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Preface

This book is intended for statisticians working in clinical vaccine development in the
pharmaceutical industry, at universities, at national vaccines institutes, etc. Statisti-
cians already involved in clinical vaccine trials may find some interesting new ideas
in it, while colleagues who are new to vaccines will be able to familiarize them-
selves quickly with the statistical methodology.

A good knowledge of statistics is assumed. The reader should be familiar with
hypothesis testing, point and confidence interval estimation, likelihood methods,
regression, mathematical and statistical notation, etc. A book that would provide
the necessary background is: Armitage P., Berry G. and Matthews J.N.S. Statistical
Methods in Medical Research, 4th edition, Blackwell Science, New York, 2001.

The scope of the book is practical rather than theoretical. Many real-life examples
are given, and SAS codes are provided, making application of the methods straight-
forward. SAS codes are also given for accurate sample size estimation, including
codes for the estimation of required sample sizes for equivalence and noninferiority
vaccine trials.

The first two chapters are introductions to the immunology of vaccines, and they
will provide the reader with the necessary background knowledge. In Chap. 1, the
fundamentals of vaccination, the immune system and vaccines are presented. The
principle of vaccination is explained, and the major infectious microorganisms are
introduced. The primary defence mechanism of microorganisms – antigenic vari-
ation – is discussed. A sketch of the immune system is given so that the reader
will understand roughly how it works, including the distinction between the innate
and the adaptive immune system. The chapter proceeds with a short section on the
basics of tumour immunology. An overview of the several types of vaccines for
viruses and bacteria, from the first generation live-attenuated vaccines to third gen-
eration vaccines such as recombinant vector vaccines, DNA vaccines and virus-like
particles vaccines is given. As an example of a parasite vaccine, a summary of the
state of affairs of malaria vaccine development is given. Therapeutic vaccines for
noninfectious diseases are briefly touched upon. Humoral immunity, the component
of the immune system involving antibodies that circulate in the humor, and cellular
immunity, the component that provides immunity by action of cells, are explained.
Antibody titres and antibody concentrations are introduced, and two standard assays
for humoral immunity, the haemagglutination inhibition test and ELISA, are dis-
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cussed. The distinction between T helper cells and T killer cells and their different
roles are explained. A number of assays for cellular immunity are briefly introduced,
including the ELISPOT assay.

Chapter 3 is the central one of the book. The four standard statistics to summarize
humoral and cellular immunogenicity data are introduced, and in the sections on the
statistical analysis of proportions the use of Wilson-type confidence intervals is pro-
moted rather than the more familiar Wald-type intervals. It is explained how exact
confidence intervals for the risk difference and the relative risk can be obtained.

In Chap. 4, two types of possible bias for antibody titres are discussed. The first
type of bias is due to how antibody titres are defined. An alternative definition is pro-
posed, the mid-value definition. With this definition, the bias is properly corrected.
This type of bias is largely of theoretical interest only. That cannot be said of the
second type of bias, which is of major practical importance. It occurs when titres
above (or below) a certain level are not determined. If this bias is ignored, the geo-
metric mean titre will be underestimated. It is shown how the method of maximum
likelihood estimation for censored observation can be applied to eliminate this bias.

Pre-vaccination or baseline antibody levels need not to be zero. Examples of
infectious diseases for which this can be the case are tetanus, diphtheria, pertus-
sis and tick borne encephalitis. Imbalance in pre-vaccination state, i.e., a difference
in baseline antibody levels between vaccine groups, can complicate the interpreta-
tion of a difference in post-vaccination antibody values. A standard approach to this
problem is analysis of covariance. But in case of antibody values one of the assump-
tions underlying this analysis, homoscedasticity, is not met. The larger the baseline
value the smaller the standard deviation of the error term. In Chap. 5, a solution
to this problem is offered. It is shown that the heteroscedasticity can be modeled.
A variance model is derived, and it is demonstrated how this model can be fitted
with SAS.

Many vaccine immunogenicity trials are conducted in an equivalence or nonin-
feriority framework. The objective of such trials is to demonstrate that the immuno-
genicity of an investigational vaccine is comparable or not less than that of a control
vaccine. In Chap. 6, the statistical analysis of such trials is explained, both for trials
with an antibody response as endpoint and trials with seroprotection or serocon-
version as endpoint. The standard analysis of lot consistency data is known to be
conservative, but a simple formula is presented which can be used to decide if the
lot sample sizes guarantee that the actual type I error rate of the trial is sufficiently
close to the nominal level. The chapter is concluded with a discussion of sample
size estimation for vaccine equivalence and noninferiority trials, including lot con-
sistency trials. Recommendations are given how to avoid that the statistical power
is overestimated.

Chapter 7 considers vaccine field efficacy trial. The aim of a field efficacy trial is
to demonstrate that a vaccine protects against infection or disease. First, an overview
of the different effects vaccines can produce is given. Next, some critical aspects
of such field efficacy trials are discussed. The three most common incidence mea-
sures for infection are presented: the attack rate, the infection rate and the force
of infection. The statistical analysis of field efficacy trials using these estimators is
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explained. The chapter then continues with the statistical analysis of recurrent infec-
tion data, which is known to be complex. The chapter is concluded with a discussion
of sample size estimation for vaccine field efficacy trial. It is shown that the stan-
dard method to estimate the sample size for a trial comparing two attack rates and
with the aim to demonstrate super efficacy is highly conservative. An SAS code to
compute sample sizes for trials comparing two infection rates is presented.

A correlate of protection is an immunological assay that predicts protection
against infection. The concept is the topic of Chap. 8. In clinical vaccine, trials cor-
relates of protection are widely used as surrogate endpoints for vaccine efficacy.
The function specifying the relationship between log-transformed immunogenicity
values and the probability of protection against infection, conditional on exposure
to the pathogen, is called the protection curve. It is demonstrated how the parame-
ters of the protection curve can be estimated from challenge study data and vaccine
field efficacy data. Also explained is how a threshold of protection can be estimated
from the protection curve. The generalizability of estimated protection curves is
discussed.

The final chapter, Chap. 9, addresses vaccine safety. To proof the safety of a vac-
cine is much more difficult than proving its efficacy. Of many vaccines millions of
doses are administered, which can bring very rare but serious adverse vaccine events
to light. In this chapter, some statistical aspects of vaccine safety are addressed.
Vaccine safety surveillance is briefly discussed, and some recent controversies are
recalled. The notorious problem of vaccine safety and multiplicity is discussed at
great length. Four different methods to handle this problem are presented, including
the recently proposed double false discovery method. The performance of the dif-
ferent methods is illustrated with the help of simulation results. The second part of
the chapter is dedicated to the analysis of reactogenicity data.

Amsterdam Jos Nauta
December 2009
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Chapter 1
Basic Concepts of Vaccine Immunology

1.1 Vaccination and Preventing Infectious Diseases

Then in 1798 Edward Jenner (...) published his work. As a young medical student Jenner
had heard a milkmaid say: I cannot take the smallpox because I have had cowpox. The
cowpox virus resembles smallpox so closely that exposure to cowpox gives immunity to
smallpox. (...) Jenner’s work with cowpox was a landmark, but not because he was the first
to immunize people against smallpox. In China, India, and Persia, different techniques had
long since been developed to expose children to smallpox and make them immune, and
in Europe at least as early as the 1500s laypeople – not physicians – took material from a
pustule of those with a mild case of smallpox and scratched it into the skin of those who had
not yet caught the disease. Most people infected this way developed mild cases and became
immune.

John M. Barry
The Great Influenza: The Epic Story of the Deadliest Pandemic in History

Vaccines take advantage of the body’s ability to learn how to ward off microorgan-
isms. The immune system can recognize and fight of quickly infectious organisms
it has encountered before. As an example, consider chickenpox. Chickenpox is a
highly contagious infectious disease caused by the varicella zoster virus. First, there
are papules, pink or red bumps. These bumps turn into vesicles, fluid-filled blisters.
Finally, the vesicles crust over and scab. Clinical symptoms are fever, abdominal
pain or loss of appetite, headache, malaise and dry cough. The disease is so conta-
gious that most people get it during their childhood, but those infected are the rest of
their life immune to it. Vaccines contain killed or inactivated (parts of) microorgan-
isms. These provoke the immune system in a way that closely mimics the natural
immune response to the microorganisms. Vaccination is a less risky way to become
immune, because, due to the killing or inactivation of the microorganisms, it does
not cause the disease.

Vaccination, together with hygiene, is considered to be the most effective method
of preventing infectious diseases. When not prevented, some infectious diseases
have proven to be mass killers. Plague, caused by the bacterium Yersinia pestis, has
been one of the deadliest pandemics in history. The total number of plague deaths
worldwide has been estimated at 75 million people, and the disease is thought to
have killed almost half of Europe’s population. The pandemic arrived in Europe in
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the 14th century, and it would cast its shadow on the continent for five centuries,
with one of the last big outbreaks occurring in Moscow in 1771. (The reader who
wants to learn how it was to be trapped in a plague-ridden city should read Giovanni
Boccaccio’s The Decameron (1353) or Daniel Defoe’s A journal of the plague year
(1722)).

The global death toll from the Spanish influenza pandemic (1918–1920), caused
by an influenza virus, is assumed to have been more than 30 million.

Malaria is a potentially deadly tropical disease transmitted by a female mosquito
when it feeds on blood for her eggs. In Africa, an estimated 2,000 children a day
die from the disease, leading in 2006 to a total number of deaths from the disease
of almost one million. The Bill and Melinda Gates Foundation is funding efforts to
reduce malaria deaths by 2,015, by developing more effective vaccines. The long-
term goal of the foundation is to eradicate the disease.

1.2 Microorganisms: Bacteria, Yeasts, Protozoa and Viruses

Microorganisms (also: microbes) are live forms that cannot be seen by the unaided
eye, but only by using a light or an electron microscope. The Dutch scientist Anton
van Leeuwenhoek (1632–1723) was the first to look at microorganisms through
his microscope. Microorganisms that cause disease in a host organism are called
pathogens. If a microorganism forms a symbiotic relationship with a host organism
of a different species and benefits at the expense of that host, it is called a parasite.

Bacteria are unicellular organisms surrounded by a cell wall and typically
1–5 �m in length. They have different shapes such as rods, spheres and spirals,
and reproduce asexually by simple cell division. The biological branch concerned
with the study of bacteria is called bacteriology. Examples of serious bacterial dis-
eases are diphtheria, tetanus, pertussis, cholera, pneumococcal disease, tuberculosis,
leprosy and syphilis.

Yeasts are unicellular organisms typically larger than bacteria and measuring
around 5 �m. Most reproduce asexually, but some also show sexual reproduction
under certain conditions. Yeasts are studied within the branch of mycology. Diseases
caused by yeasts are, among others, thrush and cryptococcosis.

Protozoa are unicellular organisms, more complex and larger than bacteria and
yeasts, typically between 10 and 50 �m in diameter. They usually are hermaphroditic
and can reproduce both sexually and asexually. Protozoa are responsible for wide-
spread tropical diseases such as malaria, amoebiasis, sleeping sickness and leish-
maniasis. The biological branch of parasitology includes the study of protozoa and
of certain multicellular organisms such as schistozoma and helminths (parasitic
worms).

In contrast with bacteria, yeasts and protozoa, which are cellular live forms,
viruses are too small to form cells (typically 0.05–0.20�m in diameter). In the
environment, they show no metabolism. For replication, a virus needs to intrude
a host cell and take over the cell metabolism to produce and release new virus
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particles. Viruses contain either DNA or RNA as genetic material. DNA viruses
include herpes-, adeno-, papova-, hepadna- and poxviruses. RNA viruses include
rhino-, polio-, influenza- and rhabdoviruses. Some RNA viruses have an enzyme
called reverse transcriptase that allows their viral RNA to be copied as a DNA ver-
sion (retroviruses). Well-known viral diseases are herpes, hepatitis B and smallpox
(DNA viruses), common cold, poliomyelitis, hepatitis A, influenza, rabies (RNA
viruses) and human immunodeficiency virus (HIV) (RNA retroviruses). The study
of viruses is called virology.

1.3 The Immune System

1.3.1 Basics

The immune system can distinguish between nonforeign and foreign (also: self and
nonself) molecules and structures. With this ability, it seeks to protect the organism
from invading pathogens – by detecting and killing them. The immune system has
two essential components, the innate (inborn) or nonspecific and the adaptive or
specific immune system.

The innate immune system provides an immediate, albeit nonspecific, response
to invading pathogens. It is triggered by cells and molecules that recognize certain
molecular structures of microorganisms, and it tries to inhibit or control their repli-
cation and spread. In vertebrates, one of the first responses of the innate immunity
to infection is inflammation, initiated by infected and injured cells that, in response,
release certain molecules (histamine, prostaglandins and others). These molecules
sensitize pain receptors, widen local blood vessels, and attract certain white blood
cells (neutrophils) circulating in the blood stream and capable to kill pathogens
by ingestion (phagocytosis) as a front-line defence. Neutrophils can release even
more signalling molecules such as chemokines and cytokines (among many oth-
ers: interferon-� ) to recruit other immune cells, including macrophages and natural
killer cells. Macrophages reside in tissue and also ingest and destroy pathogens.
Natural killer (NK) cells can detect infected cells (and some tumour cells) and
destroy them by a mechanism which is known as apoptosis, cell death characterized
by protein and DNA degradation and disintegration of the cell. The innate immune
system responds to microorganisms in a general way during the early phase of the
infection, and it does not confer long-lasting immunity. In vertebrates, the innate
immune system actives the adaptive immune system in case pathogens successfully
evade this first line of defence.

The adaptive immune system has the remarkable ability to improve the recog-
nition of a pathogen, to tailor a response specific to the actual structure of that
pathogen, and to memorize that response as preparation for future challenges with
the same or a closely similar pathogen. The adaptive immune system activates bone
marrow-derived (B cells) and thymus-derived cells (T cells), leading to humoral and
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cellular immunity, respectively (see also Chap. 2). In general, B cells make antibod-
ies that attack the pathogens directly, while T cells attack body cells that have been
infected by microorganisms or have become cancerous. When activated, B cells
secrete antibodies in response to antigens (from antibody-generating), molecules
recognized as nonself. An antigen can be a part of a microorganism, a cancerous
structure or a bacterial toxin. The antibodies that are produced are specific to that
given antigen. The major role of antibodies is either to mark the invaders for destruc-
tion (which, in turn, is effected by other immune cells) or to inactivate (neutralize)
them so that they can no longer replicate.

Like B cells, T cells have surface receptors for antigens. T cells can specialize
to one of several functions: They may help B cells to secrete antibodies (T helper
cells), attract and activate macrophages, or destroy infected cells directly (cytotoxic
T cells, also: killer cells). This improved response is retained after the pathogen has
been killed (immunological memory). It allows the immune system to react faster
the next time the pathogen invades the body. This ability is maintained by memory
cells which remember specific features of the pathogen encountered and can mount
a strong response if that pathogen is detected again.

In vertebrates, the immune system is a complex of organs, tissues and cells con-
nected by two separate circulatory systems, the blood stream and the lymphatic
system that transports a watery clear fluid called lymph.

In the red bone marrow, a tissue found in the hollow interior of bones, multipotent
stem cells differentiate to either red blood cells (erythrocytes), or platelets (throm-
bocytes), or white blood cells (leukocytes). The latter class is immunologically
relevant; leukocytes maturate to either granulocytes (cells with certain granules in
their cytoplasm and a multilobed nucleus, for example the neutrophils mentioned
previously) or mononuclear leukocytes, including macrophages and lymphocytes.
Natural killer cells, B cells and T cells belong to the lymphocytes. T cell progeni-
tors migrate to the thymus gland, located in the upper chest, where they mature to
functional T cells. In the spleen, an organ located in the left abdomen, immune cells
are stored and antibody-coated microorganisms circulating in the blood stream are
removed. Finally, the lymph nodes store, proliferate and distribute lymphocytes via
the lymphatic vessels.

1.3.2 Microbial Clearance

Virus clearance or elimination of a virus infection, involves killing of infected cells
by NK cells and cytotoxic T cells, blocking of cell entry or cell-to-cell transmission
by neutralizing antibodies, and phagocytosis by macrophages.

The major process of bacterial clearance is phagocytosis. Pathogenic bacteria
have three means of defence against it. The first defence is the cell capsule, a layer
outside the cell wall that protects bacteria from contact with macrophages and other
phagocytes. The second defence is the cell wall, which acts as a barrier to microbi-
cidal activity. The third defence is the secretion of exotoxins, poisonous substances
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that damage phagocytes and local tissues and, once circulating in the blood stream,
remote organs. Frequently, exotoxins (and not the bacteria themselves) are the cause
of serious morbidity of an infected organism. Most cell capsules and exotoxins are
antigenic, meaning that antibodies can block their effects.

Protozoan clearance is exceptionally difficult. Immunity is usually limited to
keeping the parasite density down. Malaria clearance, for example, involves phago-
cytosis of parasitized red blood cells by macrophages and antibodies. During the
brief liver stage of the malaria parasites, immunity can be induced by cytotoxic
T cells.

1.3.3 Active and Passive Protection from Infectious Diseases

The immune system can quickly recognize and fight off infectious organisms it
has encountered before. Measles is a highly contagious infectious childhood dis-
ease caused by the measles virus and transmitted via the respiratory route. Infected
children become immune to it for the rest of their life. This is called naturally
acquired active immunity. Because newborn infants are immunogically naive (no
prior exposure to microorganisms), they would be particularly vulnerable to infec-
tion. Fortunately, during pregnancy, antibodies are passively transferred across the
placenta from mother to foetus (maternal immunity). This type of immunity is called
naturally acquired passive immunity. Depending on the half-life time of these pas-
sively transferred antibodies, maternal immunity is usually short-term, lasting from
a few days up to several months.

1.3.4 Antigenic Variation

While measles does usually not attack an individual twice in lifetime due to natu-
rally acquired active immunity, some other pathogens try to trick the immunological
memory by various mechanisms. One is an adaptation process called antigenic vari-
ation: small alterations of the molecular composition of antigens of the surface of
microorganisms to become immunologically distinct from the original strain. (A
strain is a subset of a species differing from other members of the same species
by some minor but identifiable change.) Antigenic variation can occur either due to
gene mutation, gene recombination or gene switching. Antigenic variation can occur
very slowly or very rapidly. For example, the poliovirus, the measles virus and the
yellow fever virus have not changed significantly since vaccines against them were
first developed, and these vaccines therefore offer lifelong protection. Examples for
rapidly evolving viruses are HIV and the influenza virus. Rapid antigenic variation
is an important cause of vaccine failure.

A serotype is a variant of a microorganism in which the antigenic variations are to
such a degree that it is no longer detected by antibodies directed to other members
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of that microorganism. For example, of the bacterium Pseudomonas aeruginosa,
more than sixteen serotypes are known, of the hepatitis B virus four major serotypes
have been identified, and of the rhinovirus, cause of the common cold, there are
so many serotypes (more than 100) that many people suffer from common cold
several times every winter – each time caused by a member of a different serotype.
In case of influenza, antigenic variation is called antigenic drift, which is the process
of mutations in the virus surface proteins haemagglutinin and neuraminidase. This
drift is so rapid that the composition of influenza vaccines has to be changed almost
every year. Antigenic drift should not be confused with antigenic shift, the process
at which two different strains of an influenza virus combine to form a new antigenic
subtype, for which the immune system of the host population is naive and which
makes it extremely dangerous because it can lead to pandemic outbreaks.

1.3.5 Tumour Immunology

There is considerable evidence that many tumours are eliminated by the immune
system at a very early stage, before they become evident (immune surveillance).
The immune response to a tumour is very complex and not yet fully understood,
and it depends on many factors, notably the type of tumour. Natural killer cells
and cytotoxic T cells play an important role in tumour control. Another impor-
tant feature is a high rate of apoptosis of tumour cells. If the rate is too high and
there are too many apoptotic cells to be phagocytosed by macrophages, then some
of these cells release protein fragments which activate NK and other interferon-�
producing cells. Interferon-� has multiple roles in immune surveillance, one mak-
ing tumour cells more readily recognizable by anti-tumour T cells. Tumour cells
may express tumour-associated antigens, which are proteins found on the surface
of tumour cells at a higher level than of normal cells. The immune system recog-
nizes these antigens as foreign, and reacts by destroying the tumour cells by T cells.
The antigen expression can have several causes, one being infection by an onco-
genic (cancer-causing) virus. Five forms of cancer are, up to now, known to be
caused by viruses: Burkitt’s lymphoma, nasopharyngeal carcinoma, Kaposi’s sar-
coma, hepatocarcinoma and cervical cancer. The latter disease is caused by the
human papillomavirus (HPV), the only oncogenic virus for which at present a
vaccine is available.

1.4 Prevention of Infectious Diseases by Vaccination

The word vaccination (Latin: vacca-cow) was first used by the British physi-
cian Edward Jenner (1749–1823) who searched for a prevention of smallpox,
a widespread disease localized in small blood vessels of the skin, mouth and
throat, causing a maculopapular rash and fluid-filled blisters and often resulting in
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disfigurement, blindness and death. In 1798, Jenner published his An inquiry into
the causes and effects of the Variolae Vaccinae, a disease discovered in some of the
western counties of England, particularly Gloucestershire, and known by the name
of the cow-pox. He reported how he, two years earlier, had taken the fluid from a
cowpox pustule on a dairymaid’s hand and inoculated an eight-year-old boy. Six
weeks later, he exposed the boy to smallpox, but the boy did not develop any symp-
toms of smallpox disease. Today, the virological background of Jenner’s successful
intervention is understood: variola virus, the cause of smallpox, and cowpox virus,
the cause of a mild veterinary disease with only innocent symptoms in men, are
quite similar DNA viruses belonging to the same viral genus orthopoxvirus. Unin-
tendedly, dairymaids were often exposed to, and infected by cowpox virus during
milking. Consequently, they developed immunity which also protected against the
smallpox virus (cross-protection). Previously, this type of immunity was called nat-
urally acquired active immunity. By intended inoculation with cowpox virus, Jenner
had the eight-year-old boy actually achieve artificially acquired active immunity –
the aim of any vaccination. The year 1996 marked the two hundredth anniversary of
Jenner’s experiment. After large-scale vaccination campaigns throughout the nine-
teenth and twentieth century using vaccinia virus, another member of the same viral
genus, the World Health Organization in 1979 certified the eradication of smallpox.
To this day, smallpox is the only human infectious disease that has been completely
eradicated.

Among the pioneers of vaccinology were the French chemist Louis Pasteur
(1822–1895), who developed a vaccine for rabies, and the German Heinrich
Hermann Robert Koch (1843–1910), who isolated Bacillus anthracis, Vibrio
cholerae and Mycobacterium tuberculosis, a discovery for which he in 1905 was
awarded the Nobel Prize. Koch also developed criteria to establish, or refute, the
causative relationship between a given microorganism and a given disease (Koch’s
Postulates). This was, and is, essential for vaccine development. First, one has to
prove that a given microorganism is really the cause of a given clinical disease, and
then one can include that microorganism in a vaccine to protect people from that
disease. The causative relationship between a microbe and a disease is not always
self-evident. In the first decades of the twentieth century it was widely believed that
the cause of influenza was the bacterium Haemophilus influenzae, because it was
often isolated during influenza epidemics. Only when in the 1930s influenza viruses
were discovered and proven, by Koch’s postulates, to be the real cause of influenza,
the way was opened to develop effective vaccines against that disease. A vaccine
containing H. influenzae would not at all protect from influenza.

Most vaccines contain attenuated (weakened) or inactivated microorganisms.
Ideally, they provoke the adaptive immune system in a way that closely mimics
the immune response to the natural pathogenic microorganisms. Vaccination is a
less risky way to become immune, because, due to the attenuation or inactivation of
the microorganisms, a vaccine does not cause the disease associated with the natural
microorganism. Yet, naive B and T cells are activated as if an infection had occurred,
leading to long-lived memory cells, which come into action after eventual exposure
with the natural microorganism.
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1.4.1 Viral and Bacterial Vaccines Currently in Use

Live attenuated vaccines contain living viruses or bacteria of which the genetic mate-
rial has been altered so they cannot cause disease. The classical way of attenuation
is achieved by growing the microorganisms over and over again under special lab-
oratory conditions. This passaging process deteriorates the disease-causing ability
of the microorganisms. The weakened viruses and bacteria still can infect the host,
and thus stimulate an immune response, but they can rarely cause disease. However,
in certain immune-compromised patients, even attenuated microorganisms may be
dangerous so that manifest immune-suppression can be a contra-indication for live
vaccines.

An example of a live attenuated vaccine is the RIX4414 human rotavirus.
Rotavirus infection is the leading cause of potentially fatal dehydrating diarrhoea
in children. The parent strain RIX4414 was isolated from a stool of a 15-month-
old child with rotavirus diarrhoea and attenuated by tissue culture passaging. Other
examples of diseases for which vaccines are produced from live attenuated microor-
ganisms are the viral diseases measles, rubella and mumps, polio, yellow fever and
influenza (an intranasal vaccine), and the bacterial diseases pertussis (whooping
cough) and tuberculosis. In general, live attenuated vaccines are considered to be
very immunogenic. To maintain their potency, they require special storage such as
refrigerating and maintaining a cold chain. There is always a remote possibility that
the attenuated bacteria or viruses mutate and become virulent (infectious).

In contrast, inactivated vaccines contain microorganisms whose DNA or RNA
was first inactivated, so that they are ‘dead’ and cannot replicate and cause an infec-
tion any more. Therefore, these vaccines are also safe in immune-compromised
patients. Inactivation is usually achieved with heat or chemicals, such as formalde-
hyde or formalin, or radiation. There are several types of inactivated vaccines.

Whole inactivated vaccines are composed of entire viruses or bacteria. They are
generally quite immunogenic. However, they are often also quite reactogenic, which
means that vaccinees may frequently suffer from local vaccine reactions at the site
of vaccination (e.g., redness, itching, pain) or even from systemic vaccine reactions
such as headache and fever. Fortunately, these reactions are usually benign, mild and
transitory, and only last from hours to a few days. Whole vaccines have been devel-
oped for prophylaxis of, amongst others, pertussis (bacterial), cholera (bacterial)
and influenza (viral).

Component vaccines do not contain whole microorganisms but preferably only
those parts which have proven to stimulate the immune response most. The advan-
tage of this approach is that other parts of the microorganism in question, which
do not contribute to a relevant immune response but may cause unwanted vaccine
reactions, can be removed (vaccine purification). Thus, component vaccines are
usually less reactogenic than whole vaccines. Simple component vaccines are the
split vaccines, which result after the treatment with membrane-dissolving liquids
likesuch as ether. More sophisticated, subunit vaccines are produced using biolog-
ical or genetic techniques. They essentially consist of a limited number of defined
molecules, which can be found on the surface of microorganisms. Their vaccine
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reactogenicity is thereby further decreased. A disadvantage can be that isolated anti-
gens may not stimulate the immune system as well as whole microorganisms. To
overcome this problem, virus-like particles (VLP) vaccines and liposomal vaccines
have been developed. Virus-like particles are particles that spontaneously assemble
from viral surface proteins in the absence of other viral components. They mimic
the structure of authentic spherical virus particles and they are believed to be more
readily recognized by the immune system. In liposomal vaccines, the immuno-
genic subunits are incorporated into small vesicles sized as viruses (0.1–0.2 �m)
and made of amphiphilic chemical compounds such as phospholipids (main compo-
nents of biological membranes). Examples of component vaccines are Haemophilus
influenzae type b (Hib) vaccines, hepatitis A and B vaccines, pneumoccocal vac-
cines, and, again, influenza vaccines. The current generation of HPV vaccines are
virus-like particles vaccines.

Another approach to increase the immunogenicity of inactivated vaccines is the
use of adjuvants. These are agents that, by different mechanisms, augment the
immune response against antigens. A potent adjuvant which has been used for
over 50 years is aluminium hydroxide. In recent years, a number of new adju-
vants have been developed: MF59 (an oil-in-water emulsion), MPL (a chemically
modified derivative of lipopolysaccharide) and CpG 7909 (a synthetic nucleotide).
Adjuvanted vaccines tend to more enhanced reactogenicity, i.e., they lead to higher
incidences of local and systemic reactions. Some known adjuvants are therefore not
suitable for human use (possibly still for veterinary use), for example Freund’s com-
plete adjuvant (heat-killed Mycobacterium tuberculosis emulsified in mineral oil).
It is very effective to enhance both humoral and cellular immunity, but has been
found to produce skin ulceration, necrosis and muscle lesion when administered
as intramuscular injection. Other potential safety concerns of adjuvanted vaccines
are immune-mediated adverse events (e.g., anaphylaxis or arthritis) or chemical
toxicity.

The immune system of infants and young children has difficulties to recognize
those bacteria which have outer coats that disguise antigens. A notorious example
is the bacterium Streptococcus pneumoniae. Conjugate vaccines may overcome this
problem. While an adjuvanted vaccine consists of a physical mixture of vaccine
and adjuvant, in a conjugate vaccine the microbial antigens are chemically bound
to certain proteins or toxins (the carrier proteins), with the effect that recognition
by the juvenile immune system is increased. This technique is used for, among else,
Hib and pneumococcal vaccines.

Certain bacteria produce exotoxins capable of causing disease. Diphtheria is a
bacterial disease, first described by Hippocrates (ca. 460–377 B.C.). Epidemics of
diphtheria swept Europe in the seventeenth century and the American colonies in the
eighteenth century. The causative bacterium is Corynebacterium diphtheriae, which
produces diphtheria toxin. This toxin can be deprived of its toxic properties by inac-
tivation with heat or chemicals, but it still carries its immunogenic properties; it is
then called a toxoid and can be used for diphtheria toxoid vaccine. Another exam-
ple is the tetanus vaccine containing the toxoid of the bacterium Clostridium tetani.
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Diphtheria and tetanus toxoid vaccines are often given to infants in combination
with a vaccine for pertussis. This combination is known as DTP vaccine.

DTP vaccine is an example of a combination vaccine, which intends to pre-
vent a number of different diseases, or one disease caused by different strains or
different serotypes of the same species, such as the seasonal influenza vaccines
which currently contain antigens of three virus (sub)types: a B-strain, an A-H1N1
strain and an A-H3N2 strain. This is an example for a trivalent vaccine (includ-
ing three strains). Pneumococcal vaccines are currently available as 7-valent to even
23-valent vaccines. In contrast, a monovalent vaccine is intended to prevent one spe-
cific disease only caused by one defined microorganism, for example the hepatitis B
vaccine.

1.4.2 Routes of Administration

Licensed vaccines differ with respect to the route of administration. This is not only
a question of comfort for the vaccinee, but also depends on the exact types and
location of immune cells to which the vaccine is offered to achieve the optimal
prophylactic effect. Injectable vaccines are usually given subcutaneously (into the
fat layer between skin and muscle) or intramuscularly (directly into a muscle). Pre-
ferred vaccination sites are the deltoid region of the arm in adults and elderly, and the
thigh in newborns and infants. Some vaccines – hepatitis B vaccines for example –
can also be administered intramuscularly in the buttock. An alternative to subcuta-
neous/intramuscular injection is intradermal vaccination, directly into the dermis.
Intradermal vaccination is successfully used for rabies and hepatitis B. In case of
influenza, it reduces the dose needed to be given. This route could thus increase the
number of available doses of vaccine, which can be relevant in case of an influenza
pandemic. Vaccination by injection is often felt to be uncomfortable by vaccinees,
it usually needs some formal medical training to administer it, and it carries the risk
of needle prick accidents with contaminated blood.

An alternative is administration by the oral route, since the 1950s used for the
live attenuated polio vaccine: some droplets of vaccine-containing liquid on a lump
of sugar to be swallowed. This route builds up a strong local immunity in the
intestines, the site of poliovirus entry. Obvious advantages are the increased ease
and acceptance of vaccination and the absence of the risk of blood contamination.

A third option is intranasal vaccine administration, preferably used for respira-
tory pathogens. Intranasal vaccines are dropped or sprayed into the cavity of the
nose. Advantages are, again, the ease of administration (in particular for childhood
vaccines), the direct reach of the respiratory compartment, and hence induction of
local protective immunity at the primary site of pathogen entry.
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1.4.3 Malaria Vaccines

Malaria is an example of a protozoan disease. The most serious forms of the dis-
ease are caused by the parasites Plasmodium falciparum and Plasmodium vivax.
The parasites are transmitted by the female Anopheles mosquito. Sporozoites (from
sporos, seed) of the parasites are injected in the bitten person. In the liver, sporo-
zoites develop into blood-stage parasites which then reach red blood cells. There are
three types of malaria vaccines in development: pre-erythrocytic vaccines, blood-
stage vaccines and transmission-blocking vaccines. Pre-erythrocytic vaccines target
the sporozoites and the liver life forms. If fully effective, they would prevent blood-
stage infection. In practice, they will be only partially effective, but they may reduce
the parasite density (density of malaria parasites in the peripheral blood) in the
initial blood-stage of the disease. Blood-stage vaccines try to inhibit parasite repli-
cation by binding to the antigens on the surface of infected red blood cells. These
vaccines also may reduce parasite density to a level that prevents development of
clinical disease. Transmission-blocking vaccines try to prevent transmission of the
parasite to humans rather than preventing infection. This is attempted by trying to
induce antibodies that act against the sexual stages of the parasite, to prevent it from
becoming sexually mature.

1.4.4 Experimental Prophylactic and Therapeutic Vaccines

Some recent developments in vaccine research, still in an experimental stage in
animal models, are recombinant vector vaccines and DNA vaccines. Recombi-
nant vector vaccines are vaccines created by recombinant DNA technology. The
pathogen’s DNA is inserted into a suitable virus or bacterium that transports the
DNA into healthy body cells where the foreign DNA is read. Consequently, foreign
proteins are synthesized and released, which act as antigens stimulating an immune
response. Similarly, DNA vaccines are made of plasmids, circular pieces of bacterial
DNA with incorporated genetic information to produce an antigen of a pathogen.
When the vaccine DNA is brought into suitable body cells, the antigen is expressed,
and the immune system can respond to it. The advantage of DNA vaccines is that
no outer source of protein antigen is needed. Serious safety concerns will have to be
addressed before these experimental approaches can be tested in man.

