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Preface

Bond valence theory has developed slowly over the last 100 years as a method of

analyzing and validating the structures of inorganic materials. The various rules of

the model have hitherto been strictly empirical, having grown out of the ionic

model and the bonding rules proposed by Linus Pauling in the early part of the last

century. The remarkable success of the model, however, suggests that it must reflect

some underlying theory. Such a theory is developed in the first part of this volume.

Classical electrostatics applied to a simple, but physically correct, picture of the

atom provides a chemical bond definition that can be used to derive not only the

theorems of the bond valence model but also the rules of the traditional ionic and

covalent ball-and-stick models.

Recent developments have seen applications of bond valence theory extended

from the simple validation of crystal structure determinations to the prediction of

the structure and bonding geometry of complex materials, to the exploration of

structure-related properties such as ionic conduction, and to the study of the

chemistry of surfaces and interfaces. These topics are the subject of the contribu-

tions to the second part of this volume.

It is our hope in producing this volume that supplying a theoretical base for the

bond valence model, and illustrating some of its more recent applications, will

inspire a greater interest in, and appreciation of, the underlying concepts and

applications of this powerful bonding model.

Ontario, Canada I. David Brown

Illinois, USA Kenneth R. Poeppelmeier

v



ThiS is a FM Blank Page



Contents

Historical Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

I. David Brown

Bond Valence Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

I. David Brown

Using Bond Valences to Model the Structures of Ternary

and Quaternary Oxides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Michael W. Lufaso and Patrick M. Woodward

Practical Considerations in Determining Bond Valence Parameters . . . . . 91

Stefan Adams

Understanding Ionic Conduction and Energy Storage Materials

with Bond-Valence-Based Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Stefan Adams and R. Prasada Rao

Crystallization and Dissolution in Aqueous Solution: A Bond-Valence

Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Frank C. Hawthorne and Michael Schindler

Structure and Acidity in Aqueous Solutions and Oxide–Water

Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Barry R. Bickmore

Bonding at Oxide Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

James A. Enterkin and Kenneth R. Poeppelmeier

vii



Bond Valences in Education . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

I. David Brown

Appendix A: Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

Appendix B: Programs Using Bond Valences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

viii Contents



Struct Bond (2014) 158: 1–10
DOI: 10.1007/430_2013_134
# Springer-Verlag Berlin Heidelberg 2013
Published online: 7 November 2013

Historical Introduction

I. David Brown

Abstract The bond valence theory grew out of Linus Pauling’s electrostatic

valence principle, but its development was slow until crystal structure determination

became sufficiently accurate to make clear how the valence of a bond correlates

with its length. Armed with this quantitative link with experiment, the theory

has subsequently found many uses in analysing, modelling and predicting the

structures of complex crystals, surfaces and liquids. Its theorems show how the

physical properties of complex materials can be understood as the consequence

of their chemical structure. The theory is increasingly finding new uses in solid-

state chemistry and condensed matter physics.

Keywords Bond valence � History of bond valence � Pauling’s electrostatic

valence principle
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1 The Origin and Development of the Bond Valence

Theory

In 1929 Pauling [1] published a seminal paper entitled “The Principles Determining

the Structures of Complex Crystals.” He pointed out the weaknesses of the ionic

model that had recently been proposed by Born and Landé [2], specifically that with

the resources then at hand, it would be impossible to use the ionic model to obtain

any useful understanding of the complex mineral structures that were being deter-

mined at the time. What he proposed was a series of five heuristic principles that

were not to be regarded as rigorous laws, but rather signposts that could provide

insight into the complex interactions that were responsible for the structures of

crystals.

His first principle stated that the lengths of bonds can be determined by adding

the ionic radii of the two terminal ions and that the coordination numbers of the

cations can be determined from the ratio of these radii. More important was the

second principle: the electrostatic valence principle, which he stated as:

In a stable coordination structure the electric charge of each anion tends to compensate the

strength of the electrostatic valence bonds reaching it from the cations at the centers of the

polyhedron of which it forms a corner, that is, for each ion:

ζ ¼
X

i
Zi=νif g ¼

X
i
sif g (1)

In these equations ζ is the valence of the anion, Zi is the valence, and νi the
coordination number of the ith cation, and si is the strength of the bond between the
anion and cation i. This equation defines the Pauling bond strength as the valence of
the cation divided by the number of bonds the cation forms.

The chemical community of the time was more focused on the structures of

molecules than the structures of complex minerals, and Pauling’s rules played only

a minor role in the chemical curriculum, but they were adopted by mineralogists

who found them a valuable tool for proposing and checking the validity of new

mineral structures.

Pauling did not expect these principles to give quantitative predictions, since he

recognized that the atomic radii, first proposed by Bragg [3] in 1920 to account for

the lengths of bonds, could not be universally applied to ionic, covalent and metallic

compounds. Furthermore, the distances between a the same pair of bonded atoms

were not always equal to the sum of these radii, but depended in part on the

coordination number of the atom, being larger when the coordination number was

larger. Further, the electrostatic valence principle (1) was rarely obeyed exactly;

deviations of up to 40% could sometimes be found between the anion valence and

the sum of the Pauling bond strengths. Baur [4] drew attention to the quantitative

correlation between the length of a bond and the degree of the apparent over- or

underbonding around the anion. He showed that if the sum of the Pauling bonds

strengths was larger than the anion valence, the measured bonds were longer than

the sum of the radii, but if the sum was smaller, the bonds were shorter.

2 I.D. Brown



In 1947 Pauling [5] himself proposed that the bond length, R, was correlated

with what he called the bond number, n (the number of electrons that formed the

bond), as given by Eq. (2):

R1 � R ¼ 0:300log nð Þ (2)

where R1 is the length of a bond with a bond number of 1.0. Curiously, this paper

was concerned with the structures of metals which are not normally described using

the ionic model, but the idea of a correlation between the length and strength

(valence) of a bond (see [78] Section 6.1) was picked up in 1951 by Byström and

Wilhelmi [6] to describe the variation in the bond lengths in (NH4)2Cr2O7 and

V2O5. Later Zachariasen [7, 8] and Zachariasen and Plettinger [9] applied similar

relations to uranates and borates, Evans [10] to vanadates and Kihlborg [11] to

molybdates. In 1969 Clark et al. [12] expressed the length of the bond as a power

series with three constants which they fitted to the cations found in the pyroxenes

they were studying.

With the increased accuracy of the X-ray diffraction studies of crystals in the

1960s, it became possible to see how the variations in bond length correlated with

other properties. In 1964 Slater [13] updated Bragg’s atomic radii, and in 1969

Shannon and Prewitt [14] published a set of ionic radii that depended on coordina-

tion numbers as well as formal oxidation states. This table was updated by Shannon

[15] in 1976. In 1991 O’Keeffe and Brese [16] proposed a set of atomic radii that

could, with corrections for electronegativity, be applied to metals and homoionic as

well as heteroionic bonds. Meanwhile in 1970 Donnay and Allmann [17] had used a

bond valence–bond length correlation to locate hydrogen atoms in minerals. Even

with the improved X-ray diffraction methods, it was not possible at that time to

reliably detect the single electron associated with the hydrogen atom and crystal

structure reports routinely left the hydrogen atoms out of the list of atomic

coordinates, but Donnay and Allmann showed how, by calculating the experimental

bond valence sums from the known bond lengths, the locations of the missing

hydrogen atoms were readily revealed by the presence of underbonded oxygen

atoms. They used a more complex function to describe the correlation. For the short

bonds this followed the power law of (3)

S ¼ S0 < R > =Rð Þn (3)

where S is the bond valence, S0 the valence of the a bond with the average length

<R> and n is a constant fitted to each coordination sphere. The valence of longer

bonds was given by a tangent to this curve to ensure that S extrapolated to zero at a
distance Rmax determined from the ionic radii. In 1973 Brown and Shannon [18]

used a simplified form (4) of the Donnay and Allman correlation to cover the whole

range of bond lengths:
S ¼ R=R0ð Þ�n

(4)

Here S0 has been set to 1.0 valence unit (vu) making R0 the notional length of a

bond of unit valence. They point out that even though the bond valence never

Historical Introduction 3



becomes zero in this formulation, it is sufficiently small at distances of around 3 Å

that it matters little whether one includes longer distances or not. They fitted the

bond valence parameters, R0 and n, to give bond valences sums equal to the valence

(formal oxidation state) of each cation and found that the bond valence parameters

for a given cation-anion pair were transferable between the different compounds in

which these bonds were found. They determined these parameters for bonds

between oxygen and each of the cations in periods 2 to 4 of the periodic table.

Three years later Brown and Wu [19] extended this list to the rest of the periodic

table and in 1982 Slupecki and Brown [20] added parameters for bonds to sulfur.

Brown and Shannon pointed out many of the uses to which bond valences (called

“bond strengths” in their paper) could be put: calculated from the bond lengths they

could reliably reproduce the formal atomic valences of both the cations and anions,

even when the coordination environment was distorted. They could identify the

oxidation states of the individual vanadium atoms in vanadium oxides and the

proportions of different cations on mixed occupancy sites; they could also be used

to determine the radii of ions in any coordination state, known or unknown. The

agreement between the sum of the bond valences and the atomic valence could be

used to confirm the correctness of a crystal structure or to locate the undetected

hydrogen atoms. Brown subsequently applied the model to analyze the structural

chemistry of lone pair cations [21], hydrogen bonds [22, 23], and acetates and

trifluoroacetate ions [24], and O’Keeffe and collaborators applied it to alkali metal

oxides [25] and nitrides [26].

About the same time, Mackay and Finney [27] suggested that the bond valences

in a network of chemical bonds might be predicted using equations similar to the

Kirchhoff equations used to solve electrical circuits see [78] Section 6.1. Brown [28]

later demonstrated that predictions of bond distance could be made with an accuracy

of better than 0.1 Å for most bonds using the valence sum rule together with an

iterative method of equalizing the valences of the bonds, and later he [29] and

O’Keeffe [30] both confirmed Mackay and Finney’s conjecture by showing that a

set of Kirchhoff-like network equation gave good bond length predictions. The

Kirchhoff node rule corresponds to the valence sum rule [78 equation 14a] and the

Kirchhoff loop rule corresponds to the equal valence rule [78 equation 14b] that

insures that the valence of an atom is distributed as uniformly as possible among the

bonds it forms. A decade later Preiser et al. [31] showed that each bond in the ionic

model is formally an electric capacitor, allowing Brown [32, p. 19] to derive the

network equations directly by treating the bond network as a capacitive electric

circuit and assuming that when a structure is in equilibrium all the bonds have the

same capacitance.

In 1979 in a paper entitled “Non-Existent Silicates” Dent-Glasser [33] deliber-

ately did not ask the obvious question “why do certain silicate exist?”, but instead

asked the less obvious question “why do some silicates not exist?”. Among the

missing silicates were alkali metal orthosilicates and framework silicates

containing transition metals. Dent–Glasser’s question led Brown [34] in 1981 to

formulate the valence matching rule [78 section 4]. He assumed that the typical

valences of the bonds formed by an atom were measures of their bonding strength,

4 I.D. Brown



and since every bond has an atom at each end, stable bonds would only be formed

if both atoms had similar bonding strengths. This rule was implicit in Pauling’s [1]

electrostatic valence rule as well as in the “trivial topological constraint” pointed out

by O’Keeffe and Hyde [35] in 1982, that the total number of bonds formed by the

cations must equal the total number of bonds formed by the anions. Trivial as this

constraint may appear, it is a powerful restriction that is closely related to the valence

matching rule. Valence matching was quickly picked up by Hawthorne [36, 37] who

applied it in an extensive series of papers in which bond valence concepts are used to

explore the systematics of various classes of mineral structures as described in more

detail by Hawthorne and Schindler in [79]. In particular Hawthorne et al. [38]

showed how, by applying this principle at the level of individual atoms, one could

predict the kinds of short-range order that might be expected in disordered systems.

Interest in bond valences picked up in 1985 after Brown and Altermatt [39]

published an extensive list of bond valence parameters for use in calculating the

valences of bonds to oxygen. Unlike the earlier work, they adopted Pauling’s

exponential correlation in the form of Eq. (5) partly because it is mathematically

more versatile, but primarily because they found they could use the same b

parameter (0.37 Å) for all the bonds they examined:

S ¼ exp R0 � Rð Þ=bð Þ (5)

Here S is the bond valence, R the bond length and R0 and b are the fitted bond

valence parameters. In 1991 Brese and O’Keeffe [40], assuming the same constant

value for b, found that substituting a different anion, such as sulfur, for oxygen,

changed the values of R0 by a fixed amount that was independent of the cation. This

allowed them to propose bond valence parameters for the bonds between a wide

range of cations and anions. In two later papers, O’Keeffe and Brese [16, 41]

proposed a method for generating R0 from the properties of the two terminal

atoms, but the parameters given by this procedure have proven not to be sufficiently

accurate for routine structure analysis. On the other hand, the parameters listed by

both Brown and Altermatt [39], as well as those listed by Brese and O’Keeffe [40],

are now widely used, chiefly for validating newly determined crystal structures by

checking how well the valence sum rule is obeyed. Over the last 20 years some

50 further papers have reported new or improved bond valence parameters, most of

them having b set to 0.37 Å so that R0 can be uniquely calculated for each

coordination environment. Alternatives to Eq. (5) for describing the bond

valence-bond length correlation have been proposed by Ziolkowski [42], Naskar

et al. [43], Valach [44], and Mohri [45], but these have not found widespread favor.

In a seminal paper in 2001, Adams [46] showed that increasing the coordination

number around an atom, by increasing the bond cut-off distance, causes an increase

in the value of b and a decrease in that of R0, the values stabilizng only after the

cut-off length reaches around 5 Å. He also showed that b should not be treated as a

universal constant as he found it increases from 0.37 Å to around 0.5 Å as the

difference between the softness of the two terminal atoms increases. Subsequent

Historical Introduction 5



work by other authors [47–53] confirmed that the correct value of b for cations with
lone pairs of electrons is close to 0.5 Å.

In 1989 O’Keeffe [30] drew attention to a number of structures in which the bond

valence sums differed significantly from the expected atomic valence, an effect he

attributed to the steric strain caused by nonbonded contacts [78 section 8]. Around

the same time O’Keeffe and Hanson [54] and Brown [55] showed that such steric

strains in the high-temperature superconductor Ba2YCu3O7 were partially relieved

by the transfer of electrons from a copper reservoir layer to the superconducting

CuO2 layer, explaining in part why the superconductivity varied with composition.

Brown [56] followed this with a 1992 study on the chemical effects of lattice strain in

crystals. If shifting valence from one bond to another cannot relieve the stress, its

presence leads to violations of the valence sum rule. In 1995 Garcia-Muñoz and

Rodriguez-Carvajál [57] showed that the instability caused by steric stress can be

quantified using the global instability index, G, which is the root of the mean square

deviation between the atomic valence and bond valence sum [78 Eq. 21]. They

showed that in a series of isostructural rare earth compounds, those for which

G would exceed 0.2 vu were sufficiently unstable to force them to adopt a different

structure type. Since then G has proved a remarkably robust measure of structural

instability and has been widely used particularly for compounds in which steric

stress leads to interesting and sometimes technologically useful physical properties.

In 2001 Lufaso andWoodward [58] wrote the program SPUDS to predict the crystal

structures of perovkites by finding the structure with the smallest value of G as

described in [80].

As early as 1978 Waltersson [59] had created the first valence map [78 section

6.2] to find the location of a lithium atom in Li2WO4 where the presence of the

heavy tungsten atom masked the weak signal from lithium. Brown [29] later

showed that such maps could be used to trace out ionic diffusion paths, an idea

that has been exploited by Adams [60] and Adams and Swenson [61–65] in a series

of papers exploring diffusion, not only in crystals but also in simulated amorphous

structures. A program to calculate valence maps, VALMAP, has been written by

Gonzáles-Platas et al. [66].

During the 1980s and 1990s the idea slowly developed that the bond valence

could be treated as a vector, having a magnitude equal to the bond valence and a

direction parallel to the bond (Chap. 2.6.2). It arose from the idea that if the bonds are

uniformly distributed around an atom, the sum of the valence vectors should be close

to zero. However, it was not stated as a rule until Harvey et al. [67] formulated it in

2006. Zachara [68] explored the concept in a slightly different form the following

year. The vector valence sum of an atom is closely related to the slope of the valence

map at the location of the atom, a zero sum indicating a minimum in the valence

map. A recent study by Bickmore et al. [69] shows that in cases where the bonds are

not uniformly distributed, e.g., when the central atom has a stereoactive lone pair

[78 section 7.1], the valence vector sum provides a convenient measure of the

deviation of the atomic environment from centrosymmetric symmetry.

6 I.D. Brown



Recently bond valence theory has been applied in several other areas. Structure

simulations are normally carried out using Monte Carlo methods in which the

positions of atoms in an array are changed in such a way as to minimize a cost

function, typically representing the potential energy of the system. Since the

simulation depends on the parameters chosen for the cost function, it is useful to

check that the valences of the resulting bonds obey the valence sum rule, so that, if

necessary, the parameters of the cost function can be adjusted [70, 71]. The reverse

Monte Carlo method is used to simulate amorphous structures using a cost function

based on the observed X-ray scattering pattern. Not all the solutions produced by

this process are chemically plausible, so chemical restrictions must be included in

the calculation. Bond valence restraints, which are ideal for this purpose, were used

by Norberg et al. [72] in their reverse Monte Carlo program RMCProfile. So far no

one has demonstrated that structures can be simulated using only the rules of bond

valence theory though this should be possible. Such a simulation would have the

advantage of using fewer computer resources while giving a complementary picture

of the structure.

Studies of the surface between a solid and an aqueous solution have traditionally

been based on a macroscopic picture in which the surface is assumed to be formed

of alternating charged layers, but the introduction of bond valence into these studies

has caused a slow evolution towards a microscopic model in which the surface is

treated as composed of atoms with residual valence [73–75]. The misunder-

standings and difficulties encountered in this transformation make an interesting

case study [76]. The topic of surfaces is taken up in [79, 80, 81] of this volume.

In spite of the success of the bond valence theory, its justification has always

been empirical; none of the theories of chemical bonding developed over the past

century has suggested that there is any theoretical basis for the concept of a

chemical bond, much less has it been possible to derive the empirical theorems

that the bond valence appears to obey. This started to change in 1999 with the paper

of Preiser et al. [31] who showed, following up on a much earlier idea of Bragg [77],

that in the ionic model, the bond valence could be identified with the electrostatic

flux linking the cations to the anions. This work showed how, by exploiting the

electric field rather than the electric potential, the chemical bond could be defined

and its properties derived, preparing the way for the full theoretical development of

the model presented here in [78].

In recent years bond valence theory has been put to many other uses, some routine

and others exploring new applications of the theory as described in other chapters of

this volume. After a long period of slow development dating back almost a 100 years,

the bond valence theory is beginning to find its place among the varied models used

to describe chemical structure. Later chapters in this volume describe some of the

exciting developments currently underway and point to the unexplored potential that

will form the substance of some future history of the bond valence theory.

Historical Introduction 7
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1 Introduction

The first chapter in this volume [1] describes how the bond valence theory

developed over the last hundred years as an empirical research tool for analyzing

inorganic crystal structures. The justification for the theory has always lain in its

experimental success rather than its theoretical underpinning. This chapter

attempts to rectify this lack of a theoretical basis. It starts with a simple physical

picture of the atom, the core-and-valence-shell picture, from which the rules of

bond valence theory are derived using the concepts of classical physics. Although

a full quantum analysis is clearly essential to an understanding of the structure of

the atom and its spectrum, equilibrium chemical structures involve only the

ground electronic state, which greatly simplifies the theory, allowing a develop-

ment in terms of classical electrostatics in which quantum effects are introduced

as needed on an ad hoc basis. Apart from the obvious desirability of having a
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physical picture of bond valence, putting the model on a sound theoretical basis

has two particular advantages. In the first place, it allows one to appreciate the

scope of the theory and to understand better how it might be extended. In the

second place, a simple theory of chemical structure based on a proper physical

description of bonding is ideal for introducing students to structural chemistry, a

topic taken up in the Chap. 9 of this volume [2].

This chapter starts with a description of the core-and-valence-shell picture of the

atom, followed by a derivation of the principal theorems of bond valence theory.

The later sections of the chapter illustrate the ways in which these theorems are

applied over a range of chemical bonds and structures.

2 Core-and-Valence-Shell Picture of the Atom

The concept of a chemical bond as a localized interaction between two neighbor-

ing atoms has been a central part of chemistry for the past century and a half, yet

our current description of chemical bonds is still empirical; it is a collage of ill-

defined and largely incompatible models that are based on assumptions that do

not always correspond to physical reality. The ionic and covalent models are

mutually incompatible, and both the Lewis and orbital models have serious flaws

[3, 4]. They do not conform to modern views of atomic structure, and conse-

quently their predictions sometimes fail. While the bond valence theory belongs

to this tradition of localized bond models, it is derived from a realistic, though

simplified picture of the atom, one that is compatible with more sophisticated

atomic descriptions. It can be used to derive powerful and quantitative theorems

about chemical structure. The rules of both the traditional ionic and covalent

models can be derived as two special cases of this model (Sects. 5 and 7.2).

What most clearly distinguishes bond models from other models of chemical

structure is the centrality of the concept of valence, that is, the number of electrons

that an atom uses for bonding. In order to determine the valence, we must be able to

count how many valence electrons each atom contains. This is not possible in

electron density models such as the quantum theory of atoms in molecules

(QTAIM), where the individuality of the electron is lost as soon as it enters the

atom [5]. A different picture of the atom is needed, one that tracks the functions of
the individual electrons, rather than their locations.

A second distinguishing feature of bond models is their treatment of the chemi-

cal bond as a localized interaction between two neighboring atoms; everything

beyond the first neighbor shell is ignored. The long-range Coulomb potential, which

is a central component of most other bonding models, extends well beyond the

nearest neighbors, which is why the concept of a chemical bond has never been

derived from models expressed in terms of the Coulomb potential, whether treated

using Newtonian or quantum mechanics. Because the bonds are local, the number

of bonds formed by an atom, its coordination number, is also an important quantity

in bond models.

Bond Valence Theory 13



These two distinguishing features of chemical bond models, namely, the atomic

valence and the bond as an interaction between neighboring atoms, point to the

need for a different way of describing both the structure of the atom and the force

responsible for the bond. The emphasis on the valence of an atom requires a model

in which the valence electrons can be conceptually separated from the remaining

(core) electrons, and the emphasis on localization requires that the long-range

Coulomb potential be replaced by the electrostatic field which provides an equiva-

lent, but complementary, description, one in which neighboring charges are linked

by electrostatic flux as first suggested by Pauling [6] and Bragg [7]. In any locally

neutral distribution of positive and negative charges such as are found in molecules

and crystals, the Faraday lines of field, which provide an intuitive picture of this

flux, always connect positive charges to their neighboring negative charges, and

since the electrostatic flux (represented by the number of lines of field) is equal to

the charges (valence electrons) that generate them, the concepts of valence and

electric flux fuse into a picture which is both intuitive and quantitative. It is a picture

from which the theorems of the bond valence theory naturally follow. This theory is

completely equivalent to the traditional energy-based classical theories, but unlike

the traditional models which require that all the long-range interactions be treated

explicitly, valence-and-flux models are conceptually and computationally simpler

because all the interactions are local, and the long-range relaxations are implicit

rather than explicit.

The justification for separating the valence electrons from the core is based on

the observed ionization potentials: the energies required to successively remove

electrons from an atom. The large increase in ionization energy after the first few

electrons have been removed allows us to separate the weakly bound electrons

(≲100 eV), namely the valence electrons, from the core electrons that are too

strongly bound to the atomic nucleus to be able to take part in bonding (Fig. 1).

The result is the core-and-valence-shell picture of an atom, one in which the

valence electrons are conceptually distinguished from the core electrons.

Fig. 1 Ionization potentials

of elements from the second

period. Successive ionization

potentials are displaced to the

right
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The core-and-valence-shell picture of an atom is illustrated in Fig. 2. The

electrons are separated into those in the valence shell (light gray) and those that

remain strongly bound in the core (dark gray). Because all the electrons are held by

a strong central attraction to the nucleus (black), both the core and the valence shell

remain essentially spherically symmetric, even when the atom is bonded to other

atoms. The justification for this assumption is that the relaxation of the electron

density on bond formation is small enough (~1%) to be ignored in this approxima-

tion. In the bond valence theory, atoms are always assumed to be electrically neutral

unless otherwise stated, meaning that the core and the valence shell are not only

spherically symmetric but they also carry equal and opposite charges. The small

ionization energy of the electrons in the valence shell implies that this shell lies

close to the surface of the atom and carries a negative charge equal to the number of

electrons in the valence shell. The atomic core contains both the nucleus and the

core electrons and carries a net positive charge of the same magnitude. The relative

location of the valence shell and core is not relevant in this picture since the

electrostatic flux linking the core to the valence shell depends only on the number

of electron charges it links, not on their location. It is convenient to display them as

spherical in the picture shown in Fig. 2 as this is similar to the physical distribution

of electrons in the atom. The picture would be even more similar to the real atom if

the core and valence shell were shown as overlapping each other, but it is more

convenient to visualize them separated by a gap, since this provides room to display

the lines of electrostatic field that link them.

This model explicitly does not give a picture of the true electron density since the

physical location of the electrons is not relevant to the model and, indeed, cannot be

derived from themodel. Superimposing the valence shell and core does not yield a true

physical picture of the atom because the purpose of the model is not to reproduce the

true electron density, but rather to keep track of the roles played by the valence shell

and core electrons. The model’s validity does not depend on its ability to predict the

electron density, which it is neither intended, nor is it able to do, but on its ability to

predict the bonding structures in crystals and molecules. In this respect it performs at

least as well as any other model and in many respects better.

Fig. 2 The core-and-valence-shell picture of an atom. The core is shown as dark gray, the valence
shell in light gray, and the nucleus is shown in black. The number of lines of field (electrostatic flux)

is proportional to the negative charge on the valence shell as well as the positive charge on the core
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3 Theorems of the Bond Valence Theory

3.1 The Principle of Maximum Symmetry

The formal development of the model starts with a useful heuristic assumption that

underlies the model: the principle of maximum symmetry:

A system in stable equilibrium adopts the highest symmetry consistent with
the constraints acting on it:

(1)

The justification for this statement is that a symmetric system is always at an

energy extremum with respect to any distortion that lowers its symmetry, and that

the system is stable only if this extremum is a minimum. We need no further

justification to explain why a compound has high symmetry. If the symmetry is

lower than expected, there must be a constraint that causes the symmetry to be lost.

Important constraints are those imposed by the rules of chemistry (chemical

constraints) and those imposed by requirements of three dimensional space (steric

constraints).

There are two atomic properties that are central to the bond valence theory: the

valence of the atom, that is, the number of electrons the atom uses for bonding and

the size of the atom, conveniently represented in bond valence theory by the atom’s

coordination number, that is, the number of bonds that it forms, as discussed in

more detail below.1

The theory assumes that only the valence-shell electrons are used for bonding

because these lie close to the surface of the atom where they overlap with the

valence shells of other atoms on bond formation. For elements in periods two and

three of the Periodic Table, the concept of a valence shell is well defined because of

the large difference in ionization energy between the electrons of the valence shell

and those of the core. For elements in higher periods, the gap is less well defined

and the concept of a valence shell becomes more problematic, particularly for the

transition metals discussed in Sect. 7.4.

3.2 Assumptions and Theorems

We start with a formal statement of the assumptions that underlie the model. Giving

these explicitly not only serves to introduce the model but also to define the range of

compounds that the model describes.

1 The terms used in this theory are shown in bold type and are defined in the Glossary (Appendix 1

in this volume).
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1. All atoms are assumed to be spherically symmetric, even when bonded to other

atoms. The rational for this assumption is that the relaxation of the electron

density on bond formation is limited to a few percent. While this relaxation may

be important for understanding the nature of the chemical bond and calculating

its energy, it has little effect on the resulting chemical structure. The relaxation

of the electron density can be ignored in modeling these structures, and the

assumption of spherical symmetry places some useful constraints on the struc-

tural properties of the atoms.

2. In bond valence theory, atoms (with one exception) are always treated as

uncharged. A bond is formed when the valence shells of two neutral atoms

overlap. The electrons from the two atoms spin-pair, but they are still counted as

being part of their original spherically symmetric valence shells. This assump-

tion simplifies the description of the bond since it avoids using such elusive

concepts as electron transfer, ionic character, and atomic charge. The only

exception to this assumption is the ionic model which is derived from the

bond valence theory in Sect. 5. Even in this case the transfer of electrons from

the cation to the anion is a matter of formal bookkeeping; it does not imply any

physical movement of the electrons.

3. Since a bond is formed by the pairing of electron density in the region where

the valence-shells of two atoms overlap, each atom is assumed to contribute the

same number of valence electrons to the bond. This number is known as the

bond valence. The bond valence is therefore also equal to the number of

electron pairs that constitute the bond. In general the bond valence is not an

integer.

4. It is assumed that there is a large difference in the ionization energy between the
valence shell electrons and those in the core. This allows us to ignore the core

electrons and focus on those in the valence shell. This assumption holds for light

main group elements, but is questionable for transition metals (Sect. 7.4) and

heavy main group elements. The advantage of this assumption is that it allows us

to identify clearly which atoms have well-defined valences and which atoms

may not. Being able to identify why the rules may not work in a given compound

makes it easier to suggest how the model might be adapted.

5. It is also assumed that all the excited states of the atom lie too far above the

ground state to be involved in bonding. This again is valid for light main group

elements, but like assumption 4 is not always valid for transition metals and

heavy main group elements. Again it identifies where the model might not work

and why.

6. The valence shell may contain both bonding and nonbonding (lone pair)
electrons. The electron density of the valence shell always remains spherically

symmetric (see assumption 1 above), but the way the electrons in the shell

function, being either bonding or nonbonding, may result in different parts of

the valence shell functioning in different ways. If the bonding and nonbonding

functions are not uniformly distributed, the lone pair is said to be stereoactive.
The properties of atoms with lone pairs are described in Sect. 7.1.
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7. The bond is assumed to be localized between the two bonded atoms. This

excludes compounds with delocalized bonding such as metals and aromatic

compounds. Delocalization occurs when the valence shells of the different

atoms meld into an extended band so the valence electrons are no longer

constrained to remain on their own atom. Recognizing this assumption may

suggest ways of extending the model to delocalized systems.

As stated above, the valence of an atom is defined as the number of electrons it

uses for bonding. The valence of a bond is defined as the number of valence

electrons that an atom contributes to a particular bond. From these definitions, the

valence sum rule immediately follows.

The sum of the valences of all the bonds formed by an atom is equal to the
valence of the atom:

(2)

From assumption 3 above, each of the bonded atoms contributes an equal

number of electrons to the bond. This is known as the Equal Contribution Rule:

Each of the two terminal atoms contributes the same number of electrons
to the bond that links them: This number is therefore equal to the number
of electron pairs that form the bond and so is equal to the valence of the
bond: It is notrestricted to integers because the electron density does not
consist of identifiable individual electrons:

(3)

Since the flux is equal to the charges it links, the flux terminating on the electrons

contributed to the bond is also equal to the valence of the bond (see Fig. 2).

It is apparent that the closer two atoms approach each other, the greater the

number of electrons that lie in the overlap region, hence shorter bonds are expected

to have larger bond valences. There is no simple way to calculate this relationship,

but it can be determined empirically by comparing the predicted valence of a bond

with its measured length. Even though the individual bond valences are not

normally known a priori, the valences of the atoms that form the bonds are

known. It is possible to determine the bond valence–bond length correlation by

insuring that the bond valences determined from observed bond lengths add up to

the valences of the atoms at both ends of the bond. These correlations are empiri-

cally found to be transferrable between all the bonds of the same type, i.e., all the

bonds that have the same two terminal atoms in the same valence state. It is this

correlation that links the theory to experiment. The problem of determining these

correlations is discussed more fully in this volume by Adams [8].

The existence of a correlation between the theoretically determined bond

valences and the experimentally observed bond lengths is what validates the

model. Without this link, the abstract theorems of the bond valence theory devel-

oped below would have no relevance to the real world. The bond valence theory is

18 I.D. Brown



justified by noting that bond valences calculated from the observed bond lengths

obey the theorems of the model.

The difficulty in calculating this correlation from quantum theory is not the only

reason for determining it empirically. An empirical determination automatically

takes into account all the factors that affect the bond length. For example, strong

bonds are better able than weak bonds to draw the ligands closer to each other, but

in turn the resulting repulsion between the ligands tends to stretch the bonds. With

an empirically determined correlation such stretching is automatically taken into

account.

Although there is no theory that predicts the algebraic form of this correlation,

over a limited range of bond lengths the simple two parameter equation (4) works

well [9].

Sij ¼ exp R0 � Rij

� �
=b

� �
(4)

where Rij is the length and Sij the valence of the bond between atoms i and j, and
R0 and b are the empirically determined bond valence parameters. Values for

these parameters compiled from various sources can be found at reference [10];

their determination is discussed by Adams [8]. An example of this correlation is

shown in Fig. 3.

The form of Eq. (4) gives rise to an important theorem, the distortion theorem (5)

[12, 13]:

If some of the bonds formed by an atom are lengthened and others shortened;
their bond valence sum will increase if the average bond length is held fixed;
or alternatively; the average bond length will increase if the bond valence
sum is held fixed:

(5)

If an atom lies at the center of a cavity that is too large, the bonds will all be

longer than expected, and the atom will appear to have a valence sum that is too low.

By moving the atom away from the center of the cavity some of the bonds

become shorter and others longer, but the valence of the shorter bonds increases
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Fig. 3 The correlation

between bond valence (bond

flux) and bond length for

Ca–O bonds. The small
circles show the bond fluxes

calculated for particular

compounds (Fig. 3.1 from

[11] by permission of the

Oxford University Press)

Bond Valence Theory 19



more than the valence of the longer bonds decreases, leading to an increase in

the bond valence sum. In cases where an atom occupies a large cavity, this

mechanism is found to increase the bond valence sum to match the atomic

valence while keeping the average bond length constant. This is effected either

by the atom being displaced from the center of the cavity, or by the ligands

moving to ensure that the bonds have different lengths. This theorem is central

to the work described by Lufaso and Woodward in [14].

4 Bonding Strength and Valence Matching

The valence sum rule is not sufficient by itself to determine the valences of

individual bonds, but the principle of maximum symmetry (1) implies that the

bonds formed by an atom will have similar valences. In this case the valences of all

the bonds in the coordination sphere are expected to be close to their average which

can be calculated using Eq. (6) provided we know the number of bonds the atom

forms.

Saverage ¼ V=N (6)

where S is the valence of a bond, V is the valence of the atom, and N the number of

bonds the atom forms (its coordination number).

The coordination number depends primarily on the relative sizes of the atom and

ligand, but may be affected by other factors. In most cases, the coordination

numbers observed for a given atom type (an element in a given valence state)

tend to cluster around their average value. For example when sodium is bonded to

oxygen, all coordination numbers between 3 and 12 are known, but 80% of the

sodium atoms have coordination numbers between 4 and 7 with an average of 6.4,

giving Saverage ¼ 0.16 valence units (vu).

If the value of N is known or can be inferred from other considerations, this value

should be used in Eq. (6). If N is not known, a standard value, NO, the average of the

observed coordination numbers with oxygen ligands, can be used as a best guess

instead, as shown in Eq. (7) [15]. The resulting value of SO is known as the bonding

strength of the atom, since, in the absence of any better information, the bonds

formed by the atom are expected to have valences close to SO.

SO ¼ V=NO (7)

The bonding strengths of many elements in the Periodic Table are shown in

Tables 1–3. The bonding strength, which is characteristic of each atom type, has

two important uses. Firstly, the bonding strengths, SE, of the different elements

when in their highest valence state, Vmax, i.e., when all the electrons in the
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valence shell are bonding, follow the same ordering as their electronegativities

as expressed in Eq. (8).

SE ¼ Vmax=NO (8)

SE provides a convenient scale of electronegativity within the bond valence

theory, because even though it differs numerically from the traditional electroneg-

ativity scale, it is derived from the basic parameters of bond valence theory, namely

the valence and coordination number. It is the scale used in this chapter.

Secondly the definition of bonding strength in Eq. (7) leads to an important rule

for predicting structures. The equal contribution rule (3) states that the two bonded

atoms should contribute the same valence to the bond, which means that a bond will

only be formed if both atoms have the same bonding strength. Some latitude is

Table 1 The Periodic Table with electronegativities and cation bonding strengths (in valence

units, vu) to oxygen

1 2 3–12 13 14 15 16 17 18

Hb

0.8

0.2

Li

0.20

Be

0.50

B

0.87

C

1.35

N

167

O

(2.0)

F

(2.3)

Ne

Na

0.16

Mg

0.33

Al

0.57

Si

1.00

P

1.25

S

(1.6)

Cl

1.75

Ar

K

0.13

Ca

0.27

Se–Zn GA

0.65

Ge

0.89

As

1.13

Se

(1.5)

Br

(1.5)

Kr

Rb

0.12

Sr

0.23

Y–Cd In

0.50

Sna

0.68

Sba

0.85

Tea

1.0

Ia

(1.2)

Xea

(1.3)

Cs

0.11

Ba

0.20

La–Hg Tla

0.49

Pba

0.70

Bonding strengths are calculated using Eq. (7) (except those in parentheses which are estimated)
aThese cations are also found in lower oxidation states with one or more lone pairs
bHydrogen has two bonding strengths (see Sect. 8.1.1)

Table 2 Simple anion bonding strengths (SB)

Col # 15 16 17

Valence �3 �2 �1

N

�0.75

O

�0.5

F

�0.25

P S Cl

�0.17

Se Br

(�0.10)

Te I

(�0.08)

Anion bonding strengths are based on coordination numbers of 4 for N, O and F, and 6 for Cl
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allowed by atoms adopting different coordination numbers, but it is found that

stable bonds rarely form between atoms whose bonding strengths in Tables 1, 2, and

3 differ by more than a factor of 2. This is expressed in the valence matching rule
(9):

Stable bonds will normally form only if 0:5 < SA=SB < 2:0 (9)

where SA and SB are the bonding strengths of the two bonded atoms, A and B. If the

coordination number is known or can be reasonably guessed, then a better estimate

of the bonding strength can be made. The bonding strength can therefore be

influenced by local conditions, but it tends to lie close to the value given by

Eq. (7). There are exceptions to the valence matching rule. As described in

Sect. 7.1, the presence of a lone pair in the valence shell of one or both atoms

provides a flexibility that removes the upper limit in the expression (9) with

interesting consequences for the coordination geometry.2

If one knows which atoms are present in a compound, the inequality (9) can be

used to determine which atoms will bond to each other, information that can be used

to generate the bond network, as described in Sect. 11.2.

Table 3 Complex ion bonding strengths

Residual valence SA or SB

NH4
+ 1 0.12

ClO4 �1 �0.1

BF4 �1 �0.1

NO3 �1 �0.11

HCO3 �1 �0.17

SO4 �2 �0.17

H2PO4 �1 �0.18

H2O 0 �0.2

HPO4 �2 �0.22

CO3 �2 �0.22

PO4 �3 �0.25

BO3 �3 �0.33

SiO4 �4 �0.33

OH �1 �0.4

Anion bonding strengths are based on coordination numbers of 4 for N, O and F

2Coordination numbers depend on the nature of both the bonded atoms and are sometimes

different even between the same pair of atom types in different compounds. SO is taken arbitrarily

to be an atomic property, but if the bonded atom is not oxygen, a different value of N might be

more appropriate. For example, carbon has a coordination number of three with oxygen, but four

with hydrogen. Reducing the coordination number increases the bonding strength and this is the

usual mechanism by which the bond valences of two bonded atoms can be made exactly equal.
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5 Valence Compounds and the Ionic Model

Most bonds are formed between atoms having different electronegativities. It is

convenient to call the atom having the lower electronegativity the cation (or A, for

Lewis Acid) and the atom having the higher electronegativity the anion (or B, for

Lewis Base). If both atoms have the same electronegativity, the choice of which is

the cation and which the anion is arbitrary; either can be used. Although in

traditional models cations are assumed to carry a positive charge and anions a

negative charge, in bond valence theory all atoms, including cations and anions,

remain electrically neutral unless otherwise stated. The terms “cation” and “anion”

are used only as labels to identify which of the two atoms forming a bond has the

smaller, and which the larger, electronegativity.

A valence compound is defined as one in which every atom is uniquely
labeled as either a cation or an anion; and every bond has a cation at one
end and an anion at the other; i:e:; there are no bonds between two cations
or between two anions:

(10)

A bond network with this property is said to have a bipartite graph, and a

corollary to this definition is that the bond network of a valence compound contains

only even-membered rings since an odd-membered ring necessarily contains a

homoionic bond.

The valence shell of the cation carries a small charge and is linked to its core by a

weak electric field. Consequently it lies far from the nucleus. On the other hand, the

valence shell of the anion carries a large charge and is held closer to the nucleus. As

a result, the bond overlap between the cation and the anion occurs closer to the

anion as shown in Fig. 4. Quantum mechanics places restrictions on the number of

electrons that can be accommodated in the overlap region, and while the nature of

these restrictions is complex, it is conveniently summarized by the octet rule (11)

which states that3:

3When the valence shells of two atoms overlap, they split into a low-energy bonding level

localized in the overlap region between the atoms and a high-energy antibonding level localized

behind the atoms. Because the overlap region is closer to the anion, the bonding level has more of

the character of the valence shell of the anion and the antibonding level more the character of the

cation. If more electrons are available for bonding than can fit into the anion-like bonding level,

they must necessarily occupy the antibonding level, tending to destabilize the bond. The most

stable bond is formed when the bonding level is full and the antibonding level is empty, a condition

that is expressed by the octet rule. When both the bonding and antibonding levels are full, there is

no bonding advantage in overlapping the valence shells, which explains the inertness of the noble

gases. The repulsion that prevents the atoms from merging is provided by the electrostatic

repulsion that occurs when their cores overlap (the overlap in this case providing no bonding

advantage) as well as by the electrostatic repulsion between the two nuclei.
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All the valence electrons of the cations must be accommodated within the
valence shells of the anions:

(11)

Since for many anions, particularly those in periods two and three of the Periodic

Table, the valence shell is capable of holding only eight electrons; the rule (11) is known

as the octet rule. The neutral anion normally has a valence shell that is more than half

filled, limiting the amount of space available for the electrons of the cations. Since the

equal contribution rule (3) limits the anion and cation to contributing the same number

of electrons to the bond, the anion is not able to use all its valence shell electrons for

bonding. For example, oxygen has six electrons and two vacancies in its valence shell.

As it can accommodate only two valence electrons from the cations, it can use only two

of its own valence shell electrons for bonding. The valence of oxygen when acting as an

anion is only two; the remaining four electrons are nonbonding and form two nonbond-

ing lone pairs. Thus when an atom acts as an anion it has a smaller valence than when

acts as a cation, and by convention, anion valences are taken as negative as shown in

Table 2 [16]. The role played by the nonbonding electrons is discussed in Sect. 7.1.

For valence compounds, the bond valence theory can be converted to the ionicmodel

simply by formally reassigning the cation valence electrons to the valence shells of the

anions that already accommodate them. This does not require that these electrons be

physically moved from the cation to the anion, since the anion and cation-bonding

electrons already occupy the same overlap region, and in any case the core-and-valence-

shell model contains no information about the actual location of the electrons. Bond

valence theory is only a means of keeping track of the way the electrons function;

reassigning the cation valence electrons to the anion is no more than a book-keeping

operation. It makes no difference to the physical description of the bond. The advantage

of this approach is that it changes the way we view the bond by eliminating the need to

speculate on the precise location of the bonding electrons.4

4 The core-and-valence-shell diagrams, used here to illustrate the formation of bonds, are purely

schematic. The pairing of electron densities that forms the bond occurs at some place where the

electron density of the two atoms overlaps, but its location depends on how the atoms are defined

and in any case cannot be identified experimentally.

Fig. 4 The overlap region of

the bond between a cation

(left) and an anion (right)
occurs closer to the anion.

The dotted field lines are
those that contribute to the

bond
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Reassigning the cation electrons to the anion valence shell leaves the cation with

the positive charge of its core which is equal to its positive valence, and the anion

with a negative charge equal to its negative valence. Further the electrostatic flux

that links the core of the cation to its bonding electrons (cf. Fig. 4) is still present,

but as the bonding electrons are now all assigned to the anions, this flux links the

cores of the positively charged cations to the valence shells of their negatively

charged anion neighbors. If both ions are now shrunk to a point, one retrieves the

ionic model: an array of point charges linked together by electrostatic flux, each

ionic charge equal to the valence of the cation or anion it represents.

This leads to an interesting extension of the core-and-valence-shell picture.

Where the valence of a bond was previously defined as the flux linking the cation

core to the electrons it contributes to the bond, in the ionic model it is defined by the

same flux which now links the cation to the anion. If the positions of the atoms in

the array are known from experiment, this flux can be directly calculated. The

calculation involves extensive computation, but Preiser et al. [17] have shown that

in structures in equilibrium, the correlation between the bond flux and bond length

is the same as the correlation that had previously been observed between the bond

valence and bond length, showing that the electrostatic flux and bond valence are

indeed the same.

It is sometimes assumed that the long range of the Coulomb potential makes it

impossible to define a localized bond in the ionic model, but in fact the ionic model

is the only model that provides a useful and unambiguous definition of a bond.

Since the electrostatic flux that links two ions is equal to the valence of the bond that

links them, a bond only exists between ions if they are linked by flux. A simple

picture of the electrostatic field in the ionic model is provided by the lines of field

that connect a cation to its first shell of anion neighbors as shown in Fig. 5.

The paradox of a localized interaction having a long-range influence can be

understood by considering what happens if the valence of a particular bond is

Fig. 5 A schematic picture

showing how the lines of

electrostatic field define the

bonds in a neutral array of

positively and negatively

charged atoms. The valence

electrons are shown in very

light gray around the

(negative) anion
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increased. According to the valence sum rule (2), the valences of the bonds between

the terminating atoms and their first neighbors must be correspondingly reduced.

This in turn triggers an increase in the valence of the bonds between the first and

second neighbors. In this way the bond network relaxes by means of a wave passing

from one atom to the next throughout the structure. Just as the collective behavior of

an ant colony is driven by the actions of each individual ant responding to its

immediate environment, so the collective behavior of a molecule or crystal is driven

by each atom reacting to changes in its local environment.

This derivation of the ionic model provides not only a natural definition of a

bond, but it also defines the scope of the model. The assumptions on which the

derivation is based show that far from being confined to compounds whose bonds

have “ionic character,” the ionic model can be used for any valence compound. It

can be used to describe not just NaCl but also SF6, CO2, CH4, CH3COOH, and O2,

all of which have networks with bipartite graphs.

6 Geometry of Valence Compounds

6.1 Predicting the Bond Lengths

The ionic model can be used to derive a number of theorems that apply to valence

compounds.

The first is the electroneutrality rule (12). Because the atoms of the core-and-

valence-shell model are all electrically neutral and all the charges have been

conserved during the derivation of the ionic model, the array of charged ions in

the ionic model must also be electrically neutral.

In a valence compound; taking the cation valences as positive and the anion
valences as negative; the sum of the valences chargesð Þ of a the atoms ionsð Þ
is zero:

(12)

More importantly, we can use the ionic model to predict the electrostatic flux or

valence of the individual bonds, and from these we can predict their lengths. If the

positions of the atoms are already known, the bond flux can, in principle, be

calculated using Coulomb’s law, but this is computationally intensive, and as it

requires a prior knowledge of the structure, the result is not a prediction. Fortu-

nately there is a simpler approach that requires no prior knowledge of the atomic

positions. All that is required is a knowledge of the bond network, that is, which

atoms are linked by bonds.

In the ionic model, a bond consists of two equal and opposite charges (ions)

linked by an electrostatic field. This makes the bond an electric capacitor. Each

bond in a bond network can therefore be replaced by a capacitor, converting the
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bond network into a capacitive electrical network as shown in Fig. 6 which

illustrates the equivalent circuit for the bond network shown in Fig. 5.

The charges, Qi, at each node in this circuit are the atomic valences, and the

distribution of charges (equal to the bond fluxes), Fij, on the plates of the capacitor

linking atoms i and j, can be found by solving the set of Kirchhoff equations (13a)

and (13b):

Qi ¼
X

j

Fij (13a)

0 ¼
X

loop

Pij (13b)

Pij is the potential difference between atoms i and j. If there are n atoms, there are

n � 1 independent equations of the type (13a) (one equation is redundant since the

total charge of the compound is zero), and if there are m bonds, there are m � n + 1

independent equations of type (13b). The electric potential is related to the charge

on the capacitor by the capacitor equation Fij ¼ PijCij. All that is required to solve

the resulting set of equations is the capacitance, Cij, of each of the m different

bonds. The principle of maximum symmetry (1) implies that the values of Cij will

all be equal, and in practice this is found to be the case for equilibrium structures.

Two types of constraint break this symmetry: anisotropies in the electronic struc-

ture of the ion, e.g., lone pairs and Jahn–Teller distortions discussed in Sect. 7, and

steric stresses, e.g., atoms in cavities that are too large, such as the hydrogen atom in

hydrogen bonds, as discussed in Sect. 8. In this section, we consider only those

structures in which these constraints are absent.

Substituting the bond valence, Sij, for the bond flux Fij and the atomic valence,

Vi, for the charge, Qi, and noting that the bond capacitances, being equal, cancel out

Fig. 6 The bond network

shown in Fig. 5 can be

represented as a capacitive

electrical network
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of the equations, one gets the network equations (14a) and (14b) linking the

valences, Sij, of the bonds to the valences, Vi, of the atoms.

Vi ¼
X

j

Sij (14a)

0 ¼
X

loop

Sij (14b)

Since the valence Vi is known for all the atoms, this set of m equations can be

solved to give Sij for each of the m bonds. This calculation is implemented in the

program BONDVAL [18]. The bond valences calculated from these network

equations are known as ideal bond valences. If they are the same as the experi-

mental values, the assumptions of the bond valence theory are validated [17], but if

they are different, they indicate that one of the additional constraints described

above is present. In principle it should be possible to model these constraints by

choosing suitable bond capacitances, but in practice the capacitances themselves

often depend on the context in ways that are not always transparent [19].

For molecules, the bond network is finite and generating and solving the network

equations (14a) and (14b) is relatively straightforward, but for non-molecular

compounds the network is infinite which makes it impossible to solve the network

equations unless, as in a crystal, the network is composed of identical copies of a

repeating unit. In this case the infinite bond network can be reduced to a finite

network by extracting one repeating unit (formula unit) from the crystal and

reconnecting the broken bonds. The resulting finite network is similar to that of a

molecule, except that some atoms will be connected by more than one bond. The

infinite two-dimensional network of Fig. 5 reduces to the finite network, also known

as the quotient graph, shown in Fig. 7. In Fig. 5, each cation A forms four bonds to

four different anions, B, resulting in the two atoms of the formula unit appearing in

the quotient graph (Fig. 7) being linked by four separate bonds. The local environ-

ment of each atom in the quotient graph is the same as that of the corresponding

atom in the infinite network, and the network equations that solve the quotient graph

give the same bond valences as they would for the infinite network. In the example

shown, the network equations can be solved by inspection; if the cation has a

valence of +1 and the anion a valence of �1, all the bonds have valences of 0.25 vu

(valence units).

The network equations (14a) and (14b) predict the valences of the bonds based

on knowing only the composition of the compound and the way the atoms are

Fig. 7 The finite bond network corresponding to the infinite network shown in Fig. 4. A is the

cation, B the anion
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connected. From these predicted bond valences, it is possible, using the bond

valence–bond length correlation (4), to predict the lengths of each bond, and

provided there are no additional electronic or steric constraints, these distances

are found to differ from the observed distances by around 0.02 Å, an accuracy

comparable with that achieved by other methods, both classical and quantum.Ways

in which the bond network can be predicted are described in Sect. 11.2.

6.2 Predicting the Bond Angles

Predicting the bond angles is not as straightforward as predicting bond lengths,

since they are more sensitive to steric effects which can only be taken into account

once the bond network has been mapped into three-dimensional space.

If the bonds are all equivalent in the bond graph, they are expected to be

uniformly distributed around the atom. The principle of maximum symmetry (1)

predicts that three equivalent bonds will be arranged with threefold (triangular)

symmetry as in BF3 and CO3
2�, four equivalent bonds will have tetrahedral

symmetry as in CH4 and SO4
2�, and six will have octahedral symmetry as in SF6

and NaCl. These are the most frequently found coordination environments. The

only high symmetry arrangements of five or seven bonds are planar and unlikely to

be found in a three-dimensional structure. Five and seven coordination must have at

least two inequivalent bonds and are notably less common than three, four, or six

coordination. They are found only when a more symmetric arrangement is not

possible.

Nonuniform environments occur if the ligands are different or have different

environments in the bond graph so that the bonds are no longer equivalent. The

symmetry may also be lost if electronic anisotropies such as stereoactive lone pairs

are present (Sect. 7.1). In this section, we assume that lone pairs, if present, are not

stereoactive.

Any part of the flux linking the core of an atom to its valence shell belongs to one

of the bonds formed by the atom (see Fig. 4), and because the atom is spherically

symmetric, the solid angle, Ω, subtended by this flux is a proportionate part of the

total solid angle of 4π steradians surrounding the core, leading to Eq. (15).

Ωij ¼ 4πSij=Vi (15)

An approach based on this idea has been shown to work well for calculating

bond angles in tetrahedral coordination, as for example around the sulfur atom in

sulfates [20], and as shown in Sect. 7 it is a useful approach to exploring the extent

to which lone pairs are stereoactive.

If measuring the solid angle occupied by a bond is not convenient, an alternative

approach is to use the valence vector, S. This is a vector that represents the electric
flux linking the core to the overlap region. Its magnitude is equal to the magnitude

of the flux and its direction is taken to be along the line connecting the two atoms as
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an approximation to the net direction of the flux lines in the bond. Since the total

flux is distributed uniformly around the core, the sum of the bond valence vectors

should be zero in the absence of any perturbing influence, a condition known as the

valence vector sum rule (16), which provides a way of expressing one of the

constraints acting on the bond angles. This approach has been explored by Harvey

et al. [21] and Zachara [22].

0 ¼
X

j

Sij (16)

If this sum is not zero, it gives a measure of how far the bonding electrons in the

valence shell deviate from spherical symmetry [23].

Another technique that is useful if the positions of most of the atoms are known,

but the location of others is not, is the valence map [24]. Figure 8 shows the map

for fluorine in CaF2. A different representation of a valence map can be seen in

Fig. 10 in Chap. 4 [14]. It is calculated by moving the fluorine atom systematically

over the positions on a grid spanning the positions of the calcium atoms in the

structure. At each point its bond valence sum is calculated from the distance to its

neighbors. The resulting grid of bond valence sums represents a map that has high

values when the fluorine atom is placed too close to the position of a calcium atom

and a minimum when it is placed at the center of a cavity. In Fig. 8, the sites

normally occupied by fluorine are labeled F, and possible sites for interstitial

fluorine are marked X and Y.

The valence vector sum can also be treated as a field since it can be calculated for

an atom placed at any point in the structure, not just the known site of an atom.

Mathematically it represents the slope of the valence map, U(r), at the position r:

X
S rð Þ ¼ b:rU rð Þ (17)

where b is the bond valence parameter (assumed here to be the same for all the

bonds). The minimum in the valence map is the point where the valence vector sum

Fig. 8 A valence map of

fluorine in a (110) plane in

CaF2. Dotted lines are
negative; contours greater

than 1.8 not shown. X and Y

show possible sites for

interstitial F (Fig. 11.8 from

[11] by permission of the

Oxford University Press)
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is zero, and if the correct location of the atom is at the center of one of the cavities,

the valence sum at the minimum should be the same as the valence of the atom

itself. If the cavity is too small for the atom, the minimum will be larger than this, if

the cavity is too large, the minimum will be smaller. If the atom does not lie at the

center of the cavity, e.g., as a result of application of the distortion theorem (5), it is

expected to lie on the contour whose value is equal to the valence of the atom. The

position of the atom on this contour depends on which neighbor has the most

deficient valence sum.

The valence map can be used for locating weakly scattering and weakly bonding

atoms such as lithium in cases where it has not been detected by X-ray diffraction,

but more commonly it is used for tracing possible diffusion paths in crystalline and

amorphous solids as discussed in [25].

6.3 Non-valence Compounds and Homoionic Bonds

The network equations (14a) and (14b) can only be used if the graph of the bond

network is bipartite, that is, if every bond has a cation at one end and an anion at the

other. In inorganic compounds, and particularly in organic compounds, this condi-

tion is not always satisfied. Although this restricts the application of the bond

valence theory, the core-and-valence-shell picture of the atom is still valid, as is

the description of the chemical bonds this picture gives.

There are a variety of ways in which a non-bipartite bond graph can be converted

to a bipartite graph, although some information is usually lost along the way.

1. The two cations, or two anions, that form the bond can be considered as a single

pseudo-atom. This makes the bond graph bipartite. This solution works well for

cations like Hg2
2+ which are traditionally described in this way. In the mercurous

cation, the Hg–Hg bond is formed by an electron pair and has a valence of 1.0 vu.

If the Hg2
2+ cation is in an asymmetric environment, the valence of the external

bonds formed by the individual Hg atoms may not be the same, in which case the

two mercury atoms may contribute different numbers of electrons to the Hg–Hg

bond. Although this violates the equal contribution rule (3), the valence of the

bond is correctly given by the average of the contributions of the two mercury

atoms. Hg–Hg bonds are known in a number of mercury complexes, and not all

of these are electron pair bonds, but as expected, the length of the bond is found

to correlate with its valence (the number of electron pairs that form it) in the

same way as any other bond [26].

2. An alternative approach to the mercurous cation is to treat the bonding electron

pair as a pseudo-anion, E2�. Inserting such an anion into the bond again makes

the graph of the bond bipartite and does not require that the two Hg–E bonds

have the same valence. Since it is not possible to locate the pseudo-anion, the

individual valences of the Hg–E bonds cannot be found from their bond lengths,
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but the sum of these lengths does correspond to the charge of the pseudo-anion

and correlates with the Hg–Hg bond length [26].

3. In some cases an atom may act as an anion towards some of its ligands and as a

cation to others. For example, in the NO2
� ion, the oxygen atoms are the anions

with a valence of �2 vu and the nitrogen is a cation with a valence of +3 vu. But

the nitrogen is also a Lewis base and can coordinate to a transition metal to form

a bond in which the nitrogen acts as the anion. In this case, the valence sum at the

nitrogen is calculated by adding the bond valences having regard to their sign.

For example, if the nitrite group bonds to copper, the Cu–N bond might have a

valence of �0.4 vu, increasing the valence of the N–O bonds from 1.5 to 1.7 vu

to give a sum of +3.0 around nitrogen (see Fig. 6 in [2]):

VN ¼ 2SNO þ SCuN ¼ 2� 1:7� 0:4 ¼ 3:0 vu

With the N–O bonds having a valence of 1.7 vu, the residual valence on each of

the oxygen atoms is reduced from �0.5 vu in the free nitrite ion to �0.3 vu and the

residual valence of the nitrite group as a whole is then

2� ð�0:3Þ þ ð�0:4Þ ¼ �1:0 as expected:

This is equivalent to splitting the nitrogen atom into two, an N2� anion bonded to

copper and an N5+ cation bonded to oxygen linked by an N–N bond of 1.8 vu. The

N–N bond is entirely fictitious; its valence depends on the valence of the Cu–N

bond but in any case is not susceptible to measurement. As in the other cases,

splitting the nitrogen atom into two results in the creation of a bipartite bond graph

which can be solved using the network equations (14a) and (14b).

