or frequency-independent. In analogy to white light, such an spectrum is also called
white in the sense that all frequencies contribute equally. This allows to establish

γ(ω)≡ γ, (11)

with the coupling strength thus being

K = 2mγkBT. (12)

In general, the force-force time correlation function can be expressed in terms of the
noise fluctuations (9) as

GG(τ)≡ 〈δRG(0)δRG(τ)〉=
2γkBT

m
δ (τ). (13)

Within the context of the adsorbate surface diffusion, the effects caused by the
thermal fluctuations of the surface on the adsorbates can be treated as an overall
random noise. This was shown by Ellis and Toennies [23] in 1994, who observed
that molecular dynamics simulations taking into account the motion of both the
surface atoms and the adsorbates at low coverages could be replaced by a Langevin
equation for a single adsorbate characterized by a certain coupling strength or damp-
ing factor γ , whose value was obtained from dynamical arguments. Apart from this
“semi-empirical” study, one could also reach the same conclusion by performing,
for instance, a frequency analysis of adsorbate trajectories.
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3.2 White Shot Noise and Adsorbate-Adsorbate Collisions

The concept of noise arises from the early days of radio, the so-called shot noise
being one of the main sources of noise [24]. The study of this type of noise, first
considered by Schottky [25] in 1918, was summarized and largely completed by
Rice [26] in the mid 1940’s. The paradigm of shot noise is a non steady electrical
current generated by independent (i.e., no correlated) electrons arriving randomly
at the anode of a vacuum tube. This random time-dependent electric current can be
expressed as

I(t) = ∑
i

bi(t− ti). (14)

Here the pulse function bi(t − ti) represents the contribution of the ith individual
electron to the current and is assumed to be identical for each electron. Regarding
the arrival times ti, they are randomly distributed according to a Poisson distribution
with a certain average number per unit time [21].

The same idea of electrons reaching randomly an anode can also be used to
describe the problem of interacting adsorbates. This is done by identifying the anode
receiving the electrons with a particular adsorbate (system) and the subsequent elec-
trons reaching the anode with the different adsorbates (bath) that collide with the
system-adsorbate. Within this picture the dipole-dipole interactions between two
colliding adsorbates is then replaced by a shot-noise-like random force (accounting
for the effects of all the bath-adsorbates) acting on a single adsorbate. The validity
of this model is based on considering that: (i) the system-bath coupling is relatively
weak and (ii) in the long time limit the microscopic effects of the dipole-dipole
interaction forces are wiped out and only the effective number of impacts felt by the
system-adsorbates expressed in terms of a collisional friction is relevant. Note that
this idea is similar to that considered by Van Vleck and Weisskopf [27] to under-
stand the line-shape broadening observed in the spectral lines of gases due to the
increasing pressure.

The shot noise force undergone by the adsorbates can be expressed as mδRS(t),
where

δRS(t)≡ RS(t)−〈〈RS〉〉 (15)

is defined as in (9), with

〈〈RS〉〉 ≡∑
K

PK(T )〈RS(t ′)〉T . (16)

The double average bracket in the last expression indicates averaging over the num-
ber of collisions (K) according to a certain distribution (PK) and the total time
considered (T ). In analogy to (14),

RS(t) =
K

∑
k=1

bk(t− tk), (17)
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with bk(t− tk) providing information about the shape and effective duration of the
kth adsorbate-adsorbate collision at tk. The probability to observe K collisions after
a time T follows a Poisson distribution

PK(T ) =
(λT )K

K!
e−λT , (18)

where λ is the average number of collisions per unit time or collisional fric-
tion. Assuming sudden adsorbate-adsorbate collisions and that after-collision effects
relax exponentially at a constant rate λ ′, the pulses in (17) can be modeled as

bk(t− tk) = ckλ ′e−λ ′(t−tk), (19)

with t− tk > 0 and ck giving the intensity of the collision impact. Within a realistic
model, collisions take place randomly at different orientations and energies. Hence
it is reasonable to assume that the ck coefficients are distributed according to an
exponential law,

g(ck) =
1
α

e−ck/α , ck ≥ 0, (20)

where α =
√

m/kBT [15].
Notice that this stochastic description makes evident the following subtlety.

In addition to the friction due to the surface thermal fluctuations, the collisions
among adsorbates introduce a new type of friction, the collisional friction. As in
Sect. 3.1, this friction can be related with its corresponding cause, the collisions, by
means of the fluctuation-dissipation theorem. The time correlation function for the
fluctuations of the shot noise is given by

GS(τ) = 〈〈δRS(0)δRS(τ)〉〉, (21)

where the double bracket is defined as in (16). A general expression for GS(τ) can
be readily obtained after straightforward algebraic manipulations [15] to yield

GS(τ) =
λ λ ′

α2 e−λ ′|τ|. (22)

Introducing (22) into the mathematical expression of the fluctuation-dissipation
theorem,

ξ̃ (ω) =
m

kBT

∫ ∞

0
GS(τ) e−iωτ dτ, (23)

we obtain

ξ̃ (ω) = λ
λ ′

λ ′+ iω
, (24)

whose real part is

Re[ξ̃ (ω)] =
1
2

[ξ̃ (ω)+ ξ̃ ∗(ω)] = λ
λ ′2

λ ′2 + ω2 . (25)
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Two limits are interesting in this expression: λ ′ � ω and λ ′ � ω . These limits
are related to the two timescales associated with λ and λ ′. Independently of their
intensity, we consider that any pulse decays at the same rate λ ′ within this model
for simplicity. This rate defines a decay timescale τc = 1/λ ′ for collision events.
On the other hand, the collisional friction introduces another timescale τr = 1/λ ,
which can be interpreted as the (average) time between two successive collisions;
adsorbate diffusion is related to this timescale. Taking this into account, the first
limit involves very short timescales (smaller than τc), where memory effects are
important and the generalized Langevin equation should be applied. Note that in
this case, (24) can be written as

ξ̃ (ω)≈ λ
λ ′2

ω2 . (26)

This frequency-dependent friction does not allow to define an appropriate relaxation
timescale τr. In this case, we refer to colored shot noises [28], which have been used
to describe, for example, thermal ratchets [29], mean first passage times [30] or jump
distributions in surface diffusion [31]. Conversely, in the second limit, the collision
timescale rules the adsorbate dynamics, establishing a cutoff frequency. In this limit

ξ̃ (ω)≈ λ
(

1− ω2

λ ′2

)
, (27)

which can be written as ξ̃ (ω)≈ λ whenever λ �ω �ωc = τ−1
c (i.e., τr � τc). This

limit holds for strong but localized (instantaneous) collisions as well as for weak but
continuous kicks (Brownian motion). Moreover, since it is similar to the condition
leading to (11), one can speak about a Poissonian white shot noise and make use of
the standard Langevin equation.

3.3 Relationship Between the Coverage and the Collisional
Friction

In principle, there is no a simple, straightforward relationship relating the cover-
age with the collisional friction which should be obtained either from microscopic
observations, first principles or both. However, it is clear that such a relation is
fundamental in order to carry out any calculation within this stochastic approach.
Here we show how both parameters can be related in a simple manner. In the ele-
mentary kinetic theory of transport in gases [19] diffusion is proportional to the
mean free path l̄, which is proportionally inverse to both the density of gas particles
and the effective area of collision when a hard-sphere model is assumed. For two-
dimensional collisions the effective area is replaced by an effective length (twice the
radius ρ of the adparticle) and the gas density by the surface density σ . Accordingly,
the mean free path is given by
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l̄ =
1

2
√

2ρσ
. (28)

Taking into account the Chapman-Enskog theory for hard spheres, the self-diffusion
coefficient can be written as

D =
1

6ρσ

√
kBT
m

. (29)

Now, from Einstein’s relation (see below Sect. 3), and taking into account that θ =
a2σ for a square surface lattice of unit cell length a, we obtain

λ =
6ρ
a2

√
kBT
m

θ . (30)

This relationship allows to estimate λ readily once the surface coverage and tem-
perature are known.

4 Langevin Description of Surface Diffusion

Except for the case of a free-potential problem, the analytical study of the particle
motion in two dimensions results intractable in general due to the dynamical cor-
relations at short times induced by the interaction potential. However, since we are
interested in offering an analytical formulation that allows to better understand the
process ruling surface diffusion and low-frequency vibrational motions, it is suffi-
cient to proceed in one dimension and then try to adapt the resulting formulation to
two dimensions.

The motion of an adsorbate subjected to the action of a bath consisting of
another adsorbates on a static one-dimensional potential can be well described by
the generalized Langevin equation

ẍ(t) =−
∫ t

0
ξ (t− t ′) ẋ(t ′)dt ′+ F[x(t)]+ δRGS(t), (31)

where x represents the adsorbate coordinate; F =−∇V is the deterministic force per
mass unit derived from the periodic surface interaction potential, V (x) = V (x + a)
(a is the period along the x-direction); and ξ (t) is the bath memory function,
which includes the effects arising from both the Gaussian white noise and the shot
noise. Because of this, the stochastic noise source is expressed as the sum of both
contributions:

δRGS(t) = δRG(t)+ δRS(t). (32)

If τc is relatively small, the memory function will be local in time. This allows to
reexpress it as ξ (t− t ′)  (γ + λ )δ (t− t ′) and expand the upper time limit in the
integral to infinity. Taking this approximation into account and defining η ≡ γ + λ ,



374 R. Martı́nez-Casado et al.

(31) becomes
ẍ(t) =−η ẋ(t)+ F[x(t)]+ δRG(t)+ δRS(t). (33)

This equation summarizes the essence of the ISA approximation.
The particle velocity and position can be straightforwardly obtained from (33)

by formal integration to yield:

v(t) = v0e−ηt +
∫ t

0
e−η(t−t′)F[x(t ′)]dt ′+

∫ t

0
e−η(t−t′)δRGS(t ′)dt ′, (34a)

x(t) = x0 +
v0

η
(1− e−ηt)+

1
η

∫ t

0

[
1− e−η(t−t′)

]
F[x(t ′)]dt ′

+
1
η

∫ t

0

[
1− e−η(t−t′)

]
δRGS(t ′)dt ′, (34b)

where v0 = v(0) and x0 = x(0). It is clear that when δRGS = 0, (34a) and (34b)
become the formal solutions of purely deterministic equations of motion. If the
system is initially thermalized (i.e., it follows a Maxwell-Boltzmann distribution
in velocities) and has a uniform probability distribution in positions around x = 0,
then v̄0 = 〈v0〉 = 0, v̄2

0 = 〈v2
0〉 = kBT/m and x̄0 = 〈x0〉 = 0. For λ ′ � λ , i.e., in the

Poissonian white noise limit, we obtain

〈v〉(t) = 0, (35a)

〈v2〉(t) =
kBT
m

, (35b)

〈x〉(t) = 0, (35c)

〈x2〉(t) = x̄2
0 +

kBT
mη2

[
2ηt + 1−

(
2− e−ηt

)2]
. (35d)

These equations constitute a limit and therefore for values of the parameters out of
the range of validity of the approximation deviations are expected. However, they
result very insightful in order to understand the system dynamics.

As happens with the Brownian motion (V = 0), two regimes are also clearly
distinguishable from (35d). For ηt � 1 collision events are rare and the adparti-
cle shows an almost free motion with relatively long mean free paths. This is the
ballistic or free-diffusion regime, characterized by

〈x2(t)〉 ∼ kBT
m

t2. (36)

On the other hand, for ηt� 1 there is no free motion since the effects of the stochas-
tic force (collisions) are dominant. This is the diffusive regime, where mean square
displacements are linear with time:

〈x2(t)〉 ∼ 2kBT
mη

t = 2Dt. (37)
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This is the so-called Einstein’s law. Note from (37) that: (1) lowering the friction
η acting on the adparticle leads to a faster diffusion (the diffusion coefficient D
increases) and (2) the diffusion becomes more active as the surface temperature
increases.

For V �= 0 the average values given above are expected to show some devia-
tions due to of the role played by the terms corresponding to the deterministic force.
Because of the potential wells, adparticles may display an eventual bound motion
together with the diffusion along the surface. This will lead to a decrease of the dif-
fusion with respect to a case where the corrugation is negligible (V ≈ 0). Moreover,
the low-frequency vibrational motion observed when the particle remains bound
within a potential well will give rise to the presence of T modes, which manifest
as two symmetric peaks (with respect to the diffusive one) in the energy transfer
spectrum (dynamic structure factor).

4.1 The Low Corrugation Regime. Quasi-free Adparticles

In the case of diffusion on low corrugated surfaces, where the role of the adiabatic
adsorbate-substrate interaction potential is negligible, one can consider the approx-
imation V = 0. The adparticle motion can then be regarded as quasi-free since it
is only influenced by the two random forces. From (6), and again in the limit of
Poissonian white noise (λ ′ � λ ), one thus obtains

C (t) = v̄2
0e−ηt . (38)

Introducing this relation into (5), we find

I(∆K,t) = exp
[−χ2 (e−ηt + ηt−1

)]
, (39)

with χ2 ≡ 〈v2
0〉∆K2/η2 being the shape parameter. With the coverage, η increases

and the decay of I(∆K, t) becomes slower. This leads to a narrowing in the line
shape associated with the dynamic structure factor, which can be analytically
obtained [16] from (3):

S(∆K,ω) =
eχ2

π

∞

∑
n=0

(−1)nχ2n

n!
(χ2 + n)η

ω2 +[(χ2 + n)η ]2
. (40)

In the high friction limit, this function has a Lorentzian shape and the full width
at half maximum (FWHM) is Γ = 2ηχ2, which approaches zero as η increases.
On the other hand, in the low friction limit, the line shape is a Gaussian with Γ =
2
√

2ln2
√

kBT/m ∆K, which does not depend on η . This is the case for a two-
dimensional free gas [32]. The gradual change of the line shape as a function of
the magnitudes defining the shape parameter is known as the motional narrowing
effect [8, 10].
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4.2 The High Corrugation Regime. Bound Adparticles

When the surface corrugation is important, effects associated with the T modes are
expected to manifest in the velocity autocorrelation function. An interesting exam-
ple to examine which approximates this behavior is the anharmonic oscillator. The
velocity autocorrelation function in this case takes the form [16]

C (t) = v̄2
0e−η̃τ cos(ω̃t + δ̃), (41)

where the values of the parameters η̃ , ω̃ and δ̃ are free in principle and can be
obtained by a fitting to the numerical results. Again, using (5), we can obtain an
analytic expression for the intermediate scattering function,

I(∆K,t) = e−χ2
l Ã1−χ2

l Ã2t
∞

∑
m,n=0

(−1)m+n

m! n!
χ2(m+n)

l Ãm
3 Ãn

4

× ei(m−n)δ̃ e−(m+n)η̃t ei(m−n)ω̃t , (42)

with

Ã1 =
η̃2[2η̃ω̃ sin δ̃ +(ω̃2− η̃2)cos δ̃ )

(η̃2 + ω̃2)2 , (43a)

Ã2 =
η̃2(η̃ cos δ̃ − ω̃ sin δ̃ )

η̃2 + ω̃2 , (43b)

Ã3 =
η̃2

2(η̃− iω̃)2 , (43c)

Ã4 =
η̃2

2(η̃ + iω̃)2 . (43d)

As seen in (42), there is a linear dependence on time in the first exponential of
I(∆K, t) arising from the independence of η̃ , ω̃ and δ̃ one another. This leads to
an exponential decaying factor in (42), which accounts for the diffusion and the
asymptotic vanishing of I(∆K,t). In this sense, the intermediate scattering function
describes both phenomena, diffusion and low-frequency vibrational motions.

As before, the information about the structure of the lattice can be found in the
shape parameter, now expressed as χl . When large parallel momentum transfers are
considered, both the periodicity and the structure of the surface have to be taken
into account. Consequently, the shape parameter χ defined in the previous section
will be different for different lattices. The simplest model including the periodic-
ity of the surface is that developed by Chudley and Elliott [33], who proposed
a master equation for the pair-distribution function in space and time assuming
instantaneous discrete jumps on a two-dimensional Bravais lattice. However, very
recently, a generalized shape parameter based on the Chudley-Elliott model has been
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proposed [16, 34] within the context of the ISA approximation to be

χl(∆K)≡
√

Γν(∆K)
2η̃

, (44)

with
Γν(∆K) = ν ∑

j
Pj [1− cos(j ·∆K)] (45)

represents the inverse of the correlation time, with ν being the total jump rate
out of an adsorption site and Pj being the relative probability that a jump with a
displacement vector j occurs.

It is straightforward to also derive an analytic expression for the dynamic scat-
tering factor [16]:

S(∆K,ω) =
e−χ2

l Ã1

π

∞

∑
m,n=0

(−1)m+n

m! n!
χ2(m+n)

l Ãm
3 Ãn

4ei(m−n)δ

× χ2
l Ã2 +(m+ n)η̃

[ω− (m−n)ω̃]2 +[χ2
l Ã2 +(m+ n)η̃]2

. (46)

From this expression we note that the Q peak consists of the contributions with
m = n, each partial FWHM being Γ = χ2

l Ã2 + 2mη̃2. Analogously, the T-mode
peaks come from the sums with n �= m, with their partial FWHM being Γ =
χ2

l Ã2 +(m+n)η̃. If the Gaussian approximation is good enough, the value of η̃ will
be not too different from the value of η and therefore the line shapes correspond-
ing to the Q and T-mode peaks are predicted to display broadening as η increases.
This is a very remarkable result since the ISA approximation, a relatively simple
model, is able to explain the broadening as a function of the coverage experimen-
tally observed: it arises from the temporary confinement of the adparticles inside
potential wells during their dynamical evolution along the surface [14]. Moreover,
within this approximation, the problem of the experimental deconvolution [34] can
be handle in a simple manner: deconvolution could be carried out in a more appro-
priate way (i.e., with analytic functional forms) and the information about diffusion
constants and jump mechanisms extracted would be more reliable. Finally, as men-
tioned above, the motional narrowing effect will again govern the gradual change
of the whole line shape as a function of the coverage (via the collisional friction λ ,
which is contained in total friction η), the parallel momentum transfer and the jump
mechanism.

4.3 Running and Bound Trajectories

When dealing with realistic adsorbate-substrate interaction potentials it is clear that
trajectories are going to display temporary trapping and periods of time of unbound
flights on the surface. Therefore, in order to better understand and interpret the
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diffusion process, a model in which the adsorbate has to separate possibilities of
motion, diffusion and vibration, can be invoked. In other words, two types of trajec-
tories can be considered: running (R) and bound (B). Within this simple model, the
velocity autocorrelation function reads [14] as

C (t) = αCR(t)+ (1−α)CB(t), (47)

where CR and CB correspond to the velocity autocorrelation functions for a flat
surface and an anharmonic oscillator given by (38) and (41), respectively. In (47),
α represents the fraction of running trajectories. Accordingly, the intermediate
scattering function can be written as

I(∆K,t)≈ [IR(∆K,t)]α [IB(∆K,t)]1−α (48)

where IR(∆K,t) and IB(∆K,t) refer to the intermediate scattering functions for run-
ning and bound trajectories, given by (39) and (42), respectively. This expression
allows to distinguish between the contributions arising from the unbound or diffu-
sive motion and the bound or vibrational one. Physically, this distinction is very
important: it participates directly in the broadening observed in the Q and T-mode
peaks with the coverage. Although the percentage α of running trajectories is always
larger than that one corresponding to the bound trajectories, depending on its value
I(∆K,t) will decay faster or slower. As the fraction of running trajectories increases,
the correlation between particle oscillations will decay faster. This gives rise to a loss
of phase among the complex exponentials involved in the r.h.s. of the first equality
of (4), which translates into a faster decay of I(∆K,t). On the contrary, the effect of
the bound trajectories is to keep such correlations for longer times, giving place to
delay the decay of I(∆K,t). The line-shape broadening with η is thus a result of an
increasing number of running trajectories.

5 Results

To better understand the concepts introduced above, here we present results for two
different types of two-dimensional surfaces: flat and periodic. We will illustrate the
applicability of the ISA approximation using the Na/Cu(001) system, for which a lot
of experimental and theoretical work can be found in the literature [7]. The coverage
θNa = 1 thus corresponds to one Na atom per Cu(001) surface atom or, equivalently,
σ = 1.53×1019 atom/cm2 [7]; a = 2.557 Å is the unit cell length; and ρ = 2 Å has
been used for the atomic radius. The surface friction that we have considered in our
simulations is taken from reference [6] to be γ = 0.1 ω0 = 2.2049×10−5 (frictions
and diffusion constants are given here in atomic units), where ω0 is the harmonic
frequency associated with the periodic adsorbate-substrate interaction potential.
Frequencies and times are here given in atomic units. We are going to analyze four
coverages for two surface temperatures of 200 K and 300 K: θNa = 0.028, 0.064,
0.106 and 0.18 (below, the first and forth values of θNa are referred to as θ1 and θ2,
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respectively). Accordingly, using (30), we will have that at T = 200 K, for instance,
the values of the collisional friction (total friction) for the smaller and larger val-
ues of the coverage are λ = 3.34× 10−6 (η = 2.53× 10−5) and λ = 2.15× 10−5

(η = 4.68× 10−5), respectively. Regarding the collision relaxation rate, we have
chosen λ ′ = 10−3 to satisfy the condition of Markovian dynamics.

5.1 Low Corrugation. The Flat Surface Model

In low corrugated surfaces the role of the activation barrier to pass from a cell to
another one is negligible – this happens, for instance, with a two-dimensional gas
[17,32]. Hence, one can use a flat surface model to study diffusion. According to the
description given in Sect. 3, in this case 〈x2〉(t) displays two well-defined dynamical
regimes: ballistic (t � 1/η) and diffusive (t � 1/η). This can be seen in Fig. 1a,
where 〈x2〉(t) depends on t2 at short times (of the order of 1/η) and is proportional
to t in the long-time regime. In the linear regime, 〈x2〉(t) behaves in accordance with
Einstein’s law (37): diffusion decreases with the (total) friction. By fitting this linear
part of the graphs to (37), we find D = 6.045× 10−4 for θ1 and D = 3.510× 10−4

for θ2. From these values, we obtain η̃ = 2.50×10−5 and η̃ = 4.35×10−5, which
are in a good agreement with the nominal values introduced in the simulations. This
agreement between simulation and analytical model confirms the validity of the ISA
approximation in this case. These diffusion coefficients are not only related to the
surface friction but also to the collisional one, as explained above. Notice that for
a given surface friction, the diffusion is inhibited or enhanced depending on the
number of collisions per time unit. This is a very remarkable result because in real
experiments the surface friction is fixed and therefore diffusion can only be studied
only taking into account the coverage of the surface.

Collisions also affect the velocity autocorrelation function: as seen in Fig. 1b,
as θ increases C (t) decays faster. From the fitting of these results to (38) (nor-
malized to unity), we have obtained η̃ ≈ 2.52× 10−5 for θ1 and η̃ ≈ 4.32× 10−5

for θ2, which again show a good agreement with the nominal values employed
in the simulations. This agreement can also be interpreted as indicating that high
order correlations (e.g., correlations at three or four times) will decay much faster,
thus validating the use of the Gaussian approximation when passing from (4) to
(5) – the effect of high order correlations on I(t) will be meaningless. The com-
parison between the intermediate scattering function obtained from the calculations
with its fitted homolog using (7) can be seen in Fig. 1c for ∆K = 1.23 Å−1 (the
fitting has been done considering the nominal values of η used in the simulation
and assuming that χ as the fitting parameter). We observe that not only the cor-
respondence between the simulations and the analytical formulas is excellent, but
also from the fitted values of χ : χ f it = 3.16 vs χsim = 3.16 for θ1, and χ f it = 1.81
vs χsim = 1.83 for θ2. In agreement with (7), I(t) presents an initial Gaussian falloff
at short times, while for longer times its decay is exponential. Moreover, as also
expected from (7), as the coverage increases a slower decay is observed, which will
give rise to a narrowing in the line shapes of S(ω) (see below).
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Fig. 1 Dynamical magnitudes for two different values of the coverage, θ1 (blue) and θ2 (red): (a)
〈x2〉(t), (b) C (t), (c) I(t) and (d) S(ω), with ∆K = 1.23 Å−1. Dotted lines are the numerical fittings
to the corresponding analytical formulas given in Sect. 3. All magnitudes are given in atomic units

In Fig. 1d we have plotted the dynamic structure factor after time Fourier trans-
forming the intermediate scattering function obtained from both the simulations and
their corresponding analytical fittings. Since the agreement between the numeri-
cal and fitted intermediate scattering functions is fairly good, the same can also be
observed here. However, note that increasing the coverage causes a narrowing of
the Q peak, whose profile is a mixture of a Gaussian and a Lorentzian function.
The Gaussian behavior is ruled by the short time limit of the intermediate scatter-
ing function, while the Lorentzian behavior arises from the long time exponential
decay. The line shape associated with the Q peak thus depends on which regime is
dominant. This is a consequence of the motional narrowing effect [8,10]. This anal-
ysis should be carried out when experimental results are deconvoluted [15] since it
is very common to see fittings of the Q peak to a pure Lorentzian function.

5.2 Periodic Surface Potential Models. The Relevance
of Corrugation

As an example of diffusion on a realistic potential, now we are going to consider
the non-separable surface potential model proposed by Toennies and coworkers to
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model the Na/Cu(001) interaction [6]:

V (x,y) = V0(x,y)+V1(x,y)+V2(x,y). (49)

The first term of this potential model is a separable cosine potential,

V0(x,y) = V0 [2− cos(2πx/a)− cos(2πy/a)] , (50)

with a the lattice constant of the Cu(001) surface (a = 2.557 Å) and V0 = 41.4 meV.
The second term,

V1(x,y) =−A ∑
m,n

e−b{[x/a−(m+1/2)]2+[y/a−(n+1/2)]2}, (51)

with A = 2V0 and b = 11.8, is added to produce a lowering of the potential barrier
at on-top sites according to the experimental observations. The third term is an also
nonseparable contribution,

V2(x,y) = π2CV0 ∑
m,n

[(x/a−m)2 +(y/a−n)2]

×exp[−(x/a−m)2− (y/a−n)2], (52)

with C = −0.2, which is introduced to modify the curvature near the minima and
vary the difference between the potential at the minima and the bridge positions.

5.2.1 Line-Shape Broadening as a Function of the Coverage

The effect of the bound motion on diffusion (which is explained in more detail
in next section) is apparent in Fig. 2, where I(t) is plotted for ∆K = 1.23 Å−1,
a surface temperature of 200 K and four different values of the coverage. When
the coverage is increased, a higher number of particles escape from the potential
wells. This contributes to having more particles displaying diffusive motion, and
therefore leading to a faster decay of I(t). Two different decay regimes are clearly

Fig. 2 I(t) for coverages:
θ = 0.028 (black solid line),
θ = 0.064 (red dashed line),
θ = 0.106 (green dotted line)
and θ = 0.18 (blue dashed-
dotted line) at ∆K = 1.23 Å−1

and T = 200K. In the inset,
the same graph for short times
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Fig. 3 S(ω) for two values of the coverage: θ1 (black solid line) and θ2 (red dashed line), at
∆K = 1.23 Å−1 and T = 200 K. In each plot, details of the Q-peak region (a) and the (r.h.s.)
T-mode peak region (b) are shown

seen: at long times I(t) shows a damping exponential behavior, while at short times
(see inset) the observed oscillations are due to the T-mode motion associated with
vibrations inside the potential wells (bound trajectories).

The changes induced by the interaction potential (with respect to the flat case)
are also apparent in the dynamic structure factor: the T mode manifest as two peaks
placed around the frequency of oscillation (±5 meV) on both sides of the Q peak.
The Q and T-mode peaks are plotted separately in Figs. 3a and 3b for θ1 and θ2 at
T = 200 K and ∆K = 1.23 Å−1. The broadening observed in both types of peaks
is due to the fast decay displayed by the intermediate scattering function with the
coverage. In particular, for the T-mode peak only a shift of the position is clearly
seen, as also observed experimentally [6, 7].

The maximum value of the experimental peak widths is found to be increased by
a factor of 3 as the coverage is increased from 0.028 to 0.18. LMD simulations have
also been carried out but the corresponding results are just able to reproduce the
general trend, predicting a smaller increase in the broadening of the Q peak [7]. As
will be seen below, in next section, the line-shape broadening is a combined effect
of both diffusive and vibrational motions. Moreover, notice that this broadening is
related to the increment of the collisional friction since γ is constant (we assume
that the surface friction does not depend on the coverage).

In Figs. 4a–d, the results of our model for the Q peak width have been plotted
and compared with the experimental ones [6] for θ = 0.028, 0.064, 0.106 and 0.18
at T = 200 K and T = 300 K along the diagonal direction. As can be seen the agree-
ment is fairly good up to θ = 0.106, where some discrepancies start appearing.
This can be used as a limit for our model. This limit is reached with high cover-
ages when the adsorbate-adsorbate interaction plays a more important role in the
diffusion dynamics, giving rise to the formation of certain structures and collective
phenomena. In such a case, the average motion of the adsorbates is slower and they
feel the force exerted by its neighbors for longer times. The Markovian approxima-
tion then breaks down and not only memory effects but also the collective dynamics
have to be taken into account.
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Fig. 4 Numerical (squares) and experimental (triangles) dependence of Γ on ∆K, at T = 200 K
(black/solid) and T = 300 K (red/dotted), and different values of the coverage: (a) θ = 0.028, (b)
θ = 0.064, (c) θ = 0.106, and (d) θ = 0.18. Blue symbols represent LMD simulations at T = 200 K
(stars) and T = 300 K (solid circles)

Finally, it is also interesting to show the results for the Q peak width when dif-
fusion is measured along the parallel direction, as displayed in Fig. 5. Experimental
results have been carried out for low coverage and again the agreement with our
model is fairly good, as can be seen in Fig. 5a.

5.2.2 Contribution of Running and Bound Trajectories

Equation (48), with free parameters, allows to distinguish the contributions arising
from the unbound or diffusive motion and the bound or vibrational one. As seen in
Fig. 6, (48) fits very well the numerical results obtained for the corrugated surface
potential in both cases. Though fitted and nominal values are different, their order
of magnitude and trend are correct. The fitted values of α are: α1 = 2.94% for θ1

and α2 = 4.10% for θ2. According to these values, it is clear that the contribution to
I(t) primarily arises from the bound trajectories – or, in terms of the real dynamics,
from the long times spent by the trajectories inside the potential wells. Note from
(4) that running trajectories lead to a relative much faster decay of I(t) than the
bound ones, which delays such a decay. As stated in Sect. 4.3, the bound motion
keeps correlations for longer times than the diffusive one, since the latter provokes
a fast loss of phase among the (correlation) oscillating terms that appear in the r.h.s.
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Fig. 5 Dependence of Γ on ∆K for the parallel direction (black/square) at T = 200 K and two
values of the coverage: (a) θ1 and (b) θ2. Gray triangles in part (a) represent the experimental
observations
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Fig. 6 I(∆K, t) for Na on Cu(001) at ∆K = 1.23 Å−1 and two different coverages: (a) θ1 = 0.028
and (b) θ2 = 0.18. Open circles indicate the numerical values obtained from the simulation and
solid lines are the numerical fitting using (9)

of the first equality in (4). In this way, this explains, first, that S(ω) is about two
orders of magnitude broader in the flat case than in the corrugated one (see Fig. 3).
And, second, since α2 > α1 there is a slightly larger fraction of running trajectories
for θ2, which leads to an also slightly faster decay of I(t), and therefore to observe
broadening in S(ω) with increasing θ . It is worth stressing that a larger fraction of
running trajectories does not mean more diffusion (which decreases with increasing
θ ), but only less particles inside the wells.

6 Conclusions

The good agreement between the experimental data and the results obtained from
the ISA approximation including the adsorbate-substrate interaction gives an insight
of how important this interaction is in surface dynamics. These simulations together
with the theoretical analysis presented here not only provide a complete view of
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what is happening along the surface, but it also explains the experimental line-shape
broadening of the Q peak ruling the diffusion process as a function of the coverage.
Moreover, for its simplicity and low computational cost is the best tool for experi-
mentalists who want a simple, reliable method for explaining their observations. We
think that our approach sheds some light on the physics involved in surface diffu-
sion, and has helped us to find the main reason for the corresponding broadening
which is the vibrational motion induced for the trapped adsorbates in the poten-
tial wells. Next step is to generalize Kramers’ turnover theory to the diffusion of
interacting adsorbates on a surface in order to infer more physical properties of
the diffusing adparticles from the experiment [35]. Moreover, quantum corrections
are under study which are thought to be important when the surface temperature is
decreased below 50 K [36].
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Abstract We review the interaction between molecular oxygen molecules involv-
ing the X 3Σ−g , a 1∆g and b 1Σ+

g states. The long radiative lifetimes of the excited
electronic states imply that collision-induced energy transfer becomes a key mecha-
nism to understand their role in a variety of physical and chemical processes ranging
from photochemistry to nanocrystals. However, due to the open shell nature of these
molecules and their weak intermolecular interactions, it is no easy to deal with prob-
lems involving these molecules both from the electronic structure calculation and
from the dynamical or structural point of view. We will focus on several models
recently developed in order to understand the outcome of recent experiments and
observations for which the energy transfer between several electronic states play an
important role as well as in the determination of accurate (rigid) full dimensional
potentials of the dimer for the three lowest singlet, triplet and quintet states, where
recent experiments and derived potential energy surface put ab initio theory on its
edge.

Keywords: Oxygen dimer, spin-orbit coupling, non-adiabatic couplings, atmo-
spheric chemistry, weakly bound complexes

J. Campos-Martinez, M. I. Hernández, M. Bartolomei, E. Carmona-Novillo
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1 Introduction

The dream of solving the Schrödinger Equation for complex systems is still quite
ahead of us yet our progress in such direction today is impressive. This is particu-
larly true when we refer to the calculation of molecular properties such as energy,
among others. Thus computation of potential energy surfaces (PES) even for some
big molecules can be now routinely carried out with close to chemical accuracy.
However there still are systems of small size for which the computation of a poten-
tial energy surface is a challenge as in the case of weak intermolecular forces in open
shell systems [1]. The main reasons for this lie on the fact that most accurate ab initio
methodologies [1], such as SAPT and CCSD(T), cannot in general be applied since
they are based on a single configuration description of the electronic structure, while
in most cases this scheme is not suitable and multiconfigurational approaches are
needed. Multireference ab initio methodologies are applicable in general but cannot
be expected to approach high accuracy given their inherent limitations, such as size
inconsistency. Bridging the gap between single and multireference methodologies is
therefore an area of active research [2–4]. Additional complications arise due to the
presence of low-lying electronic states that nearly always imply a breakdown of the
Born-Oppenheimer approximation. In turn, these difficulties yield a rich variety of
physical effects that can then appear in those systems: non-radiative processes such
as internal conversion and intersystem crossings determining the associated energy
transfer and reaction mechanisms.

In this report we will present some results that have been obtained over the last
few years concerning the molecular oxygen dimer, its interactions and dynamics.
Without being exhaustive, we list below several areas where the topics covered here
could be of interest.

(a) The processes involved in the physics and chemistry of the atmosphere [5].
Molecular oxygen in its two lowest excited electronic states are easily generated
in the upper atmosphere by three body recombination involving oxygen atoms.
Besides, these molecular states posses relatively large radiative lifetimes which
enable them to actively participate in the photochemistry of the atmosphere gener-
ating a rich dynamics for non-radiative decay processes and chemical reactions. In
order to clarify these processes, many spectroscopical techniques have been applied
in laboratory measurements [5]. Among many interesting findings, the group of
Slanger has detected the formation of highly vibrationally excited states for sev-
eral electronic states of O2, including the ground X3Σ−g and lowest-lying, a1∆g and
b1Σ+

g , excited states. Although a significant amount of data has been produced,
such as vibrational distributions [6] and state-selected removal rates [7–13], some
peculiar features observed point out the need of uncovering the underlying energy
transfer mechanisms. In this respect, theoretical studies of vibrational-to-electronic
(V-E) energy transfer processes in O2(v)+O2 collisions are in demand, and one of
our objectives is to present several models in this direction.

(b) The chemical oxygen-iodine laser (COIL), where the population inversion
between the fine structure spin states of the atomic iodine is obtained through the
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collisional energy transfer process O2(a1∆g) + I(2P3/2) → O2(X3Σ−g ) + I(2P1/2).
Clearly, the efficiency of the process depends on the rates of competing quenching
mechanisms for the a1∆g state, such as self-quenching with O2 molecules in the
a1∆g and X3Σ−g states. Both theoretical and experimental characterization of such
processes is still underway [14, 15].

(c) Properties and structure in solid oxygen. The peculiar properties of molecular
oxygen carry on to the solid state [16, 17], where properties of a simple molecular
solid and of a magnet are combined. Several solid phases exist at room tempera-
ture and high pressures which exhibit a dramatic change of color as the pressure
is increased due to changes in the nature of the intermolecular forces, the detailed
explanation still being an area of active research [18–20]. One of the most interest-
ing open problems is the determination and explanation of the structural and optical
properties of the epsilon(ε) phase which is stable in a broad range of temperatures
and high pressures and which structure is still a matter of controversy, albeit very
recent studies [20, 21] suggest a basic unit composed of four molecules, O8 that
might reconcile previous data and proposed basic building blocks.

(d) The accurate determination of intermolecular potentials plays an important
role in the new and active field of cold and ultracold collision dynamics [22]. More-
over, paramagnetic molecules are thought to be good candidates for buffer gas
cooling and trapping [23], which are basic steps needed in generating ultracold con-
ditions. Preliminary studies on the O2 + O2 ultracold collision dynamics have been
performed [24, 25] but no definitive answer concerning their practical use could be
obtained. The decisive answer could depend on the accurate determination of the
interaction potential and its spin-dependence. To this end, it will be critical a correct
description of the dimer geometry as well as its spectral features [26–28].

The present review is concerned with collision-induced electronic energy trans-
fer processes involving oxygen molecules, related to topics (a) and (b) above. The
subject has been studied already for many years, yet there remain many unsolved
questions. The aim will be to provide some theoretical insights and possible explana-
tions for some recent experiments and observations. We also like to present some of
our more accurate results concerning the intermolecular potential for the monomers
in their ground electronic state, in connection with accurate hot beam experiments,
of relevance for topics mentioned in (c) and (d). In the first case it is worthy to men-
tion that not only the production of an accurate potential is problematic but also the
computation of dynamical or structural properties. Indeed the oxygen molecule can
be considered as a “heavy” one with the consequence that rotational levels are much
closer than in systems consisting of “light” molecules as could be, for instance,
hydrogen (where only recently full quantum mechanical calculations have been per-
formed for rovibrational processes, see Ref. [29]). This feature made calculations
extremely computationally demanding since convergency is reached after including
many rotational channels. The presence of electronic manifolds further complicates
calculations since extra channels have to be added, that in cases of spin degener-
acy is even worse since new couplings, such as spin-rotation are to be included. It
is therefore, necessary to resort to some kind of approximations. In our work we
have used reduced dimensionality models for the dynamics with high level ab initio
points for the potential.
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The review will begin with a general description of the dimer. We will then
present a model for collision induced spin-orbit coupling explaining some exper-
iments due to Wodtke [7, 9]. In the following section we report calculations con-
nected with laboratory experiments and field observations in the Slanger group
[5]. Finally, progress in the development of accurate intermolecular potentials for
the singlet, triplet and quintuplet multiplicities of O2(3Σ−g )−O2(3Σ−g ) is briefly
presented in the last section.

2 The O2(v)+O2 System

What makes molecular oxygen such an interesting species is both the fact that it
possesses very low-lying excited states, as it is shown in Fig. 1, and that it is a stable
radical in its ground X3Σ−g electronic state. Furthermore, its two lowest excited
states, a1∆g and b1Σ+

g , have relatively large radiative lifetimes (tens of seconds for
the first and more than one hour for the second [5]), which leads these states to play
a significant role in a variety of processes.

We consider here the interaction between two oxygen molecules correlating
asymptotically with the states X3Σ−g +X3Σ−g , a1∆g +X3Σ−g , b1Σ+

g +X3Σ−g . In order
to analyze and discuss the complexity and possible schemes to treat different pro-
cesses within this system, it is useful to inspect which states arise when two diatomic
fragments approach each other. To simplify we consider a given C2v geometry of the
dimer with the z axis along the intermolecular distance (which corresponds to an H
geometry in the minimum of the van der Waals well [30, 31]). In this situation the
three lowest electronic states of the oxygen molecule lead to nine possible states
which are described in Table 1.

Note that when the two O2 diatoms approach each other in different electronic
states, either the one or the other can be in the higher state, which produces a dou-
bling of the number of states [32] for the two excited dissociation limits. The states

Fig. 1 Low-lying electronic
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Table 1 States in the oxygen dimer

Asymptotic states Intermolecular states

X3Σ−g +X3Σ−g 1A1, 3A1, 5A1

a1∆g +X3Σ−g 3A1,3B1,
3 A1,3B1

a

b1Σ+
g +X3Σ−g 3B1,3B1

a There is a doubling in the number of states.

appearing in Table 1 are degenerate in the asymptote but they can split as the two
diatomic fragments approach each other. The problem is further complicated by
the existence of avoided crossings leading to non-adiabatic coupling and also by
spin-orbit coupling. In all cases, except for a spin-orbit coupling between the states
X 3Σ−g0 and b 1Σ+

g0 already existing in the diatomic, all coupling terms – nonadiabatic
and spin-orbit – are strictly zero in the O2 +O2 asymptotic limit.

3 Effects of Spin-Orbit Coupling in O2(X3Σ−g , v� 0) +
O2(X3Σ−g , v = 0) Collisions

In a series of laboratory experiments carried out with the Stimulated Emission
Pumping (SEP) technique, the Wodtke group [7, 9] found an unexpected sharp
increase in total depletion rates of O2(X3Σ−g , v� 0) by O2(X3Σ−g , v = 0). These
measurements together with previous studies due to the Slanger and Smith groups
[33, 34], for the low vibrational excitation regime, gave a rather complete picture
of the relaxation process for a whole range of initial vibrational states. The results
showed a typical behavior of the total depletion rate (the rate constant for disap-
pearance of the initially prepared v state) with a smooth negative slope, as the initial
vibrational state increases, up to a given vibrational number, around v = 18− 19,
where the slope changes and the rate increases moderately with v. This trend was
maintained up to vibrational states below v = 25, above which a sharp jump in the
depletion rate was observed by Wodtke (at two different temperatures). The first
change in the slope and, even, the quantitative values were well explained theoret-
ically [35, 36]. Thus, the first change in the slope was attributed to the alternative
energy transfer mechanism (see Ref. [36]) dominating at each vibrational regime
(vibrational-to-vibrational, V-V for the low v, and vibrational-to-translational, V-T
for the high v). Furthermore there had been also a good agreement regarding the
final product states, with the channels v−1, v−2 being predominant. No theoreti-
cal treatment was, however, able to explain the sharp jump for the highest vibrational
levels.
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The deep disagreement between theory and experiment, the fact that in that v
region, no v− 1 channel was experimentally detected as a product and finally the
circumstance that the initial O2(X , v = 27)+ O2(X , v = 0) state was already above
the energy needed to form ozone, allowed the Wodtke group to propose that there
was a “dark channel” (1) and that this was due to ozone formation through the
reaction (2)

O2(X ,v� 0)+ O2(X ,v = 0) → ? (1)

O2(X ,v� 0)+ O2(X ,v = 0) → O3 + O. (2)

The idea was tempting at that time since, besides the previous arguments, this
reaction would provide an additional source of ozone that was needed to reconciliate
the ozone measured in the stratosphere and the ozone appearing in the simulations
(the so called “ozone deficit problem” [37]). With these premises we undertook the
first quantum mechanical calculation [38] within a reduced dimensionality model
on the Varandas and Pais [39] PES. Our results, later confirmed by new quantal
calculations by Lauvergnat and Clary [40] within the same dynamical model but
with a newly computed ab initio surface, showed that although there was reaction,
the rates so obtained were too small to explain the sharp increase in depletion rates.
In view of the previous results, efforts were directed toward other possibilities, and
thus we also suggested that there was an enhancement of vibrational relaxation [41,
42] due to the presence of the reactive channel. The simulations using the same
potential and dynamical model than that of the reactive calculations indicated that
there was indeed an enhancement that was suppressed when the reactive channel
was blocked – following the previous trend in relaxations rates computed so far
using non-reactive PES – but unfortunately the populations analysis gave the v−1
channel as the most important one for relaxation in contrast with the experiment
where monitoring of that channel gave no significant population after the collision.
Next, it was also suggested the possibility of a four center reaction (the one in which
two bonds are broken and formed during the reactive event). Electronic structure
calculations [43,44] indicated, however, that large vibrational excitation was needed
in both colliding partners given the geometry of the transition state. The problem of
the “dark channel” remained then an open question.

More recently, spectroscopic studies of the diatomic O2 by the same Wodtke
group [45], found a spectral perturbation of O2(X3Σ−g , v = 28) and it was
attributed to both the near resonance and spin-orbit coupling between that state and
O2(b1Σ+

g , v = 19). An analysis of the spin-orbit couplings as a function of the O2

vibrational coordinate and the intermolecular separation in the (O2)2 dimer was
then performed [46] , based in ab initio calculations. It was shown the persistence at
short intermolecular distances of the spin-orbit couplings already existing in O2, and
the appearance of a significant collision-induced spin-orbit coupling, both features
being relevant to the process (1).

In order to gain a further insight onto the energy transfer mechanisms, it is clear
the need for more accurate treatments based on the ab initio calculation of poten-
tial energy surfaces, associated coupling terms and subsequent quantum scattering
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calculations. We therefore considered the following processes as a possible outcome
for (1)

O2(X ,v)+ O2(X ,v = 0) → O2(X ,v′)+ O2(X ,v = 0) (3)

O2(X ,v)+ O2(X ,v = 0) → O2(a,v′)+ O2(X ,v = 0) (4)

O2(X ,v)+ O2(X ,v = 0) → O2(b,v′)+ O2(X ,v = 0). (5)

Due to the very specific nature of the dimer (O2)2, where two open-shell systems
interact, there have been very few studies on this system suitable to characterize V-E
energy transfer processes by means of ab initio quantum chemistry methods. In fact,
the present study of processes (4) and (5) based on a full quantum treatment was, to
our knowledge, the first one to be carried out [47–49]. Only very recently, Liu and
Morokuma [15, 50] have undertaken a determination of the oxygen dimer potential
energy surfaces up to the a1∆g + a1∆g manifold by means of multiconfigurational
ab initio methods, but the calculation of the associated spin-orbit coupling terms was
restricted to the minima of the crossing seams. Similar calculations were performed
by Vach et al. [51] but for a fixed intermolecular distance of the oxygen molecules
for the states considered.

The potential energy and spin-orbit coupling surfaces suitable to characterize the
latter two V-E mechanisms were computed [48] from multiconfigurational ab initio
methods. In order to keep the problem tractable, we employed a reduced dimension-
ality model corresponding with the geometry described in Sect. 2, that included one
active vibration (that of the vibrationally excited diatomic) and the intermolecular
distance between the center of mass of the two oxygen, keeping at the equilibrium
distance the bond length of the other oxygen molecule. We focused then on the
determination of the ground singlet A1 state and two excited triplet B1 states which
asymptotically correlate with the X3Σ−g , a1∆g and b1Σ+

g states of O2, respectively.
These three potential energy surfaces and their spin-orbit coupling terms were

employed to treat the dynamical problem associated with the processes (4) and
(5), by means of quantum scattering calculations based on the Close-Coupling
method [47]. The effects of the first triplet and quintet A1 states to processes (3, 4, 5)
were also incorporated by considering their specific spin multiplicities to construct
the associated spin-orbit coupling terms with the two excited triplet B1 states. The
results gave a positive answer on the possibility that process (1) were due to V-E
energy transfer. However, with our ab initio PES the near degeneracy between vibra-
tional states of electronic manifolds O2(X3Σ−g ) and O2(b1Σ+

g ) was found between
v = 30 and v = 21. This result reveals the difficulties of ab initio methods in leading
results of spectroscopical accuracy for asymptotic fragments.

Therefore, we decided, in order to obtain a much closer agreement with exper-
imental data, to include accurate RKR diatomic potentials [52] for the fragments
but keeping the same ab initio interaction potential. By doing so, one can determine
Boltzmann-averaged depletion probabilities, by means of

Ii(v,T ) =
1

KBT

∫ ∞

0
Pi

v(Ek)e
− Ek

KBT dEk (6)
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Fig. 2 Boltzmann-averaged
depletion probabilities for
O2(X3Σ−g , v) colliding with
O2 at T = 465 K: (•) V-
T+V-E; (�) V-T; (♦) V-E to
a1∆g; (©) V-E to b1Σ+

g . The
inset shows the experimental
values [7–9] of the total
quenching rate coefficients
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for the vibrational levels of O2(X3Σ−g ,v) induced by collision with O2, including
the vibrational-to-translational (V-T) energy transfer as well as V-E energy transfer
to the a1∆g and b1Σ+

g states. In Eq. (6), KB, is the Boltzmann constant, T is the
temperature, Ek the relative kinetic energy, whereas Pi, can be the total inelas-
tic probability (that account for the total process (V-T + V-E), or in other words
one minus the elastic probability), or total inelastic probabilities for going to states
X3Σ−g , a1∆g, b1Σ+

g . The values provided by this equation, for each energy transfer
process, are displayed in Fig. 2 for a kinetic temperature of 465 K. It is readily seen
that, up to v = 26, the main part of the depletion is due to a V-T mechanism, whereas
for v > 26 the main contribution comes from V-E energy transfer. The sudden jump
found at v = 28 relates to the very efficient V-E process:

O2(X ,v = 28)+ O2 → O2(b,v = 19)+ O2 (7)

due to a near degeneracy between the O2(X3Σ−g , v = 28) and O2(b1Σ+
g , v = 19)

states of the diatom, which had been already pointed out experimentally. The close
analogy between the theoretical results and the features displayed by the experimen-
tal depletion rates demonstrates that V-E processes are at the origin of the observed
“dark channel”. It is also very interesting to note that following level v = 28, the
slope for higher vibrational states continues that of v = 27 and below, that is to
say, what we really see is a large “peak” at the resonant level, overimposed to a
relatively moderate slope. Unfortunately the experiments could not be carried on
for levels higher than v = 28. Experimental measurement of just the next following
level, v = 29, could confirm the conclusions of this work.

The model is, of course, incomplete, letting aside the fact that no rotation is
included, we have to mention that some depletion processes are missing in our the-
oretical description. Among the limitations we cite the specificity of V-E energy
transfer from the first triplet and quintet A1 states of the dimer, which is only
accounted for in an approximate manner in the present model. The possible presence
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of non-adiabatic couplings to nearby states at these high levels and their influence
cannot be completely ruled out.

Finally we would like to comment that besides the model presented above, there
are much more approximate treatments that can guide us into gross features of
these processes, for instance the Distorted Wave Approximation (see Ref. [49] for
details.). Nevertheless, information about the intermolecular potentials and associ-
ated coupling terms are clearly needed to discriminate between the possible V-E
processes and properly reproduce their relative strength.