The vaccines discussed so far were all prophylactic vaccines, i.e., intended to
prevent infection. A fairly recent development is the emergence of therapeutic vac-
cines, not given with the intention to prevent but to treat. The targeted diseases
need not to be infectious. Therapeutic tumour vaccines, for example, are aimed
at tumour forms that the immune system cannot destroy. The hope is to stimulate
the immune system in such a way that the enhanced immune response is able to
kill the tumour cells. Therapeutic tumour vaccines are being developed for acute
myelogenous leukaemia, breast cancer, chronic myeloid leukaemia, colorectal can-
cer, oesophageal cancer, head and neck cancer, liver and lung cancers, melanoma,
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nonHodgkin lymphoma, and ovarian, pancreatic and prostate cancers. Other exam-
ples of therapeutic vaccines being developed are addiction vaccines for cocaine and
nicotine abuse. Nicotine is made of small molecules that are able to pass the blood–
brain barrier, a filter to protect the brain from dangerous substances. One vaccine
in development has the effect that the subject develop antibodies to nicotine, so
that when they smoke, the antibodies attach to the nicotine and make the result-
ing molecule too big to pass the blood–brain barrier, so that smoking stops being
pleasurable. Another nicotine vaccine in development leads to the production of
antibodies that block the receptor that is involved in smoking addiction. Therapeutic
vaccines are also being tested for hyperlipidaemia, hypertension, multiple sclerosis,
rheumatoid arthritis and Parkinson’s disease.



Chapter 2
Humoral and Cellular Immunity

2.1 Humoral Immunity

When the adaptive immune system is activated by the innate immune system, the
humoral immune response (also: antibody-mediated immune response) triggers spe-
cific B cells to develop into plasma cells. These plasma cells then secrete large
amounts of antibodies. Antibodies circulate in the lymph and the blood streams.
(Hence the name: humoral immunity. Humoral comes from the Greek chymos, a
key concept in ancient Greek medicine. In this view, people were made out of four
fluids: blood, black bile, yellow bile and mucus (phlegma). Being healthy meant
that the four humors were balanced. Having too much of a humor meant unbalance
resulting in illness.) The more general term for antibody is immunoglobulin, a group
of proteins. There are five different antibody classes: IgG, IgM, IgA, IgE and IgD.
The first three, IgG, IgM and IgA, are involved in defence against viruses, bacteria
and toxins. IgE is involved in allergies and defence against parasites. IgD has no
apparent role in defence. The primary humoral immune response is usually weak
and transient, and has a major IgM component. The secondary humoral response is
stronger and more sustained and has a major IgG component.

Antibodies attack the invading pathogens. Different antibodies can have dif-
ferent functions. One function is to bind to the antigens and mark the pathogens
for destruction by phagocytes, which are cells that phagocytose (ingest) harmful
microorganism and dead or dying cells. Some antibodies, when bound to antigens,
activate the complement, serum proteins able to destroy pathogens or to induce the
destruction of pathogens. These antibodies are called complement-mediated anti-
bodies. Neutralizing antibodies are antibodies that bind to antigens so that the
antigen can no longer recognize host cells, and infection of the cells is inhibited.
For example, in case of a virus, neutralizing antibodies bind to viral antigens and
prevent the virus from attachment to host cell receptors.

It is good practice to state the antigen against which the antibody was produced:
anti-HA antibody, anti-tetanus antibody, anti-HPV antibody, etc.

J. Nauta, Statistics in Clinical Vaccine Trials, DOI 10.1007/978-3-642-14691-6 2,
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2.1.1 Antibody Titres and Antibody Concentrations

Antibody levels in serum samples are measured either as antibody titres or as anti-
body concentrations. An antibody titre is a measure of the antibody amount in a
serum sample, expressed as the reciprocal of the highest dilution of the sample that
still gives (or still does not give) a certain assay read-out. To determine the antibody
titre, a serum sample is serially (stepwise) diluted. The dilution factor is the final
volume divided by the initial volume of the solution being diluted. Usually, the dilu-
tion factor at each step is constant. Often used dilution factors are 2, 5 and 10. In this
book, the starting dilution will be denoted by 1:D. A starting dilution of 1:8 and a
dilution factor of 2 will result in the following two-fold serial dilutions: 1:8, 1:16,
1:32, 1:64, 1:128 and so on. To each dilution, a standard amount of antigen is added.
An assay (test) is performed which gives a specified read-out either when antibodies
against the antigen are detected or, depending on the test, when no antibodies are
detected. The higher the amount of antibody in the serum sample, the higher the
dilutions at which the assay read-out occurs (or no longer occurs). Suppose that the
assay read-out occurs for the dilutions 1:8, 1:16 and 1:32, but not for the dilutions
1:64, 1:128, etc. The antibody titre is the reciprocal of the highest dilution at which
the read-out did occur, 32 in the example. If the assay read-out does not occur at the
starting dilution – indicating a very low amount of antibodies, below the detection
limit of the assay – then often the antibody titre for the sample is set to D/2, half of
the starting dilution. By definition, antibody titres are dimensionless.

Antibody concentrations measure the amount of antibody-specific protein per
millilitre serum, expressed either as micrograms of protein per millilitre (�g/ml) or
as units per millilitre (U/ml). (A unit is an arbitrary amount of a substance agreed
upon by scientists.) The measurement of antibody concentrations can usually done
on a single serum sample rather than on a range of serum dilutions.

2.1.2 Two Assays for Humoral Immunity

To give the reader an idea of how antibody levels in serum samples are determined,
below two standard assays for humoral immunity are discussed, the haemaggluti-
nation inhibition test involving serum dilutions, and the enzyme-linked immunosor-
bent assay involving a single serum.

Some viruses – influenza, measles and rubella, amongst others – carry on their
surface a protein called haemagglutinin (HA). When mixed with erythrocytes (red
blood cells) in an appropriate ratio, it causes the blood cells clump together (agglu-
tinate). This is called haemagglutination. Anti-HA antibodies can inhibit (prevent)
this reaction. This effect is the basis for the haemagglutination inhibition (HI, also
HAI) test, an assay to determine antibody titres against viral haemagglutinin. First,
serial dilutions of the antibody-containing serum are allowed to react with a constant
amount of antigen (virus). In the starting dilution and the lower dilutions, the amount
of antibody is larger than the amount of antigen, which means that all virus particles
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are bound by antibody. At a certain dilution, the antibody amount becomes smaller
than the antigen amount, which means that free, unbound virus remains. This free
antigen is then detected by the second part of the test: to all dilutions, a defined
amount of erythrocytes is added. In the lower dilutions, where all antigen is bound
by antibody, the erythrocytes freely sink to the lowest point of the test tube or well
and form a red spot there (no haemagglutination). In higher dilutions, where there is
so less antibody that free virus remains, this virus binds to erythrocytes, which then
form a wide layer in the test tube (haemagglutination). The reciprocal of the last
dilution where haemagglutination is still inhibited (i.e., where haemagglutination
does not occur) is the antibody titre.

The enzyme-linked immunosorbent assay (ELISA), also called enzyme immun-
oassay (EIA), is another assay to detect the presence of antibodies in a serum
sample. Many variants of the test exist, and here only the basic principle will be
explained. In simple terms, a defined amount of antigen is bound to a solid-phase
surface, usually the plastic of the wells of a microtitre plate. Then a serum sample
with an unknown amount of antigen-specific antibody is added and allowed to react.
If antibody is present, it will bind to the fixed antigen. Consequently, the serum (with
unbound antibody, if any) is washed away, while the fixed antigen–antibody com-
plexes remain on the solid-phase surface. They are detected by adding a solution of
antibodies against human immunoglobulin, which have previously been prepared in
animals and chemically linked to an enzyme. The fixed complexes consist of three
components: the test antigen, the antibody of unknown amount from the serum spec-
imen, and the enzyme-labelled secondary test antibody against the serum antibody.
A substrate to the enzyme is added, which is split by the enzyme, if present. One
of the released splitting products can give a detectable signal, a certain colour, for
example. Only if the three-component complex is present (i.e., if there has been
antibody in the serum specimen), this signal will occur. The strength of the signal is
a measure of the amount of serum antibody.

The first-generation ELISA use chromogenic substrates, which release colour
molecules after enzymatic reaction. By a spectrophotometer, the intensity of the
colour in the solution (or the amount of light absorbed by the solution) can be deter-
mined (optical density). The antibody concentration is determined by comparing the
optical density of the serum sample with an optical density curve constructed with
the help of a standard sample.

In a fluorescence ELISA, which has a higher sensitivity than a colour-releasing
ELISA, the signal is given by fluorescent molecules, whose amount can be measured
by a spectrofluorometer.

2.2 Cellular Immunity

Cellular immunity (also: cell-mediated immunity (CMI)) is an adaptive immune
response that is primarily meditated by thymus-derived small lymphocytes, which
are known as T cells. Here, two types of T cells are considered: T helper cells and
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T killer cells. T helper cells are particularly important because they maximize the
capabilities of the immune system. They do not destroy infected cells or pathogens,
but they activate and direct other immune cells to do so. Hence their name: T helper
cells. The major roles of T helper cells are to stimulate B cells to secrete antibod-
ies, to activate phagocytes, to activate T killer cells and to enhance the activity of
natural killer (NK) cells. Another term for T helper cells is CD4C T cells (CD4
positive T cells), because they express the surface protein CD4. T helper cells are
subdivided on the basis of the cytokines they secrete after encountering a pathogen.
T Helper 1 cells (TH1 cells) secrete many different types of cytokines, the prin-
cipal being interferon-� (IFN-� ), interleukin-2 (IL-2) and interleukin-12 (IL-12).
IFN-� has many effects including activation of macrophages to deal with intra-
cellular bacteria and parasites. IL-2 stimulates the maturation of killer T cells and
enhances the cytotoxicity of NK cells. IL-12 induces the secretion of INF-� . The
principal cytokines secreted by T Helper 2 cells (TH2 cells) are interleukin-4 (IL-4)
and interleukin-5 (IL-5) for helping B cells. An infection with the human immun-
odeficiency virus (HIV) demonstrates the importance of helper T cells. The virus
infects CD4C T cells. During an HIV infection, the number of CD4C T cells drops,
leading to the disease known as the acquired immune deficiency syndrome (AIDS).

The major function of T killer cells is cytotoxicity to recognize and destroy cells
infected by viruses, but they also play a role in the defence against intracellular bac-
teria and certain types of cancers. Intracellular pathogens are usually not detected by
macrophages and antibodies, and clearance of infection depends upon elimination
of infected cells by cytotoxic lymphocytes. T killer cells are specific, in the sense
that they recognize specific antigens. Alternative terms for T killer cells are CD8C
T cells (CD8 positive T cells), cytotoxic T cells and CTLs (cytotoxic T lympho-
cytes). CD8C T cells secrete INF-� and the inflammatory cytokine tumour necrosis
factor (TNF).

2.2.1 Assays for Cellular Immunity

Most assays for cellular immunity are based on cytokine secretion, as marker of
T cell response. A wide variety of assays exists, but the most used one is the enzyme-
linked immunospot (ELISPOT) assay, which was originally developed as a method
to determine the number of B cells secreting antibodies. Later, the method was
adapted to determine the number of T cells secreting cytokines. ELISPOT assays
are performed in microtitre plates coated with the relevant antigen. Peripheral blood
mononuclear cells (PBMCs) are added to it and then incubated. (PBMCs are white
blood cells such as lymphocytes and monocytes). When the cells are secreting the
specific cytokine, discrete coloured spots are formed, which can be counted. One
of the most popular of this type of assays to evaluate cellular immune responses
is the INF-� ELISPOT assay, an assay for CTL activity. Results are expressed as
spot-forming cells (SPCs) per million peripheral blood mononuclear cells (SPC/106

PMBC). Other types of the assay are the IL-2 ELISPOT assay, the IL-4 ELISPOT
assay, etc.
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The fluorospot assay is a modification of the ELISPOT assay and is based
on using multiple fluoroscent anticytokines, which makes it possible to spot two
cytokines in the same assay.

Other assays that can quantitate the number of antigen-specific T cells are the
intracellular cytokine assay and the tetramer assay.

Flow cytometry uses the principles of light scattering and emission of flu-
orochrome molecules to count cells. Cells are labelled with a fluorochrome, a
fluorescent dye used to stain biological specimens. A solution with cells is injected
into the flow cytometer, and the cells are then forced into a stream of single cells
by means of hydrodynamic focusing. When the cells intercept light from a source,
usually a laser, they scatter light and fluorochromes are realized. Energy is released
as a photon of light with specific spectral properties unique to the fluorochrome.



Chapter 3
Standard Statistical Methods for the Analysis
of Immunogenicity Data

3.1 Introduction

There is an ancient proverb, popularized by Spanish novelist Cervantes in his Don
Quixote (1605), that says that the proof of the pudding is in the eating. Putting it
figuratively, ideas and theories should be judged by testing them. For vaccines the
test is the field efficacy trial. A group of disease-free subjects are randomized to be
vaccinated with either the investigational vaccine or a placebo vaccine. The subjects
are then followed-up, to see how many cases of the disease occur in the two arms of
the trial. If in the investigational arm the number of cases is significantly lower than
in the placebo group, this is considered to be proof that the investigational vaccine
protects from infection. Vaccine field efficacy trials, however, have a notorious rep-
utation among vaccine researchers. They are extremely if not prohibitively costly,
as they usually require large sample sizes and a lengthy follow-up. If during the
surveillance period the attack rate of the infection and thus the number of cases is
low, the period has to be extended, meaning even higher costs. Many vaccine field
efficacy trials have been negative as the result of imperfect case finding. Further,
placebo-controlled vaccine trials in elderly are considered unethical.

A popular alternative to vaccine field efficacy trials are vaccine immunogenic-
ity trials. In such trials, the primary endpoint is a humoral or a cellular immunity
measurement which is thought to be a correlate of protection from infection. Vac-
cine immunogenicity trials are usually much smaller and require often only a short
follow-up, which makes them less costly than field efficacy trials. The key to the
popularity of vaccine immunogenicity trials is that registration authorities such as
the United States Food and Drug Administration (FDA), the European Medicines
Agency (EMA), Japan’s Organization for Pharmaceutical Safety and Research
(OPSR), the China State Food and Drug Administration (SFDA) or the National
Registration Authority (NRA) of Australia for example, all accept the results of vac-
cine immunogenicity trials in support of licensure of new vaccines. Indeed, many
registration authorities license a vaccine solely on the basis of immunogenicity data,
on the condition that the primary immunogenicity measurement is an established
correlate of protection.

J. Nauta, Statistics in Clinical Vaccine Trials, DOI 10.1007/978-3-642-14691-6 3,
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Until recently vaccine immunogenicity trials typically focussed on the humoral
immune response, i.e., on serum antibody levels. Today, many papers on vaccine
immunogenicity report also on cellular immunity. Nevertheless, cellular immunity
in vaccine trials is still largely in the investigational phase.

There are four standard statistics to summarize humoral and cellular immunity
data: the geometric mean response, the geometric mean fold increase, the sero-
protection rate and the seroconversion rate. Two of these statistics, the geometric
mean response and the seroprotection rate, quantify absolute immunogenicity val-
ues, while the other two, the geometric mean fold increase and the seroconversion
rate, quantify intra-individual increases in values. In the next sections, the analysis
of these four summary statistics is explained, both for single vaccine groups and for
two vaccine groups.

3.2 Geometric Mean Titres and Concentrations

Distributions of post-vaccination humoral and cellular immunogenicity values tend
to be skewed to the right. Log-transformed immunogenicity values, on the other
hand, usually are approximately Normally distributed. Thus, standard statistical
techniques requiring Normal data can be applied to the log-transformed values.
Antilogs of point and interval estimates can then be used for inference about
parameters of the distribution underlying the untransformed values.

The standard statistic to summarize immunogenicity values is the geometric
mean (GM), the geometric mean titre (GMT) if the observations are titres, or the
geometric mean concentration (GMC) if the observations are concentrations. Let
v1, . . . , vn be a group of n immunogenicity values. (Throughout this book, groups
of observations are assumed to be independent and identically distributed (i.i.d.).)
The geometric mean is defined as

GM D .v1 � � � � � vn/1=n:

An equivalent formula is

GM D exp
nX

iD1

.loge vi =n/:

The geometric mean response is thus on the same scale as the immunogenicity
measurements.

The transformation of the immunogenicity values need not to be loge, it can be
any logarithmic transformation, log2, log10, etc. Care should be taken that when
calculating the geometric mean response the correct base is used. Thus, if log10 is
used, the geometric mean should be computed as

GM D 10
Pn

iD1.log10 vi =n/:



3.2 Geometric Mean Titres and Concentrations 21

If antibody titres ti are reciprocals of twofold serial dilutions with 1:D as the lowest
tested dilution, then a convenient log transformation is

ui D log2Œti =.D=2/�: (3.1)

The ui ’s are then the dilution steps: 1, 2, 3, etc. The geometric mean should be
computed as

GM D .D=2/2
Pn

iD1 ui =n:

The transformation in (3.1) will be referred to as the standard log transformation
for antibody titres.

Example 3.1. Rubella (German measles) is a disease caused by the rubella virus.
In adults the disease itself is not serious, but infection of a pregnant woman by
rubella can cause miscarriage, stillbirth, or damage to the foetus during the first
three months of pregnancy. A haemagglutination inhibition (HI) test for rubella is
often performed routinely on pregnant women. The presence of a detectable HI titre
indicates previous infection and immunity to re-infection. If no antibodies can be
detected, the woman is considered susceptible and is followed accordingly. Assume
that in the HI test the lowest dilution is 1:8. Then the HI titres can take on the values
8, 16, 32, 64, etc. The standard log-transformed values of the titres are log2.8=4/ D
1; log2.16=4/ D 2; log2.32=4/ D 3; log2.64=4/ D 4, etc. The geometric mean of
the five titres 8, 8, 16, 32, 64 is

GMT D 4 � 2.1C1C2C3C4/=5

D 18:379:

With the standard log transformation, differences between log-transformed values
are easy to interpret: a difference of 1 means a difference of one dilution, a difference
of 2 means a difference of two dilutions, etc.

A statistic often reported with the geometric mean response is the geometric
standard deviation (GSD), which is the antilog of the sample standard deviation
of the loge transformed immunogenicity values. The statistic allows easy calcu-
lation of confidence limits for the geometric mean of the distribution underlying
the immunogenicity values (the underlying geometric mean for short). Let SD
be the sample standard deviation of the loge transformed immunogenicity values,
then the geometric standard deviation is

GSD D exp.SD/:

The lower and upper limit of the two-sided 100(1�˛)% confidence interval for the
underlying geometric mean e� are

LCLe� D GMT=GSDtn�1I1�˛=2=
p

n (3.2)
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and
UCLe� D GMT � GSDtn�1I1�˛=2=

p
n; (3.3)

where tn�1I1�˛=2 is the 100(1�˛/2)th percentile of the Student t distribution with
(n-1) degrees of freedom.

Example 3.1. (continued) The sample standard deviation SD of the five loge trans-
formed HI titres is 0.904. Thus, the geometric standard deviation is

GSD D e0:904

D 2:469:

Percentiles of Student t distributions can be obtained with the SAS procedure TINV.
The lower 95% confidence limit for the underlying geometric mean is

18:379=2:4692:776=
p

5 D 5:98

and the upper 95% confidence limit is

18:379 � 2:4692:776=
p

5 D 56:4;

with 2.776 D TINV(0.975,4).

3.2.1 Single Vaccine Group

If the ui D loge.vi ) are Normally distributed with mean � and variance �2, then the
arithmetic mean u: is a point estimate of �, and

GMT D eu:

is a point estimate of e�, the underlying geometric mean. The distribution of the ui

is known as the lognormal distribution.
Because the ui are Normally distributed, confidence intervals for � can be based

on the one-sample t-test. Antilogs of the limits of the t-test based 100(1�˛)% con-
fidence interval for � constitute 100(1�˛)% confidence limits for the parameter e�.
These confidence limits are identical to those in (3.2) and (3.3).

It should be noted that the expectation of the ui (the mean of the lognormal
distribution underlying the immunogenicity values) is not e� but

E.ui / D e�C�2

:

A nice property of the log-normal distribution is that e� is not only its geometric
mean but also its median.
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Example 3.2. The following data are six Th1-type IFN-� values: 3.51, 9.24, 13.7,
35.2, 47.4 and 57.5 IU/L. The natural logarithms are 1.256, 2.224, 2.617, 3.561,
3.859 and 4.052, with arithmetic mean 2.928 and standard error 0.444. Hence,

GMC D e2:928

D 18:7:

With t0:975;5 = 2.571, it follows that the two-sided 95% confidence limits for � are

2:928 � 2:571.0:444/ D 1:786

and
2:928 C 2:571.0:444/ D 4:070:

Thus, the lower and upper 95% confidence limits for the geometric mean e� of the
distribution underlying the IFN-� values are

e1:786 D 5:97 and e4:070 D 58:6:

By definition, confidence intervals for geometric mean responses are nonsym-
metrical.

3.2.2 Two Vaccine Groups

If there are two vaccine groups, statistical inference is based on the two-sample
t-test, applied to the log-transformed immunogenicity values. Point and interval
estimates for the difference � D �1 ��0 are transformed back to point and interval
estimates for the ratio � D e�1=e�0 .

The standard statistic to compare two groups of immunogenicity values is the
geometric mean ratio (GMR):

GMR D GM1=GM0;

where GM1 and GM0 are the geometric mean response of investigational and the
control vaccine group, respectively. Let u1: and u0: denote the arithmetic means of
the loge transformed values of the two groups, then the following equality holds:

GMR D eu1: � u0: :

Thus, the P-value from the two-sample t-test to test the null hypothesis � D 0 can
be used to test the null hypothesis that the underlying ratio � equals 1.

Example 3.2. (continued) Assume that the six Th1-type IFN-� values are to be
compared with a second group of six values, and that the arithmetic mean and
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standard error of these (loge-transformed) values are 2.754 and 0.512, respectively.
Thus,

GMC0 D e2:754

D 15:7

and the geometric mean ratio is

GMR D e2:928�2:754

D 1:19

D 18:7=15:7:

The estimated standard error of the difference is 0.677. Lower and upper 95%
confidence limits for the underlying geometric mean ratio are obtained as

e1:19�2:228.0:677/ D 0:73

and
e1:19C2:228.0:677/ D 14:9:

3.3 Geometric Mean Fold Increase

For some infectious diseases, pre-vaccination immunogenicity levels are not zero.
An example is influenza. Recipients of influenza vaccines have usually been exposed
to various influenza viruses during lifetime, by natural infections or previous vacci-
nations (exceptions are very young children). In that case, post-vaccination immuno-
genicity levels do not only express the immune responses to the vaccination but
also the pre-vaccination levels. In that case, an alternative to the geometric mean
titre or concentration is the geometric mean fold increase (also: mean fold increase,
geometric mean fold rise).

If vpre is a subject’s pre-vaccination (baseline) immunogenicity value and vpost

the post-vaccination value, then the fold increase is

f i D vpost=vpre:

Fold increases express intra-individual relative increases in immunogenicity values.
Just like immunogenicity values, log transformed fold increases tend to be Normally
distributed, and for the statistical analysis of fold increases the methods described
above for the analysis of immunogenicity values can be used. Thus, in case of a sin-
gle group of fold increases the analysis will be based on the one-sample t-test, while
in case of two groups of fold increases it will be based on the two-sample t-test.
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3.3.1 Analysis of a Single Geometric Mean Fold Increase

The standard statistic to summarize a group of n fold increases f i1; : : : ; f in is the
geometric mean fold increase (gMFI)

gMFI D exp
nX

j D1

.loge f ij =n/:

It is easy to show that
gMFI D GMpost=GMpre:

Thus, the geometric mean fold increase is identical to the geometric mean of the
post-vaccination values divided by the geometric mean of the pre-vaccination val-
ues. Note, though, that this equation holds only if for all n subjects both the pre- and
the post-vaccination value is nonmissing. If the post-vaccination value is missing
for, say, k subjects, and GMpre is based on data of n subjects but GMpost on that of
.n � k/ subjects, then the above equation does not hold.

Example 3.3. Consider an influenza trial in which pre- and post-vaccination anti-
HA antibody levels are measured by means of the HI test. Let (5,40), (5,80),
(10,160), (10,320), (20,80) and (20,640) be the pre- and post-vaccination antibody
titres of the first six subjects enrolled. GMTpre D 10.0 and GMTpost D 142.5. The
fold increases are 8, 16, 16, 32, 4 and 32. The geometric mean of these six fold
increases is gMFI D 14.25. The same value is obtained if GMTpost is divided by
GMTpre. The geometric standard deviation of the fold increases is GSD D 2.249.
The formulae’s in (3.2) and (3.3) can be used to calculate a confidence interval for
the geometric mean of the distribution underlying the fold increases.

3.3.2 Analysis of Two Geometric Mean Fold Increases

To compare two groups of fold increases the two-sample t-test can be applied to the
log-transformed fold increases.

In case of two groups of fold increases the following equation holds

gMFI1

gMFI0

D GMpost 1=GMpre 1

GMpost 0=GMpre 0

D GMpost 1=GMpost 0

GMpre 1=GMpre 0

D GMRpost

GMRpre
:

Thus, the ratio of two mean fold increases (the geometric mean fold ratio (gMFR))
is identical to geometric mean ratio of the post-vaccination immunogenicity values
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divided by the geometric mean ratio of the pre-vaccination immunogenicity val-
ues. This observation has an interesting implication. Consider a randomized trial in
which two vaccines are being compared. Because of the randomization, and if the
sample sizes are not too small, GMpre 0 will approximately be equal to GMpre 1, and
their ratio GMRpre will be approximately be equal to 1.0. Thus, the ratio of the geo-
metric mean fold increases will be approximately equal to the ratio of the geometric
means of the post-vaccination immunogenicity values

gMFR D gMFI1

gMFI0

� GMRpost:

In other words, if there is no baseline imbalance, an analysis of the fold increases
will yield a result virtually identical to that of the analysis of the post-vaccination
immunogenicity values.

Example 3.3. (continued) Assume that in the trial two influenza vaccines are being
compared. Let (5,40), (5,80), (10,80), (10,80) and (5,80), (5,80), (10,80), (10,160)
be the pre-and post-vaccination antibody titres of the experimental and the control
vaccine group, respectively. The following summary statistics are found

GMTpre 1 D GMTpre 0 D 7:1

and
GMTpost 1 D 67:27 and GMTpost 0 D 95:14:

The fold increases are: 8, 16, 8, 8 and 16, 16, 8, 16. The mean fold increases are

gMFI1 D 9:51 and gMFI0 D 13:45:

Thus, the ratio of the mean fold increases

gMFR D 13:45=9:51

D 1:4;

which is indeed identical to the ratio of the post-vaccination geometric mean titres

GMRpost D 95:14=67:27

D 1:4:

As explained, the reason why these two ratios are identical is that the two pre-
vaccination geometric mean titres are identical.

If there is no baseline imbalance between two vaccine groups, then it will be inef-
ficient to use the fold increases to analyze post-vaccination immunogenicity levels,
because, in general, fold increases are more variable than post-vaccination immuno-
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genicity values, resulting in larger P-values and wider confidence intervals. The
explanation for this is that the log-transformed fold increase is a difference, namely
between a log-transformed post-vaccination and a log-transformed pre-vaccination
immunogenicity value. If the variances �2 at baseline and post-vaccination are the
same, then the variance of the log difference is 2�2.1 � 	/, which implies that if the
correlation 	 between the post- and the pre-vaccination values is less than 0.5, the
variance of the difference is larger than that of the post-vaccination values.

3.3.3 A Misconception about Fold Increases
and Baseline Imbalance

A change score is an intra-individual difference between a post- and a pre-treatment
value. On a logarithmic scale, a fold increase is a change score:

log f i D log.vpost=vpre/

D log vpost � log vpre:

If in a clinical trial the baseline values of a given characteristic (age or weight, for
example) or a measurement (say, a bioassay) differ between the treatment groups,
then it is said that there is baseline imbalance. Baseline imbalance matters only
if the baseline value measurement is related to the primary endpoint, i.e., if it is
prognostic. In that case one treatment will have a poorer prognosis than the other.
The effect of the imbalance depends on the size of the imbalance and the strength
of the association between the baseline value and the endpoint. If the characteristic
or the baseline measurement is not prognostic, then baseline imbalance is of no
concern and can be ignored.

For many bioassays, nonzero (detectable) pre-vaccination values will be pre-
dictive of the post-vaccination values because pre- and post-vaccination bioassay
values tend to be positively correlated. It is often argued that imbalance in baseline
values of a measurement can be dealt with by change scores, like fold increases for
example. The reasoning being that if the pre-treatment values are subtracted from
the post-treatment values, any bias due to baseline imbalance is eliminated. This
is a fallacy. Change scores are generally correlated with pre-treatment values, the
correlation often being negative. For bioassays this phenomenon is also often seen,
the higher the average pre-vaccination value the smaller the average fold increase.
A difference between vaccine groups in pre-vaccination state is thus predictive not
only of a difference in post-vaccination state but also of a difference in fold increase,
albeit in the opposite direction. Hence, in case of baseline imbalance a comparison
of fold increases is in favour of the vaccine group with the smaller pre-vaccination
values. Thus, it is a misconception that a fold increase analysis deals with base-
line imbalance. A proper statistical technique to control for pre-vaccination state is
analysis of covariance, which is discussed in Chap. 5 of this book.
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3.4 Two Seroresponse Rates

3.4.1 Seroprotection Rate

For many infectious diseases, it is assumed that there is a given antibody level that is
associated with protection from infection or disease. This antibody level is called the
threshold of protection, and a subject is seroprotected if his antibody level is above
this threshold. For influenza for example, the threshold is an anti-HA antibody level
of 40, and subjects with an anti-HA antibody titre �40 are said to be seroprotected
for influenza. For diphtheria and tetanus, a protection threshold found in the litera-
ture is an anti-D/anti-T antibody concentration of 0.1 IU/ml. Seroprotection is thus a
binary endpoint, and the seroprotection rate is the proportion of vaccinated subjects
who are seroprotected.

What is meant with ‘associated with protection’ is not always clearly defined, or
understood. Sometimes it is interpreted as meaning that being seroprotected implies
being fully protected against the disease. It is this interpretation that may have lead
to an overestimation of the importance of the concept of seroprotection. If this inter-
pretation ever holds can be doubted. A more reasonable interpretation is that being
seroprotected means a moderate to high probability of protection. To come back to
the example of influenza, the assumption is that at an anti-HA antibody titre of 40
a subject has a probability of being protected of 0.5. For a further discussion on the
topic, see Sect. 3.8.

3.4.2 Seroconversion Rate

Stedman’s Medical Dictionary defines seroconversion as development of detectable
particular antibodies in the serum as a result of infection or immunization. A sub-
ject without antibodies in his serum is called seronegative, while a subject with
antibodies is called seropositive. A subject’s serostatus is his status with respect to
being seropositive or seronegative for a particular antibody. A subject whose serosta-
tus was seronegative but has become seropositive is said to have seroconverted. In
an article on the safety and immunogenicity of a live attenuated human rotavirus
vaccine, Vesikari and co-workers define seroconversion as appearance of serum
IgA to rotavirus in post-vaccination sera at a titre of �20 U/ml in previously unin-
fected infants [1]. Depending on the vaccine dose, 73%–96% of the infant subjects
seroconverted.

In the scientific literature, however, alternative definitions of seroconversion can
be found. A popular alternative definition is: a fourfold rise (also: increase) in
antibody level. This definition is often used when recipients of a vaccine may be
seropositive at enrollment. The major cause of cervical cancer and cervical dyspla-
sia (abnormal maturation of cells within tissue) is the human papillomavirus (HPV).
Cervical cancer is cancer of the cervix, the lower part of the uterus. Cervical cancer
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develops when abnormal cells in the cervix begin to multiply abnormally. There are
over 20 serotypes of HPV that affect the genital areas. Harro and co-workers, who
investigated the safety and immunogenicity of a virus-like particle papillomavirus
vaccine, define seropositive as an ELISA antibody titre greater than or equal to the
reactivity of a standard pooled serum [2]. At study start, 6 out of the 72 females
were seropositive, and seroconversion was defined as a fourfold or greater rise in
titre.

Yet another definition of seroconversion is one that combines the two given
above: becoming seropositive if seronegative at enrollment, or a fourfold rise if
seropositive at enrollment. For example, in clinical influenza vaccine studies sero-
conversion is usually defined as: an anti-HA antibody titre <10 at baseline and a
post-vaccination titre �40 or a titre >10 at baseline and at least a fourfold increase
in titre post-vaccination. (In fact, the reader may note that this is a third alternative
definition, because the definition thus not say: a baseline titre <10 (D seronegative)
and a post-vaccination titre �10 (D seropositive), but, a post-vaccination titre �40
(D seroprotected.))

Whichever of the above definitions is used, just like seroprotection, seroconver-
sion is a binary endpoint, and the seroconversion rate – the percentage of study
subjects who seroconverted – is a proportion.

3.5 Analysis of Proportions

In this section, the analysis of seroprotection and seroconversion rates is discussed.
However, this will be done in the wider context of analyzing proportions. The reason
for doing so is that in clinical vaccine trials binary endpoints and thus proportions
are very common: proportions of subjects reporting local or systemic reactions,
proportions of subjects reporting a particular adverse vaccine event, proportions of
subjects remaining disease-free after vaccination, etc. Thus, the methods discussed
in this section are not only applied to seroprotection and seroconversion rates but to
many other kinds of rates.

