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Preface

Ranking issues are found everywhere! For example, chemicals can be as harmful to
humans and the environment as they are useful. Therefore, it appears rather clear
that only those chemicals should be used in the market that do not have an adverse
impact on humans and the environment. How do we find out whether they are haz-
ardous? There are many time-consuming and expensive investigations necessary to
perform a risk assessment. Hence the question is: With which chemicals should we
begin at first? Thus a ranking can be performed to give the more involved investi-
gations a reasonable operating sequence. Once accepted that a ranking is needed,
we discover that there is no intrinsic property of a chemical which tells us that it is
hazardous. Still worse, one needs to know the hazard of chemicals in different sce-
narios. Hence, several aspects of a chemical need to be simultaneously considered.
And thus the final and central question arises: How to rank chemicals characterized
by several attributes.

Child well-being: In a report of UNICEF, a ranking of 21 rich nations was per-
formed with respect to child well-being. For this purpose, six attributes were finally
constructed by which the countries were ranked. It is clear that each of these six
rankings need not be the same. Therefore, a composite indicator was defined, giving
each of the six indicators the same weight. How far is this justified? What influence
does this kind of aggregation have on the final result? Italy, for example, could get
a better position if the indicator “family” would get more weight on the index. How
can we analyze the role of weights?

Integrity of watersheds: Scientists of the Atlantic Slope Consortium (ASC)
developed three levels of indicators to describe the health of watersheds. The indi-
cators of the three levels increase in quality and accuracy of the data as well as the
amount of cost and efforts needed to obtain the data. An important question is about
how well level 1 or level 2 indicators perform compared with level 3 indicators.
Partial order can help with this question.

Surface water management strategies: High concentration of nutrients in sur-
face waters is of much concern for environmental protection agencies. What could
be done to improve the situation? Clearly one has to study the release paths by
which nutrients enter the surface waters. Then one has to develop strategies to con-
trol these and limit the emissions into surface waters. How well do such strategies
work? In a chapter, we analyze 15 management strategies developed to reduce the

vii
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concentration of nitrogen in the surface waters of the river. Each strategy is char-
acterized by eight indicators according to the path through which nitrogen enters
the surface water. Is there a best strategy? Can we compare, for example, rural and
technical strategies? Unfortunately they turn out to be incomparable when partial
order is applied. However, we use tools to facilitate the comparison without having
to develop weights for all the eight indicators.

In this monograph, we discuss the following main topics of ranking, applying
partial order theory:

1. Starting from a data matrix, partial order analysis renders methods to get insights
into ranking without crunching the indicators by subjective weights into a
composite indicator.

2. Partial order in terms of formal concept analysis renders knowledge about ordinal
implication structures inherent in the data matrix.

3. Attributes may serve as proxies for a certain abstract concept. We analyze how
well these attributes describe this unknown nevertheless desired concept.

4. Compared with composite indicators, partial order analysis enables comparabil-
ity knowledge discovery.

These topics need a broad base and this book attempts to provide that. It is not
a mathematical textbook about partial order in general but rather discusses how far
simple partial order methods can be useful for the ordinal analysis of data matrices.
Therefore, this monograph provides in the first 10 chapters axioms of partial order
and some basic material, for example, consequences of “crisscrossing” of data pro-
files, the role of aggregations of the indicators, and the powerful method of formal
concept analysis. The interested reader will learn how to apply fuzzy methods in
partial order analysis and what “antagonistic indicator” means.

An exclusive chapter dwells on the concepts through some illustrative case stud-
ies. For example, we apply fuzzy partial order methods on biomanipulation in lakes.
We consider chemicals and compare regions with respect to their pollution. We ask
what to do to improve the ecological status of communes. Management strategies
are compared to help improve the water quality in a river basin. One illustrative
case study is concerned with the quality of information services for drinking water
quality and another one with the human environment interface index. The role of a
fish species for ranking creeks in a wetland is discussed, and we render how a Hasse
diagram “sees” the ecological role of this fish species.

Ranking of complex, multifaceted items is often done by means of composite
indicators. So, nowadays and we think in the future, composite indicators will be
constructed and used more and more. Composite indicators tend to sit between
advocacy (when they are used to draw attention to an issue) and analysis (when they
are used to capture complex multidimensional phenomena), to quote Saltelli. Using
composite indicators, objects of interest can be compared and an important applica-
tion is to deduce through the scalar values of the composite indicators a ranking of
the objects.

We would like our reader to know of partial order in this connection. Partial order
theory is a discipline associated with graph theory and discrete mathematics. Partial
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order theory is the theory by which objects, characterized by multiple indicators,
can be compared and ordered. Partial order as the theory of order is applied to the
set of objects and it delivers insights which result in appropriate ranking of objects.

We can derive a measure by which the set of indicators can be checked for its
appropriateness and completeness as a proxy for a non-measurable nevertheless
important aim. The composite indicator depends on the functional form and espe-
cially if a linear combination is selected, it depends on the weights. Independent of
whether there is uncertainty about the functional form or the weights, partial order
can derive subsets of objects whose relative rankings are invariant with respect to
the functional form selected or the weights. In this connection, a key concept in par-
tial order theory is that of a chain. Because of the averaging process in the weighted
sum, the individual role of a single indicator cannot be easily traced back. Partial
order theory offers some tools to overcome this difficulty. These tools are developed
within the context of stepwise aggregation: Start with an indicator, add the next, and
see what happens until the composite indicator is finally attained. The averaging
process, may affect objects in different ways if weights are uncertain. Uncertainty
concerning the weight values results in a rank interval indicative of ambiguity in
the ranks of objects. Partial order theory provides an upper limit for the ranges of
ranks of objects. We also conduct a Monte Carlo simulation in changing the weights
and in observing the corresponding rank frequency distributions for the objects in
response to the varied weights. The crucial role and the consequence of weights
are well known. Therefore, we offer a method to deduce weights from the data
matrix alone, where the rows are defined by the objects and the columns by the
indicators. Partial order theory also offers several methods to obtain linear orders of
objects (with or without ties). Therefore, one of these partial order methods could
be selected if a ranking is desired that does not need to weight the indicators. We
may even compare the ranking due to a composite indicator with that obtained from
partial order theory, if there are no uncertainties.

Partial order can work even if the data matrix consists of indicators with differ-
ent scaling levels. This kind of a situation occurs often in scientific fields where
quantitative measures are difficult to obtain. Partial order, in its own right, delivers
insights to understand the impacts of indicators on the objects in a multi-indicator
system. Such results are important, especially when crunching the indicators into a
composite indicator is not an option, as it was the case in a study of pollution. There
the measurements of single indicators were so expensive that an averaging into a
composite indicator was seen to be too disadvantageous.

The Hasse diagram, which is a graph theoretical visualization of a partially
ordered object set, is an ideal tool if the number of objects is not too large. Striking
feature in Hasse diagrams is the concept of incomparability, which appears if the
order of objects due to one indicator contradicts the order of another indicator.
Chains can be easily identified from a Hasse diagram. If the Hasse diagram is too
messy to get chains by inspection, software tools help find chains. Many concepts
can be motivated just by discussing them within a simple Hasse diagram but are
still valid, even when the Hasse diagram loses its visual appeal, because it is too
complex and messy.
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We are thinking of a reader who is concerned with ranking in the broadest sense.
So we have in our mind stakeholders, statisticians, scientists, and instructors. We
hope to render for them a monograph helpful in the application of tools, insightful
with theoretical considerations and motivated by a series of case studies for further
applications.

Schöneiche, Germany Rainer Brüggemann
University Park, Pennsylvania Ganapati P. Patil
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Chapter 1
Why Prioritization, Why Ranking

1.1 Motivating Issues and Situations

Let us begin with examples.

1.1.1 Chemicals

Chemicals can be as harmful to humans and the environment as they are useful.
Therefore, it appears rather clear that only those chemicals should be used in the
market that do not have an adverse impact on humans and the environment. The list
of chemicals in the market of the European Union between 1971 and 1981 (EINECS
list, http://chemicalwatch.com/927) contains 1,00,000 chemicals and almost 1,000
chemicals newly enter the market yearly, see, e.g., Bruggemann and Drescher-
Kaden (2003), van Leeuwen et al. (1996), and Ahlers (1999). How do we find out
whether they are hazardous? There are many time-consuming and expensive inves-
tigations necessary to perform a risk assessment. Hence the question is: With which
chemicals to begin at first? Thus ranking is needed to give the more involved inves-
tigations a reasonable operating sequence (Newman, 1995). Once accepted that a
ranking is needed, we discover that there is no intrinsic property of a chemical
which tells us that it is hazardous. Still worse, one needs to know the hazard of
chemicals in different scenarios. Hence, several aspects of a chemical need to be
simultaneously considered. And thus the final and central question arises: How to
rank chemicals characterized by several attributes?

Examples related to chemicals are given in Chapter 11.

1.1.2 Child Well-Being

In a report of UNICEF, a ranking of 21 rich nations was performed with respect to
child well-being. For this purpose, 40 attributes were identified characterizing each
country. From these 40 attributes, 6 were constructed by which the countries were
ranked. It is clear that each of these six rankings need not be the same. Therefore, a

1R. Brüggemann, G.P. Patil, Ranking and Prioritization for Multi-indicator Systems,
Environmental and Ecological Statistics 5, DOI 10.1007/978-1-4419-8477-7_1,
C© Springer Science+Business Media, LLC 2011
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2 1 Why Prioritization, Why Ranking

composite indicator was defined, giving each of the six indicators the same weight.
How far is this justified? What influence does this kind of aggregation have on the
final result? Italy, for example, could get a better position if the indicator “family”
would get more weight on the index. How can we analyze the role of weights? We
discuss this in more detail in Chapter 12.

1.1.3 Regional Pollution

Geographical sites can be ranked with respect to their pollution. The natural ques-
tion is then: What constitutes pollution, and how to measure it? For example, the
Environmental Protection Agency (EPA) in Baden-Wuerttemberg, Germany, per-
formed over years a careful monitoring study and included many possible targets,
like herb layer and tree leaves. One may think of highly polluted regions as “high
spots or hot spots.” How to find them becomes an issue if there is a joint pollution
by several chemical elements (see Chapter 11).

1.1.4 Integrity of Watersheds

Scientists of the Atlantic Slope Consortium (ASC) developed three levels of indica-
tors to describe the health of watersheds. The indicators of the three levels increase
in quality and accuracy of the data as well as the amount of cost and efforts needed
to obtain the data. An important question is about how well level one or level two
indicators perform compared with level three indicators. Partial order may help with
this question (Chapter 14).

1.1.5 Surface Water Management Strategies

High concentration of nutrients such as phosphorus or nitrogen in surface waters
is of much concern for environmental protection agencies. What could be done to
improve the situation? Clearly one has to study the release paths by which nutri-
ents enter the surface waters. Then one has to develop strategies to control these
and limit the emissions into surface waters. How well do such strategies work? In
Chapter 11, we analyze 15 management strategies developed to reduce the con-
centration of nitrogen in the surface waters of the river Elbe basin. Each strategy
is characterized by eight indicators according to the path through which nitrogen
enters the surface water. Is there a best strategy? Can we compare, for example,
rural and technical strategies? Unfortunately they turn out to be incomparable when
partial order is applied. However, we use tools to facilitate the comparison without
having to develop weights for all the eight indicators.
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1.2 Composite Indicators

Composite indicators are applied and constructed everywhere. Saltelli et al. (2008)
characterize the issue of composite indicators as follows: “Composite indicators
tend to sit between advocacy (when they are used to draw attention to an issue) and
analysis (when they are used to capture complex multidimensional phenomena).”
The construction of composite indicators (OECD, 2008) can be described in the
following six steps:

(1) Aim: What is to be indicated?
(2) Do we have a measure for that aim? If not already measurable, one mostly needs

a set of several scalar indicators as proxies to describe the aim. Depending on
the inherent complexity of the aim and the information available, the set of
indicators may be pretty large or small.

(3) How to select these indicators which can serve as a basis for construction of the
composite indicator?

(4) If the initial set of indicators is large, then it is convenient as an interim step
to aggregate them as per commonalities. These interim aggregations are called
pillars, from which the composite indicator is built. How do we construct the
pillars? How far do we accept contextual overlapping, i.e., that one indicator
describes partially the same aspects as another? Beyond this, orientation aspects
are assessed.

(5) How to obtain the composite indicator from the pillars? If conceptual sim-
plicity prevails at this stage, one may combine the values of the pillars by a
weighted sum.

(6) Since weights often come under scrutiny and controversy, it is a good practice
to test the composite indicator for its robustness and sensitivity to results in
response to varying weights.

For any of these six steps, concepts and methods are available to assess and use
them. Besides expert judgments, univariate methods and multivariate methods are
available. It is imperative that composite indicators deliver not only rankings but
also satisfactory metrics.

1.3 What Does Partial Order Offer with the Composite
Indicator Given?

In order to understand why and where partial order can be of help with the above
steps, we provide a preliminary explanation of partial order: Partial order theory is a
discipline associated with discrete mathematics and its subdiscipline, graph theory.
In the case of a suitable binary relation between two objects, partial order theory is
the theory by which objects, characterized by multiple indicators, can be compared
and ordered, (see Chapter 2). The order relations can be displayed as in graph theory.
Therefore, partial order and graph theories have many common topics.
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Using composite indicators, objects of interest can be compared and an important
application is to deduce through the scalar values of the composite indicators a rank-
ing of the objects. Partial order as the theory of order is applied to the set of objects
and it delivers insights into the six steps which result in ranking of objects. Besides
helpful scientific insights into the above six steps, partial order renders results which
help clarify the roles and consequences of indicators and their weights.

Let us now describe what partial order offers for the six steps:

(a) We can derive a measure by which the set of indicators can be checked for its
appropriateness and completeness as a proxy for a non-measurable nevertheless
important aim. We call this measure an “ambiguity graph” and introduce it in
Chapter 4.

(b) The composite indicator depends on the functional form and especially if a lin-
ear combination is selected, it depends on the weights. Independent of whether
there is uncertainty about the functional form or about the weights, partial order
can derive subsets of objects whose relative rankings are invariant with respect
to the functional form selected or the weights. In this connection, a key concept
in partial order theory is that of a chain. We introduce the concept in Chapters 2
and 3. It appears almost everywhere in the monograph.

(c) Because of the averaging process in the weighted sum, the individual role of a
single indicator cannot be easily traced back. Partial order theory offers some
tools to overcome this difficulty. These tools are developed within the context
of stepwise aggregation: Start with an indicator, add the next, see what hap-
pens until the composite indicator is finally attained. In Chapter 7, devoted
to stepwise aggregation, several tools are explained, such as “comparability
acquisition profile” (Patil, 2001).

(d) The averaging process, mentioned in (c), may affect objects in different ways
if weights are uncertain. Uncertainty concerning the weight values results in a
rank interval indicative of ambiguity in the ranks of objects. Partial order theory
provides an upper limit for the ranges of ranks of objects (“rank ambiguity”)
due to a set of possible weight vectors (Bruggemann et al., 2001; Patil and
Taillie, 2004). We discuss this point in Chapter 3 and we revisit this ambiguity
concept in Chapter 7. There, we conduct a Monte Carlo simulation in changing
the weights and in observing the corresponding rank frequency distributions for
the objects in response to the varied weights.

(e) The crucial role and consequence of weights are well known. Therefore, we
offer a method to deduce weights from the data matrix alone, where the rows
are defined by the objects and the columns by the indicators (Patil, 2001). We
discuss this method in a case study about watersheds in Chapter 14.

(f) Partial order theory also offers several methods to obtain linear orders of objects
(with or without ties). Therefore, one of these partial order methods could be
selected if a ranking is wanted that does not need to weight the indicators. One
may even compare the ranking due to a composite indicator with that obtained
from partial order theory if there are no uncertainties. We discuss how to obtain
a ranking from partial order in Chapter 9 and how to compare different partial
orders in a rather general setting in Chapter 10.
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Table 1.1 Data matrix with indicators of different scaling levels

q1 (continuous in concept) q2 (linguistic description) q3 (ordinal indicator)

x1 0.3 Good 2
x2 0.35 Medium 3
x3 0.2 Bad 1

(g) Partial order can work even if the data matrix consists of indicators of different
scaling levels as shown below. This kind of a situation occurs often in scientific
fields where quantitative measures are difficult to obtain (Table 1.1).

Chapters 3, 4, 7, 9, and 10 and to some extent Chapter 14 help enlighten with
steps (1)–(6) to construct composite indicators.

1.4 What Does Partial Order Offer More Generally?

Partial order, in its own right, delivers results, some of which may not be restrictive
to steps (1–6) but nevertheless help understand the impacts of indicators on the
objects in a multi-indicator system.

Such results are important, especially when crunching the indicators into a com-
posite indicator is not an option, as it was the case in a study of pollution in a state
of Germany. There the measurements of single indicators were so expensive that
an averaging into a composite indicator was seen to be too disadvantageous (see
Chapter 11).

The Hasse diagram, which is a graph theoretical visualization of a partially
ordered object set, is an ideal tool if the number of objects is not too large. Striking
feature in Hasse diagrams is the concept of incomparability, which appears if the
order of objects due to one indicator contradicts the order of another indicator.
Chains can be easily identified from a Hasse diagram. If the Hasse diagram is too
messy to get chains by inspection, software tools help find chains. Many concepts
can be motivated just by discussing them within a simple Hasse diagram but are still
valid even when the Hasse diagram loses its visual appeal, because it is too complex
and messy. These important concepts follow.

1.5 Important Questions and Concepts Involving Partial Order

(a) Where is an object, and why is it where it is? This question aims at the position
of an object in a Hasse diagram, identifies its minimum rank, its maximum
rank, and the objects which are incomparable to the object under consideration.
Subsets of objects can be characterized by their pattern of indicator values as
shown in Fig. 1.1. There a Hasse diagram is constructed of regions in a state in
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No pollution by 
Pb and S 

large 
indicator 
values 

No pollution by 
Zn 

Fig. 1.1 Example of a Hasse
diagram, where parts of it can
be characterized by certain
indicator values

Germany, polluted by lead (Pb), cadmium (Cd), zinc (Zn), and sulfur (S). The
vertices are representing the regions and the lines comparabilities.

In many cases, formal concept analysis (Chapter 8), which is part of partial
order theory, provides a powerful visualization where the information about the
indicator values and the positions of objects is simultaneously available. Formal
concept analysis allows a “symmetric analysis” of the data matrices (Annoni
and Bruggemann, 2008).

(b) Which indicators influence the positions of objects? Although this question is
not in the foreground of the construction of composite indicators, the sensitivity
of indicators to a Hasse diagram and hence to the objects in it throws also a light
on the selection and interpretation of the indicators. For example, in a study
about fish communities in wetlands, it turns out that the indicator describing
the population of a certain fish species has a high impact on the Hasse diagram
displaying the impacts of the indicator on the positions of the objects. This is
directly related to the strategies of that fish species to survive under competition
and bad water quality.

(c) How to model ordinally – a fuzzy approach in partial order? Partial orders
appear in many facets, depending on how the order relation is defined. As we
use partial order to rank objects described by a tuple of indicator values, we
must use an appropriate order relation, the product order (Chapter 2). Often data
matrices contain indicators continuous in concept so that even small numerical
differences can influence the partial order. In Chapter 6 we discuss several tech-
niques to perform “ordinal modeling,” i.e., how far we can ignore numerical
differences which seem to be too small for being interpreted as an order relation.
An important concept therefore is that of fuzzy partial order. A fuzzy member-
ship function is introduced which describes as to how to rate an object above
or below another even when their data profiles crisscross. We apply fuzzy par-
tial order to a data matrix concerning the effects of biomanipulation and we see
how biological competitions among phytoplankton species suppress the basic
information about biomanipulation.

So, our answer to “why partial order?” can be summarized as follows.
Partial order delivers analytical tools to better interpret and understand how from

a multi-indicator system a composite indicator is built and what can be said about
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relative rankings of objects without the need of specifying weights or even the
functional form of aggregation.

This monograph describes the partial order concepts, methods, and tools within
the first ten chapters and applies them to the case studies in subsequent five chapters.
We now consider some choice examples of interesting issues and questions.

1.6 Pertinent Issues and Questions

1.6.1 Weights and Indicator Values

Could Italy improve its ranking just by scrutinizing the weights? We render in
Chapter 12 how the indicators of interest can be found and that in the case of Italy a
higher weight for the indicator “family” would improve the position of Italy in the
final ranking. Can Germany do the same and try to be better in the final ranking than
Netherlands? Our analysis shows: No chance! Germany must improve its values of
the indicators. Change in weights will not help. Does Germany have a chance to get
a better ranking position in comparison to some other nations? Yes, since Germany
is incomparable to some other nations, changing weights would influence the final
ranking position of Germany relative to these nations. Must we rely on different
trials of weights to see what can happen? No, since we can show that the possible
ranking interval of each object depends on a simple characteristic of the partial order
as discussed in Chapter 3.

1.6.2 Problems with Averaging

Within a study of bridge stability crossing channels, bridge 17 got a worse eval-
uation in comparison with bridge 57. As proxies for “bridge stability,” indicators
are defined which have influence on the bridge stability, such as channel alignment,
local channel characteristics, and bank stability.

Analysis by partial order tools shows that because bridge 17 is incomparable to
bridge 57, bridge 17 must have at least one indicator where bridge 17 is better than
bridge 57, which is classified as an “excellent” bridge/stream system. We can now
identify which property makes bridge site 17 better than bridge site 57: It is the
channel alignment. Although the ordinal way of consideration of objects implies
loss of some information, we see that some important information is not lost. The
remaining information is crucial. It is, however, unavailable if only the composite
indicator is considered.

1.6.3 Associations and Implications of Indicators

During the investigation of the environmental performance indicator (EPI), the inter-
est lies in how differently nations of different regions of the world are ranked. As
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Fig. 1.2 Association and
implication network among
the indicators of the EPI
study. The simple arrows
represent associations or
implications found for
nations of the EU and the
bold arrows represent those
of the nations of ASEAN

examples, we selected ASEAN and EU nations. Partial order applied to the nations
as objects does not yield useful results. There is too high a degree of incompa-
rabilities. This throws light on why weights are needed, but at the same time on
problems with them. On the one hand, without weights a ranking would mean to
fight losing battles because of too many incomparabilities. However, on the other
hand, any incomparability implies a compensation: Good values in one indicator
may average out bad values of other indicators and vice versa in getting a composite
indicator.

So instead, we studied the association and implication structure of the indica-
tors of the ASEAN group and EU and we found rather different associations (see
Fig. 1.2, where we present the results as a joint network).

Note that in ASEAN the resource aspect is more pronounced (natural resources
are associated with water resources and vice versa), whereas in the EU, this striking
fact is not observed. Details, see Chapter 15.

1.6.4 Prioritization and Ranking for a Subset of Objects
(“Hot Spots”)

We may not always be interested in a comparative analysis of all objects of an object
set. Instead we may want to put our fingers on those objects which have, for exam-
ple, high values in some indicators. Such objects may serve as candidates for a more
detailed scrutiny. It could be, for example, because we want to study them further
by using more information about them. A very simple transformation applied to any
single indicator may do that job. However, we have a multi-indicator system and a
partial order in our hand and we must ask: Is the transformation compatible with
the partial order and how does the simultaneous application of the transformation
affect the objects? In Chapter 6, we show that the transformation is compatible with
the partial order and derive an equation which estimates the fraction of relevant and
irrelevant objects.
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1.6.5 How Do We See the Role of Indicators in Terms
of Single Objects?

How does the minimum rank of an object vary with the cumulation of indicators
in a canonical sequence? In Chapter 4, we see that some characteristic partial order
quantities of an object, such as its number of incomparable elements or the number
of elements below it, vary with the canonical sequence and apply these ideas to child
well-being (Chapter 12), bridge stability (Chapter 13), and watersheds (Chapter 14).
As can be expected, some objects will vary strongly, whereas some others may not.

1.6.6 Proximity Analysis

For a robustness study of a composite indicator relative to weights, a distance
measure is needed. We introduce proximity analysis (Chapter 10) and apply it to
watersheds, where three levels of sophistication are considered. It is of interest to
know as to how far indicators of a level of low degree of sophistication can serve as
proxies for indicators of a level of high sophistication. We show that the low-cost
indicators (level one) are better proxies for high-cost indicators (level three) than
are level two indicators.

1.6.7 What to do with supervised classification?

Often the object set is partitioned into disjoint subsets using external informa-
tion. We need to compare the resulting classes with each other. In order to do
this, we employ concepts of dominance and separability (Restrepo et al., 2008).
Whereas dominance is conceptually a generalization of an order relation, separa-
bility measures the degree of incomparabilities among two disjoint object subsets
(Chapter 5).

Dominance: A typical question is: What are the dominances among European
nations, classified due to their geographical positions, when, for example,
the Human Environment Index (HEI) is considered. The dominance analysis
shows that nations of south Europe are dominating almost all the others. This
kind of a question with its potential to simplify complex Hasse diagrams
serves as an attractive application of dominance analysis.

Separability: If the separability gets by definition its maximum value of 1, a
natural question arises as to which indicators are responsible for the fact that
no object of one object set is comparable with an object of another object
set. If, for example, it turns out that regions of high agricultural density are
separated from those of high industrial activity when pollution is of concern,
then the question is: Which pollution indicators are responsible for the sep-
aratedness? We introduce an important concept, namely that of antagonistic
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Fig. 1.3 Indicators “family”
and “education” are
antagonistic with respect to
the set {Italy (It), Portugal
(Pt)} and the set of other
nations

indicators: A minimum set of indicators needed to explain the separation of
two object subsets. In Chapter 12, child well-being, the indicators “family”
and “education” are antagonistic in their role of explaining the separation of
two subsets of nations. Italy and Portugal are good in “family” whereas less
good in “education.” For the multitude of other nations, the reverse is true
(Fig. 1.3).

1.6.8 Visualization in Multi-indicator Systems

Statistics provides powerful methods to visualize even large data matrices. Does
partial order with its focus on comparison provide visualization tools? An impor-
tant graphical representation is the Hasse diagram. However, Hasse diagrams lose
in general their appealing charm if the number of objects is too large. Myers and
Patil (2010) developed visualization alternatives. Another well-known visualiza-
tion tool is POSAC (partial order scalogram analysis with coordinates) described
in Chapter 3. POSAC is applied on Internet sources about drinking water quality
in Germany (Chapter 11), where partial order dimension analysis is also of help. In
Chapter 14, watershed evaluation, weights are derived from the data matrix using
POSAC.

1.7 Organization of Our Book

This monograph focuses on partial order and its applications in different scientific
fields:

• We first explain what a partial order is and then provide a graphical display, called
a Hasse diagram, where the objects to be ranked are positioned in a network-like
graph.

• We discuss how far we can help with the selection of attributes helpful for
ranking.

• We show the intricate role of attributes and the positions of objects in the Hasse
diagram.

• We find data-driven rankings without the intervention of stakeholders.
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Finally, we will focus on different examples.
The monograph consists of four parts:

(I) a basic theoretical part;
(II) illustrative case studies;

(III) live case studies;
(IV) appendix with data matrices and additional material.
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Chapter 2
Partial Order and Hasse Diagrams

2.1 Data Matrix

Suppose there are five objects. Think of them as sediment samples a, b, c, d, e
which we would like to rank. The first and main question is: What is the aim of
ranking? We can rank the five sediment samples according to their age, or according
to their content of a mineral, etc. If we know the aim of ranking, we need to identify
properties that are relevant. In the case of ranking according to their age, it may be
simple. Just order the samples according to their age!

In other cases, it may not be as simple. If, for example, the hazard for humans is
of concern, then how to define the hazard caused by sediments to humans? One way
of doing this is to determine properties like acute toxicity, or hygienic aspects, or
potential carcinogenicity. Even hygienic aspects have several facets which need to
be considered. Thus we come up with some properties, say q1, q2, q3, which define
the columns of a data matrix, whereas its rows represent the objects.

The next question we are concerned with is the orientation. Do all the properties
q1, q2, and q3 contribute to the aim of the ranking in the same way? This means:
Is an increasing value for each property associated with an increasing hazard? For
example, toxicity q1 is measured as that concentration, where for a fraction of test
species a well-defined adverse effect can be observed. A large value of the (acute)
toxicity is less hazardous than a low value. On the other hand, the hygienic aspect q2
is measured by the number of fecal coliforms. Here a large value of fecal coliforms
is more of hygienic concern than is a low value. The two properties of a sediment
sample are not similarly oriented. Therefore we must transform the properties so
that they have a common monotonicity with the aim. Without knowing the aim and
without checking the correct orientation of the attributes, a partial order analysis is
meaningless.

The question of orientation is closely connected with another problem which is
more a matter of convention: Should large values of (transformed) properties always
mean “bad” or should they mean “good”? Here we do not follow a general rule;
the important point is that the same orientation is considered for all properties for
ranking. The consequence is that for every study, the kind of orientation and its
meaning in terms of “good” and “bad” must be explicitly given.

13R. Brüggemann, G.P. Patil, Ranking and Prioritization for Multi-indicator Systems,
Environmental and Ecological Statistics 5, DOI 10.1007/978-1-4419-8477-7_2,
C© Springer Science+Business Media, LLC 2011



14 2 Partial Order and Hasse Diagrams

Having clarified the two basic questions, we can begin to compare each object
with another. The comparison has to be based on the data matrix. So, let us assume
that sediment sample a has values (2.0, 7.3, 1.0) and sediment sample b has val-
ues (3.1, 8.4, 1.5). Let us furthermore think of “high values” indicating a bad state.
Then examining the three properties of sediment samples a and b, we conclude
that sediment sample b is worse than sediment sample a, because all values of
sample b are simultaneously larger than those of sample a. Let us now consider
sediment sample c: (4.2, 8.1, 2.3). We see that c is worse than a but c cannot be
compared with b because two properties favor b (q1 and q3) but the property q2
favors c.

Adding two more sediment samples d (1.7, 2.6, 0.1) and e (5.8, 12.3, 3.7), we see
that d is better than a, a is better than b, and hence d is better than b. There are still
some comparisons to be performed and the reader should realize that even for small
data matrices and only for some few properties, the statement which object is better
(or worse) than another is not difficult, but troublesome. What we have established
among the objects is a partial order, because we cannot give each pair of objects an
order.

In the next section, we will explain the partial order more thoroughly and
introduce some useful notation.

2.2 Characteristics of Partial Order

2.2.1 Axioms

Let us suppose that an “object set” X (in technical terms also called a “ground set”)
consists of our objects of interest. Suppose that X is a finite set (we do not mention
it further). In our example above, X consists of objects a, b, c, d, e. We also write
X = {a, b, c, d, e}. Furthermore, recall that we wish to compare objects of the object
set. Therefore we use the symbol ≤ as a binary relation among the objects. The role
of this relation is now fixed up by axioms:

Axiom 1: Reflexivity: x ∈ X : x ≤ x (2.1a)

Axiom 2: Anti-symmetry: x ≤ y, y ≤ x implies y = x (2.1b)

Axiom 3: Transitivity: x ≤ y and y ≤ z implies x ≤ z (2.1c)

Reflexivity: An object can be compared with itself.
Anti-symmetry: If both comparisons are valid, i.e., y is better than x and at the

same time, x is better than y, then this axiom requires that x is identical with y. Later
we will see that this requirement is very restrictive.

Transitivity: Transitivity is present if the objects are characterized by properties
which are at least ordinal scaled. Any measurable quantity like height, length, and
price implicitly bears the transitivity. There are also properties, like “color,” where
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the meaning for ordering is unclear. If color is just a category like “red,” “blue” by
which objects can be labeled, then color is not a property relevant for ranking. If,
however, color is given an order like red ≤ green ≤ blue, then objects can be ordered.
It is a question of design of the matrix, availability of this kind of information, and
use for the ranking aim.

2.2.2 Quotient and Object Sets

In applications, it is convenient to relax slightly the requirements concerning partial
order. Several objects may have the same numerical values but are certainly different
individuals (ties). So we consider the objects as equivalent, expressing that they have
identical rows in the data matrix, but must nevertheless be considered as different
items. These objects form an equivalence class and one may take one object out of
the equivalence class and let it represent all the others. In such cases we proceed
as follows (Patil and Taillie, 2004): We consider only one of the objects of any
equivalence class as a representative and perform all operations which can be done
in partial order theory. We keep in our memory, or in the computer memory, all the
other objects being represented. We insert them whenever needed.

To make a clear distinction:

The set of equivalence classes under an equivalence relation � is called quotient
set, denoted, e.g., by X/� .

From any equivalence class, one element is selected as representative. (2.2a)
When, however, all objects, even the equivalent ones, are to be taken

into consideration, then we speak of the object set.
(2.2b)

2.3 Product Order

2.3.1 Notation

How do we arrive at a partial order if a data matrix is at hand?
Let x, y be two different objects of the object set X. Let Q be the space of measure-

ments (of different scaling levels). If, for instance, data are continuous in concept,
then Q ⊂ Rm (the m-dimensional space of real numbers). Let q(x) be the data row
for x and q(y) for y, i.e., q(x) ∈ Q. We say

x ≤ y, if and only if q(x) ≤ q(y),
q(x) ≤ q(y), if and only if qi(x) ≤ qi(y), for all i

(2.3)

The space of measurements, Q, having the order relation property allows us to
define order relations of the object set.
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If x, y are different objects but q(x) = q(y), i.e., qi(x) = qi(y), for all i, then the
objects x and y are called equivalent and the equivalence relation in (2.2a) is the
equality. Equivalence is denoted as

x ∼= y (2.4)

If we want to exclude equivalence, then we also write

x < y (2.5)

Consequently

x < y, if and only if q(x) ≤ q(y),

q(x) ≤ q(y), with at least one qi
∗,

for which qi
∗(x) < qi

∗(y) is valid.

