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Preface

This book is about applied statistical analysis of competing risks and multi-
state data.

Competing risks generalize standard survival analysis of a single, often
composite or combined endpoint to investigating multiple first event types.
A standard example from clinical oncology is progression-free survival, which
is the time until death or disease progression, whatever occurs first. A usual
survival analysis studies the length of progression-free survival only. A compet-
ing risks analysis would disentangle the composite endpoint by investigating
the time of progression-free survival and the event type, either progression or
death without prior progression. Competing risks are the simplest multistate
model, where events are envisaged as transitions between states. For compet-
ing risks, there is one common initial state and as many target states as there
are competing event types. Only transitions between the initial state and the
competing risks states are considered.

A multistate model that is more complex than competing risks is the
illness-death model. In the example of progression-free survival, this multi-
state model would also investigate death after progression. In principle, a
multistate model consists of any finite number of states, and any transition
between any pair of states can be considered.

This book explains the analysis of such data with R. In Part I, we first
present the practical data examples. They come from studies conducted by
medical colleagues where at least one of us has been personally involved in
planning, analysis, or both. Secondly, we give a concise introduction to the
basic concepts of hazard-based statistical models which is a unique feature of
all modelling approaches considered. Part II gives a step-by-step description of
a competing risks analysis. The single ingredients of such an analysis serve as
key tools in Part III on more complex multistate models. Thus, our approach
is in between applied texts, which treat competing risks or multistate models
as ‘further topics’, and more theoretical accounts, which include competing
risks as a simple multistate example. Our choice is motivated, firstly, by the
outstanding practical importance of competing risks. Secondly, starting with
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VI Preface

competing risks allows for a technically less involved account, while at the
same time providing many techniques that are useful for general multistate
models.

The statistical concepts are turned into concrete R code. One reason for
using R is that it provides for the richest practical toolbox to analyse both
competing risks and multistate models. However, the practical implementation
is explained in such a way that readers will be to able to, e.g., run Cox analyses
of multistate data using other software, provided that the software allows for
fitting a standard Cox model. Nonparametric estimation and model-based
prediction of probabilities, however, are, to the best of our knowledge and at
the time of writing, an exclusive asset of R.

The typical reader of the book is a person who wishes to analyse time-to-
event data that are adequately described via competing risks or a multistate
model. Such data are frequently encountered in fields such as epidemiology,
clinical medicine, biology, demography, sociology, actuarial science, reliabil-
ity, and econometrics. Most readers will have some experience with analysing
survival data, although an account on investigating the time until a single,
composite endpoint is included in the first two parts of the book. We do not
assume that the reader is necessarily a trained statistician or a mathematician,
and we have kept formal presentation to a minimum.

Likewise, we have refrained from giving mathematical proofs for the un-
derlying theory. Instead, we encourage readers to use simulation in order to
convince themselves within the R environment that the methodology at hand
works. This algorithmic perspective is also used as an intuitive tool for under-
standing how competing risks and multistate data occur over the course of
time.

Although refraining from a mathematically rigorous account, the presen-
tation does have a stochastic process flavor. There are two reasons for this:
firstly, it is the most natural way to describe multiple event types that hap-
pen over the course of time. Secondly, we hope that this is helpful for readers
who wish to study more thoroughly the underlying theory as described in the
books by Andersen et al. (1993) and Aalen et al. (2008).

How to read this book: The most obvious way is to start at the beginning.
Chapter 1 presents the practical data examples used throughout the book.
In Chapter 2, we recall why the analysis of standard survival data is based
on hazards, and we then explain why the concept of a hazard is amenable to
analysing more complex competing risks and multistate data. A further con-
sequence is that the data may be subject to both the common right-censoring,
where only a lower bound of an individual’s event time may be observed, and
left-truncation, where individuals enter the study after time origin. Such a
delayed study entry happens, e.g., in studies where age is the time scale of
interest, but individuals enter the study only after birth. The practical impli-
cations of Chapter 2 for competing risks are considered in Part II. Part III is
on multistate models and frequently makes use of the competing risks toolbox.
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Readers who urgently need to analyse competing risks data may proceed to
the competing risks part of the book right away. They should at least skim over
the description of competing risks as a multistate model in Chapter 3. The
common nonparametric estimation techniques are in Chapter 4, and Cox-type
regression modelling of the cause-specific hazards is explained in Section 5.2.
These readers are, however, encouraged to read Chapter 2 later in order to
understand why the techniques at hand work. In our experience, a practical
competing risks analysis often raises questions such as whether the competing
risks are independent or whether and when a competing risk can be treated
as a censoring. Some of these issues are collected in Section 7.2. The theory
outlined in Chapter 2 is necessary to clarify these issues.

Readers who wish to analyse multistate data in practice should have a clear
understanding of competing risks from a multistate model point of view and
as explained in detail in Part II. As stated above, this is so, because Part III
frequently draws on competing risks methodology. The connection is that we
are going to consider multistate models that are realized as a nested sequence
of competing risks experiments; see Chapter 8.

This book is also suitable for graduate courses in biostatistics, statistics,
and epidemiological methods. We have taught graduate courses in biostatistics
using the present material.

The R packages and the data used in this book can be downloaded from
the Comprehensive R Archive Network

http://cran.r-project.org/

The book is also accompanied by web pages, which can be found at

www.imbi.uni-freiburg.de/comprisksmultistate

The web pages provide the complete R code used to produce the analyses of
this book as well as solutions to the Exercises. Sweave (Leisch, 2002) has been
used to generate the LATEX files of this book and to extract its R code. We
also hope that readers will visit the web pages and leave us a message if they
find any mistakes or inconsistencies.

We thank our medical colleagues who have granted us permission to use
the data of their studies and to publish the data as part of R packages. This
book has profited from collaborative work and/or comments from Adrian Bar-
nett, Ronald Geskus, Nadine Grambauer, Stefanie Hieke, Aurélien Latouche,
Reinhard Meister, Hein Putter and Christine Porzelius. We thank them all.
Parts of this book have been written while the authors were supported by grant
FOR 534 ‘Statistical modeling and data analysis in clinical epidemiology’ from
the Deutsche Forschungsgemeinschaft. This is gratefully acknowledged.

Freiburg, Jan Beyersmann
Arthur Allignol

Martin Schumacher

http://cran.r-project.org/
http://www.imbi.uni-freiburg.de/comprisksmultistate
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Part I

Data examples and some mathematical

background



1

Data examples

In this book, we use both real and simulated data. One idea behind using
simulated data is to illustrate that competing risks and multistate data can
be conveniently approached from an algorithmic perspective. The data simu-
lations are explained in their respective places in the book. In this section, we
briefly introduce the real data examples. All of them are publicly available as
part of the R packages used in this book.

Pneumonia on admission to intensive care unit, data set sir.adm

The data set is part of the mvna package. It contains a random subsample of
747 patients from the SIR 3 (Spread of nosocomial Infections and Resistant
pathogens) cohort study at the Charité university hospital in Berlin, Germany,
with prospective assessment of data to examine the effect of hospital-acquired
infections in intensive care (Wolkewitz et al., 2008). The data set contains
information on pneumonia status on admission, time of intensive care unit
stay and ‘intensive care unit outcome’, either hospital death or alive discharge.
Pneumonia is a severe infection, suspected to both require additional care (i.e.,
prolonged intensive care unit stay) and to increase mortality.

The entry sir.adm$pneu is 1 for patients with pneumonia present on ad-
mission, and 0 for no pneumonia. A patient’s status at the end of the observa-
tion period is contained in sir.adm$status, 1 for discharge (alive) and 2 for
death. sir.adm$status is 0 for patients still in the unit when the data base
was closed. These patients are called (right-) censored. A patient’s length of
stay is in sir.adm$time.

There were 97 patients with pneumonia on admission. Overall, 657 patients
were discharged alive, 76 patients died, and 14 patients were still in the unit at
the end of the study. 21 of the patients who died had pneumonia on admission.

The data set sir.adm is a competing risks example; that is, we investigate
the time until end of stay and the discharge status, either alive discharge or
hospital death. A challenge in the analysis of this data set is that pneumonia is
found to increase the probability of dying in hospital, but appears to have no

J. Beyersmann et al., Competing Risks and Multistate Models with R, Use R,  
DOI 10.1007/978-1-4614-2035-4_1, © Springer Science+Business Media, LLC 2012 
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4 1 Data examples

effect on the death hazard, i.e., loosely speaking, the daily probability of dying
in hospital, given that one was still alive and in the unit at the beginning of
the day.

We analyse the data set sir.adm in Sections 4.3, 5.2.2, 5.3.3, and Chap-
ter 6.

Drug-exposed pregnancies, data set abortion

The abortion data set, shipped with the etm and mvna packages, contains
information on 1186 pregnant women collected prospectively by the Teratol-
ogy Information Service of Berlin, Germany. Among these pregnant women,
173 were exposed therapeutically to coumarin derivatives, a class of orally ac-
tive anticoagulant, which are supposed to stop blood from clotting. Coumarin
derivatives are vitamin K antagonists and are known to act as teratogens (i.e.,
they can disturb the development of an embryo or fetus). Controls consisted
of 1013 women not exposed to potential teratogens. One aim of the study,
which is discussed in detail by Meister and Schaefer (2008), was to assess the
risk of spontaneous abortion after exposure to coumarin derivatives during
pregnancy.

Women therapeutically exposed to coumarin derivatives have value 1 in
abortion$group, which is 0 otherwise. Pregnancy outcomes are in
abortion$cause, 1 for induced abortion, 2 for live birth, and 3 for spon-
taneous abortion. Study entry times are in abortion$entry, times of live
birth or abortion are in abortion$exit. Pregnancy outcome is known for all
women.

The data set abortion is a competing risks example; that is, we investigate
the time until end of pregnancy and pregnancy outcome, either spontaneous
abortion, induced abortion or live birth. A challenge in the analysis of this
data set is that the time origin is conception, but women typically enter the
study after conception. This is known as left-truncation. Women who, e.g.,
have a spontaneous abortion before their potential study entry time never
enter the study.

Within the group of 173 exposed women, there were 43 spontaneous abor-
tions, 38 induced abortions, and 92 live births. In the control group with 1013
women, there were 69 spontaneous abortions, 20 induced abortions, and 924
live births.

We analyse the data set abortion in Sections 4.4 and 5.2.2.

Cardiovascular events in patients receiving hemodialysis, data set fourD

The data set is part of the etm package and contains the control group data
from the 4D study (Wanner et al., 2005). The background of the 4D study
was that statins are known to be protective with respect to cardiovascular
events for persons with type 2 diabetes mellitus without kidney disease, but
that a potential benefit of statins in patients receiving hemodialysis had un-
til then not been assessed. Patients undergoing hemodialysis are at high risk
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for cardiovascular events. The 4D study was a prospective randomized con-
trolled trial evaluating the effect of lipid lowering with atorvastatin in 1255
diabetic patients receiving hemodialysis. Patients with type 2 diabetes melli-
tus, age 18–80 years, and on hemodialysis for less than 2 years were enrolled
between March 1998 and October 2002. Patients were randomly assigned to
double-blinded treatment with either atorvastatin (619 patients) or placebo
(636 patients) and were followed until death, loss to follow-up, or end of the
study in March 2004. The data set fourD contains those patients assigned to
placebo treatment.

The 4D study was planned (Schulgen et al., 2005) and analysed (Wanner
et al., 2005) for an event of interest in the presence of competing risks. The
event of interest was defined as a composite of death from cardiac causes,
stroke, and non-fatal myocardial infarction, whichever occurred first. The
other competing event was death from other causes. Within the placebo group,
there were 243 observed events of interest, 129 observed competing events,
and 264 patients with censored event times. A patient’s status at the end of
the follow-up is in fourD$status. Possible values are 1 for the event of inter-
est, 2 for death from other causes and 0 for censored observations. fourD$time
contains the follow-up time.

We use the 4D data in the Exercises of Chapters 4, 5, and 6. The Exercises
highlight how we can approach real data from an algorithmic perspective
(Allignol et al., 2011c).

Bloodstream infections in stem-cell transplanted patients, data set okiss

The data set is part of the compeir package. It contains a random subsample
of 1000 patients from ONKO-KISS (Dettenkofer et al., 2005); ONKO-KISS
is part of the surveillance program of the German National Reference Centre
for Surveillance of Hospital-Acquired Infections. KISS stands for Krankenhaus
(Hospital) Infection Surveillance System. The patients in the data set have
been treated by peripheral blood stem-cell transplantation, which has become
a successful therapy for severe hematologic diseases. After transplantation,
patients are neutropenic; that is, they have a low count of white blood cells,
which are the cells that primarily avert infections. Occurrence of bloodstream
infection (BSI) during neutropenia is a severe complication.

A patient’s time of neutropenia until occurrence of bloodstream infection,
end of neutropenia or death, whatever occurs first, is in time. A patient’s
status is in status, 1 for infection, 2 for end of neutropenia (alive and without
prior bloodstream infection) and 7 for death during neutropenia without prior
bloodstream infection. Patients censored while neutropenic have status equal
to 11. Information on a patient’s transplant type is in allo, which is 1 for
allogeneic transplants and 0 for autologous transplants.

There were 564 patients with an allogeneic transplant. Of these, 120 ac-
quired bloodstream infection. End of neutropenia, alive and without prior
infection, was observed for 428 patients. These numbers are 83 and 345, re-
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spectively, for the remaining 436 patients with an autologous transplant. There
were few cases of death without prior infection and few censoring events.

Autologous transplants are considered to be superior in terms of infection
outcome. The challenge in this competing risks example is that autologous
transplants in fact decreased the number of infections divided by the number
of patients, but that they also increased the number of infections divided by
the number of patient-days.

The ONKO-KISS data serve as a template for the simulated competing
risks data that we analyse in Chapter 5. The data set okiss is used in the
Exercises of Chapter 5.

Hospital-acquired pneumonia, data set icu.pneu

The data set is part of the kmi package and contains a random subsam-
ple of 1313 patients from the SIR 3 study described above; see the data set
sir.adm. In contrast to sir.adm, the data set icu.pneu contains information
on hospital-acquired pneumonia status, time of intensive care unit stay, and
‘intensive care unit outcome’, either hospital death or alive discharge. There
is also additional covariate information on age and sex.

Hospital-acquired infections are a major healthcare concern leading to in-
creased morbidity, mortality, and hospital stay. Length of stay is often used to
quantify healthcare costs. Additional healthcare costs attributed to hospital-
acquired infections are used in cost benefit studies of infection control mea-
sures such as isolation rooms.

Every patient is represented by either one or two rows in the data set. Pa-
tients who acquired pneumonia during intensive care unit stay have two rows.
Each row represents a time interval from icu.pneu$start to icu.pneu$stop.
On admission, all patients are free of hospital-acquired pneumonia. Their
infection-free period is represented by the first data row. The infection status
icu.pneu$pneu is 0. Patients with hospital-acquired pneumonia have a sec-
ond data line which represents the time interval from pneumonia acquisition
to end of stay or censoring. The infection status icu.pneu$pneu is 1 in the
second data line. Observed end of stay at time icu.pneu$stop is indicated by
icu.pneu$status equal to 1, which is 0 otherwise. For patients with two data
lines, icu.pneu$status is always 0 in the first line. Finally, icu.pneu$event
contains the hospital outcome, either 3 for death or 2 for alive discharge. The
entry in icu.pneu$event has no meaning, if icu.pneu$status is zero.

21 observations were censored. 108 patients experienced hospital-acquired
pneumonia. Of these, 82 patients were discharged alive and 21 patients died.
Without prior hospital-acquired pneumonia, 1063 patients were discharged
alive and 126 patients died.

The data set icu.pneu is a multistate example, namely a so-called illness-
death model without recovery and with competing endpoints. All patients
are in a common initial state on admission to the unit. As before, hospital
outcome is modelled by competing endpoint states, but there is now also an
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intermediate state, which is entered by patients at the time that they acquire
pneumonia. Interestingly, we again find that increased mortality after hospital-
acquired pneumonia is mediated by delayed alive discharge. Compared to the
data set sir.adm, however, an additional challenge arises through the time
dependency of hospital-acquired infection status. E.g., in analyses of increased
length of hospital stay, we must carefully distinguish between hospital days
before and after the infection. The issue is that hospital stay before an infection
must not be attributed to the infection.

We analyse the data set icu.pneu in Sections 9.2.1, 10.2.1, 11.1.3, and 11.2.3.

Ventilation in intensive care, data set sir.cont

The data set is part of the mvna package and contains another random sub-
sample of 747 patients from the SIR 3 study described above; see the data set
sir.adm. The data set sir.cont contains information on times of ventilation
and time of intensive care unit stay. There is also additional covariate infor-
mation on age and sex. Ventilated patients are supposed to require additional
care, leading to prolonged intensive care unit stay.

sir.cont is an example of an illness-death model with recovery, because
ventilation may be switched on and off during hospital stay. In addition, pa-
tients may either be on ventilation or off ventilation on admission to the unit.
Events are represented in sir.cont in a multistate fashion. Switching ven-
tilation on is represented by 0 → 1 ‘transitions’ as indicated in the columns
from and to. Switching ventilation off is represented by 1 → 0 ‘transitions’.
Event times are in column time. Event times representing end of stay have
value 2 in column to. The entry is ’cens’ for censored event times.

We investigate the impact of ventilation on length of stay in Sections 9.2.2,
10.2.2, and 11.4.



2

An informal introduction to hazard-based

analyses

This chapter explains in a non-technical manner why methods for analysing
standard survival data — one endpoint, observation of which is subject to
right-censoring — transfer to more complex models, namely competing risks
and multistate models, this book’s topic.

In Section 2.1, we explain how right-censoring, where only an individual’s
minimum lifetime may be known due to closing of a study, say, leads to the
hazard rate being the key statistical quantity. Probability estimates are then
derived as deterministic functions of simpler estimators of the cumulative
hazards. In fact, the technical difficulty of right-censoring is a consequence of
an important conceptual aspect: time is not just another measurement on a
scale, but plays a special role. Events happen over the course of time, e.g.,
illness often precedes death, and one has to wait in order to observe an event.
This requires a dedicated statistical theory, and hazards are in general well
suited to analyse events that occur over the course of time like survival data
do. The concept of a hazard is also important for the data analyst’s intuition:
approximately, one may think of a hazard as the probability of experiencing
an event within the next time unit conditional on presently being event-free.
Say the event is death. Then this information may be more relevant given
current vital status than an unconditional survival probability.

In Section 2.2, we explain why hazard-based techniques also apply to
analysing competing risks data and multistate model data. Competing risks
models allow for investigating different endpoint types that may occur at the
event time in question. Occurrence of subsequent events may be investigated
by multistate models. The type of multistate models that we consider are
time-inhomogeneous Markov models, which are realized as a series of nested
competing risks experiments. It is also discussed that these techniques allow
for left-truncation in addition to right-censoring. Data are left-truncated if pa-
tients have a delayed study entry time. The mathematical basis behind these
extensions are counting processes, which count different event types over the
course of time, and martingales, which represent noise over the course of time.

J. Beyersmann et al., Competing Risks and Multistate Models with R, Use R,  9
DOI 10.1007/978-1-4614-2035-4_ , © Springer Science+Business Media, LLC 2012 2
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The connection to counting processes and martingales is also explained in an
informal way.

Finally, the brief Section 2.3 explains that asymptotic results are used for
approximate inference when analysing event times in practice. Typically, the
statistical techniques are of a nonparametric kind, and, e.g., using approximate
normality has been found to work well even in moderate sample sizes.

Section 2.1 contains a lot of R code. Readers are encouraged to reproduce
the code which explains how we may estimate cumulative hazards in the
presence of right-censoring and how probabilities and their estimates may
be computed from either the true or the estimated cumulative hazards. There
is hardly any R code in Sections 2.2 and 2.3; this is what the remainder of the
book is about.

2.1 Why survival analysis is hazard-based.

2.1.1 Survival multistate model, hazard, and survival probability

Figure 2.1 displays the simplest multistate model. An individual is in the initial

0

Initial Absorbing

� 1

Fig. 2.1. Survival multistate model.

state 0 at time origin. At some later random time T , the individual moves to
the absorbing state 1. ‘Absorbing’ means that the individual cannot move out
of state 1, or that transitions out of state 1 are not modelled. Figure 2.1 is the
classical model of survival analysis, if we interpret state 0 as ‘alive’ and state 1
as ‘dead’. We are interested in the event time T ; T is often called ‘survival
time’ or ‘failure time’.

To find out about T , we need to record data over the course of time, i.e. we
need to record in which state, 0 or 1, an individual is for every point in time.
This is what a stochastic process does. We write Xt for the state occupied by
the individual at time t ≥ 0, Xt ∈ {0, 1}. T is the smallest time at which the
process is not in the initial state 0 anymore,

T := inf{t : Xt �= 0}. (2.1)

This relationship between the stochastic process (Xt)t≥0 and the event time T
is illustrated in Figure 2.2. For illustration, consider an individual with event
time T = 52. This individual will be in state 0 for all times t ∈ [0, 52) and in
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�

�
0 �

1 �

T

Xt

t

Fig. 2.2. Stochastic process (Xt)t≥0 and the event time T : The bullet • is included
in the graph, and the circle ◦ is not.

state 1 for all times t ≥ 52. Note that the state occupied at the event time T
is the absorbing state 1, i.e., XT = X52 = 1. This definition implies that the
sample paths of the stochastic process, i.e.

[0,∞) � t �→ Xt

are right-continuous, as illustrated in Figure 2.2. As state 1 is absorbing, data
recording may stop for an individual with time T .

The statistical analysis of T is based on the hazard α(t) attached to the
distribution of T :

α(t) · dt := P(T ∈ dt |T ≥ t), (2.2)

where we write dt both for the length of the infinitesimal (i.e., very small)
time interval [t, t + dt) and the interval itself. Equation (2.2) is a short, but
more intuitive form of

α(t) := lim
Δt↘0

P(T ∈ [t, t+Δt) |T ≥ t)
Δt

.

Throughout this book, we assume that derivatives such as in Equation (2.2)
exist. The hazard is ‘just’ a different ‘representation’ of the distribution of T :

Before we answer the question of why survival analysis is hazard-based,
let us first note that knowing the cumulative hazard A(t),

A(t) :=

∫ t

0

α(u) du, (2.3)

suffices to recover the distribution function of T ,

F (t) := 1 − S(t) := P(T ≤ t) = 1 − exp(−A(t)), (2.4)

where S(t) = P(T > t) = exp(−A(t)) is usually called the survival function
of T . The right hand side of (2.4) is easily derived from (2.2) using standard
calculus, but this adds little to our understanding. A more useful notion is
product integration: because dA(u) = α(u)du, we may rewrite (2.2),

1 − dA(u) = P(T ≥ u+ du |T ≥ u). (2.5)



12 2 An informal introduction to hazard-based analyses

The survival function should then be an infinite product over conditional
probabilities of type (2.5). This is, in fact, the case. We call such an infinite
product a product integral and write . So,

S(t) =

t

0

(1 − dA(u)) (2.6)

≈
K∏

k=1

(1 −ΔA(tk)) ≈
K∏

k=1

P(T > tk |T > tk−1), (2.7)

where 0 = t0 < t1 < t2 < . . . < tK−1 < tK = t partitions the time inter-
val [0, t] and ΔA(tk) = A(tk)−A(tk−1). Now, the right hand side of (2.4) can
simply be seen as a solution of the product integral in (2.6). The product inte-
gral itself, however, shows up again with the famous Kaplan-Meier or product
limit estimator of the survival function, and, in a matrix-valued form, when
we move from survival analysis to competing risks and multistate models. Let
us now check the approximation of (2.6) by (2.7) empirically using R. The
following function prodint takes a vector of time points and a cumulative

hazard A as an argument and returns the approximation
∏K

k=1 (1 −ΔA(tk)).

> prodint <- function(time.points, A) {

+ times <- c(0, sort(unique(time.points)))

+ S <- prod(1 - diff(apply(X = matrix(times),

+ MARGIN = 1, FUN = A)))

+ return(S)

+ }

A standard parametric example is the exponential distribution with constant
hazard α(t) = α and cumulative hazard A(t) = α · t. We exemplarily look at
an exponential distribution with hazard 0.9,

> A.exp <- function(time.point) {

+ return(0.9 * time.point)

+ }

on the time interval [0, 1]:

> times <- seq(0, 1, 0.001)

> prodint(times, A.exp)

[1] 0.4064049

> exp(-0.9 * max(times))

[1] 0.4065697

The vector of time points does not have to be equally spaced:

> prodint(runif(n = 1000, min = 0, max = 1), A.exp)
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[1] 0.4068678

A more flexible parametric model is the Weibull distribution with shape pa-
rameter θ and scale parameter γ. It has hazard α(t) = γ·θ·tθ−1 and cumulative
hazard A(t) = γ · tθ. Let us look at a Weibull distribution with scale 2 and
shape 0.25,

> A.weibull <- function(time.point){

+ return(2 * time.point^0.25)

+ }

and the time interval [0, 1] as before:

> prodint(times, A.weibull)

[1] 0.1234838

> exp(-2 * max(times)^0.25)

[1] 0.1353353

The approximation becomes better with an ever finer spaced partition:

> prodint(seq(0, 1, 0.000001), A.weibull)

[1] 0.1350193

The next section 2.1.2 explains why the cumulative hazard can still be esti-
mated, if data are incomplete due to, e.g., individuals surviving the closing of
a study. An estimator of the survival probability is then derived by computing
the product integral with respect to the estimated cumulative hazard.

2.1.2 Estimation: The hazard remains ‘undisturbed’ by censoring.

The approximation (2.7) of the product integral (2.6), implemented via
prodint, directly results in the Kaplan-Meier estimator of S(t), if we sub-
stitute the increment of the cumulative hazard by an adequate estimator,
which turns out to be the Nelson-Aalen estimator of the cumulative hazard.
In other words, we may estimate the survival function S of the event time T
by the product integral of an estimator of the cumulative hazard. This leads
us to the question of why survival analysis is hazard-based, and, of course,
how the cumulative hazard may be estimated: so far, we may estimate S(t)
either by the empirical survival function,

n−1 · (number of individuals surviving t) , (2.8)

if we start with n individuals at time origin. Or we may base things on esti-
mating the cumulative hazard. A natural estimator of the increments ΔA(t)
is
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ΔÂ(t) =
number of individuals failing at t

number of individuals alive just prior to t
, (2.9)

so that we estimate the cumulative hazard as

Â(t) =
K∑

k=1

number of individuals failing at tk
number of individuals alive just prior to tk

, (2.10)

if 0 < t1 < t2 < . . . < tK−1 < tK = t is the ordered sequence of ob-
served failure times. It is a straightforward algebraic exercise to show that

t

0

(
1 − dÂ(u)

)
=

∏K
k=1

(
1 −ΔÂ(tk)

)
equals (2.8), if we observe the failure

times for all n individuals. We briefly check this with R: we simulate 100
independent random variables from the exponential distribution with param-
eter 0.9,

> event.times <- rexp(100,0.9)

for which we wish to estimate the survival distribution at t = 1. We now
need to compute the increments (2.9), which can be conveniently done us-
ing the survival package (Therneau and Grambsch, 2000): First, we create
the fundamental ‘survival object’ using Surv on the simulated times. The
survfit-function then gives us the necessary information:

> library(survival)

> fit.surv <- survfit(Surv(event.times) ~ 1)

Now, fit.surv$time is the vector of times t1 < t2 < . . . < tK−1 < tK , and
fit.surv$n.event and fit.surv$n.risk are the numerator and denomina-
tor of (2.9), respectively. The function A computes (2.10):

> A <- function(time.point) {

+ sum(fit.surv$n.event[fit.surv$time <= time.point]/

+ fit.surv$n.risk[fit.surv$time <= time.point])

+ }

The estimator of the survival function at time 1 based on A and product
integration then is

> prodint(event.times[event.times <= 1], A)

[1] 0.41

and the empirical survival function is

> sum(event.times > 1) / length(event.times)

[1] 0.41

The restrictive assumption required to use the empirical survival function (2.8)
is that we are supposed to know the actual failure times of all individuals. This
will usually not be the case. Event history data occur over the course of time,
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and a data analysis is regularly performed before or without knowing all failure
times. E.g., a clinical study may be closed with, one hopes, many patients
surviving, or individuals may drop out of a study because they move to a
different place. In these instances, we will only know the minimum failure time.
That is, we only know the actual failure time to be greater than a certain value,
but not its precise value. This mechanism leads to incomplete observations
and is known as (right-)censoring. In the presence of censoring, the empirical
survival function (2.8) is rendered useless, as we cannot compute it anymore.
But hazards remain undisturbed by censoring: recall Definition (2.2) of the
hazard. Now introduce a censoring time C, independent of the event time T .
(This is the so-called random censorship model.) The observation is

(T ∧ C,1(T ≤ C)) , (2.11)

where we write ∧ for the minimum and 1(·) for the indicator function: 1(T ≤
C) equals 1, if T is less than or equal to C. T∧C is the censored event time, and
the event indicator 1(T ≤ C) tells us, whether T ∧ C equals the actual event
time T . Now, what is the probability of observing the actual event time in the
small time interval dt = [t, t+dt), conditional on the fact that neither event nor
censoring have happened before t? I.e., what is P(T ∈ dt, T ≤ C |T ∧C ≥ t)?
The interval dt is so short that, assuming T and C to be different, at most one
is in dt: if the event occurs in dt, it will be observed (still supposing T ∧C ≥ t).
Because C and T are independent, the probability that the event occurs in dt,
conditional on T ∧ C ≥ t, is the same as in the absence of censoring:

α(t) · dt = P(T ∈ dt |T ≥ t) = P(T ∈ dt, T ≤ C |T ∧ C ≥ t). (2.12)

In words: censoring has not disturbed the hazard. As a consequence, we may
estimate the cumulative hazard from censored data. Using product integra-
tion, this results in an estimator of the survival function. Equation (2.12) has
farther reaching consequences, which we investigate in Section 2.2. These are
also seen to be the reason why hazard-based techniques translate from the
simple survival multistate model of Figure 2.1 to competing risks and more
complex multistate models. Before we do so, let us briefly investigate estima-
tion from censored data:

We say an individual with T ∧C ≥ t is ‘at risk’ just prior to t. In order to
estimate the cumulative hazard, adapting Equations (2.9) and (2.10) to the
censored data set-up is straightforward:

ΔÂ(t) =
number of individuals observed to fail at t

number of individuals at risk just prior to t
, (2.13)

so that we estimate the cumulative hazard as

Â(t) =

K∑
k=1

number of individuals observed to fail at tk
number of individuals at risk just prior to tk

, (2.14)
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if 0 < t1 < t2 < . . . < tK−1 < tK = t is the ordered sequence of observed

failure times. Â of (2.14) is the Nelson-Aalen estimator of the cumulative haz-

ard. The product integral of Â is the Kaplan-Meier estimator of the survival
function:

Ŝ(t) :=

t

0

(
1 − dÂ(u)

)
=

K∏
k=1

(
1 −ΔÂ(tk)

)
(2.15)

We briefly revisit the R data example from above: in addition to event.times,
we simulate censoring times, which we choose to be uniformly distributed
on [0, 5]:

> cens.times <- runif(100,0,5)

The observable data are the censored event times T ∧ C,

> obs.times <- pmin(event.times, cens.times)

and the event indicator 1(T ≤ C),

> event.times <= cens.times

The number of observed event times is

> sum(event.times <= cens.times)

[1] 80

We now have to refit the survival object, also telling Surv which event times
were observed and which were censored:

> fit.surv <- survfit(Surv(obs.times,

+ event.times <= cens.times) ~ 1)

The Kaplan-Meier estimator of the survival function at time 1 then is

> prodint(obs.times[obs.times<=1], A)

[1] 0.3967501

The result is reasonably close both to the estimate previously obtained in the
absence of right-censoring and to the true value. Of course, we may also use
the survival package in order to estimate the survival function at time 1:

> S <- fit.surv$surv

> S[fit.surv$time <= 1][length(S[fit.surv$time <= 1])]

[1] 0.3967501
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So far, we have only estimated the survival function at one time point. Eval-
uating formula (2.15) at all observed event times yields an estimate of the
survival curve. A plot of the estimated survival function together with its
theoretical counterpart is displayed in Figure 4.3 in Section 4, where a more
in-depth discussion of the Kaplan-Meier estimator, the survival package, and
plotting the respective results is given.

In summary, survival analysis is hazard-based, because we can still es-
timate the cumulative hazard from right-censored data. We may then use
product integration to recover the survival function or, equivalently, the dis-
tribution function. In the remainder of this chapter, we find that this program
still works, in essence, with even more complex event data. Crucial to this is
an intimate relationship between hazards and counting processes; the latter do
a very intuitive thing: they count the number of observed events of a certain
type over the course of time. However, the interpretation of hazard-based re-
sults becomes more involved with more complex event data, which is a major
topic of this book.

2.2 Consequences of survival analysis being based on

hazards

In Section 2.1, we illustrated that the analysis of event time data is based
on hazards. This fact has a number of important consequences, which are
briefly outlined below. In Section 2.2.1, we find that estimation of the cumu-
lative hazard is intimately connected to counting processes and martingales. A
counting process simply counts the number of observed events over the course
of time. Martingale theory provides us with estimating equations and both
small and large sample properties of estimators. This connection allows us to
also analyse event time data which go beyond the right-censored, single-event
type situation discussed in Section 2.1.

In Section 2.2.2, we show that the hazard-based approach can also account
for left-truncated data, where patients have delayed study entry times. Sec-
tions 2.2.3 and 2.2.4 show how the current framework generalizes to compet-
ing risks and to time-inhomogeneous Markov multistate models. In addition
to considering an event time, competing risks models also distinguish between
different event types, one of which occurs at the event time. Multistate mod-
els can be thought of as being realized as a series of nested competing risks
experiments: an individual may experience different events over the course of
time, which are modelled as transitions between multiple states.

2.2.1 Counting processes and martingales

In Equation (2.12), we found that random right-censoring does not disturb
the hazard. We reformulate (2.12) as
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E (1(T ∈ dt, T ≤ C) |Past) = 1(T ∧ C ≥ t) · α(t) dt, (2.16)

where ‘Past’ stands for knowledge about all failure or censoring events before t.
Given the past, the at-risk indicator 1(T ∧C ≥ t) is known. If the individual
is at risk just prior to t (i.e., if we have that T ∧ C ≥ t), the probability
(conditional on the past) that we observe an event in the very small time
interval dt is as in (2.12). However, if the individual is not at risk just prior
to t because either a failure or a censoring event has happened before t (i.e.,
1(T ∧ C ≥ t) = 0), this probability is zero. This is summarized in (2.16).

As outlined earlier, Equation (2.12) implies that the cumulative hazard is
estimable from the observable data. In fact, (2.12) shows that a key role in
the estimation is played by the counting process

t �→ 1(T ≤ t, T ≤ C), t ≥ 0, (2.17)

which has (infinitesimal) increments 1(T ∈ dt, T ≤ C). The process (2.17)
simply counts the number of observed events in the time interval [0, t], either 0
or 1. Attached to the counting process is the at-risk process

t �→ 1(T ∧ C ≥ t). (2.18)

The counting process may only jump (from 0 to 1) at time t, if the at-risk
process equals 1. For estimation, we aggregate these processes over all indi-
viduals under study such that we count the number of observed events within
the sample and over the course of time. The at-risk process then keeps track
of the number of individuals currently at risk, i.e., without prior failure or
censoring event. This is reflected in the Nelson-Aalen estimator (2.14).

Furthermore, Equation (2.12) is tantamount to the fact that

1(T ≤ t, T ≤ C) −
∫ t

0

1(T ∧ C ≥ u) · α(u) du (2.19)

is a so-called martingale. Martingale theory provides a powerful tool to derive
estimators and test statistics as well as to study their small and large sample
properties. The latter may be used for approximate inference in practice. An
in-depth treatment of the application of martingale theory to the analysis of
event time data is beyond the technical level of this book. Interested readers
are referred to Andersen et al. (1993) and Aalen et al. (2008). We, however,
often make use of the results provided by the application of martingale the-
ory. E.g., variance estimators and approximate 95% confidence intervals may
conveniently be derived in this way.

We note, though, that equations (2.16) and (2.19), aggregated over all

individuals under study, suggest estimating A(t) =
∫ t

0
α(u) du by the Nelson-

Aalen estimator

Â(t) =

K∑
k=1

number of individuals observed to fail at tk
number of individuals at risk just prior to tk

,
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where the summation is over all event times tk, which are less than or equal
to t (cf. (2.14)). Equation (2.16) also suggests that Â should be an almost
unbiased estimator of A, as long as the risk set (i.e., the set of all individuals
currently at risk) is non-empty with a high probability. Martingale theory can
be used to show that this is actually the case.

In other words, the martingale (2.19), potentially aggregated over all in-
dividuals, can be considered as a noise process. Figure 2.3 shows the counting
process

t �→ number of individuals observed to fail in [0, t]

computed based on the simulated data in Section 2.1 and its so-called com-
pensator

t �→
∫ t

0

(number of individuals at risk just prior to u) · 0.9 du,

i.e., the integral over the at-risk process times the hazard α(t) = 0.9 of the
uncensored event times (cf. equations (2.16) and (2.19)). Figure 2.3 illustrates

Time t
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Fig. 2.3. Simulated data. The step function is the counting process of observed
events. The smooth line is the compensator of the counting process, i.e. the integral
over the risk set times the true hazard. Note that the compensator is only an almost
smooth line which has ‘edges’. The left hand derivative does not equal the right
hand derivative at time points where the number of individuals at risk changes.
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that the counting process approximates the compensator, which is intimately
related to the cumulative hazard. The martingale itself, i.e., the counting
process minus the compensator, is unpredictable zero-mean noise.

Readers are encouraged to check the approximation illustrated in Fig-
ure 2.3 in R: as explained in Section 2.1, the increments of the counting
process at times fit.surv$time are contained in fit.surv$n.event, which
allows for convenient computation of the counting process itself. The integral
over the at-risk process times 0.9 may be computed from fit.surv$n.risk,
which contains the number of individuals at risk just prior to times
fit.surv$time.

The fact that counting the number of observed events over the course of
time approximates a quantity which is closely related to the cumulative haz-
ard, which, in turn, is a key target quantity for estimation, makes counting
processes and martingales a starting point for a rich statistical theory. Sec-
tions 2.2.2–2.2.4 discuss how we can profit from the counting process approach
for more complex event time patterns.

2.2.2 Left-truncation and right-censoring

So far, we have considered the situation where observation of an event time T
is restricted by a right-censoring time C: if the event happens in (0, C], it
will be observed. However, if the event happens after C, we will only know
that T exceeds C. A typical example is a clinical study where the time origin 0
corresponds to random assignment of a patient to a treatment. The event
time T then measures the patient’s survival time since treatment assignment.
Patients who survive beyond administrative closing of the study will be right-
censored. Usually, the study is closed at a particular fixed date such that
we may assume the right-censoring time C to be independent of the event
time T , random right-censorship. In this set-up, individuals are assumed to
be followed from time 0 until T ∧ C.

There are, however, situations where individuals enter the study at a time
later than time origin 0. Such data with a delayed study entry time are said
to be left-truncated. The concept is best understood via an example. Meister
and Schaefer (2008) study duration of drug-exposed pregnancies. Observation
does not start at time of conception. In the study of Meister and Schaefer,
women enter the study when first contacting a Teratology Information Service.
For these women, the time of conception may reasonably well be determined
in retrospect and is thus assumed to be known. However, women who, e.g.,
experience a spontaneous abortion before their potential future study entry
time never enter the study. The hazard/counting process based approach of
Section 2.2.1 also allows us to analyse such left-truncated data. The data
analysed in Meister and Schaefer (2008) are available in the R package etm.

In addition to T and C, we denote an individual’s left-truncation/study
entry time by L: the event will only be observed, if it happens in (L,C].
If it happens in (L,C], we will know T . An individual who experiences an



2.2 Consequences of survival analysis being based on hazards 21

event before its left-truncation time (i.e., T ≤ L) will never enter the study.
An individual under study (i.e., an individual with L < T ) is right-censored,
if it experiences an event after its right-censoring time (i.e., C < T ). Data
subject to right-censoring only are included in this set-up: they formally have
a left-truncation time L = 0. Similarly, data which are only subject to left-
truncation formally have a right-censoring time beyond the largest possible
event time.

Potential subsequent occurrences of L, T , and C are schematically illus-
trated in Figure 2.4. The individual in Figure 2.4 a) enters the study at time L

a)
0 TL C

b)
0 TL C

c)
0 T L C

Fig. 2.4. a) Individual with an observed event. b) Censored individual. c) Individual
with an event before study entry.

after time origin 0. The individual’s event is observed at time T , because the
censoring time C is larger than T . The individual in Figure 2.4 b) also enters
the study at a time L, but the observation of the individual is right-censored.
In Figure 2.4 c), the individual experiences an event before its study entry
time, i.e., T < L. This individual never enters the study.

We assume for the moment random right-censoring and random left-
truncation: T is independent of (L,C). Then Equation (2.16) generalizes to

E (1(T ∈ dt, L < T ≤ C) |Past) = 1(L < t ≤ T ∧ C) · α(t) dt, (2.20)

where ‘Past’ now means knowledge about all failure, truncation, or censoring
events before t. As in (2.16), Equation (2.20) states that the probability of
observing an event in dt is 0, if the individual is not at risk just before t.
However, if the individual is at risk, an event that happens in dt will be
observed; such an event occurs with probability α(t) dt. The key point is that
the at-risk process

t �→ 1(L < t ≤ T ∧ C) (2.21)

now also accounts for left-truncation. An individual is only ‘at risk’ right after
the time L of study entry. The Nelson-Aalen estimator (2.14)
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Â(t) =

K∑
k=1

number of individuals observed to fail at tk
number of individuals at risk just prior to tk

,

of the cumulative hazard A(t) =
∫ t

0
α(u) du is straightforwardly adapted to

data subject to both left-truncation and right-censoring. The denominator
now includes all individuals who have entered the study before tk but have
not experienced an actual event or a censoring event before tk. The numerator
counts the number of observed events at tk within the set of these individuals.

A further important consequence of Equation (2.20) is that it allows us to
relax the assumption of random right-censoring and random left-truncation.
The application of martingale theory and counting processes only requires
Equation (2.20) to hold, but not necessarily random right-censoring or ran-
dom left-truncation. Restrictions of observing T that fulfill (2.20) are known
as independent right-censoring and independent left-truncation, respectively.
A crucial issue here is that L and C may depend on the ‘Past’: if covariates are
considered in the statistical analysis, L and C may depend on past covariate
values. A simple example of this is a clinical study where censoring may differ
between treatment groups; see, e.g., Clark et al. (2002). A more complex ex-
ample is the illness-death model as considered in Section 2.2.4 below. In this
model, individuals may experience different events over time, i.e., undergo
‘healthy’ ↔ ‘diseased’ transitions and may also die. A right-censoring mecha-
nism that is independent censoring in the aforementioned sense may depend
on whether an individual is currently ‘healthy’ or ‘diseased’. Because of this
potential dependency, however, such right-censoring would not be random any
more.

So far, our discussion of left-truncation and right-censoring referred to situ-
ations where observation of an individual was restricted due to some ‘external’
mechanism. Observation does not start before the time of left-truncation, and
an event that happens after the right-censoring time will not be observed. In
Sections 2.2.3 and 2.2.4, our aim is to estimate multiple (cumulative) hazards
that correspond to multiple event types. Equation (2.20) can be generalized
to such situations. A key point is to adapt the risk sets. In the aforementioned
illness-death model, individuals will only be at risk of making a ‘diseased’ →
‘dead’ transition, after having acquired the disease and thus having entered the
disease state. The set of individuals at risk of making a ‘healthy’ → ‘diseased’
transition not only excludes individuals who have previously fallen ill and have
not yet recovered, but also those who previously died without prior disease.
As discussed below, the appropriate changes to the risk set may be made
by coding these as left-truncation and right-censoring, respectively, but these
modifications of the risk set are due to the presence of multiple event types
and not to external restrictions on an individual’s observable data. We note,
however, that, conversely, the presence of multiple event types may motivate
data collection which is subject to left-truncation. E.g., in hospital epidemi-
ology, the time scale of interest typically is time since admission to hospital,
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but sometimes data are collected conditional on detection of some infectious
strain during hospital stay (Beyersmann et al., 2011).

In brief, left-truncation corresponds to observation being switched on,
and right-censoring corresponds to observation being switched off. If these
switches, which are, in fact, a ‘censoring’ process, are independent as explained
above, ‘the Nelson-Aalen estimator works’. We make two final comments on
this: First, the idea of switching observation on and off may be generalized to
quite complex observation schemes called filtering, and it disposes of the la-
tent variables L and C. We do not further pursue the concept of filtering here.
The variables L and C are latent in the sense that, e.g., L is unobservable if
L ≥ T , which is somewhat unpleasant. In contrast, the concept of ‘observation
on’ as mirrored in the risk set does not require these latent times. In fact, our
discussion of the illness-death model above has implicitly used the concept
of ‘observation on/off’ rather than latent times. We have, however, chosen to
use L and C in line with many accounts in the applied literature. Second, the
independence assumption is obviously crucial, and it would therefore be useful
if one could check it for a real data set. Unfortunately, there are identifiability
problems that typically prevent checking the assumption for right-censoring,
but it may be investigated for left-truncation. For the latter, see Section 11.3.

We finally note that left-truncation should not be confused with left-
censoring. For a left-censored event time, we know that an event has happened
before a left-censoring time in the past, but the exact time is not known. E.g.,
the occurrence time of a certain disease is left-censored, if it is only known
to have occurred before the time of diagnosis. Klein and Moeschberger (2003)
give a very readable account of the different variants of truncation and cen-
soring. Our current approach conveniently allows for right-censoring, which
is the most frequent reason for incompletely observed event time data, and
left-truncation.

2.2.3 Competing risks

So far, we have considered a time T until one single possible event. The stan-
dard example is time until death, hence the name survival analysis. Often,
however, a combined endpoint is considered. E.g., medical studies often inves-
tigate ‘disease-free survival’, i.e., time until (recurrence of a) disease or death
(without prior disease), whatever comes first. In economics, one might wish
to study durations of unemployment, ended either by finding a new job or
retirement. Thus, T in general denotes time until some first event. The aim of
a competing risks model is to distinguish between the possible types of that
first event.

The analysis of competing risks is covered in depth in Chapters 3–7. At
the current stage, the key question is how to generalize the basic two-state
survival model of Figure 2.1 to competing risks. Our preceding discussion im-
plies that an individual moves into the absorbing state of Figure 2.1 at time T ,
when the first of the possible events under study occurs. In other words, the
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absorbing state of Figure 2.1 represents a combined endpoint. The two-state
survival model may now be generalized to competing risks by introducing
several competing absorbing states which represent the possible event types.
Occurrence of a competing event is modelled by a transition into the corre-
sponding competing event state. Such a model is depicted in Figure 2.5 and
a finite number J of competing risks. Figure 3.1 in Chapter 3 displays the
corresponding model for two competing risks.

0Initial state �
�
�
�
�
�
�
�� 1

��
��

��
��� 2

��������	 J

α01(t)

α02(t)

α0J(t)

�
�
�

Fig. 2.5. Competing risks multistate model with cause-specific hazards α0j(t), j =
1, 2, . . . , J . The vertical dots indicate the competing event states 3, 4, . . . , J − 1.

Restricting for the moment the discussion to two competing risks, the
stochastic process (Xt)t≥0 attached to Figure 2.1 may easily be extended to
the competing risks setting. Again, Xt simply denotes the state occupied by
the individual at time t ≥ 0. Xt equals 0, if the individual is still event-free
at time t. Coding, as in Figure 3.1, the two potential competing events as 1
and 2, Xt equals 1, if event type 1 has occurred in [0, t]. If event type 2 has
occurred in [0, t], Xt = 2. As before, the event time T is the smallest time at
which the process is not in the initial state 0 anymore; T := inf{t : Xt �= 0}
(cf. Equation (2.1)).

In addition to the event time T , competing risks data consist of a second
component, the event type. Recall from our discussion of Figure 2.2 that
XT denotes the absorbing state entered at time T . In our setting with two
competing event states, XT equals either 1 or 2. I.e., XT denotes the event
type, and complete competing risks data consist of the tuple (T,XT ). More
than two competing risks are easily included in this set-up by letting XT ∈
{1, 2, . . . , J}.

As illustrated in Figure 3.1, we now have one event-specific hazard per
competing event. Paralleling Definition (2.2), these are defined as
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α0j(t) · dt := P(T ∈ dt,XT = j |T ≥ t), j = 1, . . . , J, (2.22)

where the index 0j denotes the transition type out of the initial state 0 into
the competing event state j. The α0js are often called cause-specific hazards
(e.g., Prentice et al., 1978). The interpretation of (2.22) is that α0j(t) · dt is
the probability that a type j event happens in the small time interval dt =
[t, t + dt), conditional on the fact that no event (of any type) has happened
before t. For the more complex multistate models considered in Section 2.2.4
below, it is useful to rewrite Definition (2.22) in terms of the simple stochastic
process (Xt)t≥0,

α0j(t) · dt = P(X(t+dt)− = j |Xt− = 0), j = 1, . . . , J, (2.23)

where Xt− denotes the state occupied just before time t.
As in Section 2.2.2, we call mechanisms of left-truncation and right-

censoring independent, if they do not change these probabilities, i.e.,

E (1(T ∈ dt,XT = j, L < T ≤ C) |Past) = 1(L < t ≤ T ∧ C) · α0j(t) dt,
(2.24)

j = 1, . . . , J . A cause-specific Nelson-Aalen estimator of the cumulative haz-
ard A0j(t) =

∫ t

0
α0j(u) du is now given as

Â0j(t) =
K∑

k=1

number of observed type j events at tk
number of individuals at risk just prior to tk

, (2.25)

j = 1, . . . , J , where the summation is over all event times tk, which are less
than or equal to t. In Chapter 3, we show that we can compute probability
estimates as deterministic functions of t �→ (Â01(t), . . . , Â0J (t)). Here, we
note two important facts which have already been alluded to earlier: first, the
numerator in (2.25) now represents increments of a cause-specific counting
process. Second, the risk set in (2.25) excludes all prior type j events, all prior
censoring events, and all prior events of a type j̃, j̃ �= j.

In other words, when coding computation of Â0j(t), say, we may code
type j̃ events, j̃ �= j, as censoring events and only count type j events as
‘actual events’: occurrence of type j̃ events acts as independent right-censoring
with respect to type j events. This means that removal of prior type j̃ events
from the risk set allows for estimation of A0j(t) =

∫ t

0
α0j(u) du. However,

in Chapter 3, we also show that such ‘censoring by a competing event’ is
informative in the sense that probability estimates depend on computing all
Â01(t), . . . , Â0J (t). This has two important implications for any competing
risks analysis:

• In a cause-specific hazards analysis, competing events may be coded as a
censoring event.

• This has to be done for every competing event type in turn.
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These two steps are, in particular, illustrated in Chapter 5.
Finally, in Section 2.2.4 below, we extend the hazard-based approach to

multistate models, which can be thought of as being realized as successive
nested competing risks experiments. To this end we note that competing risks
data can be considered as realizations of a two-step simulation experiment
that determines the time T at which the event occurs via the all-cause haz-
ard α(t) = α01(t) + . . . α0J (t) (i.e., the usual hazard of the event time T ); the
event type XT for a given time T is determined via a multinomial experiment
that decides with probability α0j(T )/α(T ) on XT = j. This simulation point
of view towards competing risks data shows up again and again in the main
part of the book. See, in particular, Sections 3.2 and 5.2.2 for an in-depth
treatment.

2.2.4 Time-inhomogeneous Markov multistate models

The preceding Section 2.2.3 on competing risks generalized the standard sur-
vival set-up with one event time T and one event type to modelling different
possible event types (the competing risks) that may occur at time T . I.e., com-
peting risks model time until some first event and the type of the first event,
but (by definition) potential subsequent events are not modelled. Multistate
models allow for modelling both the occurrence of different event types and
the occurrence of subsequent events, the latter potentially of different types.

The present section is organized as follows. We first consider some impor-
tant examples of multistate modelling. In such a model, events are modelled
as transitions between different states. Next, we explain that a sequence of
events/transitions (i.e., a realization of a multistate process) can be thought
of as being realized as a series of nested competing risks experiments. This
implies that the estimation techniques of Sections 2.2.1 and 2.2.2 also work
in the more complex multistate situation. We then discuss that such a multi-
state model is time-inhomogeneous Markov and introduce its transition prob-
abilities and transition hazards. Next, the Nelson-Aalen estimator of the cu-
mulative transition hazards is considered, and finally we show how matrix-
valued product integration yields the matrix of transition probabilities as a
deterministic function of the cumulative transition hazards. Replacing the cu-
mulative transition hazards by their Nelson-Aalen estimators results in the
Aalen-Johansen estimator of the transition probabilities.

Examples of a multistate process

In Section 2.1, we explained that we need to keep track of an individual’s
status over the course of time, which is what a stochastic process (Xt)t≥0

does. In Section 2.2.3, the realized competing event type XT naturally arose
as the state occupied by the process at event time T . This process point of view
becomes indispensable when keeping track of an individual’s course through
multistate models as depicted in Figures 2.6 and 2.7. In all these models, we
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Fig. 2.6. Illness-death models without recovery.
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Fig. 2.7. Illness-death model with recovery.

write Xt for the state occupied by the individual at time t.
The model in Figure 2.6 (left) is a so-called illness-death model without

recovery. The name of the model stems from the fact that in medical ap-
plications state 0 is often interpreted as ‘healthy’, state 1 is interpreted as
‘diseased’, and state 2 as ‘dead’. The model is ‘without recovery’, because
‘diseased’ → ‘healthy’ transitions are not modelled. An individual may either
start in the ‘healthy’ state or in the ‘diseased’ state (i.e., X0 ∈ {0, 1}).

An individual that starts in the ‘healthy’ state will have either one or two
event times. Say, T is the time the individual leaves its initial state 0. Then
Xt = 0 for all t ∈ [0, T ) and XT ∈ {1, 2}. If the individual makes a ‘healthy’ →
‘dead’ transition (i.e., a 0 → 2 transition and XT = 2), there will be no further
events for this individual. However, if the individual moves into the ‘diseased’
state 1 at time T (i.e., XT = 1), there will be a future event time T̃ , say, at
which the individual moves from ‘diseased’ to ‘dead’, XT̃ = 2. An individual
that starts in the ‘diseased’ state has only one event time, at which a 1 → 2
transition is made. Note again that the individual is in the ‘target state’ of
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a transition at the event time in question. If we have a l → j transition at
time T , l �= j, then XT = j.

The model in Figure 2.6 (right) is a so-called progressive illness-death
model without recovery. The attribute ‘progressive’ implies that every state
has at most one single possible transition into it. There is, in fact, not much
difference between the two models of Figure 2.6, still interpreting state 0 as
‘healthy’ and state 1 as ‘diseased’. Both models have the same number of
arrows (i.e., transition types), and in both models an individual enters an
absorbing state at the time of ‘death’, which is either state 2 in the non-
progressive model or state 2 or 3 in the progressive model. This means that
states 2 and 3 of the progressive model have the same interpretation ‘death’.
The advantage of the progressive model is one of coding: by simply looking at
the state entered at time of ‘death’, one is able to tell whether the individual
was ‘healthy’ or ‘diseased’ just prior to ‘death’. In the non-progressive model,
one would also have to look at the state occupied just prior to ‘death’.

The model in Figure 2.7 is called an illness-death model with recovery.
The difference compared to the models in Figure 2.6 is that now ‘diseased’ →
‘healthy’ transitions (i.e., recoveries) are also possible. Already in the model
without recovery, we saw that the number of an individual’s event time can
be random. However, there were at most two subsequent events. In a model
with recovery, there is, at least theoretically, no such maximum number. When
actually collecting data, practical restrictions may impose a maximum num-
ber. Still, the number of an individual’s event times would be random, which
further stresses the process way of writing things. As in Section 2.1, an indi-
vidual’s course through model Figure 2.7 is still conveniently written as

[0,∞) � t �→ Xt,

Xt ∈ {0, 1, 2}.
Obviously, multistate models can be quite complex. In principle, any finite

number of states is admissible, and there may be transitions in both direc-
tions between every pair of states. E.g., if states 0 and 1 correspond to two
operational levels of a machine, say ‘on’ and ‘off’, and state 2 corresponds to
‘malfunctioning’, the machine may be repaired, such that transitions out of
state 2 are also possible. This model specification (i.e., the state space and
the possible transitions types between the states) will be directly reflected
when using the R packages mvna, etm, and mstate. We also refer to the excel-
lent textbook by Hougaard (2000) who gives a comprehensive account of the
different types of multistate models.

Multistate models as a series of nested competing risks
experiments

As stated earlier, the multistate models that we consider are realized as succes-
sive nested competing risks experiments. For illustration, consider the illness-
death model with recovery of Figure 2.7. An individual either starts in state 0
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or in state 1 at time origin 0. Consider an individual that starts in state 0;
X0 = 0. The course of this individual through the multistate model is realized
as follows.

1. Being in state 0, the individual is exposed to ‘cause-specific’ hazards α01(t)
and α02(t). As explained at the end of Section 2.2.3, the individual’s wait-
ing time until an event, the time until moving out of state 0, is determined
by the ‘all-cause’ hazard α01(t) + α02(t). The state entered at the time
of transition is determined by a binomial experiment and the relative
magnitude of the ‘cause-specific’ hazards α01(t) and α02(t) at the time of
transition.