3.5.1 Analysis of a Single Proportion

Null hypotheses about the rate 
 of a particular binary event, e.g., becoming sero-
protected or having seroconverted, can be statistically tested using a test based on
the binomial distribution B(n,
), with n the number of observations. To test the null
hypothesis H0: 
 � 
0 against the one-sided alternative hypothesis H1: 
 > 
0 the
tail probability Pr.S � s j 
0) is computed, with S a Bin(n,
0) distributed random
variable and s the observed number of events. This probability can be computed
with the SAS function PROBBNML(
; n; m), which returns the probability that an
observation from a BIN(n; 
) distribution is less or equal to m.
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Example 3.4. Feiring and co-workers report the results of a study with a meningo-
coccal B vaccine in a group of 374 children, of whom 248 were randomized to
the meningococcal B vaccine group and 126 to the placebo group [3]. Antibodies
were measured with the serum bactericidal assay (SBA), and seroprotection was
defined as a SBA titre �4. In total, 226 children received all three doses of the
meningococcal B vaccine. Six weeks follow-up immunogenicity data were avail-
able for 218 children, of whom 132 were seroprotected at follow-up. Assume that
the null hypothesis is that 
 D 0.5. The seroprotection rate is 132/218 D 0.61, and

Pr.S � 132j0:5/ D 1 � PROBBNML.0:5; 218; 131/

D 0:0011:

Thus, if the null hypothesis is tested at the one-sided significance level 0.025, it can
be rejected.

More usual than testing null hypotheses about a rate 
 is to compute a confidence
interval for it.

3.5.1.1 Confidence Intervals for a Single Rate

There are numerous methods to compute confidence intervals for a single rate 
 .
Some methods are exact, others asymptotic. There is no single superior method.
Often used criteria for the evaluation of the different methods are the coverage prob-
ability and the expected width of the interval. For a comparison of seven standard
methods, the reader is referred to the paper by Newcombe [4]. New methods to
compute confidence intervals for single rates are still being published. In 2006, for
example, Borkowf proposes a method based on adding a single imaginary failure or
success [5]. Here, three methods will be discussed: the Clopper–Pearson method,
the Wald method and the Wilson method.

The Clopper–Pearson method is an exact method, based on the binomial test. The
lower limit of the 100(1�˛)% Clopper–Pearson confidence interval is the largest
value for 
 such that

Pr.S � sj
/ � ˛=2:

Conversely, the upper limit of the interval is the smallest value for 
 such that

Pr.S � sj
/ � ˛=2:

The FREQ procedure of SAS returns Clopper–Pearson confidence limits if requested
(use the option binwith the tables statement). Furthermore, formula for the lim-
its exists. If Fk;lI1�˛=2 is the 100(1�˛=2)th percentile of the F distribution with
k numerator degrees of freedom and l denominator degrees of freedom, then the
Clopper–Pearson lower confidence limit is

LCLCP D s

s C .n � s C 1/fL

;
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with fL D F2.n�sC1/;2sI1�˛=2. The Clopper–Pearson upper confidence limit is

UCLCP D .s C 1/fU

.n � s/ C .s C 1/fU

;

with fU D F2.sC1/;2.n�s/I1�˛=2.

Example 3.4. (continued) In the study 132 out of 218 children were seroprotected.
Upper percentiles of F distributions can be computed with the SAS function FINV.
The upper percentile is

fL D FINV.0:975; 2 � .218 � 132 C 1/; 2 � 132/

D FINV.0:975; 174; 264/

D 1:307:

So that

LCLCP D 132

132 C .218 � 132 C 1/1:307

D 0:537:

Similarly, the upper percentile is

fU D FINV.0:975; 2 � .132 C 1/; 2 � .218 � 132//

D FINV.0:975; 266; 172/

D 1:318

and

UCLCP D .132 C 1/1:318

.218 � 132/ C .132 C 1/1:318

D 0:671:

Thus, the two-sided 95% Clopper–Pearson interval for the probability of being
seroprotected is (0.537, 0.671).

A drawback of the Clopper–Pearson method is that it conservative in the sense
that the coverage probability of the interval is at least the nominal value, 1 � ˛. To
overcome this disadvantage, mid-P confidence limits have been proposed [6,7]. The
lower limit of the 100(1�˛)% mid-P confidence interval is the largest value for 


such that
Pr.S D sj
/

2
C Pr.S > sj
/ � ˛=2:
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The upper is the largest value for 
 such that

Pr.S D sj
/

2
C Pr.S < sj
/ � ˛=2:

The coverage probability of the mid-P confidence interval is, on average, equal to
the nominal value but depending on n and 
 may be much larger or smaller. For this
reason, the mid-P confidence method is not recommended (but for a different view
refer [4]).

The Wald and the Wilson method are both asymptotic methods. The Wald
method is the simpler of the two:

LCLWald; UCLWald D r ˙ z1�˛=2SE.r/;

with r D s=n, the observed success rate and

SE.r/ D p
r.1 � r/=n

its estimated standard error. The coverage probability of the Wald interval is on aver-
age too low and may be very low if 
 is in the vicinity of zero or one. When the
continuity correction is used the coverage probability is improved but for extreme 


it may be far of the nominal value. In vaccine development, this is a serious draw-
back because seroprotection rates, for example, are often close to one, while adverse
vaccine event rates can be close to zero.

An asymptotic method with an average coverage probability close to the nominal
value is the Wilson method. Under the null hypothesis H0: 
 D 
0 the statistic

Z D r � 
0

SE0.r/

is approximately standard Normally distributed, with

SE0.r/ D p

0.1 � 
0/=n

the standard error of r under the null hypothesis. According to one of the first princi-
ples of statistics, the range of all values for 
0 that are not rejected at the significance
level ˛ constitute a 100(1�˛)% confidence interval for 
 . To find the limits of this
range, the following equation must be solved

.r � 
0/2


0.1 � 
0/=n
D z2

1�˛=2:

This leads to the following limits

LCLWilson; UCLWilson D �B ˙ p
B2 � 4AC

2A
;
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with
A D n C z2

1�˛=2; B D �.2s C z2
1�˛=2/; C D s2=n:

Example 3.4. (continued) With z0:975 D 1:96, it follows that

A D .218 C 1:962/

D 221:84

B D �.2 � 132 C 1:962/

D �267:84

C D 1322=218

D 79:93:

Thus, asymptotic two-sided 95% confidence limits for 
 are

LCLWilson D 267:84 � p
267:842 � 4 � 221:84 � 79:93

2 � 221:84

D 0:539

and

UCLWilson D 267:84 C p
267:842 � 4 � 221:84 � 79:93

2 � 221:84

D 0:668:

For the example, the confidence limits based on the Wilson method are almost
identical to the limits based on the Clopper–Pearson method. These Wilson-type
confidence limits can be requested in the SAS procedure FREQ by using the option
bin (wilson) with the tables statement.

3.5.2 Comparing Two Proportions

There are two statistics to compare two proportions r1 and r0, e.g., two seropro-
tection rates or two seroconversion rates. These statistics are the rate difference

RD D r1 � r0

and the rate ratio
RR D r1=r0:
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The rate difference is an estimator of the risk difference

� D 
1 � 
0

and the rate ratio is an estimator of the relative risk

� D 
1=
0:

To test the null hypothesis that � D 0 is equivalent to testing that � D 1. Both null
hypotheses can be tested with Pearson’s chi-square test or, in case of small sample
sizes, an exact test, either the well-known Fisher’s exact test, or, preferably, the less
well-known Suissa and Shuster test. This latter test is discussed in Sect. 3.5.3.

To compute confidence intervals for � or � , both asymptotic and exact meth-
ods are available. For both parameters, two types of asymptotic intervals that can
be found in the statistical and epidemiological literature are the familiar Wald-
type intervals and the less familiar Wilson-type intervals. The Wilson-type intervals
should be the intervals of choice because their coverage is superior to that of the
Wald-type intervals.

Asymptotic confidence limits for the risk difference � are often computed as

RD ˙ z1�˛=2SE.RD/; (3.4)

where
SE.RD/ D

p
r1.1 � r1/=n1 C r0.1 � r0/=n0; (3.5)

with n1 and n0 the sizes of the two groups. These Wald-type confidence limits are
available in the SAS procedure FREQ (use the option riskdiffwith the tables
statement). The Wald approach may mean disagreement between Pearson’s chi-
square statistic to test the null hypothesis H0: � D 0 and the confidence limits.
This is because the test statistic is computed under the null hypothesis, with the
standard error of RD also estimated under the null hypothesis:

SE0.RD/ D p
r.1 � r/.1=n1 C 1=n0/; (3.6)

where

r D s1 C s0

n1 C n0

and s1 and s0 the observed numbers of events. Then

�2
Pearson D RD2

SE2
0.RD/

:

The Pearson statistic and the Wald-type confidence interval are thus based on dif-
ferent estimates of the standard error of the rate difference – SE0.RD/ versus
SE.RD/ – which explains the occasional disagreement between the test statistic
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and the interval. Another drawback of the Wald approach is that SE.RD/ cannot
be calculated if either r1 or r0 equals zero or one.

An approach that does not suffer from these drawbacks was proposed by Mietti-
nen and Nurminen [8]. In their approach, based on the Wilson method, the limits of
the two-sided 100(1�˛)% confidence interval for � are those values �0 that satisfy
the equation

RD � �0

SE�0
.RD/

D ˙z1�˛=2; (3.7)

where

SE�0
.RD/ D

q
QR1.1 � QR1/=n1 C QR0.1 � QR0/=n0: (3.8)

QR1 and QR0 are constrained maximum likelihood estimates of 
1 and 
0, with as
constraint

QR1 � QR0 D �0:

Miettinen and Nurminen give a closed-formed solution for QR0, which is reproduced
in Appendix B of this book. The confidence limits have to be found iteratively.
A simple iterative approach is the following. If 95% confidence limits are required,
with a precision of, say, three decimals, then, to find the upper limit of the interval,
evaluate the test statistic on the left-hand side of (3.7) for �0 D RD C 0:001; �0 D
RD C 0:002, etc., until the test statistic exceeds 1.96. The upper limit is the largest
tested value for � for which the test statistic is less than 1.96. To find the lower
limit, evaluate the test statistic for �0 D RD � 0:001, �0 D RD � 0:002, etc., until
the test statistic falls below �1.96. The lower limit is the smallest value for � for
which the test statistic is greater than �1.96.

Example 3.5. Consider a randomized immunogenicity trial in which both seropro-
tection rates are equal to 1.0, say, r1 D 48=48 and r0 D 52=52. The Wald approach
does not allow calculation of a 95% confidence interval for �, but the Wilson
approach does: (�0.074, 0.068).

The standard approach to compute an asymptotic confidence interval for the rel-
ative risk � is to compute Wald-type confidence limits based on the log-transformed
rate ratio RR, which are then back transformed, the so-called logit limits. In this
approach, the standard error of loge RR is estimated as

SE.loge RR/ D
p

1=s1 � 1=n1 C 1=s0 � 1=n0: (3.9)

The logit limits of the two-sided 100(1�˛)% Wald-type confidence interval for �

are
expŒloge RR ˙ z1�˛=2SE.loge RR/�: (3.10)

These Wald-type confidence limits for � are also available in the SAS procedure
FREQ (use the option relrisk the tables statement).

For the rate ratio also, Miettinen and Nurminen derived a Wilson-type confidence
interval. The approach is the same as for the rate difference. The limits of the two-
sided 100.1 � ˛/% Wilson-type confidence interval for � are the values �0 that
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satisfy the equation
r1 � �0r0

SE�0
.r1 � �0r0/

D ˙z1�˛=2;

with

SE�0
.r1 � �0r0/ D

q
QR1.1 � QR1/=n1 C �2

0
QR0.1 � QR0/=n0: (3.11)

Again, QR1 and QR0 are constrained MLEs of 
1 and 
0, with as constraint

QR1 D �0
QR0:

For the closed-form solution for QR0, see Appendix B.

Example 3.5. (continued) Because SE.loge RR/ D 0:0, the Wald approach does
not allow calculation of a confidence interval for � . The two-sided 95% Wilson-type
confidence interval for � is (0.926, 1.073).

The Wilson-type confidence interval for � cannot be evaluated when either s1 or
s0 equals zero.

As a final remark, it is important to be aware that the estimator RR is biased, that
it overestimates � . The explanation is that it is nonlinear in the maximum likelihood
estimator r0. The bias will be nonnegligible when the control rate �0 approaches
zero and n0 is small to intermediate [9]. This may be the case in vaccine field effi-
cacy trials (see Chap. 7), with often very low attack rates, and in safety analyzes (see
Chap. 9), when comparing adverse events rates between vaccine groups. At least two
bias corrections exists [9]. The simplest but very effective bias correction for the rate
ratio is to add one imaginary event to the control group, i.e., to set s0 to (s0C 1) and
n0 to (n0C 1). This correction is known as Jewell’s correction. Simulation results on
the performance of this correction are given in Appendix C. Somewhat surprisingly
perhaps, Jewell’s correction does not improve the performance of the Wilson-type
confidence interval for the risk ratio, in the sense that it gives better coverage. In
fact, the uncorrected confidence procedure provides near nominal coverage while
the corrected procedures could give subnominal coverage.

3.5.3 The Suissa and Shuster Exact Test for Comparing
Two Proportions

Fisher’s test is an exact test for comparing two proportions, based on conditioning on
the margins. An alternative to this test is a test based on the maximization method,
the Suissa and Shuster test, which is also an exact test [10]. This test is conditional
on the sample sizes being fixed, but it does not condition on the number of observed
cases. The Suissa and Shuster test has been shown to be more powerful than Fisher’s
exact test [11]. The test has an attractive property, which Fisher’s test lacks, namely
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that it can be used to test null hypotheses of the form H0: � D �0, with �0 ¤ 0.0,
and H0: � D �0, with �0 ¤ 1.0. This means that the test can be used to derive exact
confidence intervals for the risk difference and the relative risk.

To compute the P-value for the Suissa and Shuster exact test, the procedure pro-
posed by Chan is given [12]. Step 1 is that the appropriate Z statistic to compare
two numbers of events is identified. To test the null hypothesis H0: � D �0 the Z

statistic is

Z D RD � �0

SE�0
.RD/

; (3.12)

where SE�0
.RD/ is the standard error (3.8). When the null hypothesis is H0: � D

�0, the Z statistic is

Z D r1 � �0r0

SE�0
.r1 � �0r0/

; (3.13)

with SE�0
.r1 � �0r0/ the standard error (3.11). For �0 D 0:0 and �0 D 1:0, both

statistics reduce to the standard Z statistic to compare two proportions:

Z D RD

SE0.RD/
; (3.14)

with SE0.RD/ the standard error (3.6). Let Zobs be the value for the appropriate Z

statistic for the observed numbers of events .s1; s0/.
Step 2 is that for every possible 2�2 table the value Zij for the Z statistic is

computed, and that all combinations .i; j / of numbers of events with jZij j � jZobsj
are identified.

Step 3 is to find a P-value for testing the null hypothesis. The two-sided P-value
for the Suissa and Shuster test is defined as

P-value D max
f�02Dg

Pr.jZj � jZobsjj
0/:

For a given value for 
0, Pr.jZj � jZobsjj
0/ is the sum of the probabilities of
those 2�2 tables with jZij j � jZobsj. Under the null hypothesis, these probabilities
are the products of two binomial probabilities:

 
n1

i

!

 i

1.1 � 
1/n1�i �
 

n0

j

!



j
0 .1 � 
0/n0�j

with 
1 D .
0 C �0/ for the Z statistic in (3.8), 
1 D �0
0 for the Z statistic
(3.11) and 
1 D 
0 for the Z statistic (3.6).

The parameter 
0 is a nuisance parameter. The domain D for 
0 is the contin-
uous interval [0,1-�0] if �0 > 0 and [�0,1] if �0 < 0; if �0 > 1 then D is the
interval [0,1=�0], and if �0 < 1 then D is [0,1]; if �0 D 0 and �0 D 1 then D

is the interval [0,1]. Chan proposes to divide the domain for 
0 in a large number
of equally spaced intervals and calculate the probability at every increment, e.g.,
(0:001; 0:002; : : : ; 0:999) if the domain is [0,1], an approach which would provide
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sufficient accuracy for most practical uses. The computer must be instructed to set
the Z statistic (3.8) to zero for the 2�2 table with numbers of events (0,0), and to set
the Z statistic (3.11) to zero for 2�2 tables with numbers of events (0,0) or (n1; n0).

If the null hypothesis H0: � � �0 or H0: � � �0 is to be tested against the
one-sided alternative H1: � > �0 or H1: � > �0, then the one-sided P-value is

P-value D max
f�02Dg

Pr.Z � Zobsj
0/:

The one-sided P-value to test the null hypothesis H0: � � �0 or H0: � � �0 is to
be tested against the one-sided alternative H1: � < �0 or H1: � < �0 is

P-value D max
f�02Dg

Pr.Z � Zobsj
0/:

Lydersen, Fagerland and Laake compared the performance of Fisher’s exact test and
the Suissa and Shuster and other similar tests [11]. The performance of the Suissa
and Shuster exact test is superior to that of Fisher’s exact test, which is conservative.
The performance of the mid-P version of Fisher’s exact test comes close to that of
the Suissa and Shuster test. They advise that Fisher’s exact test should no longer be
used.

Example 3.6. Chan cites a challenge study on the protective efficacy of a recombi-
nant protein influenza vaccine. In the study 15 vaccinated and 15 placebo subjects
were challenged with a weakened A-H1N1 influenza virus strain. After 9 days the
observed rates of any clinical illness were 7/15 in the vaccine group and 12/15 in
the control group, the placebo group. For this data, Fisher’s exact test yields a one-
sided P-value of 0.064 and a two-sided P-value of 0.128. For the null hypothesis
H0 W � D 0:0, the observed value for the Z statistic is Zobs D �1:894. The Suissa
and Shuster test yields a one-sided P-value of 0.034 and a two-sided P-value of
0.068. The asymptotic P-value for Zobs is the one for Pearson’s chi-square statistic,
which for the example data equals 0.058.

Exact confidence intervals for the risk difference or the relative risk can be obtained
by testing the appropriate null hypothesis against the one-sided alternative for
subsequent values for �0 or �0.

Example 3.6. (continued) For the challenge data, the exact two-sided 95% confi-
dence interval for the relative risk � is quickly found once a SAS code to compute
the Suissa and Shuster exact P-values has been written. The one sided P-value for
the null hypothesis H0: � � 0:260 is 0.0231, and that for H0: � � 0:261 is
0.0263. Thus, the lower limit of the exact confidence interval is 0.261. The one-sided
P-values for the null hypotheses H0: � � 1:037 and H0: � � 1:038 are 0.02503
and 0.0248, respectively. Thus, the upper limit of the exact confidence interval is
1.037. For comparison, the asymptotic 95% Wilson-type confidence interval for �

is (0.300, 1.019).
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3.6 Multiple Co-Primary Endpoints
and the Intersection–Union Test

In clinical vaccine trials, it is not uncommon that there are multiple co-primary end-
points. As an example, consider a trial with an experimental combination vaccine
containing different serotypes of the same organism, e.g., a pneumococcal vac-
cine. If the aim of the trial is to compare the experimental vaccine to the control
vaccine for all serotypes, then the number of co-primary endpoints will be equal
to the number of serotypes. Another example is a trial with the aim to compare an
experimental vaccine to a control vaccine for both the seroprotection rate and the
geometric mean response, in which case there are two co-primary endpoints.

When there is more than one primary endpoint, the multiplicity issue must be
addressed. Here, one particular type of multiplicity will be considered, namely the
scenario that the objective of the trial is to demonstrate that the experimental vac-
cine is superior to the control vaccine simultaneously for all co-primary endpoints.
For this scenario, a much applied approach is the one based on the intersection–
union (IU) test [13]. In this approach, for each of the k co-primary endpoints, the
component null hypothesis is tested at the significance level ˛, and superiority of
the investigational vaccine to the control vaccine is claimed only if all k component
null hypotheses are rejected. On the plus side of the IU test is its simplicity, which
makes the test easy to explain to nonstatisticians. On the negative side is that the
test is known to be conservative. Only when the k endpoints are perfectly correlated
the level of the test will be exactly ˛, in all other cases the level will be less than ˛.
When the k endpoints are independent the level of the test will be as low as ˛k .

Several alternatives to the IU test have been proposed. For the case that the
data follow a multivariate Normal distribution, for example, Laska and colleagues
show that under mild conditions a test known as the min test is uniformly the most
powerful test [14]. The min test statistic Zmin is defined as

Zmin D minfZ1; : : : ; Zkg;

with Zi a test statistic to test the i th component null hypothesis. The sampling dis-
tribution of the test statistic is, however, complicated and depends amongst others on
the covariance structure of the endpoints, which limits the applicability of the test.

For two interesting discussions on multiple co-primary endpoints and statistical
power, the reader is referred to the papers by Chuang-Stein and colleagues and Senn
and Bretz [15, 16].

3.7 The Reverse Cumulative Distribution Plot

The reverse cumulative distribution plot is a graphic tool to display the distribu-
tion of immunogenicity values. It is particularly useful for visual comparisons of
distributions between vaccine groups. The plot became quickly popular after a lucid
presentation of its properties by Reed, Meade and Steinhoff [17].
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In Fig. 3.1, four examples of a reverse cumulative distribution (RCD) curve are
shown. The x-axis represents the immunogenicity values, and the scale of the axis
is usually logarithmic. The y-axis represents the percentage of subjects having at
least that immunogenicity value. Thus, to the value x on the x-axis corresponds the
percentage of subjects having a log-transformed immunogenicity value greater or
equal to x. By definition the curve begins at 100%, and then descends down, from
left to right. The lowest point on the curve is the percentage of subjects having a log-
transformed immunogenicity value equal to the highest observed value. The plot is
called the reverse cumulative distribution plot because it reverses the cumulative
distribution. The median log-transformed immunogenicity level is the value on the
x-axis below the y-axis value of 50%.

If the distribution of the log transformed immunogenicity values is symmetric
with little variability around the mean, then the middle section of the RCD curve
will be steep (curve A). If, on the other hand, the variability is large then the middle
section of the curve will be less steep (curve B). In the extreme, if the distribution of
the log-transformed immunogenicity values is more or less uniform, then the curve
will be approximately a downward-sloping straight line. If the distribution of the
log-transformed immunogenicity values is skewed to the right, with a large fraction
of the subjects having a value near the high end, then the curve will be rectangular,
i.e., remaining high and flat with a rapid descend near the end (curve C). If the
distribution of the log transformed immunogenicity values is skewed to the left,
thus if there are many subjects with a low value, then the curve will be similar to
curve D.

Fig. 3.1 Four examples of a RCD curve
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If the RCD curve for one vaccine is above the curve for another vaccine, and
the two curves do not intersect (say, A and D in Fig. 3.1), then every percentile
of distribution of the immunogenicity values of vaccine A is higher than the cor-
responding percentile for vaccine D, meaning that vaccine A induced the higher
immune responses. If the two curves intersect, then one vaccine induced both more
lower and higher immune responses. If (the y-value of) the point of intersection is
above 50% (as for B and A in Fig. 3.1) than this is in favour of vaccine B, because
compared to group A, in group B there would be a larger fraction of subjects with a
high immune response, while a point of intersection below 50% would be in favour
of vaccine A.

3.8 Discussion

When it has been demonstrated that an experimental vaccine is superior to a control
vaccine with respect to, say, mean antibody response, it is often assumed that the
conclusion can be generalized to protection, i.e., that the experimental vaccine is
also superior to the control with respect to protection against disease or infection.
Nauta, Beyer and Osterhaus investigated this for the case of influenza vaccines [18].
With the help of a simple statistical model, they show that the relationship between
antibody level and protection from influenza is more complicated than perhaps envi-
sioned. Their model predicts that the relationship depends not only on the mean but
also on the standard deviation of the log-transformed antibody values. Until their
publication, this dependency had been largely overlooked. It is this dependency that
complicates the interpretation. They observe, for example, that if the mean antibody
level of both the experimental and the control group are high, a positive differ-
ence in mean level implies a positive difference in the fraction protected subjects,
unless the difference in mean level is small to moderate in combination with a large,
positive difference in standard deviation. Interpretation of differences in fractions
seroprotected subjects is even more challenging. Their model predicts that differ-
ences in the fraction seroprotected subjects cannot be interpreted without taking
into account the mean antibody levels and standard deviations. This sheds a whole
new light on the usefulness of the concept of seroprotection.

It is not unreasonable to assume that these observations also hold for many other
vaccines. The implication would be that the standard methods discussed in this chap-
ter are in need of improvement in the sense that they compare means rather than
(simultaneously) means and standard deviations of distributions. An early attempt
in this direction was made by Lachenbruch, Rida and Kou, who outline a statis-
tical method based on measuring the similarity between the scales and shapes of
antibody level distributions [19]. Computationally, their method is complex. For
example, critical values for the test statistic have to be simulated. Nevertheless,
their approach – evaluating simultaneously the means and the standard deviations
of immunogenicity distributions – is certainly worth to be further developed.
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3.9 Sample Size Estimation

3.9.1 Comparing Two Geometric Mean Responses

There are many different formulae for sample size estimation for parallel group tri-
als with Normal data. The simplest but least accurate one and which can be found
in any basic text on statistics, is the well-known one based on a Normal approxima-
tion. The most accurate one, involving no approximations, is based on a noncentral
t distribution, see Formula (3.8) in the book by Julious [20]. Sample sizes based
on this formula can be estimated with procedure POWER of SAS. Two parameters
have to be specified, the difference � of the log-transformed underlying geometric
means and the within-groups standard deviation � of the log-transformed immuno-
genicity values. The value for � may be taken from previous trials. Alternatively,
the following formula can be used to obtain a, conservative, value for � :

4� � [log(largest expected immunogenicity value) minus
log(lowest expected immunogenicity value)].

This formula is based on the fact that in case of Normal data approximately 95% of
the observations will fall in the range

� � 2� to � C 2�:

To obtain a less conservative value, in the formula above the multiplier 4 should be
substituted with 6.

Example 3.7. Consider a clinical trial in which two influenza vaccines are to be
compared, a licensed one and a new, investigational vaccine, with the antibody
response as measured by the HI test as primary endpoint. Assume that the inves-
tigator believes that the new vaccine is considerably more immunogenic than the
licensed one, and that he expects geometric mean ratio to be �2.0. In influenza vac-
cine trials HI titres >5,120 are rare, and the lowest possible value is usually 5, i.e.,
half of the reciprocal of the starting dilution, 10. Thus

� D loge 2:0 D 0:69;

and a conservative value for � is

� D loge 5;120 � loge5

4
D 1:73:

Below the SAS code to estimate the number of subjects per vaccine group for a
statistical power of 0.9 is given. The required sample size is found to be 134 subjects
per group, 268 subjects in total.

SAS Code 3.1 Sample Size Calculation for Comparing two Geometric Mean
Responses
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proc power;
meandiff=0.69 stddev=1.73
power=0.9 npergroup=.;

run;

SAS Output 3.1

The POWER Procedure
Two-sample t Test for Mean Difference

Fixed Scenario Elements

Distribution Normal
Method Exact
Mean Difference 0.69
Standard Deviation 1.73
Nominal Power 0.9
Number of Sides 2
Null Difference 0
Alpha 0.05

Computed N Per Group

Actual N Per
Power Group

0.902 134

For the reverse approach, finding the statistical power for a given sample size, in
the SAS code the variable power should be set to missing (.) and the variable
npergroup to the proposed number of subjects per group.

3.9.2 Comparing Two Proportions

For the estimation of the sample size required to compare two proportions also,
numerous formulae exist. All these formulae are asymptotic, and a detailed discus-
sion of them can be found in Chap. 4 of the book by Fleiss, Levin and Paik [21].
The formulae they advise, (4.14) for equal sample sizes and (4.19) for unequal sam-
ple sizes, have been included in the POWER procedure. For a discussion on exact
power calculations for 2�2 tables, the reader is referred to the paper by Hirji and
colleagues [22].

Example 3.7. (continued) Assume that the investigator wants to compare seropro-
tection rates rather than geometric mean titres, and that he expects an increase in the
probability of seroprotection from 0.85 to 0.95. Below the SAS code to calculate
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the number of subjects per vaccine group for a statistical power of 0.9 is given. The
required sample size is found to be 188 subjects per group.

SAS Code 3.2 Sample Size Calculation for Comparing two Proportions

proc power;
twosamplefreq test=pchi
groupproportions=(0.85,0.95)
power=0.9 npergroup=.;

run;

SAS Output 3.2

The POWER Procedure
Pearson Chi-square Test for Two Proportions

Fixed Scenario Elements

Distribution Asymptotic normal
Method Normal approximation
Alpha 0.05
Group 1 Proportion 0.85
Group 2 Proportion 0.95
Nominal Power 0.9
Number of Sides 2
Null Proportion Difference 0

Computed N Per Group

Actual N Per
Power Group

0.901 188

3.9.3 Sample Size Estimation for Trials
with Multiple Co-Primary Endpoints

Estimation of the power of a trial with multiple co-primary endpoints is a nontrivial
problem. The key of the problem is that the power is critically dependent on the
correlation between the endpoints. Different assumptions about the correlation can
lead to substantially different sample size estimates. The power will be the highest
when the endpoints are strongly correlated but will be low when the endpoints are
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minimally correlated. In practice, the correlations between the endpoints will often
be unknown. If the objective of the trial is to demonstrate statistical significance
for all k co-primary endpoints (see Sect. 3.6), then an often applied approach is to
obtain a lower bound for the global power P using the following inequality

P �
kY

iD1

Pi ; (3.15)

with Pi the power of the trial for the i th endpoint. This inequality requires the
assumption that all endpoints are nonnegatively correlated.

An inequality that does not require any assumptions about the correlations is

P �
kX

iD1

Pi � .k � 1/: (3.16)

(See Appendix D for a proof of this inequality.) When k is large, both inequalities
require that the Pi ’s must be close to 1.0 to be secured of a lower bound exceeding
0.8. Assume that the global power should be at least 0.9. This requirement will be
met if

Pi � .0:9/1=k i D 1; : : : ; k:

If k D 5, then the Pi should be at least 0.979.

Example 3.8. Consider a comparative trial with two co-primary endpoints, the geo-
metric mean concentration and the seroprotection rate. Assume that a sample size
of 2�150 subjects is being considered, and that with the help of the SAS codes in
the previous sections the power for the first co-primary endpoint has been estimated
as 0.93 and for the second co-primary endpoint as 0.90. Under the (reasonable)
assumption that the two endpoints are nonnegatively correlated, a lower bound for
the global statistical power is

P � 0:93 � 0:90

D 0:837:

If inequality (3.16) is used instead, the lower bound for the global power is

0:93 C 0:90 � 1 D 0:830:

When data of previous clinical trials are available, an alternative method to estimate
the global power is Monte-Carlo simulation. As a simple example, consider an open
study with the aim to demonstrate the immunogenicity of a new formulation of a
particular vaccine, by showing that both the seroprotection and the seroconversion
rate exceed pre-defined bounds. A large number of studies – minimally 5,000 – is
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simulated. Per simulated study a random draw with replacement of size n from the
database is made, and the result of the study is considered significant if the observed
seroprotection and seroconversion rate exceed the pre-defined bounds. An estimate
of the global power of the design for sample size n is the fraction of simulated
studies with a significant result.



Chapter 4
Antibody Titres and Two Types of Bias

4.1 Standard Antibody Titres versus Mid-Value Titres

Statisticians have pointed out that when antibody titres are determined using the
standard definition (see Sect. 2.1.2), the reciprocal of the highest dilution at which
the assay read-out did occur, the true titre value is underestimated [23]. This is easy
to see. By definition, the true antibody titre � lies between the standard titre ts and
the reciprocal of the next dilution, rn:

ts � � < rn:

Thus, for most serum samples the standard antibody titre will be lower than the true
titre. This means that if standard antibody titres are used, the geometric mean titre
will underestimate the geometric mean of the distribution underlying the antibody
values.

There are antibody assays that try to correct for this bias. An example is the inter-
polated serum bactericidal assay (SBA) to demonstrate humoral immune responses
induced by meningococcal vaccines. Meningococcal disease is caused by the bac-
terium Neisseria meningitidis, also known as meningococcus. Attack rates of the
disease are the highest among infants aged younger than two years and adolescents
between 11 and 19 years of age. The disease can cause substantial mortality. Five
serogroups, A, B, C, Y and W135, are responsible for virtually all cases of the dis-
ease. The standard SBA titre is defined as the reciprocal of the highest dilution of
serum immediately preceding the 50% survival/kill value for colony-forming units
(50% cut-off). The interpolated SBA titre is calculated using a formula that calcu-
lates the percentage kill in dilutions on either side of the 50% cut-off. The titre is the
reciprocal of the dilution of serum at the point where the antibody curve intersects
the 50% cut-off line.

Another approach to correct for the bias is changing the definition of the antibody
titre to

antibody titre D p
tsrn;

the geometric mean of the standard antibody titre and the reciprocal of the next
dilution. For titres based on serial two-fold dilutions rn equals 2ts , in which case
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the alternative definition of the antibody titre becomes

antibody titre D p
2ts :

For reasons explained below, Nauta and De Bruijn propose to call this the mid-
value definition of antibody titres [24]. Mid-value antibody titres are higher than
standard titres. For example, if the predefined dilutions are 1:4, 1:8, 1:16, etc., and
the standard antibody titre for a serum sample is 64, then the mid-value titre for the
sample is the geometric mean of 64 and 128

p
64 � 128 D 90:5

D p
2 � 64:

On a logarithmic scale, the mid-value antibody titre tmv is the mid-point between
ts and rn:

log tmv D .log ts C log rn/=2:

Hence the name: mid-value antibody titre. Nauta and De Bruijn were not the first
to promote mid-value antibody titres (although they coined the term), an early sug-
gestion to use mid-value titres rather than standard titres can be found in a paper by
Lyng and Weis Bentzonyn [25].