(2.6)

Sometimes it is necessary to specify the ≤ or < relation for a set. In that case,
≤ or < gets an appropriate subscript, e.g., ≤{q1, q2} or ≤{q1, q3} indicates that different
partial orders are considered, one with the attributes q1 and q2, and the other one
with q1 and q3.

The order among the objects based on Eqs. (2.3) and (2.6) is called “product
order” or “component-wise order.” Product order is our method to obtain a partial
order from a data matrix and the focus of the monograph is on the partial order
analysis (PoA) of data matrices. With x <{qi, qj} or x ‖ {qi, qj}y (for ‖, see below) we
indicate that the relation between x and y is based on a certain subset of attributes.

In our example above, the condition (2.6) cannot be established for the sediment
samples b and c. It is convenient to express this fact by b‖ c. The symbol ‖ expresses
that “b is incomparable to c” or that there is a conflict among the attribute values of
b and c. When for the objects x, y it is valid that q(x) ≤ q(y) or q(x) ≥ q(y), then
x and y are comparable. If the comparability between two objects is to be indicated
without defining the orientation, then we write x ⊥ y.

When the object set X is equipped with a partial order, meaning that the objects of
X are related to each other by a relation, which obeys the above-mentioned axioms,
then we write (X, ≤). If no confusion is possible, we also use bold symbol for the
object set X to denote the corresponding partial order and add indices if necessary.
For example, Xi = (Xi, ≤). An object set equipped with a partial order is often called
a poset (partially ordered set). Our analysis is based on a data matrix, and we see
from Eq. (2.3) that x ⊥ y or x ‖ y depends on the attributes used. It is convenient
to speak of an attribute set. Bruggemann et al. (1995) introduced the concept infor-
mation base (IB) which is the set of attributes used in the data matrix. Therefore,
we will write either (X, {q1, q2, . . .}) if it is important to refer to the attributes or
(X, IB). As (X, IB) is the basis for an ordinal analysis of the data matrix, we introduce
the following definition.
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(X, IB) is the partial order based on Eq. (2.3), where

qi ∈ IB and x ∈ X (2.6a)

(X/∼=, IB) is the partial order based on Eq. (2.6), where qi ∈ IB and we take from
each equivalence class exactly one element x, the representative (see Eq. (2.2)).

Thus (X/∼=, IB) is the partial order of representatives (2.6b)

Furthermore, we denote the number of elements of a set A as usual as |A|. The
set A may be either X or IB or subsets of them. In the following, we use the terms
“attributes” when we are speaking of the columns of the data matrix without specif-
ically referring to partial order, whereas we use the term “indicator” when their use
for an ordinal analysis is to be stressed. As the focus of the monograph is the ordinal
analysis, we will be using “attributes” and “indicators” interchangeably. The data
rows are identified by the objects. Sometimes, if we stress that the objects belong to
some set, we also speak of them as “elements of a set X.”

2.3.2 Example

In Section 2.1, we have an example, so we will fix the concepts and notation just
with that (Table 2.1).

The object set is X = {a, b, c, d, e}. Let us introduce IB = {q1, q2, q3}. If we
would like to know whether a ≤ b, we have to check q1, q2, and q3 for a and
b. Generally, taken the whole set of objects, there are |X|∗(|X| − 1)∗|IB|/2 single
attribute comparisons.

In our example, we find that
a < b, a < e, a < c, b < e, c < e, d < a, d < b, d < e, d < c

With this list, everything is said! However, it is convenient to explicitly state that
b ‖ c.

2.4 Some Basic Concepts

1. Data matrices having the same rank matrix have the same partial order.

Table 2.1 Illustrative
example q1 q2 q3

a 2 7.3 1
b 3.1 8.4 1.5
c 4.2 8.1 2.3
d 1.7 2.6 0.1
e 5.8 12.3 3.7
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2. If there is no incomparability, then we speak of a complete, total, or linear order.
In the case of a complete order, the objects x ∈ X can be arranged in a sequence
x1 < x2 < . . . < xn, i.e., a ranking is found.

3. Chain: If a subset X′ ⊂ X can be found such that for all (x, y) ∈ X′ × X′ a
complete order can be found, then this subset, together with the partial order
relation, is a chain.

4. When for a chain C, no element ∈ X can be found to extend C, then C is called
maximal. There may exist a maximum chain.

5. Weak order: Representative elements of equivalence classes are in a chain, but
there are nontrivial equivalence classes.

6. Antichain: If a subset X′ ⊂ X can be found such that for no (x, y) ∈ X′×X′, x ⊥ y
holds, then this subset, equipped with the partial order relation, is called an
antichain.

7. When for an antichain (AC), no element ∈ X can be found, by which AC can
be extended, then AC is maximal. There may exist a maximum antichain.

8. In finite data matrices, chains and antichains contain a finite number of objects.
Therefore, we can speak of chains or antichains having a certain length, accord-
ing to the number of elements they contain. Within a partial order in general,
there can be several maximal chains and several maximal antichains.

9. Height: Number of elements of the longest chain is called the height of the
poset.

10. Width: The number of elements of the maximum of antichains is called the
width of the poset.

11. Maximal, minimal, greatest, least, isolated elements of a poset:

A maximal element x ∈ X is an element for which no relation x ≤ y can be
found.

The set of maximal elements of (X, IB) is denoted as MAX(X, IB) or if no
confusion is possible, we write simply MAX.

A minimal element x ∈ X is an element for which no relation y ≤ x can be
found.

The set of minimal elements of (X, IB) is denoted as MIN(X, IB) or if no
confusion is possible, we write simply MIN.

12. Greatest /least element: There is only one maximal/minimal element (quotient
set).

13. Isolated element: An element x ∈ X which is at the same time a maximal and a
minimal element is called an isolated element.

Let us call an isolated element i, then for all x ∈ X-{i}: i || x.
The set of isolated elements of (X, IB) is denoted as ISO(X, IB) or if no
confusion is possible, we write simply ISO.

14. Proper maximal/minimal element: A maximal/minimal element x ∈ X which is
not isolated.

15. Cover relation: x is covered by y if there is no element z ∈ X for which x < z
and z < y. We write this as x ≤: y.
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We may examine points 1–15 on the basis of the partial order list. However, it
is far simpler to apply the graphical display of a partial order! Therefore this is
introduced next.

2.5 Hasse Diagram

With the cover relation at hand, we can get a diagrammatic representation of the
partially ordered set (poset).

Let us consider x and y, and assume that x ≤: y. Then we draw x in a vertical plane
below y and connect both with a straight line. This is repeated for every ordered pair,
i.e., for all pairs of two objects for which ≤: relation holds. The resulting diagram is
denoted as Hasse diagram (sometimes partial order set diagram, order diagram, line
diagram, or simply the diagram) after the German mathematician Hasse, who made
this kind of visualization popular.

In our example, X = {a, b, c, d, e} (Fig. 2.1).
There are many remarks to be made:

1. Differently drawn Hasse diagrams may nevertheless graphically represent the
same partial order. In that case we speak of isomorphic Hasse diagrams.

2. As the Hasse diagram allows the overview about the order relation in a
very convenient way, it is very important to draw the Hasse diagram care-
fully. Aeschlimann and Schmid (1992) have given many recommendations.
Nevertheless, there are many degrees of freedom to draw a Hasse diagram.

3. The objects are located vertically in the drawing plane in order to get them
organized in “levels.” For example, object d forms the first level, object a the
second, objects b and c the third, and finally object e the fourth level. If an
object could be located in several vertical positions, the highest possible one is
selected (see Fig. 2.2 for a demonstration).

a

b

d

e

c

Fig. 2.1 Hasse diagram
based on data of Table 2.1
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(1)

a

b

c

d

(2)

a

b

c

d

a

b

c

d

a

b

c d

(3) (4)

Fig. 2.2 Drawing rules of Hasse diagrams

4. If avoidable, the lines should not cross each other in locations which are not
those of objects (see Fig. 2.2 for a demonstration).

5. There should be as few different slopes as possible for the single lines which
represent the cover relations.

6. Most software realizations locate the objects symmetrically. The next five items
refer to Fig. 2.1.

7. The fact that d ≤ b can be easily deduced from the Hasse diagram because of
transitivity; no line appears for d ≤ b.

8. There is one maximal element, namely the object e. There is one minimal ele-
ment, namely the object d. Object d is the only one minimal element, therefore
object d is the least element and similarly object e is the greatest element.

9. A chain is, for example, d < a < b. This is not the maximal chain, because we
could add e.

10. The set {b, c} is an example for an antichain. The width of the partial order
is 2.

11. The height of the poset is 4 (counting the objects d, a, b, e).

Figure 2.2 shows examples of “crossings” and how convention 2 is working.
In Fig. 2.2, the four Hasse diagrams (1) and (2) on the one side and (3) and

(4) on the other side are order theoretically correctly drawn (they are isomorphic).
However, in (1) there is an avoidable crossing and (4) follows the remark 3, whereas
diagram (3) does not.

Sometimes it is convenient to refer to the “fence relation” and to a “dual” poset or
“dual” Hasse diagram. An example may be sufficient for an explanation (Fig. 2.3).

On top of Fig. 2.3, objects x and y are in a “fence relation.” Fences or “zigzag
posets” are often denoted by F(n), according to the number of objects. Objects in
a fence relation are connected (in the ordinary graph theoretical sense, but not nec-
essarily comparable). At the bottom, an example of duality between posets, i.e.,
between Hasse diagrams, is shown.
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is the dual of 

x y x y

Fig. 2.3 Fences and dual Hasse diagrams

2.6 Components

Let us assume the object set X = {a, b, c, d} and the Hasse diagram of its partial
order in Fig. 2.4.

A partially ordered set can be considered a directed graph (digraph) without
cycles. We speak of a weak connection if its underlying graph is connected. In
Fig. 2.2, object c and d are weakly connected, because the underlying graph contains
a sequence of edges (an edge in this case) between c and d. The maximal weakly
connected components, where there is no outside object which can be included, such
as ({a, b}, IB) and ({c, d}, IB) in Fig. 2.4, we simply call components of the par-
tially ordered set. Isolated elements can also be considered as components (“trivial
components”).1 The appearance of components is exciting, because their presence
indicates interesting data structures and a high sensitivity to any weights of a com-
posite indicator (see Chapter 5). Components of partially ordered sets are maximal,
because no element ∈ X can be found to extend components. In Chapter 5, we call
subsets of components with the inherited order relation “separated subsets.”

a

b

c

d
q1 q2

a 3 2

b 4 4

c 1 5

d 2 5Fig. 2.4 Hasse diagram of
(X, IB). IB = {q1, q2}, see
table

1In former publications often called “hierarchy.”
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2.7 ζ Matrix and Other Representations of Partial Order

A convenient way to code a partial order is the ζ matrix: The rows and columns of
this matrix are labeled with the object names. If a < b, then the corresponding cell
gets a 1, in all other cases a 0.

Let

x, y ∈ X, then ζ (x, y) = 1 :⇔ x < y (2.7)

For example, the partial order represented in Fig. 2.1 obtains the following ζ

matrix:

a b c d e

ζ =

a
b
c
d
e

⎛
⎜⎜⎜⎜⎝

0 1 1 0 1
0 0 0 0 1
0 0 0 0 1
1 1 1 0 1
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

Note that transitive relations are coded by giving the corresponding cell a 1. So
the entry, belonging to row d and column b, gets a 1. A variant of the matrix ζ is the
cover matrix, which we will not use in this book. The main diagonal of the matrix ζ

contains 1 if in Eq. (2.7) the ≤ relation is used.
Another possibility to represent a partial order is to describe it as a set of ordered

pairs, X2: Let (x, y) ∈ X2 be an ordered pair, then

(x, y) ∈ (X, IB) : ⇔ x < y (2.8)

as defined in (2.6).
The set of ordered pairs consists of all pairs of comparable elements except the

diagonal of X2. Hence

|(X, IB)| =
∑ ∑

ζij (2.9)

The Hasse diagram (Fig. 2.1) would therefore get the following representation
(suppressing the reflexivity relation):

(X, IB) = {(d, a), (d, b), (d, c), (d, e), (a, b), (a, c), (a, e), (b, e), (c, e)}

This kind of representation will be useful in Chapter 10 and is useful for program-
ming purposes. Now we know a lot about posetic characteristics of the data matrix.
But how does this help in our ranking problem? This we discuss in Chapter 3.
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2.8 Summary and Commentary

The evaluation of a data matrix by partial order needs the following: (i) a ranking
aim, (ii) orientation, and (iii) comparison of objects according to (i). The graphical
display by a Hasse diagram allows one an easy way to identify the concepts men-
tioned in Section 2.4. How far are they helpful for interpretation? Let us go back
to the ideas discussed in Section 2.1: The analysis of a set X with respect to prior-
itization and ranking means (1) establishing a partial order, (2) clarifying how far
equivalence classes (ties) appear and how to handle them (by analyzing the quotient
set), (3) finding out the chains and antichains, and (4) finding the maximal, minimal,
and isolated elements.

Maximal or minimal elements are priority elements, which most often are of
special concern. Isolated elements can be considered as elements which are max-
imal and minimal elements simultaneously. So far they are also priority elements.
However – as we will see later – isolated elements indicate peculiarities of the data
matrix. Chains: Elements are in a chain if their attributes vary simultaneously either
(weakly) increasing or (weakly) decreasing. Often, there is a positive rank correla-
tion among the elements of a chain. We will later see that under a weighting scheme,
i.e., a set of weights to construct a composite indicator, elements of a chain will keep
their mutual order, whereas elements of an antichain can get very different positions
in the final ranking.
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Chapter 3
Simple Combinatorial Structures

3.1 Order Preserving Maps

It is of interest to compare two partially ordered sets (more about this topic, see
Chapter 10). We may, for example, ask whether all ≤ relations in one poset are
reproduced in the other. In technical terms, we are asking whether or not

a “mapping” g from X1 to X2 is order preserving, (3.1a)

i.e., whether (x ≤ y) in X1 implies (g(x) ≤ g(y)) in X2.
Consider, for example, six sampling sites {Id-no: 6, 8, 9, 22, 23, 30} in the

German State Baden-Wuerttemberg, where the concentration of the metals lead
(Pb), cadmium (Cd), zinc (Zn), and sulfur (S) (mg/kg dry weight) was measured,
once in tree leaves (LHS of Fig. 3.1) and once in the herb layer (RHS of Fig. 3.1).
Following the notation of Chapter 2, the object set X is X = {6, 8, 9, 22, 23, 30}
and there are two information bases IB1 = {Pb, Cd, Zn, S: in tree leaves} and
IB2 = {Pb, Cd, Zn, S: in herb layer}. Hence, we obtain two posets (X, IB1) and
(X, IB2).

In Fig. 3.1 (RHS), we observe that some circles contain more than one object
label. The corresponding objects are equivalent (see Section 3.2). There arises a
natural question: Can we avoid the measurements in the herb layer if we know the
results based on tree leaves? Translated into a posetic question: Does a relation
x ≤ y for the tree leaves imply a corresponding relation x ≤ y for the herb layer?
If yes, this can save enormous time and money. Unfortunately, in this case, the
mapping g between the two empirical partial orders is not order preserving: See the
following:

6 ≤ 8 → g(6) ≤ g(8), 6 ≤ 23 → g(6) ≤ g(23), 30 ≤ 8 → g(30) ≤ g(8), 30 ≤ 23
→ g(30) ≤ g(23), 9 ≤ 23 → g(9) ‖ g(23)

9 ≤ 23 for tree leaves corresponds to 9 ‖ 23 in the herb layer. Therefore the map-
ping is not order preserving. We now have the following three comments concerning
order preserving maps:

25R. Brüggemann, G.P. Patil, Ranking and Prioritization for Multi-indicator Systems,
Environmental and Ecological Statistics 5, DOI 10.1007/978-1-4419-8477-7_3,
C© Springer Science+Business Media, LLC 2011
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8, 23

6, 22

30

9
22

6 9 30

238
g

Fig. 3.1 Comparison of two
Hasse diagrams as
visualizations of (X, IB1)
(LHS) and (X, IB2) (RHS)

1. Order preserving map is a sharp and restrictive tool. If it can be established for
a mapping from one object set to itself, then the order preserving map is an
enrichment of orders. This is always a very favored result. Many decision support
tools (see Chapter 1) try to enrich the original order relations. Enrichment of
orders is the leading concept in Chapters 6, 7, and 9.

2. If exceptions are ignored, an order preserving map may be said to hold to a
certain degree. Here, for example, above, it holds for four out of five order
relations.

3. A most important application of order preserving maps lies in their application
to obtain linear orders.

The third comment relates to the heart of prioritization and ranking: If we can
obtain a linear order for all objects just from the data matrix (i.e., without addi-
tional weighting, see below and Chapter 7), this will provide the stakeholder with
an alternative ranking, and he may check the role and consequence of subjective
preferences. Section 3.2 is a step toward this end.

3.2 Linear Extensions

Important order preserving maps are those which relate a partial order to a linear
order, especially those where the object set is the same. In that case, the order pre-
serving map enriches the number of comparability relations, and the linear order is
called a linear extension.

A linear extension is a linear order,

which preserves the order relations of a poset. (3.1b)

For example, the partial order shown in Fig. 3.1 has the linear extension
(Fig. 3.2).

The linear extension shown in Fig. 3.2 (RHS) is not the only one. In order to
present them, it is not always convenient to draw them as Hasse diagrams, but as
linear sequences, beginning with the bottom element, ending with the top element.
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22

6 9 30

238 order
preserving

22

6

30

8

9

23Fig. 3.2 Finding a linear
extension from an empirical
poset

Table 3.1 Some other linear extensions found for the Hasse diagram in Fig. 3.1 (LHS)

Linear extension 1 (9 30 6 22 23 8)
Linear extension 2 (9 6 30 23 22 8)
Linear extension 3 (30 9 6 8 22 23)
Linear extension 4 (30 6 9 8 22 23)

So the linear extension shown in Fig. 3.2 will also equivalently be presented as (22
< 6 < 30 < 8 < 9 < 23) or even simpler (22, 6, 30, 8, 9, 23).

Some more linear extensions, taken from the Hasse diagram of Fig. 3.1 (LHS),
are shown in Table 3.1.

We introduce two new concepts.

The number of all linear extensions of (X, IB): LT(X, IB): If no confusion is
possible, then we simply write LT. The number of all linear extensions of
a poset (X, IB), LT(X, IB) is very important as it appears in almost every
application of linear extensions.

The height of an object x in a linear extension:
hle(i)(x) is the count of elements ≤ x.

(3.2)

Each object x has a well-defined “height,” h(x), in each of the linear extensions.
For example, object 30 has height 3 and object 6 has height 2 in the linear extension
shown in Fig. 3.2, RHS. The height h(x) for object x varies over the linear extensions,
therefore the index le(i) refers to the ith linear extension.

The set of all linear extensions of a partially ordered set X, LE(X), allows the
following applications:

(1) Let x be an element of the partially ordered set (X, ≤). Compare the number of
linear extensions where x has a certain height h with the total number of linear
extensions, LT. This may be interpreted as the probability for x to have height h,
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i.e., prob(hle(i)(x) = h), le(i) ∈ LE. If there is no confusion possible, we write
simply h(x).

Height (or rank) probability: prob(h(x) = h) = #LE(h(x) = h)/LT (3.3)

Varying h, we obtain the height probability function of object x (for examples,
see Section 3.3).

(2) Let x ‖ y in (X, ≤). The number of linear extensions in which x > y is
#LE(x > y). The proportion #LE(x > y)/LT is called the mutual probability
of x to have a higher height than

y (probm(x > y)). (3.4)

(3) By taking the average (or the median) of all heights of an object x over all
linear extensions, we obtain the “averaged height (rank)”, hav(x), by which for
all objects a linear or a weak order can be found. Also the symbol Rkav(x) for
averaged rank is used in the literature. For the concept of averaged heights, see
Winkler (1982):

hav (x) =
∑

hle(i)(x)/LT (3.5)

We now illustrate the above with Figs. 3.3 and 3.4.

q1 q2

a 1 1 

b 2 1 
c 1 2 

d 3 3 
e 0 4 

d

a

b c 

e

Fig. 3.3 Hasse diagram and
the data matrix as example to
derive the linear extensions

a a a a a a a a

e b b b e c c

b e c c c e b b

c c e d b b e d

d d e d d d e

1 2 3 4 5 6 7 8

d 

c

Fig. 3.4 The eight linear extensions drawn in a Hasse diagram manner
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Trotter (1992), Atkinson and Chang (1986), and Edelman et al. (1989) describe
methods to construct linear extensions. Patil and Taillie (2004) show a “linear exten-
sion decision tree.” Here we can easily derive the eight linear extensions, observing
that b can only be above or below c. In either case, we get a chain of four elements
a < b < c < d or a < c < b < d. Object e can get all positions above a. The linear
extensions are seen in Fig. 3.4.

The linear extensions in Fig. 3.4 (their enumeration is shown in the box below
and the heights 1–5 are indicated by horizontal broken lines) are the result of order
preserving maps applied to the partial order in Fig. 3.3 and observing the condi-
tion of linearity. We see that some of the objects take different positions in the
linear extensions. For example, object e has in the first linear extension the height 2,
whereas in the fourth one the height 5. Other objects like object a are invariant and
have height 1 throughout.

Now we are going to illustrate the three applications:

1. We select a height h = 3, and the object e, and count the number of linear exten-
sions, in which the height of object e is h = 3. The number of linear extensions
with h(e) = h = 3 is 2. Comparing with the total number of linear extensions,
we obtain

prob(h(e) = h = 3) = 2/8 = 0.25

2. Object d is incomparable with e. How often is object d > object e? This question
is meaningful if we reformulate it in the following manner: How many linear
extensions can we find in which object d has a higher position than e. We count
six linear extensions, where d > e. These are all linear extensions except nos. 4
and 8. Hence

probm(d > e) = 6/8 = 0.75

3. Let us now look for object b. Object b has the heights 3, 2, 2, 2, 3, 3, 4, 4. Hence
the averaged height hav(b) = (3 + 2 + 2 + 2 + 3 + 3 + 4 + 4)/8 = 2.875.

The map g∗: (X, IB) → (X, {hav}) is order preserving and is of special interest:
It provides us with a linear or a weak order of the objects of X. Because (X, {hav})
is an alternative to the common use of composite indices, we call this ranking a
canonical order (see Chapter 9). (X, {hle(i)}) induces a linear order:

(X, {hav}) induces a canonical order. (3.6)
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3.3 Real-Life Example

This example comes from the monitoring study in the south-western state Baden-
Wuerttemberg in Germany (Kreimes, 1996). We consider a subset of sampling sites
and the information basis IB = {Pb, Cd}, with Pb and Cd being the concentrations
of Pb (lead) and Cd (cadmium), respectively, measured in the herb layer (mg/kg
dry weight). Figure 3.5 shows the Hasse diagram. It consists of two non-connected
parts, two components (see Chapter 2).

As an illustrative example for Eq. (3.3), in Section 3.3, see Fig. 3.6.
It is not helpful to write down all 882 linear extensions to trace the position of

any object. Instead the graphics in Fig. 3.6 shows how the frequency of height from
1 to 9 is varying. Note that we draw a continuous line for a better readability.

The diagram shows, for example, that heights above 7 are more probable for
object 57 over objects 34 and 12, whereas heights below 5 are more probable for
object 12 over objects 57 and 34. The graphs prob(h(x) = h) vs h can also be
non-monotonous, with unimodality somewhere in the middle (see Fig. 3.7).

As an example for Eq. (3.5), we will now calculate all averaged heights
(Table 3.2).

25 

58 

57 

21

35

34

12 

11

33

Fig. 3.5 Evaluation of
sampling sites by the
concentration of lead (Pb)
and cadmium (Cd) (mg/ kg
dry mass) in the herb layer.
The objects are labeled as 11,
25, 58, etc

Height probability function

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

40 2 6 8 10
h

57
34
12

pr
ob

(h
(x

)=
h)

Fig. 3.6 Height (rank) probability function for some objects of the poset in Fig. 3.5
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Height probability function

0
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Fig. 3.7 The same as in Fig. 3.6. However, only sampling site 35 is drawn

Table 3.2 Averaged heights
hav(x) Object x hav(x) Object x hav(x)

57 8 35 4.3
58 6 21 2.14
25 4 34 7.14
11 2 12 3.14
33 7.62

Based on hav(x) in Table 3.2, the objects can be ordered as

11 < 21 < 12 < 25 < 35 < 58 < 34 < 33 < 57

providing an alternate ranking to any empirical index-based ranking.
We do not claim that this ranking is “the truth.” It is based solely on the ordinal

properties of the data matrix. Nevertheless, providing such an alternative is of great
help in identifying deviations from the empirical index-based ranking, and hence in
examining the role of subjective weightings (see also the discussion in Section 10.7).
Finally, as an example for Eq. (3.4) in Section 3.2 (Fig. 3.8), we calculate probm
(57 < x) for all x ∈ X, with x ‖ 57.

Linear extensions offer important tools to examine the data matrix in matters that
have to do with individual ranking and mutual positioning of the objects. However,
we are faced with a computational problem: The number of linear extensions goes
with n!, the number of objects being n. Therefore, even for medium sized data matri-
ces, theoretical results and approximations are necessary. We will discuss them later
in this monograph.

Some readers may ask for methods to calculate the number of linear extensions.
For empirical data matrices and the resulting Hasse diagrams, most often there is
no method at hand except for the computer to do the combinatorial exercise (see
Chapter 9).
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0
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objects x incomparable to 57

probm(57<x)

Fig. 3.8 probm(57 < x), based on the Hasse diagram in Fig. 3.5

3.4 Dimension

3.4.1 Motivation

Given a poset (X, IB) and its visualization by a Hasse diagram, a question arises: Can
we find a smaller set of attributes from which we can get the same Hasse diagram?
This question directs toward a possible representation of the ordinal properties of the
data matrix in a lower dimensional space. Let us imagine that a data matrix has five
attributes. If we can find two attributes, which generate the same Hasse diagram, i.e.,
which lets the original order relations invariant, then we can represent the objects in
a two-dimensional scatter plot. This will considerably simplify the ordinal analysis.

We illustrate this consideration by a real-life example.
In the wetlands southeast of Berlin in Germany, there are creeks, which are of

interest because of their fish community (Bruggemann and Fredrich, 1997). For the
development of a wetland management plan, it was of interest to recognize creeks
as hot spots based on their striking fish communities. The experts selected nine fish
species and the number of individuals of every fish species was determined for all
creeks. For the sake of brevity, let us look at four of these creeks, F, M, K, and T. The
data matrix contains four rows and nine columns. Their Hasse diagram is shown in
Fig. 3.9 and is rather simple.

F

K

TM

Fig. 3.9 Hasse diagram of
four creeks in the wetlands
southeast of Berlin
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Table 3.3 New attributes for
the Hasse diagram in Fig. 3.9 Creek q1 q2

T 3 0
K 2 0
M 1 2
F 0 0

q1

q2

1 2 3

1

F K T

M

Fig. 3.10 Model of an
embedding of the poset
of Fig. 3.9 into a
two-dimensional coordinate
system

This poset, however, can also be represented by only two attributes. For example,
attributes with values as given in Table 3.3 will do the job.

That means for an ordinal presentation it is sufficient to use only two attributes.
In other words, the poset of Fig. 3.9 can be embedded into a two-dimensional space
(see Fig. 3.10 for one of many possibilities). This resembles the concept of latent
variables in multivariate statistics: Even if the data matrix is made of m attributes, it
may be sufficient to represent the partial order by some fewer latent variables.

See Chapter 11 for more details about the wetlands and their fish communities.

3.4.2 Theoretical Conceptualization

We come back to our originally stated question: Can we replace the original data
matrix of m columns by a data matrix which has m′< m (especially m′ = 2)
columns without changing the ordinal information in it. If the dimension of the
poset dim(X, IB) is m′, then the answer is “yes.” Finding dim(X, IB), however, is
difficult. Theoretical results can be found in Stanley (1986) and Trotter (1992). Of
practical value is the theorem of de Fraysseix and De Mendez (1996):

(1) If (X, IB) has a greatest and a least element, and
(2) If (X, IB) can be drawn in a plane without crossings,

then dim(X, IB) = 2.
(3.7)

If (X, IB) has no greatest or least element, include these as fictitious objects and
apply Eq. (3.7) on this extended poset.

If dim (X, IB) = 2 < m, the number of attributes of the data matrix being m,
then we know an embedding into a plane, a scatter plot, is possible. However, how
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do we find the needed two attributes, which we call in analogy to multivariate statis-
tics latent order variables (LOVs)? The partial order scalogram analysis (POSAC)
discussed in Section 3.5 finds LOVs by approximation. When one intends to use
POSAC, it may be a good idea to check dim(X, IB) (Annoni and Bruggemann,
2009, 2011; Bruggemann et al., 2001).

3.5 POSAC

3.5.1 Overview

For convenience, we introduce POSAC following Patil (2005). For more details, see
Borg and Shye (1995), Voigt et al. (2004a, b), and Bruggemann et al. (2003). For
software POSAC, see http://ca.huji.ac.il/bf/Hudap-Info.pdf. POSAC is a method to
reduce the attributes into a smaller number of dimensions, with the goal of cor-
rectly preserving as many of the comparabilities that exist in the original model
as possible. The goal of the POSAC method is to graphically represent a data
matrix with m columns in a two-dimensional space. The two-dimensional coor-
dinate representation of objects with observed profiles, the data row of object x,
(q1(x), q2(x), . . . , qm(x)), should best preserve profile order relations. POSAC con-
structs new axes, which together correctly present as many of the order relations as
possible. POSAC is similar to principal component analysis (PCA) in that both are
dimension reduction methods, but while PCA tries to preserve distances, POSAC
tries to preserve comparabilities.

3.5.2 A Perceptive Introduction

There are three possible order relations in a two-dimensional Cartesian coordinate
space. The possibilities are indicated in Fig. 3.11. A given object a divides the
attribute space into four quadrants. The objects y ∈ X that fall in the first quadrant
are intrinsically better than a (i.e., y > a), and those that fall in the third quadrant are
intrinsically worse than a (y < a). We call the quadrant (i) the upward shadow and
(iii) the downward shadow of object a. Shadows are subsets of Q and should not be
confused with down sets or up sets (see Section 3.6.2). The second and fourth quad-
rants are regions of ambiguity; objects falling here are incomparable with object a,
i.e., y ‖ a.

In a data matrix of m columns, we want to form a partially ordered set by com-
paring their profiles, provided by the rows of the data matrix. In the partially ordered
set, some pairs of profiles may be ordered or comparable, while some pairs of pro-
files are incomparable. Consider an example of three profiles with four attributes:
3142, 3242, and 1118. Here 3142 implies that the first attribute has value 3, the
second attribute has value 1, etc.

Profiles 3142 and 3242 are ordered with 3242 greater than 3142, but 3242 and
1118 are incomparable, since the first attribute is better for the first profile (as 3 > 1),

http://ca.huji.ac.il/bf/Hudap-Info.pdf
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Fig. 3.11 Two-dimensional
ordering

and the fourth attribute is better for the third profile (as 2 < 8). If two profiles are
comparable, say 3142 and 3242, then it can be represented (or preserved) if we
assign just a single score to every profile in the pair. For example, let us assign
1 to 3142 and 2 to 3242. Then 2 > 1 reflects the fact that 3242 > 3142. Let now
two profiles be incomparable, say 3242 and 1118. Assigning just one numerical
value to each profile cannot represent the fact that they are incomparable, because
the set of all numerical values is totally ordered. However, the set of all pairs of
numerical values is a partially ordered set. So, let us assign two values to each
profile of the incomparable pair to represent their incomparability. Let us first locate
the comparable profiles in the plot. For example, assign to 3142 the shorter profile
(1, 1) to represent that 3242 is greater than 3142; it needs to be assigned somewhere
in the upper right square to (1, 1), say (2, 2). Now, we add profile 1118 to the plot.
Since this profile is incomparable to both profiles 3142 and 3242, it must be assigned
within the intersection of regions that are incomparable to both (1, 1) and (2, 2). That
is the shaded area in Fig. 3.12. For example, we can pick the point (3, 0) to represent
profile 1118. The incomparability of (3, 0) with (1, 1) and (2, 2) represents that of
1118 with 3142 and 3242.

Fig. 3.12 Ordering of three
objects
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The POSAC algorithm can result in some profiles being unable to be accurately
located in the two-dimensional coordinate space. With a large number of profiles,
misrepresentation becomes a potential liability of POSAC. In order to measure how
well POSAC retains comparabilities from the original data set, we compute the
proportion of comparabilities correctly represented; if a pair of objects were com-
parable in the original data set, then they would have to be comparable with the
correct orientation in the POSAC diagram in order to be considered correctly rep-
resented. Similarly, if a pair of objects is incomparable in the original data set, then
they would have to be incomparable in the POSAC diagram as well. We would like
the proportion of comparabilities correctly represented to be as high as possible,
and a proportion above 0.75 is considered rather good for large data sets. Therefore,
knowledge of the dim (X, IB) helps to evaluate the approximations of POSAC (see
Chapter 11).