4 Nonadiabatic Coupling Effects in O2(b1Σ+
g , v)+O2 Collisions

So far, we have concentrated in processes for which the presence of collision-
induced spin-orbit coupling is important, and in the high vibrational level regime.
There are however other observations and experiments that show interesting and
puzzling features. In the year 2000, the Slanger group reported for the first time
the vibrational distribution of the b1Σ+

g state in the nightglow emission of the
Atmospheric band system, for vibrational levels from v = 0 up to v = 15. Data
collected for the upper Earth’s atmosphere [6] display a vibrational distribution of
O2(b1Σ+

g , v) with maxima at v = 0, v = 3−4 and v = 12, and a marked minimum at
v = 8. The maximum peak at v = 0 is easily understood by the absence of efficient
quenching mechanisms for the ground vibrational level, however an understanding
of the other maxima and minima is more complicated and it requires the knowl-
edge of the possible routes of removal and their corresponding rates. In order to
clarify these observations, several laboratory measurements had been carried out to
investigate the collisional removal of O2(b1Σ+

g , v) by different colliders [11–13].
Conclusions reached from theses experiments indicated that already for v = 1 the
oxygen molecule is several orders of magnitude more efficient than others (i.e.,
N2) as a quencher. The removal of O2(b1Σ+

g , v) by O2 was found to impressively
decrease its efficiency as v increases from v = 1 to v = 3. After analysis of the tem-
perature dependence of the rates [13], which showed an Arrhenius behavior, Slanger
and coworkers suggest that an electronic energy transfer mechanism was dominant

O2(b,v1)+ O
′
2(X ,v = 0)→ O2(X ,v2)+ O

′
2(b,v = 0), (8)

(where primes are used to label the identity of the molecules). Propensity rules for
the previous process where studied by Kirilov [53] using the Rosen-Zener model,
achieving a qualitative agreement with the experiments, but the mechanisms causing
this process has not been investigated yet.

We have decided to investigate the presence of electronic pathways by consid-
ering the effect of non-adiabatic radial couplings in the quenching of O2(b1Σ+

g , v)
by oxygen. To this end, an almost complete map of collision-induced nonadiabatic
couplings between the states given in Table 1 was determined from multiconfigura-
tional ab initio calculations at the CASSCF level of theory. This was done with the
aim of determining the range of nuclear geometries mapped by each nonadiabatic
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coupling, and, by doing so, to check the validity of an electronic basis set truncation
in dynamics calculations, since we want to deal with a particular avoided cross-
ing region. The computation of nonadiabatic coupling matrix elements (NACMEs)
between each pair of states relied on the analysis of configuration mixing coeffi-
cients [54, 55], using the O2 + O2 asymptotic limit as a reference geometry. The
results were successfully checked along each degree of freedom by calculating the
NACMEs through a three-point finite difference method. For the two excited triplet
B1 states of interest, those correlating with the b1Σ+

g + X3Σ−g states, we found that
the states mixing produced by exchange interactions between the oxygen molecules
yields a large value for the NACME. The associated range of nuclear geometries
along the r coordinate extends as the two molecules approach each other, but, up to
relatively short intermolecular distances, the interaction region was found to be basi-
cally isolated from other avoided crossing regions. Consequently, a two state model
is thought to be valid to treat the energy transfer which affect the low vibrational
levels in process (8).

The dynamical problem was solved using a diabatic representation for the cou-
pled electronic states. The diabatic representation was retained since it allows to
circumvent the singularity of the NACME at the locus of the crossing in the adia-
batic representation. An orthogonal adiabatic-to-diabatic transformation was thus
performed, using the two-state mixing angle yielded by ab initio calculations.
This led to diabatic intermolecular potentials and electronic coupling terms which
are smooth functions of the internuclear distance. Using again the RKR diatomic
potentials [52], we performed quantum scattering calculations [56] based on the
Close-Coupling method to determine the Boltzmann-averaged depletion probabili-
ties for the process (8). Note that in the present case the potential energy surfaces
had to be corrected for the zero-point energies of the diatoms.

We report in Fig. 3 the computed Boltzmann-averaged depletion probabilities
for the low vibrational levels v = 1−3 considered in experiments [13]. Clearly, the
overall behavior displayed by the measured rate coefficient is not correctly repro-
duced by our theoretical calculations when only V-T energy transfer is accounted
for. However, by including the energy transfer processes, one obtains a temperature
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Fig. 4 Full squares, full lines,
Total emission Intensity, taken
from Ref. [57]. Open circles,
dashed lines, Boltzmann-
averaged probabilities for
O2(b1Σ+

g , v) colliding with
O2 at T = 200 K. Verti-
cal lines have been drawn
at the minima of averaged
probabilities as a guide to the
eye
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dependence for the depletion probabilities which is much closer to that followed by
the measured rate coefficient, with a propensity rule for the depletion processes
favoring low values of v in good agreement with the experimental observation.
Furthermore, our theoretical model shows that the process (8) corresponding with
v3 = v1 was by far the most efficient, which is understood in terms of a favorable
energy mismatch.

We have also studied the depletion process (8) for higher vibrational levels of
O2(b1Σ+

g , v), and the results are shown in Fig. 4 at a given temperature. As can be
seen, dramatic changes are observed in the rate of process (8) according with the
vibrational level selected. Such variations were found to agree with strong changes
in energy mismatches associated with the vibrational levels of O2(b1Σ+

g , v1) and
O2(X3Σ−g , v2) involved in the V-E energy transfer, with v2 = v1− 1,v1− 2 as a
propensity rule for the higher vibrational levels. Interestingly, the vibrational dis-
tribution of O2(b1Σ+

g , v) molecules observed in the upper Earth’s atmosphere [6]
displays (full squares, full lines of Fig. 4) two maxima at v = 3−4 and v = 12, and
a marked minimum at v = 8, which is just opposite of the trend obtained for the
depletion probabilities shown in Fig. 4, with open circles. This strongly suggests
that process (8) is at the origin of the sharp changes observed in the vibrational
distribution of O2(b1Σ+

g , v) molecules, which would demonstrate that nonadia-
batic couplings can have sizeable effects on the steady-state populations of oxygen
molecules in the Earth’s atmosphere.

5 Potential Energy Surfaces for the Three Lowest States
in (O2)2 Dimer

As pointed out in the Introduction, even if the computation of PESs is nowadays
easily carried out for molecules containing tens of atoms there still are small size
systems that, due to their open shell character and to the weak van der Waals interac-
tion involved, represent a true challenge for modern quantum chemistry especially
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if a high accuracy for the determination of the intermediate and long range com-
ponents of the intermolecular forces is required. This is the case of oxygen dimer
in which both molecules are in their ground electronic and vibrational state. In fact
the interaction potential in this dimer depends not only on the distance and rel-
ative orientation between molecules but also on the orientation of the molecular
spin. This results in three different PESs corresponding to the singlet, triplet and
quintet states of the dimer arising from different spin coupling of the monomers.
Unfortunately the most accurate ab initio methods such as CCSD(T) (or SAPT)
which properly include dynamical electronic correlation at high order (needed for
an optimal determination of the weak intermolecular forces) rely on the validity
of a single reference of the wave function and can be applied only for the quintet
state of the oxygen dimer. For the remaining states it is mandatory to use mul-
ticonfigurational based methods such as Multireference Configuration Interaction
(MRCI). Recently [58] accurate intermolecular potentials were obtained for the O2-
O2 main four geometric configurations through the combination of results carried
out with both CCSD(T) and MRCI methodologies. In order to test the reliability
of the obtained results a stringent test was to compare with precise experimental
measurements carried out by Aquilanti et al. [59] who also provided an empirical
PESs (Perugia PES) determined through a multiproperty analysis. The main issue of
these experimental data is that some of them (namely those obtained with effusive
O2 molecular beams) mainly probe the isotropic interaction acting within the dimer.
In particular the glory effect interference measured for thermal collision energies
permits to estimate with great accuracy both potential well area and long range tail
of the interaction. After estimating an approximate isotropic interaction the cross
sections were computed and compared, as shown in Fig. 5, with both experimen-
tal results and predictions carried out with previous semi-abinitio PESs obtained by
Bussery and Wormer (BW) [30] by combining ab initio first order electrostatic and
exchange interactions with semi-abinitio second order long range energies. It can be
seen that BW results predict a glory pattern which is dephased with respect to the

Fig. 5 Comparison of the
total integral cross section
measured from the rotation-
ally “hot” molecular beam
experiment and computed
using full ab initio [58] (solid
line), semi-abinitio [30] (dot-
ted line) and Perugia [59]
(dashed line) PESs

500 1000 1500 2000
velocity v , m s

-1

4.4

4.6

4.8

5.0

ab initio
BW
Perugia PES

Q
(v
) v
2/
5   ,

 1
03 Å

2  m
2/

5  s
-2

/5

4.2



Interactions and Collision Dynamics in O2 +O2 399

experimental one. This marked difference suggests that the isotropic potential well
area needs to be much larger. An improvement can be observed for the full ab initio
results which are much closer to the experimental findings indicating that the poten-
tial well is approaching that probed by the experiment. Nevertheless a certain gap
still remains and can be attributed in the first instance to the approximated isotropic
potential, which was carried out starting from only four limiting geometries, but
probably also to the difficulties in achieving accurate PESs for the singlet and triplet
states. Further investigations devoted to clarify these issues are in progress [60].

6 Conclusion

The open-shell nature of oxygen molecules leading to many interacting electronic
manifolds, and the high symmetry of the (O2)2 dimer complex make collisions a
complex subject to be treated theoretically. We hope we have shown that even in this
case it should be possible to develop adequate models that, while being approximate,
can reproduce the main specific features of a given process and to shed light on the
microscopic underlying mechanisms supporting experimental data.

The purpose of the present contribution was to provide theoretical insight into the
puzzling mechanisms associated with O2(v)+O2 collisions, when the ground state
X3Σ−g and lowest excited states a1∆g and b1Σ+

g of the diatoms are involved. Among
the rich variety of V-E energy mechanisms available, we focused on two particular
processes, for which accurate theoretical treatments, based on ab initio calcula-
tions of potential energy surfaces, associated coupling terms and quantum scattering
calculations, were employed within a reduced dimensionality model. Within this
scheme, we studied V-E energy transfer mechanisms involved in the removal of both
O2(X3Σ−g , v) and O2(b1Σ+

g , v) by O2, the two processes being mediated through
spin-orbit and nonadiabatic radial couplings, respectively, between the states of the
dimer.

In the two cases, it was found that state mixing within the molecular complex
were at the origin of significant collision-induced coupling terms, and, subsequently,
of significant V-E energy transfer. We hope to have shown that if a careful design of
the theoretical model is made, we are able to mimic the sharp changes observed in
the experimental removal rate coefficients, whose origin had been a matter of debate
for over a decade. Our theoretical work has provided the most thorough and best
supported analysis on the nature of the ’dark channel’ to date. Furthermore, we have
made predictions on the expected behavior of relevant dynamical properties of the
system such as state-selected electronic relaxation rates which await experimental
confirmation.

Finally we would like to stress that there is ample room for improvements in
the models presented here. One way is to include more possible (electronic) mech-
anisms that can complete the picture exposed in Sect. 3 and that, also, they could
explain the origin of another interesting finding, the one reported by Jongma and
Wodtke [10] of a fast multiquantum vibrational relaxation of vibrationally excited
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oxygen molecule, which has no complete explanation up to date. Clearly, other
way is to add more degrees of freedom and in particular that of rotation or allow
the system for V-V pathways. In this last case it is of crucial importance an accu-
rate determination of PES with the difficulties mentioned in Sect. 5 to which it
must be added the complications in dealing with high vibrational states and the
corresponding couplings.
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The Non-Adiabatic Molecular Hamiltonian:
A Derivation Using Quasiparticle Canonical
Transformations

Ivan Hubač(✉) and Stephen Wilson

Abstract The interaction between electrons and phonons in molecules is investi-
gated using a formulation in which the total molecular Hamiltonian is subjected to
two canonical transformations. The first of these transformations, which we term
the normal coordinate transformation, passes from a crude representation, which
we term the clamped nuclei representation, in terms of basis functions defined with
respect to some fixed geometry of the nuclei, R0, to a representation in terms of
basis functions depending on R. This transformation mixes electronic and vibra-
tional motions and leads to a simple formulae for adiabatic corrections. The second
transformation, termed the momentum transformation, leads to a non-adiabatic (or
diabatic) representation. Each representation supports a different partition of the
total molecular Hamiltonian into a zero-order (or reference) Hamiltonian and a
perturbation. For each representation, quasiparticles, i.e. renormalized electrons
and phonons are defined will provide the theoretical apparatus required for the
description of the electron-phonon interaction.

Keywords: non-adiabatic hamiltonian, quasi-particle canonical transformations,
electron - phonon interaction

1For a review see Sutcliffe [1–5].
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1 Introduction

Many-body quantum methods are most often applied to molecules after invoking
the Born-Oppenheimer or adiabatic approximation thereby separating the electronic
and nuclear motion problems.1 The motion of the electrons is considered in the field
of clamped nuclei. Then the motion of each of the nuclei takes place in an effective
potential due to the electrons and the other nuclei in the system. The separation of
electronic and nuclear motion underpins the concept of molecular structure, an idea
which lies at the heart of much chemistry [6].

The many-electron problem can be successfully treated using ‘many-body’
methods2 – many-body perturbation theory, cluster expansions, or hybrid meth-
ods, such as the method designated CCSD(T) which combines the use of a coupled
cluster expansion with perturbative estimates of higher order (triple excitation)
effects.

The Born-Oppenheimer approximation and adiabatic approximation break down
when, for a given configuration of the nuclei, the electronic states are degenerate
or quasi-degenerate. Recent years have witnessed a growing interest in the simul-
taneous description of electronic and nuclear motion. As early as 1969, Thomas
published two papers [9, 10] in which a molecular structure theory was developed
without invoking the Born-Oppenheimer approximation. In these publications and
two further papers published in 1970 [11, 12], Thomas studied methane, ammonia,
water and hydrogen fluoride adding the kinetic energy operators of the protons to the
electronic hamiltonian and using Slater-type orbitals centred on the heavier nuclei
for the protonic wave functions. Over the years, a number of authors [13–21] have
attempted the development of a non-Born-Oppenheimer theory of molecular struc-
ture, but problems of accuracy and/or feasibility remain for applications to arbitrary
molecular systems.

In 2002, Nakai [23] presented a non-Born-Oppenheimer theory of molecular
structure in which molecular orbitals (MO) are used to describe the motion of indi-
vidual electrons and nuclear orbitals (NO) are introduced each of which describes
the motion of single nuclei. Nakai presents an ab initio Hartree-Fock theory, which
is designated “NO+MO/HF theory”, which builds on the earlier work of Tachikawa
et al. [24]. In subsequent work published in 2003, Nakai and Sodeyama [25]
apply many-body perturbation theory to the problem of simultaneously describ-
ing both the nuclear and electronic components of a molecular system. In more
recent work, Nakai et al. [26] have presented a translation-free and rotation-free
Hamiltonian for use in nuclear orbital plus molecular orbital theory. In a com-
ment on this paper by Nakai et al., Sutcliffe [27] has suggested that their “chosen
rotational term is not unique and is not valid over all regions of space”. The
approach of Nakai et al. [26] was considered in some detail by one of us [28]
(for a review see also Wilson [29]) as a first step in the development of a liter-
ate quantum chemistry program for the simultaneous description of electronic and

2 For a review of ‘many-body’ methods and their application in molecular studies see Paldus [7]
and also Wilson [8].
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nuclear motion. In order to develop a theory for the motion of both the nuclei
and the electrons in a molecule, we write the total hamiltonian operator, H , as
a sum of an unperturbed or zero order hamiltonian, H0, and a perturbation, H1,
that is H = H 0 + λH1. Here λ is a perturbation parameter. We define a suit-
able independent particle model which can be used a reference for a diagrammatic
many-body perturbation theory for the motion of both electrons and nuclei. The
unperturbed hamiltonian operator is a sum of a kinetic energy term and an effec-
tive potential energy term H0 = T + U . The effective potential is a sum of a
nuclear and an electron component U = Un +Ue. It is a sum of one-particle terms.
The total wave function for a system of nuclei and electrons can be written as a
product of a nuclear component Φn = ‖ϕPϕQ...‖ in which ϕP is a single nucleus
state function, or nuclear orbital, and an electronic component Φe =

∥∥ϕpϕq...
∥∥ in

which ϕp is a single electron state function or molecular orbital. The single nucleus
state function or nuclear orbital is an eigenfunction of a Hartree-Fock eigenvalue
equation for the nuclear motion FnϕP = εPϕP in which the Fock operator has
the form

Fn = tn +
N

∑
P

(JP∓KP)+
n

∑
p

Jp = tn + un (1)

where the nuclear Fock potential is

un =
N

∑
P

(JP∓KP)+
n

∑
p

Jp.

The Hartree-Fock equations for the electrons have the form Feϕp = εpϕp where the
Fock operator is given by

Fe = te +
n

∑
p

(Jp−Kp)+
N

∑
P

JP = te + ue. (2)

The effective potential for the electrons is

ue =
n

∑
p

(Jp−Kp)+
N

∑
P

JP

which includes a mean-field coupling between the electronic and the nuclear motion.
Using the nuclear orbital–molecular orbital model as a reference, a practical dia-
grammatic many-body perturbation theory for the motion of electrons and nuclei
can be developed. However, this approach makes no use of the clamped nuclei
model and, therefore, the concept of an equilibrium structure does not arise nei-
ther does the idea of a potential energy curve or surface. The nuclear orbital–
molecular orbital model does not appear to distinguish between different molecular
structures.

The mixing of electronic states gives rise to vibrational-electronic states describ-
ing the coupled motion of electrons and nuclei. In solid state theory, the concept
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of the phonon, that is, a quantized mode of vibration in a rigid crystal lattice, has
been shown to be very useful [30]. The phonon can also be invoked in molecular
theory. For molecular systems, the phonon should be interpreted as a quantum of
vibration. The electron-phonon interaction arises in molecular theory when it is
taken beyond the Born-Oppenheimer approximation. In this work, we shall be con-
cerned with an approach to the non-adiabatic Hamiltonian, or the break-down of
Born-Oppenheimer approximation, using quasiparticle canonical transformations to
study the electron–phonon interaction.3 The use of quasiparticle canonical transfor-
mations was first explored in this context a paper by Hubač and Svrček published in
1988 (see also the subsequent paper by Svrček and Hubač [35] and two review arti-
cles [36, 37]). This approach uses the methods of quantum field theory to describe
systems of mixed quantum statistics [31]. Central to the approach described here
is the assumption that there is some reference configuration of the nuclei (usually
the equilibrium geometry). Furthermore, it is assumed that the potential function,
V , associated with the nuclear motion can be written as a Taylor series in terms of
the displacements from this reference geometry

V =V0+ 1
2! ∑

i, j
Wi j (Ri−R0i)

(
R j−R0 j

)
+ 1

3! ∑
i, j,k

Wi jk (Ri−R0i)
(
R j−R0 j

)
(Rk−R0k)

+ 1
4! ∑

i, j,k,l

Wi jkl (Ri−R0i)
(
R j−R0 j

)
(Rk−R0k)(Rl−R0l)+ . . . . (3)

In this expansion, Ri − R0i, R j − R0 j, . . . are the displacements and the force
constants, Wi jk..., are the derivatives of V for the reference geometry, i.e.

Wi jk... =

(
∂ nV

∂ (Ri−R0i)∂
(
R j−R0 j

)
∂ (Rk−R0k) . . .

)
0

. (4)

For small displacements, (for example, of the order of vibrational amplitudes at
room temperature) the terms in the above Taylor expansion are expected to converge
fairly rapidly. Higher order terms are successively smaller. (For large amplitude
vibrations, such as inversion or internal rotation, the above Taylor series is not
appropriate and the force constants are defined in a different way. For exam-
ple, a Fourier expansion is preferable for internal rotation. Such cases will not
be considered here.) Quasiparticle canonical transformations are used to obtained
dressed fermions and bosons suitable for the molecular vibrational-electronic prob-
lem. This approach has been used to develop a many-body perturbation theory for
vibrational-electronic problem in molecules [6, 38]. In related work the method of
quasiparticle canonical transformations has been used to investigate the effects of
nonadiabaticity in the theory of superconductivity using the fermionic part of the
vibrational-electronicHamiltonian [40].

3 This work is based, in part, on research carried out by the former Ph.D. students of one of us
(I.H.): M. Svrček [32–35], P. Babinec, J. Mášik.
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The nonadiabatic coupling between the electronic and nuclear motion mani-
fest itself in numerous and rather diverse phenomena. The theoretical study of
many problems in nanoscience and nanotechnology, necessitate the use of the
total vibrational-electronic Hamiltonian. Molecular wires or nanowires, of which
DNA is the prototype organic example [41] and Mo6S9−xIx is a typical inorganic
example [42], are nanostructures for which the underpinning theory mandates the
use of the total vibrational-electronic Hamiltonian. In molecular electronics, one is
usually concerned with open quantum systems in nonequilibrium (driven by volt-
age) [43, 44]. Because, in the theoretical description of such open systems, we are
not dealing with a fixed number of particles, the use of the methods of second
quantization is mandatory.

Chemical reactivity under extreme conditions – high pressure and/or temperature
– can differ drastically from that observed at ambient conditions. This is largely a
consequence of the substantial changes in the electronic structure induced by the
high pressure and/or temperature. For example, many reactions involve electronic
excited states and the energy gap between the ground and excited states may be
greatly reduced under extreme conditions [45].

The coupling of electronic and nuclear motion is known to be important in the
study of in scattering processes (see, for example, the work of Deumens et al.) [46].

We note that the development of the laboratory instruments, such as the scanning
tunneling microscope (STM) and the atomic force microscope (AFM), have facil-
itated manipulation single molecules and thus the investigation of single-molecule
electronics [47]. These and similar developments in experimental nanoscience must
be complemented by theoretical studies of molecular electronics. The theoretical
apparatus presented in this paper provides a firm foundation for the description of
electron-phonon interactions in molecules and molecular systems.

This paper is organized as follows: In Sect. 2 we consider the total molecular
Hamiltonian for an arbitrary molecular system. The Born-Oppenheimer approxima-
tion is introduced in Sect. 3. The vibrational-electronic Hamiltonian is considered in
Sect. 4. Corrections to the adiabatic Hamiltonian are considered in Sect. 5. In Sect. 6,
the generalization of the canonical transformations are introduced. Fermionic part
of the vibrational-electronic Hamiltonian obtained by means of the canonical trans-
formation is presented in Sect. 7. In Sect. 8, we make certain simplifications in order
to gain a deeper understanding of the new Fermion vibrational-electronic Hamilto-
nian. Summary of the present work and a short discussion of future directions is
given in Sect. 9.

The present paper provides an outline of our derivation of the non-adiabatic
molecular Hamiltonian using quasiparticle canonical transformations and a brief
discussion of the relation of our approach to other work on non-adiabatic effects
in molecules. A more detailed account is in preparation and will be published
elsewhere [48].
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2 The Total Molecular Hamiltonian

Our derivation begins in the body-fixed coordinates in terms of which clamped
nucleus Hamiltonian is defined.4 Internal motion is described in terms of nor-
mal coordinates which are expressed as displacements from some suitably chosen
reference equilibrium geometry. To first order, the internal motion of the molecule
is described in terms of small amplitude harmonic vibrations with respect to the
reference geometry.

The total molecular Hamiltonian operator in body-fixed coordinates may be
written

H(r, R) = H(r)+ V(r, R)+ T(r) (5)

where r denotes the spatial coordinates of the electrons and R the spatial coordinates
of the nuclei. In Eq. (5), H(r) is the sum of the kinetic energy of electrons and the
Coulomb interactions between the electrons. V(r, R) is the sum of attractive inter-
actions between the electrons and the nuclei, and the repulsive interactions between
the nuclei. The third term in Eq. (5), T(r), is the kinetic energy of the nuclei.

The problem to be solved is the time-independent molecular Schrödinger equa-
tion for the total molecular Hamiltonan operator (5). This equation may be written

H(r, R)Ψ(r, R) = EΨ(r, R), (6)

where Ψ(r, R) is the total molecular wave function and E is the corresponding total
molecular energy. As is well known, this molecular Schrödinger equation is very
complicated and can only be solved for the very simplest of systems. The total
molecular Hamiltonian in Eq. (6) depends on the spatial coordinates of all of the
electrons and nuclei in the molecular system. The wave function Ψ(r, R) depends
on both space and spin coordinates of all electrons and all nuclei in the system,
although the spin coordinates are not shown explicitly in Eq. (6).

3 The Born-Oppenheimer Approximation

Approximations to the solutions of the molecular Schrodinger equation, the eigen-
problem (6), can be developed by separating the electronic motion from that of the
nuclei. This is the essence of the Born-Oppenheimer approximation [49, 50].5

4 In brief, the molecular Hamiltonian defined in a laboratory-fixed frame is invariant under uniform
translations and can therefore be divided into two parts, one describing all translational motion and
the other (the space-fixed part) being expressed in terms of translationally invariant coordinates.
The molecular Hamiltonian is also invariant under orthogonal transformations in three dimensions,
and thus the space-fixed Hamiltonian can be written as the sum of a component expressed in terms
of rotation operators and a component depending on variables (internal coordinates) which are
invariant to orthogonal transformations.
5 For an English translations of the original paper by Born and Oppenheimer see Blinder [51].
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To this end, the electronic Schrödinger equation can be introduced as

[H(r)+ V(r, R)]ϕn(r, R) = En(R)ϕn(r, R) (7)

in which the Hamiltonian operator consists of the first two terms in the total molec-
ular Hamiltonian defined in Eq. (5). The eigenvalues, En(R), and eigenfunctions,
ϕn(r, R), in Eq. (7) depend parametrically on the coordinates of the nuclei, R.

The exact total molecular wave function, Ψ(r, R), in Eq. (6) can then be written
in the form of the summation

Ψ(r, R) = ∑
n

χn(R)ϕn(r, R), (8)

where ϕn(r, R) is the electronic wave function, one of the eigenfunctions of Eq. (7),
and χn(R) is identified as the nuclear wave function.

The equation describing the motion of the nuclei takes the form

∑
n

[Tmn(R)+Umn(R)]χn(R) = Eχm(R) (9)

where
Umn(R) = En(R)δmn, (10)

in which En(R) is an eigenvalue of the electronic Schrodinger Eq. (7), δmn is the
Kronecker δ function, and the matrix elements of the nuclear kinetic energy operator
are given by

Tmn(R) = T(R)δmn + λmn(R). (11)

The second term on the right-hand side of Eq. (11) is given by

λmn(R) =−h̄2 ∑
i

1
Mi

[
A(i)

mn(R)
∂

∂Ri
+

1
2

B(i)
mn(R)

]
(12)

where the summation runs over all nuclei, Mi is the mass of the ith nucleus and the
coefficients A(i)

mn and B(i)
mn are given by integrals

A(i)
mn =

∫
ϕ∗

m

∂ϕn

∂Ri
dr, B(i)

mn =
∫

ϕ∗
m

∂ 2ϕn

∂Ri
2 dr (13)

To make further progress, it will be assumed that the states do not display degen-
eracy, i.e. attention is restricted to the case in which the electronic state ϕn(r, R) is
taken to be non-degenerate. In this case, the Hamiltonian for the nuclei takes the
form

Hn (R) = T(R)+ λnn (R)+ En(R) (14)

and the molecular wave function has the form of a simple product of a nuclear
function, χn(R), and an electronic function, ϕn(r,R), i.e.

Ψ(r,R) = χn(R)ϕn(r,R). (15)
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This is the essence of the Born-Oppenheimer approximation and also of the closely
associated adiabatic approximation [50]. By neglecting the off-diagonal elements
λnm for n �= m, it has been possible to separate the system of electrons from that
of the nuclei. The electrons are described by the function ϕn(r,R), which depend
parametrically on the nuclear coordinates R. There are no transitions between the
different electronic states. The function En(R) in Eq. (14) is the potential energy
surface or adiabatic potential.

The second and third terms on the right-hand side of Eq. (14) can be replaced by
the expansion

λnn (R)+ En(R) ≈ E(0)
N +

1
2 ∑

i j
Wi j (Ri−R0i)

(
R j−R0 j

)
+ ... (16)

where E(0)
N is the energy associated with the reference geometry and the Wi j are the

expansion coefficients in a Taylor expansion which in second order are the harmonic
force constants.

Furthermore, the non-diagonal elements λnm (R) can be treated as a perturbation

which scales as
(

m
M

) 1
4 . The matrix elements A(i)

nm (R) and B(i)
nm (R), defined in Eq.

(13), are calculated with respect to the equilibrium or reference point R0.
The non-diagonal elements of λnm (n �= m) can be treated as a perturbation if

h̄ω

|E(0)
n −E(0)

m |
� 1. (17)

If this inequality is not satisfied then quasi-degeneracy effects are present and,
under such circumstances, significant coupling of vibrational and electronic motion
can arise.

4 The Vibrational-Electronic Hamiltonian

The total molecular Hamiltonian can be written in the form

H = HNN(R)+ HEE(r)+ HNE(r,R) (18)

where the first term on the right-hand side is the sum of the nuclear kinetic energy
and a term describing the repulsive interactions between the nuclei:

HNN(R) = TN(R)+ ENN(R), (19)

and the remaining terms are associated with the electronic motion and the attractive
interactions between the electrons and the nuclei:

HEE(r)+ HEN(r,R) = h + v. (20)
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Equation (20) defines the standard electronic Hamiltonian which is ubiquitous in
quantum chemistry for describing the electronic structure of molecules. In Eq. (20),
h is the one-electron operator, which is the sum a kinetic energy term and a nucleus-
electron attraction term. v arises from the electron-electron repulsions.

Using the method of second quantization [52–54], the electronic Hamiltonian
operator (20) can be written in the form

HEN +HEE = ∑
PQ

〈P|h|Q〉a+
P

aQ +
1
2 ∑

PQRS

〈PQ|v0|RS〉a+
P

a+
Q

aSaR (21)

where 〈P|h|Q〉 is a matrix element of the one-electron operator h and 〈PQ|v0|RS〉
is an element of the matrix for the two-electron operator v0 which now includes the
superscript ‘0’ to indicate that it is defined with respect to the equilibrium geometry
R0. These matrix elements are defined in terms of the spin-orbitals P, Q, . . .. a+

P
is

the usual creation operator and aQ is an annihilation operator.
By using Wick’s theorem in its normal product (N-product) form [55–57], the

Hamiltonian operator (21) can be written as

HEN +HEE = ∑
I

hII +
1
2 ∑

IJ

(
v0

IJIJ
− v0

IJJI

)
+∑

PQ

hPQ N
[
a+

P
aQ

]
+

+ ∑
PQI

(
v0

PIQI
− v0

PIIQ

)
N
[
a+

P
aQ

]
+

1
2 ∑

PQRS

v0
PQRS

N
[
a+

P
a+

Q
aS aR

]
(22)

In this equation, the indices I, J, . . . have been used to label spin-orbitals which
are occupied whilst P, Q, . . . have been employed for unoccupied (or virtual) spin-
orbitals. Here, and in the following, the indices A, B, . . . will be used to label spin-
orbitals which can be either occupied or unoccupied. N [. . .] is a normal product of
creation and annihilation operators. v0

ABAB
denotes a Coulomb integral and v0

ABBA
is

an exchange integral. The first two terms on the right-hand side of Eq. (22) can be
added to give the reference energy, usually the Hartree-Fock energy. The third and
fourth terms can be combined to yield a Fock operator, f which can be written as
the sum h + u where u is some mean field potential. Equation (22) then becomes

HEN +HEE = 〈Φ0|H |Φ0〉+∑
PQ

〈P| f |Q〉N [
a+

P
aQ

]
+

+
1
2 ∑

PQRS

〈PQ|v0|RS〉N
[
a+

P
a+

Q
aSaR

]
(23)

where 〈Φ0|H |Φ0〉 is the reference energy.
By considering the nuclear coordinate R at some point reference point R0 –

usually taken to be the equilibrium geometry in the Hartree-Fock approximation,
the terms in the Hamiltonian (23) can then be separated into two types:-

1. Terms which are determined at the reference point, R0

2. Terms which correspond to a change in the geometry with respect to the reference
point, R0. (A prime is used to distinguish these terms in the following discussion.)
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Rearranging the terms in Eq. (23) allows the electronic part of the vibrational-
electronic Hamiltonian to be cast in the form

HEN +HEE = E0
SCF + ∆E ′SCF +∑

P
εP N

[
aP

+aP

]
+∑

PQ

∆ε ′
PQ

N
[
a+

P
aQ

]
+

+
1
2 ∑

PQRS

v0
PQRS

N
[
a+

P
a+

Q
aSaR

]
(24)

where ∆E ′SCF is the change in the self-consistent field energy, E0
SCF , resulting from

a change in the geometry. ∆E ′SCF is given by

∆E ′SCF = u′SCF (25)

where
uSCF = ∑

I
uII (26)

In Eq. (24), ∆ε ′
PQ

is the change in the orbital energies, εP , following a change in the
geometry and is given by

∆ε ′
PQ

= V n′
PQ (27)

where
V n

PQ
= 〈P|V n|Q〉 (28)

in which

V n = ∑
i j

−zj e
2

|ri−R j| (29)

A Taylor expansion can be made in powers of the displacements (Ri−R0i) from
the reference point R0 for the term ENN describing the repulsion between the nuclei
in Eq. (19):

ENN = E(0)
NN + E ′NN =

∞

∑
i=0

E(i)
NN (30)

where i labels the order of the expansion coefficient E(i)
NN . A similar expansion for

uSCF can introduced

uSCF = u(0)
SCF + u′SCF =

∞

∑
i=0

u(i)
SCF (31)

Using the expansions (30) and (31), the vibrational-electronic Hamiltonian can be
expressed in the form

H = E(0)
NN + E(0)

SCF + TN +E(2)
NN + u(2)

SCF +∑
P

εP N
[
a+

P
aP

]
+

1
2 ∑

PQRS

v0
PQRS

N
[
a+

p
a+

Q
aSaR

]
+ E ′NN−E(2)

NN

+u′SCF −u(2)
SCF +∑

PQ

u′PQN
[
a+

p
aQ

]
. (32)
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The Hamiltonian operator defined in Eq. (32) is the complete vibrational-electronic
Hamiltonian and is entirely equivalent to (18).

It should be noted that in expression (32), the third, fourth and fifth terms on the

right-hand side, TN +E(2)
NN +U (2)

SCF , are associated with harmonic nuclear motion. The
boson (phonon) creation operator, b+

r
, and boson (phonon) annihilation operator, br ,

are define through the harmonic oscillator problem

TN + E(2)
NN + u(2)

SCF = ∑
r

h̄ωr

(
b+

r
br +

1
2

)
(33)

where ωr is the frequency of harmonic oscillation.
Substituting Eq. (33) into Eq. (32) gives

H = E(0)
NN + E(0)

SCF +∑
r

h̄ωr

(
b+

r
br +

1
2

)
+∑

P
εP N

[
a+

P
aP

]
+

1
2 ∑

PQRS

v0
PQRS

N
[
a+

p
a+

Q
aSaR

]
+ E ′NN−E(2)

NN

+u′SCF −u(2)
SCF +∑

PQ

u′PQN
[
a+

p
aQ

]
. (34)

All quantities in this equation are defined in cartesian coordinates. It is more useful
if these terms are expressed in normal coordinates {Br}. The normal coordinates in
second quantized formalism are

BR ∼
(
br + b+

r

)
. (35)

In normal coordinates, the Hamiltonian given in Eq. (34) becomes

H = H0 +H′ =

E(0)
NN + u(0)

sc f +∑
P

εPN
[
a+

p
ap

]
+∑

r
h̄ωr

(
b+

r
br +

1
2

)
+

+H′E

{
≡ 1

2 ∑
PQRS

v0
PQRS

N
[
a+

p
a+

Q
aSaR

]}
+

+H′F

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
≡

∞

∑
n = 1
n �= 2

(n/2)

∑
k=0

(
E(k,n−2k)

NN + u(k,n−2k)
SCF

)
.B(n−2k)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
+

+H′I

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
≡

∞

∑
n = 1
n �= 2

(n/2)

∑
k=0

∑
PQ

u(k,n−2k)
PQ

.B(n−2k)N
[
a+

P
aQ

]
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

(36)
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where we have used Taylor expansions for ENN , uSCF and uPQ expressed in nor-
mal coordinate space.6 In Eq. (36), H′E is the electron correlation operator, H′F
is the phonon-phonon interaction operator and H′I is the operator describing the
electron-phonon coupling. It should be noted that the term H′I contains a one-
electron–phonon interaction. We shall term (36) the “crude adiabatic Hamiltonian”
since it is defined in terms of a spin orbital basis determined at the fixed refer-
ence geometry R0. In this representation the electron-phonon coupling is expected
to be unphysically large because the electrons do not experience the R dependence
of the nuclear terms. A perturbation expansion based on this “crude adiabatic”
representation cannot be expected to converge.

We are now in a position to carry out a series of canonical transformations by
means of which the electronic and vibrational motions are coupled. This coupling
will allow the electrons to experience the R-dependence of the nuclear terms. We
wish to transform from a basis set defined with respect to a fixed geometry R0:
{|P〉}, to an R-dependent basis set: {|P(R)〉:-

|P〉 → |P(R)〉= ∑
Q

CQP|Q〉 (37)

The required transformation uses the mixed set of second quantized operators. The
new representation refers to fermions and bosons rather than electrons and phonons.
We proceed by defining new fermion creation and annihilation operators: aP and

a +
P

, and new boson operators: br and b
+

r
. Furthermore, we can require that the

new fermion operators commute with the new boson operators. The quasi-particle
transformation relating the representations may be written as follows:

aP = aP +∑
Q

∞

∑
k=1

1
k! ∑

r1...rk

Cr1...rk
PQ

Br1 . . .Brk aQ (38)

a+
P

= a+
P

+∑
Q

∞

∑
k=1

1
k! ∑

r1...rk

Cr1...rk
PQ

Br1 . . .Brk a+
Q

br = br +∑
PQ

∞

∑
k=0

1
k! ∑

s1...sk

Ds1...sk
rPQ

Bs1 . . .Bska+
P

aQ (39)

b
+
r

= b+
r

+∑
PQ

∞

∑
k=0

1
k! ∑

s1...sk

Ds1...sk
rPQ

∗Bs1 . . .Bsk a+
Q

aP .

In these equations, Bri
are the normal coordinates. CPQ and DrPQ are the expansion

coefficients.
Equation (38) can be cast in the more compact form

aP = ∑
Q

∞

∑
k=0

C(k)
PQ

aQ = ∑
Q

CPQ aQ . (40)

6 Explicit expressions for these expansions can be found in the work of Hubač and Svrček [33,36].
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A similar form can be written for Eq. (39) in terms of the DrPQ coefficients.
The operators for the fermions satisfy anticommutation relations whilst those

for the bosons satisfy commutation relations. As stated above, we require that the
operators for the fermions and bosons to commute and therefore

Ψ (r,R) = ψk(r,R)χk(R) (41)

We find that there are two invariants of transformation: the number of fermions is
conserved, i.e.

N = N (42)

so that we are free to redefine the Fermi vacuum, and the normal coordinate is
unchanged, i.e.

B = B

The canonical transformation introduced above allows the total vibrational-
electronic Hamiltonian operator to be written a sum of two parts:

H = HA +HB . (43)

The operator HA can be written

HA = ENN(B)−E(2)
NN(B)−V (2)

N (B)+ ESCF +∑
PQ

fPQ N
[
a+

P
aQ

]
+ (44)

+
1
2 ∑

PQRS

vPQRS N
[
a+

P
a+

Q
aS aR

]
where the terms ENN(B) and E(2)

NN arise from the Taylor expansion (30) in normal

coordinates and V (2)
N (B) is the new effective potential. The new quasi-particle Fermi

vacuum allows us to define a new quasi-particle Hartree-Fock energy

ESCF = ∑
RSI

hRSCRICSI +
1
2 ∑

RSTKIJ

(v0
RT SU

− v0
RSTU

)CRI CSICT JCUJ , (45)

the new Hartree-Fock operator f with matrix elements

fPQ = ∑
RS

hRSCRPCSQ + ∑
RTSUI

(v0
RT SU

− v0
RSTU

)CRPCSQCT ICUI , (46)

and the new two-particle integral

vPQRS = ∑
TUVW

v0
TUVW

CT PCUQCVRCWS . (47)

The coefficients CPQ can be determined by solving the coupled perturbed Hartree-
Fock (CPHF) equations [58–64]. We can carry out the inverse transformation of
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the transformations (38) and (39) and then substitute these into Eq. (36). Then, by
applying Wick’s theorem, we obtain the result:

HA = E0
NN + E0

sc f +∑
P

N
[
a+

P
aP

]
+

∞

∑
n=1

[n/2]

∑
k=0

E(k,n−2k)B(n−2k)+ (48)

+
∞

∑
n=1

[n/2]

∑
k=0

∑
PQ

f (k,n−2k)
PQ

B(n−2k)N
[
a+

P
aQ

]
+

+
1
2

∞

∑
n=0

[n/2]

∑
k=0

∑
PQRS

v(k,n−2k)
PQRS

B(n−2k)N
[
a+

P
a+

Q
aSaR

]
.

The Hamiltonian HB can be handled in a similar fashion. HB is given by

HB = ∑
r

h̄ωr(b
+
r

br +
1
2
) (49)

and after carrying out the transformation this becomes

HB = ∑
r

h̄ωr(b
+
r

br +
1
2
)+∑

Air

h̄ωr(DrAi)
2+ (50)

+ ∑
PQr

h̄ωr(br
+DrPQ + DrPQbr)N

[
a+

p
aQ

]
+

+ ∑
PQAIr

h̄ωr(DrPA DrQA −DrPI DrQI )N
[
a+

p
aQ

]
+

+ ∑
PQRSr

h̄ωr DrPS DrQR N
[
a+

p
a+

Q
aSaR

]
.

It should be noted that these Hamiltonians contain terms describing phonon–2-
electron interactions. H = HA +HB is the adiabatic Hamiltonian.

5 Adiabatic Corrections

Corrections to the adiabatic Hamiltonian, i.e. non-adiabaticity, can usually be treated
as a small perturbation. The method of canonical transformation can be extended to
case where the Born-Oppenheimer approximation breaks down. Starting from the
“crude adiabatic” representation in which the vibrational-electronic Hamiltonian is
expressed in terms of second quantized electron and phonon operators, a canonical
transformation can be used to obtain a vibrational-electronic Hamiltonian in which
the new fermion operators correspond to electron which adiabatically follow the
nuclear motion and the new boson operators correspond to renormalized phonons
where the renormalization introduces non-adiabatic corrections. For details of the
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non-adiabatic representation of the vibrational-electronic Hamiltonian, the reader is
referred to the reviews published in 1992 by Hubač and Svrček [36, 37].

In their work on the vibronic interaction in one-dimensional polymer, Taschibana
and his co-workers [65] obtain an expression for the adiabatic correction which is
similar to that obtained in the present approach. Specifically, the correction reported
by Taschibana and his co-workers may be written

∆i j = ∑
m,n

amn〈Ψj |∂Ψi/∂gm〉〈δΨi/∂gn|Ψj 〉 (51)

where
|amn| (52)

is Wilson’s G matrix [66].
The adiabatic corrections resulting from the present approach take the form

∆ε = ∑
AIr

h̄ωr(ĉ r
AI
−〈A(0)|Îr〉|)2+

+∑
AIr

h̄2ω2
r (ĉ r

AI
−〈A(0)|Îr〉|)2 1

εI − εA − h̄ωr
+ (53)

+∑
AIr

h̄2ω2
r (ĉ r

AI
−〈A(0)|Îr〉)2 1

εI − εA + h̄ωr
≈

≈
[

2∑
AIr

h̄2ω2
r (ĉ r

AI
−〈A(0)|Îr〉)2 1

εI − εA

+∑
AIr

h̄ωr(ĉ r
AI
−〈A(0)|Îr〉)2

]
which is essentially the same as Eq. (51) since A(0) corresponds to Ψj and Îr cor-
responds to δΨj/δgn. Taschibana and his co-workers explicitly diagonalize the
Wilson G matrix. In the present work, we have employed harmonic frequencies
instead of the Wilson G matrix.

6 Generalization of the Canonical Transformations

Up to this point in our discussion, we have based the quasi-particle transformation
on the normal coordinates using the follow expressions:

ap = ∑
Q

CPQ(B)aQ

a+
p

= ∑
Q

CPQ(B)+a+
Q

br = br ∑
PQ

DrPQ(B)a+
P

aQ (54)

b
+
r

= b+
r ∑

PQ

DrPQ(B)+a+
Q

aQ
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where we have used the normal coordinate:

B = b + b+. (55)

For the non-adiabatic representation, we can generalize the transformations
(54). By analogy with the normal coordinate operator Br, we can introduce the
momentum operator:

B̃ = b−b+ (56)

and then generalize the transformations (54) so as to define new fermion operators
which represent the dependence of the motion of electrons on both the coordinates
and the momenta of the nuclei. Because of their finite mass, the electrons do not
follow to the motion of the nuclei adiabatically. The motion of the electrons is phase-
shifted with respect to the motion of the nuclei.

The case of strong coupling has been consider in the recent work by Dah-
novsky [67] on “Ab Initio electron propagators in molecules with strong electron-
phonon interaction”. Dahnovsky uses the exponential transformation:

T = eS (57)

where

S = ∑
i,g

c+
i

ci

Ni
g

Wg
(b+−b) (58)

and
Ci = eScie

−S. (59)

In the present approach, the general canonical transformation from the old set of
second quantized operators {aP}, {a+

P
}, {br} and {b+

r
} to the new set of operators

{aP}, {a+
P
}, {br} and {b+

r
} should be [32]:

aP = ∑
Q

CPQ(B, B̃)aQ

a+
P

= ∑
Q

CPQ(B, B̃)+a+
Q

br = br +∑
PQ

DrPQ(B, B̃)a+
P

aQ (60)

b
+
r

= b+
r

+∑
PQ

DrPQ(B, B̃)+a+
P

aQ .

These general transformations are rather complicated. The general coefficients,
CPQ(B, B̃) and DrPQ(B, B̃), satisfy complicated conditions. To make progress, we
introduce a simple approximation in which the coefficients are written as prod-
ucts, i.e.

CPQ(B, B̃) = CPQ(B).C̃PQ(B̃). (61)
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This is expected to be a good approximation since coordinates and momenta
are independent variables. The coefficients CPQ(B) correspond to the adiabatic
transformation describe above whilst coefficients C̃PQ(B̃) correspond to the new
transformation which we term the non-adiabatic transformation. The non-adiabatic
representation results from the combination of both transformations. The canonical
transformation from the old set of second quantized operators {aP}, {a+

P
}, {br} and

{b+
r
} to the new set of operators {ãP}, {ã+

P
}, {b̃r} and {b̃+

r
} is [32]:

ãP = ∑
Q

C̃PQ(B̃)aQ

ã+
P

= ∑
Q

C̃PQ(B̃)+a+
Q

b̃r = br +∑
PQ

D̃rPQ(B̃)a+
P

aQ (62)

b̃+
r

= b+
r

+∑
PQ

D̃rPQ(B̃)+a+
P

aQ .

The coefficients C̃PQ(B̃) and d̃rPQ(B̃) are given by the Taylor expansions

C̃PQ(B̃) =
∞

∑
k=0

1
k! ∑

r1...rk

C̃r1...rk
PQ

B̃r1 . . . B̃rk (63)

D̃rPQ (B̃) =
∞

∑
k=0

1
k! ∑

s1...sk

D̃s1...sk
rPQ

B̃s1 . . . B̃sk . (64)

We make the approximation that terms beyond first order can be neglected.

7 Fermionic Part of the Vibrational-Electronic Hamiltonian

By performing the generalized canonical transformation defined in Eq. (62), we can
obtain an expression for the fermionic part of the non-adiabatic Hamiltonian in the
non-adiabatic representation. To simplify the notation, we shall omit the tilde from
the operators {ãP}, {ã+

P
}, {b̃r} and {b̃+

r
} in the following. Our expression for the

fermionic part of the non-adiabatic Hamiltonian can then be written in the form

HF = E0
NN

+ E0
SCF

+∑
AI

h̄ω2(|C r
AI
|2−|C̃ r

AI
|2)+∑

P
ε0

P
N
[
a+

P
aP

]
+

+ ∑
PQr

h̄ω2

[
∑
A

(C r
PA

C r∗
QA
− C̃ r

PA
C̃ r∗

QA
)−∑

I

(C r
PI

C r∗
QI
− C̃ r

PI
C̃ r∗

QI
)

]
N
[
a+

P
aQ

]−
−2 ∑

PQr

Er∗C̃ r
PQ

N
[
a+

P
aQ

]
+
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+ ∑
PQr

[
(h(P)− p(P))ε r∗

P
+(h(Q)− p(Q))ε r

Q
)
]

C̃ r
PQ

N
[
a+

P
aQ

]−
− ∑

PQAIr

[
(vr

PIQA
− vr

PIAQ
)C̃ r

IA
+(vr

PAQI
− vr

PAIQ
)C̃ r∗

AI

]
N
[
a+

P
aQ

]
+

+
1
2 ∑

PQRS

v0
PQRS

N
[
a+

P
a+

Q
aSaR

]
+ ∑

PQRSr

h̄ω2(C r
PR

C r∗
SQ
− C̃ r

PR
C̃ r∗

SQ
)N

[
a+

P
a+

Q
aSaR

]
−

−2 ∑
PQSr

εr
P
C̃ r∗

SQ
N
[
a+

P
a+

Q
aSaR

]
+ (65)

+ ∑
PQRSTr

{∑
I

[
v0

PQT S
Cr

T I
− v0

PQTI
Cr

T S
+(v0

TQSI
− v0

TQIS
)Cr

PT

]
C̃ r∗

RI
+

+∑
I

[
v0

T IRS
Cr

QT
− v0

TQRS
Cr

IT
+(v0

IQTS
− v0

IQST
)Cr

T R

]
C̃ r∗

IP
−

−∑
A

[
v0

PQT S
Cr

TA
− v0

PQTA
Cr

T S
+(v0

TQSA
− v0

TQAS
)Cr

PT

]
C̃ r∗

RA
−

−∑
A

[
v0

TARS
Cr

QT
− v0

TQRS
Cr

AT
+(v0

AQT S
− v0

AQST
)Cr

T R

]
C̃ r∗

AP
}N

[
a+

P
a+

Q
aSaR

]
where we have underlined the terms which arise in the usual electronic Hamiltonian
operator. We can see immediately that if we set the C̃PQ coefficients to zero then we
obtain the adiabatic Hamiltonian. If we put both the C̃PQ coefficients and the CPQ

coefficients equal to zero, we get the electronic Hamiltonian, which is underlined in
the above expression.

Let us now summarize, what we have achieved so far. We have derived a new
kinetic energy term, as well as a new potential energy term, depending on the
coefficients CPQ and C̃PQ .

H = HA + HB (66)

HB = Ekinetic(B̃)+ Epotential(B) (67)

Epotential(B) = E(2)
NN(B)+V (2)

N
(B) (68)

Ekinetic(B̃) = TN(B̃)+W (2)
N

(B̃). (69)

We have to specify the CPQ and C̃PQ coefficients from our transformation. We shall
require that our new fermions, which we call ‘renormalized fermions’, are such that
when partitioning the Hamiltonian HA into an unperturbed part and a perturbation,
the first order corrections vanish.