7 Electronic Constraints

Electronic constraints arise from changes in the electronic structure of the atom

itself. There are several ways in which these occur. Some are initiated by the atom’s

environment, some occur spontaneously as a result of degenerate electronic states

as predicted by the Jahn–Teller theorem which states that the environment of an

atom will distort if such a distortion removes the degeneracy. Electronic constraints

manifest themselves as a loss of symmetry either in the bond lengths or in the bond

angles. Changes in the bond lengths cause the equal valence rule (14b) to be

violated, but valence sum rule (14a) continues to be obeyed. Changes in the bond

angles generally do not violate the network equations (14a) and (14b), but do affect

the vector valence sum (16) which is no longer expected to be zero [23].

The most common electronic constraint involves the rearrangement of nonbond-

ing “lone pair” electrons that are found around strongly bonding main group

elements as discussed in Sect. 7.1. Other constraints are found in the transition
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metals, leading to the characteristic dipolar distortions found around octahedrally

coordinated d0 atoms, or in the so-called Jahn–Teller quadrupolar distortion found

around Cu2+ and Mn3+ described briefly in Sect. 7.2.

7.1 Role of Lone Pairs

All anions, and main group cations in lower oxidation states, contain lone pairs

[16]. The treatment here focuses on anions, but the same principles apply to cations.

In some compounds, such as MgO, the lone pairs on the oxygen anion have no

effect on the bonding geometry; the cations are distributed uniformly around the

anion as expected from the principle of maximum symmetry (1). But in other

compounds, the lone pairs provide a constraint that destroys this symmetry; for

example, the bonds formed by the oxygen atoms in the sulfate ion, SO4
2�, are not

uniformly distributed; there is one strong bond to sulfur and a number of weaker

bonds to other cations. The different types of asymmetric bonding induced by the

lone pairs in such compounds are described by the well-established valence shell

electron pair repulsion (VSEPR) model [27]. The rules of this model can be carried

over with little change into the bond valence theory with one difference: the

underlying picture of the VSEPR model, in which the electron pairs in the valence

shell are assumed to repel each other, is replaced by the more flexible core-and-

valence-shell picture described in Sect. 2 [16].

The behavior of lone pairs in bond valence theory is best illustrated by an

example. When oxygen acts as an anion, its valence is �2 and it commonly

forms between two and six bonds, so a typical coordination number can be taken

as four. This gives oxygen an anion bonding strength, SB, of �0.5 vu (Table 2).

According to the valence matching rule (9), oxygen should form stable compounds

with any cation having a bonding strength between 0.25 and 1.00 vu. Table 4 lists

the binary compounds that oxygen forms with the elements of periods two and three

of the Periodic Table. For each compound listed, Table 4 gives the bonding

strength, SA, of the cation (taken from Table 1) and the ratio of the cation to

anion bonding strengths, SA/SB. Those compounds that have SA/SB between 0.5

and 2.0 satisfy the valence matching rule (9) and are shown in normal type. As

expected, these are all stable crystalline solids. Those compounds with ratios less

than 0.5, shown in italics, are unstable and can be formed only with difficulty as

they readily pick up water and CO2 from the atmosphere to form basic carbonates

which provide a better valence match (see Tables 1, 2, and 3). Those shown in bold

type have a ratio greater than 2.0 and, according to the valence matching rule, they

ought not to exist. The reason they occur is attributable to the presence of the lone

pairs on the oxygen atom.

According to the assumptions of the model, the electron density in the valence

shell remains spherically symmetric even when the atom forms bonds. Although the

electron density of the valence shell is always distributed with spherical symmetry,

there is no requirement that the way this electron density functions is also uniformly
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distributed. Some parts of the valence shell may be bonding and other parts

nonbonding.

In compounds with SA/SB < 1.0, the bonds are arranged around the anions

symmetrically, as expected from the principle of maximum symmetry. The coordi-

nation is tetrahedral around oxygen in BeO and octahedral in MgO, in all cases the

symmetry is as high as the constraints of three-dimensional space allow. Both

the bonding and the lone pair electron density are uniformly distributed around

the valence shell; each portion of the valence shell contains some electron density

that is bonding some that is nonbonding (lone pair).

For compounds with 1.0 < SA/SB < 2.0, the valence matching rule is still

satisfied. The compounds are stable, but the lone pairs start to show some

stereoactivity as can be seen in the structures of silica and alumina. Silica adopts

various structures whose Si–O–Si angles vary from 130� to 180�. In corundum,

Al2O3, two of the four bonds formed by oxygen are short (primary) and two are long

(secondary) with the valence of the primary bonds being equal to the bonding

strength of Al3+, 0.57 vu (1.83 Å), and the valence of the secondary bonds being

equal to 0.43 vu (1.93 Å). This incidentally allows pairs of AlO6 octahedra to adopt

the unusual feature of sharing a face, which also happens to be a topological

requirement of mapping its bond network into three-dimensional space.

If the ratio SA/SB is greater than 2.0, the oxygen is required to form a stronger

bond to the cation than its normal bonding strength allows. If there were no lone

pairs present, extra electrons would have to be brought in from other parts of the

valence shell, thus destroying the spherical symmetry of its electron density. This

would cost more energy than could be recovered by forming the bond, but because

the oxygen anion already has nonbonding electron density in the overlap region, it

Table 4 Oxides of atoms of rows two and three of the Periodic Table

SA (vu) SA/SB State S2 Comment

Li2O 0.2 0.4 Solid 0.2 Unstable, picks up water

BeO 0.5 1 Solid 0.5 Stable

B2O3 0.87 1.7 Solid 0.2 Stable

CO2 1.35 2.7 Gas �0.22 Stable but dissolves in water to give CO3
2�

N2O5 1.67 3.3 Gas �0.11 Reactive, forms NO3
�

Na2O 0.16 0.33 Solid 0.16 Unstable, picks up water

MgO 0.33 0.67 Solid 0.33 Stable

Al2O3 0.57 1.14 Solid 0.43 Corundum, stable

SiO2 1 2 Solid �0.33 Quartz, stable, forms minerals with SiO4
4�

P2O5 1.25 2.5 Solid �0.25 Reacts with water to form H3PO4

SO3 1.5 3 Solid �0.17 Reacts with water to form H2SO4

Cl2O7 1.75 3.5 Liquid �0.08 Reacts with water to form HClO4

Items in italics and bold do not obey the valence matching rule (9)

SA is the bonding strength of the cation, SB is the bonding strength of the anion (¼ 0.5), and S2 is
the bonding strength of the secondary bonds, all in valence units (values in parentheses are

calculated for the corresponding complex ion). Values in bold type refer to the corresponding

complex ion.
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can match the bonding strength of the cation by converting lone pair electron

density in the overlap region to bonding while converting an equivalent amount

of bonding electron density elsewhere into lone pairs. In this way, it can reassign the

function of the electron density while retaining the spherical symmetry of the

valence shell.

It is only necessary to reassign enough electron density to meet the bonding

requirements of the cation, resulting in an asymmetry in which the valence of the

primary bonds on one side of the oxygen anion is equal to the bonding strength,

SA, of the cation, leaving a smaller residual valence to form weaker secondary

bonds of valence S2 on the other side [28]. The relative strengths of the primary

and secondary bonds are shown in Fig. 5 of [2]. For example, the oxygen atoms

of the PO4
3� ion form one strong bond (1.25 vu) to phosphorus and several

weaker bonds of about 0.25 vu to other cations. In extreme cases all the bonding

electron density is found on one side of the atom, leaving only lone pair electron

density on the other. In CO2 the separation between the valence electrons and the

lone pairs is so complete that the oxygen atoms in carbon dioxide molecules are

unable to form any further bonds. Carbon dioxide remains a gas under ambient

conditions.

To achieve a complete separation between the valence electrons and the lone

pairs as in CO2, oxygen must form one fully saturated bond of 2.0 vu, but fluorine

forms fully saturated bonds at the much small valence of 1.0 vu. Many fluorides,

such as CF4, contain saturated bonds, and since a saturated bond prevents fluorine

from forming a second bond, fluorides of cations with a bonding strength of 1.0 vu

or higher usually form isolated molecules with an unreactive surface. On the other

hand, oxygen, because of its higher valence, rarely forms fully saturated bonds

because few cations can form bonds with valences greater than 2.0 vu. Oxide

molecules such as SO3 have saturated bonds, but since such molecules, unlike

CF4, have space for additional ligands in their coordination sphere, they tend to link

into chains or to react with water to form SO4
2� with enough bonding electrons

residing on the surface of the complex to bond to weakly bonding cations such as

sodium.

The core and valence shell model can be used to examine the effects of lone pairs

on the bonding geometry. Because every atom has a spherically symmetric electron

density, the electric field linking the core to the valence shell is also spherically

symmetric. If lone pairs are present in the valence shell, some of the electrostatic

flux (valence) will link to lone pair electrons and some to bonding electrons.

Although the total flux is distributed symmetrically, its function as either bonding

flux or lone pair flux need not be.

As shown in Sect. 6.2, the solid angle subtended by a bond is proportional to the

valence of the bond as given in Eq. (15). The area occupied by the bonding overlap

region is related to the solid angle, 4πSij/Vi, by (18)

area of the overlap region ¼ R2
iΩi ¼ 4πR2

i Sij=Vi (18)
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where Ri is the distance from the overlap region to atom i. Since the overlap region

is common to both bonded atoms, it defines the solid angle, Ωj, of the bond at the

other atom j as given by Eq. (19) and shown in Fig. 9.

ΩjR
2
j ¼ 4πR2

i Sij=Vi (19)

The relative sizes of the two solid angles thus depend on the location of the

overlap region given by Ri/Rj. The overlap region is not defined by bond valence

theory, though it is expected to lie closer to the anion as can be seen in Fig. 4. We

might therefore expect the solid angle subtended by the flux at the anion to be larger

than the solid angle at the cation.

The presence of lone pairs gives rise to two possible extreme geometries. In the

first, the lone pairs are not stereoactive and the bonding electrons and lone pairs are

both distributed with spherical symmetry. The bonding flux and nonbonding flux

are also uniformly distributed, and each part of the valence shell, i.e., each overlap

region, contains both bonding and nonbonding electrons. Consider, for example, an

M2O7 complex composed of two MO4 tetrahedra sharing a common bridging

oxygen shown in Fig. 10. The valence of the M–Obridging bonds is 1.0 vu, and

since this saturates the oxygen atom, if the two lone pairs of the bridging oxygen are

uniformly distributed around the valence shell, the two M–Obridging bonds are

collinear, giving an M–O–M angle of 180� with the overlap regions of each bond

occupying one half of the sphere.

Fig. 10 An M2O7 complex.

The angle at the bridging

oxygen is marked

I j

I jR R

Fig. 9 The overlap region

(light gray) subtends a larger
angle at the anion (medium
gray) than at the cation (dark
gray)
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In the other extreme geometry, when the lone pairs of the oxygen atom are fully

stereoactive, the bonding and nonbonding electrons are completely separated, with

the four non-bonding electrons occupying two-thirds of the valence shell and the

two bonding electrons occupying the remaining one-third. Each bond occupies just

one-sixth of the total sphere. In this case, the lone pairs are said to be stereoactive.

The most symmetric geometry of six electrons around the oxygen atom is an

octahedron. If the two M–O bonds are cis, as expected for the dipolar valence

shell of oxygen, the M–O–M angle is 90�.
In both of these extreme geometries, the fluxes of the M–Obridging bonds are

1.0 vu, but the distribution of the bonding flux and the solid angle it subtends at the

nucleus depends on the degree to which the lone pairs are stereoactive. If they are

completely inactive, each of the two bonds subtend a solid angle of (1/2) � 4π
steradians resulting in an M–O–M angle of 180�, but if they are fully active, each

bond subtends an angle of only (1/6) � 4π steradians and the angle between the

bonds is only 90�.
The M2O7 complexes with M ¼ Si, P, S, and Cl all have geometries that are

intermediate between these extremes, with the M–O–M angles decreasing as the

valence of M increases from 4 to 7. All of these complexes except Cl2O7 are anions,

and they all have the same geometry apart from the lengths of the M–Oterminal bonds

and the M–O–M angle. Setting the valence of the bridging M–O bond to 1.0 vu in

Eq. (19), the solid angle subtended by its overlap region at the bridging oxygen

equals 4π(RM/RO)
2/VM, where RO is the distance between the overlap region and the

bridging oxygen. The factor (RM/RO)
2 is not known a priori, but the physically

reasonable value of 1.8 accounts for the decrease in the M–O–M angle as one

progresses from Si to Cl as shown in Table 5. One can understand why this angle

changes even though there is no change in the valence of the bridging M–O bond.

As the valences of the terminal M–O bonds increase, these bonds occupy a larger

portion of the solid angle around M, causing the M–Obridging bond to focus into a

smaller solid angle. This leaves a larger solid angle at the bridging oxygen for the

lone pairs, making them more stereoactive.

Bickmore et al. [23] have adopted an alternative approach to the description of

stereoactivity by showing that the valence vector sum (Eq. 16) can be used as a

measure of the stereoactivity of the lone pair, noting the correlation between vector

valence sum and the valence of the shortest primary M–O bond, which as shown

above is equal to the bonding strength of the cation.

In cases where the lone pairs are fully stereoactive, the VSEPR and bond valence

theories make similar predictions for the bonding geometry because both models

Table 5 Predicted and observed M–O–M angles in M2O7 complexes

Solid angle of the bond as a fraction of a sphere M–O–M (degrees)

M O Predicted Observed

Si2O7
6� 0.25 0.45 168 140–180

P2O7
4� 0.20 0.36 143 122–156

S2O7
2� 0.17 0.30 127 114–121

Cl2O7 0.14 0.26 115 115
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assign the same localized regions of the valence shell to the lone pairs and the

bonding electrons, but they differ in the way they make this assignment. The

VSEPR model is useful for predicting the overall geometry when the lone pairs

are stereoactive because it is simpler, but bond valence theory is more quantitative

and can predict the extent to which the lone pairs will be stereoactive. The full

power of the VSEPR model can therefore be incorporated into bond valence theory.

7.2 Covalent Models

The short primary bonds that are responsible for the stereoactivity of the lone pairs

on anions are normally described as covalent, but bond valence theory makes no

distinction between ionic and covalent bonds, since the bond valence is a variable

that runs continuously across the whole spectrum of bond types. The ionic–covalent

distinction does, however, reflect a marked difference between the structural

chemistry of those compounds that obey the valence matching rule (9) in which

the bonding is generally weak (less than about 0.8–1.0 vu), and those where the

presence of anion lone pairs permits the formation of much stronger bonds by

making the lone pairs stereoactive as described in Sect. 7.1. The bonds that obey the

valence matching rule are those traditionally described as ionic, while bonds

formed by atoms with stereoactive lone pairs are those traditionally described as

covalent. Even though the bonds form a continuous series in which such a distinc-

tion is not necessary, the term covalent can be usefully applied to the primary

(short) bonds formed by anions with stereoactive lone pairs.

The term “covalent” was originally applied to the bonds in the ball and stick

picture of structure used in organic chemistry. It is therefore interesting to note

under what conditions the ball and stick picture can be derived from bond valence

theory. The concept of a bond arose in the mid nineteenth century from the study of

the chemistry of carbon compounds. The original model was simple: it envisioned

atoms as having a fixed number of hooks each of which could form a bond by

linking to a similar hook on other atoms. This ball and stick picture, in which the

balls represent the atoms and the sticks the bonds, can be derived from the bond

valence theory if all the atoms have coordination numbers that are equal to their

valence. Examples are silicon (V ¼ N ¼ 4), molybdenum (V ¼ N ¼ 6), and the

two elements that form hydrocarbons: carbon (V ¼ N ¼ 4) and hydrogen

(V ¼ N ¼ 1).5

In hydrocarbons the valence of the C–C, C–H, and H–H bonds is always 1.0 vu

and since carbon and hydrogen both have the same electronegativity, these bonds

are electron pair bonds and are equivalent to each other.

5 The coordination number of carbon with oxygen is three (cf., Table 1), which is also the

coordination number found in elemental carbon (graphite). The coordination number of four is

found only in compounds in which carbon is bonded to hydrogen or a halogen, or in compounds

such as diamond that are formed under pressure. See Sect. 8.1.1 for a fuller discussion of the

coordination number of hydrogen.
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The consequence is that for hydrocarbons, bond valence theory reduces to the

simple ball and stick model in which all the bonds are formed by a single electron

pair and the coordination numbers are fixed at four for carbon and one for hydrogen.

The principle of maximum symmetry (Eq. 1) requires that carbon’s four bonds be

directed to the corners of a tetrahedron. Carbon and hydrogen atoms are linked to

each other by identical electron pair bonds to form extended networks in which

hydrogen, having a coordination number of only one, always terminates the net-

work, thus ensuring that all hydrocarbons are molecules. Double and triple bonds

are formed by linking two carbon atoms by a tetrahedral edge or face, respectively.

Bond valence theory does not use π bonds to describe these compounds but both

descriptions are consistent with quantum mechanics.

This simple model is often extended to nitrogen (V ¼ N ¼ 3), oxygen (V ¼
N ¼ 2), and halogens (V ¼ N ¼ 1), but these elements have a higher electroneg-

ativity than carbon and hydrogen. They are anionic with stereoactive lone pairs,

but with sufficient residual valence to provide Lewis base sites that can act as

receptors of secondary bonds such as hydrogen bonds (see Sect. 8.1.1). Although

it is common to consider that the base function on oxygen is supplied by the lone

pairs, lone pairs are, by definition, nonbonding. Oxygen and nitrogen act as the

receptor of hydrogen bonds as the result of the ability of their bonding electrons

to rearrange themselves within the valence shell in response to their environment,

diverting some of the valence previously used to form the C–O or C–N bonds into

accepting hydrogen bonds. When this happens, the valences of the C–C and C–H

bonds will no longer be exactly 1.0 vu, and the bonds will no longer be pure

electron pair bonds. The simple ball and stick model no longer strictly applies.

One can treat the hydrogen bonding as a perturbation, but it is a perturbation

that can significantly change the properties of the molecule. Unlike the rules of

the simple ball and stick model, the rules of bond valence theory require the

hydrogen bonds to be explicitly taken into account, as can be seen from the

examples given in Sect. 8.1.1. Bond valence theory can predict, or at least

provide limitations on, the structure and properties of many organic molecules,

specifically those that have localized bonds and are valence compounds.

7.3 Complex Ions

Cations are Lewis acids, and anions are Lewis bases, and their respective bonding

strengths are also their Lewis acid and Lewis base strengths. So far this discus-

sion has focused on simple ions, that is, ions that consist of a single atom, in

which the Lewis acid and base strengths can be calculated using Eq. (7). Complex

ions are those composed of more than one atom. They differ from simple ions in

that the different atoms in the complex may each have their own Lewis acid or

base strength.

Each atom in a complex ion is necessarily bonded to one or more atoms within

the complex to form a network of strong internal (covalent) bonds. For example,

the sulfur in the sulfate anion, SO4
2�, is a hexavalent cation, S6+, linked by bonds
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of 1.5 vu to the four oxygen anions. In the ammonium cation, NH4
+, nitrogen is a

trivalent anion, N3�, linked by bonds of 0.75 vu to the four hydrogen cations.

When the bonding requirements of the internal bonds are satisfied, the individual

atoms forming the complex may have a residual valence that is available to form

bonds external to the complex, often considered to be ionic bonds. In the sulfate

ion, the oxygen uses only �1.5 vu internally, leaving �0.5 vu for forming

external secondary bonds. In the ammonium ion, the hydrogen uses +0.75 vu to

form the internal bonds leaving +0.25 vu for forming external bonds. The unused

valence of the peripheral atoms is known as their residual valence. Assuming

that all the oxygen atoms in the sulfate ion are equivalent and they each form four

bonds, one to sulfur and three external to the complex, each oxygen has a

bonding strength of �0.5/3 ¼ �0.17 vu. This is then the Lewis base strength

of the oxygen atoms and, therefore, the Lewis base strength of the sulfate ion as a

whole. Similarly, each hydrogen atom in the ammonium ion normally forms two

extra bonds, so its Lewis acid strength is +0.25/2 ¼ +0.12 vu, similar to that of

rubidium. Because the acceptor hydrogen bond normally has a valence of 0.2 vu,

the ammonium ions can also bond to anions with larger bonding strengths. Since

most of the atoms on the surface of a complex form more than one external bond,

the Lewis acid or base strength is normally smaller than the residual valence.

Complexes may be anions or cations, or neutral molecules, and any complex may

contain some atoms that function as Lewis acids and others that function as Lewis

bases, but in all cases the sum of the residual valences over all the atoms in a

complex, taking into account their sign, is equal to the total residual valence, or

formal charge, of the complex.

Neutral molecules, such as water or ammonia, if they have any chemical

activity, must contain both Lewis acid and Lewis base functions, with the condition

that their residual positive valence must be numerically equal to their residual

negative valence. A consequence is that the Lewis acid and base functions must

work together; in neutral molecules the total valence of the external bonds formed

by the Lewis acid functions must equal the total valence of the external bonds

formed by the Lewis base functions. It is helpful to distinguish the Lewis acid and

Lewis base functions by arrows on the bonds directed from the acid to the base.

Complex ions and molecules have more flexibility in adapting to their environ-

ment than simple ions since they can redistribute their residual valence among the

different atoms that form the surface of the complex ion by changing the valences

of the internal bonds. Both the bonding strengths displayed by such complexes, and

their internal geometries, may vary depending on what counterions are present in

the compound.

7.4 Transition Metals

The valence shells of transition metals are less well defined than those of the

light main group elements because the valence s–p shell of one period overlaps

with the d shell of the period that lies above it in the Periodic Table. Only the
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s–p shell is involved in the bonding of atoms of groups 1–3 because for these

atoms the d shell lies at a higher energy and is not involved in bonding. Only

the s–p shell is involved in bonding in atoms of groups 12–17 because for these

atoms the d shell lies below the s–p shell; it is full and part of the core. In the

remaining groups 4–11, the s–p and d shells overlap and all their electrons take

part in bonding. Since the s, p, and d electrons lose their identity in the valence

shell, they cannot be distinguished from each other and there is no gap in the

ionization energies to define the boundary between the valence shell and the

core. One consequence is that atoms in these groups can adopt a variety of

different valences. Once the valence is known, the bond valence theory can be

applied in the same way as it is applied to main group atoms. In some cases,

there are electronic constraints that can be introduced into the bond valence

theory using simple ad hoc models. These cases are discussed individually in

Sects. 7.4.1–7.4.3 below. Bickmore et al. [23] have shown how the valence

vector sum can be used to measure the size of the non-centrosymmetric

distortions displayed by transition metals.

7.4.1 Distortions Around Transition Metals with d0 Configurations

The early transition metals in high-valence states show a strong aversion to being

in the centrosymmetric environment of an octahedral field. They either avoid six

coordination or if they adopt it, their octahedral coordination is distorted. Since

the tetrahedron does not have an inversion center, it is unaffected by this

distortion.

The distortion takes the form of an off-center displacement of the transition

metal from the center of its octahedron, sometimes known as the Second-Order

Jahn–Teller (SOJT) effect. It results from a dipole distortion that can be described

using the spherical harmonics associated with the p shell. The distortion becomes

stronger as one moves across the Periodic Table. Scandium(III) shows no tendency

to distort its octahedral environment. Titanium(IV) usually adopts a regular octa-

hedral coordination, but the titanium atom is easily driven off-center, for example,

by occupying a cavity that is too large as in BaTiO3 (Sect. 8). Although this

displacement is predicted by the distortion theorem (5), it is stabilized by the d0

electronic effect. If the ligands are topologically equivalent, as they are in BaTiO3,

the direction of displacement can be changed by application of an external electric

field. The d0 distortion is best observed in vanadium in its +4 (d1) and +5 (d0)

valence states. In these states, vanadium can adopt either octahedral or tetrahedral

coordination, but octahedral coordination is sufficiently distorted that vanadium

compounds typically adopt bond networks that support the distortion. The strongly

bonded VO3+ group [s(V�O) � 1.80 vu] found as part of the octahedral environ-

ment of vanadium is so striking that it is sometimes called the vanadyl cation. Its

strong bond is usually trans to a very weak bond which in some cases is entirely

absent. In chromium(VI) the effect is so strong that Cr6+ is never found in an
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octahedral environment, preferentially forming the tetrahedral CrO4
2� anion even

though chromium is large enough to accommodate six ligands.6

7.4.2 Jahn–Teller Distortions

The Jahn–Teller theorem states that if an atom finds itself in a degenerate ground

state it will distort if such a distortion can remove the degeneracy. The theorem is

very general and applies to most electronically driven distortion, but the name has

become attached to a specific tetragonal distortion of the octahedral environment of

certain transition metals in particular oxidation states, namely copper(II) and

manganese(III). The distortion causes the two axial bonds in an octahedral envi-

ronment to be longer than the four equatorial bonds. Both atoms have a degeneracy

in their ground state which can be understood using a one-electron (or one hole)

picture which provides a simple quantum description of the effect. Removing the

degeneracy results in a quadrupolar distortion of the core electron density

associated with the spherical harmonics that describe the d shell. A tetragonal

distortion that makes the two axial bonds longer than the four equatorial bonds

removes the degeneracy predicted for high spin d4 (Mn3+) and the d9 (Cu2+)

systems.

This distortion is closely related to the observation that nickel(II), palladium(II),

and platinum(II) are often found with square four coordination rather than tetrahe-

dral configuration. This can be thought of as a more extreme distortion of the same

kind in which the weakly bonded ligands are removed entirely.

7.4.3 Late Transition Metals in Low-Valence States

The late transition metals have nearly full d electron shells capable of back bonding,

i.e., the transition metal acts as a σ-bonding cation towards an anionic ligand while

at the same time acting as π bonding anion towards the same ligand acting as a

cation. In the bond valence theory, these bonds are composed of two oppositely

directed bonds with valences Sσ and Sπ, respectively. Since Sπ is a negative number,

the valence of the bond used for calculating the valence sum is the difference in the

magnitudes of the two valences:

S ¼ Sσj j � Sπj j (20)

which results in small, possibly negative, values for the apparent valence of the

bond. If the transition metal forms all of its bonds in this way, it can achieve a bond

6 The changes in the distribution of the valence electron do not mean that the atom loses its

spherical symmetry. Because the core and valence shell have similar energies, the distortion in the

valence shell can be compensated by the distortion of the core.
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valence sum of zero. Transition metals in groups 9 and 10 sometimes have apparent

atomic valences of zero.

Although the apparent valence of the bond is small and possibly zero, the bond

itself can be quite strong, since both partial bonds are contributing to its strength.

The total number of electrons forming the bond is given by the sum of the

magnitudes of the bond valences:

Number of valence electron pairs in the bond ¼ Sσj j þ Sπj j (21)

In this way strong transition metal–ligand bonds are formed that contribute little

to the atomic valence, leading to complexes in which the formal valence may even

be zero. Bond lengths in these cases do not provide much information about the

bond valences. There are suggestions that the bond-valence parameters in this

region may depend on the ability of the ligand to accept π bonds, which in turn

may depend on the coordination number of the ligating atom [29, 30]. This is an

area where more work is needed.

8 Steric Constraints

Steric constraints are those that arise when a bond network cannot be mapped into

three-dimensional space without straining the ideal bond lengths calculated with the

network equations (14a) and (14b); some bonds may have to be stretched and others

compressed. The result of these strains is that the network equations no longer give

good predictions of the observed bond lengths, but the ideal bond lengths predicted

by these equations provide a convenient reference which allows both the nature of

the strain (either tension or compression), and its magnitude (Eq. 22), to be

determined, both being useful in assessing the nature of the mechanical stresses

in the bonding system.

strain ¼ Robs � Ridealð Þ=Rideal (22)

Here Robs is the measured bond distance and Rideal is the distance predicted by

the network equations (14a) and (14b).

If an atom finds itself in a cavity that is too large for its bonds to adopt their

ideal length, the bonds must be stretched. According to the distortion theorem (5),

the environment of the atom will distort in such a way as to make the bond

lengths unequal in order that the bond valence sums becomes equal to the atomic

valences. As mentioned in Sect. 7.4.1, this contributes to the distortion around

titanium(IV) in BaTiO3. In many cases, such distortions are found in compounds

where electronic distortions are also expected, the two effects being mutually

supportive.

In all cases of steric constraint, the observed bond distances violate the equal

valence rule (14b) and, in some cases, the valence sum rule (14a) as well. A simple
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measure of the strain in compounds where the bond valence sum rule is violated is

the global instability index, G.

G ¼
X

i

fðVi �
X

j

SijÞ2g=n
 !1=2

(23)

where n is the number of atoms, i, in the formula unit. Experimental uncertainties in

well-determined structures account for values of G around 0.05 vu. Structures with

G greater than this are strained but few stable structures are found with G > 0.2 vu.

Examples of the use of G can be found in [14].

There are two causes of steric strain: either close contacts between nonbonded

atoms (Sect. 8.1) or incommensurations in the natural spacings of different parts of

the structure (Sect. 8.2). Each of these is discussed separately.

8.1 Nonbonding Contacts

Steric effects resulting from nonbonding contacts are well-known in organic chem-

istry where they are invoked to explain why crowded molecules are difficult to

prepare, but this kind of strain is also found in inorganic compounds, most notably

in the hydrogen bond where it is the origin of the O–H. . .O asymmetry discussed in

Sect. 8.1.1.

8.1.1 The Chemistry of Hydrogen and Hydrogen Bonds

Apart from the chemically inert helium, hydrogen is the only element in the first

period of the Periodic Table. It differs from all other elements in having no

electrons in its core and no possibility of a lone pair in its valence shell. Without

a core, the nucleus is unshielded, and unlike the nuclei of other atoms, it can

penetrate into the valence shell of any atom that it bonds to as shown in Fig. 11.

Since the hydrogen atom continues to have spherical symmetry even when bonded

to other atoms [31], its bonding electron is arranged spherically around the nucleus,

allowing it to overlap completely with the valence shell of the bonded atom.

Without any lone pairs to block parts of its bonding environment, hydrogen cannot

use the same mechanism as other anions, such as fluorine, for terminating the bond

network (Sect. 7.1). Where it does terminate the network, as in hydrocarbons, a

different mechanism is used as discussed below.

When hydrogen bonds to an atom such as oxygen, the whole hydrogen atom,

both nucleus and its valence electron, is drawn into the oxygen valence shell.

Without a lone pair to block the formation of a second (acceptor) bond, the

hydrogen nucleus can attract another anion (oxygen for example) to form a second

bond. Following the principle of maximum symmetry (1), we would expect the two
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bonds to have the same valence, 0.5 vu, and length, 1.10 Å, with the hydrogen atom

lying at the midpoint between the two oxygen atoms. However, if the hydrogen

atom were to lie within the valence shells of both anions, the valence shells of the

two anions would have to overlap, and since both valence shells are already

effectively full, this is not possible. The repulsion between the oxygen atoms causes

the bond to stretch from the expected O. . .O distance of 2.20 to 2.42 Å, and

according to the distortion theorem (5), the hydrogen atom will move from the

point midway between the two oxygen atoms to increase its bond valence sum to

1.0 vu [11, p. 75ff]. Equilibrium is observed when hydrogen forms a strong bond of

0.8 vu to the oxygen atom with the larger base strength (donor) and a weak bond of

0.2 vu to the other oxygen (acceptor). For this reason, hydrogen is unusual in that it

has two cation bonding strengths, 0.8 and 0.2 vu which are labeled as donor and

acceptor (Table 1). Other constraints within the compound may force the hydrogen

to be placed either less or more symmetrically, giving rise to three possible types of

hydrogen bond. The normal O–H. . .O hydrogen bond has one short bond of 0.97 Å

(0.8 vu) to the donor oxygen and one longer bond of 1.90 Å (0.2 vu) to the acceptor.

As expected from the principle of maximum symmetry, all three atoms are collinear

as shown in Fig. 12b. This geometry has the lowest energy and is the configuration

most often found. More symmetric hydrogen bonds have a shorter O. . .O distances

and are found only if the energy needed to bring the valence shells of the two

oxygen atoms closer can be recovered elsewhere in the structure (Fig. 12a). For

example, hydrogen phosphate ions, HPO4
2�, with a bonding strength of �0.22 vu,

retain their tetrahedral symmetry better if they form more symmetric hydrogen

bonds. A more asymmetric hydrogen bond having a longer O. . .O distance is found

if the acceptor has a bonding strength smaller than �0.2 vu (Fig. 12c). The

perchlorate ion, ClO4
�, with a bonding strength of �0.08 vu forms only weak

hydrogen bonds [32].

More symmetric hydrogen bonds are kept linear by the strong repulsion between

the oxygen atoms. Longer hydrogen bonds are usually bent since the increased

Fig. 11 Without a core, the

nucleus of the hydrogen atom

can penetrate the valence

shell of a bonded atom
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O. . .O distance relieves the stress that forces the oxygen atoms apart. For longer

hydrogen bonds, the O–H. . .O angle decreases from 180� with the increase in

asymmetry. Weak hydrogen bonds are frequently bifurcated, i.e., they involve

more than one acceptor bond (Fig. 12c), so that the valence of the donor O–H

bond remains close to 0.8 vu.

It is interesting to compare the properties of the hydrides formed by the anions of

the second period: H4C, H3N, H2O, and HF. Their formulas are written to empha-

size that in each case hydrogen is the cation, since it has the lower electronegativity.

Because these are all neutral molecules, the sum of the valences of any external

bonds they form must be zero. Table 6 shows the estimated Lewis acid and base

strengths of these compounds.

The electronegativity difference is greatest for HF with the hydrogen atom

acting as the Lewis acid and the fluorine as the Lewis base. The residual valence

of the Lewis acid function (hydrogen) must equal the residual valence of the Lewis

base function (fluorine), both of which are therefore determined by the intrinsic

anisotropy of the hydrogen bond formed by HF. The existence of the complex

F–H–F� anion with a symmetrical hydrogen bond shows that the Lewis acid

strength of the hydrogen can be as large as 0.25 vu, though for most bonds it is

likely smaller as assumed in Table 6.

Table 6 Residual valences, VR, and Lewis acid and base strengths of the second row hydrides in

valence units

Lewis acid Lewis base Boiling point

VR Acid strength VR Base strength /K

H4C 0 0 0 0 109

H3N 0.6 0.2 �0.6 �0.6 240

H2O 0.4 0.2 �0.4 �0.2 373

HF 0.2 0.2 �0.2 �0.07 293

VR is the residual valence associated with the Lewis function

Acid strengths are calculated by assuming the hydrogen bonds have a valence of 0.2 vu and the

base strengths by assuming the anions have a coordination number of 4

O H

O

O

HO

O H

O

O

a

b

c

2.42

2.87

3.00

Fig. 12 Three types of

hydrogen bond: (a) short or

symmetric, (b) normal, and

(c) long and bifurcated.

Typical O. . .O distances are

shown
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The next largest electronegativity difference is found in water, H2O, where it is

well attested that the Lewis acid strength of the hydrogen is close to 0.2 vu. The

residual bond valence contributed by the two hydrogen atoms is +0.4 vu, which

means that the residual valence at oxygen must be�0.4 vu. Assuming oxygen has a

coordination number of four, two internal and two external bonds, this leads to

water having a Lewis base strength of �0.4/2 ¼ �0.2 vu.

Ammonia, H3N, forms three hydrogen bonds, hence the nitrogen atom with a

coordination number of four is expected to form only one external bond, the other

three bonds being formed internally to hydrogen. As shown in Table 6, this gives

nitrogen the relatively large base strength of 0.6 vu, even though the hydrogen

bonds individually have Lewis acid strengths similar to those in water. Methane,

H4C, is unique in this series in that the four hydrogen atoms saturate the coordina-

tion number of carbon, leaving no possibility for methane to have a Lewis base

function, and without a Lewis base function its hydrogen atoms must have a Lewis

acid strength of zero. They are unable to form hydrogen bonds and terminate the

bond network.

Methane, without any Lewis acid or base function, is a gas with the lowest

boiling point of the group. Water is the molecule whose Lewis acid and base

strengths are ideally matched to each other, which is why water is a liquid or

solid at ambient temperatures. Ammonia and hydrogen fluoride are poorly matched

to themselves since their acid and base strengths differ by a factor of 3. According

to the valence matching rule (9), the bonds that H3N molecules form with them-

selves should not be stable. The same is true for HF, which is why both are gases

and tend to react with compounds that form better hydrogen bonds. Ammonia is the

strongest base, and is well-known for its ability to coordinate strongly to cations

such as transition metals which typically have bonding strengths around 0.5 vu. In

each case where hydrogen forms hydrogen bonds, it is bonded to its donor, N, O, or

F, by a donor bond of 0.8 vu which means that the lone pairs of the donor atoms are

usually stereoactive for the reasons given in Sect. 7.1. The three donor N–H bonds

in ammonia are arranged pyramidally, and the two O–H bonds of water are not

collinear.

When hydrogen is found in molecules and complex ions, it is usually chemi-

cally active except in pure hydrocarbons and there its lack of activity is not an

intrinsic property of the hydrogen atom, but only the result of the coordination of

carbon being saturated, leaving it no opportunity to act as a Lewis base. Hydro-

gen is left with a bonding strength of zero, but in all other compounds it forms

hydrogen bonds that play a significant role in the cohesion of molecules and the

formation of crystals. Where methyl groups are linked to other atoms having

Lewis base functions, as in the acetate ion, H3CCO2
�, C–H. . .X bonds can be

formed. Even though they are typically very weak, of the order of 0.03 vu, they

can have a significant effect on structure and properties because organic

compounds usually contain many hydrogen atoms. In the acetate ion C–H. . .O
bonds are responsible for the length of the C–C bond being reduced from the

single bond length of 1.54 to 1.51 Å as further described in Sect. 10.1

[11, pp. 108–9].
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The ammonium ion, NH4
+, which is isoelectronic with methane, has a

residual valence of +1.0 vu, ensuring that the hydrogen atoms have a residual

valence of +0.25 vu with the valence of the N–H bonds reduced to 0.75 vu.

In amine groups where one ammonia hydrogen atom is replaced by an organic

residue, R, the strength of the hydrogen bonds determines the valence of

the N–R bond and hence the bonding strength of any Lewis base functions

on R.

8.2 Incommensuration

Steric strain can also arise when two different components of a crystal structure

have natural translation distances that are incommensurate with each other. Since

a crystal has full translational symmetry, all its components must possess

translations that are commensurate in all three dimensions. If the natural

translations of the components are not equal, there are two possibilities. In the

first case, the interactions within the components are larger than the interactions

between components, so that each component adopts its own spacing. The result

is an incommensurate crystal with two independent lattice spacings along one or

more of the crystal axes, as found in Hg2.68AsF6 in which the AsF6
� anions form

a lattice that contains channels occupied by linear chains of mercury atoms whose

bond length is incommensurate with the spacing of the AsF6
� lattice [33]. On the

other hand, if the interaction between the two components is stronger than the

interaction within one or both components, then the spacing of each component

will change in order that they both adopt the same lattice spacing. This is the

situation in BaTiO3 where the three-dimensional TiO3
2� framework contains

cavities that are too small for the barium atoms, causing the framework to

expand. This requires the Ti–O bond to be stretched and the Ba–O bonds to be

compressed, with a consequent deviation of these bond lengths from their ideal

values. When this happens, both of the network equations (14a) and (14b) may be

violated, but the loop rule (14b), being the weaker constraint, will always be

violated.

BaTiO3 is a member of the perovskite series of structures which provide a

good illustration of this type of steric strain. With the composition ABX3, ideal

bond lengths can be calculated for both the A–X and B–X bonds, but since the

structure is cubic with only one adjustable parameter, the lattice parameter, it is

in general impossible to find a lattice parameter that simultaneously matches

both distances. Consequently one set of bonds must be stretched and the other

compressed. According to the distortion theorem (5), relaxation involves dis-

tortion of the environment of the cation with the stretched bonds, leading to

structures in lower symmetry space groups. As they describe in [14], Lufaso

and Woodward [34] have used bond valences in their program SPuDS to

predict the distortion that will be found in a perovskite of a given composition.
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9 Properties of Water

9.1 Structure

As shown in Sect. 8.1.1, water molecules have a Lewis acid strength of 0.2 vu

through hydrogen and a Lewis base strength of �0.2 vu through oxygen. Conse-

quently water molecules are perfectly valence-matched to each other. It is not

surprising that water is a liquid, or on cold days a solid, rather than a gas. Water

is undoubtedly the most significant molecule on our planet, and although it has been

extensively studied, its properties are still not fully understood.

The oxygen atom of a water molecule can form four hydrogen bonds with other

water molecules, two as the hydrogen-bond donor and two as the acceptor. Since

there are no other species present to exert additional constraints, the bonds in ice or

liquid water are expected to be normal, i.e., they should be linear with an O. . .O
separation of 2.87 Å, and according to the principle of maximum symmetry, the

bonds are expected to be arranged tetrahedrally around each oxygen atom. This is

the structure of ice, but the packing efficiency of tetrahedral structures is poor and

they tend to have low densities. A denser packing can be achieved if the O–H. . .O
bonds are bent which requires the hydrogen bonds to be longer and more asymmet-

ric. This is possible in the liquid where the atoms are not held in a rigid framework.

A range of hydrogen bond geometries is expected in liquid water. Most hydrogen

bonds are normal and approximately linear, but a small number are significantly

bent and more asymmetric. This picture differs from that of a commonly used

model of water that assumes each hydrogen atom either forms a normal hydrogen

bond or no hydrogen bond at all, with no intermediate state considered. Realistic

simulations of the structure of liquid water agree well with the expectations of the

bond valence theory [35].

9.2 Solubility

The dissolution of solids in water is a chemical reaction in which the atoms of the

solid react with the surrounding water molecules and are taken into solution.

Solubility is determined by whether the Lewis acid and base strengths of the

cations and anions of the solid are better matched to each other than they are to

the molecules of water. If they are better matched to each other, the solid is

insoluble, but if they are better matched to water they will dissolve. Applying the

valence matching rule (9) to the Lewis acid and base strengths of water

(�0.2 vu), one would expect water to form stable bonds with anions and cations

having bonding strengths between 0.1 and 0.4 vu. Sodium (SNa ¼ 0.16 vu) and

chlorine (SCl ¼ �0.17 vu) are well matched to each other, but they are also well

matched to water. NaCl readily dissolved in water, but equally readily crystallizes

out when the water is removed. Magnesium (SMg ¼ 0.33 vu) and carbonate
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(SB ¼ �0.22 vu) are reasonably well matched to each other but both also lie

within the range of solubility and can be dissolved. MgCO3 is only slightly

soluble and easily crystallizes to form the familiar stalactites and stalagmites

found in caves. Magnesium and sulfate (Ssulfate ¼ �0.17 vu) are less well

matched to each other and sulfate is well matched to water. MgSO4 dissolves

in water with the formation of discrete Mg(H2O)6
2+ ions in solution. The Mg–O

bonds of 0.33 vu result in the hydrogen atoms of the coordinated water molecules

having a bonding strength of 0.33/2 ¼ 0.17 vu. This allows both the sulfate and

the magnesium ions to form normal hydrogen bonds with the surrounding water

molecules, but recrystallizing this compound from water does not yield crystals of

the original MgSO4 but rather crystals of Mg(H2O)6SO4 (H2O) in which all the

valences are better matched. Any compound composed of ions with bonding

strengths larger than 0.4 vu, such as silica SiO2 (SSi ¼ 1.0 vu, SO ¼ �0.5 vu),

is insoluble. A revealing example of the valence matching rule is found in the

fluorides of the alkaline earths which are an exception to the usual rule that the

properties of elements vary monotonically as one moves down the Periodic Table.

Fluorine has a bonding strength of �0.25 vu, somewhat larger than that of water,

the alkaline earths have bonding strengths of 0.33 vu (Mg), 0.27 vu (Ca), 0.23 vu

(Sr), and 0.20 vu (Ba). The best matches for fluorine are calcium and strontium

with the result that the fluorides of these two elements are less soluble than the

fluorides of either magnesium or barium.

9.3 Solution Chemistry

Thermodynamic studies of water divide cations into those that increase the entropy

during dissolution (structure breaking) and those that decrease the entropy (struc-

ture making). As one might expect, there is a close relationship between the molar

entropy of solution and the bonding strength of the cation [11, p. 57]. Cations with

bonding strengths less than 0.2 vu are structure breaking, those with bonding

strengths in the range of 0.3–0.4 vu form complexes with a single coordination

sphere of water while those with larger bonding strengths form complexes with a

double coordination sphere, the outer sphere being attached to the inner sphere by

hydrogen bonds with a larger valence than those normally found between water

molecules. As shown in Sect. 9.2, magnesium with a bonding strength of 0.33 vu

forms six bonds to water, but the Mg(H2O)6
2+ complex forms 12 hydrogen bonds

with a bonding strength of 0.17 vu, distributing the two valence units of magnesium

over a the 12 hydrogen atoms to give a complex with a bonding strength that is a

good match for the solvent water. In this example, the water of the hydration sphere

acts like a transformer, changing the bonding strength of magnesium from 0.33 to

0.17 vu to allow it to form normal hydrogen bonds with water. Iron(III) forms six

bonds of 0.5 vu to water, resulting in the water molecules forming hydrogen bonds

to the second coordination sphere of 0.25 vu. As this valence is larger than that of

the hydrogen bonds in the surrounding liquid, the second coordination sphere is
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strongly attached to give Fe(H2O)6(H2O)n
3+ with n ~ 9, a number that gives a

bonding strength equal to that of water.

Similarly anions, such as perchlorate (Sperchlorate ¼ �0.08 vu), with a small

bonding strengths tend to disrupt the structure of liquid water, while those such

as phosphate (SB ¼ �0.25 vu) with larger bonding strengths tend to remove the

hydrogen from water to form protonated anions such as hydrogen phosphate

(SB ¼ �0.22 vu). In this way strongly bonding anions can reduce their bonding

strength until it matches that of water.

Table 7 shows how the bonding strength of an orthosilicate ion, SiO4
4�, changes

with successive protonation. The formal ionic charge of the complex is shown in the

column labeled V. This is the residual valence that would be expected in the absence
of any hydrogen bonding, but since all the hydrogen atoms are expected to form

external bonds of valence +0.2 vu, the protonated complexes have a Lewis acid

strength of +0.2 vu as well as the expected Lewis base function acting through

oxygen. While the total formal charge on the complex is V, the true residual

valence, VR, available to the Lewis base function is found by adding �0.2 vu to

V for each hydrogen bond formed by the complex. The expected coordination

number, N, is based on the assumption that oxygen will form three external bonds

when it is terminal and one when it is part of a hydroxy group. The Lewis base

strength is then the ratio of VR to N. Increasing the degree of protonation lowers the
base strength of the silicate anion, with only the fully protonated ion providing a

proper match with water. All the protonated complexes have a Lewis acid strength

of +0.2 vu through the hydrogen atoms, so the Lewis acid and base strengths of

(HO)4Si are the same, and both are equal to those of water. Like water, (HO)4Si acts

as both an acid and a base of equal strength. Adding further hydrogen atoms would

turn the complex into a cation.

The ability of strong Lewis bases such as SiO4
4� to abstract hydrogen atoms

from water results in an excess concentration of OH� ions, and the ability of

strong Lewis acids to shed hydrogen atoms from their coordinated water

molecules results in an excess concentration of H+ ions both causing changes in

the pH as the respective ions dissolve. It is no surprise that one finds a linear

correlation between the pKa and the logarithm of the anion bonding strength as

shown in Fig. 13 [11, p. 47].

Table 7 Bonding strength of protonated orthosilicates

Complex V VR N SB ¼ VR/N

SiO4 �4 �4 12 �0.33

HOSiO3 �3 �3.2 10 �0.32

(HO)2SiO2 �2 �2.4 8 �0.3

(HO)3SiO �1 �1.6 6 �0.27

(HO)4Si 0 �0.8 4 �0.2

V is the formal valence of the complex, VR is its residual valence when the formation of hydrogen

bonds is taken into account, N is the number of external bonds the oxygen atoms are expected to

form, and SB is the Lewis base strength of the complex ion
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10 Reactivity

10.1 Lewis Acid and Base Compounds

In the ammonia molecule, NH3, nitrogen acts as an anion with a valence of �3 vu

and the hydrogen as a cation with a valence of +1. In the isolated ammonia

molecule, the three N–H bonds have a valence of 1.0 vu with none of the atoms

carrying any residual valence. As a result of the strong N–H bond, the lone pair on

nitrogen is stereoactive (Sect. 7.1). However, the hydrogen atoms are expected to

form hydrogen bonds. The internal donor N–H bonds would have valences of

around 0.8 vu, which will tend to reduce the stereoactivity of the nitrogen lone

pair. As shown in Table 6, this gives the ammonia complex a Lewis acid strength (at

hydrogen) of +0.2 vu and a Lewis base strength (at nitrogen) of�0.6 vu. According

to the valence matching rule (9), the nitrogen should bond to a cation with a

bonding strength in the range of +0.3 to +1.2 vu, a range typically found in

transition metals and organic compounds, which makes ammonia a good

complexing agent in coordination chemistry. It also explains why ammonia reacts

with BF3. In a manner complementary to ammonia, BF3 has a Lewis acid strength

of around 0.6 vu at boron and a Lewis base strength of around �0.2 vu at fluorine,

the B–F bonds having a valence of around 0.8 vu. However, since both NH3 and

BF3 have a net residual valence of zero, the N–B bond can only be formed if the H

and F atoms also form external bonds. NH3BF3 only forms a stable compound

because in the solid the molecules are linked by N–H. . .F hydrogen bonds. This

description differs from the usual explanation for the existence of this compound

which calls the N–B bond a “dative bond” formed by the lone electron pair on

nitrogen. While this seems a plausible explanation, it contains an inherent contra-

diction since a lone pair is required to be nonbonding. If it is used for bonding, the

valence of nitrogen must change from �3 to �5, which is forbidden by the octet

rule (11). The bond valence theory provides a more realistic description by pointing

Fig. 13 Correlation between

bond valence and pKa

(Fig. 4.3 from [11] by

permission of the Oxford

University Press)
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out that the base function on nitrogen can only be activated if the ammonia

molecule forms hydrogen bonds which allows it to divert some of the bonding

electrons from the N–H to the N–B bond. The lone pair remains nonbonding, but in

NH3BF3 it is sterically inactive.

Complex ions as well as neutral molecules can sometimes act as both a Lewis

acid and a Lewis base. The acetate ion, H3CCO2
�, being an anion, is primarily a

Lewis base with a residual valence of �1.0 vu split between the two oxygen atoms

to give a Lewis base strength of�1.00/6 ¼ �0.17 vu, but the methyl hydrogens can

also act as weak Lewis acids, typically with a residual valence of around 0.03 vu. If

all three hydrogen atoms form hydrogen bonds, the residual valence on the two

oxygen atoms increases from�1.00 to�1.09 vu, and the Lewis base strength of the

acetate ion increases to �1.09/6 ¼ �0.18 vu. The bonding strength of trifluor-

oactetate, on the other hand, is smaller (0.16 vu) because the residual negative

valence of�1.0 vu must be shared between the oxygen and the fluorine atoms. This

difference is reflected in the pKa values of these two ions.

According to the principle of maximum symmetry, the residual anion valence of

the acetate ion should be distributed equally between the two oxygen atoms,

allowing it to bond to any cation with a bonding strength in the range of +0.09 to

+0.36 vu, but it can bond to more strongly bonding cations, such as silicon

(SSi ¼ 1.0 vu) to form Si(O2CCH3)4 by distributing its residual valence unequally

between the two oxygen atoms [36].

10.2 Stability

In a paper titled “Nonexistent silicates” Dent-Glasser [37] pointed out that no

condensed silicates were known with transition metals, and no orthosilicates were

known with alkali metals, an observation that is readily understood in terms of

valence matching. Table 8 shows the bonding strengths of ortho- and condensed

silicates. The bonding strengths of the formula units shown are equal to the residual

valence of the complex, VR, divided by the number of external bonds, NO, that the

formula unit forms. Terminal oxygen atoms are assumed to form three external

bonds and bridging oxygen atoms one. The orthosilicate anion, SiO4
4� has a

bonding strength of 4/12 ¼ 0.33 vu which matches the bonding strengths of transi-

tion metals which range from 0.3 to 0.5 vu, while condensed silicates have bonding

strengths in the range of 0.1–0.2 vu which matches the bonding strengths of alkali

metals (0.11–0.20 vu). The known silicates are the ones that obey the valence

Table 8 Bonding strengths,

S, of silicate ions
Complex VR (vu) NO S ¼ VR/NO (vu)

SiO4 4 12 0.33 Isolated ion

Si2O7 6 19 0.32 Isolated dimer

SiO3 2 7 0.29 Chain

Si2O5 2 4 0.14 Sheet

SiO2 0 4 0 Framework
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matching rule (9) and Dent-Glasser’s nonexistent silicates include all those that do

not obey this rule [11, p. 51].

Many biological compounds are required to be stable but at the same time to be

sufficiently soluble that they can be assembled or disassembled under aqueous

conditions at ambient temperatures. This requirement can be met if the molecule

is at its stability limit with the bonding strengths of its components differing by a

factor of 2. This condition is satisfied by the hydrolysis of adenosine triphosphate

(ATP) into adenosine diphosphate (ADP) and phosphate, the principal method by

which energy is transferred in living organisms. ATP can hydrolyze to give either

ADP3� and PO3
� or ADP� and PO4

3�. In calculating the bonding strength, the

coordination number of the bridging oxygen is taken as two, since this reflects its

actual coordination number in ATP. With this choice, the Lewis acid or base

strength is equal to the residual valence on the atoms that formed the broken

bond. The Lewis base strength of ADP3� is �0.6 vu assuming the residual valence

of ADP3� is distributed uniformly over all five oxygen atoms. This is to be matched

with the Lewis acid strength of P in PO3
� (+1.25 vu), assuming that all three P–O

bonds have the same valence. For this process, the ratio SA/SB ¼ 2.08. The second

possible hydrolysis route yields ADP� and PO4
3� with the bridging oxygen

remaining on the phosphate group. Under the same assumptions ADP� is the

Lewis acid acting through P with SADP ¼ +1.4 vu and PO4
3� is the Lewis base

with Sphosphate ¼ �0.75 vu giving SA/SB ¼ 1.87. Both routes have ratios close to 2,

which is the limit for bond formation, allowing ATP to form or hydrolyze with only

a small change in the ambient conditions [11, pp. 201–2].

The mineral apatite, Ca3(PO4)2, gives bone its strength. Its components, Ca2+

(SCa ¼ 0.27 vu) and PO4
3�, (Sphosphate ¼ �0.25 vu) are well matched to each other,

allowing them to form a strong material, but the bonding strengths are still within

the range that matches water, ensuring that both components can be moved through

the body to where they are needed, but in this case that the bone, with its better

valence match, is more stable against dissolution.

11 Structure Analysis and Prediction

11.1 The Global Instability Index

There are a number of tools that are useful in validating either a measured or a

proposed structure. The most widely used is the valence sum rule (2) using bond

valences calculated from the observed bond lengths. Experimental uncertainties

will mean that the atomic valence and bond valence sum are rarely exactly the

same, but for a well-determined structure the difference is usually around 0.05 vu.

Larger differences are often found, indicating that some bonds are compressed or

stretched by the steric constraints imposed on the structure (Sect. 8). In some cases

the differences can be quite large, but for a strained structure to be in equilibrium

both stretched and compressed bonds must be present, which is key to verifying the

presence of steric strains.
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A combined measure of the steric strain over the whole structure is the global

instability index, G defined in Eq. (23). Experience with this index shows that few

stable structures have values of G greater than 0.20 vu. An observed structure with a

larger value should be carefully examined to ensure that the structure determination is

correct and that the bond lengths have been properly converted to bond valences.

Values of G in the range 0.05–0.20 vu indicate the presence of strained bonds; the

larger the value of G, the more strained the structure. Garcia-Muñoz and Rordiguez-

Carvajál [38] examined an isostructural series of rare earth compounds and showed

that those in which G was predicted to exceed 0.20 vu crystallized with a different

structure type.

A more interesting index, but one more difficult to apply, is the bond strain

index, B, which compares the observed and predicted bond valences by summing

the squares of the deviation over all m bonds (24):

B ¼ Σ Sobserved � Sidealf g2=m
� �1=2

(24)

This calculation requires ideal bond valences to be predicted using the network

equations (14a) and (14b). B will not be zero if either electronic anisotropies

(Sect. 7) or steric strains (Sect. 8) are present. It measures the deviation from the

predictions of the network equations, but does not indicate the origin of these

deviations, nor does it measure instability. B will always be large if hydrogen

bonds are present, masking the possible presence of other effects.

11.2 Predicting and Mapping the Bond Network into Euclidian
Space

In many cases the bond network can be generated from a knowledge of the bonding

strengths [11, pp. 134ff]. For a given composition, the first step is to use the

electronegativity (Table 1) to identify the anions and the cations while ensuring

that the sum of all the atomic valences is zero. The cations and anions with the

largest bonding strength are then linked by bonds to form complex ions whose

bonding strengths can be matched with the remaining counterions. At each stage,

the principle of maximum symmetry is used to decide between alternative choices.

This approach works well for binary and ternary compounds, but packing

considerations become important if many different elements are present, or if the

compound contains weakly bonding cations such as alkali metals, since the number

of alternative ways of constructing the network becomes large, and the spatial

arrangements of the atoms impose additional constraints. If the bond network has a

high symmetry, mapping into three-dimensional (Euclidean) space becomes a

straightforward exercise of finding the highest symmetry space group that can

accommodate the network [11, pp. 129ff].
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11.3 Simulations

A traditional method for predicting complex chemical structure and dynamics is

computer simulation, in which atoms are placed at arbitrary, though preferably

favorable, positions and are moved in response to the forces acting on them, in such

a way as to minimize a cost function, such as the total potential energy [39]. The

cost function is usually based on a Coulomb potential, and the total energy of the

system is calculated using either quantum or classical mechanics. Whichever

method is used, all simulations necessarily involve simplifying assumptions and

the adoption of fitted parameters to suit the particular system.

For inorganic compounds, the ionic model (Sect. 5) is the basis of both the

classical two-body potential model and the bond valence theory; either can be used,

separately or together, in a simulation. The two models are based on identical

assumptions, the only difference being in the way in which they describe the

repulsion between neighboring atoms. The two-body potential model represents

this repulsion (and other factors such as polarization) by adding empirical terms to

the cost function; the bond valence theory represents the repulsion through the

empirical bond valence parameters, R0 and b, in Eq. (4). Unlike the repulsive

potentials which are optimized for each structure, the bond valence parameters

are tabulated, and as they require no special fitting, they are robust. The principal

difference between the two approaches lies in the ways in which the calculations are

performed: the two-body potential model minimizes a single potential energy,

while the bond valence theory ensures that the bond valences obey local rules

around each atom. Apart from the choice of empirical parameters, both methods

should lead to the same structure. Although bond valence terms are sometimes

added to the cost functions, no simulation has yet been performed using only the

bond valence rules.

12 Epilogue

Chemical structures are too complex to be described by any single theory without

drastically simplifying assumptions, and any quantitative theory requires at least

some parameters to be fitted empirically. Consequently we have a variety of models

or theories of chemical structure, based on different assumptions, covering different

materials and designed to suit different needs, depending on whether one is looking

for insights or quantitative predictions, whether one wants simplicity or an under-

standing of the basic physical principles.