Here we use the program package SYSTAT 11 (http://www.systat.com) in the
feature of Analysis in the toolbar, under Scale. The POSAC program produces a
two-dimensional diagram with the objects represented and also provides the propor-
tion of comparabilities that are correctly represented (see Section 11.3 for a pitfall
of SYSTAT 11).

3.6 Down Sets and Up Sets

3.6.1 Complex Hasse Diagrams

Often we have to analyze data matrices, which have many rows (i.e., many objects)
and many columns (i.e., many attributes). Hence the corresponding Hasse diagrams
have many objects and many connecting lines.

An example of a complex Hasse diagram is shown in Fig. 3.13 (pollution in
regions of Baden-Wuerttemberg, Germany).
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Fig. 3.13 Hasse diagram of 59 objects

http://www.systat.com
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Table 3.4 Methods to analyze complex (“messy”) Hasse diagrams

No. Methods Remark See section . . .

1 Down sets, Up sets,
and intervals

The data matrix remains
unchanged

This section, see below

2 Selection of a subset
of attributes

As we will discuss more
thoroughly, deleting attributes
from the data matrix will enrich
the order relations. The Hasse
diagram will get more chains
and therefore simpler to analyze

Chapter 4

3 Discretization Attributes continuous in concept
may be classified

Chapter 6

4 p-Algorithm Concentrate on the most important
objects

Chapter 6

5 Aggregate attributes . . .step by step, see METEOR Chapter 7
6 Calculate the linear

order
Either by analyzing the set of

linear extensions or by
application of approximate
methods

Chapter 9

7 Contextual subsets Taking a subset out of the whole
set of objects with a common
feature. For example, instead of
59 regions of
Baden-Wuerttemberg, select
only the regions with a common
property, for example, granitic
rock material

Chapter 11

How does a messy Hasse diagram in Fig. 3.13 help us? Generally a Hasse dia-
gram provides an insightful, picturesque analysis and visualization to the problem.
Even such a messy Hasse diagram reveals the extent of ambiguity due to incompara-
bilities and complexity due to the data matrix itself involved in the ordinal analysis
of the data matrix. Some tools to analyze such Hasse diagrams are listed in Table 3.4.

Method 1: As we will see, the method of analyzing down sets, up sets, or inter-
vals needs a selection of objects of interest. The data matrix is not changed.
It is just an order theoretical selection of some rows of the data matrix. Down
sets, up sets, and intervals allow us to “navigate” through the Hasse diagram.

Method 2: The data matrix is not transformed. However, there is a selection of
columns.

Method 3: An order preserving transformation is applied. Such a transformation
can certainly be justified, but it is a step away from the given data material.

Method 4: A transformation of the data matrix is performed, which helps to
focus on priority objects.

Method 5: Columns of the data matrix are combined. For example, by a
weighted sum of some attributes.
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Method 6: A complete chain is obtained and the aim of ranking is fulfilled.
However, considered from the point of view of Hasse diagrams, a chain does
not tell us much about the objects themselves.

Method 7: Here a supervised selection of some rows of the data matrix is done.
For example one may select all regions of Baden-Wuerttemberg, which are
located at river Rhine. The information to select a subset of objects is an
external one.

3.6.2 Principal Down Sets and Up Sets, and Successors
and Predecessors

Let us select an object x. We investigate objects that have all attributes with smaller
values. Following Chapter 2, we are seeking those elements y of the partially ordered
set for which y ≤ x holds. In technical terms

O(x) : = {y ∈ X : y ≤ x} (3.8)

As O(x) depends on the element x, O(x) is called the principal down set, generated
by x:

y ∈ O(x) − {x} is a successor. (3.9a)

S(x) : = O(x) − {x} is the set of successors. (3.9b)

Similarly, it is of interest to select an element x and find elements y with x ≤ y.

In technical terms, F(x): = {y ∈ X : y ≥ x}. (3.10)

As F(x) depends on the element x, F(x) is called the principal up set, generated
by x:

y ∈ F(x) − {x} is a predecessor. (3.11a)

P(x) = F(x) − {x) is the set of predecessors. (3.11b)

Finally, it is of interest to select two elements x and y, x ≤ y, and to determine
element z with x ≤ z ≤ y. The set

I(x, y) : = {z : z ∈ X, x ≤ z ≤ y} (3.12)

is called the interval of x and y.
Down sets, up sets, and intervals are interesting, because they

• provide order theoretical tools to get simpler Hasse diagrams (as mentioned
above, we speak of “navigation through a Hasse diagram” ) and

• are needed for several counting tools.
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aFig. 3.14 Two principal
down sets and one principal
up set, taken from the poset
(X, ≤)

|O(x)|, |F(x)|, |I(x, y| can be easily determined by evaluating their definitions.
In Fig. 3.14, the concepts of down sets and up sets are exemplified.

3.7 Ranking Interval

3.7.1 Index

To get linear or weak orders we can

1. rank objects using the information from the Hasse diagram and its parameters
like |F(x)|, and |O(x)|, without introducing weights. We call this a canonical
order and discuss this in Chapter 9;

2. introduce an index and try to get information about the possible range of
positions of an object in the ranking due to that index.

We call an index �, a function based on the attributes of the information base.
Most often an index is just a weighted sum of column-wise normalized attributes.

In that case, the weights are numbers between 0 and 1, their sum is 1, and the
aggregation function is called an index.

The following observation holds.
Let x, y ∈ X and q(x) and q(y) be the rows of normalized and correctly oriented

attributes for objects x and y:

x ≤ y ⇒ q(x) ≤ q(y) ⇒ �(x) ≤ �(y) (3.13)

Therefore the mutual position of two comparable objects in a Hasse diagram will
be reproduced in the index-based ranking, see Fig. 3.15.

3.7.2 A Relation Between (X, IB) and (X, {�})
When we refer to different orders (one due to (X, IB) and one due to (X, {�}), we
will write Oposet and O� . Due to O� , the object x must at least get the height |O(x)|.
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q3

q1

q2

ΓFig. 3.15 Two comparable
objects, “circle” <
“rectangle,” are characterized
by values of three attributes:
q1, q2, q3. The index � maps
them order preservingly into a
one-dimensional coordinate

Let us now introduce the set U(x):

U(x) : = {y ∈ X, y ‖ x in (X, IB)} (3.14)

Let x ∈ X/∼=. Index � generally maps y ∈ U(x) to positions below or above x,
because for them, Eq. (13.3) does not hold. The maximal possible height for object
x is

Max(h�(x)) = |O(x)| + |U(x)| (3.15)

All y ∈ U(x) are imagined in positions below x, hence x gets the maximal possible
height. The minimal possible height for object x is

Min(h�(x)) = |O(x)| (3.16)

Therefore maximal height – interval, Max(h�(x)) − Min(h�(x)), for any object x
in O� is

|O(x)| ≤ h�(x) ≤ |O(x)| + |U(x)| (3.17)

Hence the maximal height–interval �hmax
� (x), the “ambiguity in ranking” is

�hmax
� (x) = n + 1 − (|O(x)| + |F(x)|), n being|X/∼=| (3.18)

The right-hand side of Eq. (3.18) is |U(x)|. Hence Eq. (3.18) can also be written
as

�hmax
� (x) = |U(x)| (3.19)

We call �hmax
� (x) the ranking interval of x in O� and Eq. (3.19) tells us that the

interval �hmax
� (x) does not depend on � but on |U(x)|, which is a property of (X, IB).
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For more details and examples, see Chapter 7. Also see Bruggemann et al. (2001)
and Patil and Taillie (2004).

3.8 Summary and Commentary

Chapter 3 provides us with some concepts, like

• order preserving maps
• linear extensions
• average heights, ranking probability, and mutual rank probability
• dimension
• POSAC
• down sets and up sets

Order preserving maps are needed to define linear extensions. These in turn allow
us to calculate average heights of objects and are a means to obtain a canonical order.

When the data matrix has more than three columns, a presentation as a series of
scatter plots becomes troublesome; nevertheless, the Hasse diagram allows a graph-
ical display of the objects in their ordinal relation to each other. Down sets, up sets,
and intervals allow “navigation” through a Hasse diagram by focusing on the order
relations of the generating elements.

POSAC goes a step further: POSAC helps the stakeholder by representing the
objects in a two-dimensional plane, however by a more or less severe approxima-
tion, because some order relations will be ignored. The poset dimension can help
to predict whether by POSAC an exact presentation in a two-dimensional plane is
possible.

References

Annoni, P. and Bruggemann, R. (2009). Exploring partial order of European countries. Soc.
Indicators Res., 92, 471–487.

Annoni, P., Bruggemann, R. and Saltelli, A. (2011). Partial order investigation of multiple indicator
systems using variance – based sensitivity analysis. Environ. Model. Softw., 26, 950–958.

Atkinson, M.D. and Chang, H.W. (1986). Extensions of partial orders of bounded width.
Congressus Numerantium, 52, 21–35.

Borg, I. and Shye, S. (1995). Facet theory – form and content. Thousand Oaks, CA: Sage.
Bruggemann, R. and Fredrich, F. (1997). Eine mathematische Analyse der Fischgesellschaften im

gosener Feuchtwiesengebiet. In IGB (Ed.), Berichte des IGB 4 (pp. 93–94). Berlin: IGB.
Bruggemann, R., Halfon, E., Welzl, G., Voigt, K. and Steinberg, C. (2001). Applying the concept

of partially ordered sets on the ranking of near-shore sediments by a battery of tests. J. Chem.
Inf. Comput. Sci., 41(4), 918–925.

Bruggemann, R., Welzl, G. and Voigt, K. (2003). Order theoretical tools for the evaluation of
complex regional pollution patterns. J. Chem. Inf. Comput. Sci., 43, 1771–1779.



42 3 Simple Combinatorial Structures

De Fraysseix, H. and De Mendez, P.O. (1996). Planarity and edge poset dimension. Eur. J.
Combinatorics, 17, 731–740.

Edelman, P., Hibi, T. and Stanley, R.P. (1989). A recurrence for linear extensions. Order, 6, 15–18.
Kreimes, K. (1996). Oekologisches Wirkungskataster Baden-Wuerttemberg – Bewertung und

zusammenfassende Darstellung von Untersuchungsergebnissen. In: U. Arndt, A. Fomin, and
S. Lorenz (Eds.), Bio-indikation; neuere Entwicklungen – Nomenklatur – Synoekologische
Aspekte; Beitraege und Diskussion 1. Hohenheimer Workshop zur Bioindikation am Kraftwerk
Altbach-Deizisau, 1995 (pp. 160–169). Ostfildern: Guenter Heimbach.

Patil, G.P. (2005). Cross-disciplinary class room notes. Center for Statistical Ecology and
Environmental Statistics, Penn State University.

Patil, G.P. and Taillie, C. (2004). Multiple indicators, partially ordered sets, and linear extensions:
Multi-criterion ranking and prioritization. Environ. Ecol. Stat., 11, 199–228.

POSAC. See http://ca.huji.ac.il/bf/hudap
Stanley, R.P. (1986). Enumerative combinatorics volume I. Monterey: WadsworthandBrooks/Cole.
SYSTAT. http://www.systat.com/.
Trotter, W.T. (1992). Combinatorics and partially ordered sets dimension theory. Baltimore, MD:

The Johns Hopkins University Press.
Voigt, K., Bruggemann, R. and Pudenz, S. (2004b). Chemical databases evaluated by order

theoretical tools. Anal. Bioanal. Chem., 380, 467–474.
Voigt, K., Welzl, G. and Bruggemann, R. (2004a). Data analysis of environmental air pollutant

monitoring systems in Europe. Environmetrics, 15, 577–596.
Winkler, P. (1982). Average height in a partially ordered set. Discr. Math., 39, 337–341.

http://ca.huji.ac.il/bf/hudap
http://www.systat.com


Chapter 4
Sensitivity and Ambiguity

4.1 Tasks

The fundamental basis of our ordinal analysis is the data matrix: The attributes
define its columns and the objects its rows. We pose two questions:

1. What role does any single attribute play? Can we, for example, save time and
money, because some attribute has little comparative power?

2. What can be said about the attribute set from the partial order point of view?
Should we delete any attribute? Should we add more attributes to the data matrix?

We attempt to answer these two questions in this chapter. In Section 4.2, we
consider impacts to the partial order when reducing the information base (attribute-
related sensitivity) and in Section 4.3, we introduce a measure for the ambiguity of
partial order in response to the set of attributes.

4.2 Attribute-Related Sensitivity

4.2.1 Concept

The intention behind an attribute-related sensitivity measure is not to contextually
evaluate the attributes. Here it is of interest to examine as to how an attribute influ-
ences the position of objects in a Hasse diagram. We want to know the impact of
the removal of a column from the data matrix.1 Hence we have to compare the par-
tial order, induced by the original data matrix, with that of the modified data matrix
in order to find out the impact of the modification (i.e., the sensitivity to a Hasse
diagram). We will measure the sensitivity by defining a suitable distance measure:

1We could also define as sensitivity of the (Spearman) correlation among indicators. This, however,
is of no interest here.

43R. Brüggemann, G.P. Patil, Ranking and Prioritization for Multi-indicator Systems,
Environmental and Ecological Statistics 5, DOI 10.1007/978-1-4419-8477-7_4,
C© Springer Science+Business Media, LLC 2011
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Large impact of the removal of a column of the data matrix will need large dis-
tance between initial poset and modified poset. The distance will be conceptualized
by counting the ordinal change (mismatch) between the pairs (x, y) ∈ (X, IB) and
(x, y) ∈ (X, IB(i)), with IB(i) = IB − {qi}. (See Chapter 2 and especially Eqs. (2.8)
and (2.9).) There are several methods counting the pairwise mismatch: (a) using
down sets or up sets (see Chapter 3) or (b) using the ζ matrix (see Section 2.7).

4.2.2 Counting the Mismatches Using Down Sets

We restrict our analysis to down sets; using up sets would follow the same logic.
There are two information bases, the original one (IB) and the modified one

which is called IB(i). IB(i) ⊂ IB, hence any comparability of (X, IB) must be
reproduced in (X, IB(i)). Therefore

(X, IB(i)) ⊇ (X, IB) and O(x, IB(i)) ⊇ O(x, IB)

(As different information bases are of concern we extend the notation of down
sets appropriately.) (4.1)

To count the ordinal mismatch between the two down sets, we use the symmetric
difference of sets �(A � B : = (A ∪ B) − (A ∩ B), A, B being two arbitrary sets),
count its content, and call the result W(x, IB, IB(i))2:

W(x, IB, IB(i)) = |O(x, IB(i)) � O(x, IB)| (4.2)

As the complete object set X is of interest, we sum up

W(X, IB, IB(i)) =
∑

W(x, IB, IB(i)), x ∈ X (4.3)

One can show that W(X, IB, IB(i)) is indeed a “distance” between both posets.

W(X, IB, IB) = W(X, IB(i), IB(i)) = 0, W(X, IB, IB(i)) = W(X, IB(i), IB)

and the triangle inequality is fulfilled. Equation (4.2) can be simplified applying
simple set-algebraic relations:

W(x, IB, IB(i)) = |O(x, IB(i))| − |O(x, IB)| ≥ 0 (4.4)

Furthermore W(X, IB, IB(i)) can be normalized by the denominator n∗(n − 1)/2,
n being the number of objects:

2Note that the notation W(X, IB, IB(i)) has nothing to do with weights or weighting schemes.
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σ (X, IB, IB(i)) = W(X, IB, IB(i))/(n∗(n − 1)/2) (4.5)

Generally W(qi) is used and we call this quantity the sensitivity measure of the
partial order to the attribute qi deleted from the data matrix.

4.2.3 Counting the Mismatches Using ζ Matrices

The method of down sets has some intuitive charm; the method by using ζ matrices,
however, is computationally simpler. Let ζ (X, IB) be the matrix ζ related to the orig-
inal poset, (shorthand notation: ζ 1) and ζ (X, IB(i)) (shorthand notation: ζ 2) related
to the modified one. Then the (squared Euclidian) distance of ζ 1 from ζ 2 can be
defined as follows:

D2
ς1, ζ2

=
∑

i

∑
j

(ζ2, i, j − ζ1, i, j)
2 =

∑
i

∑
j

|(ζ2, i, j − ζ1, i, j )| (4.6)

As before, we write simply D2(qi) if there is no confusion possible.

4.2.4 Relation Between W(qi) and D2(qi)

The content of a down set |O(x, IB)| or |O(x, IB(i))| can be calculated from the ζ

matrix:

|O(x, IB)| =
∑

ζIB(j, x)

(where we indicate the information base IB by a subscript and perform the sum
over j = 1, . . . , n). Hence Eq. (4.3) can also be written in terms of the ζ

matrix: W(x, IB, IB(i)) = �ζIB(i)(j, x) − �ζIB(j, x) = �(ζIB(i)(j, x) − ζIB(j, x)), with
(ζIB(i)(j, x) − ζIB(j, x)) ≥ 0.

Changing to the complete object set X, we arrive as

W(X, IB, IB(i)) =
∑ ∑

(ζIB(i)(j, x) − ζIB(j, x))

which is the same as Eq. (4.6), in a slightly different notation.

4.2.5 Remarks

(1) If two posets have the same object set X but are of different contextual origin,
then the methods presented in Sections 4.2.3 and 4.2.4 can be easily extended.
See Bruggemann et al. (2001) or Bruggemann and Carlsen (2006).

(2) A further generalization is possible in selecting a subset X′ ⊂X instead of X. For
example, the down set-based sensitivity measure would read as follows (with
(X, IB1) and (X, IB2) as two posets having the object set X in common):
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W(X′, IB1, IB2) =
∑

x ∈ X′
(|O(x, IB1)| − |O(x, IB2)|) (4.7)

(3) Originally the sensitivity measure based on down sets was of special interest,
because the objects located at the top of a Hasse diagram were priority ele-
ments and their reaction on deleting attributes from the data matrix was to be
modeled.

4.2.6 Illustrative Example

In Table 4.1, a data matrix with five objects and three attributes is displayed. We
want to know the importance of qi to the Hasse diagram.

Besides (X, IB), we need to analyze three other posets, namely (X, IB(1)), (X,
IB(2)), and (X, IB(3)) (Fig. 4.1).

4.2.6.1 Method Using Down Sets

The comparison of (X, IB) with (X, IB(1)), (X, IB(2)), and (X, IB(3)) gives the
following values for W(qi):

W(X, IB, IB(1)) = 0, W(X, IB, IB(2)) = 3, and W(X, IB, IB(3)) = 1

So we conclude that deletion of attribute q2 has the most impact on the Hasse
diagram.

In Table 4.2 we render in detail the calculation of W(X, IB, IB(2)): columns
A:=. . . , B:=. . . demonstrate the calculation of the contents of the down sets, gener-
ated by the elements of the first column; the remaining three columns show the steps
to obtain for every generating element the symmetric difference. As finally a sum
over all generating elements is to be performed, and the cell of the sixth column and
last row represents the final result. The tie a ∼= b is considered as a > b and at the
same time b > a.

Table 4.1 Illustrative data
matrix q1 q2 q3

a 1 1 1
b 1 4 1
c 2 3 2
d 3 3 5
e 4 5 3
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a

b c

de

a

b c

de

IB IB(1) 

a

b

c

d

e

IB(3) a

c

d e

IB(2) 

Fig. 4.1 Hasse diagrams of (X, IB) and three (X, IB(i)). Note in (X, IB(2)), there is an equivalence
(tie): a ∼= b

Table 4.2 Evaluation of W(X, IB, IB(2))

x A := O(x, IB) B := O(x, IB(2)) A ∪ B A ∩ B A � B

a a a, b a, b a b
b a, b a, b a, b a, b Ø
c a, c a, b, c a, b, c a, c b
d a, c, d a, b, c, d a, b, c, d a, c, d b
e a, b, c, e a, b, c, e a, b, c, e a, b, c, e Ø
� 3

4.2.6.2 Method Using ζ Matrices

The calculation of D2(X, IB, IB(i)) with i = 1, 2, 3 would need to determine the dif-
ferences �ζ:= ζIB(i)−ζIB, and then summing over all elements of �ζ . As (X, IB(2))
not only is the most impacted poset but contains a tie (a ∼= b), we select once again
D2(X, IB, IB(2)) as example. As in the down set-based method, we replace the tie
a ∼= b by a > b and b > a. Rows and columns are labeled as a, b, c, d, e and an entry
1 indicates that the row-determining element is greater than the column-determining
element:
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Sensitivity

0
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2.5
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q1 q2 q3

attributes

W
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i)

W

Fig. 4.2 Attribute-related sensitivity of the Hasse diagram (data matrix, see Table 4.1)

ςIB(2) =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0
1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 0 0

⎞
⎟⎟⎟⎟⎠

, ςIB =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 1 0 0
1 1 1 0 0

⎞
⎟⎟⎟⎟⎠

, �ς =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0
0 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

Equation (4.5) requires that summation be performed over all entries of the
matrix �ξ : Hence we arrive at D2(X, IB, IB(2)) = 3.

Figure 4.2 shows the typical attribute-related sensitivity.

4.3 Ambiguity Due to Augmentation of Indicator Sets

4.3.1 Concept

Ranking ambiguity is caused by incomparabilities that appear in a poset. Hence we
define

U(X, IB′) = {(x, y), x, y ∈ X with x‖IB′y}, IB′ ⊆ IB and
U(X/∼=, IB′) : = {(x, y), x, y ∈ X/∼=with x‖IB′y}, IB′ ⊆ IB

(4.8)

as measures of ambiguity in ranking (see Section 3.7, Eqs. (3.18) and (3.19)).
In order to obtain a measure in the scale [0, 1], we normalize |U(X, IB′)| by
n∗(n − 1)/2n being the number of objects and |U(X/∼=, IB′) by nK

∗(nK − 1)/2, nK
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being the number of elements in the quotient set,3 and call these quantities the
ambiguity Am(X, IB′) of the poset (X, IB′).

When IB′ = IB, all indicators of the multi-indicator system are considered and
Am(IB) becomes a characteristic quantity of the poset (X, IB) (formerly called
P(IB)). We note that when the set of indicators {q1, q2, . . .} is augmented by a fur-
ther indicator q′, then Am(X, {q1, q2, . . .}) ≤ Am(X, {q1, q2, . . .} ∪ {q′}) (Halfon and
Reggiani 1986).

4.3.2 Illustrative Example

In Fig. 4.3, a Hasse diagram together with its data matrix is depicted.
Although software is doing the job of counting |U(X, IB)|, it may be helpful to

perform the counting “by hand.” Following Fig. 4.3 and Table 4.3, the denomina-
tor n∗(n − 1)/2 = 28, |U(X, IB)| = 15, hence Am(IB) = 0.536. Let us add an
attribute q5, with values q5(a) = 8, q5(b) = 7, q5(c) = 6, q5(d) = 5, q5(e) = 4,
q5(f ) = 3, q5(g) = 2, and q5(h) = 1, then the partial order becomes a com-
plete antichain (not shown), demonstrating the maximum possible ambiguity of
(X, {q1, . . . , q5}).

a b

c d

e

f

gh
q1 q2 q3 q4

a 1 4 2 1
b 2 5 1 2
c 3 6 4 3
d 4 7 3 4
e 5 1 5 5

f 6 2 6 6
g 7 3 7 8

h 8 9 8 7

Fig. 4.3 Illustrative example X = {a, b, c, d, e, f , g, h}, IB = {q1, q2, q3, q4}

Table 4.3 Counting
incomparabilities (Fig. 4.3).
After checking a, c, e, f, g, no
new incomparable pairs can
be found

Object Incomparable pairs |U(x)| (see Chapter 3)

g (g, h), (g, c), (g, d), (g, a), (g, b) 5
f (f, d), (f, c), (f, a), (f, b) 4
e (e, c), (e, d), (e, a), (e, b) 4
c (c, d) 1
a (a, b) 1
� 15

3Although the difference between object set X and the quotient set X/∼=, and the set of representants,
respectively, is very important, we write in the following simply X.
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4.4 Graphs of Characteristic Properties of a Poset

4.4.1 Concept

Canonical sequence: We wish to define a cumulative set of indicators {q1} ⊂
{q1, q2} ⊂ . . . {q1, q2, . . . , qm} = IB and call this series of attribute sets a canonical
sequence. Because (IB, ⊂) is a partial order, we can select several chains starting
with a single indicator and ending up in the complete set of indicators, IB. We use
the sensitivity W(qi) to order the subsets of IB. The order of accumulating the indi-
cators in the canonical sequence follows the decreasing order of the W(qi) values.
When the sensitivities are tied, we order arbitrarily and document this appropriately.
We call the serial count of the cumulative subsets natt.

Cumulative ambiguity graph: The ambiguity Am(X, IB′) can be considered as a
function of natt, Am(natt). As such, Am(natt) indicates the following: (i) Am(natt) =
0: the indicators do not yield conflicting rankings, weights are not needed; (ii)
Am(natt) = 1: no comparability remains and without weights no ranking can be
obtained; (iii) 0 < Am(natt) < 1: comparabilities can be found in the poset and a rel-
ative ranking of some objects is possible. If nevertheless a ranking of all objects is
wanted, then canonical orders can be determined. (iv) When Am(X, IB′) approaches
Am(X, IB) with cumulation of indicators, the poset (X, IB′) may be considered as
an approximation for (X, IB) and the chains and other quantities of interest can be
identified. The corresponding reduced set IB′ plays the role of IB in subsequent
ranking studies. (v) Whereas a high value of Am(X, IB) indicates that additional
indicators will not have much of influence on the poset (X, IB), it is not possible to
make further statements about additional indicators.

Decomposition of IB: Consider a certain value of natt, say natt∗ with 1 <
natt∗ < m. Then a set IB(1) of the first natt∗ indicators and a set IB(2) of the resid-
ual indicators can be obtained. When we follow the device of ordering the indicators
due to decreasing sensitivity, the set IB(1) has the indicators which mainly contribute
to conflicts, whereas IB(2) has the indicators of less conflicting potential. Therefore,
IB(2) may be considered as the set of “fine-tuning” indicators.

CAM: Am(natt) has its maximal value if natt = m, and as discussed above, is
a characteristic quantity of the poset (X, IB) related to the multi-indicator sys-
tem. Therefore, we call Am(m) the “cumulative ambiguity maximum” (CAM). If
CAM is “near” 1, the partial order has only few comparabilities in comparison to
n∗(n−1)/2. So an additional indicator will not have a large impact on the Hasse dia-
gram. Removing an indicator from the multi-indicator system, however, may induce
many changes.

Local ambiguity graph: |U(x, {q1, q2, . . .})| : |U(x)| as function of natt allows a
“local” view, because the graph is related to a single object. The shape of the curve
deviates sometimes characteristically from that of Am(natt), because the focus is
on a single object instead of the whole object set. In view of Section 3.7, the curve
shows how the maximum ranking interval, �hmax

� , of object x varies with natt. The
resulting graph is called local ambiguity graph.
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Minimum rank graph: Because |O(x)| indicates the minimum rank of x in any
composite indicator �, the function |O(x)| = f (natt) is of interest. Its graphical dis-
play is called the minimum rank graph and makes the variation of the minimum
rank position of x evident, while starting with the most important attribute and accu-
mulating one attribute after another according to the canonical sequence until the
complete set of attributes is obtained.

|F(x)| = f (natt) : |F(x)| as a function of natt shows how the number of
predecessors varies with natt. This curve is rarely used. Therefore, it has no name.

Relation among |O(x)|, |U(x)|, and |F(x)|: Changes in |O(x)| or |F(x)| imply
changes in |U(x)| because

|U(x)| + |O(x)| + |F(x)| = n + 1 (4.9)

holds, n being |X/∼=|. (See also Chapter 6.) Hence

|A(x)| (natt = k) ≤ |A(x)| (natt = k + 1), A being O, S, F, or P
⇒ |U(x)| (natt = k + 1) ≥ |U(x)| (natt = k)

(4.10)

4.4.2 Remarks

(1) Basically all characteristics of partial order can be considered as a function of
natt. For example, the width of a poset could equally well be used. However, up
to now the characteristics mentioned above seem to be the most useful ones.

(2) Sometimes it is useful to explain the graphs of the characteristics of a partial
order with model partial orders. For example, Am(natt) may increase, whereas
|O(x)| remains constant. A partial order model would then be as shown in
Fig. 4.4.

4.4.3 Illustrative Example

The Hasse diagram together with its data matrix is shown in Fig. 4.5.
Figure 4.6 represents the results of the attribute-related sensitivity.

natt increases

|O(x)| is invariant

|U(x)|/ ⎟⎟⎠

⎞
⎜⎜⎝

⎛
2

n
 increases

Fig. 4.4 Model poset
explaining the graphs of
characteristics of the poset.
Object x, grey circle
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a

b

c de

f g

h

i

j

q1 q2 q3 q4 q5

a 1 2 3 4 5 
b 2 3 1 6 5 
c 3 4 4 2 5 
d 1 1 5 4 7 
e 2 8 6 5 2 
f 4 2 2 5 6 
g 5 2 1 5 6 
h 6 3 8 2 7 
i 2 4 3 1 3 
j 8 5 2 9 9 

Fig. 4.5 Example X = {a, b, c, d, e, f , g, h, i, j}, IB = {q1, q2, . . . , q5}

Sensitivity analysis

0
1
2
3
4
5
6
7
8
9

10

q1 q2 q3 q4 q5

attributes

W

W(qi) Fig. 4.6 Results of
attribute-related sensitivity

We order the indicators as follows: q3 > q4 > q2 > q5 > q1, with q2 > q5 as
arbitrary choice. Hence we get five attribute sets and find the canonical sequence:

{q3} ⊂ {q3, q4} ⊂ {q3, q4, q2} ⊂ {q3, q4, q2, q5} ⊂ {q3, q4, q2, q5, q1} = IB

Am(natt) is shown in Fig. 4.7.
One may consider the first two indicators (following the canonical sequence) as

IB(1) and the residual ones as IB(2). Here the decomposition does not lead to strik-
ing differences in the two partial orders, because the cumulative ambiguity graph
reaches CAM with a pretty smooth slope.

The graphs |O(x)|, |U(x)| vs natt with objects c and f are shown in Fig. 4.8.
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Fig. 4.7 Top: Cumulative ambiguity graph, based on the data of Fig. 4.5. Bottom: (LHS) The
partial order due to IB(1) = {q3, q4}, with |U(X, IB(1))| = 27, and (RHS) IB(2) = {q1, q2, q5}, with
|U(X, IB(2))| = 25

Minimum rank and local ambiguity graphs
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Fig. 4.8 |O(x)| and |U(x)| of objects c and f as functions of natt
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Minimum rank graph:

(a) Object f: The rather low number of successors of object f is slightly reduced;
finally, object f becomes a minimal element.

(b) Object c: This object has many successors if the order Oq3 is considered.
The next attribute q4 reduces the number of successors; the remaining three
attributes do no more influence the number of successors and therefore the
minimum rank.

Local ambiguity graph:

(a) Object f: The addition of q4 remarkably increases its incomparabilities; the
remaining attributes have less influence on |U(f )|.

(b) Object c: The function |U(x)|(natt) is approximately linear. Any new attribute
has the same importance to the position of object c in the overall order O� .

4.5 Summary and Commentary

In Chapter 4, we developed the concepts (i) sensitivity measure, (ii) ambiguity,
(iii) cumulative ambiguity graph, and (iv) minimum rank graph, and other graphs
depending on the canonical sequence of attributes.

Sensitivity helps to find out influential attributes for the whole object set. Due
to the design of the sensitivity measure, the sensitivity for a single object can be
investigated. Future work should stress the multivariate character of the sensitivity
analysis as several characteristics of a partial order must be examined simultane-
ously. Methods suggested and developed by Saltelli (http://en.wikipedia.org/wiki/
Sensitivity; Saltelli and Annoni, 2010) may be a good basis. This may suggest
possibilities of where improvements by stakeholders are possible in the data matrix.

CAM sounds more academic. However, it is important to know as to whether
the attribute set or a part of it is sufficient to characterize the problem, or whether
it exceeds the needs of an evaluation. Sensitivity and ambiguity (called earlier sta-
bility) were introduced pretty early in the literature. See Bruggemann et al. (2001),
Bruggemann and Voigt (1996), and Voigt et al. (2004a, b).

A large positive slope of the cumulative ambiguity graph can be indicative
of the initial attributes being sufficient to perform the ranking. This will enable
future investigations with smaller set of attributes, thus saving time and money.
Furthermore Am(natt) provides an overview of the whole object set. If an individual
object is of more interest, the minimum rank graph or other similar line graphs like
the local ambiguity graph support the analysis. A steep decrease in the minimum
ranking graph, for instance, indicates that the additional indicators have a major
influence on the position of the object. In case of ties, then canonical sequence is
not uniquely defined and different graphs may be obtained. Therefore, the actually
selected sequence should be documented. In the future, we will add a tie-breaking
rule.

http://en.wikipedia.org/wiki/Sensitivity
http://en.wikipedia.org/wiki/Sensitivity
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Chapter 5
Structures of Partial Orders

5.1 Motivation

While visualizing a poset (X, IB) with a Hasse diagram, it is initially interesting to
observe the following:

1. Whether or not there is a messy system of lines.
2. Whether the Hasse diagram resembles a

a. triangular shape or
b. rectangular shape.