The equations for the CPQ and C̃PQ coefficients are

ur
PQ

+(ε0
P
− ε0

Q
)C r

PQ
+∑

AI

[
(v0

PIQA
− v0

PIAQ
)C r

AI
− (v0

PAQI
− v0

PAIQ
)
]
−

−h̄ωrC̃
r

PQ
= εr

P
δPQ (70)
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and
(ε0

P
− ε0

Q
)C̃ r

PQ
+∑

AI

[
(v0

PIQA
− v0

PIAQ
)C̃ r

AI
− (v0

PAQI
− v0

PAIQ
)C̃ r

IA

]
−h̄ωrC

r
PQ

= εr
P
δPQ . (71)

The new vibrational potential energy V rs
N

, which originate from the interaction
between the nuclei and electrons, is:

V rs
N

= ∑
I

urs
II

+∑
AI

[(
ur

IA
+ h̄ωrC̃

r
IA

)
Cs

AI
+
(
us

IA
+ h̄ωsC̃

s
IA

)
Cr

AI

]
. (72)

Let us compare this expression for the potential energy with that obtained in
the representations considered previously in this paper. In the “crude adiabatic”
approximation we have

V rs
N

= ∑
I

urs
II
. (73)

In the “adiabatic” approximation, we have

V rs
N

= ∑
I

urs
II

+∑
AI

(
ur

IA
Cs

AI
+ us

IA
Cr

AI

)
. (74)

The kinetic energy term in the ‘renormalized fermion’ representation has the
form

W rs
R

= 2h̄ωr ∑
AI

C r
AI

C̃ s
IA

. (75)

8 Simplifications and Connections with Solid State Theory

In this section, we shall introduce some simplifying approximations to the formal-
ism developed above. In this way we shall establish connections with solid state
theory.

In solid state theory, as in quantum chemistry, it is common to work with
models or effective Hamiltonians. In general terms, a model is a conceptual rep-
resentation of some physical phenomenon. Such models usually underpin computer
programs which allow simulation and visualization of phenomena and/or processes.
Examples of such approximations or models in solid state theory and quantum
chemistry include the Hubbard model [68], the Hückel Hamiltonian [69], the
Pariser-Parr-Pople (PPP) approximation [70] and the Anderson Hamiltonian [71].

In this section, we shall gain some understanding of the new terms which arise in
the fermionic Hamiltonian given above in Eq. (65) by introducing some simplifying
approximations, by considering model systems.

We have seen above that the C r
PQ

and C̃ r
PQ

coefficients are solutions of the Eqs.
(70) and (71).

Let us explore the simplifications obtained by putting

v0
PQRS

−→ 0 (76)



422 I. Hubač, S. Wilson

that is, by assuming that two-electron Coulomb interactions vanish. We then obtain
from Eqs. (70) and (71) the following pair of equations:

ur
PQ

+(ε0
P
− ε0

Q
)C r

PQ
− h̄ωrC̃

r
PQ

= εr
P
δPQ (77)

(ε0
P
− ε0

Q
)C̃ r

PQ
− h̄ωrC

r
PQ

= εr
P
δPQ . (78)

By solving these equations for C r
PQ

and C̃ r
PQ

we get:

C r
PQ

= u r
PQ

ε0
P
− ε0

Q

(h̄ωr)2− (ε0
P
− ε0

Q
)2 (79)

and

C̃ r
PQ

=

{
u r

PQ

h̄ωr
(h̄ωr )2−(ε0

P
−ε0

Q
)2 , for P �= Q,

0, for P = Q
. (80)

Let us focus our attention on the term which corrects the ground state energy.

∆E0 = ∑
AIr

h̄ωr(|C r
AI
|2−|C̃ r

AI
|2). (81)

Substitute the expressions for C r
PQ

and C̃ r
PQ

given in Eqs. (79) and (80), respectively,
we get:

∆E0 = ∑
AIr

|u r
AI
|2 h̄ωr

(ε0
A
− ε0

I
)2− (h̄ωr)2 . (82)

Now let us re-write Eq. (82) in a notation more familiar in solid state theory.7 The
boson vibrational modes will be denoted by the index of quasimomentum q, and
spin orbitals (fermion) by (k, σ), where k is the quasimomentum of the fermion
and σ is the spin function. Then we can write:

r −→ q,
r̃ −→ −q,
I −→ (k,σ), occupation factor: fk

A −→ (k′,σ ′), occupation factor: 1− f
k′

(83)

together with
ε0

I
−→ εk , ε0

A
−→ ε

k′ (84)

and
ur

AI
−→ uq

k′k = uq = uk′−k. (85)

In the notation of solid state theory defined above, expression (82) for the energy
correction becomes:

7 See, for example, E.K.U. Gross, E. Runge and O. Heinonen [72].
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∆E0 = 2 ∑
k,k′
|uk′−k|2 fk(1− f

k′ )
h̄ω

k′−k

(−→ε
k′ − εk)2− (h̄ω

k′−k′ )
. (86)

This can be recognized as exactly the expression first given by Fröhlich [73].
In contrast to the derivation given by Fröhlich, the present approach makes no use

of perturbation theory. Fröhlich assumed that due to electron-phonon interaction the
ground state energy will be lowered and electronic state will be redistributed around
the Fermi level.

Let us turn attention to one-fermion component of the fermionic Hamiltonian
given in Eq. (65). We can write this component in the form:

H ′
e f

= ∑
PQr

h̄ωr

[
∑
A

(
C r

PA
C r∗

QA
− C̃ r

PA
C̃ r∗

QA

)
−∑

I

(
C r

PI
C r∗

QI
− C̃ r

PI
C̃ r∗

QI

)]
N
[
a+

P
aQ

]
+

+ ∑
PRr

[
(ε0

P
− ε0

R
)(|Cr

PR
|2 + |C̃ r

PR
|2)−2h̄ωr Re(C̃

r
PR

C r∗
PR

)
]

N
[
a+

P
aP

]
. (87)

Let us consider only the diagonal part of H ′
e f

(87)

H ′
e f

(diag) = ∑
Pr

h̄ωr

[
∑
A

(|C r
PA
|2−|C̃ r

PA
|2)−∑

I
(|C r

PI
|2−|C̃ r

PI
|2)

]
N
[
a+

P
aP

]
+

+ ∑
PRr

[
(ε0

P
− ε0

R
)(|Cr

PR
|2 + |C̃ r

PR
|2)−2h̄ωr Re(C̃

r
PR

C r∗
PR

)
]

N
[
a+

P
aP

]
. (88)

By using expressions (79) and (80), this can be written:

H ′
e f

(diag) = ∑
Pr

( ∑
A �=P

|u r
PA
|2

ε0
P
− ε0

A
− h̄ωr

+ ∑
I �=P

|u r
PI
|2

ε0
P
− ε0

I
− h̄ωr

)N
[
a+

P
aP

]
(89)

or:

H ′
e f

(diag) = ∑
PRrP�=R

|u r
PQ
|2 1

ε0
P
− ε0

I
− h̄ωr

N
[
a+

P
aP

]−
−2 ∑

PIr
P �= I

|u r
PI
|2 h̄ωr

(ε0
P
− ε0

I
)− (h̄ωr)2 N

[
a+

P
aP

]
. (90)

In solid state theory, we use the following notation:

r −→ q

P−→ (k,σ)
R−→ (k−q,σ)
I −→ (k−q,σ)

occupation factor: fk−q
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and the Hamiltonian (90) becomes

H ′
e f

(diag) = ∑
kqσ
|uq|2 1

εk − εk−q− h̄ωq

N
[
a+

k,σ ak,σ

]
−

−2 ∑
kqσ
|uq|2 fk−q

h̄ωq

(εk − εk−q)2− (h̄ωq)2 N
[
a+

k,σ ak,σ

]
. (91)

The first term on the right-hand side of (91) describes polaron, i.e. composite parti-
cles each composed of an electron together with a phonon field. The second term in
Eq. (91) represents a correction term which describes each polaron in the effective
field of other polarons.

Now we turn our attention to the two particle terms in the fermionic Hamiltonian
defined in Eq. (65). We can write the following expression for H ′′

e f
:

H ′′
e f

= ∑
k,k′,q,σ ,σ ′

q �= 0

|uq|2
h̄ωq

[
(εk+q − εk)(εk′+q

− ε
k′ )− (h̄ωq)

2
]

[
(εk+q − εk)2− (h̄ωq)2

][
(ε

k′+q
− ε

k′ )
2− (h̄ωq)2

]

.N
[
a+

k+q,σ
a+

k′,σ a
k′+q,σ ′ak,σ

]
. (92)

Let us consider the relation between the Fermi vacuum in crude adiabatic rep-
resentation and that in the diabatic representation. Specifically, let us consider a
situation in which the electronic states are quasidegenerate (or degenerate) in the
crude adiabatic representation but this quasidegeneracy (or degeneracy) is removed
in diabatic representation .

Let us consider two quasidegenerate electronic states with the energies ε0
I

(occu-
pied) and ε0

A
(unoccupied). According to Eq. (89) we have:

∆εA = εA − ε
A0 = ∑

r

|u r
AI
|2

ε0
A
− ε0

I
+ h̄ωr

> 0 (93)

and
∆εI = εI − ε

I0 =−AεA < 0. (94)

We observe that the occupied diabatic fermions have a lower energy with respect
to crude electrons and the virtual diabatic fermions have tendency to have a raised
energy with respect to the crude electrons. This lowering of the occupied levels
and raising of the unoccupied levels for the diabatic fermions results in an energy
gap.

In situations where there is a large number of quasidegenerate states, the Fermi
vacuum for the diabatic fermions will differ significantly from that for the crude
fermions. Indeed, the occupancies of the levels in the diabatic Fermi vacuum may
be different from those in the crude adiabatic vacuum.
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9 Summary and Future Directions

The theoretical study of many problems in nanoscience and nanotechnology, neces-
sitate the use of the total vibrational-electronic Hamiltonian. In this work, we
have been concerned with the break-down of Born-Oppenheimer approximation.
We have developed a non-adiabatic molecular Hamiltonian. Building on previ-
ous work by Hubač and Svrček, we have used three distinct quasi-particle trans-
formations to obtain different representations of the total vibrational-electronic
Hamiltonian.

We began with the “crude adiabatic” representation, which is defined in terms of
a spin orbital basis determined at the fixed reference geometry R0. We observed that
in this representation the electron-phonon coupling is expected to be unphysically
large because the electrons do not experience the R dependence of the nuclear terms.
A perturbation expansion based on this “crude adiabatic” representation cannot be
expected to converge.

Next, we carried out a canonical transformation to couple the electronic and
vibrational motions. This coupling will allowed the electrons to experience the R-
dependence of the nuclear terms. We transformed from a basis set defined with
respect to a fixed geometry to an R-dependent basis set.

Finally, we generalise the quasi-particle transformations defining new fermion
operators which represent the dependence of the motion of electrons on both the
coordinates and the momenta of the nuclei. We term this new transformation the
non-adiabatic transformation. In the non-adiabatic representation, the electrons do
not follow the motion of the nuclei adiabatically, but the motion of the electrons is
phase-shifted with respect to the motion of the nuclei.

We present the fermionic part of the vibrational-electronic Hamiltonian in non-
adiabatic representation. By introducing some simplifying approximations, we were
able to explore the relation between the fermionic part of the vibrational-electronic
Hamiltonian in non-adiabatic representation and other formulations used in solid
state theory and quantum chemistry.

A more detailed account of the approach to the molecular vibrational-electronic
problem described in this paper is in preparation [48]. Future work will be con-
cerned with the development of a fully diagrammatic formulation of the method of
quasi-particle canonical transformations described in the present work to describe
the coupling of electronic and nuclear motion in arbitrary molecular systems.
From the diagrammatic formalism practical algorithms, which can be exploited
in a wide range of application areas, will be devised using literate programming
methods.

Acknowledgements IH acknowledges support under grant MSM 4781305903 in the Czech
Republic.
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36. I. Hubač and M. Svrček , Molecular Vibrations, Methods in Computational Chemistry 4, 145,

Plenum Press, New York, 1992.
37. I. Hubač and M. Svrček, in Methods in Computational Molecular Physics, edited by S. Wilson

and G.H.F. Diercksen, NATO ASI Series B: Physics 293 Plenum Press, New York, 1992.
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1 Introduction

It is well known that many problems in physics and, in particular, in quantum chem-
istry, can be formulated as an eigenvalue problem for a self-conjugate operator H
with some orthogonality constraints imposed on its eigenfunctions.

In practice, one of the most important approximations inherent in essentially
all standard ab initio calculations is to replace the exact solution of an eigenvalue
problem in an infinite-dimensional Hilbert space of states X by a solution in a finite-
dimensional subspace M = PX with the corresponding orthoprojector P, i.e. we are
concerned with the eigenproblem:

P(H−Ei)P |Φi〉 = 0,

|Φi〉 = P |Φi〉 , i = 0,1, . . . ,n (1)

subject to the constraints

〈us|Φi〉= 0, s = 1,2, . . . ,q < n. (2)

It is should be noted that, in general, the constraint vectors |us〉 ∈ X are not com-
pletely contained in the subspace M and are arbitrary with respect to the operator
PHP.

It is clear that such an approximation reduces the accuracy of calculations. Fur-
thermore, a finite subspace which is optimal for the lowest eigenvalue, E0, will not,
in general, support an acceptable accuracy for the higher eigenvalues. It is, therefore,
necessary to adjust the subspace to the eigenvalue(s) being studied, by, for example,
rotating the subspace M in X in an optimal manner.

Variational methods, such as the Rayleigh-Ritz method, are well adapted to the
approximate solution of eigenvalue problems. In this method the desired vectors
are represented by a linear combination of a finite number of basis vectors |φk(ρ)〉
which, in general, depend on variational parameters ρa,(a = 1, 2, . . . ,r)

|Φi〉=
n

∑
k=0

Cik|φk(ρ)〉= P|Φi〉. (3)

The eigenvalues are determined by finding minimum of the Rayleigh quotient, i.e.
the functional

E(Φ) = 〈Φ|H|Φ〉/〈Φ|Φ〉, Φ ∈M, (4)

For example, the lowest eigenvalue, E0, for the problem defined by Eqs. (1) and (2)
is given by

E0 = E(Φ0) = 〈Φ0|H|Φ0〉= min
Φ∈M

E(Φ), 〈Φ0|Φ0〉= 1 (5)

〈us|Φ〉= 0, s = 1,2, . . . ,q < n. (6)

In other words, we are dealing with a constrained minimization problem. Equations
(5) and (6) define the constrained variational problem. An example of this problem
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arises in calculations for excited states in which a basis set specifically designed for
the ground state is used to calculate the ground state energy and a different basis
set is used in the description of an excited state. There has been a growing inter-
est in quantum chemical problems of this type in recent years (see e.g. the work
of Sadlej [1], of Assfeld and Rivail [2], and of Surjan [3]). Conventional methods
of constrained optimization (see, e.g. the well-known texts by Himmelblau [4] and
by Gill and Murray [5], and references therein) have not proved effective in solv-
ing the complicated problems of quantum chemistry, especially when for example,
nonlinear basis set parameters are varied.

In this study, we shall show how the problem defined by Eqs. (5) and (6) can
be solved in a way which is simpler than the traditional approaches employed in
quantum chemical calculations. We review an easily implemented technique termed
the asymptotic projection method. This work was proposed in earlier work by one
of us (VNG) [6–8] and developed further in Refs. [9–15]. The asymptotic projec-
tion method was shown to be a useful tool for solving a wide class of problems in
quantum chemistry which can be cast in the form of an eigenvalue equation with
constraints.

This paper is arranged as follows: in Sect. 2, an overview of the asymptotic pro-
jection method is given. We compare asymptotic projection with other approaches
to the constrained variational problem, in particular, the method of elimination of
off-diagonal Lagrange multipliers method and the projection operators technique. A
general approach to excited state problems using the asymptotic projection method
method is described in Sect. 3. In Sect. 4, the potential of the method is demonstrated
by means of calculations for the excited state energies and excitation energies for
the one-electron molecular systems, H+

2 and H++
3 . Some concluding remarks are

given in Sect. 5.

2 Overview of the Asymptotic Projection Method

We shall demonstrate that the asymptotic projection method is based on the proper-
ties of self-conjugate operators. It is general and applicable to any problem that can
be cast in the form of an eigenvalue equation with some orthogonality constraints
imposed on the eigenvectors.

2.1 The Basic Theorem of the Asymptotic Projection Method

For the sake of simplicity, we limit ourselves initially to problems involving one
constraint vector |u〉. In this case, the constrained variational problem is to minimize
the Rayleigh quotient (4) subject to constraint

〈u|Φ〉= 0. (7)
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We can identify three possible situations for the constrainted vector |u〉 with respect
to a subspace M spanned by the finite basis set:

(i) P|u〉 = 0, this is a trivial case. The minimization can be performed by well-
established unconstrained optimization methods.

(ii) P|u〉= |u〉, the constraint vector lies completely within the subspace M.
(iii) P|u〉 �= 0, P|u〉 �= |u〉, then the constraint vector can be divided into two parts

|u〉= P|u〉+(I−P)|u〉 (8)

where the first term on the right-hand side lies completely within M and the
second term lies in M⊥, the orthogonal complement of M.

Here and in the following I is the identity operator.
Thus, we are only required to consider the case (ii), i.e., the constraint vector is

P|u〉. Without loss of generality, we can take this constraint vector to be normalized

|ũ〉 = P|u〉/(〈u|P|u〉) 1
2 , i.e. 〈ũ|ũ〉= 1. Then the constraint (7) may be rewritten in a

symmetrized form which is convenient when carrying out variations:

〈Φ|Pu|Φ〉= 0, Pu = |ũ〉〈ũ|. (9)

Multiplying Eq. (9) by an arbitrary real multiplier λ and adding this to the Rayleigh
quotient (4), we get the functional

L(Φ) = 〈Φ|(H + λ Pu)|Φ〉/〈Φ|Φ〉, Φ ∈M. (10)

We can immediately write the stationary condition for (10) as

δL(Φ) = 0. (11)

Using Eq. (3), the variations can be written in the form

|δΦ〉= P|δΦ〉+
r

∑
a=1

(∂aP)|Φ〉δρa. (12)

In this equation and in the following, we use the notation ∂aP ≡ ∂P/∂ρa for
simplicity.

The first term in Eq. (12) corresponds to variations within the finite-dimensional
subspace M, whereas the second term allows this subspace to be rotated within
Hilbert space X . Substituting Eq. (12) into the functional L(Φ), Eq. (10), and taking
account of the independence and the arbitrariness of variations, we arrive at the
equations

P(H + λ Pu−E)P |Φ〉= 0, (13)

and
〈Φ|(∂aP)(H + λ Pu)P |Φ〉= 0. (14)
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Equation (13) is an eigenvalue problem on the subspace M = PX for the modified
operator

Hmod = P(H + λ Pu)P. (15)

Equation (14) allows the basis set parameters to be determined by means of the
variational principle and thus the optimal position of M in X can be found. However,
the Lagrangian multiplier λ is as yet undetermined and condition (7) is not satisfied.

We now introduce the key theorem of the asymptotic projection method [6, 8]:

If it is assumed that the vector |ũ〉 is not an eigenstate of the oper-
ator PHP, then the constraint vector |ũ〉 tends to an eigenvector
of the modified operator Hmod, if and only if

λ −→±∞. (16)

This theorem ensures that the constraint condition (7) will be automatically ful-
filled because of the orthogonality of the eigenvectors corresponding to different
eigenvalues of a self-conjugate operator.

To prove the theorem (16), we consider the action of Hmod on the vector |ũ〉. Let
|ek〉, k = 0, 1, . . . , n be the basis set vectors in the subspace M. Without loss of gen-
erality, we may assume that |e1〉 = |ũ〉 and 〈ei|e j〉 = δi j. The matrix corresponding
to Hmod in the chosen basis is multiplied by the vector |ũ〉, which is represented, in
the same basis set, by a column vector [1, 0, . . . , 0]T . Then the action of Hmod on the
vector |ũ〉 can be written in the following matrix form [6]:⎛⎜⎜⎜⎜⎝

H11 + λ̃ H12 . . . H1n

H21 H22 . . . H2n

. . . . . . . . . . . . .

. . . . . . . . . . . . .
Hn1 Hn2 . . . Hnn

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

1
0
.
.
0

⎞⎟⎟⎟⎟⎠ = λ̃

⎛⎜⎜⎜⎜⎜⎝
H11/λ̃ + 1

H21/λ̃
.
.

Hn1/λ̃

⎞⎟⎟⎟⎟⎟⎠ . (17)

Here Hik = 〈ei|H|ek〉, λ̃ = λ 〈u|P|u〉, and 〈u|P|u〉> 0. It is can be seen immediately
that Eq. (17) becomes the eigenvalue problem for the modified operator Hmod, if and
only if λ →±∞. Q.E.D.

As we can also see from Eq. (17), the constraint vector |ũ〉 tends to an eigenvector
of the operator Hmod as 1/λ , therefore, 〈u|Φ〉 → 0 as 1/λ , so that the limit,

lim
λ→±∞

λ 〈u|Φ〉 ,

exists. In practice, the choice of the value given to λ depends on the accuracy
required. In Sects. 3 and 4, we will show that convergence behaviour is displayed
for different properties. It is also clear that if |ũ〉 is an eigenvector of PHP then it
will be an eigenstate of Hmod for all values of λ .



434 V.N. Glushkov et al.

The result obtained above for a single constraint vector can be easily extended to
cases involving a number of constraints. In such cases, Pu in the above discussion
is replaced by the orthoprojector on the subspace determined by all the constraint
vectors.

We have called the technique described above the asymptotic projection method.

Alternative Proof of Theorem (16)

We can require that the constraint vector |ũ〉, which, in general, is not an eigenvector
of the operator PHP, be an eigenvector of the modified operator, Hmod, so that

P(H + λ Pu−Eλ )P |ũ〉= 0. (18)

In this equation, Eλ is the, as yet unknown, eigenvalue corresponding to the vector
|ũ〉. The eigenvalue Eλ must not coincide with any eigenvalues of Hmod.

Let us find the value of λ for which Eq. (18) is satisfied. For this purpose Eq.
(18) is rewritten, after some manipulation, in the form

1
λ 〈u|P|u〉PHP|ũ〉+

[
1− Eλ

λ 〈u|P|u〉
]

P|ũ〉= 0 (19)

where we repeat that it is assumed that the vector |ũ〉 is not an eigenvector of the
operator PHP. It is obvious that, when considered as a vector, the direction of the
first term in (19) does not coincide with that of P|ũ〉. Therefore, the fulfillment of
(18) requires that each term in (1) tends to zero. This is possible if and only if
λ → ±∞ and Eλ = λ 〈u|P|u〉, which completes our alternative proof of theorem
(16). Q.E.D.

It should be noted that, for an operator bounded from below, Eλ must be positive
and λ →+∞. The eigenvalues are found by minimization. If we are dealing with an
operator bounded from above then λ →−∞ and the eigenvalues are determined by
maximization procedure.

2.2 Equivalence of the Original and Modified Problem

The problem defined in Eqs. (5) and (6), or in the corresponding constrained mini-
mization problem defined in Eqs. (4) and (7), implies that the solutions are sought
in the subspace (P−Pu)X . This is an eigenvalue problem for the effective operator
Heff = (P−Pu)H(P−Pu).

In order to clarify the validity of replacing the constrained minimization problem,
Eqs. (4) and (7), by unconstrained problem, Eq. (10), we shall demonstrate that the
spectra of the original operator PHP and the modified operator Hmod are identical
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on the subspace (P−Pu)X when λ → ±∞. Indeed, since |ũ〉 is an eigenvector of
Hmod, the subspace M can be written as a direct sum of subspaces [16]

M = (P−Pu)X ⊕PuX (20)

which are invariant for the operator Hmod. Therefore, Eq. (13) is equivalent to the
eigenvalue problem on the subspace PuX , for which the solution is known (the
eigenvector |ũ〉 and the corresponding eigenvalue Eλ → ∞), i.e.

Pu(H−Eλ )Pu |Φ〉= 0, Eλ → ∞ (21)

and equation on the subspace (P−Pu)X

(P−Pu)(H−E)(P−Pu) |Φ〉= 0. (22)

Here we used the fact that λ (P−Pu)Pu(P−Pu) = 0 for any value of λ .
Equation (22) implies that the spectra of the operators (P−Pu)(H +λ Pu)(P−Pu)

and (P−Pu)H(P− Pu) are identical. However, from practical point of view, Eq.
(13) is much simpler to solve than Eq. (22). Indeed, Eq. (22) requires additional
calculations of 〈Φ|H|u〉 and 〈u|H|u〉, whereas Eq. (13) requires only the overlap
element 〈Φ|u〉. (Further discussion of these practicalities is given in Sect. 2.3).

2.3 Comparison with Other Methods

There are several techniques for solving the problem defined in Eqs. (1) and
(2) or their variational implementation, Eqs. (5) and (6). (See e.g. the texts by
Himmelblau [4] and by Gill and Murray [5], and the papers by Feshbach [17], by
Weeks and Rice [18] and by Huzinaga [19], and references therein). A natural solu-
tion of this problem is to derive the equations for the constrained function in such a
manner that the orthogonality constraints are built into the variational procedure as
an auxiliary condition. Traditionally, this can either be achieved by the method of
Lagrangian multipliers or the projection operator technique. In the discussion below,
we shall demonstrate the main features which distinguish our asymptotic projection
method from other existing methods. The traditional methods of the elimination of
Lagrangian multipliers and the projection operators will be described in more detail
since many other approaches can be reduced to these techniques.

2.3.1 Elimination of Off-Diagonal Lagrangian Multipliers Method

We shall follow closely here the presentation given in Chapter 2 of Hurley’s well-
known book Introduction to the electron theory of small molecules [20].

The electronic Schrödinger equation for some molecular system may be written

HΨi = EiΨi (23)
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where H is the electronic Hamiltonian and the eigenfunctions Ψ0,Ψ1, . . . may be
chosen as a complete, orthonormal set, ordered in terms of the energy eigenvalues
E0, E1, . . ., so that

Ei � Ei+1 (24)

and
〈Ψi|Ψj〉= δi j. (25)

Now the electronic Schrödinger Eq. (23) may be regarded as the condition that the
energy expectation value

E = 〈Ψ |H|Ψ〉 (26)

should remain stationary for arbitrary variations δΨ of the many-electron wave
function Ψ , which maintain the normalization condition

〈Ψ |Ψ 〉= 1. (27)

In studies of excited states and in self-consistent field theory it is sometimes neces-
sary to impose additional linear constraints on the wave function and the admissible
variations. A linear constraint may be expressed as the orthogonality of Ψ to some
fixed constraint function u(r)

〈Ψ |u〉= 〈u|Ψ〉= 0, (28)

which is taken to be normalized

〈u|u〉= 1. (29)

The constraints (27) and (28) can be incorporated by means of Lagrange multi-
pliers E , ε and η , by considering the functional

L = 〈Ψ |H|Ψ〉−E〈Ψ |Ψ〉− ε〈Ψ |u〉−η〈u|Ψ〉 (30)

and requiring that
δL = 0 (31)

for arbitrary variations δΨ and suitably chosen values of E , ε and η . Exploiting the
hermiticity of H, the condition (31) can be written in the form

〈δΨ |(H−E)|Ψ〉− ε〈δΨ |u〉+ 〈Ψ |(H−E)|δΨ〉−η〈u|δΨ〉= 0. (32)

Since the variations 〈δΨ | and |δΨ〉 are arbitrary, the condition (32) leads to two
equations which can be written

H|Ψ〉= E|Ψ〉+ ε|u〉 (33)

and
〈Ψ |H = E〈Ψ |+ η〈u|. (34)
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Comparing Eq. (33) with the complex conjugate of (34) leads to the conclusion
that the off-diagonal Lagrange multipliers are related by

η = ε∗. (35)

Imposing the condition (35) renders Eq. (34) equivalent to Eq. (33) so that the
former may be dropped.

The values of the constants E and ε are found by multiplying Eq. (33) by 〈Ψ | or
by 〈u|, i.e.

E = 〈Ψ |H|Ψ〉 (36)

and
ε = 〈u|H|Ψ〉 (37)

Equation (33), together with the orthonormality conditions (27) and (28), pro-
vides the solution to our variational problem. Because of the second term on the
right hand side the form of Eq. (33) is not that of an equation determining the eigen-
values and eigenfunctions of some Hermitian operator. However , it may be reduced
to this standard form by introducing a suitable effective Hamiltonian. Indeed, taking
the expression (37) into account, Eq. (33) can be rewritten in a form

H|Ψ〉− |u〉〈u|H|Ψ〉= E|Ψ〉. (38)

Using the definition of the orthoprojector

Pu = |u〉〈u|, (39)

P2
u = Pu (40)

the Eq. (38) takes a form

H|Ψ〉−PuH|Ψ〉= E|Ψ〉. (41)

Generally speaking the operator PuH is not Hermitian, however the symmetrized
product PuH + HPu is necessarily Hermitian. Since HPu|Ψ〉 = 0 we arrive at the
eigenvalue equation for the effective operator

H[1]
eff |Ψ〉= E|Ψ〉 (42)

with
H[1]

eff = H− (PuH + HPu). (43)

It is easy to show that the vector |u〉 itself is an eigenvector of H[1]
eff with the

eigenvalue Eu =−〈u|H|u〉 and then the constraint (28) is automatically fulfilled due
to orthogonality of eigenfunctions of H[1]

eff .
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2.3.2 Projection Operator Techniques and Other Methods

Following the work of Huzinaga and Cantu [21] and the more recent work of Surjan
[3], we now consider the variational procedures based on the projected function

|Ψ 〉= (I−Pu)|Φ〉 (44)

which satisfies the constraint 〈Ψ |u〉 = 0 for any |Φ〉. Variation of the Rayleigh
quotient

δE(Ψ ) = δ [〈Ψ |H|Ψ〉/〈Ψ |Ψ 〉, ] (45)

leads to the Euler equation

[(I−Pu)H(I−Pu)−E(I−Pu)|Φ〉 = 0 (46)

which can be interpreted as an eigenvalue problem for an effective Hermitian
operator H[2]

eff

H[2]
eff |Φ〉= E(I−Pu)]|Φ〉 (47)

where
H[2]

eff = H + EuPu−PuH−HPu (48)

and Eu = 〈u|H|u〉.
It easy to verify that the projected excited functions Ψi = (I−Pu)Φi correspond-

ing to different solutions of Eq. (47) will be orthogonal to each other. We may also
observe that there is a close relation between the effective operator defined in Eq.
(43) for the elimination of off-diagonal Lagrangian multipliers method and H[2]

eff
defined in Eq. (21) for the projection operator technique.

Both the elimination of off-diagonal Lagrangian multipliers method and the pro-
jection operator technique require the evaluation of matrix elements of the form
〈u|H|Φ〉 whereas the asymptotic projection method only involves overlap elements
〈u|Φ〉, which are more easily computed. This difference in computational demands
can be particularly significant when minimization is carried out with respect to non-
linear basis set parameters (i.e. exponents). For example, in self-consistent field
calculations for excited state the elimination of off-diagonal Lagrangian multipli-
ers method and the projection operator technique require the evaluation of ∼m4

elements of the Fock operator whereas only ∼m2 overlap elements are required for
the asymptotic projection method, where m is dimension of one-particle basis set
employed.

We comment briefly on a method for handling the orthogonality constraints in
the self-consistent field theory developed by Colle, Fortunelli and Salvetti [22, 23].
The solution to the constrained variational problem presented by these authors is
specific to the Hartree-Fock case. In contrast, the asymptotic projection method
described in the present work is based on the properties of self-conjugate opera-
tors. It is a general method which can be applied to many systems and in many
approximation schemes. In our accompanying paper [24], we shall demonstrate the
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application of the asymptotic projection method to self-consistent field problems
with orthogonality constraints.

The asymptotic projection method described in Sect. 2.1 may seem similar to the
shift operator technique introduced by Huzinaga [19]. This technique was found to
be useful for shifting the positions of eigenvalues in the spectrum of the Fock oper-
ator in the Hartree-Fock theory thereby accelerating the convergence of the iterative
self-consistent field process. However, it is known [19] that this technique oper-
ates only on the exact eigenvectors of the operator PHP, whereas in the asymptotic
projection method arbitrary constraint vectors are considered.

We also note the similarity of the asymptotic projection method to techniques
for incorporating orthogonality constraints by means of an energy penalty term.
However, we recognize that this penalty term method requires several calculations
of a functional (e.g. the energy functional) in order to determine an optimal value
of the multiplier λ . There have been some preliminary attempts to apply the penalty
term method to excited state calculations. The reader is referred to the work of Dutta
and Bhattacharya [25], where different penalty functions are considered.

In concluding this section, we note that, from practical point of view, the numer-
ical solution of the eigenvalue equation for the operator Hmod is a stable process,
although the condition number (i.e. ratio Emax/Emin) of the corresponding matrix
can be quite large. The problem is that the sensitivity of the eigenvalue is measured
by the condition number of diagonalizing matrix rather than the Hmod matrix [26].

3 Application to Excited State Problems

It is well known that the ab initio study of the excited electronic states of atoms
and molecules contains elements which are not present in the treatment of ground
states. In particular, excited state wave functions must be orthogonal to states of
lower energy. For the lowest eigenstate in a given symmetry class, a trial wave
function of that symmetry is automatically orthogonal to all lower eigenstates. For
higher eigenstates, the imposition of the orthogonality constraints is often difficult
and cumbersome.

The asymptotic projection method described above can be directly applied to the
calculation of approximate wave functions and energies of excited states having the
same spin and spatial symmetry as lower states. In this case, u = Φ0 and E0 are an
approximate ground state wave function and the corresponding ground state energy
respectively. E0 is defined as the lowest root of Eq. (13) at λ = 0. The operator H is
the Hamiltonian of a system. The first excited state or the second eigenvalue is then
defined by the relation

E1 = E(Φ1) = 〈Φ1|H|Φ1〉= min
Φ∈(Φ0)⊥

E(Φ), 〈Φ1|Φ1〉= 1 (49)

where the minimum is taken with respect to all vectors |Φ〉 belonging to the orthog-
onal complement (Φ0)⊥ of the vector |Φ0〉, i.e. the vectors |Φ〉 ∈ (Φ0)⊥ satisfy the
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condition 〈Φ|Φ0〉= 0. It should be stressed that, in general, (Φ0)⊥ � M, i.e., a sub-
space distinct from M can be used for E1. Higher eigenvalues are determined in a
similar fashion.

3.1 Bounds to Excited State Energies

Löwdin [27] has published a clear and detailed discussion of the general problem
of variation in a restricted subspace. He has documented some of the technical diffi-
culties that arise in using Eq. (49). In particular, we must require orthogonality of an
excited state eigenfunction to the exact lower eigenfunctions of H if the minimum
given by Eq. (49) is to be an upper bound to the exact eigenstate energy. A more
practical formulation, which avoids the need for the exact lower eigenfunctions, has
been given by Hylleraas and Undheim [28] and by MacDonald [29]. These authors
have shown that convenient upper bounds are provided by the Rayleigh-Ritz method
if the functions |Φi〉 are determined in the same basis set |φk〉(k = 0, 1, . . . , n) using
the expansion given in Eq. (3).

If we use different basis sets for different states, then the imposition of the orthog-
onality constraint (7) with respect to an approximate wave function for a lower state
does not, in general, yield an excited state energy which is an upper bound to the
exact excited state energy. However such an approximation is often preferable since
it can provide a more compact and accurate representation of the eigenvectors and
eigenvalues. “The desirability of using different basis sets for different states” was
pointed out by Shull and Löwdin [30] as long ago as 1958. Of course such a scheme
requires significant computation, but, given the availability of an efficient method
for solving the eigenvalue problem (1) with orthogonality constraints (2), it can be
justified. In this case, the quality of the bounds to the excited state energies remains
an open question.

Although the imposition of the orthogonality constraint (7) to an approximate
lower state wave function does not, in general provide an upper bound to the excited
state, there exists a so-called “weak bound” (introduced by Zener and coworkers
[31]) with respect to the exact energies Ei:

Ei ≥ Ei−
i−1

∑
j

δ j(Ei−E j). (50)

In this equation,
δ j = 1−|〈Φi|Ψj〉|2 (51)

and Ψj is the exact wave function for the j-th state. We can obtain an upper bound
by imposing the additional constraint

〈Φi|H|Φ j〉= 0. (52)
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It should be noted that the asymptotic projection method can also be applied to the
problem defined by Eq. (52).

In practical calculations, the excited state energies are expected to lie above the
the exact energies if Φ0 is a good approximation to the true ground state eigenfunc-
tion. Therefore, we shall now investigate the bounding properties when only the
orthogonality constraint (7) is imposed on an excited function. In this case, it is our
opinion that a min−max principle [16], which is not directly based on eigenvectors
is useful. For example, for the first excited state we have

E1 = max
Φ0

min
Φ∈(Φ0)⊥

E(Φ). (53)

In this equation, the maximum is attained when Φ0 is equal to the exact wave
function Ψ0 of the ground state.

Equation (53) suggest that the value of E1 is influenced by two effects. On the one
hand, if a complete basis set is used for Φ0 then a finite-dimensional approximation
to the excited state leads to an upper bound for E1, i.e. E1 ≥ E1. On the other hand,
if the variation of Φ is carried out in the subspace (I−|Φ0〉〈Φ0|)X and a finite basis
set approximation is made for Φ0, then the min−max principle (53) gives E1 ≥ E1,
that is E1 is a lower bound to the true energy with the equality applying in the case
Φ0 = Ψ0.

The imposition of the orthogonality constraint 〈Φ1|Φ0〉= 0 alone does not guar-
antee that E1 will be an upper bound to the exact energy. However, in contrast to
the “weak bound” defined in Eq. (50), we are able to give a relation between E1 and
an upper bound Eupper

1 [12, 13, 32] which proves useful from the point of view of
practical calculations. Indeed, for the approximate wave functions Φ0 and Φ1, the
secular determinant may be written

det

∣∣∣∣∣∣
〈Φ0 |H|Φ0〉− ε 〈Φ0 |H|Φ1〉

〈Φ1 |H|Φ0〉 〈Φ1 |H|Φ1〉− ε

∣∣∣∣∣∣ = 0. (54)

This equation has two solutions which may be written

Eupper
0 =

1
2

[E0 + E1]− 1
2

[
(E0−E1)

2 + 4 |H01|2
] 1

2
(55)

Eupper
1 =

1
2

[E0 + E1]+
1
2

[
(E0−E1)

2 + 4 |H01|2
] 1

2
(56)

where the off-diagonal matrix element is H01 = 〈Φ0 |H|Φ1〉. Using the Hylleras-
Undheim-MacDonald theorem [29], we know that the solutions of the secular
equations are upper bounds and, in particular,

Eupper
1 � E1. (57)
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Furthermore, we note that ∣∣Eupper
0 −E0

∣∣ =
∣∣Eupper

1 −E1
∣∣ (58)

and so, if the ground state energy is determined to given accuracy then E1 will have
a comparable accuracy and the coupling matrix elements, H01, may be neglected at
this level of approximation.

3.2 Gradient of the Excited State Energy with Respect to Basis Set
Parameters

There is, at present, no published analytical expression for the gradient of the energy
of an excited state with respect to basis set parameters for excited states having the
same symmetry as the ground state. The formalism developed in Sect. 2.1 allows us
to derive a suitable expression. Indeed, the left-hand side of Eq. (14) represents the
components of the gradient of the energy of the excited state ∂aE1 with respect to
nonlinear basis set parameters ρa, i.e.

∂aE1 = 2〈Φ1|(∂aP)(H + λ Pu)P |Φ1〉 , (59)

In this equation, Pu = |Φ0〉〈Φ0|. The factor of 2 arises from the complex conjugate
which is equal to the real part.

Practical application of Eq. (59) requires knowledge of the limit

lim
λ→∞

λ 〈Φ0|Φ1〉 . (60)

This limit can be found from Eq. (13) which can be rewritten as

P(H−E1)P |Φ1〉=−λ |Φ0〉〈Φ0|Φ1〉. (61)

Multiplying the left-hand side of Eq. (61) by 〈Φ0|, we obtain a relation which is
valid for any value of λ :

λ 〈Φ0|Φ1〉=−〈Φ0|P(H−E1)P |Φ1〉 , (62)

or
lim

λ→∞
λ 〈Φ0|Φ1〉=−〈Φ0|PHP |Φ1〉 . (63)

Substituting Eq. (63) in Eq. (59), we arrive at the following expression

∂aE1 = 2〈Φ1|(∂aP)H |Φ1〉−2〈Φ1|(∂aP) |Φ0〉〈Φ0|PHP |Φ1〉 , (64)

which is the gradient of the excited state energy with respect to non-linear basis set
parameters.



Asymptotic Projection Method: I 443

It should be emphasised that when a common basis set is used in the description
of both the ground state and the excited state with the corresponding projection
operator P, then

lim
λ→∞

λ 〈Φ0|Φ1〉= 0, (65)

because PHP|Φ0〉= E0|Φ0〉 and

lim
λ→∞

〈Φ0|Φ1〉= 0. (66)

Furthermore, we can write

〈Φ1|(∂aP) |Φ0〉= 〈Φ1|P(∂aP)P |Φ0〉= 0, (67)

since P(∂aP)P = 0 because of the properties of the orthoprojectors. Thus, expression
(59) for the gradient of the excited state energy with respect to nonlinear basis set
parameters can be simplified and written as

∂aE1 = 2〈Φ1|(∂aP)H |Φ1〉 . (68)

This formulae is similar to that for the gradient of the ground state energy (see e.g.
the paper by two of us [33])

For the purposes of practical calculations, the operators contained in Eqs. (64)
and (68) can be expressed in terms of basis set functions φi if the derivatives of the
projection operator are taken into account

∂aP =
n

∑
k=0

[(I−P)|∂aφk〉(φk|+ |φk)〈∂aφk|(I−P)] . (69)

In this equation

|φk) =
n

∑
j=0

|φ j〉S−1
jk (70)

where S−1
jk is an element of the inverse of the overlap matrix.

4 Illustrative Excited State Calculations of One-Electron
Molecular Systems H+

2 and H++
3

The diatomic and triatomic molecular ions H+
2 and H++

3 are the simplest molecu-
lar systems for which the exact numerical solutions of the Schrödinger’s equation
are known. For these systems numerical solutions are available to “machine accu-
racy” [34,35]. These numerical solutions provide excellent “benchmarks” for testing
more approximate methods which have been developed for solving more complex
problems.

For the H+
2 ion, we studied both the ground state 1σg (1sσg) and the first excited

state of the same symmetry 2σg (2sσg). The nuclear separation was set at 2.0 bohr.
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For this geometry, the exact ground state electronic energy is −0.6026342144949
Hartree whereas the exact electronic energy of the 2σg (2sσg) excited state is
+0.1391351246617 Hartree [34]. The difference between these two exact energies
is +0.7417693391566 Hartree.

In the present study, we employed basis sets of s-type Gaussian functions centred
on the internuclear axis with both exponents and positions determined by invoking
the variational principle. Specifically, we used basis sets containing 2n+1 functions
distributed along the internuclear axis with n = 3, 4, ...,13. For an odd number of
basis function, symmetry considerations require that a single function is placed at
the bond mid-point and the remaining functions are arranged in pairs symmetrically
about this mid-point. We compared the energies supported by finite basis set expan-
sions with the corresponding exact values. In particular, we carried out calculations
using two schemes in the construction of basis sets: in the first, we used a com-
mon basis set for the different states, whilst in the second, different basis sets were
employed for different states. We used basis sets consisting of 2×13 + 1 functions
to compare the two approaches. In order to assess the effects of basis set truncation
on the calculated energies and energy differences, we also used smaller basis sets,
designated 2×5 + 1 and 2×8 + 1.

4.1 Common Basis Set for Different States

The parameters defining an optimized distributed basis set consisting of (2×13+1)
s-type Gaussian functions for the ground state of the H+

2 ion with a nuclear sepa-
ration of 2.0 bohr can be found in Ref. [13]. The energies supported by this basis
set for the 1σg (1sσg) and 2σg (2sσg) states of the hydrogen molecular ion are col-
lected in Table 1. In this table, the column headed ∆ displays the difference between

Table 1 Total energies (in Hartrees) for the H+
2 molecular ion, with the nuclear separation of 2.0

bohr, calculated using the constrained variational method and a common basis set for different
states

State Basis set E ∆ a

2σg (2sσg) (2×13+1) +0.151939303 12804.178
(2×8+1) +0.157581881 18446.756

[+0.1391351246617] (2×5+1) +0.199485926 60350.801
1σg (1sσg) (2×13+1) −0.602633875 0.339

(2×8+1) −0.602623992 10.222
[−0.6026342144949] (2×5+1) −0.602512544 121.670

∆E1σg (1sσg),2σg (2sσg) (2×13+1) +0.754573178 12803.839

(2×8+1) +0.760205873 18436.534
[+0.7417693391566] (2×5+1) +0.801998470 60229.131

a – ∆ (in µ Hartrees) is the difference between the energy expectation value
supported by the asymptotic projection method and the corresponding exact
value.
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the energy expectation value supported by the asymptotic projection method and the
corresponding exact value.

For the constrained variational method with a common basis set for different
states, the calculated ground and the excited state total energies become increasingly
accurate with increasing size of basis set. Consequently, the accuracy of the calcu-
lated energy difference, ∆E also increases with the size of the basis set. However,
the error in the calculated energy for the excited state is very much larger than that
for the ground state. The error in the excited state energy is almost 500 times that in
the ground state energy for the the (2×5+1) basis set and roughly 4×104 times the
corresponding energy for the (2×13 + 1) basis set. This is not surprising since the
basis sets are optimized for the ground state and therefore describe the ground state
with increasing accuracy relative to the excited state as the basis set is extended.
The error in the calculated total energy for the excited state dominates the error in
the energy difference, ∆E .

4.2 Different Basis Sets for Different States

The parameters for the distributed basis set consisting of (2 × 13 + 1) s-type
Gaussian functions optimized for the excited state of the H+

2 ion, with a nuclear
separation of 2.0 bohr, can be found in Ref. [13]. Again, for basis sets containing
an odd number of functions, there is one function centred on the bond mid-point
with the remaining functions arranged symmetrically The pairs of exponents and
z-coordinates are taken to be ordered according to their distance from the bond
mid-point.

For calculations using the constrained variational method with different basis sets
for different states, the orthogonality of the ground and excited state wavefunctions
was imposed by solving the eigenproblem defined in Eq. (13) with

λ = 5×104a.u. (71)

This value of λ was determined so as to ensure that

〈Φ0| Φ1〉= 0.000000000. (72)

As we have already mentioned, the accuracy with which the orthogonality constraint
is satistifed as a function of λ depends on specific features of the particular problem
under consideration.

In the case of the hydrogen molecular ion, we show in Fig. 1 that the value λ
∼5–10 hartree ensures the overlap integral value 〈Φ0|Φ1〉< 10−7−10−8. As can be
seen, the ground state-to-excited state transition occurs almost step-wise within the
narrow range of λ ∼ 0.74− 0.75 hartree that corresponds to the excitation energy
value (see ∆E from Table 1). In addition we observed that for a wide range 0.75
< λ < 104, the value E1 remains almost constant, indicating the stability of the
solution achieved by the method.
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Fig. 1 The value of the overlap integral 〈Φ0|Φ1〉 as a function of the parameter λ for the ground
state of the H+

2 molecular ion with R = 2.0 bohr. Φ0 and Φ1 were calculated using a basis set
optimized for the first excited state

Table 2 Total energies (in Hartrees) for the H+
2 molecular ion, with the nuclear separation of 2.0

bohr, calculated using the constrained variational method and different basis sets for different states

State Basis set E ∆ a

2σg (2sσg) (2×13+1) +0.139135657 0.532
(2×8+1) +0.139148302 13.177

[+0.1391351246617] (2×5+1) +0.139216795 81.670

1σg (1sσg) (2×13+1) −0.602633875 0.339
(2×8+1) −0.602623992 10.222

[−0.6026342144949] (2×5+1) −0.602512544 121.670

∆E1σg (1sσg),2σg (2sσg) (2×13+1) +0.741769532 0.193

(2×8+1) +0.741772294 2.955
[+0.7417693391566] (2×5+1) +0.741729339 −40.000

a – ∆ (in µ Hartrees) is the difference between the value of the energy (or
excitation energy) obtained with the asymptotic projection method and the
corresponding exact value.

The energies supported by the (2× 5 + 1), (2× 6 + 1) and (2× 13 + 1) basis
sets for the 1σg (1sσg) and 2σg (2sσg) states of the hydrogen molecular ion are
collected in Table 2.

The accuracy of the excited state energies obtained by employing different basis
sets for different states in the constrained variational method are much improved
over those given in Table 1 for the common basis set case. For the (2× 5 + 1)
basis set, the error in the calculated excited state energy displayed in Table 2 is
739 times smaller than the corresponding error in Table 1. This error is reduced
by a factor of 24,000 for the (2× 13 + 1) basis set. This reduction in the error is
not surprising because the basis sets are optimized for the respective states. The
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Table 3 Electronic energies for the ground state, the first excited state and excitation energy (all
in Hartrees) of linear H2+

3 for RAB = RBC = 2 bohr

Method E(GS) E(ES) E(ES)−E(GS)

Presentwork −1.524 159 62 −1.173 373 83 0.350 785 79
Exact −1.524 159 90 −1.173 374 30 0.350 785 60
∆ a 0.28 0.47 0.19
a – ∆ is the difference between the value of the energy obtained with the
asymptotic projection method and the corresponding exact value.

constrained variational approach with different basis sets for different states yields
the most accurate energies for a basis set of a given size. However, this approach also
leads to the greatest computational demands. (Although these demands are small for
the systems considered in the present work.) The calculated energy differences, ∆E ,
displayed in Table 2 using different basis sets for different states are also markedly
improved over those given in Table 1. It should be noted that ∆E , is not an upper
bound to its exact value as the results presented in Table 2 clearly demonstrate. The
total energies and the energy differences converge with increasing size of basis set.
In fact, the magnitude of ∆E decreases monotonically with the size of the basis set.
For the excited state, the convergence pattern with increasing size of basis set size
mirrors that observed for the ground state.

For our study of the linear H2+
3 molecular ion, the nuclei were positioned at

(0.0, 0.0,−2.0), (0.0, 0.0, 0.0) and (0.0, 0.0, +2.0) bohr. For this configuration,
Hackel et al [35] reported a ground (1σ) state electronic energy of −1.524 159 9
hartree whilst for the first excited (2σ) state they determined an electronic energy
of −1.173 374 3. These authors used the finite element method to perform their
calculations. The present calculations were carried out by using an optimized basis
set of s-type Gaussian functions constructed in a similar fashion to the sets employed
for the H+

2 ion. In Table 3, calculated electronic energies of the linear H2+
3 ion are

displayed for the ground state and the excited state as well as the corresponding
excitation energy. The energies presented in Table 3 were supported by the largest
basis set employed in this study containing a total of 42s functions. This basis set is
defined in Table 4.