2. The next step depends on the state entered at the first transition time.
a) If the absorbing state 2 has been entered, there will be no further

transition.
b) If state 1 has been entered, a new competing risks experiment is carried

out using the current values of the ‘cause-specific’ hazards α10(t) and
α12(t). Otherwise, the experiment runs analogously to step 1.

3. The next step depends on the state entered at the second transition time.
If the absorbing state has been entered, there will be no further transition.
If state 0 has been entered, a further competing risks experiment will be
carried out.

This series of competing risks experiments will be carried out until absorption.
If there is no absorbing state in the model (i.e., backward transitions are
feasible out of every state), we will need to keep track of the series of competing
risks experiments until observation ends.

As with competing risks, this simulation point of view towards multistate
models shows up again and again in the main part of the book. See, in partic-
ular, Chapter 8 for an in-depth treatment. A more formal justification of the
above algorithm is given in Section 4.4 of Gill and Johansen (1990); see also
Theorem II.6.7 of Andersen et al. (1993).

Transition probabilities and transitions hazards of a
time-inhomogeneous Markov multistate process

So far, our treatment of multistate models has been a bit lax in that the
transitions hazards αlj(t), l �= j, which we indicated at the l→ j arrows in the
multistate figures, have been treated as cause-specific hazards of a competing
risks model in the above algorithm. Although conceptually correct, a slightly
more precise definition is desirable. We also wish to estimate the cumulative
transition hazards and derive probability estimates, and we need to state in
a more precise manner that multistate models that are realized as successive
nested competing risks experiments are time-inhomogeneous Markov.

The Markov property is a key assumption for the estimation techniques
discussed below to work with data subject to independent left-truncation and
independent right-censoring, respectively. In essence, the Markov property,
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which is given a precise form in Equation (2.27) below, means that the future
course of an individual depends on the past only via the current time and the
state currently occupied by the individual. E.g., the future development of a
‘diseased’ individual at time t in the models of Figure 2.6 depends on the past
only through the time elapsed since time origin (i.e., t and the fact that the
individual is currently ‘diseased’) but not on the time span the individual has
already been ill. The analysis of non-Markov models is a quite active research
field, on which we briefly comment in Chapter 12.

We begin by defining the matrix of transition probabilities of a Markov
process (Xt)t≥0 with state space {0, 1, 2, . . . , J} as

P(s, t) := (Plj(s, t))l,j , l, j ∈ {0, 1, 2, . . . , J}, (2.26)

with transition probabilities

Plj(s, t) := P(Xt = j |Xs = l) = P(Xt = j |Xs = l,Past), s ≤ t. (2.27)

The Markov property P(Xt = j |Xs = l) = P(Xt = j |Xs = l,Past) intu-
itively states that past and future of the process are independent given the
present at time s. We also note that the Markov process (Xt)t≥0 is said to
be time-inhomogeneous, because the transition probabilities (2.27) depend on
the actual time interval [s, t]. In contrast, a homogeneous process makes the
more restrictive assumption that these probabilities are identical whenever
the length of the time interval d = t − s is. The transition probabilities of a
homogeneous Markov process only depend on the length of the time interval,
but not the interval itself. Readers should note that sometimes homogeneous
Markov processes are simply called ‘Markov processes’, dropping the attribute
‘homogeneous’.

Analogous to Definition (2.23) of the cause-specific hazards, we now define
the transition hazards of the Markov process

αlj(t) · dt := P(X(t+dt)− = j |Xt− = l), l, j = 0, . . . , J, l �= j. (2.28)

Note that the Markov property implies that conditioning on Xt− = l is tan-
tamount to conditioning on the entire past of the process before t. In words,
αlj(t) · dt is the probability of making an l → j transition in the very small
time interval dt. Intuitively, dt will be so small that the transition occurs di-
rectly from l to j (i.e., without visiting another state in between). Thus, we
can think of αlj(t) as momentary forces of transition between states l and j.
Formally, we also define

αll(t) = −
J∑

j=0,j �=l

αlj(t), l = 0, . . . , J. (2.29)

This definition is justified following Equation (2.31) below.
At the beginning of this chapter, we claimed that transition hazards are an

intuitively important concept. And, in fact, the αlj(t)s of (2.28) are well suited
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to contrast time-inhomogeneous Markov models from homogeneous models
and from non-Markov models, respectively.

In a homogeneous Markov model, P(s, t) only depends on t − s, but not
on the actual time interval. As a consequence, αlj(t) = αlj(0) for all t: a
homogeneous model is a parametric model with constant transition hazards.
In contrast, the transition hazards (2.28) can essentially be any integrable
nonnegative function. Hence, assuming (Xt)t≥0 to be time-inhomogeneous
Markov provides for a much larger nonparametric model.

The restriction implied by the Markov assumption is also well illustrated
in terms of the transition hazards. In the illness-death models of Figure 2.6,
the ‘illness’ → ‘death’-hazard is α12(t). It depends on the transition type
‘illness’ → ‘death’ and on the current time t since time origin 0. However,
α12(t) does not depend on the entry time t̃, say, into the ‘illness’-state 1,
t̃ < t. In a non-Markov model, the transition hazard would be α12(t̃, t), which
would potentially be different for fixed t but different times t̃ of falling ill.

Nelson-Aalen estimator

As our Definition (2.28) of the transition hazards has been analogous to Def-
inition (2.23) of the cause-specific hazards, it should not come as a surprise

that we may estimate the cumulative transition hazards Alj(t) =
∫ t

0
αlj(u) du

in a manner similar to the cause-specific Nelson-Aalen estimators (2.25). The
appropriate Nelson-Aalen estimators are

Âlj(t) =

K∑
k=1

number of observed l→ j transitions at tk
number of individuals at risk in state l just prior to tk

, (2.30)

l, j = 0, . . . , J , l �= j, where the summation is over all event times tk, which
are less than or equal to t. As with the cause-specific Nelson-Aalen estimators,
we stress a couple of important facts which have been alluded to earlier: the
numerator in (2.30) represents increments of a transition-specific counting
process. And the risk set in (2.30) includes all individuals who have entered
state l before time tk and who have not yet moved out of state l again or have
been censored.

This has three important implications. First, as with the cause-specific
Nelson-Aalen estimators, we may code computation of Âlj(t) via coding l→ j̃
transitions, j̃ �= j, as censoring events and only count type l→ j transitions as
‘actual events’. Second, an individual only contributes to the risk set in state l
after entry into the state; movements within a multistate model generate
‘internal’ left-truncation as explained towards the end of Section 2.2.2. An
analysis of Âlj(t) must be coded accordingly. Third, every individual in state l
and under observation contributes to the risk set alike; there is no further
accounting for the individual’s entry time into state l. This is a consequence
of the Markov assumption. Each of these implications will be directly reflected
in R coding.



32 2 An informal introduction to hazard-based analyses

In fact, one may adopt the view that these three implications are con-
sequences of multistate models being realized as a series of competing risks
experiments. It then is via the methodology of Sections 2.2.1 and 2.2.2 that
we may analyse the transition hazards of, first, competing risks, and, next,
multistate models.

Product integration and the Aalen-Johansen estimator

Finally, we wish to estimate the matrix of transition probabilities P(s, t). In
the simple survival set-up of Section 2.1, we found that we may compute the
survival probability as a deterministic function, namely product integration,
of the cumulative survival hazard. Replacing the true cumulative hazard by its
Nelson-Aalen estimator resulted in the Kaplan-Meier estimator of the survival
function. An analogous approach works for estimating P(s, t).

Analogous to P, we write

A(t) := (Alj(t))l,j , l, j ∈ {0, 1, 2, . . . , J} (2.31)

for the matrix of cumulative transition hazards Alj(t) =
∫ t

0
αlj(u) du. The

aim is to show that P(s, t) can be computed as a continuous matrix-valued
product over terms

I + dA(u),

where u ranges from s to t, where we have written I for the (J + 1)× (J + 1)
identity matrix, and where dA(u) is defined element wise as

d (Alj(u))l,j = (αlj(u))l,j du,

l, j ∈ {0, 1, 2, . . . , J}. This idea obviously parallels that of Equations (2.5)–

(2.7). Also recall from (2.29) that dAll(u) = − ∑J
j=0,j �=l dAlj(t), such that

1 − dAll(u) = 1 − P(X(t+dt)− �= l |Xt− = l) = P(X(t+dt)− = l |Xt− = l),

which explains Definition (2.29), or equivalently why we have to consider a
product over terms I + dA(u).

Now consider a time v, s < v < t. The Markov property implies that

P(s, t) = P(s, v) · P(v, t). (2.32)

In order to see that (2.32) holds, consider the (l, j)th entry of P(s, t):

P(Xt = j |Xs = l) =

J∑
j̃=0

P(Xv = j̃ |Xs = l) · P(Xt = j |Xv = j̃, Xs = l)

=

J∑
j̃=0

P(Xv = j̃ |Xs = l) · P(Xt = j |Xv = j̃),
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where the last equation holds because of the Markov property, and the right
hand side equals the (l, j)th entry of the right hand side of (2.32).

Next, assume that v is close to t such that an approximation such as in
Equation (2.7) holds,

J∑
j̃=0

P(Xv = j̃ |Xs = l) · (1(j̃ = j) +ΔAj̃j(t)),

where we have written ΔAj̃j(t) for Aj̃j(t)−Aj̃j(v). Doing this recursively for
a partition s = t0 < t1 < t2 < . . . < tK−1 < tK = t of the time interval [s, t],
we get the approximation

P(s, t) ≈
K∏

k=1

(I +ΔA(tk)) , (2.33)

where the (l, j)th element ofΔA(tk) is Alj(tk) − Alj(tk−1). Computing the
approximation on the right hand side of (2.33) for ever finer partitions of [s, t]
approaches a limit, the matrix-valued product integral

u∈(s,t]
(I + dA(u)).

The product integral equals the matrix of transition probabilities,

P(s, t) =

u∈(s,t]

(I + dA(u)) . (2.34)

An estimator of P(s, t) is now naturally derived by replacing A(u) with the

matrix Â(u) of Nelson-Aalen estimators with the (l, j)th entry Âlj(u) as in

Equation (2.30) for l �= j and Âll(u) := −∑
j,j �=l Âlj(u). We also define dÂ(u)

as the matrix with entries Âlj(u)− Âlj(u−) (i.e., the increment of the Nelson-
Aalen estimators at time u). This results in the Aalen-Johansen estimator
(Aalen and Johansen, 1978),

P̂(s, t) =

u∈(s,t]

(
I + dÂ(u)

)
, (2.35)

which is an ordinary, finite matrix product over all event times u in (s, t] and

matrices I + dÂ(u). The Aalen-Johansen estimator is often also called the
empirical transition matrix. The estimator and ‘empirical’ product integration
are implemented in the R package etm.

We finally note that checking approximation (2.33) in R as we did for the
simple survival situation in Section 2.1 is not straightforward. The reason is
that closed formulae for P(s, t) only exist for some special, practically impor-
tant multistate models; see Section 9.1. In fact, approximation (2.33) provides
a numerical tool to compute P(s, t) in the absence of closed formulae.
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2.3 Approximate inference in practice based on large

sample results

As with standard survival data, statistical inference for competing risks and
multistate models is typically of a nonparametric kind. Asymptotic results
are used for approximate inference in practice. E.g., the transition-specific
Nelson-Aalen estimator Âlj(t) as defined in (2.30) is approximately unbiased

in the sense that Âlj(t) converges in probability to the true quantity Alj(t).
Properly standardized, the distribution of the estimator approaches a normal
distribution, √

n
(
Âlj(t) −Alj(t)

)
→ N(0, σ2

lj(t)), (2.36)

where n is the number of individuals under study. An (again asymptoti-
cally/approximately unbiased) estimator of the asymptotic variance σ2

lj(t) is

n · σ̂2
lj(t), where

σ̂2
lj(t) =

K∑
k=1

number of observed l→ j transitions at tk

(number of individuals at risk in state l just prior to tk)
2 ,

where the summation is over all event times tk, which are less than or equal
to t as in (2.30); see also Section 4.1. This can be used, e.g., to construct an
approximate 95% confidence interval

Âlj(t) ± σ̂lj(t) · 1.96,

where 1.96 ≈ qnorm(0.975), i.e., the 0.975 quantile of the standard normal
distribution. (We note, however, that a log-transformed confidence interval
should be preferred in small samples; see (4.10).)

A common feature of these approximate procedures is, loosely speaking,
that they only hold on the ‘observable time interval’. For continuous event
times and continuous censoring times, the ‘observable time interval’ is re-
stricted by the upper limit of the joint support of event time and censoring
time. In practice, the ‘observable time interval’ is considered to be restricted
by the largest uncensored event time. Analogous considerations are needed
for left-truncated data and for more complex multistate models. A detailed
discussion can be found in Examples IV.1.6–IV.1.9 in Andersen et al. (1993).
A sufficient condition for the approximate procedures to work is that there
is a positive probability of being at risk in a transient state of the multistate
model under consideration (Andersen et al., 1993, Equation (4.1.16)). Tran-
sient states are those states out of which a transition is possible. E.g., in the
competing risks model of Figure 2.5, only the initial state 0 is transient, but
in the illness-death models of Figures 2.6 and 2.7, both states 0 and 1 are
transient. An individual is said to be at risk in a transient state l just prior to
time t, if the individual is in state l and under observation at t−. Only such
an individual may be observed to make a transition out of state l at time t.
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Requiring a positive probability of a non-empty risk set has different im-
plications depending on which quantity is being estimated. If the aim is to
estimate the cumulative transition hazard between states l and j of a certain
multistate model, l �= j, the requirement only affects the risk set Yl. Esti-
mation of probabilities, however, in general depends on the estimation of all
cumulative hazards because of relations (2.34) and (2.35).

For illustration, we briefly comment on a basic implication in the simple
competing risks model. Often, there is interest in the failure type probabil-
ities P(XT = j), where j is one of the competing event states 1, 2, . . . , J as
in Figure 2.5. E.g., Mackenbach et al. (1999) investigated such ‘prevalences’
of causes of death in the Netherlands. P(XT = j) is the limit of the so-called
cumulative incidence function,

P(XT = j) = lim
t→∞

P(T ≤ t,XT = j).

Estimation of P(T ≤ t,XT = j) is a special application of the Aalen-Johansen
estimator (2.35). Estimation of its limit P(XT = j) is simple, if the data are
complete. The Aalen-Johansen estimator evaluated at the largest time point
then simply equals the so-called ‘crude rates’, the number of type j events
(at any time), divided by the sample size n. However, P(XT = j) will not
be nonparametrically estimable with most right-censored data. The reason
for this is that censoring typically restricts the ‘observable time interval’ such
that one will not be able to observe the limit of the cumulative incidence
function. See also our discussion following (4.21).

It is worthwhile to note that approximate unbiasedness and approximate
normality hold uniformly on what we have loosely called an ‘observable time
interval’. For weak convergence, this requires a theory of convergence of prob-
ability measures on a space of functions rather than the well-known concept
of weak convergence of distribution functions. This functional point of view is,
e.g., relevant when moving from the Nelson-Aalen estimator Â to the Aalen-
Johansen estimator P̂(s, t); see (2.35). This is so, because P̂(s, t) is a function

of all previous Nelson-Aalen estimates between s and t, i.e., all Â(u), u ∈ (s, t].
The mathematics of such a convergence theory are formidable and beyond

the technical level of this book. We are content with the fact that asymptotic
unbiasedness and asymptotic normality can be formulated rigorously and suf-
ficiently general for the applications in this book. The generally interested
reader is referred to the excellent books by Billingsley (1968), Andersen et al.
(1993), and van der Vaart and Wellner (1996). In particular, Billingsley’s in-
troduction gives a very readable account of why a functional point of view is
useful. On the other hand, his Section 3.18 concisely explains why obtaining
uniform results is difficult. These difficulties have been solved using the mod-
ern theory of empirical processes, of which van der Vaart and Wellner give a
definite account. Finally, Andersen et al. give a dense but thorough descrip-
tion of asymptotic theory for event history analysis; see, in particular, their
Section II.8.
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We must, however, still mention the functional delta method as an im-
portant tool from the theory of empirical processes. The usual delta method
starts with standard, i.e., pointwise convergence as in (2.36). Considering a
differentiable transformation φ : R → R with derivative φ′, the delta method
implies that

√
n

(
φ(Âlj)(t) − φ(Alj)(t)

)
→ φ′(Alj(t))N(0, σ2

lj(t)), (2.37)

and that the left-hand side of (2.37) is asymptotically equivalent to φ′(Alj(t))·√
n

(
Âlj(t) −Alj(t)

)
, i.e., the difference of the asymptotically equivalent

terms converges to zero in probability. We use the ordinary delta method for
obtaining pointwise confidence intervals of the Nelson-Aalen estimator based
on a log-transformation; see (4.10). A generalization of the delta method to
p vectors and transformations φ : R

p → R
q is immediately available, but what

is really needed is a functional delta method. This does exist (Gill, 1989), but
is again beyond the technical level of this book. We note, however, that the
functional delta method works for product integration as in Equations (2.34)
and (2.35). This further emphasizes the key roles played by both the Nelson-
Aalen estimator and the product integral. We mention two further important
consequences. The functional delta method preserves asymptotic normality
and it justifies using bootstrap resampling as discussed in Appendix A; see
Gill (1989) and van der Vaart and Wellner (1996). This is helpful in situations
where variance estimators are analytically hardly tractable. The variance may
then be estimated based on the bootstrap and confidence intervals may again
be constructed based on approximate normality.

2.4 Exercises

1. Show that an event time T with hazard α(t) has distribution func-

tion P (T ≤ t) = 1 − exp(− ∫ t

0
α(u) du).

2. Write a function A.gompertz for the cumulative hazard when the survival
time distribution follows a Gompertz distribution with shape parameter
λ = 1 and scale parameter γ = 2.
Under the Gompertz distribution, the hazard is

α(t) = λ exp(t/γ).

Using the prodint function from Section 2.1.1, approximate S(1) =
P(T > 1) and compare it to the true value.

3. Simulate 100 individuals with survival times following a Gompertz dis-
tribution with parameters as in Exercise 2. Also simulate independent
censoring times following a uniform distribution in order to obtain approx-
imately 30% of censored observations. A function to generate Gompertz
random variables can be found in the R package eha.
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Estimate S(1) both using prodint and the survfit function.
Using the output of survfit, compute the Nelson-Aalen estimator of the
cumulative hazard and check whether it is close to the true cumulative
hazard function.

4. Plot the counting process of observed events and its compensator as in
Figure 2.3. Check that the compensator is only almost a smooth line by
displaying some ‘edges’.

5. Redo the analysis of Exercise 3, but this time with at least 50% censoring.
6. Reuse the simulated data set from Exercise 3 and additionally simulate

independent left-truncation times which follow a Weibull distribution.
Choose the parameters such that approximately 70% of the simulated in-
dividuals are actually included in the study. Check that the Nelson-Aalen
estimator ’works’ in the presence of left-truncation and right-censoring.

7. Competing risks: Simulate competing risks data for 200 individuals with
constant cause-specific hazards α01(t) = 0.5 and α02(t) = 0.9. Indepen-
dent right-censoring times follow a uniform distribution with parameter
chosen to give approximately 20% of censored observations.
Compute the cause-specific Nelson-Aalen estimators.

8. Definition (2.22) of the cause-specific hazards implies that

P (T ≤ t,XT = 1) =

∫ t

0

P (T ≥ u−)α01(u) du.

Show that

P (T ≤ t,XT = 1) ≤ 1 − exp(−
∫ t

0

α01(u) du).

One minus the right hand side of the previous equation is sometimes called
the ‘cause-specific survivor function’. The right hand side of the equation
can be estimated using one minus a Kaplan-Meier-type estimator, but
it lacks a proper probability interpretation. Check that this estimator
overestimates P (T ≤ t,XT = 1) using the simulated competing risks
data.

9. Multistate models: Simulate data from an illness-death model without re-
covery. All individuals are assumed to start in an initial state 0, ‘healthy’.
Hazards out of the initial state are as in Exercise 7. For individuals
who reach state 1, simulate new event times T̃ with constant hazard
α12(t) = 0.8. T + T̃ will then be the time of entry into state 2, ‘death’, for
individuals who have moved through the ‘illness’ state 1.
Estimate the cumulative transition hazards for the following scenarios.
a) Complete data.
b) Randomly right-censored data: Draw uniformly distributed censoring

times C such that approximately 20% of the observations are censored
in the initial state.
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c) State-dependent censoring: Assume that individuals who are observed
to move into state 1 are subject to censoring times C̃ which follow a
uniform distribution that is different from the distribution of C.

d) Repeat the previous analyses, but additionally introduce random left-
truncation, with left-truncation times stemming from a gamma dis-
tribution with parameters chosen to let approximately 90% of the
individuals enter the study.

10. Time-inhomogeneous Markov property: Show that a competing risks pro-
cess fulfills the Markov property. When is an illness-death model without
recovery Markov?
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Competing risks
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Multistate modelling of competing risks

Competing risks models analyse the time until some first event and the event
type that occurs at that time. In contrast, standard survival analysis considers
the time until some first event only. Examples include disease-free survival
and length of hospital stay. Disease-free survival is observed either at the time
the disease in question is diagnosed or at the time of death without prior
disease. Length of hospital stay ends with either discharge alive or hospital
death. In the latter example, survival models consider length of stay with a
combined endpoint discharge alive/hospital death. Competing risks also model
the endpoint type. Competing risks do not model subsequent events such as
death after hospital discharge. To do this, more complex multistate models
are needed, which is the topic of the multistate part of this book.

The present Chapter 3 introduces competing risks as a multistate model,
key quantities such as the cause-specific hazards and the cumulative incidence
functions, and simulation of competing risks data. Some readers may be fa-
miliar with a different approach towards competing risks, namely the latent
failure time model. This model, its inherent difficulties, and the advantages of
the multistate approach taken in this book are briefly illustrated in Section 3.3.

Although estimation from competing risks data is more prominent in ev-
eryday work, we have chosen also to present competing risks simulation, be-
cause it is extremely helpful to understand the key concepts. Simulation can be
viewed as the practical aspect of the probabilistic task of constructing a com-
peting risks process. Besides using real data, we also simulate competing risks
data in R and analyse them in order to see that the proposed methodology
works. I.e., the methodology is able to recover the underlying data-generating
mechanism even in the presence of right-censoring and left-truncation. Simu-
lation is also useful to understand the role that the estimated quantities play.
This is of vital importance, because interpretation of results often is a major
challenge in the analysis of competing risks data. Finally, ‘playing around’
with simulated data further helps to understand the key concepts.

As competing risks generalize survival analysis from a single combined
endpoint to multiple first event types, our treatment of competing risks also

J. Beyersmann et al., Competing Risks and Multistate Models with R, Use R,  
DOI 10.1007/978-1-4614-2035-4_ , © Springer Science+Business Media, LLC 2012 
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covers key survival concepts and their analysis in R. An elementary intro-
duction to single endpoint survival analysis in R is given by Dalgaard (2002,
Chapter 12).

3.1 The competing risks multistate model

Figure 3.1 depicts the standard competing risks multistate model. Initially,

0Initial state ��
��

��
��� 1

��������� 2

Event of interest

Competing event

α01(t)

α02(t)

Fig. 3.1. Competing risks multistate model with cause-specific hazards α0j(t), j =
1, 2.

every individual is in the initial state 0 at time origin. The individual stays
in this state until occurrence of any first event. Usually, there is one event of
interest, modelled by transitions into state 1, and all other first event types
are subsumed into the competing event state 2. E.g., in the case of hospital
stay data, hospital mortality modelled by state 1 may be of special interest.
The competing event state 2 then has the interpretation ‘discharge alive’.
However, this competing event state does not further distinguish whether the
patient returns home, is readmitted to a different hospital, or enters a nursing
home. The competing risks techniques of this book allow for more than two
competing event states; see Section 7.1. As the model of Figure 3.1 is the
single most important competing risks model, we focus on two competing
event states for ease of presentation. The techniques then easily generalize to
more than two competing risks as explained in Section 7.1. An R description
of the competing risks multistate model in Figure 3.1 is given in the data
analysis of Chapter 4.

Recall from Chapter 2 that we need to keep track of an individual’s
movements over the course of time. The competing risks process (Xt)t≥0

of Figure 3.1 denotes the state an individual is in for every point in time,
Xt ∈ {0, 1, 2}. Every individual starts in the initial state 0 at time origin 0,
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P(X0 = 0) = 1. (3.1)

An individual stays in state 0 (i.e., Xt = 0) as long as neither competing
event 1 nor 2 has occurred. The individual moves to state 1 if the event of
interest occurs. Likewise, the individual moves to state 2 if the other competing
event occurs first. The competing risks process moves out of the initial state 0
at time T ,

T := inf{t > 0 |Xt �= 0}. (3.2)

T is often called survival time or failure time; it can be thought of as a waiting
time in the initial state 0. In many applications, every individual will leave the
initial state at some point in time, i.e., P(T ∈ (0,∞)) = 1. Hence, we typically
think of T as a nonnegative, real-valued event time, although T <∞ is usually
not required from a mathematical point of view.

Recall from Chapter 2 that multistate processes are right-continuous
(cf. also Figure 2.2). The competing risks process is either in state 1 or in
state 2 at time T . The type of the first event, often called cause of failure,
therefore is

XT ∈ {1, 2}, (3.3)

the state the process enters at time T .
Observation of the competing risks process (Xt)t≥0 will in general be sub-

ject to right-censoring and/or left-truncation as explained in Chapter 2. If
observation of the process is subject to a right-censoring time C only, the
observed data will be (T ∧ C,1(T ≤ C) ·XT ). Note that the status indicator

1(T ≤ C) ·XT ∈ {0, 1, 2} (3.4)

equals 0, if the observation was censored. Note that in Chapter 4, we find that
from a software coding perspective it may be advantageous to code censoring
events by a value different from 0; we often use ‘cens’ as a censoring code.
In case of a censoring event, observation stopped while the individual was
still in the initial state 0. Otherwise, failure time and cause of failure have
been observed, and the status indicator equals XT . If we also have a left-
truncation time L, the observed data will be ([L, T ∧ C],1(T ≤ C) · XT ).
In Chapter 4 on nonparametric estimation from competing risks data, we
consider n independent replicates of (T,XT ), subject to independent right-
censoring and left-truncation as explained in Section 2.2.2.

Key quantities in competing risks are the cause-specific hazards α0j(t), j =
1, 2,

α0j(t)dt := P (T ∈ dt,XT = j |T ≥ t), j = 1, 2. (3.5)

Recall from Chapter 2 that we write dt both for the length of the infinitesimal
interval [t, t+dt) and the interval itself. We also writeA0j(t) for the cumulative
cause-specific hazards

A0j(t) :=

∫ t

0

α0j(u)du, j = 1, 2. (3.6)
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The cause-specific hazards can be thought of as momentary forces of transi-
tion, moving along the arrows in Figure 3.1. It is crucial to any competing risks
analysis that both cause-specific hazards completely determine the stochastic
behaviour of the competing risks process (cf. Sections 2.2.3–2.2.4). The α0js
sum up to the all-cause hazard:

α0·(t)dt := p(T ∈ dt |T ≥ t) (3.7)

= (α01(t) + α02(t)) dt. (3.8)

This result is a consequence of the usual additivity of probabilities. We also
write

A0·(t) :=

∫ t

0

α0·(u)du = A01(t) +A02(t) (3.9)

for the cumulative all-cause hazard.
The survival function of the waiting time T in the initial state 0 is:

P(T > t) = exp(−
∫ t

0

α0·(u) du). (3.10)

The survival function P(T > t) is often denoted S(t), cf. Section 2.1. It is a
function of both α0js, because α0·(t) = α01(t) + α02(t).

Often, interest in competing risks focuses on the cumulative incidence
function, i.e., the expected proportion of individuals experiencing a certain
competing event over the course of time:

P(T ≤ t,XT = j) =

∫ t

0

P(T > u−)α0j(u) du, j = 1, 2, (3.11)

where we write P(T > u−) for the value of the survival function just prior
to u. We note that the cumulative incidence function is a function of both
α0js through P(T > u−).

There is an intuitive interpretation of the right hand side of Equa-
tion (3.11), which shows up again when we consider nonparametric estimation
in Chapter 4. One integrates or, loosely speaking, sums up over ‘infinitesimal
probabilities’ of making the 0 → j transition exactly at time u. P(T > u−) is
the probability of still being in the initial state 0 before u; this probability is
multiplied with the ‘infinitesimal transition probability’ α0j(u) du to actually
make the 0 → j transition at time u conditional on still being in the initial
state before u (cf. Equation (3.5)).

The right hand side of (3.11) is the solution of a product integral as in
Section 2.2.4. More precisely, P(T ≤ t,XT = 1) is the entry (1, 2) of the
solution of

u∈(0,t]

⎧⎨
⎩

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠ + d

⎛
⎝−A0·(u) A01(u) A02(u)

0 0 0
0 0 0

⎞
⎠

⎫⎬
⎭ ;
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see Equation (2.34). Entry (1, 3) is P(T ≤ t,XT = 2), and the survival function
P(T > t) is in entry (1, 1). Entries in rows 2 and 3 are as rows 2 and 3 of the
3×3 identity matrix, reflecting that competing risks do not model events after
the first event. We meet this structure again when estimating the cumulative
incidence functions (cf. Table 4.1).

We finally note that the cumulative incidence function for the event state 1
of interest, P(T ≤ t,XT = 1), and for the competing event state 2, P(T ≤
t,XT = 2), add up to the all-cause distribution function,

P(T ≤ t,XT = 1) + P(T ≤ t,XT = 2) = P(T ≤ t), (3.12)

and that the cumulative incidence functions approach P(XT = j), j = 1, 2 as
time t increases,

lim
t→∞

P(T ≤ t,XT = j) = P(XT = j), j = 1, 2, (3.13)

assuming T to be a finite time.
We consider nonparametric estimation of the cumulative cause-specific

hazards, the all-cause survival function, and the cumulative incidence func-
tions in Chapter 4. But before we do so, we first consider how competing risks
data can be simulated cause-specific hazard-based in Section 3.2.

3.2 Simulating competing risks data

In Section 3.1, we claimed that the cause-specific hazards completely deter-
mine the stochastic behaviour of the competing risks process. The aim of this
section is to generate competing risks data from a given pair of cause-specific
hazards α01(t) and α02(t). The simulation algorithm is also the key building
block for simulating more complex multistate data. The aim of our presenta-
tion of the simulation algorithm is to illustrate how a competing risks process
is constructed. Understanding this construction helps to interpret competing
risks analyses of real data. Later, in Chapter 4, we also analyse simulated data
in order to see that the presented methodology works.

Recall from Section 3.1 that completely observed competing risks data
are replicates of (T,XT ), where T is the failure time and XT is the failure
cause. Observation of (T,XT ) may be subject to a right-censoring variable C
and to a left-truncation variable L. We generate competing risks data via the
following algorithm.

1. Specify the cause-specific hazards α01(t) and α02(t).
2. Simulate failure times T with all-cause hazard α0·(t) = α01(t) + α02(t).
3. Run a binomial experiment for a simulated failure time T , which decides

with probability α0j(T )/(α01(T ) + α02(T )) on cause j, j = 1, 2.
4. Additionally generate right-censoring times C and left-truncation times L.
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The censoring times C and, if desired, the truncation times L in Step 4 are
often simulated as random variables independent of the competing risks pro-
cess. This is the random censorship model and the random truncation model,
respectively. A simple example of simulated competing risks data conditional
on covariates is given in Section 5.2.2.

The competing risks specialty of the above algorithm is Step 3: Compared
with standard survival simulation, we additionally have to generate a failure
cause. This step also helps to understand what cause-specific hazards do.
In Section 3.1, we suggested thinking of the α0js as momentary forces of
transition, moving along the arrows in Figure 3.1. Figuratively speaking, the
α0js are forces that pull an individual out of the initial state 0 and towards
the competing risks states. Assuming that an individual fails at time T =
t, the probability that the failure cause is 1 equals the proportion that the
cause-specific hazard for failure 1 at time t contributes to the all-cause hazard
α01(t)+α02(t), which pulls the individual. More formally, given an individual
fails at time T = t, the probability that failure is of type 1 is

P (XT = 1 |T ∈ dt, T ≥ t) =
P (T ∈ dt,XT = 1 |T ≥ t)

P (T ∈ dt |T ≥ t)
=

α01(t)

α01(t) + α02(t)
. (3.14)

Generating replicates of T (and also C and L) can often be done in R with
the help of convenience functions. If the all-cause hazard is constant (i.e.,
α0·(t) = α0· for all t), then T is exponentially distributed and the R function
rexp can be used. Table 3.1 lists R convenience functions and the associated
failure time distributions. A useful overview on common parametric models
for survival data is given in Klein and Moeschberger (2003, Section 2.5). A
binomial experiment can be run with the function rbinom. We illustrate this
below.

Table 3.1. R functions for simulating survival times

Distribution R function

Exponential rexp

Weibull rweibull

Log-normal rlnorm

Gamma rgamma

Log-logistic Use exp on rlogis

If the cause-specific hazards have been specified in such a way that a
convenience function is not available, general simulation techniques will be
useful. For an in-depth discussion of this topic, which is beyond the scope
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of this book, we refer readers to, e.g., the textbooks by Morgan (1984) and
Ripley (1987); see also Rizzo (2007, Chapter 3) for an introduction to this topic
using R. We have, however, chosen to briefly present the inversion method, a
popular simulation technique for continuous random variables. Assume that
we have specified the cause-specific hazards such that α0·(t) > 0 for all t. Then

the cumulative all-cause hazardA0·(t) =
∫ t

0
α0·(u)du is strictly increasing (and

invertible) as is the distribution function of T :

F (t) := P(T ≤ t) = 1 − exp(−A0·(t)).

We write F−1 for the inverse of F and A−1
0· for the inverse of A0·. Consider the

transformed failure time F (T ). The key of the inversion method is that F (T )
is uniformly distributed on [0, 1]:

P(F (T ) ≤ u) = P(T ≤ F−1(u)) = F (F−1(u)) = u, u ∈ [0, 1].

Hence, if U is a random variable with uniform distribution on [0, 1], then
F−1(U) has the same distribution as T . The inversion method works as fol-
lows.

1. Compute F−1(u) = A−1
0· (− ln(1 − u)) , u ∈ [0, 1].

2. Generate a random variable U that is uniformly distributed on [0, 1] (e.g.,
using the R function runif).

3. F−1(U) is the desired replicate of T .

Sometimes, the α0js are chosen in such a manner that we do not find an
explicit expression for A−1

0· . We may then use numerical inversion in Step 3,
using the R function uniroot.

Let us now have a look at how things work out in R. The easiest and there-
fore very popular simulation set-up uses constant cause-specific hazards. Simu-
lation is particularly handy, because the binomial probabilities α0j/(α01+α02)
are constant over time. We generate 100 independent competing risks data
with constant cause-specific hazards α01 = 0.3 and α02 = 0.6. We first need
to generate failure times with a constant all-cause hazard α0· = 0.3+0.6 = 0.9.
We have already generated such failure times in Section 2.1:

> event.times <- rexp(100, 0.9)

Now, we additionally need to generate a failure cause, either 1 or 2, for each
of the 100 event times. The following code runs 100 independent binomial
experiments, each of which decides on failure type 1 with probability 0.3/(0.3+
0.6) = 1/3 and, hence, with probability 1 − 1/3 = 2/3 on failure type 2:

> f.cause <- rbinom(100, size = 1, prob = 1/3)

If the binomial experiment decides on failure type 1, rbinom returns value 1
and otherwise returns 0. However, we wish our data coding to correspond to
being replicates of (T,XT ) (cf. (3.3)),

> f.cause <- ifelse(f.cause == 0, 2, 1)
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If the binomial experiment decided on failure type 1, f.cause now equals 1,
whereas it otherwise equals 2.

Let us now introduce a censoring time C as in Section 2.1. We generate 100
censoring times, uniformly distributed on [0, 5]:

> cens.times <- runif(100,0,5)

The observable data are the censored event times T ∧ C,

> obs.times <- pmin(event.times, cens.times)

and the event indicator 1(T ≤ C) ·XT (cf. (3.4)),

> obs.cause <- c(event.times <= cens.times) * f.cause

In our example, we find 20 censored observations, 25 observed failures of type 1
and 55 failures of type 2,

> table(obs.cause)

obs.cause

0 1 2

20 25 55

In the following Chapter 4, we show how we can recover the cumula-
tive cause-specific hazards A01(t) = 0.3 · t and A02(t) = 0.6 · t from the
data obs.times and obs.cause, and we also consider left-truncation in addi-
tion to right-censoring (cf. Section 4.2). But before this, we consider a cause-
specific hazards specification, which requires some more involved coding. In
particular, we look at an example, where the binomial probabilities for failure
types 1 and 2 depend on the failure time T :

Assume that α01 = 1 (i.e., constant), and let α02(t) have a Weibull form,

α02(t) =
a

ba
ta−1, a, b > 0, (3.15)

where a is called a shape parameter, and b is a scale parameter. Note that
Weibull hazards are often written differently; e.g. Klein and Moeschberger
(2003) use b̃ = b−a as the scale parameter. Equation (3.15) is the form
used in the help pages of rweibull, dweibull, pweibull and qweibull. We
choose a = 2 and b = 1. The cumulative all-cause hazard is

A0·(t) = t+ t2.

There is no R convenience function to generate failure times with this cu-
mulative hazard. We therefore use the inversion method. The inverse of A0·

is
A−1

0· (u) =
√
u+ 1/4 − 1/2.

We now generate 100 independent random variables, uniformly distributed
on [0, 1],
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> my.times <- runif(100)

and transform them according to A−1
0· (− ln(1 − u)),

> my.times <- -0.5 + (0.25 - log(1 - my.times))^0.5

Next, we decide on failure cause 1 with binomial probability 1/(1 + 2x) at a
given failure time T = x (cf. (3.14). An R function, which takes the simulated
event times as an argument, is useful:

> cause1 <- function(x) {

+ out <- rbinom(length(x), 1, prob = 1 / (1 + 2 * x))

+ ifelse(out == 0, 2, 1)

+ }

We pass my.times to cause1, which runs the desired binomial experiments
with event time-dependent probabilities,

> my.cause <- cause1(my.times)

Finally, we comment on the situation, where we do not find the in-
verse of A0· analytically. Then we may employ numerical inversion, using
uniroot. uniroot, applied to some function f(x), searches for a root, i.e.,
x such that f(x) = 0. Recall that given a replicate of U , say U = u,
where U is uniformly distributed on [0, 1], we need to compute the trans-
formation A−1

0· (− ln(1 − u)) =: t. Then, the desired replicate of T is t. We
write equivalently

A0·(t) + ln(1 − u) = 0. (3.16)

The idea is to use uniroot to find t for a given u. For illustration, we do
this for the previous example with A0·(t) = t + t2. The following R func-
tion generate.my.times.v2 first defines a temporary function temp, which
is the cumulative all-cause hazard plus some y. Because of (3.16), we use y =

log(1 - u) below. temp is called by uniroot. uniroot searches for a root on
a prespecified interval. We search on the interval from 0 to max.int, which
has to be passed to generate.my.times.v2 together with the number n of
desired replicates. uniroot also requires the function values (of the function
temp) at the endpoints to be of opposite signs (or zero), which is tested before
calling uniroot:

> generate.my.times.v2 <- function(n, max.int) {

+ temp <- function(x,y) { return(x + x^2 + y) }

+ stime <- NULL

+ i <- 1

+

+ while(length(stime) < n) {

+ u <- runif(1)

+ ## If endpoints are of opposite sign, call uniroot:

+ if (temp(0, log(1 - u)) *

+ temp(max.int, log(1 - u)) < 0) {
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+ res <- uniroot(temp, c(0, max.int),

+ tol = 0.0001, y = log(1 - u))

+ stime[i] <- res$root

+ i <- i + 1

+ }

+ else cat("Values at endpoints not

+ of opposite signs. \n")

+ }

+ return(stime)

+ }

Running my.times <- generate.my.times.v2(n=100, max.int=99) gives
us the desired 100 independent replicates of T with cumulative all-cause haz-
ard A0·(t) = t + t2; here, we have asked uniroot to search on the inter-
val [0, 99].

We finally note that competing risks simulations in the literature are often
based on an empirically unverifiable data structure (Beyersmann et al., 2009),
namely the latent failure time model. This model and its inherent difficulties
are briefly discussed in Section 3.3.

3.3 The latent failure time model

Some readers may be familiar with competing risks as arising from risk-specific
latent times. This is the latent failure time approach to competing risks. As
explained below, the latent failure time model of competing risks is ‘larger’
than the multistate model of Section 3.1. This also explains the difficulties
that come with assuming latent times. The interpretation of the latent times
will often be awkward, any independence or dependence between them can
usually not be verified empirically. Nevertheless, the concept of underlying
risk-specific times has remained a vivid notion in the context of competing
risks. In fact, sometimes in the literature, competing risks are considered to
arise from latent times, but as the observable data are as in Sections 3.1
and 3.2, subsequent analyses do not rely on the assumption of latent failure
times.

We have therefore chosen to present briefly the latent failure time model,
too. To be specific, assume that there are random variables T (1), T (2) ∈ [0,∞).
The connection to the multistate-type data (3.2) and (3.3) is

T = T (1) ∧ T (2) and XT = 1 ⇐⇒ T (1) < T (2).

It is important to note that the data (T,XT ) arising from the multistate model
of Figure 3.1 are observable (save for left-truncation and right-censoring).
T (1), T (2), however, are not observable. Only their minimum and the indica-
tor 1(T (1) < T (2)) are observable.
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The latent failure time model has been criticized mainly for three rea-
sons. First, whether T (1) and T (2) are independent or dependent cannot be
verified from the observable data, even in the absence of right-censoring and
left-truncation. We refer to Kalbfleisch and Prentice (2002, Section 8.2.4) for
a proof and an in-depth discussion; see also Tsiatis (1975). The basic idea is
that one can find joint distributions of T (1) and T (2), where T (1) and T (2) are
dependent, that give rise to the same likelihood which also arises assuming
independence. This hampers any statistical analysis of the latent times, which
will usually need to make an assumption about any dependence between T (1)

and T (2). Typically, for tractability, T (1) and T (2) are assumed to be indepen-
dent. This assumption is, just as typically, considered to be rather strong and
restrictive.

The non-identifiability of the joint distribution is a serious statistical prob-
lem, if one assumes the existence of latent times. But even more important
are two conceptual concerns:

Because the latent times are unobservable, there is something hypothetical
about them. As a consequence, latent times have been criticized for lack of
plausibility (e.g., Prentice et al., 1978). We illustrate this point for the sit-
uation of hospital stay in a real data analysis in Section 4.3.1. We remark,
however, that there are special situations where the latent times can be given
a physical interpretation: a technical device may be made of a number of
components such that its lifetime is determined by the smallest lifetime of
the components. A very simple example is a chain of light bulbs that are
connected in series. The chain fails when the first light bulb fails. It is im-
portant to note, though, that analysing the lifetime of a chain of light bulbs
would not need to require the existence of latent times. The lifetime may very
well be analysed using the hazard-based techniques of this book, making no
assumption on latent times whatsoever.

Third, and perhaps most important, it is disputable whether the latent
failure time point of view constitutes a fruitful approach to answer ques-
tions of the original subject matter. Aalen (1987) criticizes the issue of non-
identifiability of the joint distribution of T (1) and T (2) as being an ‘artificial
problem’. We illustrate in a real data analysis in Section 4.3.1 that assuming
latent times does not provide further insight as compared to a multistate-
type analysis based on cause-specific hazards. But the analysis based on T (1)

and T (2) has to cope with an awkward interpretation of the latent times, has
to make an unverifiable assumption on their statistical dependence, and its
interpretation turns out to be less straightforward.

The remainder of the competing risks part of this book illustrates that
competing risks data may very well be analysed without assuming risk-specific
latent times and, hence, without needing to cope with the difficulties men-
tioned above. This is also of relevance for analysing multistate data which
are realized as a nested sequence of competing risks experiments: we do not
need to assume that individuals are exposed to a nested sequence of latent,
hypothetical times in order to analyse such data.
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The attraction of the latent failure time approach despite these difficulties
probably lies in the fact that it suggests a way to answer ‘what if’ questions:
if we assume that T (1) is the time until event 1 in a world where events
of the competing type 2 have been prevented, and if we are able to estimate
P(T (1) > t) (e.g., under independence of T (1) and T (2)), then the latent failure
time approach provides a way to predict the survival probability under ‘cause
removal’. Gail (1982) discusses such calculations as a major application of the
latent failure time model.

Both competing risks analyses and considerations on the effect of cause
removal can be traced back to Daniel Bernoulli’s Essai d’une nouvelle analyse
de la mortalité causée par la petite vérole, et des avantages de l’inoculation
pour la prévenir, read before the Royal Academy of Sciences in Paris in 1760
and finally published in 1766. A reprint of the paper is in Bernoulli (1982) and
an English translation (reprinted in parts in Bernoulli and Blower (2004)) is
in Bradley (1971). The aim of Bernoulli’s analysis was to study the impact
of vaccination against smallpox on survival. In Bernoulli’s time, smallpox was
endemic and a major cause of death; vaccination against smallpox and sub-
sequent adverse events were the topic of a controversial public health debate
(e.g., Bernoulli and Blower, 2004).

Bernoulli attacked the problem by defining (time-constant) hazards of in-
fection, of dying due to smallpox or due to other reasons and of becoming
immune, i.e., becoming infected and surviving smallpox. He then studied the
impact of mass vaccination by substituting zero for the infection hazard.

It is important to note that Bernoulli’s approach addressed the question of
‘What if smallpox were eradicated?’ without referring to latent failure times.
The advantage of Bernoulli’s approach is obvious. The reasoning neither builds
on hypothetical times with an awkward interpretation nor does it require us to
make an independence assumption between these times. What it does assume,
however, is that the remaining hazards are the same in a world with or without
smallpox.

An excellent modern discussion of Bernoulli’s paper is given by Dietz and
Heesterbeek (2002). They also discuss that Bernoulli’s basic model was actu-
ally an illness-death model (cf. Section 2.2.4), the intermediate ‘illness’-state
corresponding to ‘being immune’. Constructing partial processes like Bernoulli
by substituting zero for some hazards is, e.g., discussed by Andersen et al.
(1993, Section IV.4.1.6). Andersen et al. (2002) discuss investigating different
hypothetical scenarios of modified hazards in a kind of sensitivity analysis. Al-
though speculative, these models do not require a latent failure time model.

In summary, it is our impression that latent failure times are usually not
needed in the analysis of competing risks data. In contrast, assuming latent
times rather appears to cause confusion and to create artificial problems than
to contribute to an understanding of the subject matter. Although logically
feasible, the concept of latent times is not convincing, except for special cases
such as a technical device whose single components have a physical and func-
tional interpretation. Except for such special cases, the latent failure time
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model is philosophically rather ‘expensive’, assuming, e.g., that a human be-
ing is equipped with a large enough reservoir of latent times for any competing
risks situation that the individual might face.

3.4 Exercises

1. Show that the definition of the cause-specific hazards implies that

P (T ≤ t,XT = 1) =

∫ t

0

P (T ≥ u)α01(u) du.

Show that

P (T ≤ t) = 1 − exp(−A0·(t)) =

∫ t

0

P (T ≥ u)α0·(u−) du.

2. The competing risks simulation algorithm works: Simulate competing risks
data with cause-specific hazard of interest following a Weibull distribution
with shape parameter a equal to 3 and scale parameter b = 2,

α01(t) =
3

8
t2,

and competing cause-specific hazard defined as

α02(t) =
1.8

t+ 2
.

For completely observed data, the usual event proportions

# of type j events in [0, t]

# of individuals

estimate P (T ≤ t,XT = j). Compare the event proportions with the true
quantities.

3. Latent failure time ‘counter example’: Recall the latent failure time model
of Section 3.3 with joint survival function P(T (1) > t1, T

(2) > t2) =
Q(t1, t2). Consider

(a) Q(t1, t2) = exp{1 − γ1t1 − γ2t2 − exp[γ12(γ1t1 + γ2t2)]},

(b) Q(t1, t2) = exp{1 − γ1t1 − γ2t2 − γ1e
γ12(γ1+γ2)t1 + γ2e

γ12(γ1+γ2)t2

γ1 + γ2
},

where γ1, γ2 > 0 and γ12 > −1. For both (a) and (b) compute (and com-
pare) the cause-specific hazards and the hazards of the marginal survival
functions P(T (1) > t) and P(T (2) > t2). Which of the models (a) and (b)
is an independent latent failure time model? (Hint: See Section 8.2.4 of
Kalbfleisch and Prentice (2002).)
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Nonparametric estimation

We introduce the key nonparametric estimators, the Nelson-Aalen estimator
of the cumulative cause-specific hazards and the Aalen-Johansen estimator
of the cumulative incidence functions, in Section 4.1. We analyse the simu-
lated data of Section 3.2 in Section 4.2; this section also introduces in detail
the functionality offered by the R packages mvna, etm, cmprsk, and survival

for nonparametric estimation in a competing risks model. We analyse a real
data example in Section 4.3; this section emphasizes interpretation of com-
peting risks analyses. The usual nonparametric estimators for standard single
endpoint survival analysis, i.e., the Nelson-Aalen estimator of the cumulative
all-cause hazard and the Kaplan-Meier estimator of the survival function, are
included in the present account.

We assume that there are n individuals under study with competing risks
data arising from n independent replicates of a competing risks process as
in Section 3.1, subject to independent right-censoring and left-truncation as
in Section 2.2.2.

4.1 The Nelson-Aalen estimator and the Aalen-Johansen

estimator

The cause-specific hazards α0j(t), j = 1, 2 are the key quantities of the com-
peting risks model introduced in Section 3.1, and they completely deter-
mine the stochastic behaviour of the competing risks process: specification
of the α0js in Section 3.2 sufficed to generate competing risks data (except,
of course, for an outward censoring or truncation mechanism.) In this section,
we show that the Nelson-Aalen estimators of the cumulative cause-specific
hazards A0j(t) =

∫ t

0
α0j(u)du, j = 1, 2, are the key building block for non-

parametric estimation in competing risks.
Note that we estimate the cumulative quantities rather than the α0js them-

selves, as the latter is a much harder problem. Like a density function, the

J. Beyersmann et al., Competing Risks and Multistate Models with R, Use R,  
DOI 10.1007/978-1-4614-2035-4_ , © Springer Science+Business Media, LLC 2012 4
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α0js can be virtually any nonnegative function. However, such as the cumu-
lative distribution function, the cumulative hazard function can be estimated
straightforwardly. And, as we explained in Chapter 2, estimating the A0js
also ‘suffices’ in the following sense: the standard estimators of the survival
function and of the cumulative incidence function are deterministic functions
— product integrals — of the Nelson-Aalen estimators. Although beyond the
technical level of this book, we also note that this fact can also be used to
approximate the distribution of the probability estimators via the functional
delta method, given pertinent results of the computationally simpler Nelson-
Aalen estimators; see, e.g., Aalen et al. (2008). This further underlines the
key role played by the Nelson-Aalen estimators.

We consider n individuals under study with individual competing risks

process (X
(i)
t )t≥0, X

(i)
t ∈ {0, 1, 2}, i = 1, 2, . . . , n. The individual failure time

is Ti with failure cause X
(i)
Ti

=: XTi
. Observation of the individual compet-

ing risks data is subject to a right-censoring time Ci and possibly also to a
left-truncation time Li. We assume that right-censoring and left-truncation
are independent as explained in Section 2.2.2. We introduce some notation
connected to occupation of the states and possible transitions between them
of the competing risks multistate picture in Figure 3.1.

The ith at-risk process is

Y0;i(t) := 1(Li < t ≤ Ti ∧ Ci) (4.1)

In words and in the absence of left-truncation, Y0;i(t) equals 1, as long as
individual i is in the initial state 0 of Figure 3.1 and under observation just
prior to time t . If Y0;i(t) = 1, individual imay be observed to experience one of
the competing events at time t, or individual i may be censored at t or remain
under observation in state 0. In the presence of a left-truncation time Li, which
we assume to be less than Ci, observation of individual i starts with time Li,
and the individual is considered to be at risk of experiencing an observable
competing event or of being censored only after Li. Note that individual i,
i = 1, . . . , n is an individual under study. That is, the individual’s failure
time Ti is greater than the potential left-truncation time Li. In the presence
of left-truncation, there may be individuals who never enter the study, that is,
their failure time is less than their left-truncation time, but these individuals
are not part of the n individuals under study.

Individual i may experience one of the two competing events 1 and 2
at time Ti, modelled by making the transition from state 0 to state 1 (if
competing event 1 occurs) or to state 2 (if competing event 2 occurs). We
count which event types we observe over the course of time:

N01;i(t) := 1(Ti ∧ Ci ≤ t, Li < Ti ≤ Ci, XTi
= 1) (4.2)

equals 1 if we observe individual i to make the transition from state 0 to
state 1 during the time interval [0, t]. Otherwise, N01;i(t) = 0. Analogously,



4.1 The Nelson-Aalen and Aalen-Johansen estimators 57

N02;i(t) := 1(Ti ∧ Ci ≤ t, Li < Ti ≤ Ci, XTi
= 2) (4.3)

equals 1 if we observe a 0 → 2 transition for individual i during the time
interval [0, t], and N02;i(t) = 0 otherwise.

We aggregate over all individuals i = 1, . . . , n. The number of individuals
to be observed at risk in the initial state 0 just prior to time t is

Y0(t) :=

n∑
i=1

Y0;i(t), (4.4)

and the number of individuals observed to make the 0 → j transition during
the time interval [0, t] is

N0j(t) :=

n∑
i=1

N0j;i(t). (4.5)

We also write
N0·(t) := N01(t) +N02(t) (4.6)

for the number of observed transitions out of the initial state 0 during the
time interval [0, t], and we write

ΔN0j(t) := N0j(t) −N0j(t−) and ΔN0·(t) := N0·(t) −N0·(t−) (4.7)

for the increments of N0j(t), i.e., the number of 0 → j transitions observed
exactly at time t, and for the increments ofN0·(t), respectively. The connection
between these counting processes and the competing risks multistate picture
of Figure 3.1 is illustrated in Figure 4.1.

Figure 4.1 also illustrates the increments of the Nelson-Aalen estimator
Â0j(t) of A0j(t) =

∫ t

0
α0j(u)du, j = 1, 2. To motivate the estimator, recall

from Equation (3.5) that α01(t) dt, say, is an infinitesimal conditional transi-
tion probability

α01(t)dt = P (T ∈ dt,XT = 1 |T ≥ t).
If we observe no 0 → 1 transition at t (i.e., ΔN01(t) = 0), we estimate the
increment α01(t)dt of the cumulative 0 → 1 hazard as 0. If we do observe 0 → 1
transitions at t (i.e., ΔN01(t) > 0), we estimate this conditional transition
probability as the ratio of the number ΔN01(t) of 0 → 1 transitions divided
by the number Y0(t) at risk just prior to the transition time t. We proceed in
an analogous manner for the competing 0 → 2 transition. Summing up over
these increments yields the Nelson-Aalen estimators:

Â0j(t) :=
∑

Ti∧Ci≤t

ΔN0j(Ti ∧ Ci)

Y0(Ti ∧ Ci)
, j = 1, 2. (4.8)

An estimator of the variance of Â0j can be derived using martingale theory.
(See Section 2.2.1 on the connection between counting the number of observed
events and what a martingale is.)
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0
Y0(t) individuals in
state 0 just prior
to time t
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���
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���

�� 1

�������������� 2

ΔN01(t) individuals
observed to move
from 0 to 1 at time t

ΔN02(t) individuals
observed to move
from 0 to 2 at time t

Fig. 4.1. Competing risks multistate model with number at risk just prior to t and
number of observed event-specific transitions at t.

The estimator is

σ̂2
0j(t) :=

∑
Ti∧Ci≤t

ΔN0j(Ti ∧ Ci)

Y 2
0 (Ti ∧ Ci)

, j = 1, 2. (4.9)

The Nelson-Aalen estimators are asymptotically normally distributed (e.g.,
Andersen et al., 1993, Section IV.1.2). We also note that they are asymptoti-
cally independent. The limit distribution can be used to construct approximate
100 · (1−α)% confidence intervals of Â0j(t) at a given time point t, α ∈ (0, 1).
The small sample properties of such an interval may be improved by using a
log-transformation (Bie et al., 1987), resulting in the confidence interval

Â0j(t) exp
(
±z1−α/2σ̂0j(t)/Â0j(t)

)
, (4.10)

where z1−α/2 is the 1 − α/2 quantile of the standard normal distribution; it
can be obtained in R applying qnorm to the value of 1 − α/2. Note that the
confidence interval (4.10) is pointwise in nature, i.e., for a given time point t;

it does not yield a 100 ·(1−α)% confidence band for Â0j as a function of time.
Confidence bands are, e.g., discussed in Andersen et al. (1993, Section IV.1.3);
a formula for pointwise confidence intervals after transformation is given in
Andersen et al. (1993, p. 208).