3. Whether there are different components or approximate components.

As (X, IB) is based on a data matrix, we want to relate these three aspects in the
Hasse diagram with the properties of the data matrix. That is, we want to discover
properties of the data matrix through the structure of Hasse diagrams. Therefore,
Chapter 5 is organized as follows: (1) we revisit the concept of levels, (2) we show
how down sets and up sets are related to attribute properties, (3) the concept of
separation of object subsets is introduced, (4) we explain why and how far structures
of a poset and properties of a data matrix are related. Finally, (5) the concept of
dominance of object subsets is discussed.

5.2 Levels and Shapes of a Hasse Diagram

5.2.1 Width and Height

In Chapter 2, height and width of a poset have been introduced. Both numbers
describe the shape of a Hasse diagram by inscribing it into a rectangle with height
and width. The determination of width may be difficult (at least in complex Hasse
diagrams) as the following example (Fig. 5.1) shows.

In Fig. 5.1, the height is 3, and following the drawing protocol of Hasse diagrams
(by different software packages like WHASSE and PyHasse, see Chapter 17) we

57R. Brüggemann, G.P. Patil, Ranking and Prioritization for Multi-indicator Systems,
Environmental and Ecological Statistics 5, DOI 10.1007/978-1-4419-8477-7_5,
C© Springer Science+Business Media, LLC 2011
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a

b c

d eFig. 5.1 Width and
antichains

identify the antichains {b, c}, {d, e} both having two elements. However, the width
of the poset in Fig. 5.1 is 3, because the maximum antichain is {b, c, e}. In messy
Hasse diagrams, it is difficult to identify the maximum antichain by visual inspec-
tion. Therefore, we use the concept of levels as a visual proxy for the discussion of
shapes of the Hasse diagrams.

5.2.2 Level

The concept of levels is very useful:

• Due to the level concept, a weak order can be found among the objects.
• Levels are descriptive tools as they allow a partitioning of the objects even in

messy Hasse diagrams.
• Levels are the starting point for a visualization technique, developed by Myers

and Patil (2008), suitable for a huge number of objects.

5.2.2.1 Construction

Let MAX ⊆ X be the set of maximal elements of a poset (see Chapter 2). (5.1)

lg = number of cover relations in the maximum of all maximal chains. (5.2)

An element x ∈ MAX gets the level number lev(x) = lg + 1 = height. (5.3)

Now perform a partitioning of X as follows.
Eliminate MAX from X and determine the new MAX. This new set gets a level

number reduced by 1.
Continue the elimination process until X is exhausted.
The level sets are the equivalence classes under the equivalence relation:

lev = lev(x) = lev(y), with lev ∈ {1, 2, . . . , height} (5.4)

Notation: levellev is the level set with the level number lev. (5.5)

In Fig. 5.2, an example follows.
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a

c

d

e

g

h i
Start
lg = 5
because the maximum of the 
maximal chains is a ≤ : c, c ≤ :d,
d ≤ :e, e ≤ : g, g ≤ : h.

MAX = {h, i} and gets as level set:
Level6 = {h,i}

Elimination process:
After elimination of Level6 from X 
the new MAX is: {g}, and gets 
level number 5.
Hence level5 = {g}
The next elimination renders
{e,f} as the set with level number 4.

Levels (as sets):
level6 = {h,i}
level5 = {g}
level4 = {e,f}

Level numbers:  
lev(c) = 2 
lev(e) =  lev(f) = 4
lev(a) = 1
lev(b) = 3

b

f

Fig. 5.2 Illustrative example of the concept “level”

By the number lev, the levels are enumerated from the bottom to the top of
a Hasse diagram. By introducing the equivalence relation among objects “having
equal lev” (RL), the quotient set X/RL consists of the levels and the levels are strictly
ordered due to increasing lev. In terms of the object set X, we obtain a weak order.

5.2.3 Shapes of Hasse Diagrams

5.2.3.1 Motivation

Roughly, we can identify the following types of shapes of Hasse diagrams:

1. With increasing level number, |levellev| is constant: rectangular shape. The
number of incomparabilities is approximately constant.

2. With increasing level number, |levellev| is increasing: The vertex of the trian-
gle is at the bottom of the Hasse diagram. The incomparabilities are increasing
with lev.

3. With increasing level number, |levellev| is decreasing: The vertex of the triangle
is at the top of the Hasse diagram. The incomparabilities are decreasing with lev.
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For most practical purposes, these three basic shapes are sufficient.
In order to motivate the role of shapes, let us think of a class of students, being

evaluated with respect to different disciplines:

• Rectangular shape: Independent of the level of skill, the disparity in the
performance in single disciplines remains the same.

• Triangle with the vertex at the bottom: With increasing skill, the students show
more and more disparity in the performance in single disciplines.

• Triangle with the vertex at the top: The better, in general, the student, the lesser
the disparity in the performance in different disciplines.

5.2.3.2 Sharpening the Concept

Incomparabilities are not only among the elements of the levels but also between
those of different levels such as the objects b and e in Fig. 5.2:

U(leveli) :=
∑

x ∈ leveli

|U(x)| (5.6)

From Eq. (5.6), we can calculate the average number of incomparabilities of the
ith level:

U(leveli) = U(leveli)

|leveli| (5.7)

Applying mainHD16.py of the PyHasse (see Chapter 17) delivers three his-
tograms (Fig. 5.3).

The outcomes shown in Fig. 5.3 confirm that its Hasse diagram can be considered
as having a triangular shape.

a

b c

d e f

Fig. 5.3 Top: Hasse diagram; bottom: (LHS) U(leveli), (middle) U(leveli), and (RHS) |leveli| as
function of the lev
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5.2.4 Shapes and Weak or Linear Orders

The shape of a Hasse diagram allows to establish a relation

• through U(leveli) between lev and �hmax
� (x), x ∈ levellev, i.e., between lev and

the ranking intervals and
• between lev(x) and min(h�(x)) (Chapter 3) because in general |O(x)| increases

with lev(x)

as follows:

Rectangular shape: Increasing lev(x) has no strong influence on �hmax
� (x),

x ∈ levellev, because U(leveli) does not change much with lev.
Triangular shape (vertex at the bottom): Increasing lev(x) implies increasing

�hmax
� (x), x ∈ levellev and min(h�(x)), because U(leveli) < U(leveli+1) and

in general |O(x)| becomes larger with lev.
Triangular shape (vertex at the top): Increasing lev(x) implies decreasing

�hmax
� (x), x ∈ levellev but increasing min(h�(x)), because U(leveli) >

U(leveli+1) and |O(x)| increases with lev.

5.3 Down Sets and Up Sets Related to Properties of the Data
Matrix

5.3.1 Idea

So far down sets and up sets are introduced to (i) simplify the Hasse diagram and
(ii) relate �hmax

� (x) with |U(x)|.
In this section, we render a relation between principal down sets and principal up

sets and properties of the data matrix.

5.3.2 Realization

Through Eqs. (2.3) and (2.6)

y ∈ O(x) ⇒ qi(y) ≤ qi(x) and y ∈ F(x) ⇒ qi(y) ≥ qi(x) (5.8)

and

y ∈ ∩ O(xi) ⇒ qj(y) ≤ min(qj(xi)) and y ∈ ∩ F(xi) ⇒ qj(y) ≥ max(qj(xi)) (5.9)

Equations (5.8) and (5.9) couple properties of a poset (down sets and upsets) with
some properties of the data matrix. Hence, navigation through a Hasse diagram,
keeping Eqs. (5.8) and (5.9) in mind, renders some insights into the data matrix:
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a

b c

d

e

f

g

h i

j q1 q2 q3 q4

a 8 4 2 2 
b 1 3 7 2 
c 2 8 1 3 
d 8 0 1 1 
e 2 4 0 1 
f 2 4 8 3 
g 2 7 1 2 
h 8 3 2 1 
i 7 5 0 2 
j 7 8 2 5 

Fig. 5.4 Hasse diagram of (X, IB), X = {a, b, c, d, e, f , g, h, i, j}, IB = {qi : i = 1, . . . , 4}

Application of Eqs. (5.8) and (5.9) is best done for minimal or maximal objects
(Chapter 2) in order to obtain useful, nonempty down sets and up sets.

5.3.3 Illustrative Example

In Fig. 5.4, a Hasse diagram together with its data matrix is shown.

• Object j: q3(j) = 2. The range of q3(x) is 0, . . . , 8. Equation (5.8) tells us that
every object in O(j) must have values in q3 which are less than or equal to 2.

• Object f: q1(f ) = 2. The range of q1(x) is 1, . . . , 8. Equation (5.8) tells us that
for objects b and e (being elements of O(f )), q1 ≤ 2.

• Object a: q4(a) = 2. The range of q4(x) is 1, . . . , 5. Equation (5.8) tells us that
for objects h, e, and d (being elements of O(a)), q4 ≤ 2.

• Object e: e ∈ (O(f ) ∩ O(j) ∩ O(a)). Equation (5.9) tells us that e must have low
values simultaneously in q1, q3, and q4. Especially e ∈ O(i), hence q3(e) = 0 as
q3(i) = 0.

• Object e: q2(e) = 4. Equation (5.8) tells us that q2(x) ≥ 4 for all elements
x ∈ F(e) = {e, a, f , g, c, j, i}.

5.4 Separation of Object Subsets

5.4.1 Motivation

By a Hasse diagram, an ordinal representation of an n × m matrix in a plane is
possible, even if m (the number of attributes (columns of the matrix)) is larger than
2. As such, it is a convenient visualization taking care of the order relations among
the objects due to Eq. (2.3) or (2.6). However, the data profiles (Section 3.5) cannot
directly be seen. Even if POSAC allows an approximate two-dimensional scatter
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plot based on latent order variables, the relation to the original attributes is difficult
to establish. So, why not try a projection of object subsets to a two-dimensional
plane based on the original attributes preserving order theoretical information as
much as possible? Hence the questions are the following:

(1) Which projection? and (2) Which object subsets?
We begin with the second question, give then an answer to the first one. Finally

we discuss an intimate relation between the Hasse diagram and the data matrix.

5.4.2 Separated Subsets, an Illustrative Example

Figure 5.5 shows the Hasse diagram of 11 objects and three attributes.
Naturally the following questions arise:

(1) Why are all the objects of the subset X1 = {m34, m33, m32, m31, m3} not com-
parable with all those of the subset X2 = {m1, m2, m12, 1, m12, 2, m12, 3}? What
are the common properties of X1 and X2 responsible for their separation in the
Hasse diagram?

Beyond this, the second question in Section 5.4.1 is still open: How do we find
such separated subsets in a messy Hasse diagram?

5.4.3 Articulation Points and Separated Object Subsets

Here we are going to answer the second question of Section 5.4.2.
Let nH1 be the number of components in poset (X, IB) and xa be an element of

X/∼= such that (X/∼=−{xa}, IB) has nH2 components with nH2 > nH1, then xa is called
an articulation point. (5.10)

m1

q1 q2 q3

m2

m3

m31

m32

m33
m34

m12, 1

m12, 2

m12, 3

8 9 1
9 8 2
2 6 8
6 7 2
7 6 2
7 7 1

least 1 1 1
2 6 7
1 5 7
1 4 6
1 3 6

m12,1 m12,2 m12,3

m34

m33

m32

m31

m3m2 m1

least

Fig. 5.5 (LHS) Hasse diagram of the data matrix (RHS)
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Fig. 5.6 Hasse diagram
exemplifying the concept
“articulation point”

In Fig. 5.5 the object “least,” in Fig. 5.6 object a is an articulation point. By
deletion of the row of object a (Fig. 5.6) in the data matrix, we obtain two disjoint
subsets X1 = {d, c} and X2 = {b, e, f , g, h} which are components in the partial
order. However, object b is not an articulation point, because {g, h} and {e, f } are
still connected with object a through the transitivity of order relations (Chapter 2).

Let us identify two disjoint subsets X1 and X2 such that for all x ∈ X1 and all
y ∈ X2, x || y. We call such disjoint object subsets separated object sets and the
identification of articulation points is a tool to find separated object subsets, because
their presence is the reason for what we called “approximate components.”

In Fig. 5.6, the subsets {c, d} and {b, e, f , g, h} are approximate components.
Deletion of the articulation point (object a) generates two components.

5.4.4 Separability

5.4.4.1 Motivation

The concept of separability goes the other way round: Instead of trying to find sep-
arated subsets, it is supposed that two candidate subsets are found, and we want to
assess their degree of separation.

5.4.4.2 Concept

Let us identify two disjoint subsets of X/∼= : X1 and X2. The possible number of
relations (i.e., of < or || relations) N(X1, X2) between X1 and X2 is

N(X1, X2) = |X1|∗|X2| (5.11)

Let x ∈ X1 and y ∈ X2, then x || y or x < y or y < x. We count the || relations as
follows:
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|X3|>>1

X1
X2

(a) (b) (c)

Fig. 5.7 (a) Separated
subsets in a schematic
presentation of Hasse
diagrams. (b) and (c)
Examples for which the
scheme (a) may stand

U(X1, X2, IB′) = {(x, y) : x ||IB′y, x ∈ X1, y ∈ X2, X1 ∩ X2 = Ø}, IB′ ⊆ IB
(5.12)

We define the separability, Sep(X1, X2, IB′), as follows:

Sep(X1, X2, IB′) : = |U(X1, X2, IB′)|/N(X1, X2) (5.13)

We note that Sep(X1, X2, IB′) = Sep(X2, X1, IB′).
The separability allows us to characterize any disjoint pair of subsets Xi, Xj ⊂ X

and to find separated subsets without checking the Hasse diagram for articulation
points (Fig. 5.7).

5.4.4.3 Illustrative Example

Figure 5.8 shows a Hasse diagram together with three subsets X1, X2, and X3, Xi ⊂
X. We demonstrate the calculation of Sep (Xi, Xj)1:

|X1| ∗ |X2| = 4, |U(X1, X2)| = 4, Sep(X1, X2) = 1
|X1| ∗ |X3| = 6, |U(X1, X3)| = 6, Sep(X1, X3) = 1
|X2| ∗ |X3| = 6, |U(X2, X3)| = 4, Sep(X2, X3) = 4/6 = 0.666

In the first two cases, the subsets X1 and X2 are separated, whereas subsets X2
and X3 are not separated.

a

b

c

e

f

g

h

i

j

k

l

X1

X2

X3

m

Fig. 5.8 Hasse diagram to
demonstrate the calculation of
separability

1We sometimes simplify the notation by omitting the reference to IB’.
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5.5 Data Matrix and Separation of Object Subsets
in Partial Order

5.5.1 Motivation

So far we have discussed how to find separated subsets. These subsets are found by
applying partially ordered object set and are not necessarily an expression of exter-
nal classification. For example, by inspection of a Hasse diagram, two separated
subsets may be identified which consist of both countries of Asia and Europe. Thus
the interest is in properties of the data matrix that are responsible for this separation.

In this section, our focus is to find a best projection (question 1 in Section 5.4.1)
and how we can find approximate solutions.

5.5.2 Antagonism

5.5.2.1 Concept

It should be possible to relate structural properties of the Hasse diagram, like the
appearance of separated object subsets to properties related to the data matrix.

Let us consider x, y ∈ X and x || y. The singletons {x} and {y} are the simplest
example of separated object subsets. In case of x || y, there are two attributes qi and
qj, i �= j such that qi(x) < qi(y) and qj(x) > qj(y). We say, the separation of x and y
is due to qi and qj. Let us now consider two separated object subsets X1 and X2 with
|X1| or |X2| > 1, then it may be possible that not just one pair of attributes breaks
all comparabilities simultaneously among the (unordered) pairs of X1×X2. Hence,
we have to search for the smallest subset of attributes which simultaneously breaks
all comparabilities of (x, y) ∈ X1 × X2.

If IB’ exists such that x ||IB’y for all x ∈ X1 and all y ∈ X2 with X1, X2 ⊂ X and
Sep(X1, X2) = 1 and IB’ �= Ø, IB’ ⊆ IB, then we call IB’ the set of antagonis-
tic attributes/indicators and abbreviate it by AIB(X1, X2) (antagonistic information
base) and we often write AIB if there is no confusion possible (Simon, 2003; Simon
et al., 2004a, b). AIB contains those attributes which are causing the separation of
subsets X1 and X2: While some attributes of AIB may have large values for objects of
X1 and small values for those of X2, some other attributes have low values for objects
of X1 and large ones for X2. The attributes of AIB separate X1 and X2 because they
are “antagonistic.”

The smallest possible AIB is a pair {qi, qj} such (5.14)
that for all x ∈ X1 and all y ∈ X2, we obtain x || y.

1. This is the most desirable result of antagonism study because then a reason-
able graphical display by a two-dimensional scatter plot may be possible. We
also write that the attributes of AIB “explain” the separation of X1 and X2. The
search for AIB is a computational task and is a tool in the software WHASSE
(Bruggemann et al., 1999), as well as in PyHasse (Bruggemann and Voigt, 2009).
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q1q1

q3q3

(O(m1) ∪ O(m2)) –
{least}

least
(a) (b)

O(m3)–{least}

Fig. 5.9 |AIB| = 2. (a) A
scatter plot of X1 and X2
(Fig. 5.5); (b) a more
complex pattern of two
separated subsets

Example 1: Two attributes are sufficient to explain the separation of two subsets.
We return to the Hasse diagram of Fig. 5.5 and select the subsets X1 =

{m34, m33, m32, m31, m3} and X2 = {m1, m2, m12,1, m12,2, m12,3}. We note that
Sep(X1, X2) = 1. Indeed AIB contains only two attributes q1 and q3, so we are
able to construct a scatter plot (Fig. 5.9).

Figure 5.9 demonstrates the usefulness of the concept of antagonistic attributes:
We see that q1 has large values for X2 and low values for X1, whereas q3 has low
values for X2 but large values for X1, thus explaining the separation of the two
subsets.

It may however be possible that we need more than two attributes to explain the
separation of object subsets (Example 2), and it is possible that even with |AIB| = 2,
the pattern of the separated subsets X1 and X2 is more complex (Fig. 5.9b).

Example 2 (real-life example):
Scientists of the Canadian Center of Inland Waters (CCIW) have developed a

test battery (see Dutka et al., 1986). The responses of this test battery (our indica-
tors) indicate the status of water samples or sediment samples with respect to their
adverse impact on humans and on the environment.

The test battery includes as attributes (i) one fecal test (fecal coliforms, FC),
(ii) two hygienic tests (test for coprostanol and coliforms Escherichia coli), CP and
CH, (iii) one test for acute toxicity, MT (Microtox R© test), and (iv) a genotoxicity
test. Fifty sediment sites, labeled by numbers, were analyzed by applying this test
battery. Figure 5.10 shows the Hasse diagram.

By inspection, we select two subsets X1 and X2 with Sep(X1, X2) = 1:

X1 : = {5, 25, 27, 31, 95} and X2 : = {7, 9, 18, 23, 32}

How many and which attributes out of the five responses of the test bat-
tery explain that separation? Figure 5.11 shows how Sep(X1, X2, IBi) increases,
depending on the number of attributes.

Figure 5.11 demonstrates that four out of five attributes are necessary to explain
the separation of X1 and X2. Therefore in Section 5.5.3, we pose the question: “if
|AIB| > 2, then what?”
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Fig. 5.10 Hasse diagram of sediment samples of Lake Ontario, based on a test battery
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5.5.3 If |AIB| > 2, Then What?

5.5.3.1 Motivation

In the case of |AIB| = 2, there is often a nice pictorial representation possible,
like that shown in Fig. 5.9a. We recover diagrams of this kind several times in the
application part of this monograph. However, if |AIB| > 2, then a 2D scatter plot
allows only an insufficient view on the properties of the data matrix. Nevertheless,
some general insights are possible even if |AIB| > 2: Let us assume that |AIB| =
3 and 1 > Sep(X1, X2, {q1, q2}) > 0.5.

We see that {q1, q2} does not completely explain the separation of X1 and X2.
However, the separability degree is large enough to assume that a scatter plot based
on q1 and q2 is a good starting point. Obviously, some few object pairs (one object
taken from X1 and the other one from X2) are only incomparable if a third attribute
is introduced. So, one may find graphical techniques to indicate the role of the third
attribute to break the remaining comparabilities. We will present several examples in
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the application part (for example, we will construct a 3D scatter plot in the watershed
case study, Chapter 14).

In the following, we will not display possible visualization techniques but
demonstrate by an example that the appearance of separated subsets in the partial
order implies some constraints on the attributes of the data matrix.

5.5.3.2 Structures in the Hasse Diagram Imply Constraints on the Data
Matrix

Let us think of a scatter plot where the separation is not complete, like in Fig. 5.12.
There are the subset X2 = X20 ∪ X21 ∪ X22 and the subset X1. The subsets X1

and X20 are large in comparison to X21 and X22. X1 and X20 alone would be com-
pletely separated by the attributes q1 and q2. However, X21 and X22 contain objects
which are comparable with some of X1, thus causing an incomplete separation of
X1 and X2. The third attribute q3 has to break these comparabilities. A scatter plot
(Fig. 5.12) will serve as an example.

The following observations are based on the assumption that a geometrical con-
figuration as in Fig. 5.12 holds. In our experience, this kind of scatter plot is quite
common. We define

Xi < Xj : ⇔, for all x ∈ Xi, for all y ∈ Xj : x < y
Xi || Xj : ⇔, for all x ∈ Xi, for all y ∈ Xj : x || y

To accomplish a complete separation by one and only one attribute q3, the
attribute must necessarily lead to the following order relations:

X21>q3X1 and X22<q3X1 (5.15)

Before we show how the structure of the Hasse diagram (existence of separated
subsets) implies constraints on the data matrix, we need a compact notation:

q3(X) : = {q3(x), x ∈ X} and q3(X1) > q3(X2) : ⇔, for all x ∈ X1 and

all y ∈ X2 : q3(x) > q3(y)

q2

q1

X21

X20

X22

X1

Fig. 5.12
X2 = X20 ∪ X21 ∪ X22. X1 is
separated from X20
completely. There may be
some overlap of X20 with X21
and X22 (indicated by broken
lines)
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X2

X1
q3

Fig. 5.13 Presentation of the
order relation with respect to
q3 on the line of real
numbers: q3(X2) < q3(X1)

We can represent q3(X1) > q3(X2) as closed intervals on the line of real numbers
(Fig. 5.13).

We show that the assumption (a) q3(X1) > q3(X20) or (exclusively (b) q3(X1) <

q3(X20)) together with Eq. (5.15) leads to a contradiction of the assumption
|AIB| = 3.

In the case of (a), we find X21>q3X1, X21<q1X1, X22<q3X1, X22>q1X1, X20<q3X1
and X20>q1X1. Hence X1 ||{q1, q3} (X21 ∪ X22 ∪ X20).

Similarly in the case of (b), we find X1 || {q2, q3} (X21 ∪ X22 ∪ X20).
Assumptions (a) and (b) imply that only two attributes would explain the

separation to 100% which contradicts |AIB| = 3.
Therefore

|AIB| = 3 ⇒ q3(X1) ∩ q3(X20) �= Ø or q3(X20) ∩ q3(X1) �= Ø (5.16)

Together with Eq. (5.15), we arrive at Fig. 5.14, which summarizes the result.

or

X21

q1

q2

q3

q3

q3

q3

X1 X20 X22

or

or
Fig. 5.14 Schematic
representation of the intervals
of the object sets if
|AIB| = 3
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Assuming the geometrical configuration such as in Fig. 5.12, we see that sep-
arated subsets with |AIB| = 3 imply that q3(X20) or q3(X1) must be within an
interval, with an upper limit by the minimum value of q3(X21) and a lower limit by
a maximum value of q3(X22), and that the intervals q3(X1) and q3(X20) must have a
common intersection.

A 3D model within a real case study can be seen in Chapter 14 (Fig. 14.3).

5.6 Dominance and Separability

5.6.1 Motivation

Let us think of a poset (X, IB) with many objects. Often there is an additional
information available by which a partitioning of X is possible. For example, stu-
dents in a class may be evaluated by their knowledge in different disciplines. The
set of students can be partitioned by the regions from where they come. Is it pos-
sible to rank the regions on the basis of the order relations among the students?
This question will normally be answered by an appropriate aggregation by which
attribute values of students of a certain region are transformed for the correspond-
ing region (by forming means, or medians or adding up, etc.). Here we outline that
a procedure is available which does not need to define an aggregation function to
perform the transition from the microscale (the students and their evaluations in
different disciplines) to a macroscale (regions and their evaluation with respect to
different disciplines).

5.6.2 Concept

For any two subsets X1, X2 ⊂ X/∼=, X1 ∩ X2 = Ø, Sep(X1, X2, IB) may be between
0 and 1. We define

Dom(X1, X2) : = |{(x, y) ∈ X1
∗X2, x ≥ y}|/(|X1|∗|X2|)

Dom(X2, X1) : = |{(x, y) ∈ X1
∗X2, x ≤ y}|/(|X1|∗|X2|) (5.17)

and

Sep(X1, X2) : = |U(X1, X2)|/(|X1|∗|X2|) = |{(x, y) ∈ X1
∗X2, x || y}|/(|X1|∗|X2|)

then

Dom(X1, X2) + Dom(X2, X1) + Sep(X1, X2) = 1
Dom(X1, X2) �= Dom(X2, X1), Dom(Xi, Xj) ∈ [0, 1]

(5.18)

We speak of Xi dominates Xj to the degree Dom(Xi, Xj). The dominance relation
can be represented as a directed graph (digraph) as follows: (i) each subset Xi is
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drawn as a vertex labeled with i, (ii) vertices are connected by a directed edge (i,
j) if Dom(Xi, Xj) > 0, and (iii) the directed edges are weighted by Dom(Xi, Xj) and
pointing from vertex i to vertex j. The directed and weighted graph – a network –
can be transferred into a simple digraph as follows:

If Dom(Xi, Xj) > ε, then (i, j) are connected by an edge starting from i and
pointing to j. If Dom(Xi, Xj) ≤ ε, then there is no connection from vertex i to
vertex j. For an example, see Section 5.6.4.

5.6.3 Is the Dominance Relation a Partial Order?

Is the Dom(X1, X2) > 0 and Dom(X2, X3) > 0 sufficient to call dominance relations
among subsets a partial order among subsets? The following example (Fig. 5.15)
shows that a dominance relation is not necessarily transitive.

The number of elements in each of the three subsets is |X1| = 3, |X2| = 6, and
|X3| = 3.

Dom(X1, X2) = 9/18, Dom(X2, X3) = 9/18; however, Dom(X1, X3) = 0.
Restrepo and Bruggemann (2008) show that, for ε ≥ 0.5, the digraph is a partial

order.

5.6.4 Illustrative Example

In Fig. 5.16, a Hasse diagram is shown. Furthermore, three sets are defined by
encircling objects: X1 = {h, f , b}, X2 = {e, a}, and X3 = {d, g, c}.

By counting one finds

Dom(X1, X2) = 5/6, Dom(X2, X1) = 0, Sep(X1, X2) = 1/6
Dom(X2, X3) = 0, Dom(X3, X2) = 3/6, Sep(X2, X3) = 3/6
Dom(X1, X3) = 1/9, Dom(X3, X1) = 0, Sep(X1, X3) = 8/9

X1

X2

X3Fig. 5.15 Three subsets X1,
X2, X3 mutually disjoint
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Fig. 5.16 Dominance of subsets of X due to the order relations of their elements
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Fig. 5.17 (LHS) Graphical user interface of PyHasse module dds8.py and the weighted directed
graph (RHS) corresponding to Fig. 5.16

We apply the PyHasse program “dds8.py” (see Chapter 17). Figure 5.17 shows
its graphical user interface (LHS). After the user input of ε, the program dds8.py
provides the corresponding directed graph (RHS).

From the directed graph (also called a dominance diagram), we can derive the
dominance sequence: X1 > X3 > X2.

The articulation point search or depth-first search for graph theoretical compo-
nents of the Hasse diagram may be helpful. Whenever promising subsets are found,
their separation can be assessed by examining the separability. Once separated sub-
sets are found, we can identify the corresponding smallest “antagonistic indicator
base,” AIB, capable of explaining their separation. We provide an example in which
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|AIB| > 2 has implications on the data matrix. If a partition of the object set X
is available by external knowledge, we can calculate not only the separability but
also dominance. Instead of searching for order relations referring to objects, we can
scale up and search for relations among the subsets of the partition. Introduction of
a threshold ε leads to a digraph in which subsets relate to each other. This digraph
is a partial order if Dom(Xi, Xj) > ε ≥ 0.5.

5.7 Summary and Commentary

Partial orders can be very complex; therefore we need different tools to perform an
adequate analysis. The shape of the Hasse diagrams and the analysis of the incompa-
rabilities per level allow an overview about the data matrix with respect to the order
relation it is inducing. It turns out that the concept of level is very useful. Another
tool is provided by down sets or up sets because they allow some insights into the
data profiles. An “ideal object” may just be found by an appropriate application of
Eq. (5.9).

By the visualization of partial order by Hasse diagrams, the concept of a struc-
ture of a partial order was motivated. The vague concept of structure of posets can
be sharpened by the concept of separated subsets. In general it is not easy to find
separated subsets.
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Chapter 6
Hasse Diagrams Based on Transformed
Data Matrices

6.1 Motivation

We have seen in Chapter 5 as to why and how the structure of partial order (X, IB)
can be related to properties of the data matrix. However, partial order with many
objects can lead to messy Hasse diagrams with too many lines hiding the structure.
What may be the reason for complexity in such diagrams? The number of objects
|X| is not necessarily causing messy Hasse diagrams because chains of height |X| or
antichains of width |X| certainly allow clear visualizations. There is another reason
for complexity: In partial orders, we obtain either x < y or x ‖y even if the numerical
difference ε between attribute values is small:

1. If q1(x) = q10(x) + ε, q2(x) = q20(x) − ε, ε > 0, and q1(y) = q10(x), q2(y) =
q20(x), then x ‖y , “irrelevant incomparabilities.”

2. If q1(x) = q10(x) + ε, q2(x) = q20(x) + ε, ε > 0, and q1(y) = q10(x), q2(y) =
q20(x), then y < x, “irrelevant comparabilities.”

This ordinal interpretation of the data matrix is at the root of cover relations (see
Chapter 2) and lines in the Hasse diagram, although they are representing irrelevant
incomparabilities or comparabilities. Irrelevant incomparabilities or comparabilities
may better be interpreted as equivalence relation.

The following question arises: How can we manipulate Hasse diagrams to draw
useful information, without losing the connection to the original data matrix?
Chapter 6 outlines some answers and is organized as follows:

1. complexity (“ordinal modeling”) in more detail,
2. discretization procedures,
3. the concept of fuzzy partial order, and
4. the concept of p-algorithm.

75R. Brüggemann, G.P. Patil, Ranking and Prioritization for Multi-indicator Systems,
Environmental and Ecological Statistics 5, DOI 10.1007/978-1-4419-8477-7_6,
C© Springer Science+Business Media, LLC 2011
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6.2 Ordinal Modeling

Complexity of (X, IB) can be handled by

1. transformations of the data matrix without aggregations of the attributes (object-
related manipulations) and

2. suitable aggregations by which the multitude of phenomena is condensed to an
averaged behavior (attribute-related manipulations) (see Chapter 7).

Any kind of transformation which helps us to find out the “ordinal truth” of
the data matrix we call “ordinal modeling.” Assume a mapping which relates two
posets, (X, IB), based on raw data matrix, and (X, IB)T, based on certain transfor-
mations. If the map (X, IB) → (X, IB)T is order preserving (Chapter 3), then any
order relation once found in a messy Hasse diagram will be reproduced in the trans-
formed one. Therefore, we can answer the same questions posed on the original
Hasse diagram without having to worry about irrelevant relations.

6.3 Discretization of Attributes, Continuous in Concept

6.3.1 Method

There are two variants of discretization:

1. equidistant discretization (Bruggemann and Bartel, 1999) and
2. equidistributional classification (will not be discussed here).

6.3.1.1 Equidistant Discretization

Performing an equidistant discretization, an interval I(qi) corresponding to each
attribute, i.e., mini and maxi, must be found. Often we take mini and maxi from
the data matrix:

I(qi) = [min
x

(qi(x), max
x

(qi(x))], x ∈ X (6.1)

The interval I(qi) is subdivided in K(qi) subintervals having the same lengths
Ik(qi), k = 1, . . . , K(qi), such that

I(qi) =
⋃

Ik(qi)

with k = 1, . . . , K(qi), and

Ik(qi) = mini + maxi − mini

K(qi)
· [k − 1, k) (6.2)

with k = 1, . . . , K(qi).
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If k = K(qi) then the closed interval is to be taken.
If there are no contextual arguments, then it is recommended

K(q1) = K(q2) = . . . = K(qm) = K (6.3)

Through selection of mini, maxi, and K(qi) (i = 1, . . . m), a discretization scheme
is defined.

By Eq. (6.2) we obtain scores si(x) of object x:

si(x) = k : ⇔ qi(x) ∈ Ik(qi) (6.4)

The collection s1(x), s2(x), . . . , sm(x) is as usual denoted as s(x). Often the matrix
with entries si(x) is considered as a “new” data matrix and we write qi(x) not to
overburden the text with new symbols.