One can identify four desirable characteristics for a theory of chemical structure:

1. It reveals the physical principles involved.

2. It applies to a wide range of compounds.

3. It offers simple insights into the factors that determine chemical structure.

4. It makes quantitative prediction of properties, preferably with simple

calculations.
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No existing theory meets all of these criteria, which is why structural chemis-

try has so many different models, but these criteria provide a standard against

which each can be evaluated. Since the first pictures of chemical structure

appeared in the nineteenth century, many different theories, and variations on

theories, have been proposed. The bond valence theory, which is one of these,

began a 100 years ago with the ionic model, took form with Pauling’s electro-

static valence principle and has evolved into the relatively sophisticated model

that we have today. Its ability to give simple quantitative predictions for complex

structures appeals to mineralogists and materials scientists, since it provides

insights which the extensive computation required by other models tends to

obscure. Its greatest weakness in the past has been its apparent lack of any

basis in physical theory; its only justification being its surprising success in

giving a quantitative account of extended structures.

This chapter has been an attempt to rectify this weakness by taking a new look

at the physical basis of the chemical bond. It shows how the rules of the bond

valence theory can be derived from established physical principles by making a

number of simple assumptions about the properties of atoms and developing the

model using the electrostatic field. It provides many insights into chemical

structure, but at the cost of losing some of the insights provided by other models.

Just as the concept of a chemical bond is not found in the traditional physical

models, the concepts of energy and electron density distribution are not found in

the bond valence theory. If energy or electron density are important, a different

approach is needed.

Even though the bond valence theory does not explain how atoms adhere to

each other and its scope is limited to localized bonds, it does provide simple

insights into many of the factors that determine chemical structure. It is a model

which has been slow to develop, but which has a potential that is far from

exhausted. It is a model that will be all the stronger for having the secure base

in physical theory presented here.
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Using Bond Valences to Model the Structures

of Ternary and Quaternary Oxides

Michael W. Lufaso and Patrick M. Woodward

Abstract The bond valence method is implemented in the modeling of crystal

structures with the software program SPuDS. The approach is investigated for the

perovskite, pyrochlore, spinel, and garnet structure types. Crystal structures of

selected compositions were calculated and compared to experimental structures

that were determined using X-ray or neutron diffraction. Bond valence sums

(BVSs) of the ions and the global instability indices (G) are investigated to provide

insight into the structures of these four structural classes of materials. The predic-

tive ability is examined in the context of understanding the structures of existing

compounds. The accuracy and possible uses of the crystal structures obtained from

modeling using bond valences are explored.
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1 Introduction

The bond valence model offers an approach to structural modeling that is attractive

because of its simplicity, low computational requirements, and intuitive results.

Structure types where symmetry constraints limit the number of free positional

parameters make particularly attractive targets for structural modeling that is based

on bond valence concepts. The software program SPuDS (Structure Prediction

Diagnostic Software) is one such example of this approach. It was originally

developed to model the structures of perovskites and the various modifications

from the aristotype cubic structure including octahedral tilting, cation ordering, and

Jahn–Teller distortions. Initial efforts focused on the single octahedral cation

structures (ABX3) [1] and later was extended to ordered double perovskites

(A2BB
0X6) [2] and triple perovskites (A3BB2

0X9) [3]. Applications of SPuDS

include generating starting models for structural refinements or more sophisticated

calculations, guiding efforts to synthesize new perovskites [4, 5], or to help

deconvolute various structural distortions [6].

In this chapter we review the use of SPuDS to model the structures of perovskites

and extend this approach to three additional structure types that play a prominent

role in solid state materials chemistry: pyrochlore, spinel, and garnet.

2 Cubic ABX3 Perovskites

The perovskite structure, which is adopted by a large number of mixed-metal

oxides [7], has ABX3 stoichiometry, where A and B are cations and X is an

anion. The ideal perovskite structure, shown in Fig. 1, has the A-site cation

occupying a 12-coordinate site within a framework of corner-connected [BX6/2]

octahedra. The tolerance factor is a geometrical relationship based on a hard sphere

model of the atom that gives a measure of the fit of the A-site cation to the

octahedral framework. Mathematically the tolerance factor (t) is given by the

following expression, t ¼ 1=
ffiffiffi
2

p� �½ðrA þ rXÞ=ðrB þ rXÞ�, where rA, rB, and rX are

the radii of the A, B, and X ions, respectively. When t ¼ 1 the A-site cation is a
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perfect fit, but in most cases t deviates from unity. If the tolerance factor is greater

than unity, the A-site ion is too large for the cavity. If the B-sites are d0 cations

in a perovskite with a t > 1, the octahedra are prone to undergo an electronically

driven distortion as a consequence of a second-order Jahn–Teller distortion

[8, section 7.4.1], as observed in BaTiO3 (t ¼ 1.06) and KNbO3 (t ¼ 1.09). In

cases where the A-cation is too small relative to the corner-sharing environment of

the [BX6] octahedra, cooperative octahedral tilting tends to occur. The former

distortion effectively increases the volume of the BX6 octahedra (according to the

distortion theorem) (Eq. (5) in [8]) [9] while the latter decreases the volume of the

AX12 polyhedron [10].

In the aristotype ABX3 perovskite structure, with Pm3m space group symmetry,

there is a single free parameter, the cubic lattice parameter, a. A simple method to

model the crystal structure is to determine the structure parameter(s), a in this case,
that minimize(s) the Global Instability Index, G (Eq. (21) in [8]).

2.1 Equation (1): Global Instability Index

G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 ðdiÞ2
N

s

(1)

with di ¼ ∑sij � Vi, where Vi is the formal valence and ∑sij is the calculated bond

valence sum (BVS) for the ith ion, and N is the number of atoms in the formula unit.

Fig. 1 Crystal structure of a cubic ABX3 perovskite. Orange spheres represent the A cation, blue
spheres B cations, and red spheres X anions
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The bond valence parameters, calculations of bond valences, and global instability

index are more fully described in [8, sections 3, 8 and 11].

With only a single variable it is computationally inexpensive to perform a grid

search to find the value of a that minimizes G. The bond valences are calculated

from the A–X and B–X distances and tabulated values of bond valence parameters

[11]. Figure 2 shows theG and BVSs of the A, B, and X ions in SrTiO3 as a function

of lattice parameter. The observed lattice parameter is a ¼ 3.901(1) Å [12] and the

predicted lattice parameter is 3.930 Å. For larger lattice parameters the BVS of the

ions decreases as the interatomic distances increase, and for smaller lattice

parameters the BVS of the ions increase as a result of shorter interatomic distances.

The optimized structure and lattice parameter is selected where the minimum of

G is obtained. Note this is where the BVSs of the ions are near the ideal formal

oxidation states, which are shown as horizontal dashed lines.

Figure 3 shows the predicted and observed lattice parameters for eighteen

undistorted cubic ABX3 perovskites: KTaO3 [13], SrGeO3 [14], BaNbO3 [15],

BaMoO3 [16], SrVO3 [17], BaSnO3 [18], KUO3 [19], BaZrO3 [20], SrTiO3 [21],

SrMoO3 [22], KMgF3 [23], KNiF3 [24], KZnF3 [25], KCoF3 [26], KFeF3 [27],

BaLiF3 [23], KMnF3 [24], RbCaF3 [28]. Two approaches are available in SPuDS:

(a) setting the B–X distance at a value that allows the B cation to attain its ideal

valence sum and (b) optimizing theG of the structure. The former approach is based

on the assumption that the larger size and lower valence of the A-site cation makes

the A–X bonds more compressible than the B–X bonds [29]. Both approaches are

able to reproduce the experimental values with similar accuracy, but for the sake of

comparison with modeling employed later in this chapter we only report results

based on optimizing G here. The predicted lattice parameters are typically within

2% of the observed lattice parameters.

Ti4+

Sr2+

O2-
G

Fig. 2 Bond valence sums of the ions and global instability index versus lattice parameter for the

cubic perovskite SrTiO3
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The observed and predicted global instability index versus tolerance factor for

untilted cubic ABX3 perovskites is shown in Fig. 4. As expected the G is smallest

for compounds with a tolerance factor near 1. For unstrained structures the normal

maximum value of G is 0.2 v.u., but here we see a number of compounds where

G > 0.2. This can be explained in part by realizing that when t is significantly

different than 1 the compounds can be classified as strained. The largest G observed

(G ¼ 0.47) is for KTaO3 (t ¼ 1.08) which has shown on multiple occasions to be a

cubic perovskite [13, 30, 31]. These studies used samples prepared with several

synthetic techniques and both polycrystalline powders and single crystals have been

examined, which support the accuracy of the crystal structure.

Fig. 3 Predicted and observed lattice parameters for untilted cubic perovskites calculated with

optimized B–X distances. Squares represent ABF3 and circles represent ABO3 perovskites

Fig. 4 SPuDS predicted

(filled symbols) and observed

(open symbols) global
instability index for untilted

cubic perovskites. Squares
represent ABF3 and circles
represent ABO3 perovskites

Using Bond Valences to Model the Structures of Ternary and Quaternary Oxides 63



3 Ordered Double Perovskites

An even larger family of compounds are the so-called A2BB
0O6 ordered double

perovskites, where two B-site cations are present and there is a sufficient size and/or

charge between the two to drive a 3D alternation of B and B0 centered octahedra. The
crystal structure of an ordered double perovskite is shown in Fig. 5. The ordered

perovskites examined here are: Ba2OsLiO6 [32], Ba2NiMoO6 [33], Ba2FeNbO6

[34], Ba2CoMoO6 [35], Ba2CoWO6 [35], Ba2MgWO6 [36], Sr2AlNbO6 [37],

Ba2ScTaO6 [38], Sr2AlTaO6 [38], Ba2PtCeO6 [39], Ba2MnWO6 [40], Ba2InTaO6

[38], Ba2PtPrO6 [41], Ba2FeUO6 [42], Pb2MgTeO6 [43], Ba2RuYbO6 [44],

Ba2LuRuO6 [45], Sr2CrMoO6 [46], Sr2CrNbO6 [47], Ba2TaYbO6 [48], Ba2RuErO6

[49], Ba2TaLuO6 [50], Ba2OsNaO6 [32], Ba2RuTmO6 [44], Sr2FeMoO6 [46],

Ba2ScBiO6 [38], Ba2YRuO6 [45], Ba2UMnO6 [51], Ba2RuHoO6 [52], Ba2YNbO6

[53], Ba2YIrO6 [54], Ba2DySbO6 [55], Ba2TlSbO6 [56], Ba2CaIrO6 [57], Ba2YSbO6

[58], Ba2HoSbO6 [58], Ba2SmSbO6 [59], and Ba2CaMoO6 [60].

Ordered perovskites with the A2BB
0X6 composition have two free positional

parameters, the lattice parameter a and fractional coordinate x, which defines the

anion position on the 24e Wyckoff position in space group Fm3m. Figure 6 shows

the predicted (G optimized) and observed lattice parameters for cubic cation

ordered A2BB
0X6 perovskites. The predicted lattice parameters are typically within

a couple percent of the observed lattice parameters. Interestingly, there is a

Fig. 5 Crystal structure for the cubic A2BB
0O6 ordered double perovskite. Orange spheres

represent the A cation, blue and green spheres B and B0 cations, and red spheres X anions
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systematic tendency for SPuDS to slightly overestimate the lattice parameter. The

observed and predicted values of the anion fractional coordinate are shown in

Fig. 7. Once again we see agreement within 1–2% for most of the compounds.

The observed and predicted global instability index versus tolerance factor for

perovskites is shown in Fig. 8. The SPuDS calculated values follow a predictable

trend reaching a minimum near t ¼ 1, but the G values calculated from experimen-

tal structures show considerable scatter, with G > 0.2 for a number of entries.

There are a couple of factors that could be at work here in addition to the strain

effects already discussed for ABX3 perovskites. Structure determination from

X-ray powder diffraction data may not be giving fully accurate values of the oxygen

fractional coordinate, x, in some cases. In addition, there is the possibility of some

level of B/B0 cation disorder for some compounds. Both effects can lead to errors in

the value of G. Table 1 contains the BVSs for Ba2NiMoO6, Ba2LuRuO6, and

Ba2YNbO6. For optimized structures of untilted ordered double perovskite with a

tolerance factor > 1, the A-site and O-site tend to be overbonded and the B-site is

underbonded, whereas for a tolerance factor < 1, the A-site and O-site tend to be

underbonded and the B-site is overbonded.

4 Octahedral Tilting in Perovskites

Although the perovskite structure type is found for hundreds of compositions, most

of these compounds are distorted from the aristotype cubic structure [1, 61, 62].

Octahedral tilting distortions are the most common type of distortion. They occur as

Fig. 6 Predicted and observed lattice parameters for ordered cubic perovskites
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a consequence of the A-site cation being smaller than ideal for the corner-sharing

network of [BO6] octahedra (t < 1). Glazer introduced a commonly used notation

to describe the octahedral tiling around the three principle axes of the cubic

perovskite [63, 64]. Howard and Stokes have shown that by symmetry there are

15 distinct patterns of octahedral tilting, each referred to as a tilt system [65].

The software program POTATO represents an early attempt to model the

structures of distorted perovskites [66]. The user is able to generate a structure by

inputting the tilt system, the size of the octahedra, and the tilt angles. The program

Fig. 7 Predicted and observed lattice fractional coordinates for ordered cubic perovskites
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Fig. 8 Global instability index for ordered cubic perovskites with SPuDS predicted with

G optimized (diamonds) and observed (open squares) structure
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generates a structure from these values and the assumption that the octahedra

remain rigid (even when space group symmetry does not dictate it). This approach

provides flexibility that can be useful for certain applications but at the same time is

quite limiting because the program makes no attempt to find the most energetically

stable structure. SPuDS builds upon this approach, retaining the assumption of rigid

octahedra, but using bond valence concepts to find the most favorable structure.

Because the structures of distorted perovskites can have many degrees of

freedom (e.g. there are 10 degrees of freedom in a�b+a�, the most common tilt

system) a grid search to find the most favorable structure is neither computationally

feasible nor guaranteed to find a unique minimum. Therefore, SPuDS first uses

bond valence parameters to set the B–O bond distances (B–O and B0–O bond

distances for ordered perovskites) so that all six distances are equal and the B-site

cation attains its ideal BVS. For perovskites with a tolerance factor of less than

unity, this results in an underbonding of the A-site cation(s), a condition that can be

remedied by tilting of the octahedra. The positions of the anions are calculated as a

function of the tilt angle(s) using equations that have been developed for various tilt

systems [1, 67, 68]. In addition to the tilt angle(s) being variables in the optimiza-

tion process, the positions of the A-site cations are also variable in some tilt

systems. For those structures the position of the A-site cation is determined using

a valence vector approach, where the ion is located at a position that minimizes the

bond valence vector sums [1]. An example valence map of the A-site cation for

CaTiO3 (crystal structure in Fig. 9) is shown in Fig. 10, where the y fractional

coordinate is located on a fixed position while x and z are free parameters (this atom

sits on a mirror plane). Additional details about this approach can be found in the

literature [1, 69].

A wide range of tilt angles are examined and for each tilt angle the lattice

parameters and fractional coordinates of each of the atoms are determined. The

Table 1 Observed and SPuDS predicted bond valence sums of ions for ordered perovskites

Ba2NiMoO6 (GObs ¼ 0.32 v.u.,GSPuDS ¼ 0.21 v.u.), Ba2LuRuO6 (GObs ¼ 0.18 v.u.,GSPuDS ¼ 0.04

v.u.), and Ba2YNbO6 (GObs ¼ 0.21 v.u., GSPuDS ¼ 0.12 v.u.)

Observed

BVS (v.u.)

G Optimized

BVS (v.u.)

Ba2NiMoO6 (Toler. Fact. ¼ 1.05) [33] Ba 2.63 2.34

Ni 1.92 1.60

Mo 5.67 5.80

O 2.12 2.02

Ba2LuRuO6 (Toler. Fact. ¼ 0.99) [45] Ba 2.12 1.93

Lu 3.45 3.07

Ru 5.10 5.05

O 2.13 2.00

Ba2YNbO6 (Toler. Fact. ¼ 0.98) [53] Ba 1.80 1.79

Y 3.49 3.20

Nb 4.69 5.11

O 1.97 1.98
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bond distances for each symmetry unique atom in the first coordination sphere are

calculated. Using these data, the BVSs are calculated and G determined at each tilt

angle. The optimized tilt angle is taken as the one that minimizes G. This approach
is able to accurately predict the fractional coordinates of all atoms in the structures

within a few percent. More details on the accuracy and limitations of SPuDS

Fig. 9 Crystal structure for

the CaTiO3 tilted perovskite.

Orange spheres represent the
Ca2+, blue spheres Ti4+

cations, and red spheres O2�

anions

Fig. 10 Valence map plot of A-site cation position for CaTiO3 in tilt system a�b+a� (space group

Pnma). ΔX and ΔZ are the differences in the fractional position from the high symmetry position

located at (1/2, 1/4, 1/2). The valence of A-site cation is shown as the free positional parameters

are varied while holding the octahedral tilt angle at 14.60�. The circle is the SPuDS predicted

position and the triangle is the experimental position
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modeling of octahedral tilting in of single B-site perovskites [1] and ordered B-site

perovskites [2, 3] can be found in the literature.

5 Pyrochlores

The pyrochlore structure has the general formula A2B2O6Xwhere A and B are metal

cations and X is oxygen or fluorine. The coordination numbers of A[16d], B[16c],

O[48f], andX[8b] are 8, 6, 4, and 4, respectively, withWyckoff sites in brackets. The

crystal structure of a pyrochlore is shown in Fig. 11 and can be visualized as an

ordered defect fluorite structure. A large number of pyrochlores are known and have

been studied for interesting electronic and magnetic properties as well as for

radioactive waste disposal [70]. The crystal structure accepts X-site vacancies and

A-site vacancies to a certain extent; however, the focus of this section is on

stoichiometric pyrochlores where X is oxygen. To distinguish the two crystallo-

graphically distinct oxygen sites, the oxide ions that occupy the X-site and are

coordinated only by A-site cations will be referred to as O0 while the oxide ions

Fig. 11 Crystal structure of an A2B2O6O
0 pyrochlore. B cations (blue) are located in a distorted

octahedral coordination and A cations (yellow) are in an eight coordinate environments. Anions, in

four coordinate environments, are represented by red spheres
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that make up the B-site centered octahedra will be referred to as O. In the simple

pyrochlore there are two free parameters within the structure, the lattice parameter

a in the Fd3m space group and x for the O anion on the 48f Wyckoff site (x, 0, 0).
A detailed analysis of the La2Sn2O7 pyrochlore follows. A graphical representa-

tion of the BVSs for La3+, Sn4+, O2�, and O02� as a function of the lattice parameter

and the x coordinate of the O on the 48f site is shown in Fig. 12. There is a range

of fractional coordinates that results in a BVS of 3 v.u. for the La3+ ion. The change

of the BVS of the Sn4+ ion is more strongly affected by the change in lattice

parameter and fractional coordinates than any of the other ions. The BVS of the

oxygen on the 8b site only depends on the lattice parameter. In La2Sn2O7 ideal BVS

of the O0 on the 8b site may only be achieved when a ¼ 11.216 Å, but the O on the

48f site cannot achieve its ideal BVS at this value. A 2d projection of these 3d plots,

a

c

b

d

Fig. 12 3D graphs showing the bond valence sums for the four symmetry unique ions: (a) La3+,

(b) Sn4+, (c) O02�, and (d) O2�, versus the lattice parameter and fractional coordinate x of the

La2Sn2O7 pyrochlore. The optimized fractional coordinate x ¼ 0.3250 and lattice parameter

a ¼ 10.7040 Å
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Fig. 13, shows the values in which the ideal valence is obtained. It is noteworthy the

structure does not have a unique combination of lattice parameter a and fractional

coordinate x that simultaneously optimizes the BVSs of each ion. In both the

calculated and observed structures the values of a and x are those that come close

to optimizing the valences of the La3+ and Sn4+, while the O ion is slightly

underbonded (1.863 v.u. SPuDS; 1.848 v.u. obs.) and the O0 ion is significantly

overbonded (2.700 v.u. SPuDS; 2.703 v.u. obs.).

Figure 14 contains a 3d surface and 2d contour plot of the global instability index

as a function of the lattice parameter and fractional coordinate for the La2Sn2O7

pyrochlore. The predicted structure has a lattice parameter and fractional coordinate

that are close to the values for the experimentally determined structure. The G for

the experimental structure is 0.258 v.u., whereas the predicted structure has a

slightly lower G equal to 0.235 v.u. The relatively large value of G seen for

La2Sn2O7 is something that will be repeated for many other pyrochlores. It is a

result of the topological constraints associated with this structure type that prevent

distortions that could alleviate the lattice induced strain (e.g. octahedral tilting in

perovskites) [69].

The lattice parameters and fractional coordinates, for SPuDS predicted and

experimentally observed from neutron powder diffraction, of several representative

pyrochlores are shown in Table 2. The optimized structure is taken as the lattice

parameter and fractional coordinate where the G is minimized. The predicted

structures are similar to the experimentally observed structures for a variety of

oxide pyrochlores.

Fig. 13 Ideal bond valence sums for the four symmetry unique ions for the lattice parameter and

fractional coordinate x of the La2Sn2O7 pyrochlore. The optimized (diamond) fractional coordi-
nate x ¼ 0.3250 and lattice parameter a ¼ 10.7040 Å and the observed values (square) are

x ¼ 0.3294 and lattice parameter a ¼ 10.7026 Å
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In order to investigate the robustness of the calculation approach a representative

sample of stoichiometric A2
3+B2

4+O7 pyrochlore compounds were investigated.

The chemical compositions and references are as follows: Pr2Ru2O7 [74],

Sm2Ti2O7 [75], Sm2Ru2O7 [74], Eu2Ti2O7 [76], Gd2Ti2O7 [75], Gd2Ru2O7 [77],

Y2Mo2O7 [78], Lu2Mn2O7 [79], Nd2Ru2O7 [77], Er2Mn2O7 [80], Tm2V2O7 [81],

Y2Ti2O7 [73], Y2Ru2O7 [72], Yb2Ge2O7 [82], Pr2Sn2O7 [71], Lu2V2O7 [81],

La2Sn2O7 [71], Tb2Ru2O7 [83], In2Mn2O7 [79], Yb2V2O7 [81], Er2Ti2O7 [84],

Nd2Sn2O7 [71], Dy2Ru2O7 [74], Yb2Ru2O7 [83], Y2Sn2O7 [71], Dy2Sn2O7 [71],

Tm2Sn2O7 [85], Lu2Sn2O7 [71], Er2Sn2O7 [85], and Yb2Sn2O7 [85]. There are

Fig. 14 Contour plot of the SPuDS calculated global instability index with the lattice parameter a
and fractional coordinate x for the La2Sn2O7 pyrochlore. The white diamond with green outline
represents the SPuDS predicted lattice parameter and fractional coordinate, respectively. The

yellow square with red outline represents the observed lattice parameter and fractional coordinate,

respectively [71]. Contour lines are at 0.29, 0.5, 0.75, and 1 valence units

Table 2 Observed and SPuDS predicted structural information for selected pyrochlores

SPuDS Observed

La2Sn2O7 [71] a (Å) 10.7040 10.7026(1)

x 0.3250 0.32943(7)

Y2Ru2O7 [72] a (Å) 10.1660 10.1429(2)

x 0.3328 0.33536(3)

Y2Ti2O7 [73] a (Å) 10.1260 10.0947(1)

x 0.3298 0.32918(9)

In space group Fd3m, the fixed atomic fractional coordinates, with Wyckoff sites in brackets, are

A[16d] (1/2, 1/2, 1/2), B[16c] (0, 0, 0), O0[8b] (3/8, 3/8, 3/8), O[48f] (x, 1/8, 1/8)
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known A2
2+B2

5+O7 pyrochlores, but those are fewer in number and not considered

in the present analysis. To simplify comparison, the predicted structural variables

are plotted as a function of the pyrochlore tolerance factor. The pyrochlore toler-

ance factor is defined differently than for perovskites, although both attempt to

give a measure of the fit of the A-site cation to the [BO6] octahedral framework.

Here we have used the definition that assumes perfect octahedra [86], even

though that condition is seldom realized [87]. The observed and SPuDS predicted

lattice parameters and percent difference in lattice parameters versus tolerance

factor are shown in Fig. 15. There is a systematic tendency to overestimate the

lattice parameter for pyrochlores with large tolerance factors and underestimate the

lattice parameter for pyrochlores with small tolerance factors. The predicted lattice

parameter is typically within �1% of the observed experimental value.

a

b

Fig. 15 The (a) predicted

and observed lattice

parameters and (b) percent

difference in lattice

parameters versus tolerance

factor for A2
3+B2

4+O7

pyrochlores
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The observed and SPuDS predicted fractional coordinate of the O ion versus

tolerance factor is shown in Fig. 16. The fractional coordinate decreases as the

tolerance factor increases, but the magnitude of this change is more pronounced for

the calculated values than seen in the observed structures. The difference between

observed and calculated is most pronounced for t � 1. The divergence of the

calculated and observed values for small tolerance factors may be a result of the

fact that the bond valence modeling does not consider the repulsive forces arising

from cation–cation and anion–anion interactions. For small tolerance factor

pyrochlores (t < 1.00), this results in O–O distances that are about 0.1 Å shorter

in the predicted structures than they are in the observed structures.

The observed and predicted global instability index versus tolerance factor for

pyrochlores is shown in Fig. 17. Unlike the perovskites a relatively large G is

observed over the entire range of tolerance factors investigated. Despite the rigidity

imposed by the topology of the pyrochlore structure, this result is a little surprising,

since the pyrochlore structure is known as a “chemical garbage can” and has an

amazing variety of chemical compositions [88]. For tolerance factors above 1.02,

the G tends to increase for both predicted and observed pyrochlore structures. For

τ < 1.02, the G of the observed and predicted structures begins to deviate. In order

to understand the source of this deviation we examine the individual BVSs of each

of the ions.

The site-specific BVSs are plotted versus tolerance factor for A2
3+B2

4+O6O
0

pyrochlores in Fig. 18. In general the BVSs for the B-site cation and O are

reasonably close to their formal valences. This is particularly true for the calculated

valences of the B-site cations. While the BVS of O decreases systematically as the

tolerance factor increases. In sharp contrast the BVS of the O0 site is close to its

expected value of 2 only for the smallest tolerance factors. Both calculated

Fig. 16 SPuDS predicted (diamonds) and observed (open squares) fractional coordinate of the

O-site for A2
3+B2

4+O7 pyrochlores
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and observed values increase sharply with increasing tolerance factor, approaching

3 v.u. for the largest tolerance factors.

While the SPuDS predicted BVSs do a good job of mirroring the tolerance factor

dependence of the observed values for the B-site cation and both oxygen sites, the

same cannot be said for modeling the valence of the A-site cation. The predicted

Fig. 17 SPuDS predicted (blue diamonds) and observed (open red squares) global instability
index for A2

3+B2
4+O7 pyrochlores

Fig. 18 Observed and SPuDS predicted bond valence sums individual ions for A2
3+B2

4+O7

pyrochlores. Ideal values are indicated by horizontal lines
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structures show a BVS near the formal charge of 3+; however, the observed

structure BVSs display a strong increase as the tolerance factor increases, similar

to O0. The discrepancy factor for the A-site cation varies from about 0 to�0.07 v.u.

for predicted structures, whereas the observed structures show a substantially larger

deviation, +0.35 to �0.46 v.u. This observation indicates the lattice parameter is

largely dictated by the [BO6] octahedral network and the [A2O
0] network must

accommodate lattice strains imposed upon it. The fact that SPuDS is able to find

structures with considerably lower G values than those observed experimentally

suggests that it is more favorable for the [A2O
0] network to accommodate the tensile

strain than it is to compress the [BO6] octahedra beyond a certain point.

6 Spinels

The spinel structure has the general formula A2+B2
3+O4 and may be described as a

cubic close packed arrangement of oxide anions with the A and B cations

occupying 1/8 of the tetrahedral and 1/2 of the octahedral holes, respectively. The

normal spinel is typified by MgAl2O4 which has Mg2+ ions on the tetrahedral site

and Al3+ ions on the octahedral site. In an inverse spinel, typified by Fe3O4, the B

cations (Fe3+ in this case) occupy the tetrahedral sites, which means that the

octahedral sites are occupied by a 50:50 mixture of A (Fe2+) and B cations. There

are also intermediate structures with an arrangement of the A and B-cations

between the end limits of the normal and inverse spinel, including a random

arrangement (A1/3B2/3)(A2/3B4/3)O4. In our modeling we have excluded inverse

spinels and those prone to intermediate degrees of site mixing. The spinel structure

has a face-centered cubic unit cell and adopts the Fd3m space group. The cations

occupy the special positions 8a and 16d, whereas the anion is located on the 32e

Wyckoff site (x, x, x). So like pyrochlore and ordered double perovskites, the spinel
structure has two degrees of freedom, the lattice parameter a and the x coordinate of
the anion. The crystal structure of an AB2O4 spinel is shown in Fig. 19.

A series of spinels were examined and the chemical compositions and references

are as follows: CoAl2O4 [89], MgAl2O4 [90], ZnAl2O4 [91], FeAl2O4 [92], NiCr2O4

[93], ZnCr2O4 [94], ZnGa2O4 [95], FeCr2O4 [96], CoCr2O4 [97], CoCo2O4 [98],

MgCr2O4 [91], FeV2O4 [99], MgV2O4 [100], ZnV2O4 [100], ZnFe2O4 [101],

CdGa2O4 [102], CdV2O4 [99], HgCr2O4 [103], CdFe2O4 [104], CdRh2O4 [105],

SiFe2O4 [106], SiCo2O4 [107], GeCo2O4 [97], GeFe2O4 [108], GeMg2O4 [109],

GeNi2O4 [96], and SiNi2O4 [110]. The SPuDS predicted and observed lattice

parameters and fractional coordinates for three representative spinels are shown

in Table 3.

The predicted values of the fractional coordinates agree with observed values

typically within 0.004, as shown in Fig. 20. The agreement between observed and

calculated lattice parameters is shown in Fig. 21. Unlike the previous cases here we

see that SPuDS systematically underestimates the size of the cubic unit cell. The

origin of this systematic error is not clear. One possibility is that cation–cation
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repulsions across the shared edges of the octahedral network expand the octahedra

and result in larger values of a than predicted by bond valence modeling.

The predicted structures obtained by optimizing the bond valences of the ions

have BVSs close to their formal valences. The degrees of freedom in the spinel

structure enable the simultaneous optimization of the BVS for each of the A-, B-,

and X-site ions. Within calculation limitations, a zero global instability index (G)
is found for each of the predicted structures. The experimentally determined

structures have a larger G, ranging from about 0.04 to 0.27 v.u. with an average

of 0.15 v.u. for the examined structures. Unlike the cubic perovskite and pyrochlore

structure, the spinel is not a strained structure. Regardless of the sizes of the A and B

Table 3 Observed and SPuDS predicted structural information for selected representative spinels

SPuDS Observed

MgAl2O4 [90] a (Å) 7.9807 8.08360(6)

x 0.2660 0.26201(3)

HgCr2O4 [103] a (Å) 8.6555 8.658(1)

x 0.2736 0.2714(2)

GeFe2O4 [108] a (Å) 8.3972 8.4127(7)

x 0.2452 0.2466(1)

In space group Fd3m, the fixed atomic fractional coordinates, with Wyckoff sites in brackets, are

A[8a] (1/8, 1/8, 1/8), B[16d] (1/2, 1/2, 1/2), O1[32e] (x, x, x)

Fig. 19 Crystal structure of an AB2O4 spinel. Blue spheres represent A cations, green spheres B
cations, and red spheres represent O anions
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cations all of the ions can achieve their ideal valences. A majority of the observed

structures have G > 0.1 v.u., so the view that a good structure has a G < 0.1 v.u.

appears to be questionable for the simple spinel structure type. It should be noted

that structures of oxides determined by X-ray powder diffraction are not generally

as accurate as those structures determined from neutron powder or single crystal

diffraction methods, which may be a source of some scatter. Structures with large

deviations between predicted and observed values could indicate the structure is not

accurate, there is undetected interchange between A-site and B-site ions, or the

bond valence parameters are not correct.

Examination of the individual BVSs was undertaken to determine if any trends

were evident. The site-specific BVSs of the ions in A2+B2
3+O4 spinels are shown in

Fig. 22. As expected the BVSs for all ions in the calculated structures attain their

formal valences. The B-site cations and the oxide anions are systematically

Fig. 21 Predicted and observed lattice parameters for A2+B2
3+O4 spinels

Fig. 20 Difference in SPuDS predicted and observed fractional coordinate versus observed lattice

parameter for A2+B2
3+O4 spinels
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underbonded. The discrepancy factors for the B-site range from +0.083 to

�0.395 v.u., with an average of �0.173 v.u., while for the oxide ions the average

discrepancy factor is �0.092 v.u. This underbonding could have been expected

from the earlier observation that the lattice parameter is always larger than

predicted by SPuDS. The fact that B-site cations are systematically underbonded

while the A-site cations are not lends further credence to the idea that B–B

repulsions across the shared edges of the octahedra play a role in the SPuDS

underestimation of the lattice parameter. The divalent A-site cations located on a

tetrahedral site tend to exhibit the largest variance in BVSs. The observed structures

display an A-site discrepancy factor of +0.34 to �0.41 v.u., with an average

discrepancy factor of �0.021 v.u., indicating the presence of a slight underbonding

on average.

The observed and SPuDS predicted BVSs A4+B2
2+O4 spinels are shown in

Fig. 23. Although at first glance similar to the A2+B2
3+O4 spinels there is an

interesting twist. Now the BVS of the octahedrally coordinated B-site ions are

close to the formal valences, with an average discrepancy factor of only +0.05 v.u.,

but the tetrahedrally coordinated A-site ions are substantially underbonded, with an

average discrepancy factor of �0.35 v.u. The X anion is once again slightly

Fig. 22 Observed and SPuDS predicted bond valence sums for A2+B2
3+O4 spinels
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underbonded, with an average discrepancy factor of �0.06 v.u. The reversal of the

location of the underbonded cations to the site occupied by the highest valent cation

is consistent with the hypothesis that cation–cation repulsions are responsible for

the underestimation of the lattice parameter.

7 Garnets

The garnet structure has the general structure A3B2C3O12 where A, B, and C are

cations [111]. Garnets crystallize in the Ia3d space group. There are four free

parameters within the structure, the lattice parameter a, and three positional

parameters x, y, and z for the anion on the 96h Wyckoff site. The crystal structure

is shown in Fig. 24 and is drawn in such a way to highlight the octahedra and

tetrahedra present in the structure.

A representative subset of garnet structures was examined and the predicted

structures compared to the experimental structures. The garnets chemical formulas

and references are as follows: Y3Al5O12 [112], Y3Fe5O12 [113], Yb3Fe5O12 [114],

Lu3Fe5O12 [114], Gd3Fe5O12 [115], Dy3Fe5O12 [114], Eu3Fe5O12 [116], Tb3Fe5O12

[116], Pr3Fe5O12 [117], Nd3Fe5O12 [117], Y3Ga5O12 [118], Sm3Ga5O12 [119],

Fig. 23 Observed and SPuDS predicted bond valence sums for A4+B2
2+O4 spinels
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Gd3Ga5O12 [119], Tb3Ga5O12 [119], Lu3Ga5O12 [114], Ho3Ga5O12 [120],

Yb3Ga5O12 [114], Er3Ga5O12 [116], Dy3Ga5O12 [120], Mn3Cr2Ge3O12 [121],
Ca3Al2Si3O12 [122], and Na3Cr2Li3F12 [123]. The A3M5O12 compounds have the

same ion on the tetrahedral and octahedral (B) and tetrahedral (C) sites.

Table 4 contains a comparison of predicted and experimental parameters for

selected garnet structures. The predicted structures are in reasonable agreement

with the experimental structures and could be useful as a starting model in the

process of refining the crystal structures of garnets.

Fig. 24 Crystal structure of

A3B2C3O12 garnet. Green
spheres represent A cations

and red spheres represent O
anions. B and C cations are

located in the octahedra

(blue) and tetrahedra (gray),
respectively

Table 4 Observed and SPuDS predicted structural information for selected A3B2C3O12 garnets

SPuDS Observed

Y3Fe2Fe3O12 [113] a (Å) 12.2515 12.3723(6)

x �0.0355 �0.0270(2)

y 0.0664 0.0566(2)

z 0.1525 0.1505(2)

Y3Ga2Ga3O12 [118] a (Å) 12.3313 12.273(1)

x �0.0239 �0.0274(5)

y 0.0482 0.0546(5)

z 0.1519 0.1493(5)

Y3Al2Al3O12 [112] a (Å) 11.8567 12.0031(4)

x �0.0353 �0.03042(9)

y 0.0489 0.05095(9)

z 0.1463 0.1495(1)

In space group Ia3d, the fixed atomic fractional coordinates, with Wyckoff sites in brackets, are A

[24c] (1/8, 0, 1/4), B[16a] (0, 0, 0), C[24d] (3/8, 0, 1/4), O[96h] (x, y, z)
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The predicted and observed lattice parameters are shown in Fig. 25. The

predicted structures tend to have lattice parameters that are smaller than experi-

mentally observed lattice parameters by an average of 1.5%, but with significant

scatter. Similar to the spinels, the predicted structures have BVSs that approach

their formal valences. The degrees of freedom in the garnet structure enable the

simultaneous optimization of the BVS for each of the A-, B-, C-site cations and

oxygen. Within calculation limitations, a zero global instability index (G) is found
for each of the predicted structures. The garnets with a small lattice parameter

Fig. 25 Predicted and

observed lattice parameters

for A3B2C3O12 garnets

Fig. 26 Observed and SPuDS predicted bond valence sums for A3
3+B5

3+O12 garnets
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exhibit the largest value of G, indicating the structures have the highest amount of

strain.

The BVSs of the ions in A2
3+B2

3+C3
3+O12 garnets are shown in Fig. 26. The

BVSs of the ions for the predicted structures are equal to the formal atomic

valences. The A-, B-, and C-site cations in the experimentally observed structures

typically have an average BVS that is smaller than the formal atomic valence. There

are similarities to the spinel structure. The structure is not strained and the oxide

anions tend to be slightly underbonded for each experimental structure examined in

this study, exhibiting an average discrepancy factor of �0.05 v.u.

The most commonly observed non-silicate garnets are the A3
3+B2

3+C3
3+O12

(A3
3+B5

3+O12) compositions, but there are also A3
2+B2

3+C3
4+O12 and A3

1+B2
3+C3

5+O12

oxide garnets and A3
1+B2

3+C3
1+F12 fluoride garnets. The evaluations of several

representative compounds are given in Table 5 to illustrate the accuracy in the

prediction of the structures of those garnets.

8 Summary

The use of the bond valence concept to model the structures of perovskites is already

well established and has been put to a number of practical uses over the last decade.

The crystal structures obtained from modeling using bond valence concepts can be

used for a variety of purposes including, but not limited to: (1) starting points for

Rietveld refinements, (2) an initial structure model for density functional theory

(DFT) calculations, (3) estimate the structure stability of target compositions for the

synthesis of new materials, and (4) investigating of the nature of the chemical

bonding present in extended solids. The extension of this approach to pyrochlores,

Table 5 Observed and SPuDS predicted structural information for selected A3
2+B2

3+C3
4+O12 and

A3
1+B2

3+C3
5+O12 oxide garnets and A3

1+B2
3+C3

1+F12 fluoride garnets

SPuDS Observed

Na3Cr2As3O12 [124] a (Å) 12.3334 12.188(2)

x �0.0471 �0.03819(14)

y 0.0444 0.04743(12)

z 0.1470 0.15186(13)

Ca3Al2Si3O12 [122] a (Å) 11.8630 11.845(1)

x �0.0465 �0.03808(11)

y 0.0434 0.04493(11)

z 0.1448 0.15140(9)

Na3Cr2Li3F12 [123] a (Å) 12.2578 12.328(2)

x �0.0370 �0.035(5)

y 0.0588 0.050(5)

z 0.1398 0.140(5)

In space group Ia3d, the fixed atomic fractional coordinates, with Wyckoff sites in brackets, are A

[24c] (1/8, 0, 1/4), B[16a] (0, 0, 0), C[24d] (3/8, 0, 1/4), O[96h] (x, y, z)
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spinels, and garnets provides some interesting insights into the crystal chemistry of

these structure types.

If one describes the A2B2O6O
0 pyrochlore structure as interpenetrating [B2O6]

n�

and [A2O
0]n+ networks, the bond valence modeling reveals a clear size mismatch

between the two networks that leads to a significant amount of lattice induced strain

[9]. In general the [A2O
0]n+ network would be stabilized by a smaller unit cell than

is optimal for the [B2O6]
n� network. In this tug of war the size of the unit cell is

largely dictated by the [B2O6]
n� network. As a consequence the O0 ion is signifi-

cantly overbonded in almost all of the pyrochlores modeled here. Nonetheless,

there is a slight expansion of the [B2O6]
n� network in response to the lattice

induced strain, which leads to a slight underbonding of the ions in this network.

Unlike perovskites and pyrochlores, the spinel and garnet structures do not

exhibit lattice induced strain. In other words, it is always possible to find a structure

where the BVSs of all ions are equal to their formal valences and the global

instability index goes to zero. Despite this fact bond valence modeling systemati-

cally underestimates the lattice parameter of cubic spinels by approximately 1% on

average. It is hypothesized that this systematic error comes from the neglect of

cation–cation repulsions in the bond valence modeling. Nonetheless, the ability to

predict the lattice parameter of spinels with an accuracy of 1%, and the fractional

coordinate of the anion with an accuracy of �0.005, is impressive given the

simplicity of the approach. Garnets represent a more complex problem with 4

structural degrees of freedom and 160 atoms in the unit cell. It is shown here that

they can also be modeled effectively, but the deviations between predicted and

observed values of the lattice parameter are somewhat larger (�3%) than for the

other structure types modeled here.

In the examination of past and current uses of the bond valence approach to

structure modeling, we offer a few comments looking towards possible future

developments in the use of bond valences to model the crystal structures of ternary

and quaternary oxides. Despite its relative simplicity, the bond valence approach is

able to model the structures of complex oxides with a reasonably high level of

accuracy. The discrepancies between calculated and observed values of the struc-

tural parameters, �1–3% are comparable to much more sophisticated and compu-

tationally expensive approaches, like density functional theory. The advantage of

bond valence modeling is the fact that it requires minimal computational resources,

which means that calculations can often be run in a few seconds on a typical

desktop computer. Perhaps the biggest limitation is the constraint that this approach

cannot be applied in a general sense, algorithms must be developed for each new

structure type that is to be modeled. Furthermore, it is not clear how many structural

degrees of freedom can be present before this approach breaks down. In garnets and

perovskites that undergo octahedral tilting a reasonably high degree of accuracy can

be achieved when there are 4 degrees of freedom. There are many more oxide

structures that can be described with 4–5 degrees of freedom (dof) [e.g. KAlF4
(3 dof), lithium ferrite (3 dof), K2MgF4 (4 dof), zircon(4 dof), tetragonal (4 dof) and

hexagonal bronzes (5 dof), scheelite (5 dof), bixbyite (5 dof)], which makes it quite

likely that this approach can be extended much further.
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Practical Considerations in Determining

Bond Valence Parameters

Stefan Adams

Abstract Based on an investigation of empirical links of the bond valence method to

observable quantities, especially the electron density at the bond critical point as well

as absolute electronic potential and hardness values in the frame of the hard and soft

acids and bases concept, it is ascertained that bond valence can be understood as a

functional of valence electron density. Therefrom a systematic approach for deriving

bond valence parameters and related quantities such as coordination numbers and

bond breaking energies is discussed that together allow for a conversion of the bond

valence method to a simple effective atomistic forcefield.

Keywords Atomistic forcefield � Bond critical point � Bond valence parameters �
Coordination numbers � Electron density
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Abbreviations

b Bond valence parameter defining the compliance of a bond length

R to external forces

baverage Average b value for the interactions of all anions in a unit cell to

a given cation M
beffective b value to be used in bond valence calculations for

compounds containing several anion types (derived from

partial b-averaging)
BVS Bond valence sum

BVSE Bond valence site energy

D0 Bond dissociation energy

EA Electron affinity

Erepulsion Energy penalty due to Coulomb repulsions among cations or

among anions

G Global Instability Index

HSAB Hard and soft acids and bases

IE Ionization energy

k Force constant of a bond at the equilibrium distance

n Principal quantum number ¼ period number in periodic table

of the elements

NC Coordination number

NRCN Running coordination number

R0 Bond valence parameter (distance corresponding to a bond

valence value of 1 v.u.)

R1 Radius of first coordination shell

Rmin Equilibrium distance M–X for a given coordination number

<R(M–X)> Expected M–X bond length

smin Bond valence corresponding to R ¼ Rmin

V Bond valence sum

Vid Oxidation state

α Bond stiffness parameter in the Morse interaction potential,

here identified with 1/b
ΔEEVR Energy penalty for a deviation from the equal valence rule

among bonds to the same central cation M

ρ(r) Electron density as a function of distance r
ρBCP Electron density at the bond critical point
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1 Introduction

Empirical relationships between bond length R and bond valence sM�X ¼
exp R0 � RðM� XÞð Þ=b½ � are widely used in crystal chemistry to identify plausible

equilibrium sites for an atom in a structure as sites where the bond valence sum of the

atom matches its oxidation state. In our earlier work, we suggested a systematic

adjustment of bond valence parameters to the bond softness [1–3], which together

with the inclusion of interactions beyond the first coordination sphere was intended to

allow for more adequate estimates of nonequilibrium site energies and used the

approach to model ion transport in solids [4, 5]. In this context the decision on whether

to include weak interactions to more distant counterions beyond the first coordination

shell in the determination of bond valence parameters mostly depends on the purpose

of the application and the treatment of the bond softness parameter b. For modeling ion

transport pathways (cf. [6]) a description of bond valence mismatches or the related

bond valence site energies are required for low-symmetry arrangements and thus a self-

consistent cutoff will be advantageous, as it avoids artifacts in the bond valence

variation, when an ion moves across the border of its coordination shell. Where the

application is the description of equilibrium sites, the computationally simpler first

coordination shell cutoff criterion will be sufficient, but one should still be aware that

this choice not only affects the values of the bond valence parameter R0 but also

requires different (lower) values of the bond valence parameter b (the larger the value
of b the higher will be the contribution of the more distant counterions compared to the

nearest neighboring counterions, see Sect. 3.4). In this work we therefore prefer to

deviate from the first-coordination shell convention while looking into factors that

should be considered when determining bond valence parameters.

In the course of the discussion of bond valence parameter determination we will

also link the energy of an atom M in a given structural environment to deviations of

its bond valence sum V(A) from the absolute value of its oxidation state and to a

(also bond valence-based) penalty function ΔEEVR that penalizes deviations in the

bond arrangement from the equal valence rule:

BVSE Mð Þ ¼ D0 � ΔVðMÞj jg þ ΔEEVR þ Erepulsion: (1)

Here, the scaling factor D0 of the bond valence sum term can be understood as a

measure of the bond breaking energy. While the first two terms in (1) describe the

attractive and repulsive interaction with counterions, an additional term Erepulsion has

to account for cation–cation or anion–anion interactions on the total energy for M at a

given site. A model yielding explicit values for D0, the exponent g and the penalty

terms will be derived in Sect. 2.2. To emphasize the approximative nature of such

approaches, BVSE(M) is called the bond valence site energy. The boundary

conditions chosen in the systematic determination of bond valence parameters as

discussed in this chapter are chosen to facilitate a translation into such BVSEs. The

possibility to reproduce dynamic structural features when using the BV-based atom-

istic forcefields resulting from such an approach in molecular dynamics simulations

provide an avenue for further parameter validation.
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2 A Physical Basis of the Bond Valence Approach

2.1 Bond Valence: A Functional of Electron Density

Before turning to the practical determination of bond valence parameters, it appears

appropriate to briefly discuss connections between experimentally observable

quantities and the bond valence parameters. Qualitatively, it is obvious that the

closer two atoms of opposite charge approach each other, the more electron density

will be found in the bonding region and the stronger their interaction will be. So it

appears natural to link bond valence to the electron density, ρ(r), and several such

approaches can be found in the literature.

ρ(r) measures the probability of an electron occupying an infinitesimally small

element of space. For values of r on the scale of interatomic distances, the electron

density ρ(r) for individual atoms follows an exponential decay function

ρðrÞ~exp �2
ffiffiffiffiffi
2I

p
r

h i
; (2)

where I is the ionization energy of the system [7].

The topological analysis of ρ(r) as formulated in the “quantum theory of atoms

in molecules” (QTAIM) theory of Bader and co-workers [8] led to the concepts of

bond path (BP) and bond critical point (BCP). The electron density along BP(r)
descends steeply from each nucleus toward the unique intermediate stationary point

BCP [9]. Because ρ r ¼ rBCPð Þ ¼ ρBCP at the BCP as well as its Laplacian r2ρBCP
are directly observable quantities from both experimental diffraction studies and ab

initio calculations, ρBCP may be the natural starting point when aiming to establish

links of the bond valence approach to the physical world.

If in a simple gedankenexperimentwe assume that electron densities of overlapping

atoms do not affect each other but simply add up, then the electron density as a

function of the position x along the bond path1 between the two atoms at a distance

R (0 < r < R) varies as the linear combination of electron densities

ρðrÞ ¼ a1 exp �c1r½ � þ a2 exp½�c2ðR� rÞ� : (3)

Here the electron density ρBCP at the bond critical point, i.e. the minimum electron

density along this bond path for a fixed value of R can be found from the minimum

condition dρ=dr ¼ 0 (asr2ρBCP is automatically>0 in this simplified model and will

be typically >0 for bonds with significant ionicity):

1 For this simple two-atom case the straight connecting line between the atoms is the bond path,
i.e. the connecting line between the atoms for which each point on the line is a maximum of the

electron density within the perpendicular plane. This does not necessarily remain true for multi-

atom configurations or solids.
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� a1c1 exp �c1rBCP½ � þ a2c2 exp c2rBCP � c2R½ � ¼ 0; (4)

a1c1
c2

exp �c1rBCP½ � ¼ a2 exp½c2rBCP � c2R�; (5)

so that at the position rBCP of the BCP for a given interatomic distance R

rBCP ¼
c2R� ln a2c2

a1c1

� �

c1 þ c2ð Þ ; (6)

we can express ρBCP as

ρBCP ¼ c2 þ c1
c2

� �
a1 exp½�c1rBCP�; (7)

and hence

ρBCP ¼ exp ln a1
c1 þ c2

c2

� �
þ
c1 ln

a2c2
a1c1

� �

c1 þ c2ð Þ

0
@

1
A� c1c2

c1 þ c2ð ÞR
2
4

3
5: (8)

Equation 8 can be rewritten into the form

ρBCP ¼ exp

c1þc2
c1c2

ln a1
c1þc2
c2

� �
þ

ln
a2c2
a1c1

� �

c2

0

@

1

A� R

c1þc2
c1c2

2
6666664

3
7777775
¼ exp

A� R

B

� �
; (9)

that simplifies a comparison to the corresponding bond valence. While the assum-

ption that the two electron densities will add up without otherwise affecting each

other is of course oversimplifying, it may be plausible (at least for the Lewis

acid–Lewis base–type interactions in the focus of the bond valence model) to

assume that the perturbation of the electron density at the BCP will be a simple

function of ρBCP itself, so that the parameters A, B in (9) will change, but the

functional form of the correlation is preserved.2 This includes electron density

variations of the generalized type a1 exp �c1r½ � þ a2 exp �c2 R� rð Þ½ � þ a3 exp �c1r½ �

2 The simple expression ρBCP ¼ exp
2
c ln 2að Þ � R

2
c

" #
¼ exp

ln 2að Þffiffiffi
2I

p � R

1ffiffiffi
2I

p

2

4

3

5 would follow in the same

way for the superposition of two identical atoms, but it may be questionable whether the electron

density variation in such a perfectly covalent bond can still be thought of as a minor perturbation of

the additive linear combination of the electron densities of the contributing atoms.
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exp �c2ðR� rÞ½ � that to a good approximation can be described using the form of

(4) ½a01 exp �yc1r½ � þ a02 exp �yc2 R� rð Þ½ � with a factor y slightly below 1 for the

relevant case of positive a3 values. A more detailed discussion of such a similar

approach can be found in Mohri’s [10] work, though his consequence of suggesting

a redefinition of bond valence will be of limited helpfulness for our task.

The correlationρBCPðRÞ ¼ exp A�R
B

	 

can be directly compared to the bond valence

sðRÞ ¼ exp R0�R
b

	 

for the same interatomic distance R suggesting a simple power law

relationship between (valence) electron density and bond valence:

R ¼ R0 � b ln s ¼ A� B ln ρBCP ) s ¼ ρ
B
b

BCP � exp
R0 � A

b

� �
: (10)

So the bond valence can be thought of as a functional of (valence) electron density,
but it should be kept in mind that so far the coefficients of this functional relationship

appear to be specific to the type of atom pair.

A more generally applicable correlation would require that ρBCP, s and R(M–X)

can be (at least approximately) predicted for a wider range of atom types if one of

the three quantities is known. There have been various attempts to establish such

correlations, most notably by Gibbs and co-workers [11,12], who inspired by the

pioneering description of Brown and Shannon [13] of bond valences of oxides in

terms of a power law dependence on the bond length reported a general power law

dependence on the expected bond length R M--Oð Þh i in a wide range of oxides

RðM� OÞh i ¼ 1:39
e:b:s

n� 1

� ��0:22

; (11)

(based on Shannon and Prewitt’s dataset of coordination number-dependent radii

sums) [14] using for the sake of simplicity Pauling’s electrostatic bond strength e.b.s.3

as an approximation to the bond valence, and practically the same correlation was

found for a much smaller dataset available at that time when e.b.s. was replaced by

bond valences as calculated from the Brown and Shannon [13] parameter set. Here, n
refers to the principal quantum number of the metal ion M (i.e. its row number in the

periodic table).4 Complementary studies on fluorides, sulfides, and nitrides found

analogous correlations. Later the same group [15] reported an analogous correlation

of the electron density

RðM� OÞh i ¼ 1:42
ρBCP
n� 1

� ��0:19

; (12)

3 The electrostatic bond strength e.b.s. of an ionic bond is defined as the nominal charge (oxidation

state) of the cation Vid(M) divided by the coordination number NC(M) of the cation. For a cation

Mm+ symmetrically coordinated by NC(M) anions Xz�, the numerical value of e.b.s.(M–X) is thus

identical to the expectation value of the (conventional) bond valence s(M–X).
4 Note that Gibbs et al. refer to row numbers in the sense row number ¼ n–1.
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although in the meanwhile an exponential expression was found to be more

appropriate for expressing bond length-bond valence correlations.

To test whether a power-law expression of the type shown in (11) and (12) is

superior to an exponential correlation as expected from (10), here the same data

used in deriving these relationships are analyzed in a variety of ways. In Figs. 1, 2,

and 3 results for double-logarithmic fits of the scaled s, e.b.s. or ρBCP vs. the bond

distance that yield the power law relationships are compared to single-logarithmic

plots for the same data that yield the exponential relationships in (10). For hydrogen

a scaling by n � 1 ¼ 0 is obviously inapplicable, so n � 1 is arbitrarily set to 0.5

for this case. Moreover the fits are generalized in Figs. 2. and 3 by substituting the

scaling factor (n � 1) by (n � 1)x or nx with an adjustable exponent x.
The double-logarithmic plot of Pauling’s electrostatic bond strength divided by

(n � 1) vs. the radii sum based on coordination number-dependent bonding radii of

cations M tabulated by Shannon and Prewitt and a fixed radius of R(O) ¼ 1.4 Å for

oxygen (see top graph of Fig. 1) essentially reproduces (11) by Gibbs et al. [11]

though with slightly different parameter values (prefactor 1.58, exponent �0.20)

with a correlation coefficient of R2 ¼ 0.968, but a polynomial fit to the same data

(broken line) suggests that data show a slightly curved correlation instead of

randomly scattering around a linear trend. If the same data are plotted with just

replacing the ln[R(M–O)] axis by a linear R(M–O) axis, then the correlation

coefficient improves marginally and the linear and polynomial fits become nearly

congruent (see insert of lower graph in Fig. 1). So while a clear distinction of the

two fitting approaches based on the achieved correlation coefficient is not feasible

(due to the small range of bond distances), an exponential fit appears to be equally

well suited. In the following paragraph only results for the main group (s and

p block) cations are briefly discussed, and it should be noted that for all graphs

d-block (transition metal) cations follow a trend with a slightly different slope. The

trend for f-block elements seems to harmonize more to that of the main group

elements, but the limited range of cation bond distances makes it discriminate the

slopes.