The event-specific Nelson-Aalen estimators sum up to the Nelson-Aalen
estimator of the cumulative all-cause hazard A0·(t):

Â0·(t) := Â01(t) + Â02(t) =
∑

Ti∧Ci≤t

ΔN0·(Ti ∧ Ci)

Y0(Ti ∧ Ci)
, (4.11)
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which has already been introduced in Chapter 2 (cf. Equation (2.14)). An

estimator of the variance of Â0·(t) is

σ̂2
0·(t) :=

∑
Ti∧Ci≤t

ΔN0·(Ti ∧ Ci)

Y 2
0 (Ti ∧ Ci)

, (4.12)

paralleling Equation (4.9). A pointwise confidence interval can be found anal-
ogously to (4.10).

In Chapter 2, we also found that the Kaplan-Meier estimator is a deter-
ministic function of the all-cause Nelson-Aalen estimator Â0·(t) (cf. Equa-
tion (2.15)). Because of Equation (4.11), the Kaplan-Meier estimator is also
a deterministic function of both cause-specific Nelson-Aalen estimators. In
competing risks, the Kaplan-Meier estimator estimates the survival function
of the waiting time T in the initial state 0 of Figures 3.1 and 4.1:

P̂(T > t) :=
∏

Ti∧Ci≤t

(
1 − ΔN0·(Ti ∧ Ci)

Y0(Ti ∧ Ci)

)
. (4.13)

We also write

P̂(T > t−) :=
∏

Ti∧Ci<t

(
1 − ΔN0·(Ti ∧ Ci)

Y0(Ti ∧ Ci)

)
(4.14)

for the value of the Kaplan-Meier estimator just prior to t.
An estimator of the variance of the Kaplan-Meier estimator is:

V̂AR
(
P̂(T > t)

)
:=

(
P̂(T > t)

)2

·
∑

Ti∧Ci≤t

ΔN0·(Ti ∧ Ci)

Y0(Ti ∧ Ci) · (Y0(Ti ∧ Ci) −ΔN0·(Ti ∧ Ci))

(4.15)

Equation (4.15) is the famous Greenwood formula. We note that an alternative
variance estimator can be derived by substituting σ̂2

0·(t) from (4.12) for the
last term on the right hand side of (4.15). Conversely, the last term on the
right hand side of (4.15) can be seen as an alternative variance estimator of the

cumulative all-cause hazard Â0·(t). We use the estimators (4.12) and (4.15)
in compliance with standard practice (e.g., Andersen et al. (1993) and Klein
and Moeschberger (2003)).

Asymptotic normality of the Kaplan-Meier estimator (e.g., Andersen et al.,
1993, Section IV.3.2), can be used to construct approximate 100 · (1 − α)%
confidence intervals. Again, it is advisable to use transformations to improve
the small sample properties. We consider the log-minus-log transformation,
resulting in the confidence interval

P̂(T > t)
exp
n
±z1−α/2

√
̂VAR(bP(T>t)) / (bP(T>t) ln bP(T>t))

o
. (4.16)
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Note that the log-minus-log transformation for the Kaplan-Meier estimator
corresponds to the log-transformation for the Nelson-Aalen estimator, because
ln(P(T > t)) = ln exp(−A(t)) = −A(t). The transformation also ensures that
the confidence interval (4.16) is always contained in [0, 1]. Like the confidence
intervals (4.10) for the Nelson-Aalen estimates, the interval (4.16) should be
given a pointwise interpretation.

We finally derive an estimator of the cumulative incidence functions from
the Kaplan-Meier estimator of the survival function. Recall from (3.12) that
the cumulative incidence functions P(T ≤ t,XT = 1) and P(T ≤ t,XT = 2)
add up to the all-cause distribution function P(T ≤ t). An estimator of P(T ≤
t) is 1 minus the Kaplan-Meier estimator of the survival function. An easy
algebraic calculation shows that

1 − P̂(T > t) = 1 −
∏

Ti∧Ci≤t

(
1 − ΔN0·(Ti ∧ Ci)

Y0(Ti ∧ Ci)

)

=
∑

Ti∧Ci≤t

P̂
(
T > (Ti ∧ Ci) −

) · ΔN0·(Ti ∧ Ci)

Y0(Ti ∧ Ci)
. (4.17)

(One easily verifies (4.17) by checking the increments of the respective repre-
sentations.) The right hand side of (4.17) splits into the cumulative incidence
function estimators, recalling that N0· = N01 +N02:

P̂(T ≤ t,XT = j) :=
∑

Ti∧Ci≤t

P̂
(
T > (Ti ∧ Ci) −

) · ΔN0j(Ti ∧ Ci)

Y0(Ti ∧ Ci)
, j = 1, 2

(4.18)
Estimators (4.18) are special cases of the Aalen-Johansen estimator for general
time-inhomogeneous Markov processes (cf. Section 2.2.4).

It is worthwhile to consider for a moment the different interpretations
of the Kaplan-Meier estimator of (4.13) and of one minus the Kaplan-Meier
estimator in (4.17); the latter will directly lead to the correct interpretation of
the cumulative incidence function estimator: Equation (4.13) is the standard
representation of the Kaplan-Meier estimator. It is a product over empirical
conditional survival probabilities: ΔN0·(Ti ∧ Ci)/Y0(Ti ∧ Ci) is the empirical
probability to fail at time Ti ∧ Ci, given that one has not failed before. One
minus this quantity is the empirical probability of surviving Ti∧Ci conditional
on not having failed before. The product over these terms for all times Ti∧Ci ≤
t results in the empirical probability of surviving (i.e., not failing) up to and
including time t.

One minus this empirical survival probability is the empirical probability
of failing up to and including time t. Now consider (4.17). The right hand side
is the sum over all empirical probabilities of failing at time Ti ∧Ci, where we
sum up over all Ti ∧ Ci ≤ t: P̂

(
T > (Ti ∧ Ci) −

)
is the probability of not

having failed prior to Ti∧Ci; this probability is multiplied with the conditional
probability of failing at time Ti ∧ Ci, given that one has not failed before.
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This reasoning should lead to a cumulative incidence function estimator for
event type 1, say, if we do not sum up over all empirical probabilities of failing
at time Ti ∧Ci, but over all probabilities of failing from cause 1 at Ti ∧Ci: we
multiply the probability of not having failed prior to Ti ∧Ci with conditional
probability ΔN01(Ti ∧ Ci)/Y0(Ti ∧ Ci) of failing from cause 1 at Ti∧Ci, given
that one has not failed before. This is the desired estimator (4.18). Also note
that (4.18) is the empirical analogue of the right hand side of (3.11).

We finally consider estimating the variance of the cumulative incidence
function estimators. We define

P̂(T ≤ t,XT = j |T > s) :=
∑

s<Ti∧Ci≤t

P̂
(
T > (Ti ∧ Ci) −

)
P̂

(
T > s

) · ΔN0j(Ti ∧ Ci)

Y0(Ti ∧ Ci)

(4.19)

for j = 1, 2 and s < t. P̂(T ≤ t,XT = j |T > s) estimates the proba-
bility of failing from cause j up to and including time t, given that one
has survived time s. Note that there is no truly conceptual difference be-
tween (4.18) and (4.19): the latter considers the competing risks process start-
ing at time s > 0 and, hence, only considers those still at risk in state 0 at
that time, whereas the former starts at time 0. A Greenwood-type estimator
of the variance is:

V̂AR(P̂(T ≤ t,XT = j)) =

∑
s≤t

(
P̂(T ≤ t,XT = j) − P̂(T ≤ s,XT = j)

)2

Y0(s) −ΔN0·(s)
ΔÂ0·(s) +

P̂(T > s−)2

Y0(s)3
ΔN0j(s) ·

{
Y0(s) −ΔN0j(s)

− 2
(
Y0(s) −ΔN0·(s)

) · P̂(T ≤ t,XT = j) − P̂(T ≤ s,XT = j)

P̂(T > s)

}
(4.20)

This estimator is formally derived in Andersen et al. (1993, Section IV.4). In
the absence of a competing event state 2, formula (4.20) coincides with (4.15).
Performance of variance estimators for the estimated cumulative incidence
function has been investigated with about a 15 year delay as compared to
the standard survival case; see, e.g., Braun and Yuan (2007). The preferred
variance estimator is (4.20); see Allignol et al. (2010).

Following a suggestion by Lin (1997), we use the transformation x �→
ln(− ln(1 − x)) to construct approximate 100 · (1 − α)% confidence inter-

vals for P̂(T ≤ t,XT = j). These can again be justified by an asymptotic
normality result (e.g., Andersen et al., 1993, Section IV.4.2). The transfor-
mation corresponds to the log-minus-log transformation of (4.16), applied

to 1 − P̂(T ≤ t,XT = j), and resulting in the confidence intervals
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1−(1−P̂(T ≤ t,XT = j))
exp

 
∓z1−α/2

√
̂VAR(bP(T≤t,XT =j))

(1−bP(T≤t,XT =j))·ln(1−bP(T≤t,XT =j))

!
, (4.21)

for j = 1, 2. As before, the confidence interval should be given a pointwise
interpretation. The confidence intervals (4.21) are always contained in [0, 1].
In fact, P(T ≤ t,XT = j) always lies in [0,P(XT = j)], where P(XT = j) =
limt→∞ P(T ≤ t,XT = j) is the expected proportion of individuals who fail
from cause j. However, we usually do not know P(XT = j), and this quantity
will not even be nonparametrically estimable with most right-censored data
(cf. Section 2.3).

We now explain how to perform the analyses in R. We first consider how to
recover the cumulative cause-specific hazards, from which we generated data
in Section 3.2. Next, we consider two real data examples. The analysis of the
simulated competing risks data is focused on presenting the tools provided
by R and also on how well we may recover the theoretical quantities. The
first real data example focuses on interpreting a competing risks analysis,
taking advantage of the R tools provided earlier. This highlights and explains
some of the subtleties that are common in competing risks. The second data
example briefly illustrates how left-truncation is easily incorporated in the
present framework.

4.2 Analysis of simulated competing risks data

Cumulative cause-specific hazards

Recall from Section 3.2 that we generated data obs.times and obs.cause

of 100 individuals from cumulative cause-specific hazards A01(t) = 0.3 · t
and A02(t) = 0.6 · t and an independent censoring time that was uniformly
distributed on [0, 5]. Later, we additionally consider left-truncation, too.

To begin, we estimate the cumulative hazards, using the mvna package
(Allignol et al., 2008). First, we need to describe the competing risks multistate
model of Figures 3.1 and 4.1. We define a matrix of logical values indicating
the possible transition types within our multistate model:

> tra <- matrix(FALSE, ncol = 3, nrow = 3)

> dimnames(tra) <- list(c("0", "1", "2"), c("0", "1", "2"))

> tra[1, 2:3] <- TRUE

> tra

0 1 2

0 FALSE TRUE TRUE

1 FALSE FALSE FALSE

2 FALSE FALSE FALSE

tra tells us that an individual may move from state 0 to state 1 and from
state 0 to state 2. Backward transitions are not possible. Also, the values on
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the diagonal are FALSE: ‘transitions’ from one state into itself are not modelled.
There is no need to model such ‘transitions’. Individuals who do not make a
transition into one of the two competing even states at time t, say, remain in
the initial state 0 at t.

Next, we aggregate obs.times and obs.cause into a data frame my.data.
For all individuals, my.data has one row for each observed transition and one
row for a censoring event. In a competing risks model, an individual is either
observed to experience a competing event or is censored. Thus, my.data has
as many rows as there are individuals. We also define an individual ID variable
and mark censoring events by a value cens:

> id <- seq_along(obs.cause)

> from <- rep(0, length(obs.cause))

> to <- as.factor(ifelse(obs.cause == 0, "cens", obs.cause))

> my.data <- data.frame(id, from, to, time = obs.times)

We have a quick look at the new data frame:

> head(my.data)

id from to time

1 1 0 2 0.1450839

2 2 0 2 2.3988344

3 3 0 1 0.4447219

4 4 0 cens 0.3656826

5 5 0 1 0.6050701

6 6 0 2 0.8025029

Individual 3 experiences competing event 1 at time 0.4447219, individual 1
experiences competing event 2 at time 0.1450839, and individual 4 is censored
in the initial state 0 at time 0.3656826

We are now set to estimate the cumulative cause-specific hazards using the
function mvna of the mvna package. The function mvna requires as arguments
a data frame as created above, the state names which will be the same as in
Figure 3.1, a matrix defining the possible transitions, and the name marking
censored observations:

> library(mvna)

> my.nelaal <- mvna(my.data, c("0", "1", "2"), tra, "cens")

The value returned by mvna is a list with components named after the
possible transitions, in our example ”0 1” and ”0 2”. These components are
data frames: my.nelaal[["0 1"]]$na are the estimates Â01(t) at times t as
in my.nelaal[["0 1"]]$time; the values of the variance estimator (4.9) are
in my.nelaal[["0 1"]]$var.aalen.

> head(my.nelaal[["0 1"]][, c( "time","na","var.aalen")])
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time na var.aalen

0 0.00000000 0.00000000 0.0000000000

0.0136922217077679 0.01369222 0.01000000 0.0001000000

0.0170758542501264 0.01707585 0.01000000 0.0001000000

0.0241606461349875 0.02416065 0.01000000 0.0001000000

0.0353729078132245 0.03537291 0.02030928 0.0002062812

0.0369639217387885 0.03696392 0.02030928 0.0002062812

We note that the variance estimates may be biased when the risk set is small,
say, less than five individuals (Klein, 1991). With competing risks data that
are only subject to right-censoring but not to left-truncation, this usually only
happens for late event times.

We plot the Nelson-Aalen estimates for both possible transitions along
with the log-transformed confidence intervals of (4.10):

> xyplot(my.nelaal, strip=strip.custom(bg="white"),

+ ylab="Cumulative Hazard", lwd=2)

The output is displayed in Figure 4.2 where we have also included the the-
oretical quantities A01(t) = 0.3t and A02(t) = 0.6t for comparison. In this
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Fig. 4.2. Simulated data. The step functions are the Nelson-Aalen esti-
mates bA01(t) (left) and bA02(t) (right) with log-transformed confidence intervals for
the data obs.times and obs.cause that were generated in Section 3.2. The linear
functions are the true cumulative hazards A01(t) and A02(t).
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example, the Nelson-Aalen estimates approximate the true cumulative haz-
ards quite well beyond the 75th quantile,

> qexp(0.75, rate = 0.9)

[1] 1.540327

Survival function

We now consider estimating the survival function P(T > t) of the waiting
time T in the initial state 0. The Kaplan-Meier estimator (4.13) may be com-
puted from the value returned by mvna, as it is a deterministic function of the
all-cause Nelson-Aalen estimator Â0·(t) = Â01(t)+ Â02(t) (cf. (4.11)). A more
convenient way is provided by the survfit-function of the survival package:

> my.fit.surv <- survfit(Surv(time, to != "cens") ~ 1,

+ data = my.data, conf.type = "log-log")

The first argument to survfit, i.e., Surv(time, to != "cens") creates a
‘survival object’ from event times my.data$time; see also Section 2.1. An event
time is considered as having been observed whenever my.data$to does not
equal "cens". The last argument requires confidence intervals to be computed
from the log-minus-log transformation (cf. (4.16)). survfit returns a ‘survfit
object’. my.fit.surv$surv are the values of the Kaplan-Meier estimator at
time points my.fit.surv$time.

The result can be plotted:

> plot(my.fit.surv, xlab = "Time", ylab = "Survival

+ Probability", mark.time= FALSE, lwd = 2)

mark.time = FALSE requests that the Kaplan-Meier curve is not marked at
censoring times, which are also not an event time. We have chosen not to
mark these times in compliance with Figure 4.2. The Kaplan-Meier curve
is shown in Figure 4.3 together with its theoretical counterpart, added
via curve(exp(-0.9 * x), add = TRUE). Also note that plot applied to
my.fit.surv plots pointwise confidence intervals as given in (4.16), based on
the Greenwood variance estimator (4.15). However, an estimator of the vari-
ance of the Kaplan-Meier estimator is not explicitly returned by the survfit-
function. This functionality is offered by the etm package described below.

Estimating the survival function from a multistate perspective

Using the survival package is the standard way in R to compute the Kaplan-
Meier estimator. However, the package does not provide for estimating proba-
bilities in more complex multistate models. This functionality is offered by the
etm package (Allignol et al., 2011a). Because the standard survival situation
can be displayed as a very simple multistate model (see Figure 2.1) we have
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Fig. 4.3. Simulated data. Step functions: Kaplan-Meier estimate bP(T > t)
with log-minus-log transformed confidence intervals (4.16) for the data obs.times

and obs.cause that were generated in Section 3.2. Smooth line: theoretical survival
function.

chosen to explain computation of the Kaplan-Meier estimator using etm, too.
As described before, one way to do this is by combining the competing event
states 1 and 2 of Figure 3.1 into one single absorbing state as in Figure 2.1,
which we also call state 1. First, we again define a matrix of logical values
with now only one possible transition type:

> tra.km <- matrix(FALSE, ncol=2, nrow=2)

> dimnames(tra.km) <- list(c("0", "1"), c("0", "1"))

> tra.km[1, 2] <- TRUE

> tra.km
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0 1

0 FALSE TRUE

1 FALSE FALSE

Next, we generate a corresponding data frame from my.data with only one
absorbing state:

> my.data.km <- my.data

> my.data.km$to <- ifelse(my.data.km$to == "cens", "cens", 1)

We compute the Kaplan-Meier estimator using the etm package:

> library(etm)

> km.etm <- etm(my.data.km, c("0", "1"), tra.km, "cens", s = 0)

As with mvna, the argument c("0", "1") gives the state names, and "cens"

the name marking censored observations. We also need to pass the matrix
defining the possible transitions (i.e., tra.km). A new argument is s=0 which
allows for computing conditional probabilities. Setting s to a value greater
than 0 estimates P(T > t |T > s). Note that P(T > t |T > 0) = P(T >
t). This functionality becomes more relevant with more complex multistate
models.

etm returns a list: km.etm$time is the same as my.fit.surv$time. The
probability estimates are in km.etm$est, which is an array of 2 × 2 matrices
for each time point in km.etm$time. Let us write t1 < t2 < t3 < . . . for
the ordered observed event times contained in km.etm$time. The matrix that
corresponds to t1 is

> km.etm$est[, , 1]

0 1

0 0.99 0.01

1 0.00 1.00

The upper left entry is the estimated probability of still being in the initial
state by time t1, i.e., the Kaplan-Meier estimator P̂(T > t1) evaluated at t1.
The upper right entry is the estimated probability of having left the initial
state by time t1, i.e., P̂(T ≤ t1) = 1 − P̂(T > t1). The lower left entry
is the estimated probability of having made the backward transition from
the absorbing state into the initial state by time t1. This probability is 0
because 1 → 0 transitions are not possible. Finally, the lower right entry
is the estimated probability of not having made the backward transition. As
state 1 is absorbing, this probability is 1. Readers may check the computations
by adding

> lines(x = km.etm$time, y = km.etm$est[1, 1, ],

+ type = "s", col = "red")

to Figure 4.3; the Kaplan-Meier curves should be identical.
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This matrix formulation may look overdone for standard survival data, but
it becomes immediately useful with more complex multistate models. E.g.,
imagine that we do allow for backward transitions in Figure 2.1. In biomet-
rical applications, this model can be used for modelling healthy ↔ diseased
transitions, e.g., occurrence of and recovery from allergic reactions. In engi-
neering, backward transitions might correspond to malfunctioning machines
being repaired.

For convenience, probabilities may also be extracted in a simpler way using
the function trprob. For instance,

> trprob(km.etm, "0 0")

displays the Kaplan-Meier estimates for all time points.

> trprob(km.etm, "0 0", 2)

will display the survival probability at time t = 2.
etm also estimates variances: km.etm$cov contains the estimated covari-

ances of all probability estimators that we have just described. In the stan-
dard survival set-up, we are only interested in an estimator of the variance
of the Kaplan-Meier estimator; km.etm$cov[1, 1, 1] is the Greenwood esti-
mator (4.15) evaluated at t1, km.etm$cov[1, 1, 2] is (4.15) evaluated at t2,
and so on. Equivalently, the trcov function may be used. trcov(km.etm, ’0

0’) will display the Greenwood estimator for all time points.

Cumulative incidence functions

We finally consider estimating the cumulative incidence functions P(T ≤
t,XT = 1) and P(T ≤ t,XT = 2). The standard way to do this in R is
by using the cuminc-function of the cmprsk package:

> require(cmprsk)

> my.cif <- cuminc(my.data$time, my.data$to, cencode = "cens")

Like Surv, cuminc takes the event times my.data$time as the first argument.
The second argument contains the causes of failure or a censoring code; the
latter is passed to the cencode-argument. cuminc returns a list, in our example
with components ”1 1” and ”1 2”. Note that the names of these components
do not correspond to transitions like they did in case of the mvna package.
Component ”1 1” contains results for failure type 1, and component ”1 2”
contains results for failure type 2. The first entry of these names will only differ,
if we compare data from different groups defined at baseline, cf. Section 4.3.
E.g., my.cif[["1 2"]]$est contains the values of P̂(T ≤ t,XT = 2) at times t
given in my.cif[["1 2"]]$time. Note that all corners of the step function
t �→ P̂(T ≤ t,XT = 2) are given. I.e., all positive times appear twice in
my.cif[["1 2"]]$time. The corresponding entries in my.cif[["1 2"]]$est

are P̂(T ≤ t−, XT = 2) and P̂(T ≤ t,XT = 2), respectively. We may plot
the cumulative incidence functions via plot(my.cif). A customized output
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Fig. 4.4. Simulated data. Step functions: Aalen-Johansen estimators bP(T ≤ t,XT =
j), j = 1, 2 for the data obs.times and obs.cause that were generated in Section 3.2.
Smooth lines: theoretical cumulative incidence functions.

is given in Figure 4.4 where we have again added the theoretical quantities.
Readers may check that the Aalen-Johansen estimators P̂(T ≤ t,XT = j),

j = 1, 2, add up to 1 minus the Kaplan-Meier estimator P̂(T > t).
cuminc also returns an estimate of the variance of the estimator of the

cumulative incidence functions. However, this variance estimator is not the
Greenwood-type estimator (4.20). As the Greenwood estimator is the pre-
ferred estimator in the absence of competing risks (cf., e.g., Andersen et al.,
1993, Example IV.3.1) and the performance of the variance estimator returned
by cuminc has been questioned in small samples (Braun and Yuan, 2007), we
do not discuss this estimator further. The estimator recommended by Braun
and Yuan (2007) coincides with the Greenwood-type estimator (4.20) (Allig-
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nol et al., 2010). This estimator is provided by the etm package which we
discuss next.

Estimating the cumulative incidence functions from a multistate perspective

As with the analysis of the cumulative cause-specific hazards and as with
computing the Kaplan-Meier estimator using etm, we need a matrix of logical
values indicating the possible transition types within the multistate model
of Figure 3.1. This is the matrix tra that we used in the analysis of the
cumulative hazards (cf. p. 62). Estimating the cumulative incidence functions
using etm is now straightforward:

> cif.etm <- etm(my.data, c("0", "1", "2"), tra, "cens", s = 0)

Recall from computing the Kaplan-Meier estimator that the argument c("0",
"1", "2") gives the state names, "cens" gives the name marking censored
observations, and the argument s=0 indicates that we are estimating uncon-
ditional quantities P̂(T ≤ t,XT = j), j = 1, 2 rather than P̂(T ≤ t,XT =
j |T > s) for some s > 0. As before, let us write t1 < t2 < t3 < . . . for
the ordered observed event times; note that at such a time ti both an event
of type 1 or of type 2 may have been observed. The estimated cumulative
incidence functions are in cif.etm$est. For time t1 we have

> cif.etm$est[, , 1]

0 1 2

0 0.99 0.01 0

1 0.00 1.00 0

2 0.00 0.00 1

That is, the estimated cumulative incidence function for type 1 events evalu-
ated at t1 is P̂(T ≤ t1, XT = 1) = 0.01, the top right entry is P̂(T ≤ t1, XT =

2) = 0, and the top left entry is P̂(T > t1) as before. Also note that the
lower two lines correspond to the lower two lines of tra containing exclusively
FALSE-values (i.e., backward transitions out of the competing event states 1
and 2 are not modelled). The entries 1 on the diagonal of the lower two lines
correspond to the fact that an individual stays in a competing event state,
once it has been reached, with probability 1. In general, cif.etm$est evalu-
ated at [, , i] instead of [, , 1] will yield

P̂(T > ti) P̂(T ≤ ti, XT = 1) P̂(T ≤ ti, XT = 2)
0 1 0
0 0 1

In a competing risks model with potentially more than two competing event
states, say k competing risks, k ≥ 2, the first line of cif.etm$est would still
display the Kaplan-Meier estimator of P(T > t) in the top left entry, the next
entry to the right would be the Aalen-Johansen estimator of P(T ≤ t,XT = 1),
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and so forth; the top right entry would be the Aalen-Johansen estimator of
P(T ≤ t,XT = k). Also note that the Aalen-Johansen estimator, as imple-
mented in the etm package, has a built-in guarantee that each line of the
matrices in etm$est adds up to one. For competing risks, this entails that
one minus the Kaplan-Meier estimator for the waiting time in the initial state
equals the sum of all estimated cumulative incidence functions. How to ex-
tract the respective estimators from the return value of etm is summarized in
Table 4.1. The subscripting described in the second line of Table 4.1, using

bP(T > t) bP(T ≤ t,XT = 1) bP(T ≤ t,XT = 2)

est[1,1,] est[1,2,] est[1,3,]

est["0","0",] est["0","1",] est["0","2",]

trprob(cif.etm, ′00′) trprob(cif.etm, ′01′) trprob(cif.etm, ′02′)

Table 4.1. Entries of the component est returned by etm which contains the
Kaplan-Meier estimator and the Aalen-Johansen estimators of the cumulative in-
cidence functions in a competing risks model with two competing states named ‘1’
and ‘2’ and one initial state named ‘0’. The last line displays usage of the convenience
function trprob.

the names of the states of a multistate model, is particularly useful for more
general multistate models. In Section 8.1, we will consider transition proba-
bilities Phj(s, t) = P(Xt = j |Xs = h) for some states h, j and times s ≤ t.
With this notation, the cumulative incidence functions P(T ≤ t,XT = j),
j = 1, 2, equal transition probabilities P0j(0, t), and the survival function is
P00(0, t) . The indices 00 and 0j reappear in the subscripting of the last line
of Table 4.1 and also in Table 4.2 below, where subscripting for an estimator
of the covariance matrix is discussed.

etm also computes a Greenwood-type estimator of all variances and co-
variances of all transition probability estimates in a multistate model; see
Section 9.2. Here, we focus on competing risks, but assessing the single com-
ponents of the estimator will analogously work for general multistate mod-
els, too. The Greenwood-type estimator is contained in cif.etm$cov. Again,
cif.etm$cov is an array, where, e.g., cif.etm$cov[ , , 1] corresponds
to t1. cif.etm$cov[, , 1] is a matrix with dimnames

> dimnames(cif.etm$cov[, ,1])

[[1]]

[1] "0 0" "1 0" "2 0" "0 1" "1 1" "2 1" "0 2" "1 2" "2 2"

[[2]]

[1] "0 0" "1 0" "2 0" "0 1" "1 1" "2 1" "0 2" "1 2" "2 2"
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That is, the rownames and the colnames are every possible combination of
the states — or state names — of our multistate model. The combinations
of interest to us are "0 0"; staying in the initial state 0 and "0 1" and "0

2" corresponding to transitions in either competing event state 1 or 2. The
variance estimators are those entries where the rownames and the colnames
are identical: cif.etm$cov["0 0","0 0",1] is the Greenwood estimator of
the variance of the Kaplan-Meier estimator evaluated at t1. cif.etm$cov["0
0","0 0",] returns all these variance estimates for t1 < t2 < . . .. The
same result may be obtained using trcov(cif.etm, ’0 0’). The variance
estimator for P̂(T ≤ t,XT = 1) is in cif.etm$cov["0 1","0 1",], the

variance estimator for P̂(T ≤ t,XT = 2) is in cif.etm$cov["0 2","0

2",]. The covariance estimators are those entries, where the rownames and
the colnames are not identical. E.g., cif.etm$cov["0 1","0 2",] equals
cif.etm$cov["0 2","0 1",], and both these components of cif.etm$cov

estimate cov
(
P̂(T ≤ t,XT = 1), P̂(T ≤ t,XT = 2)

)
. This mechanism is sum-

marized in Table 4.2.

dcov bP(T > t) bP(T ≤ t,XT = 1) bP(T ≤ t,XT = 2)

["0 0","0 1",] ["0 0","0 2",]
bP(T > t) ["0 0","0 0",] and and

["0 1","0 0",] ["0 2","0 0",]

["0 0","0 1",] ["0 1","0 2",]
bP(T ≤ t,XT = 1) and ["0 1","0 1",] and

["0 1","0 0",] ["0 2","0 1",]

["0 0","0 2",] ["0 1","0 2",]
bP(T ≤ t,XT = 2) and and ["0 2","0 2",]

["0 2","0 0",] ["0 2","0 1",]

Table 4.2. etm returns an array as a value cov, which contains Greenwood-type
estimators of the covariances of the Kaplan-Meier estimator bP(T > t) and the esti-

mators bP(T ≤ t,XT = j) of the cumulative incidence functions. The table denotes
the respective entries of cov where these covariances are found.

The value returned by etm allows for straightforward computation of the
pointwise confidence intervals (4.21) of P̂(T ≤ t,XT = j). For computing 95%

confidence intervals for P̂(T ≤ t,XT = 1), the argument (except for the sign)
of exp in (4.21) is

qnorm(0.975) * sqrt(cif.etm$cov["0 1","0 1",])/

((1-cif.etm$est[1,2,]) * log(1-cif.etm$est[1,2,]))

We consider confidence intervals in the analysis of the pneumonia data below
(cf. Figure 4.10). For convenience, confidence intervals may also be obtained
using the summary function.
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Left-truncation

Our presentation of nonparametric estimation has so far focused on tools that
are available in R and their ability to recover the theoretical quantities of
the competing risks multistate model in the presence of right-censoring. We
now illustrate that this program also works in the presence of left-truncation.
Recall from Section 2.2.2 that left-truncation arises in situations of delayed
study entry: individuals are not under observation since time origin, but only
enter the study at some later point in time. They enter the risk set at their
time of study entry and may be observed to experience a competing event
only after their entry time. Only individuals enter the study whose time of
study entry is less than their event time and less than their censoring time
(cf. (4.1)).

We additionally generate left-truncation times,

> lt.times <- rgamma(100, shape= 0.5, rate = 2)

Left-truncation is light, the number of individuals under study (out of 100
individuals originally simulated) is

> sum(lt.times < my.data$time)

[1] 82

The cumulative cause-specific hazards may again be conveniently com-
puted using mvna. We only need to slightly recode the data in order to inform
mvna about the entry times into the risk set and about the exit times.

> my.data2 <- my.data[,1:3] #do not keep my.data$time

> my.data2$entry <- lt.times

> my.data2$exit <- my.data$time

> my.data2 <- my.data2[my.data2$entry<my.data2$exit,]

> head(my.data2)

id from to entry exit

1 1 0 2 0.14158852 0.1450839

2 2 0 2 0.60343943 2.3988344

3 3 0 1 0.34543187 0.4447219

5 5 0 1 0.04906455 0.6050701

6 6 0 2 0.18248723 0.8025029

8 8 0 2 0.07326980 0.2346617

Instead of one entry time, my.data2 now has entries entry and exit. entry
contains the left-truncation times. exit contains the minimum of an in-
dividual’s event time and right-censoring time. Only individuals with left-
truncation times less than the times in exit enter the study.

We can now use mvna as before, working, however, with the left-truncated
data set my.data2,
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> my.nelaal2 <- mvna(my.data2, c("0", "1", "2"), tra, "cens")

The Nelson-Aalen estimates for both possible transitions along with the
log-transformed confidence intervals of (4.10) may again be plotted using
xyplot,

> xyplot(my.nelaal2, strip=strip.custom(bg="white"),

+ ylab="Cumulative Hazard", lwd=2)

The output is displayed in Figure 4.5 where we have again included the the-
oretical quantities A01(t) = 0.3t and A02(t) = 0.6t as in Figure 4.2. The
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Fig. 4.5. Simulated data. The step functions are the Nelson-Aalen estimates bA01(t)

(left) and bA02(t) (right) with log-transformed confidence intervals for the data as in
Figure 4.2, but now additionally subject to left-truncation. The linear functions are
the true cumulative hazards A01(t) and A02(t).

approximation of the true cumulative hazards by the Nelson-Aalen estimates
is still satisfactory, but the confidence intervals are now wider for early times
as compared to Figure 4.2. This is a consequence of left-truncation, which
typically leads to smaller risk sets, in particular for early points in time. This
is illustrated in Figure 4.6.

Recalling that the Kaplan-Meier estimator P̂(T > t) and the Aalen-

Johansen estimators P̂(T ≤ t,XT = j) are deterministic functions of the
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Fig. 4.6. Simulated data. The solid lines indicate the individual times at risk for
the simulated data and in the presence of left-truncation. Right-censored individuals
are indicated with a circle ◦. Note that the plot shows less than 100 lines, because
some individuals do not enter the study as a consequence of left-truncation.

Nelson-Aalen estimators computed above, we note that these probability es-
timates may also be computed in the presence of left-truncation, but that we
have to reckon with wider confidence intervals for small t. We briefly look at
the necessary changes which need to be made in the R code, and a further
discussion follows in the real data examples below.

P̂(T > t) may again be computed using the survfit-function,

> my.fit.surv2 <- survfit(Surv(entry,exit, to != "cens") ~ 1,

+ data = my.data2, conf.type = "log-log")

As with mvna, the difference is that we now pass the entry times entry into
the study cohort and the exit times exit out of the study cohort to survfit.
In the context of the survival package, this is also often referred to as start
stop-coding or ‘counting process data’.

Cumulative incidence functions may conveniently be estimated using etm.
The required changes in R are as with mvna; we use the data set my.data2.

> cif.etm2 <- etm(my.data2, c("0", "1", "2"),

+ tra, "cens", s = 0)
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Recall that the use of etm as in the above code estimates both P(T > t) and
the cumulative incidence functions P(T ≤ t,XT = j) in one step. We note
that the cuminc-function does not allow for left-truncated data.

4.3 Analysis of hospital data: Impact of pneumonia

status on admission on intensive care unit mortality

The data set sir.adm comes with the mvna package and has been introduced in
Chapter 1. Briefly, 747 intensive care unit patients are included in sir.adm.
Competing endpoints are discharge from the unit and death on the unit.
sir.adm$pneu informs on a patient’s pneumonia status on admission, 1 for
pneumonia present on admission, and 0 for no pneumonia. A patient’s status
at the end of the observation period is contained in sir.adm$status, 1 for
discharge (alive), 2 for death, 0 for patients censored before end of unit stay.
A patient’s length of stay is in sir.adm$time.

> data(sir.adm)

> head(sir.adm)

id pneu status time age sex

1 41 0 1 4 75.34153 F

2 395 0 1 24 19.17380 M

3 710 1 1 37 61.56568 M

4 3138 0 1 8 57.88038 F

5 3154 0 1 3 39.00639 M

6 3178 0 1 24 70.27762 M

The aim of the present analysis is to study the impact of pneumonia present on
admission on unit mortality. As pneumonia is a severe illness, we should expect
more patients dying with pneumonia than without. In terms of Figure 3.1,
death is the event of interest and discharge is the competing event.

We first study the cumulative cause-specific hazards using mvna. We use
the same matrix tra of logical values indicating the possible transition types
within the competing risks multistate model as before. As in the analysis of the
simulated data, we need to modify sir.adm into a multistate-type data set.
We also recode the data such that the event of interest, death, will correspond
to state 1 as in Figure 3.1, and state 2 is the competing event:

> to <- ifelse(sir.adm$status==0,"cens",

+ ifelse(sir.adm$status==1,2,1))

> my.sir.data <- data.frame(id=sir.adm$id,from=0,to,

+ time=sir.adm$time, pneu=sir.adm$pneu)

Note that my.sir.data has a component pneu with the pneumonia on admis-
sion status. We check the recoding of the nested call to ifelse,

> table(my.sir.data$to)
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1 2 cens

76 657 14

Next, we compute the cumulative cause-specific hazards for death and dis-
charge, respectively, and stratified for pneumonia status on admission,

> my.nelaal.nop <- mvna(my.sir.data[my.sir.data$pneu == 0, ],

+ c("0", "1", "2"), tra, "cens")

> my.nelaal.p <- mvna(my.sir.data[my.sir.data$pneu == 1, ],

+ c("0", "1", "2"), tra, "cens")

A customized plot of the Nelson-Aalen estimates is displayed in Figure 4.7.
Note that pneumonia appears to have no effect on the death hazard. However,
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Fig. 4.7. Hospital data. Top row: Nelson-Aalen estimates bA01(t) of the cumula-

tive death hazard. Bottom row: Nelson-Aalen estimates bA02(t) of the cumulative
discharge hazard. All estimates are stratified for pneumonia status on admission.

this does not imply that pneumonia has no effect on mortality. The reason is
that pneumonia appears to reduce the discharge hazard. This implies:

1. Pneumonia appears to reduce the all-cause hazard for end of intensive
care unit stay.
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2. Patients with pneumonia on admission stay longer on the unit. During
this prolonged stay, they are exposed to an essentially unchanged death
hazard.

3. As a consequence, more patients with pneumonia die than patients with-
out pneumonia.

This is a typical competing risks phenomenon. Because there is more than one
hazard acting on an individual, we cannot tell from one hazard alone what an
individual’s future course will be. This situation is schematically displayed in
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Fig. 4.8. Hospital data. Schematic display of the effect of pneumonia on the cause-
specific hazards. Pneumonia status has no effect on the cause-specific hazard for
death, which is also the smaller hazard. A Plot like the present one can be produced
with the R package compeir; see also Grambauer et al. (2010b).

Figure 4.8: Recall that one way to think of cause-specific hazards is in terms
of momentary forces of transition moving along the arrows of the multistate
pictures (cf. our discussion preceding Equation (3.14)). The magnitude of
these forces is schematically displayed in Figure 4.8. The ‘force of death’ is not
influenced by pneumonia status, but the ‘force of discharge’ is substantially
reduced by pneumonia on admission. Figure 4.8 illustrates that the ‘overall
force’, i.e., the all-cause hazard that pulls an individual is reduced, leading
to longer unit stay, and that the relative strength between the cause-specific
forces of death and of discharge is changed by pneumonia status.

Note that the schematic representation of Figure 4.8 has limitations. The
magnitude of the momentary transition forces will usually not be constant over
time, such that we would actually need a whole series of plots like Figure 4.8. In
fact, this is achieved in Figure 4.7: the shape of the Nelson-Aalen estimators,
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which estimate the cumulative hazards, is determined by the cause-specific
hazards. We may also think of Figure 4.8 in a such way that does not neces-
sarily illustrate the magnitude of the hazards, which may vary with time, but
only the ratios of the death hazards and the ratios of the discharge hazards,
respectively, which are assumed to be constant. This is the approach taken by
proportional cause-specific hazards modelling which we consider in Section 5.

Finally, we check whether our interpretation of the cumulative hazards
analysis has been correct by looking at the Aalen-Johansen estimators of the
cumulative incidence functions, again stratified for pneumonia status. Recall
that the cumulative incidence function for death, say, displays the expected
proportion of individuals dying on the unit over the course of time. If our inter-
pretation of the cumulative hazards analysis has been correct, the estimated
cumulative incidence function for death, P̂(T ≤ t,XT = 1), within patients
with pneumonia should run above those patients without pneumonia.

Using the function cuminc of the cmprsk package, we may now also pass
a group = my.sir.data$pneu argument in the call to cuminc. This forces
cuminc to compute the estimates P̂(T ≤ t,XT = j), j = 1, 2 within groups
defined by my.sir.data$pneu.

> my.sir.cif <- cuminc(my.sir.data$time, my.sir.data$to,

+ group=my.sir.data$pneu, cencode="cens")

The return value of cuminc is a list with components "0 1", "1 1", "0 2" and
"1 2". The components "0 1" and "1 1" contain results for failure type 1; the
components "0 2" and "1 2" contain results for failure type 2. The compo-
nents "0 1" and "0 2" are for patients with pneumonia status 0 on admission,
i.e., without pneumonia, and components "1 1" and "1 2" are for patients
with pneumonia status 1. A customized plot of the estimated cumulative in-
cidence functions is displayed in Figure 4.9.

As expected, we find that more patients die among those with pneumonia.
The computations may also be done using the etm package. As with mvna,

we run etm with each stratum:

> my.sir.etm.nop <- etm(my.sir.data[my.sir.data$pneu == 0, ],

+ c("0", "1", "2"), tra, "cens", s = 0)

> my.sir.etm.p <- etm(my.sir.data[my.sir.data$pneu == 1, ],

+ c("0", "1", "2"), tra, "cens", s = 0)

The Aalen-Johansen estimates P̂(T ≤ t,XT = 1) are shown in Figure 4.10,
generated by

> plot(my.sir.etm.p, tr.choice = '0 1', col = 1, lwd = 2,

+ conf.int = TRUE, ci.fun = "cloglog", legend = FALSE,

+ ylab="Probability")

> lines(my.sir.etm.nop, tr.choice = '0 1', col = "gray",

+ lwd = 2, conf.int = TRUE, ci.fun = "cloglog")

together with pointwise 95% confidence intervals (4.21).
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Fig. 4.9. Hospital data. Aalen-Johansen estimates bP(T ≤ t,XT = j) of the cumu-
lative incidence functions for death (left, j = 1) and for discharge (right, j = 2),
stratified for pneumonia status on admission. Solid lines are for patients without
pneumonia.

The confidence intervals support our previous finding that we eventually
see more cases of death in the group of pneumonia patients.

Plots of cumulative hazards as in Figure 4.7 and plots of cumulative in-
cidence functions as in Figures 4.9 and 4.10 both have their relative merits:
obviously, it is easier to tell from Figure 4.9 whether pneumonia increases unit
mortality. However, we need to look at the cumulative cause-specific hazards
to see whether increased mortality is due to an increase of the death hazard,
say, or — as in the present example — due to a decrease of the discharge
hazard. We return to this tradeoff in Section 5 where we discuss regression
modelling of the cause-specific hazards and direct regression modelling of the
cumulative incidence functions. In Section 5, we also discuss examples, where
we find a unidirectional effect on all of the cause-specific hazards. This usually
leads to crossing cumulative incidence functions.

4.3.1 Latent failure time approach

We briefly return to the latent failure time approach towards competing risks;
see Section 3.3. The multistate approach taken thus far has assumed that a
patient has a time of hospital stay T , and that at time T (i.e., at the end of
hospital stay), there is also a vital status XT , either ‘hospital death’ or ‘alive
discharge’. In contrast, assuming latent failure times posits the existence of
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Fig. 4.10. Hospital data. The solid lines are the Aalen-Johansen estimates bP(T ≤
t,XT = 1) for event type ‘death’ and stratified for pneumonia status on admission.
The black lines are for pneumonia patients, the grey lines are for patients without
pneumonia. The dashed lines indicate the pointwise 95% confidence intervals of
Equation (4.21).

times T (1), T (2), where both the time of hospital stay and the vital status at
the end of hospital stay are determined by the smaller of the two latent times
T (1) and T (2).

The latent failure time model is typically being criticized, because any de-
pendence structure between T (1) and T (2) cannot be verified from the data,
because the physical interpretation of T (1) and T (2) is awkward and because
assuming latent times does not constitute a fruitful approach to answer ques-
tions of the original subject matter, hospital epidemiology in this case.

We briefly illustrate these issues based on the previous data analyses. To
begin, we assume that T (1) and T (2) are, in fact, independent. This assumption
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is often made for reasons of tractability: under independence, the Kaplan-

Meier-type estimator
t

0

(
1 − dÂ01(u)

)
estimates P(T (1) > t), where Â01 is

as in (4.8).
This independence assumption is often criticized as being ‘strong’. How-

ever, what we mean by ‘strong’ may be difficult to say given that it is often far
from easy to state an interpretation of the latent times themselves. A typical
interpretation is that T (1) is ‘the time until hospital death in a world where
everybody entering hospital dies in hospital’. It is then also assumed that T (1)

is the same both in the hypothetical world and in real life. Again, an analogous
interpretation is attached to T (2).

Under these assumptions, we may estimate P(T (1) > t) and interpret the
estimator based on the estimated cumulative death hazards displayed in the
top row of Figure 4.7 only. Because the estimated cumulative hazards are
similar, we would find that the distribution of the time until hospital death, in
a world where everybody entering hospital dies in hospital, is similar between
patients with or without pneumonia on admission. In an analogous analysis,
we would find that patients with pneumonia stay longer in hospital than
patients without pneumonia, in a world where everybody entering hospital
will be discharged alive.

Because

T = T (1) ∧ T (2) and XT = 1 ⇐⇒ T (1) < T (2)

(cf. Section 3.3) such an analysis also implies that pneumonia patients stay
longer in hospital and are more likely to die in hospital in this world (cf. the
previous analyses in Section 4.3). However, the reasoning is going a long way
round. It does not display the clarity of the hazard-/multistate-based analysis
as discussed in the context of Figures 4.7 and 4.8.

One attraction towards latent failure time modelling lies in speculation on
hospital stay and hospital outcome under hypothetical modifications of the
competing events, including cause removal. As explained in Section 3.3, such
hypothetical calculations can easily be done without assuming latent times.
Instead, calculations would be based on modifying the cause-specific hazards
displayed in Figure 4.7.

4.4 Analysis of pregnancy outcome data: Impact of

coumarin derivatives on spontaneous and induced

abortion

We now illustrate how to estimate cumulative incidence functions in the pres-
ence of left-truncation. The data set abortion comes with the etm package
and has been introduced in Chapter 1. Briefly, 1186 women are included in the
data set. Competing endpoints are spontaneous abortion, induced abortion,
and live birth. Women therapeutically exposed to coumarin derivatives have
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value 1 in abortion$group, which is 0 otherwise. Pregnancy outcomes are in
abortion$cause, 1 for induced abortion, 2 for live birth and 3 for spontaneous
abortion. The data are left-truncated: time origin is conception, but women do
not enter the study before the pregnancy is recognized. Left-truncation times
are in abortion$entry, times of live birth or abortion are in abortion$exit.
Right-censoring did not occur.

> data(abortion)

> head(abortion)

id entry exit group cause

1 1 6 37 0 2

2 2 9 40 0 2

3 3 29 40 0 2

4 4 32 41 0 2

5 5 11 39 0 2

6 6 10 39 0 2

The empirical distribution of the left-truncation times, i.e., the times of study
entry, is displayed in Figure 4.11. The curves in Figure 4.11 estimate the
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Fig. 4.11. Pregnancy outcome data. Empirical distribution of the observed study
entry times.
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distribution of the study entry time given study entry, i.e., given L < T . The
figure illustrates that delayed study entry is an issue in this data set.

The aim of the present analysis is to study the impact of coumarin deriva-
tives on the abortion proportions, which are suspected to be increased by the
medication.

For convenience, we split the data into women exposed to coumarin deriva-
tives and the control group, and we slightly modify the data structure for use
with etm.

> my.abort <- abortion

> my.abort$from <- rep(0,nrow(my.abort))

> names(my.abort)[5] <- c("to") #rename cause

Unlike the previous examples, we now have three competing events. This
is reflected in tra,

> tra <- matrix(FALSE, nrow = 4, ncol = 4)

> tra[1, 2:4] <- TRUE

Interest focuses on abortion, either spontaneous or induced, but we have cho-
sen to keep the state names as in abortion$cause. We compute the Aalen-
Johansen estimator within the two groups:

> my.abort.etm.nocd <- etm(my.abort[my.abort$group==0,],

+ c("0", "1","2","3"), tra, NULL, s = 0)

> my.abort.etm.cd <- etm(my.abort[my.abort$group==1,],

+ c("0", "1","2","3"), tra, NULL, s = 0)

A customized plot is in Figure 4.12. The figure displays the Aalen-Johansen
estimators of the cumulative incidence functions for induced abortion and
spontaneous abortion, respectively. The Aalen-Johansen estimators confirm
that there is a concern of increased abortion proportions for pregnancies ex-
posed to coumarin derivatives. In order to keep the figure simple, we have
chosen not to include confidence intervals, but these are easily obtained via
etm as illustrated earlier. We have, however, chosen to present the cumula-
tive incidence functions for both spontaneous abortion and induced abortion,
which is obviously relevant from an interpretational point of view. A careful
discussion of variance estimation and subsequent construction of confidence
intervals when estimating cumulative incidence functions has been given by
Allignol et al. (2010), who also used the present data example. The impact
of coumarin derivatives on abortion outcome is further analysed towards the
end of Section 5.2.2.

We close by reiterating that a key assumption underlying the present
methods is that both left-truncation and right-censoring are independent; see
Section 2.2.2. In the present example, one may wonder whether this is true
with respect to the outcome ‘induced abortion’. Unlike independent right-
censoring, the assumption of independent left-truncation may be empirically
investigated; we discuss this issue in Section 11.3. For the time being, we note
that this assumption turned out to be justifiable for the present data.
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Fig. 4.12. Pregnancy outcome data. Estimated cumulative incidence functions of
abortion. The left plot is for women exposed to coumarin derivatives. The dashed
lines indicate induced abortion; the solid lines indicate spontaneous abortion.

4.5 A special case: No effect on the competing

cause-specific hazard

We have characterized interpretational challenges as in the pneumonia ex-
ample of Section 4.3 as a ‘typical competing risks phenomenon’. A careful
discussion of interpretational subtleties that are even more involved is given
in Section 5.2.2. There are, however, cases where the interpretation of compet-
ing risks data is straightforward: such an interpretationally more convenient
situation arises if a covariate displays an effect on the cause-specific hazard of
interest only and has no effect on the competing hazard. This situation has,
e.g., received some attention in sample size planning for competing risks data
(Schulgen et al., 2005; Latouche and Porcher, 2007).

In such a situation, a reducing effect of a covariate on α01(t) with no
effect on α02(t) will lead to a reduced cumulative incidence function for event
type 1 for all times t > 0. In Section 5.2.2, we find that judging the impact of
a covariate in terms of the cumulative event probabilities will usually require
us to carefully consider the magnitude of the cause-specific hazards, too. In
the present situation, things are simpler, and we give a brief proof of this
important fact.
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Write α01(t) for the cause-specific hazard of interest, if a binary covariate
equals 0, say, and α̃01(t), if it equals 1. For both covariate values, the compet-

ing cause-specific hazard is α02(t). The cumulative hazards are A01(t), Ã01(t),
and A02(t), respectively. If

α̃01(t) < α01(t) for all times t > 0, (4.22)

then

exp
(
−Ã01(t) −A02(t)

)
> exp (−A01(t) −A02(t)) (4.23)

⇐⇒
∫ t

0

exp
(
−Ã01(u) −A02(u)

)
(α̃01(u) + α02(u))du

<

∫ t

0

exp (−A0·(u))α0·(u)du.

(4.24)

The equivalence in the preceding display follows easily by noting that one
minus the survival function of the left hand side of (4.23), say, equals the cu-
mulative incidence function for all failure types, i.e., the left hand side of (4.24)
(cf. (3.12)). Because∫ t

0

e−
eA01(u)−A02(u)α02(u)du >

∫ t

0

e−A01(u)−A02(u)α02(u)du,

Equation (4.24) implies that∫ t

0

e−
eA01(u)−A02(u)α̃01(u)du <

∫ t

0

e−A01(u)−A02(u)α01(u)du (4.25)

for all times t > 0, i.e., the cumulative incidence function for event type 1
is reduced, as claimed earlier. Of course, these inequalities are reversed,
if α̃01(t) > α01(t), leading to an increased cumulative incidence function.

Recalling our discussion of Figure 4.8 where we interpreted the cause-
specific hazards as momentary forces of transition moving along the arrows of
a multistate picture, the inequality in (4.25) is an intuitive result. To illustrate
this, we briefly reconsider the pneumonia example of Section 4.3:

Assume that ‘alive discharge’ were the event of interest instead of ‘hospital
death’. As pneumonia is a severe illness, we should expect fewer patients
being discharged alive with pneumonia than without. In fact, the analysis in
Section 4.3 finds a reduced cumulative incidence function for alive discharge,
because the cause-specific hazard for discharge is reduced by pneumonia with
no effect on the cause-specific hazard for death. Note that this result has
essentially been our interpretation of the Nelson-Aalen estimates in Figure 4.7.

We note that it is usually a question of the subject matter research whether
a competing event state is interpreted as the ‘event of interest’. In the pneu-
monia example, this clearly is ‘hospital death’. Hence, potential difficulties
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when interpreting or communicating results such as ‘no effect on the cause-
specific hazard for death, but an increase in hospital mortality’ should not be
tackled by redefining the ‘event of interest’. In addition, Section 5.2.2 gives an
example where such an approach would yield no benefit whatsoever. However,
both examples illustrate that any competing risks analysis will remain incom-
plete, does not allow for a probability interpretation, and may potentially be
misleading unless all cause-specific hazards are analysed.

Finally, we note that the cumulative incidence function for type 1 events
is also reduced for all times t > 0, if, in addition to α̃01(t) < α01(t), there
is an opposite effect on the competing cause-specific hazards, i.e., α̃02(t) >
α02(t). The result easily follows from the notion of the cause-specific hazards

as momentary forces of transition or by noting that
∫ t

0
exp(−Ã0·(u))α̃01(u)du

is less than the left hand side of (4.25).

4.6 Exercises

1. Show that the ‘cumulative incidence’ representation of the Kaplan-Meier
estimator, holds, i.e., verify Equation (4.17).

2. Show that the Aalen-Johansen estimator of P (T ≤ t,XT = 1) is always

less than or equal to one minus
∏

Ti∧Ci≤t

(
1 − ΔN01(Ti∧Ci)

Y0(Ti∧Ci)

)
.

3. The 4D study : The data set fourD contains the data from the 4D study
for the placebo group. The data set is part of the etm package and has
been described in Chapter 1. Briefly, fourD$status describes a patient’s
status at the end of the follow-up, 1 for the event of interest, 2 for death
from other causes, and 0 for censored observations. fourD$time contains
the follow-up time.

a) Estimate the cumulative cause-specific hazards in the original placebo
data using the mvna package. Compute the Kaplan-Meier estimator,
starting from the increments of both Nelson-Aalen estimates. Also
estimate the survival function of the censoring times.

b) Simulate new placebo group data for 500 individuals using the empiri-
cal distributions of the previous step. (Hint: The last observed follow-
up time is censored. As a consequence, the Kaplan-Meier estimator
does not spent 100% of the probability mass. Place the remaining
probability mass at a time point beyond the largest follow-up time. If
this time point is sampled in the simulation, the corresponding follow-
up time will always be censored.)

c) Simulate treatment group data for 500 individuals. Assume that the
ratio treatment vs. placebo of the cause-specific hazard of interest
is exp(−0.1). Assume that the competing cause-specific hazard is the
same for both treatment and placebo. Use the censoring distribution
as in the placebo group.
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d) Perform the nonparametric analyses of this chapter using the simu-
lated data (i.e., Nelson-Aalen, Kaplan-Meier, Aalen-Johansen).

4. Consider the situation of Exercise 3. Explain the different constellations of
the cumulative incidence functions after manipulation of the cause-specific
hazards as in the following table.

Transformation of

Scenario β1 β2 Â01(t) Â02(t)
1 -0.3 0 none none
2 -0.3 0 x �→ x1/4 none
3 -0.3 0.3 none none
4 -0.3 0.3 none x �→ x2

5 -0.3 -0.3 x �→ x2 x �→ x1/4

In the table, Â01(t) is the Nelson-Aalen estimator of the cumulative cause-
specific hazard of interest in the placebo group. The corresponding estima-
tor of the competing cumulative cause-specific hazard is Â02(t). The log of
the ratio of the cause-specific hazards of interest is β1. The corresponding
value for the competing cause-specific hazards is β2.

5. Add left-truncation to the data simulated in Exercise 3 and redo the anal-
yses. Draw a plot as in Figure 4.6. Left-truncation times shall be drawn
from a log-normal distribution (function rlnorm) with parameters chosen
to let approximately 70% of the individuals enter the study.

6. Repeat the analyses of the pregnancy outcome data from a latent failure
time perspective as in Section 4.3.1.
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Proportional hazards models

This chapter discusses the most widely used regression models in competing
risks. Following an introduction in Section 5.1, Section 5.2 discusses propor-
tional cause-specific hazards models, and Section 5.3 discusses the propor-
tional subdistribution hazards model. The cause-specific hazards are as de-
fined in Chapter 3. The subdistribution hazard is a different hazard notion,
namely the hazard ‘attached’ to the cumulative incidence function of inter-
est as explained below. Both modelling approaches have their relative merits,
and both approaches make the proportional hazards assumption solely for
interpretational and technical convenience. It is not uncommon that both ap-
proaches are employed in one data analysis, although one model assumption
usually precludes the other. A justification for employing both models side-
by-side is provided in Section 5.4. Goodness-of-fit methods are described in
Section 5.5, and Section 5.6 gives a brief overview of regression models that
go beyond the familiar proportional hazards assumption together with their
availability in R.

As in Chapter 4, we consider n individuals under study with competing
risks data subject to right-censoring and left-truncation. The analysis of cause-
specific hazards in Section 5.2 assumes right-censoring and left-truncation
to be independent (cf. Section 2.2.2). These restrictions on the observable
competing risks data may depend on the past. In practice, this entails that
right-censoring and left-truncation may depend on covariates included in the
model. In contrast, the analysis using subdistribution hazards in Section 5.3
assumes that the competing risks data are subject to random censoring only.
In particular, right-censoring may not depend on covariates. The reason for
the more restrictive assumption of random censorship is a certain technical
difficulty encountered in the subdistribution framework. This is explained in
detail in Section 5.3.2.