6.3.1.2 Discretization is Order Preserving

To prove that the discretization (Eqs. (6.1) and (6.2)) is order preserving, it is
sufficient to show that q(x) < q(y) ⇒ s(x) ≤ s(y).

q(x) < q(y) ⇒ qi(x) ≤ qi(y) ⇒ there are some qi ∈ IB1 with qi(x) = qi(y) and
some qj ∈ IB2 with qj(x) < qj(y). Take qi ∈ IB1, then si(x) = si(y), take qj ∈ IB2,
then sj(x) ≤ sj(y) by Eq. (2.3). Hence si(x) ≤ si(y) with qi ∈ IB1 ∪ IB2.

What happens in the case of x ‖y?
Then there are two disjoints IB1 and IB2 such that IB = IB1 ∪ IB2:

qi ∈ IB1: qi(x) ≤ qi(y) with at least one i∗ with qi∗ (x) < qi∗ (y) and
qj ∈ IB2: qj(x) ≥ qj(y) with at least one j∗ with qj∗ (x) > qj∗ (y).

From qi(x) ≤ qi(y) and qj(x) ≥ qj(y), we get the following possibilities (Fig. 6.1).
In Fig. 6.1, we see the following:

All combinations including (4): x ‖y in (X, IB) → x ‖y in (X, IB)T
All combinations consisting solely of (1): x ‖y in (X, IB) → x ∼= y in (X, IB)T

si(x) = si(y)

si(x) < si(y) sj(x) > sj(y)

sj(x) = sj(y)(1)

(2) (3)

(4)

qj(x) ≥ qj(y), qj ∈ IB2qi(x) ≤ qi(y), qi ∈ IB1  

Fig. 6.1 Incomparabilities in
(X, IB) and the outcome in
(X, IB)T
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Combination (2): x ‖y in (X, IB) → x > y in (X, IB)T
Combination (3): x ‖y in (X, IB) → x < y in (X, IB)T

6.3.2 Advantages and Disadvantages

Advantages:

1. The numerical procedure is easily performed.
2. The method preserves the order of the original poset.

Disadvantages:

1. There is some arbitrariness in selecting the parameters maxi and mini and K(qi).
2. At the boundaries of the subintervals, irrelevant comparabilities and incompara-

bilities still remain.
3. Order reversals (see next section).

6.3.3 Order Reversal

Discretizing the attributes, one after another, is order preserving as was discussed
in Section 6.3.1.2. Incomparabilities may remain incomparabilities or transform to
> or < relations, according to different discretization schemes. We can construct
an example where in one discretization scheme, x <(X,IB)T1 y, whereas in another
discretization scheme, x >(X,IB)T2 y. This phenomenon is called an order reversal
(Fig. 6.2).

Hence we have to be aware of the order reversals. The only way to check the
selected discretization is to compare it with others (Bruggemann and Welzl, 2002).

6.3.4 Discretization and Shape

Discretization often leads to Hasse diagram with a triangular shape (vertex at the
bottom) because of a simple combinatorial effect: Consider an indicator vector of
only three components, and consider (1/3)∗S = (1/3)∗

∑
qi(x) as a measure for the

average values in each level of a Hasse diagram. Then the number of realizations of
a given S can be obtained from the formal power series:

m∏
i=1

(1 + y + y2 + ... + yK(qi))

The product contains terms like ai
∗yi. The number of possible realizations of the

sum S can be obtained from the coefficients ai. It is clear that
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ee e

d

c

a b

c d

a b

c

d

a b

K = 3 original data K = 4 

q1: q2:

original original

1 5

6 1

8 7

9 6

12 10

q1

three
classes

q2

three
classes

a 1 2

b 2 1

c 2 2

d 3 2

e 3 3

q1: q2:

four
classes

four
classes

1 2

2 1

3 3

3 2

4 4

Fig. 6.2 Data matrices are shown at the top. For objects c and d, we find c < d or c > d, depending
on K

• there is only one possible vector for which S = 0;
• there is an increasing number of realizations if S is increasing until a middle range

of S is reached;
• there is a decreasing number of realizations if S is increasing beyond the middle

range; and finally
• there is only one realization if all attributes get their maximum score K(qi).

Therefore, the shape of a Hasse diagram after discretization is schematically
shown in Fig. 6.3.

Fig. 6.3 The shape of a
diamond arises from the
number of all possible
vectors; the grey shape
indicates the number of
realizations due to a data
matrix
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a

b

c

d

e

f

g

h i j

a

b

c e

h

j

(a): (X, IB) (b): (X, IB)T

Fig. 6.4 Hasse diagrams based (a) on the original data (X, IB) and (b) on scores (X, IB)T.
Equivalent: {g, f, c}, {h, i}, {a, d}

6.3.5 Illustrative Example

In Fig. 6.4, two Hasse diagrams are depicted, one with the data matrix shown in
Table A.1 and the second after discretization of each attribute. The discretization
scheme is as follows:

K(q1) = K(q2) = K(q3) = K = 3 (Eq. (6.3)).

maxi and mini are derived from the data matrix according to Eq. (6.1).
Thus, the attributes q1, q2, and q3 get the scores 0, 1, or 2.
Instead of the original values for qi, an object gets the scores si, and from them a

Hasse diagram is obtained.
One sees that

• all < relations in (a) are transformed in either < or ∼= relations;
• some || relations are transformed to equivalence relations, see h ||(X,IB)i;
• some || relations are transformed to < relations, see objects j and h. (6.5)

6.4 Fuzzy Partial Order

6.4.1 Method

The very idea of fuzzy partial order is to replace the crisp < relation by a fuzzy
subsethood. The motivation for that can be demonstrated by Fig. 6.5, where two
objects with a mild crisscrossing of their data profiles are shown.
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q1 q2 q3 q4

qi(.)Fig. 6.5 The bold lines
represent the data profile of
object x and the broken lines
represent that of object y

In Fig. 6.5, object x has a data profile which crisscrosses that of object y.
Therefore, the application of the product order (Chapter 2) would lead to x ‖y .
However, evidence shows that object x is “almost” below object y. The only excep-
tion is in the attribute q3. By a fuzzy membership function the wording “almost
below” becomes quantified.

6.4.1.1 Kosko Fuzzy Subsethood

Let a, b be two objects characterized by m dimensionless (normalized) attributes,
then:

SH(a, b) =

m∑
i=1

min(qi(a), qi(b))

m∑
i=1

qi(a)
, if

m∑
i=1

qi(a) �= 0, else : SH(a, b) = 1 (6.6)

SH(a,b) is the membership function, describing to which extent object a can be
considered as being below object b.

If a < b, then SH(a, b) = 1,
if a ‖b : 0 ≤ SH(b, a) < 1 , both SH(a, b) and SH(b, a) ∈ [0, 1). If in Fig. 6.5,

object x has the data profile (0.2, 0.3, 0.1, 0.45), whereas object y has (0.5,
0.6, 0.08, 0.6), then SH(x, y) = 0.2+0.3+0.08+0.45

0.2+0.3+0.1+0.45 = 0.98 and SH(y, x) =
0.2+0.3+0.08+0.45
0.5+0.6+0.08+0.6 = 0.58.

The subsethood of x relative to y has a large membership, confirming that x is
almost below y. It also tells us that y can be considered to be less than x, however to
a low degree.

It may be interesting to note that the Kosko measure evaluates incompara-
ble objects x, y by two numbers SH(x, y) and SH(y, x). Therefore, it seems to be
attractive to establish a relation between SH(.,.) and the mutual probability.
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6.4.1.2 Relational Matrix

Application of SH for all object pairs leads to a matrix R (labeled by object iden-
tifiers) with entries between 0 and 1. The matrix R cannot be considered as being
an expression for partial order. The crucial point is the transitivity. The transitivity
axiom as formulated in Chapter 2 refers to crisp relations which can be written as
R(a, b) = 1 and R(b, c) = 1 implies R(a, c) = 1. In the setting of fuzziness, three
fractional numbers are to be compared and for fuzzy transitivity, it is convenient to
require

min(R(a, b), R(b, c)) ≤ R(a, c) (6.7)

The matrix R, obtained from the Kosko measure, i.e., R(a, b) = SH(a, b), does
not necessarily obey Eq. (6.7). Hence an approach is needed to find a transitive
closure for R, i.e., to replace some entries in R such that Eq. (6.7) is fulfilled.

6.4.1.3 Transitive Closure

De Baets and De Meyer (2003) suggest an approach that guarantees fuzzy transitiv-
ity by replacing as less entries of R as possible. They propose the “matrix method”:
There the essential step is to calculate R(n) from R(n−1) as follows:

Start: R(1)(a, b) = SH(a, b)

Interation: R(n)(x, y) = max[min(R(n−1)(x, w), R(n−1)(w, y)], for all w ∈ X, (n)
indicating the nth step in the iteration loop.

Stop: When the matrices R(n) and R(n−1) no more differ by a certain threshold ε,
the iteration stops, say at R.

(6.8)

6.4.1.4 α Cut

The final matrix R is transitively closed, hence consistent with partial order. It may
have at most n2 different values. For defuzzification of R, it is appropriate to rank
order its entries and call them α cuts: α1 ≤ α2 ≤ . . . ≤ αn2 = 1, so that we can
perform the transformation:

Rcrisp(x, y) =
{

1, if R(x, y) ≥ α

0, else
(6.9)

Arbitrary choice can be made for the threshold α. Three cases arise in the
application of Eq. (6.9):

1. Rcrisp(x, y) = Rcrisp(y, x) = 0: x and y are incomparable
2. Rcrisp(x, y) = 1, Rcrisp(x, y) = 0: x < y or Rcrisp(y, x) = 1: x > y
3. Rcrisp(x, y) = Rcrisp(y, x) = 1: x ∼= y
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6.4.1.5 Tolerance

If α has a low value, then almost all entries of R will get a 1, hence there is little
differentiation among the objects. If however α = 1, then only the entries having
value 1 in the original SH matrix (Eq. (6.6)) will be retained, and the order relations
of the original data matrix are reproduced. If α is varied, we find the following:

• For α ∈ (αi, αi+1), the crisp matrix R does not depend on α.
• The α values taken from different intervals of α cuts will induce different crisp

matrices R and therefore different equivalence classes and partial orders.

It is convenient to call α a tolerance level.

6.4.1.6 Extraction

The matrix R(crisp) contains not only the order relations but also equivalence rela-
tions. In order to obtain a Hasse diagram, equivalent elements must be identified
and the order relations of the representative elements extracted.

6.4.2 Advantages and Disadvantages

6.4.2.1 Advantages

The partial orders, indexed by α, are order preserving:

(X, IB)α1 ⊆ (X, IB)α2, α1 > α2 (6.10)

(Van de Walle et al., 1995)
Hasse diagrams evolve in a systematic manner, depending on α.

6.4.2.2 Disadvantages

Equation (6.6) implies that a sum is to be performed over different attributes. A
sacrilege in the eyes of partial order theory! Furthermore, an objective selection
of the α value is difficult. Annoni et al. (2008) propose a measure for selecting a
suitable α value.

6.4.3 Illustrative Example

In Table 6.1, the labels of the two matrices are as follows: object a, first row/column;
object b, second row/column; object c, third row/column. SH: One can see that a <
b and a < c. The entries for both b, c and c, b have deviating values from 1, thus
documenting that b and c are incomparable. The transitive closure of SH is matrix
R(1): For example, R, (c, b) is obtained as follows:
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Table 6.1 Illustrative example for fuzzy analysis (performed with PyHasse, see Chapter 17)

Attributes

Objects q1 q2

a 0.1 0.2 SH =

⎛
⎝

1.0 1.0 1.0
0.214 1.0 0.71
0.27 0.91 1.0

⎞
⎠ R(1) =

⎛
⎝

1.0 1.0 1.0
0.27 1.0 0.71
0.27 0.91 1.0

⎞
⎠

b 0.6 0.8
c 0.2 0.9

The attributes q1 and q2 are considered dimensionless
The fuzzy relation matrix SH and the transitive closure R(1) are shown

max[min(0.27, 1), min(0.91, 1), min(1.0, 0.91)] = max[0.27, 0.91, 0.91] = 0.91

The matrix method changed one entry: SH(b, a) = 0.214 is replaced by the value
0.273 (indicated by bold literals). There are four different values in the transitive
closure, matrix R(1) and correspondingly four different α cuts: 0.273, 0.714, 0.909,
and 1.0.

If we started with α = 0.2, which is less than the smallest entry of R(1),
then R(1)(x, y) > α, hence the matrix entries would contain nothing else than 1.
Therefore – with that high degree of tolerance – all numerical differences are
ignored and consequently all three elements belong to one equivalence class.

Let us select α = 0.4: We obtain a crisp matrix “cq” as follows:

a b c

cq(α = 0.4) =
a :
b :
c :

⎛
⎝

1 1 1
0 1 1
0 1 1

⎞
⎠

Objects b and c are considered as equivalent. The extraction leads to a reduced
matrix.

Order relations extracted from cq due to α are summarized in the matrix ‘order’.

a b

order = a :
b :

(
1 1
0 1

)

(order = ζ +1, 1 being the unit matrix, ζ; see Chapter 3). The corresponding partial
order is the second (from the left) Hasse diagram in Fig. 6.6.

We select α = 0.8:

a b c

cq (α = 0.8) =
a :
b :
c :

⎛
⎝

1 1 1
0 1 0
0 1 1

⎞
⎠
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α = 0.2  α = 0.4 α = 0.8 α = 0.95 

b, c 

a 
a 

c 

b b c 

a 
a, b, c 

0.273 0.714 0.909

Increasing tolerance

α

Fig. 6.6 Evolving partial orders depending on α

This matrix indicates that there is no more an equivalence relation but a chain:
a < c < b (see also Fig. 6.6).

Finally, if α = 0.95, then we obtain

a b c

cq (α = 0.95) =
a :
b :
c :

⎛
⎝

1 1 1
0 1 0
0 0 1

⎞
⎠

The matrix cq(α = 0.95) represents the partial order of the raw data matrix
(Fig. 6.6).

6.5 An Algorithm to Focus on Priority Objects

6.5.1 Concept

Often the task of a partial order analysis is directed toward the identification of
priority objects. The so-called p-algorithm (Bruggemann et al., 1999) supports this
task and consists of two steps:

1. Consider one of the attributes qi. Select a limiting value qi0 such that P% of
objects are excluded, because their qi values are less than qi0.

2. Perform the transformation:

pi(x) =
{

qi(x), for all x ∈ X for which qi(x) ≥ qi0
−∞, else

(6.11)
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The fraction of P/100 of all objects will be excluded by taking an appropriate
high value of qi0. We are speaking that these objects are “put into the swamp, SWi”
(with respect to the attribute qi):

SWi : = {x ∈ X : qi(x) < qi0} (6.12)

SW =
⋂

i=1,..., m

SWi

The set of remaining objects is as follows:

RM = X −
m⋂

i=1

SWi (6.13)

6.5.2 Properties of p-Algorithm

6.5.2.1 p-Algorithm is Order Preserving

We have to show that x ≤ y in (X, IB) ⇒ x ≤ y in (X, IB)T. Subscript “T” indicates
that a transformation due to the p-algorithm is performed.

We think of three cases:

1. There are some qi with qi(x) < qi(y) and qi(x) gets −∞. Then the ≤ relation
remains.

2. There are some qj with qj(x) < qj(y) and qj(y) gets −∞. As qj(x) is supposed to
be less than qj(y), qj(x) must also get to −∞. Then the ≤ relation remains.

3. There are some qk with qk(x) < qk(y) and both qk(x) and qk(y) get to −∞. Then
the result depends on the result of the first two cases. Because x ≤ y in (X, IB),
either x∼=(X, IB)T y or x≤(X, IB)T y will be obtained.

Therefore, the p-algorithm is order preserving.

6.5.2.2 Swamp and Remaining Set

Let us consider the object set X and two attributes.

(i) Correlation: If attribute q2 were correlated with the first one, q1, then the
selection of q10 which puts (P/100)∗ |X| into the swamp with respect to attribute
q1 would do the same for attribute q2. Hence, in the extreme case of a set
of m high-correlated attributes, the same objects would be excluded, and only
(1 − P/100)∗ |X| would remain for a partial order study:

SW1 = SW2 and RM = X − SW1 = X − SW2 (6.14)
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(ii) Anticorrelation: Let us now imagine that two attributes q1 and q2 are anticor-
related, then q10 would send a certain subset of objects in the swamp, and q20
would put another different subset of objects into the swamp:

RM = X −
m⋂

i=1
SWi |RMac| ≤ |RMc| ,

With superscripts ac and c indicating anticorrelation and correlation,
respectively (6.15)

Figure 6.7 may help understand the two extreme cases.
Usually there are more than two attributes and their behavior is neither corre-

lated nor anticorrelated. The elements of X which get at the same time −∞ for all
attributes are forming one equivalence class, the swamp. All other objects may have
some components in their data row, having values �= −∞. They undergo further
partial order analysis.

To assess as to how many objects may be put into the swamp, we estimate the
number of elements:

|SW| = (P/100)κ∗ |X| (6.16)

a, b, c, d, e, f, g, h, i, j

a, b, c, d, e, f, g, h, i, j

swamp, consisting of
a,b,c,d,e,f,g,h

objects i, j
for further analysis

j, i, h, g, f, e, d, c,   b, a

a, b, c, d, e, f, g, h,  i, j

swamp, consisting of
c, d, e, f, g, h

objects a, b, i, j
for further analysis

Extreme case 
of correlated 
attributes

Extreme case 
of 
anticorrelated
attributes

q0

Fig. 6.7 The correlative character of the multi-indicator system determines the number of objects
for further analysis
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κ is a function of the correlation properties of the attributes.
κ = 1 for perfectly correlated attributes and κ > 1 for other cases.

Heuristically, we set κ ∈ [1, |IB|].

6.5.2.3 Shape

Often Hasse diagrams, resulting from the p-algorithm, get the shape of a triangle,
with the vertex at the bottom. Can we give an explanation? Similarly of what was
discussed in Section 6.3.4, we find the following (Fig. 6.8).

If we set qi(x) �= −∞ formally 1, and qi(x) = −∞ formally 0, then a sum
S = �qi(x) measures the average values in each level. The lowest and the highest
values of S can be realized by only one vector, namely (0,0,. . .,0) and (1,1,. . .,1).
For interim values of S, there are many realizations possible. Hence the shape of
Hasse diagrams looks similar to diamonds as shown in Fig. 6.8.

In Fig. 6.8 the shape of a diamond arises because of the combinatorial number of
possible realizations of vectors. The grey parts indicate actual realizations due to an
empirical data matrix.

Where and why the p-algorithm may be applied:

1. Focus on most important objects (“hot spot detection”).
2. By putting many objects into the “swamp,” one gets a clearer Hasse diagram.
3. Let (X, IB) be the poset of the original and (X, IB)T that after performing the

p-algorithm. Then the map (X, IB) → (X, IB)T is order preserving.
4. The data-driven navigation (see below) is facilitated.

6.5.3 Illustrative Example

6.5.3.1 Hasse Diagrams

In Fig. 6.9, a Hasse diagram together with its data matrix is shown.
Performing the transformation of putting 80% of objects into the swamps

SWi(i = 1, . . . , 4) results in a highly simplified Hasse diagram (Fig. 6.10).

(a) (b) (c)Fig. 6.8 Shapes of Hasse
diagrams after p-algorithm
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a b

c

d ef

gh

i jk

l

q1 q2 q3 q4

a 1 2 4 5
b 2 3 1 6
c 3 6 2 1
d 3 3 7 8
e 8 9 3 4
f 5 2 7 1
g 3 3 5 6
h 2 1 5 8
i 8 2 6 1
j 4 8 3 8

Fig. 6.9 Hasse diagram and its data matrix

a

cd

ef

h

ijk

l

Fig. 6.10 Hasse diagram
after p-algorithm, with
P = 80%. Equivalence class,
the swamp:{a, b, g}

6.5.3.2 Swamp

The swamp has only three objects. If κ = 4 is applied, then 5 objects are put into the
swamp and if κ=1, then approximately 10 objects are put into the swamp. Obviously
there are attributes which are anticorrelated (Table 6.2).

The range of ρi,j, i �= j, is –0.533 to 0.221 confirming the overall impression of
attributes pretty anticorrelated.

6.5.3.3 Navigation

We navigate through the Hasse diagram by means of the tools described in
Chapter 5:

• Object k: After p-transformation, its profile (see Chapter 3) is (–∞, 5, 8, 8), hence
all objects ∈ O(k) must have a profile (−∞, q2(x) ≤ 5, q3(x) ≤ 8, q4(x) ≤ 8).

• Object j: After p-transformation, its profile (see Chapter 3) is (–∞, 8, –∞, 8),
hence all objects ∈ O(j) must have a profile (−∞, q2(x) ≤ 8, −∞, q4(x) ≤ 8).
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Table 6.2 Spearman correlation index, ρ

Correlations

q1 q2 q3 q4

Spearman
rho

q1 Correlation
coefficient

1.000 0.147 –0.072 –0.533

Sig. (two-tailed) 0.650 0.824 0.074
N 12 12 12 12

q2 Correlation
coefficient

0.147 1.000 –0.231 0.124

Sig. (two-tailed) 0.650 0.470 0.702
N 12 12 12 12

q3 Correlation
coefficient

–0.072 –0.231 1.000 0.221

Sig. (two-tailed) 0.824 0.470 0.490
N 12 12 12 12

q4 Correlation
coefficient

–0.533 0.124 0.221 1.000

Sig. (two-tailed) 0.074 0.702 0.490
N 12 12 12 12

• Object e: After p-transformation, its profile (see Chapter 3) is (8, 9, – ∞,–∞),
hence all objects ∈ O(e) must have a profile (q1(x) ≤ 8, q2(x) ≤ 9, −∞, −∞).

• Object c: c ∈ O(j) ∩ O(e); according to Eq. (5.9), the profile of c must be
(−∞, q2(x) ≤ 9, ∞, −∞).

6.6 Attribute Value Sensitivity

Chapter 6 is devoted to changes of the data matrix. Changing a single entry of the
data matrix to get insight into attribute value-related sensitivity may therefore be a
relevant section here.

Concerning the attribute value sensitivity, there are two questions:

• What effect does a change in a cell of the data matrix have for the position of the
corresponding object in the Hasse diagram?

• What effect will it have on the linear or the weak order?

6.6.1 Basic Idea

We assume that the attributes are discretized to get k different scores (see Section
6.3 for more details). Attribute value sensitivity analyzes the effect of changing
the score of a certain attribute by an amount � to the partial order in terms of
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|O(x)|, |F(x)|, |U(x)| as well as |S(x)| and |P(x)|. We call these quantities “charac-
teristics of the considered object” and denote them as C(x, IB) and if no confusion
is possible, we can even denote as C.

If � is varying, while qi ∈ IB and x ∈ X are fixed, then a line graph of C vs � is
useful (Fig. 6.11).

Depending on the property C, on x ∈ X, and on qi ∈ IB, one is observing
the thresholds �u and �d with different numerical values. Both thresholds can be
considered as inertia of the poset against increasing or decreasing the value of qi(x).

If � is fixed (say at 1), x ∈ X is selected while browsing through IB, then a
representation of the results by a histogram may be useful (Fig. 6.12).

6.6.2 Triangular Representation of Partial Orders

If we want to analyze the effect of � on cells of the data matrix and their
posetic impact, then we must simultaneously consider |F(x)|, |U(x)|, and |O(x)|
(Chapter 3). These three quantities obey the equation |F(x)|+|U(x)|+|O(x)| = n+1
(see Section 3.7). Therefore, any object can be located as a point in an equilateral
triangle of altitude n+1 with vertices at O, F, and U.

Any line perpendicular to an edge, say FU, and connected with the point x mea-
sures the coordinate |O(x)|. Hence for an object x in Fig. 6.13, |U(x)| < |O(x)|

C(x,IB)

Δ

0
Δd Δu

Fig. 6.11 Sketch of C(x, IB)
vs �; the black circle marks
the “standard” (see text)

C
(x

,I
B

)

q1 q2 qm

Δ = constant

Fig. 6.12 Sketch of C(x, IB) vs qi(x). Sometimes it is useful to use a stacked bar diagram to see
simultaneously more than one property C of the partial order



92 6 Hasse Diagrams Based on Transformed Data Matrices

U

F O

x

A

Fig. 6.13 Equilateral triangle
(OFU) of altitude n+1 for
presentation of objects with
the coordinates U, F, and O
(see text)

< |F(x)|. If |U(x)| = 0, then object x is located on the edge FO, say at A in which
case FA is proportional to the rank of x from below and AO is proportional to the
rank of x from above. One application of the triangular representation is to see how
the coordinates (i.e., |O(x)|, |F(x)|, and |U(x)|) of an object x vary when we study
the effect of �.

6.6.2.1 Example

In Fig. 6.14, a Hasse diagram together with its data matrix is shown.
We first consider the � value as fixed and apply to any object and to any attribute

and then vary � for all attributes but consider only the object c.

6.6.2.2 � Value Fixed

Let us perform an attribute value sensitivity by keeping � = 1. Hence we must
observe the responses of C(x, IB) for every object and every attribute. Therefore,
Table 6.3 carries two rows for every object: First row, the simulated attribute val-
ues and second row, |P(x)|, |S(x)|, |U(x)| (abbr., PSU) for each object and each
attribute.

Simulated value in bold letters. PSU results: italic (bold letters if there is a change
relative to the standard)

a b

c d

e

q1 q2 q3

a 1 2 3

b 2 1 4

c 3 3 6

d 3 4 5

e 4 5 6

Fig. 6.14 X = {a, b, c, d, e}, IB = {q1, q2, q3}, visualization of (X, IB)



6.6 Attribute Value Sensitivity 93

Table 6.3 Attribute value sensitivity for the example

Standard:
q1(x) q2(x) q3(x)

Simulation
concerning q1

Simulation
concerning q2

Simulation
concerning q3

a: data 1 2 3 2 2 3 1 3 3 1 2 4
a: PSU 3, 0, 1 3, 0, 1 3, 0, 1 3, 0, 1
b: data 2 1 4 3 1 4 2 2 4 2 1 5
b: PSU 3, 0, 1 3, 0, 1 3, 1, 0 3, 0, 1
c: data 3 3 6 4 3 6 3 4 6 3 3 7
c: PSU 1, 2, 1 1, 2, 1 1, 3, 0 0, 2, 2
d: data 3 4 5 4 4 5 3 5 5 3 4 6
d: PSU 1, 2, 1 1, 2, 1 1, 2, 1 1, 3, 0

Remarks:

• Objects a and b, c and d are order theoretically symmetric, hence their triple
(|P(x)|, |S(x)|, |U(x)|) is the same in the standard case. However, if the simula-
tion is carried on, then they behave differently as the attribute value sensitivity is
dependent on the data matrix.

• Object e is a greatest element. Any � added to its qi(e) values will not change
the position.

As indicators for the changes in the poset, we select |S(x)| and |U(x)|, and
Fig. 6.15 shows the bar diagram.

Figure 6.16 shows the triangular representation of the complete object set and
shows how object c varies with adding � to its attribute value.

In Fig. 6.16, the point C0 is the object c with the original attribute values. The
other points correspond to the sensitivity simulation. Point C1 results from �=1
added to q1(c) and the consequences in term of the O, F, U coordinates, similarly

attribute values sensitivity
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0.5
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1.5

2

2.5

3

3.5

standard q1+delta q2+delta q3+delta
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ch
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c

|S(c)|
|U(c)|

Fig. 6.15 Attribute value sensitivity, �=1, comparison through different qi
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•

U

OF

U

a,b
c,d

e

C3

C0, C1

C2
OF

•

••

••

Fig. 6.16 OFU triangles. All objects of Fig. 6.12 (LHS). Simulation concerning object c (RHS)
(see the text)

C2 is obtained for the case where � is added to q2, and C3 is obtained for the case
where � is added to q3(c).

One can see that attribute q3 is crucial for object c because it increases |U(c)|
while keeping F and O almost constant. A perturbation of the value q1(c) by adding
�=1 does not change at all the posetic configuration of c, whereas addition of � to
q2(c) reduces the incomparabilities of c to 0. The location of C2 at edge FO shows
that C2 must have slightly more predecessors than successors; correspondingly the
rank from the bottom will be less than the rank from the top.

6.6.2.3 � Value Varied

We can also perform a study where the attribute is fixed and we vary �. How
will |P(x)|, |S(x)|, |U(x)| change? In Fig. 6.17, we select |U(x)| vs � for q1, q2,
and q3.

Even if |P(x)|, |S(x)|, |U(x)| do not change, as it is the case for q2(c) + �

with � = 3 and 4, the Hasse diagram may change. Changes of qi(c) may let

attribute values sensitivity

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5

delta

|U
(c

)| q1(c)
q2(c)
q3(c)

Fig. 6.17 Attribute value sensitivity � varies
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|P(c)|, |S(c)|, |U(c)| invariant but may change |P(x)|, |S(x)|, |U(x)|, x �= c. In
the example above, only increasing values of � are studied. Hence, only the thresh-
old values of Δu can be identified. They are q1 = 1, q2 = 0, and q3 = 0. In case
studies, we will toggle between |U(x)| or |S(x)| as indicating quantity.

6.7 Summary and Commentary

The starting point is how we get a clear Hasse diagram without getting lost in
irrelevant comparabilities and incomparabilities. We think of corresponding tech-
niques as ordinal modeling, being aware that ordinal analysis does not in general
need that sharpness in data as required by many statistical exploration and inference
techniques.

We described (i) discretization of any single attribute, (ii) fuzzy analysis, (iii)
p-algorithm, and (iv) attribute value sensitivity. In Table 6.4, we compare the three
methods (i)–(iii) of simplifying the partial order.

Applications of all three methods are found in many case studies in the second
part of the monograph.

Attribute value sensitivity helps with decision on which indicator the manage-
ment should focus to improve their positional ranking. A new concept, the variance
analysis-based sensitivity of partial orders applied on chemical risk assessment, can
be found in Annoni et al. (2012) (subm.).

Table 6.4 Comparison of discretization, fuzzy analysis, and p-algorithm

Advantage Disadvantage Remark

(i) Discretization Strong simplification
Order preserving

Order reversal
Subjectivity in

selecting K(qi),
mini, and maxi

Checks by varying
K(qi), mini, and
maxi are
recommended

(ii) Fuzzy
analysis

Well-elaborated
theoretical
background

Simplifications in a
systematic manner

Order preserving

Attributes are
numerically
combined
according to the
Kosko measure

There is an implicit
approximation
because of the
need to find a
transitive closure

(iii) p-algorithm Strong simplification
Tools of Chapter 5

are most suitable
for the resulting
Hasse diagrams

Order preserving

By focusing on
priority objects,
there is some loss
of information.
The definition of
qi0 bears some
subjectivity

Checks by varying qi0
are recommended
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Chapter 7
Reducing the Number of Incomparabilities

7.1 Introduction

In Chapter 6, we have shown as to how we can obtain simpler Hasse diagrams
from messy ones. We transformed the data matrix so that incomparabilities or
comparabilities disappear because objects become equivalent.

This chapter discusses as to how we can enrich the partial order by numerically
combining the attributes. Why do we want to enrich partial orders? Because too
many incomparabilities hamper the insight into the ranking positions of the objects.

In this chapter, we will (i) revisit the concept of an index, (ii) introduce the
concept of mmm order (min, median, and max), and (iii) formulate the concept
of stepwise aggregation.

We will discuss how far tools of partial order can help to get insights into the
consequences of uncertainties in weights to composite indicators.

7.2 Weighted Sums

7.2.1 Index

One of the simplest approaches is the weighted sum of attributes, which we call an
index (for convenience, we use the symbol �, and we will use the term “index” (or
“composite indicator”) exclusively for weighted sums of the attributes):

�(x) =
∑

gi
∗qi(x) (7.1a)

1 =
∑

gi, 1 ≥ gi ≥ 0 (7.1b)

• The gi values are the weights and do not depend on the specific object. Equations
(7.1b) are the boundary conditions for selecting the weights. If the weights are
not derived from the data matrix, they reflect expert opinion about the degree
of mutual substitution of the attributes (Munda, 2008). In a monograph of the
OECD (2008), methods to obtain weights are compiled.

97R. Brüggemann, G.P. Patil, Ranking and Prioritization for Multi-indicator Systems,
Environmental and Ecological Statistics 5, DOI 10.1007/978-1-4419-8477-7_7,
C© Springer Science+Business Media, LLC 2011
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� is a continuous and positive monotone function; it induces an order O� and we
write h�(x) or hIndex(x) to denote the height (rank) values of x. Also, we say that O�

is consistent with (X, IB) to indicate that the map (X, IB) → O� is order preserving.
Equation (7.1a) provokes some caveats:

1. Order theoretical applications need that a linear or a weak order with respect to
any single indicator is definable. Combination of attributes by a weighted sum (or
any other positive monotone function), however, implies an appropriate scaling
level.

2. Attributes must be normalized.
3. Expert weights may be subject to controversy.
4. A weighted sum representing an index is an averaging over the indicator val-

ues. According to Munda (2008), this is equivalent to a high compensation: By
a weighted average, low values of some attributes (implying a low rank) can
be compensated by large values of some attributes to get nevertheless a good
ranking position.

As the weights are of much concern, we need some more formulations:

• We call a set of weights for m attributes a weight vector, obeying the boundary
conditions (7.1b).