As seen in Fig. 1 the correlation of the scaled bond valence for main group

cations can as well be expressed by the exponential form (R2 ¼ 0.970)

sconv
n� 1

� e:b:s

n� 1
¼ exp

1:4598 Å� R MOð Þh i
0:479 Å

� �
; (13a)

if conventional bond valence parameters or Pauling’s e.b.s. approach are used, or

ssoftBV
n� 1

¼ exp
1:2478 Å� R MOð Þh i

0:476 Å

� �
; (13b)

if softBV parameters are used (R2 ¼ 0.981; softBV parameters assume that a part of

the total bond valence arises from interactions beyond the first coordination shell and

thus necessarily assign a slightly lower bond valence to a bond of a given bond length).
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Fig. 1 Top: Double-logarithmic plot of Pauling’s electrostatic bond strength for M–O bonds

divided by n � 1 (where n is the cation period number) vs. the radii sum based on coordination

number dependent bonding radii of M tabulated by Shannon and Prewitt and a fixed radius of

R(O) ¼ 1.4 Å for oxygen. Bottom: Logarithmic plot of bond valence divided by (n � 1) vs. the

radii sum (using a linear radii sum axis) based on the same R(M–O) distances. In the main graph

the bond valence is calculated using softBV bond valence parameters, while the inset shows the fit

when Pauling’s e.b.s. values are used. The two main graphs show data separately for s or p-block

cations (squares), d-block cations (triangles), and f-block cations (crosses), while the inset shows
main group cations only. In each graph the linear regression line for main group cations is shown

as a bold black line and the resulting parameters analysis are listed. The broken black line indicates
a third order polynomial fit to the same data. The gray dash-dot line represents a linear fit to the

data for d-block cations
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Fig. 2 Top: Double-logarithmic plot of Pauling’s electrostatic bond strength divided by an

optimized exponent of (n � 1) vs. the radii sum. Bottom: Logarithmic plot of bond valence (for

main graph, e.b.s. for inset) divided by an optimized exponent of (n � 1) vs. the radii sum. Data

(and the chosen symbols) are identical to Fig. 1. The only change is that the scaling factor (n � 1)

is replaced by (n � 1)x. The respective value of the exponent x is chosen in each graph separately

to maximize the correlation coefficient R2
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Fig. 3 Top: Double-logarithmic plot of Pauling’s electrostatic bond strength divided by an optimized

exponent of the row number n of the periodic table vs. the radii sum. Bottom: Logarithmic plot of

bond valence (for main graph, e.b.s. for inset) divided by an optimized exponent of the row number of

the periodic table vs. the radii sum. Data (and the chosen symbols) are identical to Figs. 1 and 2. The

only change is that the scaling factor (n � 1) is replaced by nx. The respective value of the exponent x
is chosen in each graph separately to maximize the correlation coefficient R2
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Though the exponential correlations have marginally higher correlation coefficients

than the power law model (upper graph of Fig. 1), the difference appears to be too

small to be conclusive. A generalization of the scaling factor (n � 1) to (n � 1)xwith

an optimized exponent yields only aminor improvement (see Fig. 2) and all optimized

exponents are close to 1.5 Thus the added parameter does not significantly improve the

refinement. This is a bit different when using n as the scaling factor which yields

clearly inferior correlations (especially for the power law correlation), while as shown

in Fig. 3 nx with an optimized x slightly larger than one yields (again only by a slim

margin) the highest correlation coefficients for both the power law and the exponential

correlation, but the exact value varied from x ¼ 1.5 for the power law fit of e.b.s. data

(R2 ¼ 0.971 for linear regression, significantly reduced curvature in polynomial fit)

RðM� OÞh i ¼ 1:285
e:b:s:

n3=2

� ��0:20

; (14a)

via x ¼ 1.33 for the exponential fit of e.b.s. data (R2 ¼ 0.970)

sconv � e:b:s ¼ n1:33 exp
1:0634 Å� R MOð Þh i

0:485 Å

� �
; (14b)

to x ¼ 1.25 for the exponential fit to ssoftBV data (R2 ¼ 0.983) leading to

ssoftBV ¼ n1:25 exp
0:8811 Å� R MOð Þh i

0:4917 Å

� �
: (14c)

In the same way the electron density at the bond critical point ρBCP can be related
to the bond length either via a power law or an exponential law. To establish such

relationships obviously ρBCP must be known from experimental or ab initio simu-

lation studies. From systematic determinations of ρBCP values for a range of oxide
minerals [16] and sulfide systems [17] Gibbs et al. [15–17] suggested power law

relationships for individual anions. As demonstrated in Fig. 4 it is also possible to fit

correlations for the 303 M–O bonds [15, 16] [that were used to derive (12)] and data

[17] for 108 M–S bonds of main group cations M by a single masterplot. When

using the period number scaling in the form (nM � 1)x(nX � 1)y as shown in

Fig. 4a, b the refinement results correspond to

RðM� XÞh i ¼ 1:445
ρBCP

ðnM � 1ÞðnX � 1Þ1:5
 !�0:179

; R2 ¼ 0:977; (15a)

or

5 x ¼ 1.14 (R2 ¼ 0.970) for the power law correlation, x ¼ 1.0 (R2 ¼ 0.970) or x ¼ 0.9

(R2 ¼ 0.982) for the exponential correlation when using e.b.s, or softBV parameters.
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ρBCP ¼ ðnM � 1ÞðnX � 1Þ1:5 exp 1:386
�
A� R M� Xð Þh i
0:359 Å

� �
; R2 ¼ 0:969: (15b)

Alternatively scaling by nM
x nX

y in Fig. 4c, d yields

RðM� XÞh i ¼ 0:864
ρBCP

n1:6M n2:6X

� ��0:179

; R2 ¼ 0:979; (15c)

or

Fig. 4 Correlation between the scaled electron density ρBCP at the bond critical point and the

cation–anion distance R(M–X) for bonds between main group cations M and oxides (filled
symbols, 303 data points) and sulfides (filled symbols, 108 data points). The double-logarithmic

plots (a, c) yields the power law relationship in (15a) and (15c), while the linear regression of the

r.h.s. single-logarithmic plots (b, d) result in the exponential correlations of (15b) and (15d). The

solid line indicates the fitted linear regression. The respective values x and y of the exponents in the
scaling factors nM

xnX
y are chosen to maximize the correlation coefficient R2
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ρBCP ¼ n1:65M n2:6X exp
0:343 Å� R M� Xð Þh i

0:356 Å

� �
; R2 ¼ 0:973: (15d)

Again the differences among the correlation coefficients which yield nearly the

same correlation coefficient appear inconclusive. Despite the slightly lower R2

values the optimized exponents for (15a) and (15b), 1 and 3/2, let these correlations

appear to be more natural choices than (15c) and (15d) that lead to fractional

exponents. It may also be noted that in this case the deviations from the exponential

fit appear to be not only marginally larger but also more systematic.

From a pragmatic point of view it does not matter, whether the two observed

correlations s vs. R(M–X) and ρBCP vs. R(M–X) are both described by the exponential

or both by the power law function: their combination will in both approaches yield

the same type of power law relationship between bond valence s and the electron

density at bond critical point ρBCP (that can be thought of as a generalization of (10).
Indeed, as shown in Fig. 5, such a power law can be observed when fitting the same

set of literature data on R(M–X) and ρBCP used in Fig. 4, yet converting R(M–X) into

the corresponding bond valence s(R(M–X)). To minimize the number of refineable

parameters the exponents x and y of the scaling factor (nM � 1)x(nX � 1)ywere fixed

to y ¼ 2x in the optimization in accordance with results of free refinements. For the

above-mentioned reference data set of main group oxides and sulfides

sðRðM� XÞÞ ¼ A � ðnM � 1ÞxðnX � 1Þy ρzBCP; (16a)

with the coefficients A ¼ 0.832, x ¼ y/2 ¼ 0.2, z ¼ 0.825 and a correlation coef-

ficient R2 ¼ 0.984 results when using softBV parameters. For conventional bond

valence parameters taken from Brown’s compilation [18] the optimized parameters

A ¼ 0.846, x ¼ y/2 ¼ 0.25, z ¼ 0.829 yield a slightly lower correlation coefficient

R2 ¼ 0.946. Unsurprisingly the softBV bond valence parameters (with two refined

bond valence parameters R0 and b) are somewhat more closely correlated to ρBCP
than the conventional bond valence parameters (that assume a fixed value of b and

refine only R0) and hence allow for a more precise prediction of ρBCP. An almost

equally close correlation can be derived using a scaling by nxMn
y
X

s R M� Xð Þð Þ ¼ A � nxMnyX ρzBCP; (16b)

and the coefficients A ¼ 0.418, x ¼ y/2 ¼ 1/3, z ¼ 0.826 (R2 ¼ 0.983) for softBV
parameters or A ¼ 0.346, x ¼ y/2 ¼ 0.43, z ¼ 0.832 (R2 ¼ 0.945) for conven-

tional bond valence parameters.

As noted before in the literature the Laplacianr2ρBCP of the electron density ρBCP
at the BCP is correlated to ρBCP (and hence to the BV), but obviously also to the

degree of bond ionicity (which can e.g. be expressed by the electronegativity or

hardness differences of cation and anion). Using absolute electronegativity

differences χdiff (in eV) based on Mulliken’s electronegativity definition [19]
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Fig. 5 Top: Double-logarithmic plots of the bond valence divided by the scaling factor (nM � 1)x

(nx � 1)y vs. ρBCP , where nM (nX) is the period number of the cation (anion). (Top: using softBV
bond valence parameters, bottom using conventional bond valence parameters). The respective values

of the period number exponents are chosen to maximize the correlation coefficient R2 for the

linear regression over all data points (solid line), while maintaining a 1:2 ratio between x and y. The
inset of the top graph compares the observed ρBCP to values predicted from the correlation derived in

the main graph
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cf. ref. and Sect. 3.2) calculated from the electronegativities of the corresponding ions

(not elements) according to

χdiff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j χ2

Mmþ � χ2
O2� j

q
: (17)

As Fig. 6 demonstrates, a significant correlation of the form

s R M� Oð Þð Þ ¼ C � nxMn2xX χdiff r2ρBCP
� �z

; (18)

with C ¼ 5.46�10�3, x ¼ 0.5, z ¼ 0.509 (for χdiff in eV and r2ρBCP in e/Å5) and

R2 ¼ 0.980 is found for the 303 M–O bonds of the reference data set. It should

however be mentioned that the sulfide reference data [17] only roughly follow the

same trend. A similar quality of correlation for the same oxide data set is reached

when using the average of cation and anion absolute hardness

η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2
Mmþ þ η2

O2�

2

s

; (19)

as the scaling parameter for the Laplacian, so that the bond valence can be expressed

as a function of Laplacian (in e/Å5), the conceptually closely related average atomic

hardness (in eV) and atomic row number:

s R M� Oð Þð Þ ¼ C � ðnMnXÞx η r2ρBCP
� �z

; (20)

with C ¼ 4.13 � 10�3, x ¼ 0.85, z ¼ 0.577 and R2 ¼ 0.984. In this case a rough

comparison with the more scattered data for the sulfide data set suggested that equal

exponents of the row numbers are more appropriate than the 1:2 ratio applied in

other correlations. Similar correlations with insignificantly lower correlation

coefficients result for a scaling based on (nM � 1)x(nX � 1)y.

Overall the detailed parameter values listed in this section should be understood

as approximate values only. This is not only due to imperfections of the reference

data sets, but largely due to strong fundamental correlations among the parameters.

The absolute electronegativity χ of a cation is, e.g., approximately determined by its

formal charge q and total number N of electrons: As discussed more in detail in the

literature [2, 20, 21] there is a nearly perfect and fairly general linear relation

χ~

ffiffiffiffiffi
q3

N

r
; (21)

(except for highly charged transition metal cations). As N obviously depends on the

atomic number Z and thereby on the cation mass M, and – with a lower correlation

coefficient – on the atomic row number n, differences between scalings based onM
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Fig. 6 Double-logarithmic plots of the bond valence (using softBV bond valence parameters)

divided by an optimized exponent of the row numbers n of cation M and anion X in the periodic

table vs. the product of Laplacian of electron density at the bond critical point r2ρBCP and either

electronegativity difference χdiff (top) or average atomic hardness η�(bottom). In the top graph the

exponent in the scaling factor nM
xnX

y x ¼ 1/2 is chosen to maximize the correlation coefficient R2,

while maintaining a 1:2 ratio between the exponents of nM and nX. For the bottom graph the

exponent in the scaling factor x ¼ 0.85 is chosen to maximize the correlation coefficient R2. Based

on a comparison with data for sulfides (not shown) a 1:1 ratio between the exponents of nM and nX
has been chosen in this case

106 S. Adams



or χ become significant for highly charged light cations only and even an empirical

distinction between χ and the atomic row number n as a scaling factor is often not

straightforward for scattered data.

Still it should have become obvious from the above discussion that there is a

close functional relationship between bond valence and electron density at the bond

critical point (and in the same way between bond valence and the Laplacian of

r2ρBCP) and that this correlation involves a scaling based on the principal quantum
number (row number) of the atoms involved or a closely correlated quantity,6 and at

least for the case of the Laplacian to a measure of atomic polarizability (such as the

atomic hardness or its inverse the atomic softness). This fundamental correlation

should thus be taken into account when fine-tuning approaches to determine bond

valence parameters and BV-related forcefields.

2.2 Bond Valence-Based Atomistic Forcefields

Another entirely empirical approach to reveal correlations between the bond valence

scale and the energy scale that has been explored by several groups including ours is

to try and derive energy-scaled atomistic forcefields starting from the bond valence

parameters. Validating that these forcefields can reproduce experimental observables

(lattice parameters, thermal expansion, compressibilities, static and dynamic struc-

tural features, etc.) then also indirectly validates links between the underlying bond

valence parameters and the terms controlling the energetics of the simulated structure

models.

Early approaches include the works of Eck and Dronskowski [22, 23], who in their

aixCCAD software integrated bond valence terms to derive fictional extra charges,

while the interaction is essentially treated as a Coulomb interaction. Shin et al. [24]

suggested a bond valence mismatch term in combination with standard Coulombic,

short-range repulsion and angle bending terms to describe, e.g., the ferroelectric

transition in PbTiO3

EShin¼
XN

A¼1

SA
XnðAÞ

i¼1

V aið Þ�VidðaÞj jþECoulombþEBorn repulsionþEoctahedral tilt angle (22)

Here the double sum of the bond valence term runs over the n(A) atoms of type A
and over the N atom types in the system. Besides the unclear distribution of

potential energy between the Coulomb and bond valence contributions, the freely

refined additional scaling parameter SA for the bond valence mismatches of each

atom type A and the adjustment of the fractional charge in the independent

6 This correlation with the atomic row number n or (n � 1) is as mentioned hardly distinguishable

from a correlation with atomic number or atomic mass and has been preferred here more in line

with the existing proposal in the literature.
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Coulomb terms makes it difficult to take this as the basis for a transferable potential.

From a mathematical point of view moreover the choice of the absolute value of the

bond valence mismatch [i.e., of an exponent g ¼ 1 in (1)] is disadvantageous as this

potential contribution is not differentiable at ΔV ¼ 0.

A different empirical approach to assess the coefficients D0 and g in (1) as well

as a suitable functional form for the influence of the equal valence rule (EEVR) have

been derived in our earlier work [25, 26] from comparing the distance dependence

of the bond valence sum mismatch with the distance dependence of interaction

energies in various empirical interatomic potentials: The variation of an individual

bond valence can be straightforwardly translated into the variation of a Morse-type

interaction potential

E ¼ D0 exp α Rmin � Rð Þ½ � � 1ð Þ 2 � 1
n o

¼ D0

exp R0�R
b

	 
� smin

smin

 ! 2

� 1

8
<

:

9
=

; (23a)

This description implies that the interaction energy E can be approximated as a

quadratic function of the deviation of the bond valence from its value smin ¼ exp

[(R0�Rmin)/b] for the energy minimum distance (R ¼ Rmin) and hence g in (1)

assumes the value 2, so that in contrast to Shin’s approach (23a) is continuously

differentiable.7 The bond valence parameter b is simply identified with the recipro-

cal of the stiffness parameter α of the Morse potential. Note that the bond valence

parameter R0 (i.e., the distance corresponding to a bond valence value of s ¼ 1) in

general differs from Rmin (the bond distance for which the interaction potential

yields an energy minimum). By introducing the dimensionless relative bond

valence srel ¼ s/smin the Morse potential can be expressed concisely as

E ¼ D0

s� sminð Þ 2
s2min

� 1

( )
¼ D0 s2rel � 2srel

� �
(23b)

In contrast to the conventional bond valence sum mismatch description, such

bond valence interaction potentials of the type described in (23a) or (23b) fulfill

formal requirements for an anharmonic diatomic interaction potential, allowing for

molecular dynamics simulation based on bond valence parameters. The Morse-type

interaction potential is characterized by three parameters D0, Rmin (or smin) and

b ¼ 1/α representing the bond breaking energy, the equilibrium bond distance and

the elastic compliance of the bond. Constraining b to a universal value is thus

analogous to approximating the three-parameter Morse-type interaction by a

7 The quadratic dependence may also be derived from equating bond valence to bond fluxes in a

point charge model. For details, see Brown [3].
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two-parameter description in which the stiffness of the bond is predetermined by

the remaining refineable parameters of bond length and bond energy (as in the

two-parameter Lennard–Jones potential).

A consistent set of Rmin (and hence smin) values [25] was approximated as

Rmin � R0 � f1 þ f2 � σA � σXj j½ � � b � ln Vid

NC

� �
: (24)

Here, NC refers to the preferred coordination number of the central ion and the

empirically determined term in square brackets accounts for the effect of polariza-

tion (σA, σX refer to the absolute softness values of the cation and anion, respec-

tively) as well as the influence of higher coordination shells. Practically, the

coefficients f1 ¼ 0.9185 and f2 ¼ 0.2285 eV were derived by comparison with

the parameters used in other empirical force fields such as the universal force

field (UFF) [27]. The level of agreement for the resulting Rmin values with the

established UFF forcefield can be judged from Fig. 7 (R2 � 0.95).

For aMorse-type interaction potential the bond dissociation energy isD0 ¼ b2 k/2,
k being the force constant at the distance R ¼ Rmin. We have thus approximated D0

for a wide range of main group cations as

D0 ¼ kb2

2
¼ c � 14:4 eV�

A

VidðMÞ � VidðXÞ½ �1=cb2
2Rmin

ffiffiffiffiffiffiffiffiffiffiffi
nMnX

p ; (25)

with c ¼ 1 if A is an s or p block element, or c ¼ 2 if A is a d block element. Here

nA, nX represent the principal quantum numbers of cation A and anion X, respec-

tively. Thus the principle quantum numbers are used as scaling factors for the bond

valence term in an analogous way to their use in Sect. 2.1. The terms Vid(M), Vid(X)

Fig. 7 Comparison of the

equilibrium bond distances

Rmin(UFF) in the widely

employed empirical forcefield

UFF [27] and Rmin(BV) in our

BV-based Morse-type

forcefield for

283 cation–anion pairs

according to (23a) and (23b).

The solid line indicates the fit
target Rmin(UFF) ¼ Rmin(BV)
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in (25) refer to the absolute values of the nominal charges of M or X. Table 1 gives

examples of parameters derived by the above formalism from our respective softBV
bond valence parameters [26]. A wider range of parameters is available from the

electronic appendix.

Starting from this definition of the energy of a single bond, the total bond valence
site energy BVSE(A) of a cation M can then be determined as the sum over bond

valence terms for the interactions with each of the NX adjacent anions Xj:

BVSEðMÞ ¼ D0

XNX

j¼1

sM�Xj
� smin

� � 2

s2min

� N

" #
þ
XNM

i¼1

ECoulomb M�Mið Þ (26)

and vice versa. The Coulomb repulsion term runs over all NM cations Mi

Rewriting (26) then reveals how this bond valence site energy BVSE(M) (i.e.,

the total potential energy of cation M in the bond valence approximation) varies

with both the mismatch of the bond valence sum and the asymmetry of the

coordination. This provides an avenue to quantify the correlation between (1)

the bond valence sum rule [28] stating that that the sum of the bond valences

around an atom is equal to its atomic valence and (2) the equal valence rule [28],
which states that the sum of the bond valences around any loop is zero, is that the

most isometric distribution of atomic valence among the bonds is energetically

preferable.

In this brief summary of the derivation we assume for the sake of simplicity only

contributions from the NX ¼ NC counterions of type X in the 1st coordination shell

around M. Then the correlation takes the simple form of (27):

BVSEðMÞ ¼ D0 NC

VðMÞ � VminðMÞð Þ 2
V2
min

� 1

( )
þ
XNC

i¼1

sM�Xi
� sM�Xi

ð Þ2
s2min

" #

þ
XNM

i¼1

ECoulomb M�Mið Þ; (27)

where Vmin(M) ¼ NC·smin in the first term (the BVS rule term), while the second

term (the equal valence rule term) quantifies the effect of the deviation of individual

bond valences from their average value sM�X ¼ V(M)/NC [25].

A major advantage of such an energy-scaled bond valence mismatch is that it

allows for straightforward combinations of the bond valence sum term as an

effective (attractive or repulsive) short-range interaction term with suitably

weighted penalty functions for coordinations with differing bond lengths and

particularly a Coulombic cation–cation repulsion. To model Coulomb repulsion

we commonly use simple fractional charges qM, qX that are calculated based on
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Table 1 Bond valence parameters R0, b of selected cations in oxides, the corresponding cutoff

distance Rcutoff and the resulting Morse potential parameters D0, Rmin (α ¼ 1/b)

Cation M R0/Å b/Å NC Rcutoff/Å D0/eV Rmin/Å

Ag(I) 1.78239 0.457 4.438 5 0.63519 2.22578

Al(III) 1.59901 0.516 5.327 5 1.80346 1.75806

As(III) 1.76706 0.541 3 5 1.51493 1.64554

As(V) 1.76689 0.385 4.029 5 2.71934 1.58127

Au(III) 1.81761 0.415 4 5.5 1.96967 1.81312

B(III) 1.35761 0.45 3.417 4.5 2.38924 1.34003

Ba(II) 2.15998 0.448 10.32 6 0.57994 2.73769

Be(II) 1.20903 0.442 4 5.5 2.76882 1.52217

Bi(III) 2.03677 0.482 6.058 5.5 0.97904 2.18321

Bi(V) 2.04498 0.512 6 5 1.4405 1.98599

Br(VII) 1.83658 0.424 4 5.5 4.24339 1.50274

C(II) 1.41368 0.432 1 5 2.40553 1.03098

C(IV) 1.39826 0.437 3 5 4.79187 1.20089

Ca(II) 1.79519 0.402 7.544 5.5 0.99429 2.32032

Cd(II) 1.83926 0.441 6.176 5.5 0.98346 2.1694

Ce(III) 2.03118 0.427 9.147 5.5 1.22048 2.37861

Ce(IV) 2.02821 0.443 7.867 5.5 1.48412 2.19872

Cl(V) 1.69552 0.491 3 5.5 4.29089 1.35653

Cl(VII) 1.67946 0.436 4 5 5.991 1.34801

Co(II) 1.59773 0.476 5.506 5.5 1.51476 1.93362

Co(III) 1.59234 0.494 6 5.5 1.87024 1.7762

Cr(III) 1.66198 0.503 6 5.5 1.77335 1.83887

Cr(VI) 1.82471 0.426 4 5.5 3.68751 1.53251

Cs(I) 2.25899 0.439 11.79 6.5 0.23307 3.13121

Cu(I) 1.58730 0.476 2.56 5 0.66417 1.78269

Cu(II) 1.57422 0.402 5.087 5 1.85341 1.56633

Dy(III) 1.96029 0.43 7.828 5.5 1.1735 2.22689

Er(III) 1.95608 0.52 7.135 5.5 1.12394 2.17477

Eu(III) 2.00469 0.413 7.743 5.5 1.19545 2.26888

Fe(II) 1.57911 0.402 5.743 5.5 1.69269 1.96005

Fe(III) 1.70840 0.437 5.733 5 1.66681 1.86647

Ga(III) 1.71606 0.41 4.905 5 1.18456 1.79391

Ge(IV) 1.73939 0.48 4.305 5 1.91375 1.66872

H(I) 0.87045 0.414 1.923 4 1.8858 1.12768

Hg(II) 1.81276 0.451 6.966 5.5 1.12852 2.25275

In(III) 1.90305 0.403 6.024 5 0.84076 2.02471

K(I) 1.94117 0.411 8.846 6 0.34985 2.76636

La(III) 2.06392 0.404 9.83 5.5 1.18587 2.46989

Li(I) 1.17096 0.416 5.021 5.5 0.98816 1.94001

Lu(III) 1.91728 0.427 6.83 5.5 1.19488 2.136

Mg(II) 1.48398 0.423 5.897 5.5 1.57554 1.95627

Mn(II) 1.62758 0.413 5.91 5.5 1.64143 2.02969

Mn(IV) 1.73272 0.478 5.923 5 1.85886 1.77045

Mn(VII) 1.87362 0.526 4 6.5 4.9163 1.48171

Mo(III) 1.78933 0.501 5.7 5.5 1.42826 1.92974

(continued)
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Table 1 (continued)

Cation M R0/Å b/Å NC Rcutoff/Å D0/eV Rmin/Å

Mo(IV) 1.72390 0.391 6 6.5 3.10807 1.85099

Mo(VI) 1.90934 0.562 4.764 5 1.9915 1.71254

N(III) 1.40795 0.418 2 5 3.81089 1.13758

N(V) 1.46267 0.425 3 5 6.27677 1.16142

Na(I) 1.56225 0.436 6.52 6 0.57523 2.37433

Nb(III) 1.74581 0.449 6 6 2.02848 1.9519

Nb(IV) 1.78543 0.403 6 6 2.7096 1.85989

Nb(V) 1.86588 0.478 6.044 5.5 2.72326 1.85459

Nd(III) 2.02425 0.449 8.647 5.5 1.13205 2.33016

NH4(I) 2.03380 0.498 3.467 6 0.40537 2.45364

Ni(II) 1.55920 0.394 5.933 5.5 1.46841 1.92452

Ni(III) 1.64888 0.407 6 5.5 1.66191 1.81887

P(III) 1.51555 0.4 3 4.5 2.02062 1.41051

P(V) 1.62038 0.423 4 5 3.89635 1.44066

Pb(II) 2.01825 0.419 7.541 5.5 0.63833 2.44191

Pb(IV) 2.03293 0.424 5.74 5 1.02719 2.02857

Pd(II) 1.62359 0.412 4 5.5 1.7391 1.83671

Pd(IV) 1.80500 0.401 5.333 5.5 2.04218 1.79813

Pr(III) 2.03652 0.419 9.067 5.5 1.17041 2.37113

Pt(II) 1.51205 0.437 4 5.5 2.14999 1.80179

Pt(IV) 1.82198 0.451 6 5.5 2.03825 1.87174

Rb(I) 2.08597 0.443 10.02 6.5 0.26813 2.89683

Re(III) 2.20710 0.449 6 6 0.81067 2.33218

Re(V) 1.82664 0.439 6 6 2.41099 1.76914

Re(VII) 1.97792 0.433 4.098 6 3.55593 1.59634

Rh(III) 1.67013 0.434 6 5.5 1.92826 1.86915

Ru(IV) 1.79363 0.415 6 5.5 1.99513 1.84053

Ru(V) 1.87442 0.494 6 5.5 2.13208 1.81571

S(IV) 1.64282 0.426 3 5.5 3.03672 1.41188

S(VI) 1.64220 0.415 4 5 4.96726 1.38102

Sb(III) 1.92036 0.412 6 5 1.17786 2.07526

Sb(V) 1.89768 0.421 6 5.5 1.95523 1.86318

Sc(III) 1.73220 0.426 6.255 5.5 2.1561 1.99615

Se(IV) 1.80095 0.421 3 5.5 2.38082 1.55957

Se(VI) 1.79866 0.478 4 5.5 3.44865 1.53287

Si(IV) 1.60817 0.486 4.1 5 2.8572 1.53594

Sm(III) 2.01168 0.401 8.119 5.5 1.17622 2.29536

Sn(II) 1.87499 0.498 3.325 5.5 0.97261 1.9642

Sn(IV) 1.89019 0.52 6.069 5 1.35268 1.93422

Sr(II) 1.95311 0.508 9.4 5.5 0.74351 2.53589

Ta(IV) 1.75632 0.498 5.5 6 2.75655 1.79826

Ta(V) 1.86816 0.479 6.09 5.5 2.36669 1.85532

Tb(III) 1.95675 0.401 7.958 5.5 1.20764 2.23563

Tb(IV) 1.96244 0.512 6 6 1.70132 2.38506

Te(IV) 1.95290 0.479 3.396 5.5 1.67169 1.75208

Te(VI) 1.91343 0.463 6 5.5 2.56406 1.80876

(continued)
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qMi
¼ Vid Mið Þ

ffiffiffiffiffiffiffi
nMi

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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j
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nXj
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Vid Mið ÞNAiffiffiffiffiffi

nMi

p

vuuuut ; qXj
¼ Vid Xj

� �
ffiffiffiffiffiffi
nXj

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i
Vid Mið ÞNMiffiffiffiffiffi

nMi

p

P
j

Vid Xjð ÞNXjffiffiffiffiffi
nXj

p

vuuuut ; (28)

in which NMi, (NXj) refer to the occupancies of the ith cation Mi ( jth anion Xj in the

structure model). This scaling of fractional charges ensures that the model is overall

charge-neutral. Obviously, fractional charges from quantum mechanical calculations

could be used instead and may improve the quality of the fit, but at the expense of

suitability of the approach for the fast and automatic generation of forcefields for

screening of a wide range of compounds.

The Coulomb repulsions e.g. between two different cations M1 and M2 cations

are then taken into account in a screened ECoulomb(M1�M2):

ECoulomb M1 �M2ð Þ ¼ qM1
qM2

RM1�M2

erfc
RM1�M2

ρM1�M2

� �
: (29)

The screening factor ρM1�M2 ¼ f (rM1 + rM2) therein is assumed to equal the

sum of the covalent radii rMi
of the two ions involved times a factor f that depends

on the average absolute cation electronegativity and the average cation charge in

the compound. Typical values of f for oxides fall into the range 0.75 � 0.1 and thus

typical values of ρ are of the order of 2–3 Å. While this simplification restricts long-

range interactions to the real part of the Ewald sum, molecular dynamics

simulations employing such a localized interaction model yield realistic activation

energies of diffusion, e.g., for a range of Li conducting oxyacid salts cf. [6]. It

should be emphasized that the attractive Coulomb interactions between cations and

anions are already covered by the bond valence terms in (27) and thus should not be

included a second time in ECoulomb.

Table 1 (continued)

Cation M R0/Å b/Å NC Rcutoff/Å D0/eV Rmin/Å

Ti(III) 1.69766 0.498 6 5.5 1.97851 1.88619

Ti(IV) 1.72394 0.479 6 5.5 2.81333 1.83144

Tl(I) 1.91752 0.436 8.03 6 0.34999 2.77086

Tl(III) 2.06297 0.479 5.22 5 0.67637 2.10642

Tm(III) 1.94901 0.574 6.912 5.5 1.18138 2.16042

V(III) 1.67799 0.498 6 5.5 1.82936 1.85797

V(IV) 1.74932 0.441 5.738 5 2.08047 1.77638

V(V) 1.79445 0.465 4.166 5.5 3.69533 1.60258

W(IV) 1.74558 0.465 6 6 2.47114 1.81945

W(V) 1.81975 0.338 6 6 2.6157 1.76261

W(VI) 1.90641 0.483 5.688 5 1.84267 1.77713

Y(III) 1.90384 0.354 7.285 5.5 1.62701 2.21523

Yb(III) 1.92872 0.433 6.875 5.5 1.21989 2.1422

Zn(II) 1.65344 0.371 4.718 5 1.24031 1.88557

Zr(IV) 1.84505 0.414 6.765 5.5 2.19103 1.99602
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3 Practical Steps of Bond Valence Parameter Determination

3.1 Data Mining

The determination of new bond valence parameters typically involves as the first

and crucial step the data mining: a database of reliable reference crystal structure

data has to be selected. In our work the main source is the Inorganic Crystal

Structure Database (ICSD) complemented by structures extracted from the recent

literature. The selection of suitable structures has to take into account the quality of

datasets in terms of small residual factor values (typical values were R 	 0.055)

and global instability index G values < 0.2 valence units (v.u.). Though in general

a smaller R value should indicate a more reliable structure model, inconsistencies in

the type of R value reported in databases as well as intrinsic weaknesses of the R

values as a quality criterion for structures (e.g., the small influence of light atoms on

R values from X-ray diffraction data) limit its significance and so it should not be

used as the only criterion. Using the global instability index, G, as a selection

criterion obviously leads to an iterative process, as at least starting values of bond

valence parameters are required to calculate the G.
Typically it is also advisable to limit the complexity of reference structures, e.g. by

restricting the number of elements in the compound [e.g., to 2–4 of which only one

should be an anion (see Sect. 3.3)] and by excluding structure models for modulated

structures, polytypes, or structures with disordered cation arrangement (for which a

bond valence analysis requires more complex models of the actual local structure),

structures determined under high pressures or at extreme temperatures, or structure

models based on theoretical predictions (that tend to overestimate the unit cell

volume). Focusing on high symmetry compounds to further reduce structural com-

plexity is, however, not viable, as the size of smaller ions in simple high symmetry

structures often deviates somewhat from the ideal radius ratio. In contrast, it should

be ascertained that the reference data set contains a sufficient number of low

symmetry cation environments and a representative mixture of different coordination

numbers. In a significant number of cases binary high symmetry compounds turn out

to be outliers and were eliminated from the reference databases in the course of the

parameter refinement.

Obviously the reference data set should consist only of structures for which the

assignment of oxidation states to the atoms is straightforward. Particular care should

be taken when including compounds that contain the same element in different

oxidation states and for transition metal compounds with short cation–cation

distances, where significant metal–metal interactions have to be expected.

For some cation–anion pairs automatic data extraction routines lead to reference

data sets containing multiple structure refinements of the same compound (e.g., a

compound of high technological or scientific relevance) or to data sets dominated
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by a group of isostructural compounds. In both cases it is advisable to either reduce

the number of representatives of this structure type or to introduce a weighting

factor that scales down their influence on the refined parameters.

As mentioned above the refinement process may involve the need to eliminate

outliers that would strongly bias the refined parameters. Still for each such

eliminated structure it should be made sure that the reason for a deviating bond

distance is understood (or that there are further indications for a problem of the

structure refinement) and that the elimination does not unduly bias the balance

between different coordination polyhedra in the surviving reference data set.

3.2 The Role of the Bond Softness Parameter b

As briefly mentioned in Sect. 2.2, the bond valence parameter b represents the

compliance of a bond to external forces. Approximating b by a universal value

therefore eliminates the crystal-chemical information on elastic behavior from bond

valence parameters (or more precisely reduces the information from an approxima-

tion that takes into account structure type and atomic properties to a crude estimate

solely based on the coordination type). Whether such information is relevant for a

given application purpose and available for specific cation–anion pair may depend

on individual circumstances. Here it will be assumed that retaining this information

available is desired, and thus it is necessary to elaborate suitable procedures to

systematically determine the respective b values.

This aim of deriving b values that preserve the information on the softness

(compliance, polarizability) of a bond obviously implies the need for an independent

measure of this bond softness from experimentally observable or ab initio accessible

quantities. Parr and Pearson [29] proposed to characterize individual particles in

equilibrium by their constant site-independent electronic chemical potential μ

� μ ¼ � @E

@ρ

� �

v

� IEþ EA

2
¼ χ; (30)

and the global average of the (site dependent) absolute hardness η

η ¼ 1

2

@μ

@ρ

� �

v

� IE� EA

2
; (31)

or its inverse the absolute softness σ ¼ η�1. Here, ρ represents the electron density,
while the subscript ν indicates the potential of the nucleus and external influences.

In this approximation�μ becomes identical to Mulliken’s definition of the absolute

electronegativity χ [19]. This approximate identification with the independently

accessible quantities ionization energy IE and electron affinity EA was originally
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only derived for neutral particles, but according to Pearson [30] the corresponding

properties of a cation Mm+ may be calculated in the same manner using the

ionization energy of Mm+ (i.e. the (m + 1)th ionization energy of M) as IE and

replacing EA by the ionization energy of M(m�1)+.

For anions we need a somewhat different approach as electron affinities of

anions are not always accessible and their relevance for the determination of

bond softnesses appears questionable. Pearson suggested to use the values of IE

and EA for the neutral elements as a rough approximation for the anions. As shown

in our earlier work [1], an empirical correlation between the anion radius and anion

softness may be utilized to obtain a more precise estimate of the softness values for

anions with different charges: To eliminate a shift of the softness-versus-anion

radius relationships for halides and chalcogenides, we use – in line with Pearson’s

suggestion – the softness values of neutral atoms for the monovalent anions, but

reduce the softnesses of the divalent chalcogenide anions (as calculated from IE and

EA of the neutral atoms) by 0.017 eV�1. It may be noted that the true softness

values will still be slightly overestimated by this crude approximation, but there is

good indication that the use of this modified softness definition is sufficient to

achieve comparability at least among chalcogenides and halides [1].

To derive a measure for the softness of an M–X bond, the softness values of the

interacting species Mm+ and Xx� need to be combined. The empirical HSAB (hard

and soft acids and bases) concept [31, 32] suggests that reactions occur most readily

between species that match each other in softness. From the empirically observed

formation of strong bonds between anions and cations of equal softness it appears

straightforward to conclude that the interatomic potentials for these bonds will be

steeper (and thus correspond to a smaller value of b) than the potentials for the weaker
bonds between particles of mismatched softness values. The low b values proposed

by Pauling [33, 34] for bonds between the same type of atoms from his early

investigations of bond length bond order relationships (b ¼ 0.30 Å for metals,

b ¼ 0.26 for C–C bonds) may be tentatively interpreted as a first hint that bonds

between particles of equal softness are characterized by a low value of b. This
hypothesis was further supported by a vague trend in a survey of literature bond

valence parameters that were refined without postulating a universal b value, but

following the convention of limiting bond valence contributions to the first coordina-

tion shell [1]. The large scatter in this correlation can mainly be attributed to the short

range of bond distances R usually found in the first coordination shell, so that the

shape of the s(R) correlation can hardly be fitted. When the limitation to the first

coordination shell is lifted so that the weak interactions with more distant counterions

are included, a much wider range of R values becomes available allowing for more

accurate fits of s(R). Thus a comprehensive determination of freely refined bond

valence parameters that we conducted in the frame of deriving the softBV parameter

set shows a much clearer correlation of the bond valence parameter to the softness

difference. As seen in Fig. 8 the lowest b values are found for softness differences of
ca. 0.05 eV�1, whereas for cation–anion pairs with higher softness difference

(as well as for the pairs with smaller or even negative softness difference)
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Fig. 8 Correlation of b values found in freely refined bond valence parameter sets for the interaction

of main group cations (upper graph) or transition element and rare earth cations (lower graph) with
halide (open symbols) or chalcogenide anions ( filled symbols). The broken black line represents a
polynomial fit to all data in the upper graph except for the bonds of p block cations in their maximum

oxidation state to chalcogenide anions (gray triangles). For the latter a polynomial fit (broken gray
line) yields a parallel trend with somewhat lower b values. In the lower graph the same polynomial

fits to the main group cation data are shown again, now along with data for d and f block cations.

Therefrom it is obvious that they follow the same trend (though with a larger scatter). The dotted
gray line is a guide to the eye

Practical Considerations in Determining Bond Valence Parameters 117



progressively higher b values are observed. For most main group cations (exceptions

are p block cations in their maximum oxidation state in bonds to chalcogenides) the

appropriate b value (in Å) can thus be reasonably approximated from the softness

difference σX�σM (in eV�1) by the 5th order polynomial fit b ¼P
5

i¼0

ai σX � σMð Þi

shown in Fig. 8 with the coefficients a5 ¼ 2479.6 Å eV5, a4 ¼ �1384.2 Å eV4,

a3 ¼ 198.75 Å eV3, a2 ¼ 10.428 Å eV2, a1 ¼ �2.1316 Å eV, a0 ¼ 0.5009 Å. For

the p block cations in their maximum oxidation state in bonds to chalcogenides a

simpler second order polynomial fit with a2 ¼ 1.9108 Å eV2, a1 ¼ 0.8287 Å eV,

a0 ¼ 0.2946 Å (gray broken line in Fig. 8) can be used to predict the systematically

lower b values, since the softness difference for all observed cases was > 0.05 eV�1.

Analogous polynomial fits (based on the smaller set of reference data available at that

time) have been used to derive the systematic b values in the softBV parameter set.

The scatter and small number of data points with negative softness differences

makes it impossible to decide whether the slopes for the two branches of the

correlation between b and the softness difference (anion > cation or anion <
cation) differ. The apparent shift of the minimum in the correlation to positive

softness differences is most likely just another indication that the rough estimate of

the anion softness (by assuming equal softnesses for neutral atoms and monovalent

anions) consistently overestimates anion softness.

It should be emphasized that the typical b values found in this way are somewhat

larger than the conventionally chosen “universal value” of 0.37 Å. This difference

can partly be understood as a self-fulfilling prophesy, since limiting the bond valence

contributions to the first coordination shell requires a significantly steeper drop of the

bond valence with increasing bond length. As demonstrated in our earlier work [1] for

the case of the Li–O bond, for which the freely refined b value as refined from bond

distances in Li environments increases systematically with the chosen cutoff radius

from ca. 0.45 Å for a cutoff radius corresponding to the boundary of the first

coordination shell to the limiting value of 0.515 Å for a sufficiently large cutoff

radius. More generally it is advisable to fit the bond valence parameters (especially if

both R0 and b are variable) not only for one more or less arbitrarily chosen cutoff

distance Rcutoff, but also for a range of Rcutoff values, so that it can be judged whether

the refined value of b is stable vs. small variations of Rcutoff. The cases shown in Fig. 9

exemplify that for Rcutoff of the order of the first coordination shell radius no

meaningful free refinement of R0 and b was possible as small changes in the cutoff

radius lead to extreme changes in b value (with an inherent tendency to huge b
values). When increasing Rcutoff typically a minimum of b is observed for values

somewhat beyond the first coordination shell, followed – as mentioned above –

typically by a systematic increase that (after a slight local maximum for distances

in the range of the 2nd coordination shell) leads to a stable value for cutoff distances

larger than 5–8 Å depending on the size of the affected ions. This long-range limiting

value appears to be the most suitable choice of the b value. It can of course not be

ruled out that in some cases inaccurate reference data drive the free simultaneous

refinements of R0 and b more often to too high than to too low b values. Therefore it
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appears advisable to derive b values for cation anion pairs, for which reference data

sets would contain only a small number of distinct cation environments from the

correlations shown in Fig. 8 rather than from individual refinements. The increased

correlation coefficient for the s(ρBCP) correlation when s is calculated from the

softness-sensitive softBV data that follow this guideline may be taken as a hint that

the b values chosen there are – while probably not perfect – at least superior to the

alternative of a universal b value.

3.3 Special Considerations for Compounds with
Multiple Anions

For compounds that contain more than one type of anions (i.e., different types of

elements with negative oxidation states) the effectively employed bond valence

parameter b should not just be the tabulated softBV value for compounds that

contain only this anion but needs to be adapted to account for the mutual equaliza-

tion of bond softnesses.

From a set of 128 compounds containing both a halide and a chalcogenide anion it

could be shown that if that was not accounted for then bond valences of the bonds

to softer (harder) anions in the compounds are systematically overestimated

(underestimated). In principle a detailed description of this environmental sensitivity
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Fig. 9 Selected examples for the correlation of the b values obtained from free refinements of

bond valence parameter sets to the cutoff distance Rcutoff of the respective cation–anion pair. The

set of reference structures for each cation anion pair contained about 100 cation environments and

remained unchanged for all cutoff distances

Practical Considerations in Determining Bond Valence Parameters 119



of bond valence parameters should be treated based on the spatial arrangement of the

different anions. A satisfactory agreement can, however, also be reached by a simple

average treatment: For each cation first a weighted mean bond valence parameter

baverage(M) averaging over all anion types [weighting factor ¼ number of these anions

per unit cell � abs(oxidation state)] is determined and then the effective b-value
beffective for the cation anion pair A–X in the specific multi-anion compound is

calculated as

beffectiveðM;XÞ ¼ f baverage Mð Þ þ 1� fð Þ b ðM;XÞ; (32)

with an empirical weighting factor f ¼ 2/3.

As seen in Fig. 10 this helps to significantly reduce the average G for structures

in the reference data set from 0.157 (when using unaveraged b values) to 0.131

[when using the beffective values according to (32)].8 This averaging becomes the

more relevant the more the anions in a compound differ in their softnesses. For the

MOxFy compounds in the reference set G was practically unchanged by the b
averaging, while the relative reductions in G become more pronounced with

increasing softness difference from 18% for MOxCly to 24% for MOxBry and

27% for MOxIy compounds cf. Fig. 10). It should be noted that compounds

containing different types of anions are – as mentioned above – excluded from

the reference data sets for the determination of softBV parameters (while most

compounds in the reference data sets contained different types of cations so the

anyways smaller softness differences between different cations in the structures are

already factored in to some extent).
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Fig. 10 Influence of b
averaging on the global

instability index G for

128 compounds that contain

both a chalcogenide and a

halide anion. The solid line
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broken line a fourth order

polynomial over all data

8 For conventional bond valence values with fixed b ¼ 0.37 Å the averageG-value for the same set

of reference structures was 0.184.
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3.4 Cutoff Criteria and Coordination Numbers

In this section we have a closer look at ways to determine the limit of the first

coordination shell and thereby also the preferred coordination number that in the

energy-scaled version of the bond valence approach becomes an additional empiri-

cal parameter required to determine the expected equilibrium bond distance Rmin.

Coordination numbers NC(M–O) for the oxides of 158 types of cations M were

redetermined from 8829 reference cation environments. To this end all cation

oxygen distances up to 5–8 Å were calculated for the reference structures and

therefrom the running coordination number NRCN calculated as a function of the

bond distance RM–O, which should yield a plateau in-between coordination shells

and correspondingly a minimum in a plot of the differentiated term dNRCN(M–O)/

dRM–O vs. RM–O. A synopsis of both plots was then used to identify the preferred

coordination number NC for cations (cf. the example M = B3+ in Fig. 11).

For some cations in uncommon oxidation states the number of available data did

not allow for a direct determination from the above-mentioned procedure. In 12 of

the 158 cases NC was extrapolated based on the trend for the same element when

varying the oxidation states.

While in Brown’s earlier work [35] a fixed NC-independent bond valence thresh-

old value of 0.038 v. u. was used to decide whether a cation–anion pair should be

counted as bonded and hence to contribute to NC, here we assign the coordination

numbers devising the above-mentioned geometric approach. This leads to a coordi-

nation number-dependent threshold value for the minimum bond valence of bonds

that are to be considered as part as contributing to the first coordination shell (see

Fig. 12). Selected NC coordination numbers for oxides determined in this way are

tabulated in Table 1. More data are listed in the electronic appendix.

A comparison of our results to the preferred coordination numbers determined by

Brown [35] in 1985 cf. Fig. 13) based on the smaller set of reference structures

available at that time shows that for high NC, the values determined by the approach

presented here tend to be higher than those reported by Brown. This is mainly an

expected result of the different approach in defining the boundary of the first coordi-

nation shell. For lower NC the results of both studies are not significantly different, as

the clear gap between the bond lengths of nearest and second-nearest neighboring

shells of anions around a cation make the detailed choice of the threshold value less

relevant.

In Brown’s approach for a monovalent cation9 with NC ¼ 12 the bond valence in

a symmetric arrangement is only slightly more than twice the bond valence for the

threshold of the coordination shell, whereas for NC ¼ 4 the ratio between the two

bond valence values becomes ca. 6.6. In our approach this ratio remains constant

(�6). As a plausibility check systematic trends of NC against the atomic number

both along periods and down the groups of the periodic table were checked. As

9 In order to eliminate the effect of the oxidation state of the central cation the bond valence values

in Fig. 12 are scaled by the oxidation state Vid(M).
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Fig. 11 The preferred

coordination number for B3+

in oxides is determined to be

NRCN ¼ 3.417 from (1) the

plateau region in the distance-

dependent running average

coordination number and (2)

the minimum in a plot of

dNRCN/dRB–O vs. RB–O.

Parameters for other cation-

oxygen pairs were determined

analogously

Fig. 12 Variation of

dimensionless relative bond

valence values s(M–O)/

Vid(M) for the bonds of the

158 studied cations M to

oxygen at R(M–O) ¼ R1,

i.e. at the boundary of the

first coordination shell. The

solid horizontal line marks

the threshold value chosen

by Brown; the broken line
is a power law fit to the data

s/Vid ¼ NC/6 as a guide to

the eye

Fig. 13 Comparison of

values of preferred

coordination numbers

NC(Brown) as reported in

Brown’s earlier work [35] and

NC values determined in this

work according to the method

described in the text. This

comparison comprises

73 cation types covered in

both studies. The solid line
marks the case

NC(Brown) ¼ NC; the broken
line is a polynomial fit to the

data as a guide to the eye
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exemplified in Fig. 14, NC reproduces the expected trends: it decreases across a

period (increase in the effective nuclear charge) and increases with the row number

of the periodic table. In the case of the lanthanide ions M3+ the variation of NC with

the atomic number even clearly shows the anomaly for the half-filled f-orbital.

In the same way as for oxides we have also looked into refining parameters for

M–X couples where the anion X is a non-oxygen chalcogenides (75 M–S, 29 M–Se,

20 M–Te parameters from 1672, 266, or 110 cation environments) or a halide

(70 M–F, 68 M–Cl, 31 M–Br and 25 M–I parameters from 1043, 483, 169, or

167 cation environments, respectively). The reliability of these parameters is often

somewhat lower due to the limited number of suitable reference structures. When

comparing coordination numbers NC and threshold radius values of the first coordi-

nation shell R1 for different anions,
10 comparisons between oxides and sulfides are

relatively straightforward, yielding a ca. 0.6 Å larger radius of the first coordination

shell radius for the sulfides and a reduction of the coordination number NC(M–S)
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Fig. 14 Variation of the coordination number NC(M–O) of selected metals in their maximum

oxidation state in oxides: (a, b) variation of NC with the group number along selected rows of the

periodic table, (c) with the row number for alkali and alkaline earth cations. (d) Variation of NC in

lanthanide cations M3+ with the atomic number

10 Here we limit the comparison to O2�, S2�, F� due to the considerably lower number of data sets

available for the other anions.
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compared to NC(M–O) only for high coordination numbers, where the larger size of

the S2� becomes a limiting factor (see Fig. 15).

Analogous comparisons between oxides and fluorides are less clear because of

the dominance of NC(M–F) ¼ 6 for the more ionic fluorides. Thus as seen in Fig. 16

the radius of the first coordination shell of fluorides is not found to be smaller than

for an oxide of the same coordination number but typically in between the values

for sulfides and oxides and the trend with the coordination numbers seems to

somewhat deviate from the parallel trends for sulfides and oxides.

Fig. 15 Left: Comparison of coordination number found for sulfides and oxides of the same

cation. For small NC(M–S) values both coordination numbers hardly differ, while for large

coordination numbers the larger size of S2� leads to a significantly smaller NC(M–S). Right:
Radius R1 of the first coordination shell of a cation M in a sulfide environment vs. R1 in an oxide

environment. Broken lines in both graphs mark a 1:1 ratio, while the solid lines are polynomial fits

to the data

1.5

2

2.5

3

3.5

4

4.5

0 2 4 6 8 10 12

R
1(

M
-X

) 
/ 

Å

NC(M-X)

Sulfides

Fluorides

Oxides

Fig. 16 Variation of the radius of the first coordination shell R1(M–X) with the coordination

number NC for oxides (crosses), sulfides (squares), and fluorides (triangles). Lines are polynomial

fits as a guide to the eye (black solid line: sulfides, broken line: oxides, gray solid line: fluorides)
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Comparisons of the scaled bond valence at the limit of the first coordination shell

for the three anions (Fig. 17) show again that a universal bond valence threshold

treats softer and harder anions differently. The coordination number-dependent

values for s(M–X, R ¼ R1) values are found to be consistently lower for the harder

anions than for the softer sulfides and especially for the fluorides are in almost all

cases smaller than Brown’s universal threshold value. So also from the point of

view of a suitable comparison of coordination polyhedra involving anions of

different softnesses it may be useful to employ an NC and anion softness dependent

cutoff criterion, as it automatically results from our geometric approach.

4 Concluding Remarks

The discussions above aim to show that the success of the bond valence concept has a

physical basis, as bond valences can be understood as a mass (or principal quantum

number n, or atomic number, . . .) dependent functional of electron density. The

particular close correlation with the electron density at the bond critical point in

predominantly ionic compounds (or more generally in compounds for which the

Laplacian r2ρBCP remains >0) also provides a better understanding why the bond

valence concept though in principle applicable to a wide range of bond types and

originally building on Pauling’s concepts for covalent compounds or metals, is more

appropriate for at least partially ionic compounds.

The link to the electron density also implies that concepts that proved essential in

density functional theory such as the electronic chemical potential μ ¼ @E=@ð Þv
¼ �χ and its derivative, the absolute hardness η ¼ 1=2 @μ=@Nð Þv or its inverse the
absolute softness σ ¼ η�1 and are experimentally accessible via their links to the
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Fig. 17 Logarithmic variation of dimensionless relative bond valence values s(M–X)/Vid(M) for

bonds to oxygen, sulfides, and fluorides at the respective boundary for the first coordination shell

R1 with the coordination number. The dotted horizontal line marks the threshold value chosen by

Brown; the lines are power law fits to the data as a guide to the eye (black solid line: sulfides,
broken line: oxides, gray solid line: fluorides)
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ionization energy or electron affinity can be advantageously employed in fitting

both bond valence parameters that extract as much as possible of this fundamental

information contained in the underlying reference crystal structures.

If this is done suitably, then the (squared) bond valences can also – as demonstrated

[25, 26] – be linked to the absolute energy scale in static ways such as predicting energy

thresholds in solid electrolytes cf. [6], predicting NMR chemical shifts [36] or other

spectroscopic properties, but also in dynamic ways as an effective atomistic forcefield.

We should also consider this link between energy and bond valence in the opposite

sense. Instead of quantifying bond valence mismatches one could in principle trans-

late them into site energy increases with the help of the equations discussed in this

chapter. If we are interested in the chemical plausibility of a structure, then a bond

valence-based criterion such as the global instability index G [37] (which can also be

used for structure fitting [38]) that does not involve the scaling of the bond valence

mismatches by the atomic row number index n (or other closely correlated quantities)
may lead to biased results when comparing compounds in which all atoms have

similar masses to compounds containing heavy and light atoms. If for the sake of

simplicity the not precisely known exponent for the n-scaling is set to agree with (25),
then a modified instability index Gn could be defined as

Gn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

A

VðAÞ � VidðAÞð Þ2
nAN

vuut : (33)

To be consistent with an energy-related measure of structural stability N also has

to run over all atoms A in the unit cell (or equivalently in the formula unit), in line

with the definition of G, rather than – as it is frequently seen – over the unweighted
list of distinct atoms, since the absolute influence of a certain bond valence

mismatch will increase with the number of symmetry copies inside the unit cell.
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Understanding Ionic Conduction and Energy

Storage Materials with Bond-Valence-Based

Methods

Stefan Adams and R.Prasada Rao

Abstract The analysis and prediction of ion transport in solids from static and

dynamic structure models has become an interesting application for the bond

valence approach. Specific adaptations of the bond valence approach for this

application area are discussed, and the resulting predictions are compared to

those from alternative screening approaches. A particular advantage is that the

bond-valence-based approach can be applied to both crystalline and glassy solids

and that the level of computational effort can be easily adjusted to the level of detail

required in the prediction from static pathway models for screening purposes to

bond-valence-based molecular dynamics simulations for analyzing the coupling

between the migration of the mobile species and rearrangements in the immobile

substructure.

Keywords Battery materials � Bond valence site energy model � Ion migration

pathways � Solid electrolytes
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Abbreviations

1D One-dimensional

2D Two-dimensional

3D Three-dimensional

σ Ionic conductivity

Δρpro Procrystal electron density threshold for a migration pathway

ΔEBVSE Bond valence site energy threshold for a migration pathway

|ΔV(M)| Absolute bond valence sum mismatch

BVSE(M) Bond valence sit energy of ion M

DFT Density functional theory

DFT + U Density functional theory with augmented description of Coulomb

repulsion between localized d and f electrons by an additional

Hubbard-like, localized term U

F Volume fraction of percolating ion migration pathway clusters

G Global instability index

K Force constant

MAE Mixed alkali effect (mixed mobile ion effect)

MD Molecular dynamics (simulation)

Mr Reduced mass of a vibrating system of atoms

pA�X Penalty function to complement bond valence sum mismatch term by

a measure for the deviation from the equal valence rule

RMC Reverse Monte Carlo (modeling)

Rmin Equilibrium distance M � X for a given coordination number

sM�X Bond valence of interaction between cation M and anion X

smin Bond valence corresponding to R ¼ Rmin

SOF Site occupancy factor

V(M) Bond valence sum of ion M

Vid(M) Oxidation state of ion M

1 Introduction

In this chapter we will discuss to which extent local and long-range ion mobility can

be understood from the structural and energetic local environment of the mobile

ions. The level of accuracy and detail to be expected will of course depend on the

computational effort that we can spend on an individual structure.
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For screening purposes such as finding promising structure types for identifying

or designing new solid electrolytes or mixed conductors, it may be sufficient to

base predictions on static structure models. In principle both crystal structure data

from diffraction experiments and energy-minimized computational models from ab

initio or atomistic simulations can serve as such static structure models as long as

they reflect the actual local structure and to a reasonable approximation the distri-

bution of free volume in the structure. As we will see below, the important role of

free volume for ionic motion leads to the conclusion that experimental data

measured under ambient conditions often yield more precise predictions than ab

initio models, since the latter tend to slightly overestimate the unit cell volume and

hence the free volume. This overestimation of free volume will result in a slight

underestimation of the activation energy for ionic motion.

For experimental structure data of not too complex crystal structures (and to a

lesser extent for simulated structure models), the key issue is typically not so much

the precision of the structure determination, but much more how to deal with

deviations of the instantaneous local atomic arrangement from the idealized aver-

age crystal structure. Static structure models at the relevant temperatures are time

averages over atoms in more or less strongly correlated motion. A static pathway

prediction model will ignore the coupling between these motions, most notably the

relaxation of the immobile substructure during the transport step. This will lead to

an inherent tendency to overestimate energy barriers that has to be accounted for by

scaling. For the same reason the predictions can be expected to be the more reliable

the weaker the coupling between the motion of the mobile atom and the immobile

substructure will be. Therefore, it may not be too surprising that the first successful

examples of such pathway predictions dealt with heavy monovalent cations (such

as Ag+), where both the low charge and the high mass of the moving particle

contribute to the degree of independence in its motion. An additional though not

completely independent factor facilitating predictions of Ag+ ion conductors is the

ability of this transition metal ion to adapt to various coordination numbers down to

two [1]. In contrast, pathway models for the motion of strongly coupled small, light

cations (in the extreme case, protons) will be more precise, if energetic effects on

the immobile substructure can be incorporated, e.g., as proposed in our earlier work

by mapping the variation of the global instability index as a function of the position

of a probe ion of the mobile species [2].

Moreover, the compounds of interest for ion transport pathway prediction

systematically exhibit some degree of static disorder, and pathway predictions

need to be based on representative local structure models. Even in the extreme

case of a complete absence of long-range order, i.e., for ion conducting glasses,

relevant local structure models may be derived from diffraction data, but additional

constraints based on density, chemical plausibility, or spectroscopic information

are required to generate static snapshot-type models that capture essential features

of the local structure by reverse Monte Carlo (RMC) fitting [3–7]. Such RMC

models are quantitative in the sense that they are in the ideal case fully compatible

with any experimental information provided in the fitting process, but they will not

generate unique structure solutions, and their interpretation should therefore focus
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on statistical analysis methods that extract characteristic features of the observed

pathway network rather than on individual migration barriers.

Alternatively, the relation between structure and conductivity in both ordered

and disordered compounds can be investigated using molecular dynamics

(MD) simulations. In principle, MD simulations will lead to comprehensive struc-

tural and dynamic information within the limitations imposed by the system size,

the simulated period, and the agreement of the employed interaction potential

parameters with reality. Both diffraction data (crystal structures for crystalline

compounds, RMC fits for glasses) and MD approaches are valuable tools to obtain

insight into the conduction mechanism and its correlation to the atomic structure,

though in the case of MD simulations it has to be verified that the force field chosen

for the simulations leads to structure models that are consistent with experimental

information.

2 Bond Valence Models of Transport Pathways from

Static Structure Models

2.1 Bond Valence Mismatch Pathways Versus Bond Valence
Site Energy Pathways

For screening purposes, bond valence or bond valence site energy (BVSE) pathway

models derived from static structure models appear to be the most straightforward

approach. In a range of earlier studies, it has been discussed how the bond valence

method can be used to analyze ion transport pathways statistically, yielding pre-

dictions of ionic conductivity from crystal structure data and RMC- or

MD-generated structure models [4, 8–10].

For the bond valence mismatch pathways, regions of low bond valence sum

mismatch (and hence implicitly low site energy) for an ion M+ are modeled as

regions in the structure, where the bond valence sum V(M)

ΔV Mð Þj j ¼
X

X

sM�X � Vid Mð Þ
�����

�����þ
X

X

pM�X ð1Þ

over bond valences sM�X from all adjacent counterions X approaches the oxidation

state Vid(M). To enhance the chemical plausibility of “BV mismatch landscapes,”

the bond valence summismatch term |ΔV(M)| needs to be complemented by penalty

functions pA�X that (a) discriminate against sites where a matching V(M) is

achieved by unfavorable strongly asymmetric coordinations [11] and (b) exclude

sites too close to other cation types. The cation–cation or anion–anion penalty

functions may simply take the form of exclusion radii, but truncated Coulomb

repulsions yield a more physical description.
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This approach has been first successfully applied to understand ionic conduction

in solids by Garrett et al. [1] who demonstrated the close agreement between a

(sharpened) bond valence mismatch map of α-AgI and the disordered Ag probabil-

ity density map from neutron diffraction studies. Here, “sharpened” means that

when comparing to a set of equally spaced isolines of constant silver density, the

best match was not achieved when comparing to equally spaced isolines of bond

valence mismatch but when using a high power (or an exponential function) of the

bond valence mismatch. The simple AgI is an ideal candidate for such comparisons,

since it contains only a single type of cations, eliminating the need for a penalty

function to model repulsions between mobile and immobile cations and more

importantly a scaling factor between the bond valence and penalty term.