The results presented above for the diatomic H+
2 ion and the triatomic H++

3 ion
demonstrate that the asymptotic projection method is capable of supporting an accu-
racy of∼1 µHartree for excited state energies for one-electron systems when used in
conjunction with optimized basis sets. Of course, the method described here can be
applied to many-electron molecular systems where they can support a comparable
accuracy.
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Table 4 Optimal basis set parameters for the ground state (1σ ) and excited state (2σ ) of the linear
H++

3 ion. The exponents, ζp, and positions, zp, are variationally optimized for each state. The
nuclei are located at the points (0, 0, -2), (0, 0, 0) and (0, 0, 2)a

1σ 2σ

p ζp zp p ζp zp

1,2 0.8418205(0) ±0.1910288(1) 1,2 0.7639302(0) ±0.1875791(1)
3,4 0.3476880(0) ±0.1650485(1) 3,4 0.3019611(0) ±0.1485761(1)
5,6 0.1517923(1) ±0.9561177(0) 5,6 0.1742844(1) ±0.4554557(0)
7,8 0.1339805(1) ±0.1838749(1) 7,8 0.8208070(0) ±0.1851638(1)

9,10 0.2381616(1) ±0.1917609(1) 9,10 0.1692262(1) ±0.1921101(1)
11,12 0.6478234(1) ±0.1975352(1) 11,12 0.4262420(1) ±0.1986405(1)
13,14 0.1627814(0) ±0.1641909(1) 13,14 0.1448846(0) ±0.1601241(1)
15,16 0.1929540(2) ±0.1995239(1) 15,16 0.1124180(2) ±0.1997629(1)
17,18 0.6749235(2) ±0.1997803(1) 17,18 0.3316262(2) ±0.1998046(1)
19,20 0.2959242(3) ±0.1999778(1) 19,20 0.4419684(3) ±0.1999778(1)
21,22 0.1973472(4) ±0.1999911(1) 21,22 0.2570299(4) ±0.1999911(1)
23,24 0.3684891(1) ±0.2103583(0) 23,24 0.1127609(3) ±0.1999975(1)
25,26 0.6332710(0) ±0.8738938(0) 25,26 0.5016808(1) ±0.5242137(−1)
27,28 0.2998761(1) ±0.2201661(1) 27,28 0.6567027(0) ±0.5547677(0)
29,30 0.7222268(0) ±0.3345823(1) 29,30 0.1944792(1) ±0.2210755(1)

31 0.4762336(4) 0 31,32 0.3748303(0) ±0.2355470(1)
32 0.7112966(3) 0 33,34 0.6357909(−1) ±0.1841511(1)
33 0.1618855(3) 0 35,36 0.2175831(2) ±0.1702267(−1)
34 0.4608506(2) 0 37,38 0.6985340(2) ±0.9988073(−2)
35 0.1508453(2) 0 39,40 0.4119900(1) ±0.1507338(0)
36 0.5479534(1) 0 41,42 0.2013408(5) ±0.2000000(1)
37 0.2022999(1) 0
38 0.8570714(0) 0
39 0.3584578(0) 0
40 0.1779767(0) 0
41 0.7531864(−1) 0
42 0.3137232(−1) 0

a Powers of ten are given in parentheses.

5 Concluding Remarks

We have described an alternative technique for solving a wide class of problems in
quantum chemistry and in atomic and molecular physics, which can be reduced to an
eigenvalue equation with some orthogonality constraints imposed on eigenvectors.
This technique is based on an asymptotic projection method proposed, which was
earlier and which can be simply implemented. The basic features of the asymptotic
projection method have been presented and the method has been compared with
conventional approaches to the constrained variational problem, namely, the elimi-
nation of off-diagonal Lagrangian multipliers method and the projection operators
technique.

Some specific features of excited state calculations that implement the asymp-
totic projection method have been discussed. Unlike the major traditional meth-
ods where an improvement in accuracy is achieved by using extensive ways, for
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instance, considerable extension of both atom-centered one-particle basis sets and
increasing a number of many-particle configurations (sometimes up to several bil-
lions [36, 37]), we focused on the development alternative approaches capable of
optimizing relatively small distributed basis sets.

Finally, it should be noted that the asymptotic projection method can also provide
a suitable reference with respect to which a well-founded many-body expansion for
correlation effects in open-shell states can be developed.

Acknowledgements V.N.G. thanks Prof. A. Theophilou for useful and stimulating discussions
during the early stages of this work.
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Abstract The problem of the orthogonality of the closed- and open-shell orbitals
in self-constistent field (SCF) theory are reviewed. An easily implemented asymp-
totic projection method for talking orthogonality constraints into account is used
to develop an alternative open-shell SCF approach for ground and excited states.
Variational derivation of the open-shell Hartree-Fock equations is described which
does not involve off-diagonal Lagrangian multipliers. The possibilities of designing
a well-defined, open-shell many-body perturbation theory using the orbitals of the
asymptotic projection method is demonstrated by means of calculations of ground
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1 Introduction

Open-shell SCF theory is one of the most elegant techniques of contemporary
quantum chemistry. Computational methods based on open-shell theory provide
well-established tools which are applied routinely in modern molecular electronic
structure studies (see, e.g. [1–14] and references therein). Today, open-shell method-
ology is available in many of the quantum chemical program packages, such as
GAUSSIAN [23] and GAMESS [24], and is exploited in many practical applications.

In open-shell SCF theory, the optimal orbitals ϕi, i = 1, 2, ..., N satisfy equations
of the following form:

Fi|ϕi〉= ∑
j

|ϕ j〉θ ji

θi j = θ ∗ji (1)

where the Fi are Fock operators and the θi j are Lagrangian multipliers, which arise
from the orthogonality constraints

〈ϕi|ϕ j〉= δi j.

The Fock operators are functionals of {ϕi} and so the above equations are solved
iteratively until self-consistency is attained. If a unitary transformation between the
ϕi is possible without changing the total energy expectation, then some or all of
conditions (1) can be fulfilled. This is a case, for example, in closed-shell SCF theory.

When describing open-shell systems, conventional approaches give rise to
Hartree-Fock type equations which involve different Fock operators for the orbitals
with the same spin. This results in off-diagonal Lagrange multipliers which couple
the closed- and open-shells and which cannot be eliminated by a suitably cho-
sen unitary transformation. Many studies have been devoted to the orthogonality
problem for the closed- and open-shell orbitals [1–10]. In his seminal 1960 paper,
Roothaan [1] proposed the elegant coupling operator formalism to overcome this
difficulty. Considerable progress has been made in understanding the nature of the
coupling operator method (see, e.g., [2–8], [11]) and useful computational experi-
ence has been accumulated in solving the restricted open-shell Hartree-Fock (ROHF)
equations (see, e.g., [12–14]). Recent investigations have made it possible to find
a canonical form of the open-shell Fock operator, which leads to useful relations
between the open-shell orbital energies and the ionization potentials [17]. An excel-
lent description of a history and evolution of the SCF theory for open-shell systems
can be found in the review by Carbo and Riera [14] and references therein. At the
present time, the coupling operator based methods, first proposed by Roothaan in
1960, form the basis of the most widely used computational procedure in studies of
open-shell systems.

The choice of zero-order Hamiltonian is crucial to the success of perturbation
approaches to the correlation problem and this choice is not as straightforward
for open-shell systems as it is in the case of closed-shell species. A number of
open-shell versions of many-body perturbation theory have been developed over
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the years beginning with the work of Hubač and Čársky in 1980 [18], which was
extended through fourth order by one of the present authors [19]. Much work on
open-shell systems has concentrated on states of high spin. Of course, the descrip-
tion of arbitrary open-shell systems requires the use of a multireference perturbation
expansion.

The Roothaan coupling operator formalism does not readily lend itself to a
well-defined perturbation theory for describing the correlation effects in arbitrary
open-shell systems [20–25]. In recent years, there has been renewed interest in the
open-shell methods fuelled by the desire to define a cost-effective many-body per-
turbation theory based on restricted open-shell Hartree-Fock wave functions. For
general open-shell systems, it can be difficult to devise a zero-order Hamiltonian
H(0) for which the wave function has a simple form and is an eigenfunction of the
total spin operator S2 [26]. Within the framework of the Roothaan coupling operator
approach, there is no unique way of choosing a reference Hamiltonian, H(0), with
respect to which a perturbation expansion for correlation effects can be developed.
Several proposals have been made for open-shell many-body perturbation theory
expansions (or open-shell Møller-Plesset-like perturbation theory (MPPT)) based
on a reference from the ROHF formalism [22, 23] or the unrestricted Hartree-Fock
(UHF) formalism [20, 21]. (It is well-known that the UHF formalism has a number
of serious deficiencies, such as unphysical features in calculated potential energy
curves.) These approaches to open-shell many-body perturbation theory differ pri-
marily in the definition of the reference hamiltonian H(0). It is well established
that the success or failure of a particular perturbation theory expansion is largely
determined by the choice of the reference Hamiltonian, H(0). Ambiguities in the
definition of the zero-order operator cannot be regarded as a desirable element of
any perturbation theory.

In Sect. 2, we shall demonstrate that the method of asymptotic projection, which
was reviewed in paper 1 [27], can be used to avoid ambiguities in the definition of
zero-order operators for use in developing perturbation expansions for correlation
effects. In previous work [28–38], the asymptotic projection method has been shown
to be useful tool for solving quantum chemical problems which can be formulated in
terms of an eigenvalue problem with orthogonality restrictions, i.e. the constrained
variational problem reviewed in paper 1 [27].

Another aspect of SCF theory which deserves more detailed investigation is the
study of electronically excited states, and especially excited states of the same spin
and spatial symmetry as the ground or some lower-lying state. Indeed, Hartree-Fock
calculations for electronically excited states cannot be considered routine. In partic-
ular, remembering that the ground and excited states are often of quite different
character, it is desirable to use different basis sets for different states. “The desir-
ability of using different basis sets for different states” was pointed out by Shull and
Löwdin [39] as long ago as 1958. Such an approach provides a compact and accu-
rate representation of excited state wave functions. Today, the most commonly used
approaches to the study of excited states are based on multireference techniques,
including configuration interaction, the multiconfigurational self-consistent field
method and its “complete active space” variant designated CASSCF, multireference
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perturbation theory and multireference coupled cluster expansions. These methods
are indispensable in studies of systems for which single-configuration methods can-
not be applied - for example, when the weight of the Hartree-Fock configuration
in the wave function of the full configuration interaction expansion is less than
∼0.9 [40]. However, in cases where a multireference approach is necessary, it is
clear that the orbitals of a single-configuration, together with a basis set that has
been specifically optimized for a given excited state, will prove more appropriate
for the development of many-body correlation methods than orbitals expanded in
a basis set constructed for the ground state. Furthermore, progress in excited state
SCF theory might be expected to aid the development of density functional theory
for excited states.

In Sect. 3, we shall consider the use of the asymptotic projection method in
excited state SCF calculations. The many-body Møller-Plesset-like perturbation
theory based on optimal orbitals generated by the SCF-asymptotic projection method
is the subject of Sect. 4. We shall demonstrate that, unlike existing open-shell per-
turbation theory formalisms, our alternative methodology can be easily extended to
excited states and, thus, facilitate the computation of a large part of the correlation
energy in a rather simple way. Our concluding remarks are given in Sect. 5.

2 Restricted Open-Shell Wave Functions and the Asymptotic
Projection Method

In this section, we review an alternative to the Roothaan’s open-shell method
that does not involve off-diagonal Lagrange multipliers. We develop the asymp-
totic projection-SCF formalism to construct a single open-shell Slater determinant
from which a well-defined, open-shell, many-body Møller-Plesset-like perturbation
theory (MPPT) can be performed for both the ground and excited states.

2.1 Modified Open-Shell Hartree-Fock Equations for Ground
States

2.1.1 Notation, Conventions and Restrictions

In this subsection, we shall consider systems for which the total SCF wave function
can be written as a sum of several antisymmeterized products, each of which consists
of a product of doubly occupied orbitals ϕc

k , the so-called core orbitals or closed-
shell set, and singly occupied orbitals ϕm, the valence orbitals or open-shell set.
To clarify our alternative technique, i.e. asymptotic projection, we shall restrict our
attention to open-shell systems for which the expression for the energy expectation
value can be partitioned as follows:

E = Ec + Eo + Eco (2)
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where the first term on the right-hand side is the closed-shell energy, the second term
is the open-shell energy, and the last term arises from the interaction between the
closed and open shells. This is a case considered in Roothaan’s seminal article [1],
for which the energy components have the form

Ec = 2∑
k

hkk +∑
k,l

(2〈ϕk|Jl |ϕk〉− 〈ϕk|Kl|ϕk〉)

Eo = f [2∑
m

hmm + f ∑
m,n

(2a〈ϕm|Jn|ϕm〉−b〈ϕm|Kn|ϕm〉)] (3)

and
Eco = 2 f ∑

k,m

(2〈ϕk|Jm|ϕk〉− 〈ϕk|Km|ϕk〉).

In these expressions, a, b, and f are numerical constants depending on the particu-
lar state under consideration, hkk = 〈ϕk|h|ϕk〉 where h is the one-electron operator
describing the kinetic energy of an electron and its interactions with the nuclei,
Jk and Kk are commonly called the Coulomb and exchange operators, which are
defined as

〈ϕi|Jj|ϕi〉= (ϕiϕi|ϕ jϕ j) =
∫

ϕ∗i (1)ϕ∗j (2)
1

r12
ϕi(1)ϕ j(2)dV1dV2

and

〈ϕi|Kj|ϕi〉= (ϕiϕ j|ϕiϕ j) =
∫

ϕ∗i (1)ϕ∗i (2)
1

r12
ϕ j(1)ϕ j(2)dV1dV2,

respectively. Following Roothaan [1], we reserve the indices k, l and m, n for the
closed-shell and open-shall orbitals, respectively, and the indices i, j for orbitals of
either set.

2.1.2 Orthogonality Constraints in the Restricted Open-Shell SCF Formalism

In the following discussion, we will be concerned with the orthogonality constraints
which are to be imposed on the orbitals. Such constraints can be divided into two
types. The first type of constraints are the orthogonality conditions within each of
the orbital sets: {ϕc

k}, {ϕm}, i.e.

〈ϕc
k |ϕc

l 〉= δkl (4)

〈ϕm|ϕn〉= δmn. (5)

These constraints are usually incorporated by introducing the Lagrange multipliers
{θ c

kl} and {θ o
mn}. The corresponding matrices can always be transformed to diagonal

form by appropriate unitary transformations. The second type of constraints are the
orthogonality conditions between the closed-shell and the and open-shell orbitals,
i.e.

〈ϕc
k |ϕm〉= 0. (6)
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It is from the condition (6) that the problem of off-diagonal Lagrange multipliers
arises. In the present study, we shall use the asymptotic projection technique to
handle these orthogonality constraints rather than the conventional coupling oper-
ator methods introduced by Roothaan. It is convenient when using the asymptotic
projection method to rewrite Eq. (6) in two related symmetrical forms which are
convenient for carrying out the variations; namely,

∑
k

〈ϕc
k |Po|ϕc

k 〉= 0 (7)

and

∑
m
〈ϕm|Pc|ϕm〉= 0 (8)

where
Pc = ∑

k

|ϕc
k 〉〈ϕc

k | (9)

and
Po = ∑

m
|ϕm〉〈ϕm| (10)

are the orthoprojectors on the subspaces spanned by the closed-shell and open-shell
orbitals, respectively.

It should be noted that each term in the sum (7) [or (8)] is nonnegative, therefore,
the requirement (7) [or (8)] is exactly equivalent to the orthogonality conditions (6).
Thus, when implementing a variational principle, as we shall demonstrate in the
next subsection, we may apply the constraint (7) [or (8)] instead of using (6).

2.1.3 Variational Derivation of the Open-Shell Hartree-Fock Equations

We start from the stationary condition for the total energy given in Eq. (2) subject
to the constraints (4), (5) and (7).

Let us now define the functional

L = E−2∑
k,l

θ c
kl〈ϕc

k |ϕc
l 〉−2 ∑

m,n
θ o

mn〈ϕm|ϕn〉+ λ ∑
k

〈ϕc
k |Po|ϕc

k 〉 (11)

where θ c
mn,θ o

mn and λ are Lagrange multipliers introduced to take account of the
orthogonality constraints.

The stationary condition δL = 0 takes the form

δL = δ{E−2∑
k,l

θ c
kl〈ϕc

k |ϕc
l 〉−2 ∑

m,n
θ o

mn〈ϕm|ϕn〉}+ λ δ{∑
k

〈ϕc
k |Po|ϕc

k 〉} = 0. (12)

After some manipulation, the variations in the first bracket of Eq. (12) yield the
standard result:

∑
k

〈δϕc
k |(Fc− εc

k )|ϕc
k 〉+∑

m
〈δϕm|(Fo− εo

m)|ϕm〉+ c.c. (13)
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where c.c. denotes the complex conjugate and εc
k and εo

m are the diagonal elements
of matrices θ c

kl and θ o
mn, respectively.

In Eq. (13) Fc and Fo are Fock operators (or Fockians), whose explicit form
depends on the precise form of the energy expression of the state under considera-
tion. For example, for the expression (2), we have [1]:

Fc = h +∑
k

(2Jc
k −Kc

k )+ f ∑
m

(2Jm−Km)

Fo = h +∑
k

(2Jc
k −Kc

k )+ f ∑
m

(2aJm−bKm)

where h is the one-electron operator describing the kinetic energy of an electron and
its interaction with the nuclei. It can be shown [24] that the variations in the second
bracket in Eq. (12) lead to the following expression

δ{∑
k

〈ϕc
k |Po|ϕc

k 〉}= ∑
k

〈δϕc
k |Po|ϕc

k 〉+∑
m
〈δϕm|Pc|ϕm〉+ c.c. (14)

Combining Eqs. (13) and (14), the total variation in Eq. (12) can be written as
follows:

δL = ∑
k

〈δϕc
k |(Fc + λ Po− εc

k )|ϕc
k 〉+∑

m
〈δϕm|(Fo + λ Pc− εo

m)|ϕm〉+ c.c. (15)

In practice, the orbitals are approximated by means of some expansion in a finite
one-particle basis set (the algebraic approximation is invoked), i.e.,

|ϕi〉= P|ϕi〉=
Q

∑
q=1

Ciq|χq〉

where P is an orthoprojector defined by a chosen basis set {χq}. Using this expan-
sion, the orbital variations can be written in the form

|δϕi〉= P|δϕi〉+∑
a

(∂aP)|ϕi〉δ µa, (16)

where µa, a =1, 2,. . ., A, represents the basis set parameters (i.e. the exponents and
the positions). The first term in Eq. (16) corresponds to variations within the finite-
dimensional subspace spanned by the chosen basis set {χq}, whereas the second
term allows this subspace to be rotated within the Hilbert space of one-particle states
to attain the deeper minimum with respect to the total energy.

Substituting Eq. (16) into Eq. (15) and taking into account the independence of
the variations and their arbitrariness, we obtain the following equations:

P(Fc + λ Po− εc
k )P|ϕc

k 〉= 0 (17)

and
P(Fo + λ Pc− εo

m)P|ϕm〉= 0. (18)
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According to the asymptotic projection methodology, the imposition of the condi-
tion λ → ∞ in Eqs. (17) and (18) ensures the orthogonality between closed- and
open-shell orbitals. The choice of λ , whose value determines the target accuracy for
practical calculations, will be discussed below. Here it is worth noting that orbital
energies will be shifted during the iterative solution of Eqs. (17) and (18). Therefore,
after a solution has been obtained, these equations should be redefined as:

εc
k = 〈ϕc

k |Fc|ϕc
k 〉 and εo

m = 〈ϕm|Fo|ϕm〉.

The second term on the right-hand side of Eq. (16) leads to the equations for
optimization of the basis set:

∑
k

〈ϕc
k |(∂aP)Fc|ϕc

k 〉+∑
m
〈ϕm|(∂aP)Fo|ϕm〉= 0. (19)

In Eq. (19) we took account of the fact that the term λ P(∂aP)P vanishes for arbitrary
λ . The left-hand side of Eq. (19) is the expression for the energy gradient with
respect to the basis set parameters. This expression allows these parameters to be
determined variationally.

2.1.4 Correct Variational Conditions and Orbitals Based on Asymptotic
Projection

It is known that optimum set of orbitals must satisfy the correct variational con-
ditions, which are equivalent to the generalized Brillouin’s theorem [8]. There are
two distinct types of variational conditions for optimal orbitals. The first type corre-
sponds to the variational condition between virtual orbitals {ϕa} and occupied {ϕi}
orbitals, i.e.

〈ϕa|Fc|ϕc
k 〉= 0 (20)

and
〈ϕa|Fo|ϕm〉= 0. (21)

The second type of variational condition is that among occupied orbitals, i.e.

〈ϕm|(Fc−Fo)|ϕc
k 〉= 0 (22)

From Eqs. (17) and (18) it is easy to show that the orbitals based on asymptotic
projection obey these conditions. For example, multiplying Eq. (17) by 〈ϕm| and
Eq. (18) by 〈ϕc

k | by taking into account the orthogonality of the limiting orbitals, we
obtain

〈ϕm|Fc|ϕc
k 〉=−λ 〈ϕm|ϕc

k 〉
and

〈ϕc
k |Fo|ϕo〉=−λ 〈ϕc

k |ϕm〉.
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Finally, by subtracting these equations and taking the Hermitian properties of oper-
ators Fc and Fo into account, we arrive at the second variational condition, Eq. (22).
The relations (20) and (21) can be proved in a similar manner.

Thus, Eqs. (17) and (18) lead to an optimal set of orbitals. The energy expecta-
tion value supported by such orbitals is identical to that obtained by the Roothaan
coupling operators formalism. However, when implemented in a finite basis set
approach (the algebraic approximation), the coupling operator method deals with
equations of fifth order with respect to the coefficients Ciq in the two operator for-
malism and seventh order in the unique coupling operator formalism because of the
use of exchange coupling operators Jo and Ko (see Eq. (19) in Roothaan’s paper [1])
whereas the self-consistent field equations in the asymptotic projection technique,
Eqs. (17) and (18), are cubic equations.

2.2 Unrestricted Hartree-Fock (UHF) Formalism for Obtaining
High-Spin Restricted Open-Shell Hartree-Fock (ROHF)
Functions

It is well known that a large class of open-shell systems can be described by a sin-
gle Slater determinant. The open-shell Slater determinant Φ is built from orbitals
ϕα

k , k =1, 2,..., nα , associated with α spin and orbitals ϕβ
k , k =1, 2,..., nβ , associated

with β spin. In addition, nα � nβ and n = nα + nβ is the total number of electrons,
and S = Sz. As we mentioned above, in the traditional open-shell method there is a
degree of arbitrariness in the Fock operators that leads to different forms of pertur-
bation expansion for the correlation energy. These ambiguities can be avoided by
using the UHF formalism in which we allow the spatial part of the α spin orbitals to
differ from that of the β spin orbitals. A spin purity constraint should be imposed
on the spatial orbitals in order to eliminate spin contamination in the UHF func-
tion. This requirement is known [41] to be fulfilled if the occupied β orbitals are a
linear combination of occupied α orbitals, i.e. the β set lies completely within the
subspace defined by the α set. Below we shall see that this requirement leads to a
restricted open-shell Hartree-Fock Slater determinant.

Now we have
Pα Pβ = Pβ Pα = Pβ

with

Pα =
nα

∑
k

|ϕα
k 〉〈ϕα

k | and Pβ =
nβ

∑
k

|ϕβ
k 〉〈ϕβ

k |.

This allows us to rewrite the spin-purity requirement as the orthogonality constraint

nβ

∑
k

〈ϕβ
k |Qα |ϕβ

k 〉= 0

where Qα = I − Pα is the orthoprojector on the subspace of the virtual α spin
orbitals.
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Following the asymptotic projection methodology, the Euler equations for
orbitals can be then derived from the stationary condition

δL = δ [EUHF + λ
nβ

∑
k

〈ϕβ
k |Qα |ϕβ

k 〉] = 0. (23)

Similarly using Eq. (16), variations of the orbitals can be divided into independent
parts. For example, for the α orbitals we have

|δϕα
i 〉= Pα |δϕα

i 〉+(I−Pα)|δϕα
i 〉+∑

a
(∂aP)|ϕα

i 〉δ µa. (24)

Energetically significant variations are described by the second and third terms in
Eq. (24) because the first term does not lead to any change in the total energy since it
is invariant to any orthogonal transformation of the orbitals associated with a given
spin among themselves.

Substituting Eq. (24) into Eq. (23), after some manipulation, we arrive at the
following set of equations, which determine the optimal orbitals (see Glushkov [24,
33] for more details):

lim
λ→∞

P(Fα −λ Pβ − εα
i )P|ϕα

i 〉= 0, i = 1,2, ...,nα , ...,M (25)

lim
λ→∞

P(Fβ + λ Qα − εβ
i )P|ϕβ

i 〉= 0, i = 1,2, ...,nβ , ...,M (26)

and equations for basis set optimization

nα

∑
k

〈ϕα
k |(∂aP)Fα |ϕα

k 〉+
nβ

∑
k

〈ϕβ
k |(∂aP)Fβ |ϕβ

k 〉= 0. (27)

In Eqs. (25–27) Fα and Fβ are the conventional UHF operators. It should be
stressed that each of the additional term in (25) and (26) ensures spin purity, i.e.

Ŝz|Φ〉= S|Φ〉, Ŝ2|Φ〉= S(S + 1)|Φ〉
but only both of the terms λ Pβ and λ Qα in combination with the limit λ → ∞ lead
to an optimum set of orbitals satisfying the generalized Brillouin’s theorem (see
next section for further discussion). Note, that together both additional terms also
lead to spatial parts of the α set which are identical to those of the β set, but the
corresponding orbital energies are different. The Slater determinant built from these
orbitals gives a minimum of the total energy expectation value which is equivalent
to that obtained by the Roothaan coupling operator method.

In concluding this section, we note that the Eq. (27) is the natural generaliza-
tion of the equations for the optimization of the basis set for closed-shell systems.
Indeed, Eq. (27) reduces to that for the optimization of the basis set for closed
systems in the case nα = nβ (see, [42–44]).

∂aE = 2∑
i
〈ϕi|(∂aP)F |ϕi〉= 0 (28)
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2.2.1 Generalized Brillouin’s Theorem in Terms of Unrestricted Hartree-Fock
Orbitals Based on Asymptotic Projection

Below we shall show that the orbitals generated by Eqs. (25) and (26) in the limit
λ → ∞ satisfy the correct variational conditions i.e. the generalized Brillouin’s
theorem.

Without loss of generality, the full orbital space may be divided into a closed-
shell part (c), an open-shell part (o) and a virtual part (v). According to the
generalized Brillouin’s theorem, we have [7, 8]

〈Φ|H|Φ(i→ j)〉 = 0 (29)

Φ(i→ j)〉 are configurations which are singly excited with respect to Φ . There are
three types of well-defined singly excited configurations with the same multiplicity
as Φ [7, 8], viz.:

Φ(c→ o) = det |cαoβ oα|,
Φ(o→ v) = det |cαcβ vα|,

Φ(c→ v) = N(det |cαvβ oα|+ det |vαcβ oα|),
in addition

Φ = det |cαcβ oα|.
For the sake of simplicity, we denote only the spin-orbitals which take part in exci-
tations in the determinants. N is a normalization multiplier. The indices c, o and v
mean closed-shell (doubly occupied), open-shell (singly occupied) and the virtual
parts of the full orbital space, respectively. In terms of the unrestricted Hartree-Fock
operators Fα and Fβ , Brillouin’s theorem can be written:

〈Φ|H|Φ(c→ o)〉= 〈ϕβ
i |Fβ |ϕβ

m〉= 0, (m ∈ o, i ∈ c) (30)

〈Φ|H|Φ(o→ v)〉= 〈ϕα
m |Fα |ϕα

a 〉= 0, (m ∈ o,a ∈ v) (31)

〈Φ|H|Φ(c→ v)〉= 〈ϕα
a |Fα |ϕα

i 〉+ 〈ϕβ
a |Fβ |ϕβ

i 〉= 0, (i ∈ c,a ∈ v). (32)

Brillouin’s theorem is obeyed for the set of orbitals satisfying Eqs. (25) and (26)
in the limit λ → ∞ as well as the ‘traditional’ orbitals obtained by the Roothaan
approach. Indeed, multiplying Eq. (25) by 〈ϕα

a | and Eq. (26) by 〈ϕβ
a |, we obtain

〈ϕα
a |Fα |ϕα

i 〉= λ 〈ϕα
a |ϕβ

i 〉, and 〈ϕβ
a |Fβ |ϕβ

i 〉=−λ 〈ϕα
a |ϕβ

i 〉. (33)

A constraint vector has been shown to tend to an eigenvector of the modified oper-
ator as 1/α (see Part I of this work [27]). Therefore, the limit λ 〈ϕα

a |ϕβ
i 〉, λ → ∞,

exists and from Eq. (33) we can confirm that the condition (32) is satisfied. In the
same manner, we can show that conditions (30) and (31) are also satisfied for the
orbitals in the limit λ → ∞.
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Thus, the unrestricted Hartree-Fock orbitals based on asymptotic projection lead
to wave function and energy expressions which are equivalent to those obtained
by the Roothaan method. However, the asymptotic projection approach has some
advantages:

• The method avoids introducing the off-diagonal Lagrange multipliers coupling
the closed-shell and open-shell orbitals and, therefore, arbitrariness in the def-
inition of the Fock operators does not arise. Equations (25) and (26) are cubic
equations with respect to orbital expansion coefficients (lcao) and can be easily
implemented in established unrestricted Hartree-Fock codes. The ‘traditional’
open-shell Roothaan-based methods give rise to equations of fifth and seventh
degree with respect to these coefficients.

• The scheme defined in Eqs. (25) and (26) provides a well-defined zero-order
approximation for open-shell many-body perturbation theory that ensures that
single excitations do not contribute to the second-order energy. This should
be contrasted with the method of Knowles et al. [21], the restricted Møller-
Plesset approach, and the method of Amos et al. [20], here designated AAHK,
which employ different orbitals for different spins and for which the general-
ized Brillouin’s theorem is not satisfied and consequently single replacement
contributions enter the second-order energy expression.

The structure of the Fock matrices occurring in the asymptotic projection–self-
consistent field method is displayed in Fig. 1. The structure of the Fock matrices
arising in the RMP and the AAHK methods is shown in Figs. 2 and 3, respectively.

The asymptotic projection–self-consistent field equations are similar to those
reported for the RMP and AAHK methods. However, it should be emphasized that
Eqs. (25) and (26) give rise to spatial parts of the α set which are identical to those of
β set. In contrast, for the RMP and AAHK methods the α orbitals are not coincident
with the β orbitals [21] since these orbitals are rotated with respect to the orbitals
given by the Roothaan procedure and Brillouin’s theorem is not obeyed. The dif-
ferences between the methods is evident when we compare the Fock matrices Fα

and Fβ . It can be seen in Fig. (1) that s+ v block of the asymptotic projection–self-
consistent field Fα matrix has diagonal form and, therefore, the condition (31) is
satisfied. Furthermore, the diagonal form of d + s block of the Fβ matrix confirms
that condition (30) is also satisfied. However, it is clear by inspection of Figs. (2)
and (3) for the RMP and AAHK approaches that these do not satisfy Brillouin’s
theorem.

2.2.2 Matrix Hartree-Fock Energies for Ground States

In this subsection, some features of the alternative self-consistent field procedure
based on the asymptotic projection technique are demonstrated by means of Hartree-
Fock calculations of the ground state energies for the HeH and BeH molecules. The
Hartree-Fock ground state for the three-electron HeH molecule with electronic con-
figuration 1σ22σ is unbound. In this study, we used a He−H distance of 1.500 bohr,
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Fig. 1 Structure of the Fock
matrices in the asymptotic
projection method. d denotes
the doubly occupied com-
ponent of the orbital space,
s denotes the singly occu-
pied component and v the
virtual (or unoccupied) part. •
denotes a non-zero element of
the matrix

Fα

d s+ v︷ ︸︸ ︷ ︷ ︸︸ ︷
d

⎫⎬⎭
s+ v

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

• • • • • • •
• • • • • • •
• • • • • • •

• • • •
• • • •
• • • •
• • • •
• • • •
• • • •

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Fβ

d + s v︷ ︸︸ ︷ ︷ ︸︸ ︷

d + s

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
v

⎫⎬⎭

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

• • • •
• • • •
• • • •
• • • •
• • • •
• • • •

• • • • • • •
• • • • • • •
• • • • • • •

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

which corresponds to the minimum in the potential energy curve for the first excited
Σ state. To assess the potential of the approach based on asymptotic projection, we
compare the matrix Hartree-Fock energies with the finite difference ROHF energy
obtained on a grid designated [217×349; 65] (J. Kobus, 2004, personal communi-
cation): EfdHF =−3.220 315 124 616 hartree which provides an exact Hartree-Fock
result to near-machine accuracy.

The ground state of the five-electron BeH molecule with the electronic configura-
tion 1σ22σ23σ was studied for a nuclear separation of 2.500 bohr. The finite differ-
ence ROHF energy of this molecule at this geometry is EfdHF =−15.153 182 339 96
hartree (J. Kobus, 2004, personal communication).

Self-consistent field energy calculations were carried out using a single reference
wave function. For all calculations, basis sets of s-type Gaussian functions were used
with exponents and positions determined by minimizing the Hartree-Fock energy.
Equation (27) were used to construct numerical procedures for basis set optimiza-
tions. It has been found recently that such basis sets are capable of supporting an
accuracy at the sub-µhartree level for simple molecules [42, 44]. The expectation
value of the energy given by the alternative SCF method depends on a parameter λ ,
where λ = 0 corresponds to the UHF energy and tends asymptotically to the ROHF

energy given by Roothaan’s method as λ →∞. Table 1 presents the calculated ener-
gies for HeH as a function of λ together with the expectation value 〈S2〉 for the
case of 14s basis functions. We can see that setting λ = 100000 yields practically
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Fig. 2 Structure of the Fock
matrices in the restricted
Møller-Plesset method. d
denotes the doubly occupied
component of the orbital
space, s denotes the singly
occupied component and v the
virtual (or unoccupied) part. •
denotes a non-zero element of
the matrix

Fα

d + s v︷ ︸︸ ︷ ︷ ︸︸ ︷

d + s

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
v

⎫⎬⎭

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

• • • •
• • • •
• • • •
• • • •
• • • •
• • • •

• • • • • • •
• • • • • • •
• • • • • • •

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Fβ

d s+ v︷ ︸︸ ︷ ︷ ︸︸ ︷
d

⎫⎬⎭
s+ v

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

• • • • • • •
• • • • • • •
• • • • • • •

• • • •
• • • •
• • • •
• • • •
• • • •
• • • •

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

the energy obtained by Roothaan’s method (ERoothaan = −3.219 198 91 hartree).
For λ∼5,000−10,000, we achieve a sub-µhartree level of agreement between our
method and the Roothaan method. The expectation value 〈S2〉 is given to our tar-
get accuracy for values λ > ∼100−500. In Table 2, we record the total restricted
open-shell matrix Hartree-Fock energies for Gaussian s-type basis sets of increas-
ing size. In this table, N denotes the total number of basis functions in a given basis
set. ∆ is the difference, in µhartree, between successive entries in Table 2. ∆n is
the value of ∆ divided by the number of basis functions added between successive
rows of Table 2. δ is the difference, again in µhartree, between the matrix Hartree-
Fock energy supported by a given basis set and corresponding value obtained by
the finite difference method. It can be seen that the largest basis set considered in
Table 2, which contains 48 s-type Gaussian functions, supports an accuracy at the
sub-µhartree level. The energy reported for this basis set corresponds to λ = 6,000.

Table 3 illustrates the dependence of the open-shell matrix Hartree-Fock energy
and 〈S2〉 for the BeH molecule on the parameter λ . The basis set of 30 s-type Gaus-
sian functions was used in this case. Values of λ in the range ∼5,000−10,000
provided the required accuracy in the energy when compared with the traditional
Roothaan method. We can see that the study of the BeH molecule is similar to that
of HeH molecule, in particular, it can be seen that when λ increases the expecta-
tion value of the square of the spin operator 〈S2〉 decreases much more rapidly than
the total energy increases. The total restricted open-shell Hartree-Fock energies are



Asymptotic Projection Method: II 465

Fig. 3 Structure of the Fock
matrices in the method of
Amos, Andrews, Handy and
Knowles (AAHK). d denotes
the doubly occupied com-
ponent of the orbital space,
s denotes the singly occu-
pied component and v the
virtual (or unoccupied) part. •
denotes a non-zero element of
the matrix

Fα

d s v︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Table 1 Dependence of the open-shell matrix Hartree-Fock energy based on asymptotic projection
on the parameter λ for the ground state of the HeH molecule at R = 1.5 bohr with the basis set of
14s functions. Atomic units are used

λ a 〈S2〉 Energy

0 0.750 428 93 −3.219 765 61
50 0.750 000 31 −3.219 308 32
100 0.750 000 08 −3.219 215 27
500 0.750 000 00 −3.219 202 25

5,000 0.750 000 00 −3.219 199 24
10,000 0.750 000 00 −3.219 199 07

100,000 0.750 000 00 −3.219 198 92

a The value λ = 0 corresponds to the unrestricted Hartree-Fock energy, whereas λ = 100,000 yields
practically the energy obtained by the Roothaan method (ERoothaan =−3.219 198 91 hartree).

given in Table 4 for basis sets of increasing size. The largest basis set considered in
this table contains 62 functions and supports an accuracy at the sub-µhartree level.
A total energy of −15.153 181 43 hartree was obtained with λ = 10,000 a.u. which
lies 0.91 µhartree above the finite difference Hartree-Fock energy.

In concluding this section, we point out that optimal basis set parameters for the
largest basis sets for the HeH and BeH molecules can be found in Ref. [44].
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Table 2 Convergence of the open-shell matrix Hartree-Fock-asymptotic projection energy for the
ground state of the HeH molecule, at R = 1.5 bohr, as a function of the basis set size. Atomic units
are used

N Energya ∆ ∆n δ

14 −3.219 199 07 − − 1116.05
24 −3.219 201 72 1002.65 100.27 113.40
30 −3.219 294 93 93.214 15.54 20.19
43 −3.219 313 19 18.26 1.40 1.93
48 −3.219 314 34 1.15 0.23 0.78

a The value λ = 10,000 was used. The energy differences, ∆ , ∆n and δ , which are defined in the
text, are given in µhartree.

Table 3 Dependence of the open-shell matrix Hartree-Fock-asymptotic projection energy on the
parameter λ for the ground state of the BeH molecule at R = 2.5 bohr with the basis set of 30
s-type Gaussian functions. Atomic units are used

λ a 〈S2〉 Energy

0 0.751 788 28 −15.153 428 93
100 0.750 000 12 −15.153 091 16

1,000 0.750 000 00 −15.153 089 13
5,000 0.750 000 00 −15.153 089 13
6,000 0.750 000 00 −15.153 088 92

10,000 0.750 000 00 −15.153 088 90

a Values of λ = in the range ∼5,000−10,000 provide the required accuracy when compared with
the traditional Roothaan method.

Table 4 Convergence of the open-shell matrix Hartree-Fock-asymptotic projection energy for the
ground state of the BeH molecule at R = 2.5 bohr, as a function of the basis set size. Atomic units
are used

N Energya ∆ ∆n δ

24 −15.152 457 00 − − 725.34
30 −15.153 088 92 631.92 105.35 93.42
36 −15.153 140 32 51.40 8.57 42.02
43 −15.153 164 08 23.76 3.39 18.26
60 −15.153 179 41 15.33 0.90 2.93
62 −15.153 181 43 2.02 0.01 0.91

a The value λ = 10,000 was used. The energy differences, ∆ , ∆n and δ , which are defined in the
text, are given in µhartree.

3 Excited State SCF Theory Based on the Asymptotic Projection
Method

3.1 Specific Features of Excited State SCF Calculations

Existing open-shell self-consistent field methods for ground states cannot be applied
directly to excited states of the same symmetry as a lower state without ‘variational
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collapse’; that is, the approximation to the excited state wave function is contami-
nated by components of a lower state. Several useful methods have been proposed
to overcome the ‘variational collapse’ problem and a number of different schemes
have been proposed for obtaining Hartree-Fock wave functions for excited states
[45–50], [34, 36]. Some of these approaches [45–47], [34, 36, 50] explicitly intro-
duce orthogonality constraints to lower states. Other methods [48], [49] introduce
this restriction implicitly. In both types of scheme, the excited state self-consistent
field wave function of interest is orthogonal to the wave function for a lower state
or states of the same symmetry, but this lower state or states are not necessarily
the best self-consistent field functions for these states [50]. An interesting ensemble
Hartree-Fock approach [51] based on the extended Raleigh-Ritz variational prin-
ciple [52] have been also proposed. This is a good compromise in applications to
the excited state problem within the framework of density functional theory and has
found application in wave function based formulation as well [35]. In particular,
calculations for atoms have showed that the ensemble Kohn-Sham theory, with the
exact ensemble-exchange potential, can be as accurate as the ground state calcu-
lations [53, 54]. However, partly due to the lack so far of an accurate correlation
energy functional, there exist very few reported applications for molecules, where a
finite basis set choice is important to achieve reasonable results. Some preliminary
calculations concerning the choice of an optimal basis set for an ensemble of states
can be found in the work of Glushkov and Theophilou [55, 56].

3.2 Orthogonality Constraints for Single Determinantal Wave
Functions

Before deriving the Hartree-Fock equations for the excited state orbitals, we shall
consider the orthogonality constraints imposed on these orbitals.

The exact many-electron wave function for an excited state, Ψi, i �= 0, satisfies
orthogonality conditions with respect to other many-electron states including the
ground state, Ψ0. For example, for the first excited state with many-electron wave
function Ψ1 we have

〈Ψ0|Ψ1〉= 0. (34)

The exact ground state wave function, Ψ0, can be written

Ψ0 = Φ0 + χ0 (35)

where Φ0 is the many-electron ground state Hartree-Fock wave function and χ0 is
the correlation correction. Without loss of generality, we can require

〈Φ0|χ0〉= 0. (36)

Similarly, the exact excited state wave function, Ψ1, can be written

Ψ1 = Φ1 + χ1 (37)
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where Φ1 is the many-electron excited state Hartree-Fock wave function and χ1 is
the corresponding correlation correction. Again, without loss of generality, we can
require

〈Φ1|χ1〉= 0. (38)

Substituting Eq. (37) into Eq. (34) we get

〈Ψ0|Ψ1〉 = 〈Ψ0|Φ1〉+ 〈Ψ0|χ1〉
= 0. (39)

If we require that
〈Ψ0|Φ1〉= 0 (40)

which implies that
〈Ψ0|χ1〉= 0 (41)

then it is easily shown that
〈Φ1|H |Φ1〉
〈Φ1|Φ1〉 � E1, (42)

where E1 is the exact energy of the excited state and H is the total electronic hamil-
tonian operator. However, Eqs. (40) and (41) cannot be used directly because the
exact wave function for the ground state, Ψ0, is unknown.

Substituting Eqs. (35) and (37) into Eq. (34) we have

〈Ψ0|Ψ1〉 = 〈Φ0|Φ1〉+ 〈Φ0|χ1〉+ 〈χ0|Φ1〉+ 〈χ0|χ1〉
= 0 (43)

or
〈Φ0|Φ1〉=− [〈Φ0|χ1〉+ 〈χ0|Φ1〉+ 〈χ0|χ1〉] . (44)

We see that the Hartree-Fock wave functions, do not, in general, satisfy orthogonal-
ity constraints analogous to those obeyed by the exact wave functions. However, we
may impose constraints upon the Hartree-Fock function so that, for example,

〈Φ0|Φ1〉= 0. (45)

From (44) we see that this constraint requires that

〈Φ0|χ1〉+ 〈χ0|Φ1〉=−〈χ0|χ1〉 .

The imposition of the constraint (45) on an approximate lower state wave function,
such as the Hartree-Fock function, does not, in general, yield an excited state energy
which is an upper bound to the exact excited state energy. An upper bound to the
excited state energy is obtained if we impose the additional constraint

〈Φ0|H|Φ1〉= 0.

In practice, if the lower state energy and the corresponding wave function are known
accurately then the coupling matrix element 〈Φ0|H|Φ1〉 is small (see Part I of this



Asymptotic Projection Method: II 469

work for more detailed discussion [27]). Experience shows that, because the finite
basis set approximation is usually more restrictive for Φ1 than it is for Φ0, the
calculated excited state energy lies above the corresponding exact value.

The imposition of the constraint (45) is important since

(i) any lack of orthogonality of the Hartree-Fock wave functions may lead to
excited state energies lying below the corresponding exact energies. (For exam-
ple, Cohen and Kelly [57] found for the He atom the first singlet excited
state energy E1 = −2.16984 hartree, whereas the observed energy E1,exact =
−2.14598 hartree. (see also the work of Tatewaki et al. [58]).);

(ii) it facilitates the development of a simple perturbation theory expansion for
correlation effects in excited states [37];

(iii) it facilitates the study of properties which depend on the wave functions of
different states, for example the evaluation of transition properties (see also
the work of Colle et al. [50]).

We shall be concerned with ground and excited electronic states which can be
adequately described by a single determinantal wave function, i.e. doublet states,
triplet states, etc. with spin S �= 0).

Let Φ0 be the ground state Slater determinant constructed from a set of spin-
orbitals consisting of spatial part

∣∣ϕα
0i

〉
, (iα = 1, 2, ..., nα) associated with α spin

functions and orbitals
∣∣∣ϕβ

0i

〉
, (iβ = 1, 2, ..., nβ ) associated with β spin functions, i.e.

Φ0 = (N!)−
1
2 det

∣∣∣ϕα
01α, ...,ϕα

0nα;ϕβ
01β , ...,ϕβ

0nβ
∣∣∣ . (46)

Without loss of generality, we define nα > nβ , nα + nβ = N, where N is a number
of electrons and S = Sz = (nα − nβ )/2 is the total spin. Similarly, Φ1 is a single
determinant wave function for the first excited state:

Φ1 = (N!)−
1
2 det

∣∣∣ϕα
11α, ...,ϕα

1nα;ϕβ
11β , ...,ϕβ

1nβ
∣∣∣ . (47)

It is well known that the orthogonality constraint for functions (46) and (47)

〈Φ0|Φ1〉= 0 (48)

can be written in terms of the spatial orbitals in the form

〈Φ0|Φ1〉 = det |〈ϕα
01|ϕα

11〉 ...〈ϕα
0n|ϕα

1n〉|×
det

∣∣∣〈ϕβ
01|ϕα

1n

〉
...
〈

ϕβ
0n|ϕβ

1n

〉∣∣∣
= 0. (49)

The annihilation of either one of the two determinants in (49) leads to fulfillment
of the orthogonality condition (48). From energy considerations and previous com-
putational experience, we impose the orthogonality restrictions only via the first
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determinant which is associated with the α set and involves the occupied orbital
highest in energy.

As is well known, the condition

det |〈ϕα
01|ϕα

11〉 ...〈ϕα
0n|ϕα

1n〉|= 0

is fulfilled if either the rows or columns in the first overlap determinant are linearly
dependent. Therefore, two physically different schemes are possible to satisfy (49):
either

nα

∑
j

b1
j

〈
ϕα

0i|ϕα
1 j

〉
= 0, i = 1, 2, ..., nα (50)

or
nα

∑
i

b0
i

〈
ϕα

0i|ϕα
1 j

〉
= 0, j = 1, 2, ..., nα . (51)

Equation (50) requires that all occupied ground state orbitals be orthogonal to
a linear combination of the excited state orbitals ∑nα

j b1
j

∣∣ϕ1 jα
〉
, which describes

an excited electronic state. Equation (51) requires the orthogonality of all occu-
pied excited state orbital associated with α spin functions to the arbitrary vector
∑nα

i b0
i

∣∣ϕα
0i

〉
from the subspace of the occupied ground state orbitals associated with

α spin functions. In general, the coefficients b0
i can be determined by minimizing

the excited state Hartree-Fock energy. However, calculations show that the choice

nα

∑
i

b0
i |ϕα

0i〉= |ϕα
0n〉 , (52)

where ϕα
0n is the orbital from the ground state Slater determinant with the highest

energy, leads to a minimum energy for the excited state. In the limit of a complete
basis set or a common basis set for the ground and excited state the schemes defined
by (50) and (51), yield the same energy values.

In this work, we use the second scheme to impose the orthogonality constraint
(48), i.e. that defined by Eq. (51), which upon using (52) becomes〈

ϕα
0n|ϕα

1 j

〉
= 0, j = 1, 2, ..., nα . (53)

Equation (53) can be rewritten in symmetrical form, which is useful when deriving
the Hartree-Fock equations, as follows:〈

ϕα
1 j|ϕα

0n

〉〈
ϕα

0n|ϕα
1 j

〉
= 0, j = 1, 2, ..., nα (54)

or, since the left-hand side of Eq. (54) is not negative

nα

∑
j

〈
ϕα

1 j|Pα
n |ϕα

1 j

〉
= 0, (55)

where Pα
n is the projection operator

Pα
n = |ϕα

0n〉〈ϕα
0n| . (56)
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3.3 Variational Derivation of Hartree-Fock Equations for Excited
States

We shall follow the unrestricted Hartree-Fock formalism for obtaining the ROHF

functions developed in Sect. 2.2 to derive the Hartree-Fock equations for excited
states. For the sake of simplicity, we restrict our attention to the first excited state.
This means that we start with the minimization of the total energy expressed in terms
of the UHF orbitals:

EUHF
1 =

nα

∑
i
〈ϕα

1i|h|ϕα
1i〉+

1
2

nα

∑
i, j

[(ϕα
1iϕ

α
1i|ϕα

1 jϕ
α
1 j)− (ϕα

1iϕ
α
1 j|ϕα

1iϕ
α
1 j)]

+
nβ

∑
i
〈ϕβ

1i|h|ϕβ
1i〉+

1
2

nβ

∑
i, j

[(ϕβ
1iϕ

β
1i|ϕβ

1 jϕ
β
1 j)− (ϕβ

1iϕ
β
1 j|ϕβ

1iϕ
β
1 j)]

+
nα

∑
i

nβ

∑
i

(ϕα
1iϕ

α
1i|ϕβ

1 jϕ
β
1 j)

subject to the following constraints:

(i) orbitals must satisfy the restrictions (55) which ensure the orthogonality of
Slater determinants for the ground state and the first excited state;

(ii) the excited Slater determinant must be an eigenfunction of the S2 operator, i.e.
we impose the spin purity condition in the form

nβ

∑
k

〈ϕβ
1k|Qα |ϕβ

1k〉= 0 (57)

where Qα = I−Pα is the orthoprojector on the subspace of the virtual α spin
orbitals. It is useful to remember that Eq. (57) implies that the set of orbitals
associated with the β spin functions lies completely within the space defined
by the set associated with the α spin functions.

The Hartree-Fock equations for the excited state orbitals can now be obtained
by constructing a functional consisting of the UHF energy expression together
with terms imposing the orthogonality constraints (55) and (57) by the method of
Lagrange undetermined multipliers. In particular, the constraints (55) and (57) mul-
tiplied by Lagrange multipliers λ1 and λ2, respectively, are added to the UHF energy
EUHF

1 = 〈Φ1|H| |Φ1〉, so as to give the following functional

L = EUHF
1 + λ1

nβ

∑
i

〈
ϕβ

1i|Qα |ϕβ
1i

〉
+ λ2

nα

∑
i

〈
ϕα

1 j|Pα
n |ϕα

1 j

〉
. (58)
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The stationary condition has the form

δL = δ

[
EUHF

1 + λ1

nβ

∑
i

〈
ϕβ

1i|Qα |ϕβ
1i

〉
+ λ2

nα

∑
i

〈
ϕα

1 j|Pα
n |ϕα

1 j

〉]
= 0. (59)

It should be emphasised that, although this condition is based on the UHF energy
expression, it leads to a result corresponding to ROHF theory.