J. Beyersmann et al., Competing Risks and Multistate Models with R, Use R,  
DOI 10.1007/978-1-4614-2035-4_ , © Springer Science+Business Media, LLC 2012 
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5.1 Introduction

So far, we have considered competing risks data arising from homogeneous
groups. This means that, safe for right-censoring and left-truncation, and after
potential stratification as described in Section 4.3, the data have been consid-
ered to be independent copies of a competing risks process with cause-specific
hazards α0j(t), j = 1, 2. In Section 5.2, we study proportional cause-specific
hazards models, relating the α0js to a vector of covariates Zi for individual i,
i = 1, . . . , n, known at time origin, that is baseline covariates such as gender
and age. We assume that the n competing risks processes are conditionally
independent given the baseline covariate values. A hazard regression model
can also be formulated for time-dependent covariates, but the interpretation
becomes more difficult. Time-dependent covariates are better dealt with from
a more general multistate perspective, and we do so in Chapter 11.

Proportional cause-specific hazards models assume each cause-specific haz-
ard to follow a Cox model (Cox, 1972)

α0j;i(t;Zi) = α0j;0(t) · exp (β0j · Zi) , j = 1, 2, i = 1, . . . , n, (5.1)

where β0j is a 1 × p vector of regression coefficients, Zi is a p × 1 vector of
covariates for individual i, and α0j;0(t) is an unspecified, non-negative baseline
hazard function. We also write

A0j;0(t) =

∫ t

0

α0j;0(u)du and A0j;i(t;Zi) =

∫ t

0

α0j;i(u;Zi)du (5.2)

for the respective cumulative cause-specific hazards, j = 1, 2, i = 1, . . . , n.
The two models (5.1) for j = 1, 2 are semiparametric in the sense that

the baseline hazard function is an element of an infinite-dimensional function
space, and the vector of regression coefficients is an element of R

p. They
specify that the cause-specific hazard ratios between two individuals with,
say, observed covariate vectors z1 and z2 are

exp (β0j · z1 − β0j · z2) , j = 1, 2.

If z1 = (z11, . . . , z1p)
� equals z2 = (z21, . . . , z2p)

� except for z11 = z21 + 1,
this implies that the cause-specific hazard α0j;1(t) of individual 1 is exp(β0j1)
times the cause-specific hazard of individual 2 where β0j = (β0j1, . . . , β0jp).
Analogously, exp(β0jk) reflects an one-unit increase in the kth entry of the
covariate vector, and all other covariates are kept fixed.

We have formulated models (5.1) with cause-specific vectors β0j of re-
gression coefficients. Sometimes, one may wish to model a common effect of
a covariate on both cause-specific hazards. It is therefore useful to reformu-
late (5.1) with only one vector β, which contains all regression coefficients
and does not depend on the event type, and cause-specific vectors Z0j;i of
covariates:
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α0j;i(t;Zi) = α0j;0(t) · exp (β · Z0j;i) , j = 1, 2, i = 1, . . . , n. (5.3)

This reformulation is of direct importance for R programming; see the analysis
of the data frame xl in Section 5.2.2. How to move from (5.1) to (5.3) can
easily be demonstrated in examples.

Assume that Zi is a real-valued covariate with cause-specific regression
coefficients β01 and β02. We combine the regression coefficients into one vec-
tor β = (β01, β02). The cause-specific covariate vectors are Z01;i = (Zi, 0)� and
Z02;i = (0, Zi)

�. Next, we assume that we have two covariates for each individ-
ual, Zi = (Zi1, Zi2) and that Zi1 has cause-specific regression coefficients β0j1

for event type j, j = 1, 2, but that Zi2 displays a common effect β0j2 = η. We
combine the different regression coefficients into one vector β = (β011, β021, η).
The cause-specific covariate vectors are Z01;i = (Zi1, 0, Zi2)

� and Z02;i =
(0, Zi1, Zi2)

�.
Proportional cause-specific hazards models are the standard regression

technique in competing risks. In the absence of a competing hazard, the mod-
els reduce to a standard Cox survival model. Interpretation in terms of the
survival probability is then straightforward. If the outcome is death, a death
hazard ratio less than 1 is beneficial, a hazard ratio greater than 1 is harmful.
The interpretation becomes more involved with competing risks: recall from
the analysis of the pneumonia data in Section 4.3 that more patients with
pneumonia die in hospital than patients without pneumonia. However, this
increase is not the result of an increased cause-specific hazard for hospital
death, but of a decreased cause-specific hazard for alive discharge. The cause-
specific hazard for hospital death is left unchanged by pneumonia status. We
revisit this data example in Section 5.2.2 where we confirm our previous find-
ings using proportional cause-specific hazards models.

Interpretational difficulties like these — ‘increase in mortality, but no effect
on the death (cause-specific) hazard’ — have led to modelling subdistribution
hazards. A subdistribution hazard analysis offers a synthesis of the cause-
specific hazards analyses. The effects that a baseline covariate displays on the
cause-specific hazards are summarized in terms of an effect that the covariate
displays on one cumulative incidence function. The key idea is to introduce
a new hazard notion, the subdistribution hazard, for the event of interest
(such as hospital death), which reestablishes a one-to-one correspondence with
the cumulative incidence function. Recall from (3.11) that the cumulative
incidence function for event type 1, say, is an involved function of all cause-
specific hazards:

P(T ≤ t,XT = 1) =

∫ t

0

exp

(
−

∫ u

0

α01(v) + α02(v)dv

)
α01(u) du.

The subdistribution hazard λ(t) is required to fulfill

P(T ≤ t,XT = 1) = 1 − exp

(
−

∫ t

0

λ(u)du

)
, (5.4)
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mimicking formula (3.10) for the survival function. Solving (5.4) for λ, we find
that (5.4) holds if we define

λ(t) · dt :=
P(T ∈ dt,XT = 1)

1 − P(T ≤ t,XT = 1)
(5.5)

It also follows from representations (3.11) and (5.4) that

α01(t) =

(
1 +

P(T ≤ t,XT = 2)

P(T > t)

)
· λ(t).

Later, in Section 5.3, we derive the subdistribution hazards framework by suit-
ably stopping the original competing risks process, which will also be useful for
handling time-dependent covariates. The interpretation of the last display is
that the subdistribution hazard for event type 1 is weighted down as compared
to the cause-specific hazard α01(t) with a weighting that is time-dependent
and also depends on the competing events. Note that the subdistribution haz-
ard is weighted down, because (5.4) implies that

P(XT = 1) = 1 − lim
t→∞

exp

(
−

∫ t

0

λ(u)du

)
= 1 − P(XT = 2), (5.6)

whereas the limit of exp of the negative of a usual cumulative all-cause hazard
will be zero, which is the limit of a survival function as time goes to infinity.

We discuss proportional subdistribution hazards modelling (Fine and
Gray, 1999) in Section 5.3,

λi(t;Zi) = λ0(t) · exp (γ · Zi) , i = 1, . . . , n, (5.7)

where Zi is as in (5.1), γ is a 1× p vector of regression coefficients, and λ0(t)
is an unspecified, non-negative baseline subdistribution hazard function. The
results have a direct probability interpretation in terms of the cumulative
incidence function. Note that in general γ �= β0j , j = 1, 2.

Both modelling cause-specific hazards and modelling subdistribution haz-
ards have their merits. We find that only the subdistribution hazard analysis
allows for a direct probability interpretation. The analyses of the cause-specific
hazards also allow for a probability interpretation, but the interpretation re-
quires greater care. It is, however, only through analysing all of the cause-
specific hazards that we understand why we see a certain effect on the proba-
bility functions. We already discussed this tradeoff in the first analysis of the
pneumonia data in Section 4.3.

The data analyses of Sections 5.2.2 and 5.3.3 illustrate that proportional
cause-specific hazards modelling and proportional subdistribution hazards
modelling address different aspects of the data, the latter analysis offering
a synthesis of the effects on the different cause-specific hazards. However,
model (5.7) is misspecified if models (5.1) hold. Moreover, the all-cause haz-
ard α0·(t) = α01(t) + α02(t) will in general not follow a Cox model if the
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cause-specific hazards do. In Section 5.4, we discuss that a misspecified model
still provides a consistent estimate, although not of the regression coefficient
of the misspecified model, but of the so-called least false parameter (Hjort,
1992), a time-averaged hazard ratio. For a concrete data analysis, this entails
that a proportional effect of a covariate on the cause-specific hazards, on the
subdistribution hazard, or on the all-cause hazard is not claimed. But one
would profit from the simple structure of a proportional hazards model be-
cause its results display an average effect on the respective hazard scale. This
‘agnostic’ point of view (Hjort, 1992) towards model assumptions is illustrated
in the data analyses of Sections 5.2.2 and 5.3.3.

Goodness-of-fit methods and regression models that go beyond the familiar
proportional hazards assumption are briefly discussed in Sections 5.5 and 5.6.

5.2 Proportional cause-specific hazards models

We consider the proportional cause-specific hazards models (5.3) with cause-
specific covariate vectors Z0j;i. We introduce estimation and prediction in
Section 5.2.1. It is important to recognize that we may compute survival prob-
abilities and cumulative incidence functions of the observable competing risks
process under model assumption (5.3), that is, if we model all cause-specific
hazards. In practice, this requires the analysis of both cause-specific hazards.
This is often overlooked in concrete data analyses. We apply these methods in
Section 5.2.2 to both simulated and real data. We later also analyse the real
data, which served as a template for the simulated data, in the Exercises of
Section 5.7.

5.2.1 Estimation

We first consider estimation of the regression coefficients. Next, we consider
model-based estimation of the cumulative cause-specific baseline hazards, and
finally prediction of the cumulative incidence functions is introduced.

Estimation of the regression coefficients

Recall from Section 4.1 that we have individual cause-specific counting pro-
cesses N0j;i(t) that count whether we have observed a type j event for in-
dividual i during the time interval [0, t]. Also recall that the individual at-
risk process is Y0;i(t). The respective processes aggregated over all individu-
als i, i = 1, . . . , n have been defined as N0j(t) and Y0(t), respectively. Finally,
N0·(t) = N01(t) + N02(t) is the number of observed transitions out of the
initial state 0 during the time interval [0, t].

We define the weighted risk set
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S
(0)
0j (β, t) :=

n∑
i=1

exp (β · Z0j;i) · Y0;i(t). (5.8)

We explain the meaning of this weighted risk set in a moment. Note that the

(standard) notation S
(0)
0j (β, t) should not be confused with a survival func-

tion P(T > t), which is sometimes denoted as S(t). Also note that S
(0)
0j

really depends on the transition type 0 → j through the cause-specific co-
variates Z0j;i.

Estimation of β is based on the partial likelihood

L(β) =
∏

t

n∏
i=1

2∏
j=1

(
exp (β · Z0j;i)

S
(0)
0j (β, t)

)ΔN0j;i(t)

, (5.9)

where the first product is over all times t, where an event of type 1 or 2
was observed for some individual. The interpretation and heuristic derivation

of (5.9) is that exp (β · Z0j;i)/S
(0)
0j (β, t) is the probability that it is exactly in-

dividual i who fails from event type j given that an event of type j is observed
at time t: it follows from the definition of the cause-specific hazards in (3.5)
that the probability that we observe a type j event in the very small time
interval dt, given that we know all prior events of either type and censoring
events, is

P(dN0j(t) = 1 |Past) =

(
n∑

i=1

Y0;i(t) · α0j;i(t;Zi)

)
· dt, (5.10)

assuming that no two individuals experience an event at the same time.
In (5.10), we have briefly written ‘Past’ for prior events of either type and
censoring events. Using model assumption (5.3) and Definition (5.8), quan-

tity (5.10) equals α0j;0(t)·S(0)
0j (β, t)·dt. Analogously, the respective conditional

probability that we observe a type j event in the very small time interval dt
precisely for individual i is Y0;i(t)α0j;0(t) · exp (β · Z0j;i) dt. Hence,

P(Individual i observed to fail from cause j at t |
ΔN0j(t) = 1,Past) =

Y0;i(t) · exp (β · Z0j;i)

S
(0)
0j (β, t)

. (5.11)

Note that we used a related argument on the ratio of an individual hazard
and an appropriate sum of hazards in step 3 in the competing risks simula-
tion algorithm of Section 3.2. The leading factor Y0;i(t) in the numerator is
dropped from the partial likelihood L(β) in (5.9) as an exponentΔN0j;i(t) �= 0
implies Y0;i(t) = 1. L(β) is a partial likelihood, because the baseline cause-
specific hazards α0j;0(t) have canceled out in (5.11) and in (5.9). In his seminal
paper, Cox (1972) suggested that statistical inference for β could be based on
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maximizing L(β), because the baseline hazard functions have been left com-
pletely unspecified and, hence, the time intervals between observed event times
should not contain any information on β.

The question of what type of likelihood is displayed by L(β) has been
considered in detail in the literature following Cox’ paper. In fact, martingale
theory shows that L(β) enjoys large sample theory that shares a lot of the
flavor of standard maximum likelihood theory, and that we may use for (ap-
proximate) inference in practice. Gill (1984) gives a very accessible account of
this issue.

We consider large sample properties of β̂. Let us write β(0) for the true
parameter vector in (5.3). Then

√
n(β̂ − β(0)) approaches a multinormal dis-

tribution with mean zero (Andersen and Gill, 1982; Andersen and Borgan,
1985). In order to write down an estimator of the covariance matrix, we need
to introduce some additional notation. Readers content with the fact that the
covariance matrix can be estimated may very well skip this part. We write

S
(1)
0j (β, t) :=

n∑
i=1

Z0j;i · exp (β · Z0j;i) · Y0;i(t), j = 1, 2, (5.12)

and

E0j(β, t) =
S

(1)
0j (β, t)

S
(0)
0j (β, t)

. (5.13)

If β is a 1 × q vector and Z0j;i are q × 1 vectors, then both S
(1)
0j (β, t) and

E0j(β, t) are q × 1 vectors. We also write

S
(2)
0j (β, t) :=

n∑
i=1

Z0j;iZ
�
0j;i · exp (β · Z0j;i) · Y0;i(t), j = 1, 2, (5.14)

a q × q matrix, and

V0j(β, t) =
S

(2)
0j (β, t)

S
(0)
0j (β, t)

− E0j(β, t)E0j(β, t)
�, j = 1, 2, (5.15)

a q×q matrix, too. It can then be observed that the matrix of the second-order
partial derivatives of the log partial likelihood lnL(β) is the negative of

Jτ (β) =
2∑

j=1

∑
Ti∧Ci≤τ

V0j(β, Ti ∧ Ci)ΔN0j(Ti ∧ Ci), (5.16)

where τ is taken to be the largest observed event time. Also recall that Ti∧Ci

is the minimum of individual i’s event time Ti and censoring time Ci. We
estimate the covariance matrix of (β̂ − β(0)) by (Jτ (β̂))−1. As illustrated in
Section 5.2.2, the result is used to compute variance estimates, confidence
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intervals, and p-values for the regression coefficients. It also follows that the
asymptotic distribution of the Wald test statistic

(β̂ − β(0))Jτ (β̂)(β̂ − β(0))�

for the hypothesis β = β(0) is chi-square with q degrees of freedom. In the
examples below, we show that standard R software also reports a likelihood
ratio test and a score test, which have the same asymptotic distribution. The
score test statistic is the usual log-rank test statistic in the case of standard
single endpoint survival data, a single categorical covariate and β(0) = 0. A
discussion of the relative merits of these tests can be found in Therneau and
Grambsch (2000, Section 3.4) and Hosmer et al. (2008, Section 3.3), among
others. Hosmer et al. summarize that these tests are usually quite similar; if
they disagree, conclusions should be based on the likelihood ratio test.

It is worthwhile to note that the partial likelihood L(β) splits into two
factors L(β01) and L(β02),

L(β0j) =
∏

t

n∏
i=1

(
exp (β0j · Zi)∑n

l=1 exp (β0j · Zl) · Y0;l(t)

)ΔN0j;i(t)

, j = 1, 2, (5.17)

depending on the respective β0j only if we assume two completely sepa-
rate models for the cause-specific hazards; that is, β = (β01, β02) with no
common effect on these hazards. Obviously, the maximum likelihood esti-
mate may be obtained by separately maximizing β̂ by separately maximiz-
ing L(β01) and L(β02). As a further consequence, q = p + p, and the p × p
blocks in (Jτ (β̂))−1 corresponding to β̂0j are those that one would get from
analysing L(β0j) only. We illustrate this in Section 5.2.2.

Breslow estimator of the cumulative cause-specific hazards and
prediction

Let β̂ be the estimator that results from maximizing L(β). A Nelson-Aalen-
type estimator of the cumulative cause-specific baseline hazards is

Â0j;0(t) :=
∑

Ti∧Ci≤t

ΔN0j(Ti ∧ Ci)

S
(0)
0j (β̂, Ti ∧ Ci)

, j = 1, 2. (5.18)

In order to motivate this estimator, note that, following (5.10), we have seen

that P(dN0j(t) = 1 |Past) = α0j;0(t) · S(0)
0j (β, t) · dt. In the absence of covari-

ates, that is, for a homogeneous sample, this quantity becomes α0j(t) · Y0(t),
which motivates the increments ΔN0j(t)/Y0(t) of the Nelson-Aalen estima-
tor (4.8) (cf. our discussion preceding (4.8)). Under model assumption (5.3),

we substitute Y0 by S
(0)
0j and use the estimator β̂ for the unknown regression

coefficients which results in (5.18).
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The Nelson-Aalen-type estimator (5.18) is often called Breslow estimator
(Breslow, 1972). In proportional hazards analyses of standard (single end-
point) survival data, the all-cause baseline hazard is frequently not consid-
ered as it cancels out from the partial likelihood. This is convenient in that
the data analyst does not need to consider the baseline hazard in order to
study the impact of the covariates on survival. However, this may also be seen
to be unfavorable as it tempts one to neglect the baseline hazard, which de-
termines the survival function together with β ·Zi. If anything, looking at the
cause-specific baseline hazards is even more important in a competing risks
analysis as cause-specific regression coefficients of a similar magnitude may
have quite different effects on the cumulative incidence functions, depending
on the magnitude of the cause-specific baseline hazards. We illustrate this in
the examples below, in particular in our discussion of the model specifications
for the data simulation in Section 5.2.2.

We now consider prediction under model (5.3) for some (future) individ-
ual ı̃ with individual covariate Zı̃ = z, which we may rewrite as individual
cause-specific covariates Z0j ;̃ı = z0j . In the following, we drop the index ı̃ for
notational convenience. The individual cumulative cause-specific hazards may
be predicted as

Â0j(t; z) = Â0j;0(t) · exp
(
β̂ · z0j

)
, j = 1, 2, (5.19)

and the individual cumulative all-cause hazard may be predicted as

Â0·(t; z) = Â01(t; z) + Â02(t; z). (5.20)

To arrive at a predictor of the individual all-cause survival function, we sub-
stitute the increments of the usual Nelson-Aalen estimator in Equation (4.13)

by the increments ΔÂ0·(t; z):

P̂(T > t | z) =
∏

Ti∧Ci≤t

(
1 −ΔÂ0·(Ti ∧ Ci; z)

)
(5.21)

with increments

ΔÂ0·(t; z) =

2∑
j=1

ΔN0j(Ti ∧ Ci)

S
(0)
0j (β̂, Ti ∧ Ci)

· exp
(
β̂ · z0j

)
. (5.22)

Recalling the estimator of the cumulative incidence function in Equation (4.18),
we arrive at an individual predictor of this probability by substituting the
Kaplan-Meier estimator by (5.21) and the increment of the cause-specific

Nelson-Aalen estimator by ΔÂ0j(t; z):

P̂(T ≤ t,XT = j | z) =∑
Ti∧Ci≤t

P̂
(
T > (Ti ∧ Ci) − | z) · ΔN0j(Ti ∧ Ci)

S
(0)
0j (β̂, Ti ∧ Ci)

· exp
(
β̂ · z0j

)
, (5.23)
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for j = 1, 2.
Large sample properties such as those discussed above for β̂ are also avail-

able for the cumulative baseline estimator (5.18) and the predicted quanti-
ties (5.19)–(5.23). However, the formulae become increasingly involved. We
have therefore chosen to refer the interested reader to Andersen et al. (1993,
Sections VII.2.2—VII.2.3) for a general treatment and to Rosthøj et al. (2004)
for the present case of competing risks. Implementation in R has been made
available during the writing of this book via the mstate package (de Wreede
et al., 2010, 2011) and is illustrated below. Alternatively, in situations where
variance formulae become increasingly complex, one may consider bootstrap-
ping the data, which approximates the asymptotic distribution by a simulation
experiment; see Appendix A. We also note that Cheng et al. (1998) consid-
ered a related resampling scheme, when the aim is prediction of the cumulative
incidence function.

5.2.2 Examples

We consider both simulated data and real data. To begin, we investigate in
some detail the model specification for the simulated data, which is motivated
by a study on infectious complications in stem-cell transplanted patients. We
find that even with perfect knowledge of the data-generating cause-specific
hazards care must be displayed when drawing conclusions on the cumulative
event probabilities. The real data that serve as a template are later analysed
in the Exercises of Section 5.7.

Next, we analyse the simulated data. Our main workhorse is the coxph-
function from the survival package. We provide a guided tour of the typical
steps often taken in a competing risks analysis. Besides a standard first-event
analysis, which does not distinguish between the competing event states, two
ways of analysing cause-specific hazards in practice are discussed: one ap-
proach, which often suffices in practice, fits two separate Cox models. The
other approach requires data duplication and coding of cause-specific covari-
ates as in (5.3).

We find that the model specification can be recovered from the simulated
data, i.e., the regression coefficients of the proportional cause-specific hazards
models and the cumulative baseline hazards. As we illustrate below, having
these two types of information is crucial for prediction.

Finally, we revisit the real data analyses of Sections 4.3–4.4.

Simulated data

Model specification, motivation, and analysis of the model specification

Simulating competing risks data from model (5.3) runs along the lines of the
simulation algorithm of Section 3.2. The only difference is that we first need to
determine an individual’s baseline covariate values Zi. This is not specific to
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competing risks, but a step one also has to take in simulating standard single
endpoint survival data; see, e.g., Bender et al. (2005); Burton et al. (2006).
We illustrate this with a simple binary covariate Zi ∈ {0, 1}. We find that
interpretation of the analyses is already challenging in this simple example.
The example is also important in that it is often a (binary) treatment or
exposure information that is being investigated.

Consider the following specification of the cause-specific baseline hazards:

α01;0(t) = α01(t;Zi = 0) =
0.09

t+ 1
, (5.24)

α02;0(t) = α02(t;Zi = 0) = 0.024 · t, i = 1, . . . , n. (5.25)

We assume that Zi = 1 displays separate reducing effects on the α0js:

α01(t;Zi = 1) = 0.825 · α01;0(t), (5.26)

α02(t;Zi = 1) = 0.2 · α02;0(t), i = 1, . . . , n, (5.27)

with cause-specific regression coefficients β01 = ln 0.825 ≈ −0.19 and β02 =
ln 0.2 ≈ −1.6. As explained following (5.3), we may reformulate these models
with one vector β = (ln 0.825, ln 0.2) and cause-specific covariates Z01;i =
(Zi, 0)� and Z02;i = (0, Zi)

�:

α01(t;Zi = 1) =
0.09

t+ 1
· exp

(
(ln 0.825, ln 0.2) · Z01;i

)
(5.28)

α02(t;Zi = 1) = 0.024 · t · exp
(
(ln 0.825, ln 0.2) · Z02;i

)
. (5.29)

How to code cause-specific covariate vectors is illustrated in the analysis of the
data frame xl below. Before we simulate and analyse data from these models,
we investigate their specification in more detail. The simulation experiment
that we analysed in Section 4.2 had the air of a ‘toy example’. In contrast, the
current model, which is taken from Beyersmann et al. (2009), is motivated by
the prospective cohort study ONKO-KISS (Meyer et al., 2007). ONKO-KISS
assesses risk factors for the occurrence of bloodstream infections (BSI) during
neutropenia, a condition where patients have a low count of white blood cells;
these are the cells that primarily avert infections. Patients treated for severe
hematological diseases by peripheral blood stem-cell transplantation become
neutropenic immediately after the transplantation. Occurrence of BSI during
neutropenia constitutes a severe complication and substantially endangers the
success of the therapy. Allogeneic transplant type is considered to be a risk
factor for the occurrence of BSI as opposed to autologous transplants.

This situation is one of competing risks: every patient enters state 0 of the
competing risks model in Figure 3.1 at time origin t = 0 following transplan-
tation. The event state 1 of interest is occurrence of BSI during neutropenia;
observation of BSI may be precluded by occurrence of the competing event
state 2 (i.e., end of neutropenia without prior BSI). Thus, T denotes the time
until BSI or end of neutropenia, whichever comes first, and XT = 1 denotes
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the failure type of interest (i.e., BSI), and XT = 2 denotes the competing
failure type (i.e., end of neutropenia). Here, XT = 2 is a combined competing
endpoint, because neutropenia may be ended either alive or dead. Not distin-
guishing the vital status looks awkward, but can be justified in this concrete
setting by the fact that hardly a patient died in neutropenia without prior
BSI.

Our model specifications have been chosen to roughly mimic the effect
of allogeneic transplant type. Let Zi = 1, if patient i had received an allo-
geneic transplant, and Zi = 0 for an autologous transplant. In the analysis of
the data (Beyersmann et al., 2007), it was found that allogeneic transplants
displayed a reducing effect on both cause-specific hazards, which is reflected
in Equations (5.26)–(5.29). It was also found that the proportion of BSI pa-
tients was higher in the allogeneic group than in the autologous group. The
latter result is in line with the assessment of allogeneic transplants as a risk
factor. The reducing effect of allogeneic transplant on the cause-specific infec-
tion hazard in (5.26) appears to contradict this. This is a typical competing
risks phenomenon, which is well understood by looking at plots of the model
quantities in connection with the simulation algorithm of Section 3.2:

Figure 5.1 displays the cause-specific hazards. We note three things: first,
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Fig. 5.1. Model specification for simulation. Left plot: Cause-specific hazards
α01(t;Zi) for the event of interest. Right plot: Competing cause-specific hazards
α02(t;Zi).
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Zi = 1 reduces both cause-specific hazards and, as a consequence of that,
the all-cause hazard α0·(t). Hence, individuals with Zi = 1 stay longer in the
initial state of the competing risks processes; this is relevant for step 2 of
the simulation algorithm, in which an individual’s event time is determined.
Second, this reducing effect is stronger on the competing cause-specific hazard
in the sense that β02 < β01; this is relevant for step 3 of the simulation
algorithm in which an individual’s event type is determined, inasmuch as
(assuming all hazards to be positive)

β02 < β01

⇐⇒ eβ01α01;0(t) + eβ02α02;0(t) < e
β01α01;0(t) + eβ01α02;0(t)

⇐⇒ α01;0(t)

α01;0(t) + α02;0(t)
<

eβ01α01;0(t)

eβ01α01;0(t) + eβ02α02;0(t)

⇐⇒ P (XTi
= 1 |Ti = t, Zi = 0) < P (XTi

= 1 |Ti = t, Zi = 1). (5.30)

This means that the binomial event type 1 probability is smaller in the baseline
group at any time t. Third, judged from the magnitudes displayed in Figure 5.1
and except for early time points, the competing cause-specific hazard is the
major hazard regardless of the covariate value. We should therefore expect
fewer type 1 events than type 2 events in both groups.

Consequences for step 2 and step 3 are displayed in Figure 5.2. As stated
above, individuals with Zi = 1 stay longer in the initial state. At any time
that such an individual leaves the initial state, the individual’s binomial event
type 1 probability is greater than in the baseline group. As a consequence, the
cumulative incidence functions will increase later for individuals with Zi = 1
in the current set-up; in this group, we eventually see more type 1 events.
This effect is illustrated in Figures 5.3 and 5.4.

Going back to the motivation behind the current model specification, the
preceding analysis of these specifications entails that allogeneic transplant
type is a risk factor for infection, because its reducing effect on the cause-
specific infection hazard is less pronounced than its reducing effect on the
competing cause-specific hazard. This also entails that we may initially see
both fewer events of either type and fewer infection events in the allogeneic
group. However, every individual will eventually experience a first event, and
the proportion of infection events will eventually be higher in the allogeneic
group.

This kind of reasoning is what is often needed in the interpretation of
results from competing risks analyses; cf. our analyses of the simulated data
below and also Section 4.3. However, a cautionary note is in place: so far, our
discussion of the different magnitudes of the cause-specific hazards for event 1
and event 2 has been mostly restricted to noting that most individuals will
experience the competing event 2 in either group. It should also be noted that
the major effect is displayed by β02, which acts on the (eventually) major
hazard. Therefore, it is probably not surprising that P(Ti ≤ t,XTi

= 2 |Zi =
1) runs below P(Ti ≤ t,XTi

= 2 |Zi = 0). But this kind of reasoning may
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Fig. 5.2. Model specification for simulation. Left plot: Probability P (T > t |Zi) of
staying in the initial state of the competing risks process. Right plot: Binomial event
type 1 probability P (XTi = 1 |Ti = t, Zi = ·).

not suffice: note from Figure 5.2 (right plot) that P (XTi
= 2 |Ti = t, Zi = ·)

equals one minus the displayed curves. Hence, this probability is eventually
much larger than P (XTi

= 1 |Ti = t, Zi = ·). This is because α02(t;Zi =
·) is eventually the major hazard, cf. (5.30) and step 3 of the simulation
algorithm of Section 3.2. It follows that there may be situations with regression
coefficients β02 < β01 < 0 and reversed constellations of the plateaus of the
cumulative incidence functions. The left plot in Figure 5.5 displays such a
situation, where we have kept model specifications (5.24)–(5.27) except for
changing β02 from ln 0.2 to ln 0.7. The right plot in Figure 5.5 displays the
situation where β01 = β02 = ln 0.825. Common to both model changes is that
the effect on α02(t) is less pronounced. We discuss the situation of a common
reducing effect on both cause-specific hazards first.

In the right plot of Figure 5.5, Zi = 1 displays a common reducing
effect on both cause-specific hazards. As a consequence, and as described
before, individuals stay in the initial state of the competing risks process
longer. As β01 = β02, the binomial probabilities P (XTi

= j |Ti = t, Zi = ·),
j = 1, 2, remain unchanged. It is now important to note that eventually
P (XTi

= 1 |Ti = t, Zi = ·) < P (XTi
= 2 |Ti = t, Zi = ·) and that

P (XTi
= 2 |Ti = t, Zi = ·) increases with t (cf. Figure 5.3). Both facts

are an immediate consequence of α02(t;Zi = ·) being the major hazards.
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Fig. 5.3. Model specification for simulation. Cumulative incidence functions (CIF)
for XT = 1 (left plot) and for XT = 2 (right plot). The left plot is redisplayed in
Figure 5.4 with different scales for the axes.

An event in the group with Zi = 1 tends to happen at later times, therefore
it will more likely be of the competing type 2 as compared to the baseline
group. Therefore, we eventually see P(Ti ≤ t,XTi

= 2 |Zi = 1) to run above
P(Ti ≤ t,XTi

= 2 |Zi = 0) in Figure 5.5 (right plot).
The left plot of Figure 5.5 displays a situation with similar constellation of

the plateaus of the cumulative incidence functions, but we have again β02 <
β01 as in our original model specifications. However, unlike in the original
set-up, β02 = ln 0.7 is now close to β01 = ln 0.825, and hence this situation
is closer to the one of a common effect. Still, as β02 < β01, we have for the
binomial type 1 probabilities that

P (XTi
= 1 |Ti = t, Zi = 0) < P (XTi

= 1 |Ti = t, Zi = 1),

cf. (5.30). The difference, however, is now less pronounced, because β02 =
ln 0.7 is now closer to zero. Individuals with Zi = 1 stay in the initial state
slightly longer. Although they are exposed to a slightly increased binomial
type 1 probability, the major effect seen is that such an individual is exposed
to a higher binomial type 2 probability at time Ti as compared to an earlier
point in time.

The bottom line is that the previous situation resembles more the common
effect situation. In an actual data analysis, it might be impossible to distin-
guish between them. In fact, the cause-specific effect on α01(t) was only just
significant in the analysis of the ONKO-KISS data that motivated specifica-
tions (5.24)–(5.27), the right end of the 95% confidence interval for the cause-
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Fig. 5.4. Model specification for simulation. Cumulative incidence function (CIF)
for XT = 1 as in Figure 5.3, but with different scales for the axes. See Figure 5.9 for
an empirical analogue of the present figure.

specific hazard ratio being 0.99. However, as always, there may be ‘borderline
cases’ even in practice. Readers are encouraged to both analyse cause-specific
baseline hazards in a real data analysis and to experiment with cause-specific
hazards specifications for simulation purposes.

Simulation and analysis of simulated data

Roughly mimicking the ONKO-KISS study, we simulate 1500 individuals; for
reasons of simplicity, we assume 750 individuals to have covariate value 0,
also roughly mimicking ONKO-KISS. The simulation follows the algorithm
explained in detail in Section 3.2. In step 1 of the algorithm, individuals with
covariate value 0 have cause-specific hazards specifications (5.24)–(5.25); indi-
viduals with covariate value 1 have cause-specific hazards specifications (5.26)–
(5.27). In step 2 of the algorithm, we use numerical inversion as explained
towards the end of Section 3.2. Finally, still mimicking ONKO-KISS, we sim-
ulate light censoring, uniformly distributed on (0, 100), which is independent
from everything else. We also define an id-variable 1:1500. We aggregate this
data in a data frame x. The entry for individual 1 is displayed below:

> x[1, ]

id T X.T Z C TandC status

1 1 8.688352 2 0 89.5042 8.688352 2

Entry id is the id-variable, entry T the event time, X.T the competing risks
failure type XT (either 1 or 2), Z contains the covariate value, and C is the
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Fig. 5.5. Model specification for simulation. Cumulative incidence functions (CIF)
for XT = 2 with baseline hazards as in (5.24) and (5.25), cause-specific regression
coefficient β01 as in (5.26), but different β02.

censoring time. The remaining two entries are derived from this information.
Entry TandC is the censored failure time T ∧ C, and status is the observed
failure status 1(T ≤ C) ·XT ,

> x$TandC <- pmin(x$T,x$C)

> x$status <- as.numeric(x$T<=x$C)*x$X.T

Censoring is light:

> sum(x$T > x$C) / length(x$T)

[1] 0.1066667

We first run a first-event analysis, not distinguishing between the two com-
peting event types. Next, we analyse the cause-specific hazards by fitting two
separate Cox models, which is tantamount to assuming that there is no com-
mon effect of Z on the α0js. We then analyse a duplicated data set that allows
for directly maximizing the partial likelihood L(β) of (5.9). Finally, we com-
pute the Breslow estimators as well as the nonparametric Nelson-Aalen and
Aalen-Johansen estimators of Chapter 4; in this last step, the importance of
the cause-specific baseline hazards for interpreting results from cause-specific
Cox models is again pointed out. We also predict the cumulative incidence
functions based on Cox models for the cause-specific hazards.
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First-event analysis We use the survival package (Therneau and Grambsch,
2000; Lumley, 2004):

> fit <- coxph(Surv(TandC, status != 0) ~ Z, data = x)

> sfit <- summary(fit)

> sfit

Call:

coxph(formula = Surv(TandC, status != 0) ~ Z, data = x)

n= 1500

coef exp(coef) se(coef) z Pr(>|z|)

Z -1.28482 0.27670 0.06405 -20.06 <2e-16

exp(coef) exp(-coef) lower .95 upper .95

Z 0.2767 3.614 0.2441 0.3137

Rsquare= 0.242 (max possible= 1 )

Likelihood ratio test= 415.1 on 1 df, p=0

Wald test = 402.4 on 1 df, p=0

Score (logrank) test = 442.1 on 1 df, p=0

The Surv-function has been explained in the analysis of a survival function in
Section 4.2. The argument status!=0 specifies that we consider any observed
competing event (observed at time TandC) as an event. The function coxph

fits a proportional hazards model to these data; covariates are on the right of
the ~-operator, and data=x requests that the variables named in the formula
Surv(TandC,status!=0)~Z are interpreted in the data frame x.

This model is misspecified, as Z displays different effects on the cause-
specific hazards. As a consequence, the effect of Z on the all-cause hazard
does not follow a proportional hazards model. Nevertheless, we can interpret
the analysis in a meaningful way. We first look at the different results returned
by summary(fit): The all-cause hazard ratio α0·;i(t;Zi = 1)/α0·;i(t;Zi = 0)
is estimated as 0.277, ln0.277 ≈ -1.285. The 95% confidence interval for
the all-cause hazard ratio is estimated to be [0.244, 0.314]. This interval
is based on the asymptotic normality of the maximum likelihood estimate:
fit$coefficients contains the maximum likelihood estimate, fit$var the
variance estimate. We have

> exp(fit$coefficients + qnorm(0.975) *sqrt(fit$var))

[,1]

[1,] 0.3137099

> exp(fit$coefficients - qnorm(0.975) *sqrt(fit$var))



5.2 Proportional cause-specific hazards models 107

[,1]

[1,] 0.2440563

The z-statistic reported in the summary of fit displayed above is
fit$coefficients divided by sqrt(fit$var). The value reported by
Rsquare is an attempt to measure the predictive ‘value’ of the model. Assess-
ing prediction for both standard survival data (Gerds et al., 2008) and com-
peting risks (Saha and Heagerty, 2010; Schoop et al., 2011) is still an active
research field, and there appears to be hardly any work being undertaken for
more complex multistate models. Therefore, we do not further discuss Rsquare
in this book. The tests reported at the end of the output of summary(fit)

are as discussed towards the end of Section 5.2.1 for the hypothesis β = 0.
Let us ignore for a moment that the model is misspecified. In fact, we

would first need to detect the misspecification in an analysis of non-simulated
data (cf. Section 5.5). The above analysis finds that the waiting time T in
the initial state is reduced by covariate value 1. This finding is correct, as
covariate value 1 reduces both cause-specific hazards; it therefore also re-
duces the all-cause hazard. We also find that the estimated all-cause hazard
ratio 0.277 is close to the cause-specific hazard ratio 0.2 for the competing
event. This is meaningful because α02(t) is the major hazard. With knowl-
edge of the model specifications (5.26)–(5.27), it is also not unexpected that
the estimated all-cause hazard ratio is somewhat larger than 0.2, as the reduc-
ing effect on α01;0(t) is less pronounced. In Section 5.4, we describe in more
detail that such an interpretation of results from a misspecified model actually
discusses estimates of a time-averaged hazard ratio.

Analysis of the cause-specific hazards by fitting two separate Cox models The
present analysis assumes that there is no common effect of Z on the α0js. The
analysis of α01(t) only treats type 1 events as events and handles competing
type 2 events and the usual censorings alike. The analysis of α02(t) does it the
other way round. This is in complete analogy to the Nelson-Aalen estimates
of the cumulative cause-specific hazards (cf. (4.1)). This is the analysis of the
cause-specific hazard for the event of interest:

> summary(coxph(Surv(TandC, status == 1) ~ Z, data = x))

n= 1500

coef exp(coef) se(coef) z Pr(>|z|)

Z -0.1682 0.8451 0.1274 -1.32 0.187

exp(coef) exp(-coef) lower .95 upper .95

Z 0.8451 1.183 0.6583 1.085

The estimate 0.845 of the cause-specific hazard ratio α01;i(t;Zi = 1)/α01;i(t;
Zi = 0) is reasonably close to the true value of 0.825. The 95% confidence
interval includes 1, which is not unexpected, as most of the observed events
are of the competing type,
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> table(x$status)

0 1 2

160 263 1077

and the hazard ratio 0.825 is somewhat close to 1. Next, we analyse the
competing hazard:

> summary(coxph(Surv(TandC,status==2)~Z,data=x))

n= 1500

coef exp(coef) se(coef) z Pr(>|z|)

Z -1.61711 0.19847 0.07332 -22.06 <2e-16

exp(coef) exp(-coef) lower .95 upper .95

Z 0.1985 5.039 0.1719 0.2291

The analysis is in good agreement with the theoretical cause-specific hazard
ratio α02;i(t;Zi = 1)/α02;i(t;Zi = 0) = 0.2.

The partial likelihoods attached to the above cause-specific hazards anal-
yses are L(β01) and L(β02) of Equation (5.17). As discussed following (5.17),

we get the correct maximum likelihood estimate β̂ = (β̂01, β̂02) by separately
maximizing the L(β0j)s, if we assume separate models for the α0js. Our anal-
yses above justify this assumption based on the simulated data, which is in
line with the model specifications (5.26)–(5.27).

Analysis of duplicated data set We may also directly maximize the partial
likelihood L(β) of (5.9). This would also allow us to model a common effect
of a covariate on both α0js. The trick is to duplicate the data as many times
as there are competing events, but to leave the number of observed events
unchanged (Lunn and McNeil, 1995). In our situation, an individual will en-
ter the new data frame twice: one line corresponding to the event type 1 of
interest, and the other line corresponding to the competing event. We also
need a new status variable:

> xl <- rbind(x,x)

> xl$eventtype <- c(rep("interest",1500), rep("competing", 1500))

> xl$newstat <- as.numeric(c(x$status == 1, x$status == 2))

These are the lines xl[xl$id == 1, ] for individual 1 in the new data frame:

> a <- xl[xl$id == 1,]

> a

id T X.T Z C TandC status eventtype newstat

1 1 8.688352 2 0 89.5042 8.688352 2 interest 0

1501 1 8.688352 2 0 89.5042 8.688352 2 competing 1
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Individual 1 has been observed to experience the competing event. There-
fore, the new status indicator newstat is 1 in the line where eventtype is
competing. The entries of newstat would have been reversed if individual 1
had been observed to experience the event of interest. If individual 1 had
been censored, both entries of newstat would have equalled 0. Readers may
check this comparing respective entries of the data frames x and xl. We may
now fit a Cox model using the extended data frame and the new status vari-
able newstat:

> summary(coxph(Surv(TandC, newstat != 0) ~ Z, data = xl))

Call:

coxph(formula = Surv(TandC, newstat != 0) ~ Z, data = xl)

n= 3000

coef exp(coef) se(coef) z Pr(>|z|)

Z -1.28482 0.27670 0.06405 -20.06 <2e-16

exp(coef) exp(-coef) lower .95 upper .95

Z 0.2767 3.614 0.2441 0.3137

Rsquare= 0.129 (max possible= 0.998 )

Likelihood ratio test= 415.1 on 1 df, p=0

Wald test = 402.4 on 1 df, p=0

Score (logrank) test = 442.1 on 1 df, p=0

The analysis is identical to the previous first-event analysis, not distinguishing
between the two competing event types. The only differences are the values
reported for Rsquare, which we do not consider in this book for the reasons
given above, and the value n= 3000 instead of n= 1500, which reflects that
the new data frame includes two lines for every individual. The analyses are
identical, although the partial likelihoods attached to each call to coxph are
not. However, they only differ in a constant factor:

This is easily seen from the partial likelihood L(β) of (5.9), bearing in mind
that we have not changed the number of observed events. As a consequence,
the number of factors in the original likelihood (attached to the analysis of
the data frame x) and in the new likelihood (attached to the analysis of the
data frame xl) are identical. Consider the factor for individual i, which was
observed to fail from event type j at time t. The corresponding factor is

exp (β · Z0j;i)

S
(0)
0j (β, t)

with S
(0)
0j (β, t) =

1500∑
l=1

exp (β · Z0j;l) · Y0;l(t), (5.31)

where β and Z0j;i are potentially more complex than in our present simulation
example and are as explained in Section 5.1. The numerator does not change
in the new likelihood, but the denominator becomes
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1500∑
l=1

exp (β · Z0j;l) · Y0;l(t) + exp (β · Z0j;l) · Y0;l(t) = 2 · S(0)
0j (β, t),

as every individual is represented in xl twice. As a consequence, the new
likelihood is 0.5N0·(τ) times the old likelihood, where τ is the largest observed
event time (cf. page 95), and N0·(τ) is the number of observed events. This

does not change the estimate β̂. As seen in the example above, the variance
estimates do not change either. As explained following (5.15), the variance
estimates are based on the second-order partial derivatives of the log partial
likelihood. Hence, the factor 0.5N0·(τ) becomes a summand N0·(τ) · ln(0.5) and
then vanishes when taking derivatives.

We may check this by looking at

> coxph(Surv(TandC, status != 0) ~ Z, data = x)$loglik[2]

[1] -8259.807

which returns the values of the log partial likelihood evaluated at β̂. We com-
pare this with

> coxph(Surv(TandC, newstat != 0) ~ Z,data = xl)$loglik[2]

[1] -9188.625

> - sum(x$T <= cens) * log(0.5)

[1] 928.8172

However, this computational subtlety is not useful in the competing risks
analyses to follow, and it is desirable to directly maximize the partial like-
lihood L(β) of (5.9). For this, we need to ensure that the product in (5.9)

is stratified for the transition type 0 → j, j = 1, 2, i.e., the ‘
∏2

j=1’-part
in L(β). This is achieved by including a strata(eventtype)-statement in the
call to coxph:

> summary(coxph(Surv(TandC, newstat != 0) ~ Z +

+ strata(eventtype), data = xl))

n= 3000

coef exp(coef) se(coef) z Pr(>|z|)

Z -1.28482 0.27670 0.06405 -20.06 <2e-16

exp(coef) exp(-coef) lower .95 upper .95

Z 0.2767 3.614 0.2441 0.3137

This leads again to the now well-known analysis. The strata(eventtype)-
statement informs coxph that we assume different baseline hazards α01;0(t) �=
α02;0(t). This is essential for the competing risks analyses to follow. So far, all
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analyses which did not distinguish between the competing event types have
been identical, because they all assumed a common effect of Z on the all-cause
hazard, which follows a proportional hazards model. In addition, we note that
a strata-statement is also used in coxph-analyses for single endpoint survival
situations to account for patients coming from disjoint groups rather than
being exposed to different endpoint types. Examples include clinical multi-
center trials where patients from different centers are assumed to have differ-
ent baseline survival hazards; see for example Therneau and Grambsch (2000,
Section 3.2) and Kalbfleisch and Prentice (2002, Section 4.4). Such analyses
typically do not use an extended data frame like xl.

The previous analysis using the extended data frame xl assumed a com-
mon effect on both cause-specific hazards. In order to model different effects
on the α0js, we need to code cause-specific covariates (cf. Equation (5.3) and
the discussion following it).

> xl$Z.01 <- xl$Z * (xl$eventtype == "interest")

> xl$Z.02 <- xl$Z * (xl$eventtype == "competing")

Readers may check for exemplary individuals that this coding exactly mir-
rors our derivation of cause-specific covariate vectors as explained following
Equation (5.3). E.g., these are the respective entries for individual 754:

> xl[xl$id == 754, c('id', 'Z', 'Z.01', 'Z.02', 'eventtype')]

id Z Z.01 Z.02 eventtype

754 754 1 1 0 interest

2254 754 1 0 1 competing

The entries Z hold the individual covariate value Z754 = 1. The entries Z.01

hold the individual cause-specific covariate vector Z01;754 = (1, 0)�. Analo-
gously, Z.02 corresponds to Z02;754 = (0, 1)�.

We are now prepared to study the different effects of Z on the cause-specific
hazards. In our call to coxph, we specify that we assume different baseline
hazards α01;0(t) and α02;0(t) through the strata(eventtype)-statement.

> summary(coxph(Surv(TandC, newstat != 0) ~ Z.01 + Z.02 +

+ strata(eventtype), data = xl))

n= 3000

coef exp(coef) se(coef) z Pr(>|z|)

Z.01 -0.16825 0.84514 0.12744 -1.32 0.187

Z.02 -1.61711 0.19847 0.07332 -22.06 <2e-16

exp(coef) exp(-coef) lower .95 upper .95

Z.01 0.8451 1.183 0.6583 1.0849

Z.02 0.1985 5.039 0.1719 0.2291
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The analysis is identical to those obtained from fitting two separate Cox mod-
els, except for a slightly different rounding in the output. Readers may check
that including the strata(eventtype)-statement is now essential and that
omitting it leads to erroneous results.

So far, we have not gained anything from extending the original data frame
to twice the number of lines. The advantage of the extended data frame is that
it allows us to model both cause-specific and common effects on the cause-
specific hazards. We later also use the extended data frame when making
predictions, using the mstate package. To illustrate the first point, we gener-
ate a random variable which has nothing to do with the way the data were
simulated and should therefore have a common regression coefficient 0:

> cv <- round(0.5 * rnorm(length(x$id),1))

> xl$cv <- rep(cv, 2)

As before, let us look at the respective entries for individual 754:

id Z Z.01 Z.02 cv eventtype

754 754 1 1 0 1 interest

2254 754 1 0 1 1 competing

The cause-specific covariate vectors are now (1, 0, 1)� for the event type 1 of
interest and (0, 1, 1)� for the competing event type 2. Below is the output of
the analysis of the cause-specific hazard for event type 1,

> summary(coxph(Surv(TandC, status == 1) ~ Z + cv, data = x))

n= 1500

coef exp(coef) se(coef) z Pr(>|z|)

Z -0.16873 0.84473 0.12746 -1.324 0.186

cv -0.02403 0.97626 0.10623 -0.226 0.821

exp(coef) exp(-coef) lower .95 upper .95

Z 0.8447 1.184 0.6580 1.084

cv 0.9763 1.024 0.7928 1.202

of the analysis of the competing cause-specific hazard α02(t),

> summary(coxph(Surv(TandC, status == 2) ~ Z + cv,data = x))

n= 1500

coef exp(coef) se(coef) z Pr(>|z|)

Z -1.61285 0.19932 0.07334 -21.991 <2e-16

cv 0.06334 1.06539 0.05220 1.214 0.225

exp(coef) exp(-coef) lower .95 upper .95

Z 0.1993 5.0171 0.1726 0.2301

cv 1.0654 0.9386 0.9618 1.1802
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and of the simultaneous analysis of both hazards,

> summary(coxph(Surv(TandC, newstat != 0) ~ Z.01 + Z.02 + cv +

+ strata(eventtype), data = xl))

n= 3000

coef exp(coef) se(coef) z Pr(>|z|)

Z.01 -0.16731 0.84594 0.12744 -1.313 0.189

Z.02 -1.61400 0.19909 0.07334 -22.007 <2e-16

cv 0.04637 1.04746 0.04683 0.990 0.322

exp(coef) exp(-coef) lower .95 upper .95

Z.01 0.8459 1.1821 0.6590 1.0860

Z.02 0.1991 5.0229 0.1724 0.2299

cv 1.0475 0.9547 0.9556 1.1482

all illustrate that all analyses reasonably well detect that cv has no effect.
The ‘precision’, however, in terms of the variance estimate has increased with
more events present in the analysis.

The common effect of cv on both cause-specific hazards was, of course,
due to the toy example character of the generation of cv. If, in an actual
data analysis, the data suggest that we may assume a common effect for
some covariate, this may be desirable in terms of model parsimony. However,
assuming a common effect may also impose difficulties in the interpretation.
Andersen et al. give a pertinent example (Andersen et al., 1993, p. 494).
More recently, Glynn et al. (2009) studied proportional cause-specific hazards
models for the development of different types of cataract; the authors found
cataract type-specific effects of diabetes and body mass index, but a common
effect for other covariates such as smoking. Going back to the motivation of the
present simulation setting, it may be hard to imagine a covariate that displays
the same effect on the cause-specific infection hazard and on the cause-specific
end-of-neutropenia hazard.

Breslow estimators, Nelson-Aalen estimators and interpretation We estimate
the cumulative cause-specific baseline hazards A0j;0(t) =

∫ t

0
α0j;0(u)du using

the simulated data, j = 1, 2. Figure 5.6 shows a customized plot of the Breslow
estimators (5.18).

As we have assumed completely separate models for the α0js, the Breslow
estimators may be obtained from the separate Cox models,

> a01.0 <- basehaz(coxph(Surv(TandC, status == 1) ~ Z,

+ data = x), centered = FALSE)

> a02.0 <- basehaz(coxph(Surv(TandC, status == 2) ~ Z,

+ data = x), centered = FALSE)

with self-explanatory entries time and hazard. The statement centered =

FALSE ensures that the Breslow estimator of the baseline hazard is computed.
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Fig. 5.6. Simulated data. Breslow estimators of the cumulative cause-specific base-
line hazards A0j;0(t), j = 1, 2. The left plot displays the early time interval [0, 10] at
a different scale.

If we omit this statement, the predictor (5.19) is computed at the empirical
covariate mean. We may also obtain both Breslow estimators at once using
the extended data frame; this also works if we assume some covariate to have
a common effect on both α0js:

> basehaz(coxph(Surv(TandC, newstat != 0) ~ Z.01 + Z.02 +

+ strata(eventtype), data = xl), centered = FALSE)

The return value now also has an entry strata in order to tell the Breslow
estimators Â01;0(t) and Â02;0(t) apart. Readers may check that the Breslow
estimates in Figure 5.6 are in very good agreement with both the Nelson-
Aalen estimates, which may be computed as described in Section 4.2, and the
true cumulative cause-specific hazards.

The interpretation of Figure 5.6 is that if an event occurs very early in
the baseline group, it will likely be of type 1; otherwise, it will likely be of the
competing type 2. In our preceding discussion of the model specification, we
have emphasized the crucial role played by the baseline hazards. This is sum-
marized in Figure 5.7, where the Nelson-Aalen estimates of the cumulative
cause-specific hazards are plotted for both groups in the early time inter-
val [0, 10]. The interpretation of Figure 5.7 is that individuals with Zi = 1
stay longer in the initial state of the competing risks process. The prolonged
stay is mostly due to a pronounced reducing effect on the competing cause-
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Fig. 5.7. Simulated data. Nelson-Aalen estimators of the cumulative cause-specific
hazards A0j;i(t;Zi), j = 1, 2.

specific hazard, which is eventually also the major hazard (cf. also Figure 5.6).
During this prolonged time, individuals are exposed to an only slightly reduced
cause-specific hazard α01(t). Therefore, we eventually see more type 1 events
for individuals with Zi = 1, but the increase comes a bit delayed.

Finally, this effect is displayed in Figures 5.8 and 5.9, which are the em-
pirical analogue of Figures 5.3 and 5.4. Figures 5.8 and 5.9 show both the
Aalen-Johansen estimates of the cumulative incidence functions, stratified for
covariate value Zi, and their model-based counterparts (5.23). How to obtain
the latter in R is discussed next.

Prediction of the cumulative incidence functions The predicted cumulative in-
cidence functions (5.23) can be computed using the mstate package (de Wreede
et al., 2010, 2011). For this, we need the extended data xl computed in Sec-
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tion 5.2.2. Similar to etm and mvna, we define a matrix indicating the possible
transitions using the convenience function trans.comprisk, which takes as
an argument the number of competing risks,

> require(mstate)

> tmat <- trans.comprisk(2)

> tmat

to

from eventfree cause1 cause2

eventfree NA 1 2

cause1 NA NA NA

cause2 NA NA NA

Contrary to etm and mvna, possible transitions between states are numerated
using integer values, with value NA otherwise. We add in the data set a column
trans indicating the transition number as in tmat

> xl$trans <- c(rep(1, 1500), rep(2, 1500))

I.e., xl$trans equals 1, if xl$eventtype equals c("interest"), and xl$trans

equals 2 otherwise.
We now fit a Cox model with stratification for the transition type, now

using trans instead of eventtype.

> fit <- coxph(Surv(TandC, newstat) ~ Z.01 + Z.02 +

+ strata(trans), data = xl, method = "breslow")

Note that we have specified method = "breslow" for handling tied data in
our call to coxph, although this is not the default option. This is because at
the time of writing correctness of the results from the function msfit, which
we use below, had been checked for this case.

In order to obtain predicted cumulative incidence functions for a specific
value of the covariate Z, we create a new data frame containing the transition
specific covariate values for each of the possible transitions. Such a data frame
should hold the covariates of one individual.

> ## An individual with Z=0

> newdat.z0 <- data.frame(Z.01 = c(0, 0), Z.02 = c(0, 0),

+ strata = c(1, 2))

> ## An individual with Z=1

> newdat.z1 <- data.frame(Z.01 = c(1, 0), Z.02 = c(0, 1),

+ strata = c(1, 2))

The new data frames must contain the same names for the transition specific
covariates as those used for fitting the Cox model, plus a column strata

indicating the corresponding transition number as in tmat. We then apply the
msfit function to obtain predictive cumulative transition hazards as defined
in (5.19). This function takes as arguments the fitted Cox model, the new data
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set for which we wish to make prediction, and tmat, the matrix specifying the
possible transitions.

> msf.z0 <- msfit(fit, newdat.z0, trans = tmat)

> msf.z1 <- msfit(fit, newdat.z1, trans = tmat)

msfit returns a list with entries Haz for the predicted cumulative haz-
ards, varHaz containing estimated variances and covariances, and trans con-
taining the matrix tmat. The entry varHaz will be omitted if we specify
variance=FALSE in our call to msfit. The entry Haz is a data frame with
entries time, Haz, and trans containing the event times, the predicted cu-
mulative hazards, and the corresponding transition number as in tmat. The
entry varHaz has an analogous structure.

The predicted cumulative incidences are then finally computed using the
probtrans function, which takes as arguments an msfit object and the time
at which prediction starts, in our case at time 0.