In almost all practical situations, the mid-value definition reduces the bias of
standard antibody titres, meaning that on average the mid-value titre is closer to the
true titre than the standard titre, i.e.,

jtmv � � j � jts � � j:

A sufficient condition for the mid-value definition to reduce the bias is

1. The log-transformed antibody titres are Normally distributed, and
2. The dilutions are predefined, and
3. The distance between two consecutive log-transformed dilution factors is small

compared to the range of observed log-transformed titre values

For post-vaccination titres, this is usually the case. (For pre-vaccination titres, often
condition 1 or 3 is not met.)

In case of serial two-fold dilutions, when the antibody titres are determined using
the standard definition and the primary outcome measure is the geometric mean
titre, there is no need to calculate the individual mid-value titres. Let GMTs be the
geometric mean of a single group of standard antibody titres. Then the geometric
mean of the corresponding mid-value titres is

GMTmv D p
2GMTs :

A similar expression holds for the confidence limits for GMTmv.
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For the geometric mean fold increase, which can be expressed as the ratio of a
post- and a pre-vaccination geometric mean titres (see Sect. 3.3), the bias correction
is also not needed, because

gMFImv D GMTmv post

GMTmv pre

D
p

2GMTs postp
2GMTs pre

D GMTs post

GMTs pre

D gMFIs:

When the summary statistic of interest is the geometric mean fold increase, both
definition, the standard and the mid-value one, will produce the same result. The
same holds true for the geometric mean ratio, the ratio of two independent geometric
mean titres:

GMRmv D GMTmv 1

GMTmv 0

D
p

2GMTs 1p
2GMTs 0

D GMTs 1

GMTs 0

D GMRs:

Here also both definitions produce the same result.

4.2 Censored Antibody Titres and Maximum Likelihood
Estimation

If the number of dilutions in an antibody assay is limited, then it may happen that
at the highest tested dilution the assay read-out did not occur. In that case, often the
titre is set to the reciprocal of the highest dilution. The result of this practice is bias.
The geometric mean titre will be underestimated, and the assumption of Normality
for the distribution of the log-transformed titres will no longer hold.

Example 4.1. In Fig. 4.1, the histogram of the frequency distribution of log trans-
formed post-vaccination measles HI antibody titres of a hypothetical group of 300
children is displayed. The starting dilution was 1:4, and as log transformation the
standard transformation – log2(titre/2) – was used. The arithmetic mean of the log
transformed titres is 5.80, with estimated standard deviation 2.49. This arithmetic
mean corresponds to a geometric mean titre of
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Fig. 4.1 Uncensored and censored frequency distribution of log transformed measles HI antibody
titres

2 � 25:80 D 111:4:

The median and the maximum of the titres are 128 and 16,384, respectively. Next,
suppose that the highest tested dilution would have been 1:512 rather than a much
higher dilution, and that titres above 512 would have been set to 512. The result
of this censoring is also shown in Fig. 4.1. The bars above 9, 10, 11, 12 and 13
are added to the bar above 8. Due to the censoring the frequency distribution is no
longer symmetrical and thus not longer Normally shaped. The arithmetic mean of
the censored log-transformed titres is 5.53 (GMT D 92.4), with estimated stan-
dard deviation 2.05. Both estimates are smaller than the estimates based on the
uncensored data.

In the following sections, it will be explained how this bias due to censoring can
be eliminated [26].

4.2.1 ML Estimation for Censored Normal Data

A censored observation is an observation for which a lower or an upper limit is
known but not the exact value. An example of a censored observation is a value
below the detection limit of a laboratory test. The upper limit of the test result is
known, the detection limit, but not the test result itself. If for an observation only an
upper limit is known, the observation is called left censored. Observation for which
only a lower limit is known are called right censored. Censored observations are
often assigned the value of the limit. If this is not taken into account in the statistical
analysis, estimates will be biased. A powerful statistical method to eliminate this
bias is maximum likelihood (ML) estimation for censored data. As an introduction
to ML estimation for censored antibody titres, in this section ML estimation for
censored Normal data is explained.
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Let x1; : : : ; xn be a group of noncensored continuous N.�; �2/ distributed
observations. The log likelihood function is

LL.�; �/ D
nX

iD1

log f .xi I �; �/;

where f .xI �; �/ is the Normal density function. The ML estimates of � and � are
those values that maximize the log likelihood function. For Normal data, the ML
estimates are the arithmetic mean and the estimated standard deviation (but with the
.n � 1/ in the denominator replaced by n.)

Next, suppose that r of the observations are right-censored. Let x1; : : : ; xn�r be
the noncensored observations and xn�rC1; : : : ; xn the right-censored observations.
Then the log likelihood function becomes

LL.�; �/ D
n�rX

iD1

log f .xi I �; �/ C
nX

iDn�rC1

log Œ1 � F.xi I �; �/�;

where F.xI �; �/ is the Normal distribution function. Thus, for a censored obser-
vation x, the density for x is replaced with the probability of an observation
beyond x. Again, the ML estimates of � and � are those values that maximize
the log likelihood function, and they are unbiased estimates of these parameters.

Finally, suppose that there are l left-censored observations: x1; : : : ; xl . The log
likelihood function for Normal data with both left- and right-censored observa-
tions is

LL.�; �/ D
lX

iD1

log F.xi I �; �/ C
n�rX

iDlC1

log f .xi I �; �/

C
nX

iDn�rC1

log Œ1 � F.xi I �; �/�:

Maximum likelihood estimation for censored Normal data can be intuitively under-
stood as follows. For a series of values for � and � a Normal curve is fitted to the
histogram of the frequency distribution of the observation, and it is checked how
well the curve fits to the data. This includes a comparison of the areas under the
left and the right tail of the fitted curve with the areas of the histogram bars below
or above the censored values. The censored tails are reconstructed, and correct esti-
mates of the mean and standard deviation of the distribution are obtained. The ML
estimates of � and � are those values that give the best fit, and they are found by
iteration.

Maximum likelihood estimation for censored observations was first introduced
for the analysis of survival data, where it is used to deal with censored survival
times [27].
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4.2.2 ML Estimation for Censored Antibody Titres

To compute ML estimates for censored, log-transformed antibody titres, the SAS
procedure LIFEREG can be used. This is a procedure to fit probability distributions
to data sets with censored observations. A wide variety of probability distributions
can be fitted, including the Normal distribution.

Before the log likelihood function for censored observations can be applied to
log-transformed antibody titres, a further modification is needed. In the previous
section, it was assumed that the data were censored continuous Normal observa-
tions. Log transformed antibody titres, however, are not continuous observations,
they are so-called interval censored observations. An interval censored observation
is an observation for which the lower and the upper value is known but not the exact
value. If this is not taken into account, i.e., if the values are treated as if continuous,
the ML estimates procedure LIFEREG returns will be invalid.

As explained in Sect. 4.1, the true titre value � lies between the standard titre ts
and the reciprocal rn of the next dilution:

ts � � < rn:

Thus, let ti be an interval censored standard titre, with ri the reciprocal of the
next dilution. The second term of the log likelihood function, the term for the
noncensored observations becomes

n�rX

iDlC1

log ŒF .log ri I �; �/ � F.log ti I �; �/�:

The first term of the log likelihood function, the term for the left-censored observa-
tions, becomes

lX

iD1

log F.log rLI �; �/;

where rL is the reciprocal of the starting dilation. The third term of the log likelihood
function, the term for the right-censored observations, becomes

nX

iDn�rC1

log Œ1 � F.log rH I �; �/�;

where rH is the reciprocal of the highest dilution tested.
In procedure LIFEREG this modification can be handled by the model state-

ment with the lower and upper syntax; lower and upper are two variables
containing the lower and the upper ranges for the observations. For an interval
censored standard titre lower = log ti and upper D log ri ; for left-censored
standard titres lower has to be set to missing (interpreted by the procedure LIF-
EREG as minus infinity) and upper to log rL; for right-censored standard titres
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lower D log rH and upper has to be set to missing (interpreted as plus infinity.)
By definition, all observations below the detection limit are left-censored.

Example 4.1. (continued) The starting dilution was 1:4, and thus antibody titres less
or equal to 4 are to be considered as left censored. To visualize this, in Fig. 4.1 the
bar above 0 has to be added to the bar above 1. Below a SAS code to fit a Normal
distribution to the censored log transformed antibody titres in Fig. 4.1 is given.

SAS Code 4.1 Fitting a Normal Distribution to the Censored Antibody titres of
Fig. 4.1

data;
input titre count;
logtitre=log(titre/2)/log(2);/*standard log transformation*/
do i=1 to count;

if (titre=4) then lower=.; else lower=logtitre;
if (titre=512) then upper=.; else upper=logtitre+1;

output;
end;
datalines;
4 14
8 14
16 22
32 34
64 54
128 54
256 40
512 68
run;

proc lifereg;
model (lower,upper)= / d=normal;

run;

SAS Output 4.1A

Analysis of Parameter Estimates

Standard 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 6.2270 0.1443 5.9443 6.5098 1863.11 <.0001
Scale 1 2.3918 0.1242 2.1604 2.6480

Two parameters are estimated, an intercept, which is the ML estimate of �, and a
scale parameter, which is the ML estimate of � . For both parameters, two-sided 95%
confidence limits are given.
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The reader will have observed that the � estimated above is the mean of the
distribution underlying the log-transformed mid-value titres (Sect. 4.1), and not the
mean of the distribution underlying the log transformed standard titres. This is due
to the values assigned to the SAS variables lower and upper, which are consis-
tent with the mid-value definition. To estimate the � consistent with the definition
of standard titres, in the SAS code above lower has to be set to logtitre-0.5 and
upper to logtitreC0.5. If done so, the following output is obtained

SAS Output 4.1B

Analysis of Parameter Estimates

Standard 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 5.7270 0.1443 5.4443 6.0098 1575.93 <.0001
Scale 1 2.3918 0.1242 2.1604 2.6480

The ML estimate of � is now consistent with the standard titre definition. (This value
could have of course also be obtained by subtracting 0.5 from the ML estimates in
SAS Output 4.1A: 6:2270 � 0:5 D 5:7270.) Note that the correction does not have
an effect on the ML estimate of � .

The ML estimates 5.73 and 2.39 are in good agreement with the estimates based
on the uncensored data, 5.80 and 2.49. This demonstrates the powerful tool ML
estimation for censored observations is.

Above as log transformation the standard transformation log t D log2 Œt=.D=2/�

was used, with D the starting dilution factor. A general SAS code to fit a Normal dis-
tribution to the censored loge transformed serial two-fold antibody titres is presented
below.

SAS Code 4.2 Fitting a Normal Distribution to Censored Serial Two-fold Antibody
titres

data;
input titre;
midvalue=1; /* 1 for mid-value definition, 0 otherwise */
rsd=4; /* reciprocal starting dilution */
rhd=512; /* reciprocal highest dilution */
if (midvalue) then
do;

if (titre=rsd) then lower=.; else lower=log(titre);
if (titre=rhd) then upper=.; else upper=log(2*titre);

end;
else

do;
if (titre=rsd) then lower=.;
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else lower=(log(titre)+log(titre/2))/2;
if (titre=rhd) then upper=.;
else upper=(log(titre)+log(2*titre))/2;

end;
datalines;
.
.
run;

proc lifereg;
model (lower,upper)= / d=normal;

run;

The approach discussed above can be readily extended to the case of two vaccine
groups. Let group be the SAS variable for the groups, taking the value 1 for the
experimental group and 0 for the control group. Then the procedure LIFEREG
statement in SAS code 4.1 should be changed to

proc lifereg;
model (lower,upper)=group /d=normal;

run;



Chapter 5
Adjusting for Imbalance
in Pre-Vaccination State

5.1 Imbalance in Pre-Vaccination State

For some infectious diseases, pre-vaccination antibody levels are not zero. Not all
vaccines offer life-long protection, and a number of diseases require re-vaccinations
throughout life. Antibody levels prior to re-vaccination with, for example, a tetanus,
a diphtheria, a pertussis or a tick borne encephalitis vaccine will often not be zero.
If pre-vaccination (baseline) antibody levels are not zero, then the post-vaccination
values do not only express the immune responses to the vaccination, but also the
subjects’ pre-vaccination state. This can complicate the interpretation of a difference
in post-vaccination antibody values between vaccine groups. If there is imbalance
in pre-vaccination state, i.e., if there is a difference in baseline antibody values
between groups, then part of the post-vaccination difference can be explained by
the pre-vaccination difference. In case of a positive imbalance in pre-vaccination
state, the post-vaccination difference may overestimate the immunogenicity of an
investigational vaccine.

A popular approach to correct for imbalance in pre-vaccination state is analysing
the fold increases instead of the post-vaccination antibody values. In Sect. 3.3.3 it
was argued that the reasoning behind this approach – if pre-treatment values are
subtracted from post-treatment values, any bias due to baseline imbalance is elim-
inated – is incorrect. If post- and pre-vaccination antibody values are positively
correlated, and they usually are, then a positive baseline difference is predictive
of a positive post-vaccination difference, but it is also predictive of a negative dif-
ference in mean fold increase. Thus, an analysis of fold increases does not solve the
problem of imbalance in pre-vaccination state.

Consider the scatterplot in Fig. 5.1. Shown are log-transformed post-vaccination
antibody values (y-axis) versus log-transformed pre-vaccination values (x-axis) for
a given infectious disease. All points fall above or on the diagonal line of equality,
because as a rule a post-vaccination antibody value will be larger than or equal to
the pre-vaccination value. Because biologically there is a maximum to the amount
of antibodies that the body can produce, all points fall below a horizontal line, the
asymptote. The vertical distance between a point and the diagonal line is the log-
transformed fold increase. The larger the log-transformed pre-vaccination antibody
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Fig. 5.1 Post-vaccination antibody values versus pre-vaccination values

value, the smaller, on average, the log-transformed fold increase. Figure 5.1 is thus
a graphical illustration of the negative correlation between pre-vaccination antibody
values and fold increases.

Before proceeding to discuss two statistical techniques to adjust for baseline
imbalance, the question needs to be addressed if such an adjustment is required.
Strictly speaking, the answer is no. Statistical theory does not require baseline bal-
ance. In a randomized trial, baseline balance is not a peremptory requirement to
yield valid results. Even with randomization, treatment groups will never be fully
balanced with respect to all prognostic factors. If randomization is applied, groups
will be equal on average, i.e., over all possible randomizations. Random between-
group outcome differences are allowed for in the statistics computed from the data,
and the inference drawn from them is correct, on average.

Nevertheless, there is a general consensus that the credibility of a statistical anal-
ysis is increased if baseline imbalance for known prognostic factors is corrected for,
as an improvement over just relaying on the randomization.

5.2 Adjusting for Baseline Imbalance

There are two major statistical techniques to adjust for baseline imbalance: stratifi-
cation and analysis of covariance.

In a stratified trial, subjects with a similar baseline value are assigned to the
same stratum. If subjects are randomized per stratum, then treatment groups will
be comparable with respect to the variable used for stratification. In clinical vac-
cine trials, however, pre-randomization stratification by baseline antibody value is
rarely applied. One reason for this may be that this approach requires two instead
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of one baseline visit. During the first visit, a blood sample for baseline antibody
titration is drawn. Baseline samples are then sent to a laboratory for antibody deter-
mination, which may take several weeks. And then, when the assay results have
been received by the site, the subjects must return for a second baseline visit. If the
vaccine contains different serotypes of the same organism, then pre-randomization
stratification is also very difficult. An alternative to pre-randomization stratification
is post-randomization stratification, with the strata being defined after the trial has
been completed, during the statistical analysis of the data. A much applied approach
is to divide the baseline values into the four quartiles, which then serve as strata. In
both cases, pre- or post-vaccination stratification, a stratified analysis is performed
and the baseline imbalance is eliminated.

The second technique to adjust for baseline imbalance is analysis of covariance,
sometimes referred to as regression control. (Analysis of covariance can be viewed
as a limiting case of post-randomization stratification, with the observed baseline
values as the strata.) Two parallel lines are fitted to the outcome data, one for the
investigational treatment group and one for the control group, with regression on the
baseline data. The treatment effect is then estimated by the vertical distance between
the fitted lines. If there is baseline imbalance, a comparison of the outcome means
will be affected by the difference in mean baseline value. Affected in the sense
that the difference of the outcome means will overestimate the treatment effect.
A comparison between the two groups for subjects with the same baseline value
would be the solution. This is what analysis of covariance does.

5.3 Analysis of Covariance for Antibody Values

The simplest case of analysis of covariance for antibody values is the analysis of data
from a single vaccine study. A linear regression model is fitted to the data with the
log-transformed post-vaccination antibody value (y) as the response (also: outcome,
dependent) variable and the log-transformed pre-vaccination antibody value (x) as
the predictor (also: independent) variable:

Y D ˇ0 C ˇ1x C Ex : (5.1)

The intercept ˇ0 and the slope ˇ1 are regression parameters to be estimated from
the data. If the observations are antibody titres and the standard log transformation
is used, then the intercept ˇ0 is the mean of the distribution underlying the y’s of
the seronegative subjects, i.e., the subjects with a pre-vaccination antibody titre of
(D/2), with D the starting dilution factor. Then the slope ˇ1 is the average increase
in the y’s per dilution step.

Note that
.D=2/2ˇ0Cˇ1x

is the geometric mean of the distribution underlying the antibody values of subjects
with a log-transformed pre-vaccination value of x. Thus, the regression parameters
can be used for inference about the untransformed antibody values.
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5.3.1 A Solution to the Problem of Heteroscedasticity

The residual Ex is the difference between the actual y and the value predicted by the
fitted model. The usual assumption is that Ex is Normally distributed about a mean
value of 0 with variance �2

x . Another usual assumption is that of homoscedasticity.
This is the assumption that �2

x does not depend on x, but that �2
x D �2. How-

ever, Fig. 5.1 shows that in case of log-transformed antibody values this assumption
may not hold, but that �2

x decreases with increasing x. A dependency of �2
x on x is

called heteroscedasticity. If this heteroscedasticity is ignored, i.e., if the regression
model is fitted under the assumption of homoscedasticity, then the resulting param-
eter estimates, confidence intervals and P-values will be invalid. But a solution to
this problem exists once it is realized that the heteroscedasticity can be modelled.

Let A be the upper limit for the log-transformed post-vaccination antibody val-
ues, i.e., the horizontal asymptote in Fig. 5.1. For Normal data, a crude formula for
the range of the values to be observed is

range � c � standard deviation,

with the constant c often being set to either 4 or 6. The range for the y’s for subjects
with a log-transformed pre-vaccination value of x is (A-x), and thus

.A � x/ � c�x ;

or, after taking squares on both sides of the equation

A2 � 2Ax C x2 � c2�2
x :

This can be rewritten as

�2
x � �2.1 C c1x C c2x2/; (5.2)

where
�2 D .A=c/2; c1 D �2=A; c2 D 1=A2:

Equation (5.2) thus gives a model for the variance of Ex .

5.3.2 Fitting the Variance Model for Heteroscedasticity

The variance model in (5.2) cannot be fitted with SAS, but an almost similar model
can. This model is

�2
x D �2 exp.C1x C C2x2/: (5.3)

To see that these two models are very similar, consider the case that

A D 10; c1 D �2=10 D �0:2; c2 D 1=102 D 0:01:
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Fig. 5.2 Graphical comparison of variance models (5.2) and (5.3)

This model is plotted in Fig. 5.2, where for convenience � has been set to 1. Also
plotted in Fig. 5.2 is the model in (5.3) with

C1 D �0:24; C2 D �0:011:

The two curves almost coincide.
The model in (5.3) has the nice property that it cannot be negative or zero, which

is a guarantee for more stable variance estimates. Below a SAS code to fit this
variance model is given.

SAS Code 5.1 ANCOVA for Log-Transformed Antibody Values, under the Assump-
tion of Heteroscedasticity

proc mixed;
model y=x / solution;
repeated / local=exp(x x2);

run;

When the above code is run, estimates of ˇ0, ˇ1, � , C1 and C2 are returned. Because
C1 and C2 are nuisance parameters, their estimates are of no special interest.

The regression model in (5.1) was fitted to the data of Fig. 5.1, both under
the assumption of homoscedasticity and under the assumption that for the �2

x the
variance model in (5.3) applied. In Table 5.1, parameter estimates are given. As
expected, the estimate of � under the assumption of homoscedasticity is smaller
than the estimate under the assumption of heteroscedasticity. If the standard log
transformation is used, the intercept ˇ0 is the mean of the distribution underly-
ing the y’s of the seronegative subjects. This parameter is often of special interest
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Table 5.1 Regression parameter estimates for the data in Fig. 5.1

n ˇ0 ˇ1 �

Assuming 163 3.715 0.669 1.867
Homoscedasticity
Assuming 163 3.765 0.642 2.151
Heteroscedasticity
Seronegative 55 3.818 2.212
Subjects only

because the seronegative subjects are the ones most in need of improved immunity.
Alternative estimates of ˇ0 and � are therefore the sample mean and standard devi-
ation of the y’s of the seronegative subjects, which are also given in Table 5.1. That
this latter standard deviation is an estimate not only of �0 but also of � is easy to
see, for

�2
0 D �2 exp.C10 C C202/

D �2:

The estimator for �0 based on the regression approach is the more precise of the two.
This can be seen by comparing the two standard errors. The standard error based on
the y’s of the seronegative subjects is

2:212=
p

55 D 0:298:

In contrast, the standard error of the regression estimate of �0 – taken from the SAS
output (not shown) – is 0.218. The explanation for this difference is that the first
standard error is based on only 55 observations, while the second one is based on
all 165 observations.

5.3.3 ANCOVA for Comparative Clinical Vaccine Trials

Suppose that in a randomized clinical vaccine trial the pre-vaccination geometric
mean titres are 13.2 for the investigational vaccine group and 7.9 for the con-
trol vaccine group, expressing a moderate baseline imbalance in favour of the
investigational vaccine.

The post-vaccination geometric mean titres are 286.3 and 112.8, respectively.
The uncorrected post-vaccination geometric mean ratio thus is

uncorrected GMR D 286:3=112:8

D 2:54:
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To correct for this baseline imbalance, the following regression model was fitted to
the data

Y D ˇ0 C ˇ1group C ˇ2x C Ex; (5.4)

with group D 1 if the subject was vaccinated with the investigational vaccine and
group D 0 if the subject was vaccinated with the control vaccine. Because parallel
regression lines are assumed, ˇ1 is the expected difference between the two groups
for subjects with the same baseline titre. The baseline-corrected geometric mean
ratio is

baseline-corrected GMR = 2ˇ1 .

The baseline-corrected geometric mean ratio should be smaller than the uncorrected
one.

The model in (5.4) was fitted under the assumption of heteroscedasticity, using
the following SAS code.

SAS Code 5.2 ANCOVA for Log-Transformed Antibody Values assuming Parallel
Regression Lines

proc mixed;
model y=group x / solution;
repeated / local=exp(x x2);

run;

The following output is produced:

SAS Output 5.2

Standard
Effect Estimate Error DF t Value Pr >|t|

Intercept 4.1538 0.2148 243 19.34 <.0001
group 0.7931 0.2769 243 2.86 0.0045
x 0.6079 0.07202 243 8.44 <.0001

The estimated baseline-corrected geometric mean ratio is

20:7931 D 1:73;

a value, which is in indeed smaller than the uncorrected ratio, 2.54.
Above the assumption of parallel regression lines was made. If this assump-

tion is in doubt, it can be checked by adding the interaction term group*x to the
model.
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SAS Code 5.3A ANCOVA for Log-Transformed Antibody Values assuming Non-
Parallel Regression Lines

proc mixed;
model y=group x group*x / solution;
repeated / local=exp(x x2);

run;

SAS Output 5.3A

Standard
Effect Estimate Error DF t Value Pr >|t|

Intercept 3.9608 0.2326 242 17.03 <.0001
group 1.1792 0.3306 242 3.57 0.0004
x 0.8217 0.1214 242 6.77 <.0001
group*x -0.3157 0.1473 242 -2.14 0.0331

The interaction term is significant. For subjects vaccinated with the investigational
vaccine, the regression line is somewhat flatter than that for subjects vaccinated with
the control vaccine.

When lines are not parallel, the distance between the lines, and thus the baseline-
corrected geometric mean ratio, becomes dependent on x. When the interaction
model is fitted to the data, ˇ1 is the expected difference between the two groups for
seronegative subjects. For the example data, the estimate for ˇ1 and thus that for the
geometric mean ratio

21:1792 D 2:26

is statistically significant. It may, however, be that the group of special interest is not
the seronegative subjects but, say, the subjects with as baseline value the threshold
of protection TP . In that case, the regression model to be fitted becomes

Y D ˇ0 C ˇ1group C ˇ2z C ˇ3group � z C Ex : (5.5)

where z D .x � log TP /. This model can be fitted with the following SAS code

SAS Code 5.3B ANCOVA for Log-Transformed Antibody Values assuming Non-
Parallel Regression Lines

proc mixed;
model y=group z group*z / solution;
repeated / local=exp(x x2);

run;
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Note that here also the variance of the error term is defined as a function of x, not
of z.

SAS Output 5.3B

Standard
Effect Estimate Error DF t Value Pr >|t|

Intercept 6.4260 0.3219 242 19.96 <.0001
group 0.2320 0.3761 242 0.62 0.5379
x 0.8217 0.1214 242 6.77 <.0001
group*x -0.3157 0.1473 242 -2.14 0.0331

The only two estimates that change are those for ˇ0 and ˇ1. For subjects with the
baseline value equal to the threshold of protection, the geometric mean ratio

20:2320 D 1:17

is not statistically significant.



Chapter 6
Vaccine Equivalence and Noninferiority
Immunogenicity Trials

6.1 Equivalence and Noninferiority

So far, it has been silently assumed that the objective of the trial was to demonstrate
that one vaccine is superior to another with respect to the induced immunogenicity.
Trials with this objective are called superiority trials. In an equivalence trial, the
objective is not to demonstrate that two vaccines are different but that they are more
or less similar, while in a noninferiority trial the objective is to demonstrate that one
vaccine is not less immunogenic than the other.

Wang and colleagues indentify four types of equivalence and noninferiority
designs for vaccine immunogenicity trials: vaccine bridging trials, combination vac-
cine trials, vaccine concomitant use trials and vaccine lot consistency trials [28]. In
a vaccine bridging trial, two formulations of a vaccine are being compared. The
reason for the study could be a change in the manufacturing process, a change in
the vaccine formulation, or a change in storage conditions of the vaccine. An exam-
ple of the first is when a second manufacturing site is opened, and it has to be
demonstrated that the immunogenicity of the formulation produced at the new site
is comparable to that of the formulation produced at the old site. An example of the
second reason is the removal of a constituent from the formulation. Until recently
many vaccines contained thiomersal as preservative. After the thiomersal contro-
versy (see Sect. 9.1), manufacturers were requested to remove the preservative from
their childhood vaccines and today all childhood vaccines are thiomersal-free.

In a combination vaccine trial, immune responses are compared between a
combined vaccine and the separate but simultaneously administered monovalent
vaccines. A combination vaccine is usually intended to reduce the number of injec-
tions required. For example, in 2005 the Food and Drug Administration (FDA)
approved the licensure of a combination MMRV (measles, mumps, rubella, vari-
cella) vaccine for children aged twelve months through twelve years, as alternative
for two separate MMR and V vaccines. (However, soon after licensure the manufac-
turer of the combination vaccine withdrew the vaccine because of a safety issue, see
Sect. 9.1.) Before a combination vaccine is licensed it has to be demonstrated that
the combination is not less immunogenic or less safe than the monovalent vaccine.
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In the past, combination of whole live vaccines resulted in a reduced immune
response due to immunological inference between vaccine viruses.

A vaccine concomitant use trial is used to compare the concomitant administra-
tion of two or more vaccines and the separate administration of the vaccines. The
intention is usually to see if the number of vaccination visits can be reduced.

A vaccine manufacturer who wants to license his vaccine must demonstrate that
the manufacturing process is stabile, i.e., that consistent lots can be produced. This
has to be demonstrated by both analytical and clinical testing. The clinical testing is
done in a so-called vaccine lot consistency trial, and the objective of such a study is
to show that the lots are similar with respect to the induced immunogenicity.

The first three types of trials are usually designed as noninferiority studies,
while vaccine lot consistency trials are an example of an equivalence study. But,
because the concept equivalence was introduced before that of noninferiority, first
equivalence studies are discussed.

6.2 Equivalence and Noninferiority Testing

6.2.1 Basic Concepts

Let � D �1 ��0 be the difference between (the expected means of) two treatments.
In a superiority trial, the null hypothesis is H0 W � D 0, which is usually tested
against the two-sided alternative H1 W � ¤ 0, or, less common, against a one-
sided alternative, say, H1 W � > 0. In contrast, in an equivalence trial the objective
is not to demonstrate that two treatments are different but that they are more or
less similar, meaning that � � 0. More or less similar, because to proof exact
equality would be impossible. To be more precise, the objective of an equivalence
trial is to demonstrate that, on average, two treatments differ no more than by a fixed
amount ı, the equivalence margin. The two treatments are considered equivalent if
j�j < ı. To demonstrate equivalence of two treatments Schuirmann’s two one-sided
tests (TOST) procedure is often used [29]. There are two null hypotheses associated
with the procedure, namely that the difference between the two treatments exceeds
the equivalence margin: H01: � � ı and H02: � � �ı. These null hypotheses
are tested against the alternatives H11: � < ı and H12: � > �ı. To demonstrate
equivalence both null hypotheses have to be rejected. If both H01 and H02 are tested
at the significance level ˛, this approach corresponds to checking that the two-sided
100(1�2˛)% confidence interval for � lies within the equivalence range �ı to Cı.

A somewhat controversial issue in equivalence trials is the choice of the signif-
icance level ˛, with the question being whether the level should be set to 0.05 or
0.025. Schuirmann himself suggested ˛ D 0:05, and in pharmacokinetics studies
for example, this has become the standard. In non-phase I clinical studies, however,
the preference seems to be ˛ D 0:025. In a superiority trial in which an active treat-
ment is compared with a placebo, most regulatory agencies will require a two-sided
significance level of 0.05. Given that the only outcome of interest is where the active
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treatment is significantly better than the placebo, the risk for the regulatory agency
is at most 0.025. In an equivalence trial, the risk for the agency is that the true null
hypothesis (either H01 or H02) is falsely rejected. If both null hypotheses are tested
at significance level, then this risk is at most ˛. And for this reason, it is often argued
that in equivalence trails the significance level should be set to 0.025, for the sake of
consistency. To stress this, in this chapter equivalence (and noninferiority) will be
tested at the significance level ˛=2.

Noninferiority trials are a special case of equivalence trials, the one-sided ver-
sion, so to speak. To objective of a noninferiority trial is to demonstrate that one
treatment is not less than another by more than a small amount, �ı, the noninferior-
ity margin. The null hypothesis of a noninferiority trial is that H0: � � �ı, which
is tested against the alternative H1: � > �ı. If the null hypothesis is tested at the
significance level ˛/2, then this procedure leads to the same conclusion as checking
that the lower bound of the one-sided 100(1�˛/2)% confidence interval for � falls
to the right of �ı.

6.2.2 Equivalence and Noninferiority Testing for Normal Data

An alternative way to explain testing for equivalence is that the null hypothesis
H0 W j�j � ı is tested against the alternative H1 W j�j < ı. If both groups of n1 and
n0 observations are Normally distributed, this null hypothesis can be tested using
the following test statistic:

ZEQ D ı � jD10j
SE.D10/

; (6.1)

where D10 D x1: � x0:, the difference between the arithmetic means of the two
groups of observations, and SE.D10/ the standard error of the difference:

SE.D10/ D
q

SD2
1=n1 C SD2

0=n0;

with SD1 and SD0 the sample standard deviations of the two groups. If jD10j > ı,
then the data are in favour of the null hypothesis, in which case ZEQ will be negative.
If, on the other hand, jD10j < ı then ZEQ will be positive, and the smaller jD10j the
larger ZEQ. The null hypothesis is thus rejected for large positive values of the test
statistic, which can be compared with the 100.1 � ˛=2/th percentile of the standard
Normal distribution. If equal variances are assumed, then an alternative estimator
for the standard error is

SEP .D10/ D SD
p

1=n1 C =n0; (6.2)

where SD is the pooled sample standard deviation. If this standard error is used, then
the value for the test statistic can be compared with the 100.1 � ˛=2/th percentile
of the t distribution with .n1 C n0 � 2/ degrees of freedom.

In a noninferiority trial, the null hypothesis H0: � � �ı is tested against the
alternative H1: � > �ı. This null hypothesis can be tested using the following test
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statistic:

ZNI D D10 C ı

SE.D10/
: (6.3)

The data are in favour of the null hypothesis if D10 � �ı, i.e., if D10 C ı � 0,
and then ZNI will be negative. ZNI will be positive if the data are in favour of
the alternative hypothesis, i.e., if D10 > �ı. Thus here also, the null hypothesis is
rejected for large positive values of the test statistic. Values for ZNI can be com-
pared either with 100.1 � ˛=2/th percentile of the standard Normal distribution, or
the 100.1 � ˛=2/th percentile of the t distribution with .n1 C n0 � 2/ degrees of
freedom, if the standard error (6.2) is used.