In practical applications, we invariably invoke the algebraic approximation by
parameterizing the orbitals in a finite basis set. This approximation may be written

|ϕ1〉= P |ϕ1〉

where P is an orthoprojector defined by a chosen basis set with dimension M1, i.e.

P =
M1

∑
p,q

∣∣χ1
p

〉
(S−1)pq

〈
χ1

q

∣∣
where S is the overlap matrix and S−1 is its inverse.

It should be stressed that, in general, the basis set for the excited state,{
χ1

p; p = 1, 2, ..., M1
}

,

is distinct from that for the ground state,{
χ0

p; p = 1, 2, ..., M0
}

.

The stationary condition (59) leads, after some manipulation, to the following
equations

limλ1,λ2→∞P(Fα −λ1Pβ + λ2Pα
n − εa

i )P
∣∣ϕα

1i

〉
= 0, iα = 1, 2, ..., nα , ..., M1

limλ1→∞P(Fβ + λ1Qα − εβ
i )P

∣∣∣ϕβ
1i

〉
= 0, iβ = 1, 2, ..., nβ , ..., M1

(60)

Here Fα and Fβ are the standard UHF operators constructed from the excited state
orbitals ϕ1i. According to the asymptotic projection technique the terms λ1Pβ and
λ1Qα , λ1 → ∞, ensure spin purity (see the work of Glushkov and Tsaune [34] and
also Glushkov [24] for more details) whereas the term λ2Pα

n , λ2 → ∞, provides the
orthogonality of states.

This result can be easily extended to the higher energy levels. For example, for
the second excited state the operator Pα

n should be substituted by the orthoprojector

Pα
n = |ϕα

0n〉〈ϕα
0n|+ |ϕα

1n〉 〈ϕα
1n|

etc., i.e. the problem of choosing a determinantal wave function for the higher exci-
tations does not arise. The only additional computation beyond that required for the

UHF scheme is the evaluation of the overlap matrix element
〈

ϕα
0n|ϕα

1 j

〉
. It should
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be noted that for practical calculations, the value λ1 ∼ 100−500 a.u. ensures spin
purity [24], whereas λ2 ∼ 1,000 a.u. ensures that 〈Φ0|Φ1〉< 10−6−10−7 [36].

It is worth also noting that because of the asymptotic projection method, all
excited configurations based on the excited Slater determinant Φ1, viz., Φa

1i, Φab
1i j,

etc., are orthogonal both to Φ0 and among themselves. Therefore, these functions
form the orthonormal basis set in the many-body space and can be used, unlike other
SCF methods which do not satisfy the orthogonality of states in the explicit form,
to develop many-body methods incorporating the correlation effects, in particular, a
many-body Møller-Plesset-like perturbation theory (see Sect. 5).

3.4 Numerical Results and Discussion

At present, there are only very few published finite basis set calculations for excited
states having the same symmetry as the ground state which are based on existing
Hartree-Fock methods. For some atoms, numerical Hartree-Fock (NHF) results are
available [59]. They can be used to examine the performance of the excited state
SCF theory presented above.

3.4.1 Even-Tempered Basis Set Implementation for Excited States of Atoms

In this section, we describe three different schemes for developing systematic
sequences of even-tempered basis sets for excited states. We define each scheme,
which we label (a), (b) and (c) in turn.

In each scheme, we generate a sequence of even-tempered basis sets, with
exponents given by

ζp = αβ p, p = 1, 2, ..., M. (61)

Following Schmidt and Rudenberg(61), in the following we shall use α and β for
the parameters that generate a sequence of even-tempered basis sets and not for spin
function as we did above. The parameters α and β must be taken to be functions of
M, the number of basis functions, i.e. α = α (M) and β = β (M), if the Gaussian
sets defined by (61) are to become complete in the appropriate subspace as M→ ∞.

In the scheme which we label (a), the same basis set is employed for both the
ground and excited state. Therefore, the same integrals over basis functions are
used for both states. The values of the even-tempered parameters α and β are those
which were optimized for the ground state of the atom as reported by Schmidt and
Ruedenberg [60]. These values are given in Table 1 of Schimdt and Ruedenberg’s
paper [60].

In scheme (b) the basis set is optimized by invoking the variation princi-
ple for each state considered. For the ground state the optimized values of the
even-tempered parameters α and β given by Schmidt and Ruedenberg [60] are
used whereas for the excited state optimal values for a sequence of M values are
determined by minimizing the corresponding excited state energy.
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In our third scheme, which we label (c), we optimized the parameter α and β
for the smallest basis set considered, i.e. M = 6 and then determine values of these
parameters for the basis sets of larger size by using the recursions [61]:

α [M] =
[

β [M]−1
β [M−1]−1

]a

α [M−1]

and

ln(β [M]) =
[

M
M−1

]b

lnβ [M−1]

with the values of a and b taken from the work of Schmidt and Ruedenberg [60].
These values are given in Table 3 of reference [60].

We performed prototype calculations on some simple atoms in order to study the
rate of convergence of the excited state energies and the accuracy which could be
supported before problems associated with the precision of our calculations arising
from computational linear dependence became significant. In particular, we studied
the 3S states of the He atom corresponding to the configurations 1s2s, 1s3s and 1s4s,
and the 3S states of the Be atom corresponding to the configurations (He)2s3s and
(He)2s4s.

Using scheme (b) we also computed excitation energies for the Be isoelectronic
series in a comparison with the numerical Hartree-Fock values.

3.4.2 Matrix Hartree-Fock Energies and Excitation Energies of Atoms

The ground and excited state matrix Hartree-Fock energies for the He and Be atoms
are presented in Tables 5 and 6, respectively. All energies are given in atomic units,
(Hartree). In each of these tables, we label the columns according to the three
schemes, (a), (b) and (c), described above. We consider each system in turn.

For the excited states of the He atom considered in Table 8 the numerical Hartree-
Fock energies are known from the work of Froese-Fischer [59] to be – E(1s2s) =
−2.174 26 Hartree, E(1s3s) = −2.068 49 Hartree, E(1s4s) = −2.036 44 Hartree.
For none of the three states considered does the sequence of basis sets constructed
according to scheme (a) achieve satisfactory accuracy. For the 1s2s state, the energy
supported by the largest basis set, i.e. M = 72, is in error by ∼0.8 mHartree. For
the 1s3s state this error is ∼0.056 Hartree, whilst for the 1s4s state the calculation
with the largest basis set failed to converge and for the next largest set the error is
∼0.348 Hartree. Not surprisingly, a basis set designed for the ground state supports
an increasingly poor description of excited states as the level of excitation increases.
Equally, it is not surprising that if the sequence of even-tempered basis sets for
each excited state is optimized independently then the matrix Hartree-Fock energies
converge to values in good agreement with the corresponding numerical Hartree-
Fock energies. What is more this level of agreement is achieved for basis sets of
only 42 functions in the case of the He states considered here. Scheme (c) leads to
sequences of energies which begin, of course, with values equal to those for scheme
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Table 5 Self-Consistent Field energies (in hartree) of the He atom for some 3S excited states as
a function of the size, M, of the even-tempered basis set used to parameterize the orbitals. In the
column headed (a): the same even-tempered basis set – optimized for the ground state, is used
for all states; (b): the even-tempered basis set is optimized for each state; (c): the even-tempered
parameters α and β are optimized for each basis set for the smallest basis set (M = 6) and larger
basis sets are generated using the recursions

M 3S 1s2s
(a) (b) (c)

6 −1.83461514 −2.16969148 −2.16969148
12 −2.09589565 −2.17420691 −2.17416233
18 −2.14125461 −2.17424990 −2.17424758
24 −2.15704132 −2.17425075 −2.17425059
30 −2.16421386 −2.17425077 −2.17425076
42 −2.17012977 −2.17425078 −2.17425078
54 −2.17228698 – –
60 −2.17284371 – –
72 −2.17348174 – –

M 3S 1s3s
(a) (b) (c)

6 1.73706970 −2.05902284 −2.05902285
12 −1.10978995 −2.06833906 −2.06768910
18 −1.58429285 −2.06847975 −2.06845041
24 −1.76064449 −2.06848472 −2.06847385
30 −1.84981446 −2.06848493 −2.06848386
42 −1.93754688 −2.06848496 −2.06848488
54 −1.97977236 – –
60 −1.99338333 – –
72 −2.01255580 – –

M 3S 1s4s
(a) (b) (c)

6 17.38262804 −2.00192936 −2.00192936
12 2.01602912 −2.03624788 −2.03501230
18 −0.09897153 −2.03641613 −2.03601202
24 −0.81661258 −2.03643495 −2.03641298
30 −1.16049508 −2.03643584 −2.03641853
42 −1.48612549 −2.03643641 −2.03643607
54 −1.64005315 – –
60 −1.68986935 – –
72 – – –

(b) when M = 6 and converge almost as rapidly towards the numerical Hartree-
Fock values. For the 1s2s state schemes (b) and (c) lead to energies which agree
to all figures quoted, i.e. 0.01 µHartree when M = 42. For the 1s3s state there is a
difference of ∼0.08 µHartree between the energies supported by the two schemes
when M = 42. The corresponding difference for the 1s4s state is ∼0.34 µHartree.

For the two excited states of the Be atom considered in Table 6 the numerical
Hartree-Fock energies are known [59] to be as follows: E([He]2s3s) =−14.377 54
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Table 6 Self-Consistent Field energies (in hartree) of the Be atom for some 3S excited states as
a function of the size, M, of the even-tempered basis set used to parameterize the orbitals. In the
column headed (a): the same even-tempered basis set – optimized for the ground state, is used
for all states; (b): the even-tempered basis set is optimized for each state; (c): the even-tempered
parameters α and β are optimized for each basis set for the smallest basis set (M = 6) and larger
basis sets are generated using the recursions

M (He)2s3s
(a) (b) (c)

6 −13.68597324 −14.28743398 −14.28743398
12 −14.30875164 −14.37655131 −14.37615739
18 −14.35583967 −14.37747784 −14.37745253
24 −14.36814873 −14.37749790 −14.37749650
30 −14.37282326 −14.37749869 −14.37749856
42 −14.37602885 −14.37749874 −14.37749874
54 −14.37694934 – –
60 −14.37714828 – –
72 −14.37735193 – –

M (He)2s4s
(a) (b) (c)

6 −5.20614793 −14.10328399 −14.10328399
12 −13.45962762 −14.32284981 −14.32018366
18 −14.01343862 −14.32455109 −14.32446205
24 −14.15980890 −14.32460713 −14.32458356
30 −14.22107884 −14.32461093 −14.32460787
42 −14.27239938 −14.32461121 −14.32461113
54 −14.29355025 – –
60 −14.29978829 – –
72 −14.30798338 – –

Table 7 Optimized even-tempered parameters α and β for 3S excited states of He as a function of
size of basis set

M 1s2s 1s3s 1s4s
α β α β α β

6 0.009 397 4.210 973 0.001 684 4.979 103 0.000 376 5.420 623
12 0.009 088 2.641 628 0.002 742 2.758 438 0.000 924 3.033 467
18 0.008 243 2.211 957 0.002 785 2.202 424 0.001 226 2.212 713
24 0.007 443 1.999 366 0.001 967 1.999 755 0.001 232 1.932 314
30 0.006 989 1.897 299 0.002 043 1.845 165 0.001 176 1.794 637
42 0.005 045 1.702 089 0.002 176 1.661 148 0.001 068 1.666 500

Hartree, E([He]2s4s) = −14.324 66 Hartree. For scheme (a) the iterative process
failed to converge for basis sets containing more than 72 functions. For the [He]2s3s
state, the largest basis set supports an energy expectation value which is within
∼0.2 mHartree of the numerical Hartree-Fock value, whilst for the [He]2s4s state,
the corresponding difference is ∼16.7 mHartree. Again, a basis set designed for
the ground state supports an increasingly poor description of excited states as the
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Table 8 Optimized even-tempered parameters α and β for 3S excited states of Be as a function of
size of basis set

M [He] 2s3s [He] 2s4s
α β α β

6 0.004 884 5.142 401 0.001 057 5.809 367
12 0.004 799 2.947 601 0.001 459 3.191 957
18 0.004 552 2.370 166 0.001 709 2.424 045
24 0.004 237 2.083 730 0.001 736 2.080 558
30 0.003 912 1.921 824 0.001 663 1.899 549
42 0.003 667 1.745 016 0.001 537 1.719 092

Table 9 Total energies (hartree) and excitation energies (eV) for the Be isoelectronic series

System State Hartree-Fock–asymptotic projection NHF

Be 1s22s3s −14.377 48 −14.377 54
1s22s4s −14.324 55 −14.324 66

∆E(3s→ 4s) 1.440 1.439
B+ 1s22s3s −23.700 12 −23.700 18

1s22s4s −23.539 19 −23.539 30
∆E(3s→ 4s) 4.379 4.378

C2+ 1s22s3s −35.388 09 −35.388 26
1s22s4s −35.069 25 −35.069 43

∆E(3s→ 4s) 8.676 8.676
O4+ 1s22s3s −65.852 21 −65.852 58

1s22s4s −65.070 35 −65.070 69
∆E(3s→ 4s) 21.276 21.277

level of excitation increases. When the sequence of even-tempered basis sets are
individually optimized for a particular state (scheme (b)) an accuracy of ∼0.04
mHartree is supported for the [He]2s3s state and ∼0.05 mHartree for the [He]2s4s
state. A comparable accuracy is observed for the excited state energies of the Be
atom corresponding to scheme (c) in which only the basis set for M = 6 is optimized.

The even-tempered basis set parameters obtained by optimization of α and β
with respect to the energy for each size of a basis set, that is scheme (b) can be
found in Table 7 for the He atom and in Table 8 for the beryllium atom.

Table 9 lists excitation energies (in eV) for Be, B+, C2+ and O4+ computed
with the even-tempered basis set of 18 s-type functions (scheme (b)). In Tables
9, 10 and 11 we label our implementation of SCF method the “HF – asymptotic
projection” technique. The numerical Hartree-Fock energies are given in the column
headed “NHF”. The results of the Table 9 show that the HF – asymptotic projection
method for excited states is capable of supporting high accuracy both for excited
state energies and for excitation energies of the atoms and ions.
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Table 10 Total ground and some excited state energies of HeH at R = 1.5 bohr. Atomic units are
used

State Hartree-Fock - CIa EHF−ECI

ECI %
asymptotic projectionb

X2Σ+ −3.219 851 −3.263 164 1.3
A2Σ+ −3.066 606 −3.112 706 1.5
C2Σ+ −3.014 785 −3.055 797 1.3
D2Σ+ −2.988 232 −3.030 025 1.4

a – Hartree-Fock energies based on the asymptotic projection method.
b – configuration interaction method.

Table 11 Vertical excitation energies (eV ) from A2Σ+ of HeH at R = 1.5 bohr

State Hartree-Fock– CIa [62] Expt [62]
asymptotic projectionb

A2Σ+ 0 0 0
C2Σ+ 1.41 1.53 1.55
D2Σ+ 2.13 2.25 2.26

a – Hartree-Fock energies based on the asymptotic projection method.
b – configuration interaction method.

3.4.3 Matrix Hartree-Fock Energies and Excitation Energies of the HeH
Molecule

The HeH molecule is of experimental interest and has been studied using accurate
ab initio calculations (see, e.g. the work of Petsalakis et al. [62]), which provide
excellent reference data. These data were obtained with the configuration interaction
(CI) method. The CI space consisted of 4,732 configurations. Certainly, a compar-
ison of absolute values computed by the present Hartree-Fock method with those
given by the CI method would not be useful. However, the comparison of relative
errors for different states is of value and permits an assessment of the performance
of the method. Basis sets consisting of 18s Gaussian functions were used for all
states under consideration (X2Σ+, A2Σ+,C2Σ+ and D2Σ+). All basis functions
were centred on points lying on the line passing through the nuclei (the z-axis).
The He nucleus was placed at the origin (0, 0, 0) and the H nucleus at the point
(0, 0, 1.500).

The total energy of each excited state was minimized to determine non-linear
basis set parameters (orbital exponents and positions) for a given state i.e. basis sets
were individually optimized for each state. By exploiting the asymptotic projection
method, this procedure takes practically the same computational time for excited
states as it does for the ground state. (Some details of basis set optimization for
the ground state can be found in the work of Glushkov and Wilson [42–44] and
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references therein). The values λ1 = 100 a.u. and λ2 = 10,000 a.u. were used to
solve Eq. (60).

In Tables 10 and 11, the performance of the SCF-asymptotic projection method
for excited states can be observed. In these Tables, the total energies and excitation
energies are given respectively make it possible to observe (see the column Hartree-
Fock-AP).

The degree of agreement between computed and experimental values of excita-
tion energies can be improved by taking account of electron correlation effects. It is
to this problem that we turn our attention in the next section.

4 Many-body Møller-Plesset-Like Perturbation Theory Based
on Open-Shell Asymptotic Projection Orbitals

It is well known that the choice of the zero-order Hamiltonian, H(0), is crucial to
the success of any perturbation theory. As we have already mentioned, this choice
is known to be particularly problematic for open-shell systems. On the one hand,
although the theory for the construction of the ROHF wave function, which is an
eigenfunction of S2, was developed by Roothaan [1] long ago, this approach does
not readily lend itself to a perturbational treatment [20,21,23,25]. On the other hand,
the UHF theory facilitates the construction of a suitable H(0), but the UHF Slater
determinant is not, of course, an eigenfunction of S2. At present, the open-shell per-
turbation theory based on the so-called RMP method [21] is widely used. It is, for
example, incorporated in computational quantum chemistry software packages such
as GAMESS [24]. However, as we have pointed out, this method employs different
orbitals for different spins for which the generalized Brillouin’s theorem is not satis-
fied. Consequently, singly excited configurations enter the expansion for the energy
at second-order. This also complicates higher-order perturbation theory calculations.
In contrast, by employing an optimum set of asymptotic projection orbitals, we can
develop a well-defined open-shell perturbative treatment which is a natural exten-
sion of the widely used closed-shell many-body Møller-Plesset perturbation theory.
This new open-shell formalism leads to algorithms which exhibit computational
costs comparable with the closed-shell algorithms. Moreover, we will show that,
unlike existing open-shell perturbation theories, the new methodology can be easily
extended to excited states having the same symmetry as the ground state.

4.1 Open-Shell Perturbation Theory for the Ground State

4.1.1 Basic Theory

The spin-unrestricted formalism for the ROHF functions developed in Sect. 2.2 facil-
itates the development of a well-defined open-shell many-body Møller-Plesset-like
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perturbation theory. Indeed, the zero-order Hamiltonian can be written as a sum of
Fock operators for each electron:

H(0)
0 =

nα

∑
k

Fα
0 (k)+

nβ

∑
k

Fβ
0 (k) (62)

with Fock operators

Fα
0 =

M

∑
i
|ϕα

0i〉εα
0i〈ϕα

0i|, Fβ
0 =

M

∑
i
|ϕβ

0i〉εβ
0i〈ϕβ

0i| (63)

and the perturbation operator V = H−H(0)
0 . Here the subscript indicates the ground

state, i.e. the orbitals and orbital energies are determined from Eqs. (25) and (26).

It is clear that the Slater determinant Φ(0)
0 constructed from orbitals (25), (26) and

the determinants Φa
0i, Φab

0i j, etc. corresponding to single, double, etc. excitations,
obtained by replacing the occupied spin-orbitals by virtual spin-orbitals, form the
orthonormal basis set in the many-particle space of states and are eigenfunctions of

H(0)
0 , i.e.

H(0)
0 |Φ(0)

0 〉 = E(0)
0 |Φ(0)

0 〉, E(0)
0 = 〈Φ(0)

0 |H(0)
0 |Φ(0)

0 〉=
nα

∑
i

εα
0i +

nβ

∑
i

εβ
0i

H(0)
0 |Φa

0i〉 = Ea
0i|Φa

0i〉, Ea
0i = E(0)

0 − εγ
0i + εγ

0a, γ = α,β

H(0)
0 |Φab

0i j〉 = Eab
0i j|Φab

0i j〉, Eab
0i j = E(0)

0 − εγ
0i− εγ

0 j + εγ
0a + εγ

0b. (64)

Applying Rayleigh-Schrödinger perturbation theory to the problem (62),(63),
it is then easy to show that the sum of the zero-order and first-order energy

E0 = E(0)
0 + E(1)

0 yields the energy expectation value evaluated with respect to the

reference function Φ(0)
0 . Indeed

E(0)
0 + E(1)

0 = 〈Φ(0)
0 |H(0)

0 |Φ(0)
0 〉+ 〈Φ(0)

0 |V |Φ(0)
0 〉= 〈Φ(0)

0 |H|Φ(0)
0 〉.

Note that the reduced resolvent operator

R(0)
0 = Q(0)

0 (E(0)
0 −H(0)

0 )−1Q(0)
0 , Q(0)

0 = I−|Φ(0)
0 〉〈Φ(0)

0 |

has a diagonal form in the basis set of excited configurations. Therefore, this can be
expressed in the form

R(0)
0 =

occ

∑
i

virt

∑
a

|Φa
0i〉〈Φa

0i|
E(0)

0 −Ea
0i

+
occ

∑
i< j

virt

∑
a<b

|Φab
0i j〉〈Φab

0i j|
E(0)

0 −Eab
0i j

+ . . .
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The summations in this expression are over spin orbitals. We omitted the summa-
tions corresponding to the higher order excitations.

Because of the Brillouin theorem, the first-order corrections to the wave functions
have the form:

|Φ(1)
0 〉= R(0)

0 V |Φ(0)
0 〉=

occ

∑
i< j

virt

∑
a<b

|Φab
oi j〉〈Φab

0i j|H|Φab
oi j〉(ε0i + ε0 j− ε0a− ε0b)−1.

The second-order correction to the ground state energy E(2)
0 is expressed in terms of

spin-orbitals and orbital energies:

E(2)
0 =

occ

∑
i> j

virt

∑
a>b

|(ϕ0aϕ0i|ϕ0bϕ0 j)− (ϕ0aϕ0 j|ϕ0bϕ0i)|2
ε0i + ε0 j− εa− ε0b

. (65)

We emphasise that the summations are over spin-orbitals. a and b are virtual orbitals
while i and j are occupied orbitals. The above expression is suitable for practical
calculations.

Thus, the orbitals based on asymptotic projection lead to a many-body perturba-
tion theory similar in form to the original to the original Møller-Plesset perturbation
theory. In terms of computational cost, this new open-shell perturbation theory, like
the OPT1 and OPT2 theories of Murray and Davidson [23] and the ZAPT theory
of Lee and Jayatilaka [25], has an obvious advantage over the RMP [21]. The new
theory is based on only one set of spatial molecular orbitals whereas the RMP has
two sets.

4.1.2 Application to the Singlet-Triplet Separation in the CH2 Molecule

There have been a large number of experiments and theoretical studies of the singlet-
triplet 1A1− 3B1 separation in the CH2 molecule (see, e.g. the work of Sherrill, van
Huis, Yamaguchi and Schaefer [63] and also that of Bauschlicher and Taylor [64])
which provide excellent data for assessing new methods. The different spin and spa-
tial symmetry of the states imposes stringent requirements on the methods employed
at both the SCF level and in the perturbation theory calculations. We carried out cal-
culations with three basis sets containing 24s, 28s, and 42s Gaussians, respectively.
The orbital exponents and positions were determined by minimizing the energy for
each individual state. The parameters for our largest basis set of 42s functions can be
found in the work of Glushkov [24]. The nuclear coordinates are as follows: the 1A1

state: C(0, 0, 0); H1(−1.64403,−1.32213, 0); H2(1.64403,−1.32213, 0) and the
3B1 state: C(0, 0, 0); H1(−1.871093,−0.82525,0); H2(1.871093,−0.82525,0).

The energies of the 1A1 and 3B1 states at the SCF and second order perturbation
theory levels are given in Table 12 together with the corresponding energy split-
tings. The 1A1 state is described by a closed-shell determinant and, therefore, the
standard restricted Hartree-Fock and the second-order many-body Møller-Plesset
perturbation expansion were used.
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Table 12 SCF and second order perturbation theory energies (hartrees) of methelene in the 1A1
and 3B1 states and the 1A1− 3B1 separation energy (in kcal/mol)

Energy Basis set 3B1
1A1 ∆E(1A1−3 B1)

ESCF 24s −38.897 795 −38.858 109 24.90
28s −38.909 868 −38.872 370 23.53
42s −38.929 603 −38.889 249 25.33

DZP [63] −38.927 640 −38.885 590 26.39

E a
PT 2 24s −38.984 048 −38.957 602 16.59

28s −39.008 662 −38.984 938 14.88
42s −39.045 811 −39.023 562 13.96

CASPT 2b DZP −39.037 660 −39.013 080 15.43
RMPc TZ2P − − 18.05
OPT 2c TZ2P − − 17.99
ZAPT c TZ2P − − 17.07
FCId DZP −39.046 260 −39.027 183 11.97

a – EPT2 = ESCF +E(2).
b – CASPT2, second-order of multireference perturbation theory based on a CAS wave
function [40].
c – Values were taken from Ref. [25].
d – Full configuration interaction method (FCI) [64].

One can see that our basis set of 42s functions yields SCF energies that are close
to those obtained with the DZP basis set. We observe that the value of the energy
splitting computed by using our scheme is improved when the size of the basis set
increases. A comparison of our asymptotic projection based technique in its second-
order implementation with other open-shell perturbation theories (CASPT2, OPT2,
RMP and ZAPT) shows the new method yields values of the singlet-triplet splitting
closest to the FCI reference value.

In concluding this section, we note that the present results could be improved
by using multireference perturbation theory since the singlet state 1A1 is known to
have two important configurations [64]. An alternative asymptotic projection-based
multireference perturbation theory [65] can be used for this.

4.2 Open-Shell Perturbation Theory for the Excited States

To our knowledge, there is, at present, no analogue of many-body Møller-Plesset
perturbation theory for excited states having the same symmetry as the ground state
or some lower lying excited state. The study of such systems often involves the use
of a multireference formalism. Such methods are indispensable in studies of systems
where single-configuration methods cannot be applied. Nevertheless, it would be
very useful to have a perturbation theory formalism the description of excited states
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which can be adequately described by a single Slater determinant. Such an approach
shares the computational advantages of the widely used many-body Møller-Plesset
perturbation theory. It would be especially useful for calculations of energy dif-
ferences. In addition, it is important to calculate the ground-state and excited-state
energies in a balanced manner, i.e.:

(i) Reference configurations are constructed by employing the same computational
scheme. For example, the ground and excited SCF functions are constructed
using the Hartree-Fock equations, whose solutions are approximated in one-
particle basis sets adjusted specifically to the state under consideration.

(ii) Correlation effects are taken into account using comparable schemes for the
ground- and excited-states, for example, using many-body Møller-Plesset-like
perturbation theory.

4.2.1 Second-Order Correlation Energy for Excited States

For simplicity, we shall consider the first excited state energy. In this case, the zero-
order Hamiltonian is similar to that for the ground state, but the Fock operators are
based on the excited state orbitals and orbital energies from Eqs. (60), i.e.

H(0) =
nα

∑
k

Fα(k)+
nβ

∑
k

Fβ (k) (66)

with Fock operators

Fα =
M−1

∑
i
|ϕα

i 〉εα
i 〈ϕα

i |, Fβ =
M−1

∑
i
|ϕβ

i 〉εβ
i 〈ϕβ

i |. (67)

In the following, we shall omit the lower subscript for the excited states. The the
upper limit of the summations is M− 1 because the vector |ϕα

0n〉 is excluded from
the subspace of virtual molecular orbitals. It is important that singly, Φa

i , doubly,
Φab

i j , etc. excited configurations with respect to an excited state Slater determinant

Φ(0) are eigenfunctions of the Hamiltonian H(0) (66) and they are orthogonal to the

ground state Slater determinant Φ(0)
0 because 〈ϕα

0n|ϕα
i 〉= 0, i = 1, 2, ..., M−1.

In contrast to the ground state case, for the excited state it is necessary to take
into consideration the orthogonality constraints. For the first-order correction to the
excited state reference function, Φ(1), these constraints have the form〈

Φ(0)|Φ(1)
〉

= 0. (68)

The first-order correction can be written in the following form

|Φ(1)〉= (I−P(0)
0 )|Φ(1)〉+ P(0)

0 |Φ(1)〉

where I is the identity operator and P(0)
0 = |Φ(0)

0 〉〈Φ(0)
0 |.
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It should be stressed that |Φ(1)〉 is constructed in the basis of singly, doubly, etc.
excited configurations of |Φ(0)〉, which, due to the asymptotic projection method,

are orthogonal both to |Φ(0)〉 and |Φ(0)
0 〉. Therefore, the solution of the first-order

equation

(H(0)−E(0))|Φ(1)〉=−(V −E(1))|Φ(0)〉, V = H−H(0)

determines only part of the correction, the projection (I−P(0)
0 )|Φ(1)〉 satisfying the

condition (68), but does not determine the other part, P(0)
0 |Φ(1)〉. This projection

should be determined by the orthogonality condition for the states in the first-order
perturbation theory, i.e.

P(0)
0 |Φ(1)〉=−P(1)

0 |Φ(0)〉, (69)

where
P(1)

0 = |Φ(0)
0 〉〈Φ(1)

0 |+ |Φ(1)
0 〉〈Φ(0)

0 |.
Such a scheme of the construction for Φ(1) is compatible with both the perturbation
theory equations and the orthogonality restrictions (68) and (69).

The final expression for the first-order correction to the excited state reference
function takes the form

|Φ(1)〉= R(0)V |Φ(0)〉− |Φ(0)
0 〉〈Φ(1)

0 |Φ(0)〉 (70)

where R(0) = Q(0)(E(0)−H(0))−1Q(0) is the reduced resolvent operator, and Q(0) is
the orthoprojector onto the complementary space, i.e. Q(0) = I−|Φ(0)〉〈Φ(0)|.

It is well-known that the Rayleigh-Schrödinger perturbation theory leads to the
following expression for the second order correction to the energy

E(2) = 〈Φ(0)|H|Φ(1)〉

or, taking (70) into account, we have the expression

E(2) =
occ

∑
i> j

virt

∑
a>b

|(ϕaϕi|ϕbϕ j)− (ϕaϕ j|ϕbϕi)|2
εi + ε j− εa− εb

−〈Φ(0)|H|Φ(0)
0 〉〈Φ(1)

0 |Φ(0)〉. (71)

The first term in Eq. (71) is immediately recognized as the second-order perturbation
theory expression for the ground state energy (cf. with (65)). Single excitations do
not contribute because the excited state orbitals, like the ground state orbitals, sat-
isfy the generalized Brillouin theorem. The second term in Eq. (71) appears because
the Hartree-Fock ground and excited state functions are not eigenfunctions of the
Hamiltonian H. In practice, if the ground state and excited state energies and the cor-
responding wave functions are known accurately then the coupling matrix element
〈Φ0|H|Φ1〉 is expected to be small (see also paper I [27], Sect. 3.1). Furthermore, as

the overlap element 〈Φ(1)
0 |Φ(0)〉 < 1, then during the first stage of calculations the

last term in Eq. (71) may be neglected.
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Thus, we obtain comparable perturbation schemes for the ground and excited
state energies. Use of the asymptotic projection technique ensures that calculations
for excited states require practically the same computational time as those for the
ground state.

4.2.2 Numerical Examples

Below we demonstrate some possibilities of the single reference-based perturbation
theory based on orbitals obtained by asymptotic projection for calculations of the
total energies and excitation energies of the HeH and BeF molecules. We studied
the X2Σ+, A2Σ+, C2Σ+, and D2Σ+ states of HeH and the X2Σ+, B2Σ+ and C2Σ+

states of the BeF molecule.
For HeH, the basis set of 18s Gaussians employed in Sect. 2.2.2 was extended

to a 18s3p set, i.e. 18s functions were distributed along the molecular axis (z-axis)
with the basis set parameters determined by minimizing the total SCF energy for
each individual state. It should be noted that such basis set extension does not mod-
ify the subspace of occupied orbitals nor, therefore, the SCF energy, but it facilitates
and improved description of correlation effects. The orbital exponents and posi-
tions of the p-functions (px and py) were determined by using Hylleraas’ variational
principle [66]. This allowed us to minimize the error associated with truncation of
one-particle basis sets and, thus, to assess more precisely the errors of the method
itself. In addition, each p function (px, py) was represented by a linear combination
of two s-functions, i.e. the so-called Gaussian lobe representation [67] was used.

The results of our calculations of the total energies and excitation energies are
presented in Table 13 where they are compared to those obtained by the CI method
[62] and experimental data.

The BeF molecule was studied in detail in [68] where its various properties
were determined using the CI method. Experimental data are also available for this
molecule [69]. The best results in [68] were obtained with the mixed one-particle
basis set consisting of the Slater and two-center functions. We carried out calcula-
tions with the basis sets consisting of 24s Gaussian functions for the X2Σ+, B2Σ+

Table 13 Excited state energies (hartrees) and excitation energies (∆E, eV) from the A2Σ+ state
of HeH at the different levels of approximation at R = 1.5 bohr

Method A2Σ+ B2Σ+ D2Σ+

Hartree-Fock–asymptotic projection −3.066 606 −3.014 785 −2.988 232
E(2) −0.033 363 −0.029 915 −0.030 027
EMP2 −3.099 969 −3.044 700 −3.018 259
ECI [62] −3.112 706 −3.055 797 −3.030 025
∆EHF 0 1.41 2.13
∆EMP2 0 1.50 2.22
∆ECI [62] 0 1.53 2.25
∆Eexp [62] 0 1.55 2.26
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states and 26s functions for the C2Σ+ state and 4p-functions (4px and 4py), which,
in turn, were represented by the lobe approximated using lobes functions as we
did for HeH. These p-functions simulated the behavior of 1πx and 1πy orbitals in
the 1σ21σ21σ21σ21π4φ configurations, where φ = 5σ , 6σ and 7σ correspond to
the X2Σ+, B2Σ+ and C2Σ+ states, respectively. The calculations were performed
at internuclear distance R = 2.5 bohr, which is close to the equilibrium separation
for all the states under consideration. In this case, the basis set parameters both
of s-functions and p-functions were determined for each individual state by mini-
mizing the corresponding energy in the single determinant approximation. Such an
optimization of the restricted basis sets is very important for the excited states, and
its contribution to the total energy is comparable with the second-order correla-
tion correction as can be seen in Table 14, where the zero-, first- and second-order
energies are given. The energies in the column headed A were computed with basis
sets optimized for the state under study whereas the energies presented in column
B were obtained with the basis set adjusted to the ground state (X2Σ+). In addition,
a comparison of columns A and B also shows that the correlation energy (the row
E(2)) depends slightly on the basis set optimization.

Of course, the basis sets employed are not of sufficient size to approach the
complete basis limit and thus the comparison of absolute values with more precise
ones is not meaningful. However, if basis set optimization has been carried out for
each individual state and the similar scheme for accounting the correlation effects
has been used (Møller-Plesset like perturbation theory in our case), then energy
contributions from incompleteness of basis set may be assumed to be similar for
adjacent excited states and, therefore, comparisons of relative positions of energy
levels computed against more precise or experimental ones are instructive to esti-
mate the performance of the method. We can see from Table 15 that the method
introduced in this paper yield reasonable excitation energies which are closer to
experimental results [69] than the CI values obtained in Ref. [68].

Table 14 The total energies (hartrees) of the BeF molecule calculated in different orders of
perturbation theory at R = 2.5 bohr

Order of perturbation A (X2Σ+) A (B2Σ+) B (B2Σ+) A (C2Σ+) B (C2Σ+)

E(0) −69.221 2 −70.864 9 −68.980 0 −70.209 8 −68.667 4
E(0) +E(1) −114.103 6 −113.882 3 −113.790 9 −113.875 1 −113.595 3
E(2) −0.174 3 −0.172 5 −0.173 0 −0.169 0 −0.168 4
EMP2 −114.277 9 −114.054 8 −113.964 7 −114.044 1 −113.763 7

Table 15 Excitation energies (∆E, eV) from the X2Σ+ state of BeF at the different levels of
approximation at R = 2.5 bohr

State Hartree-Fock–asymptotic MP2 CI [68] Experiment [69]
projection

B2Σ+ 6.02 6.07 6.25 6.12
B2Σ+ 6.22 6.36 6.69 6.24
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5 Conclusions

We have presented a detailed description of open-shell SCF theory for the ground
and excited states based on an easily implemented asymptotic projection method for
taking the orthogonality constraints into account in eigenvalue problems which was
proposed earlier. The effectiveness of such a SCF-asymptotic projection theory and
its performance have been demonstrated:

(i) By solving the long-standing problem of off-diagonal Lagrange multipliers
in open-shell self-consistent theory. We have considered an alternative to the
Roothaan’s open-shell technique that does not involve off-diagonal Lagrange
multipliers. We have constructed a well-defined perturbation theory based on
this technique which can be used to account for correlation effects.

(ii) We have given an example of the variational determination of excited elec-
tronic states having the same spatial and spin symmetry as the ground state. The
results given above in (i) have thus been extended to excited state self-consistent
theory and an analogue of the many-body Møller-Plesset perturbation theory for
excited states has been developed.

Finally, it is worth pointing out the similarity between the SCF-asymptotic pro-
jection formalism developed here and the Optimized Effective Potential method
for practical excited state calculations within density functional theory. Prelimi-
nary results can be found in the work of Glushkov, of Glushkov and Levy and of
Glushkov and Gidopoulos [70–72].

Acknowledgment V.N.G. thanks Prof. A. Theophilou for useful and stimulating discussions
during the early stages of this work.
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SU(m(≤ 4))×S20 ↓ A5 Group Branching Rules
Revisited: Inverse Polyhedral Combinatorial
Modelling via (λ ) to {< λ ′ >} �λ SA SST Maps

Francis P. Temme

Abstract Various mathematical physics concepts based on recent Sn group actions
and combinatorical techniques associated with λ � n -based (λ ) Schur functions,
as well as their polyhedral-combinatorial models of (subgroup) invariance alge-
bras, have been drawn on in this work to treat m ≤ 4 partite dual G-branching,
as an inherent aspect of spin algebras. In clarifying the detailed nature of projective
mapping of augmented quasiparticles (superbosons) on Liouvillian carrier space (as
outlined in [15, 22]), the role of group invariants in Liouville space generalised dual
tensorial sets (derived from automorphic NMR spin physics) is discussed beyond
techniques outlined in [11]; this is included here in the appendix material for com-
pleteness. In particular the potentially determinate SU(m≤ 4)×S20 ↓ A5 NMR spin
subduction, together with its SU(2)×S20 group invariants (or their cardinalities),
are derived as branching rules (as analogues to the [11B]20[C]40 borazafullerenes,
or as in encago [11B]20 cluster-based (A)[X ]20 NMR systems) i.e., via appropri-
ate (λ ) = (r̄2r̄3), (r̄2r̄3r̄4) Schur maps both in terms of model invariance sets and
(λ ) Schur function semi-standard tableaux (SST) decompositions onto (Koskta-
weighted) {< λ >},λ � λSA irrep sets.The results extend an earlier modelling of
SU(3)×S20 ↓ A5 subduction [5], cf. with earlier cycle-index studies of [6]. For
smaller n-fold systems, a proof (by exhaustion) of such types of subduction being
universal determinate has been demonstrated in respect of the [BH]2−12 NMR system
[8], within the wider Cayley rule determinacy contexts of [7]. To demonstrate such
a property here may not be so practical, on account of the much larger (λ ) partite
branching set.
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1 Introduction

The use, in the context of invariance algebra, of (λ )(GLn) Schur modelling [1, 2]
and its combinatorial algorithmic decompositions [3, 4] has proved invaluable in
establishing certain branching rules [5] for natural subduction [6,7] of SU(m)×Sn ↓
G , for m ≤ n automorphic multispin NMR symmetries [6] and in the search for
the universal determinacy [8] of many of these subduction-based symmetries, as
exemplified (e.g.) by SU(m)×S12 ↓ A5. The study of such forms implies that the
subduction -based invariance algebra is associated with unique numeric {χi}(Sn ↓
G ) invariance sets [3,5,8]. For the indistinguishable multispin NMR problems under
democratic recoupling, a knowledge of the system the scalar invariants, or of their
group invariant cardinalities [9,12] |GI|(2n), of the individual spin ensembles and of
their spin systems (beyond Corio’s Hilbert space views [13]) is of particular impor-
tance. This arises because of specific role of invariants in Liouvillian discussions of
tensorial set completeness [9, 11]. It is in this context that Weyl’s original views of
the role of time-reversal invariance (TRI) in physics (via the properties of classic
groups in group theory) [12] yields an interesting re-interpretation of a specialised
(χ<λ>(Sn)) (even) character-sum [9–11],for numeric Sn characters (of < λ >
group irreps given here in the Wybourne notation [1, 2]) themselves being derived
from standard combinatorial hooklength considerations [4, 14]. The role of TRI
and group invariants in NMR spin physics arise from their significance as invari-
ant labels of Liouville superboson carrier subspaces leading to their role in defining
tensorial set completeness. These ideas which date from 1993 [15] represent a sub-
stantive augmentation of the (unlabelled) Hilbert dual projective mapping, (e.g.) as
discussed by Biedenharn and Louck [16] in the context of (Gel’fand shape-related)
Hilbert space formalisms.

Because of the role of indistinguishability in point sets that describe [A]nX , [AX ]n
identical NMR multispin ensembles naturally introduces the concept of democratic
recoupling (DR) into tensorial sets and their associated projective carrier space for-
malisms [9–11, 17], it is now important to distinguish between the two types of
point sets, with valid uses of graph recoupling and of its related Racah-Wigner alge-
braic(RWA) properties only pertinent to the earlier conventional point distinct spin
sets. The specific properties [10,17] of indistinguishable point set -based specialised
(Liouvillian) DR tensorial sets represent the principal focus of this work, because
they necessarily underlies the NMR spin dynamics of systems under dual automor-
phic spin symmetries [18]. Such generalised systems also may be contrasted with
the earlier restricted Hilbert treatment of DR quantum physics problems, such as
those formulated via Lévi-Civitá projection operator techniques set out by Lévy-
Leblond and Lévy-Nahas [19]. Here we shall be concerned with those that respond
to the more general semi-standard-tableaux (sst) combinatorial techniques [4], or
equivalent symbolic computational techniques of applied discrete mathematics [14].
Such techniques (in their Schur function -based format here, referred to as poly-
hedral combinatorial modelling) are pertinent to various post-1990 NMR studies,
including that concerned with (e.g.) (dual) SU(m)×S2n ↓G (A5) natural subduction
modelling of multispin ensemble NMR problems [3,5,8–11]. Naturally, these apply
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in particular to various the m ≤ (2n) = 12,(20) ensemble systems under Sn ↓ A5

automorphic-group subduction.
The role of TRI and Sn group invariants is more explicit in Liouville space NMR

formalisms. This follows because both the projective mapping and DR tensorial sets
of these formalisms directly utilise the invariants as sub-spatial mapping and group-
action labels in projective formalisms and in arriving at the tensorial completeness
condition. Insight into the specific subduction aspects of NMR automorphic spin
symmetries and their branching rules [4, 14] draws on comparative studies of their
(λ )(G L d) Schur decompositions and the corresponding (λ ) invariance modelling
onto the subduction group, i.e., as a quasi-geometric symmetry [3, 8].

Much of the conceptual background to this topic has been covered in treating the
earlier [µBH]2−12 (SU(m)×S12), µ = 10,11 (m≤ 7,4) borohydride anionic systems
[8], or else in more recent work on {< λ >−→Γ }(SU(3)×S20 ↓A5), i.e. for both
λ � λSA - see Ref. [5], noting the use here of < r̂2r̂3.. > reduced notation (omitting
the leading partitional element of the conventional [λ ] irrep forms). Various aspects
of invariant cardinality given here may be derived in terms of (recursive) unitary
bijections. These actually yield the full range of CFP(i)(n) multiplicities, rather than
simply the zeroth CFP(0)(n) = |GI|n terms. Here these are specifically in the context
of Liouvillian descriptions of the group invariants(GIs) as unitary bijective maps [9];
in the latter space, these results are no longer constrained to ‘even’ indexed GIs.

Recent mathematical physics work [20] has stressed the inherent limitations that
attend the application of graph recoupling techniques to point-recoupled tensorial
structures, i.e., strictly to simple point sets – rather than (multi-invariant) indistin-
guishable point sets and their dual tensorial sets of dual multispin NMR problems.
Whilst this realisation is important, it does not highlight the severity of such restric-
tions, that comes from RWA algebra of quantum physics [21] also being graph-based
in its origins; the Lévi-Civitá operator leads to additional cyclic commutation quan-
tal properties [19] which are specific to the simple three-fold point multispin case.
In consequence the study of indistinguishable (multi)spin tensorial structures in the
context of superboson projective mapping [22] has a rather wider quantum physics
significance. This places the Sn group, and its TRI-based invariants [23] in a more
central focal position with respect to the formal quantal physics of reduced matrix
algebra for indistinguishable multi-point/multiparticle problems to be analytic, i.e.,
within the completeness of the democratically recoupled tensorial set, {T k

{ṽ}(11.1)},
as specified by the set of {ṽ}((G L n ⊃ .. ⊃)Sn)-invariants and their associated
cardinalities [9–11].

2 (λ ) Schur SST Decomposition Onto {< λ ′ >}
Set for λ ,λ ′�λSA

Earlier studies concerning Sn group properties, especially for n = 12, 20 algebras
have shown [5, 7, 8] that only the pre λSA irreps are needed, and these for S20 case
are defined by the various multipartite (sub)sets preceding:
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{[λ ]}�{[λSA]} ∣∣ (initial) (5)5442∼ λSA > (A)218 } , (1)

the self-associate (alias self-conjugate) Schur subset {λSA}. Clearly the multipartite
forms for these {λSA} subsets all have a more extensive p-partite structure than the
p ≤ 4 partite Schur (or Schur model on SU(4)×S20 ↓ A5) forms, for the [11B]20

spin ensemble discussed in detail in the text below, and/or summarised in the various
tables. The approach adopted here, in the spirit of various earlier works cited above,
develops a recursive series of correlations, essentially as a consequence of invoking
semi-standard (tableaux (sst)) algorithmic decomposition(s) of pure (λ )G L n Schur
forms (of G L n ⊃ .. ⊃ Sn subgroup chain) on the first-hand, whilst on the other
seeking their multicolour (λ ), � {λSA}, ≡ (r̄2r̄3(..r̄4)) modelling as invariance
properties, on the space of the natural automorphic subuction group S20 ↓ A5.

Because the question of the existence of a unique set of invariance (sub)set(s)
is central to retaining a viable bijection over the SU(m) universal determinacy
of the overall problem – as demonstrated in earlier work on the corresponding
[µB]12,µ = 10,11 spin-ensemble -based SU(m)×S12 ↓ A5 automorphic natural
subduction symmetry-, it is natural to focus on the multicolour invariance problem,
in part since the Schur-decompositional techniques themselves involve conventional
semi-standard tableaux methods to enumeratively derive the < λ ′ >-based Koskta
coefficient sets. These represents a well-established aspect of modern algorithmic
combinatorics [1,2,4] which have been absorbed (along with other aspects of Schur
λ -based discrete mathematics [2]) into a number of symbolic computational pack-
ages, including SYMMETRICA due to Kerber et al. [14] and the package SCHUR
(due to Wybourne coworkers cited in Ref. [2]) in recent years. They are invaluable
in handling higher multipartite Schur function sst-decompositions. There remains
one further structural question in the presentation of the resultant branching rules
given here. This arises because we have pursued a recursive approach in deriving
the associated bijective mappings relating (λ ) to Γ (S20 ↓ A5). By their nature, such
recursive approaches preclude the use of traditional full matrix formulations for the
branching rules, a point mentioned in our earlier work [5].

3 G-Subduction via Multicolour PC Schur Models
from {(λ )≡ {χi}(S20 ↓ A5)} Invariance Sets

The invariance properties of such automorphic subduction symmetries are directly
realisable as quasi-geometric multicolour polyhedral combinatorial models of the
various (λ = (r̄2r̄3), else (r̄2r̄3r̄4))(Sn) for p = 3,4 partite Schur functions, in the
compact reduced (i.e., suppressed leading part) notation, (λ ) cf. with similarly
notated irreps denoted < λ ′ >. In the context of combinatorial decompositional
considerations [4, 14], (e.g.) as illustrated in earlier initial conference report [5] for
(r̄2r̄3) Schur forms related to the SU(3)×S20(. ↓ A5) (automorphic) NMR spin
symmetries. In constructing the requisite identity and class algebras, it is noted that
the identity property has specific generalised forms for each of the p = 2,3,4 par-
tite algebra, whereas the class algebras reduce to simple or modified combinatorial
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Table 1 Illustrative (λ ) reduced-Schur quasi-geometric projective modelling given here as
SU(3)×S20 ↓ A5 characters, after the authors’ earlier studies [5]. Since the Identity E is a simple
monomial, its value has been suppressed here for brevity. The subsequent {χi}(Ci) derive directly
(or in modified form in the C123 case) from combinatorial choices that is governed by the PC lat-
tice point equivalent sets, being ten, six or four -fold sets. Such tabulations are illustrative of the
primary data utilised in the models given. The subsequently derived complete set of irreps involv-
ing p ≤ 3 branching rules [5], based on these observations, is summarised in Table 5 below, for
completeness

(λ ),RSF E,omitted χ(C()()) χ(C123) χ(C−5) χ(C′−5)

(31) . 0 12 0 0
(22) . 90 0 0 0
..
(6) . 120 12 0 0
(42) . 360 0 0 0
(33) . 0 30 0 0
(61) . 0 30 0 0
..
(53) . 0 30 0 0
(44) . 1260 0 0 0
..
(63) . 0 60 0 0
..
(A) . 252 40 6 6
..
(64) . 2520 120 0 0
(55) . 0 0 12 12
..
(66) . 4200 90 0 0
(76) . 0 180 0 0

products, based on there being multipart sets on maximal ten (pair-), six (modi-
fied) (three-part-), and four (five-fold) sets associated with the various respective
automorphic spin symmetry class operators. Tables 1 and 2 gives summaries of the
derivation of the numeric invariance sets for these automorphic subductional alge-
bra, S20 ↓ A5; these results utilise the Schur sst- decompositional maps of Tables 3
and 4 for the respective p = 3,4 partite forms, with only p = 3 examples consid-
ered in the earlier report [5]. Such mapping1gives rise to a useful initial overview
concerned with the question of the uniqueness of such invariance sets. Here the uni-
versal determinacy arises over the range of different SU(m)..-branched subuctional
automorphic forms. The careful reader of the literature will have noted the similar-
ities and distinctions from the three-space work of Harter and Reimer [26], based
on On ⊃ .. ⊃ O3 ⊃ G subduction processes as applied to fullerene – the analogous
13C-fullerene cf2 NMR spin structure, which has been discussed elsewhere [27,28].