> pt.z0 <- probtrans(msf.z0, 0)[[1]]

> pt.z1 <- probtrans(msf.z1, 0)[[1]]

We select only item [[1]] from the output of the probtrans function, which
contains the predicted transition probabilities out of the initial state. Only
these are of interest in a competing risks setting. In our example, probtrans
returns a list with two additional items containing the transition probabilities
out of the absorbing states. These are degenerated in the sense that they are
always equal to zero for the probability to move out of an absorbing state and
always equal to one for the probability to stay in an absorbing state. Also
note that probtrans will return an additional item containing covariances of
the predicted transition probabilities, if we specify covariance=TRUE in our
call to probtrans.

Running probtrans may produce warnings.

Warning! Negative diagonal elements of (I+dA);

the estimate may not be meaningful.

The warning indicates increments (5.22), which are larger than 1. A quick
computation shows that this will typically only happen for small risk sets
and/or extreme covariate values.

E.g., probtrans(msf.z0, 0)[[1]] is a data frame with the event times in
entry time, the predicted survival function in entry pstate1 and the predicted
cumulative incidence functions in entries pstate2 and pstate3. Here, the
numbering of pstate1 through pstate3 corresponds to the sequence with
which they appear in tmat, i.e.,

> dimnames(tmat)

$from

[1] "eventfree" "cause1" "cause2"
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$to

[1] "eventfree" "cause1" "cause2"

In other words, pstate1 contains the estimates P̂(T > t | z) as in (5.21),

pstate2 contains the estimates P̂(T ≤ t,XT = 1 | z) as in (5.23) for j = 1, and

pstate3 contains the estimates P̂(T ≤ t,XT = 2 | z) as in (5.23) for j = 2. The
corresponding standard errors are in the entries se1 through se3. Computing
the standard errors may be suppressed by specifying variance=FALSE in the
call probtrans.

Figures 5.8 and 5.9 display the Aalen-Johansen estimates and the predicted
cumulative incidence functions for both values of the covariate Z. The x-axes
in these figures are chosen as in Figure 5.4.

The curves are in close agreement.
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Fig. 5.8. Simulated data. Aalen Johansen estimates of the cumulative incidence
functions for XT = 1 (left plot) and XT = 2 (right plot), along with the predicted
cumulative incidence functions in dashed lines. See Figure 5.9 for a presentation of
the left plot with a different scale for the y-axis.

Analysis of hospital data: Impact of pneumonia status on
admission on intensive care unit mortality

We consider the hospital data that we have analysed in Section 4.3 in a
nonparametric fashion. Recall, in particular, from the Nelson-Aalen estima-
tors of the cumulative cause-specific hazards in Figure 4.7 that pneumonia
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Fig. 5.9. Simulated data. Aalen Johansen estimates of the cumulative incidence
functions for XT = 1 along with the predicted cumulative incidence functions in
dashed lines as in Figure 5.8, but with a different scale for the y-axis. This figure is
an empirical analogue of Figure 5.4.

on admission increases hospital mortality through a decreasing effect on the
alive discharge hazard, whereas the hospital death hazard is left essentially
unchanged. The aim of the present analysis is to reinvestigate this finding via
proportional cause-specific hazards models.

We use the data frame my.sir.data that has been generated at the begin-
ning of Section 4.3. Figure 4.7 suggests that pneumonia has different effects on
the cause-specific hazards. We therefore simply fit two different Cox models
as explained earlier. This is the output of the analysis of the cause-specific
hazard of interest for hospital death,

> summary(coxph(Surv(time, to == 1) ~ pneu, data = my.sir.data))

Call:

coxph(formula = Surv(time, to == 1) ~ pneu, data = my.sir.data)

n= 747
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Fig. 5.10. Hospital data. Grey lines: Nelson-Aalen estimators of the cumulative
cause-specific hazards as in Figure 4.7. Black lines: Breslow estimators of the cumu-
lative cause-specific baseline hazards (left plot) and model-based cumulative hazard
estimators (5.19) for patients with pneumonia (right plot).

coef exp(coef) se(coef) z Pr(>|z|)

pneu -0.1622 0.8503 0.2678 -0.606 0.545

exp(coef) exp(-coef) lower .95 upper .95

pneu 0.8503 1.176 0.503 1.437

Rsquare= 0.001 (max possible= 0.651 )

Likelihood ratio test= 0.37 on 1 df, p=0.5407

Wald test = 0.37 on 1 df, p=0.5448

Score (logrank) test = 0.37 on 1 df, p=0.5445

together with the output of the analysis of the competing cause-specific hazard
for discharge,

> summary(coxph(Surv(time, to == 2) ~ pneu, data = my.sir.data))

Call:

coxph(formula = Surv(time, to == 2) ~ pneu, data = my.sir.data)

n= 747
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coef exp(coef) se(coef) z Pr(>|z|)

pneu -1.0901 0.3362 0.1299 -8.391 <2e-16

exp(coef) exp(-coef) lower .95 upper .95

pneu 0.3362 2.974 0.2606 0.4337

Rsquare= 0.116 (max possible= 1 )

Likelihood ratio test= 91.7 on 1 df, p=0

Wald test = 70.4 on 1 df, p=0

Score (logrank) test = 77.09 on 1 df, p=0

The proportional cause-specific hazards analyses are in good agreement with
our previous findings.

The R output above also re-emphasizes two important aspects in the anal-
ysis of competing risks data: first, all cause-specific hazards should be anal-
ysed. We should by no means conclude from a cause-specific death hazard
ratio of 0.85 with 95% confidence interval [0.503, 1.437] that pneumonia ap-
pears to have no impact on hospital death. Second, the cause-specific hazard
ratios displayed above make no statement about the magnitude of the cause-
specific baseline hazards. This is quite unlike our initial analysis based on the
Nelson-Aalen estimators in Figure 4.7.

Figure 5.10 shows a customized plot of the Nelson-Aalen estimators to-
gether with the Breslow estimators (for no pneumonia) and the model-based
cumulative hazard estimators (5.19) (for pneumonia on admission). We have
restricted the time axis to [0, 50], because most events happen in that time in-
terval judged from Figure 4.9. (In fact, one finds that time 47 is the empirical
95% quantile, estimated following Andersen et al. (1993, Section IV.3.4).) We
find that all hospital death-specific curves are in good agreement, as are the
baseline estimators for the cumulative discharge hazard. However, the respec-
tive estimators of the cumulative discharge hazard for pneumonia patients do
not agree quite as well, indicating that the effect of pneumonia on the dis-
charge hazard may not follow a proportional cause-specific hazards model.
Figure 5.10 suggests that the estimated cause-specific discharge hazard ratio
of 0.336 with 95% confidence interval [0.261, 0.434] reports a time-averaged
effect of pneumonia on the discharge hazard. The notion of a a time-averaged
effect is explained in more detail in Section 5.4.

Analysis of pregnancy outcome data: Impact of coumarin
derivatives on spontaneous and induced abortion

Finally, we briefly illustrate how to fit proportional cause-specific hazards
models with left-truncated data. We consider the data set abortion as in
Section 4.4. Recall from Section 4.2 that both the left-truncation times and the
event times (or censoring times) are now being passed to Surv. The following
code analyses the impact of coumarin derivatives on the cause-specific hazards
of induced abortion and spontaneous abortion, respectively.
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> coxph(Surv(entry,exit, cause == 1) ~ group,

+ data = abortion)# induced

Call:

coxph(formula = Surv(entry, exit, cause == 1) ~ group,

data = abortion)

coef exp(coef) se(coef) z p

group 2.36 10.6 0.278 8.49 0

Likelihood ratio test=74.2 on 1 df, p=0 n= 1186

> coxph(Surv(entry,exit, cause == 3) ~ group,

+ data = abortion)# spontaneous

Call:

coxph(formula = Surv(entry, exit, cause == 3) ~ group,

data = abortion)

coef exp(coef) se(coef) z p

group 1.23 3.42 0.196 6.27 3.6e-10

Likelihood ratio test=34.3 on 1 df, p=4.82e-09 n= 1186

The respective analysis for live birth is

> coxph(Surv(entry,exit, cause == 2) ~ group, data = abortion)

Call:

coxph(formula = Surv(entry, exit, cause == 2) ~ group,

data = abortion)

coef exp(coef) se(coef) z p

group 0.223 1.25 0.109 2.04 0.042

Likelihood ratio test=3.9 on 1 df, p=0.0482 n= 1186

The analyses are in line with the findings in Section 4.4, where abortion pro-
portions were seen to be increased for women exposed to coumarin derivatives.

5.3 Proportional subdistribution hazards model

We consider the proportional subdistribution hazards model (5.7) with indi-
vidual covariate vectors Zi. The model is custom made to analyse one cumula-
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tive incidence function of interest. As a consequence, there is only one subdis-
tribution hazard, which is assumed to follow a Cox model. In contrast, there
were two cause-specific hazards in the preceding Section 5.2, both of which
were assumed to follow a Cox model. The subdistribution framework is de-
rived from the standard competing risks multistate model in Section 5.3.1. We
introduce estimation and prediction in Section 5.3.2. We apply these methods
in Section 5.3.3 to data which have been previously analysed in Section 5.2.2.
The relative merits of the approach based on cause-specific hazards and the
one based on the subdistribution hazard, respectively, are discussed.

Although custom made to model one cumulative incidence function only,
the proportional subdistribution hazards model is often used to analyse all
cumulative incidence functions. Section 5.3.4 explains that this approach
presents conceptual problems, which requires us to interpret such analyses
in terms of a time-averaged effect.

Technical difficulties discussed in Section 5.3.2 have led to the analysis
of subdistribution hazards having mainly been developed for right-censored
data only. We briefly cover the case of left-truncation in Section 5.3.5. Finally,
simulating data that follow a proportional subdistribution hazards model is
described in Section 5.3.6, but the cause-specific hazards that generate such
data are found to follow rather involved models.

5.3.1 The subdistribution process

The analysis of competing risks data requires analysing all of the cause-specific
hazards. As explained in the Introduction Section 5.1, the aim of a subdis-
tribution hazards analysis is to provide for a single analysis of a different
quantity, the subdistribution hazard, that allows for direct interpretation of
the results in terms of one cumulative incidence function, just as we could
interpret the single analysis of an all-cause hazard in Section 5.2.2 in terms of
the waiting time distribution in the initial state.

In the brief Introduction 5.1, we defined the subdistribution hazard λ(t)
rather technically, requiring that the cumulative incidence function P(T ≤
t,XT = 1) for event type 1 equals 1 − exp(− ∫ t

0
λ(u)du). This mimics the

usual one minus survival function formula, but with the subdistribution hazard
replacing the all-cause hazard. In this section, we approach the subdistribution
framework from a process/multistate point of view, which we feel is more
intuitive. It also has the advantage of clearly displaying the connection to the
original competing risks model and it is easily generalized to more complex
multistate models with competing absorbing states; see Section 11.2.2.

Consider the original competing risks process (Xt)t≥0 of Figure 3.1, redis-
played in Figure 5.11 (left). The event time T is the waiting time of (Xt)t≥0

in the initial state 0 (i.e., until occurrence of any first event). The idea of
the subdistribution framework is to consider a subdistribution time ϑ until
occurrence of the event 1 of interest. This needs to account for the fact that
occurrence of a first event can be of the competing type 2. The right way to do



124 5 Proportional hazards models

0 ��
��

��
�� 1

�������� 2

α01(t)

α02(t)

Original competing risks process (Xt)t≥0

0 ��
��

��
�� 1λ(t)

Subdistribution process (ξt)t≥0

Fig. 5.11. Left: original competing risks process (Xt)t≥0 of Figure 3.1 with cause-
specific hazards α0j(t), j = 1, 2. Right: subdistribution process (ξt)t≥0 with sub-
distribution hazard λ(t). (ξt)t≥0 is derived from (Xt)t≥0 by suitably stopping the
original process. This leads to different interpretations of being in the initial state
for each process.

this is by stopping the original competing risks process just prior to T , if the
process moves into the competing event state 2. Hence, the subdistribution
process (ξt)t≥0 of Figure 5.11 (right) is defined as

ξ(t) := 1(X(t) �= 2) ·X(t) + 1(X(t) = 2) ·X(T−). (5.32)

In words, Xt and ξt are equal, as long as the original process does not move
into the competing event state 2. If (Xt)t≥0 moves into state 2 at time T ,
individuals ‘get stuck’ in the initial state of the subdistribution process: ξt
remains equal to 0 for all t ≥ T , if XT = 2. As a consequence, the interpre-
tation of being in the respective initial states 0 changes: X(t) = 0 has the
interpretation ‘no event by time t’, and ξ(t) = 0 means ‘no type 1 event by
time t’. Following from this, we may now define the time until occurrence of
the event 1 of interest as

ϑ := inf{t > 0 | ξt �= 0}. (5.33)

The set on the right hand side of (5.33) can be empty. IfXT = 2, ξt equals 0 for
all times t and there is no smallest time such that the subdistribution process
is unequal to 0. In such a case, ϑ is the infimum of an empty set, which (as
is usual) is defined to be infinity: ϑ = ∞, if XT = 2. The interpretation of
this is that there is no finite time at which the subdistribution process enters
the event state 1, if XT = 2. However, if the original competing risks process
enters state 1, so does the subdistribution process, and we have T = ϑ. In
summary,

ϑ =

⎧⎨
⎩
T, if XT = 1

∞, if XT = 2.
(5.34)
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As a consequence, the distribution function of the subdistribution failure
time ϑ equals the cumulative incidence function for event type 1,

P(ϑ ≤ t) = P(T ≤ t,XT = 1) for all t ∈ [0,∞), (5.35)

and P(ϑ = ∞) = P(XT = 2). The subdistribution hazard is now defined as
the hazard ‘attached to ϑ’,

λ(t)dt := P(ϑ ∈ dt |ϑ ≥ t). (5.36)

Note that this definition parallels the definition of the all-cause hazard in (3.7)
but with ϑ in place of T . As a consequence,

P(ϑ ≤ t) = 1 − exp(−
∫ t

0

λ(u) du) (5.37)

(cf. (3.10)). Because of Equations (5.35) and (5.37), the subdistribution frame-
work reestablishes a one-to-one correspondence between subdistribution haz-
ard and cumulative incidence function, which is otherwise an involved function
of both cause-specific hazards α01(t) and α02(t) (cf. (3.11)):

1 − exp(−
∫ t

0

λ(u) du) =

∫ t

0

exp

(
−

∫ u

0

α01(v) + α02(v)dv

)
α01(u) du.

(5.38)
The idea of the proportional subdistribution hazards model suggested by Fine
and Gray (1999) and discussed below is to fit a Cox model to the subdistri-
bution hazard, which has a direct probability interpretation in terms of the
cumulative incidence function P(T ≤ t,XT = 1) for event type 1 because of
Equations (5.35) and (5.37). However, fitting the model in practice has to deal
with certain technical difficulties implied by ϑ having mass at infinity. This is
discussed below.

Equation (5.38) implies that

α01(t) =

(
1 +

P(T ≤ t,XT = 2)

P(T > t)

)
· λ(t). (5.39)

Equation (5.39) has a number of important consequences: as already men-
tioned in the Introduction in Section 5.1, λ(t) is weighted down as com-

pared to α01(t), ensuring that P(XT = 1) = 1− limt→∞ exp
(
− ∫ t

0
λ(u)du

)
=

1−P(XT = 2) (cf. (5.6)). As the weighting is time-dependent, assuming a pro-
portional hazards model for α01(t) precludes that λ(t) follows a proportional
subdistribution hazards model, and vice versa. We address the consequences
of such potentially misspecified models in the data analyses below and in Sec-
tion 5.4. The weighting also depends on occurrence of the competing events,
reflecting that a cumulative incidence function depends on all cause-specific
hazards. (Latouche (2004) suggested a nice graphical presentation of this fact.)
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Furthermore, we may compute the subdistribution hazard-based on knowledge
of the original process, as should be expected from our derivation of the sub-
distribution process. Hence, we should be able to make a decent guess on the
results of a subdistribution hazards analysis, if we have previously analysed all
cause-specific hazards, including the baseline hazards. This is also addressed
in the data analyses.

We note that Gray (1988) first suggested considering subdistribution fail-
ure times when analysing right-censored competing risks data. Gray called the
subdistribution failure time ‘improper’, because its distribution has mass at in-
finity. He also noted that the counting process approach (Andersen et al., 1993)
does in principle allow for such random variables. Next, in Section 5.3.1, we
consider fitting a proportional subdistribution hazards model, together with
certain technical difficulties connected to the subdistribution failure time be-
ing ‘improper’. We also note that defining an event time as infinity, if the event
of interest does not occur, is natural from a probabilistic modelling point of
view (cf. Shiryaev (1995, Chapter 10) for a textbook example).

5.3.2 Estimation

Estimation and prediction for the proportional subdistribution hazards model
is, in spirit, similar to a standard Cox model; see Section 5.2.1. We explain that
the subdistribution process, however, poses a problem in that the attached risk
set may be unknown. Solutions have mainly been developed for right-censored
data and require explicit modelling of the censoring distribution. In practice,
random censorship is typically assumed. We describe the available approaches
that either assume administrative censoring or tackle the problem of unknown
risk sets using inverse probability of censoring weighting or multiple imputa-
tion. At the time of writing, estimation in the presence of left-truncation was
a topic of ongoing research, and a further discussion of this issue is deferred
to Section 5.3.5.

Counting process of observed subdistribution events,
subdistribution at-risk process, and technical difficulties

In principle, the proportional subdistribution hazards model is ‘just’ a pro-
portional hazards model. Under a data structure as in Section 5.2.1, we may
invoke the respective estimation techniques, simplified to the extent that we
only have one subdistribution hazard instead of two cause-specific hazards.
In order to do this, we need to consider both a counting process of observed
events and an at-risk process based on the subdistribution process derived in
Section 5.3.1. We define the individual counting process

N�
i (t) := 1(ϑi ∧ Ci ≤ t, Li < ϑi ≤ Ci) (5.40)

of an observed subdistribution event and the individual subdistribution at-risk
process
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Y �
0;i(t) := 1(Li < t ≤ ϑi ∧ Ci). (5.41)

These �-processes are as the usual processes in Equations (4.1) and (4.2), but
with the individual subdistribution failure time ϑi in place of the ‘real-life’ fail-
ure time Ti. Also note that we have only one process N�

i (t) of observed events,
as the subdistribution framework is tailored to investigate type 1 events. We
also write N�(t) and Y �

0 (t) for the respective processes aggregated over all
individuals i, i = 1, 2, . . . n, as in Section 4.1.

Note that N�
i (t) will equal 1, if and only if we have observed ϑi up to and

including time t. In such a case, a type 1 event has been observed, and we
have ϑi = Ti. As a consequence,

N�
i (t) = N01;i(t) and N�(t) = N01(t), (5.42)

where N01;i(t) and N01(t) are the original type 1 counting processes (4.2)
and (4.5), respectively.

The technical difficulty of the subdistribution framework, alluded to in
the previous section, arises through the at-risk processes Y �

0;i(t). Readers can
easily verify that these are known for individuals under study and with no
type 1, type 2 nor censoring event yet, for individuals with an observed type 1
event and for individuals, who have been right-censored. However, Y �

0;i(t) is
not known for the following individuals.

(a) Individuals who have been observed to experience a type 2 event; this is
illustrated in Figure 5.12 a).

(b) Individuals who never entered the study, because their failure time was less
than or equal to their left-truncation time, and who experienced a type 2
event; this is illustrated in Figure 5.12 b).

b)

a)

0 ∞

= ϑi

Ti

XTi = 2

Li Ci

0 ∞

= ϑi

Ti

XTi = 2

Li Ci

Fig. 5.12. a) Individual with an observed type 2 event. b) Individual with a type 2
event before study entry.

We discuss Figure 5.12 a) first. For such individuals, we know both Ti and
that XTi

= 2. As a consequence, we know that ϑi = ∞ and ϑi ∧ Ci = Ci.
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However, observation may have stopped at Ti; e.g., if the individual ceases to
exist afterwards, because the competing endpoint 2 is death. But even if the
competing state 2 is not fatal in real life, the study protocol may have planned
to collect data only until Ti (regardless of the endpoint type) or until Ci,
whatever comes first. As a consequence, in general, we do not know Ci, which
is a future event with respect to Ti in Figure 5.12 a). Hence, Y �

0;i(t) is unknown
for such an individual for t ∈ (Ti, Ci].

Next, we discuss Figure 5.12 b): the individual illustrated in this figure
never enters the study, because Ti is less than Li. This would not be prob-
lematic, if XTi

were equal to 1. Here, however, the individual experiences the
competing event type (i.e., XTi

= 2) and we have again that ϑi = ∞. As
a consequence, ϑi > Li, i.e., we should have seen this individual in terms
of the subdistribution process, and it should have been at risk (in the sense
of Y �

0;i(t)) in the time interval (Li, Ci]. The problem here is twofold: because
the individual has not entered the study in ‘real life’, we are typically not even
aware of the individual nor do we know Li and Ci.

These difficulties have been solved and implemented in R in the presence
of random right-censoring (Fine and Gray, 1999; Ruan and Gray, 2008), and
the situation of Figure 5.12 b) was the subject of ongoing research work at
the time of writing (Zhang et al., 2009; Geskus, 2011; Zhang et al., 2011).
We consider randomly right-censored competing risks data below. We briefly
comment on left-truncation in Section 5.3.5.

We note that the assumption of random censorship is more restrictive than
the assumption of independent censorship, which is typically made when mod-
elling cause-specific hazards (cf. Section 2.2.2). In particular, censoring may
depend on the covariates included in the model, if cause-specific hazards are
analysed. Such a potential dependence is not accounted for when assuming
random censorship. The reason for assuming random censoring is unknown
subdistribution at-risk processes. As we show below, this technical difficulty
is tackled by studying the censoring distribution directly. In principle, as dis-
cussed by Fine and Gray (1999) and Ruan and Gray (2008), this approach
may also be extended to model dependence of the censoring mechanism on co-
variates. We refer to Section 4.2.7 of Aalen et al. (2008) for a concise textbook
account on this issue.

Administratively right-censored competing risks data: Known
subdistribution risk set

Using (5.34), the subdistribution at-risk process becomes

Y �
0;i(t) = 1(t ≤ Ti ∧ Ci) + 1(Ti < t ≤ Ci, XTi

= 2) (5.43)

in the absence of left-truncation. The first summand on the right hand side
of (5.43) is known, the second summand is usually unknown. An exception,
where 1(Ti < t ≤ Ci, XTi

= 2) is known, is administrative censoring. In
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this case, censoring is solely due to administrative termination of the study,
such that an individual’s potential censoring time is known for each individual
in advance. As a consequence, the technical difficulty discussed above in the
context of Figure 5.12 a) disappears and we can use standard Cox software.
This is illustrated in the examples below.

Because the subdistribution at-risk process is known in such a situation, it
has been dubbed ‘censoring complete data’ in Fine and Gray (1999). This cen-
soring mechanism is also known as (progressive, generalized) Type I censoring.
In-depth discussions can be found in Andersen et al. (1993, Example III.2.3)
and Klein and Moeschberger (2003, Section 3.2).

Randomly right-censored competing risks data: ‘estimated’
subdistribution risk set

As (5.43) is in general unknown, the idea of Fine and Gray was to re-
place Y �

0;i(t) by an ‘estimated’ risk set

Ŷ �
0;i(t) :=

1(Ci ≥ Ti ∧ t) · Ĝ(t−)

Ĝ({Ti ∧ Ci ∧ t}−)
· (1(t ≤ Ti) + 1(Ti < t,XTi

= 2)
)
,

(5.44)

where Ĝ(t) is the Kaplan-Meier estimator of the censoring survival func-
tion P(C > t) using the ‘censoring event indicator’ 1 − 1(T ≤ C). Us-

age of Ĝ(t) as in (5.44) is an application of inverse probability of censor-
ing weighting (Robins and Rotnitzky, 1992); the weighting is applied to
1(t ≤ Ti) + 1(Ti < t,XTi

= 2), which is the subdistribution risk set in the
case of complete data. The idea behind estimator (5.44) is this:

First, it is computable from the observable data. The term 1(Ci ≥ Ti ∧ t)
equals one, if we have knowledge of individual i’s vital status just prior to t:
1(Ci ≥ Ti ∧ t) = 1 for individuals with no type 1, type 2, nor censoring event
in [0, t) (if t ≤ Ti) and for individuals with an observed type 1 or type 2
event in [0, t) (if Ti < t). For such an individual, the remainder of (5.44)
can be computed from the observable data. Note that the last factor on the
right hand side of (5.44) equals 1, if and only if individual i’s subdistribution
process (5.32) is in the initial state 0.

Second, Ŷ �
0;i(t) is asymptotically unbiased in the sense that its expecta-

tion equals E (Y �
0;i(t)) asymptotically. To see this, note that (5.44) equals

1(t ≤ Ti ∧ Ci) + 1(Ci ≥ Ti)
Ĝ(t−)

Ĝ(Ti−)
1(Ti < t,XTi

= 2). (5.45)

Because of the representation of Y �
0;i(t) in (5.43), we only need to consider

the second summand in (5.45). Now consider the expectation of this term
conditional on Ti = s,XTi

= j, i.e.,
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E
(
1(Ci ≥ s) Ĝ(t−)

Ĝ(s−)
1(s < t, j = 2) |Ti = s,XTi

= j
)

= 1(s < t, j = 2) · E
(
1(Ci ≥ s) Ĝ(t−)

Ĝ(s−)
|Ti = s,XTi

= j
)

= 1(s < t, j = 2) · P(C ≥ s) · E
( Ĝ(t−)

Ĝ(s−)
|Ti = s,XTi

= j
)
. (5.46)

Note that the term Ĝ(t−)/Ĝ(s−) equals the Kaplan-Meier estimator of P(C ≥
t |C > s), assuming that no censoring happens at s when Ti = s. Ĝ(t−)/Ĝ(s−)
has the form of a usual Kaplan-Meier estimator of a censoring survival func-
tion, but taking time s as the new time origin. Hence, the ith individual does
not contribute to Ĝ(t−)/Ĝ(s−) anymore.

Using that the Kaplan-Meier estimator Ĝ converges in distribution towards
the true censoring survival function and that the expectation of a random vari-
able is the expectation of the conditional expectation of that random variable,
we find that, asymptotically, the expectation of the second summand in (5.45)
equals

G(t−)P(T < t,XT = 2),

which also equals the expectation of the second summand of the representation
of Y �

0;i(t) in (5.43).
Estimation of the regression coefficients from a proportional subdistribu-

tion hazards model based on a partial likelihood with ‘estimated’ risk sets is
implemented in the R package cmprsk. The package also provides for an esti-
mator of the covariance matrix of the estimated regression coefficients. How-
ever, the covariance estimator is of a more complicated form than (Jτ (β̂))−1

from Section 5.2.1 on estimation from proportional cause-specific hazards
models. This stems from the fact that estimation of the subdistribution risk
set also contributes to the covariance. A derivation of the covariance estimator
is beyond the technical level of this book. Readers are referred to Fine and
Gray (1999), where the estimator is explicitly derived using an empirical pro-
cess argument (van der Vaart and Wellner, 1996). We also note that Geskus
(2011) has recently used martingale arguments in this context.

As illustrated in the data examples below, cmprsk also allows for predicting
cumulative incidence functions under a proportional subdistribution hazards
assumption in a manner analogous to Section 5.2.1.

Randomly right-censored competing risks data: Multiple
imputation of missing censoring times

As explained above and illustrated in the data examples in Section 5.3.3,
fitting a proportional subdistribution hazards model is straightforward, if the
potential censoring times for individuals with an observed competing event
are known. In such a case, standard Cox software as, e.g., provided by the
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survival package may be used. In the absence of such knowledge, the cmprsk
package allows for fitting a proportional subdistribution hazards model.

A drawback of having to use cmprsk is that the package offers less function-
ality than survival. E.g., survival also allows users to specify strata with
potentially different, strata-specific baseline hazards, include frailties (i.e., ran-
dom effects) or maximize a penalized partial likelihood (cf. Therneau and
Grambsch (2000)). In Section 11.2.3, we wish to fit a proportional subdistri-
bution hazards model with time-dependent covariates. None of these analyses
is feasible with cmprsk. Ruan and Gray (2008) therefore suggested a multiple
imputation approach which allows for a subdistribution hazards analysis using
survival, even if the potential censoring times are not known. The idea is to
recover this missing information from an estimator of the censoring survival
function P(C > t) in multiple imputation steps.

Briefly, the multiple imputation procedure runs as follows:

1. The aim is to impute censoring times from a given censoring distribution.
One computes the Kaplan-Meier estimator Ĝ(t) of the censoring survival
function P(C > t) using the ‘censoring event indicator’ 1 − 1(T ≤ C).
This provides for a proper distribution on the observed censoring times,
unless the largest event time is not a censoring event. In this case, one
adds another censoring time to the data, which is larger than the largest
event time, before computing Ĝ(t).

2. Imputation: Consider all individuals in the data for whom a competing
event type 2 has been observed. Let i be such an individual with failure
time Ti, Ti ≤ Ci andXTi

= 2. The potential future censoring timeCi is not
known. For individual i, a censoring time is imputed by drawing at random
from the conditional distribution 1− P̂(C > t |C > Ti) = 1− Ĝ(t)/Ĝ(Ti),
t > Ti.

3. Multiple imputation: Repeat the previous step k times. This results in k
data sets, in which individual i is censored at its respective imputed cen-
soring time.

4. Multiple analyses: The analysis, typically running coxph, is performed for
each of the k data sets.

5. Pooled estimates: Write γ̂(l) for the estimate of γ of (5.7) obtained from
the lth analysis, l = 1, . . . k. Also write (Jτ (γ̂(l)))−1 for the estimated
covariance matrix from the lth analysis (cf. (5.16)). The estimate of the
regression coefficients based on multiple imputation then is

γ̂ =

k∑
l=1

γ̂(l)/k,

and the estimated covariance matrix is (Schafer, 1997)

k∑
l=1

(Jτ (γ̂(l)))−1/k +
k + 1

k

k∑
l=1

(
γ̂(l) − γ̂

)� (
γ̂(l) − γ̂

)
/(k − 1),
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where the first part is the estimated within-imputation variance, and the
second part stems from the between-imputation variance.

We illustrate the multiple imputation approach using the R convenience pack-
age kmi (Allignol and Beyersmann, 2010) in Section 5.3.3 below.

Ruan and Gray (2008) also considered using an estimator of the censoring
survival function based on bootstrap samples in order to better account for the
uncertainty in estimating P(C > t). In this approach, the Kaplan-Meier esti-
mator of the censoring survival function is computed from a bootstrap sample
drawn with replacement from the original data. A new bootstrap sample is
drawn for each imputation step, and the bootstrap sample is only used for
estimating P(C > t).

For both real and simulated data, Ruan and Gray found similar results
for the simple multiple imputation procedure and the one additionally using
the bootstrap. Our examples are in line with this finding. However, we find it
hard to give recommendations on whether or when the additional bootstrap
step may be necessary. This is particularly true, as the suggestion by Ruan
and Gray (2008) is (at the time of writing) still rather new.

Prediction

Predicting cumulative incidence functions under a proportional subdistribu-
tion hazards assumption works in a manner analogous to Section 5.2.1. The
key step is to obtain a Breslow-type estimator of the cumulative subdistri-
bution baseline hazard Λ0(t) =

∫ t

0
λ0(u)du similar to (5.18). Consider the

simple case of administratively right-censored competing risks data first. In
this case, all censored subdistribution times are known, and an estimator anal-
ogous to (5.18) is given by

Λ̂0(t) :=
∑

ϑi∧Ci≤t

ΔN01(ϑi ∧ Ci)∑n
i=1 exp (γ̂ · Zi) · Y �

0;i(ϑi ∧ Ci)
,

where γ̂ is the estimated regression coefficient of the proportional subdistri-
bution hazards model.

A predictor of the cumulative incidence function analogous to (5.21) for
some (future) individual ı̃ with covariate Zı̃ = z is

P̂(T ≤ t,XT = 1 | z) = 1 −
∏

ϑi∧Ci≤t

(
1 −ΔΛ̂0(ϑi ∧ Ci; z)

)
,

where Λ̂0(t; z) = Λ̂0(t) exp(γ̂z). Note that the product in the last display needs
only be computed over times ϑi ∧ Ci with ϑi ≤ Ci.

If censoring is not entirely administrative, we may proceed as before. We
either substitute Y �

0;i(t) by (5.44) or we use multiple imputation. In order to
approximate the asymptotic distribution of the predicted quantities, one may
consider bootstrapping the data; see Appendix A.
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5.3.3 Examples

Using the proportional subdistribution hazards model, we reanalyse data
which have been analysed earlier in Section 5.2.2 based on the classical cause-
specific hazards approach. We provide a guided tour of the different possi-
bilities of how to fit a subdistribution hazards model. We find that all these
analyses are in good agreement. The data examples also illustrate the rela-
tive merits of the approach based on the subdistribution hazard and based on
cause-specific hazards, respectively.

Simulated data

Using standard Cox software for administratively censored data

We reanalyse the simulated data x of Section 5.2.2. Because we have sim-
ulated these data, we know both the (uncensored) event time x$T and the
censoring time x$C. This situation resembles administrative censoring, where
the potential future censoring times are known for all individuals. As a con-
sequence, we may use standard Cox software in order to fit a proportional
subdistribution hazards model. As noted earlier, this can be useful, because
standard Cox software typically offers more functionality than the specialized
R package cmprsk discussed later. The approach is also helpful for appreciat-
ing that the proportional subdistribution hazards model really is a model of
the proportional hazards type.

In order to use the function coxph of the survival package explained in
Section 5.2.2, we need to code the censored subdistribution failure time ϑ∧C,
cf. Section 5.3.2:

> x$thetaandC <- ifelse(x$status==2, x$C, x$TandC)

This is a partial output of x, which illustrates the connection between ϑ ∧ C
and T ∧ C:

id T X.T Z C TandC status thetaandC

1 1 8.6883519 2 0 89.504193 8.6883519 2 89.5041930

14 14 0.2355318 1 0 36.702982 0.2355318 1 0.2355318

17 17 7.1147213 2 0 3.929309 3.9293088 0 3.9293088

For individual 1, occurrence of event type 2 has been observed. As a con-
sequence, its subdistribution failure time equals infinity, and x$thetaandC

equals x$C. The remaining two individuals have an observed type 1 event (in-
dividual 14), or no event has been observed for them at all (individual 17).
For these individuals, we have that x$thetaandC equals x$TandC.

We now fit model (5.7) using coxph,

> summary(coxph(Surv(thetaandC, status == 1) ~ Z, data=x))
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Note that we only needed to code a different censored event time (i.e.,
x$thetaandC), but that the status indicator remains unchanged because of
(5.42). Of course, the baseline covariate information remains unchanged, too.
The output of the call to coxph follows.

n= 1500

coef exp(coef) se(coef) z Pr(>|z|)

Z 0.09749 1.10240 0.12353 0.789 0.43

exp(coef) exp(-coef) lower .95 upper .95

Z 1.102 0.9071 0.8653 1.404

As noted earlier, the proportional subdistribution hazards model is misspec-
ified, because the data have been generated from proportional cause-specific
hazards models (5.26) and (5.27). We may, however, interpret the estimated
subdistribution hazards ratio exp(γ̂) = 1.1 as an estimate of a time-averaged
effect seen in the Aalen-Johansen plot of Figure 5.9: the estimate indicates
that covariate value 1 appears to have in summary an increasing effect on the
cumulative infection probability. The confidence interval [0.87, 1.4] indicates
that this effect is not significant based on the available data.

The notion of a ‘time-averaged effect’ is discussed in more detail in Sec-
tion 5.4. Here, we only note that the point estimate γ̂ is an asymptotically
consistent estimate of such an effect, but that the estimated standard error
and, hence, the confidence interval rely on the proportional subdistribution
hazards assumption. However, our discussion below indicates that these con-
fidence intervals can be quite reasonable. For the present example, we also
bootstrapped the data frame x in order to both construct confidence inter-
vals and to estimate the standard error; the results based on 1000 bootstrap
samples were virtually identical to those shown above.

Next, we also reconsider the interpretation of the present analysis as show-
ing a time-averaged effect in the analysis using cmprsk below (cf., in particular,
Figure 5.13).

Using cmprsk

The proportional subdistribution hazards model can be fitted using the func-
tion crr of the R package cmprsk, even if not all potential censoring times
are known. The function works with the estimated risk set (5.44). As a conse-
quence, crr is applied to the original data, and not to censored subdistribution
failure times as in our use of coxph above:

> fit.sh <- crr(ftime = x$TandC, fstatus = x$status,

+ cov1 = x$Z, failcode = 1, cencode = 0)

We first consider the arguments supplied to crr before discussing its output:
ftime contains the censored event times T ∧ C and fstatus the observed
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competing event status 1(T ≤ C) ·XT . Baseline covariates are in cov1, which
will in general be a matrix with columns corresponding to the covariates. The
values in fstatus indicating the event of interest are given by failcode=1,
and those values indicating a censored observation are given by cencode=0.

The output of crr follows.

> fit.sh

convergence: TRUE

coefficients:

x$Z1

0.09934

standard errors:

[1] 0.1236

two-sided p-values:

x$Z1

0.42

The appearance of the output is obviously different from that of coxph, but the
results are similar to the previous analysis using coxph. Note that we should
not expect the analyses to be identical, as crr uses an estimated risk set (5.44),
which also results in a different asymptotic variance formula. However, our
analyses indicate that this difference may not matter much in practice, which
is in line with the findings in Fine and Gray (1999). Finally, the reported
p-value corresponds to a log-rank-type test for the subdistribution hazard,
which we discuss in Chapter 6.

Newer versions (2.2-0 and later) of cmprsk conveniently provide approxi-
mate 95% confidence intervals using the summary function.

> summary(fit.sh)

Competing Risks Regression

Call:

crr(ftime = x$TandC, fstatus = x$status, cov1 = x$Z, failcode = 1,

cencode = 0)

coef exp(coef) se(coef) z p-value

x$Z1 0.0993 1.10 0.124 0.804 0.42

exp(coef) exp(-coef) 2.5% 97.5%

x$Z1 1.10 0.905 0.867 1.41

Num. cases = 1500

Pseudo Log-likelihood = -1889

Pseudo likelihood ratio test = 0.65 on 1 df,
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Fig. 5.13. Simulated data. Aalen-Johansen estimates of the cumulative incidence
functions (CIF) for XT = 1 as in Figure 5.8 (black lines) and predicted CIFs under
a proportional subdistribution hazards assumption (grey lines).

cmprsk also allows for predicting cumulative incidence functions. The pre-
dicted curves are of a form similar to one minus (5.21), but with the appro-

priate cumulative subdistribution hazard predictor replacing Â0·(Ti∧Ci; z) in
(5.21). The predicted curves are obtained using predict.crr,

> predict.crr(fit.sh, cov1 = matrix(c(0, 1), nrow = 2))

which returns a matrix with unique event times for the event of interest in
the first column. The remaining columns are the desired probability estimates
corresponding to the covariate values specified in the call to predict.crr. In
our example, the second column contains the values of the predicted cumu-
lative incidence function for covariate value 0, and a third column contains
entries for covariate value 1.

A customized plot of the results can be found in Figure 5.13, which also
shows the Aalen-Johansen estimates from Figure 5.8. The plot suggests that
the proportional subdistribution analyses capture the plateaus of the cu-
mulative incidence functions reasonably well, but not how they evolve to-
wards their respective plateaus. This suggests that the time-averaged effect of
exp(γ̂) = 1.1 obtained from the proportional subdistribution hazards analysis
reflects an increase in the plateaus of the cumulative incidence functions.
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Using standard Cox software and multiple imputation

We now fit a proportional subdistribution hazards model using the multiple
imputation technique described earlier. The method is implemented in the
package kmi.

First, we compute the imputed data sets using the function kmi,

> require(kmi)

> imputed.data <- kmi(Surv(TandC, status != 0) ~ 1, data = x,

+ etype = status, failcode = 1, nimp = 10)

Its first argument is a survival object as explained in Section 4.2 and as used
in the first-event analysis of the data set x in Section 5.2.2. The survival
object distinguishes actually observed event times from censoring events. The
argument etype specifies an individual’s observed event status 1(Ti ≤ Ci)XTi

.
The code for censored observations must be in compliance with the previously
specified survival object. failcode indicates the event of interest such that
censoring times will be imputed for the other competing events, and nimp

specifies the number of imputations.
In the second step, the function cox.kmi fits a proportional subdistribution

hazards model for each imputed data set using coxph as illustrated earlier but
with the imputed censoring times replacing the originally simulated censoring
times. The results are pooled:

> fit.impu <- cox.kmi(Surv(TandC, status == 1) ~ Z,

+ imputed.data)

> summary(fit.impu)

Call:

cox.kmi(formula = Surv(TandC, status == 1) ~ Z,

imp.data = imputed.data)

*****************

Pooled estimates:

*****************

coef exp(coef) se(coef) t Pr(>|t|)

Z 0.09868 1.10372 0.12354 0.799 0.424

exp(coef) exp(-coef) lower .95 upper .95

Z 1.104 0.906 0.8664 1.406

The results are very similar to those obtained earlier.
As explained in Section 5.3.2, the multiple imputation approach can be ex-

tended to bootstrapping the censoring survival function with the aim to bet-
ter account for the uncertainty in estimating P(C > t). This is also available
within kmi. Specifying bootstrap = TRUE with, say, nboot = 100 bootstrap
samples yield results which are again similar to those obtained earlier:
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> imputed.data.boot <- kmi(Surv(TandC, status != 0) ~ 1,

+ data = x, etype = status,

+ failcode = 1, nimp = 10,

+ bootstrap = TRUE, nboot = 100)

> summary(cox.kmi(Surv(TandC, status == 1) ~ Z,

+ imputed.data.boot))

Call:

cox.kmi(formula = Surv(TandC, status == 1) ~ Z,

imp.data = imputed.data.boot)

*****************

Pooled estimates:

*****************

coef exp(coef) se(coef) t Pr(>|t|)

Z 0.09809 1.10306 0.12354 0.794 0.427

exp(coef) exp(-coef) lower .95 upper .95

Z 1.103 0.9066 0.8659 1.405

Analysis of hospital data: Impact of pneumonia status on
admission on intensive care unit mortality

We briefly reanalyse the hospital data from Sections 4.3 and 5.2.2. Recall that
an interpretational problem was that pneumonia increased hospital mortality,
but showed no effect on the cause-specific hazard for hospital death. The
increase in mortality was due to a considerably decreased cause-specific hazard
for alive discharge.

As before, we use the data frame my.sir.data. Using the function crr of
the package cmprsk,

> crr(ftime = my.sir.data$time, fstatus = my.sir.data$to,

+ cov1 = my.sir.data$pneu, failcode = "1", cencode = "cens")

we find an estimated subdistribution hazard ratio of 2.65 with 95% confidence
interval [1.63, 4.32].

The analysis illustrates both the interpretational appeal and limitations
of a subdistribution analysis. On the one hand, the analysis immediately dis-
plays that pneumonia increases hospital mortality. But on the other hand, the
analysis does not tell how this effect is mediated through the cause-specific
hazards.
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5.3.4 Proportional subdistribution hazards analysis of all
cumulative incidence functions

The fact that the subdistribution analysis allows for a direct probability in-
terpretation as illustrated above has made it popular in applications. This is
particularly relevant, because in applied competing risks analyses based on the
usual cause-specific hazards an analysis of the competing cause-specific hazard
is often missing. (See, e.g., the literature review by Koller et al. (2008) on ran-
domized trials of implantable cardioverter defibrillator implantation and also
Section 7.2.) In the hospital data example, a left out analysis of the discharge
hazard would have substantially corrupted the interpretation.

A limitation of the subdistribution hazards approach as compared to cause-
specific hazards is that only the latter completely determine the stochastic
behaviour of the entire competing risks process. The subdistribution hazard
only specifies the cumulative incidence function of interest, but not the com-
peting cumulative incidence functions. Both the hospital data example and
our in-depth discussion of the simulated data in Section 5.2.2 illustrate that
the way cumulative incidence functions evolve over the course of time is best
understood from a cause-specific hazards perspective.

The aforementioned facts have led to proportional subdistribution hazards
modelling being applied to both cumulative incidence functions in applica-
tions. Conceptually, this approach presents problems if one assumes both sub-
distribution hazards to follow a proportional subdistribution hazards model.

Writing Λ0(t) for the cumulative subdistribution baseline hazard for the
event of interest with regression coefficient γ of the original model (5.7)
and Λ̆0(t), γ̆ for the respective quantities attached to the competing cumula-
tive incidence function, Equation (5.6) implies that

1 − exp (− exp(γZi)Λ0(∞)) = exp
(
− exp(γ̆Zi)Λ̆0(∞)

)
, (5.47)

assuming proportional subdistribution hazards models for both cumulative
incidence functions. This implies that the regression coefficient γ of the orig-
inal model and the limit of all baseline subdistribution hazards, i.e., both
P(XT = 1) and P(XT = 2) in the baseline situation, determine the regression
coefficient γ̆ of the competing model. However, this restriction is not accounted
for when running a proportional subdistribution hazards analysis twice, once
for the event of interest and once for the competing event. Readers may check
that this approach may lead to inconsistent model-based estimates for all cu-
mulative incidence functions by using predict.crr also for the competing
event in an analysis of simulated data as in Section 5.3.3.

It is therefore natural to interpret such analyses in terms of a time-averaged
effect as mentioned above and discussed in more detail in Section 5.4, if pro-
portional subdistribution hazards analyses are carried out for all cumulative
incidence functions.

Running cmprsk for the competing event in the simulated data of Sec-
tion 5.3.3 results in a time-averaged subdistribution hazards ratio 0.47 with
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a model-based 95% confidence interval [0.41, 0.53], reflecting an average de-
creasing effect seen in Figure 5.8 (right). Readers may check that subdistri-
bution hazards analysis for hospital discharge reflects the decreasing effect of
pneumonia seen in Figure 4.9 (right) for the hospital data.

5.3.5 Left-truncation

Estimation from a proportional subdistribution hazards model in the presence
of left-truncation has been, at the time of writing, a field of active work in a
number of research groups. We briefly discuss the approach of an ‘estimated’
subdistribution risk set. To the best of our knowledge, Geskus (2011) first
suggested extending this approach to left-truncated data.

With potentially also left-truncated data, the subdistribution risk set (5.43)
becomes

Y �
0;i(t) = 1(Li < t ≤ Ti ∧ Ci) + 1(Li < Ti < t ≤ Ci, XTi

= 2)

+ 1(Ti ≤ Li < t ≤ Ci, XTi
= 2) (5.48)

= 1(Li < t ≤ Ti ∧ Ci) + 1(Ti ∨ Li < t ≤ Ci, XTi
= 2), (5.49)

where we have written ∨ for the maximum. The first two terms on the right
hand side of (5.48) are analogous to (5.43), the last term accounts for indi-
viduals who experience a competing event before study entry.

An ‘estimated’ subdistribution risk set similar to (5.45) is given by

Ŷ �
0;i(t) = 1(Li < t ≤ Ti ∧ Ci)

+ 1(Ci ≥ Ti > Li)
Ĝ(t−)

Ĝ(Ti−)

Ĥ(t−)

Ĥ(Ti−)
1(Ti < t,XTi

= 2), (5.50)

where Ĥ(t) is an estimator of P(L ≤ t). Keiding and Gill (1990) derive a
Kaplan-Meier-type estimator of H by reversing time: if time runs backwards,
a first individual enters the risk set just after the largest censored event time,
a second individual enters the risk set just after the second largest event
time, and so forth. Note that in this description ‘first individual’ and ‘second
individual’ refer to reversed time, but ‘largest’ and ‘second largest’ refer to
real time. A left-truncation event may then happen (in reversed time) after
risk set entry following the censored event time.

To justify (5.50), consider, analogous to (5.46),

E
(
1(Ci ≥ s > Li)

Ĝ(t−)

Ĝ(s−)

Ĥ(t−)

Ĥ(s−)
1(s < t, j = 2) |Ti = s,XTi

= j
)
. (5.51)

Assuming Li, Ti, and Ci to be independent, one may show, along the route
following (5.46), that Ŷ �

0;i(t) is asymptotically unbiased in the sense that its
expectation equals E (Y �

0;i(t)) asymptotically. We note that Geskus (2011)
discusses that (5.50) remains applicable, if Li and Ci are dependent.
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A representation of Ŷ �
0;i(t) analogous to (5.44) is

Ŷ �
0;i(t) = 1(Ci ≥ Ti ∧ t > Li)·

Ĝ(t−)

Ĝ({Ti ∧ Ci ∧ t}−)

Ĥ(t−)

Ĥ({Ti ∧ Ci ∧ t}−)
· (1(t ≤ Ti) + 1(Ti < t,XTi

= 2)
)
.

(5.52)

Note that the last term on the right hand side of (5.51) is the subdistribution
risk set in the case of complete data as in (5.44). Also note that 1(Ci ≥ Ti∧t >
Li) equals one, if we have knowledge of individual i’s vital status just prior
to t.

Estimation now proceeds by replacing Y �
0;i(t) with Ŷ �

0;i(t) in the par-
tial likelihood. Deriving a covariance estimator, however, poses a challenge.
In their original paper on right-censored data, Fine and Gray (1999) used an
empirical process argument. In the absence of such a formula, one may con-
sider bootstrapping the data; see Appendix A. Geskus (2011) uses martingale
arguments for a reweighted data set. Once the reweighted data have been
prepared, they may be passed to coxph. At the time of writing, an R func-
tion to create such a weighted data set has been announced to be included in
the mstate package; it has also been available as supplementary material for
Geskus’ paper at www.biometrics.tibs.org. We also refer readers to Zhang
et al. (2011), which appeared during the completion of the book; these authors
attack the problem at hand using empirical process arguments.

5.3.6 Simulating proportional subdistribution hazards data

So far, we have used a proportional subdistribution hazards analysis as a
synthesis of the effects on the cause-specific hazards. The synthesis was in
terms of the effect on one cumulative incidence function. As the analysis of
the simulated data illustrated, such a synthesis may even be achieved if the
model is misspecified. For the simulated data, we knew that the proportional
subdistribution hazards model does not hold, but in a real data analysis there
is a priori no reason to assume it to be misspecified. This gives rise to the
question of what kind of cause-specific hazards models yield a proportional
subdistribution hazards model. Such knowledge may be used for simulation.

In this section, we first present a direct way of simulation based on the
cause-specific hazards (Beyersmann et al., 2009). We find that some care is
required when choosing the cause-specific hazards models. We also present
an indirect way of simulation, which evades these difficulties, but hides the
underlying cause-specific hazards models (Fine and Gray, 1999).

Although we do not apply these simulation algorithms here, we have chosen
to present them for readers wishing to further investigate the subdistribution
hazards approach by way of simulation.

http://www.biometrics.tibs.org
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Direct simulation

The aim is to generate competing risks data such that the subdistribution
hazard of the cumulative incidence function of interest (i.e., for event 1) follows
model (5.7):

λi(t;Zi) = λ0(t) · exp (γ · Zi) , i = 1, . . . , n.

The algorithm operates in three steps: we first determine the baseline subdis-
tribution hazard and the baseline cause-specific hazards. Next, we determine
models for the cause-specific hazards. These are then used to generate the
data.

Consider specifying the baseline situation. Recall that we write α01;0(t)
and α02;0(t) for the baseline cause-specific hazards, A01;0(t) and A02;0(t) for
the cumulative baseline cause-specific hazards and Λ0(t) for the cumulative
baseline subdistribution hazard. We have to distinguish between three ways
to specify the baseline situation:

1. We choose α01;0(t) and α02;0(t) and compute λ0(t) from Equation (5.39).
2. We choose α01;0(t) and λ0(t). Next, we have to compute α02;0(t). Following

from Equation (5.39), we have

λ0(t) exp (−Λ0(t)) = exp (−A01;0(t) −A02;0(t))α01;0(t). (5.53)

An easy calculation shows that we may compute α02;0(t) as follows.

α02;0(t) = λ0(t) − α01;0(t) − d

dt
ln(λ0(t)/α01;0(t)) (5.54)

3. We choose α02;0(t) and λ0(t). Next, we have to compute α01;0(t). Following
from Equation (5.53), we have

exp (−A01;0(t))α01;0(t) = λ0(t) exp (−Λ0(t) +A02;0(t)) . (5.55)

Applying (in this order) integration, ln and d/dt to Equation (5.55) yields

α01;0(t) =
λ0(t) exp (−Λ0(t) +A02;0(t))

1 − ∫ t

0
λ0(u) exp (−Λ0(u) +A02;0(u)) du

. (5.56)

In the second step, we need to specify models α01;i(t;Zi) and α02;i(t;Zi)
such that model (5.7) holds. Recall that we write A01;i(t;Zi) and A02;i(t;Zi)
for the cumulative cause-specific hazards of the ith individual. Analogously, we
write Λi(t;Zi) for the cumulative subdistribution hazard of the ith individual.
We choose a model for one of the two cause-specific hazards. This could be
a proportional cause-specific hazards model as in (5.3), but other choices are
also possible (cf. Section 5.6).

If we choose a model α01;i(t;Zi), we determine the model α02;i(t;Zi) as in
Equation (5.54), i.e.,
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α02;i(t;Zi) = λi(t;Zi) − α01;i(t;Zi) − d

dt
ln(λi(t;Zi)/α01;i(t;Zi)). (5.57)

If, however, we choose a model α02;i(t;Zi), we determine the model α01;i(t;Zi)
as in Equation (5.56), i.e.,

α01;i(t;Zi) =
λi(t;Zi) exp (−Λi(t;Zi) +A02;i(t;Zi))

1 − ∫ t

0
λi(u;Zi) exp (−Λi(u;Zi) +A02;i(u;Zi)) du

. (5.58)

In the third and final step, data are generated from the cause-specific
hazards models.

In practice, one will usually first determine the baseline cause-specific
hazards, which can essentially be any ‘well behaving’ (differentiable, inte-
grable) non-negative functions, whereas choice of λ0(t) is complicated by the
fact that the limit of 1 − exp (−Λ0(t)) must approach P (XT = 1 |Zi = 0)
as t→ ∞. Next, specifying the proportional subdistribution hazards model, a
cause-specific hazards model α01;i(t;Zi) and using Equation (5.57) is the most
convenient option. Note that Equations (5.54), (5.56) – (5.58) are subject to
the constraint that they result in nonnegative functions.

Indirect simulation

The advantage of the direct simulation approach described above is that it
explicitly states the cause-specific hazards leading to a proportional subdis-
tribution hazards model. The practical inconvenience is that typically one
cause-specific hazards model will not look ‘nice’ and that we have to ensure
that all hazards are nonnegative. Fine and Gray (1999) circumvented these
inconveniences by ‘indirect simulation’: the cause-specific hazards are only
implicitly given. We briefly describe the approach and how the cause-specific
hazards may be recovered.

Fine and Gray assumed the cumulative incidence function to follow the
model

P(Ti ≤ t,XTi
= 1 |Zi = z) = 1 − (

1 − p (
1 − e−t

) )exp(γ·z)
, (5.59)

where 1−(
1−p)exp(γ·z)

= P(XTi
= 1 |Zi = z) is the probability to experience

a type 1 event for individuals with covariate value z, p ∈ (0, 1). Equation (5.59)
is a distribution of a subdistribution failure time with probability mass 1 −
P(XTi

= 1 |Zi = z) at infinity (cf. (5.35)). The distribution function (5.59)
results from a proportional subdistribution hazards model (5.7) with baseline
hazard

λ0(t) =
pe−t

1 − p (1 − e−t)
(5.60)

(cf. Equation (5.5)). The competing cumulative incidence function was as-
sumed to be
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P(Ti ≤ t,XTi
= 2 |Zi = z)

= P(XTi
= 2 |Zi = z) · P(Ti ≤ t |XTi

= 2, Zi = z)

=
(
1 − p)exp(γ·z) · (1 − exp (−t · exp(γ · z)) )

, (5.61)

where P(Ti ≤ t |XTi
= 2, Zi = z) is an exponential distribution with hazard

function exp(γ · z).
On average, P(XTi

= 1 |Zi = z) of the individuals with covariate value z
experience the event type 1, whereas P(XTi

= 2 |Zi = z) of these experience
event type 2. Conditional on the event type, the associated failure times may
then be generated using the conditional distributions P(Ti ≤ t |XTi

= j, Zi =
z), j = 1, 2. Indirect simulation first determines individual i’s event type XTi

with P(XTi
= 1 |Zi = z) as given below (5.59). Next, the corresponding event

time Ti is generated conditional on XTi
with distribution

P(Ti ≤ t |XTi
= j, Zi = z) =

P(Ti ≤ t,XTi
= j |Zi = z)

P(XTi
= j |Zi = z)

, j = 1, 2.

In principle, this simulation may also be based on the cause-specific haz-
ards. As both cumulative incidence functions and the subdistribution hazard
are known, we may use (5.39) to compute α01;i(t;Zi) and then proceed as
described for the direct simulation to compute α02;i(t;Zi).

5.4 The least false parameter

In the data examples of this chapter, we have fitted several proportional
hazards-type models. These models addressed different quantities: all-cause
hazard, cause-specific hazards, and subdistribution hazard. Hence, the analy-
ses answered different questions, although connections can be made. In gen-
eral, the analysis of the cause-specific hazards offered the highest resolution,
so to speak, but also required care when interpreting results.