• Weights are often associated with importance of the attributes. As Munda (2008)
shows, this is only in a very restricted sense correct. Scaling levels and ranges of
the indicator can influence the numerical values of the weights.

• We will speak of weights in the sense of influence: If the attributes are column-
wise normalized, the weights express how much influence a variation of the
numerical value of attributes has on the index.

7.2.2 Superindicators

If the calculation of a weighted sum
∑

qi∈IB′
gi · qi(x), with IB′ ⊂ IB does not include

all attributes, then we speak of a “superindicator” (or super-attribute) and together
with the non-used attributes qi ∈ IB−IB′ or other superindicators a new data matrix
can be built.

For example, starting with five attributes (IB0 = {q1, q2, q3, q4, q5}), we get a
partial order X0 = (X, IB0). Forming a superindicator � of the first three attributes,
we obtain a new information base {�, q4, q5} and a new partial order X1 =
(X, {�, q4, q5}). We observe that the map X0 → X1 is order preserving, because
any comparability found in X0 is retained in X1, whereas some incomparabilities
in X0 are transformed into comparabilities in X1. Because we refer to the same
object set X, we get an enrichment of the partial order: A diagram may be helpful
(Fig. 7.1).
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IB0 = {q1, q2, ….}

X0 = (X, IB0)

Some
comparabilities, 
some 
incomparabilities 

Aggregation of some
qi to superindicators Γ1,
Γ2 IB1 consisting of

some original 
attributes and some 
superindicators 

More
comparabilites,
less 
incomparabilities 

Order preserving
map, an enrichment 

X1 = (X, IB1)

Fig. 7.1 Enrichment of partial order by stepwise aggregation

The stepwise aggregation will be useful if

• there is an unambiguous preference among some attributes so that they can be
condensed to a superindicator, thus eliminating the incomparabilities arising from
them, and

• an already existing indicator hierarchy is defined by the experts of a study:
Aggregation is understood as a coarsening process, whereas disaggregation cor-
responds to a detailing of the evaluation analysis (see Fig. 7.2). Examples can be

Basic level of indicators 
High resolution 

“super criterion” 

Criteria which 
support the super 
criterion 

Aggregation 

    (X, IB5) 
    (linear or  
    weak order) 

    (X, IB4) 

    (X, IB3) 
    (X, IB2) 
    (X, IB1) 

    (X, IB0)  q1   q2  q3  q4    q5     q6,…… ,q10

Intermediate level 
with a coarse 
resolution 

Disaggregation 

Inclusion 

Fig. 7.2 Hierarchy in evaluation. The series (X, IBi), i = 0, . . . , 5, indicates that different partial
orders are obtained during aggregation (see text)
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found for the bridge (Chapter 13), the watershed (Chapter 14), or the EPI study
(Chapter 15).

Figure 7.2 exemplifies the following:

1. Indicators of IB0 = {q1, . . . , q10} describe the objects. They are the basic
indicators of the problem. The resulting partial order (X, IB0) may have many
incomparabilities.

2. The basic indicators q6 – q10 are forming the superindicator �1, because they
may describe contextually a common aspect. We need four weights (normaliza-
tion assumed). The information base is IB1 = {q1, q2, q3, q4, q5, �1} and the
partial order (X, IB1) is an enrichment of (X, IB0). We write (X, IB0) ⊆ (X, IB1).

3. The next step is to generate a superindicator �2 from q4 and q5. We need one
weight. After these first two steps, we have a new information base IB2 =
{�1, �2, q1, q2, q3} and consequently a new partial order (X, IB2), i.e.,
(X, IB1) ⊆ (X, IB2).

4. By aggregation of q1, q2, and q3 to �3 for which we need two weights, we obtain
(X, IB3), (X, IB2) ⊆ (X, IB3). Now, the set of basic attributes is exhausted and
we continue the aggregation with �1, �2, and �3 as candidates.

5. We aggregate �2 and �3 to get �23. IB4 = {�23, �1} and the partial order is
(X, IB4), i.e., (X, IB3) ⊆ (X, IB4).

6. The last step finally is to obtain only one function, and for the objects, a linear or
a weak order can be found (X, IB5) = O� , O� ⊇ (X, IB4).

7. With the steps 1 – 6, we get a chain in the inclusion order of posets.

7.2.3 Illustrative Example for an Index Calculation

In Fig. 7.3, a Hasse diagram together with its data matrix is shown.

 q1 q2

a 1 1 
b 10.2 1 
c 2 3.3 
d 4.2 2.6 
e 6 7.4 
f 7.3 2.8 

|U(e)| = 2 

a

b

c d

e f

|U(f)| = 3 

|U(d)| = 2 

|U(a)| = 0 

|U(b)| = 4 

|U(c)| = 3 

Fig. 7.3 Hasse diagram of six objects. |U(x)| is additionally indicated for every object
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Fig. 7.4 Variation of height
h�(x, g1), x = b, e, f
(Fig. 7.3)

Now let us calculate an index from two attributes, normalized to [0,1]. The height
h� of an object x ∈ X as a function of weights (here of g1) we call “h�(x, g)
function” and it is shown in Fig. 7.4.

Among the three objects e, f, and b, object b has the largest number of incompa-
rable objects (|U(b)| = 4) and has the largest slope (taken as absolute value). The
results of Chapter 3 tell us that the maximal height interval depends on |U(x)|. An
object x with large difference in (normalized) attribute values qi(x) and qj(x) tends to
get large |U(x)| values and is sensitive to a variation in weights. Furthermore, cross-
ing of two h�(x, g) functions is possible only for incomparable objects, because
comparable objects, say x ≤ y, will maintain that relation for all values of the
weights. Thus in Fig. 7.4 on the one hand, the line for object d should be located
below that of object e, but on the other hand, the line for object d would cross the
lines of objects f , b, and c (not shown).

7.2.4 Representability Problem

Imagine that an index is to be constructed and you have a partial order, (X, IB), based
on your data matrix at hand. We know that any index is consistent with the partial
order. Furthermore we know that all linear extensions are by definition consistent
with the partial order. Is it possible that every linear extension is realizable as a
result of an appropriately selected set of weights to obtain the composite indicator?
We call this problem the “representability problem” (see Patil, 2005).

Let us consider the set of all orders O� obtained with admissible weights
(Eq. (7.1b)). If this set of all orders O� contains less orders than does the set of
linear extensions, then we can conclude that the partial order is more general than
the index. We will show by a counterexample that there is no O� which reproduces
all linear extensions of (X, IB). In Fig. 7.5, a Hasse diagram together with the data
matrix is shown.



102 7 Reducing the Number of Incomparabilities

b

a c

d

Object q1 q2

a 0.333 1 

b 0 0.333

c 1 0.666

d 0.666 0 

Fig. 7.5 Hasse diagram (data
see RHS)

g 

(x)

0.5 1

(c)
(a) 

(d)

I

III 

II

(b)

Γ

Γ

Γ

Γ

Γ

Fig. 7.6 The system of four functions �(x), x ∈ {a, b, c, d}. The allowed range for g is divided
(by broken lines) into three sections (I, II, and III) (see text)

The aggregation function is an index as a weighted sum of q1 and q2: �(x) =
g∗q1(x) + (1 − g)∗q2(x). Figure 7.6 displays the index as a function of g for all four
objects.

In each section (I, II, or III), one linear order, induced by �, is found. Taking
g = 0 or g = 1 gives two weak orders (g = 0: d ∼= b < c < a; g = 1: a ∼=
b < d < c). The linear extension (d, b, a, c) of (X, IB) cannot be represented by O� .
Thus we see that there are only three linear orders derived from �, whereas there
are five linear extensions of the partial order of Fig. 7.5. Therefore, not every linear
extension is realizable by an index. (7.2)

7.2.5 Simultaneous Variation of Several Weights (Monte Carlo
Simulation)

It is difficult to overview the role of weights when there are more than one weight. A
Monte Carlo simulation (PyHasse) can be performed and the resulting distribution
of heights can be obtained (Fig. 7.7 and its data matrix).
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6

8

7

17

9 16

14

5

29

Simulate 
g-vector

Check the
boundary
conditions

(7.1b) 

Deduce the
ranking

Calculate
the index 

Id q1 q2 q3 

6 11 0.2 31 

8 20 0.4 55 

7 14 0.3 41 

17 13 0.3 63 

9 17 0.3 45 

16 13 0.4 51 

22 14 0.3 41 

14 12 0.6 41 

5 14 0.4 45 

29 9 0.4 29

Fig. 7.7 Monte Carlo simulation (see text)

In Fig. 7.7, at the top, the Hasse diagram of 10 objects (object 22 ∼= object 7) and
its data matrix are shown, whereas at the bottom, the principle of MC simulation
and the MC simulations of the weights are shown.

In detail the Monte Carlo simulation is performed as follows:

1. For any weight, take a value ∈ [0,1] at random.
2. Form the sum

∑
gi and test whether the sum is equal to 1. If not, divide each

weight by the sum.
3. Calculate the index from this weight vector according to (7.1a).
4. Repeat the calculation with a new choice of randomly selected weights.

For an application on chemicals, see Carlsen and Bruggemann (2009).
We see that the height distribution of object 5 (|U(5)| = 4 (LHS)) is much more

concentrated than that of object 17 (|U(17)| = 7 (RHS)).
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7.3 The Min-, Median-, Max- (mmm) Order

7.3.1 Prerequisites

Often a data matrix consists of so many attributes that at least for a first screening,
the individual meaning of each attribute is of minor importance. This is the case if,
for instance, surface waters are characterized by concentrations of many chemicals
or if child well-being is described by a variety of attributes.

If we replace the attribute set of a data matrix {q1, . . . , qm} by {min, max} or
{min, median, max} for each object (mapping M), then the attributes will need to
have a common scale or dimension, or need to be dimensionless. Therefore it is
recommended to normalize them (columnwise).

7.3.2 Partial Order, Rank Order, and mr Order

7.3.2.1 Definitions

We apply a rank order which transforms any row of the data matrix as follows:

(min(q1(x), q2(x), . . . , qm(x)), . . . , max(q1(x), q2(x), . . . , qm(x)))
= (qσ (1) ≤ qσ (2) ≤ . . . ≤ qσ (m)), σ being a permutation of the
attribute’s index

(7.3)

We perform two simplifications: We replace the rank order by (a) (min(x),
median(x), max(x)) and call the resulting partial order the m3 order. (7.4)
and

(b) (min(x), max(x)), calling that order the m2 order. (7.5)
Equation (7.5) may furthermore be interpreted as follows: There is a class of

students and instead of an evaluation based on their skill for every discipline, we are
looking at the worst and the best performance.

7.3.2.2 Properties of mr(r = 2 or 3) Order

It is easy to show

q(x) ≤ q(y) ⇒ mr(x) ≤ mr(y) (7.6)

Hence the mapping M is order preserving.
The reverse implication does not hold in general, as the following simple counter

example shows: x → (2, 0, 3, 4) and y → (1, 2, 3, 5). Then m2(x) = (0, 4) and
m2(y) = (1, 5). Although m2(x) ≤ m2(y), we find that x ‖y . Furthermore it is obvious
that

m2(x) ‖ m2(y) ⇒ q(x) ‖ q(y) (7.7)

from which the results follow for m3.
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Incomparable pairs m2(x)
∥∥ m2(y) can be ordered by ordinary interval subset

relations.
A proper inclusion ⊂p is [min(x), max(x)] ⊂ [min(y), max(y)], with min(x) �=

min(y) and max(x) �= max(y).

(a) [min(x), max(x)] ⊂P [min(y), max(y)] ⇒ x ‖y in the m2 order. (7.8)

(b) [min(x), max(x)] ⊂ [min(y), max(y)], with min(x) = min(y) or (exclusive)
max(x) = max(y); improper inclusion implies x < y in the m2 order. (7.9)

(c) [min(x), max(x)] ⊂ [min(y), max(y) ⇒ �hmax
� (x) ≤ �hmax

� (y). (7.10)

Equation (7.10) is best understandable by taking the example of students in a
class. If the worst skill of student y is worse than that of student x and the best skill
of student y is better than that of student x, then the disparity in the disciplines of
student y is much larger than that of student x. Hence an aggregation to get a total
score for student y depends more on the weight one gives the single disciplines than
that for student x.

In Fig. 7.8 we summarize some important facts of this section.

7.3.2.3 Illustrative Example

A simple example will now support this theoretical aspect (Table 7.1 and Fig. 7.9).

Order based on 
the original
data matrix

m2-order ⊆-order

M-mapping,
order preserving

Complementary

There may be
many 
incomparabilities.

A weaker 
concept of 
order.

Insight into 
the ranges of
the values of 
any index.

The role of any 
indicator
can be identified

Enrichment, however the role 
of indicators cannot be 
identified

Fig. 7.8 Summary among the three possible orders (usual product order mr and inclusion order)
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Table 7.1 Illustrative
example explaining the
interplay between inclusion
and m2 orders

q1 q2 q3 Min Max

a 0 2 3 0 3
b 2 3 5 2 5
c 3 4 3 3 4
d 1 6 1 1 6
e 4 2 7 2 7

a

c

d

e
a

b

c

d

a

b cd e

(a) (b)

e

(c)

b

Fig. 7.9 Hasse diagrams based on different orders (see text)

In Fig. 7.9, the three orders are displayed.
Figure 7.9 shows the following: (a) the Hasse diagram of the order relations

induced by the three attributes q1, q2, and q3; (b) Hasse diagram based on the
m2 order; and (c) the Hasse diagram based on the inclusion of intervals (Eqs.
(7.11) and (7.12)). The improper inclusion is presented as broken line. In detail,
Figure 7.9 demonstrates that any incomparability in the inclusion order represents an
order relation in the m2 order. The improper inclusion [min(b), max(b)] ⊂ [min(e),
max(e)], with min(b) = min(e) is realized as b < e in the m2 order. Finally [min(c),
max(c)] = [3, 4] and [min(e), max(e)] = [2, 7]. Hence in m2, e ‖c , whereas in the
inclusion order c < e.

7.4 METEOR

The concept of METEOR (method of evaluation by order theory) was developed
in order to allow a step-by-step aggregation as described in Section 7.2 (see Simon
et al., 2005, 2006; Bruggemann et al., 2008). The main ideas are as follows:

1. avoiding to know all weights at once and
2. ability to analyze the role of weights by identifying so-called stability fields and

“hot spots” in the weight space.
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7.4.1 Iterative Aggregation

Whenever an index has to be set up, the very starting point is the definition of the
index framework (OECD, 2008). The framework usually starts with a set of indica-
tors. If the set of indicators is large due to the complexity of the objects to be ranked,
then it is convenient to aggregate them as per commonalities. The interim aggrega-
tions are called pillars. An application of an iterative aggregation is to compute each
pillar and then to apply partial order on them. This has the key advantage to retain
the structure of the composite indicator, i.e., its aim, while avoiding aggregation at
the pillar level. Keeping pillars separated is important because most often policy
makers are interested on the pillar level. Avoiding aggregation across pillars allows
for staying away from compensatory effects.

Hence an evaluation may start with basic attributes and then proceed by aggre-
gating some attributes to describe the phenomenon corresponding to its pillars. This
process may be iterated, and we get some kind of attribute hierarchy: As each sub-
sequently performed aggregation is order preserving, an enrichment of the partial
orders until finally a linear order is obtained (see Fig. 7.2). We demonstrate the
iteration by an illustrative example (Figs. 7.10 and 7.11).

The aggregation scheme is as follows:

• We combine q1 with q2 with weights g1 = 0.4 and g2 = 0.6, hence a super-
attribute q12 = g1

∗q1 + g2
∗q2 is obtained, IB1 = {q12, q3, q4}.

• A parallel aggregation is q34 = 0.5∗q3 + 0.5∗q4, IB2 = {q1, q2, q34}.
• The super-attributes can be simultaneously considered, i.e., IB3 = {q12, q34}.
• The final subsequent aggregation based on q12 and q34 is q1234 = 0.666∗q12 +

0.333∗q34. Here IB4 = {q1234}.

See Fig. 7.11 for the partial order among (X, {q12, q3, q4}), (X, {q34, q1, q2}),
(X, {q12, q34}), and (X, {q1234}).

The partial orders arising from different aggregation schemes are themselves
partially ordered (by inclusion of the sets of ordered pairs (x, y) ∈ X2 (see
Chapter 2)).

q1 q2 q3 q4

a 0 0.166 0.286 0
b 0.5 0.166 0 0
c 0.166 0.333 0.143 0.286
d 0.5 0 0.143 0.571
e 0 1 0.857 0.143
f 1 0 1 0
g 0.166 0.5 1 1
h 0.2 0.166 0.571 0.714

Fig. 7.10 Hasse diagram (X, IB), IB = {q1, q2, q3, q4} and its data matrix of normalized
attributes



108 7 Reducing the Number of Incomparabilities

(X, IB1) (X, IB2)

(X, IB3)

(X, IB4)

(X, IB)

Fig. 7.11 Partial order on partial orders due to the enrichment while aggregating attributes (we
neglect the labeling for the sake of clarity)

7.4.2 Comparability Acquisition Profile

7.4.2.1 Idea

Here we introduce a quality measure for stepwise aggregation (see Patil, 2005):
The idea is that if there is no evidence which helps us to prefer one weight vector
and one sequence of stepwise aggregation (called a “weighting scheme”), then that
weighting scheme should be favored whose comparability acquisition profile (CAP)
is the better one (see below).

7.4.2.2 Method

It is clear that a positive monotonous transformation applied to correctly ori-
ented data preserves the order relation. At every step of the aggregation, the data
matrix produced by the indicators and superindicators results in a new poset.
In order to characterize the aggregation strategy, we use the total number of
comparabilities V:

V = |{(x, y) ∈ (X, IB)}| , x �= y (7.11)

V is the number of pairs of objects which are comparable. We have seen that
the aggregation of two indicators in one aggregation step cannot decrease V, since
aggregation is order preserving. To compare two different weighting schemes, we
cumulate the number of comparabilities after each step of aggregation for a partic-
ular weighting scheme. We start with the initial data matrix, which we call the 0th
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step. Specifically, we can compare weighting schemes w1 and w2, and look at their
CAP at each aggregation step.

Weighting scheme w1 is preferred to w2 if V(i, w1) ≥ V(i, w2)
for every 0 ≤ i ≤ m − 1, where V(i, w) is the number of

comparabilities of the data matrix using the weighting scheme w (7.12)

at the ith step of the aggregation, and m is the number of indicators
in the original data matrix.
We will apply CAP to real-life examples in application chapters and give here an

illustrative example.

7.4.2.3 Illustrative Example

We assume that an index is defined as follows (see Table 7.2):

� = (1/6)∗(q1 + q2 + q3 + q4 + q5 + q6), gi = 1/6, for i = 1, . . . , 6

We define different weighting schemes:

Weighting scheme w1: Take the weights gi = 1/6 and start with q1 until all
attributes are included.

Weighting scheme w2: Take the weights gi = 1/6 and start with q6 until last
step q1 is aggregated.

Weighting scheme w3: Take the weights gi = 1/6. That aggregation will be
selected which has the lowest value in the Spearman correlation among
either

• attributes
• attributes and already aggregated attributes (super-attributes) and
• super-attributes.

Table 7.2 Data matrix for the illustrative example demonstrating CAP (normalized attributes)

q1 q2 q3 q4 q5 q6

a 0.1 0.4 0.2 0.5 0.6 0.4
b 0.4 0.5 0.1 0.7 0.6 0.5
c 0.3 0.9 0.7 0.8 0.7 0.6
d 0.2 0 1 0.2 0 1
e 0.7 0.4 0.3 0.6 1 0.6
f 0.9 0.3 0.3 0.7 0.6 0.5
g 0 0.7 0.5 1 0.2 0.7
h 1 0.6 0.9 0 0.4 0
i 0.5 1 0.2 0.4 0.8 0.8
j 0.2 0.1 0 0.3 0.9 0.9
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The Hasse diagram of the 10 objects is shown in Fig. 7.12.
The resulting CAP (Fig. 7.13) shows that the three weighting schemes are

incomparable. There is no best strategy.
The automatic, i.e., Spearman-driven aggregation, leads to the following

sequence (only the actual aggregated attributes are shown):

(q3, q4) → (q3, q5)(q1, q6) → (q3, q4, q5)(q1, q6) → (q3, q4, q5)(q1, q2, q6)
→ (q1, q2, q3, q4, q5, q6)

Although the Spearman-driven scheme w3 has in the latter steps the steepest
increase, the first aggregation step is worse than that for aggregation scheme w1.
The unexpected effect that w3 lets the number of comparisons constant, even if anti-
correlated attributes are aggregated, can be explained when the correlation matrix is
examined (Table 7.3).

The pair of attributes with the lowest correlation is q3, q5. Their aggregation
will average out large disparities in the data values. However, there is still a pair
of attributes, namely q1 and q6 with a high degree of anticorrelation. Therefore the
number of comparabilities can only weakly increase after the single aggregation
step of q3 and q5.

a

b c d e f g h i j

Fig. 7.12 A certainly not complex Hasse diagram

CAP-illustrative example
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Fig. 7.13 CAP, following the alternatives of weighting schemes, based on PyHasse
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Table 7.3 Spearman correlation matrix of the attributes of Table 7.2

q1 q2 q3 q4 q5 q6

Spearman
rho

q1 Correlation
coefficient 1 0.11 0.122 –0.262 0.252 –0.428

Sig (two-tailed) 0.763 0.736 0.464 0.482 0.217
N 10 10 10 10 10 10

q2 Correlation
coefficient 0.11 1 0.055 0.372 0.111 –0.205

Sig (two-tailed) 0.763 0.88 0.29 0.761 0.57
N 10 10 10 10 10 10

q3 Correlation
coefficient 0.122 0.055 1 –0.095 –0.599 0

Sig (two-tailed) 0.763 0.88 0.794 0.067 1
N 10 10 10 10 10 10

q4 Correlation
coefficient –0.262 0.372 –0.095 1 0.055 –0.092

Sig (two-tailed) 0.464 0.29 0.794 0.879 0.801
N 10 10 10 10 10 10

q5 Correlation
coefficient 0.252 0.111 –0.599 0.055 1 0.099

Sig (two-tailed) 0.482 0.761 0.067 0.879 0.786
N 10 10 10 10 10 10

q6 Correlation
coefficient –0.428 –0.205 –0.092 0.099 1

Sig (two-tailed) 0.217 0.57 1 0.801 0.786
N 10 10 10 10 10 10

7.4.3 Stability Fields and Hot Spots in the Space of Weights

7.4.3.1 Method

Let us take two attributes called q1 and q2. The super-attribute q12(g) = g∗q1 +
(1 − g)∗q2 is considered as a linear function of g ∈ [0, 1]. Accordingly we write
q12(g, a) to indicate the value of q12 for weight g and object a. Let (a, b) ∈ UX/∼= =
{(x, y), (x, y), a pair of representants, x ‖y} (Section 4.3). Then there exists one and
only one crucial weight gc such that q12(gc, a) = q12(gc, b). If we consider all
pairs of UX/∼=, a rectangular scheme is useful, where rows and columns are labeled
by the objects. Any cell gets one and only one crucial weight value. Because X is
a finite object set, there is a finite number of different gc values, say nc. We order
these from the smallest to the largest and call the resulting order the crucial weight
sequence.

We introduce a map G:

G: [0, 1] ∈ IR → X × X
G: gc → E(gc), the set of object pairs for which q12(gc, x) = q12(gc, y).
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To each gc of the crucial weight sequence belongs a set of object pairs E(gc)
for which the q12(gc) values are the same. The pairs (gc, |E(gc)|) allow the fol-
lowing interpretation: Any crucial weight indicates where a selection of weight
has an impact on the ranking by a composite indicator and by |E(gc)| as to how
severe this impact will be. Pairs belonging to E(gc) undergo an order reversal if the
weight g is varied from a value less than gc to a value larger than gc. We prove
that between two successive crucial weights, say gc, i and gc, i + 1, constituting the
interval Ig = (gc, i, gc, i + 1), the ranking due to q12 does not depend on the value of
g ∈ Ig.

The proof will be performed by contradiction.
Assume that g1, g2 ∈ Ig exist such that two different linear orders due to q12

are induced. Then there must be a pair (x, y) ∈ UX/∼= such that at g1, x<q12(g1) y
and at g2, x>q12(g2) y. Hence there exists gc ∈ (min(g1, g2), max(g1, g2)) ⊂ Ig
for which q12(x, gc) = q12(y, gc) in contradiction to the exhaustive count of the
crucial weights, which leads to nc values.

The pairs (gc, |E(gc)|) allow a visualization in the following manner (Fig. 7.14).
Between two successive crucial weights, there is one and only one linear order

when we speak of a “stability field.” If a composite indicator is to be constructed
aiming at a ranking, the exact value of a weight may not be known. If, however,
the study of weights produces a value near gc, then a slight numerical change will
change the ranking result of the composite indicator and the impact will be large
if |E(gc)| is large. Hence pairs (gc, |E(gc)|) with large |E(gc)| are “hot spots” in the
space of weights.

7.4.3.2 Illustrative Example

We select the example shown in Fig. 7.7. In our example, the first two attributes
of the data matrix are aggregated to get q12. We construct a presentation of the
(gc, |E(gc)|) pairs like in Fig. 7.14 to see where the weights are sensitive for the
ranking due to the composite indicator. The result is shown in Fig. 7.15, applying
the software PyHasse (see Chapter 17). In any stability field one finds one linear
order. There are nine crucial weights. From these, seven have |E(gc)| = 1 and two
have |E(gc)| = 3.

If the weights are varied, then each crossing of a gc position will change the linear
order by reverting the rank positions of any two objects. Especially at two posi-
tions, three pairs of objects will undergo an inversion, hence much care is needed

g ∈ [0,1] 
0 1

Fig. 7.14 Along the g-axis
the sequence of crucial
weights is located and to
every position, belongs
|E(gc)|
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Fig. 7.15 Stability plot (PyHasse)

if weights are supposed to be in the neighborhood of such “hot spots.” We will
reexamine the stability field in the chapter dealing with the analysis of watersheds
(Chapter 14). For more details, see Bruggemann et al. (2008), Restrepo et al. (2008),
and Voigt and Bruggemann (2008).

7.5 Summary and Commentary

We started with the question of how we can reduce the number of incomparabilities?
In Chapter 7, attributes, i.e., the columns of a data matrix, are aggregated through
weighted sums and thus the number of incomparabilities can be reduced.

In many ranking studies, the strategy is to develop a data matrix with detailed
information about the objects by including many attributes. The question about who
or what is at the top and about who or what is at the bottom, cannot directly be
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extracted from the data matrix. Therefore, in most of the cases, an index was derived
with weights due to expert opinion. We are, however, not forced to perform an aggre-
gation in just one step. Indeed finding an index can be resolved by several steps
where any step leads to partial order, which is an enriched one. Therefore the pro-
cess may be stopped when the partial order renders enough information. With CAP
we even have a tool at hand to identify the success of aggregation by examining the
comparabilities as a function of aggregation steps.

Finally we can perform stability analysis within space of weights. The aim is to
identify those ranges in the space of weights, where

a. the partial order is invariant and
b. the partial order is changing.

Knowing the range of invariance of partial orders allows some flexibility in
finding numerical values of weights.

Besides numerical aggregation (eventually stepwise), partial order theory pro-
vides some more tools to help the expert.

A simple possibility is to forget the individual labels of the data columns by
applying rank order statistics and to discuss the simplifications by the mr (r = 2, 3)
order, together with the inclusion order. Note that a variant of the concept of m2

(or m3) order was used by Myers et al. (2006) as rank range run (RRR). Compared
with Hasse diagrams, RRR gives an impression of the object set X even if |X| is very
large. In RRR the individual labeling of the data matrix columns is lost as in some
other methods. See in that context Yager (1993) and Carlsson and Fuller (2002) for
their OWA operators (ordered weighted averaging operators).
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Chapter 8
Formal Concept Analysis

8.1 Motivation

So far the core of all considerations was the partial order and its visualization by a
Hasse diagram. On the one hand, the system of lines allowed us to identify compa-
rabilities and on the other hand, it also revealed the status of objects relative to the
others. In some cases, the Hasse diagram had a structure so that it was possible to
explain as to why a certain relative position was obtained for an object. The concept
of antagonistic indicators helped in clarifying the reasons for certain positions. The
Hasse diagram is a graph focusing on the objects and their mutual relations. It will
be extremely helpful, if we can construct a directed graph, where at the same time
the constellation of the relevant attribute values responsible for the position of the
object is exhibited. As we have seen in Chapters 6 and 7, we may perform ordinal
modeling by focusing on object-related or attribute-related manipulations. In the
theory of “formal concept analysis,” mutual relationship of the position of an object
with the values of its attributes inducing its position is depicted into one single dia-
gram (Davey and Priestley, 1990; Ganter and Wille, 1986; Wolff, 1993; Gugisch,
2001; Carpineto and Romano, 1994; Annoni and Bruggemann, 2008, 2009; Bartel
and Nofz, 1997; Bartel, 1997; Kerber, 2006).

8.2 The Concept

8.2.1 Intuitive Introduction

The term “concept” is a central, technical term and has its origin in philosophy. The
idea is to characterize a subset of objects uniquely by a subset of properties1 and a
subset of properties is uniquely characterized by a subset of objects. Let us consider

1An object has a property or not. Although we can describe the presence or the absence of a
property by a binary attribute, we are using the concept “property” for the sake of the simplicity of
the text.

117R. Brüggemann, G.P. Patil, Ranking and Prioritization for Multi-indicator Systems,
Environmental and Ecological Statistics 5, DOI 10.1007/978-1-4419-8477-7_8,
C© Springer Science+Business Media, LLC 2011



118 8 Formal Concept Analysis

Object set Properties set

Fig. 8.1 The larger the set of
properties to be fulfilled by
objects, the smaller the object
set fulfilling them

a set of objects having some properties in common. If an additional property is con-
sidered, not all of the objects may have this additional property. Hence, increasing
the set of properties and requiring that objects at the same time have the correspond-
ing properties must consequently decrease the set of objects. Conversely, increasing
the object set by requiring that properties be simultaneously fulfilled can be done
only by reducing the number of properties, i.e., by relaxing the conditions which
are to be fulfilled. Figure 8.1 shows this schematically.

Let us take a class of students. The property “being member of the class” is
common to all students of the class. The set of students is reduced by the additional
requirement of being good in mathematics. An additional requirement of having
good knowledge in chemistry reduces the set further.

8.2.2 A Formalized Relation Between Object Subsets
and Property Subsets

We will here give only a schematic description of the most important steps.
Consider a data matrix with objects denoted as x and properties as q.

1. Define a relation I, (xIq) expressing that x “has” the property q. The set of
properties is called IB.

2. Derive a table with the objects as rows and the properties as columns and insert
1 if (xIq). This table is called a context table.

3. Think of a new matrix where the rows are elements of the power set of X and
the columns are elements of the power set of IB (“power set” matrix).

4. Define the derivation of a subset X′ ⊆ X as that set of properties IB′ ⊆ IB
where for all x ∈ X′, (xIq), q ∈ IB′ holds.

5. Define a derivation of a subset IB′ ⊆ IB as that set of objects X” where for all
q ∈ IB′, (xIq) holds.

6. Checkmark those cells of the power set matrix for which the derivation of X′ is
a set IB(+) and the derivation of IB(+) is X′. Such subsets of X and IB are called
“Galois connected:”

derivation of X′ = IB(+)and derivation of IB(+) = X′ (8.1)

We will use the symbol d for derivation and write d(X′).
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(X1, Q1) (X1, Q1)

(X2, Q2)

C2 ∈O(C1): Q2 implies Q1

C2 C2

C1 C1

(X2, Q2) 

Q1  Q2, X2 Q1  Q2, X2  X1

Q2 is associated with Q1

⊂ ⊂ X1
⊄ ⊄

Fig. 8.2 Formal concept analysis, leading to implications and associations

7. Consider the checkmarked cell as new object (called concept), corresponding
to a certain object subset and a certain attribute subset.

8. Draw a Hasse diagram of the concepts, with the inclusion relation among the
object subsets. Increase object subsets by walking from the bottom to the top of
the diagram.

9. Label the concepts by their attribute and object subsets.
10. Reduce the labels by keeping only the smallest possible subsets. The full infor-

mation can then be reconstructed by union operations, following the lines of
the graph.

11. Check for object set inclusion relations to deduce associations and implications
among the attributes. Let X2 be the set of objects for which the premise holds
and X1 the objects for which the conclusion is fulfilled. Then, the extent of
association EoA: = |X2 ∩ X1| / |X2|.

12. Software is provided by Yevtushenko (2000): Conexp1.3.

A figure may be helpful to understand step 11 (Fig. 8.2).
In the following, we will illustrate some steps.

8.3 Context

8.3.1 Context Table

Let us imagine three objects a, b, and c and three properties q1, q2, and q3. Then an
entry 1 in Table 8.1, the context table, means that d({xj}) = {qi} and xi ∈ d({qj}).

From Table 8.1, we conclude the following:

Table 8.1 Assignment of
properties with objects and
vice versa (context table)

q1 q2 q3

a 1 1 0
b 1 0 0
c 1 1 1



120 8 Formal Concept Analysis

• Object a has the properties q1 and q2, d({a}) = {q1, q2}.
• Object b has the property q1.
• Object c has the properties q1, q2, and q3.
• Property q1 is a property in common for a, b, and c, d({q1}) = {a, b, c}.
• Property q2 is a property in common for a and c.
• Property q3 is a property of c alone.