The use of bond valence maps itself had been originally proposed by Waltersson

in 1978 [12] as a tool to locate the light atom Li in nine complex oxide structures,

finding already that the correct position for dense structures typically corresponds

to a minimum of the bond valence sum. Along the same lines, localization of ions in

complex superstructures with the help of bond valence maps was, e.g., studied by

Withers et al. [13], van Smaalen [14], and Adams et al. [15]. While Waltersson’s

approach was focusing on locating the low-energy (equilibrium and interstitial)

sites only, Garrett et al. [1] then introduced a first attempt to link the variation of the

bond valence mismatch to the variation in the atomic probability density not only at

cation sites but also for the paths in-between these sites. From an empirical

comparison to the experimental probability density map, it was proposed that for

α-AgI the atomic probability density should be proportional to V�16 and the same

approach was then used to derive ion transport paths in Ag16I12P2O7.

In continuation of this approach, the bond valence mismatch in a large variety of

silver and alkali ion conductors has been analyzed based on the bond valence

formalism. A range of examples is discussed below. As briefly mentioned else-

where in this volume [16], the intended use of our bond valence parameters in bond

valence maps was a major reason for us to deviate from the nearest neighbor

convention otherwise commonly applied in bond valence calculation. When calcu-

lating bond valence sums strictly from interactions to the nearest neighbors only,

the extremely asymmetric nature and sudden changes of the first coordination shells

of a mobile ion along its path could otherwise lead to artifacts: When the mobile ion

passes the boundary of its own coordination shell, an unphysical steplike change of

the coordination shell and hence of the bond valence sum would result as exem-

plified in Fig. 1. Therefore, it appears to be more straightforward to use a shell of a

sufficiently large radius that moves with the mobile ion. For dynamic applications

of the method, it is also important that even a minor steplike change in the bond

valence mismatch or BVSE is eliminated to avoid infinite gradients that would

translate into infinite accelerations of the moving atom. Thus, at least for any

applications of the approach in molecular dynamics simulations, it is advisable to

subtract the (necessarily minute) BVSE for the cutoff distance from all site energies

forcing the interaction to reach exactly zero at the cutoff distance.

In most cases stable solid electrolytes are nearly densely packed so that sites with

the matching valence will form well-defined minima in these bond valence maps.

This unfortunately led some authors to the misconception that ions would generally
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tend to migrate in the direction of lowest bond valence sum rather than in the

direction of lowest bond valence sum mismatch. As discussed more in detail in

Sect. 3.3, the difference becomes most obvious when we consider the surface of a

solid electrolyte, where a driving force to minimize the bond valence sum would

cause mobile ions to escape from the solid into the free space.

Moreover, it has to be kept in mind that bond valence maps (or more precisely,

bond valence sum mismatch maps) use bond valence units scale rather than an

energy scale, and attempts to link energy or probability density to the bond valence

mismatch were difficult to achieve in a general transferable way as the calculation

of effective bond valence mismatches according to Eq. 1 requires scaling between

bond valence terms and cation–cation (or anion–anion) repulsions or (for open

structures) to discriminate between sites of identical bond valence sum based on the

degree to which the equal valence rule is fulfilled.

In order to overcome these challenges, we have more recently [9, 17] proposed

to convert the bond valence mismatch first into an absolute contribution to the ion’s

(bond valence) site energy BVSE(M) so that the penalty functions for cation–cation

repulsions, Erepulsion, or deviations from the equal valence rule, ΔEBVR, can be

incorporated in a natural way according to

BVSE Mð Þ ¼ D0 ΔV Mð Þj j2 þ ΔEEVR þ Erepulsion: ð2Þ

An implementation of this approach exploiting the formal analogy between the
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Fig. 1 Variation of BVSE along the transport path of a model cation conductor (equilibrium sites

at x ¼ �0.125; interstitial site at x ¼ 0) when calculating the BVSE of the mobile ion along the

path based on the softBV parameter and a cutoff radius of 8 Å around the respective position of the

mobile ion (dark triangles) compared to the site energies that result from the formal application of

the same conversion algorithm to conventional bond valence parameters with universally fixed

value of the bond valence parameter b in combination with the first coordination shell cutoff

criterion (open squares). The different choice of the bond valence parameter b translates into a

difference in the predicted activation energy. More importantly, for the latter approach, jumps in

site energy (or of bond valence mismatch) occur along the path when the mobile ion crosses the

boundaries between coordination shells (here at x � �0.04 and x � �0.08). Such artifacts when

using standard bond valence conventions would render the approach less practicable
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squared bond valence sum mismatch and the Morse-type potential is discussed in

detail in a previous chapter of this book [16].

Transport pathways for various compounds with both cation (Ag+, Cu+, Li+,

Na+, K+, etc.) and anion (O2�, F�, etc.) mobile systems were investigated by

several groups including our group. Here, we briefly review outcomes of a few

such studies. It should be noted that the methods applied vary in detail, which can

only be sketched briefly, so that the reader is referred to the cited original publica-

tions for the exact procedure in which the transport pathways are derived in the

respective study.

2.2 Ion Transport Pathways from Bond Valence Maps
in Crystalline Cation Conductors

As mentioned above, Garrett et al. [1] first demonstrated the equivalence of the

bond valence sum mismatch pathways in α-AgI with pathways determined exper-

imentally from an anharmonic atomic displacement refinement of neutron diffrac-

tion data as a justification for predicting transport pathways for their then new fast

Ag+ ion conductor Ag16I12P2O7 using the same approach. In our earliest work on

pathway models for similar Ag+ ion conducting oxyhalide systems [3, 18], we used

a parameter set by Radaev et al. [19],

sAg�O ¼ exp
1:89Å� RAg�O

0:33 Å

� �
, sAg�I ¼ exp

2:08Å� RAg�I

0:53Å

� �
, ð3Þ

as their parameters – like our later systematic softBV parameter set – included the

influence of higher coordination shells and thus facilitated the modeling of path-

ways by avoiding cutoff effects at the boundaries of coordination shells or the need

for rescaling the bond valence sums if conventional bond valence parameter sets are

used (bond valence parameter sets derived assuming the first coordination shell

convention will otherwise obviously yield overestimations of the bond valence sum

if contributions from more distant counterions are included to avoid the cutoff

effects). Moreover, it was realized that the adjustment of the bond valence param-

eter b allows accounting for differences in ion polarizability.

Three-dimensional bond valence maps of Ag+ ion conductors were constructed

by summing up bond valence contributions to all anions up to a distance of 8 Å for

any point of a three-dimensional grid. It is also advisable to choose the number of

grid points across a unit cell as a multiple of 12 or 24 so that common special

positions at fractional coordinates become explicit grid points. Initially, the bond

valence sum mismatch term was complemented by hard cutoff criteria to account

for the repulsion between mobile and immobile cations. Thus, grid points at a

distance to other cations M smaller than the sum of radii of Ag+ and M were treated

as inaccessible. It should however be noticed that the choice of these minimum
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acceptable distances between mobile and immobile cations may strongly influence

the resulting bond valence pathway maps. Thus, a universal choice of minimum

cation–cation distances (as it seems to be, e.g., implemented in the software

3DBVSMAPPER [20]) may result in artifacts compromising the reliability of

pathway predictions. Such artifacts from insufficient consideration of cation–cation

repulsions may also be the reasons why a detailed bond valence sum mismatch-

based discussion of alternative paths in Chevrel phases AxMo6S8 by Levi et al. [21]

contradicts a BVSE model that (at least for Li4Mo6S8) just finds the expected local

pathway hexagons (Li(1))6 interconnected by pairs of Li(2) sites to a 3D network

(Fig. 2d).

A more physical description of the repulsion effects is obviously achieved when

such hard cutoff radii are replaced by a Coulomb repulsion term so that with

decreasing cation–cation distance pathway regions close to immobile cations

become gradually less favorable for the mobile cation. On the other hand, this

approach requires a scaling between a bond valence sum mismatch description of

attraction terms and an energy-scaled Coulomb repulsion. Despite these shortcom-

ings, ion transport in a variety of crystalline Ag+ ion conducting systems such as

Fig. 2 Models of ion transport pathways determined as regions of low bond valence sum

mismatch in Ag+ ion conducting solids (a) Ag5IP2O7 [22], (b) Ag4IPO4, (c) Ag3IMoO4

(large spheres: I; small spheres: Ag; oxyacid polyanions shown as polyhedra), and (d) Li+ ion

conduction pathways in the mixed conducting Chevrel phase Li4Mo6S8 . In (d), the dark (light)
isosurfaces correspond to local (long-range) pathways for Li+
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Ag8I4V2O7 (P-62 m) [23], Ag5IP2O7 [22], Ag8I18W4O16 (C2), Ag16I12P2O7

(P6/mcc), Ag4P2O7 (P3221), α-Ag2HgI4, β-Ag2HgI4, or various Ag argyrodites

[24] has in the subsequent years been investigated by bond valence techniques

[25, 26]. Furthermore, the bond valence mismatch pathway analysis was applied to

other alkali ion conductors as well as to selected fluoride and oxide ion conductors

[11]. Three-dimensional graphical representations of isosurfaces with constant

bond valence mismatch like the ones in Fig. 2 provide a vivid image of the pathway

topology. Still, additional information, e.g., on the occupancy of the cation sites and

jump distances, is generally required to derive a transport mechanism from such a

bond valence pathway model, since a low-energy migration pathway may be of

limited use if it is impossible for the considered mobile species to reach it from

actually occupied sites.

The same approach was also applied in a first comparison of bond valence and

DFT results on antifluorite-type Li14Cr2N8O, where both methods accordingly

came to the conclusion that (in contrast to analogous Mn compounds) there are

no low-energy pathways for Li+ in Li14Cr2N8O [27]. A more recent comparison of

DFT + U and bond valence analysis of Li+ motion in the modulated structure of

LiFeBO3 was undertaken by Janssen et al. [28]. In DFT + U calculations, the

description of Coulomb repulsion between localized d electrons (and if present

f electrons) is augmented by an additional Hubbard-like, localized term U. Again,

both approaches agreed not only in the identification of the subset of Li sites that are

crucial to Li motion and those Li sites not involved in the transport but also in the

overall transport pathways that is also consistent with our earlier description of

the path in the unmodulated structure [17]. Slight differences in the evaluation of

Li+ sites close to the immobile Fe and B cations were ascribed by the authors to

their simple hard-sphere exclusion approach in treating cation–cation repulsions.

The limited computational demand makes the bond valence approach particu-

larly suited to study large sets of data. Recently, Avdeev et al. [10, 20] presented an

analysis of 9,701 compounds containing the potentially mobile monovalent cations

Li+, Na+, K+, Ag+, or Cu+ with respect to the existence of infinite networks of

pathways for the respective mobile ion. Alkali ion pathways for four compounds

discussed as examples in their work are shown in Fig. 3.

Besides the test for the existence of infinite pathways at a given bond valence

mismatch threshold, the authors also propose to link the absolute conductivity to the

fractional accessible volume (F, cf. Fig. 4), i.e., the fraction of the unit cell volume

that for a given bond valence mismatch threshold belongs to the infinite pathway.

While this approach (that had been used before for ion conducting glasses, see

below) appears oversimplifying for crystalline compounds, as it does not directly

account for the strong influences of other factors such as the degree of disorder and

the concentration of mobile charge carriers on the absolute ionic conductivity, it

was found that the values of the fractional accessible volume per ion of the mobile

species in Li+, Na+, and K+ oxides commonly occur in known ion conducting solids

such as Li3xLa2/3�xTiO3 perovskites, P2- and β-NaFeO2-type oxides, as well as

birnessite-type compounds.
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2.3 Ion Transport Pathways from Bond Valence Maps of
Ion Conducting Glasses

The simplicity of the bond valence approach keeps comparatively large systems

manageable so that the bond valence method is well suited to investigate ionic

conduction in complex systems and hence also in glassy ion conductors, provided

that the local coordination for the mobile ions is known. The structures for glassy

systems were developed by combining molecular dynamics simulations or RMC

modeling with the bond valence approach. Glasses in which Ag+ or alkali ions with

mixed oxide–halide coordination are the mobile species are discussed as an exam-

ple. The bond valence approach was found to be particularly suited to provide new

insight about this issue.

AgI0.75-(Ag2MoO4)0.25 and (AgI)0.6-(Ag2O-2B2O3)0.4 are discussed here as rep-

resentative model systems for molecular and network glasses, respectively

[18]. Slices through the bond valence isosurfaces for the two glassy systems are

shown in Fig. 5a and b, respectively. At first sight the complex isosurfaces may look

rather puzzling, since there is no more translational order except for the periodic

boundary conditions. What is already seen from these graphs is that while the

Fig. 3 Bond-valence-based models of ion migration pathway in selected alkali ion conductors:

(a) NaWO2Cl2, (b) NaLaTa2O7, (c) LiVWO6, (d) LiYMo3O8. Dark isosurfaces correspond to

regions of low-energy alkali ion sites, while the light isosurfaces correspond to continuous

pathways. Insets in graphs (b) and (c) show the 1- or 2-dimensional pathways within a single

interlayer region of the respective compound
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long-range mobility on glasses is isotropic and homogeneous, locally ions have to

follow pathways of restricted dimensionality.

For each model system, the mean fraction of the valence sum that originates

from bonds to oxide ions is in accordance to the respective overall halide/oxide

ratio both for an averaging over all grid points and over all Ag+ positions. A more

detailed inspection reveals that in contrast to an earlier literature model, the dc ionic
conductivity in both crystalline and amorphous silver oxyhalide compounds cannot

rely on transport in halide-rich regions alone, as such regions form too small a

volume fraction of the oxyhalide structure (see Fig. 5c) and do not form a contin-

uous network. On the other hand, the local mobility of Ag+ ions is still somewhat

larger in halide-rich regions. A comparison of borate glasses with various alkali and

silver halide dopants [29] shows that pathways exhibit a similar change in ordering

upon salt doping as the glass network itself and that the higher degree of ordering in

AgI-doped glasses and hence in the pathways of these systems is not an important

factor for their high ionic conductivity. The same study shows that the major effect

of the halide doping is the increase in the minimum of the local pathway dimen-

sionality. In other words, the bottlenecks for ionic transports become wider, and the

mobile ions have more directions into which transport can proceed.

For the fast ion conducting glasses (where migration barriers within the path are

not too large compared to the thermal energy of the mobile ions), the cation

migration can be reasonably approximated even by a simple random walk that is

restricted to regions of low bond valence mismatch [25, 26].

For a given choice of the valence interval V � ΔV that is defining the pathway,

the ratio between the volume fractions of the maximum pathway clusters in

Fig. 4 Distribution of 1,312 lithium oxides extracted from the ICSD database with respect to

fractional accessible volume of the crystal structure space with bond valence mismatch of less than

0.2 valence units. The histogram bin size is 0.001. According to Avdeev et al. [10], structures with

high values of the fractional accessible volume per ion of the mobile species may be expected to

have high ionic conductivity
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different ion conducting glasses provides a convenient tool for estimating the

activation energies EA and absolute room temperature conductivities in a wide

range of silver ion conducting systems: the cube root of the volume fraction F of the

percolating pathway cluster (i.e., the accessible volume fraction for the mobile ion

with an activation energy corresponding to the bond valence mismatch ΔV ) is

linearly related to the activation energy (see Fig. 6) [3]. When comparing glasses

AgI0.75-(Ag2MoO4)0.25 (AgI)0.6-(Ag2O-2B2O3)0.4

a

c

b

Fig. 5 10-Å-thick slices through bond valence isosurfaces for RMC models of the glassy phases

(a) (AgI)0.75–(Ag2MoO4)0.25 and (b) (AgI)0.6–(Ag2O–2B2O3)0.4 (Ag: large spheres; I: small spheres,
polyanions as polyhedral) and (c) the occurrence of sites with a certain oxygen contribution to the total

Ag bond valence sum: (open symbols: for all pathway volume elements with V(Ag) ¼ 1.00 � 0.05

valence units; filled symbols: for RMC-modeled Ag sites with V(Ag) ¼ 1.00� 0.05). In both glasses,

Ag+ ions are slightly enriched in pathway regions with mixed oxide/halide coordination
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with different types of mobile ions, the linear trends for each ion can be unified to a

single correlation, if the value of F is scaled by the square root of the massM of the

mobile ion [4]:

EA � A�
ffiffiffiffiffiffiffiffiffiffiffi
F
ffiffiffiffiffi
M

p3

q
þB: ð4Þ

From the wide range of oxyacid glass systems plotted in Fig. 6, approximate

values for the empirical constants are A � �1.17 eV/amu1/6 and B � 1.26 eV.

While the lack of an accepted theory on the origin of the activation energy for ion

transport in amorphous systems makes it difficult to link this empirically observed

scaling to a theoretically expected correlation, it should be noted that this empirical

mass dependence will, as discussed before [16], at least partially be a mass

dependence of the correlation between bond valence mismatch and the energy

scale. An empirical distinction whether the fundamental scaling parameter is the

mass or the principal quantum number or the cation electronegativity remains

ambiguous due to the strong correlation between these quantities [4].

It appears however straightforward that a scaling between the pathway volume

fraction F and the absolute (room temperature) conductivity should contain an

additional mass-dependent scaling factor to compensate for the mass dependence of

the pre-exponential factor. The application of the Nernst–Einstein equation to a
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Fig. 6 Correlation between experimental ionic conductivities and volume fraction F of the

infinite Ag conduction pathway clusters for RMC models of disordered Ag+ ion conductors

(oxyhalide glasses (AgI)0.75–(Ag2MoO4)0.25, (AgI)0.6–(Ag2O–2B2O3)0.4, (AgI)0.6–(Ag2O–2B2O3)0.4,

(AgI)0.75–(Ag2WO4)0.25, oxide glasses Ag2O–2B2O3 and Ag2O–4B2O3, as well as AgI at 525 K and

at 740 K) and of various alkali ion conducting borate, phosphate, or silicate glasses with or without

chloride doping. Data redrawn after Adams and Swenson [4] including a more recent series of

molecular dynamics simulation models of sodium silicate glasses [30]
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description of ion motion as a random walk consisting of isolated jumps yields for

the temperature dependence of the conductivity

σT ¼ α
nq2d2υ0

kB
exp � EA

kBT

� �
: ð5Þ

Here, n represents the concentration of charge carriers, q their charge, d a typical
jump distance, ν0 the vibration frequency of the ion within the potential well, and

α a geometrical constant describing the success probability of the attempted jump.

The vibration frequency itself depends on the inverse square root of the reduced

massMr of the oscillator (as well as on the force constant K of the interaction, which

in general is related to the cation charge):

υ0 ¼
ffiffiffiffiffiffi
K

Mr

r
, where Mr ¼ M �Mnetwork

M þMnetwork

� M ð6Þ

As the cation in fast ion conducting glasses vibrates against a comparatively

heavy rigid anion network, the reduced mass Mr of the vibrating particles may be

approximated by the mass of the mobile cation. This proportionality of cation

motion frequencies to the inverse square root of the cation mass has effectively

been observed for alkali-metal ions in diborate glasses by far-infrared spectroscopy

[31]. Consequently, the increase of the pre-exponential factor with decreasing

cation mass can be compensated in a comparison of glass systems with different

monovalent mobile ions by an additional M1/2 scaling, so that a correlation

analogous to Eq. 4 for the conductivity should take the form

ln σT
ffiffiffiffiffi
M

p� �
� A

0 �
ffiffiffiffiffiffiffiffiffiffiffi
F
ffiffiffiffiffi
M

p3

q
þB

0
: ð7Þ

Here, the empirical constants for the same set of reference systems adopt the

values A0 � �42.1 amu�1/6 and B0 � �33.9.

The mixed alkali effect (MAE, or mixed mobile ion effect), i.e., the strongly

nonlinear variation of transport properties with composition in glasses that contain

more than one type of mobile ions, was only poorly understood, partly due to the

difficulty to determine the conduction pathways for the mobile ions. Since the

drastic drop in conductivity (compared to the corresponding single alkali glasses)

for an intermediate composition tends to increase with increasing size difference

between the two types of mobile ions, we studied both the glass system

LixRb1�xPO3 (x ¼ 0, 0.25, 0.5, 0.75, and 1) [5], where a large MAE is to be

expected, and the system AgxNa1�xPO3 (x ¼ 0, 0.25, 0.5, 0.75, and 1) [32] where

the MAE should be less pronounced. In each glass, the transport pathway volume

fractions F were determined for the two potentially mobile ions in the same way as

described above for the single mobile ion glasses and then the ionic conductivities

as well as their activation energies were estimated from the correlations in

Eqs. 4 and 7.
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Figure 7 shows how in the LixRb1�xPO3 system the ionic conductivities of the

single alkali glasses decrease by 6–8 orders of magnitude at the intermediate

compositions (x ¼ 0.5). This dramatic drop in conductivity cannot be explained

by any major structural alteration upon the mixing of alkali ions. Since the local

structural environments of Li+ and Rb+ ions are distinctly different, there is a large

energy mismatch for Li+ ion jumps to Rb+ sites and vice versa. This fact in

combination with the low dimensionality of the pathways and the non-statistic

cation distribution causes the strong blocking effect in the mixed alkali glasses.

This reduces the possibility for, e.g., the Li+ ions to perform energetically favorable

ionic jumps, giving an on average higher activation energy and a lower ionic

conductivity.

In the same way, the analysis of conduction pathways and the extraordinarily

weak MAE in AgxNa1�xPO3 is reproduced by bond valence analysis of reverse

Monte Carlo produced structural models (cf. Fig. 7). In this case the MAE is

suppressed due to the joint motion of Ag+ and Na+ via a common cooperative

hopping process in heavily overlapping pathways, while Li+ and Rb+ in

LixRb1�xPO3 move on distinctly different conduction pathways. Thus, the bond

valence analysis shows in the simple way that the MAE is a natural consequence

whenever the mobile ions have sufficiently different sizes and/or polarizabilities

(bond softnesses).

The fact that the MAE can be reproduced and understood from static structural

models (i.e., without including any kind of structural relaxation, except the hopping

motion of the alkali ions) further implies that the MAE had been too weak if we

allowed the local structure to relax on a time scale similar to the inverse hopping

rate of the alkali ions. Thus, at room temperature such site relaxation must be

considerably slower and therefore not of importance for the MAE. However, at

higher temperatures sufficiently close to the respective glass transition temperature,

the time scale of site relaxation will approach the inverse hopping rate of the alkali

ions, and this makes it possible for an A ion to move to a previous B site and

Fig. 7 Room temperature

dc ionic conductivity σ
versus composition for the

glass systems LixRb1�xPO3

and AgxNa1�xPO3 (open
symbols: experimental data,

filled symbols: values
predicted from the pathway

volume fractions F of the

RMC structural models

employing Eq. 7). The lines

are guides to the eye
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vice versa. This will considerably reduce the efficiency of the blocking, and thereby

the MAE, in accordance to experimental results.

While mixing different mobile ions in a glass is as discussed detrimental to the

total ionic conductivity, mixing different glass formers in the immobile matrix is

often found to enhance the ionic conductivity, which is sometimes referred to as

“mixed glass former effect.” As discussed in detail by Tho et al. [33], the variation

of activation energy and thereby of the dc conductivity can be directly predicted by

the bond valence pathway analysis from (MD-simulated) structural models of the

borophosphate glass series 0.45Li2O-(0.55 � x)P2O5-xB2O3 (0 � x � 0.55), and

the role of the concentration variation of P–O–B units in the glass matrix for the

conductivity enhancement in this mixed glass former system could be quantified.

2.4 Static and Dynamic BVSE Models

In complex structures with mobile and immobile cations, the existence of contin-

uous migration pathways for the mobile species in bond valence models may

critically depend on the (in the previously discussed version of the bond valence

approach to some extent arbitrary) scaling between the attractive terms in bond

valence units and the cation–cation repulsion terms, which can be treated straight-

forwardly as soft energy-scaled Coulomb repulsions. To eliminate this arbitrariness

and to translate results of the bond valence analysis directly to the energy scale, we

have, as elaborated elsewhere in this book [16], transformed the concept of ion

migration following paths of minimum bond valence mismatch into paths of

minimum BVSE. In brief, the BVSE of a mobile cation M at a given point in the

structure is determined as the sum over bond valence terms for the interactions with

each of the NX adjacent anions Xj and (screened) cation–cation repulsions

ECoulomb(M � Mi) for the interaction with other immobile cations Mi.

BVSE Mð Þ ¼ D0

XNX

j¼1

sM�Xj
� smin

� 	 2

s2min

� N

" #
þ
XNM

i¼1

ECoulomb M�Mið Þ: ð7Þ

When calculating pathways within the BVSE landscape for a mobile ion, it is

advisable not to include the repulsions among the ions of the mobile species. In this

way we can see all occupied or vacant sites that the ions can reach with a given

activation energy (be it by individual hops or collective transport modes such as

interstitialcy mechanisms) as a continuous path, whereas low-energy sites that can

only be reached via high energy barriers will remain isolated.

While it has to be acknowledged that the calculation of these BVSE landscapes

requires a little bit more computational effort than the calculation of bond valence

mismatch landscapes, the fact that the same parameters used to calculate these

static pathway models are also suitable as a highly transferable force field for

molecular dynamics simulations of a wide range of oxides appears to be a major
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advantage: it both underlines the physical plausibility of the parameter set and

opens the possibility to employ the BVSE analysis on MD simulations calculated

with a consistent parameter set.

Here, we first discuss a few recent studies of ion migration models for Li+ ions in

fast ion conducting solids using this BVSE approach. For the understanding of

transport in Li+ ion conductors, it is a major advantage that the method requires

detailed structural information only for the immobile substructure. Although, e.g., a

direct determination of lithium occupancies from XRD data of complex disordered

compounds can hardly be conclusive, the position of the other atoms can often be

determined with sufficient precision to map the potential Li sites and their connection

by bond valence or BVSE calculations.

The BVSE analysis for the Li+ disordered cubic high-temperature phase of the

garnet-related high stability fast ion conductor Li7La3Zr2O12 (see Fig. 8) from the

Li density distribution in high-temperature molecular dynamics simulations quan-

titatively agrees with the predictions of the BVSE model. Within this pathway

network, neighboring sites cannot be occupied simultaneously, as this would lead

to unphysically short Li(1)–Li(2) distances of 1.6 Å and Li(2)–Li(2) distances

<1 Å. As the BVSE analysis shows that there are no further interstitial sites,

Fig. 8 Li+ pathways in the cubic high-temperature phase of Li7La3Zr2O12 superimposed on the

crystal structure. In the left-hand side part of the graph, the pathways are shown as derived from

the BVSE analysis of the static structure model, while in the right-hand side part, the paths are

based on the Li distribution density averaged over 500 ps of a constant volume molecular

dynamics simulation run at T ¼ 1,000 K. On both sides, pathways in the back half of the unit

cell are shown in pale colors to facilitate distinction from the paths in the front half of the unit

cells. Numbers indicate the two types of Li sites
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the limits of possible Li distributions can be derived: Each occupied Li(1) blocks the

occupation of four distinct Li(2) sites. In contrast, each occupied Li(2) site only

blocks one Li(2) and one Li(1) site, and the same unoccupied Li(1) site can have four

occupied Li(2) neighbors [34]. As seen in Fig. 8 the tetrahedrally coordinated 24d
site Li(1) and the Li(2) site pair (on 96 h sites round an octahedrally coordinated

48 h site) are the only low-energy sites available for Li+. No additional interstitial

sites exist in contrast to what had previously been proposed in the literature [35].

A 3D network of pathways of lowest activation energy for Li+ ion migration in

Li7La3Zr2O12 (LLZ) involves both site types: four local Li(1)–Li(2)–Li(2)–Li(1)

paths are interconnected at the Li(1) site forming the pathway network. As also seen

in Fig. 8, a pathway network derived for general Li15 � 2yLa3(M
y)2O12 phases, where

My represents a cation in oxidation state y+, puts a the more stringent constraint on

the Li distribution, the higher the total Li content per unit cell (and the lower the

oxidation state of My) is. For the theoretical maximum of 60 Li per unit cell, all

48 octahedral voids would be occupied leaving only 12 of the 24 tetrahedral sites

accessible for Li. For the case of undoped Li7La3Zr2O12, where 56 Li have to be

distributed, the possible range site occupancy factor, SOF, is thereby limited to

0.333 � SOF(Li(1)) � 0.555 and 0.444 � SOF(Li(2)) � 0.5. Analogously, the

SOF values for the doped samples with x ¼ 0.25 are restricted to the ranges

0.25 � SOF(Li(1)) � 0.583 and 0.417 � SOF(Li(2)) � 0.5, respectively.

A nearly full occupancy of tetrahedral sites that had previously been suggested

for cubic LLZ from X-ray diffraction results can thus be clearly ruled out

[36]. More recent neutron diffraction data and the Li distribution found in our

molecular dynamics simulations are consistent with the blocking model [34]. The

MD simulations using the bond-valence-based parameters moreover allow for a

quantitative prediction of the structural phase transition in undoped LLZ, its

suppression in aliovalently doped LLZ and the ionic conductivity of the

materials [34].

The transport mechanism of Li10GeP2S12 (LGPS) [37], a recently identified

compound with ultrahigh Li ion conductivity, was investigated by combining the

BVSE approach with molecular dynamics (see Fig. 9) [38]. Molecular dynamics

simulations for LGPS using the BV-based parameters reveal the dynamic lithium

distribution, interstitial sites, and the structural prerequisites for its extraordinarily

high bulk Li+ ion conductivity. An additional Li site missing in the original

structure determination based on powder diffraction data was found by a bond

valence analysis and has in the meanwhile been confirmed by a single crystal

diffraction study [41]. Besides an arrangement of Li sites with nearly equivalent

energy and high vacancy concentration in equidistant chains, the cross-linking of

1D channels for fast ion conduction to a 3D network by paths with moderate

activation energies and compositional and rotational disorder in the immobile

sublattice containing polyatomic anions of slightly different size are identified as

crucial factors for a systematic design of fast ion conductors. High symmetry

structures with a 3D network of cation transport pathways and similarly high

density of vacancies would almost inevitably be structurally less stable. At the

same time a typical problem of 1D ion conductors, the easy blocking of transport
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channels by structural defects is effectively mitigated in LGPS by the existence of

two types of cross-linking Li+ pathways perpendicular to the channel direction. The

existence of a redundant system of pathways perpendicular to the main Li+ channels

not only ensures that the high conductivity is robust with respect to high

defect concentrations. The rotational mobility of the slightly smaller PS4
3� in

LGPS (or the respective smaller MS4
n� group in analogous compounds

Li24�(3�z)·x�z·yX
x
3�zY

y
zS12 (X,Y ¼ P, Si, Ge, Sn,. . ., where superscripts x and

y refer to the valences of cations X and Y, respectively) and the preferential

simultaneous occurrence of anion rotation and cation diffusion steps imply that

Li+ migration in LGPS is dynamically coupled to anion reorientations.

Framework materials based on phosphate or sulfate polyanion building blocks

are increasingly regarded as favorable replacements for conventional oxide-based

cathode materials in lithium-ion battery applications. The Li insertion phases

LixFePO4 [42] and LixV2(PO4)3 (for which Li paths are shown later in Fig. 11)

were the first of such materials identified and characterized. Recently, a few groups

have described the insertion properties of the lithium vanadium fluorophosphates,

“tavorite-type” compounds LiVPO4F [43] and LiMSO4F (M ¼ Fe, Co, Ni)

[44, 45], which both exhibit a relatively high operating potential versus Li. From

projections of the framework structure, Recham et al. [44] originally suggested

three tunnels with large cross sections (along [100], [010], and [101]) as pathways

for a presumed 3D Li migration in LiFeSO4F (for a brief discussion of such

geometric pathway predictions, see Sect. 3.1). For clarifying the characteristics

of Li+ ion migration pathways in LiVPO4F and LiFeSO4F, we have chosen

Fig. 9 Left-hand side: Li distribution from a 10 ns MD simulation of a 3 � 3 � 2 supercell at

T ¼ 300 K projected into a single unit cell shown along [100] (redrawn after Adams and Rao

[38]). Regions of highest Li density (darkest isosurface) coincide with the 4 Li sites, the easiest

path for transport (lighter isosurface) corresponds to the Li(3)–Li(1) channels along [001]. The

lightest isosurface reveals a significant probability for hops between channels via Li(2) and Li(4)

establishing a 3D network of pathways. Right-hand side: Arrhenius plots of temperature-

dependent ionic conductivity in LGPS and several structurally related thiophosphates from

bond-valence-based MD simulations, literature DFT simulations at high temperatures [39, 40],

and experimental data [37]
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BVSE-based MD simulations. The relaxed MD-simulated supercell at 300 K

(Fig. 10) closely resembled the published preliminary XRD data, except for the

more pronounced disorder along channels extending along [111] with two weak Li

density maxima: Li(1) at 0.15, 0.57, and 0.63 (site occupancy factor s.o.f. � 0.6) and

Li(2) at 0.45, 0.85, and 0.85 (s.o.f. � 0.4) that form Li(2)–Li(1)–Li(1)–Li(2) chan-

nels along [111] with distances of about 2 Å that are favorable for Li transport, while

migration in other directions – e.g., the previously proposed tunnels – requires hop

distances of 3.7 Å. Static BV models for the Rietveld-refined and our MD-simulated

structure models accordingly suggest zigzag-shaped 1D paths along [111] involving

both Li sites as pathways of lowest migration energy barrier (0.22 eV), while a

migration energy of ca. 0.97 eV is required to connect the channels in the [010]

direction, and an only slightly higher activation energy of 1.1 eV leads to a 3D

network of Li paths. Since low-energy pathways [111] connect partially occupied Li

sites, a defect formation is not required for migration along these channels. The

experimentally observed activation energy of 0.99 eV is much higher than the one

predicted for migration along [111] channels, but closely resembles the activation

energy for the formation of a 2D pathway network (paths along [111] and [010]).

Molecular dynamics simulations of the isostructural LiVPO4F using our Morse-

type softBV force field in accordance to static pathway models show that the Li+

mobility is only slightly higher along zigzag z-axis channels (that correspond to the
[111] direction in LiFeSO4F) and the activation energy (ca. 0.5 eV) is nearly

isotropic due to interconnections along [011] with nearly the same activation

energy [17]. This pronounced difference in the degree of anisotropy may serve as

Fig. 10 Left: Structure of LiFeSO4F from MD simulations projected along c (Fe(1)O5F light, Fe

(2)O5F dark octahedra; SO4 ball and stick; Li black crosses (occupancy 0.6 for Li(1): large
spheres, 0.4 for Li(2):small spheres). Isosurfaces of constant Li density (dark) from MD simula-

tions (T ¼ 600 K) and BV pathway model (light) that are superimposed on the structure model

accordingly propose [111] as the direction of lowest activation energy for Li+ migration
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an example that ionic motion in isostructural compounds does not necessarily

follow the same pathways and especially the relative contribution of alternative

paths to the overall conductivity may vary substantially with the size and charge of

ions in the immobile substructure.

3 Comparison to Alternative Approaches

In this chapter BVSE pathway models and bond valence mismatch approach are

compared to alternative pathway modeling approaches starting from a geometric,

Voronoi–Dirichlet space partition approach, via electron density-based approaches

to models based on the absolute bond valence discussing both similarities and the

underlying reasons for differences in the predictions. As exemplified in Fig. 11, a

particular advantage of the BVSE models is that besides the vivid visualization of

low-energy pathways, it also yields both the location of interstitial sites irrespective

of their occupancy and a quantitative prediction of activation energy barriers.

3.1 Geometric Analysis of Channels and Cages

To compare the results of the BVSE approach with even simpler methods, we

reanalyzed Li+ migration paths discussed in a study by Anurova et al. [46] who used

a geometric, Voronoi–Dirichlet partition approach to investigate cages and chan-

nels in crystalline lithium oxides. Differences are particularly pronounced for the

33 types of ternary oxides listed by these authors as containing one-dimensional Li

pathways: in the BVSE models, 1D migration channels with low to moderate

activation energies are observed for 19 of these structures only, while three exhibit

2D pathways (LT–LiPO3, Li2W2O7, Li2TeO3), six even 3D pathways (α-Li3BO3,

Li4GeO4, Li2SeO4, Li2T2O5 (T ¼ Si, Ge), Li4TeO5, Li4Mo5O17), and in further six

cases, the literature structure models employed in their study were implausible or

do not yield any paths.

A main reason for the significant deviations is the commonly complex curved

nature of ion migration paths (cf. Fig. 11), which are difficult to identify from a

geometric approach emphasizing straight channels. Unsurprisingly, a closer agree-

ment is found for structures that Anurova et al. suggested to be 2D or 3D conduc-

tors. The main difference besides avoiding hard exclusion radii is however that the

BVSE pathway analysis yields not only a model for the pathway geometry but also

approximate energy thresholds along the pathways and hence allows a direct

estimate of activation energies.
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Fig. 11 Rows 1–3: Isosurfaces of constant ΔEBVSE(Li) as models of Li+ ion migration pathways

in selected oxides. In each graph three isosurfaces corresponding to increasing ΔEBVSE are

superimposed (red, magenta, light blue). Li atoms are indicated as crosses and labeled; other

atom positions are indicated by line or stick models. Labels below the graphs indicate the

respective compound name, space group, and the ICSD database code of the underlying structure

data. Row 4: Projections ||x and ||z of the ΔEBVSE(Li) pathway models for LiFeAs2O7 indicating

the location of the three types of interstitial sites (local minima of ΔEBVSE) as crosses and the

equilibrium Li site as a black sphere. The right-hand side diagram specifies the energy barriers for

Li+ migration in LiFeAs2O7 derived from the ΔEBVSE analysis. Horizontal dotted lines mark the

resulting migration barriers 0.66 eV for transport along the 1D path Li(1)–i(1)–Li(1), and 1.47 eV

for 2D paths Li(1)–i(2)–i(3)–(i2)–Li(1)
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3.2 Electron Density-Based Approaches

Given the correlation between bond valence and electron density, it appears tempt-

ing to compare also what electron density maps and maps of the BVSE predict as

ion transport pathways. Hirshfeld surface analysis has been explored to characterize

intermolecular interactions in molecular crystals [47, 48]. This analysis is based on

the procrystal, which is obtained from superposition of spherical atomic electron

densities placed at the crystal structure positions, a quantity that can readily be

calculated from the structure using software tools such as CrystalExplorer [49]. The

approach was also explored as a tool to map out voids in porous crystals such as

metal organic framework materials and zeolites [50].

Starting from the simplifying assumption that ions migrate through the crystal

following a path of lowest electron density, the procrystal method was recently also

tested by Filsø et al. [51] as a tool to visualize migration pathways of a static atomic

arrangement in dense, inorganic crystals, and the findings were compared to those

of various other approaches including the BVSE approach. A qualitative compar-

ison between BVSE-based results (ΔEBVSE) and procrystal calculations is shown

for the example of Li4GeS4 in Fig. 12. Essentially, both models suggest the most

accessible path to run along b (perpendicular to the plane of view in Fig. 12)

involving two types of Li sites, while the third Li site is isolated. Mapping a slightly

higher energy/electron density isovalue then renders a transport within the bc plane

Fig. 12 Regions in the Li4GeS4 structure accessible to moving Li+ ions according to BVSE

energy calculations (top half of the unit cell) for ΔEBVSE of (a) 0.95 eV, (b) 1.1 eV and (c) 1.35 eV

and the procrystal analysis (bottom half of the unit cell) showing paths with electron density

isovalues of 0.0016 au, 0.0018 au, and 0.0024 au, respectively
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possible, whereas an even higher energy/isovalue is necessary to achieve three-

dimensional transport. In such relatively dense structures, the morphologies of the

migration paths are strikingly similar despite the different assumptions on which

they are based.

As seen from Fig. 13, a comparison of ΔEBVSE and procrystal electron density

thresholds Δρpro for a wider range of Li ion conducting or mixed conducting oxides

yields an approximate correlation between the ΔEBVSE and Δρpro observed for

interstitial sites and paths. The correlation with bond valence is more pronounced

for the region of lowest ΔEBVSE and Δρpro, where Δρpro is essentially determined

by the valence electron density, while the influence of core electrons on higher

Δρpro is not reflected in higherΔEBVSE values. In both cases the reference points for

the differences are the lowest BVSE or ρpro value observed in the same structure

model (typically at the location of the equilibrium sites).

For stable compounds not containing major voids, BVSE and procrystal methods

(as well as DFT studies) predict similar migration pathways. This can be understood

as for nearly densely packed compounds equilibrium sites form local minima of

both the procrystal electron density and the bond valence (mismatch). Thus while

the procrystal analysis appears to be a graphically appealing computationally

straightforward way to get a rapid overview of possible migration pathways in

novel materials, it can only be applied (1) to relatively densely packed structures

and (2) only Δρpro values corresponding to valence electron densities (<0.002 a.u.)

should be considered as the correlation breaks down for higher Δρpro values.

Fig. 13 Correlation between ΔEBVSE and the difference in procrystal electron density Δρpro for
interstitial sites and pathway bottlenecks in various lithium-ion conducting oxides relative to the

respective minimum of the same quantity in the respective structure (equilibrium sites). Reinter-

pretation of data from the procrystal study by Filsø et al. [51]
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3.3 Pathways of Minimum Absolute Bond Valence Sums

Analogous caveats as for the procrystal analysis also apply to the approach based on

the (generally incorrect) postulate that a mobile ions would prefer to move into

regions where its bond valence sums is as low as possible [52–54]. This assumption

is only true in densely packed structures as long as the regions of lowest bond

valence sum coincide with regions of lowest bond valence sum mismatch. In open

structures, such as the zeolite LiABW-type structure of LiAlSiO4 shown in Fig. 14

as an example, the postulate will erroneously lead to paths in the central region of

any existing large voids. Only for valence mismatch model (b) and the BVSE model

(c) of Fig. 14 the equilibrium Li sites are located within the innermost isosurface

(i.e., the region of lowest “site energy” for a Li according to the respective model),

while the absolute bond valence sum model (a) suggests (vacant) migration paths as

regions of lowest bond valence sum (down to V(Li) ¼ 0.73 valence units) in the

open channels of the zeolite structure. Moreover, it should be noted that the BVSE

model in detail shows some deviations from both the bond valence sum model

(a) and the bond valence sum mismatch model (b). Deficiencies of (a) and

(b) originate from both the nonideal scaling of the Coulomb repulsions with respect

to the bond-valence-based attraction terms and the lack of a penalty term for

deviations from the equal valence rule in (a) and (b).

That said, since many stable structures including solid electrolytes are not too far

away from a dense packing and thus equilibrium sites for the mobile ions are

Fig. 14 Comparison of different Li+ ion migration pathway models for LiAlSiO4 (dehydrated

zeolite LiABW, ICSD dataset 97909) showing (a) isosurfaces of minimum absolute bond valence

sum V(Li), (b) paths of minimal bond valence sum mismatch |ΔV(Li)| and (c) isosurfaces of

minimal BVSE ΔEBVSE(Li). (a) and (b) use the same arbitrary scaling for Coulombic

cation–cation repulsions and no penalty function for deviations from the equal valence rule. In

each graph (a)–(c), three isosurfaces (red, magenta, light blue) are superimposed on the structure

model (Li black spheres; Si (Al): blue (magenta) large spheres, O: small spheres) to distinguish

regions that the Li+ ions can reach with different activation energies
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minima of the bond valence sum as well as of the bond valence sum mismatch, the

fundamentally flawed approach of identifying regions of lowest absolute bond

valence sum with pathways can yield the same correct pathway topology as the

(much safer approach) of identifying regions of minimum bond valence sum

mismatch or of lowest BVSE. Figure 15 exemplifies that for NASICON-type

Na3.05Zr2Si2.05P0.95O12, where the same pathway topology is predicted from all

three approaches and differences occur only in minor details (e.g., that again the

isosurface of lowest absolute bond valence sum does not include the equilibrium

positions of the Na+). For both the bond valence sum and the (as seen for funda-

mental reasons more advisable) bond valence sum mismatch calculations, it is in

the end often the suitable weighting of the bond valence terms, the repulsions

between immobile and mobile ions, and a suitable penalty function for pronounced

deviations from equal valence configurations that is more decisive for an accurate

pathway prediction. This degree of arbitrariness in scaling between different

contributions can be avoided by the BVSE approach.

In the extreme case of surfaces, where the bond valence sum falls to zero, the

minimum valence sum postulate would predict that mobile ions should easily

escape from their host solid, which is obviously not true. In contrast, both the

bond valence BVSE and the bond valence sum mismatch approach correctly yield a

large energy threshold for mobile ions at surfaces (see Fig. 16), and the BVSE

approach can also provide a plausible estimate for the (significantly smaller)

variation of the Li site energies across interfaces between ionic conductors.

Fig. 15 Comparison of different Na+ ion migration pathway models for NASICON-type

Na3.05Zr2Si2.05P0.95O12 (ICSD dataset 62383) showing (a) isosurfaces of minimum absolute

bond valence sum V(Na), (b) paths of minimal bond valence sum mismatch |ΔV(Na)|, and
(c) isosurfaces of minimal BVSE ΔEBVSE(Na). In each graph (a)–(c), three isosurfaces (red,
magenta, light blue) are superimposed on the structure model (Na black spheres; immobile ions as

stick model) to distinguish regions that the Li+ ions can reach with different activation energies
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4 Concluding Remarks: Scaling, Statistical Accuracy,

and Limitations of Static Bond Valence Models

The BVSE model essentially attempts to predict the energetic environment of

mobile ions from a static structure model. Thereby, the approach cannot be

expected to yield activation energies with high precision, but should still yield

useful semiquantitative information. The static nature of the approach inherently

leads to an overestimation of migration barriers, as the approach essentially calcu-

lates the energy that would be required (in the frame of the assumed force field) to

move the mobile ion without taking into account relaxations of the atomic positions

in the environment. To mitigate this overestimation, the resulting energies should

be scaled by a factor that depends on how rigid the network is. For a wide range of

nearly dense framework structures, a factor of 0.8 works reasonably well, but

considerably lower scaling factors (ca. 0.4) would be appropriate to take into

account low-energy structural relaxations in structures held together by weak van

der Waals forces only, such as the layered compounds (e.g., the classical cathode

materials LixMO2). The low number of compounds for which it is known that the

Fig. 16 Variation of the Li site energy EBVSE as a function of the distance from the surface of a

LiFePO4 crystal (black solid line). It is assumed that the surface is perpendicular to the lithium

channel direction. Energy values are calculated based on a snapshot from an MD-simulated

structure model of a reconstructed LiFePO4 surface. Negative distance values refer to free

space, positive distance values to the LiFePO4 region.Dotted linesmark the time averaged minima

and maxima of the site energy along the Li migration path. The inset emphasizes that the BVSE of

the Li reaches the free space limit of 0 eV at a distance of ca. 6 Å from the surface. The grey line
indicates the qualitatively different variation of the Li (bond valence) site energy as a function of

the distance from the interface between glassy Li4P2O7 and LiFePO4. Again, positive distances

refer to the LiFePO4 phase, while negative distances now refer to the Li4P2O7 glass phase
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ion migration mechanism involves complex reorientations in the immobile sub-

structure in the sense of the paddle-wheel mechanism makes it difficult to validate

the applicability of the approach in these rare circumstances and for such structures

only dynamic structure models (series of snapshots from a MD simulation run)

should be used. Then, the appropriate scaling may be intermediate between the

abovementioned limiting values.

If the (static) structure models originate from ab initio simulations, it should also

be noted that the common tendency of ab initio approaches to slightly overestimate

the unit cell volume will affect the appropriate scaling factor. As the bond valence

parameters are derived from fits to experimental reference crystal structure, they

tend to yield somewhat lower than ideal bond valence sums when applied to ab

initio models. A way to quantify this source of error is the global instability index

G specified for each structure. Figure 17 summarizes the comparison of Li+ ion

pathway models that we calculated for 48 oxide structures based on both their

experimentally determined structure and ab initio structure models: in 47 out of

48 studied cases the unit cell volume is overestimated by the ab initio simulations

and G tends to increase with the relative overestimation of the volume. The

activation energies for the formation of continuous Li+ ion migration pathways

predicted from ab initio structure models are proportional to those derived from

experimental structure data yet systematically underestimate the activation energy

barrier. Hence, for estimating activation energy barriers from ab initio structure

models, the recommended scaling factors are 0.9 for network structures or 0.45 for

interlayer paths in layered structures.

Fig. 17 Left-hand side: variation of global instability index G of 48 ab initio structure models of

Li+ ion conducting oxides versus the relative difference between the volume of the ab initio

structure models and the experimentally determined unit cell volume for the same phase. Right-
hand side: linear correlation between the (unscaled) activation energy barriers derived by the

BVSE method for experimental and for ab initio calculated structure models. In both graphs the six

cases for which the ab initio model overestimates the unit cell volume by more than 8% are marked

as open symbols. These less reliable data points are excluded from the calculation of the

r.h.s. linear correlation
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Finally, the bond valence parameters can also be used to both generate and

analyze dynamic structure models by providing a highly transferable force field for

molecular dynamics simulations of inorganic solids. This of course requires a

higher computational effort, but as demonstrated above, e.g., in the case of

Li10GeP2S12, allows for more detailed findings on the transport processes including

correlations between ion diffusion and rearrangements in the immobile substruc-

ture. Thus, it is a major advantage of the bond valence methods the approach can be

gradually refined to provide the required level of details while utilizing consistently

the wealth of crystal chemical information stored in the bond valence parameters.

References

1. Garrett JD, Greedan JE, Faggiani R, Carbotte S, Brown ID (1982) Single-crystal growth and

structure determination of Ag16I12P2O7. J Solid State Chem 42:183–190

2. Adams S, Moretzki O, Canadell E (2004) Global instability index optimizations for the

localization of mobile protons. Solid State Ion 168:281–290

3. Adams S, Swenson J (2000) Determining ionic conductivity from structural models of fast

ionic conductors. Phys Rev Lett 84:4144–4147

4. Adams S, Swenson J (2002) Bond valence analysis of transport pathways in RMC models of

fast ion conducting glasses. Phys Chem Chem Phys 4:3179–3184

5. Swenson J, Adams S (2003) Mixed alkali effect in glasses. Phys Rev Lett 90:155507

6. Adams S, Swenson J (2005) Bond valence analysis of reverse Monte Carlo produced structural

models: a way to understand ion conduction in glasses. J Phys Condens Matter 17:S87

7. Hall A, Adams S, Swenson J (2006) Comparative study of ion conducting pathways in borate

glasses. Phys Rev B 74:174205

8. Müller C, Zienicke E, Adams S, Habasaki J, Maass P (2006) Comparison of ion sites and

diffusion paths in glasses obtained by molecular dynamics simulations and bond valence

analysis. Phys Rev B 75:014203

9. Adams S, Prasada Rao R (2009) Transport pathways for mobile ions in disordered solids from

the analysis of energy-scaled bond-valence mismatch landscapes. Phys Chem Chem Phys 11:

3210–3216

10. Avdeev M, Sale M, Adams S, Prasada Rao R (2012) Screening of the alkali-metal ion

containing materials from the Inorganic Crystal Structure Database (ICSD) for high ionic

conductivity pathways using the bond valence method. Solid State Ion 225:43–46

11. Adams S (2006) From bond valence maps to energy landscapes for mobile ions in

ion-conducting solids. Solid State Ion 177:1625–1630

12. Waltersson K (1978) A method, based upon “Bond-Strength” calculations, for finding prob-

able lithium sites in crystal structures. Acta Crystallogr A34:901–905

13. Withers RL, Schmid S, Thompson JG (1998) Compositionally and/or displacively flexible

systems and their underlying crystal chemistry. Prog Solid State Ch 26:1–96

14. Van Smaalen S (1999)Atomic valences in aperiodic crystals studied by the bond valencemethod.

In: Jelsi DA, George TF (eds) Computational studies of new materials. World Scientific,

Singapore, pp 273–294

15. Adams S, Ehses KH, Spilker J (1993) Proton ordering in the Peierls distorted hydrogen

molybdenum bronze H0.33MoO3: structure and physical properties. Acta Crystallogr B 49:

958–967

16. Adams S (2013) Practical considerations in determining bond valence parameters.

Struct Bond. doi:10.1007/430_2013_96

Understanding Ionic Conduction and Energy Storage Materials with. . . 157

http://dx.doi.org/10.1007/430_2013_96


17. Adams S, Prasada Rao R (2011) High power lithium ion battery materials by computational

design. Phys Status Solidi A 208:1746–1753

18. Adams S, Swenson J (2000) Migration pathways in Ag-based superionic glasses and crystals

investigated by the bond valence method. Phys Rev B 63:054201
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Crystallization and Dissolution in Aqueous

Solution: A Bond-Valence Approach

Frank C. Hawthorne and Michael Schindler

Abstract In many groups of minerals, structural diversity occurs by polymeriza-

tion of a small number of clusters (or fundamental building blocks). Where these

minerals crystallize from aqueous or hydrothermal solutions, the fundamental

building blocks occur as aqueous species in solution, and it seems reasonable to

conclude that crystallization of these minerals occurs by condensation of these

clusters in solution. The variation in Lewis acidity of these clusters is a function of

the pH of the aqueous solution in which they occur, in accord with the different

structures crystallizing from similar aqueous solutions at different pH. Strongly

bonded polyhedron chains (equivalent to periodic bond-chains) control the mor-

phology of crystals. Anions at the surface of a mineral (i.e., exposed to an ambient

aqueous solution) are called terminations, and the residual valence at a termination

controls its reactivity (i.e., is the driving force for reaction with the aqueous

solution). The residual valence of a polyhedron chain controls the growth or

dissolution rate at the crystal face associated with that chain and may be calculated

as the net residual valence of the terminations per repeat of the polyhedron chain.

Edges involving polyhedron chains with low normalized residual valence will grow

slowly, whereas edges involving polyhedron chains with high normalized residual

valence will grow rapidly, and the relative morphology of crystals will be con-

trolled by the relative magnitudes of the residual valence of polyhedron chains

parallel to specific faces. The observed morphology of selected uranyl-oxide

hydroxyl-hydrate and borate minerals is in reasonable accord with this approach.
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Abbreviation

v.u Valence units

1 Introduction

A basic axiom of bond-valence theory is the valence-sum rule [1]: The sum of the
bond valences at each atom is equal to the magnitude of the atomic valence. This
rule has been shown to hold (within a few percent) for a large number of crystal

structures. For most of the structures in which we are interested (minerals), the

maximum valences of the cations (4+ to 6+) generally exceed the maximum

valences of the anions (2�). The result is that we can identify strongly bonded

oxyanions, e.g., (SiO4)
4�, (PO4)

3�, (SO4)
2�, in these structures, and it is these

oxyanions that dominate their structural characteristics and geochemical behavior

[2, 3]. A primary interest in mineralogy is the behavior of minerals in geological

processes, in particular crystallization and dissolution, as the structural and chemi-

cal characteristics of minerals can carry a lot of information on the conditions under

which they form. Hence a mechanistic understanding of the processes of crystalli-

zation and dissolution of minerals is of considerable interest. Many minerals

crystallize from aqueous solution or magma, both of which have some regularity
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in their structure (i.e., a nonrandom arrangement of their constituent atoms).

Hawthorne [4] proposed the reaction principle: During a chemical reaction,
atoms move relative to each other such that they continually minimize local
deviations from the valence-sum rule. This rule implies that the atomic

arrangements in the reactants affect the atomic arrangements in the products of

any chemical reaction. If this is the case in geological processes, we need to focus

not just only on the atomic arrangements in the resulting minerals but also on the

atomic arrangements in the precursor phases, i.e., aqueous solutions and magmas,

and the atomic arrangements of any intermediate phases, e.g., the interfaces

between the reactant phase(s) and the product phase(s).

1.1 Aqueous Solutions

1.1.1 Borates

Hawthorne [5–7] showed that structural diversity in oxysalt minerals (specifically

phosphates) occurs by polymerization of a small number of clusters (fundamental

building blocks) to form chains, sheets, and frameworks and suggested that

structural units in many low-temperature minerals form by condensation of funda-

mental building blocks that occur as aqueous complexes in hydrothermal or

aqueous solutions. With regard to borates, Ingri and coworkers (reviewed in [8])

showed that the following borate species occur in highly concentrated aqueous

borate solutions with decreasing pH: [B(OH)3]
0, [B5O6(OH)4]

�, [B3O3(OH)4]
�,

[B3O3(OH)5]
2�, [B4O5(OH)4]

2� and [B(OH)4]
� and noted that “polyanions of the

kind found in crystals exist in solution. . . . . and are readily available for the

building of crystals.” Furthermore, 11B-NMR spectroscopy [9–11] and Raman

spectroscopy [12, 13] have confirmed the occurrence of all these aqueous species

except [B3O3(OH)5]
2. With regard to borate minerals, Christ et al. [14] used the

data summarized in [8] to illustrate the variation in aqueous borate species and

their variation in abundance in solution as a function of pH (Fig. 1). [B(OH)3]
0 is

the stable species at low pH and [B(OH)4]
� is the stable species at high pH, while

around a pH of 8, the more complicated species [B5O6(OH)4]
�, [B3O3(OH)4]

�,
[B3O3(OH)5]

2�, and [B4O5(OH)4]
2� occur in solution and show their maximum

concentrations at slightly different values of pH. From Fig. 1, Schindler and

Hawthorne [2, 15] calculated the percentage of [4]B in aqueous solution and

showed that it is a smooth function of pH (Fig. 2). This suggests that the stability

(i.e., existence) of each cluster and the relative amounts of each cluster as a

function of pH are controlled by bond-valence matching between the clusters

and their host aqueous solution.
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1.1.2 Uranyl Oxide-Hydroxy-Hydrates

The hydrolysis of dioxouranium(VI) can be formulated as follows:

mUO2
2þ þ nH2OðlÞ ! ðUO2ÞmðOHÞ2m�n

Grenthe et al. [16] reviewed the thermodynamic data for (UO2)m(OH)2m–n
species and listed eighteen different species. However, spectroscopic evidence

exists only for a few species, and Grenthe et al. [16] indicated that the thermody-

namic data for some of these 18 species are questionable. Tsushima et al. [17]
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Fig. 1 The distribution of B species in aqueous solution of 0.40 M on total B(OH)3; (Bφ3): yellow/
pale-gray; (Bφ4): orange/medium-gray; after [14] from the data of [8]
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Fig. 2 The fraction of [4]B in the aqueous species in solution as a function of pH in the aqueous

solution shown in Fig. 1
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showed by EXAFS, FTIR, and UV–vis spectroscopy and DFT calculations that in

aqueous solution, (U6+O2)
2+ always has five peripheral anions, the monomer, dimer

and trimer are present, and there is edge-sharing between uranyl polyhedra.

Although we do not know the exact distribution of all (UO2)m(OH)2m�n species

as a function of pH, the information given in [17] is sufficient to allow us to

consider crystallization and dissolution mechanisms for uranyl-oxide hydroxyl-

hydrate minerals.