In all of these models, the proportional hazards assumption is made solely
for mathematical and interpretational convenience. The mathematical conve-
nience is mirrored in the elegant partial likelihood argument which we have
briefly described in Section 5.2.1. Assuming a constant hazard ratio is also
interpretationally convenient as it summarizes an effect on the hazard under
study in a single number. However, assuming one hazard notion to follow a
Cox-type model usually implies that another hazard notion does not.

Properties of statistical procedures, on the other hand, are usually derived
assuming that one knows the correct model. The question that we address
in this section then is: what is the analysis doing and what should be its
interpretation if the underlying model assumption is incorrect? Our impression
from the data analyses was that a misspecified proportional hazards analysis
(i.e., where the true hazard ratio is time-varying) results in a time-averaged
effect. From this point of view, we were able to interpret the analyses of the
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all-cause hazard and of the subdistribution hazard for the simulated data,
which had been generated from proportional cause-specific hazards models,
and we could interpret subdistribution hazards analyses for each competing
endpoint in the pneumonia data set.

A comprehensive account of misspecified survival data models has been
given by Hjort (1992); see, in particular, Sections 6B and 7B. In fact, one
finds that the estimator derived from a misspecified model is consistent, al-
though not for the misspecified model parameter, but for the so-called least
false parameter. The least false parameter is ‘least false’ in the sense that it
yields the ‘best approximation’ of the misspecified model towards the true
model which generated the data. The approximation is optimal in terms of an
appropriate distance between the misspecified and the true model. An easily
accessible account of the main ideas is given in Claeskens and Hjort (2008),
Sections 2.2 and 3.4.

We do not further investigate these issues in depth, but are content with
the fact that our previous interpretation of a misspecified analysis can be given
a firm background. See, e.g., Struthers and Kalbfleisch (1986); Lin and Wei
(1989); Gerds and Schumacher (2001); Fine (2002); Latouche et al. (2007) for
related work. In particular, our approach of looking at models for the cause-
specific hazards and for the subdistribution hazard, respectively, side-by-side
is investigated by Grambauer et al. (2010a).

We do, however, wish to point out a number of practically relevant issues.
First of all, we again emphasize that proportional hazards assumptions are
made for convenience. If misspecified, we believe that the summarizing inter-
pretation in terms of the least false parameter is useful. However, this point
of view does not dispose of model choice considerations, e.g., if the aim of the
analysis is to study time-varying effects; see also Section 5.6.

Second, the least false parameter does also depend on the censoring distri-
bution. Say, if the analysis of the cumulative incidence functions in Figures 5.3
and 5.4 were subject to heavy censoring such that they could only be esti-
mated up to time 5 or 10, our impression gathered from the analysis based on
the misspecified model would differ from the one gathered from Figure 5.9.
We illustrate this by artificially censoring the simulated data at time 10 such
that estimation beyond time 10 is not feasible:

> x$TandC.art <- ifelse(x$TandC <= 10, x$TandC, 10)

> x$status.art <- ifelse(x$TandC <= 10, x$status, 0)

Originally, only 10.67% of the individuals were censored, but introduction of
the artificial censoring time 10 has increased this proportion:

> sum(x$status.art == 0) / length(x$id)

[1] 0.4813333

The subdistribution hazards analysis
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> fit.sh.art <- crr(ftime = x$TandC.art, fstatus = x$status.art,

+ cov1 = x$Z, failcode = 1, cencode = 0)

now yields an estimated subdistribution hazards ratio of 0.94 with 95% con-
fidence interval [0.73, 1.22]. The original subdistribution hazards analysis in-
dicated a (non-significant) increase of the cumulative incidence function for
event 1. However, the new analysis indicates a (non-significant) decrease. This
is in line with Figure 5.9 read up to time 10 only.

For comparison, we also reanalyse the cause-specific hazards. Recall from
Chapter 2 that a crucial argument for basing the analysis of event time data on
the hazards was that censoring does not ‘disturb’ the hazard. As the simulated
data have been generated from proportional cause-specific hazards models, we
should hope for recovering the cause-specific hazard ratios even in the pres-
ence of heavier censoring. However, we should also expect a larger variance.
Running

> summary(coxph(Surv(TandC.art, status.art == 1) ~ Z,data = x))

> summary(coxph(Surv(TandC.art, status.art == 2) ~ Z, data = x))

results in estimates of the cause-specific hazards ratio of 0.83 [0.65, 1.08] for
event 1 and of 0.18 [0.15, 0.23] for event 2. These results are similar to those
obtained earlier, but with somewhat larger confidence intervals for type 2
events. This is so, because type 2 events have also occurred after the artificial
censoring time 10, whereas most of the type 1 events have happened before
that time.

Third, we already pointed out earlier that a misspecified analysis provides
for a consistent estimate of the average effect, but that variance estimates and
confidence intervals may be biased. Lin and Wei (1989) and Hjort (1992) pro-
vide consistent variance estimates outside model conditions. As an alternative,
nonparametric bootstrapping is also considered by Hjort. A robust variance
estimator can be computed using coxph, setting robust=TRUE. Nonparametric
bootstrapping for multistate data is addressed in Appendix A.

Robust variance estimation has not been developed for the estimated sub-
distribution risk set technique implemented in cmprsk. However, based on
nonparametric bootstrapping, Beyersmann et al. (2009) and Latouche et al.
(2011) find that the model-based confidence intervals can be quite accurate.

5.5 Goodness-of-fit methods

The regression models that we have discussed in the preceding part of this
chapter have been proportional hazards models, namely for the cause-specific
hazards or the subdistribution hazard. In the absence of a competing event,
these models reduce to a standard Cox model of the (all-cause) survival
hazard. Being hazard models, it should be clear by now that virtually all
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goodness-of-fit methods for checking the proportionality assumption of an all-
cause hazard also apply, when adopted in the obvious manner, to checking
the proportionality assumption for one cause-specific hazard, say.

Goodness-of-fit methods are both a vast area and an active research field.
They typically consist of graphical checks, more formal hypothesis tests, or
a combination of both. Instead of a comprehensive but inevitably incomplete
account, we have chosen to exemplarily illustrate that hazard-based techniques
generally work in the present context, employing a simple but useful graphical
display. Further references are given at the end of this section.

To be more specific, we consider plotting the estimated cumulative haz-
ards within one covariate level against the respective estimate within another
covariate level. Recall the cause-specific hazards models (5.24)–(5.27):

α01(t;Zi = 1) = 0.825 · α01;0(t) = 0.825 · 0.09

t+ 1
,

α02(t;Zi = 1) = 0.2 · α02;0(t) = 0.2 · 0.024 · t,

i = 1, . . . , n, that we have used for simulating data in Section 5.2.2. Plotting
the Nelson-Aalen estimators for the 0 → 1 transition, say, for individuals with
covariate value 1 (on the y-axis) against the baseline group (i.e., on the x-axis)
should approximate a straight line with intercept 0 and slope 0.825.

Interpreting departures from such a straight line is complicated by the fact
that the variances of the curves are time-dependent. However, one finds that a
convex curve suggests increasing hazard ratios, whereas a concave curve sug-
gests decreasing hazard ratios. In addition, a piecewise linear curve suggests
hazard ratios that are piecewise proportional.

We now illustrate this graphical procedure using the simulated data of
Section 5.2.2. As these data were simulated from proportional cause-specific
hazards models, the respective goodness-of-fit plots should indicate a good
fit. In contrast to this, the all-cause hazard does not follow a proportional
hazards model anymore. However, we discussed earlier that the cause-specific
hazard for event 2 is the major hazard. As this cause-specific hazard follows
a Cox model, we do not expect to see a dramatic departure from a straight
line. Finally, we investigate the proportional subdistribution hazards assump-
tion for event 1. As illustrated in Figures 5.4 and 5.9, both the true and
the estimated cumulative incidence functions cross. Hence, the corresponding
subdistribution hazards ratio is not proportional.

In the plots below, we use the usual Nelson-Aalen estimators for the cu-
mulative all-cause hazard and for the cumulative cause-specific hazards, com-
puted within groups defined by the binary covariate. In addition, we also need
an estimator Λ̂(t) of the cumulative subdistribution hazard Λ(t) =

∫ t

0
λ(u)du,

where we have dropped dependency on the covariate for ease of notation.
Such an estimator is easily derived recalling that the subdistribution hazard
has been tailor made to mimic a standard survival setting. In other words, the
usual Aalen-Johansen estimator (4.18) of the cumulative incidence function
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should equal one minus a Kaplan-Meier-type estimator from the subdistribu-
tion framework:

1 − P̂(T ≤ t,XT = 1) =
∏
u≤t

(
1 −ΔΛ̂(u)

)

=
(
1 −ΔΛ̂(t)

)
·
(
1 − P̂(T < t,XT = 1)

)
.

As a consequence,

ΔΛ̂(t) = 1 − 1 − P̂(T ≤ t,XT = 1)

1 − P̂(T < t,XT = 1)

=
P̂(T ≥ t)ΔÂ01(t)

1 − P̂(T < t,XT = 1)
.

Note that the last equation corresponds to relationship (5.39) between λ(t)
and α01(t). We have

Λ̂(t) =
∑

Ti∧Ci≤t

1 − 1 − P̂(T ≤ Ti ∧ Ci, XT = 1)

1 − P̂(T < Ti ∧ Ci, XT = 1)
. (5.62)

Estimator Λ̂(t) is easily computed based on the Aalen-Johansen estima-

tor P̂(T ≤ u,XT = 1), which needs to be evaluated both for times u (for
the numerator in (5.62)) and times u− (for the denominator in (5.62)). Note

that Λ̂(t) only has nonzero increments at times u, at which a type 1 event has
been observed.

Figure 5.14 displays the aforementioned goodness-of-fit plots for the all-
cause hazards on the left, and for the cause-specific hazards for both events.
As anticipated, the plots seem to indicate a good fit of the proportional haz-
ards assumption for both cause-specific hazards as well as for the all-cause
hazards, although the latter model is misspecified. The graphical procedure
for the subdistribution hazards of the event of interest is displayed in Fig-
ure 5.15. There, we clearly see a departure from the straight line with slope
γ̂ = 1.1. The curve, being convex, suggests that the subdistribution hazard
ratio is increasing. Readers may check that this is actually the case, using
the cause-specific hazards (5.24)–(5.27) and the relationship (5.39) between
subdistribution hazard and cause-specific hazards.

With respect to computation, one has to be careful about plotting the
cumulative (subdistribution) hazards at the same time points. For instance,
if cif.etm.z0 and cif.etm.z1 are the cumulative incidences computed with
etm for Z = 0 and Z = 1, respectively, the timepoints option of the trprob

function is helpful to obtain the CIFs at the same time points.

> ## Definition of common time points for both groups

> times <- sort(c(cif.etm.z0$time, cif.etm.z1$time))
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Fig. 5.14. Simulated data. Nelson-Aalen estimator of the cumulative all-cause haz-
ard for individuals with covariate value 1 against the baseline group in the left plot,
along with the line with slope equal to the corresponding estimated hazard ratio in
grey. The middle and right plots are the goodness-of-fit plots for the cause-specific
hazards of the event of interest and the competing event, respectively.

> ## CIFs at time points 'times'

> cif.z0 <- trprob(cif.etm.z0, tr.choice = "0 1",

+ timepoints = times)

> cif.z1 <- trprob(cif.etm.z1, tr.choice = "0 1",

+ timepoints = times)

Then, the cumulative subdistribution hazards for the event of interest are
easily computed following (5.62).

> sub.haz.z0 <- cumsum(1 - ((1 - cif.z0) /

+ (1 - c(0, cif.z0[-length(cif.z0)])

+ )))

> sub.haz.z1 <- cumsum(1 - ((1 - cif.z1) /

+ (1 - c(0, cif.z1[-length(cif.z1)])

+ )))

We note that Gill and Schumacher (1987) discuss a relationship between
the present graphical check and a more formal test of the proportional hazards
assumption. They also consider (optimally) weighted versions of the plotted
curves. Very useful textbook accounts of goodness-of-fit methods are, e.g.,
Section VII.3 of Andersen et al. (1993), Chapter 11 of Klein and Moeschberger
(2003), and Chapter 6 of Hosmer et al. (2008). A practically oriented in-depth
treatment is provided by Chapters 4–7 of Therneau and Grambsch (2000).
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Fig. 5.15. Simulated data. Estimated cumulative subdistribution hazards for indi-
viduals with covariate value 1 against the baseline group, along with the line with
slope equal to the estimated subdistribution hazard ratio in grey.

5.6 Beyond proportional hazards

We have restricted ourselves to discussing Cox-type, proportional hazards
models for the cause-specific hazards and for the subdistribution hazard, re-
spectively, because these are the most popular regression models for compet-
ing risks data. As stated earlier, these models make a proportional hazards
assumption both for interpretational and technical convenience.

Other models exist both for modelling the cause-specific hazards and for
direct modelling of the cumulative incidence function. These are of interest
per se, as a proportional hazards assumption may or may not fit the data well.
If one suspects an effect to be time-varying, or if the aim is to investigate time-
varying effects, other models may be attractive. In addition, we found that
not all of the popular regression models can fulfill the proportional hazards
assumption simultaneously; see also Section 5.4.

An important model, which does not follow a proportional hazards struc-
ture, has already been introduced by Aalen in 1980 (Aalen, 1980). For cause-
specific hazards, the model postulates

α0j;i(t;Zi) = β0j0(t) + β0j(t) · Zi, j = 1, 2, i = 1, . . . , n, (5.63)

where β0j(t) = (β0j1(t), . . . , β0jp(t)) is a 1× p vector of regression coefficients
and Zi is a p×1 vector of covariates for individual i; see also (5.1). The model
is entirely nonparametric, because the regression functions are left completely
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unspecified except for a boundedness assumption. One then proceeds to esti-
mate the integrated regression functions. There also exist submodels of (5.63),
where some or all of the regression functions are time-constant (Lin and Ying,
1994; McKeague and Sasieni, 1994).

The model is obviously well suited to study time-varying effects. When
modelling competing risks in cancer studies, Klein (2006) argues in favour of
an additive structure as in (5.63), because both the cause-specific hazards and
the all-cause hazard may follow additive models simultaneously.

Still, model (5.63) has somewhat been neglected in applications. In their
book on the topic, Scheike and Martinussen argue that this might, in part,
be ‘due to the fact that the model only contains nonparametric terms [. . . ]’
(Martinussen and Scheike, 2006, p. 103). However, there is renewed interest in
the model, fueled by Scheike’s R package timereg. We refer to Martinussen
and Scheike (2006) for an in-depth treatment. We also note that, in addi-
tion, these authors consider combinations of proportional hazards models and
additive hazards models, that they discuss goodness-of-fit procedures, and
that timereg allows us to fit a proportional odds model. If all of the regres-
sion functions in (5.63) are time-constant, Schaubel and Wei (2007) show how
to use standard statistical software to fit such a model. In their Section 4.2,
Aalen et al. (2008) give a very readable account of the additive hazards model,
together with arguments in favor of the model. Aalen et al. (2001) consider
prediction of transition probabilities both for competing risks and more gen-
eral multistate models.

It is worthwhile to recall that the additive model can also be applied to
the subdistribution hazard using the multiple imputation procedure described
in Sections 5.3.2 and 5.3.3. In addition, timereg also allows us to fit models

P(T ≤ t,XT = 1 |Zi) = h (γ0(t) + γ · Zi) ,

with a vector Zi of covariates for individual i, regression coefficients γ analo-
gous to (5.7), a known link function h and a time-dependent regression func-
tion γ0(t). The proportional subdistribution hazards model (5.7) is obtained
by letting

h(x) = 1 − exp(− exp(x)).

In this case, the time-dependent regression function γ0(t) simply is a transfor-
mation of the cumulative baseline subdistribution hazard, i.e., exp(γ0(t)) =
Λ0(t). timereg also allows for other link functions and time-varying effects.
The approach is discussed in Scheike et al. (2008); see also Scheike and Zhang
(2007, 2008).

As both these references and our discussion of the proportional subdistri-
bution hazards model in Section 5.3 show, there is lively interest in modelling
direct effects on the cumulative incidence functions. We refer to Andersen and
Perme (2008), who give an an overview and further references. They also dis-
cuss an important parallel development initiated by Andersen et al. (2003).
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These authors suggest a general technique to directly model outcome proba-
bilities based on so-called pseudo-values and using standard generalized linear
models software. Similar to the approach by Scheike et al. (2008), this tech-
nique is available for more general multistate models (see Scheike and Zhang,
2007). We briefly sketch the ideas for modelling the cumulative incidence func-
tion. Klein et al. (2008) present a worked example using the R packages pseudo
and geepack. A very useful review paper is Andersen and Perme (2010). Graw
et al. (2009) prove some conjectures regarding the asymptotics of the approach
for the case of competing risks.

If the aim is to investigate effects on the cumulative incidence function of
event 1, pseudo values are obtained by estimating P(T ≤ t,XT = 1) both
based on the entire sample and based on a reduced sample, which only leaves
the ith individual out. The difference between these two estimates, multiplied
by the respective sample size before taking the difference, is the ith pseudo
observation, θ̂i, say, i = 1, . . . , n. The rationale is that the difference reflects
an effect of Zi on the cumulative incidence function. Andersen et al. then
proceed by considering a generalized linear regression model for the cumulative
incidence function at time t, potentially over a grid of time points t, using the
pseudo values as outcome variables.

We finally encourage readers to occasionally check the CRAN task view
‘Survival Analysis’ at

http://cran.r-project.org/web/views/Survival.html

The task view, maintained at the time of writing by Aurelien Latouche and
Arthur Allignol, aims at presenting R packages for the analysis of time to
event data. If methodology such as regression models outside the proportional
hazards framework is being made available, either as an R package in its own
right or as an addition to an existing R package, the task view is the up-to-date
place for finding it.

5.7 Exercises

1. Use the ‘4D data’ simulated in the Exercises of Section 4.6.
• Run a first-event analysis, i.e., do not distinguish between the compet-

ing events, using a proportional hazards model to compare groups.
• Analyse both cause-specific hazards with a proportional hazards model.
• Compute the Breslow estimates and predict the cumulative incidence

functions using the mstate package,
• Repeat the analyses with additional left-truncation as in Exercise 5 of

Section 4.6.
2. Consider a competing risks process with two competing events and cause-

specific hazards α0j(t), j = 1, 2. Let λ(t) denote the subdistribution haz-
ard. Show that
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α01(t) =

(
1 +

P(T ≤ t,XT = 2)

P(T > t)

)
·λ(t).

3. Fit a proportional subdistribution hazards model for both events in the
‘4D data’ (see above) using both the cmprsk package and the multiple
imputation technique.

4. Simulation following a proportional subdistribution hazards model: Sim-
ulate 200 individuals using the ’indirect simulation’ algorithm as in Sec-
tion 5.3.6 with one binary covariate Z ∈ {0, 1}. Covariate values are drawn
through a binomial experiment leading to approximately 50% of the indi-
viduals having Z = 1. We set parameters p = 0.6 and γ = 0.3. Censoring
times stem from a uniform distribution with parameters giving about 30%
of censored observations.
Perform analyses of the cause-specific hazards and of the subdistribution
hazards. Check graphically that the subdistribution hazards for the event
of interest are proportional.

5. The goal of the present exercise is to study how the least false parameter
varies depending on the censoring distribution. Generate new censoring
times for the data simulated in the Exercises of Section 4.6. Impose heavier
censoring min(c, Ci), where Ci is the censoring time that was originally
drawn and c is some small constant. Redo the analyses of the cause-specific
hazards and of the subdistribution hazards analyses.

6. Check the goodness-of-fit of Cox models for the all-cause hazard, for the
cause-specific hazards and for the subdistribution hazards, respectively,
for the data simulated in the Exercises of Section 4.6, using plots as in
Figures 5.14 and 5.15.

7. Analyse the impact of transplant type on the cause-specific hazards and
the subdistribution hazard of infection for the real ONKO-KISS data
okiss, which come with the compeir package. The data set is described
in Chapter 1.
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Nonparametric hypothesis testing

The log-rank test is arguably the most widely used test in survival analysis.
In this brief Chapter, we explain the idea of the log-rank test and how it
translates to competing risks. The key issue is that the log-rank test com-
pares hazards and may consequently be used to compare cause-specific haz-
ards, too. As we have seen earlier, differences between cause-specific hazards
do not translate into differences of the cumulative event probabilities in a
straightforward manner. Therefore, cumulative incidence functions are often
compared by a log-rank-type test for the subdistribution hazard rather than
for the cause-specific hazards. As we show below, we may settle for a brief
Chapter, because these tests have already been computed as a byproduct of
the Cox-type models in Chapter 5.

To begin, assume that there is only one endpoint type, i.e., no competing

risks. Say, we wish to compare two groups. Let N
(1)
0· (t) denote the number of

observed events (subject to independent left-truncation and right-censoring)

in [0, t] in group 1. Let N
(2)
0· (t) denote the respective number in group 2. The

number of observed events in the pooled sample is N0·(t) = N
(1)
0· (t)+N

(2)
0· (t).

The respective risk sets are Y
(1)
0 (t) for group 1, Y

(2)
0 (t) for group 2 and Y0(t)

for the pooled sample.
In the absence of competing risks, the log-rank test is typically motivated

as follows. Consider some t with an observed event (i.e., ΔN0·(t) �= 0) and

also consider the risk sets Y
(1)
0 (t) and Y

(2)
0 (t) and the number of observed

events ΔN0·(t) as being given (i.e., as being fixed). Then the expected number
of events in group 1 under the null hypothesis of no difference between the
two groups is

E
(
ΔN

(1)
0· (t)

)
= Y

(1)
0 (t) · ΔN0·(t)

Y0(t)
.

Hence, under the null hypothesis, we would expect that

ΔN
(1)
0· (t) − Y (1)

0 (t) · ΔN0·(t)

Y0(t)
≈ 0. (6.1)
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The log-rank statistic then is

1∑
t Vt

·
(∑

t

ΔN
(1)
0· (t) − Y (1)

0 (t) · ΔN0·(t)

Y0(t)

)2

,

where summation is over all observed event times in the pooled sample, and Vt

denotes the variance obtained from the hypergeometric distribution,

Vt =
ΔN0·(t)(Y0(t) −ΔN0·(t))Y

(1)
0 (t)Y

(2)
0 (t)

Y0(t)2(Y0(t) − 1)
.

Under the null hypothesis, the log-rank test statistic is approximately χ2

distributed with one degree of freedom.
For our purposes, it is helpful to rewrite (6.1) as

ΔN
(1)
0· (t)

Y
(1)
0 (t)

≈ ΔN0·(t)

Y0(t)
. (6.2)

Statement (6.2) corresponds to a counting process point of view, comparing
the increment of the Nelson-Aalen estimator based on the data in group 1, i.e.,

ΔN
(1)
0· (t)/Y

(1)
0 (t) with the respective increment based on the pooled sample,

i.e.,ΔN0·(t)/Y0(t). Summation over all observed event times then implies that
the Nelson-Aalen estimators rather than their increments are being compared.
This point of view easily adapts to competing risks. Instead of comparing
the all-cause Nelson-Aalen estimators, we simply compare the cause-specific

Nelson-Aalen estimators for type j events by replacing N
(1)
0· (t) with N

(1)
0j (t)

and N0·(t) with N0j(t), j = 1, 2. It turns out that the respective log-rank test
corresponds to the score test obtained from fitting a Cox model to the cause-
specific hazard for event type j with group membership as the sole covariate.
This fact is more than mere algebraic coincidence, but is related to the log-
rank test being locally most powerful for departures from the null hypothesis
that follow proportional hazards. In addition, we easily obtain k-sample tests,
k ≥ 2, via this route: one needs to choose one group, say, group 1, as the
‘baseline group’. Then, fitting a Cox model with k − 1 covariates indicating
group membership for group 2, 3, . . . , k will yield the appropriate test.

Readers are encouraged to recheck the output of summary applied to coxph

in Section 5.2.2, which reported the log-rank test at the bottom of its out-
put. Alternatively, one may also use the function survdiff of the pack-
age survival in order to obtain the log-rank test. We briefly revisit the hospi-
tal data example of that section, where the aim was to investigate the impact
of pneumonia diagnosed on admission. The result was no significant difference
between the cause-specific hazards for hospital death, but significantly differ-
ent cause-specific hazards for alive discharge. This example, like the other
analyses in Section 5.2.2, also illustrates the limitations of testing equality
of cause-specific hazards. Our previous analysis showed that pneumonia did
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increase the number of patients dying in hospital, although the hazards for
hospital death had been found to be similar with or without pneumonia. A key
finding in Section 5.2.2 has been that an adequate interpretation of a compet-
ing risks analysis requires careful consideration of all cause-specific hazards,
including the signs and magnitudes of the effects of, e.g., pneumonia status as
well as the relative magnitude of the single cause-specific hazards within one
group. Typically, this somewhat complex picture is only partially reflected in
a formal hypothesis test of one or even all cause-specific hazards.

In Section 5.3, we have discussed that this complex situation has moti-
vated efforts to study directly the impact of covariates such as pneumonia
in the hospital data example on the cumulative incidence functions; see also
Sections 5.1 and 5.6. In particular, the proportional subdistribution hazards
model of Section 5.3 is often used to this end. Recall that this model is a
Cox-type model for the subdistribution hazard, and that the subdistribution
hazard reestablishes a one-to-one correspondence with the cumulative inci-
dence function of interest. Hence, the score test obtained from fitting such a
model must be suited to compare cumulative incidence functions directly. We
briefly illustrate this with the hospital data. Running

> crr(ftime = my.sir.data$time, fstatus = my.sir.data$to,

+ cov1 = my.sir.data$pneu, failcode = "1", cencode = "cens")

convergence: TRUE

coefficients:

my.sir.data$pneu1

0.9749

standard errors:

[1] 0.2496

two-sided p-values:

my.sir.data$pneu1

9.4e-05

we find a significant effect of pneumonia on the cumulative incidence function
for hospital death. This test is due to Gray (1988) and therefore often called
Gray’s test. The test may be derived in analogy to our derivation of the
standard log-rank test above, if we use the increments of the estimator of the
cumulative subdistribution hazard as in Section 5.5. However, similar to the
proportional subdistribution hazards model, the challenge is to calculate the
asymptotic distribution of the test statistic (Gray, 1988). We also note that
the function cuminc of the package cmprsk may alternatively be used in order
to obtain Gray’s test.

In Sections 5.3.4 and 5.4, we discussed that proportional subdistribution
hazards models typically do not hold for all cumulative incidence functions,
nor do Cox-type models typically hold for both cause-specific hazards and
subdistribution hazard. Model misspecifications are therefore inevitable when
running these analyses side-by-side as is common practice. We discussed the
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interpretational consequences in Section 5.4. In the present context, running
analyses side-by-side means using the usual log-rank test to compare the sin-
gle cause-specific hazards and maybe also the all-cause hazard as well as us-
ing Gray’s test to compare the cumulative incidence functions. Here, model
misspecification is not a concern in the sense that these tests are entirely non-
parametric and valid for their respective null hypotheses. As stated above, log
rank-type tests are well suited to detect departures from the null hypothesis
that follow proportional hazards of the respective hazard notion. Conversely,
this entails that a log-rank test for the cause-specific hazard of event 1 will
often fail to detect a difference if the hazards cross. Analogous statements
hold for the log-rank test of the all-cause hazard and of the subdistribution
hazard, respectively. To illustrate these restrictions, recall the first example in
Section 5.2.2, where the cause-specific hazards followed perfect Cox models,
but the cumulative incidence functions for the event of interest crossed.

Finally, we refer to Hosmer et al. (2008, Section 2.4) for a practical overview
on alternatives to the log-rank test and to Bajorunaite and Klein (2008) who
give an excellent overview of the available tests for comparing cumulative
incidence functions. Bajorunaite and Klein also discuss tests for crossing sub-
distribution hazards, and they make the distinction between comparing cause-
specific hazards and comparing cumulative incidence functions very clear.

6.1 Exercises

1. Use the ‘4D data’ simulated in the Exercises of Section 4.6.
• Compute the log-rank test for both cause-specific hazards.
• Compute Gray’s test for both cumulative incidence functions.
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Further topics in competing risks

7.1 More than two competing risks

So far, our treatment of competing risks has been restricted to two competing
event states only. An exception was the analysis of drug-exposed pregnancies
in Sections 4.4 and 5.2.2, where we handled three competing event states
without much ado. This effortlessness shows that otherwise focusing on two
competing events has been for ease of presentation only. The aim of the present
section is to briefly demonstrate that everything that has been said before for
two competing risks easily generalizes to J competing risks, where J is some
finite number as in Section 2.2.3.

First of all, the basic competing risks multistate model of Figure 3.1 gen-
eralizes to Figure 2.5 by introducing as many absorbing states as there are
competing risks under study.

The corresponding competing risks process (Xt)t≥0 now has state space
{0, 1, . . . , J}. As before, the process starts in state 0 at time origin, leaves the
initial state 0 at time T , and enters the competing event stateXT ∈ {1, . . . , J}.
The definitions (3.5) and (3.6) of the cause-specific hazards α0j(t) and their
cumulative counterparts A0j(t) remain unchanged, but j now takes values
in {1, . . . , J} instead of {1, 2}. The (cumulative) all-cause hazard is the sum
over all (cumulative) cause-specific hazards. The definitions (3.10) and (3.11)
of the survival function and of the cumulative incidence functions remain
unchanged, too. Of course, there is now one cumulative incidence function
per competing event.

The simulation algorithm of Section 3.2 works analogously. The only dif-
ference is that the binomial experiment in step 3 of the algorithm has to be
replaced by a multinomial experiment. The multinomial experiment decides
with probability

α0j(T )/(α01(T ) + . . .+ α0J (T )) = α0j(T )/α0·(T )

on event type XT = j, j ∈ {1, 2, . . . , J}, at event time T .

J. Beyersmann et al., Competing Risks and Multistate Models with R, Use R,  
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Nonparametric estimation of Chapter 4 works analogously, too, by intro-
ducing cause-specific counting processes for all event types,

N0j;i(t) := 1(Ti ∧ Ci ≤ t, Li < Ti ≤ Ci, XTi
= 1), j = 1, . . . , J,

such that N0j;i(t) counts the number of observed type j events for individual i
in [0, t]. No modification is required for the ith at-risk process (4.1), as it only
keeps track of whether an event has been observed at all, but not of its type.

Aggregation over all individuals is done in the obvious way. The Nelson-
Aalen estimators of the cumulative cause-specific hazards are as in (4.8) and
the Aalen-Johansen estimators of the cumulative incidence functions are as
in (4.18), but j now takes values in {1, . . . , J}. The same remark holds for
variance estimation and construction of confidence intervals. All-cause hazards
and all-cause probabilities are, of course, sums over the respective J cause-
specific quantities.

The necessary adaptions in Chapter 5 on proportional hazards modelling
are done in the obvious way.

The bottom line is that we may single out a certain competing risk j̃,
j̃ ∈ {1, . . . , J} and group the remaining J − 1 competing risks into one com-
bined competing event state. We may then work with two competing risks as
described before, which yields the right results for event type j̃. Doing this
for every competing event type j̃ ∈ {1, . . . , J} in turn yields the adaptions
described in this section.

7.2 Frequently asked questions

This section addresses issues that, in our experience, are frequently raised in
the context of competing risks. However, we often did not find them help-
ful in answering the research question of the subject matter. The multistate
perspective is well suited to settle these issues.

For ease of presentation, we again consider two competing risks only. I.e.,
at event time T , either event type XT = 1 or event type XT = 2 occurs.
Recall from Section 7.1 that this set-up easily generalizes to more than two
competing events.

Are competing risks independent?

The question of statistical independence of the competing risks is almost no-
torious, but without meaning from a process perspective. The different failure
causes are simply different values of exactly one random variable, XT . Hence,
the concept of statistical independence does not apply. The question is only
meaningful if one assumes that the competing risks data (T,XT ) arise from
risk-specific latent failure times, such that T is the minimum of these hy-
pothetical times and XT is arg min (cf. Section 3.3). This model has been
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criticized, because the dependence structure of the latent times is not identi-
fiable from the observable data (Prentice et al., 1978), and also because it has
been found to lack plausibility in biometrical settings. We also think (this is
connected to the plausibility concern) that the latent failure time model does
not pass Occam’s razor. Russell (2004, p. 435) summarizes the principle: ‘[Oc-
cam said:] ‘It is vain to do with more what can be done with fewer.’ That is
to say, if everything in some science can be interpreted without assuming this
or that hypothetical entity, there is no ground for assuming it.’ Russell com-
ments: ‘I have myself found this a most fruitful principle in logical analysis.’
For competing risks, Occam’s razor implies that latent failure time modelling
should only be used, if interest actually lies in the latent failure times. E.g.,
in medical applications, assuming latent times is in our experience usually
not needed to answer the research question. See Section 4.3.1 for a real data
analysis which illustrates that assuming latent times does not provide further
insight. The interpretation of the data analysis, however, turns out to be less
straightforward. In addition, the latent failure time approach has to cope with
an awkward interpretation of the latent times and has to make an unverifiable
assumption on their statistical dependence.

Can we treat a competing event as censoring?

This question arises both in the context of the latent failure time models
discussed above and in, e.g, proportional cause-specific hazards analyses as in
Section 5.2.2.

If we assume competing risks to arise from two independent latent failure
times, the situation resembles the standard random censorship model. Assum-
ing an event time T and a censoring time C to be independent, we may use the
Kaplan-Meier estimator to estimate the survival function of T . Analogously,
we might treat type 2 events as censoring and use the Kaplan-Meier estimator
to estimate the survival function of the latent event time for type 1 events. As
discussed above, care must be displayed as to whether assuming latent times
is a fruitful model at all.

In Section 5.2.2, we illustrated that this debate may be safely ignored, but
that, say, cause-specific hazards may be analysed by fitting two separate Cox
models, if all covariates display separate cause-specific effects. In the R code,
the analysis of α01(t), say, only treated type 1 events as events and handled
competing events and the usual censorings alike. The justification for this is
a partial likelihood argument (cf. (5.17)) and has nothing whatsoever to do
with assuming independent latent failure times.

In fact, we saw in Section 2.2.3 that occurrence of events other than type 1,
say, acts as independent (but not random) right-censoring with respect to es-
timating the cumulative cause-specific hazard A01(t) for type 1. This means
that removal of prior non-type 1 events from the at-risk set allows for estima-
tion of A01(t). In other words, occurrence of non-type 1 events does not disturb
the martingale estimation equation (2.24). However, it is important to note
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that occurrence of competing events is also informative in the sense that prob-
ability estimates depend on all hazards. A rigorous discussion of these issues
can be found in Andersen et al. (1993), Example III.2.6 and Section III.2.3.

The bottom line is that we may analyse one cause-specific hazard by cod-
ing other competing events as censoring, but that the analysis will remain
incomplete until this has been done for every competing risk in turn. This
has, in particular, been illustrated by the analysis of the simulated data in
Section 5.2.2. We were able to make valid analyses for the cause-specific haz-
ards by treating other competing events as censoring, but the analysis would
have been incomplete and even misleading in terms of the cumulative event
probabilities, until all cause-specific hazards had been analysed.

Can we use one minus Kaplan-Meier to estimate the cumulative incidence
function?

The question is, among other things, triggered by the fact that competing
events can be coded as censoring for analyses of the cause-specific hazards,
but the answer is: no. Standard arguments often tend to be somewhat tech-
nical, but the bottom line is rather simple: one minus Kaplan-Meier aims
at estimating a distribution function, which eventually approaches 1. In con-
trast, P(T ≤ t,XT = j) is bounded from above by P(XT = j), which, in
a true competing risks setting, is less than 1, j = 1, 2. As a consequence,
one minus Kaplan-Meier overestimates the cumulative incidence functions.
Often, these biased estimates will eventually add up to more than 1, but
P(XT = 1) + P(XT = 2) = 1. In contrast, our derivation of the Aalen-
Johansen estimates in Section 4.1 shows that their sum always equals one
minus the meaningful Kaplan-Meier estimate (4.13) of P(T > t).

Can we model censoring as a competing event?

This question has connections to the first three questions. The answer is:
yes, but usually one is not interested. The idea is to introduce an additional
competing event state in the standard competing risks multistate model of
Figure 3.1, to which an individual moves, if a usual right-censoring event
occurs, i.e., C < T . In most of the cases, one would not be interested in such
a model, and one would rather treat censoring as a nuisance parameter. This
means that typically the interest is to estimate the distribution of T or (T,XT )
but not C.

Of note, the interpretation of the states in the extended model changes.
E.g., being in the initial state would now be interpreted as ‘no competing or
censoring event observed yet’. The waiting time in this new initial state would
now be T ∧ C, such that the data are complete in this model in the absence
of left-truncation.

An important exception where one is, in fact, interested in the censor-
ing mechanism itself is inverse probability of censoring weighting. Here, the
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idea is to use weights that compensate for censored observations. The tech-
nical difficulties posed by censoring are tackled by studying the censoring
distribution directly. In this book, this approach has been used to estimate
subdistribution risk sets in Section 5.3.2. Aalen et al. (2008) give a concise
and readable textbook account of the inverse probability of censoring weight-
ing principle; see their Section 4.2.7. We note that interest in the censoring
distribution is typically limited to the extent that it is used as a tool. The es-
timated subdistribution risk sets in Section 5.3.2 were used to make inference
for P(T ≤ t,XT = 1), but not for P(C ≤ t), say.

Don’t competing risks apply only if the failure causes are fatal or terminal?

This question, which has a metaphysical flavour, stems from the fact that dif-
ferent causes of death are a standard competing risks example. The multistate
perspective offers a simple answer: competing risks model time T until some
first event and the type XT of that first event, but competing risks do not
model subsequent events. In order to do this, more complex multistate models
are needed.

Can individuals who have failed from a competing event in the past still fail
from the event of interest in the subdistribution model?

This question is motivated by the subdistribution at-risk set (5.41) which still
includes an individual who has experienced event 2 in the past until the indi-
vidual’s potential future censoring time (cf. the discussion following (5.41)).
However, such an individual does not move into event state 1 at any time, as
is apparent from our definition (5.32) of the subdistribution process. Such an
individual simply stays in the initial state of the subdistribution process and
never makes a transition into state 1. As it stays in state 0, it still contributes
to the risk set with the sole aim to weight the subdistribution hazard down as
compared to the cause-specific hazard of interest. As explained in the context
of Equation (5.6), the aim of this weighting is to establish the desired one-to-
one correspondence between subdistribution hazard and cumulative incidence
function.

Can we use the log-rank test in the presence of competing risks? And if so, is
it appropriate to compare cumulative incidence functions?

The log-rank test works for data subject to independent right-censoring/left-
truncation as explained in Section 2.2.2. Hence, the log-rank test can be ap-
plied to test equality of the cause-specific hazard for event type 1, say, between
groups, treating type 2 events as censored (cf. our discussion above on ‘ Can
we treat a competing event as censoring?’). It is a subtle issue to which extent
such a test is of interest. In general, it will not allow for a probability inter-
pretation. Such a test does not compare cumulative incidence functions. An
exception is the special situation where we are willing to assume that the com-
peting cause-specific hazard is the same for all groups (cf. Section 4.5). This
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situation has attracted some interest in sample size planning (Schulgen et al.,
2005; Latouche and Porcher, 2007). There are tests that do compare cumula-
tive incidence functions (Gray, 1988; Pepe and Mori, 1993; Lin, 1997). These
tests address a different testing problem; in particular, the null hypothesis is
different from the standard log-rank test. See also Chapter 6.

7.3 Discrete time methods for competing risks

We illustrate the use of discrete time methods with incomplete data using the
hospital data set that has already been analysed in Sections 4.3 and 5.2.2.
Interest focuses on the effect of pneumonia on intensive care unit mortality,
the competing risk being discharge alive from the unit.

D’Agostino et al. (1990) illustrated that the so-called pooled logistic re-
gression, in which repeated observations for an individual are pooled and then
analysed using a logistic regression model, and the Cox proportional hazards
model may give similar results in the standard survival setting. D’Agostino et
al. also gave conditions under which the two approaches are asymptotically
equivalent. One typical requirement is that the time between measurements
is short. This requirement is fulfilled in hospital epidemiology, where data are
usually recorded on a day-to-day basis.

For competing risks, the same technique may be adapted using a multi-
nomial logit model instead of logistic regression. Barnett et al. (2009) give a
detailed and practical account for the hospital epidemiology setting. Patients’
possible outcomes for each day are ‘stayed’, ‘discharged’, and ‘died’. Assuming
that this nominal response follows a multinomial distribution, probabilities of
‘stayed’, ‘discharged’ and ‘died’ can be estimated for each patient day, and the
obtained regression coefficients should be close to those obtained when fitting
Cox models for the cause-specific hazards.

As a further refinement, one could include a dummy ‘day’ variable for the
first 20 days in the intensive care unit, say (and possibly more, depending
on the size of the data set). This lets the baseline risk, which otherwise is
assumed to be constant, vary with time, thus mimicking a piecewise constant
baseline hazard in a survival model.

The first step for fitting the multinomial logit model is to expand the
original data set in order to obtain a data set that, for each patient, has one
row per day spent in the unit. We also include the dummy ‘day’ variable,
which is simply a count of the number of days in unit.

> ### creation of the dummy variable

> dummies <- c(1:20, rep(20, max(my.sir.data$time) - 20))

> ### creation of the extended data set.

> sir.data.ext <- by(my.sir.data, my.sir.data$id, function(x) {

+ temp <- x[rep(1, x$time), ]

+ temp$day <- dummies[1:nrow(temp)]
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+ status <- c(rep("cens", nrow(temp) - 1),

+ as.character(temp$to[1]))

+ temp$status <- factor(ifelse(status == "cens", 0, status),

+ levels = c(0, 1, 2))

+ temp

+ })

> sir.data.ext <- do.call(rbind, sir.data.ext)

> head(sir.data.ext, 4L)

id from to time pneu day status

41.1 41 0 2 4 0 1 0

41.1.1 41 0 2 4 0 2 0

41.1.2 41 0 2 4 0 3 0

41.1.3 41 0 2 4 0 4 2

Above is an excerpt of the extended data set for individual 1. The individual
stayed four days in the unit. Hence, the newly created status variable is 0
for the first three days, then switches to 2 at day 4, because the individual
is discharged alive at this time. The pneu variable is always 0, which encodes
pneumonia status at baseline.

We now fit the multinomial logit model using the multinom function in-
cluded in the nnet package (Venables and Ripley, 2002). We also include the
dummy variable day as a factor in the model.

> require(nnet)

> fit.multinom <- multinom(status ~ pneu + factor(day),

+ sir.data.ext)

# weights: 66 (42 variable)

initial value 11916.647495

iter 10 value 2937.595559

iter 20 value 2841.508670

iter 30 value 2801.509575

iter 40 value 2783.487669

iter 50 value 2774.556102

iter 60 value 2774.465681

final value 2774.455505

converged

> coef(fit.multinom)[, "pneu"]

1 2

-0.1563889 -1.1403495

Computing exp() of the coefficients reported above, we obtain an odds
ratio of 0.86 for the outcome ‘death’. Analogously, using the output of
confint(fit.multinom), we get an 95% confidence interval of [0.51, 1.44].
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These results are in close agreement with the Cox analyses of the cause-specific
hazards in Section 5.2.2. The respective result for the outcome ‘discharged’ is
an odds ratio of 0.32 with 95% confidence interval [0.25, 0.41]. There is again
close agreement with the Cox analyses of the cause-specific hazards.
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Multistate models
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Multistate models and their connection to

competing risks

Except for Section 2.2.4, this book has so far focused on competing risks,
which model time until first event and type of that first event. We now turn
to more complex multistate models, which, e.g., would also allow us to study
the occurrence of subsequent events. Such investigations are often of sub-
ject matter interest. E.g., in medical applications they will allow for a more
detailed study of the course of a patient’s disease. In the ONKO-KISS ex-
ample of bloodstream infection in stem-cell transplanted patients studied in
Section 5.2.2, such a model would allow us also to study mortality after in-
fectious complication. In the SIR3 example of Sections 4.3, 5.2.2, 5.3.3 and
Chapter 6, we investigated the impact of pneumonia admission diagnosis on
intensive care unit mortality. A more complex multistate model would allow
the further study of subsequent events which happen during unit stay such
as ventilation switched on or off, catheter usage, or occurrence of hospital-
acquired infections.

A basic theme of the multistate part of the book is that many parts from
the toolbox of competing risks methodology can also be used to analyse mul-
tistate models. We therefore build on the competing risks material, which has
been discussed in detail earlier in this book, as often as possible. To this end,
it is important to understand the connection between competing risks and
the type of multistate models at hand. The most common multistate mod-
els are time-inhomogeneous Markov processes with a finite state space. The
Markov property means that the future state of an individual at time t only
depends on the current time s, s ≤ t, and on the individual’s current state,
say, ‘healthy’ or ‘ill’, but, e.g., not on how long a diseased individual has been
ill. We give a more precise statement of the Markov property below. A key
issue is that Markovian multistate models can be thought of as being realized
as a nested series of competing risks experiments. This connection can be used
to analyse the transition hazards of such a multistate model using competing
risks-type techniques.

In the following, we usually simply write ‘multistate model’ when we deal
with a Markovian multistate model, dropping the attribute ‘Markov’. We do,
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however, explicitly state when we consider relaxing the Markov assumption
as in Chapter 12.

8.1 Multistate models: Time-inhomogeneous Markov

processes with finite state space

Instead of competing risks processes, we now consider multistate processes
(Xt)t≥0, where Xt denotes the state an individual is in at time t. The state
space is {0, 1, 2, . . . , J} (i.e., Xt ∈ {0, 1, 2, . . . , J}). This is not unlike the
competing risks process with J competing event states in Section 7.1. The
difference is that there need not be a common initial state, which is occupied
by all individuals at time origin, and, conceptually, any transition l→ j, l �= j,
l, j ∈ {0, 1, 2, . . . , J} could be modelled. States out of which transitions are
modelled are called transient states. In contrast, absorbing states are states
out of which transitions are not modelled.

Figure 8.1 displays an important example of a multistate model, the illness-
death model without recovery. In Figure 8.1 (left), an individual may either
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Fig. 8.1. Illness-death model without recovery.

start in state 0 or in state 1, i.e., X0 ∈ {0, 1}. The name ‘illness-death model’
reflects that, often, being in state 0 is interpreted as being ‘healthy’, individu-
als who are ‘ill’ are in state 1, and state 2 represents ‘death’. If all individuals
are ‘healthy’ at time 0, we have again a common initial state. Events are mod-
elled as transitions between the states of the model. Occurrence of disease is
modelled as a 0 → 1 transition, occurrence of ‘death’ is modelled by transi-
tions into state 2. In the figure, states are represented by boxes and possible
transitions are represented by arrows.

Figure 8.1 (right) gives a different representation of essentially the same
model. States 0 and 1 are again interpreted as ‘healthy’ and ‘ill’, respectively,
but there are now two ‘death’ states 2 and 3. State 2 can only be reached by



8.1 Time-inhomogeneous Markov processes with finite state space 171

individuals who are ‘ill’, state 3 is only accessible for ‘healthy’ individuals. It is
important to note that the models in Figure 8.1 are equivalent. For competing
risks processes, we found that their stochastic behaviour is determined by the
cause-specific transition hazards, which could be thought of as forces moving
along arrows as in Figure 8.1. This also holds analogously for the transition
hazards of a multistate model which we define below. For the time being,
note that the number of arrows and the possible transitions are the same
in both representations of the illness-death model. The only difference is that
the data coding following the model of Figure 8.1 (right) conveniently encodes
whether a ‘dead’ individual has been ‘healthy’ or ‘ill’ just before ‘dying’. This
representation is sometimes referred to as the progressive illness-death model
(e.g., Hougaard, 2000).

There are two important extensions of the multistate model of Figure 8.1.
An illness-death model with recovery also models ‘ill’ → ‘healthy’ transitions
by also including an arrow 1 → 0. And we may also model competing end-
points by including an additional absorbing state in Figure 8.1 (left). In Fig-
ure 8.1 (right), modelling two competing endpoints would amount to including
four absorbing states in the model. We later consider these extensions, e.g.,
Figure 9.5 displays a progressive model with competing endpoints. But, for
the time being, we mainly use the basic illness-death model as an exemplary
multistate model. Even more complex models can be obtained by including
additional states (boxes in the figure) and transitions (arrows in the figure).

In order to establish the connection between competing risks and multi-
state models, we first define the transition probabilities and the transition
hazards. The matrix of transition probabilities of the process (Xt)t≥0 with
state space {0, 1, 2, . . . , J} is

P(s, t) := (Plj(s, t))l,j , l, j ∈ {0, 1, 2, . . . , J}, (8.1)

with transition probabilities

Plj(s, t) := P(Xt = j |Xs = l,Past), s ≤ t, (8.2)

where we have written ‘Past’ for knowledge about the process’ history up to
time s. More formally, the ‘Past’ is a σ-algebra generated by the process, but
we stick to the informal ‘Past’.

As stated above, we typically assume (Xt)t≥0 to be Markov, which means
that

P(Xt = j |Xs = l,Past) = P(Xt = j |Xs = l), l, j ∈ {0, 1, 2, . . . , J}, s ≤ t.
(8.3)

In words, the Markov property (8.3) states that the transition probabilities
only depend on the past via the current time s and the currently occupied
state.

The transition hazards of the multistate model are defined as

αlj(t) · dt := P(X(t+dt)− = j |Xt− = l), l, j ∈ {0, 1, 2, . . . , J}, l �= j, (8.4)
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and the cumulative transition hazards are

Alj(t) =

∫ t

0

αlj(u) du. (8.5)

Note again that the Markov property implies that conditioning on Xt− = l is
tantamount to conditioning on the entire past of the process before t. Also note
that the transition hazards do depend on time t, which means that the process
is time-inhomogeneous. In contrast to this, a homogeneous Markov process has
time-constant transition hazards. In the literature, a homogeneous Markov
process is sometimes simply called ‘Markov process’, dropping the attribute
‘homogeneous’.

Before we eventually establish the connection between multistate models
and competing risks, already note that the cumulative incidence function of,
say, type 1 events in the competing risks multistate model in Figure 3.1 is,
in fact, a transition probability, namely P01(0, t). Even more striking is the
similarity between the cause-specific hazards (3.5) in competing risks and the
transition hazards (2.28). Multiplied with dt, the cause-specific hazard α0j(t)
is the probability of making a 0 → j transition in the very small time inter-
val dt, j �= 0. Multiplied with dt, the transition hazard αlj(t) is the probability
of making an l → j transition in the very small time interval dt, l �= j. Intu-
itively, dt will be so small that the transition occurs directly from l to j, i.e.,
without visiting another state in between. Therefore, the transition hazards
can be envisaged as momentary forces of transition between states l and j.

8.2 Multistate models as arising from a nested series of

competing risks experiments

We now give an algorithmic description of a multistate model. The algorithm
describes how the transition hazards (2.28) generate a multistate process via
a nested series of competing risks experiments. This may be used to simulate
multistate data, using competing risks simulation as in Section 3.2 as a key
building block. We emphasize, however, that the algorithmic perspective goes
beyond the question of implementing simulations. The algorithm addresses the
more fundamental question of how a multistate process can be constructed.
As with competing risks, this point of view is helpful to interpret analyses of
multistate data. In this context, it is important to point out that the algorithm,
building on a nested series of experiments, follows a time-dynamic perspective.
Finally, the algorithm outlines why competing risks-type techniques should be
available to analyse the transition hazards of a multistate model. Estimation
of the transition probabilities will require some further work, however.

This is the algorithm. Consider an individual which is in state l at time 0,
where l is some state in the state space {0, 1, 2, . . . , J}. Recall that different
individuals may start in different states at time 0. Given the individual’s
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initial state l, the waiting time in state l and the state entered on leaving l
are generated as follows.

1. The waiting time in state l is generated with hazard αl·(t) =∑J
j=0,j �=l αlj(t), t ≥ 0.

2. Say that the waiting time generated in step 1 equals t0. Then, the stateXt0

entered at this time is determined in a multinomial experiment, which
decides with probability αlj(t0)/αl·(t0) on state j, j �= l.

Note that these two simulation steps are as in the competing risks case of
Section 3.2. Also note that αlj(t) = 0 for pairs of states (l, j), for which
an l→ j transition is not modelled.

Say that the individual has entered state j at time t0. If state j is absorbing,
i.e., if there are no transitions out of state j, the algorithm stops. Otherwise,
a second competing risks experiment follows.

1. The waiting time in state j is generated with hazard αj·(t) =∑J
j̃=0,j̃�=j αjj̃(t), t ≥ t0.

2. Say that the waiting time generated in step 1 equals t1. Then, the
state Xt0+t1 entered at this time is determined in a multinomial experi-
ment, which decides with probability αjj̃(t0 + t1)/αj·(t0 + t1) on state j̃,
j̃ �= j.

Say that the individual has entered a transient (i.e., a non-absorbing) state j̃
at time t0 + t1. Then, another competing risks experiment is carried out, now
starting at time t0+t1 in state j̃. Further competing risks experiments are car-
ried out until reaching an absorbing state. A process constructed along these
lines will be a multistate model as described in Section 8.1. Readers inter-
ested in a thorough mathematical treatment are referred to Section 4.4 of Gill
and Johansen (1990). An implementation of the algorithm is in the function
mssample of the R package mstate. Exercise 3 in Section 4.6 discusses prac-
tical handling of hazards where the distribution of the corresponding waiting
time does not spend 100% of the probability mass in [0,∞). The latter may,
e.g., happen for empirical hazards as a consequence of censoring. We now focus
on a number of important implications of the algorithm, which we exemplarily
discuss for the illness-death model.

Consider the representation of the illness-death model as in Figure 8.1
(left) and, for the time being, assume that recovery is not modelled. We con-
sider an individual, which is ‘healthy’ at time 0: the individual is in state 0
at time 0. For this individual, the algorithm starts with a standard compet-
ing risks experiment with transition hazards α01(t) and α02(t). Say that the
individual leaves state 0 at time t0. If the individual enters state 2 on leaving
state 0 (i.e., Xt0 = 2), the algorithm stops.

If, however, Xt0 = 1, a second experiment follows. For the illness-death
model of Figure 8.1 (left), this experiment is a degenerated competing risks
experiment, because there is only one transition modelled out of state 1. A
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simple survival experiment is carried out, generating the individual’s waiting
time in state 1 with hazard α12(t), t ≥ t0. Note, however, two important facts
about this second experiment. First, the experiment starts at time t0 of entry
into state 1, i.e., we only consider α12(t) for values t with t ≥ t0. Second, the
time-inhomogeneous Markov property is relevant: the transition ‘force’ α12(t)
which acts upon the individual does depend on time t since time origin 0; the
process is time-inhomogeneous. But it does not depend on the time t0 of entry
into state 1; the process is Markov.

The second step of the experiment immediately generalizes to compet-
ing endpoints, say, absorbing states 2 and 2̃. Then a true competing risks
experiment is being carried out, generating the individual’s waiting time in
state 1 with hazards α12(t) and α12̃(t), t ≥ t0. This can be further extended
to modelling ‘recovery’, i.e., allowing for 1 → 0 transitions. In an illness-death
model with recovery and two competing absorbing states 2 and 2̃, the indi-
vidual is exposed to a competing risks experiment with hazards α10(t), α12(t)
and α12̃(t), t ≥ t0. This implies that an individual may move back and forth
between states ‘healthy’ and ‘ill’ a number of times before reaching an absorb-
ing state. In other words, the individual may undergo several competing risks
experiments in both states 0 and 1, but there is always only one competing
risks experiment acting upon the individual at a single point in time.

Because the multistate model is generated by a nested sequence of com-
peting risks experiments, the cumulative transition hazards should be es-
timable as in Section 4.1. Assuming, for the time being, a completely ob-
served multistate process, e.g., a natural estimator for the cumulative haz-
ard A12(t) =

∫ t

0
α12(u) du is

Â12(t) =
K∑

k=1

number of observed 1 → 2 transitions at sk
number of individuals in state 1 just prior to sk

, (8.6)

where the sum is over all transition times sk, sk ≤ t. The estimator is similar
in structure to the cause-specific Nelson-Aalen estimators (4.8), but there are
two important differences which reflect the more complex multistate structure.

First, individuals who are ‘healthy’, i.e., in state 0 of Figure 8.1 (left), at
time 0 but later become ‘ill’ are only counted in the denominator of (8.6)
right after their transition into state 1. We have already encountered risk set
entries after time 0 for left-truncated data. In Section 4.4, pregnant women
entered the study and hence the risk set after conception, which is time 0
for the duration of pregnancy. The present delayed entry into the risk set is,
however, of a different nature. We assumed that the multistate process was
completely observed. Therefore, individuals have been under observation since
time 0. However, at time 0, ‘healthy’ individuals are in state 0 at time origin.
They are at risk for making a transition out of state 0, but not for making
a 1 → 2 transition. An originally ‘healthy’ individual only becomes at risk for
making a 1 → 2 transition, after having moved from the ‘healthy’ state 0 into
the ‘illness’ state 1.
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Formally, this delayed entry into the risk set of being in state 1 is also
a form of left-truncation, but it is important to remember that the delayed
entry is not due to restrictions on the observable data, but rather gener-
ated by the multistate process itself. Therefore, it is sometimes called internal
left-truncation (Andersen et al., 1993, p. 156–157), in contrast to external
left-truncation, which is imposed by the observation scheme. On the other
hand, realizing the similarity to (external) left-truncation implies that meth-
ods accounting for left-truncation as in Chapters 4 and 5 will be available for
analysing the transition hazards.