6.2.3 The Confidence Interval Approach to Equivalence
and Noninferiority Testing

If H0 W j�j � ı is tested at the significance level ˛=2, then the null hypothesis that
the two treatments are not equivalent is rejected if ZEQ > z1�˛=2. This will be the
case if and only if

�ı < D10 ˙ z1�˛=2SE.D10/ < ı:

Thus, testing for equivalence involves checking that the two-sided 100.1 � ˛/%
confidence interval for � falls in the equivalence range �ı to Cı. It is this confi-
dence interval approach that is most often used in scientific publications rather than
the hypothesis testing approach. If equal variances are assumed then the two-sided
100.1 � ˛/% confidence interval can be based on the t distribution, in which case it
should be checked that

�ı < D10 ˙ t1�˛=2In1Cn0�2SEP .D10/ < ı:

The null hypothesis that one treatment is less than another can be tested by checking
that the lower bound of the one-sided 100.1�˛=2/% confidence interval for � falls
to the right of �ı:

�ı < D10 � z1�˛=2SE.D10/

or
�ı < D10 � t1�˛=2In1Cn0�2SEP .D10/:

6.3 Equivalence and Noninferiority Vaccine Trials
with a Geometric Mean Response as Outcome

If the outcome measure of a randomized clinical vaccine trial is a geometric mean
response – a geometric mean titre or geometric mean concentration –, then the
parameter of interest is the geometric mean ratio � , the ratio of the geometric means
e�1 and e�0 of the distributions underlying the immunogenicity values. Requiring
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that the confidence interval for the ratio � falls within a pre-specified range is the
same as requiring that the confidence interval for the difference � of the arithmetic
means �1 and �0 of the distributions underlying the loge-transformed values falls
within the log-transformed range. This means that equivalence can be stated both in
terms of � and �: if .
1; 
2/ is an equivalence range for � , then .loge 
1; loge 
2/ is
an equivalence range for �, and vice versa. Because it does not matter which of the
two vaccines is called ‘vaccine 1’ and which is called ‘vaccine 0’, the parameter of
interest can be both � or 1/� . For this reason, an equivalence range for � is usually
defined as 1/
 to 
. This corresponds to setting the equivalence range for � to the
symmetrical range � log 
 to log 
. An often used equivalence range for the ratio �

advised by FDA/CBER is 0.67 to 1.5 [30, 31].

Example 6.1. Joines and colleagues report the results of a combination vaccine
trial [32]. They compared a combination hepatitis A and B vaccine with the mono-
valent vaccines. Both infectious diseases can be fatal. The major cause of hepatitis
A is ingestion of faecally contaminated food or water. Hepatitis B is a sexually
transmitted disease. In the trial, 829 adults were randomized to receive either the
combination vaccine by intramuscular injection in the deltoid on a 0-, 1- and
6-month schedule, or separate intramuscular injections in the deltoids of opposite
arms with hepatitis A vaccine on a 0 and 6 months schedule and hepatitis B vaccine
on a 0, 1 and 6 months schedule. The primary analysis was a noninferiority analy-
sis for the incidences of severe soreness, a safety endpoint. The secondary analysis
was an equivalence analysis for the seroconversion rates for hepatitis A and the
seroprotection rates for hepatitis B. In this example, the focus will be on the sec-
ondary analysis, the analysis of the month 7 immunogenicity data. Antibody titres
to hepatitis A (anti-HAV) were determined using an enzyme immunoassay kit, and
seroconversion for hepatitis A was defined as an anti-HAV titre �33 mIU/ml. Anti-
body titres to hepatitis B (anti-HBs) were determined using a radioimmunoassay kit,
and seroprotection for hepatitis B was defined as an anti-HBS titre �10 mIU/ml. In
total, 533 subjects were included in the per-protocol sample, 264 vaccinated with the
combination vaccine and 269 vaccinated with monovalent vaccines. The main rea-
son for exclusion from the per-protocol sample was being seropositive to hepatitis
A or hepatitis B at baseline.

At month 7, the anti-HBs geometric mean titre and geometric standard devia-
tion were 2,099 and 6.8 in the combination vaccine group and 1,871 and 9.5 in the
monovalent vaccines group. Hence, the geometric mean ratio was

GMR D 2;099=1; 871

D 1:12:

Because the geometric mean titre was not a secondary outcome, no equivalence
range for the ratio � was specified. For illustrative purposes, here, the range 0.67 to
1.5 will be used. The arithmetic means of the log-transformed antibody titres were

loge 2;099 D 7:65 and loge 1;871 D 7:53:
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The corresponding standard deviations were

loge 6:8 D 1:92 and loge 9:5 D 2:25

giving as value for the pooled standard deviation 2.09. Standard error (6.2) takes the
value

2:09
p

1=264 C 1=269 D 0:18:

Thus, the value for the test statistic is

ZEQ D 0:41 � j7:65 � 7:53j
0:18

D 1:61;

where 0.41 D loge 1.5. The corresponding P-value, from the t distribution with
.264 C 269 � 2/ D 531 degrees of freedom, is 0.054. Thus, the null hypothesis that
the combination vaccine and the monovalent vaccine are not equivalent with respect
to the induced anti-HBs responses cannot be rejected.

The 97.5th percentile of the central t distribution with 531 degrees of freedom is
1.964. Hence, the lower and upper bounds of the two-sided 95% confidence interval
for � are

.7:65 � 7:53/ � 1:964.0:18/ D �0:23

and
.7:65 � 7:53/ C 1:964.0:18/ D 0:47:

By taking the antilogs of these limits, the limits of the 95% confidence interval for
the geometric mean ratio � are obtained. The resulting interval (0.79, 1.60) does not
fall in the equivalence range 0.67 to 1.5.

Suppose that another secondary objective was to demonstrate that the combina-
tion vaccine is noninferior to the monovalent vaccine with respect to the induced
anti-HAV responses. The month 7 anti-HAV geometric mean titre and geometric
standard deviation were 4,756 and 3.1 for the combination vaccine group and 2,948
and 2.5 in the monovalent vaccines group. Here, GMR D 1:61. The arithmetic
means of the log-transformed antibody titres were

loge 4;756 D 8:47 and loge 2;948 D 7:99

with standard deviations

loge 3:1 D 1:13 and loge 2:5 D 0:92;

respectively. Here, the pooled standard deviation is 1.03, with SEP .D10/ D 0:09.
The lower bound of the one-sided 97.5% confidence interval for � is

.8:47 � 7:99/ � 1:964.0:09/ D 0:30;
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which corresponds to a lower bound of

e0:30 D 1:35

for the geometric mean ratio � . Because the lower bound falls to the right of the non-
inferiority bound 0.67, the null hypothesis that the combination vaccine is inferior
to the monovalent vaccine can be rejected.

6.4 Equivalence and Noninferiority Trails
with a Seroresponse Rate as Outcome

Equivalence or noninferiority of two vaccines with a seroprotection or a serocon-
version rate (i.e., a proportion) as endpoint is usually demonstrated by means of
the confidence interval approach, with the risk difference as the parameter of inter-
est. In case of nonsmall group sizes, the asymptotic confidence interval based on
the Wilson method can be used (Sect. 3.5.2), while in case of small group sizes
the exact interval based on the Suissa and Shuster exact test (Sect. 3.5.3) should be
used. Mostly used equivalence and noninferiority margins for the risk difference
are �0.05 (�5%) and �0.10 (�10%).

Example 6.1. (continued) The equivalence of the combination vaccine and the
monovalent was to be demonstrated using the seroconversion rates for hepatitis
A and the seroprotection rates for hepatitis B. For hepatitis A, equivalence was
to be concluded if the two-sided 95% confidence interval for the seroconversion
risk difference would fall in the equivalence range �0.05 to 0.05. The observed
seroconversion rates were

267=269 D 0:993 and 263=264 D 0:996

for the combination vaccine group and the monovalent vaccines group, respectively.
The estimated risk difference thus was

0:993 � 0:996 D �0:003:

The 95% confidence interval for the risk difference, (�0:023; C0:014), is contained
in the pre-defined equivalence range, and equivalence can be concluded.
With SAS, it is possible to test the two one-sided hypotheses associated with proving
equivalence using the Wilson-type test statistic on the left-hand side of equation
(3.7). The SAS code is

SAS Code 6.1 TOST Procedure for Rates using the Wilson-Type Test Statistic

proc freq;
table vaccine*seroconverted /
riskdiff (equivalence method=fm margin=0.05) alpha=0.025

run;
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The TOST P-values for the example above are 0.0004 and <0:0001. Both null
hypotheses can be rejected. Note that the code can also be used to find the Wilson-
type confidence limits by trial and error. The lower confidence limit is the smallest
value for the lower margin for which the corresponding TOST P-value is �0:025.
For margin=0.022 the P-value is 0.0306, for margin=0.023 the P-value
is 0.0262, and for margin=0.024 the P-value is 0.0224. From this, it can be
concluded that the lower limit of the Wilson-type confidence limit is �0.023.

6.5 Vaccine Lot Consistency Trials

Both FDA/CBER and the European Medicines Agency (EMA) require, prior to
licensure of a vaccine, proof that the vaccine production process is stable and that
consistent lots can be produced. As part of this requirement a clinical study must be
performed, a so-called lot consistency trial. The objective of a vaccine lot consis-
tency trial is to show that the, preferably consecutively produced, lots (batches) are
similar with respect to the induced immunogenicity. Subjects are randomly assigned
to be vaccinated with vaccine from one of three lots. The post-vaccination blood
samples of the subjects are assayed, and the antibody values are compared between
the three lots. Lot consistency is concluded if all three pair-wise post-vaccination
geometric mean ratios are close to one. Vaccine lot consistency trials are thus an
example of equivalence studies.

6.5.1 Lot Consistency and the Confidence Interval Method

The most frequently applied method to demonstrate lot consistency is to calculate
two-sided 100(1�˛)% confidence intervals for the three pair-wise geometric mean
ratios. If all three confidence intervals fall within the pre-defined equivalence range,
then lot consistency is concluded.

Example 6.2. Nauta discusses the statistical analysis of influenza vaccine lot con-
sistency trials [33]. The example he uses is a lot consistency trial with a viroso-
mal influenza vaccine. (Virosomes are haemagglutinin and neuraminidase antigens
linked to globular lipid membranes (liposomes), which are believed to have an adju-
vant effect.) Following ICH guideline E9, the data of this equivalence study were
analyzed according to the per-protocol principle [34]. Prior to unblinding of the
database, the Blind Review Committee excluded 10 (2.7%) of the 373 randomized
subjects from the per-protocol sample. Anti-HA antibody titres were determined
using the haemagglutination inhibition (HI) test. As log transformation, the stan-
dard log transformation with D D 10 was used. The equivalence range for the
pair-wise geometric mean ratios was predefined to be 0.35–2.83. In Table 6.1,
the results for the A-H3N2 strain are summarized. For lot #2 versus lot #1, the
pooled standard deviation is 1.585. The 97.5th percentile of the t distribution with
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Table 6.1 Summary statistics of an influenza vaccine lot consistency trial (A-H3N2 strain, per-
protocol sample)

lot#1 (n D 123) lot#2 (n D 123) lot#3 (n D 117)

Geometric mean titre 192.9 162.2 202.5
Arithmetic mean* 5.27 5.02 5.34
Standard deviation* 1.57 1.60 1.57
*log-transformed antibody titres

.123C123�2/ D 244 degrees of freedom is 1.970. Hence, the lower and the upper
bound of the two-sided 95% confidence interval for � are

.5:02 � 5:27/ � 1:970
p

1:585.2=123/ D �0:648

and
.5:02 � 5:27/ C 1:970

p
1:585.2=123/ D 0:148:

By taking the antilogs (to the base 2), the two-sided 95% confidence intervals for
the geometric mean ratio for lot #2 versus lot #1 is obtained:

(0.638, 1.108).

The two-sided 95% confidence intervals the geometric mean ratios for lot #3 versus
lot #1 and for lot #3 versus lot #2 are

(0.796, 1.384) and (0.944, 1.651).

All three confidence intervals fall in the pre-defined equivalence range 0.38 to 2.83,
and for the A-H3N2 strain lot consistency can be concluded.

6.5.2 The Wiens and Iglewicz Test to Inspect
the Consistency of Three Vaccine Lots

Proving lot consistency can also be formulated as a hypothesis testing problem.
Wiens and Iglewicz developed a statistical test to demonstrate the equivalence of
three treatments [35]. The Wiens and Iglewicz test, which requires Normal data, can
be used to demonstrate lot consistency. Let �ij denote the difference between the
expected means of the log-transformed antibody values of the i th and j th lot. To
demonstrate lot consistency, the null hypothesis

H0 W maxfj�ij j � ıg

is tested against the alternative

H1 W maxfj�ij j < ıg
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with ı the equivalence margin. Wiens and Iglewicz propose to test this null hypoth-
esis by evaluating ZEQ in (6.1) for all three pair-wise comparisons, and then to use
the following min test statistic:

Zmin D min

�
ı � jDij j
SE.Dij /

�
;

where Dij is the difference between the arithmetic sampling means of the j th and
the i th lot and SE.Dij / the standard error of this difference. By definition, Zmin is a
one-sided test, and the null hypothesis is rejected for large values for Zmin. To test
the above overall null hypothesis at the ˛=2 significance level, the value of Zmin can
be compared with the 100.1�˛=2/th percentile of the standard Normal distribution.

Example 6.2. (continued) For the A-H3N2 strain, the observed differences are

D12 D �0:25; D13 D 0:07 and D23 D 0:32:

The standard errors of these differences are

SE.D12/ D
p

1:572=123 C 1:602=123 D 0:202

SE.D13/ D
p

1:572=123 C 1:572=117 D 0:203

SE.D23/ D
p

1:602=123 C 1:572=117 D 0:205:

This gives (with ı D log2 2:83 D 1:5)

Zmin D min

�
1:5 � 0:25

0:202
;

1:5 � 0:07

0:203
;

1:5 � 0:32

0:205

�
:

The resulting value, 5.76, is highly statistically significant.

General properties of the min test were already discussed in Sect. 3.8. A nice
property of the test is that it is an overall test, and a correction for multiplicity is
not needed. The drawback of the test is the complexity of its sampling distribution,
which makes it difficult to evaluate the type I error rate. Wiens and Iglewicz have
studied the type I error rate for Zmin [35]. Because lots can be re-ordered, without
loss of generality

0 � �12 � �13:

Let
� D �13 and 	 D �13=�12;

with �i and ni the within-lot standard deviation of the log-transformed antibody
values and the sample sizes of the i th lot, and let

SEij D
q

�2
i =ni C �2

j =nj :
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The type I error rate of Zmin depends on �=SEij and 	. To shed light on this, in
Table 6.2 Monte Carlo simulation results are presented, for the simple case that

�1 D �2 D �3 and n1 D n2 D n3 D n:

The type I error rate is defined as

Pr.Zmin > z1�˛=2j� D �/:

(The algorithm used for the simulation was similar to the algorithm for sample size
estimation for lot consistency trials outlined in Sect. 6.7.3). The actual type I error
rates are lowest for 	 close to 0.0 or 1.0 and highest for 	 D 0:5, and then they are
close to the nominal error rate for nonsmall n and ı=� .

Wiens and Iglewicz show that when

.ı=�/
p

n=2 > 5:0

the actual type I error approaches the nominal one for 	 D 1.0. This is the same as
requiring that

n >
50

.ı=�/2
: (6.4)

Equation (6.4) can be thus used to decide if the lot sample sizes guarantee that
the actual type I error rate of the trial is sufficiently close to the nominal level. If
ı=� D 1:0, then n must be greater than 50, if ı=� D 0:5, then n must be greater
than 200 and when ı=� D 0:25, then n must be greater than 800. The simulation
results in Table 6.2 are consistent with this.

Example 6.2. (continued) If it is assumed that �1 D �2 D �3 D 1:6, then ı=� D
1:5=1:6 D 0:94. To secure a nonconservative actual type I error rate, the group size
per lot should be at least

Table 6.2 Actual type I error rates in lot consistency trials, for ˛ D 0:05 and with as critical value
z1�˛=2

	

ı=� n 0 0.25 0.5 0.75 1

0.25 500 0.011 0.029 0.044 0.033 0.011
300 0.013 0.031 0.033 0.024 0.013
100 0.001 0.001 0.002 0.002 0.002

0.5 500 0.011 0.050 0.048 0.047 0.010
300 0.013 0.041 0.045 0.042 0.012
100 0.010 0.032 0.042 0.033 0.015

1.0 500 0.013 0.048 0.049 0.053 0.014
300 0.012 0.045 0.050 0.051 0.009
100 0.015 0.044 0.048 0.044 0.015
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50

0:942
D 57;

which was the case.

The Wiens and Iglewicz approach and the confidence interval approach yield
near similar results. The two approaches differ only in the standard errors being
used and the critical value (derived from the standard Normal distribution versus
the t distribution).

6.6 Discussion

Equivalence and noninferiority trials are not uncontroversial. There are several rea-
sons for this. One, perhaps the most important, reason is that it is often difficult to
justify the choice of the margin. An overlay strict margin will require a prohibitively
large sample size, while a too large margin will not be clinically meaningful. (That
a margin leads to a too large sample size is, admittedly, not a very strong argu-
ment. Indeed, what matters is the clinical relevance of the differences that the margin
allows.) Consider the problem of deciding an equivalence range for the geometric
mean ratio. The range 0.67 to 1.5 is generally considered to be a reasonable one,
not too wide but also not too strict. A proper justification for this range would take
into account the strength of the relationship between the antibody measurements
and the probability of clinical protection from infection. If the protection curve (see
Sect. 8.2) would be a steep one, then a very small range would be appropriate, while
a less steep one would allow a broader range. The difficulty is that in practice the
relationship is seldom known with sufficient detail.

Many vaccines contain antigen of more than one serotype. In that case, equiv-
alence or noninferiority must usually be demonstrated for all serotypes. A much
applied approach is to demonstrate equivalence or noninferiority at the ˛=2 signif-
icance level for each of the serotypes. The intersection-union (IU) principle then
allows that equivalence or noninferiority is claimed on vaccine level, and no multi-
plicity correction is needed. This approach is known to be conservative under many
circumstances. Kong, Kohberger and Koch have proposed min tests for vaccine
equivalence and noninferiority trials with multiple serotypes [36, 37]. These tests
take the correlation between the endpoints into account. Simulation results, how-
ever, show that for trials with multiple binomial endpoints the min test leads to only
modest increases in power.

A statistical novelty of recent date is simultaneous testing of noninferiority and
superiority [38]. Basically, if in a noninferiority trial the null hypothesis is rejected,
one can proceed to test the null hypothesis for superiority. In a superiority trial, if the
null hypothesis is not rejected, one can proceed with a test for noninferiority. The
strategy can be justified by either the IU principle or the closed testing principle,
and no multiplicity adjustment is needed [39, 40]. The strategy is not undisputed.
One of its critics, Ng, argues that the strategy allows an investigational treatment to
claim superiority by chance alone without risking the noninferiority claims, which
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will increase the number of erroneous claims of superiority [41]. Despite this criti-
cism, the strategy has quickly found its way into clinical development. Leroux-Roels
and co-workers compared an intradermal (injected between the layers of the skin)
trivalent inactivated split-viron influenza vaccine with an intramuscular control vac-
cine [42]. They conclude that the intradermal vaccine induces noninferior humoral
immune responses against all three virus strains included in the vaccines, because
all three two-sided 95% confidence intervals for the geometric mean ratios fell
above the pre-specified noninferiority margin. In addition, they conclude superior
responses against both A strains, because for these two strains the confidence inter-
val fell above 1.0. This second conclusion is disputable. In the Statistical Methods
section, the authors explain that noninferiority was tested at vaccine level (i.e., to
be demonstrated for all strains contained in the vaccines), but that superiority was
tested per strain, at the two-sided significance level 0.05. As argued above, because
noninferiority was to be shown at vaccine level a multiplicity correction was not
needed. But because superiority could have been claimed for any number of strains,
here a multiplicity correction should have been applied. Thus, contrary to what
was claimed, the statistical analysis does not warrant the conclusion of a superior
response against both A strains.

6.7 Sample Size Estimation

6.7.1 Comparing Two Geometric Mean Responses

The statistical power of a clinical vaccine trial with the primary objective to demon-
strate that the immunogenicity induced by an investigational vaccine is equivalent or
noninferior to that induced by a control vaccine, and with either a geometric mean
titre or a geometric mean concentration as outcome is, apart from the sample size
and the significance level, dependent upon:

1. The equivalence/noninferiority margin �ı.
2. The within-group standard deviation � of the log-transformed immunogenicity

values.
3. The difference � D �1 � �0, with �1 and �0 the arithmetic means of the proba-

bility distributions underlying the log-transformed immunogenicity values of the
investigational and the control vaccine group.

As will be shown below, the statistical power is profoundly sensitive to assumptions
about �, which makes sample size estimation for vaccine equivalence and nonin-
feriority trials a challenging exercise. To power trials on the assumption of a zero
difference between the vaccines is therefore not recommended. Better is to assume
some amount variation between the vaccines.

Under the usual assumption that the log-transformed immunogenicity values are
Normally distributed, the statistical power of equivalence and noninferiority trails
should be estimated from noncentral t distributions. For equivalence trials sample
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size Formula (5.5) in the book by Julious applies [20]. The formula can be solved
with the procedure POWER.

Example 6.1. (continued) An investigator wishes to know the statistical power of
the trial for the combination vaccine versus the monovalent hepatitis B vaccine. The
equivalence margin for � is ı D loge 1:5 D 0:41. Suppose that for log-transformed
anti-HBs titres the convention is to set � to 2.0. For a first sample estimate � is
set to 0.0. The desired statistical power is 0.90. The required sample size can be
calculated with the following SAS code.

SAS Code 6.2A Sample Size Estimation for an Equivalence Trial with Log-
Transformed Immunogenicity Data Assuming a Zero Mean Difference

proc power;
twosamplemeans test=equiv_diff alpha=0.025
meandiff=0 stddev=2.0
lower=-0.41 upper=0.41
power=0.9 npergroup=.;

run;

When this code is run, a required sample size of 620 subjects per group is found.
Next, the investigator wishes to study the robustness of this estimate when it is
assumed that the combination vaccine is somewhat less immunogenic than the
monovalent vaccine, i.e., when it is assumed that difference � is less than zero
or, which is the same, the geometric mean ratio � is less than one. He proposes
two values for the ratio, � D 0:95 and � D 0:90. These values correspond to
� D �0:051 and � D �0:105. The robustness of the above sample size estimation
can be inspected with the following SAS code:

SAS Code 6.2B Statistical Power of an Equivalence Trial with Log-Transformed
Immunogenicity Data Assuming a NonZero Mean Difference

proc power;
twosamplemeans test=equiv_diff alpha=0.025
meandiff=0, -0.051, -0.105
stddev=2.0
lower=-0.41 upper= 0.41
npergroup=620 power=.;

run;

The SAS output is given below.
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SAS Output 6.2B

The POWER Procedure
Equivalence Test for Mean Difference

Fixed Scenario Elements

Distribution Normal
Method Exact
Lower Equivalence Bound -0.41
Upper Equivalence Bound 0.41
Alpha 0.025
Standard Deviation 2
Sample Size Per Group 620

Computed Power

Mean
Index Diff Power

1 0.000 0.900
2 -0.051 0.866
3 -0.105 0.760

If � is assumed to be 0.9 instead of 1.0, the statistical power drops from 0.90 to
0.76. This demonstrates the critical dependency of the statistical power on �. If the
value of 0.9 for � would be considered to be more likely, then a sample size of 906
subjects per group would be required to be secured of a statistical power of 0.9.

The formula for the statistical power of a noninferiority trial with Normal data
is Formula (6.6) in the book by Julious [20]. This formula can be evaluated with
either SAS code 6.2A or SAS code 6.2B, with the variable upper set to a very
large positive value, say 999.

Example 6.1. (continued) Suppose that the investigator also wishes to know the sta-
tistical power of the trial for combination vaccine versus the monovalent hepatitis A
vaccine. The within-group standard deviation � is set to 1.25, � to 0.0 and the nonin-
feriority margin to �0.41. First it is assumed that � equals zero, and the investigator
would like to know the required numbers of subjects to be secured of a statistical
power of 0.9.

SAS Code 6.3 Statistical Power of a NonInferiority Trial with Log-Transformed
Immunogenicity Data, Assuming a Zero Mean Difference

proc power;
twosamplemeans test=equiv_diff alpha=0.025
meandiff=0 stddev=1.25
lower=-0.41 upper=999
power=0.9 npergroup=.;

run;

If this code is run, a sample size of 197 subjects per group is found.
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6.7.2 Comparing Two Seroresponse Rates

Sample size estimation for a noninferiority trial comparing two proportions and
with the risk difference as effect measure is discussed in Sect. 11.3.1 of the book by
Julious [20]. Sample sizes from the preferred method, Method 1 (based on expected
rates, the least conservative of the three methods), can be computed with proce-
dure POWER. With this procedure, sample sizes can be calculated for testing null
hypotheses of the form

H0 W Q
B � Q
A � �d

In case of a noninferiority trial, the null hypothesis to test is

H0 W 
1 � 
0 � �ı:

Sample sizes for this null hypothesis can thus be estimated by setting Q
A to 
0, Q
B

to 
1 and �d to �ı.
An investigator wishes to estimate the sample size corresponding to a power

of 0.9 for a noninferiority trial with expected seroprotection rates 
1 D 0:70 and

0 D 0:75 and noninferiority margin ı D �0:1, and with the null hypothesis being
tested at the one-sided significance level 0.025. The required sample size can be
obtained with the following SAS code:

SAS Code 6.4 Sample Size Calculation for a NonInferiority Trial with a Seropro-
tection or a Seroconversion Rate as Outcome

proc power;
twosamplefreq test=pchi
alpha=0.025 sides=1
groupproportions=(0.75 0.70)
nullpdifference=-0.10
power=0.9 npergroup=.;

run;

The computed sample size is 1,674 subjects per group.
A formula for sample size estimation for an equivalence trial comparing two pro-

portions and with the risk difference as effect measure is Formula (12.4) in the book
by Julious [20]. SAS procedure POWER does not contain a feature for equivalence
trials with a rate as endpoint. But the formula is easy to program.

6.7.3 Lot Consistency Trials

The standard approach to estimate the statistical power of a lot consistency design
is to estimate separately the power of each of the three pair-wise comparisons, and
then combine the resulting estimates to obtain an overall estimate.
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Example 6.4. Ganju, Izu and Anemona investigate sample size estimation for vac-
cine lot consistency trials [43–45]. The example they use is a lot consistency trial
for a quadrivalent vaccine for the prevention of meningococcal disease caused by N.
meningitidis serogroups A, C, Y and W-135. For the C serogroup, they assume that
� D p

.6:15/ for the log2-transformed antibody titres. They find that if there is no
between-lot variation, i.e., if it is assumed that �12 D �13 D 0, that to be secured
of an overall statistical power of 0.9, a sample size of n D 500 subjects per lot
would be required (for ˛ D 0:05, and 1/1.5 to 1.5 as equivalence range). Because of
the assumption that �12 D �13 D 0, each of the three single pair-wise comparison
have the same power. This power can be calculated using SAS code 6.2A with

meandiff=0 stddev=2.480
upper=0.585 lower=-0.585
alpha=0.05 npergroup=500

with 0:585 D log2 1:5. The computed power for the single pair-wise comparisons
is 0.963. Using the inequality (3.15), it follows that the overall statistical power
for this lot consistency design is �0:889. If independence of the three pair-wise
comparisons is assumed, then the overall statistical power is 0:9633 D 0:893.

Ganju and colleagues show that assumptions about �12 and �13 can have a pro-
found impact on the statistical power of the design. They strongly argue against
assuming that the between-lot variation is zero, and they advise to assume some
amount of variation between lots. If nonzero between-lot variation is assumed,
i.e., if it is assumed that �13 > 0, then the statistical power will be highest for
�12 D �13=2 and lowest for �12 D 0. The explanation for this is that equally
spaced means are less variable than unequally spaced means and hence have a
greater probability of demonstrating consistency.

Example 6.4. (continued) If �13 is set to 0.1 and �12 to 0.06, then with a lot size
of 500 the power of the three pair-wise comparisons are: 0.949 (lot #1 versus lot
#2), 0.923 (lot #1 versus lot #3) and 0.956 (lot #2 versus lot #3). These estimates
can be obtained using in SAS code 6.2B the statement

meandiff=0.1, 0.06, 0.04

Thus, now the overall statistical power would be

� .0:923 C 0:949 C 0:956/ � 2 D 0:828;

or 0.837 if independence is assumed.
The standard approach to estimate the overall statistical power of a lot consis-

tency design is slightly flawed, because it does not take the correlation between the
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three pair-wise comparisons into account. That the correlation between the com-
parisons is not zero is easy to see. If the mean differences between (a) lot #1 and
lot #2 and (b) lot #1 and lot #3 are known, then the mean difference between lot #2
and lot #3 is also known. Thus, the assumption that the three pair-wise comparisons
are independent does not hold. Second, because the comparisons are dependent,
separate estimation of the power of each of the three pair-wise comparisons also
introduces bias. In practice, however, the amount of bias will be negligible, and the
standard approach will give a good approximation of the actual power of the design.

An alternative method to estimate the overall power is Monte Carlo simulation.
The algorithm for the simulation is as follows. A large number (� 5; 000) of trials
is simulated. Per trial three random samples of size n are generated, with the data
of the i th sample representing the log-transformed antibody values of the i th lot.
The first random sample is drawn from a N.0; �2/ distribution, the second from
a N.�12; �2/ distribution and the third from a N.�13; �2/ distribution. For each
trial, the confidence intervals for the three pair-wise geometric mean ratios are cal-
culated, and the trial is declared significant if all three confidence intervals fall in
the pre-defined equivalence range. The statistical power of the design is then esti-
mated as the proportion of simulated trials yielding a significant result. With this
approach, the correlation between the comparisons is taken into account. For the
example above, the simulated overall statistical power is 0.887.



Chapter 7
Vaccine Field Efficacy Trials

7.1 Introduction

Vaccines can produce different kinds of effects, which can be at subject level or at
population level. Halloran, Struchiner and Longini present a theoretical framework
for vaccine effects and designs of vaccine field efficacy trials for the estimation of
these effects [46, 47]. The nomenclature here has been taken from Chap. 2 of their
book on vaccine efficacy studies [48].

At subject level, historically the effect of interest has been the vaccine efficacy
for susceptibility to infection. Here, the question is how well the vaccine protects
vaccinated subjects against infection or disease, i.e., to what degree vaccination
reduces the probability that a subject becomes infected or diseased if exposed to
the pathogen. Standard endpoints in vaccine field efficacy trials for susceptibility to
infection are occurrence of infection or disease and time to infection or disease.

Often, infection confers lifelong protection against the disease. This is for
instance the case for mumps, measles and hepatitis A. For these diseases, a sub-
ject can get infected only once. This is, however, not true for all infectious diseases.
Examples of diseases with possibly recurrent infections are acute otitis media (mid-
dle ear infection), genital herpes, meningitis and cystitis (an inflammatory disorder
of the bladder). The reason why infection does not lead to lifelong protection is
usually either that the naturally acquired antibodies against the pathogen do not
offer sufficient protection, or exposure to serotypes of the pathogen that are not
recognized by the antibodies. Cystic fibrosis (CF) is an inherited disease of the
mucus. An abnormal gene causes the mucus to become thick and sticky. The mucus
builds up in the lungs and blocks the airways, which makes it easy for bacteria to
grow, leading to repeated, life-threatening lung infections. Over time, these infec-
tions can cause chronic progressive pulmonary disease, the most frequent cause of
death in CF patients. The most prevalent of these infections is the one caused by
the bacterium Pseudomonas aeruginosa. Naturally acquired antibodies against the
bacterium often do not offer sufficient protection against the very virulent infec-
tions. A CF patient can become chronically colonized, with subsequent resistance
to antibiotic courses. In a trial with a P. aeruginosa vaccine in CF patients mea-
sures of effect may thus be: time to initial infection, time to colonization with P.
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aeruginosa, becoming chronically infected, number of recurrent infections or time
between subsequent infections.

Vaccine efficacy for progression or pathogenesis is the protection the vaccination
offers once a person has become infected. The vaccine may increase the incubation
period, i.e., the time between infection and disease. Other effects of interest could
be to what degree the vaccine reduces the intensity, the duration or the mortality
from disease. Halloran gives the example of human immunodeficiency virus (HIV).
A HIV vaccine may reduce the post-infection viral load, the amount of virus in body
fluids. In HIV, keeping the viral load level as low as possible for as long as possible
decreases the complications of the disease and prolongs life.

Whereas vaccine efficacy for susceptibility to infection requires that the trial par-
ticipants are free of infection at the time of their enrollment into the trial, vaccine
efficacy for progression or pathogenesis can only be studied in infected subjects.

A vaccinated subject may be less infectious to others, or he or she may be infec-
tious for a shorter period of time. This is called vaccine efficacy for infectiousness.
These effects are of relevance at population level, because reduction of infectious-
ness has usually important health consequences. The effects will slow down the
spread on the infection in the population. Vaccination of a large fraction of the pop-
ulation may lead to herd immunity. If a high percentage of a population immune is
to an infection, then the spread of the infection may be prevented because it cannot
find new hosts.

7.2 Some Critical Aspects of Vaccine Field Trials

7.2.1 Efficacy versus Effectiveness

In the literature, a distinction is made between vaccine field efficacy and vaccine
field effectiveness trials. With vaccine efficacy is meant the degree in which the
vaccine offers protection against the target infection or disease, influenza for exam-
ple. With vaccine effectiveness is meant the degree in which the vaccine offers
protection against diseases for which the subjects’ susceptibility may be nega-
tively influenced by the infection (complications following infection). This may
specially be the case in subjects with a serious chronic illness. Chronic illnesses
such as cardiovascular or pulmonary diseases, metabolic diseases (e.g., diabetes
and renal dysfunction), or immunodeficiency (e.g., during or after treatment for can-
cer) increase the risk of complications following influenza infection. Conditions that
impair the handling of respiratory secretions, such as CF, predispose to respiratory
infections and also increase the risk of developing complications of influenza. So,
in a vaccine field effectiveness trial, the primary endpoint measure can be exacerba-
tion of an underlying disease (e.g., chronic airway obstruction), or hospitalization,
or, indeed, death.
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The efficacy or effectiveness of a vaccine will depend on the primary endpoint,
i.e., on the case definition. It may be high for one endpoint but only moderate for
another. Less understood is that it also depends on the sensitivity and specificity of
the diagnostic test used and the definition of the surveillance period. The first to
point this out were Orenstein and colleagues, who, on behalf of the United States
Centers for Disease Control (CDC), published a lengthy paper on vaccine field effi-
cacy trials [49]. They argued that in these trials specificity of the diagnostic test is
usually more critical than sensitivity for assessing vaccine efficacy, and that surveil-
lance period should be restricted to the peak outbreak period when disease incidence
is highest.