1 Originally studied in the context of [2HC]20 dodecahedrane work Ref. [24] with pertinence also
to the (encageo) [14N]20 azadodecahedrane structure of Bliznyuk et al. work [25].
2 The inelastic neutron scattering cross-section can used to the study (as in [28]) the full subduc-
tional SO(3) ↓ G finite group (FG) including the symmetry-disallowed vibrations associated with
conventional SO3-based spectroscopies.
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Table 2 Illustrative (r2r3r4)(S20) reduced-Schur -based quasi-geometric projective modelling
over: {χi} (E,C(12)(34),C123,C1−5,C′1−5) (SU(4) ×S20 ↓ A5) automorphic group characters.

[Here the identity has the general analytic forms: E =
(20

s

)( s
s′=r3+r4

)(s′
r4

)
; the remaining

C(12)(34)s terms are enumerated by taking suitable (product) combinatorials derived from the
maximal implicit sets, based on the respective ten, six and four-fold sets underlying the
C(12)(34), or C123 , or C12345,C′12345 operations.]

(λ ) E C(12)(34) C(123) C−5 C′−5

(311) .0 2
(6

1

)
= 12 0 0

(222) 2
(10

3

)(3
2

)
= 720 0 0 0

(511)
(421)
(331) 0 2

(6
2

)(2
1

)
= 60 0 0

(322)
(611) . 0 2

(6
2

)
= 30 0 0

(521)
(431) . 0 = 60 0 0
(422) . 2

(10
4

)(4
2

)
= 2520 0 0 0

(332) . 0
(6

2

)(2
1

)
= 30

(531)
(441)
(432)
(333) . 0

(6
3

)(3
2

)(2
1

)
= 120 0 0

(442) .
(10

5

)(5
2

)(3
1

)
= 7560 0 0 0

(433) 0 .2
(6

3

)(3
2

)(2
1

)
= 240 0 0

((9)911) . 0 2
(6

3

)
= 90 0 0

....
(533) . 0

(6
3

)(3
2

)(2
1

)
= 120 0 0

(443) . 0 2
(6

3

)(3
2

)(2
1

)
= 240 0 0

...
((8)633) . 0 .

(6
4

)(4
2

)(2
1

)
= 180 0 0

...
(444) . 18900 . . .
((5)555) . 0 0

(4
3

)(3
2

)(2
1

)
= 24 .= 24

4 SU(4 )×S20 ↓ A5 Branching-rules & SU(m) Determinacy
Aspects

The use of quasi-geometric polyhedral combinatorial -modelled invariance, with the
constraints mentioned above, is central to both total overall matrix solutions and
the recursive form of calculation utilised here for higher-indexed symmetric group
properties. In either formalism, there are three matrix quantities involved, where
K−1

. , X−1
. are the inverse-Kostka and inverse-character table matrices (with suit-

able Kλ ,λ ′, and χi, j(Sn) elements), respectively, whereas Tλ ,i of T are the physical
automorphic group invariances over (unit) class algebra, {1(Ci)} – corresponding
here to the A5 group irrep set {A ,G ,H ,T 1,T3}. Hence individual subductional
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Table 3 The (r2), (r2r3), or ((r2r3r4))→ {1 . . . . . . ; . . . .1}L (S20) semi-standard tableaux (SST)-
derived mappings involving (unique) {Kλλ ′ } Kostka coefficient sets, with each derived from a
specific (λ ) (Reduced) Schur function

(A)−→ {1110100;10000 10000 : 10000 10000;10000 10000;1}L
..
(22) {1231220;1110}
(33) {1231420;3310 22200; 11101 }
(44) {1231420;5310 4420; 33301 222020; 1110101}L
(55) {1231420;5310 6420; 553010 444020; 33303010 22202020; 1110101010;}L
(65) {1231420;5310 6420; 653010 554020; 55402000 44403010; 3330302000;

122020201; (−−)1010101 }
..
(75) −→

{1231420;5310 6420; 653010 654020; 5540301 34403020; 1230302010;
(−−)102010; (−−−−)1010.}L

(66) {1231420:5310 6420; 753010 664020; 5550301 34404020; 1230303010;
(−−)102022; (−−−−)1011}

(76) {1231420;5310 6420; 753010 764020; 5650301 34504020; 1230403010;
(−−)102032; (−−−−)1021;(..)1}L

mapping in the recursive calculation become:

< λ >−→∑
λ ,i

K −1
λ ,λ ′ Tλ ,i (χ (0)

i ) , (2)

which, with retention of 1:1 bijective map uniqueness property, yields the requisite
mapping defining the individual [λ ] recursive mapping approach used here as:

< λ >−→ ∑
λ ,i, j

K −1
λ ′,λ Tλ ,i X −1

i, j Γ ′j ; (3)

this shows that the origin of any (subsequent) indeterminacy would arise as the result
of lack of independence in the automorphic subgroup invariance sets. Fortunately
to the p≤ 4 branching level investigated here, the A5 group algebra (Ci)(S20 ↓ A5)
appears free of any random degeneracy(ies).

For completeness in the description of the concepts underlying such irrep branch-
ing rules, it is useful to outline the nature of the formal matrix approach associated
with smaller index-based Sn group order cases. This takes the form:

(< λ >)≡ K−1 T
(

χ (0)
)†

(4)

for (< λ >) ,
(

χ (0)
)†

being respectively the unit Sn (reduced) irrep set (= L ) and

the subgroup algebra (over unit {Ci}† column vectors). Hence finally the full matrix
approach, now in a suitable form for use with say n≤ 10 indexed symmetric group
mappings, is defined by the expression:

(< λ >) = K−1 T X−1 (
Γ ′

)†
, (5)
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Table 4 The SU(4)×S20-based reduced-Schur decompositions yielding the {Kλ ,λ ′ } sets of
Kostka coefficients, over {< λ >} ≡L for (λ ) = (r2r3r4) −→ {..}L , where L is column list-
ing of is a reduced Sn (descending order) listing: {< 0 > .. to .. < λSA >}, generally in single
hexadecimal notation

(111) −→
{1333121; }L

(211) {1343341;12110 00 }
(311) {1343441;34110 121100;}
(221) {1353561;35320 122110;}
(411) {1343441;44110 341100; 121100}L
(321) {1353661;57320 354210; 1221110}
(222) {1363781;69630 366330; 12311201}

(511) {1343441;44110 441100; 3411000 1211000;}L
(421) {1353661;67320 574210; 35421100 1221110;}
(331) {1353761;79320 586310; 35523200 122121010;}
(322) {1363881;8B630 6A9430; 36733401 1231220110;
(611) {1343441;44110 441100; 44110000 3411000000; 1211000}L
(521) {1353661;67320 674210; 57421100 3542110000; 12211100}
(431) {1353761;89320 7A6310; 587332000 3552420100; 1221210110;}
(422) {1363881;9B630 8C9430; 6AA434010 3673440110; 12312201110;}
(332) −→

{1363981;AD630 9EC530; 6BC566010 3683650320; 12313201210010;}
(711) −→

{1343441;44110 441100; 441100000 4411000000; 3411000000; 121100;}
(621) {1353661;67320 674210; 674211000 5742110000; 3542110000; 12211100;}
(531) {1353761;89320 8A6310; 7A7332000 5873420100; 3552420110; 12212101100;}L
(522) {1363881;9B630 9C9430; 8CA434010 6AA4440110; 36734401110; 12312201110;}
(441) {1353761;99320 9C6310; 7B9432000 5883630100; 35525203200; 12212102100010;}
(432) {1363981;BD630 B1̂1C530; 9FF6660100 6BD5970320; 36837503420010;

1231320221001100;}
(333) −→

{1363A81;CF630 C1̂3F630; A1̂21̂2A8010 6CF6C90630;
36939603630030; 1231420231001200001;}L

The first self-associate Schur function occurs at λSA ≡ (5)(5442), f or p = 5 part form, with the
final SA-form (in hexadecimal notation) being denoted λSA ≡ (A)218. The ordering of the Sn

group irreps (each in hexadec. or two-digit hatted hexadec.) on which the Kλλ ′ act denoted here
by L , is (in reduced irrep notation) taken in lexical order as: < 0 >,< 1 >,< 2 >,< 11 >,...
Beyond n-3 suppressed elements, the ’; ’ symbol indicates a break in an ’even’ sequence, whereas
odd sequences starts with a space

and its inverse relationship. Here the unit (Γ ′(A5)) irrep forms has been retained, as
given above in the earlier context.

5 Contextual Discussion

By utilising a recursive formulation for branching rules involving S20 ↓ A5 natu-
ral subduction (onto the automorphic finite group A5 ≡ I), it has been shown above
that the quasi-geometric projective view furnishes one with further determinable
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1:1 bijection sets, beyond those reported earlier [5]. Such mappings, to the p ≤ 4
branching level investigated here, are found to be free of random accidental degen-
eracies in this λ model-based invariance algebra. For simple Hilbert spin space, it
is clear that these PC combinatorial techniques represent extended generalisations
of either empirical multispin- (1/2) views from an earlier NMR era [29], or to other
approaches such as those discussed in the works of Flurry and Siddall [30], or that of
Siddall [31]. The involvement of particle indistinguishability over Sn≥4 algebras,
introduces the question of the DR structure and completeness of multi-invariant dual
tensorial sets, based on:

GLn ⊃ ..⊃Sn ⊃Sn−1 ⊃ ..⊃S2 , (6)

chain-based DR properties - in contrast to the analogous unitary group chains, or
orthogonal group chains.

For the dominant Jintracluster models discussed here, clearly the dual tensorial sets
and their Liouvillian {T k

{ṽ}(1..11)} set completeness, based on the {ṽ}(GLn..Sn)
invariant sets, as strictly symmetric group chain-based properties – incompatible
cf. with either On chains, or with the restricted SO(3) view of tensorial sets, as
proven by Galbraith in his classic 1971 work [32] on the existence of non-analytic
forms inherent in n ≥ 4 identical body (multi-invariant) vibrational analyses. The
discussion given in a recent mathematical work [20] stresses that indistinguish-
able point/spin sets are not consistent with either the traditional unitary chain, or
graphical recoupling properties. Since these were utilised in RWA approaches in
various earlier Liouvillian NMR spin dynamics studies [33], the general use of
tensorial methods in spin dynamics needs to be re-examined, essentially because
known applicable RWA mathematics is restricted to discrete point/spin sets and
bases describing simple mono-invariant tensorial sets.

Underlying the actual problem of higher SU(m)×S20 algebras discussed here,
there remains still the question of dual tensorial set roles in analytic descrip-
tions of Liouvillian NMR, including the completeness question for SU(2)×Sn=20

covering group. Whilst use of the correct group subduction chain holds one key
to obtaining analytic solutions to handling spin problems, the necessary use of
the scalar invariant(s) within the quantum labelling, as in Ref. [19] – initially
to generate additional commutator relationships that then utilise a slightly mod-
ified RWA algebra-, as yet appears limited in scope to mono-invariant S3 spin
systems.

6 Some Concluding Comments

No satisfactory general treatment of extensive multi-invariant problems involving
indistinguishable point/spin sets and their Liouvillian tensorial sets has appeared
to date. This is essentially because no further general analogues exist for a aug-
mented equivalent n-fold operator forms to the long-established S3-specificaction
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[19] Lévi-Civitá operator. These comments stress the importance of the point made
by Atiyah and Sutcliffe [20] i.e., that graph-recoupling (and in consequence direct
simple RWA analytic methods) are strictly limited to distinguishable point sets and
thus (from the above and Ref. [17]) their corresponding (Liouvillian) tensorial sets
are governed by a single invariant, rather than more general DR tensors, based on
wider dual projective (carrier subspace) techniques [9].

From earlier discussions of (Liouvillian) disjoint carrier subspace (superboson)
mapping [15,17], but note cf.3, the use of permutation group chain(s) and a further δ
condition are necessary conditions to the quantal physics of indistinguishable point
sets. Beyond systems governed by the Lévi-Civitá operator-induced commutations
(of Ref. [19]), a further sufficiency condition is needed to treat multi-invariant -
based problems as implied by the views expressed in Ref. [20]. This would seem
to imply the need for a new permutational group equivalent formalisms to the
RWA algebras of graph theory, in order to eventually treat indistinguishable point
set, multi-invariant -based spin problems. This is a deep open theoretic question
which arises as consequence of the Atiyah and Sutcliffe [20] assertion concerning
the limitations of graph recoupling, i.e., that such formalism are only applica-
ble to distinct points-sets and their related non-DR tensorial forms (e.g. those set
out in Ref. [33]- based on the 1976 Sanctuary distinct point set-based work cited
therein).

The main focus of this article has been on mappings under specific branch-
ing rules for S20 ↓ A5, down to p = 4 multipartite level set out in Tables 3–6.
The question of universal determinacy over m-partite-branched forms of the full
weight set (beyond the highest specific mappings discussed here, e.g., Table 6)
has not been resolved as yet for practical reasons; this is mainly on account of the
depth of branching which generates too numerous intervening m-partite forms prior
to last of the λSA(= (A)(218)) form. To highlight both the contributions arising
from studying Liouville space projective properties and to appreciate the nature of
the open theoretical questions arising in studying indistinguishable point-sets and
multi-invariant tensorial sets, some brief reference to SU(2)×Sn carrier space
properties discussed in Refs. [9, 17, 22] has been included here. Recent progress
in applicable (λ )(G L n(⊃ ..⊃Sn)) -based combinatorial mathematics within suit-
able subchain context would seem to offer some hope for future insight into the
indistinguishable point set/ multiple invariant tensorial formulation of eigenvalue-
problems in dynamical spin physics. The original development of disjoint carrier
subspace projective views [15, 17, 22], as being only realisable in Liouville space
formalisms, arose from a comparative simple reducibility(SR) study of unitary and
symmetric group algebras. This arose in the context of combinatorially-defined
Liouvillian T k

{ṽ}(11.1)(SU(2)×Sn) tensorial set completeness [9, 22], cf. to the
simpler combinatorial forms of Hilbert space basis completeness – as originally

3 One notes here that explicit invariant labelling of carrier subspaces only occurs in Liouville space
formalisms [15, 15, 22]; however such labelling is not a feature of the original Hilbert space boson
projection techniques of Biedenharn and Louck [16].
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Table 5 Group Branching Rule Mappings (from independent sets of automorphic subduction
group invariance, see Ref. [5]) for < r̄2 r̄3 > (reduced λ -notated) onto SU(≤ 3)×S20 irreps
and subsequently onto Γ (S20 ↓ A5) (≡ {A,G,H,T1,T3}) automorphic group representations
mappings, for labels as used in Harter and Weekes’ work [26]

< λ >, RSF; χE : A G H T1 T3

< 5 > 10659 166 707 879 545 545
< 41 > 43776 728 2920 3648 2188 2188
< 32 > 55575 915 3705 4620 2790 2790
< 6 > 23256 419 1555 1965 1132 1132
< 51 > 121125 1995 8070 10080 6075 6075
< 42 > 223839 3811 13921 18732 11114 11114
< 33 > 125970 2040 8406 10422 6366 6366
< 7 > 38760 621 2589 3195 1968 1968
< 61 > 248064 4138 16538 20670 12404 12404
< 52 > 604656 10013 40309 50331 30292 30292
< 43 > 620160 10344 41352 51672 31008 31008
< 8 > 48450 855 3225 4095 2370 2370
< 71 > 377910 6276 25194 31470 18918 18918
< 62 > 1,162800 19560 77520 97080 57960 57960
< 53 > 1,705440 28319 113711 141985 85392 85392
< 44 > 872100 14760 58140 72900 43380 43380
< 9 > 41990 649 2801 3445 2152 2152
< 81 > 413440 6884 27556 34460 20672 20672
< 72 > 1,598850 26490 106590 133080 80100 80100
< 63 > 3,100800 51690 206730 258390 155040 155040
< 54 > 2,848860 47686 189904 237650 142218 142218
< A > 16796 352 1124 1456 778 778
< 91 > 277134 4611 18483 23079 13866 13866
< 82 > 1,469650 24755 97975 122735 73220 73220
< 73 > 3,779100 62895 251955 314805 189060 189060
< 64 > 5,038800 84405 335925 420315 251520 251520
< 55 > 2,469012 40485 164571 205131 124098 124098
< 92 > 604656 9828 40308 50136 30486 30486
< 83 > 2,687360 44776 179133 223960 134368 134368
< 74 > 5,290740 87519 352701 440265 265182 265182
< 65 > 4,837248 80576 322448 403144 241860 241860
< 84 > 2,309450 28950 153950 192940 115000 115000
< 75 > 4,157010 69471 277149 346575 207678 207678
< 66 > 2,217072 37426 147850 185126 110435 110435
< 76 > 1,385670 22842 92388 115200 69546 69546

reported by Biedenharn and Louck in their classic boson-pattern algebraic mapping
work [16].

The essence of the SU(3).., SU(4)×S20 ↓ A5 present modelling results are set
out in Table 2, and in Tables 4–6; here the present work amplifies our earlier brief
report [5]. For a wider view of the value of applicable combinatorial mathematics
in physics the report of King [2] on the properties of Schur functions and extensive
views expressed by other contributors to the Wybourne commemorative physics
meeting should be consulted, e.g., [2, 5, 9, 11] et loc. cit..
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Table 6 The final overall mappings central to this work. Here, the p = 4 partite reduced Schur fn.
Maps onto both the Invariance Set {., ., ., ., .}(χ (0))† and then maps (with coefficients shown) onto
the A5 ≡I Automorphic NMR Spin Group Irrep set, where Γ ′† is the irrep unit column vector

< r̄2r̄3 r̄4 > {E C()() C123 C5 C‘5 } (A, G, H, T1, T3)
(Γ ′)†

< 111 > 969 9 6 −1 −1 20 67 81 46 46
< 211 > 11475 −45 0 0 0 180 765 945 585 585
< 311 > 67184 80 −1 4 4 1141 4477 5619 3340 3340
< 221 > 56525 −35 5 0 0 935 3770 4700 2835 2835
< 411 > 250800 −240 15 0 0 4125 16,725 20,835 12,600 12,600
< 321 > 408576 0 −24 −4 −4 6800 27,232 34,056 20,428 20,428
< 222 > 129675 315 18 0 0 2246 8651 10,879 6405 6405
..
< 511 > 654,075 315 0 0 0 43,605 10,980 54,585 32,625 32,625
< 421 > 1574,625 −75 −15 0 0 26,220 104,970 131,205 78,750 78,750
< 331 > 959,310 270 0 0 0 16,056 63,954 80,010 47,898 47,898
< 322 > 969969 1125 −6 4 4 16,447 64,661 81,114 48,218 48,218
..
< 611 > 1,234506 −630 −6 −4 −4 20,414 82,300 102,720 61,882 61,882
< 521 > 3,969024 0 −36 4 4 66,140 264,588 330,764 198,452 198,452
< 431 > 4,476780 −420 −69 0 0 74,485 298,429 372,983 223,944 223,944
< 422 > 3,627936 1440 60 −4 −4 60,844 241,884 302,668 181,036 181,036
< 332 > 2,771340 −2340 6 0 0 45,606 184,758 230,358 139,152 139,152
..
< 711 > 1,679600 720 20 0 0 28,180 111,980 140,140 83,800 83,800
< 621 > 6,928350 −90 −30 0 0 115,440 461,880 577350 346,440 346,440
< 531 > 11,337300 −420 −45 0 0 188,835 755,805 944,670 566,970 566,970
< 522 > 8,527200 −1440 120 0 0 142,160 568,520 710,290 426,720 426,720
< 441 > 6,046560 −1800 60 0 0 100,346 403,124 50,3410 302,778 302,778
< 432 > 12,403200 −480 3 0 0 206,601 826,881 1033,479 620,280 620,280
< 333 > 3,197700 4140 117 0 0 54,369 213,219 267,471 158,850 158,850
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METRICA package and Dr Axel Kohnert for his kind assistance with its platform implementation
on various additional UNIX/LINUX -based machines. Support for this combinatorics-in-physics
research from NSERC of Canada is acknowledged.

7 Appendix

Whilst the full {< λ >} sets of the [10B]20 (sub)ensemble with their SU(m ≤ 7)
-based group symmetries and extensive subset of {λSA} terms lies beyond what is
considered here, some initial Schur decompositions for the SU(5) branching level
are given in Table A.1 to indicate the practical problems involved in handling such
problems. An initial calculation of a single example based on reduced notation
yields the expression:

< 14 > ≡ {15,521,−179,5,1,1}(χ (0))† , (7)



Role of Polyhedral Combinatorical Modelling in G-Branching 503

Table A.1 Some initial λ = (r2r3r4r5) RSF Decompositional Mappings onto the [λ ′](SU(5)×
S20) -based sets (showing sets of actual Koskta weights), the initial λ s being a modest set from
the extensive Îi = 3, [10B]20 ensemble properties, with only non-trivial weights for extensive sets of
λ ′ (RH) terms shown. Each of the λ RSFs is associated with a specific high-weight set of expand-
ing Kostkas. The numeric letters generally refer to single-symbol hexadecimal notation, with the
exception of the .̂ hatted entries, which are double-symbol (hexadecimal) weight forms. Naturally,
these sst-tableaux -based maps are greatly facilitated by the combinatorial methods referred to in
the text

(14)−→ 1466 484; 13231;
(213) 1476 7B4; 49561; 1333210;
(313) 1476 8B4; 7C561; 4966210; 1333121;
(2212) 1486 AE4; 82̂0991; 4AA8620; 134324111;

(413) 1476 8B4; 8C561; 7C66210; 4966121000; 1333121;
(3212) 1486 BE4; B2̂3991; 82̂1EB620; 4AB8582110; 1343341211;
(231) 1496 D2̂14; D2̂8EC1; 92̂52̂5FC30; 4BFA7E34300; 135346133201;

(513) 1476 8B4; 8C561; 8C66210; 7C661210; 49661210000;1333121;
(4212) 1486 BE4; C2̂3991; B2̂4EB620; 82̂1FB582110; 4AB86822110;13433411211;
(3311) 1486 CE4; D2̂6991; C2̂82̂2E620; 82̂22̂3D9C311; 4AC8AA26220; ↙

↪→ 13434412411011

a result which maps onto the unit (subductional) automorphic irrep set. This gives
the first of the SU(5)×S20 ↓ A5 set of mappings, e.g.:

< 14 > −→ {216,1036,1247,821,821}(Γ)† . (8)

The extensiveness of the higher SU(4 < m ≤ 7) partitional set precludes any
immediate derivation of the (exhaustive) proof of universal determinacy question,
comparable to that derived for the earlier [10B]12 spin subensemble problem [8].

8 Glossary of Notation

The notation adopted here retains earlier usage (essentially defined in the text), with
RS(F), RWA, DR, and TRI referring respectively to: reduced-notation Schur func-
tions: Racah-Wigner algebra: democratic recoupling: and, time-reversal Invariance,
or T of CP/CPT. In addition, the SA labels refer to the self-associate (else self-
conjugate) Schur function of irrep forms, ‘sst’ refers to the ‘semi-standard tableaux’
methods of enumeration, and CFP to weightings (from recoupling theory) known as
‘coefficients of fractional parentage’. The term automorphic group [18] refers to the
spin symmetries which are induced by the internal structure of the (mobile media)
NMR Hamiltonian (Liouvillian) – i.e., as distinct from SO(3)/ three-space -related
physical FG symmetry(ies) of other (non-NMR-spin) spectroscopic problems. In
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the former NMR symmetry context, it is stressed that three-space FG-like effects in
NMR are strictly limited to P parity (of CP/CPT), as a residual particle symmetry.4
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Gauge-Invariant QED Perturbation Theory
Approach to Calculating Nuclear Electric
Quadrupole Moments, Hyperfine Structure
Constants for Heavy Atoms and Ions

Alexander V. Glushkov(✉), Olga Yu. Khetselius, Elena P. Gurnitskaya,
Andrey V. Loboda, Tat’yana A. Florko, Denis E. Sukharev, and Ludmila
Lovett

Abstract Relativistic calculation of the spectrum hyperfine structure parameters for
heavy atoms and multicharged ions with an account of the relativistic, correlation,
nuclear, quantum electrodynamics (QED) effects is carried out. Our calculation
method is based on the gauge-invariant QED perturbation theory (PT) with using
the optimized one-quasiparticle representation firstly in the theory of the hyper-
fine structure for relativistic systems. The energies and constants of the hyperfine
structure, derivatives of the one-electron characteristics on nuclear radius, nuclear
electric quadrupole, magnetic dipole moments Q for atom of the hydrogen 1H
(test calculation), superheavy H-like ion with nuclear charge Z = 170, Li-like mul-
ticharged ions with Z = 20÷ 100, neutral atoms of 235U, 201Hg and 227Ra are
calculated.

Keywords: atom, quantum electrodynamics, perturbation theory, hyperfine
structure

1 Introduction

Traditionally an investigation of spectra of the heavy and superheavy elements
atoms and ions is of a great interest for further development atomic and nuclear the-
ories and different applications in the plasma chemistry, astrophysics, laser physics,
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etc. (cf. [1–73]). Theoretical methods of calculation of the spectroscopic charac-
teristics for heavy and superheavy atoms and ions may be divided into a few main
groups [1–25], [43–67]. First, the well known, classical multi-configuration Hartree-
Fock method (as a rule, the relativistic effects are taken into account in the Pauli
approximation or Breit hamiltonian etc.) allowed to get a great number of the use-
ful spectral information about light and not heavy atomic systems, but in fact it
provides only qualitative description of spectra of the heavy and superheavy ions.
Second, the multi-configuration Dirac-Fock (MCDF) method (cf. [3–10,16–20,50])
is the most reliable version of calculation for multielectron systems with a large
nuclear charge. In these calculations the one- and two-particle relativistic effects are
taken into account practically precisely. The calculation program of Desclaux (the
Desclaux program, Dirac package) is compiled with proper account of the finite-
ness of the nucleus size. However, a detailed description of the role of the different
nuclear effects (finite nuclear size etc.) is lacking. Though, in last years there is a
great progress in this topic. Naturally, the well known relativistic density functional
Dirac-Kohn-Sham approach [48] (cf. also [49, 72]) should be mentioned.

In a region of the small Z (Z is a charge of the nucleus) the calculation error in the
MCDF approximation is connected mainly with incomplete inclusion of the corre-
lation and exchange effects which are weakly dependent on Z. In studying the lower
states for ions with Z ≤ 40, an expansion into the PT double series on the parame-
ters 1/Z, αZ (α is the fine structure constant) is often used. It permits an evaluation
of the relative contributions of the different expansion terms: non-relativistic, rela-
tivistic, QED contributions as the functions of Z. Nevertheless, the serious problems
in calculation of the heavy element spectra leads to a necessity of developing new,
high exact methods of account for the QED effects, in particular, the Lamb shift
(LS), self-energy (SE) part of the Lamb shift, vacuum polarization (VP) contribu-
tion, correction on the nuclear finite size for superheavy elements and its account
for different spectral properties of these systems (the energies and constants of the
hyperfine structure, derivatives of the one-electron characteristics on nuclear radius,
nuclear electric quadrupole, magnetic dipole moments etc. (cf. [1–38, 54–73])). In
this essence it should be given special attention to two very general and important
computer systems for relativistic and QED calculations of atomic and molecu-
lar properties developed in the Oxford group and known as GRASP (“GRASP”,
“Dirac”; “BERTHA”, “QED”, “Dirac”) (cf. [68–73] and references there). In par-
ticular, the BERTHA program embodies a new formulation of relativistic molecular
structure theory within the framework of relativistic QED. This leads to a simple and
transparent formulation of Dirac-Hartree-Fock-Breit (DHFB) self-consistent field
equations along with algorithms for molecular properties, electron correlation, and
higher order QED effects. The DHFB equations are solved by a direct method based
on a relativistic generalization of the McMurchie-Davidson algorithm for molecular
integrals that economizes memory requirements and is not significantly more expen-
sive computationally than comparable nonrelativistic calculations (cf. [69, 70]).

The useful overview of relativistic electronic structure theory is presented in
Ref. [72] from the point of view of QED. The participation of the negative-energy
states in practical calculations is described from complementary points of view, in
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order to illustrate how they enter into the operation of relativistic mean-field the-
ories. Examples of the implementation of relativistic electronic structure theory
are drawn from studies of gauge invariance, many-body PT theory, inner-shell pro-
cesses, electron momentum spectroscopy, and relativistic density functional theory.
Let us note here that these principal moments are accurately taken into account in
our theory, presented below. Naturally, a great interest attracts the use of many-body
PT and QED in molecular electronic structure theory (cf. [73])

In the present paper a new, highly exact, ab initio approach to relativistic calcu-
lation of the spectra for multi-electron heavy and superheavy ions with an accurate
account of the relativistic, correlation, nuclear, radiative effects is presented. The
method is based on the gauge-invariant QED PT. Relativistic calculation of the
spectra hyperfine structure parameters for heavy atoms and multicharged ions with
account of relativistic, correlation, nuclear, QED effects is carried out (the Super-
atom [19–21, 23–40, 43] and Dirac packages (DP) [22] are used; the DP using in
a progress; the Superatom package is the PC complex of Fortran programs, which
numerically realize the presented method). Our calculation method is based on the
gauge-invariant QED PT formalism and generalized relativistic dynamical effec-
tive field nuclear model with using the optimized one-quasiparticle representation
firstly in the theory of the hyperfine structure for relativistic systems [23–26,31–35].
The wave function zeroth basis is found from the Dirac equation with a potential,
which includes the core ab initio potential, the electric and polarization poten-
tials of a nucleus (the gaussian form of charge distribution in a nucleus is used)
[28, 30, 35, 40, 51, 67]. The correlation corrections of the PT high orders are taken
into account within the Green functions method (with the use of the Feynman dia-
gram’s technique). All correlation corrections of the second order and dominated
classes of the higher orders diagrams (electrons screening, particle-hole interaction,
mass operator iterations) [19–23,27–29,36–38,67] are taken into account. The mag-
netic inter-electron interaction is accounted for in the lowest (on α2 parameter), the
LS polarization part – in the Uehling-Serber approximation. The self-energy part of
the LS is accounted for effectively within the Ivanov-Ivanova non-perturbative pro-
cedure [19,27,28]. A generalized relativistic dynamical effective field nuclear model
is presented in [40, 51] (see also Refs. [11–13, 15, 30, 35]). The energies and con-
stants of the hyperfine structure, derivatives of the one-electron characteristics on
nuclear radius, nuclear electric quadrupole, magnetic dipole moments Q for atom of
hydrogen 1H (test calculation), superheavy H-like ion with nuclear charge Z = 170,
Li-like multicharged ions with Z = 20÷100, neutral atoms of 235U, 201Hg and 227Ra
are calculated.

2 QED Perturbation Theory Method for Calculation of Heavy
and Superheavy Ions

Let us describe the key moments of our approach to relativistic calculation of the
spectra for multi-electron superheavy ions with an account of relativistic, correla-
tion, nuclear, radiative effects (more details can be found in ref. [19–21,23–43,67]).
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2.1 Definition of the Basis of Relativistic Orbitals

One-particle wave functions are found from solution of the relativistic Dirac equa-
tion, which can be written in the central field in a two-component form:

∂F
∂ r

+(1 + χ)
F
r
− (ε + m− v)G = 0,

∂G
∂ r

+(1− χ)
G
r
− (ε−m− v)F = 0.

(1)

Here we put the fine structure constant α = 1. The moment number

χ =
{−(1 + 1), j > 1

1, J < 1
. (2)

At large χ the radial functions F and G vary rapidly at the origin of co-ordinates:

F(r),G(r) ≈ rγ−1,

γ =
√

χ2−α2Z2.
(3)

This involves difficulties in numerical integration of the equations in the region
r → 0. To prevent the integration step becoming too small it is convenient to go to
new functions with isolating the main power dependence: f = Fr1−|χ |, g = Gr1−|χ |.
The Dirac equation for F and G components are transformed as follows:

f ′ =−(χ + |χ |) f
r
−αZVg−

(
αZEnχ +

2
αZ

)
g,

g′ = (χ −|χ |)g
r
−αZV f + αZEnχ f .

(4)

Here the Coulomb units (C.u.) are used; 1 C.u. of length = 1 a.u. Z; 1 C.u. of
energy = 1 a.u. Z2. In Coulomb units the atomic characteristics vary weakly with
Z. Enχ is one-electron energy without the rest energy, the system of Eq. (4) has
two fundamental solutions. We are interested in the solution regular at r → 0. The
boundary values of the correct solution are defined by the first terms of the expansion
into the Taylor series:

g =
(V (0)−Enχ)rαZ

2χ + 1
; f = 1 at χ < 0,

f =
(

V (0)−Enχ− 2
α2Z2

)
αZ; g = 1 at χ > 0.

(5)

The conditions f ,g → 0 at r → ∞ determine the quantified energies of the state
Enχ . At correctly determined energy Enχ the asymptotic f and g at r → ∞ is as
follows:

f ,g ∼ exp(−r/n∗) , (6)
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where n∗ =
√

1
2|En=χ | is the effective quantum number. The Eq. (4) is solved by

the Runge-Kutt method. The initial integration point is r = R/106, where R is the
nucleus radius. The end of the integration interval is determined as rk ≈ 30n∗.

2.2 Nuclear Potential

Earlier we have calculated some characteristics of the hydrogen-like ions with the
nucleus in the form of a uniformly charged sphere. Analogous calculation by means
of an improved model was carried out too. Here the smooth Gaussian function of
the charge distribution in a nucleus is used. Using the smooth distribution function
(instead of the discontinuous one) simplifies the calculation procedure and permits
flexible simulation of the real distribution of the charge in a nucleus. As in Refs. [27,
28] we set the charge distribution in a nucleus ρ(r) by the Gaussian function. With
regard to normalization we have:

ρ(r|R) =
4γ3/2
√

π
exp(−γr2);∫ ∞

0
drr2ρ(r|R) = 1; (7)∫ ∞

0
drr3ρ(r|R) = R,

where γ = f rac4πR2, R is the effective nucleus radius. The following simple
dependence of R on Z assumed:

R = 1.60 ·10−13Z1/3 (cm). (8)

Such definition of R is rather conventional. We assume it as some zeroth approx-
imation. Further the derivatives of various characteristics on R are calculated. They
describe the interaction of the nucleus with outer electron; this permits recalculation
of results, when R varies within the reasonable limits. The Coulomb potential for the
spherically symmetric density ρ(r|R) is as follows:

Vnucl(r|R) =−1
r

∫ r

0
dr′r′2ρ(r′|R)+

∫ ∞

r
dr′r′2ρ(r′|R). (9)

It is determined by the following system of the differential equations:

Vnucl(r,R) =
1
r2

∫ r

0
dr′r′2ρ(r′,R)≡ 1

r2 y(r,R);

y′(r,R) = r2ρ(r,R); (10)

ρ ′(r,R) =−8γ5/2 r√
π

exp(−γr2) =−2γrρ(r,R) =− 8r
πr2 ρ(r,R)
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with the boundary conditions:

Vnucl(r,0) = − 4
πr

;

y(0,R) = 0; (11)

ρ(0,R) =
4γ3/2
√

π
=

32
R3 .

2.3 General Scheme of Calculation for a Three-Electron System

Consider the Dirac-Fock type equations for a three-electron system 1s2nlj. Formally
they fall into one-electron Dirac equations for the orbitals 1s1s and nlj with the
potential:

V (r) = 2V(r|1s)+V(r|1nlj)+Vex(r)+V (r|R). (12)

V (r|R) includes the electrical and the polarization potentials of a nucleus; the
components of the Hartree potential:

V (r|i) =
1
Z

∫
d−→r ′ ρ(r|i)

|−→r −−→r ′| , (13)

where ρ(r|i) is the distribution of the electron density in the state |i〉, Vex is the
exchange inter-electron interaction. The main exchange effect is taken into account
if we assume in the equation for the 1s orbital

V (r) = V (r|1s)+V(r|nlj) (14)

and in the equation for the nlj orbital

V (r) = 2V(r|1s). (15)

The rest of the exchange and correlation effects is taken into account in the first two
orders of the PT by the total inter-electron interaction [23, 25, 27–32, 36–38, 43].

The used expression for ρ(r|1s) coincides with the precise one for a one-electron
relativistic atom with a point nucleus. The finiteness of the nucleus and the presence
of the second 1s electron are included effectively into the energy E1s. Actually, for
determination of the properties of the outer nlj electron one iteration is sufficient.
The refinement resulting from second iteration (by evaluations) does not exceed
correlation corrections of the higher orders omitted in the present calculation. The
relativistic potential of core (the ‘screening’ potential) 2V (1)(r|1s) = Vscr has the
correct asymptotic at zero and in the infinity; at α → 0 it coincides with the appropri-
ate potential constructed on the basis of the nonrelativistic hydrogen-like functions.
General gauge-invariant QED procedure for construction of the optimized basis’s of
relativistic orbitals is proposed and described in Refs. [23, 67].
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2.4 Calculation of the Self-Energy Part of Lamb Shift and Vacuum
Polarization Correction

The procedure for account for the radiative QED corrections is in details given in the
Refs. [23,25,27,28,35,40,41]. Regarding the vacuum polarization effect let us note
that this effect is usually taken into account in the first PT theory order by means of
the Uehling potential. This potential is usually written as follows (cf. [1, 9, 19, 28]):

U(r) =− 2α
3πr

∫ ∞

1
dt exp

(
− 2rt

αZ

)(
1 +

1
2t2

)√
t2−1
t2 ≡− 2α

3πr
C(g), (16)

where g = r
αZ . In our calculation we use more exact approach. The Uehling poten-

tial, determined as a quadrature 16, may be approximated by a simple analytical
function with high precision. The use of new approximation for the Uehling poten-
tial permits one to decrease the calculation error for this term down to 0.5÷ 1%.
Besides, the use of such a simple analytical function form for approximating the
Uehling potential allows to make quite easy inclusion into the general system of
differential equations. This system includes the Dirac equations and the equations
for matrix elements too. A method for calculation of the self-energy part of the Lamb
shift is based on idea by Ivanov-Ivanova (cf. [10,11,15,23]). The radiative shift and
the relativistic part of the energy in an atomic system are in principle determined by
the same physical field. It may be supposed that there exists some universal function
that connects the self-energy correction and the relativistic energy. The self-energy
correction for states of the hydrogen-like ion is presented by Mohr [1,2] as follows:

ESE(H|Z,nlj) = 0.027148
Z4

n3 F(H|Z,nlj). (17)

The values of F are given at Z = 10÷100, nlj = 1s, 2s, 2p1/2, 2p3/2. These results
are modified here for the states 1s2 nlj of the Li-like ions. It is supposed that for any
ion with nlj electron over the core of closed shells the sought value may be presented
in the form:

ESE(Z,nlj) = 0.027148
ξ 4

n3 f (ξ ,nlj) (cm−1). (18)

The parameter ξ = (Er)1/4, ER is the relativistic part of the bond energy for outer
electron. The universal function f (ξ ,nlj) is not dependent on composition of the
closed shells and the actual potential of a nucleus. The procedure of generalization
for a case of Li-like ions with the finite nucleus consists of the following steps
[15, 23]:

• Calculation of the values ER and ξ for the states nlj of H-like ions with the point
nucleus (in accordance with the Zommerfeld expression)

• Construction of the approximating function f (ξ ,nlj) for the corresponding Z and
the appropriate F(H|Z,nlj) [19, 23, 28, 35]

• Calculation of ER and ξ for the states nlj of Li-like ions with a finite nucleus
• Calculation of ESE for the sought states by the Eq. 18
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The energies of the states for Li-like ions are calculated twice: with a conven-
tional constant of the fine structure α = 1/137 and with α̃ = α/1000. The results
of latter calculations are considered as non-relativistic. It permits an isolation of ER

and ξ . A detailed evaluation of their accuracy may be fulfilled only after a complete
calculation of En

SE(LiZ,nlj). It may be stated that the above extrapolation method is
more justified than the using widely spread expansions by the parameter αZ.

2.5 Definition of the Hyperfine Structure Parameters

Energies of the quadruple (Wq) and magnetic dipole (Wµ ) interactions, which define
a hyperfine structure, are calculated as follows [44]:

Wq = [∆ + c(C+ 1)]B;

Wµ = 0.5AC;

∆ =−4
3

(4χ−1)(I + 1)
I− (I−1)(2I−1)

;

C = F(F + 1)− J(J + 1)− (I + 1).

(19)

Here I is a spin of nucleus, F is a full momentum of system, J is a full elec-
tron momentum. The constants of the hyperfine splitting are expressed through the
standard radial integrals:

A =
4.32587 ·10−4Z2χgI

4χ2−1
(RA)−2;

B =
7.2878 ·10−7Z3Q
(4χ2−1)I(I−1)

(RA)−3.

(20)

Here gI is the Lande factor, Q is a quadruple momentum of a nucleus (in Barn); the
radial integrals are defined as follows:

(RA)−2 =
∫ ∞

0
drr2F(r)G(r)U(1/r2,R);

(RA)−3 =
∫ ∞

0
drr2[F2(r)+ G(r)U(1/r2,R)]

(21)

and calculated in the Coulomb units (= 3.57 ·1020Z2 m−2; = 6.174 ·1030Z3 m−3 for
variables of the corresponding dimension). The radial parts F and G of two com-
ponents of the Dirac function for electron, which moves in the potential V (r,R)+
U(r,R), are determined by solution of the Dirac equations (see above; system (1)).
For definition of the potentials of the hyperfine interaction U(1/rn,R), we solve the
following differential equations:

U(1/rn,R) =−ny(r,R)
rn+1
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Table 1 Experimental [45] and theoretical (our test calculation) results for the hyperfine splitting
energies of 1s, 2s levels for the hydrogen atom

Electron term Experiment Our calculations
Quantum numbers of ∆ν(F,F ′), MHz ∆ν(F,F ′), MHz
full moment ∆E(F,F ′),10−3 cm−1 ∆E(F,F ′),10−3 cm−1

1s2S1/2 (1.0) 1420.406 1419.685
47.379 47.355

2s2S1/2 (1.0) 177.557 177.480
5.923 5.920

They are analogous to the Eqs. (9) and (10). The functions dU(1/rn,R)/dR are
calculated within the analogous procedure. The electric quadrupole spectroscopic
HFS constant B of an atomic state related to the electric field gradient q and to
electric quadrupole moment eQ of the nucleus as: B = eqQ/h. So, to obtain the
corresponding value of Q one must combine the HFS constants data with the electric
field gradient obtained in our approach from the QED PT calculation. The details of
calculation are presented in [27, 28, 32, 34, 43, 51].

3 Results of Calculation and Conclusion

3.1 Atom of Hydrogen and Superheavy H-Like Ion with Z = 170

We have carried out the test calculation of the hyperfine structure parameters (plus
derivatives of the energy contribution on nuclear radius) for atom of hydrogen 1H
and superheavy H-like ion with the nuclear charge Z = 170. For hydrogen atom
there are available sufficiently exact data for hyperfine splitting energies of 1s, 2s
levels. For superheavy ion Z = 170 there is no experiment and we can compare only
the theoretical results (with the Fermi function as function for charge distribution in
a nucleus) with data of analogous calculation with the gauss function for charge dis-
tribution. The electron moves in the nuclear potential V plus vacuum-polarization
potential (the core potential is naturally absent). In Table 1 we present the experi-
mental [45] and theoretical (our test calculation) results for the hyperfine splitting
energies of 1s, 2s levels for the hydrogen atom. There is sufficiently good agreement
between theory and experiment.

In Table 2 we present the results of our calculation for the hyperfine structure
parameters (plus derivatives of the energy contribution on nuclear radius) for the
superheavy H-like ion with nuclear charge Z = 170. We have used the denotations
as follows:

A =
108A
Z3gI

, (eV);

DA =
10−2

Z4gI

∂A
∂R

, (eV/cm);
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Table 2 Characteristics of one-electron states for H-like ion with the nuclear charge Z = 170 (our
calculation)

1s1/2 2s1/2 2p1/2 2p3/2 3s1/2 3sp1/2 3p3/2

A 4337 837 3867 1.59 207 322 0.615
DA 1039 228 941 0.0001 56.8 84.0 0.0001
B 9091 1897 8067 0.007 475 707 0.04
DB 7245 1557 6405 0.0008 394 574 0.0003
DV 1255 273 1108 0.0011 67.7 98.3 0.0005
U 1453 282 1301 1.31 69.3 109 0.62
DU 2343 503 2071 0.0015 127 185 0.0007

B =
107BI(2I−1)

Z3Q
, (eV/Barn);

DB =
10−3I(2I−1)

Z4Q
∂B
∂R

, (eV/(Barn cm));

U =−104

Z4 〈U(r,R)〉, (eV);

DU =
10−1

Z4

∂ 〈U(r,R)〉
∂R

, (eV/cm);

DV =
10−8

Z3

∂ 〈V 〉
∂R

, (eV/cm).

3.2 Li-Like Multicharged Ions

The results of calculation of the different energy contributions (eV) into energy of
the 2s1/2-2p1/2 transition in spectrum of the U89+, received within different theoret-
ical schemes (our approach (column F), MCDF (Cheng et al.; ); model PT with the
Dirac-Fock “0” approximation (Ivanov et al.; B); relativistic multibody PT with the
zeroth Hartree-Fock-Slater potential (Persson et al.; C); multibody PT with Dirac-
Fock “0” approximation (Blundell; D) ) are presented in Refs. [3,5,8–10,19,28,67].
Though an agreement between all theoretical and experimental data is quite accept-
able it should be noted that more exact results are obtained on the calculations by the
methods (C) and (F). The results of our calculation for contributions to an energy
due to the self-energy (SE) part of the Lamb shift and vacuum polarization cor-
rection (VP) of the Lamb shift for Li-like ions (account from core 1s2 energy) are
also presented in Ref. [35, 51, 67]. The detailed analysis of the VP and SE energy
contributions shows that for ions with small Z the QED effect contribution is not
significant, but with growth of Z (Z > 40) a contribution of the QED corrections
became very important. Moreover for heavy and superheavy ions an account of the
QED effects is principally important. Regarding the role of the nuclear finite size
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Table 3 Results calculation of the nuclear finite size correction into energy (cm1) of the low
transitions for Li-like ions and values of the effective radius of nucleus (1013 cm)

Z 2s1/2-2p1/2 2s1/2-2p3/2 R

20 −15.1 −15.5 3.26
30 −117.5 −118.0 3.73
41 −659.0 −670.0 4.14
59 −6610.0 −6845.0 4.68
69 −20690.0 −21712.0 4.93
79 −62315.0 −66931.0 5.15
92 −267325.0 −288312.0 5.42

effect, let us underline that its contribution is very small for multicharged ions with
Z < 20, but it can approximately be equal to the vacuum polarization contribution
on absolute value for ions with Z > 70. In Table 3 the results of calculation of the
nuclear correction into energy of the low transitions for Li-like ions are presented.
Our calculation showed also that a variation of the nuclear radius on several percents
could lead to changing the transition energies on dozens of thousands 103 cm−1.

We have carried out the calculation of constants of the hyperfine interaction:
the electric quadruple constant B, the magnetic dipole constant A with an account
of the nuclear finite size effect and the Uehling potential for Li-like ions. Anal-
ogous calculations of the constant A for ns states of the hydrogen-, lithium- and
sodium-like ions have been are carried out. The corresponding results are presented
in Refs. [3, 7–9, 13, 19]. In these papers other basis’s of the relativistic orbitals are
used. Besides, another model for the charge distribution in a nucleus is accepted and
another method of numerical calculation of the Uehling potential is used. In Table 4
the calculation results for constants of the hyperfine splitting of the lowest excited
states of the Li-like ions are presented. Analogous data for other states have been
presented earlier (see Ref. [27, 28]).

In Tables 5 and 6 we present the calculated values of derivatives of the one-
electron characteristics on nuclear radius (in cm−1/cm) for 2l, 3l, 4l (l = 0, 1) states
of the Li-like ions with minimally possible values of j:

∂ 〈|V |〉
∂R

= Z3DV, (cm−1/cm);

∂ 〈|U |〉
∂R

= Z5DU, (cm−1/cm);

∂A
∂R

= Z4gIDA, (cm−1/cm).

Here 1 cm−1 is an energy unit and 1 cm is a length unit. Let us remember
that here V is a potential of the electron-nuclear interaction and U is the Uehling
vacuum-polarization potential. Considered value of full momentum is j = 3/2 for
derivative of the constant B on nuclear radius ∂B/∂R and value j = 3/2 for other
operators. It should be noted that the corresponding characteristics are less sensitive
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Table 4 Constants of the hyperfine electron-nuclear interaction: A = Z3gI Ā cm−1, B = Z3Q
I(2I−1) B̄

cm−1

nlj Z 20 69 79 92

2s Ā 93 −03 176 −02 215 −02 314 −02
3s Ā 26 −03 51 −03 63 −03 90 −03
3s Ā 15 −03 19 −03 24 −03 36 −03
2p1/2 Ā 25 −03 56 −03 71 −03 105 −02
3p1/2 Ā 81 −04 16 −03 20 −03 31 −03
4p1/2 Ā 32 −04 72 −04 91 −04 11 −03
2p3/2 Ā 50 −04 67 −04 71 −04 72 −04

B̄ 9 −04 13 −04 15 −04 17 −04
3p3/2 Ā 13 −04 19 −04 21 −04 22 −04

B̄ 31 −05 51 −05 55 −05 65 −05
3d3/2 Ā 88 −05 10 −04 11 −04 12 −04

B̄ 51 −06 9 −05 10 −05 11 −05
4d3/2 Ā 35 −05 51 −05 55 −05 58 −05

B̄ 12 −06 44 −06 50 −06 56 −06
3d5/2 Ā 36 −05 48 −05 50 −05 52 −05

B̄ 21 −06 38 −06 39 −06 40 −06
4d5/2 Ā 15 −05 19 −05 20 −05 21 −05

B̄ 59 −07 15 −06 16 −06 17 −06

Table 5 Derivatives of the one-electron characteristics on nuclear radius (in cm−1/cm) for 2s, 3s,
4s states of the Li-like ions

nlj Z 20 30 41 59 69 79 92

2s1/2 DV 10 +11 20 +11 41 +11 121 +12 223 +12 415 +12 967 +12
DU 15 +06 14 +06 16 +06 20 +06 25 +06 36 +06 64 +06
DA 15 +06 19 +06 24 +06 44 +06 63 +06 101 +07 197 +07

3s1/2 DV 28 +10 60 +10 12 +11 35 +11 65 +11 122 +12 293 +12
DU 45 +05 42 +05 44 +05 60 +05 81 +05 10 +06 18 +06
DA 44 +05 56 +05 74 +05 12 +06 18 +06 29 +06 57 +06

4s1/2 DV 11 +10 24 +10 51 +10 13 +11 26 +11 50 +11 121 +12
DU 18 +05 17 +05 18 +05 24 +05 32 +05 47 +05 80 +05
DA 18 +05 23 +05 30 +05 55 +05 81 +05 11 +05 23 +05

Table 6 Derivatives of the one-electron characteristics on nuclear radius (in cm−1/cm) for 2p, 3p,
4p states of the Li-like ions

nlj/Z 20 30 41 59 69 79 92

2p1/2 DV 31 +08 15 +09 66 +09 43 +10 10 +11 29 +11 108 +12
DU 50 +03 11 +04 21 +04 72 +04 12 +05 25 +05 72 +05
DA 55 +03 16 +04 42 +04 15 +05 34 +05 78 +05 20 +06

3p1/2 DV 10 +08 57 +09 22 +09 14 +10 41 +10 11 +11 38 +11
DU 18 +03 39 +03 84 +03 25 +04 49 +04 10 +05 25 +05
DA 19 +03 56 +03 13 +04 60 +04 12 +05 27 +05 81 +05

4p1/2 DV 49 +07 25 +08 10 +09 69 +09 17 +10 46 +10 16 +11
DU 87 +02 17 +03 37 +03 11 +04 21 +04 42 +04 10 +05
DA 86 +02 24 +03 67 +03 26 +04 58 +04 11 +05 34 +05
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Table 7 Derivatives of the HFS constant B on nuclear radius (in cm−1/cm)

nlj/Z 20 30 41 59 69 79 92

2p3/2 DB 02 +02 05 +02 11 +02 17 +02 27 +02 40 +02 71 +02
3p3/2 DB 19 +01 26 +01 37 +01 57 +01 95 +01 15 +01 27 +02
4p3/2 DB 03 +01 06 +01 11 +01 21 +01 38 +01 06 +02 12 +02

Table 8 The HFS constants (cm−1) for the 201Hg (1S0) (nuclear spin 3/2)

HFS constants Electron term Recommended [17] Present

A 6 3P2 0.3024 0.2902
A 6 3D2 −0.0817 −0.0795
B 6 3D2 – 0.0019

to the nuclear size for states with the large values of momentum j. In any case the
cited effects are not observed in the modern experiment.