The second difference arises in an illness-death model with recovery. In
such a model, an individual who moves back and forth between the ‘healthy’
state and the ‘illness’ state will enter and drop out of the risk set (i.e., the
denominator of (8.6)) several times before eventually making a transition into
the absorbing state 2. Analogously, such an individual will even contribute to
the numerator of the appropriate estimator of A01(t) as often as the individual
makes a 0 → 1 transition.

The fact that an individual may contribute more than one observed tran-
sition of the same type sometimes raises dependency concerns in that the
individual contributes a ‘cluster of dependent data’ to the analysis. The con-
cern disappears if we follow the time-dynamic perspective of the generating
algorithm. Here, the individual is never at risk for more than one competing
risks experiment. It must be re-emphasized, however, that our treatment so
far relies on the time-inhomogeneous Markov assumption. We return to this
issue in Chapter 12.

8.3 Exercises

1. For a multistate model as in Section 8.1 show that

P(s, t) = P(s, u) · P(u, t)

for s ≤ u ≤ t.
2. Simulate an illness-death model with recovery with 200 individuals that

start in state 0 with a probability of 0.6. Transition hazards are defined
as
• α01(t) = 1

3 t
2 + 1

5 ,
• α02(t) = 3

t+1 ,
• α10(t) = 1,
• α12(t) = 2

√
t.

Compare the Nelson-Aalen estimator (8.6) against the true quantity.
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Nonparametric estimation

9.1 The Nelson-Aalen estimator and the Aalen-Johansen

estimator

We consider n individuals under study with individual multistate proces-

ses (X
(i)
t )t≥0, X

(i)
t ∈ {0, 1, 2, . . . , J}, i = 1, 2, . . . n. We assume that the n

processes are, conditional on the initial states X
(i)
0 , independent replicates

of a multistate process as in Section 8.1. Observation of the individual mul-
tistate data is subject to a right-censoring time Ci and possibly also to a
left-truncation time Li. We assume that right-censoring and left-truncation
are independent as explained in Section 2.2.2. The setting is similar to the
competing risks situation of Section 4.1, but the individual data are now po-
tentially more complex. We analogously introduce some notation connected
to occupation of states in the model and possible transitions between them:

Let
Yl;i(t) := 1(X

(i)
t− = l, Li < t ≤ Ci), l ∈ {0, 1, 2, . . . , J}, (9.1)

denote whether individual i is in state l and under observation just before

time t. Here, we have written X
(i)
t− for the value of the ith multistate process

just before time t. We have Yl;i(t) = 1 for individuals i who are in state l and
under observation just before time t, and Yl;i(t) = 0 otherwise. If Yl;i(t) = 1,
individual i may be observed to move out of state l at time t, or individual i
may be censored at t or remain under observation in state l. We also write

Nlj;i(t) :=

individual i’s number of observed direct l→ j transitions in [0, t],(9.2)

l, j ∈ {0, 1, 2, . . . , J}, l �= j. Here, ‘direct l → j transition’ means a transition
from state l into state j without visiting another state in between. That is, the
transition is made directly along the arrow that points from state l to state j.
Nlj;i(t) is a counting process.

J. Beyersmann et al., Competing Risks and Multistate Models with R, Use R,  
DOI 10.1007/978-1-4614-2035-4_ , © Springer Science+Business Media, LLC 2012 
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We aggregate over all individuals i = 1, . . . , n: the number of individuals
to be observed at risk in state l just prior to time t is

Yl(t) :=

n∑
i=1

Yl;i(t), (9.3)

and the number of observed direct l → j transitions during the time inter-
val [0, t] is

Nlj(t) :=

n∑
i=1

Nlj;i(t), l �= j. (9.4)

We also write
ΔNlj(t) := Nlj(t) −Nlj(t−) (9.5)

for the increments of Nlj(t), i.e., the number of l → j transitions observed
exactly at time t.

We now motivate the Nelson-Aalen estimator of Alj(t) =
∫ t

0
αlj(u) du

analogously to our derivation of the cause-specific Nelson-Aalen estimators
in Section 4.1. Recall from Equation (8.4) that αlj(t) dt is an infinitesimal
conditional transition probability

αlj(t) · dt = P(X(t+dt)− = j |Xt− = l).

If we observe no l → j transition at t (i.e., ΔNlj(t) = 0), we estimate the
increment αlj(t)dt of the cumulative l→ j hazard as 0. If we do observe l→ j
transitions at t (i.e., ΔNlj(t) > 0), we estimate this conditional transition
probability as the ratio of the number ΔNlj(t) of l→ j transitions divided by
the number Yl(t) at risk just prior to the transition time t. Summing up over
these increments yields the Nelson-Aalen estimators:

Âlj(t) :=
∑
s≤t

ΔNlj(s)

Yl(s)
, l �= j, (9.6)

where summation in (9.6) is over all observed event times in [0, t]. An estimator

of the variance of Âlj(t) is

σ̂2
lj(t) :=

∑
s≤t

ΔNlj(s)

Y 2
l (s)

, l �= j, (9.7)

where summation is again over all observed event times in [0, t]. Approximate

100 · (1−α)% confidence intervals of Âlj(t) at a given time point t, α ∈ (0, 1),
can be constructed analogously to the competing risks case of Equation (4.10).

We now turn to probability estimation, which is seen to be more involved
than estimating Alj(t). The derivation of the Nelson-Aalen estimators has
been in analogy to their cause-specific counterparts. The analogy is built on
the fact that multistate models are generated by a sequence of competing
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risks experiments, which are regulated by the transition hazards. We reiterate,
however, that the present Nelson-Aalen estimators reflect the more complex
multistate structure in that an individual may conceptually drop in and out
of the state-specific risk sets several times. Similarly, an individual may be
observed to have more than one direct l → j transition, although there is
only at most one such transition at a fixed point in time. However, the transi-
tion probabilities are in general a complex function of the transition hazards,
because the state occupied at some time t may potentially result from a com-
plex nested series of competing risks experiments. In general, there may also
be more than one possible sequence of competing risks experiments leading to
being in a certain state at a certain time. For competing risks, we found that
the probability estimates were deterministic functions of the Nelson-Aalen
estimators. The same turns out to be true for the situation at hand, which
should not come as a surprise given the generating algorithm. The key issue
is to find the right mapping which connects probabilities and hazards.

In Section 2.2.4, we found that the matrix of transition probabilities P(s, t)
can be approximated based on a partition s = t0 < t1 < t2 < . . . < tK−1 <
tK = t of the time interval [s, t] as

P(s, t) ≈
K∏

k=1

(I +ΔA(tk)) . (9.8)

In (9.8), I is the (J + 1) × (J + 1) identity matrix, the (l, j)th element of

ΔA(tk) is Alj(tk) − Alj(tk−1), and All(t) = −∑J
j=0,j �=lAlj(t). Computing

the approximation for ever finer partitions of [s, t] approaches a limit, namely
a matrix-valued product integral , which equals the matrix of transition
probabilities,

P(s, t) =

u∈(s,t]

(I + dA(u)) . (9.9)

We do not repeat the derivation of approximation (9.8) here, but empha-
size the consequences for estimation. The key issues are that product integra-
tion is the mapping that switches from cumulative transition hazards to the
matrix of transition probabilities, that all cumulative transition hazards are
involved, and that plugging in the Nelson-Aalen estimators in (9.9) results in
a finite matrix product as in (9.8). The latter is the important Aalen-Johansen
estimator (Aalen and Johansen, 1978)

P̂(s, t) =

u∈(s,t]

(
I + dÂ(u)

)
, (9.10)

which is an ordinary, finite matrix product over all event times u in (s, t] and

matrices I+dÂ(u). Here, we have written Â(u) for the matrix of Nelson-Aalen

estimators with (l, j)th entry Âlj(u) as in Equation (9.6) for l �= j, Âll(u) :=



180 9 Nonparametric estimation

−∑
j,j �=l Âlj(u), and dÂ(u) for the matrix with entries Âlj(u)−Âlj(u−). The

Aalen-Johansen estimator is also called the empirical transition matrix, which
explains the name of the R package etm.

The estimator (9.10) is written in very compact form. We investigate it in
some more detail. To begin, assume that t1 is the first observed event time
after s. Then

P̂(s, t1) = I + dÂ(t1).

The lth row of the estimator contains the estimates Plj(s, t1). For j �= l,
this probability is estimated as the number of observed l → j transitions at
time t1 divided by the number of individuals observed to be in state l at time s
and, hence, just prior to time t1. The diagonal element is such that the sum
over the lth row equals 1. This latter fact justifies the definition Âll(u) :=

−∑
j,j �=l Âlj(u) below Equation (9.10).

Next, assume that t2 is the first observed event time after t1. Then,

P̂(s, t2) = P̂(s, t1) · P̂(t1, t2)

=
(
I + dÂ(t1)

) (
I + dÂ(t2)

)
.

Consider the (l, j)th entry, where l may be equal to j,

P̂ (Xt2 = j |Xs = l) =
J∑

j̃=0

P̂(Xt1 = j̃ |Xs = l) · P̂(Xt2 = j |Xt1 = j̃)

=

J∑
j̃=0

(
1(j̃ = l) +ΔÂlj̃(t1)

)
·
(
1(j̃ = j) +ΔÂj̃j(t2)

)
.

It is worthwhile to point out that the first line in the previous display again
relies on the Markov property. Because conditioning on the state occupied
at t1 is tantamount to conditioning on the entire previous history, including
the state occupied at s, the estimated quantity is

J∑
j̃=0

P(Xt1 = j̃ |Xs = l) · P(Xt2 = j |Xt1 = j̃, Xs = l)

=

J∑
j̃=0

P(Xt2 = j, Xt1 = j̃ | Xs = l) = P(Xt2 = j | Xs = l).

Finally, the terms (1(j̃ = l) +ΔÂlj̃(t1)) · (1(j̃ = j) +ΔÂj̃j(t2)) are products
of simple proportions as explained earlier.

Although the Aalen-Johansen estimator (9.10) is algebraically simple when
computed in a step-by-step, entry-by-entry fashion, it must be noted that, in
general, no closed formulae are available. However, for some comparatively
simple, but practically quite important models closed formulae do exist. If
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available, closed expressions may be derived by solving a Kolmogorov forward
differential equation (e.g., Andersen et al., 1993, Section II.6). We do not go
into detail here, but prefer to exemplarily focus on the interpretation of such
a formula for the illness-death model without recovery. There are parallels
between the present case and our interpretation of the cumulative incidence
functions (3.11) and the corresponding Aalen-Johansen estimator (4.18), and
there are differences which highlight the more complex structure of the illness-
death model.

To begin, consider the probabilities P00(s, t) = P(Xt = 0 |Xs = 0) and
P11(s, t) = P(Xt = 1 |Xs = 1) to stay in state 0 or 1 until time t, given that
the individual had already been in the respective state at time s, s ≤ t. These
probabilities are

P00(s, t) =

u∈(s,t]

(
1 − (α01(u) + α02(u))d(u)

)

= exp

(
−

∫ t

s

α01(u) + α02(u)d(u)

)

and

P11(s, t) =

u∈(s,t]

(
1 − α12(u)d(u)

)

= exp

(
−

∫ t

s

α12(u)d(u)

)
.

These quantities are essentially common survival probabilities, either with
all-cause hazard α01 + α02 or with one single hazard α12, taking time s as
time origin. Their Aalen-Johansen estimators P̂00(s, t) and P̂11(s, t) are equal
to the corresponding Kaplan-Meier estimators. Note that this survival-type
situation is naturally implied by the algorithmic competing risks perspective
of Section 8.2.

Next, consider the probability P01(s, t) = P(Xt = 1 |Xs = 0),

P01(s, t) =

∫ t

s

P00(s, u−)α01(u)P11(u, t) du.

The first two terms in the integrand of the preceding display are as for the
cumulative incidence function (3.11). There, our interpretation was that one
integrates or, loosely speaking, sums up over ‘infinitesimal probabilities’ of
making the 0 → 1 transition exactly at time u. The difference now is that
we also have to include P11(u, t) to ensure that an individual also stays in
state 1 until time t after having made the 0 → 1 transition at time u. The
reason for this is that the illness-death model also models transitions out
of state 1, whereas state 1 was absorbing in the competing risks case. The
Aalen-Johansen estimator is
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P̂01(s, t) =
∑

u,s<u≤t

P̂00(s, u−) · ΔN01(u)

Y0(u)
· P̂11(u, t).

Using P02(s, t) = 1 − P00(s, t) − P01(s, t), we also find that

P02(s, t) =

∫ t

s

P00(s, u−)α02(u) du

+

∫ t

s

P00(s, u−)α01(u)P12(u, t) du,

where P12(u, t) = 1−P11(u, t). Interpretation and estimation of the preceding
display are analogous to P01(s, t).

Before turning to examples, we must finally comment on (co-)variance es-
timation for the Aalen-Johansen estimator. As with standard survival data
and competing risks, a Greenwood-type variance estimator will generally be
preferred. Such an estimator does exist, but, unfortunately, the algebra is be-
coming increasingly complex. In their Section IV.4, Andersen et al. (1993)
develop a recursion formula for such an estimator, and the estimator is im-
plemented in R. Further R-specific details are reported in de Wreede et al.
(2010) and Allignol et al. (2011a). The covariance estimator times n, the num-
ber of individuals under study, is an asymptotically consistent estimator of the
covariance matrix of the limit process of

t �→ √
n

(
P̂(s, t) − P(s, t)

)
, s ≤ t.

As the limit process is Gaussian with mean zero, this can again be used to
construct pointwise confidence intervals in the usual way. Rather than going
into technical details here, we illustrate variance estimation and construction
of confidence intervals in the examples to follow.

9.2 Examples

9.2.1 Impact of hospital-acquired pneumonia on length of stay and
mortality in intensive care units

The data set icu.pneu is included in the kmi package and is described in detail
in Chapter 1. The data set contains information on 1313 patients. 21 observa-
tions were censored. 108 patients experienced hospital-acquired pneumonia.
Of these, 82 patients were discharged alive and 21 patients died. Without
prior hospital-acquired pneumonia, 1063 patients were discharged alive and
126 patients died.

The data are an example of an illness-death model without recovery and
with competing endpoints. There is one common initial state entered by all
patients on admission. Occurrence of hospital-acquired pneumonia is modelled
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by transitions into the intermediate state. The competing endpoints are death
and alive discharge. Recovery is not modelled (and also difficult to diagnose in
practice). This means that being in the infectious state reflects past exposure,
but not necessarily present infection status. The subject matter interest is to
compare patients who have acquired pneumonia in hospital with those who
have not.

The aim of our analysis is twofold: first, we investigate the impact of
hospital-acquired pneumonia (HAP) on length of intensive care unit stay.
In hospital epidemiology, length of stay is often used to quantify healthcare
costs. Increased length of stay is used in cost benefit studies to justify fur-
ther infection control measures. This analysis does not distinguish between
the competing endpoint states, but must account for the time dependency of
HAP. Not accounting for this time dependency will typically lead to artificially
inflated results; see also Section 11.3 on the so-called ‘time-dependent bias’.
Second, we investigate the impact of HAP on intensive care unit mortality.
This analysis must account for both the time dependency of infection status
and for competing endpoints.

Combined endpoint analysis.

We consider an illness-death model as in Figure 8.1 (left). Here, state 0 is
entered on admission to the unit. State 1 is reached when a patient acquires an
infection and state 2 is the combined end-of-stay endpoint. This is illustrated
in Figure 9.1.

Admitted to the unit, no

hospital-acquired pneumonia 0 ��
��

��
�� 1

hospital-acquired

pneumonia

�������� 2
�

end of stay

α01(t)

α02(t)

α12(t)

Fig. 9.1. Illness-death model without recovery: investigating the impact of hospital-
acquired pneumonia (HAP) on length of intensive care unit stay.

We start by computing the cumulative transition hazards using the mvna

package. The first step is to transform the data into a format that is suitable
for using the mvna function. This step is similar to the competing risks case
in Section 4.2 and left to readers as an exercise. An excerpt of the resulting
data set, which we call my.icu.pneu, is displayed below.
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id entry exit from to to2 age sex

7 405 0 1 0 2 3 84.69435 F

8 410 0 6 0 1 1 69.80130 M

9 410 6 28 1 2 3 69.80130 M

21 3163 0 5 0 2 2 48.19945 M

89 17743 0 19 0 1 1 71.84670 F

90 17743 19 21 1 2 2 71.84670 F

93 17776 0 7 0 2 2 90.99458 F

Entry times into and exit times out of a state are contained in entry and
exit, respectively. The state from which a transition occurs is in from. The
state reached is in to and to2. The difference between the two columns is
that to does not distinguish between the competing endpoints. We use to in
this first analysis. In both to and to2, censored observations are indicated
by ‘cens’. We now define the matrix indicating the possible transitions. The
possible transitions are from state 0 to states 1 or 2, and from state 1 to state
2.

> tra.idm <- matrix(FALSE, 3, 3,

+ dimnames = list(c(0, 1, 2), c(0, 1, 2)))

> tra.idm[1, 2:3] <- TRUE

> tra.idm[2, 3] <- TRUE

> tra.idm

0 1 2

0 FALSE TRUE TRUE

1 FALSE FALSE TRUE

2 FALSE FALSE FALSE

The following call computes the Nelson-Aalen estimator of the cumulative
transition hazards.

> mvna.idm <- mvna(my.icu.pneu, c("0", "1", "2"), tra.idm,

+ "cens")

The Nelson-Aalen estimators together with log-transformed confidence inter-
vals as in (4.10) are displayed in Figure 9.2. The cumulative infection hazard
is seen to be low in comparison to the other hazards. This means that most
patients do not acquire pneumonia during intensive care unit stay. However,
those who do acquire pneumonia have an increased length of stay, because the
cumulative hazard for end of stay out of the infectious state is less than the
one out of the initial state.

We now estimate the transition probabilities using the etm package.

> etm.idm <- etm(my.icu.pneu, c("0", "1", "2"), tra.idm,

+ "cens", s = 0)

We begin by plotting the transition probability P01(0, t). In cancer research,
this probability is sometimes called the ‘probability of being in response func-
tion’ (Temkin, 1978), if the intermediate state of the illness-death model is
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Fig. 9.2. Hospital-acquired pneumonia data. Nelson-Aalen estimators: The cumu-
lative infection hazard is in the left plot. The middle plot is for end of stay without
prior infection. The cumulative hazard for end of stay after prior infection is in the
right plot.

interpreted as ‘response to treatment’. In the present example, P01(0, t) is the
probability to still be in the unit after having acquired infection.

A display of the Aalen-Johansen estimator of P01(0, t) along with point-
wise confidence intervals is in Figure 9.3. Specification of the transition prob-
ability of interest is done through tr.choice == ’0 1’ and confidence in-
tervals are displayed setting the argument conf.int to TRUE. By default, a
confidence interval without transformation is displayed by the plot function.
Coverage is often improved by using a transformation. A complementary log-
log transformation as used in (4.21) can be specified with the option ci.fun

= ’cloglog’. The Aalen-Johansen estimator along with confidence intervals
can easily be recovered through the summary function, for instance, using
summary(etm.idm)$’0 1’[, c(’P’, ’lower’, ’upper’)]. Transformation
of the confidence intervals are handled via the ci.fun argument. Figure 9.3
shows that the proportion of HAP patients increases for about the first 20
days and then decreases again.

In practice, specification of ci.fun may be complicated by the fact that
different types of transformations may be used depending on the transition
probability at hand. For instance, a log-log transformation as in (4.16) may
be used for the state occupation probabilities, but a complementary log-log
transformation may be applied for actual transitions. ci.fun accounts for this
by accepting vector arguments. Transition probabilities are returned by the
summary function following a specific order. First, the actual transitions are
returned in lexicographical order. Next come the conditional state occupation
probabilities in lexicographical order. In the HAP example:
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> plot(etm.idm, tr.choice = "0 1", conf.int = TRUE,

+ lwd = 2, legend = FALSE, ylim = c(0, 0.1),

+ xlim = c(0, 100), xlab = "Days",

+ ci.fun = "cloglog")
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Fig. 9.3. Hospital-acquired pneumonia data. Aalen-Johansen estimator of P01(0, t)
with pointwise 95% confidence intervals based on a complementary log-log transfor-
mation.

> names(summary(etm.idm))

[1] "0 1" "0 2" "1 2" "0 0" "1 1"

The transformations of the confidence intervals are made following the same
order. In order to have a complementary log-log transformation for the actual
transitions and a log-log transformation on the conditional state occupation
probabilities, we would use ci.fun = c(rep(’cloglog’, 3), rep(’log’,

2)).
The construction of the confidence intervals is based on a Greenwood-type

estimator of the covariance matrix of the Aalen-Johansen estimator; see An-
dersen et al. (1993, Section IV.4.1.3) for a detailed account. The Greenwood-
type estimator has been found to be the preferred estimator for both single
endpoint survival data and competing risks, and we therefore also recommend
it for use with more complex multistate models. The estimator is implemented
in etm. In the present example, the estimator is contained in etm.idm$cov.
A detailed explanation of how to extract estimated variances and covariances
from etm.idm$cov has been given in Section 4.2; see, in particular, Table 4.2.
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The aim of the present analysis has been to ascertain the effect of HAP
on the length of intensive care unit stay. The Nelson-Aalen estimators of
Figure 9.2 showed that HAP patients have a prolonged stay. Figure 9.3 illus-
trated the proportion of HAP patients over the course of time. In addition
to these plots, probability plots that illustrate such a prolonging effect are of-
ten requested in practice. The challenge is that HAP status is not a baseline
condition. As a consequence, simple Kaplan-Meier-type plots comparing, in
the present example, infected versus non-infected are not available; see also
Section 11.3.

Therefore, Anderson et al. (1983) suggested the ‘landmark method’. The
idea is to select a range of landmark time points s. Given HAP status at time s,
we then compare the probabilities of having reached the absorbing state by
time t, s ≤ t. A typical application of the landmark approach would be to take
subsets of the data conditional on HAP status at time s. Next, probability
estimates would be computed within HAP groups defined at time s, taking s
as the new time origin. In the present multistate setting, we can also consider
the Aalen-Johansen estimators of P02(s, t) and P12(s, t) for different times s.
For that, we need to compute the transition probability matrix for the different
starting times and, for convenience, put the resulting etm objects in a list.

> time.points <- c(seq(3, 10, 1), 15)

> landmark.etm <- lapply(time.points, function(start.time) {

+ etm(my.icu.pneu, c("0", "1", "2"), tra.idm, "cens",

+ start.time)

+ })

The Aalen-Johansen estimators of P02(s, t) and P12(s, t) are displayed in Fig-
ure 9.4 for a range of landmarks s. The prolonging effect of HAP is illustrated
by the fact that, overall, P̂02(s, t) ≥ P̂12(s, t). The effect is most pronounced
for early landmarks.

Analysis of competing endpoints in a progressive model.

We now turn to the competing endpoint analysis, using a progressive illness-
death model as in Figure 8.1 (right) but with competing absorbing states.
This model has two transient states and four absorbing states. As before,
the initial state 0 is entered on admission, occurrence of HAP is modelled by
transitions into the intermediate state 1. The difference between the previous
model and the present model is that there are states 2 and 3 for death and
discharge, respectively, which can only be reached from state 1. And there
are states 4 and 5 for death and discharge, respectively, which can only be
reached from state 0. In other words, being either in state 2 or in state 4
represents having died in the unit. Patients in state 2 acquired HAP before
death, whereas patients in state 4 did not. This is illustrated in Figure 9.5.

The aim of the present analysis is to study the effect of HAP on intensive
care unit mortality. We need a slightly transformed data set and a new matrix
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Fig. 9.4. Hospital-acquired pneumonia data. Aalen-Johansen estimators of P02(s, t)
(dashed lines) and P12(s, t) (solid lines) for different landmark times s.

of transition probabilities, reflecting the multistate model at hand. An excerpt
of the new data set, which we call my.icu.pneu.prog, is presented below.
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0Initial ��
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��� 4 Death w/o prior HAP

������� 5 Discharge w/o prior HAP

�
1HAP ��

��
��� 2 Death with prior HAP

������� 3 Discharge with prior HAP

Fig. 9.5. Progressive illness-death model without recovery and competing endpoints
for the occurrence of hospital-acquired pneumonia (HAP).

id entry exit from to to2 age sex

7 405 0 1 0 5 3 84.69435 F

8 410 0 6 0 1 1 69.80130 M

9 410 6 28 1 3 3 69.80130 M

21 3163 0 5 0 4 2 48.19945 M

89 17743 0 19 0 1 1 71.84670 F

90 17743 19 21 1 2 2 71.84670 F

93 17776 0 7 0 4 2 90.99458 F

The only change is in to, which is 2 or 3 for death and discharge, respectively,
when an individual has been previously infected, and 4 or 5 for death and
discharge, otherwise. We are using the recoded to in the present analysis.

We define the matrix of possible transitions

> tra.prog <- matrix(FALSE, 6, 6,

+ dimnames = list(as.character(0:5), as.character(0:5)))

> tra.prog[1, c(2, 5:6)] <- TRUE

> tra.prog[2, 3:4] <- TRUE

> tra.prog

0 1 2 3 4 5

0 FALSE TRUE FALSE FALSE TRUE TRUE

1 FALSE FALSE TRUE TRUE FALSE FALSE

2 FALSE FALSE FALSE FALSE FALSE FALSE

3 FALSE FALSE FALSE FALSE FALSE FALSE
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4 FALSE FALSE FALSE FALSE FALSE FALSE

5 FALSE FALSE FALSE FALSE FALSE FALSE

and estimate the cumulative transition hazards.

> mvna.prog <- mvna(my.icu.pneu.prog, as.character(0:5),

+ tra.prog, "cens")
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Fig. 9.6. Hospital-acquired pneumonia data. Nelson-Aalen estimator of the cumu-
lative transition hazards of discharge (left) and death (right), either starting from
the infectious state (solid lines) or the initial state (dashed lines).

Figure 9.6 displays the Nelson-Aalen estimators of the cumulative transition
hazards into the absorbing states. Interestingly, the interpretation is similar
to the analysis of pneumonia on admission in Section 4.3: HAP increases
mortality via a reduced hazard for alive discharge, whereas the hazard for
death in the unit remains essentially unchanged.

The following call computes the matrix of transition probabilities.

> etm.prog <- etm(my.icu.pneu.prog, as.character(0:5),

+ tra.prog, "cens", 0)

Figure 9.7 displays the estimated state occupation probabilities P̂(Xt = j),
j = 2, . . . , 5. Because all individuals are initially in state 0, we have that
P(Xt = j) = P0j(0, t), and the state occupation probabilities are conveniently
estimated by the Aalen-Johansen estimator.

Figure 9.7 is not well suited to illustrate the effect of HAP on intensive
care unit mortality. The state occupation probabilities for states 2 and 3 are
low in comparison, because the HAP hazard had been found to be low in
Figure 9.2. An important information obtained from the figure is that the
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Fig. 9.7. Hospital-acquired pneumonia data. Aalen-Johansen estimators of P0j(0, t),
j = 2, . . . , 5. The upper panel is for patients without prior HAP, the lower panel is
for previously infected patients. The right panel is for alive discharge; the left panel
is for death in intensive care unit.

vast majority of patients is discharged alive without prior infection (top right
plot). Comparing the right panel with the left panel of the Figure, we also
find that patients are more likely to be discharged than to die, regardless of
the infection status.

Probability plots that illustrate the increase of mortality after HAP are
again a challenging issue due to the time dependency of the infection status.
One approach would be the landmarking method as used in the previous
analysis, but now accounting for the competing endpoints. That is, we might
consider plotting P̂0j(s, t) and P̂1j(s, t) for a range of landmarks s. We also
note that Schumacher et al. (2007) considered attributable mortality after a
time-dependent exposure such as HAP and related probability plots.

We finally reiterate that the present calculations relied on a Markov as-
sumption. In Section 11.3, we discuss how the Markov assumption can be
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investigated. We also note that Allignol et al. (2011b) assessed the Markov
assumption for the hospital-acquired pneumonia data from which the present
subsample was drawn. The authors argued that the Markov property may
reasonably be assumed.

9.2.2 Impact of ventilation on length of intensive care unit stay

The data set sir.cont is included in the mvna package as described in Chap-
ter 1 and contains information on times of ventilation and time of intensive
care unit stay for 747 patients. The aim of the present analysis is to study the
effect of ventilation on length of stay in the unit. We do so by estimating the
cumulative hazards for end of stay.

An important characteristic of the data is that ventilation may be switched
on and off during hospital stay. In addition, patients may either be on venti-
lation or off ventilation on admission to the unit. In other words, the present
multistate model is an illness-death model with recovery. There is no common
initial state. State 0 represents ‘no ventilation’, state 1 represents ‘ventilation’,
and end of stay is modelled by transitions into state 2.

An excerpt of the data set is presented below.

id from to time age sex

1 41 0 2 4 75.34153 F

2 395 0 2 24 19.17380 M

3 710 1 0 33 61.56568 M

4 710 0 2 37 61.56568 M

5 3138 0 2 8 57.88038 F

6 3154 0 2 3 39.00639 M

sir.cont is already formatted for using the mvna or etm packages: from is
the state from which a transition occurs, to is the state to which a transition
occurs, and time is the transition time.

We define the matrix specifying the possible transitions below.

> tra.ventil <- matrix(FALSE, 3, 3, dimnames =

+ list(c("0", "1", "2"), c("0", "1", "2")))

> tra.ventil[1, c(2, 3)] <- TRUE

> tra.ventil[2, c(1, 3)] <- TRUE

> tra.ventil

0 1 2

0 FALSE TRUE TRUE

1 TRUE FALSE TRUE

2 FALSE FALSE FALSE

and estimate the cumulative transition hazards using the mvna function.

> mvna.ventil <- mvna(sir.cont, c("0", "1", "2"),

+ tra.ventil, "cens")
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Figure 9.8 displays the Nelson-Aalen estimators Â02(t) and Â12(t) with log-
transformed confidence intervals as in (4.10). Ventilation is seen to prolong
length of stay.
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Fig. 9.8. Ventilation data. Nelson-Aalen estimates for the transitions no ventilation
→ end of stay (left) and ventilation → end of stay (right).

9.3 Exercises

1. Simulate an illness-death model with recovery with 200 individuals that
start in state 0 with a probability of 0.6. Transition hazards are defined
as
• α01(t) = 1

3 t
2 + 1

5 ,
• α02(t) = 3

t+1 ,
• α10(t) = 1,
• α12(t) = 2

√
t.

Simulate random censoring times following a uniform distribution leading
to about 20% of the observations being censored.
Estimate the cumulative transition hazards for the simulated data using
the mvna package. Compare the estimated quantities with the true quan-
tities.

2. Cox models for the transition hazards can typically be fitted in ‘univariate
fashion’, using standard Cox software; see Chapter 10. To give a foretaste
of the principles needed to fit Cox models in the multistate framework,
estimate A12(t) in ‘univariate fashion’:
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a) Use the mvna function, considering the 1 → 2 transition as the only
possible transition. That is, entry times will be entry times into state
1, and transitions into state 0 are considered as censored observations.

b) Use the output of the survfit function of the survival package,
following the strategy of Exercise 2a.

3. Using the data from Exercise 1, estimate P02(s, t) and P12(s, t) for s =
0.2, 0.4, . . . , 1.2, and do the landmark plots of Figure 9.4.

4. Resimulate the illness-death model data of Exercise 1 with state-dependent
censoring. Instead of considering latent censoring times, consider a ‘cen-
soring state’. From state 0, an individual could move to state 1 or 2 with
the hazards defined earlier or to a censoring state with hazard 0.9. From
state 1, the hazard to observe a transition to the ‘censoring state’ is de-
fined as t1/3. Estimate the cumulative transition hazards and compare the
estimated quantities with the true quantities.

5. We consider the multistate model of Figure 9.9. This model is used to
describe the treatment course of patients undergoing bone marrow trans-
plant for leukemia. After the first treatment line, patients are at risk of
dying due to treatment side effects or relapsing. Patients in relapse might
be offered a salvage therapy (state 4), namely donor lymphocyte infusion
(DLI), that proved out to be successful in restoring remission of the disease
(state 6). A more thorough explanation of the model can be found in Klein
et al. (2000) and in Allignol et al. (2011a). The aim of the analysis is to
quantify the effectiveness of both bone marrow transplant and DLI. The
current leukemia-free survival probability (CLFS) (Klein et al., 2000) may
be used as a summary measure of the model. CLFS corresponds to pa-
tients alive and leukemia-free, either in the first or second post-transplant
remission. That is, CLFS is the probability to be in state 0 or 6 at time t.
The nature of the present multistate model as a nested series of competing
risks experiments is clearly seen in the figure. We assume that the model
is Markov.
a) Simulate 500 individuals stemming from the multistate process of Fig-

ure 9.9 with constant hazards defined as:
• α01 = 0.4,
• α02 = 0.5,
• α23 = 1.3,
• α24 = 0.9,
• α45 = 0.5,
• α46 = 1.4,
• α67 = 0.05,
• α68 = 0.07.

b) Estimate and plot the CLFS which is a functional of the matrix of the
transition probabilities and is estimated as

ĈLFS(t) = P̂00(0, t) + P̂06(0, t),

and variance estimator equal to
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V̂AR(ĈLFS(t)) =

V̂AR(P̂00(0, t)) + V̂AR(P̂06(0, t)) + 2ĉov(P̂00(0, t), P̂06(0, t)).

c) Redo the analysis with a random sample of the real data that can be
found at http://www.jstatsoft.org/v38/i04/supp/3.
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Fig. 9.9. Multistate model used for Exercise 6. DLI stands for donor lymphocyte
infusion.

http://www.jstatsoft.org/v38/i04/supp/3
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Proportional transition hazards models

10.1 Model formulation and practical implementation

As with competing risks, the most widely used regression model for multistate
data assumes a proportional hazards form for the transition hazards of the
multistate model. We re-emphasize that the proportional hazards assumption
is made for interpretational and technical convenience. As in Chapter 9, we
consider n individuals under study with individual multistate data subject
to independent right-censoring and/or left-truncation. This entails that right-
censoring and left-truncation may depend on covariates included in the model.
The n multistate processes are assumed to be conditionally independent given
the baseline covariate values and given the initial states.

Consider the l → j transition hazard as in (8.4), but now related to indi-
vidual covariate information,

αlj;i(t;Zi) = αlj;0(t) · exp (βlj · Zi) , l, j ∈ {0, 1, 2, . . . , J}, l �= j, i = 1, . . . , n,
(10.1)

where βlj is a 1 × p vector of regression coefficients, Zi is a p × 1 vector of
covariates for individual i, and αlj;0(t) is an unspecified, non-negative baseline
hazard function. In principle, different transition hazards may be related to
different covariate vectors. We also write

Alj;0(t) =

∫ t

0

αlj;0(u)du and Alj;i(t;Zi) =

∫ t

0

αlj;i(u;Zi)du (10.2)

for the respective cumulative transition hazards.
The model formulation is in obvious analogy to that for the cause-specific

hazards of a competing risks model in (5.1). There, in Section 5.1, we reformu-
lated the models for the cause-specific hazards in terms of one vector β, which
contained all regression coefficients and did not depend on the transition type,
and transition-specific covariate vectors. Such a reformulation allows some co-
variates to have a common effect on some hazards, and it may be analogously
achieved for the present multistate case. For ease and brevity of presentation,

J. Beyersmann et al., Competing Risks and Multistate Models with R, Use R,  
DOI 10.1007/978-1-4614-2035-4_ , © Springer Science+Business Media, LLC 2012 
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we, however, mainly focus on formulation (10.1). We briefly return to the
model reformulation in Chapter 12, where we comment on model parsimony.
The necessary data set preparation is also briefly illustrated in the practical
examples of Section 10.2.

Besides the analogy of (10.1) to proportional cause-specific hazards models,
there are also important differences, which are related to our discussion of
the Nelson-Aalen estimator following Equation (8.6). To be specific, assume
that l = 1 and j = 2 in an illness-death model. That is, we model the transition
hazard of ‘death’ after ‘illness’. Regardless of whether we model recovery (i.e.,
1 → 0 transitions) the model

α12;i(t;Zi) = α12;0(t) · exp (β12 · Zi) , i = 1, . . . , n, (10.3)

reflects the Markov assumption (8.3). In the preceding display, the hazard for
making a ‘diseased’ → ‘dead’ transition does depend on time t since time ori-
gin and on baseline, i.e., time-fixed covariates. However, the hazard does not
depend on the time at which a ‘healthy’ individual has entered the ‘illness’
state. There was no such restriction in the case of competing risks, because
all individuals are in the single transient state of a competing risks model at
time 0. It is a remarkable fact that hazard models such as in (10.1) can also
incorporate dependency on time-dependent covariates such as entry time into
state 1. Among other things, this would allow us to relax the Markov assump-
tion by, e.g., modelling dependence of the 1 → 2 hazard on the sojourn time in
the ‘illness’ state. However, time-dependent covariates pose some interpreta-
tional challenges, which can be best addressed from a multistate perspective,
and we postpone a discussion to Chapter 11.

The second important difference becomes apparent in an illness-death
model with recovery, where 1 → 0 transitions are feasible. Model (10.3) as-
sumes that the 1 → 2 hazard does not depend on how often one has been ill
or has recovered before. Model (10.1) expressed for the ‘getting ill’ hazard,

α01;i(t;Zi) = α01;0(t) · exp (β01 · Zi) ,

assumes a common baseline hazard α01;0(t) for successive 0 → 1 transitions.
In other words, it is assumed that the baseline hazard for ‘getting ill’ is the
same both for individuals who have not been ‘ill’ before, and for individuals
who acquired ‘illness’ in the past but have recovered. Again, this assumption
may be relaxed by including time-dependent covariates that carry information
on the number of times one has been ‘ill’ before or on how long one has been
‘ill’ in the past. Another approach would be to extend the underlying illness-
death model to different illness and/or health states such as ‘ill for the first
time’, ‘ill for the second time’, ‘first recovery’, ‘second recovery’ and so on.

A key fact now is that models such as (10.1) may be fitted using stan-
dard Cox software if we take care of the observations made above. The same
principle has been demonstrated for the algebraically simpler Nelson-Aalen
estimator in Exercise 2 of Section 9.3. The idea is understood best via an
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example. Consider the following hypothetical individual 1 who moves through
an illness-death model with recovery:

State occupied at t For times t in. . . Health status

X
(1)
t = 0 t ∈ [0, 3) ‘healthy’

X
(1)
t = 1 t ∈ [3, 5) ‘ill’

X
(1)
t = 0 t ∈ [5, 6) ‘healthy’

X
(1)
t = 1 t ∈ [6, 10) ‘ill’

X
(1)
t = 2 t ≥ 10 ‘dead’

The individual falls ‘ill’ at time 3, ‘recovers’ at time 5, is ‘ill’ again from times 6
through 10, and finally ‘dies’ at time 10. Recall that individuals are not per se
required to be ‘healthy’ at time origin. E.g., an individual who is ‘ill’ from the
start, but ‘recovers’ at time 5 would have the first two lines in the preceding

display replaced by X
(1)
t = 1 for t ∈ [0, 5).

The data set corresponding to individual 1 for the analysis of the 0 → 1
hazard would be:

id from to entry exit status

1 0 1 0 3 1

1 0 1 5 6 1

In the preceding display, status equal to 1 indicates that a 0 → 1 transition
has been observed. The data set for the analysis of the 0 → 2 hazard has
different values for status, but is otherwise identical:

id from to entry exit status

1 0 2 0 3 0

1 0 2 5 6 0

The interpretation is that individual 1 has been at risk for making a 0 → 2
transition during the time intervals (0, 3) and (5, 6), but such a transition has
not been observed.

This is the data set contribution of individual 1 for analysing the 1 → 0
hazard:

id from to entry exit status

1 1 0 3 5 1

1 1 0 6 10 0

Note that a 1 → 0 transition has been observed at time 5, and that individual 1
was again at risk for making such a transition during the time interval (6, 10),
but that the individual did not move into state 0 at time 10.

Finally, the data set contribution for analysing the 1 → 2 hazard is:

id from to entry exit status

1 1 2 3 5 0

1 1 2 6 10 1

If, say, the aim is an analysis of the 1 → 2 hazard, we must create a data
set which consists of data lines as in the preceding display for each individual.
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Only individuals who have entered state 1 at some point in time are part of
the data set. Additional columns of the data set will contain the covariates.
Then, the theory as outlined in Section 5.2.1 goes through, treating entry
times into state 1 as ‘internal’ left-truncation and transitions out of state 1
into some state j, 1 �= j �= 2 as, formally, right-censoring. (In the present
example, only j = 0 must be considered.) We consider worked examples in
Section 10.2.

Among the first to notice that Cox-type models (10.1) can be fitted
using standard procedures were Kalbfleisch and Prentice (1980) (see their
Section 7.3) and Kay (1982). In fact, already Cox, in his seminal paper
(Cox, 1972), also considered bivariate survival times. Kalbfleisch and Pren-
tice also outlined the analogy to methods for competing risks; see page 183
of Kalbfleisch and Prentice (1980). Their presentation starts from a sequence
of event times and event types, whereas our process formulation is similar to
Kay (1982). It should be noted, though, that these two representations of the
data are equivalent (e.g., Gill and Johansen, 1990, Section 4.4), the relation
being the data-generating algorithm of Section 8.2, and that the 2002 edi-
tion of the book by Kalbfleisch and Prentice also adopts a multistate process
point of view (Kalbfleisch and Prentice, 2002, Section 8.3). A definite theo-
retical treatment has been given by Andersen and Borgan (1985), which also
covers the case of common covariate effects; see also Andersen et al. (1993,
Section VII.2).

Despite these early references, it was arguably the book by Therneau and
Grambsch (2000) which, backed by actual computer code (mostly S-Plus),
popularized Cox-type analyses of transitions hazards; see, in particular, their
Section 8.6. Interestingly, most of their analyses use a robust variance esti-
mator (see also our Section 5.4), which is motivated by the fact that a single
individual may contribute more than one event to the analysis. So far, we
have argued that if model (10.1) is correct, the standard procedures work,
including variance estimation. However, we have also argued that model mis-
specification may be more of a concern here as compared to competing risks
data, if, e.g., we assume a common baseline hazard for all currently ‘healthy’
individuals, regardless of their prior ‘health’ status. This has also been pointed
out by Kay (1982). We investigate this matter in Sections 10.2 and 10.3.

Finally, we explain how transition probabilities may be predicted based on
models (10.1). This is the general idea: the cumulative baseline hazardsAlj;0(t)
may be estimated in analogy to the methods for competing risks. For compet-
ing risks, we had to analyse all cause-specific hazards in order to subsequently
predict probabilities. In the multistate context, we must analyse the transition
hazards for all transitions l→ j, l �= j. In the last step, product integration as
in Section 9.1 is used to move from hazards to probabilities; see in particular
Equation (9.10).

To be specific, recall from (9.1) that Yl;i(t) denotes whether individual i
is at risk of an observed transition out of state l at time t and define the
weighted risk set
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S
(0)
lj (βlj , t) :=

n∑
i=1

exp (βlj · Zi) · Yl;i(t), l, j ∈ {0, 1, 2, . . . , J}, l �= j, (10.4)

cf. Equation (5.8) for the case of competing risks. A Breslow estimator of the
cumulative l→ j baseline hazard analogous to (5.18) then is

Âlj;0(t) :=
∑
s≤t

ΔNlj(s)

S
(0)
lj (β̂lj , s)

, l, j ∈ {0, 1, 2, . . . , J}, l �= j. (10.5)

In (10.5), β̂lj is the vector of estimated regression coefficients, which is ob-
tained from fitting a Cox model for the l → j transition as explained earlier.
Summation in (10.5) is over all event times s, s ≤ t. The predicted cumulative
l→ j hazard under model (10.1) is

Âlj(t; z) = Âlj;0(t) · exp
(
β̂lj · z

)
, l �= j. (10.6)

For the aim of predicting probabilities, we also define

Âll(t; z) := −
∑
j,j �=l

Âlj(t; z) (10.7)

(cf. the nonparametric analog below Equation (9.10)). Also recall that differ-
ent transitions l → j and l → j̃, j �= j̃ may be related to different covariates,
although we have not made this explicit in the preceding displays. In (10.7),
this may be formally achieved by making z large enough, such that all neces-
sary covariate information is included. Components of z, which are not part of
the original model for a single transition, will then have their regression coeffi-
cients set to zero for that transition. We then predict the matrix of transition
probabilities by replacing the nonparametric Âlj(t) in the Aalen-Johansen

formula (9.10) with Âlj(t; z),

P̂(s, t; z) =

u∈(s,t]

(
I + dÂ(u; z)

)
. (10.8)

In (10.8), Â(u; z) is the matrix with (l, j)-entry Âlj(t; z), and the covariate
vector z is again ‘large enough’.

Similar to prediction for competing risks data and to (co-)variance estima-
tion for the Aalen-Johansen estimator, estimating variances and covariances is
becoming algebraically increasingly complex, such that we refrain from going
into technical details here. Readers are referred to Section VII.2.3 of Ander-
sen et al. (1993) for a thorough theoretical development and to de Wreede
et al. (2010) for further R-specific details. We again focus on practical imple-
mentation in the examples to follow. We also note that, as a computational
alternative, the bootstrap may also be used to obtain variances and covari-
ances; see Section 2.3 and Appendix A.
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10.2 Examples

10.2.1 Hospital-acquired pneumonia

We consider the icu.pneu data that we have analysed in Section 9.2.1 with a
combined endpoint reflecting end of intensive care unit stay. The aim of the
present analysis is to study the effect of age and sex on each of the transition
hazards using Cox proportional hazards models. For this, we use the recoded
data set my.icu.pneu as in Section 9.2.1. Fitting a proportional hazards model
using the coxph function can be done in several ways. The first one is to use a
subset of the data set containing the people at risk of making the transition of
interest, as explained in Section 10.1. The second possibility is to fit one Cox
model to an extended data set as in Section 5.2.2, stratifying on the transition
type.

We start with the first method. The following calls compute Cox models
for the 0 → 1 and 0 → 2 transitions, respectively.

> cox.icu.pneu01 <- coxph(Surv(entry, exit, to == 1) ~ age +

+ sex, my.icu.pneu, subset = from == 0)

> cox.icu.pneu02 <- coxph(Surv(entry, exit, to == 2) ~ age +

+ sex, my.icu.pneu, subset = from == 0)

Subsetting is achieved using subset = from == 0. Results are displayed be-
low.

> summary(cox.icu.pneu01)

n= 1313

coef exp(coef) se(coef) z Pr(>|z|)

age 0.007949 1.007981 0.005631 1.412 0.158

sexM 0.210054 1.233744 0.201131 1.044 0.296

exp(coef) exp(-coef) lower .95 upper .95

age 1.008 0.9921 0.9969 1.019

sexM 1.234 0.8105 0.8318 1.830

> summary(cox.icu.pneu02)

n= 1313

coef exp(coef) se(coef) z Pr(>|z|)

age 0.001658 1.001659 0.001632 1.016 0.3098

sexM -0.110789 0.895128 0.058937 -1.880 0.0601

exp(coef) exp(-coef) lower .95 upper .95

age 1.0017 0.9983 0.9985 1.005

sexM 0.8951 1.1172 0.7975 1.005
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Older age has a non-significant increasing effect on both transition hazards
out of state 0. Males have a higher hazard of infection, but a lower hazard of
directly leaving the unit; these effects are not significant, either.

We now fit the model for the 1 → 2 transition. This time, we select indi-
viduals at risk in state 1 using subset = from == 1.

> cox.icu.pneu12 <- coxph(Surv(entry, exit, to == 2) ~ age +

+ sex, my.icu.pneu, subset = from == 1)

> summary(cox.icu.pneu12)

n= 108

coef exp(coef) se(coef) z Pr(>|z|)

age -0.010061 0.989990 0.007147 -1.408 0.159

sexM 0.012586 1.012665 0.205342 0.061 0.951

exp(coef) exp(-coef) lower .95 upper .95

age 0.990 1.0101 0.9762 1.004

sexM 1.013 0.9875 0.6771 1.514

We may also fit the proportional hazards models using an extended data
set, if we stratify the analysis on the transition type. The idea has been il-
lustrated for competing risks in Section 5.2.2. The trick is to extend the data
set so that for each transient state an individual reaches, we have one line
per possible transition from this transient state. In addition, there has to be
a status variable specifying whether a specific transition has been observed.

As illustrated for competing risks, the extended data frame allows us to
model a common effect of a covariate on some or all transition hazards. The
extended data frame is also used for making predictions, using mstate. We
exemplarily discuss the extended data frame, which we call my.icu.pneu.ext,
for one individual. The extended data set has a new column new.to, which
contains all states that can be reached from the state in from, and a new
column new.status, which is 1 if the transition has been observed.

> my.icu.pneu.ext[my.icu.pneu.ext$id == 2010304, ]

id entry exit from age sex new.to new.status trans

1224 2010304 0 14 0 73.62053 M 1 1 1

12241 2010304 0 14 0 73.62053 M 2 0 2

12251 2010304 14 22 1 73.62053 M 2 1 3

age.1 age.2 age.3 male.1 male.2 male.3

1224 73.62053 0.00000 0.00000 1 0 0

12241 0.00000 73.62053 0.00000 0 1 0

12251 0.00000 0.00000 73.62053 0 0 1

The extended data set is displayed above for individual 2010304. The first two
lines are concerned with the transitions starting from state 0. This individual



204 10 Proportional transition hazards models

acquires pneumonia, hence new.status equals 1 when new.to is 1 (and is 0
when new.to is 2). The last line is for the 1 → 2 transition, which is the only
possible transition out of state 1. We have also added a trans variable that
indicates the transition type: 1 for transition 0 → 1, 2 for transition 0 → 2
and so on. age.h and male.h, h = 1, 2, 3, are transition-specific covariates
that take their original value for transition h, and are set to 0 otherwise. We
now fit the Cox model using the extended data set. We use new.status as the
status indicator and stratify on the transition type, specifying strata(trans)
in the formula.

> fit.cox.icu.ext <- coxph(Surv(entry, exit, new.status) ~

+ age.1 + age.2 + age.3 +

+ male.1 + male.2 + male.3 +

+ strata(trans), my.icu.pneu.ext)

> summary(fit.cox.icu.ext)

n= 2734

coef exp(coef) se(coef) z Pr(>|z|)

age.1 0.007949 1.007981 0.005631 1.412 0.1580

age.2 0.001658 1.001659 0.001632 1.016 0.3098

age.3 -0.010061 0.989990 0.007147 -1.408 0.1592

male.1 0.210054 1.233744 0.201131 1.044 0.2963

male.2 -0.110789 0.895128 0.058937 -1.880 0.0601

male.3 0.012586 1.012665 0.205342 0.061 0.9511

exp(coef) exp(-coef) lower .95 upper .95

age.1 1.0080 0.9921 0.9969 1.019

age.2 1.0017 0.9983 0.9985 1.005

age.3 0.9900 1.0101 0.9762 1.004

male.1 1.2337 0.8105 0.8318 1.830

male.2 0.8951 1.1172 0.7975 1.005

male.3 1.0127 0.9875 0.6771 1.514

Readers can check by looking at the estimated regression coefficients and at
the confidence intervals for the estimated hazard ratios that the results are
identical to those obtained from fitting separate models.

One usage of the extended data set is making predictions with the
mstate package (de Wreede et al., 2010, 2011). As an illustration, we pre-
dict P01(0, t, z) for a woman and a man 60.14 years old, which is the median
age in the sample. As in the competing risks example in Section 5.2.2, the
first step is to define the matrix of possible transitions. mstate supplies the
convenience function trans.illdeath for illness-death models.

> mat <- trans.illdeath()

> mat
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to

from healthy illness death

healthy NA 1 2

illness NA NA 3

death NA NA NA

We then create a data frame with covariate information for the two hypothet-
ical individuals for whom we wish to make predictions. For convenience, we
artificially create an msdata object, which allows us to use the expand.covs

function for generating transition-specific covariates.

> woman.medianage <- data.frame(age = rep(median.age, 3), male

+ = rep(0, 3), trans = 1:3)

> attr(woman.medianage, "trans") <- mat

> class(woman.medianage) <- c("msdata", "data.frame")

> woman.medianage <- expand.covs(woman.medianage,

+ c("age", "male"))

> woman.medianage$strata <- 1:3

> man.medianage <- data.frame(age = rep(median.age, 3), male

+ = rep(1, 3), trans = 1:3)

> attr(man.medianage, "trans") <- mat

> class(man.medianage) <- c("msdata", "data.frame")

> man.medianage <- expand.covs(man.medianage, c("age", "male"))

> man.medianage$strata <- 1:3

As explained in the competing risks example, it is, at the time of writing, safer
to make the predictions starting from a Cox proportional hazards model that
uses the Breslow method for handling ties. We thus refit the model and use
the msfit function to obtain the predicted cumulative transition hazards for
both individuals.

> fit.cox.icu.ext.bres <- coxph(Surv(entry, exit, new.status)

+ ~ age.1 + age.2 + age.3 +

+ male.1 + male.2 + male.3 +

+ strata(trans), my.icu.pneu.ext,

+ method = "breslow")

> msfit.woman <- msfit(fit.cox.icu.ext.bres, woman.medianage,

+ trans = mat)

> msfit.man <- msfit(fit.cox.icu.ext.bres, man.medianage,

+ trans = mat)

The transition probabilities are then predicted using the probtrans function.

> pt.woman <- probtrans(msfit.woman, 0)

> pt.man <- probtrans(msfit.man, 0)

For illustration, we exemplarily consider the probability to still be in the unit
after having acquired infection; see also Section 9.2.1. The predicted probabil-
ity P̂01(0, t; z) can be found in , e.g., pt.woman[[1]]$pstate2 and associated
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standard errors in pt.woman[[1]]$se2. The numbering of the components
pstate and se is as explained in Section 5.2.2. Figure 10.1 displays P̂01(0, t; z)
for a woman and a man of median age. Overall, this probability is seen to be
higher for men. Note the usefulness of the presentation in Figure 10.1: based
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Fig. 10.1. Hospital-acquired pneumonia data. Predicted probability to still be in
intensive care unit after having acquired infection. The left plot is for a woman of
median age; the right plot is for a man of the same age. The dashed lines are 95%
pointwise confidence intervals based on complementary log-minus-log transform.

on the Cox analyses of the transition hazards, a higher probability for a man
might not be surprising, because male sex reduced the hazard for a 0 → 2
transition and increased the hazard for a 0 → 1 transition. This increases the
probability that a man reaches the infectious state as compared to a woman.
However, male sex also increased the hazard for a transition out of the infec-
tious state. This decreases the probability that a man stays in the infectious
state as compared to a woman. Figure 10.1 provides for a useful summary of
these transition hazard-based findings, also accounting for the baseline tran-
sition hazards.

10.2.2 Ventilation in intensive care unit

We reconsider the data of Section 9.2.2. In Section 9.2.2, we found that being
ventilated prolongs intensive care unit stay. We now exemplarily study the
effect of age and sex on the hazards for the transition 0 → 1, i.e., switching
ventilation on, and for the transition 1 → 0, i.e., switching ventilation off. We
also compute robust variance estimates; see also Section 5.4. In the present
setting, an individual may contribute more than one data line because ventila-
tion can be switched on and off. Robust variance estimation is then performed
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by coxph, if we specify a cluster(id) term in the formula. Here, id is the
variable which identifies the lines belonging to one person.