1.2 The Effect of pH on Aqueous Complexes and Crystal
Structure

1.2.1 Borates

The relative amount of [4]B in solution is a function of the pH of that solution, and

it seems reasonable to propose that aqueous borate complexes adjust to varying pH

by varying the relative amounts of [3]B and [4]B. In the crystal structures of the

sedimentary borate minerals, these clusters in aqueous solution are the fundamental

building blocks of all the borate minerals [18]. This implies that the structural units

in borate minerals form by condensation of these complexes in hydrothermal or

aqueous solutions, and their relation with pH gives us a direct relation between the

pH of the nascent solution and the chemical compositions and structures of the

crystallizing minerals.

1.2.2 Uranyl Oxide-Hydroxy-Hydrates

The situation for the uranyl oxide-hydroxy-hydrates is somewhat different from

that of the borate minerals. The coordination number of U6+ does not change as a

function of pH; it is [7] across the whole range. What will change as a function of

pH is the polymerization and the ligancy in the clusters. If minerals form by

condensation of these complexes in aqueous solution, the pH at which they crystal-

lize should relate to the stability of the clusters that constitute the fundamental

building blocks of the structure. There is general consensus on the occurrence

of the aqueous species (UO2)
2+ and (UO2)3(OH)5

+, which occur in strongly

and weakly acidic to neutral aqueous solutions, respectively [19]. Schoepite,

(UO2)8O(OH)12(H2O)12, is a uranyl-oxide hydroxy-hydrate mineral which contains

sheets of polymerized trimers and dimers of (edge-sharing) (U6+O2φ5) polyhedra

[φ ¼ (OH), (H2O)]. Schindler and Putnis [20] synthesized well-crystaline schoepite

under weakly acidic conditions (pH ¼ 5.5–6.5) which overlap with the general

occurrence of the (UO2)3(OH)5
+ species in solution, suggesting that the crystalliza-

tion of schoepite is controlled by the polymerization of aqueous species present in

solution (see below).
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2 Crystal Faces

Hartman and Perdok [21–23] proposed that where an atom or cluster of atoms

attaches to a growing surface of a crystal, the probability of subsequent detachment

is inversely proportional to the number of strong bonds between the atom or cluster

and the crystal surface. The focus is on uninterrupted chains of strong bonds between

building units, called periodic bond-chains. Periodic bond-chains define the major

growth direction(s) of a crystal. There are three types of faces: F (or flat) faces with

two or more types of periodic bond-chains parallel to the face; S (or stepped) faces

with one type of periodic bond-chain parallel to the face, and K (or kinked) faces

with no periodic bond-chains parallel to the face. The morphology of a crystal is

controlled primarily by the occurrence of F faces and secondarily by the occurrence

of S faces. Complicated oxide and oxysalt structures are generally represented as

arrangements of polyhedra, where each polyhedron consists of a central cation and

its coordinating anions. This type of representation leads to major simplification in

representing and understanding the topological aspects of the arrangements of

chemical bonds, and the linkage of such polyhedra is used as a basis for hierarchical

classification of crystal structures (e.g., [18, 24–26]). We will follow this polyhedron

approach in considering surfaces of crystals and will consider periodic bond-chains

as polyhedron chains.
Molecular modeling may be used to examine the morphology of crystals by

calculating surface energies or step energies, provided good interaction potentials are

available for the constituent species. This is usually not the case for hydroxy-hydrated

oxysalt minerals which contain unusual coordination geometries and both (OH) and

(H2O) groups, e.g., althupite, AlTh[(UO2){(UO2)3(PO4)2(OH)O}2](OH)3(H2O)15.

As many such minerals are important phases from an environmental perspective,

and such minerals constitute the bulk of the mineral kingdom, we need an approach

that is tractable for such complicated materials. Bond-valence theory is a key part of

such an approach.

3 Interaction of a Surface with an Aqueous Solution:

A Bond-Valence Perspective

The valence-sum rule (Eq. 2 in chapter “Bond Valence Theory”) requires that the

sum of the bond-valences incident at any cation or anion must be equal to its

valence. It is useful to regard bond valences as directed, as this keeps track

automatically of the nature (cation or anion) of the ion occupying any site in a

structure. Here, we adhere to the convention that bond valences from a cation to an

anion are positive, and bond valences from an anion to a cation are negative.

For a surface, we may identify two situations: (1) the surface of the crystal is

adjacent to a vacuum and (2) the surface of the crystal is adjacent to a liquid (or gas).

In the first situation, the surface ions must have coordinations different from those in
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the bulk crystal, and the surface structure responds to these differences by lengthen-

ing or shortening specific bonds (relaxation), and there may be a reorganization of

the topology of the chemical bonds at the surface (cf. in Chapter “Structure and

Acidity in Aqueous Solutions and Oxide–Water Interfaces”). In the second situation,

the bond-valence requirements of the surface atoms are partly met by adjacent atoms

in the coexisting liquid (or gas), and surface relaxation will be much less than where

the surface is exposed to a vacuum. For a crystal surface in equilibrium with an

aqueous solution, the surface is partly or fully hydrated, depending on the pH of the

solution, and aqueous species in the solution bond to anions or cations on the surface.

The type of anion or cation on the surface and the conditions in the coexisting

solution will affect the degree of hydration and type of attachment. The atoms of the

liquid will tend to arrange themselves such that surface relaxation is minimized, and

one may well be able to consider local atom interactions as the average of what

occurs at the surface over a longer timescale. In turn, this suggests that we may be

able to approximate bond valences of near-surface bonds as equal to the bond

valences of the analogous bonds in the bulk structure.

The conditions in the coexisting aqueous solution and the anions or cations at the

surface will affect the degree of hydration and the type of reactions that can occur at

the surface. The degree of hydration will be a function of the bond-valence

requirements of the anions at the surface and the pH of the solution. The bond-

valence requirements of the surface anions can be predicted using the MUSIC

(“MUltiSIte Complexation”) model of Hiemstra et al. [27] using the equation

pKa ¼ �A
X

sj þ V
� �

(1)

where pKa is the intrinsic acidity constant, A equals 19.8, V is the valence of the

surface O atom (�2), and ∑sj is the bond-valence sum at the surface O atom and is

defined as

X
sj ¼ fsM þ msH þ nð1� sHÞg (2)

where sM is the valence of the M–O bond, sH is the bond valence of the H–O bond to

the surface oxygen if the base is an (OH) group (assumed to be 0.80 v.u. [1]),

(1 � sH) is the valence of weak hydrogen bonds from aqueous species to surface

anions, and m and n are the numbers of stronger O–H and weaker O���H bonds,

respectively. Hiemstra et al. [27] used bond valences from unrelaxed bulk structures.

Conversely, for the calculation of intrinsic pKa values, Bickmore et al. [28, 29]

considered unevenly distributed charge densities and relaxed metal–oxygen bonds

on surfaces.

The intrinsic acidity constant is a measure of the strength of an acid (HA) in an

acid–base equation, HA + H2O $ A� + H3O
+, and is closely related to the ability

of the conjunctive base (H2O is a Lewis base) to donate electrons to the acid (H+,
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Lewis acid). Schindler and Hawthorne [30] defined the Lewis base-strength of a

complex structural unit as the bond valence required by the (negatively charged)

structural unit divided by the number of (weak) bonds accepted by the structural

unit from the interstitial complex. Using this definition, we may calculate the Lewis

base strength (or Lewis acid strength) of arrangements of atoms at a surface. A key

issue in the calculation of intrinsic acidity constants and Lewis basicities is use of

the correct average coordination number of O at the surface. Hiemstra et al. [27]

used an average O-coordination of [3] for the surfaces of gibbsite and goethite and

an average O-coordination number of [4] for the surface of quartz. The resulting

intrinsic acidity constants were used to calculate the point of zero charge for

gibbsite, goethite, and quartz and the results agree with experimental values.

Schindler et al. [31] used an average O-coordination of [4] for the surfaces of

uranyl-oxide and oxysalt structures, and the resulting Lewis basicities of the various

arrangements of surface atoms are strongly correlated with the measured pKa

values.

4 Surface Features on Crystal Faces

A strongly bonded polyhedron chain which occurs on a crystal face contains ligands

which bond either to cations of the chain or both to cations of the chain and to

species in the adjacent aqueous solution. Any anion on such a chain and the cations

to which it is bonded form a termination. Polyhedron chains are generally linear and
have a small number of cation–φ (anion) terminations per unit length. In general,

it is the incident bond-valence at the anion of the (bare) termination that controls the

reactivity of that termination. If the incident bond-valence at the anion already

satisfies the valence-sum rule, pKa ¼ 0 in Eq. (1) and there is no driving force for

that anion to react with any component of the adjacent aqueous solution. Con-

versely, if the incident bond-valence at the anion is less than that required by the

valence-sum rule, the anion will react with some component of the adjacent

aqueous solution to accord with the valence-sum rule.

Crystal faces invariably have surface features that are due to addition or removal

of atoms during crystallization or dissolution. Addition of one or more layers of

structure can form surface features such as terraces and steps on a face. The

termination of one structural unit orthogonal to a face is called an edge (Fig. 3).

Termination of an edge forms a kink site, where a strongly bonded polyhedron chain
ends. An array of coplanar edges defines a step or a face non-coplanar with the

original face. Similarly, removal of atoms often gives rise to depressions or etch pits

whose boundaries are crystallographically controlled. The atomic environment at

an edge or step will strongly affect the local reactivity between the surface and an

adjacent aqueous solution, and this reactivity will vary also as a function of the pH

of the solution.
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4.1 Residual Valence at an Anion Termination and at a Surface
Polyhedron Chain

We need to know the residual valence at an anion termination in order to calculate

the intrinsic acidity constant and the Lewis basicity of that anion termination, as the

mean coordination number of the O-atom at an anion termination scales the

absolute values of the intrinsic acidity constant and the Lewis basicity. The residual

valence at an O-atom, Δs (¼∑sj + V), can be related to the free energy of any

acid–base reaction in which it is involved [32]:

ΔRGAT ¼ �2:303RT pKa (3)

where ΔRGAT is the free energy of the acid–base reaction at one anion-termination.

Combining Eqs. (2) and (3) gives

ΔRGAT ¼ �2:303RT 19:8ðΔs� 0:20xÞ (4)

where x is the bond-valence contributions of weak hydrogen bonds to the O-atom,

showing that the higher the residual valence at an O-atom, the stronger the basicity

of the anion termination, the stronger its affinity for hydrogen bonds or O–H bonds,

and the more negative the free energy ΔRGAT of the corresponding acid–base

reaction [31].

Each polyhedron chain at an edge on the surface of a mineral has a series of

anion terminations exposed to an ambient aqueous solution, and the aggregate of

these anion terminations controls the reactivity of the atoms at the exposed edge.

The residual valence of an edge may be defined as the mean residual valence on

anion terminations (along its translation length) [31]. Different polyhedron chains

have different types of anion termination, each of which has a specific pKa, Lewis

basicity and ΔRGAT value for a corresponding acid–base reaction.

Consider a polyhedron chain with b and c different types of anion termination

along its repeat length. The pKa value of an acid–base reaction involving this

X

Z

Y

Edge of [010] polyhedron chain Kink site

(001) surface

Top of [010] polyhedron chain

Fig. 3 Sketch of a (0 0 1) surface of a crystal with a [0 1 0] polyhedron forming an edge (shaded)
and a kink site on the surface; the orientation of these features is the same as those in Figs. 8 and 9
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polyhedron chain, ΔpKPC, is a function of the types and numbers of different anion-

terminations along the chain, and may be written as ∑ΔpKPC, i.e., the sum of the

pKa values of acid–base reactions at the corresponding anion-terminations:

X
ΔpKPC ¼ ½b� pKa1 þ c� pKa2�=ðbþ cÞ (5)

X
ΔpKPC ¼ ½b� Δs1 þ c� Δs2�=ðbþ cÞ (6)

The right-hand side of Eq. (6) is the O-atom residual valence for a polyhedron

chain and correlates with the average pKa-value and the free energy of the

acid–base reactions along a polyhedron chain, indicating the affinity of the constit-

uent O-atoms for hydrogen bonds or O–H bonds [31].

4.2 Point of Zero Charge and Net Proton Charge:
A Bond-Valence Perspective

The point of zero charge is the point where the total net surface charge is zero [33].

The total net surface charge involves (1) the permanent structural charge caused by

isomorphic substitution(s); (2) the net proton charge (i.e., the charge due to binding

of H or OH at the surface); (3) the charge of the inner-sphere-complex; (4) the

charge of the outer-sphere-complex. An inner-sphere complex occurs where a

cation or anion in solution bonds directly to terminations on the surface, whereas

an outer-sphere complex occurs if a cation or anion in the solution bonds via (H2O)

groups to terminations on the surface; both types of complex change the net proton

charge of the surface. We may simplify this issue from a bond-valence perspective

by factoring inner- and outer-sphere complexes into two components: (1) surface

ions and (2) aqueous complexes in solution, i.e., we treat inner- and outer-sphere

complexes as part of the aqueous solution, considering only the difference in

interaction between edges with different net proton charge and the aqueous solu-

tion. The net proton charge may be considered as the difference between the

incident and exident bond-valences between the terminations at the surface and

the species in aqueous solution. A termination that accepts bonds is a Lewis base
and a termination that donates bonds is a Lewis acid [31]. At zero net proton charge,
the net strength of the Lewis bases and Lewis acids is zero. Where a surface has

zero net proton charge, the pH of the coexisting solution is called the point of zero
net proton charge, which we will designate as the point of zero charge. Weak Lewis

bases and Lewis acids occur on a surface at the point of zero charge, and (depending

on the intrinsic acidity constant of the acid–base reaction), strong Lewis bases and

Lewis acids occur at pH values that differ considerably from the point of zero charge.

Thus we may define the point of zero charge of a surface from a bond-valence

perspective: At the point of zero charge of a surface, there is a minimum in the
number of strong Lewis acids and Lewis bases (i.e., highly charged terminations) on
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the surface, which results in low bond-valence transfer between surface acceptors
and donators, and aqueous species. Thus the lowest interaction between a face and

the ambient aqueous solution occurs where the pH of the solution is equal to the point

of zero charge of that face, and hence the crystal has very low growth and dissolution

perpendicular to that face. The possible types of edges, ambient conditions, and

growth rates of faces of different type are summarized in Fig. 4.

5 Application to Minerals

Schindler and Hawthorne [34] and Hawthorne and Schindler [3] showed that many

structural and chemical aspects of the uranyl-oxysalt minerals may be understood

in terms of bond-valence theory, and Schindler et al. [31, 35] applied the ideas

Fig. 4 Summary of the relations between an edge, the corresponding activated edge and the type

of crystallization or dissolution. The left column gives the possible types of edges with low,

average, and high residual valence, respectively. The central column indicates schematically the

increase in activated sites with (a) the initial residual valence of an edge, (b) ΔpH, the difference
between the pH of the solution and the pHpzc of the edge, and (c) Δβ, the difference between the

supersaturation, β, of a solution and the supersaturation at equilibrium (where β ¼ 1). Increasing

ΔpH and Δβ is indicated by an arrow. The right column lists the corresponding rates of crystal

growth and dissolution, and the final morphologies of a theoretical (0 0 1) face; from [31]
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outlined above to understand aspects of the surface morphology of uranyl-oxysalt

minerals. We will review this work and also apply these ideas to hydroxy-hydrated

borate minerals.

5.1 Uranyl Minerals

The crystal structures of uranyl minerals are dominated by the structure of the

complex uranyl cation: (UO2)
2þ. The central U6þ is coordinated by two O2� anions

that form an approximately linear O2�–U6þ–O2� group with U6þ–O2� bond-

valences of ~1.6–2.0 v.u., and the coordination of this complex cation is completed

by four to six equatorial anions which receive bond valences of ~0.30–0.70 v.u. The

bond-valence requirements of the equatorial anions are most easily satisfied by

polymerization of the uranyl polyhedra in the plane of the equatorial anions, φ (¼O,

OH), and hence the structures of these minerals are dominated by sheets of edge-

sharing uranyl polyhedra that are linked in the third dimension by weak alkali-

metal–oxygen bonds and hydrogen bonds.

5.1.1 Polyhedron Chains

The [(UO2)8O2(OH)12] sheet is a characteristic structural unit in uranyl minerals

and occurs in the crystal structures of schoepite, [(UO2)8O2(OH)12](H2O)12
[36, 37], and fourmarierite, Pb2

2þ[(UO2)8O6(OH)8](H2O)8 [38]. The sheets are

linked by weak Pb–O and/or hydrogen bonds, and the former mineral is of interest

as the primary phase formed by alteration of nuclear-fuel rods by aqueous solution.

A view of the [(UO2)8O2(OH)12] sheet is shown in Fig. 5, together with the linear

polyhedron chains parallel to [1 0 0], [0 1 0], [1 2 0], [2 1 0], and [1 1 0] in the

plane of the sheet. The apical uranyl O-atoms project outward from the (0 0 1)

surface and determine the reactivity of the (0 0 1) surface itself. These O-atoms

receive an average of 1.6–1.7 v.u. from the central U6þ cation and can accept only

bonds of less than 0.3–0.4 v.u. Hence the uranyl O-atoms can accept only hydrogen

bonds and weak bonds from alkali or alkaline-earth cations; they cannot be protonated

and are not involved in acid–base reactions at the surface. The situation is very

different for surface features such as terraces or steps, as here the equatorial O-atoms

in the polyhedron sheet are exposed at the surface. Within the sheet, these equatorial

O-atoms bond to two or three U6þ-atoms (Fig. 5) and their incident individual bond-

valences vary between approximately 0.2 and 0.8 v.u. Where exposed at terraces or

edges, these equatorial O-atoms deviate significantly from the valence-sum rule and

can protonate and deprotonate in acid–base reactions with the adjacent aqueous

solution. Thus edges and terraces are much more reactive than the basal surface, as

is the case in dissolution of phyllosilicates which is controlled by acid–base

reactions on the corresponding edges (e.g., [39]).
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5.1.2 Calculation of pKa and Lewis Basicity for Different U–O

Anion-Terminations

Average equatorial U–φ bond-valences for [6]-, [7]- and [8]-coordinated U6þ are

0.64, 0.54, and 0.45 v.u., respectively ([25], calculated with the parameters of [40]).

Individual equatorial [a]U–φ bond-valences vary over a larger range; for example,

the [7]U–φ bond-valences in schoepite vary between 0.27 and 0.73 v.u. [36], giving

rise to a range of intrinsic acidity constants for one type of anion termination. The

types of anion termination in uranyl minerals are limited by the occurrence of [6]-,

[7]- and [8]-coordinated U6þ: e.g., [6]- and [8]-coordinated U6þ never occur

together, and always occur with [7]-coordinated U6þ. The conformation of an

anion termination can be denoted by the symbol [a]U–φ–n[b]U, where φ is an

anion that bonds to one U atom in [a]-coordination and n U atoms in [b]-coordina-
tion. In uranyl-oxide minerals, the anion terminations that can occur on edges are as

follows: [8]U–φ, [7]U–φ, [6]U–φ, [8]U–φ–[8]U, [8]U–φ–[7]U, [7]U–φ–[7]U,
[7]U–φ–[6]U, [8]U–φ–2[7]U, [7]U–φ–2[7]U, and [6]U–φ–2[7]U (Table 1). The Lewis

base-strength of an anion termination is the bond valence required by the termina-

tion (to satisfy the valence-sum rule) divided by the number of bonds accepted by

the anions of that termination. Thus for the anion-termination [7]U–(OH), the bond-

valence required is 2 � (0.54 þ 0.80) ¼ 0.66 v.u., the number of bonds required

by the anion (assuming a coordination number of [4]) is 4 � 2 ¼ 2, and the

resultant Lewis basicity is 0.66/2 ¼ 0.33 v.u. For the anion termination
[a]U–(H2O), the constituent O-atom has an incident bond-valence sum greater

than 2 v.u. and is actually a Lewis acid rather than a Lewis base. The (H2O)

group transforms the bond-valence (v v.u.) of the [a]U–O bond into two weaker

hydrogen bonds of bond-valence v/2 [41, 42] and the Lewis acidity of the termina-

tion [7]U–(H2O) is 0.54/2 ¼ 0.27 v.u. Lewis basicities and Lewis acidities of the

above anion terminations are given in Table 1.

[210]

[110]

[010]

[120]

[210][100] [110]

[120]

[010]

[100]

Fig. 5 Polyhedron representation of the uranyl-oxide hydroxy-hydrate sheet in schoepite,

[(UO2)8O2(OH)12](H2O)12, showing polyhedron chains parallel to [1 0 0], [0 1 0], [1 2 0],

[1 1 0] and [2 1 0], respectively; equatorial O2� anions of the uranyl-polyhedra are shown as

orange/gray circles, equatorial edges are shown as heavy black lines; from [31]
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On the (0 0 1) face of schoepite, there are three different equatorial-anion

terminations: [7]U–(OH)–2[7]U, [7]U–(OH)–[7]U, and [7]U–O–[7]U. The characteristic

bond-valence for the equatorial [7]U–φ bond in schoepite is 0.47 v.u., and as

discussed above, we use a coordination number of [4] for O at the surface of the

mineral. The acid–base reactions and pKa values are

[1]. ½7�U� ðOHÞ � 2½7�U $ ½7�U� O� 2½7�Uþ Hþ pKa ¼ 7:7

[2]. ½7�U� ðOHÞ � ½7�U $ ½7�U� O� ½7�Uþ Hþ pKa ¼ 13:1

[3]. ½7�U� ðOH2Þ � ½7�U $ ½7�U� ðOHÞ � ½7�Uþ Hþ pKa ¼ 1:2

The pKa value is calculated using the mean incident bond-valence at O in the

anion termination on the LHS of each reaction. Thus in [1], the O atom receives

0.47 � 3 + 0.20 (from a hydrogen bond) which equals 1.61 v.u. Using this value in

Eq. (1) gives pKa ¼ �19.8(1.61 � 2) ¼ 7.7. The values in [2] and [3] were

calculated in the same way. It should be noted that the calculated pKa-value of

7.7 for Eq. (1) is in good agreement with an experimentally determined pKa-value

of ~7, which was extrapolated on the basis of titrations of dehydrated schoepite in

NaCl solutions of different concentration [31]. The correlation between pKa and the

Lewis basicities and Lewis acidities of the terminations of Table 1 is shown in

Fig. 6. These values were calculated with characteristic bond-valences for [6]U–O,
[7]U–O, and [8]U–O given in [25]. The values in Table 1 indicate the correlation

between the acid- and base-strengths of an anion termination and the magnitude of

the residual valence on its anion terminations. Exact pKa-values for anion-

terminations on the basal surfaces of any uranyl mineral must be calculated using

the average U–O bond-valence in the corresponding structure (as shown above for

the basal surface of schoepite).

Fig. 6 Lewis basicity as a function of intrinsic acidity constant, pKa, of anion terminations on the

edges of uranyl sheets; from [31]
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5.2 Borate Minerals

The crystal structures of borate minerals are dominated by the presence of both (Bφ3)

triangles and (Bφ4) tetrahedra with B–O bond-valences of ~1.00 and 0.75 v.u.,

respectively. The valence-sum rule allows polymerization of these two groups and

they form structures with isolated polyhedra, clusters, chains, sheets, and frameworks

of (Bφ3) triangles and (Bφ4) tetrahedral [18, 43, 44].

5.2.1 Polyhedron Chains

The crystal structure of fabianite, Ca2[B6O10(OH)2] [45], consists of sheets of

composition [B6O10(OH)2], parallel to (0 0 1) and linked in the third dimension

by Ca. Two (Bφ4) tetrahedra each share a corner with a (Bφ3) triangle to form a

three-membered ring that is very common in borate structures. Two rings share two

corners between (Bφ4) tetrahedra to form a [B6φ14] group, and these groups share

corners to form a [B6φ12] sheet. Figure 7 shows a view of this sheet, together with

the polyhedron chains parallel to [1 0 0], [0 1 0], [1 1 0], [2 1 0], and [2 3 0] in the

plane of the sheet. The situation with regard to anion terminations is more compli-

cated than in the case of uranyl-oxide minerals. Figure 8 shows the [0 1 0]

polyhedron chain on the (0 0 1) surface (cf. Fig. 3) with the incident bond-valence

required by the surface anions for adherence to the valence-sum rule. Most anions

require an incident hydrogen bond for adherence to the valence-sum rule, and only a

small number of surface anions are (OH) groups (and hence available for (de-)

protonation reactions with aqueous species in solution). Figure 9 shows the edge of

a [0 1 0] polyhedron chain on the (0 0 1) surface (cf. Fig. 3), again with the

[230]
[110]

[010]

[210]
[100]

Fig. 7 Polyhedron representation of the borate sheet in fabianite, Ca2[B6O10(OH)2]; polyhedron

chains are shown parallel to [1 0 0], [0 1 0], [1 1 0], [1 2 0], and [2 3 0], respectively, the

directions of which are indicated by the labeled lines
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incident bond-valence required by the surface anions for adherence to the valence-

sum rule. Many anions are now protonated for adherence to the valence-sum rule

and hence are available for (de-)protonation reactions with aqueous species in

solution. Thus edges (and terraces) exposed on the surface of fabianite are far

more reactive, i.e., can act as a nucleus for crystallization or dissolution, than the

surface itself.
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Fig. 8 Polyhedron and ball-and-stick representations of the [0 1 0] polyhedron chain exposed at

the (0 0 1) surface in fabianite. The bonds (and corresponding bond-valences required) involving

surface anions and constituents of the aqueous solution are shown as lines [bond valence donated

from the (aquated) cations of the aqueous solution] and as arrows (bond valence donated from H

atoms of protonated surface anions to anions of the aqueous solution). Note that there are not many

protonated anions that can participate in redox reactions with the aqueous solution
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Fig. 9 Polyhedron and ball-and-stick representations of the [0 1 0] polyhedron chain exposed at a

(1 0 0) edge on the (0 0 1) surface in fabianite. The bonds (and corresponding bond-valence

required) involving surface anions and constituents of the aqueous solution are shown as lines
(bond valence donated from the aqueous solution) and as arrows (bond valence donated from H

atoms of protonated surface anions). Note that most of the anions exposed on the edge are

protonated and hence can participate in redox reactions with the aqueous solution
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5.2.2 Lewis Basicity and Acid Strength for Different

B–O Anion-Terminations

Average B–φ bond-valences for [3]- and [4]-coordinated B are 1.00 and 0.75 v.u.,

respectively, and individual B–O bond-valences vary in the ranges 0.86–1.19 v.u. for

[3]-coordination and 0.69–0.95 v.u. for [4]-coordination [18]. The valence-sum rule

allows all combinations of polymerization between [3]B and [4]B, and the conforma-

tion of an anion termination can be denoted by the symbol [a]B–φ–n[b]B, where φ is

an anion that bonds to one B atom in [a]-coordination and n B atoms in [b]-coordi-
nation. In borate minerals, the anion terminations can occur on edges are as follows:
[3]B–φ, [4]B–φ, [3]B–φ–[3]B, [3]B–φ–[4]B, [4]B–φ–[4]B, and [4]B–φ–2[4]B.

On the [0 1 0] chain on the (0 0 1) face of fabianite, there are three different anion

terminations: [4]B–φ, [3]B–φ–[4]B, and [4]B–φ–[4]B. On the edge of the [0 1 0] chain

on the (0 0 1) face of fabianite, there are three different anion terminations on the

(0 1 0) chain: [3]B–φ, [4]B–φ, and [3]B–φ–[4]B that are involved in acid–base

reactions. Oxygen-atoms on the [3]B–φ, [4]B–φ terminations are highly undersatu-

rated and are most likely protonated ([3]B–OH, [3]B–OH2,
[4]B–OH, [4]B–OH2)

in natural waters with pH <12. There is also the possibility that acid–base reactions

on the surface of borate minerals involve a change in coordination number of

these types of terminations as is observed in aqueous solution: B (OH)3
0 þ H2O $

B (OH)4
� þ Hþ, pKa ¼ 9.15. However, changes in coordination number may occur

only at kink sites in polyhedron chains, where there is a higher degree of freedom to

allow structural change associated with a transformation of a triangle into a tetrahe-

dron or vice versa (i.e., breaking of bonds and rotation of the polyhedron).

6 Crystallization and Dissolution

For minerals crystallizing from low-temperature aqueous solutions, the primary

controls on their stability should be (a) the activity of the species in solution and

(b) protonation reactions between solid and solution at the edges of polyhedron

chains: deprotonation of edge anions promotes attachment of aqueous cation

species (i.e., crystallization), whereas protonation of edge anions weakens their

bonds to the bulk structure and promotes dissolution. With regard to crystallization,

the character and activity of the aqueous species is of interest as these provide

groups of atoms that may attach to the solid during crystallization.

6.1 Uranyl Minerals

We have seen that the uranyl cation, (U6þO2)
2þ, occurs as monomers, dimers, and

trimers in aqueous solution. We also discussed that well-crystallized schoepite with

178 F.C. Hawthorne and M. Schindler



sheets composed of edge-sharing trimers and dimers of ((U6þO2)
2þφ5) polyhedra

can be synthesized in a pH range where the trimer (UO2)3(OH5)
þ predominates

(e.g., [17, 46]). In this regard, Schindler et al. [31] proposed a model for dissolution

and crystallization of schoepite that involves the attachment and detachment of

trimers, as illustrated in Fig. 10.

Dissolution requires breaking of U–φ–U bonds and subsequent detachment of

clusters. The U–φ bonds holding the cluster to the crystal (Fig. 10a) weaken through

interaction between the ligands and the adjacent aqueous solution (Fig. 10b),

producing what Schindler et al. [31] called an activated site, where bonds between
ions at activated sites and aqueous species catalyze dissolution or crystal growth at

Fig. 10 A schematic of dissolution and growth mechanisms at an edge of a schoepite sheet. The

sequence of dissolution is indicated with downward-directed arrows and the sequence of crystal

growth by upward-directed arrows. The schoepite sheet is built of clusters of three (red/dark-gray
and green/pale-gray) and two (blue/dark-gray) pentagonal bipyramids which are structurally

identical to the principal aqueous species [(UO2)3(OH)5(H2O)5]
+ and [(UO2)2(OH)2(H2O)6]

2+ in

weak acidic solutions (Fig. 4); O2� ligands in the sheet are indicated as circles, and ligands which
have interacted with the aqueous solutions are indicated in light blue/white; (a, f) activated sites

occur only on anion terminations, and activated sites in the layer are transformed to sites; (b, e)

formation of activated sites during dissolution via detachment of a cluster; ligands adjacent to

potential detached clusters interact with the solution and are highlighted as light-blue/white
circles; attachment of a cluster at a kink site occurs via release of one (H2O) per common ligand

between cluster and kink site; (c, d) breaking (formation) of the U–φ–U bonds and detachment (or

approach) of a cluster from (to) an activated kink site on a schoepite layer; from [31]
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an edge. Here, the U–φ bonds break and the cluster detaches from the crystal, is

protonated, and forms an aqueous species (Fig. 10c). Thus an activated site

participating in dissolution involves the terminations around a polyhedron cluster

where protonation or strong bonds between ligands and aqueous species result in

weakening of U–φ bonds.

Crystallization occurs via attachment of clusters at activated sites at anion

terminations on the edge of polyhedron chains. Attachment produces one additional

(H2O) or (OH) group per common corner between cluster and anion termination

(Figs. 10d,e). Thus at an activated site involved in crystal growth, there are strong

hydrogen bonds from anion terminations to a polyhedron cluster in solution. The

other anions of the cluster and the (former) activated site stay activated until the

anions do not require additional bond-valence from aqueous species (Fig. 10f).

6.2 Borate Minerals

As mentioned above, the species in aqueous borate solutions can also be seen

embedded in all borate structures, suggesting that crystallization proceeds by

condensation of these species to form the solid. This process is illustrated for the

structure of fabianite in Fig. 11. The cluster [B3O3(OH)5]
2�, which shows maxi-

mum stability in aqueous solution at a pH of ~9.4 (Fig. 1), consists of a ring of one

2 clusters

3 clusters

2 clusters

a

b

growth

growth

growth 2

1

Fig. 11 Schematic of growth at the edges of the (0 0 1) face of fabianite. Growth or dissolution

may proceed by attachment or removal of the [B3O3(OH)5]
2� cluster that is a major species in

aqueous borate solutions
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(Bφ3) group and two (Bφ4) groups that is the fundamental building block of the

fabianite structure. As indicated in Fig. 11, growth can proceed in any direction on

the surface by condensation of [B3O3(OH)5]
2� groups in various combinations.

7 Quantitative Aspects of Crystallization and Dissolution

So far, we have put a qualitative mechanism in place for crystallization and

dissolution. Now we will make this mechanism more quantitative.

7.1 Residual Valence, Kink Sites, and O2� Ligands

Above, we have considered edges (and terraces) in terms of continuous polyhedron

chains. However, during growth, such polyhedron chains will not be continuous.

A polyhedron chain forming an edge will terminate at one (or more) place where

the atoms of the chain have not yet attached themselves, forming a kink site (Fig. 3).

At a kink site, the edge anions are protonated and form an activated site (Fig. 12).

Hence the residual valence of an edge increases with its number of kink sites.

A larger number of kink sites on an edge (i.e., a high residual valence) favors

attachment of polyhedra from the aqueous solution because an attached polyhedron

can share more common ligands with the polyhedra of the existing structure than it

can on an edge with less kink sites. Hence one expects a correlation between the

residual valence of an edge and the growth rate of that edge. Moreover, the number

of activated sites on an edge during dissolution or crystal growth should correlate

with the difference between the pH of the solution and the point of zero charge of

the edge.

[001] [010]

AQUEOUS SOLUTION

CRYSTAL

0.20

0.20

0.20

0.25

0.25
0.25

KINK
SITE

Fig. 12 Polyhedron and ball-and-stick representations of the [1 0 0] polyhedron chain exposed at

the (0 0 1) surface in fabianite (as in Fig. 8) but with the polyhedron chain terminated by a kink

site. The bonds (and corresponding bond-valence required) involving kink-site anions and

constituents of the aqueous solution are shown by lines (bond valence donated from the aqueous

solution) and arrows (bond valence donated from H atoms of protonated surface anions). Note that

there are more protonated anions (that can participate in redox reactions with the aqueous solution)

at the kink site that there are exposed to the aqueous solution on the (0 0 1) surface (Fig. 7)
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7.2 Uranyl Minerals

7.2.1 Activated Sites and Edges in Schoepite

Consider a polyhedron chain in schoepite parallel to the [0 1 0] edge (Fig. 5). In the

repeat period of the chain, there are one [7]U–O–[7]U, one [7]U–(H2O)–
[7]U, two

[7]U–(OH), two [7]U–(H2O), and two
[7]U–(OH)–[7]U terminations that interact with

the aqueous solution (Fig. 13). For arithmetic simplicity, we assign an average

bond-valence of 0.50 v.u. to a [7]U–φ bond (rather than the grand mean value of

0.47 v.u., see above). The O-atom of a [7]U–(H2O) group receives 0.50 v.u. from
[7]U and requires an additional 2 � 0.75 v.u. from the two H atoms of the (H2O)

group in order to satisfy the valence-sum rule. Accordingly, each H-atom forms a

hydrogen bond of 0.25 v.u. with the aqueous species. The O-atom of a [7]U–(OH)

group receives 0.50 v.u. from [7]U and 0.80 v.u. from the H atom of the (OH) group

(which in turn forms a hydrogen bond of 0.20 v.u. with the aqueous species), and

the O atom requires a further 0.70 v.u. from cations in solution. The central O–atom

of an [7]U–(OH)–[7]U group receives 2 � 0.50 v.u. from two [7]U–O bonds and

0.80 v.u. from the H-atom of the (OH) group and requires an additional 0.20 v.u.

from a bond (or bonds) from an aqueous species. The central O-atom of an
[7]U–O–[7]U group requires an additional 1.0 v.u. from bonds involving the aqueous

species. The O-atom of a [7]U–(H2O)–
[7]U group accepts 2 � 0.50 v.u. from two

[7]U–O bonds and requires an additional 2 � 0.50 v.u. from two O–H bonds;

therefore, the [7]U–(H2O) group donates two hydrogen bonds with bond-valence

of 0.50 v.u. The acid–base equilibria between the Lewis acids and bases are listed in

Table 1. The pKa values indicate that strong Lewis bases (such as
[7]U–O–[7]U) and

Lewis acids (such as [7]U–(H2O)–
[7]U) occur only at high and low pH, respectively:

the number of strong Lewis bases and acids on the [0 1 0] edge is very small in

weak acidic, neutral, and weak basic solutions [31].

7.2.2 Left Terminations and Right Terminations

The surface of a crystal grows primarily by attaching species (usually polyhedra) to

the dominant edges on that surface. The orientations of these edges are controlled

by the orientation of the strongly bonded polyhedron chains on that surface.

There are two important factors to be considered here: (1) polyhedron chains that

Aqueous solution

Bulk structure
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Fig. 13 Ball-and-stick model

of a possible activated edge

on (0 0 1) parallel to [0 1 0]

in schoepite; legend as in

Fig. 8; modified from [31]
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are not bilaterally symmetric will expose different atomic arrangements on edges

facing in opposite directions, e.g., the (0 1 0) edge of a [1 0 0] chain (as shown in

Fig. 14) and the (0 �1 0) edge of a [1 0 0] chain; thus, the chain shown in the center of

Fig. 14 (labeled a1) has different atomic arrangements on the left and right sides

(referred to relative to its length), and these we designate as left terminations and
right terminations. (2) As an edge grows by accretion of polyhedra, the atomic

arrangement at that edge changes to give a series of arrangements, until the original

arrangement occurs again after the accretion of one unit-cell in the direction of

growth. When considering the conformation of an edge exposed to an aqueous

solution, a series of atomic arrangements must therefore be considered.

This is illustrated in Fig. 14 for chains parallel to [1 0 0] in schoepite. These

different terminations are exposed to the left or right of the length of the chain. We

designate the different parallel chains as a1, b1, etc. (Fig. 14). There are two [7]U–(OH)

terminations and four [7]U–(OH)–[7]U terminations in chain a1. For [7]U6þ–O ¼ 0.47

and O–H ¼ 0.80 v.u., the O atoms involved in the two [7]U–(OH) terminations receive

(2 � 1 � 0.47 þ 2 � 0.8) ¼ 2.54 v.u., and the O atoms involved in the

four [7]U–(OH)–[7]U terminations receive (4 � 2 � 0.47 þ 4 � 0.8) ¼ 6.96 v.u.

The aggregate residual valence of the O atoms involved in the terminations along

this chain is 4 � 2.54 þ 8 � 6.96 ¼ 2.50 v.u. Obviously the residual valence along a

polyhedron chain is a function of the number of highly charged terminations (e.g.,

U–(OH): �0.5; U–O–U: �1.0; U–O: �1.5 v.u.).

Figure 15 shows the normalized residual valence of the left- and right-terminations

of the chains parallel to [1 0 0], [2 1 0], [1 1 0], [1 2 0] and [0 1 0] in schoepite.

Edges involving polyhedron chains with low normalized residual valence will grow

slowly, whereas edges involving polyhedron chains with high normalized residual

valence will grow rapidly (as high residual valence at anion terminations promotes

acid–base reactions with the solution and corresponding crystallization or dissolu-

tion). The relative morphology of crystals of schoepite will be controlled in the

(1 0 0) plane by the relative magnitudes of the residual valence of polyhedron chains

of the form (h k 0) (i.e., parallel to the F face): sheets should elongate in the direction

of chains with high residual valence and the dominant edges should be controlled by

chains with low residual valence. Of the chains shown in Fig. 14, some show major

(b1) (a1) (b1) (c1) (d1) (aT)(aT) (d1) (c1)

Right terminationsLeft terminations

[100]

[010][010]
-

Fig. 14 The left and right chain terminations for different conformations of the polyhedron chain

parallel to the [1 0 0] edge in the uranyl sheet of schoepite; the positions of O2� anions are

indicated by circles. For left terminations, the bulk structure continues to the right, and the surface

occurs to the left, and vice versa
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differences in their normalized residual valence with the different types of termina-

tion (e.g., the [1 0 0] polyhedron chain), whereas others show little difference with

the different types of termination (e.g., the [2 1 0] polyhedron chain). Let us consider

the [1 0 0] polyhedron chain. Conformations with high normalized residual valence

(e.g., right terminations a3 and a4, Fig. 14) will protonate and deprotonate rapidly in

acid–base reactions with the adjacent aqueous solution and change quickly to other

conformations. Other conformations with low normalized residual valence (e.g., right

terminations a1, a2 and a5, Fig. 14) will protonate and deprotonate far more slowly

and the growth rate of the polyhedron chain will be controlled by these conformations

with low normalized residual valence. Thus from Fig. 15, we predict the following

dominance of edges for the (0 0 1) face of schoepite: [1 0 0] > [1 1 0] � [1 2 0] >
[0 1 0] > [2 1 0].

Figure 16a shows the morphology of a crystal of synthetic schoepite grown on

the (1 0 4) face of calcite [20, 31]. The edges [1 2 0], [1 0 0], [1 1 0], and [0 1 0]

are present (Fig. 16a, right) and [1 2 0] is absent, as predicted above. Figure 16b

shows a schoepite crystal from Katanga, Democratic Republic of Congo [47], with

a prominent (0 0 1) face slightly elongate along [0 1 0]. The edges defining the

(0 0 1) face have indices [1 0 0], [1 1 0], [1 2 0], and [0 1 0] (Fig. 15b, right).

7.3 Borate Minerals

Figures 17a,b show the crystal morphology of nobleite, Ca[B6O9(OH)2](H2O)3 [48],

and tunellite, Sr[B6O9(OH)2](H2O)3 [49], which contain sheets of polymerized

borate polyhedra (Fig. 17c). The morphology of these crystals is defined by
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Fig. 15 The calculated residual valence per unit length (v.u./Å) of the polyhedron chains parallel

to the [1 0 0], [0 1 0], [1 2 0], [1 1 0], and [2 1 0] edges on the (0 0 1) face for both left and right

terminations; the numbers along the abscissa denote the different conformations of each chain, and

the corresponding values of the residual valence per repeat are shown on the ordinate
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prominent basal F-faces parallel to the sheets of polymerized polyhedra. The

morphology of the F-face itself is defined by edges which are parallel to polyhedron

chains within the sheet of polyhedra. Figure 17d shows the normalized residual

Fig. 16 (a) AFM image of a synthetic schoepite crystal grown in a weak acidic solution on the

calcite (1 0 4) surface (from [20]), plus a sketch of the crystal which shows the [1 2 0], [1 1 0],

[1 0 0], and [0 1 0] edges; (b) schoepite crystals (from [47]) plus a sketch of crystal showing a

prominent (0 0 1) face that is outlined by the [1 2 0], [1 1 0], [1 0 0], and [0 1 0] edges
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Fig. 17 (a, b) Photographs of nobleite and tunellite crystals (from [50]); (c) sheet of polymerized

polyhedra in the structures of nobleite and tunellite; (d) sketch of the basal surface of the crystals

of nobleite and tunellite and calculated residual valence of the polyhedron chains parallel to the

[0 0 1], [0 1 0], and [0 1 1] edges
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valence of the left- and right-terminations of the chains parallel to [1 0 0], [1 1 0]

and [0 1 0]. Following the arguments given above (edges involving polyhedron

chains with low normalized residual valence will grow slowly, whereas edges

involving polyhedron chains with high normalized residual valence will grow

rapidly), we predict the following dominance of edges for the (1 0 0) faces of

nobleite and tunellite: [0 1 1] > [0 1 0] > [0 0 1]. Figure 17 shows sketches of

the morphology of the F-face for crystals of nobleite and tunellite, indicating that

their morphologies are in accord with our predictions.

8 Summary

Here, we have integrated many individual aspects of the growth and dissolution of

minerals into a coherent description of these processes based on bond-valence

theory and apply it to aspects of the morphology of uranyl-oxide hydroxyl hydrate

and borate minerals. Below, we summarize the main aspects of this work:

1. In borate and uranyl-oxide hydroxyl-hydrate minerals, structural diversity

occurs by polymerization of a small number of clusters (or fundamental

building blocks).

2. These minerals crystallize from aqueous or hydrothermal solutions, and the

FBBs occur as aqueous species in solution.

3. It seems reasonable that crystallization of these minerals occurs by condensa-

tion of the clusters in solution.

4. Periodic bond-chains are strongly related to the occurrence of faces on a crystal

(and, in turn, the major growth directions of a crystal) [21–23]. We refer to

periodic bond-chains as polyhedron chains.
5. Anions at the surface (i.e., exposed to an ambient aqueous solution) are called

terminations, and the incident residual valence at a termination controls its

reactivity (i.e., is the driving force for reaction with the aqueous solution).

6. The residual valence of a polyhedron chain controls the growth or dissolution

rate at the crystal face associated with that chain and may be calculated as the

net residual valence of the terminations along the repeat length of the polyhe-

dron chain.

7. It is well known that growth and dissolution of individual faces on a crystal are

controlled primarily by the occurrence of edges, terraces, and kink sites along

those edges and terraces. The terminations associated with these features have

much higher residual valence than the terminations on the surface expression

of the polyhedron chains, making them much more susceptible to (de-)

protonation reactions involving species in aqueous solution (i.e., crystalliza-

tion or dissolution).

8. The bond-valence of an anion termination on a terminating polyhedron chain

correlates with the intrinsic acidity constant, pKa, and with the free energy,

ΔGAT, of the corresponding acid–base reaction.
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9. Interaction between the ligands and the adjacent aqueous solution produces

activated sites, and bonds between ions at activated sites and aqueous species

catalyze dissolution or crystal growth at an edge.

10. Crystal growth and dissolution processes on an edge are catalyzed by the

activated sites and increase with their number and the strength of the bonds

between the corresponding anion terminations and the aqueous species.

11. From a bond-valence perspective, at the point of zero charge of a surface, there

is a minimum in the number of strong Lewis acids and Lewis bases (i.e., highly

charged terminations) on the surface, which results in low bond-valence trans-

fer between surface acceptors and donators, and aqueous species. Thus the

lowest interaction between a face and the ambient aqueous solution occurs

where the pH of the solution is equal to the point of zero charge of that face,

and hence the crystal has very low growth and dissolution perpendicular to

that face.

12. We may calculate the pKa and Lewis basicity for different anion-terminations,

and from this calculate the aggregate residual valence along polyhedron chains.

Edges involving polyhedron chains with low normalized residual valence will

grow slowly, whereas edges involving polyhedron chains with high normalized

residual valence will grow rapidly.

13. The relative morphology of prominent basal faces of crystals will be controlled

by the relative magnitudes of the residual valence of polyhedron chains parallel

to specific edges. Faces should elongate in the direction of chains with low

residual valence and should not be defined by edges parallel to chains with high

residual valence.
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tlösungen. Z Naturforsch 34b:1078–1083

14. Christ CL, Truesdell AH, Erd RC (1967) Borate mineral assemblages in the system

Na2O–CaO–MgO–B2O3–H2O. Geochim Cosmochim Acta 31:313–337

15. Schindler M, Hawthorne FC (2001) A bond-valence approach to the structure, chemistry and

paragenesis of hydroxy-hydrated oxysalt minerals: III. paragenesis of borate minerals. Can

Mineral 5:1257–1274

16. Grenthe I, Fuger J, Konings RJM, Lemire RJ, Muller AB, Nguyen-Trung C, Wanner H (2004)

Chemical thermodynamics of Uranium. Nuclear Energy Agency, OECD Nuclear Energy

Agency, Data Bank Issy-les-Moulineaux, France

17. Tsushima S, Rossberg A, Ikeda A, Müller K, Scheinost AC (2007) Stoichiometry and structure

of uranyl(VI) hydroxo dimer and trimer complexes in aqueous solution. Inorg Chem

46:10819–10826

18. Hawthorne FC, Burns PC, Grice JD (1996) The crystal chemistry of boron. Rev Mineral

33:41–115

19. Langmuir D (1978) Uranium solution-mineral equilibria at low temperatures with applications

to sedimentary ore deposits. Geochim Cosmochim Acta 42:547–569

20. Schindler M, Putnis A (2004) Crystal growth of schoepite on the (104) surface of calcite. Can

Mineral 42:1667–1681

21. Hartman P, Perdok WG (1955) On the relations between structure and morphology of crystals

I. Acta Crystallogr 8:49–52

22. Hartman P, Perdok WG (1955) On the relations between structure and morphology of crystals

II. Acta Crystallogr 8:521–524

23. Hartman P, Perdok WG (1955) On the relations between structure and morphology of crystals

II. Acta Crystallogr 8:525–529

24. Hawthorne FC, Krivovichev SV, Burns PC (2000) The crystal chemistry of sulfate minerals.

Rev Mineral Geochem 40:1–112

25. Burns PC (1999) The crystal chemistry of uranium. Rev Mineral 38:23–90

26. Krivovichev SV, Filatov SK (1999) Structural principles for minerals and inorganic

compounds containing anion-centrered tetrahedra. Am Mineral 84:1099–1106

27. Hiemstra T, Venema O, Van Riemsdijk WH (1996) Intrinsic proton affinity of reactive surface

groups of metal (hydr)oxides: the bond valence principle. J Colloid Interface Sci 184:680–692

28. Bickmore BR, Rosso KM, Nagy KL, Cygan RT, Tadanier CJ (2003) Ab initio determination of

edge surface structures for dioctahedral 2:1 phyllosilicates: implications for acid–base reactiv-

ity. Clays Clay Mineral 51:359–371

29. Bickmore BR, Tadanier CJ, Rosso KM, Monn WD, Eggett DL (2004) Bond-valence methods

for pKa prediction: critical reanalysis and a new approach. Geochim Cosmochim Acta

68:2025–2042

30. Schindler M, Hawthorne FC (2001) A bond-valence approach to the structure, chemistry and

paragenesis of hydroxy-hydrated oxysalt minerals: I. theory. Can Mineral 5:1225–1242

31. Schindler M, Mutter A, Hawthorne FC, Putnis A (2004) Prediction of crystal morphology of

complex uranyl-sheet minerals. I. Theory. Can Mineral 42:1629–1649

188 F.C. Hawthorne and M. Schindler



32. Faure G (1998) Principles and applications of geochemistry: a comprehensive textbook for

geology students. Prentice Hall, Upper Saddle River

33. Stumm W (1992) Chemistry of the solid-water interface. Wiley, New York

34. Schindler M, Hawthorne FC (2004) A bond-valence approach to the uranyl-oxide hydroxy-

hydrate minerals: chemical composition and occurrence. Can Mineral 42:1601–1627

35. Schindler M, Mutter A, Hawthorne FC, Putnis A (2004) Prediction of crystal morphology of

complex uranyl-sheet minerals. II. Observation. Can Mineral 42:1651–1666

36. Finch RJ, Cooper MA, Hawthorne FC, Ewing RC (1996) The crystal structure of schoepite,

[(UO2)8O2(OH)12](H2O)12. Can Mineral 34:1071–1088

37. Finch RJ, Hawthorne FC, Ewing RC (1998) Structural relations among schoepite,

metaschoepite and “dehydrated schoepite”. Can Mineral 36:831–845

38. Piret P (1985) Structure cristalline de la fourmariérite, Pb(UO2)4O3(OH)4�4H2O. Bull Minéral
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Structure and Acidity in Aqueous Solutions

and Oxide–Water Interfaces

Barry R. Bickmore

Abstract There have been a number of attempts to relate structural descriptors

based on the bond-valence theory to the Brønsted acidity of (hydr)oxyacid

monomers and oxide surface functional groups, via simple quantitative structure–

activity relationships (QSARs). These models show some promise, but since they

have been calibrated solely on monomers, it is difficult to know whether oxide

surface functional groups are within their domain of applicability. In fact, there are

strong reasons, including direct ab initio computation of equilibrium constants for

surface functional groups, for doubting whether acidity QSARs based on the bond-

valence theory are yet capable of accurately predicting acidity at the level of

individual surface functional groups, despite some apparent successes. For progress

to continue, we must further develop the relationship between bond valence and

structural energy, so that we will be better able to construct widely applicable

models

Keywords Acidity � Bond-valence theory � Oxides � Surface complexation

models � Surface functional groups
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Abbreviations

BVT Bond-valence theory

G Global instability index

MUSIC Multisite complexation

QSAR Quantitative structure–activity relationship

SBE Solvation, bond strength, and electrostatic model

SCM Surface complexation model

1 Introduction

Although the bond-valence theory (BVT) is primarily meant to rationalize and

predict molecular structures in solids, chemists naturally try to extend structural

models to rationalize and predict reactivity. If a model helps us understand why

particular equilibrium structures are preferred, for instance, perhaps quantifying the

principles underlying the model can help us predict energetic differences between

structural states, which are the bases for both thermodynamic and kinetic theory.

The BVT is an excellent vehicle for exploring structure–energy relationships,

because it is in some respects quantitatively predictive, and boils down complex,

multi-body interactions into a single parameter, the bond-valence sum.

In this chapter, I review several attempts to relate bond valence to equilibrium

constants for the acid dissociation of (hydr)oxo-monomers and oxide surface

functional groups. Rather than exhaustively reviewing the literature on this subject,

I have opted to attempt a concise description of the state of the field. For a number

of reasons, reaction energetics at individual surface functional groups is particularly

difficult to assess, so models capable of estimating equilibrium constants for these

reactions are badly needed.

While there have been some successes in this area, however, BVT principles

must be applied carefully to these systems. Bond-valence parameters are calibrated

on precisely known structures of crystalline solids, for instance, so the application

of the BVT to liquids and solid–liquid interfaces, for which less precise structural

information is available, may not be straightforward. Furthermore, BVT-based

reactivity models usually involve an implicit assumption that, at least for the

purpose of predicting particular types of reaction energies, bond lengths are the

dominant aspect of the structure. This may, or may not, be the case, depending on

the reactions of interest.

It is important, therefore, to address two questions as we discuss various models.

(1) How might the BVT-based structural descriptors employed relate to the poten-

tial energy surface? (2) What is the model’s domain of applicability? That is, when

should such models work, and when should they fail?
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2 Bond Valence, Energy, and QSARs

The best-developed link between bond valence and energy involves the valence sum

rule (Eq. 2 in chapter “Bond Valence Theory”), which is the backbone of the BVT. The

valence sum rule predicts that the summed valence of bonds incident to ion i (ΣSi)
should counterbalance its atomic valence (Vi), and in fact, calculated valence sums

usually deviate significantly from the ideal only in cases where the structure is strained

[1]. It might be possible, therefore, to link deviation from the ideal valence sum (ΔV)
with some predictable energy cost. In fact, a number of studies have shown that ΔV or

ΔV2 can be related to a significant part of the structural potential energy. Salinas-

Sanchez et al. [2], for example, defined the Global Instability Index (G) for crystals in
terms of ΔV, normalized and averaged over all atoms in a crystal formula unit (see Eq.

23 in chapter “BondValence Theory”), and showed that it was a good predictor of phase

stability. Perez-Mato et al. [3] showed that the G is proportional to energy maps of

certain distortion modes in stuffed tridymite-type structures, and in chapter “Bonding at

Oxide Surfaces” of this volume, Poeppelmeier and Enterkin show how the G can be

modified to correctly predict the relative stability of surface reconstructions. Rappe and

coworkers [4, 5] developed a very successful force field for certain oxide materials, in

which one of the potential terms is proportional toΔV. Adams and coworkers [6–9] have

developed potentials based on ΔV2, which they have successfully used with Reverse

Monte Carlo methods to investigate diffusion pathways in glasses. (See also chapter

“Practical Considerations in Determining Bond Valence Parameters” in this volume.)

These attempts to explicitly relateΔV to energy are relatively recent, however, and

a more common approach has been to create QSARs by finding correlations between

reaction energies and structural descriptors based on bond-valence considerations.

Although QSARs of many types are common [10], and can under certain

circumstances predict reaction energies to within as little as 0.5 kcal/mol [11], they

typically suffer from two problems: (1)Whereas reaction energies reflect the difference

between two structural states, QSARs are often keyed to “static” aspects of molecular

structure – e.g., the number of particular types of functional groups, the electronega-

tivities of particular atoms, dipole moments, polarizability, molecular shape, and

molecular volume [11]. (2) The relationships between these static structural descriptors

and reaction energies can be complex, and therefore simple QSAR correlations may

only be valid under a restricted set of circumstances, in which other important

structural factors are held approximately constant. Bond valence has so far been

quantitatively related solely to bond length, and it is likely that other structural factors,

such as bond directionality and non-bonded interactions, also affect reaction energies.

3 BVT-Based Brønsted Acidity QSARs

Brønsted acid dissociation reactions have the form HA $ Hþ þ A�, where HA is

the acid and A� is the conjugate base. Rather than reporting the raw equilibrium

constant (Ka), most workers find it convenient to use the negative logarithm (pKa),
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because pKa is equivalent to the pH at which the acid undergoes 50% dissociation

(aHA ¼ aA�).
BVT-based acidity models have so far all been QSARs that relate pKa values to

structural descriptors such as ΔV and Lewis base strength (SB). Equation 1 is the

definition of SB for a single anion.

SB ¼ jVj
NO

(1)

Here, NO is the average observed coordination number in a large number of

oxide crystal structures [1], and the same formula can be used to calculate the Lewis

acid strength (SA) of cations (cf. Eq. 7 in chapter “Bond Valence Theory” of this

volume). SA and SB take into account both the valence and size of atoms, providing

an expectation value for individual bond valences. According to the valence

matching rule, the most stable structures are formed when the SA and SB values

of the cations and anions are similar (see Eq. 9 in chapter “Bond Valence Theory”

of this volume).

These structural descriptors were first applied to simple acids, for which pKa

values can easily be determined experimentally. However, the practical reason for

this is to predict pKa values for individual functional groups on large molecules and

solid–liquid interfaces, which are much more difficult to determine.

3.1 Simple Acids

Brown [1, 12] related the pKa values of a number of simple acids to SB of their

conjugate bases via Eq. 2 (cf. Fig. 13 in chapter “Bond Valence Theory”).

pKa ¼ 14:3 ln
SB

0:135

� �
(2)

For the purpose of predicting oxyacid pKa values, we take SB as the expectation

value for OH. . .O bonds incident to the O2� ions in the base from surrounding H2O

molecules. That is, we divide the total expected OH. . .O bond valence by the

expected number of OH. . .O bonds. For example, in H3SiO4
�, the conjugate base

of silicic acid (H4SiO4), there is one Si–O bond with an average of 1 v.u. to each of

the four O2� ions, and we assume all H–O bonds to be 0.8 v.u. The NO value for

O2� is 4, so that the three OH ligands have two unoccupied bonding sites, while the

O2� ligand has three, for a total of nine. However, Brown [1] recommended

reducing this to six, because the Si–OH groups do not have enough valence to

accept more than a single, weak OH. . .O bond. The bond valences incident to the

OH ligands sum to 1.8 v.u., so that its “unsaturated” (i.e., leftover) valence (Vu) is

0.2 v.u., whereas Vu ¼ 1 v.u. for the O2�. The total value of Vu for the molecule is
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1.6 v.u., which is divided among the six expected H-bond acceptor sites to obtain

Sb ¼ 0.267 v.u. Applying Eq. 2, we predict pKa ¼ 9.75, which is close to the

measured value of 9.84 [13] (see Table 5 in chapter “Bond Valence Theory” for

more examples).

The advantages of this simple relationship are that it can address multiple acid

dissociation reactions of the same molecule and be applied to a wide variety of

acids. Brown’s model proves difficult to apply to individual functional groups on

large molecules and surfaces, however, because SB values are averaged over all the
O2� atoms. In addition, the example of silicic acid shows that the rules for counting

expected H-bond acceptor sites are somewhat ambiguous. The model may still

prove useful for estimating average acidity for these larger systems, but this has not

yet been attempted.