7.2.2 The Influence of the Sensitivity and Specificity
of the Diagnostic Test on the Vaccine Efficacy Estimate

One of the most critical aspects of vaccine efficacy trials is case definition. First,
it has to be decided whether infection or disease is the endpoint of interest. This
choice is of importance because infection does not necessarily imply developing
the disease. As a rule of the thumb, vaccine efficacy trials with disease as end-
point require larger sample sizes and a longer surveillance period than trials with
infection as endpoint. On the other hand, case finding may be easier with disease
as endpoint. Disease is usually accompanied by specific clinical symptoms while
infection requires laboratory confirmation. With infections with a long incubation
period, such as HIV for example, infection as endpoint would require repeated lab-
oratory testing, which sometimes is difficult to organize (trial participants having to
visit the investigational site at pre-defined times, etc.) and can be very costly (while
most laboratory results will be negative.) If the incubation period is short, like in
the case of pertussis, laboratory testing is often done after observing clinical symp-
toms of the disease. A drawback of this case finding strategy is that asymptomatic
infections, which are infections without clinical symptoms, go undetected. In case
of influenza, culture confirmation is only possible during the first two to three days
after infection. If the culture specimen collection is done too late, the infection may
go undetected. It is sometimes argued that it is disease that matters, not infection.
That is a too hasty conclusion. Infections do not only cause the disease, some can
also do damage to organs. Asymptomatic infections should not be considered as
being without risk. Sexually transmitted infections, in particular, are known for not
producing clinical symptoms. If treatment for the infection is delayed or never given,
this can cause permanent damage to the reproductive organs. In fact, almost any type
of infection can impair fertility, in particular, those that affect the reproductive tract,
including the prostate, the epididymis or the testis. A harmless infection such as the
common cold may temporarily lower the sperm count.

Case finding requires a diagnostic test. (Diagnostic test is used here in the
broadest sense. It can be a single clinical or laboratory test but it can also be a
diagnostic strategy, e.g., laboratory testing only after the manifestation of certain
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clinical symptoms.) If the test misclassifies noncases as cases of the infection or
the disease, then the vaccine efficacy estimate will be biased towards null. If, on the
other hand, the test misclassifies cases as noncases, this will not necessarily bias the
efficacy estimate, but it may. If the diagnostic test detects moderate to severe cases
easier than mild cases, and if vaccinated cases are milder than placebo cases, this
will result in a too high efficacy estimate.

Diagnostic tests are rarely totally accurate, and a proportion of the cases will be
misclassified as noncases. Such cases are called false-negative cases. The proportion
of misclassified cases will depend on a property of the diagnostic test known as the
sensitivity. The sensitivity of a diagnostic test is the conditional probability that the
test will be positive (TestC) if the disease is present (DiseaseC):

sensitivity D Pr(TestC j DiseaseC).

By definition, the false-negative rate is equal to (1-sensitivity).
Not only may cases be misclassified as noncases, noncases may be classified as

cases. Such cases are called false-positive cases, and their number will depend on
the specificity. The specificity of a diagnostic test is the conditional probability that
the test will be negative (Test�) given that the disease is absent (Disease�):

specificity D Pr(Test� j Disease�).

The false-positive rate is equal to (1-specificity). As already noted, a low speci-
ficity of a diagnostic test will bias the vaccine efficacy estimate towards null. If the
sensitivity of the clinical test is not perfect, this will not necessarily bias the estimate.

Example 7.1. Consider a pneumonia vaccine field efficacy trial. Diagnosis of pneu-
monia is difficult and there are numerous diagnostic tests: a clinical test with the
use of the stethoscope, a chest x-ray or other imaging techniques, laboratory tests,
such as sputum tests and blood tests, etc. Suppose that in a randomized trial, 500
elderly are vaccinated with a pneumonia vaccine and a further 500 with placebo, and
that during the surveillance period (first year after vaccination) 25 subjects contract
pneumonia, 5 in the vaccine group and 20 in the control group. In case of a placebo-
controlled trial, vaccine efficacy for susceptibility is defined as the proportion of
prevented cases (see Sect. 7.4.1). Thus, the vaccine efficacy for the prevention of
pneumonia is

.20 � 5/=20 D 0:75:

Suppose that the sensitivity of the diagnostic test is not perfect, not be 1.0, but, say,
0.8. In that case, the (expected) number of false-negative cases would be

.1:0 � 0:8/ � 25 D 5;

with 4 misclassified cases in the placebo group and 1 in the placebo group. But the
vaccine efficacy would still be correctly estimated:

.16 � 4/=16 D 0:75:
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Next, suppose that not only the sensitivity but also the specificity would be less than
1.0, say, 0.95. The number of false-positive cases would be

.1:0 � 0:95/ � .1000 � 25/ D 48:75;

i.e.,
.1:0 � 0:95/ � .500 � 20/ D 24

misclassified cases in the placebo group, and

.1:0 � 0:95/ � .500 � 5/ D 24:75

misclassified noncases in the vaccine group. The total number of cases in the
placebo group would be

.16 C 24/ D 40;

while the total number of cases in the vaccine group would be

.4 C 24:75/ D 28:75:

And the vaccine efficacy would be estimated to be:

.40 � 24:75/=40 D 0:381;

which is indeed a bias towards null.

Finally, it may be that the diagnostic test is such that less severe cases go unde-
tected, and that the less severe cases are predominantly in the investigational vaccine
group. In that case, the vaccine efficacy will be overestimated.

Example 7.1. (continued) Suppose that the sensitivity of the diagnostic test for
pneumonia is 1.0 for severe cases but only 0.5 for nonsevere cases, and that in the
placebo group 30% of the cases are nonsevere but in the vaccine group 90%. In that
case, in the placebo group

.1:0 � 0:5/ � 0:3 � 20 D 3

cases will be misclassified, while in the vaccine group

.1:0 � 0:5/ � 0:9 � 5 D 2:25

cases will be misclassified. The vaccine efficacy would be estimated to be

.20 � 3/ � .5 � 2:25/

20 � 3
D 0:838;

a modest overestimation of the vaccine efficacy.
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7.2.3 Surveillance Period

In case of a diagnostic test based on clinical symptoms, it can be that the specificity
of the test is dependent on the incidence of the infectious disease in the community.
If the incidence increases, then the probability that the clinical symptoms are asso-
ciated with the disease will also increase, in which case the false-positive rate will
decrease and the specificity increase. This is why it is often advised to restrict the
surveillance period, the period during which trial participants are followed up to see
if they get infected or develop the disease, to the period of peak activity, when the
infectious disease incidence is highest.

A surveillance period is called fixed if both the start and the length of the surveil-
lance period are fixed. The surveillance period can be the same period for trial
participants, the infectious disease season for example, usually a specified calen-
dar period, e.g., October – March. But the surveillance period not need to be the
same calendar period for all subjects. The surveillance period could, for example,
be the first year after vaccination. But the surveillance period can also be a specified
age period, e.g., between 3 and 12 months after birth. All these surveillance periods
have in common that the start and the length is fixed.

7.3 Incidence Measures for Infection

The concept to quantify the occurrence of cases of a disease or infection is incidence.
Incidence concerns new cases of the disease in a group of subjects who are initially
disease-free. (The proportion of existing cases of the disease in the population is
called the prevalence.) There are three incidence measure: the cumulative incidence,
the incidence rate and the hazard rate. In a vaccine field efficacy trial the endpoint
can be either infection or disease. For convenience, in this and the next sections it
will be assumed that the endpoint is infection. If in a vaccine field efficacy trial the
endpoint is infection then the three incidence measures are usually termed the attack
rate, the infection rate and the force of infection.

7.3.1 Attack Rate

The attack rate is the risk an infection-free subject gets infected during a fixed
surveillance period. The attack rate is estimated by the number of infected cases
occurring during the surveillance period, divided by the total number of initially
infection-free subjects. Attack rates depend upon the length of the surveillance
period, the longer the period, the higher the attack rate.

To be able to estimate the attack rate, all trial participants must be followed up
for the entire surveillance period (or until the time of infection). In practice, this is
often difficult to achieve, due to the phenomenon of drop-out. For the drop-outs, the
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duration of the follow-up will be less than the planned length of the surveillance
period, and the endpoint – infected yes/no – will be missing. There is no straightfor-
ward method to handle these missing data. A very crude approach is to perform a
complete-case analysis, complemented by a worst-case sensitivity analysis in which
all subjects with a missing endpoint are counted as infected if in the investigational
group and as noninfected if in the control group. Vaccine field efficacy trials com-
paring infection rates or force of infection functions are much more flexible with
respect to the handling of drop-outs.

7.3.2 Infection Rate

The infection rate is the risk of experiencing an infection during a given time unit,
e.g., a month or a year. The infection rate depends on the chosen time unit. An
infection rate of 0.001 per month corresponds to an infection rate of 0.012 per year.
A condition underlying the concept of infection rate is that the risk of infection
must be constant over time. It must be stressed that the condition of a constant risk
over time is a very strong one. The general consensus is that the condition holds
for many infectious diseases and many vaccines. But the infectious disease should
not be a seasonal one, in which case the condition is not met. An example of a
seasonal infectious disease is influenza. The risk of infection will be close to zero
at the start and the end of the season, and it will be highest during the peak of the
season. Seasonal change in the risk of infection is an often seen phenomenon in both
temperate and tropical climates. If the protection a vaccine affords wanes over time
then, depending on the length of the surveillance period, the condition of a constant
risk may also not hold.

Because the risk is assumed to be constant over time, varying start times nor
lengths of surveillance period per subject matter. This is an important differ-
ence with vaccine field efficacy trials comparing two attack rates, and it allows
considerable flexibility in trial participant enrollment.

The infection rate is estimated by the events-per-person-time statistic, i.e., the
number of infected cases s divided by the total person-time T

EPPT D s=T:

Consider a group of n initially infection-free subjects. One subject could enter the
study 1 week after being vaccinated and be followed up for 6 months, while another
subject could enter 5 weeks after being vaccinated and be followed up for 3 months,
etc. Let T be the total person-time for the group, i.e., the duration of the infection-
free period (or surveillance period if infection did not occur) for the first subject plus
the duration of the infection-free period for the second subject, etc. The infection
rate is then estimated by the number of infected cases divided by T . A total person-
time of 5 years can be the resultant of 5 subjects each with an individual person-time
of 1 year, or of 60 subjects each with an individual person-time of 1 month, or
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of n subjects all with a different individual person-time, some short, some long.
For drop-outs, the duration of the follow-up can be set to the length of the time
interval between the start of the surveillance period and the moment of drop-out.
This requires the assumption of noninformative drop-out, meaning that the reason
for drop-out is not related to the endpoint, occurrence of infection.

The usual assumption is that the number of cases is a realization from a Poisson
distribution, meaning that there must be a uniform scatter of infected cases over
time. A uniform scatter of cases over time is only possible if the infection rate for
the (maximum) surveillance period is low. The reason for this is that the events-
per-person-time estimator does not allow for the fact that in a clinical vaccine trial,
during the surveillance period the number of subjects at risk for infection decreases.
And if the number of subjects at risk decreases, so will the number of new cases. In
that case the scatter over time will not be uniform and the Poisson assumption will
not hold.

Finally, let 
.t) denote the attack rate for the surveillance period [0; t] after vac-
cination, and 
.t) the infection rate during a post-vaccination surveillance period of
length t . If the risk of infection is constant over time and 
.t) is low, then


.t/ � 
.t/:

Thus, if the infection rate is low, then it will be approximately equal to the attack
rate. This is of importance for the interpretation of vaccine efficacy estimators based
on the events-per-person-time statistic.

7.3.3 Force of Infection

The third incidence measure is force of infection. Let S.t/ be the survivor function,
i.e., the function giving the probability that a subject remains infection-free longer
than some time t . The attack rate 
.t/ of the infection for the surveillance period
[0; t] is


.t/ D 1 � S.t/:

The force of infection h.t/ at t is defined as

h.t/ D �dS.t/=dt

S.t/
;

the instantaneous change in the size of the infection-free population at time t divided
by the size of the infection-free population at time t . To make this less abstract,
imagine time to be discrete, then h.t/ would be the number of infected cases occur-
ring at time t divided by the number of subjects being infection-free at (t � 1). The
force of infection h.t/ is thus indeed an incidence measure. It may be shown that


.t/ D 1 � exp
Z t

0

h.s/ds:
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A key difference with the infection rate is that the force of infection need not to be
constant over time. In fact, no assumptions about h.t/ need to be made.

The length of the surveillance period need not to be fixed, it may vary from
subject to subject. Data from drop-outs can be treated as censored observations,
but here also, the reason for drop-out should not be related to the occurrence of
infection. A second key difference with the infection rate is that here t measures the
time since the start of the surveillance period, and this start must be fixed, e.g., the
day of (the first) vaccination.

The force of infection function can be estimated using survival analysis tech-
niques. If in procedure LIFEREG the option

plots = (h(name=force of infection));

is used, the force of infection function is plotted versus time.

7.4 Statistical Analysis of Vaccine Efficacy Data

Vaccine efficacy (VE) for susceptibility is generally defined as one minus a relative
risk of infection parameter � in the investigational vaccine group versus the control
group:

VE D 1 � �: (7.1)

The relative risk of infection can be estimated by either the ratio of two attacks rates,
the ratio of two infection rates, or the ratio of two force of infection functions. It
will be shown that under the mild condition that the attack rate in the control group
is small, independent of the relative risk estimator being used, the same vaccine
efficacy parameter is estimated, namely

1 � 
1.t/


0.t/

with 
1.t/ and 
0.t/ the attack rate during the surveillance period [0,t] in the inves-
tigational and the control group, respectively. In other words, the interpretation of
vaccine efficacy is independent of the incidence measure being used.

Often it will not be sufficient to demonstrate that the vaccine efficacy is greater
than zero, but that the requirement is that it has to be shown that the efficacy is sub-
stantially greater than zero. This is called super efficacy. For example, for influenza
vaccines the FDA/CBER requirement is that the vaccine efficacy must be greater
than 0.4 [30]. This is to be demonstrated by showing that the lower bound of the
two-sided 95% confidence interval for the vaccine efficacy exceeds 0.4.
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7.4.1 Comparing Two Attack Rates

If the surveillance period is fixed, then the relative risk in (7.1) is estimated by the
rate ratio RR, i.e., the ratio of two observed attack rates:

OVE D 1 � RR

D 1 � AR1

AR0

D AR0 � AR1

AR0

with AR1 the observed attack rate among the subjects in the investigational vaccine
group and AR0 the observed attack rate among the control subjects. If the control is
a placebo, then OVE estimates the absolute vaccine efficacy, the proportion of infected
cases prevented by the vaccine. If the control is an active vaccine, then OVE estimates
the relative vaccine efficacy, the relative decrease in number of infected cases.

Testing the null hypothesis that the absolute or relative vaccine efficacy is zero
is equivalent to testing that the relative risk of infection is one. This null hypothesis
can be tested with Pearson’s chi-square test, or, if group sizes are small, the Suissa
and Shuster exact test. If (LCL� , UCL� ) is a two-sided 100.1 � ˛)% confidence
interval for the relative risk � then

.1 � UCL� ; 1 � LCL� /

is a two-sided 100.1�˛)% confidence interval for the vaccine efficacy VE D (1��).

Example 7.2. Blennow and colleagues report the result of a whole cell pertussis
vaccine field efficacy study [50]. The study was a multi-centre trial, performed in
Sweden, in the early nineteen-eighties. In this nonblinded trial, 525 infants aged 2
months who were born on days with an even number received three doses of vaccine
one month apart, and 615 infants of the same age who were born on days with an odd
number were enrolled as controls. The surveillance period, the age period between
6 and 23 months, was fixed. In the vaccinated group, 8 cases of pertussis occurred,
compared to 47 in the control group. The estimated absolute vaccine efficacy was

OVE D 1 � 8=525

47=615
D 0:801:

In the vaccinated group, 80% of the expected cases of pertussis was prevented.
The null hypothesis that the vaccine efficacy is zero could be rejected because the
P-value for Pearson’s chi-square test was <0:0001. The two-sided 95% Wilson-type
confidence interval for the relative risk � is (0.097, 0.410), which corresponds to a
95% confidence interval for the vaccine efficacy VE of (0.590, 0.903). Suppose that
there had been the requirement of super-efficacy, with the requirement being that the
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vaccine efficacy exceeded 0.5. Because the lower bound of the confidence interval
for vaccine efficacy falls above this bound, this requirement would have been met.

What often is overlooked is that the vaccine efficacy may depend on the length of
the surveillance period, because for many vaccines the protection they afford wanes
over time. In that case, the longer the length of the surveillance period, the lower
the vaccine efficacy. A solution is to report the vaccine efficacy by sub-period, for
example, first year after vaccination, second year after vaccination, etc.

7.4.2 Comparing Two Infection Rates

In trials in which the incidence of infection is measured by infection rates, the vac-
cine efficacy is estimated using the infection rate ratio as measure of the relative
risk:

OVE D 1 � IRR;

with

IRR D s1=T1

s0=T0

the estimated infection rate ratio. Here, s1 and T1 and s0 and T0 are the number
of infected cases and the total person-time in the investigational vaccine and the
control group, respectively.

The interpretation of OVE is similar to that of OVE based on attack rates. The vac-
cine efficacy is the proportion of infected cases prevented by the vaccine during an
arbitrary time unit if the control is a placebo, or the relative decrease in infected
cases during an arbitrary time unit if the control is a vaccine.

The standard statistical test to compare two infection rates is a conditional exact
test based on the conditional binomial distribution of the number of infected cases
in the investigational vaccine group given the total number of cases in both groups.
This test is based on the assumption that for both groups the number of cases is
a realization from a Poisson distribution, with parameter 
1 for the investigational
vaccine group and 
0 for the control group. Under the Poisson assumption, s1 is
binomially B(s; 
) distributed, conditional on s, the total number of cases, and with


 D T1
1

T1
1 C T0
0

: (7.2)

The null hypothesis H0 W 
1 D 
0 is tested by testing the equivalent null hypothesis
H0 W 
 D T1=.T1 C T0/. Exact confidence limits for 
 are translated to exact
confidence limits for � D 
1=
0, the infection rate ratio, and for VE = .1 � �/, the
vaccine efficacy. If r D T1=T0, the ratio of the total person-times, then

� D 


r.1 � 
/
:
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Thus, if LCL� and UCL� are the exact lower and upper 100(1�˛)% confidence
limits for 
 (see Sect. 3.5.1), then

LCL� D LCL�

r.1 � LCL�/
and UCL� D UCL�

r.1 � UCL�/

are exact 100(1�˛)% confidence limits for � , while

LCLVE D 1 � UCL� and UCLVE D 1 � LCL�

are exact lower and upper 100(1�˛)% confidence limits for the vaccine efficacy VE.

Example 7.3. Urdaneta and colleagues report the results of the randomized, placebo-
controlled, field efficacy trial of an SPf66 malaria vaccine [51]. The objective of the
trial was to evaluate in nonimmune residents of a Brazilian endemic region, the effi-
cacy of the SPf66 vaccine for all, as well as the first and second episodes of malaria
infections separately for P. falciparum and P. vivax. A total of 800 subjects were
enrolled in the trial. Of the initial cohort, 572 participants completed the vaccina-
tion schedule (3 doses), 287 in the vaccine group and 285 in the control group. In the
vaccine group 76 first P. falciparum malaria episode occurred during a total follow-
up of 12,178 person-weeks, compared to 85 episodes during a total follow-up of
11,698 person-weeks in the control group. The vaccine efficacy was estimated to be

1 � 76=12;178

85=11;698
D 0:141:

To test the null hypothesis that the vaccine efficacy is zero, the null hypothesis

H0 W 
 D 12;178

12;178 C 11;698
D 0:510:

was tested. Under the null hypothesis the probability that the number of cases in
the vaccine group is less or equal to 76 given that the total number of cases is 161
equals

PROBBNML.0:510;161;76/ D 0:188:

The exact 95% two-sided confidence interval for 
 is (0.393, 0.522). With r =
12,178/11,698 = 1.041, the following lower and upper limit of the 95% confidence
interval for the infection rate ratio � are obtained

LCL� D 0:393

1:041.1 � 0:393/
D 0:622

and

UCL� D 0:552

1:041.1 � 0:552/
D 1:184:
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Thus, an exact 95% confidence interval for the vaccine efficacy VE is (�0.184,
0.378). The trial did not yield evidence that the SPf66 vaccine protects against P.
falciparum malaria infection.

7.4.3 Comparing Two Force of Infection Functions

A popular model for comparing two force of infection functions f1.t/ and f0.t/ is
the Cox proportional hazards model. The model is based on the assumption that the
functions are proportional, i.e., that their ratio is a constant:

f1.t/=f0.t/ D �:

The constant � is called the hazard rate ratio. A constant hazard rate ratio can
be interpreted as follows: in case of a placebo-controlled field efficacy trial, the
assumption is that in any (short) time-interval during the surveillance period the
proportion of infected cases prevented is the same, independent of the number of
infected cases in the control group. Or, to put it differently, that the vaccine efficacy
is independent of the rate at which infected cases occur in the control group. This is
a very plausible assumption (although one can think of a scenario with mostly mild
cases during the first part of the surveillance period and mostly severe cases during
the second part, in which case the proportional hazards assumption may not hold.)
The proportional hazards assumption is a much weaker condition than the condition
of a constant risk.

An attractive property of the Cox model is that the vaccine efficacy can be
estimated without specifying f1.t/ and f0.t/. This is done with the procedure
PHREG.

Example 7.4. Consider a hypothetical placebo-controlled field efficacy trial with a
pandemic influenza vaccine. All subjects were vaccinated during a period of four
weeks after the vaccine became available, and the length of the surveillance period
varied per subject. Let t denote the time (days) to infection for infected subjects and
the length of the surveillance period for noninfected subjects.

SAS Code 7.1 Comparing Two Groups of Times to Infection under the Propor-
tional Hazards Assumption

data;
input group t infected;

datalines;
0 30 1
0 113 0
.
.
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1 68 1
1 70 0
run;

proc phreg;
model t*infected(0)=group / risklimits;

run;

Here, group=1 for the investigational vaccine group and group=0 for the control
group, t is the time to infection (if infected=1) or the length of the surveillance
period for noninfected subjects (if infected=0). In the model statement, the value
for censored observations (here: 0) has to be specified.

SAS Output 7.1

The PHREG Procedure
Analysis of Maximum Likelihood Estimates

Parameter Standard Chi- Hazard 95% Hazard Ratio
Variable DF Estimate Error Square Pr > ChiSq Ratio Confidence Limits

group 1 -1.55782 0.55288 7.9391 0.0048 0.211 0.071 0.622

The parameter being estimated is log.�/. The estimated hazard rate ratio is 0.211,
with 95% confidence interval (0.071, 0.622). Thus, the estimated vaccine efficacy is
OVE D 0:789, with 95% confidence interval (0.378, 0.929).

If the proportional hazards ratio assumption holds, then (7.2) implies

� D logeŒ1 � 
1.t/�

logeŒ1 � 
0.t/�
: (7.3)

The Taylor series for � loge.1 � 
/ is

� loge.1 � 
/ D 
 C 
2

2Š
C 
3

3Š
C : : :

Thus, for small values for 
1 and 
0

� � 
1.t/


0.t/
:

Meaning that the estimated vaccine efficacy

VE � 1 � 
1.t/


0.t/
:
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7.5 Recurrent Infections

A recurrent infection is an infection caused by the same pathogen in a subject who
has experienced at least one infection before. The statistical analysis of recurrent
infection data is extremely complex. There are two major methodological challenges
to address. The first challenge is the possibility that the risk of a next infection is
affected by previous infections. It could, for example, be the case that a first infec-
tion makes a subject more susceptible for infection. The second challenge is that
the risk of infection may be different among subjects. In that case, it can be that the
more prone subjects are contributing more infections than less prone subjects. With
one exception, for neither challenge a simple statistical solution exists. But there
are other challenges as well. An example of an infectious disease with recurrent
episodes in patients is malaria. A group of experts on this disease reported that it is
difficult to define when a malaria episode has ended and when following treatment
a subject becomes susceptible to a further episode [52]. For this reason and the sta-
tistical complexity involved in analysing recurrent episodes, the consensus of the
group was that the primary endpoint in a malaria trial should be time to first episode
of clinical malaria, although the members admitted that the total number of episodes
of malaria in trial participants might better measure the total burden of malaria in
the community. This is also pointed out by Janh-Eimermacher, du Prel and Schmitt,
who give an excellent overview of the statistical methods used to assess vaccine
efficacy for the prevention of acute otitis media (AOM) by pneumococcal vaccina-
tion [53]. They note that: ‘The proportion of subjects with at least one episode might
be equal in two vaccine groups, whereas the groups differ substantially in the total
number of episodes. (...) Decreasing the total number of AOM might reduce the
total costs for treating AOM, improve the problem of antibiotic resistance caused
by broad antibiotic use in treatment of AOM and reduce the long-term effects cause
by recurrent episodes.

The drawback of considering only the first infection is that not all available infor-
mation is used, which can lead to an under- or overestimation of the value of the
benefit of a vaccine.

7.5.1 Average Number of Episodes Experienced by a Subject

For the average number of infectious episodes experienced by a subject to be a
meaningful concept, it must be linked to a fixed time interval. The time interval can
be either a fixed time span, say, a year, or a fixed time period, the first two years after
vaccination or a specified age period, for example. The time interval must be fixed,
but the surveillance period need not necessarily to be of fixed length. This depends
on whether the risk of a next episode is unaffected by previous episodes. If this is
the case then, if the interest is in the average number of episodes experienced by a
child during the first five years of live, the only restriction is that the surveillance
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period should fall within this age period. If, however, the risk of a next episode is
affected by previous episodes, then length of the surveillance period must be fixed.

The statistical analysis of intra-individual numbers of episodes depends on which
of the following two conditions are met:

1. The risk of a next episode is unaffected by previous episodes
2. The risk of infection does not differ between subjects

If both conditions are met, then the statistical analysis is straightforward. In that
case, the average number of episodes experienced by a subject during, say, a year,
can be estimated by the total number of episodes (i.e., the sum of the intra-individual
numbers of episodes) divided by the total number of person-years. The total number
of episodes will be a realization from a Poisson distribution, and to compare the
total number of episodes between vaccine groups the methods in Sect. 7.4.2 can be
applied.

In practice, it will be unlikely that the second condition is met. More likely is
that the risk of infection differs between subjects. This is called overdispersion. If
overdispersion is ignored the variance of the estimator is underestimated. Let the
random variable Y be the intra-individual number of episodes. If the Poisson model
would hold, then the variance of Y would be equal to its expectation:

var.Y/ D E.Y/ D �:

A much applied approach to deal with count data that exhibit overdispersion is to
assume that the individual risk itself may be regarded as a random variable. In that
case, the probability distribution will be a compound (mixed) distribution with

var.Y/ D V.�/ > �:

There are two standard choices for the variance function V.�/. The first is to assume
that the individual risks are random draws from a gamma distribution. The result-
ing compound distribution is the negative binomial distribution, also known as the
gamma-Poisson (mixture) distribution. This leads to a quadratic variance function:

V.�/ D � C ��2; � > 0:

The second standard choice for the variance function is

V.�/ D p
��; � > 1:

This is a convenient choice, which does not require a specification of the compound
distribution. The parameters � and � are called the dispersion parameters [54].

Both variance models can be fitted with the SAS procedure GENMOD. The
GENMOD procedure fits a generalized linear model to the data by maximum
likelihood estimation. The standard link function for (overdispersed) count data
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is the log function. The SAS code to fit the an overdispersed Poisson model with
V.�/ D p

�� to count data is

SAS Code 7.2 Fitting an Overdispersed Poisson Model to Intra-Individual Number
of Episodes

data;
input vaccine number_of_episodes

length_surveillance_period;
loglsp=log(length_surveillance_period);

datalines;
0 0 120
0 1 100
0 1 120
0 3 90
0 3 130
0 4 150
0 5 100
1 0 120
1 0 100
1 1 90
1 2 120
1 3 80
1 4 130
run;

proc genmod;
class vaccine;
model number_of_episodes=vaccine /

dist=poisson link=log scale=deviance
offset=loglsp type3;
estimate "infection rate ratio" vaccine -1 1;

run;

SAS Output 7.2

Model Information

Distribution Poisson
Link Function Log
Dependent Variable number_of_episodes
Offset Variable loglsp

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF
Deviance 11 20.8621 1.8966
Pearson Chi-Square 11 16.8524 1.5320
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Analysis Of Maximum Likelihood Parameter Estimates

Standard Wald 95% Confidence Wald
Parameter DF Estimate Error Limits Chi-Square Pr > ChiSq
Intercept 1 -4.1589 0.4355 -5.0124 -3.3053 91.20 <.0001
vaccine 0 1 0.2951 0.5488 -0.7806 1.3708 0.29 0.5908
vaccine 1 0 0.0000 0.0000 0.0000 0.0000 . .
Scale 0 1.3772 0.0000 1.3772 1.3772

Contrast Estimate Results

Mean Mean
Label Estimate Confidence Limits
infection rate ratio 0.7445 0.2539 2.1828

There are two criteria for overdispersion, the Deviance divided by its degrees
of freedom and the Pearson chi-square divided by its degrees of freedom,
1.8966 and 1.5320, respectively. Both are greater than 1.0, which indicate overdis-
persion. Both statistics can be used as estimates of the dispersion parameter. To do
this, either

scale=Pearson or scale=deviance

must be inserted as an option in the model statement, to obtain an overdispersed
Poisson distribution. First, estimates are obtained for the nonoverdispersed Poisson
model. Next, the scale parameter is estimated by either the square root of the Pearson
statistic or the square root of the deviance statistics, and the standard errors are
adjusted by multiplying them by the value for the scale statistic

1:3772 D p
1:8966;

making the statistical tests more conservative. With the estimate statement
a point and an interval estimate of the infection rate ratio is obtained. For the
hypothetical data, an estimate of the vaccine efficacy is thus

OVE D 1 � 0:7445 D 0:2555:

To fit a negative binomial distribution to the data the option dist=poisson
should be replaced with dist=negbin, and the scale option should be deleted:

SAS Code 7.3 Fitting a Negative Binomial Model to Intra-Individual Number of
Episodes

proc genmod;
class vaccine;
model noe=vaccine / dist=negbin link=log offset=loglsp type3;
estimate "infection rate ratio" vaccine -1 1;

run;
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SAS Output 7.3

Analysis Of Maximum Likelihood Parameter Estimates

Standard Wald 95% Confidence Wald
Parameter DF Estimate Error Limits Chi-Square Pr > ChiSq

Intercept 1 -4.1565 0.3624 -4.8667 -3.4463 131.57 <.0001
vaccine 0 1 0.3000 0.4657 -0.6127 1.2127 0.42 0.5194
vaccine 1 0 0.0000 0.0000 0.0000 0.0000 . .
Dispersion 1 0.1831 0.3260 -0.2000 0.8220

Contrast Estimate Results

Mean Mean
Label Estimate Confidence Limits
infection rate ratio 0.7408 0.2974 1.8453

7.5.1.1 Time to a Next Episode

Andersen and Gill have proposed generalized Cox proportional hazard method that
takes recurrent episodes into account [55]. As with the Cox proportional hazard
model, the generalization is based on the assumption that the hazard rate is propor-
tional between both groups over time. The method requires that the assumption that
the risk of a next episode is unaffected by previous episodes, and if this assumption
is not met misleading results may be obtained.

7.6 Sample Size Estimation

7.6.1 Trials Comparing Two Attack Rates

To estimate the required sample size of a vaccine field efficacy trial comparing two
attacks rates, three parameters need to be specified: the expected attack rate in the
control group, the expected vaccine efficacy and the criterion for vaccine efficacy.
With the vaccine efficacy specified, the expected attack rate in the investigational
vaccine group can be calculated. If the criterion for vaccine efficacy is that the effi-
cacy must be greater than zero, then the required sample size can be computed with
SAS code 3.2.