> cox.ventil.01 <- coxph(Surv(time, to == 1) ~ age + sex +

+ cluster(id), sir.cont,

+ subset = from == 0)

> cox.ventil.10 <- coxph(Surv(time, to == 0) ~ age + sex +

+ cluster(id), sir.cont,

+ subset = from == 1)

> summary(cox.ventil.01)

n= 686

coef exp(coef) se(coef) robust se z Pr(>|z|)

age 0.008977 1.009017 0.006683 0.005860 1.532 0.126

sexM -0.154848 0.856545 0.237356 0.214902 -0.721 0.471

exp(coef) exp(-coef) lower .95 upper .95

age 1.0090 0.991 0.9975 1.021

sexM 0.8565 1.167 0.5621 1.305

> summary(cox.ventil.10)

n= 455

coef exp(coef) se(coef) robust se z Pr(>|z|)

age -0.009433 0.990612 0.003321 0.003353 -2.813 0.00491

sexM -0.115315 0.891085 0.114944 0.115391 -0.999 0.31763

exp(coef) exp(-coef) lower .95 upper .95

age 0.9906 1.009 0.9841 0.9971

sexM 0.8911 1.122 0.7107 1.1172

Robust estimates of the standard error are in the robust se column, and
the confidence intervals are now based on robust se. In the present example,
both the model-based estimator of the standard error and the robust estimator
are in close agreement. We note that the difference may be more pronounced
in other data examples. For comparison, we also report estimated standard
errors based on a nonparametric bootstrap. R code for the present bootstrap
analysis can be found in Appendix A.

age01 sex01 age10 sex10

0.005932245 0.2247314 0.003404829 0.1168784

The standard errors have been computed based on 10000 bootstrap samples.
The values are close to those previously found. In general, we would expect
the nonparametric bootstrap results to be closer to the robust estimation
procedure, if there is a relevant difference between se and robust se.
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10.3 Exercises

1. If model (10.1) is correct, standard procedures for fitting proportional
hazards models apply, even if individuals contribute more than one event
to the analysis. The major aim of the present exercise is to investigate
variance estimation both under a correctly specified model and under a
misspecified model in an illness-death model with recovery. We first simu-
late data following model (10.1). We then introduce model misspecification
by increasing the baseline hazards after a first recovery.
a) Consider the multistate model of Figure 10.2. This is a modified

illness-death model with recovery in which the state ‘healthy after
first recovery’ is distinguished from the initial ‘healthy’ state. We de-
fine two scenarios. The first one reduces to the usual illness-death
model with recovery: we set α01(t) = α21(t) and α03(t) = α23(t). The
second scenario considers the full model. Baseline transition hazards
for the first scenario are:
• α01(t) = α21(t) = 1.2,
• α03(t) = α23(t) = 0.5,
• α12(t) = 0.7,
• α13(t) = 0.8.
The second scenario has different hazards out of state 2:
• α21(t) = 2,
• α23(t) = 0.6.
Let Z be a binary baseline covariate. Data for Z = 1 stem from a
perfect Cox model with regression coefficients (indexed by transition
type) β01 = β21 = 0.1, β03(t) = β23 = 0.3 and no effect on the other
transitions. Generate 300 observations for Z = 0 and 300 observations
for Z = 1 for both scenarios.

b) For both sets of data, analyse the effect of Z on the transitions from
the healthy state assuming a usual illness-death model with recovery,
i.e., without distinguishing between states 0 and 2. Compute both the
usual and the robust variance estimates.

c) Repeat the analyses of the previous exercise, but this time distinguish-
ing between states 0 and 2.

d) In a simulation study, repeat all previous steps 1000 times. Draw box-
plots of the estimated regression coefficients. Compare the variance
estimates with an estimator of the variance based on the distribution
of the 1000 estimated regression coefficients.
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Fig. 10.2. Modified illness-death model for Exercise 1
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Time-dependent covariates and multistate

models

Our treatment of regression models for cause-specific or transition hazards in
Chapters 5 and 10 has so far been restricted to baseline covariates Z only, those
covariates whose value is measured or known at time origin. It is a remark-
able strength of regression models for hazards that they can also incorporate
covariates Z(t) whose value may change with time. Although this extension is
a good deal technically straightforward, new interpretational challenges arise.
Some of these may conveniently be addressed from a multistate perspective,
which is what we do in this chapter.

There are different types of time-dependent covariates. The future values
of defined time-dependent covariates are known at time origin. E.g., if time 0
is treatment initiation, a patient’s age at time t is a defined time-dependent
covariate. Another example is covariate-time interactions such as Z · f(t),
where f is a known function of time.

An important distinction, due to Kalbfleisch and Prentice (1980) who also
give formal definitions, is between external and internal time-dependent co-
variates.

External covariates are, informally speaking, those covariates whose exis-
tence does not depend conceptually on the individual under study. A canonical
example of an external covariate is air pollution in a study on asthma events
(Kalbfleisch and Prentice, 1980, p. 123). The current level of air pollution may
have an effect on the hazard of an asthma attack, but it is assumed that air
pollution is not influenced by the individual’s asthma event.

Internal covariates do conceptually depend on the individual under study.
A common example is an individual’s current health status, say Z(t), either
healthy or ill. The information that a patient is currently healthy (or ill) does
imply that the patient is currently alive. In contrast, it is unclear what we
mean by Z(t), if the individual has died before t.

In this chapter, we do not aim at a comprehensive but inevitably incom-
plete account on time-dependent covariates. Instead, we focus on the connec-
tion between multistate models and time-dependent covariates, which are use-
ful in many applications. Such covariates are typically internal. Our approach

J. Beyersmann et al., Competing Risks and Multistate Models with R, Use R,  
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211
11



212 11 Time-dependent covariates and multistate models

follows ideas such as found in Andersen (1986), Beyersmann and Schumacher
(2008) and Cortese and Andersen (2010).

Section 11.1 discusses multistate models as simple joint model for time-
dependent covariates and time-to-event endpoints. Proportional hazards mod-
els with time-dependent covariates are also introduced in this section. The
reasoning applies quite generally to transition hazards as in Chapter 10. We
specifically discuss competing risks in Section 11.2. Besides including time-
dependent covariates in an analysis of the cause-specific hazards, we also dis-
cuss how to analyse such information using subdistribution hazards. This
latter aspect particularly profits from approaching both time-dependent co-
variates and subdistribution processes from a multistate perspective. As an
example, we investigate the impact of hospital-acquired pneumonia on length
of stay and hospital outcome in intensive care unit.

Finally, Section 11.3 addresses some issues that are often raised in the
analysis of time-dependent covariates.

11.1 A simple joint model for time-dependent covariates

and time-to-event endpoints

The basic idea is to interpret a multistate model as a joint model for both the
time-dependent covariate process and the time-to-event of interest. The time-
dependent covariate reflects the transitions between the transient states of
the multistate model, whereas time-to-event is modelled by the time until the
multistate process enters an absorbing state. Among other things, this model
is ‘simple’, because it conceptually covers time-dependent covariates with a
finite range only. On the other hand, such a ‘simple’ model is applicable in
many practical situations.

The connection between multistate models and time-dependent covariates
is best understood via an example. We exemplarily discuss the illness-death
model without recovery in Section 11.1.1, but the ideas immediately transfer
to more complex models. An example of a proportional hazards model with
time-dependent covariates is then discussed based on the idea of an underlying
illness-death model in Section 11.1.2.

11.1.1 Transient states and time-dependent covariates

We exemplarily consider the situation of hospital-acquired pneumonia from
Sections 9.2.1 and 10.2.1. For the time being, we focus on a combined endpoint
‘hospital discharge’, either alive or dead. Hence, we have a multistate pro-
cess (Xt)t≥0 with state space {0, 1, 2}. Every patient enters the initial state 0
on admission. Occurrence of hospital-acquired pneumonia (HAP) is modelled
by transitions into the intermediate state 1 and hospital discharge is modelled
by transitions into the absorbing state 2. The model is an illness-death model
as in Figure 8.1 (left).
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Let T denote the length of hospital stay,

T := inf{t > 0 |Xt = 2}

with discharge hazard

α(t)dt := P(T ∈ dt |T ≥ t).

The aim is to relate the discharge hazard to a time-dependent covariate Z(t)
which reflects HAP status. A standard requirement is that t �→ Z(t) is left-
continuous such that the value of Z(t) is known just before time t. The inter-
pretation of this requirement is that the covariate information just before t is
related to the hazard of an event at t.

By writing Z(t) or t �→ Z(t), we tacitly assume that Z(t) denotes a co-
variate which is conceptually well defined for any choice of t. Recall, however,
from the introduction of this Chapter that this may not be the case. It is not
evident what we mean by ‘HAP status’ or by Z(t) for times t after end of
hospital stay, t > T . For definiteness, we identify Z(t) with

t �→ Z(t ∧ T ),

the covariate process stopped at the event time T . The interpretation of the
preceding display is that only the information up to the event time will be
related to the hazard of the event. For internal covariates, i.e., covariates
whose existence conceptually depends on the individual under study, looking
at the stopped covariate process also ensures that we need not speculate about
hypothetical covariate values such as ‘hospital-acquired pneumonia after end
of hospital stay’. It should be noted, though, that only the covariate values
before stopping are used to relate the hazard to the covariate. This is so,
because α(t)dt = P(T ∈ dt |T ≥ t), and the condition in P(T ∈ dt |T ≥ t)
requires that the event has not happened yet.

In our example, we define Z(t) to be

Z(t) =

{
1 : if the patient has acquired pneumonia in (0, t ∧ T ),
0 : otherwise.

The interpretation is that Z(t) = 1, if HAP has been acquired before t. Note
that Z(t) is left-continuous. Also note that Z(t) does not reflect current in-
fection status, but past exposure.

This is the connection of Z(t) to the illness-death model Xt: Basically, the
time-dependent covariate reflects the transitions between the transient states
of the multistate model. Figure 11.1 illustrates the mechanism for an indi-
vidual who acquires pneumonia on day 4 of hospital stay and whose hospital
stay ends on day 10. The multistate process initially equals 0, Xt = 0 for
all t ∈ [0, 4). At time 4, the multistate process moves into the intermediate
state 1 (i.e., X4 = 1). The process stays in the intermediate state until end
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Fig. 11.1. Top: Multistate process Xt for an individual who acquires HAP on day 4
and who is discharged on day 10. Bottom: Time-dependent covariate Z(t) reflecting
HAP status. Bullets • are included in the graph, but circles ◦ are not.

of hospital stay at time 10, Xt = 1 for all t ∈ [4, 10). At time 10, the mul-
tistate process moves into the absorbing state 2, i.e., X10 = 2, and stays in
state 2 thereafter. This is a typical data set entry for analysis with mvna or
etm, assuming the individual to have id 1:

id from to time

1 0 1 4

1 1 2 10

The multistate process and the time-dependent covariate are equal on the
time intervals [0, 4) and (4, 10). Because Z(t) is left-continuous, the covariate
does not change its value precisely at time 4, but only ‘a moment’ later. This is
illustrated in Figure 11.1. The difference is minimal: the individual can only
make an ‘HAP → end-of-stay’ transition after time 4 both in terms of the
multistate process and from the point of view of the covariate. Z(t) does not
change its value at time 10 of hospital discharge or thereafter. This reflects
that no transitions between transient states occur for times [10,∞). The cor-
responding data set entry for a Cox analysis is in the following Section 11.1.2.
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11.1.2 A proportional hazards model with time-dependent
covariates

A proportional hazards model, which relates the individual HAP status of
Section 11.1.1 to the discharge hazard, is now given by

αi(t;Zi(t)) = α0(t) · exp (β · Zi(t)) , i = 1, . . . , n, (11.1)

where Zi(t) is individual i’s time-dependent HAP status as in Figure 11.1
(bottom) and α0(t) is the baseline discharge hazard. In principle, further co-
variates could be included, but we stick to the simple model (11.1) for ease of
presentation. We, however, illustrate how to include further covariates in the
Example of Section 11.1.3.

There are two basic but important remarks to be made on model (11.1).
First, the model essentially assumes the transition hazards into the absorbing
state of the illness-death model in Figure 8.1 (left) to be proportional. The

ratio of the transition hazards is estimated to be exp β̂, i.e., the estimated
hazard ratio which is obtained from fitting (11.1). Second, model (11.1) as
such does not allow us to predict probabilities, because it does not provide for
an analysis of the 0 → 1 hazard in the illness-death model.

Discussing these issues in a little more detail, note that model (11.1) states
that α0(t) is the discharge hazard for individuals without prior exposure to
HAP. This is the transition hazard α02(t) in the illness-death model. The
discharge hazard for individuals with prior exposure to HAP then is α12(t).
Hence, model (11.1) states that

α12(t)

α02(t)
= exp(β).

We illustrate below how to fit the model. Practically, the key step is to
generate an appropriate data set, which may then be analysed by, e.g., coxph.
The data set contribution by individual 1 from the previous Section 11.1.1
would be:

id start stop z.t status

1 0 4 0 0

1 4 10 1 1

These data set lines are somewhat different from the ones in the previous
section that we would have used to estimate the cumulative transition hazards,
say, and therefore deserve a comment. To begin, we have entries start and
stop, which obviously play the role of entry and exit in a multistate context.
We could safely use the names entry and exit instead of start and stop

in the data lines above, but we have chosen not to do so. The coding in the
previous display is sometimes referred to as start stop-notation. It invokes
the idea of the beginning of a time interval and the end of a time interval. The
difference between the time intervals [0, 4) and [4, 10) is that the covariate z.t
reflecting HAP status Z(t) changes its value from 0 to 1. In contrast, the
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names entry and exit invoke the idea of moving in and out of a state in a
multistate model. We reiterate that the difference between these names does
not truly matter. Finally, status informs on the fact that the event of interest
(i.e., hospital discharge) has not been observed by the end of the first time
interval, but that hospital discharge has happened at the end of the second
time interval.

Using an appropriate data set in conjunction with coxph provides for an

estimator β̂. In addition, an estimator of the baseline hazard α02(t) may be
obtained in the usual way, and this also allows for predicting α12(t) under
model (11.1). However, model (11.1) does not make a statement about the
infection hazard α01(t). We have, however, seen in, e.g., Chapter 9 that the
transition probabilities of a multistate model in general depend on all transi-
tion hazards, including α01(t). As a consequence, predicting probabilities based
on model (11.1) alone is in general meaningless. This is quite intuitive. As-
sume that infection prolongs hospital stay, α12(t) < α02(t) or, equivalently
under model (11.1), expβ < 1. Imagine two different situations, one where
the infection hazard is small compared to α02(t), the other where the infection
hazard is large in comparison. Only the infection hazard differs between these
two scenarios. Length of hospital stay tends to be smaller in the first scenario.

11.1.3 Example

Impact of hospital-acquired pneumonia (HAP) on length of stay in
intensive care unit

We reconsider the data set icu.pneu from Sections 9.2.1 and 10.2.1. The data
set is already formatted for fitting a Cox model with the HAP status as a time-
dependent covariate. Time-dependent HAP status is in pneu. The following
call fits a Cox model with HAP status as a time-dependent covariate.

> cox.hap.tdp <- coxph(Surv(start, stop, status) ~ pneu,

+ icu.pneu)

> summary(cox.hap.tdp)

n= 1421

coef exp(coef) se(coef) z Pr(>|z|)

pneu1 -0.4223 0.6556 0.1064 -3.969 7.23e-05

exp(coef) exp(-coef) lower .95 upper .95

pneu1 0.6556 1.525 0.5322 0.8076

HAP significantly reduces the hazard for end of stay. The present analysis
confirms the findings of Section 9.2.1 that were obtained from comparing the
Nelson-Aalen estimates for the transitions 0 → 2 and 1 → 2.

We also note that introducing further baseline covariates into the model
is technically straightforward:
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> cox.hap.tdp <- coxph(Surv(start, stop, status) ~ pneu

+ + age + sex, icu.pneu)

> summary(cox.hap.tdp)

n= 1421

coef exp(coef) se(coef) z Pr(>|z|)

pneu1 -0.425438 0.653484 0.106610 -3.991 6.59e-05

age 0.001355 1.001356 0.001582 0.856 0.392

sexM -0.109530 0.896256 0.056614 -1.935 0.053

exp(coef) exp(-coef) lower .95 upper .95

pneu1 0.6535 1.5303 0.5303 0.8053

age 1.0014 0.9986 0.9983 1.0045

sexM 0.8963 1.1158 0.8021 1.0014

11.2 Time-dependent covariates and competing risks

The connection between multistate models and time-dependent covariates de-
scribed in Section 11.1.1 conceptually also covers the case of competing end-
points. As a consequence, a proportional hazards model with time-dependent
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Fig. 11.2. Illness-death model without recovery and with two competing endpoints.

covariates analogous to Section 11.1.2 for the cause-specific hazards can im-
mediately be formulated. In contrast, relating the subdistribution hazard to
a time-dependent covariate requires a more detailed discussion. We consider
cause-specific hazards in Section 11.2.1 and the subdistribution hazard in Sec-
tion 11.2.2.

Again, things are most easily understood via an example. To be specific,
we reconsider the situation of hospital-acquired pneumonia (HAP) from Sec-
tion 11.1, but we now distinguish between hospital discharge (alive) and hos-
pital death. For illustration, consider the extended illness-death model in Fig-
ure 11.2. The interpretation of the multistate model for the present example
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is that patients are initially in state 0. As before, occurrence of HAP is mod-
elled by transitions into the intermediate state 1. Hospital death is modelled
by transitions into state 2, and transitions into the competing endpoint state 3
reflect alive discharge. Still writing T for length of hospital stay, we now have
that

T := inf{t > 0 |Xt ∈ {2, 3}}.
The cumulative incidence function for hospital death is P(T ≤ t,XT = 2) and
the cumulative incidence function for alive discharge is P(T ≤ t,XT = 3).
The cause-specific hazards are

αj(t)dt := P(T ∈ dt ,XT = j |T ≥ t), j = 2, 3.

Note that we have used a slightly different notation for the cause-specific
hazards in the preceding display as compared to earlier chapters of the book,
where we have indexed the cause-specific hazards by the transition type 0j.
In the present situation, we have only used the ‘target state’ j as an index,
which reflects that the ‘starting state’ of the transition will also depend on
the current covariate level.

11.2.1 Cause-specific hazards

A proportional cause-specific hazards model analogous to (11.1) is now im-
mediately formulated as

αj;i(t;Zi(t)) = αj;0(t) · exp (βj · Zi(t)) , j = 2, 3, i = 1, . . . , n, (11.2)

where Zi(t) is individual i’s time-dependent HAP status as before and αj;0(t)
are the cause-specific baseline hazards. Models (11.2) assume that the transi-
tion hazards into the same absorbing state of Figure 11.2 are proportional,

α12(t)

α02(t)
= exp(β2)

α13(t)

α03(t)
= exp(β3)

We reiterate that these models in general do not allow us to predict proba-
bilities, because probabilities also depend on the infection hazard, the 0 → 1
transition.

As in Section 11.1.2, the practical key step to fit models (11.2) is to gen-
erate appropriate data sets, which may then be used with, e.g., coxph. Recall
the hypothetical individual 1, who acquired HAP on day 3 with end of hospi-
tal stay on day 10. Assuming that the individual dies in hospital, the data set
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contribution for analysing the cause-specific hazard of hospital death would
be:

id start stop z.t status

1 0 4 0 0

1 4 10 1 1

The data set contribution for analysing the cause-specific hazard of alive dis-
charge only differs in the last entry of status:

id start stop z.t status

1 0 4 0 0

1 4 10 1 0

11.2.2 Subdistribution hazard

Incorporating time-dependent covariates in a model for the subdistribution
hazard may at first seem less straightforward as compared to modelling cause-
specific hazards. Recall from Section 5.3 that the basis of the subdistribution
framework is to consider a time ϑ until an event of interest, say hospital
death. This subdistribution time is defined to be infinite, if the competing
event occurs.

Also recall from Section 5.3 that a technical difficulty of the subdistribu-
tion framework is that individuals with an observed competing event should
remain in the subdistribution risk set until their potential future censoring
time; see Figure 5.12. The conceptual concern when relating a time-dependent
covariate to the subdistribution hazard now is the question of how the time-
dependent covariate should be defined on the interval from the real-life failure
time T to the future censoring time C if the competing event has been ob-
served at T (Latouche et al., 2005). Following Beyersmann and Schumacher
(2008), we now illustrate that this concern disappears if we consider subdistri-
bution hazards from a subdistribution process point of view as in Section 5.3.1.
The solution will coincide with considering a stopped covariate process as in
Section 11.1. In the data example, we show that the subsequent analysis pro-
vides for a synthesis of cause-specific hazards analyses as in Section 11.2.1.
We must, however, reiterate that none of these analyses allows us to predict
probabilities. We also recall that a subdistribution hazard analysis typically
assumes random censoring, whereas censoring may depend on covariates in
an analysis of the cause-specific hazards.

The idea of the subdistribution process is to stop the original process just
prior to T , if the process moves into the competing event state. Adapting
Equation (5.32) to Xt of Figure 11.2, the subdistribution process ξt is seen to
be

ξ(t) := 1(X(t) 	= 3) ·X(t) + 1(X(t) = 3) ·X(T−).

The subdistribution process has one absorbing state 2 and two transient
states 0 and 1. The subdistribution failure time is
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ϑ := inf{t > 0 | ξt = 2}

with subdistribution hazard

λ(t)dt := P(ϑ ∈ dt |ϑ ≥ t).

The transient states of the subdistribution process are now interpreted as time-
dependent covariate values as in Section 11.1.1. That is, the time-dependent
covariate reflects the transitions between the transient states of ξt. Readers
can easily verify that this amounts to considering the same time-dependent
covariate

t �→ Z(t ∧ T )

as before!
The reason (and the solution) is that the present connection between tran-

sient states of a multistate model and time-dependent covariates implies that
time-dependent covariates reflect transitions between the transient states. Be-
cause there are no further transitions after absorption, the time-dependent
covariate is stopped as in the preceding display and as in Figure 11.1. And
because the subdistribution process only differs from the original process if
stopped at the real-life failure time, the transitions between transient states
are the same both for Xt and ξt. Hence, we may formulate the proportional
subdistribution hazards model

λi(t;Zi(t)) = λ0(t) · exp (γ · Zi(t)) , i = 1, . . . , n. (11.3)

A concrete example is given below.

11.2.3 Example

Impact of hospital-acquired pneumonia (HAP) on intensive care
unit mortality

We return to the HAP example of Section 11.1.3, this time distinguishing the
competing events discharge alive and death in the unit. Recall from the data
set description in Chapter 1 that an observed outcome is in event, but that
the entry in event has no meaning for censored observations. Observed end
of stay is indicated by icu.pneu$status equal to 1, which is 0 otherwise.
We first create a new variable which encodes both observed competing event
status and censoring status:

> icu.pneu$outcome <- with(icu.pneu, status * event)

We now fit the proportional cause-specific hazards models including HAP as
the time-dependent variable.
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> cox.hap.death <- coxph(Surv(start, stop, outcome == 2) ~ pneu,

+ icu.pneu)

> cox.hap.disch <- coxph(Surv(start, stop, outcome == 3) ~ pneu,

+ icu.pneu)

> summary(cox.hap.death)

n= 1421

coef exp(coef) se(coef) z Pr(>|z|)

pneu1 -0.01231 0.98776 0.24668 -0.05 0.96

exp(coef) exp(-coef) lower .95 upper .95

pneu1 0.9878 1.012 0.6091 1.602

> summary(cox.hap.disch)

n= 1421

coef exp(coef) se(coef) z Pr(>|z|)

pneu1 -0.5024 0.6051 0.1185 -4.241 2.23e-05

exp(coef) exp(-coef) lower .95 upper .95

pneu1 0.6051 1.653 0.4797 0.7632

Again, these findings confirm the nonparametric analyses of Section 9.2. HAP
increases hospital mortality via prolonged stay, and the death hazard remains
essentially unchanged.

A formal summary of these findings is achieved using subdistribution haz-
ards. Recall from Section 5.3 that there are several ways to fit a proportional
subdistribution hazards model in practice. Because the cmprsk package does
not offer the possibility to consider time-dependent covariates, we use the kmi
package (Allignol and Beyersmann, 2010); see Section 5.3.3. Briefly, kmi tries
to recover the missing censoring times for individuals who have experienced
a competing event within a multiple imputation framework. Then, e.g., the
coxph function can be used on the imputed data sets to estimate subdistri-
bution hazard ratios.

We first compute the imputed data sets using the kmi function.

> set.seed(4284)

> imp.dat <- kmi(Surv(start, stop, outcome != 0) ~ 1,

+ data = icu.pneu, etype = outcome,

+ id = id, failcode = 2, nimp = 10)

The important addition to the code of Section 5.3.3 is the id argument. It is
used to identify individual subjects when one subject can have several rows of
data as in our case with a time-dependent covariate. This is important because
imputation of the missing censoring times is done using the observed censoring
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distribution. In a coxph framework, observations are artificially censored when
the time-dependent covariate changes its value. This artificial censoring should
not be used in the imputation procedure. We also specified failcode = 2 as
death is the event of interest. We now fit the Cox models on the imputed data
sets using the cox.kmi function.

> kmi.sh.hap <- cox.kmi(Surv(start, stop, outcome == 2) ~ pneu,

+ imp.dat)

> summary(kmi.sh.hap)

Call:

cox.kmi(formula = Surv(start, stop, outcome == 2) ~ pneu,

imp.data = imp.dat)

*****************

Pooled estimates:

*****************

coef exp(coef) se(coef) t Pr(>|t|)

pneu1 1.108 3.028 0.240 4.616 3.91e-06

exp(coef) exp(-coef) lower .95 upper .95

pneu1 3.028 0.3302 1.892 4.847

The estimated subdistribution hazard ratio is significantly larger than 1. This
is a formal verification of how we interpreted the analyses of the cause-specific
hazards: HAP increases intensive care unit mortality.

11.3 Further topics in the analysis of time-dependent

covariates

Time-dependent bias: what happens if one treats a time-dependent exposure
as being time-fixed?

In an illness-death model, the intermediate state is often interpreted as a time-
dependent exposure. Being in the intermediate state means that exposure
has just happened or has happened in the past. In previous examples, we
have looked at hospital-acquired infection. A common mistake, sometimes
called time-dependent bias (van Walraven et al., 2004), is to analyse the time-
dependent exposure as if it were baseline information. In a Cox analysis, time-
dependent bias would arise by coding a time-dependent exposure as a baseline
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covariate. For the exemplary individual of Section 11.1.2, bias arises if we
substitute the correct data set entries

id start stop z.t status

1 0 4 0 0

1 4 10 1 1

by the single incorrect data line

id start stop z.t status

1 0 10 1 1

The single data line from the preceding display should not be used!
The bias is tantamount to ignoring that there is a 0 → 1 transition in

the illness-death model, and that 0 → 1 transitions occur over the course
of time. A quick calculation in terms of the Nelson-Aalen estimators shows
that time-dependent bias leads to overestimation of the 0 → 2 hazard and to
an underestimation of the 1 → 2 hazard (Beyersmann et al., 2008a). For a
Cox model of a survival hazard, time-dependent bias will therefore artificially
inflate a protective effect. A harmful effect will be artificially damped down
or even reversed into an artificial protective effect (Beyersmann et al., 2008b).

An early example of time-dependent bias comes from heart transplant
research (Mantel and Byar, 1974). There, a biased analysis showed a beneficial
effect of transplantation on survival, but this beneficial effect was in part
artificial. It owed to the fact that a transplanted patient had to stay alive
on the waiting list long enough in order to finally undergo transplantation.
In oncology, time-dependent bias may, e.g., arise in comparisons of patient of
survival by tumor response (Anderson et al., 1983, 2008).

Readers should be aware of the fact that involved definitions of patient
cohorts may quite subtly introduce time-dependent bias to the analysis. Suissa
(2008), who uses the term ‘immortal time bias’, gives a careful discussion
within the context of pharmacoepidemiology.

Plots for illustrating the effect of a time-dependent covariate

Reporting the effect of a baseline covariate such as gender in terms of haz-
ard ratios is often supplemented by Kaplan-Meier plots, where the Kaplan-
Meier curves are computed separately within the group of female patients and
male patients, respectively. Similar plots for a time-dependent covariate are
hampered by the fact that the model typically does not allow for predicting
probabilities anymore; see our discussion following Equation (11.1). A natural
choice for graphical illustration would be to present Nelson-Aalen plots for
the hazards that are being related via the Cox model. For model (11.1), one

might plot the Nelson-Aalen estimators of
∫ t

0
α02(u)du and of

∫ t

0
α12(u)du.

The advantage of such plots is that they closely relate to the model used
for the analysis. The inevitable disadvantage is that such plots do not depict
probabilities.

An alternative is the so-called ‘landmark method’ (e.g., Anderson et al.,
1983). The idea is to choose a number of landmarks s, s > 0. The land-
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mark s serves as a new time origin and patients are grouped according to
their covariate value at time s. Then, Kaplan-Meier curves may be calculated
within groups and starting at time s. The advantage of landmarking is that
it produces probability plots, which may be easier to communicate. The dis-
advantage is that landmarking produces an increased number of plots, and
that the depicted probabilities do not directly relate to the model used for the
analysis, but also depend on the development of the time-dependent covari-
ate. We note that there is renewed statistical interest in landmarking (e.g.,
van Houwelingen and Putter, 2008). Landmark plots have been produced in
Section 9.2.1.

Sometimes, efforts are made to obtain other Kaplan-Meier-type plots in the
presence of time-dependent covariates. Some arise from time-dependent bias
as discussed above and rely on retrospectively grouping patients by their final
covariate value. Others arise from computing a Kaplan-Meier-type statistic
based on the Nelson-Aalen estimator of one transition hazard only. These
plots do not have a meaningful probability interpretation and should not be
used.

Should one adjust for a time-dependent covariate when comparing baseline
treatment groups?

In the analyses of hospital-acquired pneumonia considered earlier, there was
explicit research interest in investigating the impact of the infection. A re-
lated but also somewhat different issue arises, e.g., in clinical trials where the
main aim is to compare treatment groups. Often, treatment is decided upon
at time zero, e.g., via randomization, and patients are prospectively followed
until the occurrence of an event or closure of the study. Time-dependent co-
variates may be collected during follow-up. The question now is whether to
include the time-dependent covariates in, e.g., a Cox model, when the aim is
to compare the treatments. The concern is that time-dependent covariates can
be ‘responsive’ (Kalbfleisch and Prentice, 2002, p. 199). An example is tumor
response to treatment (e.g, Anderson et al., 2008). Assume that a benefi-
cial treatment effect is mediated via changes in the time-dependent covariate.
Then, including the time-dependent covariate in the model may give insights
into this mechanism, but it may also diminish the beneficial treatment effect as
displayed in the analysis. Therefore, it is typically recommended to leave out
the time-dependent covariate from the analysis. This issue is obviously subtle,
but relevant, and it is still a topic of current statistical research. We refer to
Chapters 8 and 9 of Aalen et al. (2008) for very useful textbook accounts.

Investigating and relaxing the Markov assumption

The most common departures from the Markov property are duration de-
pendencies or dependency on the number of previous recoveries, say, in an
illness-death model with recovery. In particular, the Markov assumption in
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the important illness-death model without recovery is tantamount to assum-
ing that the 1 → 2 hazard only depends on time t since time origin, but not on
the entry time, say s, into the intermediate state 1. This suggests ways to both
investigate and relax the Markov assumption via time-dependent covariates.

To be specific, consider the illness-death model without recovery. Then we
may investigate the Markov assumption by including the entry time s into
state 1 (e.g., Keiding and Gill, 1990) or the waiting time t− s in state 1 (e.g.,
Andersen and Keiding, 2002) in, e.g., a Cox model for the 1 → 2 hazard, the
hazard of ‘dying’ after ‘illness’. If there is evidence for a departure from the
Markov property, one may choose to model this by keeping the waiting time
in state 1 in a regression model for the 1 → 2 hazard. In more complex models
such as the illness-death model with recovery, one may choose to include the
number of previous transitions into the ‘illness’-state into the model for the
0 → 1 hazard of getting ‘ill’, or one may consider a time-dependent indicator
of whether one has been ill before.

We note that Allignol et al. (2011b) investigated the Markov assumption
for the hospital-acquired pneumonia data used earlier in this book. The au-
thors found it reasonable to assume the Markov property.

Investigating the assumption of independent left-truncation

An idea analogous to investigating the Markov assumption applies when the
aim is to assess the assumption of independent or random left-truncation. To
be specific, consider a standard survival situation, where data are subject to
left-truncation and potentially also right-censoring. Then, the assumption of
independent or random left-truncation may be investigated by including the
study entry time into a Cox model for the all-cause hazard. This analogy to
investigating the Markov assumption is not a coincidence: Keiding and Gill
(1990) gave a fundamental study of left-truncation by using a reparametriza-
tion in terms of a Markovian multistate model.

We note that Allignol et al. (2010) assessed the assumption of random left-
truncation for the pregnancy outcome data that were analysed in Sections 4.4
and 5.2.2. The authors argued that random left-truncation may reasonably be
assumed.

11.4 Exercises

1. Redo the proportional subdistribution hazards analysis of Section 11.2.2
using the administrative censoring times contained in adm.cens.exit.
(Hint: See Section 5.3.3 on using adminstrative censoring times.)

2. Consider the ventilation data analysed in, e.g., Section 10.2.2.
a) Fit a Cox proportional hazards model for the hazard of discharge,

considering ventilation status as a time-dependent covariate.
b) Fit the same model, but with an additional binary time-dependent

covariate indicating prior ventilation.
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3. Reconsider Exercise 1 of Section 10.3. Redo the analyses, including as a
time-dependent covariate the information whether one has recovered from
‘illness’ in the past.

4. Time-dependent bias: Show that an analysis subject to time-dependent
bias underestimates the cumulative hazard of reaching the absorbing state
for exposed individuals. Also show that the biased analysis overestimates
the corresponding cumulative hazard for non-exposed individuals. (Hint:
Consider the Nelson-Aalen estimators for an illness-death model without
recovery.)
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Further topics in multistate modelling

More parsimonious Cox-type regression models

In Section 5.2 on proportional cause-specific hazards models, we illustrated
that one typically has to investigate the effect of a covariate on all transition
hazards. We also outlined that some covariates may have a common effect
on some of the cause-specific hazards, but this is rarely used in practical ap-
plications. In more complex multistate models, however, sample size restric-
tions may motivate more parsimonious models. In practice, this is typically
achieved by analysing an extended data frame as in Section 5.2.2 (see the
data frame xl) with one row for each individual and each transition. Such an
extended data frame for multistate data has been discussed in Section 10.2.
As illustrated in Section 5.2.2, transition-specific covariates are used which
allow single covariates to have a common effect on some transition hazards
and different effects on other hazards. One may also impose that a covariate
has no effect on a certain hazard by setting the corresponding entry of the
transition-specific covariate to zero. Finally, one may assume some baseline
transition hazards to be proportional, say, αlj;0(t) = exp(β) · αl̃j̃;0(t). This is
achieved by introducing an additional dummy column to the extended data
frame with entry 1 for the l̃→ j̃ transition and 0 otherwise.

While these techniques are useful, more practical experience for model
building is needed. A concise description of the techniques at hand is also
provided by Andersen and Keiding (2002) and de Wreede et al. (2010).

Investigating and relaxing the Markov assumption

See Section 11.3.

Beyond the Markov assumption

In Section 11.3, we have explained that one may model departures from the
Markov property by including entry times into a state, waiting times in a state,
or the number of previous visits to a state in Cox-type regression models

J. Beyersmann et al., Competing Risks and Multistate Models with R, Use R,  
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for the transition hazards. We also discussed how such approaches can be
used to investigate whether the Markov property holds. In this paragraph, we
comment on some approaches to nonparametric estimation for non-Markov
multistate models.

If the data are subject to random censoring only (i.e., censoring is com-
pletely independent of the multistate process) and if the process starts in
one common initial state 0, Datta and Satten (2001) showed that the Aalen-
Johansen estimator of P(Xt = j |X0 = 0) is a consistent estimator of the state
occupation probability P(Xt = j) even in the absence of the Markov property.
Glidden (2002) provides weak convergence results towards a Gaussian process.
However, variances are even more complicated than in the Markovian case.
Therefore, it is more convenient to use the bootstrap as in Appendix A to
estimate variances.

If the initial distribution of the process is not degenerated, one may esti-
mate the initial distribution by the observed relative frequencies in the states
of the model at time 0 and combine these estimates with the Aalen-Johansen
estimators of P(Xt = j |X0 = l) in the usual way to obtain an estimator of
the state occupation probability P(Xt = j).

Models, which are only forward moving, may typically be reparametrized
by multivariate event times. The simple illness-death model without recovery
and common initial state 0 can equivalently be expressed by the pair of event
times (e.g., Beyersmann, 2007)

T0 := inf{t ≥ 0 |Xt �= 0} and T := inf{t ≥ 0 |Xt = 2}.

In this parametrization, we have T0 ≤ T , and T−T0 is the length of time spent
in the intermediate state 1. For direct 0 → 1 transitions, we have T − T0 = 0.
The idea is to estimate the joint distribution of (T0, T ). Then, transition prob-
abilities may be derived as deterministic functions of the joint distribution.
E.g., we have that P(Xt = 2 |Xs = 1) is equal to P(T ≤ t |T0 ≤ s < T ).

The joint distribution of (T0, T ) in the presence of random right-censoring
may be estimated by techniques of multivariate survival analysis. However,
multivariate survival analysis in general poses challenging problems. One issue
is that the concepts of ‘past’ and ‘future’ are not unambiguous anymore in
multivariate time (Gill, 1992). Fortunately, these problems reduce to a certain
degree in the present context, where (T0, T ) are subject to a common censoring
variable (Tsai and Crowley, 1998).

Meira-Machado et al. (2006) have used the idea to estimate transition
probabilities in a non-Markov illness-death model without recovery. Their es-
timator is implemented in the R package p3state.msm (Meira-Machado and
Pardinas, 2011).

Choice of time origin

Typically, the choice of time origin and, hence, the time scale is governed by
subject matter considerations. In randomized clinical trials, a natural choice
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for time 0 is time of randomization. In some epidemiologic studies, age may be
the time scale of choice. We believe that time is conceptually so fundamental
that, if possible, it is best not to change time scales in order to avoid confusion.

However, there may be situations where one may consider different time
scales. In a non-Markov illness-death model without recovery and common
initial state 0, the 1 → 2 hazard will depend on time t since time origin and on
time s of entry into state 1. A semi-Markov or Markov renewal process arises,
if the hazard only depends on the duration t− s. In such a situation, one may
consider to choose the time of state entry as the new time origin. Putter et al.
(2007) refer to this as ‘clock reset’, whereas keeping the origin time scale is
referred to as ‘clock forward’. Andersen and Keiding (2002) argue that the
‘clock reset’ approach is useful in Cox-type regression modelling of the 1 →
2 hazard, if the effect of the entry time into the intermediate state is that
‘irregular’ such that it is best captured via a nonparametric baseline hazard
rather than by parametrically modelling it via a time-dependent covariate.

Homogeneous Markov processes

This book has focused on the usual non- and semiparametric techniques for
analysing competing risks and multistate data subject to independent right-
censoring and left-truncation. These methods are especially common in biosta-
tistical applications, where it is often difficult to justify a particular parametric
model. In fact, in Section 8.1, we emphasized that the multistate models at
hand were time-inhomogeneous Markov processes with time-varying transition
hazards rather than homogeneous processes with time-constant hazards. But
there will, of course, be situations where working with (piecewise) constant
hazards is attractive.

One such situation is large data sets. The estimator of the l → j hazard
under a constant hazard assumption is the number of all observed l→ j tran-
sitions divided by the total time at risk in state l. For variance estimation,
one divides by the square of the total time at risk in state l. In other words,
the only information that one needs to store is the number of all observed
l → j transitions and the total time at risk in state l, aggregated over all
individuals, but the individual information is not needed for such an analysis.
This is attractive when handling truly large data sets.

Another situation is interval-censored data. Interval censoring arises if the
occurrence of an event is only known to fall in some time interval, but the
exact event time is not known. Accounting for interval censoring in non- and
semiparametric inference is challenging, but this observational pattern is easily
incorporated when assuming constant hazards.

In R, multistate models with (piecewise) constant hazards are typically
analysed using the R package msm. Jackson (2011) gives an excellent account
of the package, along with a concise and clear description of data situations,
where the approach will be useful.
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Investigating independent left-truncation

See Section 11.3.

Nonparametric hypothesis testing

In Chapter 6, we have explained that the log-rank test may be used to compare
the cause-specific hazards of a type 1 event, say, between groups. In practice,
these tests may be computed as a byproduct when fitting Cox models or using
the function survdiff of the package survival. Analogously, a log-rank test
may be computed to compare the l→ j transition hazard between groups for
fixed l, j, l �= j.

It also holds analogously to competing risks that testing equality of the l→
j transition hazard is not tantamount to testing equality of a certain transition
probability. Little work has been done if the aim is to compare transition
probabilities. One approach would be to directly model the probabilities as in
Andersen et al. (2003) or in Scheike and Zhang (2007); see also Section 5.6.
Another approach would be to base tests on confidence bands for the group
difference of the transition probability under consideration. This approach will
typically build on some resampling procedure as in Appendix A to construct
the confidence bands. Lin (1997) discusses one approach for competing risks.

Direct regression models for the transition probabilities

In the competing risks part of the book, we discussed Cox-type regression
models for both the cause-specific hazards and the subdistribution hazard.
The analysis of the subdistribution hazard allowed for a direct interpretation
of the effect of a covariate on one cumulative incidence function, and analysing
the cause-specific hazards was required to understand how such an effect was
mediated. In the multistate models part of the book, we considered Cox-type
regression models for the transition hazards in obvious analogy to the cause-
specific hazards. Direct regression models for the transition probabilities of a
general multistate model have, e.g., been developed by Andersen et al. (2003)
and Scheike and Zhang (2007). We have briefly discussed their approaches in
Section 5.6. A very useful review paper is Andersen and Perme (2008).



A

A nonparametric bootstrap for multistate

models

Briefly speaking, the bootstrap (Efron, 1979) is a computer resampling ex-
periment, which samples according to the empirical distribution of the data.
The idea is that the computer experiment should ‘work’, if the empirical dis-
tribution is a reasonable approximation of the true underlying distribution.
One typical application of the bootstrap is to estimate variances, if a variance
estimator is algebraically complicated or if a formula for variance estimation
is not available at all. Andersen et al. (1993) (p. 221) value the bootstrap
as ‘an attractive alternative to the calculation of a complicated asymptotic
distribution.’

For multistate process data, there are different bootstrap approaches; see,
e.g., the brief discussion in Section IV.1.4 of Andersen et al. (1993). Here,
we describe Efron’s approach (Efron, 1981), originally introduced for i.i.d.
randomly censored survival data. Given that there are n individuals under
study, the resampling consists of drawing n times with replacement from the
original individuals. Such new bootstrap data sets are created a large number
of times, say, m times. Often, m is 1000 or even 10000.

For each of them bootstrap data sets, the statistic of interest is computed.
The statistic of interest could be the Aalen-Johansen estimator of a transition
probability or the maximum likelihood estimator of a regression coefficient.
The variance of the statistic of interest is then estimated as the empirical
variance of the m replicates of the statistic of interest.

In Section 5.4, we used the bootstrap to estimate the variance of the es-
timated least false parameter. In Section 10.2.2, we used the bootstrap to
estimate variances for the estimated regression coefficients when fitting Cox
models for transition hazards of an illness-death model with recovery. The
practical steps are illustrated below. Correctness of the bootstrap is investi-
gated by, e.g., Gill (1989) and van der Vaart and Wellner (1996).

The following code was used for computing the bootstrapped variance
estimates in Section 10.2.2. For each iteration of the loop, individuals are
drawn with replacement using the sample function. As information for one
individual can be spread across several lines, it is the id numbers that are
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actually sampled. As in Section 10.2.2, id is the variable which identifies the
lines belonging to one person.

We then create the bootstrap data set dboot. Care must be taken here,
because most matching procedures in R only select the first match. Hence,
we used the more involved construct below that returns for each element of
index the line numbers where the sampled id is equal to the individual id.
Then the statistic of interest is computed for each of the bootstrap data sets.
At the end of the nboot = 10000 bootstrap iterations, the empirical variance
of the bootstrap regression coefficients is computed.

> nboot <- 10000

> res <- lapply(seq_len(nboot), function(i) {

+ index <- sample(unique(sir.cont$id), replace=TRUE)

+ dboot <- sir.cont[unlist(sapply(index, function(x)

+ which(x==sir.cont[["id"]]

+ ))), ]

+ coef01 <- coef(coxph(Surv(time, to == 1) ~ age + sex,

+ dboot, subset = from == 0))

+ coef10 <- coef(coxph(Surv(time, to == 0) ~ age + sex,

+ dboot, subset = from == 1))

+ matrix(c(coef01, coef10), ncol = 4)

+ })

> res <- do.call(rbind, res)

> se.boot <- matrix(sqrt(apply(res, 2, var)), ncol = 4,

+ dimnames = list("", c("age01", "sex01",

+ "age10", "sex10")))

We also mention the msboot function in the mstate package. The func-
tion randomly samples with replacement subjects from the original dataset,
provided that the original data set is in the msdata format.
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Birkhäuser, Basel.
Bernoulli, D. and Blower, S. (2004). An attempt at a new analysis of the mortality
caused by smallpox and of the advantages of inoculation to prevent it. Reviews
in Medical Virology, 14(5):275–288.

Beyersmann, J. (2007). A random time interval approach for analysing the im-
pact of a possible intermediate event on a terminal event. Biometrical Journal,
49(5):742–749.

Beyersmann, J., Dettenkofer, M., Bertz, H., and Schumacher, M. (2007). A com-
peting risks analysis of bloodstream infection after stem-cell transplantation us-
ing subdistribution hazards and cause-specific hazards. Statistics in Medicine,
26(30):5360–5369.

Beyersmann, J., Gastmeier, P., Wolkewitz, M., and Schumacher, M. (2008a). An
easy mathematical proof showed that time-dependent bias inevitably leads to
biased effect estimation. Journal of Clinical Epidemiology, 61(12):1216–1221.

Beyersmann, J., Latouche, A., Buchholz, A., and Schumacher, M. (2009). Simulating
competing risks data in survival analysis. Statistics in Medicine, 28:956–971.



References 235

Beyersmann, J. and Schumacher, M. (2008). Time-dependent covariates in the
proportional subdistribution hazards model for competing risks. Biostatistics,
9:765–776.

Beyersmann, J., Wolkewitz, M., Allignol, A., Grambauer, N., and Schumacher, M.
(2011). Application of multistate models in hospital epidemiology: advances and
challenges. Biometrical Journal, 53:332–350.

Beyersmann, J., Wolkewitz, M., and Schumacher, M. (2008b). The impact of
time-dependent bias in proportional hazards modelling. Statistics in Medicine,
27:6439–6454.

Bie, O., Borgan, Ø., and Liestøl, K. (1987). Confidence intervals and confidence
bands for the cumulative hazard rate function and their small sample properties.
Scandinavian Journal of Statistics, 14:221–233.

Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York.
Bradley, L. (1971). Smallpox Inoculation: An Eighteenth Century Mathematical Con-
troversy. Adult Education Department of the University of Nottingham.

Braun, T. and Yuan, Z. (2007). Comparing the small sample performance of several
variance estimators under competing risks. Statistics in Medicine, 26(5):1170–
1180.

Breslow, N. (1972). Discussion of the paper by D.R.Cox. Journal of the Royal
Statistical Society, Series B, 34:216–217.

Burton, A., Altman, D., Royston, P., and Holder, R. (2006). The design of simulation
studies in medical statistics. Statistics in Medicine, 25:4279–4292.

Cheng, S., Fine, J., and Wei, L. (1998). Prediction of cumulative incidence function
under the proportional hazards model. Biometrics, 54:219–228.

Claeskens, G. and Hjort, N. (2008). Model Selection and Model Averaging. Cam-
bridge University Press, Cambridge.

Clark, T., Altman, D., and De Stavola, B. (2002). Quantification of the completeness
of follow-up. The Lancet, 359:1309–1310.

Cortese, G. and Andersen, P. (2010). Competing risks and time-dependent covari-
ates. Biometrical Journal, 52(1):138–158.

Cox, D. (1972). Regression models and life-tables. Journal of the Royal Statistical
Society, Series B: Methodological, 34:187–220.

D’Agostino, R., Lee, M., Belanger, A., Cupples, L., Anderson, K., and Kannel, W.
(1990). Relation of pooled logistic regression to time dependent Cox regression
analysis: the Framingham Heart Study. Statistics in Medicine, 9(12):1501–1515.

Dalgaard, P. (2002). Introductory statistics with R. Springer, New York.
Datta, S. and Satten, G. A. (2001). Validity of the Aalen-Johansen estimators
of stage occupation probabilities and Nelson-Aalen estimators of integrated
transition hazards for non-Markov models. Statistics and Probability Letters,
55(4):403–411.

de Wreede, L., Fiocco, M., and Putter, H. (2010). The mstate package for estimation
and prediction in non- and semi-parametric multi-state and competing risks
models. Computer Methods and Programs in Biomedicine, 99:261–274.

de Wreede, L. C., Fiocco, M., and Putter, H. (2011). mstate: An R package for
the analysis of competing risks and multi-state models. Journal of Statistical
Software, 38(7):1–30.

Dettenkofer, M., Wenzler-Röttele, S., Babikir, R., Bertz, H., Ebner, W., Meyer, E.,
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wolff, S., Geffers, C., Behnke, M., Rüden, H., and Schumacher, M. (2008). Risk
factors for the development of nosocomial pneumonia and mortality on intensive
care units: application of competing risks models. Critical Care, 12(2):R44.

Zhang, X., Zhang, M.-J., and Fine, J. (2009). A mass redistribution algorithm
for right-censored and left-truncated time to event data. Journal of Statistical
Planning and Inference, 139(9):3329–3339.

Zhang, X., Zhang, M.-J., and Fine, J. (2011). A proportional hazards regression
model for the subdistribution with right-censored and left-truncated competing
risks data. Statistics in Medicine. DOI: 10.1002/sim.4264.



Index

Aalen-Johansen estimator
(co)variance estimator for 61, 69,
71–72, 186

competing risks 35, 60–62, 68–72,
75, 79–80, 84, 147

confidence interval 61, 185–186
multistate model 32–33, 179–182,
184

non-Markov model 228
R package etm see R packages, etm

absorbing state 10, 24, 170
approximate inference based on large

sample results 34–36, 58–59, 61,
95, 106, 178, 182, 231

asymptotic see approximate inference
based on large sample results

at risk see risk set

baseline hazard 90, 92, 96, 110,
131, 197–198, see also Breslow
estimator

and partial likelihood 94
importance of 97, 99–104, 114, 121

bootstrap 36, 98, 132, 134, 137, 141,
146, 201, 228, 231–232

Breslow estimator 96–97, 113–115,
132, 201

cause-specific hazard 25, 43, 57,
121, 144, 150–151, see also
Nelson-Aalen estimator and Cox
regression model

and time-dependent covariate
218–221

generating competing risks data
45–46, 99–104

no effect on competing cause-specific
hazard 85–87

testing equality of 156

visualization as force of transition
78–79

censoring

administrative 20, 128

by competing risk 22, 25, 31, 107,
161–163, 200

depending on covariates 22, 89, 128,
197

independent 22–23, 25

informative 25, 162

interval 229

Kaplan-Meier estimator of censoring
survival function 129

left- 23

process see observation switched
on/off

random 15, 21, 46

right- 3, 13–17, 20–23, 43, 56, 89,
126, 145

state-dependent 22, 194

clock

forward 229

reset 229

competing risks

Aalen-Johansen estimator see

Aalen-Johansen estimator

and combined endpoint 23, 100

241



242 Index

cause of failure see competing risks,
event type

cause-specific hazard see cause-
specific hazard

Cox regression model see Cox
regression model, cause-specific
hazard

elimination of cause 52
event type 24, 43, 45, 56
fatal event type 163
independence of 160–161
latent failue time model for 50–53,
160–161

multistate model for 24, 42–45
Nelson-Aalen estimator see

Nelson-Aalen estimator
composite endpoint see competing

risks and combined endpoint
counting process 17–20, 25, 31, 57, 75,

93, 177
covariate
cause-specific 90–91, 99, 111–113
time-dependent see time-dependent
covariate

transition-specific 197, 204, 227
Cox regression model
cause-specific hazard 79, 89–91
estimator of cumulative baseline
hazard see Breslow estimator

goodness-of-fit see goodness-of-fit
guided tour of practical cause-specific
hazards example 104–118

guided tour of practical sub-
distribution hazard example
133–138

misspecified see model misspecifica-
tion

prediction 97–98, 115–118, 132, 136,
201

R package mstate see R packages,
mstate

R package survival see R packages,
survival

stratified 111
subdistribution hazard 89, 92–93,
126

theory 93–98
time-dependent covariate see

time-dependent covariate

transition hazard of a multistate
model 197–201

worked multistate examples 202–
207

CRAN task view ‘Survival Analysis’
152

cumulative hazard 11, 43–44, 90,
97, 116, 172, 183, 197, see also
Nelson-Aalen estimator and
Breslow estimator

and martingale 20
interpreting estimates of 114
simulation 48–49

cumulative incidence function 44–45,
97, 115, 132, 136, 139–140

Aalen-Johansen estimator see

Aalen-Johansen estimator,
competing risks

and regression models 91–92,
151–152

generated by cause-specific hazards
101–103

limit of 35, 45
testing equality of 157–158, 163–164
when no effect on competing
cause-specific hazard 85–87

current leukemia-free survival 194

delayed entry see left-truncation
delta method 36
functional 36

discrete time methods 164–166

empirical transition matrix see

Aalen-Johansen estimator

Fine and Gray model see Cox
regression model, subdistribution
hazard

goodness-of-fit 146–149
Gray’s test 157
R package cmprsk see R packages,
cmprsk

hazard 9, 11, 35
all-cause 26, 44, 45, 58, 77–78
and left-truncation 21
and right-censoring 13–17



Index 243

baseline see baseline hazard
cause-specific see cause-specific
hazard

cumulative see cumulative hazard
subdistribution see subdistribution
hazard

testing equality of 155–158, 230
transition see transition hazard

history see past

illness-death model 22, 26–29, 31, 52
arising from competing risks
experiments 173–174

competing endpoints 171, 182, 187
Cox regression 198–200, 204
joint model for time-dependent
covariate and time-to-event
212–214

progressive 28, 171, 187
time-bivariate parametrization 228
with recovery 28, 171, 192
without recovery 27, 170–171,
181–183

immortal time bias see time-
dependent bias

inverse probability of censoring
weighting 129, 162–163

IPCW see inverse probability of
censoring weighting

Kaplan-Meier estimator 16, 59–60,
65–68, 74

competing risks 59, 161–162
confidence interval 59
Greenwood variance estimator 59
multistate model 59, 65–68, 181, 187
time-dependent covariate 223–224
waiting time 59

landmark 187, 223
large samples see approximate

inference based on large sample
results

least false parameter 93, 144–146
left-truncation 20–23, 43, 56, 73–76,

82–84, 89, 121–122
depending on covariates 22, 89, 197
estimator of left-truncation distribu-
tion 140

external 22
independent 22–23, 25
internal in multistate model 31, 175,
200

investigating independence assump-
tion 225

random 21, 46
likelihood ratio test 96
log-rank test 96, 155–158, 163–164

Markov process
homogeneous 30, 172, 229
inhomogeneous 30, 172–174
multistate model see multistate
model

renewal 229
semi- 229

martingale 17–20, 95
model misspecification 92, 106, 125,

134, 144–146, 148, 200, 208
multistate model
Aalen-Johansen estimator see

Aalen-Johansen estimator
arising from competing risks
experiments 28–29, 170–175

competing risks see competing
risks, multistate model for

Cox regression model see Cox
regression model, transition
hazard of a multistate model

for survival data 10
investigating Markov assumption
224–225

Markov 26–33, 60, 170–175, 198
Nelson-Aalen estimator see

Nelson-Aalen estimator
non-Markov 224–225, 227–229
transition hazard see transition
hazard

Nelson-Aalen estimator
competing risks 25, 55–59, 62–65,
73–74

confidence interval 58, 178
left-truncation 21
multistate model 31–32, 174–175,
178–179, 184, 190, 192

R package mvna see R packages,
mvna



244 Index

right-censoring 15
time-dependent covariate 223
variance estimator for 57, 178

observation switched on/off 23
Occam’s razor 161

parsimonious model 227
partial likelihood 94–96
past 18, 21, 22, 171, 228
probability of being in response 184
product integral 11–13, 16, 32–33, 36,

44–45, 179, 201
numerical approximation of survival
probability or of transition
probabilities 12, 33

product limit estimator see Kaplan-
Meier estimator or Aalen-Johansen
estimator

pseudo-value 152

R packages
cmprsk 68–69, 76, 79, 130–131,
134–136, 157

compeir 78
etm 65–68, 70–72, 75–76, 180,
184–186

kmi 132, 137–138, 221–222
msm 229
mstate 98, 115–118, 141, 173,
204–206, 232

mvna 62–65, 73–74, 183–184
p3state.msm 228
pseudo 152
survival 14, 16, 65, 75, 98, 106–
114, 121, 131, 133, 137, 141, 156,
202–204, 207, 216–217, 220–221

timereg 151
R-squared 107
regression model
Aalen see regression model, additive
additive 151
Cox see Cox regression model
Fine and Gray see Cox regression
model, subdistribution hazard

non-proportional hazards 150–152
proportional hazards see Cox
regression model

transition probability 230

resampling see bootstrap
risk set 15, 17–23, 25, 31, 34, 57, 64,

73–74, 93, 174–175, 199, 200
robust variance estimator 146, 200,

206–207

sample path 11
score test 96, 156
simulation 41, 46–50
competing risks 26, 45–50, 53, 94,
98–104

multistate model 28–29, 172–174
subdistribution hazard 141–144

start stop-coding 75, 215
state occupation probability 185, 190,

228
subdistribution hazard 91–92, 123
analysis of all cumulative incidence
functions 139–140

different censoring schemes 128–132
estimator of cumulative subdistribu-
tion hazard 132, 148

left-truncation 126–128, 140–141
proportional subdistribution hazard
model see Cox regression model,
subdistribution hazard

R package cmprsk see R packages,
cmprsk

R package kmi see R packages,
survival

relation to cause-specific hazard 92,
123–126, 142–143

right-censoring 126–128
simulation see simulation, subdis-
tribution hazard

subdistribution process 123–126,
163

time-dependent covariate 219–222

time origin see time scale
time scale 228–229
time-averaged hazard ratio see least

false parameter
time-dependent bias 183, 222–223
time-dependent covariate
and probability prediction 215–216
connection to multistate model
212–214

defined 211



Index 245

external 211

internal 211

Plots for 223–224

time-dependent bias see time-
dependent bias

when comparing treatment groups
224

time-dependent exposure 183, 191,
213, 222

transient state 34, 170
transition hazard 29–31, 171–172, 178,

183, 197, 202–203
transition probability 29–31, 171, 179,

181–182, 184, 201, 205

Wald test 96


	Competing Risks and Multistate Models with R
	Preface
	Contents
	Part I Data examples and some mathematical background
	Part II Competing risks
	Part III Multistate models
	A A nonparametric bootstrap for multistate models
	References
	Index