In Table 7 we present the calculated values of derivatives of the HFS constant B

on nuclear radius (in cm−1/cm); dB
dR = − Z4QDB

I(2I−1) . Let us note that the main member
of degree dependence upon a charge Z is separated for derivatives in Tables 5–7.
The remained Z-dependence is directly connected with the relativistic and nuclear
(the nuclear finite size effect) effects in the one-electron functions.

3.3 Atoms of 235U, 201Hg, and 227Ra

We carried out calculation of the hyperfine structure parameters, magnetic and elec-
tric moments of a nucleus for 235U and 201Hg. In Table 8 we present the values
of the HFS constants for 201Hg together with available experimental results (cf.
Refs. [18, 27, 45]).

Further we consider the induced electric transitions in the spectrum of 201Hg. As
it indicated above, the changing nuclear spin under changing the neutrons number in
a nucleus can influence on the selection rules. As result, the atoms of some isotopes
can have the spectral lines, which are forbidden for other isotopes. If nuclear spin
makes possible the non-zeroth angle momentum of atom then the electron-nuclear
interaction can induce electrically dipole transitions for a case J = 0→ J′ = 0. The
forbidden line 2270 A (63P2 → 61S0) and 2656 A (63P0 → 61S0) in the even iso-
tope 201Hg are the classical examples of manifestations of this effect. Let us note
that Zel’dovich and Sobelman (cf. [19]) proposed to use this effect for selective
excitation of the odd and even isotopes of Hg, Sr, Ba, Zn, Cd.

Another object of our studying is the HFS of the spectral line 5915.3 A for tran-
sition f3ds2 5L6 → f3dsp 7M7 in the spectrum of the uranium 235U. This line is
corresponding to permitted transition from the ground state into one of the many
excited states. The indicated transition is often used for isotopically selected exci-
tation of the uranium atoms in the task of the industrial isotopes and nuclear
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Table 9 The HFS constants, magnetic dipole moment µ and electric quadrupole moment Q for
the 235U nucleus

HFS constants (cm−1), Experiment Theory Present
moments MCDF QED PT

J = 6, −A6 0.00125 0.001 0.00118
J = 6, −B6 0.1185 – 0.1138
J = 7, A7 0.00464 0.0038 0.00437
J = 7, B7 0.05588 – 0.05370
−µ/µn 0.315 0.289 0.305
Q (10−24 cm2) 6.398 – 6.201

Table 10 Experimental and theoretical data on magnetic dipole constant of the hyperfine structure
A (in MHz) for the states: 7s7p 1P1, 3P1, and 3P2 of radium (calculation by different methods: DF,
MCDF with accounting for the Breit and QED corrections, relativistic method of configuration
interaction with accounting for correlation corrections within the random phase approximation
(RCI-RPA) and QED PT method) [17, 18, 45, 51]

Method / State 1P1
3P1

3P2

DF −226.59 803.97 567.22
MCDF (Breiht+QED) −330.3 1251.9 737.1
RCI-RPA −242.4 – –
QEDPT −339.1 1209 704.5
Experiment −344.5 (0.9) 1201.1 (0.6) 699.6 (3.3)

isomers separation. In Table 9 we present the values of the HFS constants, magnetic
dipole moment µ and electric quadrupole moment Q for 235U nucleus, obtained
experimentally and theoretically (including the MCDF method) [45].

The key quantitative factor of agreement between theory and experiment is con-
nected with the correct accounting for the inter-electron correlations, nuclear, Breit
and QED radiative corrections [1–32, 40–51]. The well-known MCDF method is
not gauge-invariant one and an accounting of multi-electron correlations is not fully
fulfilled, though, for example, in Ref. [52] it has been used the gauge-invariant
local DF version in calculating the N-like ion of Bi. A contribution of the nuclear
core-polarization effects and the high order QED corrections can correspond to the
difference between theory and experiment for the nuclear moments.

Further we present the experimental data and our theoretical results (QED
PT with the gauss model of charge distribution in a nucleus) of calculating the
energies and constants of the hyperfine structure, nuclear moments Q for atom
of radium 223

88 Ra. It has the external valent shell 7s2 and can be treated as the
two-quasiparticle system. In Table 10 we present the experimental and theoreti-
cal data for magnetic dipole constant of the hyperfine structure A (in MHz) for
the states: 7s7p 1P1, 3P1, and 3P2 of radium 223

88 Ra. In Table 10 we present the
results of calculation by other methods, namely: standard uncorrelated Dirac-Fock
(DF) method, multi-configuration DF method (MCDF) with accounting for the Breit
and QED corrections, relativistic method of configuration interaction with account-
ing for correlation corrections within the random phase approximation (RCI-RPA)
[17, 18, 45, 67].
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Table 11 Values of electric quadrupole moment Q (in Barn) for the isotope of 223
88 Ra [17, 18, 45,

51, 67]

Method Q (Barn)

MCDF (Breiht+QED) 1.21 (0.03)
ISOLDE Collaboration fs RaII 1.254 (0.003){0.066}
Wendt et al., fs RaI 1.19 (0.12)
RMBPT 1.28
ISOLDE Collaboration fs RaI 1.190 (0.007){0.126}
ISOLDE Collaboration B(E2) 1.2
QEDPT 1.22 (0.03)

In Table 11 we present the values for an electric quadrupole moment Q (in Barn)
of the isotope of 223

88 Ra [17,18,45,51,67], which are experimentally obtained by the
ISOLDE Collaboration (CERN) within different methodologies. The corresponding
theoretical results of calculation within the MCDF method (with an account of the
QED and Breit corrections), relativistic multi-body perturbation theory (RMBPT)
and our QED perturbation theory (QEDPT) are presented too.

The key reason of the agreement between theory and experiment is connected
with the correct accounting for the interelectron correlation effects, corrections due
to the finite size of a nucleus, the Breit and radiative QED corrections. The analy-
sis shows that the interelectron correlations contribution to the hyperfine structure
constants is ∼100÷500 MHz for different states. This fact explains the low corre-
lation between presented theoretical data on accuracy. The key difference between
calculation results by the MCDF, RMBT, QEDPT methods is connected with the
using different schemes of accounting for interelectron correlations. The contribu-
tion of the high orders QED PT corrections and nuclear contribution may reach the
dozens of MHz and must be correctly accounted for. It is necessary to take into
account more correctly the spatial distribution of the magnetic moment inside a
nucleus (the Bohr-Weisskopf effect), the nuclear-polarization corrections etc. too.
It can be done within solving the corresponding nuclear task, for example, with
the using the shell model with the Woods-Saxon and spin-orbit potentials (cf.
Refs. [11, 12, 15, 27,30, 40, 41,51]).
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Abstract A consistent QED perturbation theory approach is applied to calcula-
tion of the electron-nuclear γ-transition spectra of nucleus in the multicharged ion.
The intensities of satellites are defined in the relativistic version of the energy
approach (S-matrix formalism). As example, the nuclear transition in the isotope
57
26Fe with energy 14.41 keV is considered. The results of the relativistic calcula-
tion for the electron-nuclear γ-transition spectra (set of electron satellites) of the
nucleus in a multicharged atomic ion FeXIX are presented. The possible experi-
ments for observation of the new effect in the thermalized plasma of O- like ions
are discussed. Consistent, quantum approach to calculation of the electron-nuclear
γ transition spectra (set of vibration-rotational satellites in molecule) of nucleus in
molecule, which generalizes the well known Letokhov-Minogin model, is presented
and based on the Dunham model potential approximation for potential curves of
the diatomic molecules. Estimates are made for vibration-rotation-nuclear transi-
tion probabilities in a case of the emission and absorption spectrum of nucleus 127I

(E(0)
γ = 203 keV) in the molecule of H127I. Estimates of the vibration-nuclear transi-
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1 Introduction

The field of laser-matter interactions is usually dealing with the atomic and molec-
ular response to an external light wave. However, due to a large technological
progress, it is possible today to produce by lasers keV photons, MeV ions and GeV
electrons, which lies far beyond the typical energy scale of atomic optics. The direct
interaction of atoms and laser fields allows in many cases for a controlled prepara-
tion, manipulation and measurement of the internal and external degrees of freedom
of the atoms giving rise to a multitude of applications (cf. [1–9]). The question
arises whether light-matter interaction, reminiscent of quantum optics, is also possi-
ble in quantum systems characterized by high energy scales as recently it was shown
that the super-intense laser fields make the direct interaction of laser and nuclei
(cf. [1–3]). It is of a great interest for understanding the key physical processes in
the multi-charged ion plasma in a thermonuclear reactor, laser plasma etc. A devel-
opment of methods of the laser spectroscopy [1,8–10] allowed observing and further
using the little changes in a structure of the atomic and molecular spectra because
of the corresponding alteration of the internal state of a nucleus (co-operative laser-
electron-nuclear effects) [11–42]. Speech is about such effects as the isomer shift
in the vibrational spectrum of a molecule because of the equivalent increasing of
the excited nucleus mass. It should be also mentioned an effect of the selective pho-
toionization of atoms with the isomer nucleus and possibility of the quick physical
separation of the isomer nuclei. This effect is of a great importance for the γ-laser
problem (cf. [1, 32–41]). It is of a great importance to observe new co-operative
laser-electron-nuclear effects in multicharged ions in the corresponding plasma and
use them as new basis for the plasma parameters diagnostics [32–34].

Any alteration of the atomic, ionic or molecular state must be manifested in the
quantum transitions, for example, in a spectrum of the γ-radiation of a nucleus. It is
well known that it is possible to transfer a part of the nuclear energy to an atom or
molecule under radiating (absorption) γ quanta by a nucleus (cf. [11–28, 32–36]).
The first references to the neutral recoil are due to Migdal (1941) and Levinger
(1953), who evaluated approximately the ionization of an atom undergoing sudden
recoil in due to neutron impact and in a radioactive disintegration respectively. The
neutral recoil situation differs radically from processes involving a charged particle
for which the sudden recoil approximation is often invalid (cf. [20,21]). Simple, as a
rule, non-relativistic quantum-mechanical models (cf. [11–15,17–19,22–29,32–36])
have been developed to evaluate an excitation or ionization of an atom, the electronic
redistribution of an ion or an atom induced a sudden recoil of its nucleus occur-
ring when a neutral particle is either emitted (γ-radioactivity) or captured (neutron
capture for instance).

The most consistent approach to considered problems must be based on the
quantum electrodynamics (QED)(cf. [43–50]). The nuclear emission or absorption
spectrum of an atom possesses a set of electron satellites, which are due to an
alteration of the state of the electron shell [3,4,32–37,39,41]. The mechanism of for-
mation of the satellites in the neutral atoms and highly charged ion is different. In the
first case (loose electron shell) a shaking of the shell resulting from the interaction
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between the nucleus and γ-quantum is predominant. In the second case (rigid
electron shell) the mechanism involves a direct interaction between γ-quantum
and electrons. The traditional selection rules and familiar intensity hierarchy with
respect to electron transition multiplicity do not pertain to the second mechanism.
Consequently, the satellite spectrum is much enriched and transitions between the
fine and hyper fine structure components, 0-0 transitions and transitions, which do
not involve a change in the electron configuration, can be considered.

The intensive vibrational satellites can appear in a spectrum of the γ-radiation in
a molecule under radiating (absorption) the γ quanta by a nucleus. An appearance of
these molecular nuclear lines is interesting as it opens a possibility of the changing
the γ-radiation spectrum by means of the changing vibrational state of a molecule
by coherent laser light [32, 34]. Probability of the vibrational or rotational state
changing (in difference from the atomic electrons state changing) is not small and
must be taken into account even in the zeroth approximation. In any case there is a
great number of different channels for the electron-nuclear processes in atoms, ions
and molecules. A possibility of their interference makes the analysis more com-
plicated. A consistent analysis of cited processes in the multielectron atoms and
multicharged ions must be, as a rule, based on the QED. Naturally, in a case of the
diatomic and multiatomic molecules (without heavy atoms in a molecule) one can
use the standard methods of quantum chemistry [51–53].

This paper is going on our studying the co-operative dynamical phenomena
(cf. [4, 7, 32–36]) due the interaction between atoms, ions, molecule electron shells
and nuclei nucleons. Earlier a consistent QED perturbation theory approach is
developed and applied to calculation of the electron-nuclear γ-transition spectra
of nucleus in the different atomic systems. In this paper the new laser-electron
nuclear effects in the molecular systems will be studied within consistent quan-
tum approach. But, at the beginning we consider a consistent QED perturbation
theory approach, applied to calculation of the electron-nuclear γ-transition spectra
of nucleus in the multicharged ion. The intensities of satellites are defined in the
relativistic version of the energy approach (S-matrix formalism) [32,36]. Decay and
excitation probabilities are linked with imaginary part of the energy of the ‘nuclei
nucleons-electron shells-field’ system. For radiative decays it is manifested as an
effect of the retarding in interaction and self-action and calculated within QED
perturbation theory. As example, the nuclear transition in the isotope 57

26Fe with
energy 14.41 keV is considered. The results of the relativistic calculation for the
electron-nuclear γ-transition spectra (set of electron satellites) of the nucleus in a
multicharged atomic ion FeXIX are presented and compared with the correspond-
ing non-relativistic estimates [7, 32, 34]. The possible experiments for observation
of the new effect in the thermalized plasma are discussed. It is considered a sit-
uation when electron satellites are not overlapped by the Doppler contour of the
γ-line (plasma source). We will present a consistent approach to description of a
new class of the dynamical laser-electron-nuclear effects in molecular systems, in
particular, the nuclear emission or absorption spectrum of the diatomic molecule
too. In the molecule a spectrum is naturally more complicated in comparison with
an atom. Under nuclear γ-quantum emission or absorption there is a change of the
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electron (vibration-rotation) states. A consistent, quantum- mechanical approach to
calculation of the electron-nuclear γ transition spectra (set of vibration-rotational
satellites in molecule) of a nucleus in the diatomic molecule is presented. It is based
on the using the Durham model potential approximation for potential curves of
the diatomic molecules [7, 32, 34, 54–58]. It generalizes the well known Letokhov-
Minogin model [9, 41]. Estimates are made for vibration-rotation-nuclear transition
probabilities in a case of the emission and absorption spectrum of nucleus 127I

(E(0)
γ = 203 keV) in the molecule of H127I. At last, a consistent, quantum approach

to calculation of the electron-nuclear γ transition spectra (set of vibration-rotational
satellites in molecule) of a nucleus in the multiatomic molecules is described too.
Estimates of the vibration-nuclear transition probabilities in a case of the emission

and absorption spectrum of nucleus 191Ir (E(0)
γ = 82 keV) in the molecule of IrO4

and nucleus 188Os (E(0)
γ = 155 keV) in the molecule of OsO4 are presented.

2 QED Theory of Co-operative Laser-Electron-Nuclear
Processes in Atomic Systems

Following to Refs. [32–36, 40], we consider the following model of the atomic sys-
tem: rigid nuclear core (c), above core proton (p) and electron (e). The masses of
three particles are equal correspondingly: µcM, µpM, µeM, where M mass of all
atom; µc + µp + µe = 1; the space co-ordinates of the particles are denoted as rc,
rp, re. The charge of nuclear core is z. Besides, the value of z∗ denotes an effective
charge for Coulomb field of the optically active electron in ion. Naturally, the major-
ity of the excited states of nuclei have the multi-particle character [9, 16, 45]. As
exclusion, one may consider the first excited states with one or two quasi-nucleons
or quasi-vacancies above the ‘even-even’ core. These states are more suitable for
theoretical consideration as the one-particle model could be used. It is very impor-
tant to underline that a generalization on the multi-particle case does not lead to
qualitatively new results as the dynamical (radial) parts of the nuclear matrix ele-
ments do not enter into expressions for relative intensities of the electron satellites
and ground line of the nuclear transition. QED is needed here as for obtaining the
correct formula as carrying out the precise calculations.

Within the QED energy approach the main our purpose is calculating the imag-
inary part of energy of the excited state for atomic system. Detailed description of
an approach was given earlier (cf. [4, 31–34, 36]). Here we consider only the key
elements of the calculation procedure. Following the quasi-potential method, we
introduce the bare interaction as follows:

V (rc,rp,rc) = v(rpc)−Ze2/rec− e2/rpe. (1)

Here v(rpc) imitates the interaction of the proton with the core (nuclear and
Coulomb); other interactions are obvious. Then imaginary part of the energy of
the excited state for three-quasi-particle system ΨI in the lowest QED perturbation
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theory order can be written as follows:

ImE = e2Imi lim
γ→0

∫∫
d4x1d4x2eγ(t1+t2) (D(rc1t1 ,rc2t2) ×

×〈ΨI |( jc(x1) jc(x2))|ΨI〉+ D(rp1t1 ,rp2t2)
〈
ΨI|( jp(x1) jp(x2))|ΨI

〉
+ (2)

+D(re1t1 ,re2t2)〈ΨI |( je(x1) je(x2))|ΨI〉) .

Here D(r1t1, r2t2) is the photon propagator; jc, jp, je are the four-dimensional
components for the current operator for particles: core, protons, electrons; x =
(rc, rp, re, t) includes the space co-ordinates of three particles and time (equal
for all particles); γ is the adiabatic parameter. For the photon propagator the exact
electrodynamical expression is used:

D(12) =− i
8π2

1
r12

∞∫
−∞

dωeiωt12+i|ω|r12 . (3)

In expressions (2), (3) the summation on directions of the photon polarization
is fulfilled. Below we are limited by the lowest order of the QED perturbation the-
ory, i.e. the next QED corrections to ImE will not be considered. Note also that
the expression (2) describes the one-photon processes. We need further relativistic
solutions of the Dirac equation whose radial part is represented by

F ′ =−(œ+ |œ|)F/r−α(E + 2Mα−2)G−αVG,

G′ = (œ−|œ|)G/r + α(E−V)F. (4)

Here α is the fine structure constant; œ is the Dirac angular quantum number; E
is the state energy, F , G being the large and small radial components correspond-
ingly. In the non-relativistic limit the large radial component converts into the only
component-solution of the non-relativistic radial Schrödinger equation. Substituting
all expressions into Eq. (2), one may get the following general expression for imag-
inary part of the excited state energy of the three-quasi-particle system as a sum of
the core, proton and electron contributions:

ImE = ImEc + ImEp + ImEe,

ImEa =− Z2
a

4π∑
F

∫∫
drc1 drc2

∫∫
drp1 drp2

∫∫
dre1 dre2Ψ

∗
I (1)Ψ∗

F (2)Ta(1,2)ΨF(1)ΨI(2), (5)

Ta(1,2) = (sin(wIFra12)/ra12)
(

1/Mµa(∇ra1
,∇ra2

)+1
)

.

Here ra12 = |ra1 − ra2 |; wIF is the transition full energy, which includes changing
the kinetic energy of an ion, i.e. the recoil energy; Ψc, Ψp, Ψe are the second quan-
tized field operators of the core particles, protons and electrons respectively. The
sum according to F gives the summation of the final states of the system. In the
second order of QED perturbation theory, the full width of a level is divided into the
sum of the partial contributions, connected with the radiation decay into concrete
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final states of a system. These contributions are proportional to the probabilities of
the corresponding transitions. The system of red (blue) satellites corresponds to the
transitions with excitation (de-excitation) of the electron shell. The important quan-
tity is a contribution of ImEe to the relative intensity of satellite k = P(pe)/P(p)
(here P(pe) is the satellite intensity; P(p) is the intensity of nuclear transition). An
intensity of the line is linked with ImE Eq. (5) as:

P = 2ImE/h. (6)

A frequency of the γ-transition for a nucleus with changing the electron state is
defined by the following expression:

h̄ω i f
γ = h̄ωγ0± (h̄∆γ + Ei−E f ). (7)

Here ωγ0 is the frequency of the γ-transition without recoil; h̄∆γ is the recoil energy;
Ei and E f are the initial and final energies of electron (sign ‘+’ is corresponding
to absorption of the γ-quantum; sign ‘−’ is corresponding to emission of the γ-
quantum). In Fig. 1 we present a schematic spectrum of the electron-nuclear lines of
emission (lines, directed up) and absorption (lines, directed down) of the γ-radiation
for a nucleus in the non-excited (a) and excited (b) neutral atom (left part of the
figure). In the right part of the figure the corresponding quantum transitions in a
system are presented.

Fig. 1 Spectrum of the electron-nuclear lines of emission (lines, directed up) and absorption (lines,
indicated down) of the γ-radiation for nucleus in non-excited (a) and excited (b) neutral atom
(left part of the figure); in right part of the figure there are presented the corresponding quantum
transitions in the system (Ei and E f are the initial and final energies of electron, Eγ0 is an energy
of nuclear level)
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Further it is convenient to separate a motion of the center of mass of the system,
introducing the new variables:

R = µcrc + µprp + µere, Rp = rp− rc, Re = re− rc.

In the zeroth order of the perturbation theory a dependence of ΨI , ΨF from the
variables R, Rp, Re is factorized:

ΨA(R,Rp,Re) = ΨA(R)ΨAp(Rp)ΨAe(Re). (8)

Here ΨA is the plane wave, ΨAp is a function of the state of proton in the potential
V (Rp), ΨAe is the Coulomb relativistic function.

One should note that there are the combined electron-proton one-photon tran-
sitions already in the zeroth approximation. A contribution of the proton-electron
interaction into the satellite intensity is manifested only in the second order of
the perturbation theory on this interaction. It has an additional order of smallness
∼1/z∗2 (for the Coulomb part) and µ2 (for the recoil interaction) in comparison
with the main contribution. So, the main effect of causing the electron satellites for
nuclear transitions has kinematics nature, which is in shifting a center of mass of
the system under emission of γ-quanta relatively of the proton or electron orbital.
In the concrete calculation one can use the standard expansion for operator T on the
spherical functions, which generates the multiple expansion for the decay probabil-
ity. The details of the calculation procedure, the definition of all contributions and
the corresponding matrix elements are described in Refs. [3, 30–36, 43–45, 49, 50].

3 Results for Atomic Systems and Discussion

It is very important to discuss the possible experimental observation of satellite
effect. As indicated in ref. [3,5,7,32], in neutral atoms under standard experimental
conditions the intensive satellites are overlapping by the Doppler contour of line of
the γ-radiation. For their observation one should use the methods of inside Doppler
spectroscopy [8–10]. In principle it is possible an observation of the satellites in
the spectrum of emission or absorption without overlapping by the Doppler con-
tour of the γ-line. Such a situation could be realized in plasma of multicharged
ions [7, 32]. The energy intervals between lowest electron levels may significantly
exceed the Doppler shift of the γ radiation line. Let us suppose that the K shell is sig-
nificantly destroyed. According to [4, 31, 32, 40], an average kinetic energy for ions
in such plasma: ∼Ei/10∼1/20 c.u. (the Coulomb units are used), where Ei is the
‘1s’ electron bond energy. The Doppler shift is as follows: δ h̄ωD ≈ αω/(10M)1/2.
The value αω is connected with the energy of γ quantum by the following formulae:
Eγ [keV ] ≈ 4Z(αω). If, say, αω = 1, then δ h̄ωD ≈ 1/200(Z)1/2 c.u. ≈ 0.15(Z)1/2

eV. For comparison let us give the values of the 1s,2s,2p-2p electron transitions
for one-electron ions with Z = 10−50: E(1s− 2p3/2) = 1.3 · 103− 2.3 · 104 eV,
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Table 1 Energies of the L-levels for ion of FeXIX, counted from the ground level 2s22p2 3P2

Configuration 2s22p4 2s22p5 2p6

State 3P0
3P1

1D2
1S0

3P2
3P1

3P0
1P1

1S0

E, eV 9.4 11.1 20.9 40.3 114.4 122.0 127.7 157.1 264.6

E(2s− 2p3/2) = 0.1−3.3 · 102 eV. One can see that the transition energies have an
order of the Doppler shift value. A little value of the splitting in the one-electron
ions is entirely provided by the relativistic corrections. In the multielectron system
situation is more favourable. Let us consider a case of the O-like and F-like multi-
charged ions. An additional splitting is defined by the inter electron interaction. In
Table 1 we present the energies of levels for L shell of the oxygen-like ion FeXIX
(Z = 26), counted from the ground level 2s22p2 3P2 [35, 40, 50].

The lines of big number of the electron satellites, connected with 2–2 transitions,
are sufficiently far from the Doppler contour. We consider the nuclear transition in
the isotope 57

26Fe with the quantum energy 14.41 keV. The period of the half decay
of state T (1/2) = 9.77 ·10−8 sec., the recoil energy 1.96 ·10−6 keV. The parameter
αω = 0.27. We consider the following transitions: 1s–2s (monopole), 1s–2p1/2,
2s–2p3/2 (dipole), 2p1/2–2p3/2 (quadruple). The detailed results of calculation for
some of these transitions have been presented in Ref. [33, 35, 36], where are also
indicated the corresponding non-relativistic data [4, 9, 39, 40]. An account of the
relativistic effects resulted in the shift of the curves to the region of the more large
energies. The numerical difference of values for intensities of different satellites is
connected with different values of the electron radial integrals, which are defined
by the overlapping the wave functions. The intensity of satellite for transition to the
2p1/2 state is twice less than to the 2p3/2 state. The strongest satellites are ones,
which are corresponding to the transitions 2s–2p. In Fig. 2a scheme of disposition
for some electron satellites in relation to the nuclear transition line is considered.
The Doppler widths are shown qualitatively (δ h̄ωd ≈ 5 eV).

The relative intensities for these satellites are equal ≈7 · 10−5. Satellites con-
nected with the 1-2 transitions are separated from ω0γ on value ≈6 keV, but their
intensity is less. It is easy to understand that naturally the relative electron satellite
intensity values are sufficiently little because of the weak link between an elec-
tron motion and motion of a nucleus under recoil. In Fig. 2 there are presented
the lines which are accompanied by electron transitions: 1–2s22p41S0–2s2p53P1;
2–2s22p43P1–2s2p53P2; 3–2s22p43P2–2s2p53P1; 2–2s2p53P1–2p61S0.

The relative intensities for these satellites are P(pe)/P(p)≈ 7 ·10−5, the Doppler
broadening is δ h̄ωD ≈ 5 eV (shown on Fig. 2 qualitatively). Thus, it is obvious that
the electron-nuclear lines in the spectra of emission or absorption can be experi-
mentally observed in plasma of the O-and F-like multicharged ions and they are not
overlapping by the Doppler broadening [4, 7, 33, 34].
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Fig. 2 The positions of emis-
sion and absorption lines
electron satellites (in a posi-
tive and negative direction of
abscissa axe correspondingly)
for ions FeXIX, FeXVIII in
lowest states of the ground
configurations 2s224, 2s225

(a) and states of the excited
configuration 2s25, 2s225nl
(b) relatively the nuclear γ-
transition in isotope of 57

26Fe
with energy h̄ω0γ = 14.41
keV; P(pe)/P(p) is relation
of the satellite intensity to
the nuclear transition line
intensity
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4 Quantum Approach to Calculation of the Electron-Nuclear γ
Transition Spectra in Diatomics

Our purpose is calculation of a structure of the gamma transitions (probability
of transition) or spectrum of the gamma satellites because of the changing the
electron-vibration-rotational states for the diatomic molecules under gamma quan-
tum radiation (absorption). In the adiabatic approximation a wave function of a
molecule is multiplying the electronic wave function and wave function of nuclei:
ψ(re)ψ(R1, R2). Hamiltonian of interaction of the gamma radiation with system of
nucleons for the first nucleus can be expressed through the co-ordinates of nucleons
r′n in a system of the mass centre of the first nucleus [9, 33, 34, 41]:

H(rn) = H(rn)exp(−ikγR1), (9)

where kγ is a wave vector of the gamma quantum. The matrix element for transition
from the initial state ‘a’ to the final state ‘b’ is presented as usually:

〈Ψ∗
b (rn)|H(rn)|Ψa(rn)〉〈Ψ ∗

b (re)Psi∗b(R1,R2)|e−ikγ R1 |Ψa(re)Psia(R1,R2)〉. (10)

The first multiplier in Eq. (10) is defined by the gamma transition of a nucleus and is
not dependent upon an internal structure of the molecule in a good approximation.
The second multiplier is a matrix element of transition of the molecule from the
initial state ‘a’ to the final state ‘b’:

Mba = 〈Ψ∗
b (re)|Ψa(re)〉〈Ψ ∗

b (R1,R2)|e−ikγ R1 |Ψa(R1,R2)〉. (11)

The expression (11) gives a general formula for calculation of the probability of
changing the internal state of a molecule under absorption or emitting gamma
quantum by a nucleus of the molecule. In fact it defines an amplitude of the
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corresponding gamma satellites. Their positions are fully determined by the energy
and pulse conserving laws as follows [33, 34, 41]:

±Eγ + Ea +(1/2)Mv2
0 =±E(0)

γ + Eb +(1/2)Mv2, (12)

Mv0± h̄kγ = Mv. (13)

Here M is the molecule mass, v0 and v are velocities of a molecule before and after
interaction of a nucleus with γ quantum, Ea and Eb are the energies of a molecule
before and after interaction, Eγ is an energy of the nuclear transition. Then an energy
of the γ satellite is as follows from Eq. (12):

Eγ = E(0)
γ + h̄kγv0±Rom± (Eb−Ea). (14)

Here Rom is an energy of recoil: Rom = [(E(0)
γ ]2/2Mc2. It is well known (cf. [8, 34])

that only the transitions between vibration-rotational levels of the ground electron
state, including transitions into continuum with further molecular dissociation, are
of a great practical interest. The matrix element for these transitions is as follows:

Mba = 〈Ψ∗
b (R1,R2)|eikγ R1 |Ψa(R1,R2). (15)

The values of energy, accepted by the vibrational and rotational degrees of the
freedom of a molecule are as follows:

εvib ≈ vh̄ω = Rom(m2/m1), (16)

εrot ≈ BJ2 = Rom(m2/m1).

The simple adequate model for definition of the rotational motion is the rigid rotator
approximation. In this approximation the wave functions with definite values of
quantum numbers J, K are the eigen functions of the angle momentum operator,
i.e.:

ψ(R1,R2) = YJ,K(θ ,ϕ). (17)

In a case of the vibration motion the wave functions with definite value of the
vibration quantum number are numerically found by solving the corresponding
Schrödinger equation with potential, which is chosen in the Dunham-like form
(cf. [51, 56–58]:

E(R) = B0[(R−Re)/R]2
{

1 +
∞

∑
n=1

bn[(R−Re)/R]2
}

. (18)

Such an approximation is surely more consistent than the harmonic oscillator one.
The harmonic oscillator wave functions were used for estimating matrix elements
of the vibration-nuclear transitions in Ref. [41]. In general the matrix element of the
vibration-rotation-nuclear transition can be written as follows:
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Mvb,va
Jb,Kb;Ja,Ka

= (4π)1/2[(2Ja + 1)(2Jb + 1)]1/2(−1)Kb×

×
Ja+Jb

∑
l=|Jb−Ja|

il(2l + 1)1/2〈Ψvb |(π/2a)1/2Jl+1/2(a)|Ψva〉
(

Ja Jb l
0 0 0

)
+l

∑
m=−l

Y ∗lm

(
Ja Jb l
ka −kb m

)
,

a =
E(0)

γ

h̄c
m2

M
R∗

(
1 +

Q√
mR∗

)
.

(19)

Here Q = (R− R0)m1/2, m = m1m2/M is the reduced mass of the molecule, m1

and m2 are the masses of nuclei. The co-ordinate of mass centre of the first nucleus
relatively the molecule mass centre is defined by expression:

R1 =−m2

M
R =−m2

M

(
R0 +

Q√
m

)
=−m2

M
R0−

√
m2

m1M
Q.

The corresponding probability can be written in the following form:

Pvbva
JbJa

= (2Jb + 1)
Ja+Jb

∑
l=|Ja−Jb|

(2l + 1)〈Ψvb |
√

(π/2a)Jl+1/2(a)|Ψva |2
(

Ja Jb l
0 0 0

)2

. (20)

5 Numerical Results for Diatomic Molecules and Discussion

As example we present the results of calculation of the probabilities for vibration-
rotation-nuclear transitions from the state with va = 0, Ja = 0 and the state va = 1,
Ja = 0 in a case of the emission and absorption spectrum of nucleus 127I (E(0)

γ = 203
keV) in the molecule of H127I in the ground electron state X1Σ (molecular parame-
ters: R0 = 1.61Å, νe = 2309 cm−1, B = 6.55 cm−1) (cf. [34,61]). The recoil energy
for this molecule is 0.172 eV. Parameters which define an excitation of the vibrations
and rotations for this molecule because of the recoil, are as follows: a0 = 1.30 and
ε0 = 5.29 ·10−2. It should be noted also that a width of the gamma lines are corre-
sponding to temperature T = 300 K. In Fig. 3 we present the calculated spectrum of
emission and adsorption of the nucleus 127I in the molecule of H127I (Fig. 3a is cor-
responding to the initial state of molecule: va = 0, Ja = 0; Fig. 3b ∼ va = 1, Ja = 0).
It should be noted that the values for probabilities, calculated within the Dunham
model potential approximation for potential curve [33, 34, 61], differ from the cor-
responding ones, calculated within the harmonic oscillator approximation [9, 41],
in average on 5–20%. It is obvious that a direct experimental observation of the
laser-electron-nuclear effect is of a great interest.
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Fig. 3 Calculated emission (solid curve) and absorption spectrum of nucleus 127I (E(0)
γ = 203 keV)

linked with molecule H127I. Initial state of molecule: (a) above νa = 0, Ja = 0 and (b) below νa = 1,
Ja = 0.

6 Quantum Approach to Calculation of the Electron-Nuclear γ
Transition Spectra of Nucleus in Multiatomic Molecules

In this section we present consistent, quantum approach to calculation of the
electron-nuclear γ transition spectra (a set of the vibration-rotational satellites in
a molecule) of a nucleus in the multiatomic molecules. Estimates of the vibration-
nuclear transition probabilities in a case of the emission and absorption spectrum of

nucleus 191Ir (E(0)
γ = 82 keV) in the molecule of IrO4 and nucleus 188Os (E(0)

γ = 155
keV) in the molecule of OsO4 [62] are presented.

Let us consider the key moments of theory. The main purpose is calculation of
a structure of the gamma transitions (probability of transition) or spectrum of the
gamma satellites because of the changing the electron-vibration-rotational states
for the multiatomic molecules under the gamma quantum radiation (absorption).
Further we are limited by a case of the five-atomic molecules (of the XY4 type; Td).
Hamiltonian of interaction of the gamma radiation with a system of nucleons for the
first nucleus can be expressed through the co-ordinates of nucleons r′n in a system
of the mass centre of the one nucleus [41, 56, 58, 59]

H(rn) = H(r′n)exp(−ikγu), (21)

where kγ is a wave vector of the gamma quantum, u is the shift vector from equality
state (coinciding with molecule mass centre) in the system of co-ordinates in the
space. The matrix element for transition from the initial state ‘a’ to the final state
‘b’ is represented as usually

〈Ψ ∗
b |H|Ψa〉〈Ψ∗

b |exp(−ikγu)|Ψa〉, (22)

where a and b is a set of quantum numbers, defining the vibrational and rotational
states before and after interaction (with gamma- quantum). The first multiplier in
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Eq. (22) is defined by the gamma transition of a nucleus and is not dependent upon
an internal structure of a molecule in a good approximation. The second multiplier
is the matrix element of transition of the molecule from the initial state ‘a’ to the
final state ‘b’

Mba = 〈Ψ∗
b (re)|Ψa(re)〉〈Ψ ∗

b (R1,R2)|exp(−ikγu)|Ψa(R1,R2)〉. (23)

The expression 23 gives a general formula for calculation of the probability of
changing the internal state of a molecule under absorption or emitting gamma
quantum by a nucleus of the molecule. In fact it defines an amplitude of the cor-
responding gamma satellites. Their positions are fully determined by the energy
and pulse conserving laws as follows [41, 56, 58, 62]:

Eγ = E0
γ ±R + h̄kγv± (Eb−Ea). (24)

Here R is an energy of recoil: R = [(E(0)
γ ]2/(2Mc2), M is the molecule mass, v is

a velocity of molecule before interaction of a nucleus with γ quantum, Ea and Eb

are the energies of molecule before and after interaction, Eγ is an energy of nuclear
transition. The averaged energies for excitation of the rotations and vibrations under
absorption or emitting gamma quantum by nucleus of the molecule can be easily
evaluated as follows [41, 58, 62]. One can suppose that only single non-generated
normal vibration (vibration quantum h̄ω) is excited and initially a molecule is on the
vibrational level va = 0. If we denote a probability of the corresponding excitation
as P(vb,va) and use expression for shift u of the γ-active nucleus through the normal
co-ordinates, then an averaged energy for excitation of single normal vibration is as
follows:

Ēvib =
∞

∑
v=0

h̄ω
(

v +
1
2

)
P̄(v,0)− h̄∞

2
=

∞

∑
v=0

h̄ω
(

v +
1
2

)
P(v,0)− h̄ω

2
= (25)

= ∑
v=0

h̄ω
(

v +
1
2

)
zv

v!
− h̄ω

2
=

1
2

R

(
M−m

m

)
,

where z =
R

h̄ω
M−m

m
cos2 ϑ , m is the mass of γ-active nucleus, ϑ is the angle

between nucleus shift vector and wave vector of γ-quantum and line in Ēvib means
averaging on orientations of molecule (or on angles ϑ ).

To estimate an averaged energy for excitation of the molecule rotation one
must not miss the molecule vibrations as they provide non-zeroth momentum
L = kvusinϑ , which is transferred to a molecule by γ-quantum . In supposing
that a nucleus participates only in the single non-generated normal vibration and
vibrational state of the molecule is not changed va = vb = 0, one could evaluate an
averaged energy for excitation of the molecule rotation as follows:

Ērot = 〈BL2〉= Bk2
γ 〈u2〉sin2 ϑ =

1
2

R
B

h̄ω
M−m

m
. (26)
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So, it is correct the following relation Ērot/Ēvib∼B/(h̄ω), i.e. under absorption
or emitting gamma quantum by nucleus of the molecule a relationship between
averaged energies for excitation of the molecule rotations and vibrations coincides
on order of value with relationship between the energies of rotational and vibra-
tional quanta. As for multiatomic molecules it is typical B/(h̄ω)∼ 10−4÷10−2, so
one could miss the molecule rotations and consider γ-spectrum of a nucleus in the
molecule mass centre as a spectrum of the vibration-nuclear transitions.

Further a shift u of the γ-active nucleus can be expressed through the normal
co-ordinates Qsσ of a molecule:

u =
1√
m ∑

sσ
bsσ Qsσ , (27)

where m is a mass of the γ-active nucleus; components of vector bsΦ of the nucleus
shift due to the Φ-component of ‘s’ normal vibration of a molecule are the elements
of matrix b [9]; it realizes the orthogonal transformation of the normal co-ordinates
matrix Q to the matrix of masses of the weighted Cartesian components of the
molecule nuclei shifts q. According to Eq. (21) the matrix element can be writ-
ten as multiplying the matrix elements on molecule normal vibration, which takes
contribution to a shift of the γ-active nucleus:

M(b,a) = ∏
s

〈
vb

s

∣∣∣∣∏
σ

exp

(
ikγ bsσ Qsσ√

m

)
va

s

∣∣∣∣〉 . (28)

It is obvious that missing molecular rotations means missing rotations, connected
with the degenerated vibrations. Usually wave functions of molecule can be written
for non-degenerated vibration as:

|vs〉= Φvs(Qs), (29)

for double degenerated vibration in the form:

|vs〉=
1√

vs + 1 ∑
vsσ1 ,vsσ2 ,vsσ3

Φvsσ1
(Qsσ1)Φvsσ2

(Qsσ2) (30)

(where vsσ1 + vsσ2 = vs) and for triple degenerated vibration as follows:

|vs〉=

√
2

(vs + 1)(vs + 2) ∑
vsσ1 ,vsσ2 ,vsσ3

Φvsσ1
(Qsσ1)Φvsσ2

(Qsσ2)Φvsσ3
(Qsσ3) (31)

(where vsσ1 + vsσ2 + vsσ3 = vs).
In the simple approximation function Φvsσ (Qsσ ) can be chosen in a form of the

linear harmonic oscillator one. More exact calculating requires the numerical deter-
mination of these functions. Giving directly wave functions |va

s 〉 and 〈va
s |, calculating

the matrix element (28) is reduced to a definition of the matrix elements on each
component Φ of the normal vibration.
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7 Numerical Results for Multiatomic Molecules and Discussion

Below we present the results of calculation for the vibration-nuclear transition
probabilities in a case of the emission and absorption spectrum of nucleus 191Ir

(E(0)
γ = 82 keV) in the molecule of IrO4 and nucleus 188Os (E(0)

γ = 155 keV) in the
molecule of OsO4. Note that the main difficulty of calculating (28) is connected with
definition of values bsσ of the normalized shifts of the γ-active decay. It is known
that if a molecule has the only normal vibration of the given symmetry type, then the
corresponding values of bsσ can be found from the well known Eckart conditions,
normalization one and data about molecule symmetry. For several normal vibrations
of the one symmetry type, a definition of bsσ requires solution of the secular equa-
tion for molecule |GF −λ E| = 0 [58–63]. We have used the results of theoretical
calculating electron structure of studied system within relativistic scheme of the X∀-
scattered waves method (version [63]; see details also in Refs. [54–58, 62]).

In Table 2 we present the results of calculating probabilities of the first several
vibration-nuclear transitions for the molecule of IrO4. In Table 3 we present the
results of calculating probabilities of the first several vibrational-nuclear transitions
for molecule OsO4 in this paper and from refs. [9, 41], where the linear harmonic
oscillator approximation has been used. Analysis shows that a more sophisticated
calculation gives the higher values for probabilities. These values, calculated within
our approach, differ from the corresponding ones, calculated in Ref. [41], in aver-
age on 5–20%. In conclusion let us note that obviously the direct experimental
observation of the considered gamma-electron-nuclear phenomena in multiatomic
molecules is of a great interest for laser chemistry, photo- and biochemistry etc.

Table 2 Probabilities of vibrational-nuclear transitions for molecule IrO4

Vibrational transitions P̄(va
3,va

4–vb
3,vb

4)
va

3,va
4–vb

3,vb
4 present paper

0,0–0,0 0.863
1,0–0,0 0.025
0,1–0,0 0.097
1,0–1,0 0.812
0,1–0,1 0.731

Table 3 Probabilities of the vibration-nuclear transitions for molecule OsO4

Vibrational transitions P̄(va
3,va

4–vb
3,vb

4) P̄(va
3,va

4–vb
3,vb

4)
va

3,va
4–vb

3,vb
4 [9, 41] present paper

0.0–0.0 0.731 0.795
1.0–0.0 0.013 0.018
0.1–0.0 0.063 0.074
1.0–1.0 0.704 0.750
0.1–0.1 0.614 0.673
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Abstract A new consistent method for studying the interaction of atom with a
realistic laser field, based on the quantum electrodynamics (QED) and S-matrix
adiabatic formalism Gell-Mann and Low, is presented. In relativistic case the Gell-
Mann and Low formula expressed an energy shift δE through QED scattering matrix
including the interaction with as the laser field as the photon vacuum field. It is nat-
ural to describe the laser field-atom interaction by means of the radiation emission
and absorption lines. Their position and shape fully determine the spectroscopy of
atom in a field. The radiation atomic lines can be described by moments of differ-
ent orders µn. The main contribution into µn is given by the resonant range. The
values µn can be expanded into perturbation theory (PT) series. As example, the
method is used for numerical calculation of the three-photon resonant, four-photon
ionization profile of atomic hydrogen (1s-2p transition; wavelength = 365 nm) and
multi-photon resonance width and shift for transition 6S-6F in the atom of Cs (wave-
length 1,059 nm) in a laser pulses with the Gaussian and soliton-like shapes. The
results of calculation the above threshold ionization (ATI) characteristics for atom
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1 Introduction

The interaction of atomic systems with the external alternating fields, in particular,
laser fields has been the subject of intensive experimental and theoretical inves-
tigation (cf. [1–79]). The appearance of the powerful laser sources allowing to
obtain the radiation field amplitude of the order of atomic field in the wide range
of wavelengths results to the systematic investigation of the nonlinear interaction
of radiation with atoms and molecules. Calculation of the deformation and shifts of
the atomic emission and absorption lines in a strong laser field, definition of the k-
photon emission and absorption probabilities and atomic levels shifts, study of laser
emission quality effect on characteristics of atomic line, dynamical stabilization and
field ionization etc. are the most actual problems to be solved. Naturally, it is of the
great interest to study a phenomenon of the multiphoton ionization. At present time,
a great progress is achieved in the description of the processes of interaction atoms
with the harmonic emission field [1–9, 74, 76]. But in the realistic laser field the
corresponding processes are in significant degree differ from the similar processes
in the harmonic field. The latest theoretical works claim a qualitative study of the
phenomenon though in some simple cases it is possible to get quite acceptable quan-
titative description. Among existed approaches it should be mentioned such methods
as the Green function method (the imaginary part of the Green function pole for
atomic quasienergy state), the density–matrix formalism ( the stochastic equation of
motion for density–matrix operator and its correlation functions), a time-dependent
density functional formalism, direct numerical solution of the Schrödinger (Dirac)
equation, multi-body multi-photon approach etc. [1–36, 66–79]. Decay probabili-
ties of the hydrogen atom states in a super-strong laser field are calculated by the
Green function method (see [1, 2, 36]) in a case when the electron- proton interac-
tion is very small regarding the atom-field interaction. Note that this approach can
not be easily generalized for multielectron atoms. In Ref. [4] the double-time Gell-
Mann and Low formalism is used for studying the line shape of a multi-ionized
atom in a strong field of the electromagnetic wave. Effects of the different laser
line shape on the intensity and spectrum of resonance fluorescence from a two-level
atom are studied in Refs. [11–14]. The laser model considered is that of an ideal
single-mode laser operating high above threshold, with constant field amplitude and
undergoing phase-frequency fluctuations analogous to Brownian motion. As a cor-
relation time of the frequency fluctuations increases from zero to infinity, the laser
line shape changes from Lorentzian to Gaussian in a continuous way. For the inter-
mediate and strong fields, an averaged intensity of fluorescence in a case of the
resonant broadband Lorentzian line shape is higher than in a case of the Gaussian
line shape with the same bandwidth and total power. This is in contrast to the weak-
field case where the higher peak power of the Gaussian line shape makes it more
effective than the Lorentzian line shape. In a case of a nonzero frequency correla-
tion time (the non-Lorentzian line shape) an intensity of fluorescence undergoes the
non-Markovian fluctuations. In relation to the spectrum of resonance fluorescence it
is shown that as the line shape is varied from Lorentzian to Gaussian the following
changes take place: in a case of the off-resonance excitation, an asymmetry of the
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spectrum decreases. In a case of the resonant excitation, the center peak to side-
peak height ratio for the triplet structure increases. The predicted center-line dip in
the spectrum for a case of broadband excitation becomes deeper, when the Rabi fre-
quency and bandwidth are almost equal. In the modern experiment it has been found
an anomalously strong nonlinear coupling of radiation with atom which can not be
fully explained by the modern theoretical models. In any case the problem requires
a consistent QED consideration.

Another important topic is connected with the governing and control of non-
linear processes in a stochastic, multi-mode laser field [1–8, 36–40, 73–76]. The
principal aim of quantum coherent control is to steer a quantum system towards
a desired final state through interaction with light while simultaneously inhibiting
paths leading to undesirable outcomes. This type of quantum interference is inher-
ent to the non-linear multiphoton processes. The controlling mechanisms have been
proposed for atomic, molecular and solid-state systems [1–32, 67–88]. The exper-
imental work by Dudovich et al. tests an effect of the pulse-shaping on transient
populations for the excited Rb atoms (cf. [1–4]). The detailed calculations have
been carried out for three-level systems within 1D model of a two-electron molecule
[5–7,73–77]. Transitions to the excited state occur via a 12-photon interaction for an
800 nm intense pulse of length 244 au, or just over two cycles. Theoretical study of
the laser-atom non-linear interaction is often based on solving the time-dependent
Schrödinger equation or using the time-independent Floquet formalism. In [6, 69]
authors extended the non-Hermitian multi-state Floquet dynamics approach of Day
et al. to treat one-electron atomic system for a case of the multi-electron atoms. The
result is a generalization of the R-matrix Floquet theory, developed by Burke et al.
that allows for pulse shape effects whilst retaining the ab initio treatment of detailed
electron correlation. The approach based on the eigenchannel R-matrix method and
multichannel quantum-defect theory, introduced by Robicheaux and Gao to calcu-
late two-photon processes in light alkaline-earth atoms has been implemented by
Luc-Koenig et al. [15] in j-j coupling introducing explicitly spin-orbit effects and
employing both the length and velocity forms of the electric dipole transition oper-
ator. In Ref. [15] the two-photon processes including above-threshold ionization in
magnesium have been in details studied. Nevertheless in many theories there is a
serious problem of the gauge invariance, connected with using non-optimized one-
electron representation (in fact provided by not entire account for the multi-body
inter electron correlations). The known example is non-coincidence of values for
the length and velocity forms of the electric dipole transition operator [15, 36, 40].
In whole one can note that a problem of correct description of the non-linear
atomic dynamics in a stochastic, multi-mode laser field is quite far from the final
solution. It requires developing the consistent, advanced approaches to descrip-
tion of multi-photon dynamics and new schemes for sensing the stochasticity and
photon-correlation effects.

In this paper we present a new consistent method for studying the interaction
of atom with a realistic laser field, based on QED and S-matrix adiabatic for-
malism Gell-Mann and Low [32–50]. In relativistic case the Gell-Mann and Low
formula expressed an energy shift δE through the QED scattering matrix including
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the interaction with as the laser field as the photon vacuum field. It is more natural to
describe the interaction of atom with the realistic laser field by means of the radia-
tion emission and absorption lines [36–40]. Their position and shape fully determine
the spectroscopy of atom in a laser field. The radiation atomic lines can be described
by moments of different orders µn. The first order moment is directly connected with
the field shift and width of the corresponding resonances. The main contribution into
µn is given by the resonant range. The values µn can be expanded into perturbation
theory (PT) series, though in resonant range the PT can’t be used for the transition
probabilities. The effective Ivanov-Ivanova approach [34–36] is used for calculating
the corresponding QED PT second order sums. As examples we present the results
of numerical calculating the three-photon resonant, four-photon ionization profile of
atomic hydrogen (1s-2p transition; wavelength = 365 nm) and the multi-photon res-
onance shift and width for transition 6S-6F in the atom of Cs (wavelength 1,059 nm)
in a laser pulse of the Gaussian and soliton-like shapes. The results of calculation the
above threshold ionization (ATI) characteristics for atom of magnesium in a intense
laser field are presented too.