8.3.2 Application of the Derivation

Let us perform some examples of how to use the “derivation.” When we start with
the example above, the object set as well as the attribute set has three elements.
Hence there are eight subsets possible for the objects and eight for the properties.
Generally the number of concepts ≤ |Pow(X)| ∗ |Pow(IB)| = 2|X|∗2|IB|.

Clearly, in reality we will only get some few concepts because of the condition
(8.1): Only those pairs are concepts whose object subsets (extents) and property
subsets (intents) are Galois connected.

Object subsets:

d(ØX) = {q1, q2, q3}(ØX : empty object subset) (O.1)

d({a}) = {q1, q2} (O.2)

d({b}) = {q1} (O.3)

d({c}) = {q1, q2, q3} (O.4)

d({a, b}) = {q1} (O.5)

d({a, c}) = {q1, q2} (O.6)

d({b, c}) = {q1} (O.7)

d({a, b, c}) = {q1} (O.8)

Property subsets:

d(ØQ) = {a, b, c}(ØQ : empty property subset) (P.1)

d({q1}) = {a, b, c} (P.2)

d({q2}) = {a, c} (P.3)

d({q3}) = {c} (P.4)
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d({q1, q2}) = {a, c} (P.5)

d({q1, q3}) = {c} (P.6)

d({q2, q3}) = {c} (P.7)

d({q1, q2, q3}) = {c} (P.8)

8.3.3 Concepts

We check (P.1)–(P.8) by looking at the corresponding subsets in (O.1)–(O.8) and
examine whether and where the constraint Eq. (8.1) is fulfilled.

(P.1) is not Galois connected with (O.8) because d(ØQ) = {a, b, c}, however,
d({a, b, c}) = {q1}.

(P.2) is Galois connected with (O.8), thus we find one concept, which we write
as a pair: Concept 1 = [{a, b, c}, {q1}].

(P.3) is not Galois connected with (O.6), because d{q2} = {a, c}, however,
d{a, c} is not {q2}.

(P.4) is not Galois connected with (O.4).
(P.5) is Galois connected with (O.6), thus a second concept is found: Concept

2 = [{a, c}, {q1, q2}].
(P.6) is not Galois connected with (O.4).
(P.7) is not Galois connected with (O.4).
(P.8) is Galois connected with (O.4), thus a third concept is found: Concept

3 = [{c}, {q1, q2, q3}].

8.4 Order Relation Among Concepts

8.4.1 Inclusion Relation

We can in a natural way order the concepts by applying the set-theoretical inclu-
sion operation: Apply the inclusion relation on either the extents or the intents. By
the constraint Eq. (8.1), a superset–set inclusion relation interpreted as greater than
relation among the object subsets X1 ⊃ X2 is uniquely accompanied by a subset–set
inclusion relation interpreted as a less than relation of the attribute sets Q1 ⊂ Q2.
We construct the Hasse diagram of the concepts by applying the inclusion of object
subsets as order relation. Hence, the complete object set is on the top, whereas the
complete attribute set is at the bottom of the diagram. There is only one top and only
one bottom element. In our example, Table 8.1, we obtain a chain, consisting of the
three concepts we have found (Fig. 8.3 (LHS)).
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Concept 1

Concept 2

Concept 3

Concept 1

Concept 2

Concept 3

a,b,c q1
q1

q2

q3

a,c
q1,q2

c q1,q2,q3

b

a

c

Fig. 8.3 Evolution of a concept lattice based on the context table (Table 8.1)

In Fig. 8.3, instead of the name “Concept,” we write its extent within and its
intent outside the circle (Fig. 8.3 (middle), Fig. 8.3 (left), see below).

8.4.2 Lattice

Generally, lattices of concepts not only are chains but also can be more compli-
cated partial orders. However, as a lattice (see Birkhoff, 1984; Ganter and Wille,
1996; Grätzer, 1998), the Hasse diagram of concepts fulfills more axioms than par-
tial order, namely the following: (i) one and only one greatest element, (ii) one and
only one least element, and (iii) only one component, i.e., in terms of ordinal graph,
any concept is connected by a sequence of edges with any other. The additional
axioms exclude Hasse diagrams which look like those shown in Fig. 8.4.

Because of the inclusion relation as order relation, we can also draw the Hasse
diagram of the concepts of Table 8.1 as shown in Fig. 8.3 (RHS). Going upward,
we are gathering objects. The lowest concept had c, so the next concept (Concept 2)
has the label a for the object set. Hence the extent of Concept 2 is {a, c}. The
top concept (Concept 1) has the label b, therefore the subset is {a, b, c}, being
the object set. Going downward, we are gathering properties, starting from the top:
Concept 1: {q1}, Concept 2 has the property set {q1, q2}, and Concept 3 has all
three properties. Once again, one can see how Fig. 8.2 is realized. Enrichment of the
object set is accompanied by reduction of the set of properties and enrichment of the
set of properties is followed by a reduction of the set of objects. More technically,

Fig. 8.4 Some forbidden
structures if the visualization
of a partial order should
represent a lattice



8.4 Order Relation Among Concepts 123

increasing the extent of a concept implies decreasing intent (the more the objects we
like to include, the less the number of properties they obey). Increasing the intents
implies decreasing the extents (the more the properties we want to be present for the
objects, the less the objects will fulfill them).

8.4.2.1 Illustrative Example Concerning Formal Concept Lattices

A slight modification of the context leads to a more interesting lattice (Table 8.2).
From Table 8.2 we obtain six concepts, applying the same process as for

Table 8.1:

Concept 1: [{a, b, c}, ØIB]
Concept 2: [{a, b}, {q1}]
Concept 3: [{a, c}, {q2}]
Concept 4: [{a}, {q1, q2}]
Concept 5: [{c}, {q2, q3}]
Concept 6: [ØX , {q1, q2, q3}]

The Hasse diagram made of the concepts (abbrev. C1, C2, . . .) can be seen in
Fig. 8.5:

(a) Examples of walking upward:
Starting from C5 and C4, the unique covering vertex is C3
Starting from C3 and C2, the unique covering vertex is C2

Table 8.2 Context table
q1 q2 q3

a 1 1 0
b 1 0 0
c 0 1 1

C1

C2

C4

C6

C5

C3

Fig. 8.5 Concept lattice
based on Table 8.2
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(b) Examples of walking downward:
Starting from C3 and C2, the unique vertex covered by C3 and C2 is C4
Starting from C5 and C4, the unique vertex covered by C5 and C4 is C6

Walking upward, the resulting object set of the covering concept is always the
union of the object subsets belonging to the vertices from where we started.

Walking downward, the resulting attribute set of the covered vertex is always the
union of the attribute subsets belonging to the vertices from where we started.

In Fig. 8.6a, we use the extended labeling, similar to Fig. 8.3 (middle). In
Fig. 8.6b, we use the reduced labeling, helping to increase the clarity of the graph
applied (like in Fig. 8.3 (RHS), which makes use of the laws of a lattice.

As for Hasse diagrams, there are different graphical representations. We use the
Conexp1.3 software of Yevtushenko (2000). The context displayed in Table 8.2 is
drawn as follows (Fig. 8.7).

In Fig. 8.7, the filled upper semicircle indicates that there is a property attached to
the corresponding concept, whereas the filled lower semicircle indicates an object
attached to the corresponding concept. Furthermore, we see six concepts and the

a,b,c

a,b

a

q1,q2,q3

q1,q2

q2,q3

q1 q1
q2

q3

q2

c

a,c
b

ac

(a) (b)

Fig. 8.6 Labeling: (a) extended labeling, (b) reduced labeling

Fig. 8.7 Representation of
the context of Table 8.2 by
the software Conexp1.3
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full information with respect to the extent and the intent of every concept can be
easily reconstructed: If C1 is the concept covered by C2, C3, . . . , then C1 inherits
the properties of C2, C3, . . . . Further, if C1 covers C2, C3, . . . , then C2, C3, . . .
inherit the objects of C1.

8.5 Implications

The lattice of concepts is based on the inclusion relations of the extents (or the
intents) as Fig. 8.2 shows. For example, the label q2 in Fig. 8.7 means that q2 is a
property of all extents of those concepts which are elements of O(C2), i.e., {c},{a},
and {c,a}. If another attribute label which selects smaller object subsets can be
found, then obviously this property implies the first one. In the example of Fig. 8.7,
d({q3}) ⊂ d({q2}) with d({q3}) = {c} and d({q2}) = {a, c}. Hence q3 implies q2 or,
having a look at the context table, if q3 = 1, then q2 = 1.

Determining such implications by hand is difficult. Fortunately, implications are
automatically generated by Conexp1_3 software (called there “association rules”
because not always EoA = 100). Thus, the formal concept analysis does not only
help in identifying the reasons for a certain location of an object within its Hasse
diagram but also provide us with a system of automatically generated implications
(Ganter, 1987). See Annoni and Bruggemann (2009) for a recent application in soci-
ology. Clearly, these implications or associations are related to the data matrix and
should therefore be considered as hypothesis generators.

We will apply this facility later in the application part of this monograph.

8.6 Multivalued Contexts

Up to now, we discussed the dichotomic case: Having or not having a property. In
statistical analysis, this restriction to mono-valued contexts would make the formal
concept analysis almost useless. However, we can consider any value of a certain
attribute as if it is a mono-valued property. Most generally, we replace the m columns
of m binary attributes by m × n columns which correspond to n different values of
any attribute of any object. For example, if q1 gets the values 1.0, 1.4, and 7.9, then
we consider

• q1 with the value ≥ 1.0 as one property,
• q1 with the value ≥ 1.4 as another one, and finally
• q1 with the value ≥ 7.9 as the third property.

Instead of one column for q1, we get now three columns in the context table
for q1.
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8.6.1 Scaling Model

The important point to consider now is the logical interaction of the three properties
of q1. Does a high value of q1 imply the lower ones or should this value be consid-
ered like a nominal value, a label. For example, if a student in a class has learnt five
subdisciplines of chemistry, then she/he also knows any subset of these five disci-
plines. Number 5 implies that 4, 3, 2, 1 are also true. If, however, the student has
learnt just the fifth discipline, she/he does not necessarily know the others. Scaling
models analyze these kinds of questions (Ganter and Wille, 1996). In general, we
assume that the simplest case is present: A high value in an attribute implies the
presence of smaller ones. Thus, an object having the value of q1 of 7.9 also has the
lower values, i.e., the context table for that object would get three 1 s, namely 1 for
q1 with the value 1.4 and one for q1 with the value 1.0. In general, sensitivity studies
are recommended when there is no clear evidence for the scaling model.

An example may help to see how the construction of multivalued context works.

8.6.2 Illustrative Examples Concerning Multivalued Contexts

In Fig. 8.8, the concept lattices based on Table 8.3 (LHS) and of Table 8.4 (RHS)
are shown, once interpreted as ordinal and once as nominal evaluation of data.

Fig. 8.8 (LHS) Concept
lattice based on context of
Table 8.3; (RHS) concept
lattice based on context of
Table 8.4 where the attribute
values of q1 are interpreted as
nominal (see text)

Table 8.3 Small data matrix as an example (LHS). Context derived from the q1 and q2 columns.
The columns of the context are headed by ≥qi to indicate the ordinal scaling model

q1 q2 ≥ q1 = 1 ≥ q1 = 3 ≥ q1 = 8 ≥ q2 = 1 ≥ q2 = 2 ≥ q2 = 3

a 1 2 1 0 0 1 1 0
b 3 3 1 1 0 1 1 1
c 8 1 1 1 1 1 0 0
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Table 8.4 Formal concept analysis of attributes, mixed in their scaling level. Context derived from
the data of Table 8.3

q1 = 1 q1 = 3 q1 = 8 ≥ q2 = 1 ≥ q2 = 2 ≥ q2 = 3

a 1 0 0 1 1 0
b 0 1 0 1 1 1
c 0 0 1 1 0 0

From Fig. 8.8, we can see that for a, b, c, only the values q1 = 1 and q2 = 1
are found simultaneously, indicated in the graph by q1(1) and q2(1). The object
subsets of the concept (top vertex in Fig. 8.8 (LHS)) are the same for q1(1) and
q2(1). Therefore, we find the implication q1(1) ⇔ q2(1) which can be easily verified
by looking at Table 8.3. The object subset {a, b} “has” q1(1) and q2(2) and q2(1).
As a 1 in the cell of the context Table 8.4 indicates q2 ≥ 2 is true, it is also true that
q2 ≥ 1. Hence there is a 1 too and q2(1) is in the graph located above q2(2). This is
a trivial case of an implication, which arises just from our ordinal scaling of q2.

Let us consider the values of q1 as a nominal label, whereas q2 is still interpreted
as ordinal scaled (Table 8.4).

As can be seen in Fig. 8.8 (RHS), the first attribute is labeling the objects a, b,
and c.

8.7 Why Objects Have a Certain Position

8.7.1 Overview

As example, we select the Lake Ontario data (see Chapter 5). Also see Annoni and
Bruggemann (2008). Figure 8.9 shows the Hasse diagram of the formal concept lat-
tice with 20 sediment sites and with five multivalued attributes FC, CH, CP, MT,
and GT, describing the degradation status of sediments in hygienic, health, and eco-
toxicological aspects. In Fig. 8.9, we see that the concept lattice is pretty small as
there are not as many Galois connections as can be expected, taking the members
of the power set of X and IB into consideration. The concept lattice allows us to
identify the Hasse diagram of the objects because the sampling sites are located in
the reverse orientation (compare Fig. 5.7). The reverse orientation becomes clear
if we take into consideration that we want to have the full object set at the top of
the diagram (corresponding to the scheme in Fig. 8.1). There are no attribute val-
ues which simultaneously are valid for all sites. Going downward, more and more
attributes represent less and less objects. Therefore, the objects with high values of
their attributes in Fig. 8.9 are here near the bottom of the diagram.

Annoni and Bruggemann (2008) point out that the formal concept lattice allows
us a symmetric view. We can either examine the attributes and their values to see
which objects belong to them, or we can look at objects and see which attributes,
with which values, characterize them.
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Fig. 8.9 Formal concept lattice of Lake Ontario. The number labels refer to sediment sites; the
labels like CP-5 describe the attribute CP, which has value 5

We apply the following scheme:

1. Examine one attribute with its values and see what the objects are.
2. Examine several attributes and see what we can say about the objects.
3. Examine one object and see what the attributes and their values are.
4. Examine several objects and see what happens.
5. Finally, examine association rules.

8.7.2 Attributes

(1) Which objects obey CP-5?

• First step: Identify the corresponding concept, C.
• Second step: Look to its down set O(C).
• Third step: Gather all objects which belong to x ∈ O(C).
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We find that the object set {31, 95} has CP-5 and therefore due to our scaling
model, all values of CP ≤ 5.

(2) Which objects obey MT-2 and simultaneously FC-2?

• First step: Identify the infimum of the concepts bearing MT-2 and FC-2,
which we call Cinf.

• Second step: Look to the down set O(Cinf).
• Third step: Gather all objects which belong to x ∈ O(Cinf). They all have

simultaneously the properties MT-2 and FC-2.
• The two attributes MT and FC with value 2 are located near the top of the

lattice. Hence without taking a closer look at the diagram, we can expect that
these two characterizations, namely MT-2 and FC-2, will be valid for almost
all objects. The only exception is site 11, which is at the top. MT-2 and FC-2
are labels at different vertices, therefore there will be some objects, which
belong only to one of these attribute values (Fig. 8.10).

In Fig. 8.10, two intersecting subsets are visualized to show how to find objects
with common attribute values and those with exclusively one of the two attribute
values. The set for which both MT-2 and FT-2 is valid is in the down set of Cinf.
Hence it is easy to identify those objects which fulfill only one of the two properties.
They must be reachable downward either from MT-2 or exclusively from FC-2. Sites
91, 4, 5, 31, 25, and 27 have the property FC-2, but certainly not the property MT-2
(see scheme Fig. 8.10).

In order to avoid awkward descriptions, we will express “concept labeled by
MT-2” as MT-2. Tracing the Hasse diagram downward, we can, for instance, reach
MT-4. We see that fewer objects are in the down set. For example, sites 2 and 3 have
MT-2 but not MT-4.

Which sediment samples have some genotoxicity potential (attribute GT)?
We start at GT-2. All objects in the down set are of interest. We find sites 23,

18, and 9. Are there sites which at the same time have no acute toxicity? Hereto
we examine as to how far below the objects 23, 18, and 9 are in the down set of
MT-2. Indeed we find two sites out of the three, which have at the same time an
acute toxicity potential, namely 9 and 18.

MT-2 

MT-2 and  FC-2 

Cinf
 

FC-2 

Fig. 8.10 Schematic view on
MT-2 and FC-2
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8.7.2.1 Redundancy of Attributes

The attributes FC, CH, and CP describe fairly well the same kind of problems,
namely hygienic problems due to fecals. We may ask whether it was meaningful to
add all three properties to the test battery of Dutka et al. (1986). Indeed, low levels
like FC-2 include all objects which have higher values in CH and CP. However, site
27, for instance, has the maximum value of FC, but neither CP nor CH is of concern
for this site. Whether or not there is redundancy, say in qi and qj, can be examined by
determining the symmetric difference set (see Chapter 4) O(qi) � O(qj). The larger
the symmetric difference is, the less redundant qi and qj are. Note that we use an
abbreviated notation: O(qi) stands for the down set of the concept having as label qi.

8.7.3 Objects

(3) Characterization of objects
Which values of which attributes may be characteristic of objects?

• The site 18 has a high value in GT but a low value in MT.
• Site 9 has a weak genotoxicity potential (GT-2), however, a rather high acute

toxicity (MT-6). Both sites 18 and 9 are not of concern with respect to the
group FC, CH, and CP.

• Site 32 belongs to O(MT-8) but has only a medium value of FC (FC-3).
• Sites 4, 5, 25, 31, and 27 have no genotoxicity, no acute toxicity but different

variants of hygienic loadings.

(4) Characterization of object subsets
Following Chapter 5, we may ask as to how far we can identify reasons for the
separation of object subsets. An example may clarify this point: In Fig. 8.9, we
see that

X1 = {7, 14, 32} and X2 = {9, 18, 23} are separated subsets.

The supremum of X2 is the concept, labeled with GT-2; site 9 has the MT
value 6 (MT-6). In terms of the formal concept analysis, no other property
{FC-2, FC-3, . . .}, {CH-2, CH-4, . . .}, {CP-3, CP-5} is common for X2. The
supremum of X1 is the concept, labeled with MT-8. Site 7 has property FC-2
and site 32 has FC-3. Hence the separation of these two subsets is explained as
follows:

X1: FC ≤ 3, CP = CH = 0, GT = 0, MT > 6
X2: FC < 2, CP = CH = 0, 2 ≤ GT ≤ 4, 0 ≤ MT ≤ 6.

(5) Implications II
We already discussed implications and associations, related to a mono-valued
context. In multivalued contexts, we can analogously derive them, because an
attribute with different values is considered like two different properties in the
mono-valued case (see Annoni and Bruggemann (2008) and a recent example,
concerning the pollution by rocket fuels and their degradation products, in
Carlsen (2009)).
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One example may be sufficient.
CP-3 implies FC-3 and CH-2. How can we see this in the diagram?
O(CP-3) ⊂ O(CH-2) ∪ O(FC-3), i.e., all concepts in O(CP-3) are also reachable

downward from either CH-2 or FC-3.
Let us apply the extent of association, EoA: We call PR (premise) to be the

set of objects of the premise and CON (conclusion) to be the set of objects of the
conclusion. Let us examine |PR ∩ CON|/|PR|. We obtain a EoA = 1 if PR ⊂ CON,
otherwise a fraction of 1 tells us that there are some (few) exceptions. See Chapter 15
for an application of the associations and implications.

8.8 Summary and Commentary

Formal concept analysis (FCA) is a powerful mathematical tool to analyze data
matrices. By different scaling models (we are using mainly the ordinal scaling), it
is possible to analyze a wide span of different cases. For example, FCA provides a
tool, where nominal and ordinal data can be handled simultaneously.

There are some hurdles at this time, however, that are difficult to overcome at
least with the available software:

• The need of scaling. FCA requires a context and a decision about how to handle
continuous variables in concept. HDT can handle such variables without pre-
processing.

• The concept lattice can be huge, even with few objects and few attributes. If
there are n objects and if there is a context with m properties (either derived from
multivalued attributes or from mono-valued properties), then there are 2n and
2m subsets and the maximal number of concepts will be 2(n+m). The constraint
(Eq. (8.1)) filters out the pairs with no correct matchings. Nevertheless, there are
difficulties in disclosing the whole lattice.

Table 8.5 Comparison of formal concept analysis (FCA) with partial order analysis (PoA) as done
in Chapters 2–7

Advantages Disadvantages

PoA Direct use of the original data
matrix is possible

The partial order of the original data
matrix can be messy or uninformative

FCA Symmetric view on objects and
attributes. Derivation of
implications

A transformation is necessary to obtain
the context table. The lattice diagrams
can be huge as at maximum they
could contain 2m∗2n concepts, m
being the number of attributes and n
that of objects
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The recommendation is that we select suitable object subsets to utilize the power
of FCA and analyze the positions of the objects at least in these smaller concept
lattices. The FCA and the visualization it provides can be very helpful.

Finally, implications will help focus on the attributes themselves. This may not
offer direct help but allows us to put our fingers on measurement problems and even
on the selection of attributes to quantify the criteria.

What is the use of finding an implication and analyzing the formal concept lat-
tice? If the implication is known a priori, it can be easily checked by the context
table. However, if the implication is not known, then the formal concept analysis is
an elegant way to obtain it. In Table 8.5, we summarize advantages and disadvan-
tages of formal concept analysis in comparison with the partial order analysis we
discussed in the former chapters.
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Chapter 9
Methods to Obtain Linear or Weak Order
by Means of Partial Order

9.1 Tasks

In Chapter 3, we have seen how averaged heights of objects hav(x) can be calculated.
Thus partial order provides a method to obtain a linear order without the need of
making additional assumptions like weights for indicators. The main computational
problem, however, is the huge number of linear extensions, which sometimes makes
the calculation of averaged heights and from them the linear order difficult. This
chapter discusses different procedures to rank objects.

9.2 Levels

In Section 2.5 and in Chapter 5, we introduced the concept of levels.
Levels are a means to derive from posets a weak order, because objects x can be

ordered due to their level number lev(x). Let us introduce the equivalence relation

R : x, y ∈ X
x R y :⇔ lev(x) = lev(y)

(9.1)

Typically, the equivalence classes due to R are large.
Therefore, the disadvantage of ordering by lev is that there are many ties. The

advantage however is its simplicity.

9.3 Local Partial Order Model

9.3.1 Idea

The idea behind the “local partial order model” (LPOM) is to select an object x and
to characterize its order theoretical environment, i.e., to look at O(x), F(x), and U(x).
Because we focus on one single object, for which we want to estimate its averaged
height hav (sometimes also called Rkav), we call the method local partial order

135R. Brüggemann, G.P. Patil, Ranking and Prioritization for Multi-indicator Systems,
Environmental and Ecological Statistics 5, DOI 10.1007/978-1-4419-8477-7_9,
C© Springer Science+Business Media, LLC 2011



136 9 Methods to Obtain Linear or Weak Order by Means of Partial Order

model. As we have to do with partial order, the environment cannot be understood
only by considering the objects covering x and the objects covered by x, but also
objects incomparable to x. The principal down set O(x), the principal up set F(x),
and the set of incomparables U(x) need to be considered as determining quantities
to estimate hav(x).

9.3.2 Several Local Partial Order Models

There are different local partial order models depending on how the elements of
U(x) are (graph theoretically) related to x (see three examples in Fig. 9.1).

In the Hasse diagram A, we get six linear extensions, in which four include y at
a position below x. Hence, the averaged height of x hav(x) = (4∗5 + 2∗4)/6 = 4.67
(Eq. (9.2), see below).

In the Hasse diagram B, we get three linear extensions, because of the reduced
number of positions that y can take. From these, there is only one position which
increased the height of x in the corresponding linear extension. The averaged height
of x, hav(x) = (1∗5+2∗4)/3 = 4.333. One can see that if one ignores the connection
(in an ordinary graph theoretical sense) y has with x, an erroneous result will be
obtained.

In Hasse diagram C, ignoring y for a moment, there are three possibilities to
locate the element a. Depending on the position the element a gets, the influence
of y will be more or less pronounced. If element a gets the lowest position, then
the result is 4.6, which is close to the value obtained from Hasse diagram A (y as
isolated element). If, however, element a gets the position such that it is covered by
x, then the result is 4.33 (like in Hasse diagram B).

9.3.3 LPOM

Therefore, the simplest and unique way is to consider all elements of U(x) as iso-
lated. The corresponding local partial order model is called LPOM. The height of

Hasse
diagram A

Hasse
diagram B

Hasse
diagram C

x x
x

y y y

a

Fig. 9.1 Three Hasse
diagrams with
|Oi(x)| = ∣∣Oj(x)

∣∣, |Fi(x)| =∣∣Fj(x)
∣∣, Ui(x) = Uj(x). i, j =

A, B, C, i �= j
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x must then be a function of |O(x)| , |F(x)|, and |U(x)| alone. For more involved
approximations, see Bruggemann et al. (2004, 2005) and Bruggemann and Patil
(2010).

The steps of calculation within LPOM are the following:

1. Select an element x.
2. Find U(x).
3. Consider all elements of U(x) as isolated.
4. All elements of successors of x are arranged into a chain (compare Chapter 3).
5. All elements of predecessors of x are arranged into a chain (compare Chapter 3).
6. Hence a chain results with the following order: elements of S(x) < x < P(x)

which we call the S − x − P chain (see Chapter 3).
7. Determine the averaged height of x by inserting the whole set U(x) into one of

the positions of the S − x − P chain.

Step 7: Insertion of U(x) into the predecessors of x, i.e., in P(x), would not change
the height of x. Insertion of U(x) into the chain made of S(x) will change the height,
namely from |O(x)| to |O(x)| + |U(x)|. To simplify the notation, we simply write
O for |O(x)|, F for |F(x)|, and U for |U(x)|. For the set U(x), there are O positions
available which enhance the height of x and F positions which let the height of x
invariant. In total, there are O + F positions, i.e., there are O + F linear extensions
if U(x) is considered as one object. Therefore

hav(x) = O

O + F
· (O + U) + F

O + F
· O (9.2)

As O + F is the total number of locations where U elements can be positioned,
the fractions pr <: = O/(O + F) and pr >: = F/(O + F) can be considered as
probabilities for object x getting height O + U or getting height O.

For spreadsheet calculations, Eq. (9.2) can be rearranged, taking into account that
|X| = n = O + F + U − 1:

hav(x) = O∗(n + 1)/(n + 1 − U) (9.3)

Both Eqs. (9.2) and (9.3) are at first to be considered as a result of an approx-
imation, because the assumption to put U(x) as a whole (i.e., as if it is one object
but adds to the height of x by U units) is not justified. In reality, all the elements of
U(x) are to be distributed independently over the S – x – P chain. This assumption
has been justified (Bruggemann et al., 2004). Several examples appear later in this
monograph.
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9.4 Bubley Dyer Algorithm

The Bubley Dyer algorithm generates a sample set of linear extensions from which
properties like averaged ranks can be obtained. This algorithm is a Monte Carlo
Markov chain procedure (MCMC) and the best way to demonstrate it is to show
a flow chart (Fig. 9.2, after Denoeux et al., 2005). Bubley and Dyer (1997, 1999)
show that a uniform and stationary distribution for linear extensions can be obtained
and they estimate that the time needed (under certain conditions) goes with |X|4.
The Bubley Dyer algorithm is realized in PyHasse as well as in VB-RAPID (see
Chapter 17). The Bubley Dyer algorithm needs a linear extension before it can do its
iterations. We call this linear extension a “starter.” In PyHasse, the starter is obtained
from the levels of the partial order. We begin with the top level and put the elements

No

poset (X,   )

Find a linear
extension

Toss a fair
coin:

Head Tail

a

b c

d

σ0 = (a, b, c, d)

H T

Take an index
i ∈ [1,|X|]
given a certain
probability 

switch the ith and 
(i + 1)th element in σold

yielding σtest

Is the new
permutation
σtest a linear
extension of
the poset?

Yes

i = 2

σtest is a linear
extension of

(X, < )

σtest = (a, c, b, d)

σnew = (a, c, b, d)

σnew = σtest

σnew = σold

σ0

 

Fig. 9.2 Flow chart for the Bubley Dyer algorithm. RHS: A parallel example. See also Denoeux
et al. (2005)
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of the top level arbitrarily in the upmost positions of the linear extension, then the
next level follows analogously, until the bottom level is reached. Any permutation
must be checked for its compatibility with the partial order. When the new permuta-
tion cannot be considered as a linear extension of the poset, then the next run starts.

9.5 Cumulative Rank Frequency Method

9.5.1 Method

Patil and Taillie (2004) suggest another method to find a linear or a weak order,
which they call the cumulative rank frequency (CRF) method. Consider a set of
linear extensions LE and � prob(hle(i)(x) ≤ h), with le(i) ∈ LE and x ∈ X/∼=.1 The
sum is taken over all heights ≤ h. If h is getting the values [1, . . . , |X/∼=|], we obtain
a cumulative rank frequency CRFx(h), which is a discrete function of h.

We define

x ≤ y : ⇔ CRFx(h) ≥ CRFy(h), for all h = 1, . . . , |X/∼=| (9.4)

The opposite orientation on the RHS of Eq. (9.4) can be easily understood: Take
a least element (see Chapter 2), then its probability = 1 for all h. Take a greatest
element, then

prob(hle(i)(x)) =
{

0, for all h < |X/∼=|
1, for h = |X/∼=|

and due to CRFx(h), the greatest element would be less than the least element.
Taking CRFx(1), CRFx(2), . . . , CRFx(|X/∼=|) as new data row for the elements

x ∈ X, we get a new matrix whose order relation can be checked, applying Eq. (9.4).
Now CRF can be applied once again until the final order relation due to Eq. (9.4) is
a linear or a weak one.

Figure 9.3 summarizes the CRF method. The conceptual advantage of the CRF
method to obtain the linear or the weak order is that it avoids the interim step of
calculating the averaged heights.

9.5.2 Illustrative Example

Consider a data matrix with four objects {a, b, c, d}, and its Hasse diagram shown
in Fig. 9.4 (LHS) and the linear extensions shown in Fig. 9.4 (RHS).

In Table 9.1 the frequencies of (hle(i)(x) ≤ h) are counted.
Applying Eq. (9.4), we see that a linear order is obtained: c < a < d < b.
In other partial orders, iterations may be necessary (see Patil and Taillie, 2004).

1Note that according to Chapter 2, we identify the quotient set with the set of representative
elements.
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data matrix: X, IB = {q1,q2,..,qm}

(X, IB)

LE

IB = { CRFx(1), CRFx(2),...,
CRFx(|X/≅|}

eq. (2.3)

eq. (9.4)

|LE| = 1?

no yes

Linear or weak order

Fig. 9.3 Flowchart of the
CRF method
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Fig. 9.4 Illustrative example: Hasse diagram and its linear extensions

Table 9.1 Frequencies of (hle(i)(x) ≤ h), cumulative frequencies (last four columns)

h = 1 h = 2 h = 3 h = 4 h ≤ 1 h ≤ 2 h ≤ 3 h ≤ 4

a 2 2 1 0 2 4 5 5
b 0 0 2 3 0 0 2 5
c 3 2 0 0 3 5 5 5
d 0 1 2 2 0 1 3 5
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9.6 Averaged Heights (Ranks) Derived from the Lattice
of Down Sets

9.6.1 Motivation

The computational problem in calculating the averaged heights sometimes arises
from the huge number of linear extensions. Storing and managing all these LT
sequences should be avoided. The idea can be sketched as follows (Fig. 9.5).

The network shown in Fig. 9.5 has 12 vertices. If any walk from B to T would
represent a linear extension, then we obtain 14 linear extensions. This observa-
tion implies that we would need to store only 12 vertices and their cover relations
but obtain the larger variety of 14 linear extensions by finding all paths and by
calculation of the needed quantities on the fly.

9.6.2 Generalization of Down Sets and Finding All Down
Sets of a Poset

We generalize the down sets.
Let Y ⊂ X. Then Y is a down set of (X, IB) if x ∈ Y and z ≤ x implies z ∈ Y .
To find all down sets of a poset (X, IB), we perform the following steps (Davey

and Priestley, 1990):

1. Identify all principal down sets O(x).
2. Generate a list of antichains.
3. Let AC(i) be the ith antichain, then any ordered set

Z(i) =
⋃

x∈AC(i)

O(x)

is a down set.

T

Fig. 9.5 The
“Manhattan-like” network
represents a digraph which
exclusively can be discovered
by walks either from the
bottom B (circle hatched) to
the top T (circle) or the other
way round (see text)
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4. Include if necessary the empty set.
5. Include if necessary the poset (X, IB) as a down set.

9.6.2.1 Illustrative Example

Let us take a simple poset, e.g., a fence F(4) (see Chapter 3), and perform the five
steps (Fig. 9.6).