Hiemstra et al. [14] attempted to calibrate an acidity QSAR that would be

transferable to individual surface functional groups by focusing on individual

functional groups in (hydr)oxy-acid monomers. (Hereafter, this will be referred to

as the multisite complexation, or MUSIC, method.) In the MUSIC method, pKa

values are related to ΔV of a single O2� ion in the conjugate base via Eq. 3, taking

into account Me–O bonds, H–O bonds, and OH. . .O bonds from the surrounding

water molecules.

pKint
a ¼ �19:8 ΔVð Þ (3)

Here, pKint
a is the “intrinsic” pKa value, which is corrected for the electrostatic

work of removing H+ from the base. (An analogous electrostatic correction is done

for surfaces.) To calculate ΔV for the O2� ion in H3SiO4
�, one starts with the NO

value of four for O2� ions in oxides to define the number of expected bonding sites.

One of the four expected bonds is the Si–O bond, which is assumed to have the

average value of 1.0 v.u. We expect three more bonds to the O2�, which we assume

are OH. . .O bonds of 0.2 v.u. from the surrounding water molecules. This brings the

total bond valence incident to the O2� to 1.6 v.u., so thatΔV ¼ �0.4 v.u. Equation 3

predicts pKint
a ¼ 7:9 for H4SiO4 $ Hþ þ H3SiO4

�, close to the true value of ~8.5

[13]. In cases where the acid is a hydrated cation, the valence of the H–O bond in

the hydroxyl group on the base is assumed to be 0.8 v.u. In summary, one tallies the

Pauling (average) bond strength of the Me–O bond, 0.8 v.u. for any H–O bonds, and

0.2 v.u. for each addition expected bond, to account for OH. . .O bonds.

Before we discuss this approach further, it is worth contrasting it to Brown’s

method. Brown related acidity to the average expected valence of OH. . .O bonds to

the base as a whole, and that expected valence was determined by assuming the

valence sum rule holds. Hiemstra and coworkers assumed bond strengths for

OH. . .O bonds to a single O atom on the base, and related acidity to the deviation

of the valence sum on that O from the ideal 2 v.u. Thus, a fundamental feature of the

MUSIC method is that it assumes the valence sum rule is not obeyed.
Several studies by Bickmore and coworkers [13, 15–17] addressed this and other

issues with the MUSIC method. They performed a bond-valence analysis of the
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output trajectories from ab initio molecular dynamics simulations of liquid water

and explicitly hydrated oxo-species, including silicic acid, phosphoric acid,

carbonic acid, and their conjugate bases, to show that the valence sum rule is

obeyed on a time-averaged basis in such systems. This result does not necessarily

imply that the MUSIC method will not work consistently – empirically fitting

QSARs may correct systematic errors, after all. But it at least gives notice that

the model might be getting the right answers for the wrong reasons, which calls into

question its ability to predict outside the calibration set.

Bickmore and coworkers [13] did, in fact, demonstrate that the MUSIC method

would not always work outside its calibration set. Equation 3 was calibrated on the

pKint
a values for (1) the first acid dissociation of a number of oxyacids (e.g., H4SiO4,

H3PO4, H2CO3), and (2) dissociation reactions of hydroxyacids resulting in a

neutrally charged base (e.g., FeðOHÞþ1
2 � 4H2O $ Hþ þ FeðOHÞ3 � 3H2O). The

point of doing an electrostatic correction to obtain “intrinsic” pKa values, however,

is to remove the effect of long-range Coulomb interactions, so that only the energy

of making and breaking bonds is left to be modeled using bond-valence

terms. Thus, it should be possible to predict pKint
a values for multiple dissociations

of the same acid. But since ΔV in Eq. 3 is estimated assuming average bond

valences for the Me–O bonds, this is impossible. For instance, if all Si–O bonds

are taken to be 1.0 v.u., then there should be no difference in pKint
a values for the

reactionsH4SiO4 $ Hþ þ H3SiO4
� andH3SiO4

� $ Hþ þ H2SiO4
2�, because ΔV

estimates for the Si–O groups on both bases are the same. In fact, the values for

these two reactions vary widely (~8.5 and ~10.6, respectively,) and it cannot be the

case that the Me–O bond length stays the same throughout such reactions. Curi-

ously, while the pKint
a values through series of acid dissociations vary widely for

oxyacids, they are very similar for the hydroxyacids. Therefore, the use of average

Me–O bond valences is actually justified for hydroxyacids.

To deal with this problem, one needs to know how the Me–O bond lengths

change through multiple acid dissociations, at least in the oxyacids. Detailed

structures of aqueous molecules generally cannot be obtained by experiment,

unfortunately. Bickmore et al. [13, 15, 16] attempted to address this problem by

using density functional theory (DFT) to calculate the Me–O bond lengths of

interest for both gas-phase and explicitly hydrated molecules. The purpose of this

was to account for progressive bond relaxation as H+ ions are removed from an acid

molecule. They found that they could predict the pKint
a values of successive acid

dissociations for a number of (hydr)oxo-monomers within about �1 log unit, using

the following equation.

pKint
a ¼ 60:5SB þ αIb � 18:1 (4)

In Eq. 4, SB for the O
2� of interest is derived by subtracting from 2 the calculated

Me–O bond valence, and then subtracting another 0.8 v.u. for any H–O bonds
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present. We then divide the result by the number of unclaimed bonding sites.

OH. . .O bonds from the solvent are not accounted for, just as in Brown’s method

[1, 12], so that SB is an expectation value for the OH. . .O bonds. The variable Ib is
the fraction ionic character of the Me–O bonds, derived from the difference in

Pauling electronegativities between Me and O [18], and α is the regression coeffi-

cient obtained for the dependence on Ib. It turns out that the value of α is dependent

on molecular shape – 5.3 for hexaquo cations (e.g., Fe2+•6H2O), 20.6 for tetrahedral

oxyacids (e.g., H4SiO4), and 51.3 for triangular oxyacids (e.g., H2CO3). In addition,

average (Pauling) bond valences worked better than any derived from calculated

bond lengths for the hydroxyacids.

Figure 1 shows the predicted (Eq. 4) vs. measured pKint
a values for a set of

tetrahedral oxyacids, triangular oxyacids, and octahedral hydroxyacids. To date,

this method is the most chemically accurate BVT-based acidity QSAR for (hydr)

oxyacid solution monomers, but in the next section I will show that it is still unclear

how successfully any of the methods discussed here can be applied to oxide–water

interfaces, although some progress has undeniably been made.
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Fig. 1 Predicted (Eq. 4) vs. measured pKint
a values for multiple acid dissociations of a number of

(hydr)oxyacids (triangular, tetrahedral, and octahedral) [16]
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3.2 Surface Functional Groups

The problem with modeling molecular-scale surface acidity is that it is usually

impossible to be sure a model is, conceptually, even approximately right. Oxide

surfaces can include a number of chemically distinct functional groups, but data on

their acidity is often restricted to potentiometric titrations, in which the response of

the entire surface is averaged, or data involving the averaged pH response of a

single, crystallographically distinct surface, such as measurements of single-surface

points of zero charge. Even advanced spectroscopic studies of crystallographically

distinct surfaces provide data averaged over the entire surface although there have

recently been some interesting attempts to infer the acidity of individual functional

groups from such data [19, 20]. The pH response of distinct types of functional

groups on aqueous molecules can sometimes be distinguished in a potentiometric

titration curve, but surface acidity is significantly affected by the development of

surface charge, which is continuously altered as acid–base reactions take place.

This smears out the response of individual functional group types, making them

indistinguishable from a macroscopic point of view.

Reactions at surface functional groups are typically modeled via surface com-

plexation models (SCMs), which are simply equilibrium chemical models modified

to correct for surface electrostatic effects. SCMs model acid–base reactions at

surface functional groups via “intrinsic” equilibrium constants and ionic solution

species concentrations corrected to account for the electric field around the inter-

face. Thus, the “effective” equilibrium constants account for both chemical and

electrostatic effects, and continuously change as surface charging progresses.

There are a number of ways to model the interfacial electric field in SCMs,

involving various combinations of a Poisson–Boltzmann distribution and/or one or

more parallel-plate capacitors [21]. Originally, modelers treated essentially all the

building blocks of an SCM – electrostatic model, site types, site densities, and

equilibrium constants – as fitting parameters. It was soon discovered, however, that

one could usually fit potentiometric titration data with multiple SCMs that posit

widely diverging molecular-scale pictures of the interface [22].

The first attempt to use the BVT to address this deficiency in SCMs was the

MUSIC method of Hiemstra and coworkers [14], the point of which is to limit the

number of adjustable parameters in SCMs by constraining some of the most impor-

tant variables. Site types and densities are estimated via crystallographic models and

microscopic measurements of the surface area, and surfacepKint
a values are estimated

via Eq. 3. If we can fit an SCM to titration data with these parameters constrained to

empirically or theoretically determined values, we have more confidence that the

molecular-scale picture presented by the model is close to the truth.

Dozens of studies have used the MUSIC method to partially parameterize SCMs

for various oxide surfaces, so by that measure the method has been very successful.

But if the point of the method is to avoid a situation where models successfully

explain data based on an inaccurate portrayal of the interface at the molecular scale,

we should be careful to examine whether this problem has truly been solved. That is,
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does the method work because it provides an accurate molecular-scale picture of the

interface, or because there are still enough degrees of freedom in the adjustable

model parameters to fit the macroscopic data, no matter whether the microscopic

picture is essentially accurate?

There are a number of reasons to question whether the MUSIC method can be

consistently successful at estimating surface pKint
a values for oxides, but the most

important has to do with how the method is ported to surfaces. We have seen that

Eq. 3 was calibrated on the structures of solution monomers, for which averaged

(Pauling) Me–O bond valences were assumed. But when Hiemstra et al. [14]

applied the method to surfaces, they recommended using unrelaxed Me–O bond

lengths from bulk crystal structures. In some cases Hiemstra and coworkers

followed this procedure, as with goethite (FeOOH), and in others they used Pauling

bond valences, as with gibbsite (Al(OH)3). In fact, the bonds at surfaces often do

relax significantly, relative to the bulk solid, but even if we apply Eq. 3 only in cases

where surface relaxation is negligible, we have to wonder whether we can expect to

use it to consistently obtain accurate pKint
a estimates, when it was calibrated using

Pauling Me–O valences.

Another issue with the way the MUSIC method is applied to surfaces has to do

with the assignment of O2� coordination numbers. When applied to solution

monomers, the method assumes a coordination number of four for an O2� ion in

a functional group, so any of the four bonding sites not occupied by Me–O and H–O

bonds are assumed to be occupied by OH. . .O bonds of 0.2 v.u. When applied to

surfaces, however, the method instead assumes that O2� ions bonded to one Me (η)
have a coordination number of three, those bonded to two Me (μ2) have a coordi-

nation number of three or four, and those bonded to three Me (μ3) have a coordina-
tion number of four. The reason given for this is to account for steric hindrance of

H-bonding from the adjacent water molecules, but the modeler decides whether

μ2 groups have a coordination number of three or four. This results in a difference of

0.2 v.u. in ΔV, which translates into a difference of ~4 log units in the calculated

pKint
a (Eq. 3). Whereas traditional SCMs have pKint

a values obtained by a

computerized optimization algorithm, here modelers must significantly manipulate

some of the pKint
a values by hand. In practice, this kind of adjustment has sometimes

been applied even more extensively. E.g., Hiemstra et al. [14] had to assume a

coordination number of 4 for the silanol (>Si–OH) groups on SiO2 surfaces to

obtain an appropriate point of zero charge (pHPZC).

Machesky and coworkers have attempted to address some of the aforementioned

problems with their seminal work on TiO2 (rutile) and SnO2 (cassiterite) [23–25],

which are both dominated by their (110) surfaces. Their approach has been to use

Eq. 3 to estimate pKint
a , but to obtain the bond valences via DFT geometry

optimizations and both classical and DFT molecular dynamics simulations. They

also constrained their SCMs and molecular simulations with potentiometric titration

data, single-surface pHPZC determinations, and synchrotron-based spectroscopic

data. They were able to successfully reproduce the pHPZC values within ~1.4 log

units, which is reasonable, considering all the potential sources of error in the

calculated bond lengths.
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The ability of the method used by Machesky and coworkers to more or less

accurately predict the pHPZC values of these oxides is impressive, and it seems

likely that they have gotten at least part of the picture right. But which part? The

estimated pHPZC values are derived from the calculated pKint
a values, averaged over

the entire surfaces, so it may be that this version of the MUSIC method correctly

predicts average behavior, but not the acidity of individual functional groups.

In fact, Sprik and coworkers [26, 27] performed ab initio MD simulations of the

hydrated rutile (110) surface to directly calculate pKint
a values for the individual

functional groups. Whereas their calculated pHPZC value was slightly more accurate

than that calculated by Machesky and coworkers, they found that their individual

pKint
a values were quite different.

Furthermore, while Machesky and coworkers have addressed the issues raised

above regarding the use of Pauling Me–O bond valences and arbitrary numbers and

strengths of OH. . .O bonds, they have not addressed the issue of acidity model

calibration. That is, how can we expect to obtain accurate pKint
a estimates by

inserting precisely calculated bond lengths into a QSAR calibrated on idealized

solution monomer structures with averaged bond lengths?

Once again, Bickmore et al. [13, 15, 16] addressed this issue by calibrating their

model (Eq. 4) on calculated solution monomer structures, but at this point it is still

unclear how to apply Eq. 4 to surface functional groups, because the dependence of

pKint
a on the fraction ionic character of the Me–O bonds (α) was shown to depend on

the basic molecular shape. Is there a single α value one can use for all surface

functional groups, or does it depend strongly on the specific environment? The

answers to these questions depend on the physical meaning of the structural

descriptors in the model. Why, for instance, is SB of the conjugate base such a strong

predictor of acidity? Bickmore et al. [16] used ab initio molecular dynamics

simulations of several explicitly hydrated oxyacids and their conjugate bases to

show that SB is highly correlated with the valence of the strongest H-bond reaching

the O2� from the solvent. They reasoned that stronger H-bonds would make it easier

for H+ ions to jump from solvent molecules to O2� ions on the base. This is

undoubtedly true, but as mentioned above, equilibrium constants must somehow

be related to a change in energy between the products and reactants, whereas all

BVT-based acidity QSARs are related exclusively to the structure of the base.

Casey, Rustad, and coworkers [28–32] brought up yet another issue that must be

considered. If all BVT-based acidity QSARs are calibrated on solution monomers,

how can we be sure they will correctly predict the acidity of, for instance, bridging

(μ2 or μ3) oxygens on oxide surfaces? Their research has focused on large oxo-

molecules that include such groups, and for which the acidities of the individual

functional groups can often be determined with a high degree of confidence via

potentiometry, UV–vis spectroscopy, and NMR spectroscopy. Structural analysis

and molecular modeling have shown that neither these acidities nor their relative

order, can be derived from simple bond-valence considerations, although Casey,

Rustad, and coworkers have never analyzed the valence of OH. . .O bonds incident
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to the functional groups, as both Bickmore’s and Machesky’s groups did. (In one

instance, however, Rustad [32] did count OH. . .O bonds for use in MUSIC

calculations.)

Nevertheless, nobody has successfully addressed the criticisms of Casey,

Rustad, and coworkers, and their work serves to underscore two glaring facts

about this field. First, we need to be doing more work on systems for which we

can tell when we have the right answer. Second, we need to know why our models

work to be confident that they can provide accurate insights into the details of less

well understood systems.

4 Outlook

In this chapter, I have described several attempts to predict the Brønsted acidity of

oxo-groups on molecules and oxide surfaces based on bond-valence considerations.

If I had to choose a metaphor to describe the state of the field, I would say that there

is a lot of smoke, but we haven’t yet found the fire. Clearly, there have been enough

successes to warrant the conclusion that the BVT can be a powerful tool for relating

molecular structure to acidity. However, serious doubts have been cast on the

ability of any of the BVT-based acidity QSARs so far proposed to consistently

make accurate predictions of the acidity of individual functional groups in diverse

structural settings.

There are reasons for hope. Sverjensky and Sahai, for instance, published a

series of papers [33–37] in which they developed the solvation, bond strength, and

electrostatic (SBE) model. The SBE model fairly accurately predicts the surface

acidity of a number of simple oxides based on model terms derived from easily

obtained characteristics of each solid, including the Pauling bond valence to bond

length ratio and the dielectric constant. While this model does not provide

molecular-scale information, it has been so successful at explaining the average

acid–base reactivity of oxide surfaces that it seems quite plausible that a similar

approach might work well at the scale of individual functional groups.

It has become evident that if this is to happen, we need to better understand the

relationship between bond valence and energy. A number of attempts to develop

this link were mentioned in Sect. 2 of this chapter, but there is still no way of

weighing the relative contributions of bond-valence and other structural factors,

such as bond angles and non-bonded interactions, to the potential energy surface.

Some preliminary work is being done in that area [38], but it is not well developed.

At the beginning of this chapter, I said that we had to pay special attention to

two questions when discussing BVT-based acidity models. (1) How might the

BVT-based structural descriptors employed relate to the potential energy surface?

(2) What is the model’s domain of applicability? To date, there are no clear answers

to either.
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Bonding at Oxide Surfaces

James A. Enterkin and Kenneth R. Poeppelmeier

Abstract Concepts in chemical bonding when combined with physics-based ener-

getic considerations can lead to a more complete understanding of the structure,

stability, and reactivity of oxide surfaces. While this symbiosis has long been

understood for bulk structures, chemical bonding considerations have historically

been used less frequently for surfaces. In this chapter, we analyze the chemical

bonding of published surface structures of SrTiO3 and MgO using bond valence

sum analysis. Bond valence theory compares favorably with complex quantum

mechanical calculations in assessing surface structures and explains the experimen-

tally observed surface structures in a readily comprehensible manner. Bond valence

theory also helps explain discrepancies between DFT predicted surface stability and

experimentally observed surface structures, accurately predicts the adsorption of

foreign species onto surfaces, and can be used to predict changes in surface structures.

Keywords Adsorbates � Bond valence sum � Reconstruction � Surface structure �
Surfaces
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1 Introduction

Surfaces have traditionally been more difficult to solve and understand than bulk

structures. This is summed up in the quote, commonly attributed to Wolfgang Pauli,

“God made the solid state, but he left the surface to the devil.” Oxide surfaces have

proven a particular challenge, often viewed as inherently different from the bulk.

Theories about the driving forces behind surface structure formation include the

minimization of “dangling bonds” [1] or reduction of Coulomb forces [2]. Many

believe that polar surfaces must be different from the bulk since they require

“charge compensation” (see, for instance, [3–5] and references therein). Recent

results reveal that surface structures share more in common with the bulk than

previously believed [6].

Approaches to understanding bulk structures can be roughly divided into

physical and chemical methods. The former generally consists of minimizing the

potential energy of a structure. The latter consists of understanding the localized

chemical bonds through methods such as bond valence. In bulk structures, these

methods are complimentary: each provides useful and important information

necessary for a more complete understanding of bulk structures.

The physics approach has dominated attempts to understand surface structures.

Despite the many demonstrated uses in bulk structures, Brown’s 2009 review [7]

listed only one case where bond valence has been applied to surface structures.

Ruberto and coworkers’ examination of the κ-Al2O3 (001)/(001̄) surface [8, 9]

considers bond valence sums in a discussion of polarity compensation. In contrast

and as seen in the previous chapter, bond valences are often applied to surfaces at

aqueous interfaces. The difference is, in part, historical; that is chemists study

aqueous interfaces while physicists examine clean surfaces in vacuum conditions.

Bond valence considerations can be a useful companion to the physics-based

investigations, potentially leading to predictions of what surface structures may

form and what reactions may occur.

There are, of course, differences between bonding at the surface and in the bulk.

Each surface atom forms fewer and shorter bonds than a bulk atom, and they can

adopt coordination geometries not observed in the bulk. Bond valence theory

should apply to the surface just as to the bulk, however. Bond valence theory
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predicts that shorter bond lengths are necessary when the number of bonds is fewer

in order to conserve the overall bond valence.

Since 2009, several papers have been published which consider the bond valence

of surfaces. Many have involved the L. Marks and Poeppelmeier groups at North-

western University and deal with the surfaces of strontium titanate (SrTiO3). These

include a discovery of a homologous series of surface structures on SrTiO3

(110) [6], studies of the (2 � 2) [10], c(4 � 2) [11], and (√13 � √13)R33.7� [12]
surface reconstructions1 on the SrTiO3 (100) surface, an examination of water

adsorbed on the SrTiO3 (100) surface [13, 14], and a review of several previously

proposed surface structures on SrTiO3, MgO, and NiO from a bond valence

perspective [15].

While all of bond valence theory should apply, these papers have focused mainly

on bond valence sums. Bond valence theory has been used to confirm surface

models calculated via DFT, or conversely to show their unsuitability [15]. Bond

valence theory has also been used to explain why certain structures are observed to

be more stable, for example in the homologous series of surface structures on

SrTiO3 (110) [6]. Additionally, bond valence theory has been used to understand

and predict how surfaces will rearrange, and where foreign species will adsorb to

surfaces [13–15]. Finally, bond valence theory has explained why predictions do

not match observed surface structures [13–15].

The most commonly considered surface adsorbates have been hydrogen and

hydroxide. Hydrogen bonding creates a slight difficulty, requiring different

parameters for R0 and perhaps even b for hydrogen bonds of different lengths due

to the asymmetry of X–H–X bonds, which is best modeled by different values for

the short and long portions of the hydrogen bond (see Sect. 8.1.1 in Chap. 2 of this

volume [16]). It is unclear which of the various literature values for R0 is best. For

the works dealing with hydrogen on surfaces, an R0 of 0.957 Å has been used, the

length of an O–H bond in gaseous H2O. This was chosen because the bond distance

of gas phase H2O, like the surfaces being considered, has no significant H–X

interactions. For simplicity, b ¼ 0.37 was maintained. While determining an R0

value from a single parameter is far from an optimal solution (see Chap. 3 by

Adams [17] for more on determining bond valence parameters), it has proved

sufficient for the small number of hydroxylated surface structures so far considered.

To aid in analysis of these surface structures, a new metric was defined: surface

instability index (SII) [15]. The SII is calculated similar to the global instability

index (G, Eq. 2.21 of Brown [16]), except that only the atoms in the surface

structure and the first bulk layer are included. Enterkin and coworkers demonstrated

1 Surface reconstructions are herein referred to byWood’s notation: (N � M) Rφ. N and M refer to

the length of the lattice vectors for the surface reconstruction, where the vectors are N and M times

the length of the bulk lattice vectors in the plane of the surface. Rφ indicates that the surface lattice

vectors N and M are rotated by φ degrees with respect to the bulk lattice vectors in the same plane.

When Rφ is omitted, the angle φ is 0�. Other symmetry indicators can also be included, for

example the SrTiO3 (100) c(4 � 2) reconstruction has lattice vectors 4 and 2 times the (010) and

(001) bulk lattice vectors, in the same direction (0� rotation), while the “c” indicates that it is a

centered unit cell.
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that inclusion of the top bulk layer along with the surface atoms was most repre-

sentative of the actual stability of the surface structure [15]. They calculated

instability indices for the atoms in the surface structure only, for the surface plus

the top bulk layer, and for the surface plus top two bulk layers. Excluding the top

bulk layer neglected the instability associated with the strain imposed upon the bulk

by the surface. Including more bulk layers caused SII to converge towards the bulk

G value and become less representative of the surface. A bulk instability index was

also calculated for the central most stoichiometric unit in the model and was shown

to be useful, for example in checking whether a sufficiently thick slab had been used

in DFT surface structure calculations.

In this chapter, we first discuss how the bond valence method can work in a

complementary manner with DFT surface calculations, similar to how they are

known to complement bulk DFT calculations. We then review several known

and proposed surface structures on the perovskite SrTiO3 and the rock salt magne-

sium oxide (MgO) from a bond valence perspective. We continue to examine a few

cases where, similar to solid–liquid interfaces, adsorbates from the atmosphere may

be interacting with oxide surfaces. In these discussions, we will show how bond

valence can explain and even predict surface reconstructions and interactions of the

surface with adsorbates. Finally, we will discuss other issues present at surfaces

where bond valence analysis could be of value to ongoing work.

2 Bond Valences and DFT Calculations

Application of bond valence theory, and metrics such as the bond valence sum, has

been complicated in the case of surfaces because there are relatively few cases for

which the atomic coordinates are precisely known. Most of those few cases, where

exact coordinates are known, come from DFT calculations. It is thus important to

consider the relationship between DFT and bond valence.

For bulk structures, bond valence theory provides much information that is

complementary to DFT calculations. For instance, it has been used to correct

DFT bond lengths [18], and G follows the same trends as DFT calculated energy

for bulk structural instabilities [19].

2.1 Bond Valence and DFT Structural Convergence

The bond valence model also works well for surface analysis, as indicated by the

complementary nature of bond valence sums and DFT structural convergence.

Figure 1 shows data during a DFT structural minimization of a hydroxylated

MgO (111) surface structure [20]. The G and DFT calculated energy have nearly
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identical trends, demonstrating that most of the energy reduction can be attributed

to optimization of local bonding. The improved bonding occurs primarily at the

surface, as indicated by the SII. The instability index of the innermost stoichiomet-

ric layer in the slab increases as expected; long-range strains from the surface

rearrangements perturb the bonding in the center of the slab.
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Bond valence sums can also determine if sufficient layers have been used in the

DFT surface calculations. If a thick enough slab has been used, then the center of the

slab will have bond valence sums the same as the bulk structure. If the bond valence

sums of the central layers differ from those of the bulk material, then the slab is too

thin. Enterkin et al. [15] recently demonstrated this, using slabs of three different

thicknesses in calculations of the same SrTiO3 (110) TiO faceted structure (Fig. 2).

While the bond valence sums of the surface species were improved for models with

smaller numbers of layers, the bulk bond valence sums differed significantly from

those in bulk SrTiO3. A necessary, but not sufficient, condition for an accuratemodel

is that the atoms at the central layer have bond valence sums similar to the bulk.

2.2 Analysis of DFT Calculated Structural Models

Bond valence can also be used to check calculated structures. Perhaps a simple

approach is to calculate the bond valence sums and SII for the structure. For bulk

structures, G values over 0.20 normally indicate problems with the structure.

Surfaces have been shown to have bonding similar to the bulk, and therefore it is

reasonable to assume the SIIs over 0.20 would indicate problems with a surface

structure. However, fewer surface structures have been analyzed by bond valence

methods; therefore, it is not yet certain that the same cutoff works equally well for

surfaces. It is possible that the bonding may be sufficiently different and a different

cutoff for SII will be found more appropriate in the future.

A stable atomic coordination will also have electrons filling space in all

directions. This phenomena is well known and has been considered at least since

the introduction of valence shell electron pair repulsion theory [21]. In bond

valence theory, this has been formalized as the valence vector sum rule: “In a

stable coordination sphere the sum of the bond valence vectors around an ion is

zero” [22] (See Sect. 6.2 in Chap. 2 of this volume by Brown [16]). For metal

cations at oxide surfaces, this requires bonds to O anions equally in all directions.

As lone electron pairs can also fulfill this requirement for O anions, they can be

stable with a nonzero valence vector sum, i.e. with bonds distributed unequally

through space (See Sect. 7.1 in Chap. 2 of this volume by Brown [16]). Quantitative

work on surfaces has so far been limited to bond valence sums. Since bond valence

sums ignore these geometric concerns, metal terminated structures will be less

stable than indicated by a bond valence sums analysis. This is seen in the

differences between the SII and the DFT calculated energies for cation terminated

surfaces. Valence vector sums should be as useful for surface structures as for bulk

structures. So far, however, the valence vector sum rule has been applied only

qualitatively to surface structures, and so we will limit our discussion in this chapter

to applying it qualitatively.

The SrTiO3 (111) surface provides a good example of how bond valence theory

can aid in the analysis of DFT calculated and predicted surface structures. Several

surface reconstructions have been observed, but none have been solved, and the
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structures remain unknown (see [23] and references therein). Several surface

structural models have been proposed based upon DFT calculations. Recently,

bond valence was used to analyze six DFT calculated models and determine

which were reasonable [15].

In the (111) direction, SrTiO3 is composed of alternating layers of SrO3
4�

and Ti4þ (Fig. 3). This leads to a polar surface. To stabilize such a surface, the

terminal layer must have half the nominal charge of the bulk layers. In this case, a

2þ surface atop an SrO3
4� layer or a 2� surface atop a Ti4þ layer. From a chemical

perspective, the challenge is to find an appropriate valence neutral surface with

reasonable oxidation. Enterkin and coworkers [15] analyzed six of the structures

from Marks and coworkers [24, 25] (termed models 3–8 by Marks and coworkers,

see Fig. 4) which had stoichiometry that allowed Sr, Ti, and O to have valences

charges of 2þ, 4þ, and 2�, respectively.

Model 3 is SrO rich at the surface, consisting of an SrO3 termination with 1/3

of the oxygen sites vacant. The bond valence sums are somewhat close to the

atomic valences, leading to an SII of 0.21, indicating the possibility of problems.

The surface Sr has coordination sphere with one half completely empty, and thus it

fails the valence vector sum test and is less stable than indicated by the SII.

Model 4 has a Ti layer termination, with a single O atom directly above each

terminal Ti, resulting in TiO4 tetrahedra that corner share with bulk Ti octahedra.

The terminal O atom is dangling and under-bonded by nearly half a valence unit

(bond valence sum ¼ �1.56), while the Sr in the top bulk layer is slightly under-

bonded (bond valence sum ¼ 1.82). This leads to a high SII of 0.29. The Sr in the

top bulk layer has a half-filled coordination sphere, and therefore this model is less

stable than indicated by the SII.

Model 5 surface consists of an SrO3 termination with a half-filled Ti layer on top.

All bond valence sums are within 0.30 of the atomic valence, leading to an SII of

0.17. However, it also fails the valence vector sum test.

Model 6 has the same stoichiometry as model 5, but only half the Ti in the top layer

occupy bulk-like positions. The rest are located directly above a TiO6 octahedron

111

_
001

Ti Atom

O Atom

Sr Atom

TiO6 Octahedra

Fig. 3 SrTiO3 in the (111) direction (vertical axis) is composed of alternating layers of SrO3
4− and

Ti4+. Figure shown terminated by SrO3
4− layers on top and bottom, which would require a surface

structure of nominal +2 charge per 1 � 1 column to maintain valence neutrality of the surface

structure
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from the layer below. The surface atoms are more drastically under-bonded, which

leads to a higher SII of 0.22. Yet again, the structure does not satisfy the valence vector

sum rule and is less stable than indicated by the SII.

Models 7 and 8 have equal amounts of excess TiO2 at the surface. Model 7 is

terminated in a bulk-like Ti layer atop an O3 layer (SrO3 layer with vacant Sr sites),

resulting in a surface TiO2 stoichiometry. The surface Ti form TiO3 trigonal

Surface O
BVS = -1.79

Sub-surface Ti
BVS = 4.03

Surface Sr
BVS = 1.84

O vacancy
site

Model 3

Surface O
BVS = -1.56

Surface Ti
BVS = 4.07

Sub-Surface Sr
BVS = 1.82

Sub-Surface O
BVS = -2.13

Model 4

Surface O

BVS = -1.71, -1.88
Surface O

BVS = -2.05, -2.03

Surface Sr6
BVS = 1.81

Surface Sr5
BVS = 2.14

Surface Ti
BVS = 3.70

Model 5 Surface O2
BVS = -2.05

Surface O3
BVS = -1.88

Surface Sr1
BVS = 1.34

Surface Sr2
BVS = 2.06

Surface Ti1
BVS = 3.60

Surface Ti2
BVS = 3.75

Surface O1
BVS = -1.78

Model 6

Surface Ti
BVS = 3.65

Surface O
BVS = -1.92

Sr vacancy
site

Model 7

Surface Ti1
BVS = 3.67

Surface Ti2
BVS = 3.65

Surface O
BVS = -1.85Sub-surface Sr

BVS = 2.18
Sub-surface O
BVS = -1.99

Model 8

TiO4 Polyhedra TiO5Polyhedra TiO6Polyhedra Ti Atom O AtomSr Atom

Fig. 4 Top to bottom: SrTiO3 (111) surface structure models 3 through 8 considered in [24]

212 J.A. Enterkin and K.R. Poeppelmeier



pyramids which corner share with bulk Ti octahedra. All bond valence sums are

near the atomic valences, except for the outer most surface Ti, which is significantly

under-bonded (bond valence sum ¼ 3.65). The Ti also fails to satisfy the valence

vector sum rule. Thus, although the SII is reasonable (0.18) the structural model is

likely not a stable one.

Model 8 was an example where bond valence analysis showed that the slab used

in the original calculations was not thick enough. Enterkin and coworkers therefore

repeated the DFT optimization of model 8 with a thicker slab, after which the bond

valence sums for the central layers matched those of bulk SrTiO3. Model 8 has a

Ti2O3 layer atop an SrO3 termination, again resulting in a surface with TiO2 surface

stoichiometry. In model 8, however, the surface Ti form edge sharing octahedra,

half of which corner share with three bulk Ti octahedra while the other half face

share with one bulk Ti octahedra. The surface is somewhat under-bonded, which

leads to a borderline SII of 0.20. Of the models considered, model 8 is the only one

which qualitatively satisfies the valence vector sum rule.

Formodels 3 through8 (Fig. 4), the SII fall in the ordermodel 5 < model 7 < model

8 < model 3 < model 6 < model 4. The first five of these are all close together

(0.17 < SII < 0.22) while model 4 is significantly higher (SII ¼ 0.29). Except for

model 8, all of these have at least one metal atom at the surface with an incomplete

coordination sphere: for models 3 and 4 an Sr atom, for model 7 a Ti atom, and for

models 5 and 6 an Sr atom and half a Ti atom per (1 � 1) unit cell. These do not satisfy

the valence vector sum rule (see Sect. 6.2 in Chap. 2 of this volume by Brown [16]) and

are less stable than indicated by the SII (Fig. 5). Of the five models with similar SIIs,

model 8 has the most reasonable bonding. This agrees with the DFT calculations [24].

The bond valence analysis of the small reconstructions from Marks et al. [24]

is consistent with the DFT energies. Since DFT surface energies can only be
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Fig. 5 Comparison of surface free energy [24] and SII for SrTiO3 (111) surface models.

Differences between SII and surface free energy can be accounted for when considering the

valence vector sums. Figure adapted with permission from [15]
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evaluated relative to other known surface energies, the DFT calculations only dem-

onstrate which models were more or less stable relative to the other models. Bond

valence sums offer a way to state from an absolute perspective which are appropri-

ately coordinated and therefore might exist on the observed surfaces. In most cases,

the SII are in general larger than for the cases where experimentally determined

structures were analyzed. The cases with acceptable SII fail to satisfy the valence

vector sum rule. This indicates that the motifs are unlikely to exist in the experi-

mentally observed structures. The exception is model 8, which would be a reasonable

configuration, especially if combined with another motif that helped decrease

the average bond length, similar to how the chains are interspersed with rings in

the homologous series of structures on SrTiO3 (110) (see Sect. 3, below) [6, 15].

2.3 Bond Valence to Decrease DFT Calculation Cost

Enterkin et al. [15] also propose that bond valence can be used to reduce the cost of

DFT calculations. Minimizing theG prior to performing a DFT structural relaxation

can significantly decrease the cost of the DFT calculation. This can be done by

hand, changing the position of a few atoms in an initial structural model so they

have reasonable bond valence sum values. In principle a bond valence sum-based

structural optimization could be carried out in a matter of seconds on a standard

laptop computer even for large structures. Such a program may also provide a

particularly useful alternative to force-field type calculations of surfaces and

defects, as good force-fields for surfaces and defects are often lacking.

2.4 Bond Valence as a Check on DFT Functionals

Finally, bond valence sums may provide a check on the accuracy of a DFT

functional. The (√2 � √2)-R45� reconstruction on the (100) surface of SrTiO3

provides an example of where bond valence analysis indicates that the inaccuracies

of a DFT functional may explain the difference between observation and

calculations. (For more on the SrTiO3 (100) surface, see Sect. 5, below.) On the

SrTiO3 (100) surface, three reconstructions with a double TiO2 layer have been

observed: (2 � 1), (2 � 2), and c(4 � 2). The (√2 � √2)-R45� reconstruction has

the same stoichiometry and is calculated to be lower in energy than any of the three

observed surfaces but has never been observed experimentally. A bond valence sum

analysis of the (√2 � √2)-R45� surface structure noted that although the bond

valence sums of surface atoms were good, it has over-bonded bulk Sr and O

atoms (all Sr have bond valence sums � 2.32), which leads to a high G of 0.21

[15]. The high bulk Sr atomic coordination occurs because the surface structure

couples to an antiferroelectric bulk distortion which persists to large depths in a

DFT calculation. The DFT method used in those calculations (generalized gradient
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approximation) is known to overestimate the bulk antiferroelectric distortion

[26–28]. This leads to a similarly large Sr bond valence sum in equivalently

calculated bulk SrTiO3. While the case of the (√2 � √2)-R45� surface remains

open, the bond valence analysis revealed that the DFT functional used may account

for the difference between observed and calculated surface structures.

This could be taken one step further, to evaluating functionals in general, or at

least how good they are for a specific system. Since current DFT methods have

problems in accurately calculating solid materials in general and solid surfaces in

particular, much work has been undertaken to develop more accurate functionals

for solids and solid surfaces [29–31]. Since bond valence parameters are empiri-

cally derived from crystal structures and are universal, they should provide a good

check on these new functionals. A more accurate functional should yield structures

with bond valence sum values that are closer to those derived from crystal

structures. Similarly, such a functional would be expected to give a lower SII for

surface structures experimentally known to be stable, at least as compared to those

which are known from experiment to be unstable.

3 Observed Reconstructions on Oxide Surfaces

When looking at surface structures, the question of why specific structures are

observed often arises. A total energy approach tells us that the observed structures

form because they have the lowest free energy. Even when the observed structures

have the lowest free energy, the question often remains: why do those surfaces have
the lowest free energy?

Bond valence can explain why a specific surface is the most stable. This was

recently the case for the SrTiO3 (110) surface. Bond valence analysis explained

why particular members of a homologous series of (n � 1) structures were

observed while others were not [6, 15]. The observed members of the homologous

series were calculated to be lower in energy than other proposed members of the

series or other model surfaces. A bond valence analysis revealed why the observed
surfaces were the most stable.

In the (110) direction, SrTiO3 is composed of alternating layers of SrTiO4þ and

O2
4� (Fig. 6). This leads to a polar surface, similar to the (111) surface of SrTiO3:

a nominal charge of �2 per surface unit cell will maintain valence neutrality.

Perhaps the simplest way of solving the “polar catastrophe” is to terminate the

(110) surface in a half-occupied O2
4� layer (halfO2, Fig. 6) [32–40], or variations

thereupon [32–36]. Other commonly considered models for the (110) surface are

the TiO faceted model and the Sr faceted model. The TiO faceted model has TiO2þ

rows in bulk-like positions atop an O2
4� termination and is equivalent to the

(1 � 1) member of the homologous series (see below). The Sr facet model

consists of an Sr2þ-adatom in a bulk-like position atop at O2
4� termination [32–40].

The homologous series consists of chains of corner sharing TiO4 tetrahedra,

which are interspersed by rings of similar corner sharing TiO4 tetrahedra after every
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Ti
BVS = 3.81

O
BVS = -1.96

O
BVS = -1.75

Sr
BVS = 2.15

_
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Ti Atom

O Atom

Sr Atom

TiO6 Polyhedra

TiO5 Polyhedra

Fig. 6 SrTiO3 in the (110) (vertical) direction composed of alternating layers of SrTiO4+ and O2
4−.

The commonly considered half-O2 surface model, with the terminal O2 layer 50% occupied, is

shown on top and bottom (110) facets of the slab

001

110

001

_
110

Ti1
BVS = 4.08

Ti2
BVS = 4.04

Ti3
BVS = 4.04

O3
BVS = -2.17

O1
BVS = -2.03

O2
BVS = -2.02

O4
BVS = -2.04 Ti Atom

O Atom

Sr Atom

TiO6 Polyhedra

TiO4 Polyhedra

Fig. 7 The n ¼ 3 member of the (n � 1) homologous series of surface structures on SrTiO3 (110)

viewed from above (top) and parallel to surface (bottom). Figure adapted with permission from [6]
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n chain tetrahedra (see Fig. 7 for the n ¼ 3 structure, Fig. 8 for entire series) [6].

While titanium normally has a coordination number greater than four in the bulk,

there are inherently fewer bonds at the surface. By decreasing the bond length,

reasonable bond valence sums can be maintained. By rearranging to a tetrahedral

geometry, the valence vector sum rule is satisfied as well. The n ¼ 3 and n ¼ 4

structures have the best bond valence sums, and the absolute values of the bond

valence sums decrease as n increases (Table 1). This is not surprising, as the excess

TiO2 at the surface also decreases with increasing n: the lower the value of n,
the more Ti and O atoms are packed into the same area. In general, the coordination

in the rings is too high, while that in the chains is too low. Thus interspersing chains

with rings at the proper interval leads to structures with optimal bond valence

sums. Not only does this agree with DFT calculations of the surfaces (Table 1,

Fig. 9), but it also explains why the observed structures are the most stable.

The different members of the homologous series often coexist as intergrowths.

Only the (3 � 1) has been observed as a sole phase. The (3 � 1) and (4 � 1),

(4 � 1) and (5 � 1), and (5 � 1) and (6 � 1) have been observed as intergrown

pairs. The (3 � 1) and (4 � 1) have the best bond valence sums, followed by the

(5 � 1), and all have been observed as a major phase on the surface. The (6 � 1) is

somewhat underbonded and has only been observed as intergrowths with a (5 � 1)

structure. Higher n structures are even more underbonded and have not been

observed. On the other end of the series, the overbonded (2 � 1) structure has

not been observed. The observed structures have the lowest free energy because

they have the optimal bonding.

The (1 � 1) structure is equivalent to the often calculated TiO faceted model and

is higher in free energy than either the lower nmembers of the homologous series, or

the halfO2 structure. The halfO2 structure is somewhat reasonable (SII ¼ 0.21). A

similar model, with the terminal oxygen bridging between two Sr atoms, has bond

valence sums that deviate significantly from the expected values (SII ¼ 0.41),

indicating any structure similar to this must be considered highly doubtful, in

∞x1 6x1 5x1 4x1 3x1 2x1

TiO4 Tetrahedra Ti Atom O AtomSr Atom

Fig. 8 Homologous series of surface structures on SrTiO3 (110). Figure adapted with permission

from [6]
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agreement with Heifets and coworkers’ calculations that this termination is signifi-

cantly higher in energy than the halfO2-A [32].

The Sr faceted model has terminal Sr atoms with good bond valence sums [15].

The bond valence sum, however, does not reveal the full instability of the terminal

Sr atom. The majority of the coordination sphere for the apical Sr atom is empty.

While the valence vector sum has not been calculated, it has been qualitatively

noted that this leads to a less stable structure than indicated by the SII [22]. Bond

valence theory therefore predicts that this and related structures are not stable, and

they have not been observed experimentally.

It is likely that such application of bond valence theory could prove useful in

general to understand surfaces. For example, Lazzeri and Selloni [41] described

a homologous series of surface structures of (1 � n) structures (n ¼ 3–6, 1) on

TiO2 anatase (001) (although they do not term it a homologous series). Those

structures differ in how frequently a row of TiO2 units is added to the bulk

termination (the (1 � 1) being the n ¼ 1 case). While they do not mention bond

valence sum, they report that the bond lengths increased as n increased, which

would result in decreased coordination and lower bond valence sum. This is the

same as observed for the SrTiO3 (110) homologous series. Interspersing the bulk-

like termination anatase (001) termination with TiO2 rows increased the bonding,

just as interspersing the chains with rings increased bonding in the SrTiO3 (110)

homologous series. While Lazzeri and Selloni conclude in their work that the

number of undercoordinated surface titanium atoms cannot explain the series of

reconstructions, they considered only number of bonds, and not bond strength. This

is one example (among many) where a bond valence analysis would likely prove

helpful in understanding a surface.
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Fig. 9 Comparison of surface free energy [6] and SII for SrTiO3 (110) surface structures.

Figure adapted with permission from [15]
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4 Adsorbates on Surface Structures

Bond valence theory offers great potential in explaining the adsorption of foreign

species upon surfaces. Under-bonded sites, for example, are far more likely than

optimally bonded or over-bonded sites to adsorb foreign species, thereby forming

more bonds and increasing their bond valence sums. An understanding of adsorp-

tion behavior can lead to a deeper understanding of other properties, such as surface

reactivity. As seen in Chap. 7 of this volume [42], bond valence theory has proven

useful at this task at aqueous interfaces. Although it has rarely been used for

surfaces at a vacuum or gaseous interface, it should be just as useful. Recently

the hydroxylated (111) surfaces of the rocksalts MgO [20] and NiO [43] were

studied in ultra high vacuum conditions. These structures were then reexamined

from a bond valence perspective [15], which shed additional light on the behavior

of adsorbed hydroxyl groups on these surfaces. Similar results were obtained on

both the MgO and NiO (111) surfaces. The MgO (111) surface will be reviewed

here as an example of how bond valence aids in the understanding of surface

adsorbates.

In the (111) direction, MgO is composed of alternating magnesium and oxygen

layers. This creates a polar surface, similar to the SrTiO3 (111) and (110) surfaces.

The most commonly considered surfaces are those proposed by Wolf, which he

termed octapoles [2]. They have a p(2 � 2) periodicity with surface atoms in bulk-

like positions but are missing ¾ of the atoms in the top layer and ¼ of the atoms in

the second layer, essentially creating (100) nanofacets (Fig. 10, Table 2). Because

the cation and anion layers have identical geometries and the cations and anions

have equal but opposite charges, either magnesium or oxygen atoms could compose

either layer, as long as the layers alternate between magnesium and oxygen. Thus

there are two types of octapolar surfaces, depending on which type of atom is in the

top layer. While such structures are predicted to be stable and have been the subject

of much theoretical work [20, 44, 45], they have never been definitively observed

experimentally.

Whereas the O terminated octapole is calculated to be slightly lower in energy

via DFT, the SII of the Mg terminated octapole is lower (0.13 vs. 0.16). The Mg

MgO4 Polyhedra

MgO6 Octahedra

Mg Atom

O Atom

_
101

_
110

_
111

111

Fig. 10 O terminated MgO

octapolar surface viewed

from top (top) and side

(bottom). An Mg terminated

octapolar surface is formed

by replacing each O with an

Mg and each Mg with an O
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terminated octapole, however, has a terminal cation with most of its coordination

sphere empty, in violation of the valence vector sum rule. Thus, the bond valence

analysis agrees with the DFT energetics of the octapolar surfaces. Hydroxylated

versions of the Mg and O terminated octapoles were also considered by Ciston and

coworkers [20]. The MgH octapole is like the dry Mg octapole, with an OH group in

the vacant O position in the second layer, and one other O atom in that layer also

hydroxylated. In the OH octapole, the terminal O is hydroxylated, and additional

OH group bridges two Mg atoms from the second layer. The hydroxylated

octapoles were calculated to be low in energy, but with the O termination the

lower of the two. This agrees well with the bond valence analysis, where the SII is

lower for the OH termination (SII ¼ 0.09 vs. 0.16). Like the dry Mg octapole, the

MgH octapole fails to satisfy the valence vector sum rule and is even less stable

than predicted by bond valence sum alone.

While a surface structure with (2 � 2) periodicity has been observed, Ciston

and coworkers concluded that the observed diffraction intensities do not match

with an octapolar structure [20]. Instead, the diffraction data indicates a (2 � 2)-α
type structure. In this structure, the atoms in the terminal layer can occupy any

or all of three different possible sites (Fig. 12) and the different occupations

are virtually indistinguishable crystallographically. Assuming that Mg and O can

only have oxidation states of �2 and no adsorbates are present, two of the three

sites must be occupied in order to maintain valence neutrality. Like the octapolar

structures, the (2 � 2)-α- can have either a magnesium bulk termination with

the surface sites filled by oxygen ((2 � 2)-α-O), or an oxygen bulk termination

with the surface sites filled by magnesium ((2 � 2)-α-Mg). The (2 � 2)-α-Mg

structure considered by Ciston has all three sites occupied by Mg atoms, would

not be valence neutral, and does not appear to exist. A (2 � 2)-α-Mg structure

with two sites occupied would be valence neutral, but the terminal Mg atoms would

not satisfy the valence vector sum rule.

The (2 � 2)-α-O structures considered by Ciston and coworkers are stoichio-

metric and have two sites occupied by O atoms and the third site vacant, thereby

maintaining overall valence neutrality [20]. The three models differ only in which

site is left vacant: site 1 is vacant in model 1, site 2 in model 2, and site 3 in model

3 (Fig. 12). The bond valence sums agree with the DFT energies: the SIIs fall in the

same order as the DFT energies. In models 1 and 2, the bond valence sum for

the O atom in sites 1 and 2 is significantly closer to the atomic valence of 2� than

the O atom in site 3. It fits that model 3, where site 3 is vacant, should have the

best overall SII (0.25, compared to 0.46 and 0.49 for models 1 and 2, respectively).

In model 3, the under-coordination is less severe and more spread throughout the

surface structure. By similar logic, the O atom in site 2 is slightly better coordinated

than the O atom in site 1. The overall ordering of the coordination of the three

oxygen sites is site 2 > site 1 >>site 3. While these models match the diffraction

data, they have high surface free energy and SII.

Ciston and coworkers found evidence of hydroxyl groups on the surface via

X-ray photoelectron spectroscopy. The hydroxylated versions of the (2 � 2)-α
structures were found to be superior to the clean (2 � 2)-α structures in terms of
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free energy and SII. If a water molecule were to dissociate upon a dry (2 � 2)-α
surface, then all three sites would become occupied: two by OH groups, one by an

O atom. In (2 � 2)-α-OH1 site 1 is occupied by the O atom, in (2 � 2)-α-OH2
site 2, and in (2 � 2)-α-OH3 site 3; the other two sites in each case being occupied

by hydroxyl groups (Table 3, Figs. 11 and 12). From the O site stability revealed in

the bond valence sum analysis of the dry (2 � 2)-α-O structures, one can predict a

stability for the hydroxylated structures of model 2 > model 1 >>model 3. This is

exactly the trend of the DFT calculated energies for these three structural models.

The bond valence sums of the hydroxylated (2 � 2)-α-OH models further confirm

this order of stability, both for structures and for individual sites.
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Fig. 11 Comparison of surface free energy [20] and SII [15] for MgO (111) surface structures.

Figure adapted with permission from [15]
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Fig. 12 MgO (111) (2 � 2)-α surface structures viewed from top (top) and side (bottom)
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The dry (2 � 2)-α-O structures have high enough SIIs that they are not likely

to exist [15], which agrees with Ciston and coworkers’ experimental findings

of structures transitioning away from the (2 � 2)-α-O structure as hydroxide was

removed through annealing [20]. If a dry (2 � 2)-α-O structure were to exist,

it would readily adsorb foreign species: hydroxyl groups would bond most strongly

to site 3, with the second hydrogen slightly more likely at site 1 than at site 2.

Removal of an H2O group, conversely, would most likely remove the O from site 3.

The bond valence analysis indicates both where water molecules will adsorb and

dissociate and where they are likely to re-associate and desorb.

This is consistent with the observations in Ciston et al. [20], who reported that the

surface transitioned between the (2 � 2)-α and (√3 � √3)-R30� reconstruction.

Samples were initially prepared with a hydroxylated (1 � 1) structure. The

(1 � 1)-H structure is a simple (1 � 1) oxygen termination, with a hydrogen bound

to each O atom. Annealing this at higher temperatures resulted in a (√3 � √3)-R30�

termination, with one third of the hydroxyl content. This was attributed to the

loss of some water from the surface. The (√3 � √3)-R30�-OH structure has one

O atom and one OH group per (√3 � √3) unit cell atop a magnesium termination,

both in sites equivalent to site 2 in the (2 � 2)-α structures. (An Mg terminated

(√3 � √3)-R30�-MgH structure was also considered, but it was determined to be

kinetically inaccessible [20]. It also fails to satisfy the valence vector sum rule [15]).

Upon further annealing at higher temperatures, the (√3 � √3)-R30�-OH structure

transitioned to a (2 � 2)-α-OH structure. Ciston et al. [20] concluded that this

_
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_
111

111
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Site 2

Site 3

Mg Atom

O Atom

Fig. 13 MgO (111) surface

viewed from top (top) and
side (bottom). The
(√3 � √3)-R30˚ unit
cell is outlined; in the

(√3 � √3)-R30˚ structure,
sites 2 and 3 are occupied by

a one hydroxyl group and one

oxygen atom per unit cell,

while site 1 is vacant. In the

1 � 1-H structure all three

sites are occupied by

hydroxyl groups

Table 4 Bond valence

sums for MgO 1 � 1-H,

and √3 � √3-R30�-OH
structural models

1 � 1-H √3 � √3-R30�-OH

SII ¼ 0.18 SII ¼ 0.15

Atom Mult. BVS Atom Mult. BVS

H 1 1.03 H 1 1.00

O (OH) 1 �2.35O 1 �2.30

O 1 �1.73

Mg 1 2.22 Mg 3 1.99

Table adapted with permission from [15]

Bonding at Oxide Surfaces 225



transition occurred through dehydration and oxygen rearrangement, followed

by rehydration as the sample cooled in air. This is consistent with an oxygen

atom moving to site 2, followed by adsorption and dissociation of water at site 3,

leaving a (2 � 2)-α-OH structure, with site 3 hydroxylated, as expected from bond

valence sum analysis (Fig. 13, Table 4).

5 Adsorbates and New Structures

As was shown in the previous section, bond valence analysis can be used to under-

stand how adsorbates bind to structures and how structures reorder. Bond valence

analysis can go one step further and predict whether adsorbates will bind to a

surface and where they will bind. This was done recently for the SrTiO3 (100)

surface. In doing so, the bond valence analysis also explained discrepancies

between calculation and experiment.

Several SrTiO3 (100) surfaces have been crystallographically solved from

surface diffraction data, including the (2 � 1) [46–52], (2 � 2) [50, 52–55], and

c(4 � 2) [48, 50, 51, 56–58] surface structures, each with a TiO2 double

layer. A (√2 � √2)-R45� [50, 52] TiO2 double layer surface structure has been

calculated to be lower in energy than any of the three solved surfaces of the same

stoichiometry, yet it has never been observed. As discussed above in Sect. 2.4,

this may be due to the failings of the functional used in calculations, which leads

to high bond valence sums for the bulk strontium atoms (>2.32). The (2 � 2) and

c(4 � 2) structures are calculated to be similar to each other in energy and to

have significantly lower free energy than the (2 � 1) structure. This has raised

questions as to why the (2 � 1) structure is experimentally observed.

Bond valence analysis confirms that the (2 � 2) and c(4 � 2) structures should

be preferable to the (2 � 1) structure, at least as the initial models of the structure

exist. Both are composed of TiO5 polyhedra which edge and corner share in

different patterns. The (2 � 2) structure [50, 52–55] shows nearly ideal bond

valence sums, although the top bulk layers are only slightly over-bonded, leading

to an acceptable SII of 0.14. The c(4 � 2) structure [48, 50, 51, 56–58] is also

reasonable (SII ¼ 0.17). The surface layer has good bond valence sums, except for

an O atom in the middle of four TiO5 polyhedra, which is significantly over-bonded

(bond valence sum ¼ �2.56). Overall, the bond valence sums are similar to the

(2 � 2) structure, which agrees well with DFT calculations where the two

structures are similar in calculated surface energy (within 0.06 eV).

The (2 � 1) structure [46–52] is surprisingly under-bonded at the surface for a

structure which has been crystallographically solved (Fig. 14). The top two surface

O atoms, including the “dangling oxygen” are both under-bonded (both with bond

valence sum ¼ �1.74) as is the Ti atom not bonded to the “dangling oxygen” (bond

valence sum ¼ 3.65), leading to a high SII of 0.22. This is in agreement with DFT

calculations, which find the (2 � 1) structure higher in surface free energy than the

(2 � 2) or c(4 � 2) by >3.5 eV/nm2. The undercoordination suggests that this

structure may be unstable as is, and would be more stable if it were able to form
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additional bonds to increase coordination. The bond valence analysis also allowed the

prediction of where the adsorbates would bond: it was hypothesized that a hydrogen

atom would bond to the under-bonded “dangling oxygen,” while a hydroxide group

would bond to the under-bonded surface titanium atom [59]. This dissociated water

molecule would maintain the overall valence neutrality.

Unfortunately, 2D diffraction data could not distinguish between the dry and wet

(2 � 1) surfaces, as light scattering hydrogen atoms could not be found, and the

additional oxygen atom was directly above a much stronger scattering titanium atom.

X-ray photoelectron spectroscopy confirmed that hydroxide groups were present on

the (2 � 1) surface and were not easily removed even upon annealing at 750�C [14].

For comparison, hydroxide groups on the c(4 � 2) structure were removed by

annealing at 300�C. The DFT optimized wet (2 � 1) structure showed a marked

improvement in bond valence sums, with an SII decrease from 0.22 to 0.12

(Fig. 14). Further, the DFT energetic showed that when all surfaces were

hydroxylated, the energy of the (2 � 1) was comparable to the c(4 � 2) and

(2 � 2) structures [14]. As final confirmation, the simulated STM images of the

wet (2 � 1) surface matched experimental STM images [13]. Thus it was the

presence of dissociated water, predicted via a bond valence analysis, which

reconciled the differences between DFT and experiment.

Another example of applying bond valence theory to predict new structures

comes from the (√13 � √13)R33.7� surface reconstruction on SrTiO3 (100)

[12]. This structure was crystallographically solved, and bond valence sums were

used to confirm the structure. The structure is composed of edge and corner sharing

TiO5 polyhedra. Kienzle and coworkers then extrapolate from the solved structure

and create models for two other structures, a (3 � 3) and a (√5 � √5)R26.6� by

tiling the valence-neutral units found in the (√13 � √13)R33.7� reconstruction in

different patterns. They conclude that many structures, both ordered and glass-like,

are possible on the SrTiO3 (100) surface, as long as bond valence requirements are

locally satisfied.

3.653.92-1.74 -1.74
-2.011.000.99 4.024.13-2.04 -2.16

010

100

_
001

TiO5 Polyhedra TiO6 Octahedra Ti Atom O AtomSr Atom H Atom

Fig. 14 SrTiO3 (100) (2 � 1) surface structures. Left: dry structural model. Right: wet structure.

Bond valence sums are indicated for each unique surface atom
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6 Structure Determination

Bond valence theory can aid in determining structures when they cannot be solved

experimentally. For example, when a periodicity is known from STM images, it is

not trivial to determine an atomic structure. Normally models will be proposed,

calculated through DFT, the STM image simulated and compared to experiment. In

the end, all that can be said definitively is whether the model is consistent with

experiment or not. Recently Becerra-Toledo and coworkers incorporated bond

valence sums into this process, greatly aiding in structure determination of a

series of structures observed via STM [11].