2 Structure of the Multi-Mode Laser Pulse

As it is well known, for a laser with more than one longitudinal mode, mode beat-
ing gives rise to intensity fluctuations within the laser pulse [1, 2, 11–14]. The beat
frequencies for n modes range up to nc/2L = B, where L is the optical length of the
laser oscillator. A detailed analysis of the mode structure of the typical dye laser [11]
shows that it has about 15 modes, separated by 1 GHz with a Gaussian amplitude
distribution. Classically, the field can be written as follows:

E(t) = ε(t)e−iωt + c.c.,
where
ε(t) = ∑

i
0.5ai(t)e−i(∆ωit+φi).

(1)

Each mode has amplitude ai containing a gaussian time envelope, a frequency
detuning ∆ωi from the central laser frequency and phase φ i. As experimental study
[11, 13] of described laser pulse shows that there is no evidence of the phase coher-
ence in the temporal behavior of laser pulse. Thus, it is usually assumed that the
modes have the random phases. Figure 1 shows the temporal variation of intensity
for the multi-mode pulse of stochastic laser radiation with the emission line width
b = 0, 1 cm−1, the coherence time −3×10−10s [11].

Further to make sensing a stochastic structure of the multi-mode laser pulse
one should consider the interaction: ‘atomic system – stochastic multi-mode laser
pulse’. Below it will be shown that this interaction is influenced by the specific
chaotic, photon-correlation effects. New theoretical scheme for sensing stochastic-
ity and photon-correlation effects is based on the S-matrix energy approach [36–50]
to calculating the multi-photon resonance characteristics for atomic systems in a
stochastic laser field.
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20 ns

Fig. 1 The temporal variation of intensity for the multi-mode pulse of stochastic laser radiation
with the emission line width b = 0,1 cm−1, the coherence time −3×10−10 s.

3 S-Matrix Energy Approach to Atoms in a Multi-Mode
Laser Field

Following to Refs. [37–40], we describe the interaction of an atom with the realistic
laser field by a set of characteristics, which are directly observed in the experiment.
We are studying the radiation emission and absorption lines. Their position and
shape fully determine the spectroscopy of atom in a field. It is natural to describe
these lines by their moments of the different orders µn. The moments µn are strongly
dependent upon the laser pulse quality: intensity and the mode constitution. In par-
ticular, the k-photon absorption line center shift in the transition α → p can not
be obtained from the corresponding expression for the “one”-photon absorption by
changing ω0 → ω0/k and introduction of the multiplier 1/k (ω0 – the central laser
emission frequency). The difference arises already in the first non-appearing pertur-
bation theory (PT) order. It is connected with the unusual behavior of the dynamic
polarizability of an atom in the resonant range [36–38].

Let us describe the interaction of atom with laser radiation by means the Ivanov
potential:

V (r,t) = V (r)∫ dω f (ω−ω0)
∞

∑
n=−∞

cos[ω0t + ω0nτ], (2)

where n is the whole number. The potential V represents the infinite duration of
laser pulses with known frequency τ . Here we consider the effects of interaction of
an atom with the single pulse. The representation V (rt) as the infinite sequence
of pulses is a formal moment connected with the application of the stationary
PT formalism. The function f (ω) is a Fourier component of the laser pulse. The
condition ∫dω f 2(ω) = 1 normalizes potential V (rt) on the definite energy in a
laser pulse. Let us consider the pulse with Lorentzian shape (coherent 1-mode
pulse): f (ω) = N/(ω2 + ∆ 2), Gaussian shape (multi-mode chaotic laser pulse):
f (ω) = Nexp[ln2(ω2/∆ 2)], and soliton-like pulse of the following shape: f (t) = N
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ch−1[t/D]. Further we will be interested by a cases of the Gaussian and soliton-like
pulses. A case of the Lorentzian shape has been considered by us earlier [34–38].

The further program results in the calculating an imaginary part of the energy
shift Im Eα(ω0) for any atomic level as a function of the laser pulse central
frequency. The corresponding function has the shape of resonant curve. Each reso-
nance is connected with the transition α− p, in which the definite number of photons
is absorbed or radiated. Let us consider following situation: α− p transition with the
absorption of k photons (α , p-discrete levels). For the resonance which corresponds
to this transition, we calculate the following values:

δω(pα|k) = ∫ ′dωImEα(ω)(ω−ωpα/k)/N, (3)

µm = ∫ ′dωImEα(ω)(ω−ωpα/k)m/N, (4)

where ∫ ′dω Im Eα is the normalizing multiplier; ωpα is a position of the non-
shifted line for atomic transition α − p,δω(pa|k) is the line shift under k-photon
absorption and ωpα = ωpα +k×δω(pα|k). The first moments µ1, µ2 and µ3 deter-
mine the atomic line center shift, its dispersion and coefficient of the asymmetry. To

calculate µm, we need to get an expansion of Eα to PT series: Eα = ∑E(2k)
α (ω0). To

get this expansion, we use method, based on the Gell-Mann and Low adiabatic for-
mula for δEα [33–38]. The representation of the S-matrix in the form of PT series
induces the expansion for δEα :

δEα(ω0) = lim
γ→0

γ ∑
k1k2...kn

a(k1,k2, ...,kn), (5)

Iγ(k1,k2, ...,kn) = ∏
j=1

S(k j)
γ , (6)

S(m)
γ = (−1)m

0∫
−∞

dt1...

tm−1∫
−∞

dtm〈Φα |V1V2...Vm|Φα〉, (7)

Vj = exp(1H0t j)V (rt j)exp(−1H0t j)exp(γt j). (8)

Here H is the atomic hamiltonian, a (k1, k2, . . . ,kn) are the numerical coefficients.

The structure of the matrix elements S(m)
γ is in details described in [37,38]. After suf-

ficiently complicated calculation one can get the expressions for the line moments
as follows. For a case of the Gaussian laser pulse we have:

δω(pα|k) = {π∆/(k + 1)k}[E(p,ωpα/k)−E(α,ωpα/k)],
µ2 = ∆2/k
µ3 = {4π∆ 3/[k(k + 1)]}[E(p,ωpα/k)−E(α,ωpα/k)],

(9)

where

E( j,ωpα/k) = 0,5∑
pi

VjpiVpi j[
1

ω jpi + ωpα/k
+

1
ω jpi−ωpα/k

]. (10)
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The summation in (10) is fulfilled on all states of atomic system. For a case of
the Lorentzian pulse the corresponding expressions are given in Refs. [37, 38]. In
a case of the laser pulse with shape ch−1[t/D] it is necessary to carry out a direct
numerical calculation (we did it) or use different approximations to simplify the
final expressions. Indeed, the last procedure may result in a great mistake. Each term
in Eq. (9) for δω is formally similar to the known expression for the off-resonant
shift of atomic level (p or α) in the monochromatic radiation field with frequency
ωpα /k. However, here these values have other physical essence. When k → ∞ (an
infinite little laser pulse central frequency) the formula for δE gives the correct
expression for energy level shift in the stationary field. The expressions (9), (10)
for δω and µn describe the main characteristics of the absorption line near resonant
frequency ωpα /k. One can see that these characteristics are determined not only by
the radiation frequency, but also by the quantiness of the process. For example, the
line shift is proportional 1/(k + I), but no – to value of 1/k, as one can wait for.
Under k = 1 there is an additional non-standard term. It will be shown below that
this approach allows to obtain the theoretical results in an excellent agreement with
experiment. The details of the numerical procedure are given below and presented
in Refs. [33–50] too.

4 Ivanova-Ivanov Approach to Calculating the Perturbation
Theory Second Order Sums

In this chapter we present the Ivanova-Ivanov approach to calculating sums of the
second order of the QED perturbation theory [33–36]. It will be used in calcula-
tion of the expressions (9), (10). In fact, speech is about determination of the matrix
elements for operator of the interelectron interaction over an infinitive set of virtual
states, including the states of the negative continuum. A sum on the principal quan-
tum number is defined in quadratures of the Dirac function and auxiliary functions
x, x (look below). All computational procedure results in solution of simple system
of the ordinary differential equations with known boundary conditions under r = 0.
Exchange of the interelectron interaction operator 1/r12 on one-electron operator
V (r) decreases a brevity of summation on the virtual states. In a one-particle rep-
resentation the cited sums are expressed through sums of the one-electron matrix
elements:

∑
n1

〈nχm|V |n1χ1m1〉〈n1χ1m1|V |nχm〉/(εn1χ1m1 − ε
)
, (11)

where ε = εnχm + ωpα
/

k is the energy parameter. One-electron energies εnχm

include the rest energy (αZ)−2. Let us note that here we use the Coulomb units (an
energy in the Coulomb units [q.u.]: 1 q.u. = Z2 a.u.e. [Z−−a charge of a nucleus;
a.u.e. = 1 atomic unit of energy).

Consider a scheme of calculating the sum (11). Fundamental solutions of one-
electron Dirac equations with potential VC = U(r) have the same asymptotic as the
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Dirac equation with Coulomb potential under r → 0 and r → ∞. Let us consider a
bi-spinor of the following form:

Φχ1m1 = ∑
n1

ϕn1χ1m1〈n1χ1m1|V |nχm〉/(εn1χ1m1 − ε
)
. (12)

The radial parts F,Gof bi-spinor Φ satisfy to system of the differential equations:

−F ′/αZ +(1 + χ1)F
/

αZr + A2G = Λ2,
G′

/
αZ +(1− χ1)G

/
αZr + A1F = Λ1.

(13)

A1 (r) = U (r)+ 1
/

(αZ)2− ε,

A2 (r) = U (r)−1
/

(αZ)2− ε.
(14)

The radial functions Λ1, Λ2 in a case of the dipole interaction are presented below.
Solution of the system (13) can be represented as follows:

F(r) = αZ
[
x(r) f̃ (r)− x̃(r) f (r)

]/
2γ,

G(r) = αZ[x(r) g̃(r)− x̃(r)g(r)]
/

2γ, γ =
[
χ2−α2Z2

]1/2
. (15)

A pair of functions f ,g and f̃ , g̃ are two fundamental solutions of the equations
(13) without right parts. These functions satisfy to conditions: f∼rγ−1, f , g∼r−γ−1

under r→ 0. Here we introduce the following functions:

x = αZ
r∫

0
dr′r′2[Λ1 (r′) f (r′)+Λ2 (r′)g(r′)],

x̃ = αZ
r∫

0
dr′r′2

[
Λ1 (r′) f̃ (r′)+Λ2 (r′) g̃(r′)

]
+ D.

(16)

Further let us define constant D in the expressions (16). Let us suppose that ε <
(αZ)−2 (i.e. an energy lies below the boundary of ionization), but an energy does
not coincide with any discrete eigen value of the Dirac equation. Then

D =−αZ

∞∫
0

dr r2 (Λ1 f̃ +Λ2g̃
)
. (17)

Let an energy ε coincides with energy of some discrete level n0χ1m1. It is sup-
posed that this state is excluded from (11) and (13). Then the constant D can be
found from condition:

∞∫
0

dr r2 (F fn0χ1m1 + Ggn0χ1m1

)
= 0. (18)

Now let ε > (αZ)−2 (i.e. an energy lies above the boundary of ionization). Then
a constant D can be found from the following condition:
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lim
r→∞

r2

T+r∫
r

dr′ r′2
(
F fεχ1m1 + Ggεχ1m1

)
= 0. (19)

Here εχ1m1 is one-electron state of scattering with energy ε; T is a period of
asymptotic oscillations of the functions f ,g:

T = 2π
[
ε2− (αZ)−2

]1/2
.

Let us give the corresponding expressions for functions Λ1, Λ2 in the most typical
case of the dipole interaction of atom with a laser field. The corresponding potential
is as follows:

V (r) = (a,α). (20)

Here a is a vector of polarization of radiation; α is a vector of the Dirac matrices.
Let us remember that usually the vectors a1 = (1,0), a2 = (1,−0) are corre-

sponding to the circular polarization and the vector a3 = (1,00) is corresponding to
linear one. Under definition of the multi-photon resonance energies and widths there
is a task of calculating the sums (11), where an index n1 runs the whole spectrum of
states or some state n0 is excluded from the sum. In the first case the functions Λ1

and Λ2 are defined by the expressions:

Λ1 = B
(

a| j1l1m1, jl̃m
)

gnχ
/

αZ,
Λ2 = B

(
a| j1 l̃1m1, jlm

)
fnχ

/
αZ.

(21)

In the second case one can substitute the following functions to the right parts of
(13):

Λ̄1 = Λ1− fn0χ1m1Y
/

αZ;
Λ̄2 = Λ2−gn0χ1m1Y

/
αZ;

Y =
∫

dr r2
[

fn0χ1m1 gnχmB
(

a| j1l1m1, jl̃m
)−gn0χ1m1 fnχmB

(
a| j1 l̃1m1, jlm

)]
.
(22)

Here the functions Λ1and Λ2 are defined by the expressions (21).
The angle functions are dependent upon the polarization vector and defined by

the following formula:

B(a1| jlm, j′l′m′) = (−1) j′+l′−1/2 δu′δm′ ,m−1b(−m, m′) ,
B(a2| jlm, j′l′m′) = (−1) j+l−1/2 δu′δm′,m+1b(−m, m′) ,
B(a3| jlm, j′l′m′) = δu′δm,m′

[
b(−m, −m)+ (−1) j+ j′ b(m, m′)

]
,

b(m, m′) =
[
2 χ+1/2+m

2χ+1 − χ ′+1/2+m′
2χ ′+1

]1/2
.

(23)

The final expression for the sum (11) can be written as follows:∫
dr2[ fnχ1GB

(
a| jlm, j1 l̃1m1

)
+ gnχF×B

(
a| jl̃m1, j1l1m1

)]
. (24)
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Finally the computational procedure results in a solution of sufficiently simple
system of the ordinary differential equations for above described functions and
integral (24).

5 Energy QED Approach to Multiphoton Resonances and Above
Threshold Ionization

In this section we apply an approach based on the QED perturbation theory [7, 11–
13, 16, 19, 22, 26, 28] to calculating the characteristics of multi-photon ionization in
different atomic systems. We calculate numerically the above threshold ionization
(ATI) cross-sections for atom of magnesium in a intense laser field. The two-photon
excitation process will be described in the lowest QED PT order. This approach
is valid away from any one-photon intermediate-sate resonance. We start from the
two-photon amplitude for the transition from an initial state Ψ0 with energy E0 to a
final state |Psi f with energy E f = E0 + 2ω is:

T (2)
f 0 = lim

n→0+

∫
dε〈Ψf |D× e|ε〉(E0 + ω− ε + in)−1〈ε|d× e|Ψ0〉. (25)

Here D is the electric dipole transition operator (in the length r form), e is the electric
field polarization and ω is a laser frequency. It is self-understood that the integration
in Eq. (25) is meant to include a discrete summation over bound states plus an
integration over continuum states. Usually explicit summation is avoided by using
the approach of Dalgarno-Lewis, setting [15]:

T (2)
f 0 = Cf 〈‖D× e‖Λp〉, (26)

where 〈‖...‖〉 is a reduced matrix element and Cf is an angular factor depending
on the symmetry of the Ψf , Λp, Ψ0 states. Λp can be found from solution of the
following inhomogeneous equation [15, 36]

(E0 + ω×H|Λp〉= (D× e)|Ψ0〉 (27)

at energy E0 + ω , satisfying outgoing-wave boundary conditions in the open chan-
nels and decreasing exponentially in the closed channels. The total cross section (in
cm4 W−1) is expressed as

σ/I = ∑
J

σJ/I = 5.7466×10−35ωau ∑
J

|T (2)
J,0 |2, (28)

where I (in W/cm2) is the laser intensity. Different quantities can be used to describe
two-photon processes [34]: the generalized cross section σ (2), given in units of
cm4s, by

σ (2)
cm4s

= 4.3598×10−18ωauσ/Icm4W−1 (29)
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and the generalized ionization rate Γ (2)/I2, (and probability of two-photon detach-
ment) given in atomic units, by the following expression

σ/Icm4W−1 = 9.1462×10−36ωauΓ (2)
au /I2

au. (30)

Described approach is realized as computer program block in our atomic numeric
code “Superatom” (complex of programs, which numerically realize the meth-
ods [33–60]), which includes the numerical solution of the Dirac equation and
calculation of the matrix elements of the Eqs. 17–18 type. The original moment
is connected with using the consistent QED gauge invariant procedure for gener-
ating the atomic functions basis’s (optimized basis’s) [40]. This approach allows
getting results in an excellent agreement with experiment and they are more precise
in comparison with similar data, obtained with using the non-optimized basis’s.

6 Results and Discussion

6.1 The Multi-Photon Resonance Spectra and Above Threshold
Ionization

Let us present the results of calculating the multi-photon resonances spectra char-
acteristics for atom of magnesium in a laser field. Note that in order to calcu-
late spectral properties of atomic systems, different methods are used: relativistic
R-matrix method (R-method; Robicheaux-Gao, 1993; Luc-Koenig E. et al. 1997),
added by multi channel quantum defect method, K-matrix method (K-method;
Mengali-Moccia,1996), different versions of the finite L2 method (L2 method) with
account of polarization and screening effects (SE) (Moccia-Spizzo, 1989; Karapana-
gioti et al. 1996), Hartree-Fock configuration interaction method (CIHF), operator
QED PT (Glushkov-Ivanov, 1992; Glushkov et al. 2004) etc. (cf. [15, 36, 40]. In
Table 1 we present results of calculating characteristics for 3p21S0 resonance of
Mg; E- energy, counted from ground state (cm−1), Γ -autoionization width (cm−1),
σ /I- maximum value of the generalized cross-section (cm4W−1). R-matrix calcula-
tion with using the length and velocity formula led to results, which differ on 5–15%,
that is an evidence of non-optimality of the atomic basis’s. This problem is absent in
our approach and agreement between theory and experiment is very good. Further
let us consider process of the multi-photon ATI from the ground state of Mg. The
laser radiation photons energies ω in the range of 0.28–0.30 a.u. are considered, so
that the final autoionization state (AS) is lying in the interval between 123350 cm−1

and 131477 cm−1. First photon provides the AS ionization, second photon can pop-
ulate the Rydberg resonance’s, owning to series 4snl, 3dnl, 4pnp where J = 0 and
J = 2 [15]. In Table 2 we present energies (cm−1 ; counted from the ground level of
Mg 3s2) and widths (cm−1) of the AS (resonance’s) 4snl,3dnl,4p2 1D2, calculated
by the K-, R-matrix and our methods. In a case of 1S0 resonance’s one can get an
excellent identification of these resonance’s. Let us note that calculated spectrum of
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Table 1 Characteristics for 3p21S0 resonance of atom of the magnesium: E- energy, counted from
ground state (cm−1), Γ - autoionization width (cm−1), σ /I- maximum value of generalized cross-
section (cm4W−1)

Methods E Γ σ /I

Luc-Koenig E. et al. 1997 Without Account SE
Length form 68,492 374 1.96 10−27

Velocity form 68,492 376 2.10 10−27

Luc-Koenig E. et al. 1997 With Account SE
Length form 68,455 414 1.88 10−27

Velocity form 68,456 412 1.98 10−27

Moccia and Spizzo (1989) 68,320 377 2.8 10−27

Robicheaux and Gao (1993) 68,600 376 2.4 10−27

Mengali and Moccia (1996) 68,130 362 2.2 10−27

Karapanagioti et al. (1996) 68,470 375 2.2 10−27

Our calculation 68,281 323 2.0 10−27

Table 2 Energies and widths (cm−1) of the AS (resonance’s) 4snl,3dnl,4p21D2 for Mg (see text)

1D2 R−method 1D2 Our approach K− method
E Γ E Γ E Γ

4s3d 109900 2630 4s3d 109913 2645 110450 2600
3d2 115350 2660 3d2 115361 2672 115870 2100
4s4d 120494 251 4s4d 120503 259 (ds) 120700 170
3d5s 123150 1223 3d5s 123159 1235 (ds) 123400 2000
4p2 124290 446 4p2 124301 458 124430 500
3d4d 125232 400 3d4d 125245 430 125550 590
4s5d 126285 101 4s5d 126290 113 (ds) 126250 120
3d6s 127172 381 3d6s 127198 385 (ds) 127240 350
4s6d 127914 183 4s6d 127921 215 127870 1900
3d5d 128327 208 3d5d 128344 215
4s7d 128862 18 4s7d 128874 24 (ds) 128800 30
3d5g 128768 4,5 3d5g 128773 5,2 3d5g 128900 2,2
3d7s 129248 222 3d7s 129257 235 129300 160
4s8d 129543 114 4s8d 129552 125 (ds) 129500 140

3d6d 129844 115
4s9d 129975 64
4s10d 130244 5
3d8s 130407 114
4s11d 130488 118
4s12d 130655 28
3d7d 130763 52
4s13d 130778 36
4s14d 130894 14
4s15d 130965 7
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to-photon ATI is in a good agreement with the R-matrix data and experiment. In a
whole other resonances and ATI cross-sections demonstrate non-regular behavior.

The studied system is corresponding to a status of quantum chaotic system with
very interesting stochastization mechanism. It realizes through laser field induc-
tion of the overlapping (due to random interference and fluctuations) resonances
in spectrum, their non-linear interaction, which lead to a global stochasticity in
the system and quantum chaos phenomenon. The quantum chaos is well known
in physics of the hierarchy, atomic and molecular physics, in particular, in the-
ory of atomic systems in an external electromagnetic field. Earlier this effect has
been found in simple atomic systems H, He, and also Ca (cf. Refs. in [3, 47, 60]).
Analysis indicates on its existence in the Mg spectrum. Spectrum of resonance’s
can be divided on three intervals: (1) An interval, where states and resonances are
clearly identified and not strongly perturbed; (2) quantum-chaotic one, where there
is a complex of the overlapping and strongly interacting resonances; (3). Shifted
interval on energy, where behavior of the energy levels and resonances is similar
to the first interval. The quantitative estimate shows that the resonance distribu-
tion in the second quantum-chaotic interval is satisfied to the Wigner distribution as
follows:

W (x) = xexp(−πx2/4).

At the same time, in the first interval the Poisson distribution is valid.

6.2 The Three-Photon Resonant, Four-Photon Ionization Profile
of Atomic Hydrogen

Below we present the results of calculating the multi-photon resonances for atomic
systems in a stochastic laser field and show the possibilities for sensing a structure of
the stochastic, multi-mode laser pulse and photon-correlation effects for atomic (and
nano-optical) systems in this field. We start from results of the numerical calcula-
tion for the three-photon resonant, four-photon ionization profile of atomic hydrogen
(1s-2p transition; wavelength = 365 nm). In Fig. 2 we present the shift S (= δω)
and width W of the resonance profile as the function of the mean laser intensity at
the temporal and spatial center of the UV pulse: experimental data 3s, 3w (Kelle-
her, Ligare and Brewer [11]; multi-mode Gaussian laser pulse with bandwidth 0.25
cm−1; full width at half of one), theoretical calculation results on the basis of the
stochastic differential equations method 1s and 1w by Zoller [12]) and results of our
calculation: 2s, 2w.

At first, one can see the excellent agreement between the theory and experiment.
At second, a comparison of these results with analogous data for a Lorentzian laser
pulse [37,49] shows that the corresponding resonance shift in a case of the Gaussian
shape pulse is larger than the shift in a case of the Lorentzian pulse at ∼3 times.
This fact is connected with the photon-correlation effects and stochasticity of the
laser pulse.
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Fig. 2 Shift (S) and width
(W) of resonant profile
as laser intensity function:
experiment – S3, W3 (Kelle-
her, Ligare, Brewer); theory
of Zoller – S1, W1 and our
results – S2, W2
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6.3 Calculation Results of the Multi-Photon Resonance Width and
Shift for Transition 6S-6F in the Atom of Cs

Further let us consider the numerical calculation results for three-photon transition
6S-6F in the Cs atom (wavelength 1,059 µm). The detailed experimental study of
the multi-photon processes in the Cs atom has been carried out in Ref. [13]. In this
paper it is experimentally studied a statistics of the laser radiation and characteristics
of the multi-photon ionization are measured.

According to Ref. [13], the line shift is linear function of the laser intensity (laser
intensity is increased from 1.4 to 5.7 10(7)W/cm2) and is equal (a case of the Gaus-
sian multi-mode laser pulse): δω(pα|k) = bI with b = (5.6 +−0.3) cm−1/GW ×
cm−2 (b is expressed in terms of energy of the three-photon transition 6S-6F).

The corresponding shift obtained with coherent (one-mode) laser pulse is defined
as follows: δω0(pα|k) = aI,a = 2 cm−1/GW×cm−2. Theoretical values, obtained
with using no-optimized atomic basis’s, are as follows: (i). for soliton-like laser
pulse: δω(pα|k) = bI,b = 6.7 cm−1/GW×cm−2; (ii). for the gaussian multi-mode
pulse (chaotic light): δω(pα|k) = bI with b = 5.8 cm−1/GW × cm−2; (iii). for the
coherent one-mode pulse: δω0(pα|k) = aI,a = 2,1 cm−1/GW × cm−2.

The analogous theoretical values, obtained in our calculation within described
above S-matrix formalism, are as follows:

1. The gaussian multi-mode pulse (chaotic light) δω(pα|k) = bI,b = 5.63 cm−1/
GW × cm−2;

2. The coherent one-mode pulse: δω0(pα|k) = aI, a = 2.02 cm−1/GW × cm−2;
3. The soliton-like laser pulse: δω(pα|k) = bI,b = 6.5 cm−1/GW × cm−2.

One can see that for the multi-mode pulse the radiation line shift is significantly
larger (in∼3 times), than the corresponding shift in a case of the single-mode pulse.
In fact the radiation line shift is enhanced by the photon-correlation effects. In Fig. 3
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Fig. 3 The multi-photon resonance width for transition 6S-6F in the atom of Cs (wavelength
1059 nm) in dependence upon the laser intensity I: S – for single-mode Lorentz laser pulse;
M1, M3, M4 – for multi-mode Gauss laser pulse respectively with line band 0.03,0.08 and
0.15 cm−1; M2, M5 – for multi-mode soliton-type with line band 0.03 cm−1and 0.15 cm−1; marker
– experiment [13].

we present the results of calculation for the multi-photon resonance width for tran-
sition 6S-6F in the atom of Cs (wavelength 1059 nm) in dependence upon the laser
intensity.

We use the following denotations: S – for single-mode Lorentz laser pulse;
M1, M3, M4 – for multi-mode Gauss laser pulse respectively with line band
0.03 cm−1, 0.08 cm−1 and 0.15 cm−1; M2, M5 – for multi-mode soliton-type with
line band 0.03 cm−1and 0.15 cm−1; marker – experimental data [13]. In Ref. [13] the
experimental data for laser pulse of the Gaussian shape with line band respectively
0.03 cm−1, 0.08 cm−1, 0.15 cm−1 are presented. In general there is a physically rea-
sonable agreement between theory and high-qualitative experiment. Analysis shows
that the shift and width of the multi-photon resonance line in a case of interaction
of an atom with the multimode laser pulse is greater than the corresponding res-
onance shift and width in a case of interaction of an atom with the single-mode
laser pulse. It is corresponding to the experimental data [13]. From physical point of



558 A.V. Glushkov et al.

view it is provided by action of the photon-correlation effects and influence of the
multimodity of the laser pulse (cf. [13–15, 36–40, 49]).
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Introduction

The internet offers new ways for communication between scientists especially when
they are situated in geographically distributed locations. As Ziman [1] has pointed
out:

the communication system is [...] vital to science; it lies at the very heart of the ‘scientific
method’.

Most learned journals are today available both in print and on line. Some new jour-
nals are only available on line. On line versions of journals can offer significant
advantages:- fast, economical distribution, hypertext links to cited literature, easy
incorporation of colour figures and illustrations, in-text movies, and so on.

But, as well as changing the way in which scientists formally present their com-
pleted work to their peers, the internet is also changing the way that researchers
collaborate whilst carrying out their projects. This paper describes some of our
recent work aimed at the development of methods for collaborative research in
molecular physics and quantum chemistry via the internet.

A collaborative virtual environment has been developed for quantum chemistry
whilst actually carrying out a significant, ‘real life’ project so that those features
which were found to be useful in facilitating the collaboration could be evaluated
and incorporated in the emerging environment. A collaborative virtual environment
actively supports human-human communication in addition to human-machine
communication and uses a virtual environment as the interface. The specific quan-
tum chemical project considered involved the development of Brillouin-Wigner
methods for handling the many-body problem which arises in molecular electronic
structure theory especially when a multireference formulation is required. This
project is concerned with the development of robust methods which can be applied
routinely in situations where a multireference formalism is required. It involves the
development of theory and associated algorithms as well as computation.

This project was carried out under the auspices of the EU COST programme -
Action D23 - METACHEM (Metalaboratories for Complex Computational Applica-
tions in Chemistry).1 The establishment of a European Metalaboratory2 for ab initio
multireference quantum chemical methods had two main objectives:

1. The development of a comprehensive suite of capabilities for remote scientific
collaboration between geographically distributed sites, creating a prototypical
environment tailored to the needs of the quantum chemistry community. This

1 Project number: D23/0001/01: European Metalaboratory for multireference quantum chemical
methods (01/02/2001 - 18/07/2005). Participants: P. Čársky, J. Pittner (J. Heyrovsky Institute,
Prague, Czech Republic), I. Hubač (Comenius University, Slovakia), S. Wilson (Rutherford
Appleton Laboratory, UK), W. Wenzel (Universität Dortmund, Germany), L. Meissner (Nicholas
Copernicus University, Poland), V. Staemmler (Ruhr Universität Bochum Germany), C. Tsipis
(Aristotle University of Thessaloniki, Greece), A. Mavridis (National and Kapodistrian University
of Athens, Greece).
2 Loosely speaking, a metalaboratory may be defined as a cluster of geographically distributed
resources.
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environment is supposed to provide a cross-platform suite of tools for data
exchange and sharing and sharing of computer resources. The tools should help
to easily build and share our common knowledge base and allow the exchange of
draft manuscripts, documents, preprints and reprints, data preparation and analy-
sis, program execution, training, etc. The use of a web-based communication for
the Metalaboratory should ensure that all of the data, notes, sketches, molecular
structures under consideration, etc., are always available from any desktop to all
participants.

2. The Metalaboratory focuses on a specific problem at the cutting-edge of modern
ab initio quantum chemical methodology – the development of multireference
quantum chemical methods together with the associated algorithms. Such meth-
ods are essential for the description of the breaking of bonds, a process which
might be regarded as the very essence of chemistry. By establishing a European
Metalaboratory directed towards the solution of a specific and challenging sci-
entific problem, a rapid evaluation of facilities for remote collaboration will be
achieved as well as a coordinated problem-solving programme directed towards
the development of robust, reliable and cost-effective ab initio multireference
quantum chemical methods. Such methods are still far from being routine since
their widespread use in practical applications is frequently hampered by their
complexity and by the problem of intruder states.

The need to establish more effective mechanisms for collaboration has become
evident in our previous work under EU COST Action D9.3 Therefore, in parallel
with further development of accurate multireference quantum chemical methods,
we decided to investigate the use of web-based and internet tools for remote scien-
tific collaboration. In the past, some of the participants have exchanged data, draft
manuscripts and the like by e-mail, supplemented by occasional correspondence by
post and face-to-face meetings. By exploring alternative mechanisms, in particular,
real-time collaboration procedures, we aim to establish a more productive environ-
ment. This includes remote execution of computer programs, the use of web-based
interfaces for remote collaboration. The intention has been to use only a publicly
accessible and user-friendly software for making the expertise accumulated in this
project profitable for national and international collaborations in other domains of
chemistry and physics.

The development of collaborative virtual environments is a key element of what
is becoming known as “e-science”.4 In 2000, Sir John Taylor, Director General of
Research Councils, Office of Science and Technology, UK, wrote

e-Science is about global collaboration in key areas of science, and the next generation of
infrastructure that will enable it.

3 EU COST Action D9 “Advanced computational chemistry of increasingly complex systems”.
4 For some details see, for example the Wikipedia entry on e-science at

http://en.wikipedia.org/wiki/E-Science

Currently the largest focus in e-science is in the United Kingdom. In the United States similar
initiatives are termed cyberinfrastructure projects.
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He predicted that

e-Science will change the dynamic of the way science is undertaken.

We submit that key elements of e-science such as collaborative virtual environments
will evolve most rapidly and deliver a functionality required by practicing scientists
if they are developed as part of a research project in the target discipline. This is
the approach that we have followed in this work. We have developed a collabora-
tive virtual environment for molecular electronic structure theory whilst undertaking
research into aspects of the Brillouin-Wigner theory for many-body systems.

In the following section, we give a brief overview of molecular electronic struc-
ture theory using Brillouin-Wigner expansions. This is only intended to provide the
necessary background for the description of our collaborative virtual environment
which is given in Sect. 2. Section 3 contains a summary and our conclusions.

1 Molecular Electronic Structure Theory Using
Brillouin-Wigner Expansions

A fundamental understanding of the structure and properties of molecular entities
lies in the solution of the appropriate quantum mechanical equations which govern
the behaviour of the component particles, electrons and nuclei. The large disparity
of the masses of the electrons and the nuclei allows the separation of the equations
describing their respective motion to a good approximation in most case. This is the
Born-Oppenheimer approximation.5 The motion of the electrons is then described
in the field of fixed or clamped nuclei by the electronic Schrödinger equation. Solu-
tion of this equation for different configurations of the nuclei provides an effective
potential in which the nuclear motion takes place.

The solution of the electronic Schrödinger equation is frequently approximated
by decoupling the motion of each electron by invoking an independent electron
model (or independent particle model). Each electron is taken to move in the mean
field arising from the nuclei and the other electrons in the system. The resulting
equations are solved self-consistently.6 The approximation provided by the inde-
pendent electron model is then refined by taking account of the instantaneous
interactions of the electrons, that is, by accounting for electron correlation effects.7

Such effects may be described by the method of configuration interaction, by the
coupled cluster expansion or by many-body perturbation theory. These techniques

5 For a recent discussion of the separation of electronic and nuclear motion in molecules see
the chapters by B.T. Sutcliffe in the Handbook of Molecular Physics and Quantum Chemistry,
volume 1 [2].
6 For a recent discussion of the separation of the electronic Schrödinger equation for molecules
see the chapter by R. McWeeny in the Handbook of Molecular Physics and Quantum Chemistry,
volume 2 [3].
7 For a recent discussion of the electron correlation problem for molecules see the chapter by
R. McWeeny in the Handbook of Molecular Physics and Quantum Chemistry, volume 2 [4].
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are well understood and form the basis of robust computational procedures in cases
where the correlation treatment is developed with respect to a single reference
function. In many cases, however, a multireference formulation is required. For
example, the description of bond breaking processes invariable demands the use
of a multireference formalism.

Multireference configuration interaction is robust and thus, for example, Meiss-
ner et al. recently wrote [5]

The multi-reference configuration interaction (MRCI) method with singles and doubles
(MR-CISD) is one of very few quantum chemical methods which are used in routine
calculations for systems requiring a multi-reference description. The main reason for that is
its formal and computational simplicity and resistance to the intruder-state problem which
frequently occurs in other multi-reference-type calculations.

However, these authors also caution

“An important drawback of the MR-CISD scheme is, however, a relatively poor description
of the dynamic electron correlation provided by the linear expansion.”

This fundamental difficulty with the MR-CISD formalism has fostered the devel-
opment of “many-body” techniques over the past 50 years including perturbation
theory and cluster expansions. In their multireference formulations, these techniques
are plagued by the intruder state problem which can degrade or even destroy the
convergence of the expansion.

In recent years, Brillouin-Wigner methods have been applied to the “many-body”
problem in molecules in a “state specific” formulation. Although the Brillouin-
Wigner expansion is not itself a “many-body” theory, it can be subjected to a
posteriori correction which removes unphysical terms, which in the diagrammatic
formalism correspond to unlinked diagrams [6].

It is not our purpose here to describe the details of the application of Brillouin-
Wigner methods to many-body systems in molecular physics and quantum chem-
istry. Such details can be found elsewhere [6–8].

2 Elements of a Collaborative Virtual Environment
for Molecular Electronic Structure Theory

A collaborative virtual environment for molecular electronic structure theory evolved
during research into the use of Brillouin-Wigner methodology in handling the
electron correlation problem in molecules. We describe all of the elements of a col-
laborative virtual environment that we have considered and give a brief assessment
of how useful each element turned out to be in practice. Others may find different
elements to be more or less useful in their own collaborative work. Others may find
elements that we have not listed here to be useful. We believe that collaborative vir-
tual environments will become increasing important in the years ahead. They will
undoubtedly be at their most useful when tailored to participants’ research projects.
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Fig. 1 Prototype collaborative virtual environment for molecular electronic structure theory

We are not aware of any previous work which has examined the use of collaborative
virtual environments in molecular electronic structure theory or quantum chemistry.

The environment is web-based. This has the advantage that it can be accessed
from any machine with an internet connection from home or office or mobile com-
puter. Also the web-pages associated with the environment can be distributed, that
is different pages can be hosted by different machines in different locations.

Our collaborative virtual environment consists of three main elements:-

(i) Details of the participating scientists, i.e. the human resources for the collaboration

(ii) A knowledge base of key information of use to scientists involved in the project,
i.e. the intellectual foundations upon which the research is built and the intellectual
products of the collaborative research

(iii) A set of tools for collaboration, i.e. mechanisms for exchanging ideas and for criticis-
ing proposals, sharing information and pooling resources

The prototype environment home page is shown in Fig. 1. The three main regions
of this page correspond to the three elements listed above. We shall describe each
of these key components in the following sections.

2.1 Participants Details

Obviously, it is important for effective collaboration to take place that the details
of the participating scientists be available to all participants. The details must be
current. We found the following items to be useful:

• Postal address. Each participants affiliation is required in writing reports, pro-
posals and manuscript. Since there is almost no physical exchange of material
between participating scientists, the postal address are not used frequently.
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• Telephone number. Both calls to office land line and mobile telephones are
useful, but more recently internet telephony has become practical and more
economic. SMS8 is a useful feature.

• Internet telephone identity: This has become practical recently. We have used the
service provided by Skype9 which is free-of-charge and also allows conference
calls.

• Fax number. Fax is seldom used in recent years since it is easier and more
economic to scan a document and dispatch it as an attachment to an e-mail
message.

• E-mail address. e-mail is vital for effective collaboration. It is accurate, fast and
reliable. Unlike telephone calls (including those via the internet) is not intru-
sive, not requiring immediate response. e-mail messages can include a variety of
attachments, including LATEX files, which facilities the exchange of typeset math-
ematical equations, or scanned images as pdf files, which allows the exchange of
hand written notes and diagrams.

• World Wide Web home page
• Calendar. Essential for scheduling meetings whether virtual or real.
• Curriculum Vitae. Often required for the preparation of new proposals and

reports on work completed.
• Publications. A database organized by author, title, journal, date of publication,

and keywords.

2.2 Knowledge Base

The second element of a collaborative virtual environment is a ‘knowledge base’ –
a set of items that are required or found useful in carrying out the research project.

• E-notice board, including details of upcoming conferences, workshops, meetings
and summer schools

• E-note book. A database organized by date of entry, author and keywords
• Draft manuscripts. A database organized by date of entry, author, title and

keywords
• The NIST Reference on Constants, Units and Uncertainty:-

http://physics.nist.gov/cuu/Constants/

8 Short message service (SMS), available on most digital mobile phones, for sending of short
messages between mobile phones, other handheld devices and even landline telephones.
9 Details can be found at

http://www.skype.com

Skype provides free global telephony allowing unlimited voice calls using peer-to-peer
software. The authors’ skype identifiers are dr stephen wilson and dr ivan hubac
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• NIST Chemistry Web-book:-

http://webbook.nist.gov/chemistry/

• Web elements:-

http://www.webelements.com/

• Basis set library, e.g. the EMSL Gaussian Basis Set Order Form:-

http://www.emsl.pnl.gov/forms/basisform.html

• LATEX, e.g. the official LATEX project home page

http://www.latex-project.org/

the Comprehensive TEX Archive Network (CTAN)

http://www.ctan.org/

LATEX10 is the well known documentation preparation systems which can be used
to typeset a wide variety of documents. LATEX focuses on the logical structure
of the document rather than the format of the individual pages. It is particu-
larly suitable for the typesetting of mathematical formulae and yet a LATEX input
file contains only standard (ASCII) text characters and can therefore be created
and edited by any text editor and easily exchanged by e-mail. In remote col-
laborations LATEX is particularly important for the fast and accurate exchange of
mathematical formulae. For example, the recursion

Ωα = 1 +BαH1Ωα , (1)

which arises in the quantum chemical research project briefly described in the
previous section and which represents the Bloch equation [16] in Brillouin-
Wigner form, takes the following form in LATEX:

\begin{equation}
\Omega_{\alpha}=1+\mathcal{B}_{\alpha}\mathcal{H}_1
\Omega_{\alpha},
\label{1}
\end{equation}

There are many books providing information about and help with the use of
LATEX. We mention Kopka and Daly A Guide to LATEX2e: Tools and Techniques for
Computer Typesetting [13], Diller LATEX Line by Line [14], and Mittelbach et al.
The LATEX Companion [15], as well as the original publications by Knuth [9, 10]
and by Lamport [11, 12]. A set of help pages in hypertext markup language by
Sheldon Green were also found useful.

10 The TEX computer program and programming language was created by D.E. Knuth [9, 10]. It
consists of about 300 primitive commands which, together with a further 600 commands, constitute
what is known as plain TEX [10]. LATEX is a collection of TEXmacros which was designed by L.
Lamport for use as a markup language. The version designated LATEX2e, defined by Lamport in
1994, was used in the present work.
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• feynmf: A combined LATEX/Metafont package for easy drawing of professional
quality Feynman diagrams. feynmf lays out most diagrams satisfactorily from the
structure of the graph without any need for manual intervention. Nevertheless
all the power of Metafont is available for more obscure cases. Ohl’s feynmf is
designed for use with current LATEX, and works in combination with Metafont.
The feynmf package reads a description of the diagram written in TEX , and
writes out code. Metafont can then produce a font for use in a subsequent LATEX
run.

http://www.ctan.org/tex-archive/macros/latex/contrib/feynmf/

• COST, European Cooperation in the field of Scientific and Technical Research:

http://cost.cordis.lu/src/home.cfm

• COST Action D23 “European Metalaboratory for multireference quantum chem-
ical methods”:-

http://cost.cordis.lu/src/extranet/publish/D23WGP/d23-0001-01.htm

• Publications produced under the present COST action. A database organized by
author, title, journal, date of publication, and keywords.

• Other publications by participants. A database organized by author, title, journal,
date of publication, and keywords.

• Other publications of interest to the project. A database organized by author, title,
journal, date of publication, and keywords.

• Journals: see Table 1 for a partial list of journals included in the ‘knowledge
base’. Access to each journal was governed by the licensing arrangements in
place at each participants host institution.

Table 1 Some typical journals included in the ‘knowledge base’ component of our prototype
environment together with their current web addresses

Journal Web address

Chem. Phys. Lett. www.sciencedirect.com/science/journal/00092614
Int. J. Quantum Chem. www3.interscience.wiley.com/cgi-bin/jhome/29830
J. Am. Chem. Soc. pubs.acs.org/journals/jacsat/
J. Chem. Phys. scitation.aip.org/jcpo/
J. Comput. Chem. www3.interscience.wiley.com/cgi-bin/jhome/33822
J. Phys. B: At. Mol. Opt. Phys. www.iop.org/EJ/journal/JPhysB
J. Phys. Chem. A pubs.acs.org/journals/jpcafh/index.html
J. Phys. Chem. B pubs.acs.org/journals/jpcbfk/index.html
J. Molec. Struct. (THEOCHEM) www.elsevier.com/locate/theochem
Molec. Phys. www.tandf.co.uk/journals/titles/00268976.asp
Prog. Theor. Chem. & Phys. www.springeronline.com/sgw/cda/frontpage/

0,11855,4-135-69-33109911-0,00.html
Phys. Rev. Lett. prl.aps.org/
Phys. Rev. A pra.aps.org/
Phy. Chem. Chem. Phys. www.rsc.org/Publishing/Journals/CP/index.asp
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• Search engines, e.g. Google:-

http://www.google.com

• Programming tools, including literate programming methods. We have describe
the use of literate programming methods in quantum chemistry elsewhere [18].
Literate programming provides a mechanism for introducing higher standards of
code documentation and thus greater levels of collaboration in quantum chem-
istry code development and distribution. Literate programming combines the
theoretical development of a particular model with the associated computer code.
In 1984, D.E. Knuth published his seminal paper [19] entitled “Literate program-
ming” in The Computer Journal. Knuth proposed a system of programming,
which he termed the WEB,11 for the generation of structured and documented
programs. The philosophy of the WEB system is described by Knuth as follows:-

I believe that the time is ripe for significantly better documentation of programs, and
that we can best achieve this by considering programs to be works of literature. Hence,
my title: “Literate Programming.

Knuth advocates a radical shift of emphasis in the writing of computer programs.
He makes this point as follows:-

Let us change our traditional attitude to the construction of programs: Instead of imag-
ining that our main task is to instruct a computer what to do, let us concentrate rather on
explaining to human beings what we want a computer to do.

Although Knuth made these observations 20 years ago, to date they have had
surprising little impact in computational quantum chemistry or, indeed, com-
putational chemistry in general. For example, there is no mention of literate
programming methods in, for example, the Encyclopedia of Computational
Chemistry [20], a major reference work in the field published in 1998. Indeed,
to the authors knowledge, literate programming techniques have not been widely
adopted in any of the computational sciences.
Knuth recognizes that the task facing a literate programmer extends beyond that
of a computer programmer. The literate programmer strives not only to create
correct and efficient computer code but also a description of the theoretical con-
cepts that lie behind the code. Knuth [21] explains the literate programmers task
as follows:-

The practitioner of literate programming can be regarded as an essayist, whose main
concern is with exposition and excellence of style. Such an author, with thesaurus in
hand, chooses the names of variables carefully and explains what each variable means.
He or she strives for a program that is comprehensible because its concepts have been
introduced in an order that is best for human understanding, using a mixture of formal
and informal methods that reinforce each other.

11 This is not to be confused with the World Wide Web which had not been proposed at the time
Knuth first published his idea.
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The literate programming approach offers significant benefits including: (i) struc-
tured code, (ii) collaborative development, (iii) code integrity, (iv) economy/
efficiency, (v) education. For more details see, for example, Ref. [18].

• Numerical libraries, e.g. Numerical Algorithms Group

http://www.nag.co.uk/

and Numerical Recipes in C [22]

http://www.nr.com/

• Ab initio quantum chemistry program suites, e.g. GAUSSIAN [23]

http://www.gaussian.com/

which is the most widely used quantum chemical software suite, and GAMESS

[24]

http://www.msg.ameslab.gov/GAMESS/GAMESS.html

for which the source code is freely available.
• Other web resources, e.g. wikipedia:-

http://en.wikipedia.org/wiki/Main Page

and wiktionary:-

http://en.wiktionary.org/wiki/Main Page

2.3 Collaborative Tools

The third element of a collaborative virtual environment is a set of ‘collaborative
tools’, including

• E-mail: This is vital for effective collaboration. It is accurate, fast, reliable and
economic. Unlike telephone calls (including those made via the internet) is not
intrusive, not requiring immediate response. e-mail messages can include a vari-
ety of attachments, including LATEX files, which facilities the exchange of typeset
mathematical equations, or scanned images as pdf12 files, which allows the
exchange of hand written notes and diagrams.

12 Adobe’s Portable Document Format (pdf) [17] guarentees page fidelity down to the smallest
glyph or piece of white space. pdf files can be viewed and printed on many different computer
platforms by means of Adobe’s Acrobat Reader

http://www.adobe.com/products/acrobat/readermain.html

or ghostscript

http://www.cs.wisc.edu/˜ghost/

The latter can also convert Postscript into pdf format.
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• Slide presentations, workshop and conference presentations for discussion before
they are delivered and for reference afterwards. These are usually created as pdf
files and stored in a database.

• Real-time discussions using internet telephone (skype www.skype.com). Con-
ference calls are also facilitated. Accurate scheduling is vital for their effective
exploitation.

• Video conferencing. Not useful given the currently available bandwidths, but this
may change in the future.

• Whiteboard.
• Collaborative browsing. Easier to exchange web addresses by e-mail.
• Voting and polling.
• File exchange.
• Application/desktop sharing.
• Web publishing.

3 Summary and Conclusions

We have developed a prototype collaborative virtual environment, which actively
supports human-human communication in addition to human-machine communi-
cation, for molecular electronic structure theory. We submit that key elements of
e-science, such as collaborative virtual environments, will evolve most rapidly and
deliver a functionality required by practicing scientists if they are developed as part
of a research project in the target discipline. This is the approach that we have
followed in this work. We have developed a collaborative virtual environment for
molecular electronic structure theory whilst undertaking research into aspects of
the Brillouin-Wigner theory for many-body systems. Others working in molecular
physics and quantum chemistry may find this a useful starting point for the develop-
ment of improved environments. Such environments will undoubtedly evolve with
time as higher bandwidths and new tools become available.

Postscript

Advances in information and communications technology are facilitating wide-
spread cooperation between groups and individuals, who may be physically located
at geographically distributed sites (– sites in different laboratories, perhaps in differ-
ent countries or even different continents), in a way that may disrupt and challenge
the traditional structures and institutions of science (as well bringing change to soci-
ety as a whole). Collaborative virtual environments, such as the one described here,
have the potential to transform the ‘scientific method’ itself by fuelling the gene-
sis, dissemination and accumulation of new ideas and concepts, and the exchange
of alternative perspectives on current problems and strategies for their solution.
Because of their openness and their global reach, as well as their emergent and
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thus agile nature, such environments may transform the practice of science over the
next decades.

“[T]he communication system is [...] vital to science; it lies at the very heart of
the ‘scientific method”’ [1]. But, at the same time as technology is facilitating radical
improvements in communications which can only serve to fuel scientific progress,
there are factors in the contemporary structures and institutions governing science
which have to potential to seriously inhibit scientific communication and thereby
scientific progress. These factors are potentially as limiting as the ‘iron curtain’.
The science policies of governments and universities increasingly link funding for
science with economic return. This can foster practices, such as the proprietary cap-
ture of genetic databases, which inhibit the free and open exchange of information.
With scientific results cloaked in a veil of commercial confidentiality and/or vested
interests, the communication which is the engine of progress in science is curtailed.
Even in those areas of science which are of no direct economic benefit there is the
outdated ‘copyright economy’ which forces scientists to assign all rights to a major
commercial journal publisher for no remuneration and then buy back their work
through monopolistic subscriptions.

Acknowledgment This work was carried under the auspices of EU COST programme – Action
D23, Project number D23/0001/01: European Metalaboratory for multireference quantum chemi-
cal methods.
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