If super efficacy needs to be demonstrated, more complicated computations are
required. Having to demonstrating that the vaccine efficacy VE is > ı is equivalent
to having to demonstrate that the relative risk � for the investigational versus the
placebo group is < .1 � ı/. With the procedure POWER, the required sample size
for testing H0 W � � .1 � ı/ against the one-sided alternative H1 W � < .1 � ı/ can
be approximated.
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Example 7.5. Consider a placebo-controlled influenza vaccine field efficacy trial.
Assume that the expected attack rate in the control group is 0.25 and that the
expected vaccine efficacy is 0.8. An expected vaccine efficacy of 0.8 corresponds
to an expected attack rate of

0:25 � .1 � 0:8/ D 0:05

in the vaccine group. If the null hypothesis is that the vaccine efficacy is zero, then
SAS code 3.2 computes the sample size to be 2�65 D 130 to be secured of a power
of 0.9 (for a two-sided significance level of 0.05). The FDA/CBER criterion for
super efficacy for influenza vaccines is 0.4. This means that to demonstrate super
efficacy the null hypothesis H0 W � � 0:6 must be tested against the alternative
hypothesis H1 W � < 0:6, at the one-sided significance level 0.025. An expected
vaccine efficacy of 0.8 corresponds to an expected relative risk of .1 � 0:8/ D 0:2.
A first attempt might be to approximate the required sample size using either one of
the following two SAS codes:

SAS Codes 7.4 Approximate Sample Size Estimation for Demonstrating Super
Efficacy when Comparing Two Attack Rates

proc power;
twosamplefreq test=pchi
alpha=0.025 sides=1
groupproportions=(0.25,0.05)
nullpdiff=-0.10 /* 0.25(1-0.4) - 0.25 */
power=0.9 npergroup=.

run;

proc power;
twosamplefreq test=pchi
alpha=0.025 sides=1
refproportion=0.25
relativerisk=0.2
nullrelativerisk=0.6
power=0.9 npergroup=.

run;

When either one of these codes are run, the computed sample size is found to be
2 � 260 D 520 subjects. A warning, however, is at its place here. The power com-
puted here is the power for rejection the one-sided null hypothesis given above using
Pearson’s chi-square statistic with the standard error in (3.5). Monte Carlo simula-
tion results suggest that the sample size estimate is correct for trials with the rate
difference as outcome, but that they are conservative for trials with the rate ratio
as outcome and with a Wilson-type confidence interval for the relative risk (see
Sect. 3.5.2). Monte Carlo simulations estimate the latter power to be > 0:99, and
that to be secured of a power of 0.9, a sample size of only 2 � 140 D 280 (!) would
be required.
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7.6.2 Trials Comparing Two Infection Rates

The procedure to determine the sample size for a vaccine field efficacy trial in which
two infection rates are to be compared is as follows. Let s0 denote the expected num-
ber of placebo cases, s1 the expected number of cases in the investigational vaccine
group and s D .s0 C s1/ the expected total number of cases. For s fixed, determine
the largest number for s1 such that the lower limit of the two-sided 100(1�˛)% con-
fidence interval for the vaccine efficacy VE is > 0, or > ı if super efficacy must be
demonstrated. The actual power of the trial is then the probability that the number
of cases in the investigational vaccine group is less or equal to s1. Find the value for
s such that the actual power is equal to the desired power.

The formula for the expected total number of cases is

s D n0
0 C n1
1

D n0
0 C n1
0.1 � VE/

D n0
0 C n0r
0.1 � VE/

D n0
0Œ1 C r.1 � VE/�;

where 
0 and 
1 are the expected infection rates during the length of the planned
average surveillance period, and r D n1=n0, the randomization ratio. Hence,

n0 D s


0Œ1 C r.1 � VE/�
:

Example 7.6. An investigator wants to estimate the sample size for a vaccine field
efficacy study with a planned average surveillance period of 24 months, a 2:1 ran-
domization ratio, an expected infection rate in the placebo group of 0.05 cases per
24 months, an expected vaccine efficacy of 0.7 and with ı D 0:4 as bound for super
efficacy. The sample size can be computed with SAS code 7.5. If the desired power
is 0.9, then the required number of investigational cases is 40 and the required num-
ber of total cases 92. This corresponds to a sample size of 3,453 subjects, 2,302 to
be randomized to the investigational vaccine and 1,151 to placebo.

SAS Code 7.5 Sample Size Computation for Comparing Two Infection Rates

data;
ve=0.7; /* expected vaccine efficacy */
delta=0.4; /* bound for super efficacy */
lambda0=0.05; /* expected infection rate control group */
r=2; /* randomization ratio n1/n0 */
alpha=0.05; /* two-sided significance level */
power=0.9; /* desired statistical power */

pi=r*(1-ve)/(r*(1-ve)+1);
s=1; actual_power=.;
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do while (actual_power lt power);
s=s+1; s1=s; ready=0;
do while (not ready);

s1=s1-1; s0=s-s1;
fu=finv(1-alpha/2,2*(s1+1),2*s0);
ucl_pi=(s1+1)*fu/(s0+(s1+1)*fu); /* upper CL for pi */
ucl_theta=ucl_pi/(r*(1-ucl_pi)); /* upper CL for theta */
lcl_ve=1-ucl_theta; /* lower CL for VE */
ready=((lcl_ve>delta)|(s1=0)); /* largest c1 for which lower */

end; /* CL for vaccine efficacy>bound */
actual_power=probbnml(pi,s,s1); /* probability of c1 or less */

end; /* cases in experimental group */
n0=int(s/(lambda0*(1+r*(1-ve))))+1;
n1=r*n0;
output;

run;

7.6.3 Trials Comparing Two Forces of Infection

Power and sample size calculations for comparing two forces of infection can be
performed with the twosamplesurvival statement of the procedure POWER.
If a proportional hazards model is assumed, the test option should be set to
test=logrank. Sample size estimation for comparing two forces of infection
requires detailed specification of the design of the study. The reader is therefore
referred to the chapter on the POWER procedure in the SAS/STAT User’s Guide for
a description of the different options to specify the details of the design of the study.



Chapter 8
Correlates of Protection

8.1 Introduction

An immune correlate of protection is an immunological assay (either humoral or
cellular) that predicts protection against infection or disease. Correlates of protec-
tion are of great importance because they can be used as surrogate endpoints for
vaccine efficacy in clinical vaccine trials. Immunological vaccine trials are much
less costly and much less time-consuming than field efficacy trials. Correlates of
protection constitute the scientific basis for improving existing vaccines and intro-
ducing new ones. Under certain conditions, they can be used to predict vaccine
efficacy in populations other than the one in which efficacy was demonstrated. For
these reasons, finding correlates of protection is one of the 14 Grand Challenges of
Global Health of the National Institutes of Health (NIH) and the Bill and Melinda
Gates Foundation.

For many infectious diseases, it has been established that particular antibody
assays are correlates of protection. Infectious diseases for which this has been
demonstrated that are, amongst others, influenza, hepatitis A and hepatitis B,
meningococcal disease, tetanus, measles, mumps, rubella and polio. Recently, For-
rest and co-workers showed that the interferon-� ELISPOT assay is a correlate of
protection for influenza in young children [56].

In the scientific literature, the term correlate of protection is used in two dif-
ferent meanings. First, it is used in the meaning of an immunological assay that
predicts protection against infection or disease. Second, it is used in the meaning of
a clear-cut value for, say, an antibody assay, above which subjects are protected.
In that case, often the protective level itself is called a correlate of protection.
Siber discusses several examples of this [57]. One example he discusses is diph-
theria, an upper respiratory tract illness. The disease is caused by the bacterium
Corynebacterium diphtheria. A characteristic symptom of the disease is a swollen
neck, sometimes referred to as ‘bull neck’. During an outbreak of the disease in
Copenhagen in 1943–1944 sera of 425 patients were collected. In 95% of the cases,
diphtheria antitoxin levels were greater than 0.01 antitoxin units. From these obser-
vations, it was concluded that this antitoxin level is a correlate of protection. Here,
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correlate of protection will be used in the first meaning only. For a protective assay
level, the term threshold of protection is used.

The correlation between an immunological assay and protection from infec-
tion can be assessed in vaccine field efficacy trials, challenge studies, household
transmission studies and observational cohort studies.

8.2 The Protection Curve

A protection curve is a mathematical function specifying the relationship between
log-transformed immunogenicity values and the probability of protection against
infection, conditional on exposure to the pathogen. For convenience, here it will be
assumed that the immunogenicity values are antibody titres.

An obvious choice for the protection curve is the sigmoid logistic function:

pc.log t/ D 1

1 C exp.˛ C ˇ log t/
;

with ˛ > 0, ˇ < 0 and t the antibody titre value. The standard logit function
has two parameters, ˛ and ˇ, to be estimated from the data. The intercept ˛ is the
location parameter of the protection curve, and reflects the protection not mediated
by antibodies. The slope ˇ contributes to the steepness of the curve, the larger jˇj,
the steeper the curve. An antibody assay is a correlate of protection if ˇ ¤ 0.

8.3 Estimating the Protection Curve

8.3.1 Estimating the Protection Curve from Challenge
Study Data

A challenge study is a study in which vaccinated volunteers are challenged with a
pathogen. Challenge studies are an important tool in clinical vaccine development,
because they can furnish proof-of-concept for an experimental vaccine and acceler-
ate progress towards phase III trials. Imperial College in London is famous for its
malaria challenge studies. A group of volunteers is vaccinated with the experimental
vaccine, while a second group of volunteers serves as control group. At a predefined
number of days after the (final) vaccination, the subjects are infected with malaria.
Five infected mosquitoes wait under a mesh draped over a paper coffee cup. The
volunteer rests his arm over the cup to allow the mosquitoes to bite. Monitoring
takes place twice daily. Subjects are treated with anti-malarial drug chloroquine (to
prevents the development of malaria parasites in the blood) after the first confirmed
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positive blood film or at day 21 if no parasitemia was detected. Protection can be
complete or partial. Complete protection is where none of the vaccinated volunteers
do develop malaria (but all unvaccinated control volunteers do). Partial protection
is where there is a delay in the onset of malaria in the vaccinated volunteers, mean-
ing that the immune system is controlling the infection to start but is ultimately
overwhelmed.

Challenge studies have a significant limitation, namely that it is often not pos-
sible to expose the volunteers to a wild-type strain, i.e., a strain found in nature,
because this would be too dangerous. In that case, the volunteers are challenged with
a laboratory-adapted strain, which is a strain weakened by passing. The limitation
then is the fidelity of a laboratory-adapted challenge model to natural infection.

Example 8.1. Hobson and colleagues studied the role of haemagglutination inhi-
bition in protection against challenge infection with influenza viruses [58]. Four-
hundred-and-sixty-two adult volunteers (industrial workers) who were randomly
assigned to be vaccinated with a live or a killed influenza vaccine or placebo,
whilst others were left unvaccinated. Two to three weeks later they were challenged,
by means of intranasal inoculation with a living, partially attenuated strains of an
influenza B virus. Serum samples for anti-HA antibody determination by means of
the HI test were drawn immediately before virus challenge. Nasal swabs were taken
for virus isolation studies wherever possible 48 h after challenge. In total, 135 of the
volunteers got infected and 327 remained infection free. In Fig. 8.1, the observed
proportions of protected subjects is shown. A logit protection curve was fitted to
the challenge data. In SAS, there are several procedures that can be used to fit a
logit protection curve to challenge data. The most flexible of these is procedure
NLMIXED.

Fig. 8.1 Observed protection in an influenza vaccine challenge study
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SAS Code 8.1 Fitting a Logistic Protection Curve to Challenge Study Data

proc nlmixed;
parms alpha=0.1 beta=-0.1;
eta=exp(alpha+beta*logtitre);
p=1/(1+eta);
model protected ˜ binomial(1,p);
predict alpha+beta*logtitre out=fitted;

run;

data pcurve; set fitted;
pcurve=1/(1+exp(pred));
uclpcurve=1/(1+exp(lower));
lclpcurve=1/(1+exp(upper));

run;

The variable logtitre should contain the log transformed antibody titres. The
outcome variable protectedmust be a binary variable, being set to 1 for subjects
who were protected after challenge and to 0 for subjects who got infected. The
variable pcurve will contain the values for the fitted protection curve, and the
variables lclpcurve and uclpcurve will contain the lower and upper limit
of a two-sided 95% confidence interval for pc(log t). Together, these confidence
intervals constitute a 95% point-wise confidence band for the protection curve. The
fitted protection curve is displayed in Fig. 8.2.
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Fig. 8.2 Protection curve fitted to the challenge study data in Fig. 8.1
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SAS Output 8.1

Parameter Estimates

Standard
Parameter Estimate Error DF t Value Pr > |t| Alpha Lower Upper

alpha 0.3130 0.1567 462 2.00 0.0463 0.05 0.005164 0.6209
beta -0.5794 0.06680 462 -8.67 <.0001 0.05 -0.7107 -0.4481

8.3.2 Estimating a Protection Curve from Vaccine Field
Efficacy Study Data

In this section, it will be explained how a protection curve can be estimated from
vaccine field efficacy data. A major difference between a challenge and a field effi-
cacy study is that in a challenge study all subjects are exposed to the pathogen,
while in a field efficacy study only a fraction of the subjects is exposed. This has to
be allowed for in the model fitted to the data. This is done by applying a simple rule
for conditional probabilities.

Consider a vaccine field efficacy data with a fixed surveillance period and with
a particular antibody titre measured at a defined time point after vaccination. The
probability of not getting infected during the surveillance period is

Pr(not Infected) D Pr(not Infected j not Exposed) Pr(not Exposed)
C

Pr(Protected j Exposed) Pr(Exposed).

Because a subject cannot get infected if not exposed,

Pr(not Infected j not Exposed) D 1.

And because

Pr(not Exposed) D 1 � Pr(Exposed),

the above equation can be rewritten as

Pr(not Infected) D 1 � Pr(Exposed)
C

Pr(Exposed) Pr(Protected j Exposed).

It is the probability

Pr(Protected j Exposed)
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that the interest is in, because this is the probability being modelled by the protection
function. The expression above gives the model to be fitted: the protection curve plus
Pr(Exposed).

Let PE denote the probability that a subject is exposed to the pathogen, and let
pc.log t/ denote the protection curve, with t the antibody titre value. Then

Pr(not Infected j t) D (1 � PE ) C PE pc.log t).

If it is further assumed the pc.log t/ is the logistic function, then

Pr.not Infected jt/ D .1 � PE / C PE

1 C exp.˛ C ˇ log t/
:

This model is akin to the scaled logistic function proposed by Dunning [59].
Because the model separately parameterizes exposure, the protection curve can be
estimated. This model also can be fitted with procedure NLMIXED.

Example 8.2. White and co-workers report the result of field efficacy trials with a
live attenuated varicella (chickenpox) vaccine conducted between 1987 and 1989
[60]. Four thousand forty-two healthy children and adolescents, ages 12 months
to 17 years, were vaccinated with a single dose of the vaccine. During the first
and second years of follow-up, 2.1 and 2.4% of the vaccinees developed vari-
cella. In Fig. 8.3, the incidence of varicella is shown by the 6-week postvaccination
glycoprotein-based (gp) ELISA assay titre. The following SAS code can be used to
fit a protection curve to the field efficacy data in Fig. 8.3:

SAS Code 8.2 Estimating a Logistic Protection Curve from Field Efficacy Study
Data

proc nlmixed;
parms pe=0.1 alpha=1 beta=-1;
eta=exp(alpha+beta*logtitre);
p=(1-pe)+pe/(1+eta);
model notinfected ˜ binomial(1,p);
predict alpha+beta*logtitre out=fitted;

run;

data pcurve; set fitted;
pcurve=1/(1+exp(pred));
uclpcurve=1/(1+exp(lower));
lclpcurve=1/(1+exp(upper));

run;
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Fig. 8.3 Incidence of varicella in a field efficacy study

SAS Output 8.2

Parameter Estimates
Standard

Parameter Estimate Error DF t Value Pr > |t| Alpha Lower Upper

pe 0.1156 0.02561 3459 4.51 <.0001 0.05 0.06538 0.1658
alpha 1.0182 0.7377 3459 1.38 0.1676 0.05 -0.4282 2.4647
beta -1.4812 0.2733 3459 -5.42 <.0001 0.05 -2.0171 -0.9453

The proportion of trial participants in the trial that was exposed to the varicella
zoster virus is estimated to be 0.116.

8.3.3 Predicting Vaccine Efficacy

An estimated protection curve can be used to predict vaccine efficacy:

VEpredicted D 1 �
Pn1

iD1 pc.log t1i /=n1Pn0

iD1 pc.log t0i /=n0

;

where t1i is the antibody value of the i th subject in the investigational vaccine group
and toi the antibody value of the i th subject in the placebo group. This requires the
assumption that the protection curve for placebo subjects is the same curve as that
for vaccinated subjects. This need not to be so, however. In that case, the protection
curve for placebo subjects should be estimated separately.

8.4 Threshold of Protection

Underlying the concept of a protection threshold is the idea that there is an assay
value above which most subjects are protected from infection, and below which
most subjects are not. This would require a very steep protection curve, the
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so-called step curve. The examples of protection curves fitted in the previous section
show that this is often not the case and that the curve will be nonsteep. In that case,
an obvious definition of a protection threshold is the antibody value TP for which
the predicted probability of protection is 0.5:

pc.log TP / D 0:5:

If the fitted protection curve is the logistic one, then it is easy to see that whether the
antibody titres are loge transformed, the estimate of TP is the exponential of minus
the ratio of the fitted intercept and slope:

OTP D e� Ǫ= Ǒ
:

A confidence interval for TP can be obtained by using in NLMIXED the following
predict statement:

predict -alpha/beta;

The antilogs of the values for lower and upper then constitute a two-sided
confidence interval for TP .

Example 8.2. (continued) The estimate for the threshold of protection for varicella
is a 6-week gp ELISA titre of

e1:0182=1:4812 D 2:0;

with as 95% confidence interval (0.9, 4.3).
An alternative method to estimate a threshold of protection is the Chang and

Kohberger method [61]. To find a threshold of protection T
0

P , the following equation
is solved:

Pr.t < T
0

P j Vaccinated/

Pr.t < T
0

P j not Vaccinated/
D Pr.Infected j Vaccinated/

Pr.Infected j not Vaccinated/

Chang and Kohberger applied their method to aggregate field efficacy data of trials
with pneumococcal conjugate vaccine formulations, and found a serotype 19F IgG
antibody threshold of 0.4 �g/ml. The method requires (a) that the vaccine efficacy
is known, and (b) that the antibody levels in the control group show substantial
variability. In practice, only an estimate OVE of the vaccine efficacy will be available,
in which case the equation to solve becomes

Pr.t < T
0

P jVaccinated/

Pr.t < T
0

P j not Vaccinated/
D 1 � OVE:
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If the control is a placebo and the post-vaccination antibody levels in this group are
all undetectable or very low, then

Pr.t < T
0

P jnot Vaccinated/ D 1:

In that case, solving the equation above will not lead to a sensible result. But even
if (b) is met, care should be taken. The Chang and Kohberger method is based on
the assumption that the threshold T

0

P is the same for both the investigational and the
control group. This need not be the case. If the control is a placebo, the antibody
levels in the control group will be due to responding to natural infection, while the
antibody levels in the investigational group will be due to responding to artificial
infection. These antibody responses can be qualitatively different. This may also be
the case if the control vaccine is a totally different type of vaccine (e.g., intranasal)
than the investigational vaccine.

8.5 Discussion

The protection curve models the probability of protection as a function of the anti-
body titre. There are some subtleties to keep in mind, though, when estimating or
interpreting a protection curve. First, if antibody levels do not decline over time, then
the relationship between the antibody titres and protection is time-independent, i.e.,
not dependent on the timing of the blood sampling for antibody determination. This
is of importance for studying pathogenesis, which requires that the probability of
protection is related to the antibody level at the time of exposure. If antibody lev-
els, however, do decline over time, then the relationship will be time-dependent. If
the antibody levels in the model were measured three weeks after the vaccination,
then the model may not be valid for antibody levels measured at later time points.
It is therefore of importance to always state clearly the timing of the blood sam-
pling (e.g., six week after vaccination, as in Example 8.2). If the time point at which
the antibody titre is measured is the same for all trial participants, which is usually
the case, then the (strength of the) relationship will depend on whether this point
was before, at or after the time of the peak levels. The probability of protection
will depend on the antibody level at the time of exposure. The lower the correlation
between the measured antibody levels and the levels at the time of exposure the
weaker the relationship will be. Second, the relationship may be dependent upon
the length of the surveillance period, either because antibodies decline during the
surveillance period.

An important but difficult to answer question is the generalizability of estimated
protection curves. For example, how generalizible are protection curves estimated
from challenge data? This will depend, amongst others, on how similar the chal-
lenge strain is to the wild-type strain and on the volunteers, usually healthy young
male and female students. Can a protection curve estimated from data collected in
adults be assumed to be universal, e.g., being applicable to an elderly population as
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well? Could the threshold be serotype dependent, or may it be different for some
serotypes? Does it perhaps matter if antibodies are naturally or artificially acquired?
The traditional threshold of protection for seasonal influenza vaccines, a haemagglu-
tination inhibition titre of �40, is now being used for pandemic influenza vaccines
as well, although there is little scientific justification for this.



Chapter 9
Safety of Vaccines

9.1 Ensuring Vaccine Safety

To proof the safety of a vaccine is much more challenging than proving its efficacy.
Many vaccines are administered to several hundred million, often healthy people
(e.g., childhood vaccines), in which case even extremely rare but serious adverse
vaccine events can come to light, which may change the opinion of the medical
community on the benefit/risk ratio. If a rare but serious condition occurs in, say,
0.1% of the target population and a vaccine doubles the risk to 0.2%, then there will
be an additional 1,000 cases for every million persons vaccinated. A recent example
of such an increased risk was a combination MMRV(measles, mumps, rubella, vari-
cella) vaccine for children aged twelve months through twelve years, as alternative
for two separate MMR and V vaccines. Post-licensure surveillance by the Vaccine
Safety Datalink, a resource established by the United States Centers for Disease
Control and Prevention (CDC) to investigate safety hypotheses using administra-
tive databases of health maintenance organizations, detected a signal for increased
febrile seizures in children between one and two years of age who had received the
MMRV vaccine compared with those who had received the MMR vaccine. A febrile
seizure, also known as fever fit or a fever convulsion, may happen with any condi-
tion that causes a sudden change in body temperature. These seizures can be caused
by common childhood illnesses such as ear infection. During a febrile seizure, a
child often has spasms and may lose consciousness. Vaccination may cause the body
temperature to rise. It has been estimated that children who receive the combination
MMRV vaccine are twice as likely to have a febrile seizure seven to ten days after
the vaccination than children who get separate MMR and V vaccines. Because of
this increased risk, MMRV is no longer advised over MMR C V separately. To
assess the causal link between a vaccine and a serious condition from observational
data is extremely difficult. Hepatitis B vaccination has been linked to rheumatoid
arthritis, lupus erythematosus, diabetes mellitus, acute leukaemia, chronic fatigue
syndrome and hair loss, but none of this has been proven conclusively.

Another recent example is the emotionally charged thiomersal controversy.
Thiomersal is an ethyl-mercury-containing preservative, which has been used to
prevent bacterial contamination of vaccines since the 1930s. In 1999, the United
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States Food and Drug Administration (FDA) noticed that with the then vaccina-
tion program for children, infants, by the age of 6 months, could have received
a total of 187.5 microgram of mercury. This lead to concerns with the CDC and
the American Academy of Pediatrics (AAP), the two organizations responsible for
making childhood vaccine recommendations. Vaccine manufacturers were asked to
remove thiomersal from their vaccines. This recommendation confused both par-
ents and health care workers about the safety of vaccines. Studies were performed
to investigate whether thiomersal in vaccines caused neuro-developmental or psy-
chological problems. Evidence could not be found. Despite this, in 2000, the notion
that thiomerosal can cause autism emerged. This notion was disproved by several
epidemiologic studies. The controversy has led to considerable medical and social
damage.

Pre-licensure clinical vaccine trials typically focus on a special class of adverse
events known as local and systemic reactions, on abnormal laboratory values and,
depending on the vaccine, on abnormal vital signs values (body temperature and
blood pressure), and on none-rare other adverse events. Phase I is mostly of an
exploratory nature, to demonstrate initial safety, and often there is no statistical
inference. Phase II is to quantify the occurrence of local and systemic reactions
and laboratory abnormalities. Phase III is to evaluate less but nonrare common
adverse events. Post-licensure the focus moves to rare but serious events by means
of surveillance.

9.2 Vaccine Safety Surveillance

Vaccine manufacturers are required to report to the registration authorities all seri-
ous adverse events of which they become aware. Post-licensure (post-marketing)
vaccine safety surveillance further relies on physicians and others to voluntarily
submit reports of illness after vaccination. This is both the strength and the weak-
ness of surveillance. The strength is that the system has proven to be able to detect
very rare but serious risks of specific vaccinations. The weakness is that the report-
ing system has considerable limitations, including variability in the quality if the
reports, biased reporting and underreporting, inadequate denominator data, absence
of unvaccinated controls groups and the inability to determine whether a vaccine
caused the adverse event in any individual report.

The problems vaccine surveillance is faced with are tremendous. Ellenberg
gives a, what she calls, classic example of the problems of vaccine surveillance,
that of coincidental events [62]. In the United States, sudden infant death syndrome
(SIDS) during the first year of life occurs at a rate of about 1 in 1,300 infants. One
can calculate, she writes, based on age-specific rates of SIDS and the current child-
hood vaccine schedule, that each year about 50–100 infants can be expected to die
of SIDS within 2 days of being vaccinated.

Analysis of surveillance data is associated with statistical problems. Surveil-
lance data contain strong biases. Incidence rates of specific adverse events cannot
be calculated. Statistical significance tests and confidence intervals should be used
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with great reservation. If possible, safety signals should be confirmed in a ran-
domized, controlled clinical trial. Menactra is a meningococcal conjugate vaccine.
Meningococcal disease is a potentially fatal infection caused by a bacteria (the
meningococcal bacteria), that can infect the blood, the spinal cord and the brain.
The vaccine contains four of the most common types of meningococcal bacteria,
and was licensed in the United States in 2005 for use in children and adults between
the ages of 2 and 55 years old. In September 2005, the FDA and the Center for
Biologics Evaluation and Research (CBER) revealed that officials had received five
reports of Guillain Barré syndrome (GBS) connected to the Menactra vaccine, all
in 17- and 18-year-olds. GBS is a neurological disorder the can cause paralysis and
permanent neurological damage. The majority of those affected recover, but recov-
ery may take months and not infrequently may require hospitalization. GBS occurs
when the immune system overreacts to foreign invaders. It can occur spontaneously
and has been caused by infections, vaccinations, surgical procedures and traumatic
injury. GBS was shown to have been a side effect of the swine influenza vaccine
during the swine flu outbreak in 1976. To date, post-licensure surveillance did not
reveal an association between vaccination with Menactra and GBS.

Post-licensure surveillance is sometimes criticized for underestimating benefits.
Almost all children will have had a rotavirus infection by the age of 5. The virus
is one of the most common causes of diarrhoea, which can be severe and dehydrat-
ing. In developing countries, rotavirus gastroenteritis is a major cause of childhood
death. It has been estimated that the infection is responsible for approximately half
a million deaths per year among children aged less than 5 years. Rotashield is a
live attenuated rotavirus vaccine that was approved by the FDA in 1998. Little more
than a year later, the manufacturer voluntarily withdrew it from the market. Shortly
after approval, cases of intussusception were reported to the Vaccine Adverse Event
Reporting System (VAERS), a surveillance system which collects information about
possible side effects of licensed vaccines, a program of the FDA and CDC. Intussus-
ception is a condition in which one bowel segment enfolds within another segment,
causing obstruction. After licensure, VAERS recorded 76 cases, with 70% occurring
after the first dose of the vaccine. The risk of intussusception has been estimated
to be one case in every 5,000–9,500 vaccinated infants. Nonetheless, the vaccine
could have prevented a considerable number of deaths in developing countries,
where the benefit/risk rate would have been different. But because the vaccine
was withdrawn from the United States market it could not be sold in developing
countries.

A powerful statistical technique to investigate the association between unwanted
events and transient exposure is the self-controlled case series method, or case series
method for short. The method uses only data on cases, but it can provide estimates of
the relative incidence of an adverse event. The method was developed to investigate
a possible link between a MMR vaccine used in the United Kingdom and the occur-
rence of aseptic meningitis (an inflammation of the meninges caused by nonbacterial
organisms). Strong evidence for a link between vaccination with the Urabe mumps
strain and the disease was found, and several vaccines derived from this genotype
mumps strain were withdrawn from the market. The case series analysis is based on
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conditional maximum likelihood estimation. For every case, a so-called case series
likelihood is defined, and this likelihood is conditional on the case having occurred
during the observation period. The observation period is split into successive inter-
vals determined by changes in covariates and vaccine risk periods. For every period,
a Poisson incidence rate is assumed. The case series likelihood is the case’s con-
tribution to the Poisson likelihood, conditioned on the case having occurred. The
method controls for confounders that do not vary with time such as gender. In 1997,
an intranasal influenza vaccine was granted approval for distribution and use in
Switzerland. The nasal formulation consisted of an inactivated virosomal influenza
vaccine, combined with a powerful mucosal adjuvant, heat-labile Escherichia coli
enterotoxin. Shortly after the introduction, the vaccine was withdrawn from the mar-
ket, because it was suspected that use of the vaccine increased the risk of Bell’s
palsy, a paralysis of the facial nerve leading to an inability to control facial mus-
cles. Often the eye in the affected side cannot be closed and must be protected from
drying up, to avoid permanent damage resulting in impaired vision. A report was
published in the New England Journal of Medicine in which strong evidence for
this increased risk was presented [63]. A strong relation in a case-control study was
supported by a case series analysis that identified an increase in the incidence of the
condition, with a peak occurring between 31 and 60 days after intranasal vaccina-
tion followed by a return to the baseline level. For an excellent discussion of the
case series method, see the tutorial by Whitaker and colleagues [64].

9.3 Safety Data and the Problem of Multiplicity

The interpretation of safety data is complicated by the problem of multiplicity. The
more safety variables are statistically analyzed, the higher the false-positive rate
(type I error rate) will be. Also, when the size of the safety database is large, clini-
cally nonrelevant differences will attain statistical significance. But any approach to
control the false-positive rate will unavoidably decrease the false-negative rate (type
II error rate). This could mean that some adverse vaccine effects may go undetected.

Several approaches to account for multiplicity in the analysis of safety data have
been proposed. A first approach is to do nothing, to not correct. For many review-
ers of safety data, false negatives (not rejected false safety null hypotheses) are of
greater concern than false positives (rejected true safety null hypotheses.) In that
case, a conservative approach is not to adjust for multiplicity. This will increase the
false-positive rate, but regulatory bodies are aware of this, and such safety signals
(flaggings) are rarely a ground for a negative decision. Indeed, whereas regulatory
agencies require multiplicity corrections for efficacy data, it is unlikely that they
will accept such adjustment for safety data. Safety concerns may get special atten-
tion in post-licensure surveillance, or manufactures may be requested to perform a
post-marketing safety study.

A second approach is to control the false-positive rate by a multiplicity adjust-
ment that controls the family wise error rate (FWER) in the strong sense, i.e., that
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controls the probability that at least one true safety null hypothesis is rejected. This
can be achieved by applying, for example, the Bonferroni correction method, or the
more powerful Holm method. (For a detailed discussion on this correction methods,
see the book by Dmitrienko, Tamhane and Bretz [65].) With the Bonferroni correc-
tion, if there are m null hypotheses, all hypotheses are tested at the significance level
˛=m. With the Holm correction, the m P-values are ordered such that

P.1/ � P.2/ � � � � � P.m/:

First H.1/ is tested at the level ˛=m. If H.1/ is rejected, then H.2/ is tested at the
level ˛=.m � 1/. If H.2/ is rejected, then H.3/ is tested at the level ˛=.m � 2/, etc. If
one of the hypotheses, say, H.i/, cannot be rejected then no further null hypotheses
are tested. This is why the Holm correction is called a step-wise correction method.
But, as already noted, these multiplicity adjustments have the drawback that they
increase the false-negative rate. For this reason, this approach is seldom applied in
safety data analyses.

A third approach is the false discovery rate (FDR) method, introduced by Ben-
jamini and Hochberg [66]. The FDR is defined as the expected proportion of rejected
safety null hypotheses that are incorrectly rejected. Suppose that a safety analysis
involves the statistical testing of 50 independent null hypotheses at the two-sided
significance level 0.05, and that 40 of these null hypotheses are true and 10 false.
Then the expected proportion of rejected true null hypotheses is 40 � 0:05 D 2,
while the expected proportion of rejected false null hypotheses is

P
i Qi , with Qi

the probability that the ith false safety null hypothesis is rejected. If Qi D 0:90

for all 10 false safety null hypotheses, then the expected number of true positives
is 10 � 0:90 D 9. In that case, the FDR would be 2/11 D 0.18. (The FDR will be
approximately 0.18, because in the calculation the correlation between the numera-
tor and denominator is ignored.) The false discovery rate approach aims to control
the FDR at level ˛, by adjusting the significance level at which the safety null
hypotheses are tested. When all safety null hypothesis are true, then the FDR pro-
cedure controls the family wise error rate in the strong sense. But when some safety
null hypotheses are false, then the statistical power of the FDR approach exceeds
that of methods that control the FWER. Let

P.1/ � P.2/ � � � � � P.m/

be the ordered P-values for testing the safety null hypotheses

H.1/; H.2/; : : : ; H.m/:

The FDR procedure rejects the j null hypotheses H.1/; H.2/; : : : ; H.j /, where

j D maxfi W P.i/ � .i=m/˛g:
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Table 9.1 Comparison of three approaches to control for multiplicity

Correction method P.1/ P.2/ P.3/ P.4/ P.5/

0.0045* 0.0120 0.0212 0.0224 0.0493
Uncorrected C C C C C
Bonferroni C � � � �
Holm C C � � �
FDR C C C C C

0.0225** 0.0280 0.0280 0.0280 0.0493
* Unadjusted P-value; ** Adjusted P-value; Plus: Corresponding null hypothesis rejected;
Minus: Null hypothesis not rejected

The adjusted P-values for the FDR procedure are:

adjusted P.m/ D P.m/

adjusted P.j / D min fadjusted P.j C1/; .m=j /P.j /g; for j < m:

Consider the five ordered P-values in Table 9.1. All uncorrected P-values are < 0:05,
and thus all five safety null hypotheses H.1/, H.2/; : : : ; H.5/ would be rejected.
When the Bonferroni method is applied, all null hypotheses have to be tested at the
0:05=5 D 0:01 significance level, and in that case only H.1/ would be rejected.
When the Holm method is applied, H.1/ must be tested at the level 0:05=5 D 0:01,
H.2/ at the level 0:05=4 D 0:0125, and H.3/ at the level 0:05=3 D 0:0167. Because
P.3/ D 0.0212 > 0.0167, H.3/ cannot be rejected, and because the Holm method
is a step-wise procedure, H.4/ and H.5/ can also not be rejected. With the Bon-
ferroni method only one null hypothesis would be rejected, while with the Holm
method two null hypotheses would be rejected, which illustrates the difference in
power between the two methods. On the last row of Table 9.1, the adjusted P-values
for the FDR method are shown. All adjusted P-values are <0:05 and thus all five
null hypotheses would be rejected. To get a feeling for the differences between the
uncorrected approach, the Holm method and the FDR approach, consider a study
in which 45 independent safety null hypotheses are tested at the 0.05 significance
level, and that 40 of these null hypotheses are true and 5 false, and that for each of
these 5 null hypotheses the probability of a true-positive result is 0.90. Ten-thousand
studies were simulated, and the results are shown in Table 9.2. If no corrections are
made, the probability of at least one false positive (the probability of rejection at
least one true safety null hypothesis) is as high as 0.873. The expected number of
false positives is 2.0, while the expected number of true positives is 4.5. If the Holm
method is applied, the probability that at least one true null hypothesis is rejected
is 0.047. The expected number of false positives is 0.048, while the expected num-
ber of true positives is 2.3. Finally, if the FDR method is applied, the probability
of at least one false positive is 0.175. The expected number of false positives is
0.02, and the expected number of true positives is 3.0. The FDR is 0.045, a value
which is indeed smaller than the significance level 0.05. The FDR method is thus a
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Table 9.2 Results of 10,000 simulated safety studies

Multiplicity correction FWERa Average number Average number FDR
method false positives true positives

No correction 0.875 2.0 4.5 0.281
Holm 0.047 0.05 2.3 0.017
FDR 0.169 0.20 3.0 0.045
a Average number of studies with at least one false positive
(D At least one rejected true safety null hypothesis)

compromise between the uncorrected method – less false positives – and the Holm
method – more true positives.