The authors of this study propose models for “diline” and “triline” features that

appear in STM images of the SrTiO3 surface. These features appear either upon

annealing a c(4 � 2) reconstructed surface or concurrent with the c(4 � 2) recon-

struction. The model structures for the “diline” and “triline” are therefore based on

the c(4 � 2) reconstruction. In proposing the “diline” model structure, bond valence

sums were used as a constraint. In the “triline” structure, reduced “Ti2þ” was

observed in the X-ray photoelectron spectra. The authors model for the “triline”

structure contained some significantly reduced titanium atoms, with bond valence

sum of 2.87 when using the Ti3þ - O2� R0 value. This was compared to the bond

valence sum for Ti in a rocksalt “TiO structure” taken from the literature, using the

same R0 value.

7 Multiple Valence States

Except for the Becerra-Toledo study of the c(4 � 2) related structures [11], bond

valence has so far been applied at the surface solely on structures where each

surface atom is in its optimal oxidation state. Bond valence theory is well equipped

to deal with oxidation and reduction. Bond valence sums have been especially

useful in bulk structures where an element occurs in multiple oxidation states within

the same structure, as it provides an excellent way, sometimes the only way, to

assign oxidation state to each occurrence of the element [7] (see Chap. 2 of

this volume [16]). Bond valence theory should prove equally useful for similar

applications on surfaces.

One set of structures where such an analysis would be beneficial are the Sr adatom

models proposed for several SrTiO3 (n � n) reconstructions [60–62]. These models

match experimental STM images quite well. However, having an Sr adatom means

that the structure must somewhere be reduced by 2 electrons per Sr adatom. A bond

valence analysis would quickly reveal the location and effects of this reduction.

This could then be compared with experimental data, such as XPS, to see if the

reduction in the model structure matches with some experimental observation, as

was done by Becarra-Toledo and coworkers for the SrTiO3 “trilines” [11]. Including

other considerations from bond valence theory, such as the valence vector sum rule,
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would help reveal whether and how such a metal adatom could be stable on a

surface. This is but one system among many where bond valence theory could aid in

the analysis of nonideal valence states at surfaces.

8 Conclusions

Chemical bonding goes far in explaining surface structures, with a bond valence

sum calculation capable of illuminating much of this stability. A bond valence

analysis has the power to predict where water is likely to adsorb and dissociate on a

surface. Under-bonded structures are likely to adsorb foreign species. A structure

without any under-bonded species on the surface might be more robust and less

likely to adsorb any foreign species. Conversely, something on an over-bonded

surface structure might dissociate in order to lower the bond valence sums. Bond

valence theory, in predicting adsorption of foreign species, has led to the reconcili-

ation of calculated and observed surfaces. Bond valence theory has also been used

to assess calculated structural models absolutely, whereas DFT alone could only

determine if structures were better or worse than other models, such as in the case of

the SrTiO3 (111) surface.

Chemical bonding models of surfaces generally agree with physics-based

calculations and with experiment, just as they do for bulk structures. In each case

examined so far where the SII and DFT calculated energy disagree, other chemical

bonding theories (usually the valence vector sum rule) could explain this discrep-

ancy. Additionally, the bond valence model has been shown to easily describe

concepts, such as polar surfaces, which have been most difficult to deal with from a

purely physics-based approach. In some cases bond valence sums may help

for systems which are difficult for DFT. In the most difficult cases, it may prove

necessary to use chemical and physics-based methods in conjunction to achieve

the most complete understanding of a surface. For instance, the fact that in DFT

the (√2 � √2)-R45� (001) SrTiO3 surface has the lowest energy, but it does not

have the lowest SII implies that their might be a problem with this surface where

DFT is underestimating the oxygen–oxygen nonbonded repulsions.

Clearly, a chemical bonding approach can enhance nearly any surface study.

The complementary nature of the chemistry and physics-based models can lead

to a greatly enhanced understanding of surface structure, chemistry, and reactivity.

As with bulk materials, the best way to move forward is to consider the chemistry

and physics simultaneously, with each providing insight that is difficult to reach

from the alternate approach.
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Bond Valences in Education

I. David Brown

Abstract The bond valence theory’s simplicity, its rigor, and predictive power

make it ideally suited for introducing the concept of the chemical bond in introduc-

tory courses. This chapter suggests how the theory might be presented in a class-

room. It starts with a critique of the bond models currently used and then shows how

different aspects of the theory might be introduced, beginning with the simple

exercise of plotting the lines of field for an array of charges like those found in the

ionic model. The generation of stable bonds using the valence matching rule leads

naturally to a discussion of bonding geometry and the influence of lone pairs.

Deriving the classic ball-and-stick model from bond valence theory gives an

opportunity to discuss how one might define a covalent bond if this were thought

to be useful. The chapter ends showing how the theory can be applied to aspects of

chemical reactivity.

Keywords Bond geometry � Bond valences � Covalent bonds � Hydrogen bonds �
Ionic model � Lewis acids and bases � Lone pairs � Teaching � Valence matching
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1 Why Do We Need Another Model of Chemical Bonding?

Chemists introduced the modern concept of the atom around 1800 and that of the

bond around 1860. With these two ideas, they were able to develop a topological

model that systematized the bewildering variety of organic compounds which they

were then discovering. But the evidence for the reality of atoms and bonds was

entirely circumstantial. The lack of evidence for the physical existence of either

atoms or bonds caused physicists to be cautiously skeptical; they refused to accept

the reality of either atoms or bonds. Not until 1900 were they convinced, and then

only when they found ways to measure the properties of individual atoms and were

able to develop quantum mechanics to show how electrons and nuclei combined to

form atoms.

The reality of the atom was then unquestioned, but the bond remained a

hypothetical entity; there was nothing in quantum mechanics that led to a definition

that bore any resemblance to the chemists’ ball-and-stick model of the bond. The

success of the bond model is undeniable; even at the present day it is universally

used to describe chemical structure, particularly in organic chemistry, but the

failure to find a theoretical basis for the model has been an embarrassment. This

failure was unavoidable as long as people sought it in quantum mechanics, since

there is an essential incompatibility between the chemical bond and the quantum

views of the atom.

In order to understand this incompatibility we need to examine the often

overlooked assumption of the bond model that all chemical structures can be

explained in terms of an interaction between nearest neighbor atoms, as determined

by the valences of the two atoms. The valence in the original ball-and-stick model is

today represented by two concepts, the number of bonding electrons supplied by the

atom (the atomic valence) and the number of localized bonds that the atom forms

(the coordination number). For good reason, neither of these concepts can be

derived from the quantum model.

The quantum model was developed using the physics approach of finding the

lowest energy arrangement of electrons around a given array of nuclei. This energy

can be calculated by solving the Schrödinger equation, but the Coulomb potential

used in this calculation requires that it explicitly includes the interactions between

each charge and every other charge in the system, a condition that is clearly

incompatible with a localized bond picture. Further, in the quantum description

of an atom, or more generally of a molecule, the electrons cannot be individually

identified. One cannot identify particular portions of the total electron density as

being the contribution of the valence electrons. All that can be measured is the total

electron density; the contributions of the individual electrons remain unknowable.
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The collection of electrons behaves as a single entity, making it impossible to count

how many valence electrons are present, much less where they are located. If the

electrons cannot be located, they cannot be counted, and the bonds cannot be

counted if they are not localized. Neither the valence of the atom nor the number

of bonds the atom forms can be determined using quantum mechanics.

This does not mean that the bond model is wrong; it has proved itself remarkably

useful and will continue to do so. It does mean that we can never find the physical

basis for the bond model by appealing to quantum mechanics. If a theory of the

chemical bond is to be developed, it must be based on a different view of the atom,

one that recognizes, on the one hand, the functional difference between the valence

and core electrons and, on the other, that a force field is used that gives a description

of the atomic interactions in terms of nearest neighbors alone.

Why, one might ask, is it necessary to have a theoretical derivation of the

chemical bond when the model already works so well? There are several reasons.

Firstly, any theory starts with a number of assumptions which define the scope of

the theory. For example, the assumptions made in Sect. 5 of [1] show why the ionic

model is able to describe the properties of covalent as well as ionic bonds, even

though it would seem self-evident that the ionic model should be restricted to ionic

compounds. Secondly, a theory allows for the derivation of theorems that may not

have already been discovered empirically. For example, by treating the ionic model

as a capacitive electrical circuit, bond valence theory is able to predict the lengths of

the bonds in a simple and straightforward way as is shown in Sect. 5 of [1]. Thirdly,

the classification of bonds is much simpler because the concepts of the model are all

mutually compatible. For example, bond valence theory makes no distinction

between ionic and covalent bonds, and the arrangement of bonds around an atom

is determined by the properties of its ligands rather than by the supposed configu-

ration of orbitals that have no real existence (Sect. 6.2 of [1]). Fourthly, bond

valence theory is based on a simple but physically correct atomic picture, which can

be analyzed to understand the physical origin of bonding anomalies such as dative

bonds (Sect. 2 of [1]). For all of these reasons it is an excellent theory for

introducing the concept of the chemical bond.

Since a localized bond model requires information neither about the distribution

of electron density nor about the energy of the molecule, quantum mechanics is not

needed. Bond valence theory determines the number of bonding electrons (atomic

valence) by counting how many electrons have a small ionization energy, and it

develops the bond picture using the electrostatic field rather than the electrostatic

potential. In the ionic model representation of bond valence theory, a bond exists

between any two atoms linked by lines of electric field and the number of these lines

linking two atoms (the electrostatic flux) is a measure of the number of electrons

used to form the bond. This is the foundation on which the model is built.

The quantum mechanical and bond valence theories can thus be seen as comple-

mentary descriptions, both being exact representations of the Coulomb force, one

expressed through the electric potential, the other through electric field. The

quantum model gives the energy of a molecule or crystal and describes its excited

states. It also gives the distribution of the electron density, but it does not give the

Bond Valences in Education 235



valence of the atom or a description of the structure in terms of localized bonds.

Bond valence theory, on the other hand, uses the number of valence electrons given

by the ionization energies to describe the bond network as well as the bonding

geometry of the molecule or crystal, but it says nothing about the location of the

electrons or the energy of the system. Quantum theory gives a physicist’s view of

the atom, and bond valence theory gives a chemist’s view. It describes how a

collection of atoms will arrange themselves in space, and the chemical properties

that derive from the resulting structure.

Bond valence theory is developed in Chap. 2 of this volume [1]. This chapter

shows how it might be used to introduce the concept of the chemical bond in an

introductory chemistry course. Details of the theory are not repeated here, though

pointers to the relevant sections of [1] are given. The purpose of the rest of this

chapter is to suggest ways in which the bond valence theory might be used to

present chemical bonding in a classroom setting.

2 Introducing the Bond Valence Theory

The force that holds atoms and molecules together is the electrostatic Coulomb

force, traditionally represented by the Coulomb potential, but the electric field has

properties that seem to be custom designed for the description of chemical bonds.

The Faraday lines of field give a quantitative graphical view; the number of field

lines being equal to the charge that generates them. Since it is a characteristic of

atoms and chemical compounds that positive and negative charges are uniformly

distributed over short distances, the lines of field that leave from a positive charge

always terminate on a nearby negative charge. The electric field is therefore an ideal

way to illustrate a localized bonding interaction.

The ionic model is a straightforward way to introduce chemical bonding.

Students can be given a picture of an array of positive and negative charges such

as that shown in Fig. 1. If they are asked to draw the lines of field, they will likely

end up with a picture like that shown in Fig. 2.

Figure 2 immediately leads to the definition of a bond: any two atoms that are

linked by lines of field are connected by a bond. Further, the number of lines (the

electrostatic flux) is a direct measure of the strength of the bond. If the charges of

the ions are set equal to their atomic valence (the number of electrons the atom uses

for bonding), the electrostatic flux that forms the bond is called the bond valence.

From this simple construction comes the most important rule of the bond valence

theory: the valence sum rule (Eq. 2 in [1]), which states that the valence of an atom

is equal to the sum of the valences of the bonds it forms. This is Gauss’ law of

electrostatics.

It should also be apparent that if two atoms are brought closer to each other, the

number of lines of field linking them will increase. This leads us to expect a

correlation between the valence (electrostatic flux) and the length of the bond

(Eq. 4 in [1]). Although the length of a bond is not likely to be of great interest in
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an introductory course, this correlation is the essential link between the bond

valence theory and experiment. Using this correlation, we can convert observed

bond lengths into bond valences to see how an atom distributes its valence between

the bonds it forms. It allows us to test whether the predictions of the model are

correct, but it can also be used to test whether a given structure is correct by

checking how well the sums of the experimentally determined bond valences

agree with the atomic valences.

The ionic model provides a simple and painless introduction to bond valence

theory. It introduces not only the concept of a bond but also the notion that an atom

shares its valence among the bonds that it forms in a way that can be easily

determined by experiment. In a more advanced course students who have done

some elementary circuit theory in physics could be introduced to the network

equations (Eq. 14 in [1]) derived by showing that the bond network is equivalent

to a capacitive electrical circuit. The bond valence is the quantity that in other

models is approximated by bond order or bond number, but only the bond valence

rigorously obeys the valence sum rule.

+

+

+

+

++

- -

--

- -

Fig. 1 An array of positive and negative charges as found in the ionic model

Fig. 2 The charge array of Fig. 1 with lines of field shown
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As shown in Sect. 5 of [1] the ionic model is by no means restricted to structures

containing only ionic bonds; it applies to the majority of structures with localized

bonds including many organic compounds. It is limited only by its inability to

describe the bonds formed between two cations or between two anions. If such

bonds are present, a more sophisticated model is needed, one in which there is no

distinction between the anion and the cation. The core-and-valence-shell picture of

the atom is described in Sect. 2 of [1].

One can convert the ionic model to the core-and-valence-shell picture using Fig. 3

where the lightly shaded circles are the anion cores and the darkly shaded ones the

cation cores. The valence shells are indicated by the larger unshaded circles. The

electrons in the overlap region, which in the ionic model are assumed to be associated

with the anions, are now divided into the bond segments shown as shaded ovals in

Fig. 3. As the cation and anion cores each contributes an equal numbers of valence

electrons to a given segment, the electrostatic flux linking each overlap segment to

the anion core is the same as the flux linking it to the cation core, and both are equal to

the bond valence. All that remains is to recognize that each bond segment lies at the

intersection of the valence shells of the two atoms it links. There is now no distinction

between the cation and anion since both are treated the same way. This allows the

core-and-valence-shell model to be used to describe any localized bond,

cation–cation and anion–anion bonds as well as covalent and ionic bonds.

The core-and-valence-shell picture shown in Fig. 2 in [1] provides a simple but

realistic picture of an atom that can be used to discuss how a bond behaves when two

atoms come together. Their valence shells overlap and the electrons in the overlap

region now experience the positive charges of both nuclei, pulling them towards the

overlap region, holding the two atoms together and forming the bond as shown in

Fig. 4 in [1]. In this respect bond valence theory is similar to the Lewis model, but

without the restriction that a bond requires an integral number of electron pairs.

Removing this restriction removes the need to introduce the unnecessary concept of

resonance. The picture is also compatible with the electron density picture of the atom,

though simplified by focusing on what is important for the bond model, namely the

number of valence electrons, and leaving the quantum description to be added later.

Fig 3 The filled valence shell

of the anion (light core) is
split into four bonding

segments which overlap with

the valence shell of the

cations (dark core)
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Two properties of the atom are important in bonding: its valence, i.e., the

number of electrons it uses for bonding and its size. The size is difficult to define

precisely since the atom does not have a sharp surface and bonds tend to be longer

or shorter according to their valence, but the size is important in determining how

many bonds an atom can form. The reverse idea can also be used. The number of

bonds an atom forms can be used as a measure of its size. Coordination numbers for

a particular atom are determined by experiment, and they show some variation,

depending on the composition of the compound and nature of the ligands. Some

elements such as sulfur(VI) are found with only one coordination number to oxygen

(four), but others such as sodium are known with all the coordination numbers

between three and twelve. In this case one can take the average (6.2), and since

oxygen is the most common ligand, the average can be restricted to oxygen ligands.

It may be different for other ligands, but the trends will be the same. From these

average coordination numbers one can calculate the average valence of the bonds

the atom forms. This is known as the bonding strength of the atom (Eq. 7 in [1])

since it can be used as an estimate of the valence of the bonds the atom is expected

to form. The result is the list of bonding strengths shown in Table 1 in [1]. This table

divides the bonding strengths into those of cations and those of anions because most

compounds can be described using the ionic model.

3 Bonding Strength, Electronegativity, and Valence Matching

The valence matching rule (Eq. 9 in [1]) follows directly from the definition of

bonding strength defined in the previous section. It expresses the idea that for a

bond to form between two atoms their bonding strengths should be the same, or at

least similar. It is normally found that stable bonds will not be formed between

atoms with bonding strengths that differ by more than a factor of two, unless one of

the atoms has a valence shell with lone pairs, a case treated more fully in Sect. 5.

Sect. 11.2 of [1] shows how bonding strengths can be used to construct a network of

bonds, pointing out how the network is dominated by the atoms with larger bonding

strength because they form stronger bonds. When a salt dissolves in water, for

example, it is the weaker bonds that break first; the more strongly bonded

complexes remain intact, usually in the form of complex ions. When Na2SO4 reacts

with water, the weak Na–O bonds (0.17 valence units (vu)) are broken but the

strong S–O bonds (1.5 vu) of the SO4
2� groups remain intact. A similar effect

occurs on melting.

This may not be the best place to introduce the role of lone pairs (Sect. 5), but it

is necessary at this point to introduce the bonding strengths of anions which are

determined by the octet rule (Eq. 11 in [1]). The important property of anions is that

their negative valence is always less than their highest cation valence as can be seen

in Table 1 in [1].

An unexpected result is that the bonding strengths of atoms in their highest

valence state, SE, reproduce the electronegativity scale (Eq. 8 in [1]), providing a
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direct link between chemical structure and electronegativity. If the core-and-

valence-shell picture has already been discussed, one can also point out that the

valence of an atom is equal to the charge on the core, and the coordination number

scales as the surface area of the atom, i.e., it varies as the square of the radius.

Consequently, the bonding strength of an atom in its highest valence state is

proportional to the electric field of the core at its valence shell, the place where

all the chemistry takes place.

Students can be offered exercises in deciding which atoms in a given chemical

formula are cations and which are anions based on the rule that all the anions have

higher electronegativities, SE, than any of the cations, and that the sum of the

valences of all the ions must be zero since the compound is electrically

neutral. They could use the valence matching rule to show which atoms will be

bonded. For example, what is the simplest compound containing Ca, Al, and O?

Here clearly oxygen must be the anion (SE ¼ 2.0 vu) with Ca (SE ¼ 0.27 vu) and

Al (SE ¼ 0.57 vu) as the cations. Since the valence of O is �2 vu, and Al is +3 vu,

there must be at least two Al atoms giving a formula of CaAl2O4. Aluminum has the

highest bonding strength (SAl ¼ 0.57 vu) with the bonding strength of oxygen next

(SO ¼ �0.50 vu). Al–O bonds will form first with a valence of 0.5 vu

corresponding to a coordination number around Al of six and around O of three

since there are twice as many oxygen atoms as aluminum. The oxygen atoms have a

residual valence of �0.5 vu leftover after the Al–O bonds are formed, which is

enough to form two bonds each of 0.25 to calcium (SCa ¼ 0.27 vu), leaving calcium

with eight bonds. This gives a correct description of the bonding in one of the

several forms which CaAl2O4 is known to adopt [2].

4 Bonding Geometry

With an understanding of bonds and bonding strength, this may be a good place to

discuss bonding geometry, firstly by pointing out that the closer two atoms

approach each other, the larger the flux linking them. This can be introduced by

asking the students to draw the lines of field for an array of unequally spaced cations

(A) and anions (B) such as that shown in Fig. 4. The correlation between bond

valence and bond length is described in Chap. 3 of this volume and for many bond

types it can be calculated using Eq. 4 in [1].

If the students have already been introduced to circuit theory in their physics

courses, they may be familiar with the use of the Kirchhoff equations to solve

electrical networks. By showing that a chemical bond in the ionic model is really an

electric capacitor, the students can be shown that the ionic model is equivalent to a

capacitive electric circuit that can be solved to predict the bond valences, hence the

bond lengths. The only information needed for this exercise is the bond network,

viz: how the atoms are linked (Sect. 6.1 of [1]). Such a presentation shows how

results from one field (physics) can often be used in a different field (chemistry).

Electrical circuits that have the same properties as a non-electrical system (in this
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case a chemical bond network) are called equivalent circuits, because similar

mathematical ideas are present. In both cases the node equation is a physical

restriction that must be obeyed (the sum of the bond valences must equal the atomic

valence) while at the same time the loop equation ensures that the valence of each

atom is distributed among the bonds as equally as possible. The network equations

illustrate why the bonds formed by an atom are not all the same length, but depend

on the coordination numbers of all the atoms in the compound.

Knowing how to calculate bond lengths may not be important in an introductory

class, but knowing how the bonds are arranged around an atom is. The popular

explanation in terms of orbitals is misleading since assigning electrons to particular

orbitals gives a false view of how electrons behave in an atom. If the orbital model

were correct, all the elements in periods 2 and 3 of the Periodic Table would form

four bonds pointing towards the corners of a tetrahedron, but not all of these

elements adopt this arrangement as shown in Table 1. Nearly half of the elements

that are tetrahedrally coordinated are also found with other coordination numbers.

The orbital model explains three- and four-coordination by assuming the orbitals

hybridize with triangular and tetrahedral symmetry, respectively, but one third of

the elements in this table are found in five, six, or seven coordination which the

orbital model cannot even explain, let alone predict. Higher coordination numbers

are dismissed as being the result of “ionic bonding” with the implication that ionic

bonds are somehow unpredictable, but even the orbital model is unable to predict

whether an atom will adopt two, three, or four coordination; it only explains how

the bonding can be described once the coordination number is known.

Even a cursory glance at the numbers in Table 1 shows that the real determinant

of the coordination number is the size of the atom with the largest atom being

sodium and smallest nitrogen. Some atoms, particularly the alkali metals, are found

with more than one coordination number. This allows the atom to adopt a wider

range of bonding strengths in order to match the bonding strength of the counterion.

According to the principle of maximum symmetry (Eq. 1 in [1]) the bonds are

assumed to adopt the most symmetric possible arrangement around the atom,

ideally an arrangement in which all the bonds are equivalent by symmetry

(Sect. 6.2 of [1]). For three coordination this is a triangle, for four it is a tetrahedron,

and for six it is an octahedron. Five and seven coordination are rarely found as they

A BB A B A

Fig. 4 A chain of unequally spaced cations (A) and anions (B) having valences of þ1 and �1 vu,

respectively. The exercise is to draw the lines of field

Table 1 Frequently

encountered coordination

numbers to oxygen for atoms

in their highest oxidation state

Group 1 2 13 14 15 16 17

Period 2 Li Be B C N

4,6 4 3,4 3 3

Period 3 Na Mg Al Si P S Cl

4–7 6 4,5,6 4 4 4 4
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have lower symmetry. There are other factors that affect the bond geometry. For

example, the symmetry may be lowered by steric constraints or by electronic

anisotropies such as the presence of stereoactive lone pairs described in Sect. 7

of [1] and Sect. 5.

The bonding of oxygen around zinc illustrates the way in which the same atom

can adopt different coordination numbers. Zinc adopts a high symmetry coordina-

tion with four (tetrahedral) and six (octahedral) coordination, but not with five,

where at least two symmetry-independent bonds are needed in a three-dimensional

structure. Although zinc has an average coordination number of 5.0, only 15% of

zinc atoms are found with five coordination while 58% are four coordinate and 35%

are six coordinate. Zinc has a bonding strength of 2/5.0 ¼ 0.40 vu. When it is

octahedrally coordinated it forms bonds with a valence of 2/6 ¼ 0.33 vu but when it

is tetrahedrally coordinated it forms bonds with a valence of 2/4 ¼ 0.50 vu. Since

oxygen has a bonding strength of�0.50 vu, ZnO favors the higher bonding strength

and is tetrahedrally coordinated. On the other hand, carbonate has a bonding

strength of only 0.22 vu, causing zinc in ZnCO3 [3] to adopt octahedral coordina-

tion where the average bond valence of 0.33 vu is a better match.

5 Lone Pairs

The influence of lone pairs on geometry is a topic that cannot be avoided. This is a

good place to introduce the subject since the discussion of the arrangement of bonds

around an atom offers a natural entrée into a classroom discussion of the role of lone

pairs. The good news is that the valence shell electron pair repulsion (VSEPR)

model [4] is compatible with bond valence theory. VSEPR gives a good description

of the geometry of atoms containing lone pairs that are fully stereoactive, but it does

not address the question of why some lone pairs are inactive or only partially

stereoactive. The only difference between the VSEPR model and bond valence

theory lies in replacing the discrete electron pair explanation of the VSEPR model

by a flexible distribution of valence electrons and lone pairs.

Lone pairs are found in some of the heavier cations, e.g., Tl+, Pb2+ and Bi3+, but

by far the most important lone pairs are those found in anions, which always contain

lone pairs because their anion valence is always less than their maximum cation

valence (Sect. 5 of [1]). Oxygen is the most commonly found anion and its

stereochemistry is dominated by its two lone pairs as described in Sect. 7.1 of

[1]. The presence of lone pairs gives anions the flexibility to form bonds that are

stronger than those normally allowed by the valence matching rule (Eq. 9 in [1]),

but it can only do this if the bonding and lone pair electrons rearrange themselves

within the valence shell, giving rise to the asymmetric coordination described by

the VSEPR model. The influence of the lone pair as a function of the bonding

strength of the cation is illustrated in Table 2 in [1] and Fig. 5. When the cation

bonding strength is less than the anion bonding strength (SO ¼ �0.5 vu) all the

bonds are equivalent and the lone pair is inactive. When the bonding strength of the
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cation is larger than that of the anion, the bonds split into short (primary) bonds and

long (secondary) bonds. The primary bonds link to the strongly bonding cation,

forming bonds whose valence is equal to the bonding strength of the cation and

whose geometry is given by the rules of the VSEPR model. The secondary bonds

are longer and link to cations with a lower bonding strength. As the cation bonding

strength increases, so does the valence of the primary bonds causing the secondary

bonds to become weaker, eventually leading to the case where the secondary bonds

vanish as shown in Fig. 5. This latter is the situation described by the VSEPR model

which ignores the presence of secondary bonds. Bond valence theory includes the

VSEPR model but supplements its description of the arrangement of the ligands by

predicting when the lone pairs will be stereoactive. It also predicts the valences and

lengths of the primary and secondary bonds. The angles between the bonds are

determined, not by the arrangement of electron pairs, but by the solid angles

occupied by the electrostatic flux linking the core to the bonding electrons and

lone pairs (Table 3 in [1]).

6 Ball-and-Stick (Covalent) Model

Although the ionic model is often thought to apply only to compounds composed of

ionic bonds, Sect. 5 of [1] shows that its application is almost universal; only

homoionic and delocalized bonds are excluded. The ionic model describes covalent

and ionic bonds without distinction because the electrostatic flux depends only on

the number of valence electrons and not on whether the bonding electrons lie closer

to the anion or cation, or somewhere in between. It has been customary to label

strong bonds as covalent, but attempts to define a covalent bond quickly run into

problems.
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Fig. 5 The valences of the

primary and secondary bonds

in oxygen as a function of the

bonding strength of the

principal cation
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The ideal covalent bond is most closely associated with the original ball-and-

stick model in which the bond is assumed to be formed by a pair of electrons. Such

bonds all have valences of 1.0 vu. This model can be derived from the ionic model

or more generally from the core-and-valence-shell picture, by considering only

those atoms whose valence is equal to their coordination number, a condition

originally assumed in the ball-and-stick model of organic chemistry. In a compound

where all the atoms obey this restriction, the bonds have a valence of exactly 1.0 vu

(see Sect. 8 of [1]). This is the situation found for carbon and hydrogen in

hydrocarbons where all the bonds are electron pair bonds and all are equivalent.

The ball-and-stick model implicitly assumes that there is some intrinsic stability

associated with the electron pair bond, perhaps because of the frequency with which

these bonds are found in molecules, but attempts to extend the model beyond

hydrocarbons involve introducing complications such as resonance hybrids and

hydrogen bonding.

Bond valence theory assigns no special stability to electron pair bonds, but

instead shows that the topological constraints responsible for the formation of

molecules are also the constraints that favor for electron pair bonds. If C–H

bonds have a valence of 1.0 vu, the hydrogen atom must terminate the bond

network, so that all hydrocarbons are necessarily molecular. Similarly, halogens

bonded to atoms with bonding strengths of 1.0 vu or greater can form only one

bond; hence, they too will terminate the bond network and result in the formation of

molecules. Because it is more difficult to visualize the extended structure of a solid

than to visualize the structure of a molecule, the teaching and theory of chemical

structure has tended to focus on the bonding in molecules. The unrecognized

consequence is that this overemphasizes the importance of electron pair bonds

and the consequent assumption that they have a special stability.

When organic molecules contain nitrogen or oxygen atoms, the conditions for

the ball-and-stick model are no longer satisfied, and because these atoms have

atomic valences that are too large to be saturated by an electron pair bond, they also

form secondary bonds. In general, organic compounds containing these atoms do

not strictly obey the rules of the ball-and-stick model, but they continue to be

correctly described by bond valence theory which predicts, for example, how the

formation of hydrogen bonds changes the chemistry of the molecule.

6.1 Ionic Versus Covalent

One of the many attractive features of bond valence theory is that it provides a

single description of a bond that spans the whole range of bond types with valences

ranging upwards from zero. Because bonds form a continuum, the theory makes no

distinction between ionic and covalent bonds; all bonds obey the same set of rules.

Yet the use of the terms “ionic” and “covalent” is so widespread that their

usefulness cannot be questioned. Some might define covalent bonds as those that

share bonding electrons and ionic bonds as those formed by the electrostatic
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attraction of oppositely charge ions, but this is unsatisfactory because it is impossi-

ble to know where the valence electron are. An alternative definition identifies a

bond as ionic when the electronegativity difference between the terminal atoms is

greater than some threshold. This is more precise, but the choice of threshold is

always arbitrary. If it is useful to make the distinction, a convenient rule of thumb is

to label the primary bonds formed by an anion with stereoactive lone pairs as

covalent; and to label all other bonds as ionic. According to this definition, the S–O

bonds in Na2SO4 are covalent, but Na–O bonds are ionic. The short (primary)

bonds of 0.57 vu in corundum, Al2O3, would be called covalent, but the longer

(secondary) bonds of valence 0.43 vu would be called ionic (see Table 2 in [1]). The

exception would be the bonds in hydrocarbons which have no lone pair anions but

are normally considered to be covalent. It is a simple rule which captures the

essence of the terms while avoiding the temptation to assign degrees of ionicity

or covalency to a particular bond. The bond valence is sufficient to identify where

on the continuum a particular bond lies, and one should avoid the temptation to

believe that the rules that apply to ionic bonds are different from those that apply to

covalent bonds.

7 Lewis Acid and Base Strengths of Complex Ions

The presence of strongly bonding cations causes oxygen to form strong primary

bonds, leaving the unused oxygen valence to form secondary bonds. This creates

complex anions in which, for example, primary S6+–O2� bonds with valences of

1.5 vu create a complex SO4
2� anion within which the bonds can be described as

covalent (Sect. 6.1). The oxygen atoms have unused residual valence of �0.5 vu

with which they form secondary bonds to a cation with a smaller bonding strength,

such as Na+. As this secondary bonding strength is equal to that of water, the Na–O

bond is easily broken in aqueous solution, but the bonding strength of the S6+ atom

is a poor match for water and the S–O bonds remain unbroken. The complex sulfate

anion is not decomposed by the water and remains intact even in solution. The

residual (external) valence of the sulfate anion is �2 and assuming each oxygen

atom forms a total of four bonds, one primary and three secondary, the sulfate anion

has a coordination number of twelve giving it a bonding strength of �0.17 vu. This

is also a measure of the Lewis base strength of the sulfate ion.

In the case of the sulfate ion, all the oxygen atoms are equivalent and all have the

same Lewis base strength, but in the disulfate ion, S2O7
2�, formed by two tetrahe-

dral sulfate ions sharing a bridging oxygen atom (Fig. 10 in [1]), the bridging and

terminal oxygen atoms are chemically distinct. The two bonds formed by the

bridging oxygen atom to sulfur cannot have valences greater than 1.0 vu, and if

their valences are both 1.0 vu, the atomic valence of oxygen is already saturated.

The bonding strength (or Lewis base strength) of this oxygen is close to zero but

that of the six terminal oxygen atoms is �2/18 ¼ �0.11 vu. The bonding strength
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of the disulfate ion is only �0.11 vu compared to the bonding strength of �0.17 vu

of the sulfate ion.

More interesting is the behavior of the nitrite ion, NO2
�. Within the complex ion

the oxygen atoms are the anions (V ¼ �2 vu) and the nitrogen is the cation

(V ¼ þ3.0 vu). The N–O bonds have valences of 1.5 vu, which satisfies the valence

of nitrogen but leaves the oxygen atoms each with a residual valence of �0.5 vu, as

shown in Fig. 6a. The lone pairs on all the atoms are stereoactive, making the Lewis

base strengths of the oxygen atoms (corresponding to their secondary bonds) equal

to �0.17 vu, the same as that of the sulfate ion. The nitrogen has an unfilled

coordination site opposite its stereoactive lone pairs, but as it is a cation and its

valence is fully satisfied by the two N–O bonds, it has a Lewis acid strength of zero.

Nevertheless, it can form bonds, typically to transition metals. These are tradition-

ally described as dative bonds in which both electrons are supplied by the lone pair,

but this explanation is an oxymoron, since lone pairs are, by definition, non-

bonding, hence unable to form a bond. In practice, since nitrogen has a larger

electronegativity than any of the transition metals, it can form an M–N bond in

which nitrogen acts as the anion and M as the cation. Contrary to the dative bond

explanation, it does not use its lone pairs for this purpose, rather it shares the

external valence of the nitrite ion,�1.0 vu, which is normally expressed only by the

oxygen atoms.

Figure 6b shows that although the nitrogen acts as a cation in relation to its bonds

to oxygen, it has a Lewis base strength and acts as an anion with respect to the

external bonds. The residual charge of �l vu on the nitrite anion is distributed in

Fig. 6b over all three atoms rather than just the two oxygen atoms as shown in

Fig. 6a. Contrary to what one would expect, when the nitrogen atom forms an

external bond, the N–O bonds get shorter, not longer. The net valence on N is still

+3 and the lone pair is still non-bonding. In calculating the valence sum around

nitrogen the valence of the external bond is subtracted from that of the internal

bonds as suggested by the directions of the arrows in Fig. 6b. As the bonding

electrons in Fig. 6b are more uniformly distributed around the nitrogen than in

Fig. 6a, the lone pair is less stereoactive.

Water is an example of a complex which has a Lewis base function (through

oxygen) and a Lewis acid function (through hydrogen). For a neutral complex such

N

O

O

N

O

O

1.
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7
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a b

Fig. 6 The structure of (a) the free nitrite ion and (b) the nitrite ion coordinated to a cation. The

valence of the bonds is shown. For simplicity the oxygen atoms are shown as forming only one

external bond, but they normally would be expected to form three with valences of (a) �0.17 vu

and (b) �0.10 vu. The bond valence is positive if the arrow points away from the atom and

negative if it points towards the atom
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as water, the sum of the valences of the external bonds around the complex must be

zero. The residual positive valence of the Lewis acid functions must equal the residual

negative valence of the Lewis base functions. The formation of hydrogen bonds is only

possible if the oxygen atom also forms external bonds with the same total valence.

8 Hydrogen, Hydrogen Bonds, and Water

At some point, every course on chemistry has to recognize that water is the most

pervasive and important compound in terrestrial chemistry, since our very existence

depends on its unique chemistry. Its properties arise from its ability to form

hydrogen bonds whose unusual properties derive from the unique nature of the

hydrogen atom: the only atom with no core electrons and no possibility of having a

lone pair of electrons.

The unique properties of hydrogen and hydrogen bonds are described in

Sect. 8.1.1 of [1]. Suffice it to say here that without an electron core, there is

nothing to prevent the whole hydrogen atom, electron and nucleus, from moving

into the overlap region, and without a lone pair, there is nothing to prevent hydrogen

from forming a second bond (see Fig. 11 in [1]). Because the valence shells of the

two atoms to which hydrogen is bonded are both full they are unable to overlap with

each other, causing the O–H–O bond to be stretched. According to the distortion

theorem (Eq. 5 in [1]), the hydrogen atom moves off center towards the atom with

the larger Lewis base strength. The valences of the two bonds formed by hydrogen

in the O–H. . .O hydrogen bond are 0.8 and 0.2 vu. Because the two O–H bonds in

the H2O molecule have a valence of 0.8 vu, the oxygen atom has a residual valence

of �0.4 vu, which if the oxygen atom is four coordinate, gives it a Lewis base

strength of �0.2 vu, leaving the water molecule ideally matched to itself.

The magnitude of the 8:2 valence split and the 180� O–H. . .O angle of the

normal hydrogen bond can be predicted from the observed closest approaches of

oxygen atoms in other compounds [5]. Because the hydrogen bond can be found in

a wide range of chemical contexts, some hydrogen bonds are more, and some less,

asymmetric than this norm (see Fig. 12 in [1]). Those that are more symmetric are

linear and have the terminal atoms closer together. These are known as short or

“strong” hydrogen bonds, though in reality because they are strained, they are

weaker than normal hydrogen bonds even though the valence of the acceptor

(longer) H. . .O bond is larger. The more asymmetric hydrogen bonds are longer

and usually bent. The important chemistry of the hydrogen bond arises from the

valence of the H. . .O bond still being large enough to have a significant effect on

the chemistry, but weak enough to be easily broken. Clearly any hydrogen bond

will be broken in aqueous solution as it is well matched to the bonding strength of

water, a property that makes life possible.

Because the hydrogen bond is normally asymmetric, hydrogen has two different

bonding strengths, 0.8 vu and 0.2 vu (see Table 1a in [1]), with the result that it

often links two structural components with different Lewis base strengths. If one
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focuses only on isolated molecules, hydrogen is described as forming just one bond,

but this overlooks the near ubiquitous presence of hydrogen bonding under ambient

conditions. The formation of a hydrogen bond reduces the valence of the donor

O–H bond from 1.0 to 0.8 vu, thereby activating the molecule’s Lewis base

functions by �0.2 vu for each hydrogen bond it forms. For example, ammonia,

NH3, would appear to be a simple stable molecule, but the hydrogen atoms will

always form hydrogen bonds if any hydrogen bond acceptor is present, and in doing

so, they activate the Lewis base function of the nitrogen atom, resulting in nitrogen

being able to form a fourth bond with a valence of about 0.6 vu, and incidentally

forcing its lone electron pair to lose its stereoactivity. Without the formation of

hydrogen bonds, the nitrogen atom would be unable to act as a Lewis base because

its 3.0 vu of valence are fully committed to the three N–H bonds. Many of the Lewis

base functions of molecules depend on the formation of hydrogen bonds, and only if

the hydrogen bonds are taken into account are the chemical properties of the

molecule properly described.

Knowing the size of the bonding strengths of water leads directly to a discussion

of the properties of solutions (Sect. 9 of [1]). In sodium chloride both ions have

bonding strengths of 0.17 vu. They are not only well matched to each other but also

well matched to water (Eq. 9 in [1]). Consequently NaCl not only readily dissolves

in water, but it also readily crystallizes out when the water is removed. This is why

the oceans are salty and inland seas are surrounded by salt flats. SiO2 in contrast is

insoluble because the bonding strengths of both silicon (1.0 vu) and oxygen

(�0.5 vu) are less well matched to water than they are to each other. Although

the silicon-oxygen match is not perfect, the Si–O bond is stable because oxygen has

lone pairs which allows the bond to form as long as the lone pairs on oxygen

become stereoactive, explaining why the Si–O–Si bonds in quartz are bent (Chap.

2.7.1). MgCO3 has ions that are well matched to each other (Mg2+: 0.33 vu and

CO3
2�: �0.22 vu) but less well matched to water giving it a very low solubility.

Other examples of solubility are discussed in Sect. 9.2 of [1].

9 Reactivity

A compound in which the valences are well matched is likely to be stable, whereas

one in which the bonding strengths differ by a factor of two is at its limit of stability

and likely to react with any compound that will lead to a better valence match.

The solubility of simple compounds is governed by the reaction between the

compound and water. It should provide students with an opportunity to predict

which compounds will dissolve in water, and what kinds of solids will be

found if the water is removed. Compounds in which the cation has a much larger

bonding strength than the anion crystallize with hydrated cations as this lowers

the bonding strength of the cation, while those in which the anion has the larger

bonding strength tend to crystallize with hydrogen atoms attached to the anion as

this tends to lower the bonding strength of the anion.
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For example, consider what structure might result from a combination of Mg2+,

Cl7+, and O2�. Chlorine has the largest bonding strength of 1.75 vu and it must

make four such bonds to oxygen to give ClO4
� which has a bonding strength of

1/12 ¼ 0.08 vu (see Table 1c in [1]). This bonding strength is too small to form

bonds with magnesium (SMg ¼ 0.33 vu) so anhydrous Mg(ClO4)2 is not easy to

prepare and if it is prepared it will be hygroscopic, drawing in water to form Mg

(H2O)6 complex ions with a bonding strength of 0.17 vu. When the water is

removed the anhydrous compound is not recovered, but rather crystals of the

well-matched Mg(H2O)6(ClO4)2 are formed. Other examples can be found in

Sect. 10 of [1].

10 Epilogue

The bond valence theory is a chemist’s model of chemical structure. It gives a

graphical picture of the chemical bond based on traditional electron counting rules.

It uses classical physics concepts because, since the atoms in compounds under

ambient conditions are in their ground state, quantum descriptions are in most cases

not needed. The model is derived from a picture of the atom that is simple enough

for an introductory course, but physically accurate enough to allow it to be used as

the basis for introducing the full quantum treatment when this is required. The

theory leads naturally into the more advanced quantum description that students

will meet later, but it avoids the unphysical assumptions inherent in the simplified

orbital and Lewis models often found in introductory texts.

It is a theory that involves only simple mathematics – a computer is rarely

necessary – yet its derivations lead to theorems that make it far more predictive than

most other models of chemical structure. These are not just a set of simplified rules

designed to provide an easy introduction to chemical structure, but theorems that

have shown themselves to be robust in solving complex research problems such as

understanding the chemistry that occurs at surfaces when crystals grow or dissolve

(see Chaps 6–9 of this volume), or with the diffusion of electrically conducting ions

through amorphous solids described in Chap. 5 of this volume.

Clearly bond valence theory does not contain the whole story. It cannot be used to

calculate energies or determine the distribution of the electrons that give rise to

bonding. This information requires a quantum treatment using the Coulomb potential,

but bond valence theory provides information that quantum theory cannot. It can be

used to determine the atomic positions that are required before quantum calculations

can be made. If the quantum approach is a physicist’s description of the atom, the

bond valence theory is the corresponding chemist’s description of the bond.

Bond valence theory provides more quantitative predictions of structure and

reactivity than other models currently in the chemical curriculum. At the same time

it gives a picture of bonding that allows problem structures to be analyzed in

physical terms. In short, it provides the long-missing theory behind the popular

but empirical model of the chemical bond.
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Appendix A: Glossary

This appendix defines the terms and conventional symbols used in bond valence

theory. Words written in italics are defined in this appendix.

Actual coordination number The coordination number observed for an atom in

a given compound

Anion The atom with the larger electronegativity forming a bond. Anions are

uncharged except in the ionic model where the anion carries a negative charge

equal to its negative valence
Anion bonding strength, SB The expected value of the valence of a bond formed

by an anion. It can be estimated by dividing the anion’s (negative) valence by its
expected coordination number. This is the same as Lewis base strength

Anion valence, VB The valence of an atom when acting as an anion. VB is a

negative number

Antibonding region A region on the side of an atom opposite to the bond.
Electrons in this region tend to weaken the bond

Atom type An atom of a particular element with a particular valence (oxidation

state)

Atomic valence, V The number of electrons in the valence shell that an atom uses

in bonding. The units of atomic valence are valence units, equivalent to one

bonding electron. Cation valences are taken as positive, anion valences as

negative

Bipartite graph The graph of a bond network in which the atoms are of two kinds

(e.g., cation or anion) with no bonds occurring between atoms of the same kind

Bond The chemical link between two neighboring atoms. In the ionic model, two
atoms are bonded if and only if they are linked by electrostatic flux

Bond network A topological description of the way in which atoms in a system

are linked by bonds
Bond strain index Root mean square deviation between the observed and ideal

bond valence averaged over all the bonds in the formula unit

Bond valence, S The number of valence electrons an atom uses to form a given

bond. In the ionic model it is equal to the electrostatic flux linking two ions. The
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units of bond valence are valence units (vu), equivalent to one bonding electron

pair. Bond valences are considered to be directed from the cation to the anion
Bonding electrons The electrons in the valence shell of an atom that are used for

forming bonds
Bonding region The region between two atoms where the valence shells overlap.

Electrons in this region form the bond
Bonding strength An estimate of the valence of the bonds formed by an ion. See

anion- and cation-bonding strength, Lewis acid- and base-strength
Cation The atom with the smaller electronegativity forming a bond. Cations are

uncharged except in the ionic model where the cation carries a positive charge

equal to its positive valence
Cation bonding strength, SA The expected value of the valence of a bond formed

by a cation. It can be estimated by dividing the cation’s (positive) valence by its
expected coordination number. This is the same as the Lewis acid strength

Cation valence, VA The valence of an atom when acting as a cation. VA is a

positive number

Chemical bond A localized interaction between two neighboring atoms. See bond
Complex A group of two or more atoms linked together by strong (primary or

covalent) bonds. Complexes may be ions carrying a formal charge (residual
valence) or neutral molecules

Coordination number, N The number of bonds formed by, or the number of

atoms surrounding, a given atom. See actual coordination number
Coordination sphere The environment of an atom including all its ligands
Covalent bond A bond may be referred to as a covalent bond if it has a large bond

valence. A primary bond is usually regarded as a covalent bond.

Electron pair bond A bond of valence 1.0 vu involving exactly one pair of

electrons

Electronegativity, SE The property of an element that gives a measure of the

electric potential at the surface of the atomic core. The scale used in the bond

valence model sets the electronegativity equal to the maximum (cation) bonding
strength of the atom. This is equal to the number of electrons in the valence shell
divided by the average coordination number adopted by the atom in this valence

state when bonded to oxygen ligands

Electrostatic flux The electrostatic flux linking two atoms in the ionic model is the
bond valence

External bond A bond formed between an atom in a complex and an atom that is

not part of the complex. In general the valence of an external bond is smaller than

that of a bond internal to the complex

Global instability index,G (also GII) The root mean square deviation of the bond
valence sums from the atomic valences averaged over all atoms in the formula

unit

Heteroionic bond A bond formed between a cation and an anion
Homoionic bond A bond formed between two cations or between two anions
Ideal bond valences Bond valences predicted for a valence compound using the

network equations
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Ionic model A model in which every atom is assigned as either a cation or an

anion, each carrying a charge equal to its valence. A bond exists in this model

between two atoms if they are linked by electrostatic flux. This model can be

applied to any valence compound without regard to whether the bonding is ionic
or covalent

Lewis acid strength, SA The cation bonding strength, specifically when this is the
bonding strength for the external bonds formed by an atom of a complex. It is
equal to the residual valence of an atom acting as a Lewis acid divided by the

expected number of external bonds
Lewis base strength, SB The anion bonding strength, specifically when this is the

bonding strength for the external bonds formed by an atom of a complex. It is
equal to the residual valence of an atom acting as a Lewis base divided by the

expected number of external bonds
Ligand An atom bonded to the atom under consideration

Lone pair A pair of valence shell electrons not involved in bonding

Network equations The Kirchhoff equations used to solve the capacitive electric

circuit equivalent to the bond network of a valence compound
NO The average coordination number when oxygen is the ligand
Overbonded Refers to an atom whose bond valence sum exceeds its atomic

valence
Overlap region The region in which the valence shells of two atoms overlap to

form a bond
Primary bond A bond with a larger than average valence, formed by an atom with

one or more stereoactive lone pairs of electrons
Residual valence The valence available to an atom in a complex for forming

external bonds after the valences of the internal bonds have been satisfied

SA Lewis acid strength, see cation bonding strength
SB Lewis base strength, see anion bonding strength
SE Electronegativity
Secondary bond A bond with a smaller than average valence, formed by an atom

with one or more stereoactive lone pairs of electrons
Surface instability index The root mean squared deviation of the bond valence

sum from the atomic valence averaged over the atoms forming the surface of a

solid

Underbonded Refers to an atom whose bond valence sum is less than its atomic
valence

Valence of an atom, see Atomic valence
Valence of a bond, see Bond valence
Valence compound A compound having a bond network with a bipartite graph.

All the bonds have an anion at one end and a cation at the other

Valence shell The outer electron shell of an atom containing the electrons

involved in bonding. It contains a number of bonding electrons equal to the

valence of the atom and possibly non-bonding lone pairs
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Valence unit (vu) 1 valence unit of atomic valence corresponds to one electron,

1 vu of bond valence corresponds to one pair of electrons since each atom

contributes one electron to the bond
Valence vector A vector with the magnitude of the bond valence directed from the

cation to the anion
VA Cation valence (positive)
VB Anion valence (negative)
VE Lone pair
VR Residual valence
vu Valence unit

254 Appendix A: Glossary



Appendix B: Programs Using Bond Valences

The appendix lists a number of programs and other sources that can be used for

calculating and manipulating bond valences.

BOND_STR

Author: Rodriguez-Carvajal J

Physica B (1993) 192:55–69

On http://extras.springer.com (links to extra material server) this list holds links to

the computer programs

FULLPROF, implemented in FULLPROF, calculates bonding geometry and bond

valences using CFL or CIF input files.

BONDVAL (Bond Valence Wizard)

Authors: Orlov IP, Popov KA, Urusov VS

J Struct Chem (1998) 39:575–579

On http://extras.springer.com (links to extra material server) this list holds links to

the computer programs

Bondval solves the network equations for a given bond network entered from the

keyboard

KDist

Author: Knizek K

On http://extras.springer.com (links to extra material server) this list holds links to

the computer programs

A freeware program for Windows, implemented in Kalvados, is used with powder

diffraction and crystal structure files. It can read structures from CIF and DFT

output files and has a function to calculate bond valence sums for the structure. The

user can modify or update (by hand) what R0 values you wish to use. It also has an

option to optimize structures based on bond valence sums.
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SoftBV

Author: Adams S

On http://extras.springer.com (links to extra material server) this list holds links to

the computer programs

An online program for calculating bond valences together with a discussion of bond

valence parameters and their dependence of atom softness.

SPuDS

Authors: Lufaso MW, Woodward PM

Acta Cryst (2001) B57:725–738

On http://extras.springer.com (links to extra material server) this list holds links to

the computer programs

A program for predicting the structures of perovskite related-compounds. See

Chap. 4 in this volume for details.

VALENCE

Author: Brown ID, Hormillosa C, Healy S, Stephen T

J Appl Cryst (1996) 29:489–480

On http://extras.springer.com (links to extra material server) this list holds links to

the computer programs

Calculates bond valences for bond lengths entered from the keyboard and vice

versa. It has other features that allow bond valences sums and average bond lengths

to be calculated. It can also be used to determine bond valence parameters for a

series of coordination environments entered on the keyboard. Only available in

DOS or C++ source code. A Windows interface is needed and would be welcomed.

VALMAP

Author: Gonzales-Platas J, Gonzales-Silgo C, Ruiz-Peres C

J Appl Cryst (1998) 31:826–827

J Appl Cryst (1999) 32:341–344

On http://extras.springer.com (links to extra material server) this list holds links to

the computer programs

A program for plotting maps based on the valence sum of a target atom placed at

arbitrary points in the crystal. Various functions are available for calculating the

bond valences or other quantity such as valence differences.

VaList

Author: Wills AS

On http://extras.springer.com (links to extra material server) this list holds links to

the computer programs

VaList requires an input list of bond lengths in CIF, GSAS, ICSD or FULPROF

formats. It calculates bond valences and their sums around individual atoms as well

as the global instability index and occupation numbers where a site is occupied by

two different atoms.
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3DBVSMAPPER

Authors: Sale M, Avdeev M

J Appl Cryst (2012) 45:1054–1056

A program for automatically generating bond-valence landscapes embedded in the

Accelrys Materials Studio

BOND VALENCE PARAMETERS (see also SoftBV)

On http://extras.springer.com (links to extra material server) this list holds links to

the computer programs

Compiled by I.D. Brown

A compendium of some 1,700 published (and some unpublished) bond valence

parameter sets. The user should consult the original papers to confirm the suitability

of these parameters for their own purposes.
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Index

A

Absolute hardness/softness, 115, 125

Acetates, 4, 47, 53

Acidity, 191

Adsorbates, 205, 220

Ag16I12P2O7, 133

Alkali ion pathways, 137

Alkali metal oxides, 4

Althupite, 166

Ammonium cation, 40, 48

Anions, 23, 161

multiple, 119

Aqueous speciation, 161

Atomistic forcefield, 91

B

Ball-and-stick model, 38, 234, 243

Battery materials, 129

Ba2YCu3O7, 6

BCP. See Bond critical point (BCP)

Bipartite graph, 23

Birnessite, 137

Bixbyite, 84

Bond critical point (BCP), 94

Bonding geometry, 240

Bond path (BP), 94

Bonds, 11

angles, 29

critical points, 91

flux, 27

geometry, 11, 233

ionicity, 103

length, 2, 26

network, 22

softness parameter, 115

strain index, 55

strength, 2, 4, 11, 20

Bond valences, 1, 11, 17, 161, 233

electron density, 84

ideal, 28

maps, 135

mismatch pathways, 132

parameters, 19, 91

site energy (BVSE), 93, 110, 129, 132

sums (BVSs), 18, 59, 61, 110, 205

theory, 11, 191, 236

Borates, 3, 161, 163, 165, 176

crystallization, 180

Brønsted acidity QSARs, 193

C

Ca3Al2Si3O12, 83

Cages, 149

Capacitance, 4, 27

Cassiterite, 199

Cations, 23

Chalcogenides, 116

Channels, 149

Chromium (VI), 41

Complex ions, 39

Coordination numbers, 16, 22, 91, 121,

234, 239

Core-and-valence-shell picture, 13

Coulomb potential, 13

Covalent bonds, 38, 233

Crystal faces, 166

Crystallization, 161, 178

Crystal structure determination, 1
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D

Density functional theory (DFT), 208

functionals, 214

Dioxouranium (VI), 164

Dissolution, 161

Distortion theorem, 19

E

Electron density, 91

Electronegativity, 21, 103, 239

Electroneutrality rule, 26

Electronic chemical potential, 115

Electronic constraints, 32

Electrons, locations/functions, 13

Electrostatic valence principle, 1

Energy storage materials, 129

Equal valence rule, 110

Euclidean space, 55

Excited states, 17

F

Faraday lines of field, 14

Fluorides, 124

G

Garnets, 59, 80, 83

GeFe2O4, 77

Gibbsite, 199

Glasses, ion-conducting, 138

Global instability indices (G), 44, 54,

59, 193

Goethite, 199

H

HgCr2O4, 77

Hg–Hg bond, 31

Homoionic bond, 23, 31

Hydrogen bonds, 4, 44, 207, 233, 247

Hydrogen phosphate ions, 45

I

Incommensuration, 48

Ionic conduction, 129

Ionic model, 24, 233, 237, 244

Ionization potentials, 14

Ion migration pathways, 129

Ion transport pathways, 135

J

Jahn–Teller distortions, 42, 60

quadrupolar, 33

L

La2Sn2O7, 72

Lattice strain, 6

Lewis acids/bases, 23, 39, 52, 170, 233, 245

strengths, 11, 40, 245

Lithium ferrite, 84

Lone pairs, 11, 17, 33, 233, 242

M

Magnesium, 49

Maximum symmetry, 16

MgAl2O4, 77

MgO, 33, 34, 205, 208, 225

Molybdates, 3

Monte Carlo, 7, 131

Morphology, 161

N

Na3Cr2As3O12, 83

Na3Cr2Li3F12, 83

Network equations, 28

Nitrides, 4

Nobleite, 184

Nonbonded contacts, 6, 44

Nonvalence compounds, 31

O

Octahedral tilting, 60, 65

Octet rule, 23, 52, 239

Orthosilicates, 51

Overlap, 15, 24, 40, 94, 238

region, 18, 247

Oxides, 34, 124, 191, 198, 205

surfaces, 205

ternary/quaternary, 59

Oxyacid glass, 141

Oxyhalide, 135

P

Pauling L., electrostatic valence principle, 1

Perchlorate ion, 45

Perovskites, 6, 48, 59, 77, 83, 137, 208

Phyllosilicates, 172
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Polyhedron chains, 161, 166

Principle of maximum symmetry, 16

Pseudo-atom, 31

Pyrochlores, 59, 69

Q

QTAIM. See Quantum theory of atoms in

molecules (QTAIM)

Quantitative structure–activity relationships

(QSARs), 191

Quantum effects, 12

Quantum model, 234

Quantum theory of atoms in molecules

(QTAIM), 13, 94

R

Rare earths, 6, 55, 117

Reactivity, 52, 248

Reconstruction, 205

Residual valence, 40

Reverse Monte Carlo (RMC), 131

Rietveld refinements, 83

RMC. See Reverse Monte Carlo (RMC)

Rutile, 199

S

SBE model. See Solvation, bond strength, and

electrostatic (SBE) model

Scaling, 155

Scandium (III), 41

Schoepite, 178, 182

SCMs. See Surface complexation models

(SCMs)

Second-order Jahn–Teller (SOJT) effect, 40

SII. See Surface instability index (SII)

Silicates, 4, 51, 53, 141

phyllosilicates, 172

SOJT effect. See Second-order Jahn–Teller
(SOJT) effect

Solid electrolytes, 129

Solubility, 49

Solution chemistry, 50

Solvation, bond strength, and electrostatic

(SBE) model, 201

Spinels, 59, 76

SPuDS. See Structure Prediction Diagnostic

Software (SPuDS)

Steric constraints, 43

Steric effects, 11

Strontium titanate, 207

Structure modeling, 59

Structure prediction, 11, 59

Structure prediction diagnostic software

(SPuDS), 6, 48, 59

Sulfate anion, 39

Sulfides, 96, 101, 123, 124

Superconductivity, 6

Surface complexation models (SCMs),

191, 198

Surface instability index (SII), 207

Surfaces, 1, 7, 11, 16, 35, 40, 205

adsorbates, 207

aqueous solution, 166

crystal faces, 168

energies, 166

functional groups, 191

Hirshfeld analysis, 151

oxide, 201

relaxation, 167

solid electrolyte, 134

structure, 161, 205

T

Teaching, 233

Terminations, 161

Titanium (IV), 41

Transition metals, 4, 17, 32, 40, 131, 246

Trifluoroacetate ions, 4

Tunellite, 184

Tungsten, 6

U

Uranates, 3

Uranyl minerals, 161, 172, 182

crystallization, 178

Uranyl oxide-hydroxyl-hydrates, 161, 165

V

Valence compounds, 23

Valences, 1, 16

map, 30

matching, 4, 20, 233

shells, 238

sum rule, 18, 110

units, 20

vector, 29

Valence shell electron pair repulsion (VSEPR)

model, 33

Valence states, multiple, 228

Vanadates, 3
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Vanadyl cation, 41

VSEPR model. See Valence shell electron pair

repulsion (VSEPR) model

W

Water, 49, 191, 195, 247

Y

Y3Al2Al3O12, 81

Y3Fe2Fe2O12, 81

Y3Ga2Ga3O12, 81

Y2Ru2O7, 72

Y2Ti2O7, 72
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