A fourth approach was proposed Mehrotra and Heyse, the double false discovery
rate approach [67]. The double FDR approach is a two-step procedure for flagging
adverse events. First, adverse events are grouped by body systems (e.g., the Body
Systems of MedDRA, the standard medical terminology designed for the classi-
fication of medical information throughout the medical product regulatory cycle.)
Suppose there are s body systems, and let Pik be the P-value for testing Hik, the kth
safety null hypothesis of the i th body system. Then

Pi � D min fPi1; Pi2; : : : ; Pikg

is the ‘representative’ P-value for the i th body system, i.e., the P-value for the
strongest safety signal. The FDR procedure is applied to the Pi * and, within the
body systems, to the Pi1, Pi2, . . . , Pik. The double FDR procedure flags Hik if

adjusted Pi � < ˛1 and adjusted Pik � ˛2:

The authors advice to set ˛1 to ˛=2 and ˛2 to ˛ if the FDR is to controlled at
level ˛. The Double FDR method substantially reduces the percentage of incorrectly
flagged adverse events because it takes (some of) the dependency between events
into account.

A fifth procedure that needs to be mentioned here was proposed by Berry and
Berry [68]. Their approach is a Bayesian alternative to the double FDR approach,
and since its publication in 2004 it has gained considerable popularity. Their model
is a three-level hierarchical mixture model for simultaneously addressing many
types of adverse events that are, like in the double FDR approach, grouped into
body systems. The strength of the model is that it allows borrowing information
both across and within body systems. Because of its complexity, the model is not
discussed here. However, the publication may be of special interest to statisticians
working in vaccine research because it presents a re-analysis of the vaccine safety
data of Mehrotra and Heyse.
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9.4 Vaccine Reactogenicity

With vaccine reactogenicity is meant common adverse events that are considered to
be caused by or be attributable to the vaccination. They can be local or systemic.
The reactions to be assessed depend on the type (class) of vaccine, its mechanism
of action, route of administration, the targeted disease and the target population.
Pre-licensing safety analyses typically focus on reactogenicity data.

9.4.1 Local and Systemic Reactions

Local reactions are reactions that occur at the site where the vaccine is adminis-
trated. In case of an injectable vaccine, these reactions are often called injection site
reactions. They can be caused either by needle trauma or as an inflammatory reac-
tion to the vaccine constituents. For example, local injection site pain is usually the
consequence of some degree of tissue damage. Other examples of injection site reac-
tions are: impairment of arm movement, tenderness, erythema (redness), induration
(swelling), itching, ecchymosis (blue spots). Common local reactions after nasal
vaccination are nasal congestion and runny nose. A special class of local reactions
are adjuvant-related local reactions, and the reader is referred to Chap. 18 of the
book edited by M. Singh for a discussion on this topic [69].

Local reactions may be accompanied by systemic reactions, which are reactions
that are the result of the immunological response to the vaccine. Typical examples
of systemic reactions are: headache, fever, malaise, fatigue, arthralgia (noninflam-
matory joint pain), myalgia (muscle pain) and increased sweating. When the target
population are toddlers, often graded systemic reactions are: crying, irritability and
decreased feeding.

Local and systemic reactions are usually collected with the help of a diary, which
has to be filled in by the subject, or the parents in case of a childhood vaccine, for
a period of 3 or 7 days after the vaccination. If reactions are predefined on the
diary, they are called solicited reactions (in contrast to the unsolicited other adverse
events, which are collected on the adverse events pages of the case report form).

Severity of local and systemic reactions can be graded on a binary scale (yes,
no), but more often an ordinal (ordered categorical) scale with the following 4 cate-
gories is used: none, mild, moderate, severe. A standard functional grading (categor-
ization) is

mild: not interfering with normal daily activities
moderate: interfering with normal daily activities

severe: preventing one or more normal daily activities

This grading makes the scale suited for rating reactions by subjects, which is an
attractive property, but it may not be very sensitive to differences between vaccines.
Also, it is not suited to grading a systemic reactions such as fever. In an attempt
to introduce uniform criteria for grading reactions, FDA/CBER in 2007 published
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grading scales for clinical and laboratory abnormalities for preventive vaccine clin-
ical trials [70]. For erythema the grades are based on the size of the greatest single
diameter, while for induration (hardening of the skin) the grades are based on a func-
tional assessments as well as an actual measurement. The FDA/CBER grades for
the systemic reactions such as nausea and vomiting also take into account the num-
ber of episodes, while the grades for headache account for the use of nonnarcotic
and narcotic pain relievers. The grades for diarrhoea are based on the frequency,
shape and weight of the stools. (The FDA/CBER grading scales all contain a fourth
grade: potentially life threatening. Because this grade will rarely occur, it is usually
omitted.)

9.4.2 Statistical Analysis of Local and Systemic Reactions

The standard statistical analysis of reactogenicity data assesses the incidence, the
severity, the duration and, sometimes, the time after the vaccination of the local and
systemic reactions.

9.4.2.1 Analyzing Incidences of Local and Systemic Reactions

The statistical analysis of local and systemic reactions usually starts with quanti-
fying the incidences of the individual reactions by means of confidence intervals.
Here, with incidence is meant the proportion of subjects reporting the reactions at
least once during the 3 or 7 days follow-up period. The focus will usually be on the
upper confidence limit for the incidence, because it gives an upper bound for the
rate with which the reaction is expected to occur among subjects receiving the vac-
cine. The bound is often translated into a less-than-1-in rate. If the upper confidence
limit for the incidence of a specific reaction is CLU , then the expected rate of the
reaction is <1 in 1=CLU vaccinated subjects, with 1=CLU often rounded down to
the nearest multiplier of 100.

Example 9.1. Consider a vaccine safety database of 4,500 subjects who received the
vaccine. Suppose that the systemic reaction sinusitis (inflammation of the paranasal
sinuses) was reported for 3 subjects. The upper limit of the 95% Clopper–Pearson
confidence interval for the incidence of sinusitis is 0.0019. Thus, the expected rate
of sinusitis is <1 in 526 (i.e., <1 in 500) vaccinated subjects.

When reactogenicity experiences are to be compared between two vaccines –
e.g., between an investigational vaccine and a control vaccine – it is done by
computing confidence intervals for the relative risks.

Example 9.2. In Table 9.3, the observed incidences of 4 selected systemic reactions
reported by Mehrotra and Heyse (see Sect. 9.3) are given. Shown are the observed
incidences of the reactions malaise, constipation, diarrhoea and urticaria (hives)
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Table 9.3 Incidences of 4 systemic reactions in a measles, mumps, rubella and varicella vaccines
trial
Systemic reaction MMRV group MMR C V group Relative risk

(n D 148) (n D 132) 	a

Malaise 27 20 1.16b (0.72, 2.03)
Constipation 2 0 1.80
Diarrhoea 24 10 1.96 (1.09, 4.27)
Urticaria 0 2 0.00
a MMRV versus MMR C V; b with Jewell’s correction

for the MMRV and the MMR C V vaccination groups. Also shown are the points
estimates and the two-sided 95% Wilson-type confidence intervals for the risk ratios.

Note that when one of the number of cases is zero the Wilson-type confidence
interval for the relative risk cannot be evaluated.

Comparing incidences of local or systemic reactions between two vaccine groups
is straightforward, but the disadvantage of comparing individual reactions between
vaccine groups is that it does not allow accumulation of evidence. Such evidence
could, for example, be that for all local or for all systemic reactions the rate ratio
exceeded 1.0, but with none of the P-values being significant. Thus, although the
data would strongly suggest that vaccine A is more reactogenic than vaccine B,
there would be no statistical evidence to claim this. In that case, a simple but
powerful approach is to analyze the intra-individual total numbers of local or sys-
temic reactions. If on the diary there are, say, six solicited local reactions, then the
intra-individual total number of local reactions can be 0, 1, 2, 3, 4, 5 or 6. Total
numbers can be compared between two vaccine groups by means of Wilcoxon’s
rank-sum test.

Example 9.3. De Bruijn and co-workers compared the reactogenicity of a virosomal
influenza vaccine to that of an MF59-adjuvanted vaccine in elderly [71]. The number
of solicited local reactions on the diary was eight. Below the SAS analysis of the
total numbers of local reactions is given. Note that the analysis was done using
procedure FREQ (rather than procedure NPAR1WAY), using the cmh option with
rank scores.

SAS Code 9.1 Comparing Intra-Individual Numbers of Local Reactions

proc freq;
table vaccine*number_of_local_reactions /

nopercent nocol chm scores=rank;
run;

-
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SAS Output 9.1

VACCINE NUMBER_OF_LOCAL_REACTIONS

Frequency
Row Pct 0 1 2 3 4 5 6 7 Total
--------- ----- ------ ----- ----- ----- ----- ----- ------
ADJUVANTED 70 26 13 8 3 5 1 4 130

53.85 20.00 10.00 6.15 2.31 3.85 0.77 3.08
--------- ----- ------ ----- ----- ----- ----- ----- ------
VIROSOMAL 100 18 7 1 0 0 0 1 127

78.74 14.17 5.51 0.79 0.00 0.00 0.00 0.79
--------- ----- ------ ----- ----- ----- ----- ----- ------
Total 170 44 20 9 3 5 1 5 257

Cochran-Mantel-Haenszel Statistics (Based on Rank Scores)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 21.1839 <.0001
2 Row Mean Scores Differ 1 21.1839 <.0001
3 General Association 7 24.6651 0.0009

On average, the subjects vaccinated with the adjuvanted vaccine reported more local
reactions than the subjects vaccinated with the virosomal vaccine. In the adjuvanted
vaccine group, 43.2% of the subjects reported at least one local reaction, and 16.2%
reported three or more reactions. In contrast, in the virosomal group only 21.2% of
the subjects reported at least one local reaction while only 2 subjects reported 3 or
more reactions. The statistic to compare the intra-individual total number is local
reactions is Statistic 2, which is a Chi-square statistic with 1 degree of freedom.
For the example data the two-sided P-value is < 0:001, which allowed the conclu-
sion that in elderly the adjuvanted influenza vaccine is more reactogenic than the
virosomal vaccine with respect to local reactions.

9.4.2.2 Analyzing the Severity of Local and Systemic Reactions

As said, local and systemic reactions are usually scored for a period of 3 or 7 days
after the vaccination. In that case, the intensity of the reaction is usually taken to be
the maximum score during the follow-up period.

Local and systemic reaction ordinal scores can be compared between two vac-
cine groups by means of Wilcoxon’s rank-sum test with modified ridit scores as
ranks [72]. The category none is given grade 0, the category mild grade 1, the cate-
gory moderate grade 2 and the category severe grade 3. The null hypothesis tested
is that mean scores do not differ between the groups. This comparison can be done
with procedure FREQ of SAS, using the chm option with modridit scores.
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Example 9.4. According to the results of a randomized study published in the
British Medical Journal, longer needles for infant immunizations may cause fewer
local reactions [73]. Compared with short narrow needles, use of long wide needles
was associated with significantly decreased local reactions to diphtheria, tetanus,
whole cell pertussis, and H. influenzae type b vaccinations. Significantly fewer
infants vaccinated with the long needle had severe local reactions. Consider a (hypo-
thetical) randomized trial comparing administration of a diphtheria vaccine using
either a long (25 mm) needle or short (16 mm) needle. Suppose that local reactions
were graded by parents trained how to do so, and that for the local reaction tender-
ness the results were as follows: infants vaccinated with the long needle: none: 30,
mild: 20, moderate: 12, severe tenderness: 5; infants vaccinated with the short nee-
dle: none: 19, mild: 15, moderate: 19, severe: 10. To analyze these reaction scores,
the following SAS code can be used:

SAS Code 9.2 Comparing Ordinal Reaction Scores

proc freq;

table vaccine*tenderness_score / nopercent nocol chm scores=modridit;

run;

SAS Output 9.2

The FREQ procedure

VACCINE TENDERNESS_SCORE
Frequency
Row Pct 0 1 2 3 Total
--------- -------- -------- -------- --------
A 30 20 12 5 67

44.78 29.85 17.91 7.46
--------- -------- -------- -------- --------
B 19 15 19 10 63

30.16 23.81 30.16 15.87
--------- -------- -------- -------- --------
Total 49 35 31 15 130

Summary Statistics for VACCINE by TENDERNESS_SCORE

Cochran-Mantel-Haenszel Statistics (Modified Ridit Gradings)

Statistic Alternative Hypothesis DF Value Prob
---------------------------------------------------------------

1 Nonzero Correlation 1 5.5634 0.0183
2 Row Mean Scores differ 1 5.5634 0.0183
3 General Association 3 6.2653 0.0994
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Here also, the statistic to use is Statistic 2. For the data in Example 9.6 the two-
sided P-value is 0.0183. In the database the scores must be ordered, e.g., 0, 1, 2,
3 or A, B, C, D but not ‘none’, ‘mild’, ‘moderate’, ‘severe’, because in that case
procedure FREQ ranks the scores alphabetically, i.e., as: ‘mild’ D 1, ‘moderate’ D
2, ‘none’ D 3, ‘severe’ D 4, in which case an incorrect P-value is returned: 0.7272.



Appendix A
SAS and Floating Point Format
for Calculated Variables

When using SAS, floating point format for calculated variables should be avoided,
especially when values are to be compared with a constant. As shown below, it may
lead to errors. The solution to this problem is rounding. When calculating a value use
the function ROUND at the final step and round to, say, three decimals more than
needed for the comparison. (But do not round to soon.) As an example, consider
a trial in which every serum sample is titrated twice, with the titre assigned to the
sample the geometric mean of the two assay values. Let the endpoint be whether or
not the subject is seroprotected, e.g., whether or not the assigned titre is greater or
equal to 40. With the floating point format errors will occur.

SAS Code A.1

data;
input subject assay1 assay2;
titre=exp((log(assay1)+log(assay2))/2); /* geometric mean */
titre_r=round(titre,.001); /* rounded titre */
sp=(titre ge 40); /* seroprotected yes/no */
sp_r=(titre_r ge 40); /* seroprotected yes/no derived */

datalines; /* from rounded titre */
1 40 40
2 20 80
3 10 160
4 5 320
run;

proc print; run;
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SAS Output A.1

subject assay1 assay2 titre titre_r sp sp_r
1 40 40 40 40 1 1
2 20 80 40 40 0 1
3 10 160 40 40 1 1
4 5 320 40 40 1 1

All assigned titres should be 40, and for all four subjects both the nonrounded and
the rounded calculated titre is printed as 40. But, when the calculated titre is not
rounded, according to SAS, subject 2 is not seroprotected. This is due to the use of
the floating point format. When the values are rounded this error does not occur.



Appendix B
Closed-Form Solutions for the Constrained
ML Estimators QR0

The standard errors (3.8) and (3.11) involve constrained maximum likelihood esti-
mators QR0 and QR1 of the rates 
0 and 
1. For standard error (3.8), the constraint is

QR1 � QR0 D �:

Let s0 and s1 be the observed numbers of events, n0 and n1 the group sizes, s D
s0 C s1 and n D n0 C n1. Define:

L0 D s0�.1 � �/

L1 D .n0� � n � 2s0/� C s

L2 D .n1 C 2n0/� � n � s:

The closed-form solution for QR0 is

QR0 D 2p cos.a/ � L2=.3n/;

where

a D .1=3/Œ
 C cos�1.q=p3/�

q D L3
2=.3n/3 � L1L2=.6n2/ C L0=.2n/

p D sign.q/

q
L2

2=.3L3/2 � L1=.3n/:

For standard error (3.11) the constraint is

QR1 D � QR0:

The closed-form solution for QR0 is

QR0 D �B � p
B2 � 4AC

2A
;

where

A D n�

B D �.n1� C s1 C n0 C s0�/

C D s:
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Appendix C
Simulation Results on Jewell’s Correction
for the Rate Ratio

Jewell’s correction is a simple but powerful correction to remove the bias in the
standard relative risk estimator, the rate ratio:

RR D s1=n1

s0=n0

;

with s1 and s0 the observed numbers of events and n1 and n0 the group sizes. The
bias will be nonnegligible when the control rate 
0 is close to zero and n0 is small
to intermediate. Jewell’s correction is to set s0 to .s0 C 1/ and n0 to .n0 C 1/.

In Table C.1, simulation results on the performance of Jewell’s correction are
shown. For selected combinations (n0; 
0; n1; 
1), 5,000 pairs of random samples
were drawn, one from the binomial distribution BIN(n0; 
0) and one from the bino-
mial distribution BIN(n1; 
1). For each pair both the uncorrected and the corrected
rate ratio was calculated. The rate ratios shown in the table are the averages of the
5,000 simulated ratios. The simulations confirm the bias of the standard estimator, it
overestimates � D 
1=
0. The performance of the corrected estimator is excellent.

Table C.1 Monte Carlo simulation results on the performance of the standard and Jewell’s
corrected rate ratio


0 
1 n0 n1 � RR RRcorr:

0.1 0.05 50 50 0.5 0.68 0.50
0.1 0.1 50 50 1.0 1.26 0.99
0.1 0.2 50 50 2.0 2.53 1.99
0.1 0.05 50 200 0.5 0.63 0.50
0.1 0.1 50 200 1.0 1.27 1.00
0.1 0.2 50 200 2.0 2.48 1.95
0.1 0.05 200 50 0.5 0.57 0.50
0.1 0.1 200 50 1.0 1.05 0.99
0.1 0.2 200 50 2.0 2.10 2.00
0.1 0.05 200 200 0.5 0.53 0.50
0.1 0.1 200 200 1.0 1.05 0.99
0.1 0.2 200 200 2.0 2.09 2.00
0.3 0.3 50 50 1.0 1.06 1.01
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Appendix D
Proof of Inequality (3.16)

Consider a trial with k > 1 co-primary endpoints, and with the objective to demon-
strate that an experimental vaccine is superior (or noninferior) to a control vaccine
for all co-primary endpoints. Let Ei be the event that the trial yields a significant
result for the ith endpoint, Pi D Pr.Ei / the statistical power of the trial for the ith
endpoint, and P D Pr.E1 \ : : : \ Ek/ the overall statistical power, i.e., the proba-
bility that the trial yields a significant result for all k endpoints. Then the following
inequality holds

P �
kX

iD1

Pi � .k � 1/:

Proof. The inequality can be proven by mathematical induction. According to the
addition rule for probabilities:

P D Pr.E1 \ E2/

D Pr.E1/ C Pr.E2/ � Pr.E1 [ E2/

� Pr.E1/ C Pr.E2/ � 1

D P1 C P2 � .2 � 1/:

Thus, the inequality holds for k D 2. Assume that it has been shown that the
inequality holds for k D 2; : : : ; j , with j � 2. Then for k D .j C 1/ it follows that

P D Pr.E1 \ � � � \ Ej \ Ej C1/

D Pr.E1 \ � � � \ Ej / C Pr.Ej C1/ � Pr..E1 \ � � � \ Ej / [ Ej C1/

� Pr.E1 \ � � � \ Ej / C Pr.Ej C1/ � 1

� P1 C � � � C Pj � .j � 1/ C Pr.Ej C1/ � 1

D P1 C � � � C Pj C1 � j

D P1 C � � � C Pj C1 � Œ.j C 1/ � 1/�:

ut
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Appendix E
A Generalized Worst-Case Sensitivity Analysis
for a Single Seroresponse Rate for Which
the Confidence Interval Must Fall Above
a Pre-Specified Bound

E.1 Introduction

In 2007, FDA/CBER published two guidance documents for the licensure of
influenza vaccines, one for seasonal inactivated vaccines and another for pandemic
vaccines [30, 31]. Both documents give the same criteria for influenza vaccine
immunogenicity. For an adult population, the lower limit of the two-sided 95% con-
fidence interval for the seroprotection rate must meet or exceed 0.7, and the lower
limit of the confidence interval for the seroconversion rate must meet or exceed 0.4.
For an elderly population, the respective bounds are 0.6 and 0.3. Seroprotection and
seroconversion are both binary outcomes. Seroprotection is defined as achieving an
antibody level above a given threshold value. The standard definition of seroconver-
sion is going from a pre-vaccination state of no detectable antibodies (seronegative)
to a post-vaccination state of detectable antibodies (seropositive). An alternative
definition of seroconversion is a significant post-vaccination increase in antibody
level.

In case of a statistical analysis aimed at demonstrating that the confidence interval
of a rate is above a pre-specified bound, the most applied method to handle missing
data is, probably, the complete-case analysis. This analysis requires the assumption
that the probability that an outcome is missing is independent of the outcome, i.e.,
the assumption that the probability that the outcome is missing does not depend on
whether the outcome is positive (success, e.g., subject seroconverted) or negative
(failure). A sensitivity analysis is an analysis that investigates the influence of devi-
ations from the assumptions underlying the main analysis. For binary outcomes, a
simple sensitivity analysis in case of missing data is to treat all subjects with a miss-
ing outcome as failures, and then to check if this analysis supports the conclusion
from the complete-case analysis. This analysis, that is, the worst-case sensitivity
analysis – is based on an extreme assumption, namely that only failures will be
missing, and the more missing data there are, the more extreme the assumption is.

Here, a generalized worst-case sensitivity analysis for a single rate for which the
confidence interval must fall above a pre-specified bound is proposed, based on the
maximum likelihood (ML) method. This generalized analysis checks for a contin-
uum of assumptions, from the assumption underlying the complete-case analysis to
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the one underlying the worst-case analysis, if the bound lies within or outside the
confidence interval.

E.2 Motivating Example

As a motivating example, consider a study in which 100 adult subjects are vacci-
nated with a pandemic A-H1N1 influenza vaccine. Suppose that three weeks after
the vaccination 49 subjects have seroconverted and 41 not, and that for 10 subjects
the outcome is missing. In the complete-case analysis, the FDA/CBER criteria for
seroconversion is met because the lower limit of the 95% Clopper–Pearson con-
fidence interval for the probability of seroconversion is 0.436, which exceeds the
bound set by the agency, ı D 0:4. A sensitivity analysis in which all subjects with a
missing outcome are assumed to have not seroconverted, however, does not support
the conclusion of the complete-case analysis because in that analysis the lower limit
of the Clopper–Pearson confidence interval is 0.389.

E.3 Complete-Case and Worst-Case Maximum
Likelihood Analyses

The generalized worst-case sensitivity analysis proposed here is based on the ML
method. Therefore, as an introduction, first the ML analyses of the complete-case
and the worst-case data are described.

Let � denote the probability of a positive outcome, and 
s and 
ns the proba-
bilities that a positive or a negative outcome is missing. In Table E.1, a probability
model for the data including missing values is given. Note that it is assumed that
the missing data mechanism depends on the outcome but not on any observed or
nonobserved covariate. The log-likelihood function for the data set is

LL.�; 
s ; 
ns/ D s logŒ.1 � 
s/�� C .m � s/ logŒ.1 � 
ns/.1 � �/� (E.1)

C.n � m/ logŒ
s� C 
ns.1 � �/�;

with s the observed number of positive outcomes, m the total number of subjects
with a nonmissing outcome and n the total number of subjects.

Table E.1 Probability model

Event Probability

Observed positive outcome .1 � 
s/�

Observed negative outcome .1 � 
ns/.1 � �/

Missing observation 
s� C 
ns.1 � �/
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The complete-case analysis requires the assumption that 
s D 
ns D 
 . In that
case the function in (E.1) becomes

LL.�; 
/ D Œs log � C .m � s/ log.1 � �/� C Œ.n � m/ log 
 C m log.1 � 
/�:

The first component of this log-likelihood function depends only on � while the
second component depends only on 
 . Thus, both components can be maximized
independently of each other. If the parameter of interest is � , then the second com-
ponent is a constant and can be dropped from the log-likelihood function, which
then simplifies to the log-likelihood function for complete-case data:

LLCC .�/ D s log � C .m � s/ log.1 � �/:

The null hypothesis H0: � D �0 can be tested using the likelihood ratio statistic:

LRSCC.�0/ D 2ŒLLCC. O�/ � LLCC.�0/�;

where O� is the ML estimate of � . Under the null hypothesis, for large sample sizes
this statistic has a Chi-square distribution with one degree of freedom. The likeli-
hood ratio statistic can be used to derive a confidence interval for � . Any value �0

for which LRSCC .�0/ is less than �2
1�˛ is in the 100.1 � ˛/% likelihood-based

confidence interval, and vice versa.

Example. (continued) For the complete-case data, O� is 49/90 D 0.544, with LLCC

. O�/ D �62:027. For the FDA/CBER bound for seroconversion the log-likelihood
equals LLCC .0:4/ D �65:842. Thus, LRSCC .0:4/ D 7:630 > �2

0:95 D 3.841,
which implies that the bound is not in the 95% confidence interval. The lower con-
fidence limit has to be found by iteration. LRSCC .0:442/ D 3:796 < �2

0:95 and
LRS.0:441/ D 3:971 > �2

0:95. For the complete-case data, the lower likelihood-
based confidence limit for the probability of seroconversion is 0.442, which is in
good agreement with the Clopper–Pearson limit.

The log-likelihood function for the worst-case data, i.e., for the data set with the
missing values replaced by zeros (failures), is

LLW C .�/ D s log � C .n � s/ log.1 � �/: (E.2)

This is the same log-likelihood function as for the complete-case data, except that
in the second term the multiplier .m � s/ is now .n � s/.

Example. (continued) For the worst-case data, O� is 49=100 D 0:490, with
LLW C . O�/ D �69:295, LLW C .0:4/ D �70:950, and LRSW C .0:4/ D 3:311 <

3.841. Again, the likelihood analysis is in agreement with the Clopper–Pearson anal-
ysis, that for the worst-case data the FDA/CBER bound is not below but in the 95%
confidence interval.



142 E Generalized Worst-Case Sensitivity Analysis for a Single Rate

E.4 Maximum Likelihood Analysis with Missing Data

With the following re-parameterization: 
 D 
ns=
s and 
 D 
ns , the log-
likelihood function in (E.1) becomes

LL.�; 
; 
/ D s logŒ.1 � 
=
/�� C .m � s/ logŒ.1 � 
/.1 � �/�

C.n � m/ logŒ.
=
/� C 
.1 � �/�:

Let Q�� and Q
� denote the constrained ML estimates of � and 
 for 
 fixed. The
conditional null hypothesis H0: .� D �0j
/ can be tested using the conditional
likelihood ratio statistic:

CLRS.�0j
/ D 2ŒLL. Q��; Q
�; 
/ � LL.�0; Q
0�; 
/�; (E.3)

where Q
0� is the constrained ML estimate of 
 under the conditional null hypoth-
esis. The statistic CLRS.�0j
/ can be considerably simplified, because the log-
likelihood LL has an interesting property, namely that Q
0� D Q
�. A proof of
these property is given below (see Technical Notes). Because of this property an
alternative formula for the statistic is

CLRS.�0j
/ D 2ŒLL0. Q��; 
/ � LL0.�0; 
/�; (E.4)

with (see formula (E.6))

LL0.�; 
/ D Œs log � C .m � s/ log.1 � �/ C .n � m/ log.�=
 C 1 � �/�: (E.5)

The formula in (E.4) is much easier to evaluate than that in (E.3) because it does not
involve Q
�. Furthermore, for Q�� a closed-form solution exists (see Technical Notes).
Thus, to evaluate CLRS.�0j
/, no (iterative) maximization is required.

Under the conditional null hypothesis, CLRS.�0j
/ has a Chi-square distribution
with one degree of freedom. It is easy to see that when 
 is set to 1.0, the complete-
case analysis is obtained, and that in that case Q�� D O� (i.e., the ML estimate for the
complete-case analysis) and CLRS.�0j1:0/ D LRSCC .�0/.

E.5 Generalized Sensitivity Analysis

A generalized worst-case sensitivity analysis is to inspect for which values for the
sensitivity parameter 
 the lower limit of the constrained likelihood-based confi-
dence interval meets or exceeds ı. This is done by testing the conditional null
hypothesis H0: .� � ıj
/ for successive values for 
 at the one-sided 0.025
significance level.
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Table E.2 Generalized worst-case sensitivity analysis of the example data


 Q�
 LL0. Q�
; 
/ LL0.0:4; 
/ CLRS.0:4j
/

1.0 0.544 �62.027 �65.842 7.630
2.0 0.526 �65.140 �68.074 5.868
3.0 0.516 �66.389 �68.944 5.110
4.0 0.511 �67.062 �69.409 4.694
5.0 0.507 �67.482 �69.699 4.434
6.0 0.505 �67.769 �69.897 4.256
7.0 0.503 �67.978 �70.041 4.126
8.0 0.501 �68.137 �70.150 4.026
9.0 0.500 �68.261 �70.236 3.950
10.0 0.499 �68.361 �70.305 3.888
11.0 0.498 �68.444 �70.362 3.836
12.0 0.498 �68.513 �70.410 3.794

1 0.490 �69.295 �70.950 3.310

Example. (continued) In Table E.2, results are shown for selected values for 
. The
null hypothesis H0: � � 0.4 is rejected for values for 
 as large as 10.0. Thus,
even under the extreme assumption that the probability that the outcome of a nonse-
roconverted is missing is ten times as high as the probability that the outcome of a
seroconverted subject is missing, the data supports the conclusion that � > 0.4. Only
if a more extreme value for 
 is assumed, the conclusion from the complete-case
analysis is not supported. This can be compared with the reasons why the outcomes
are missing.

In the worst-case analysis 
s is assumed to be to 0.0, meaning that 
 is assumed
to be 1. In that case, the log-likelihood function LL0 in (E.5) simplifies to

LL0.�; 
/ D s log � C .n � s/ log.1 � �/:

This is the log-likelihood function for the worst-case data (see (E.2)). Thus, the
log-likelihood analysis of the worst-case data yields identical results as the log-
likelihood analysis with missing values 
 set to 1. This shows that the worst-case
analysis is the limiting case of the generalized worst-case sensitivity analysis. The
generalized analysis thus has the following nice property: if the worst-case anal-
ysis supports the complete-case analysis, so will the generalized analysis; if the
worst-case analysis does not support the complete-case analysis, neither will the
generalized analysis for larger values for 
.

E.6 Concluding Remarks

The advantage of the generalized worst-case sensitivity analysis is that the robust-
ness of the complete-case analysis can be checked for less extreme assumptions than
the assumption that the sensitivity parameter 
 is infinite. This is a considerable gain
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because the assumption that 
 can be infinite will rarely be realistic. Consider again
the example. Suppose that four values were missing because the tube with the serum
sample was broken during transport, two due to loss-to-follow-up and four because
the analysis of the serum sample failed. The first reason can be assumed to be unre-
lated to the antibody level, but suppose that it is known that a failed serum sample
analysis is more likely to occur for low antibody levels. If it is further assumed that
loss-to-follow-up may also correlate with a low antibody level, then the expected
number of missing positive outcomes is 2, and the expected number of missing neg-
ative outcomes 8. In that case an estimate of the probability of a missing positive
outcome is 2/43, and an estimate of the probability of a missing negative outcome
is 8/57. Thus, an estimate of 
 would be (8/57)/(2/43) D 3.0. For this and com-
parable values for 
, the generalized worst-case sensitivity analysis supported the
conclusion of the complete-case analysis.

E.7 Technical Notes

The log-likelihood function in (E.2) can be factorized as

LL.�; 
; 
/ D Œs log � C .m � s/ log.1 � �/ C .n � m/ log.�=
 C 1 � �/�

CŒs log.1 � 
=
/ C .m � s/ log.1 � 
/ C .n � m/ log 
�: (E.6)

With 
 fixed, both components can be maximized independently, meaning that
constraint ML estimates of 
 are independent of � . This implies that Q
0� D Q
�.

Differentiating the log-likelihood function in (E.5) yields the following normal
equation

s

�
� .m � s/

1 � �
C .n � m/
0

1 C �
0 D 0;

with 
0 D .1=
 � 1/. Solving this equation for � produces the constrained ML
estimate Q��. Simple algebra yields that for 
 > 1:0 the estimate Q�� is the solution to
the quadratic equation

�2.�n
0/ C �Œ.n � m C s/
0 � m� C s D 0:

The roots x can be found with the quadratic formula, and Q�� is the root satisfying
the constraint 0 < x < 1. Q�� D s=m for 
 D 1:0 and Q�� D s=n for 
 D 1.
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