The set of all down sets is denoted by J, hence for the fence F(4) we get

J(F(4)) = {Ø, {a}, {c}, {a, c}, {c, d}, {a, b, c}, {a, c, d}, {a, b, c, d}}

The sets of J(F(4)) can be partially ordered by applying the set-theoretical
inclusion (Fig. 9.7).

There are many important theorems and statements to be made for the partially
ordered down sets. Here we refer only to those which we need for the next steps:

1. The partial order of down sets (ordered by inclusion) is a lattice (see Chapter 8).
2. For any covering vertex v′ covering v, the associated down set of v′ differs from

that of v by one and only x ∈ (X, IB). Hence the edges of the lattice can be
uniquely labeled by x.

3. A path from the bottom of the lattice to the top can be characterized by the edges
and their labels which are met.

4. The sequence of edge labels is just a linear extension of (X, IB).

a

b

c

d

1. Principal down sets:
O(a) = a
O(b) = a,b,c
O(c) = c
O(d) = c,d

2. Antichains:
AC(1) = a,c
AC(2) = a,d
AC(3) = b,d

3. Perform unions of  the down sets:

O(a) ∪ O(c) = a,c

O(a) ∪ O(d) = a,c,d

O(b) ∪ O(d) = a,b,c,d

4. Include ∅
5. O(b) ∪ O(d) = (X,   ) Fig. 9.6 Generating all down

sets of the fence F(4)
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∅

a
c

a,c
c,d

a,b,c a,c,d

a,b,c,d
Fig. 9.7 J(F(4)), the partial
order of down sets of the
fence F(4), ordered by
inclusion

Following De Loof et al. (2006, 2008), Wienand (2005), and Morton et al.
(2006, 2009) the four points are the basis for an alternate computational approach
to calculate the averaged heights.

9.7 Mutual Probabilities

9.7.1 Tasks

Suppose that the decision maker is not interested in getting a rank for all objects but
wishes to know as to whether one object is better than the other. In the setting of
partial order, this question becomes: What is the probability of an element x to be
ranked higher than element y? We interpret this as a question for a local analysis of
the partial order, because the focus is on two elements only. However, in doing so,
we should be aware that each new object changes the value of the mutual probability,
probm.

9.7.2 General Outline

The mutual probability probm(x > y) (see Chapter 3, Eq. (3.4)) can be easily calcu-
lated if the set of linear extensions is at hand. Because then one simply has to count
the number of linear extensions in which object x has a height above y and divide
by the number of linear extensions, LT.

Once again, behind this simple situation can arise a nontrivial computational
difficulty. The number of linear extensions gets so large even for empirical posets
of moderate size that it is not possible to obtain the set of linear extensions and then
perform the needed counts.
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The following strategy provides guidance:

• Derive empirical formulas based on easily accessible quantities like O(x), F(x),
and U(x).

• Show that the empirical formula works well for a certain training set of posets
and pairs (x, y) in it.

9.7.3 Heuristic Approach

As was discussed in Section 9.3, the probability for merging U(x) into an S − x − P
chain can be approximately described by the number of accessible locations below
and above x. If there are two elements x ‖y , then in a rough approximation, probm
(y > x) will depend on the quotient Q(x) = F(x)/O(x) and Q(y) = F(y)/O(y).
If Q(x) > (y), then there are less locations for y to be located below x, hence the
probability of y > x will increase with Q(x) and based on similar arguments decrease
with Q(y). Therefore, one may write probm(y > x) ∼ Q(x)/Q(y). As probm(x > y)
must get such a form that probm(x > y) + probm(y > x) = 1, the functional form

probm(y > x) = Q(x)/(Q(x) + Q(y)) (9.5)

is the simplest possible variant.

9.7.4 Applicability of Equation (9.5)

Equation (9.5) is derived in a pretty heuristic manner. The leading parameters are
F(x), F(y), O(x), and O(y). However, Eq. (9.5) may not be quite applicable for an
estimation of probm(x > y), x ‖ y , when the content of down sets and up sets is not
sufficient to characterize the poset. See, for example, Fig. 9.8.

Furthermore, the approximation of the mutual probability by LPOM may become
worse as more incomparable elements are present.

x

y

k
elements

x

y

Fig. 9.8 Two examples of partial order, where the description of probm by F(x), O(x), and F(y),
O(y) alone may be inappropriate. The lines not including x or y are thought of as having at least
one element
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9.8 Two Illustrative Examples

9.8.1 Revisiting Example of Chapter 7

We are interested in the heights for all objects (Fig. 7.7, Table App2). This is
equivalent to seeking the overall ranks according to an unknown attribute. For the
convenience of the reader, the Hasse diagram is shown in Fig. 9.9.

To obtain the averaged heights of the objects, we have to perform the steps
described in Section 9.3 and demonstrate them for some objects.

Object 5: S − x − P = 29, 6, 7, 5, 8; U(5) = {9, 14, 16, 17}, object 6: S − x − P =
6, 17, 7, 9, 5, 16, 8, 14; U(6) = {29}, object 7: S − x − P = 6, 7, 5, 9, 8; U(7) =
{14, 16, 17, 29}, object 8: S − x − P = 6, 29, 7, 5, 16, 9, 8; U(8) = {14, 17}, object
17: S − x − P = 6, 17; U(17 = X − {6, 17}.

The results are summarized in Table 9.2.
In Fig. 9.10, the values delta = hav(LPOM) – hav(exact) are shown as a

histogram.
There is a bias as LPOM is overestimating the exact values and there are two

outliers, namely the objects 17 and 14. For these objects, advanced local partial

6

8

7

17

9 16

14

5

29

Fig. 9.9 Three attributes.
X = {5, 6, 7, 8, 9, 14, 16,
17, 29}, object 7 is equivalent
to 22

Table 9.2 Calculation of averaged heights by LPOM models, last column (exact averaged
heights)

Object S – x – P U(x) hav(LPOM(0)) hav(exact)

5 29, 6, 7, 5, 8 9, 14, 16, 17 6.67 6.16
6 6, 17, 9, 5, 16, 8, 14 29 1.11 1.33
7 6, 7, 5, 9, 8 14, 16, 17, 29 3.33 3.25
8 6, 29, 7, 5, 16, 9, 8 14, 17 8.75 8.67
9 6, 7, 9, 8 5, 6, 14, 17, 29 6 5.96

16 29, 6, 16, 8 5, 7, 9, 14, 17 6 5.58
14 29, 6, 14 5, 7, 8, 9, 16, 17 7.5 6.24
17 6, 17 X-{6, 17} 6.67 5.66
29 29, 5, 16, 14, 8 5, 7, 9, 17 2 2.16
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Fig. 9.10 Histogram of the delta values

order models like those published in Bruggemann et al. (2005) and Bruggemann
and Carlsen (2011) have far better performance.

Nevertheless, the general statistical quality of LPOM is not so bad: The Pearson
correlation is 0.955 and is highly significant.

9.8.2 Example Human Environment Interface Index

For details of the HEI, see Patil (2000), Patil and Taillie (2004), and Singh (2008).
As we are convinced that the local partial order model is a helpful tool, we take

a second example, where we want to apply almost all concepts of Chapter 9. We
select the partial order of European countries.

For the following determination of the levels, compare Fig. 9.11.

9.8.2.1 Level

There are 10 levels because lg = 9 or the height = 10. Some of them are rendered
now:
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Fig. 9.11 Hasse diagram of European Countries (PyHasse)

The first level, level1 = {BG}; the second level, level2 = {FI}; the third level,
level3 = {GE, NL, DN}; the eighth level, level8 = {GR, SP, IL, UN, SW};
and the tenth level, level10 = {PO, RO}.

As discussed above, one can use the level number as a crude parameter-free esti-
mation of a weak order. Indeed the correlation (Pearson) of the results due to Bubley
Dyer (see below) with the level number is 0.865.

In Fig. 9.12, the scatter plot of Bubley Dyer averaged heights vs level number is
shown.

As expected, strong deviations appear when objects are located in the same level,
because then n equivalent elements of one level often have different numbers of
successors. The number of successors, however, is decisive for the final averaged
height, as one can see from the equations in Section 9.3.3.
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Estimation of ranks by the level concept
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Fig. 9.12 Averaged heights due to the Bubley Dyer algorithm vs level number

9.8.2.2 LPOM(0)

The outcomes of LPOM are shown in Table 9.3.
From Table 9.3 the following weak order is obtained:

PO > SZ ∼ BU > SO > SP > GR > FR > IL > IT > AS > HU ∼ SW ∼ RO > UK >

NO > IC > UN > DN ∼ NL > FI ∼ GE > BG.

9.8.2.3 Bubley Dyer

In Table 9.4, the results of Bubley Dyer algorithm are listed.

Table 9.3 Results of LPOM for 22 countries belonging to EU (HEI study)a

No. Rkav pr< pr> No Rkav pr< pr>

GR 16.1 0.7 0.3 NL 4.313 0.188 0.813
IT 14.375 0.625 0.375 UK 9.2 0.4 0.6
PO 21.955 0.955 0.045 BU 20.125 0.875 0.125
SP 18.4 0.8 0.2 HU 11.5 0.5 0.5
AS 12.938 0.563 0.438 UN 4.6 0.2 0.8
GE 2.706 0.118 0.882 SO 19.462 0.846 0.154
SZ 20.125 0.875 0.125 DN 4.313 0.188 0.813
BG 1.15 0.05 0.95 FI 2.706 0.118 0.882
FR 15.813 0.688 0.313 NO 8.625 0.375 0.625
IC 5.308 0.231 0.769 SW 11.5 0.5 0.5
IL 15.333 0.667 0.333 RO 11.5 0.5 0.5

aFirst column: Identifier of the country. Second column: averaged height (Rkav). Third and fourth
columns: Probability of U(x) to be below or above x.
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Table 9.4 Bubley Dyer algorithm applied to countries of EU (HEI study)

Nation Rkav Nation Rkav Nation Rkav Nation Rkav

GR 13.83 SZ 19.04 UK 8.99 FI 2.75
IT 13.67 BG 1.14 BU 19.86 NO 8.65
PO 21.96 FR 15.44 HU 14.23 SW 12.82
SP 17.61 IC 7.03 UN 7.05 RO 12.01
AS 11.82 IL 12.44 SO 18.67
GE 3.65 NL 5.21 DN 5.18

Approximations to linear rankings
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25

0 10 20 30
LPOM

B
D BD

Fig. 9.13 Bubley Dyer
algorithm (BD) vs local
partial order model (LPOM)

From Table 9.4, we obtain the linear order:

PO > BU > SZ > SO > SP > FR > HU > GR > IT > SW > IL > RO > AS > UK >

NO > UN > IC > NL > DN > GE > FI > BG

The LPOM yields astonishingly good results: The (Pearson) correlation coeffi-
cient = 0.981 (see also Fig. 9.13 for a scatter plot).

Clearly, as one can see from the weak order and the linear order due to BD, there
are broken equivalences and also some inversions. For instance:

LPOM: GR > FR > . . . > HU, whereas BD: Fr > HU > GR.

9.8.2.4 Method of the Down Set Lattice

In contrast to the Bubley Dyer algorithm, the lattice method provides exact averaged
ranks. Figure 9.14 shows the comparison of (a) lattice method vs LPOM and (b)
lattice method vs results of the Bubley Dyer algorithm.
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Fig. 9.14 (LHS) Comparison of LPOM and (RHS) comparison of Bubley Dyer algorithm with
exact averaged ranks due to the lattice method (abscissa)

As expected the LPOM method will have some discrepancies to the exact values,
whereas Bubley Dyer and the lattice method coincide very good. Hence we can give
an advice when to use each of the three methods:

• LPOM: It provides quick overview and easy trace back of factors relevant for a
certain height. There is no restriction in the number of objects.

• Lattice method: When the number of objects is less than 50, then this method
provides exact ranks and is recommended.

• Bubley Dyer algorithm: This algorithm gets results in an acceptable time even if
the number of objects exceeds 50.

9.8.2.5 Mutual Probability

It is only meaningful to calculate the mutual probability for incomparable elements.
A stakeholder in Germany may be interested in knowing how probable Germany
(GE) is superior to Netherlands (NL).

The heights of GE and NL in either LPOM or BD clearly differ. We find
NL > GE.

In Table 9.5, we find following information for GE and NL.
Just by examining the data of Table 9.5, we see that NL has both fewer predeces-

sors and more successors compared to GE. Hence the rough empirical equation (9.5)
will favor NL over GE. In Fig. 9.15, the PyHasse user interface is shown, where the
information gathered in Table 9.5 is used to obtain averaged ranks and the mutual
probability of any two incomparable objects.

Table 9.5 Order theoretical
characteristics of GE and NL Successors Predecessors Incomparable elements

GE 1 14 6
NL 2 12 7
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Fig. 9.15 Graphical user
interface of the module
“mutprobavrk.py”

The answer is that it is more probable that GE is dominated by NL in a linear
order, as was expected by the height calculation.

9.9 Summary and Commentary

The concept of levels is rather simple and allows a quick access to ranking of
objects.

The LPOM model is recommended for estimation of the canonical order within a
preliminary study because of its simplicity and unambiguity with respect to what is
to be selected as S – x – P chain. The approximation error of LPOM is a function of
the number of incomparable elements for each selected object, because any incom-
parable element which is not isolated will contribute to an error. We recommend
this method for a first screening. Recently, a very interesting approach is provided
by De Loof et al. (2006, 2008). Instead of constructing linear extension from the
poset and deriving averaged heights and other properties from them, the less com-
plex set of down sets and their lattice is the basis of the algorithm. Once the lattice
is found, several quantities of interest can be derived from paths within the lattice.
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The Bubley Dyer algorithm is a Monte Carlo Markov chain approach. It provides
a reasonable basis to estimate the averaged heights without the use of weights and
without the assumption of a linear model for the index. Note however that there is a
basic assumption in all calculations based on linear extensions. It is assumed that all
these linear extensions are of equal probability. The efficiency of the Bubley Dyer
algorithm may be enhanced when weights for the linear extensions are developed.
A weighted set of linear extensions may lead to a quicker convergence of the Monte
Carlo Markov chain approach.

Canonical orders can serve to understand better composite indicator because a
comparison with an order is possible which does not need the weighting of indica-
tors. Hence partial order and linear orders derived from them may helpful in what
Saisana et al. (2011) call a “deconstruction” of composite indicators.

A stakeholder may not be interested in knowing the position of his country rela-
tive to all of the other countries but in the comparison with only one other country.
In this case, a “local” concept is useful to give him an initial idea of how proba-
ble a certain order between his country and another one is. For this purpose, the
approximate calculation of mutual probability is helpful.

The task of finding linear rankings is an essential part of many well-known
decision support systems (DSS). Munda (2008) gives a good overview of their
advantages and disadvantages. However, in these DSS, the mathematical structure
of partial order plays only a subordinate role, if any.
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Chapter 10
Comparison of Partial, Linear, and Weak
Orders

10.1 Introduction

There are two reasons to compare different orders:

1. From (X, IB), a linear or weak order, called Oposet, can be derived, applying
methods rendered in Chapter 9. By calculation of an index (Chapter 7), another
linear or weak order can be obtained, which we call O� . As there are the same
set of indicators, IB, and the same set of objects, X, Oposet, and O� should ideally
be coincident. As can be suspected, this is not necessarily the case and we need
measures to quantify the degree of coincidence between Oposet and O� .

2. There are different indicator sets IB1, IB2 inducing partial orders (X, IB1) and
(X, IB2). Will any comparability x < y in one order be reproduced in another? If
not, how can we compare these two partial orders?

In the following, we discuss five concepts which may be useful for comparisons.

10.2 Representation of Oposet and O� by a Hasse Diagram

10.2.1 Method

Both orders Oposet and OIndex will be considered as indicators Iposet and I� ,
with which we can order the objects. From Iposet and I� , a new partial order
(X, {Iposet, I�}) can be found.

A Hasse diagram of (X, {Iposet, I�}) may show us the following:

1. Chains of (X, {Iposet, I�}): Subsets of objects with coincident mutual orders.
2. Antichains of (X, {Iposet, I�}): Pairs of objects for which object rank inversions

are found.
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3. A linear order (see Chapter 2): The two orders Oposet and O� coincide com-
pletely. The number of incomparabilities U will be 0.

4. A complete antichain: Oposet is the dual (Chapter 3) of O� . U = n∗(n − 1)/2,
with n being the number of objects.

Therefore, the degree of coincidence dcoin1 can be quantified by the following
equation:

dcoin1 := 1 − | U(X, {Iposet, I� }) |(
n
2

) (10.1a)

Instead of counting pairwise incomparability (Eq. (1.10)), we can measure the
degree of coincidence by the extent of pairwise incomparability. We sum object-
wise the absolute difference between ranks of each object due to Iposet and I� and
normalize this sum by its maximum attainable value of 1 + 2 + . . . + n − 1 =
n∗(n − 1)/2 =

(
n
2

)
. Thus we obtain another coincidence measure dcoin2:

dcoin2 := 1 −

∑
x∈X

| rank(x, Iposet) − rank(x, I�) |
(

n
2

) (10.1b)

10.2.2 Illustrative Example

Figure 10.1 shows the Hasse diagram of 10 objects, three attributes, and the data
matrix.

The order Oposet is obtained from the set of linear extensions and from them the
averaged height, hav.

The order O� is obtained by assuming the weight vector (0.5, 0.3, 0.2).

q1 q2 q3

a 1 2 3
b 3 2 5
c 2 5 2
d 3 3 4
e 1 2 4
f 4 2 2
g 6 1 1
h 6 1 3
i 2 6 5
j 4 2 6

a

b c

d

e

f g

hij

Fig. 10.1 Hasse diagram of
(X, IB) = (X, {q1, q2, q3}) for
demonstrating the calculation
of dcoin1
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j
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e

c

f
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d

h

g

i

jFig. 10.2 (LHS) (X, {I�}),
(middle) (X, {Iposet}), (RHS)
(X, {Iposet, I�})

Both orders (X, {Iposet}) and (X, {I�}) as well as (X, {Iposet, I�}) are depicted in
Fig. 10.2.

U(X, {Iposet, I�}) = 6, hence dcoin1 = 1 − 0.1333 = 0.8666, whereas dcoin2 =
1 − 0.27 = 0.73. We see that both orders coincide pretty well. By looking at the
Hasse diagram of (X, {Iposet, I�}), we see that

• object g is incomparable to the objects d, b, f, c and
• object h is incomparable to the objects i, j.

What may be the reason for this? Looking back at Fig. 10.1, we see that the
two objects g and h are forming own component in (X, IB). Therefore, g and h will
contribute to be in U(X, {Iposet, I�}) and be most prone to influences of the weight
vector.

10.3 Spearman Correlation Analysis

10.3.1 Method

Spearman correlation applies if we have two linear or weak orders and we would like
to know how far they are correlated. The correlation index tells us how much the two
linear or weak orders coincide. So far as any single ranking position is considered,
the Spearman correlation coefficient is pretty sensitive to rank inversion. We call
ranks of the order 1 R1(i) and those of the order 2 R2(i), where i = 1, . . . , n, with
number of objects n.
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Fig. 10.3 Scatter plot of I�(= IIndex) and Iposet of example in Section 10.2

Writing d(i): = R1(i) − R2(i), the Spearman correlation is given by

rs = 1 −
6·

n∑
i=1

(d(i))2

n·(n2−1)

rs ∈ [−1, 1].

(10.2)

10.3.2 Illustrative Example

As order 1 we apply Iposet, and as order 2, I� of the example in Section 10.2. The
Spearman correlation coefficient is rs = 0.839, indicating a good correlation, hence
a good coincidence of both orders. In Fig. 10.3, the scatter plot of I� (ordinate axis)
vs Iposet (abscissa) is shown.

10.4 Concordance Analysis

10.4.1 Method

The concordance analysis is a robust and intuitive tool to compare one weak or
linear order with another one. For example, using an index Γ , we may get five
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X1,.    .....         Xk,      .....           X5

level1,
....
...

levelk,
....
....

level5

|level1 
∩

 
 X1|

|levelk 
∩

 
 Xk|

|level5 
∩ 

 
X5|

Fig. 10.4 Principle of
concordance analysis

subsets X1, X2, . . . , X5, Xi ⊂ X, Xi ∩ Xj = Ø, for j �= i, which can be interpreted
as “very bad,” “bad,” “medium,” “good,” “very good” and by the partial order,
five levels (see Chapter 9) level1 (“very bad”), level2 (“bad”), . . . , level5 (“very
good”) are provided and we want to compare the level sets with the subsets. Patil
(2005) introduces this intuitive technique to perform this comparison (Fig. 10.4).
The arrows in Fig. 10.4 indicate the orientation (from very bad to very good) and
we count the elements occurring in the main diagonal. In order to get a measure, we
normalize this number by dividing by the number of objects.

The basic idea can be represented by a square d × d matrix cd (see Fig. 10.4) as
follows: Let

Pki = {x ∈ X : height i in kth order}, then cdij = ∣∣P1i ∩ P2j
∣∣ (10.3)

As motivated by Fig. 10.4, the two orders coincide more, as the entries in the
diagonal of the concordance matrix are more. However, we accept some slight devi-
ations as concordant: Therefore, the two diagonals neighboring the main diagonal
are also taken into account, however with a lower weight κ (0.5 is recommended).
Hence we arrive at

con =
(∑

cdii + κ∗ ∑
cd|i−j|=1

)
/n, n being |X| (10.4)

The expression cd|i−j|=1 counts for the two diagonals neighboring the main diag-
onal and n is the number of objects. Patil (2005) finds by simulation studies a
threshold value T.

T = 1/d, d being the number of subsets Xi (levels) (10.5)

We speak of concordance between two rankings if

con > T (10.6)
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A fictitious example follows; real-life examples will be found in the case study
chapters.

10.4.2 Illustrative Example

In Fig. 10.5, a Hasse diagram together with the data matrix is shown.
Assuming all weights equal, the index yields the weak order:

a < d < e < b ∼= h < c < g ∼= i < f

There are three levels (see Chapter 9):

level1 = {a}, level2 = {c, e, i}, level3 = {g, h, b, f , d}

Correspondingly, we form three disjoint subsets:

X1 = {a, d, e}, X2 = {b, h, c}, X3 = {g, i, f }

Corresponding to Fig. 10.4, we obtain Table 10.1.

q1 q2 q3

a 1 2 3
b 3 2 5
c 4 6 3
d 1 7 0
e 2 3 4
f 0 8 9
g 6 6 3
h 2 3 5
i 0 7 8

a

b

c

d

e

fg h

i

Fig. 10.5 Illustrative Hasse diagram and the data matrix

Table 10.1 Intersections
(top) and concordance matrix
cd (bottom)

{a, d, e} {b, c, h} {f, g, i}

{a} {a} Ø Ø
{c, e, i} {e} {c} {i}
{b, d, f, g, h} {d} {b, h} {f, g}

{a, d, e} {b, c, h} {f, g, i}

{a} 1 0 0
{c, e, i} 1 1 1
{b, d, f, g, h} 1 2 2
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10.5 Intersection of Partial Orders

10.5.1 Motivation

Often two posets arise from different sets of indicators and it is of interest to relate
the two posets. One way to do this is to combine both indicator sets and to get an
extended information base = IB1 ∪ IB2, then see what comparabilities remain in
(X, IB1 ∪ IB2).

10.5.2 Method

In (X, IB1 ∪ IB2) only those comparabilities occur, which are present at the same
time in (X, IB1) and (X, IB2). In other words

(X, IB1 ∪ IB2) = (X, IB1) ∩ (X, IB2) (10.6b)

The two partial orders coincide more as larger the intersection in Eq. (10.6b) is.
The evaluation of the intersection operation in Eq. (10.6b) is best done if the

representation of posets by ordered sets is applied (Section 2.5): If x < y in (X, IB),
then (x, y) ∈ X = (X, IB).

As in Chapter 7, V is the number of comparabilities. We call V1 the number of
comparabilities of (X, IB1), V2 of (X, IB2), and V12 of (X, IB1 ∪ IB2).

Then obviously

V12 ≤ min(V1, V2) (10.7)

If (X, IB1) ⊂ (X, IB2), then V12 = V1. Useful results by intersection can be
expected if only one of the posets is included in the other one.

10.5.3 Illustrative Example

Consider the three Hasse diagrams in Fig. 10.6.
As in Chapter 2, we disregard the pairs which are in the diagonal of X2:

(X, IB1) = {(a, b), (a, d), (c, b), (c, d), (b, d)}
(X, IB2) = {(a, d), (c, b), (c, d), (b, d)}
(X, IB3) = {(c, b), (c, a), (c, d), (b, d), (b, a)}

Inclusions:

(X, IB2) ⊂ (X, IB1) and V12 = V2 = 4
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a

b

c

d

a

d

b

c c

b

a d

(1) (2) (3)

Fig. 10.6 Three visualizations: (1) (X, IB1), (2) (X, IB2), (3) (X, IB3)

The ordered pair (b, a) is neither in (X, IB1) nor in (X, IB2). Furthermore, the
ordered pair (a, d) which is in (X, IB1) and (X, IB2) is not in (X, IB3). Therefore, no
other ⊂ relation can be found among the three posets.

Intersections:

(X, IB1) ∩ (X, IB2) = {(a, d), (c, b), (c, d), (b, d)} = (X, IB2), V12 = 4 as it
must be.

(X, IB1) ∩ (X, IB3) = {(c, b), (c, d), (b, d)}, V13 = 3, a chain c < b < d results,
object a is isolated.

(X, IB2) ∩ (X, IB3) = {(c, b), (c, d), (b, d)}, V23 = 3, a chain c < b < d results,
object a is isolated.

10.6 Comparison of Two Partial Orders as a Multivariate
Problem

10.6.1 Motivation

Here we want to count what is different between any two pairs (x, y) obtained from
the one and the other partial order. We aim to visualize these counts in a histogram-
like diagram.

10.6.2 Method

Let us take two elements x, y ∈ X, then the following constellations appear while
comparing two empirical posets (Table 10.2).

From Table 10.2 we see that 4∗4 different constellations are possible: (1a) with
(2a), (1a) with (2b), etc.
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Table 10.2 Possible
constellations when two
partial orders are compared,
taken x, y ∈ X

Identifier x, y ∈ X in (X, IB1) Identifier x, y ∈ X in (X, IB2)

1a x < y 2a x < y
1b x > y 2b x > y
1c x ‖ y 2c x ‖ y
1d x ∼= y 2d x ∼= y

We call any constellation out of the 16 situations a matching, mi, i = 1, . . . 16,
and denote it by the corresponding symbols out of the list {<, >, ‖, ∼=}. (10.8)

For example, the constellation (1a), (2c) : (<, ‖).
As any pair (x, y) ∈ X2 has exactly one of the 16 matchings, we can also write

m(x, y) in order to describe which concrete matching appears for pair x, y by compar-
ing two partial orders. Only two matchings, namely (<, <) and (>, >), will contribute
to the partial order (X, IB1 ∩ IB2). The information about 14 other matchings will be
lost. Therefore, the theoretical idea is to count the frequencies of matchings as we
browse through the object set:

F(matching i) = count of mi, for all (x, y) ∈ X2 (10.9)

The evaluation of Eq. (10.9) can best be explained as in Table 10.3.
Counts of some matchings like (<, <) and (>, >) as well as (>, <) and (<, >)

separately are not meaningful if we have a comparison in mind. Therefore, instead
of taking care of all 16 matchings, we group them in “behavior classes,” B1, . . . , B5,
as follows (Fig. 10.7).

We describe now the degree of coincidence of two partial orders by performing
the following steps (Eq. (10.9)):

1. Count the mi by checking a matrix like that in Table 10.3.
2. Add up those mi which belong to behavior class B1.
3. Repeat step 2 for B2, B3, B4, and B5.
4. Denote the frequency of Bi by F(Bi).
5. Normalize F(Bi) by dividing by n∗(n − 1) and call the resulting number f (Bi).

Table 10.3 Counting
matchings Objects Objects

1 . . . k . . . n
1 m(1, 1) . . . m(1, k) . . . m(1, n)
. . . .... . . . . . . . . . ...
k m(k, 1) – m(k, n)
. . . ... . . . . . . . . . ...
n m(n, 1) . . . m(n, k) . . . m(n, n)
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1: >, >
2: >, ≅
3: >, ||
4: >, <
5: <, >
6: <, ≅
7: <, ||
8: <, <
9: ≅, >
10: ≅, ≅
11: ≅, ||
12: ≅, <
13: ||, >
14: ||, ≅
15: ||, ||
16: ||, <

Matchings Behavior classes

1: isotone

2: weak isotone

3: equivalent

4: indifferent

5: antitone

Fig. 10.7 Assignment of
matchings mi to behavior
classes Bi

There are the following typical cases:

• (X, IB1) ⊂ (X, IB2) : F(B5) = 0, F(B4) �= 0, F(B1) = 2∗V1 “good coincidence”
• (X, IB2) ⊂ (X, IB1) : F(B5) = 0, F(B4) �= 0, F(B2) = 2∗V2 “good coincidence”
• |(X, IB1) ∩ (X, IB2)| = V12 << min(V1, V2) (Eq. (10.7)): F(B5) �= 0, F(B4) �=

0, F(B1) = 2∗V12 “medium to poor coincidence”
• (X, IB1) = dual of (X, IB2) (see Chapter 4): F(B5) = 2∗V1 = 2∗V2, F(B4) �= 0,

F(B1) = 0 “no coincidence, countercurrent behavior”

In order to describe the behavior of two partial orders in a compact way, we use
the wording:

• isotone: matchings (<, <) and (>, >)
• antitone: matchings (>, <) and (>, <)
• weak isotone: the following matchings: (<, ∼=), (>, ∼=), (∼=, <), (∼=, >)
• indifferent: all matchings where || is part of the pair
• equivalent: matching (∼=, ∼=)

It is convenient to present the comparison of two partial orders by a bar diagram
of f(Bi). This multivariate consideration of the comparison of partial orders is called
“proximity analysis.”

10.6.3 Illustrative Example

In Fig. 10.8 two Hasse diagrams (a) and (b) are shown which visually present two
partial orders (X, IB1) and (X, IB2). What is the result of the proximity analysis?
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(a) (b)
a

a

b

b
c,e

cd

d

eFig. 10.8 Example for
proximity analysis with two
Hasse diagrams (a) and (b)

In Table 10.4 we fill out the cells by the matchings m1, . . . , m16: In the cells first
the result of the Hasse diagram (a) and then that of (b) are written. The matchings
of the same type are counted and assigned to one of the five Bi classes, following
the lines of Eq. (10.9).

The normalized frequencies f(Bi) are presented as a bar diagram (Fig. 10.9).

Table 10.4 Comparison
matrix among the five objects
of the Hasse diagrams shown
in Fig. 10.8 (only the upper
triangle is shown)

a b c d e

a – <, < <, < <, < <, <
b – ||, < ||, || ||, ||
c – <, > =, ||
d – >, <
e –

B1, isotone: 4; B2, weak isotone: 0; B3, equivalent: 0; B4,
indifferent: 4; B5, antitone: 2

Proximity

0
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Fig. 10.9 Proximity analysis of the two Hasse diagrams of Fig. 10.8
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How the normalized counts are combined to get a final scalar, expressing the
proximity, depends on the application. For a real-life example, see Chapters 14
and 15.

10.7 Summary and Commentary

So, actually the tools at hand to compare orders (see Table 10.5) are the following:

1. Hasse diagram of two linear or weak orders, dcoinc
2. Spearman correlation analysis, rs
3. Concordance analysis, con
4. Proximity analysis of two partial orders

There is another way of comparing linear or weak orders which we do not
mention so far but for which here is a good place.

Imagine that the empirical composite index is formulated by a set of weights,
which we abbreviate as g(emp). This set of weights bears all the experiences of
stakeholders and decision makers. Another set of weights called g(poset) may be
derived such that an index with weights g(poset) induces the same order as that
derived by methods explained in Chapter 9, i.e., by LPOM, Bubley Dyer, CRF, and
lattice theoretical methods. If such a set of weights g(poset) can be derived, we can
compare it with g(emp).

Table 10.5 Advantages and disadvantages of comparison tools

Advantages Disadvantages

Hasse diagram of two
linear or weak orders

Coincidences and
non-coincidences can be
visualized. Objects which
are incomparable to many
others can be easily
identified

Sensitive to any single
ranking inversion

Spearman correlation
analysis

Easily applicable. Software
is generally available

Sensitive to any single
ranking inversion

Test statistic is provided
Concordance analysis Intuitive concept

Test statistic
A PyHasse module is

available

Need of finding the same
number of subsets for both
rankings. The parameter κ

may influence the result
Proximity analysis Detailed information about

the matchings arising from
two partial orders. A
PyHasse module is
available

There is no single number
telling us about the
proximity of two partial
orders
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Now we are confronted with four cases:

(1) Such a set of g(poset) does not exist, which draws serious attention to the data
matrix (indicator selection, measurement errors, and rounding procedures).

(2) By a suitable distance measure, both sets of weights are sufficiently close to
each other. Then the partial order method justifies the set of weights g(emp).

(3) The distance is large. Then a re-examination of the data matrix and the
weighting procedure to obtain the composite indicator is recommended.

As a software-supported approach is still not available, we let this kind of
comparison be open for future work.

Reference

Patil, G.P. (2005). Cross-disciplinary class room notes. Center for Statistical Ecology and
Environmental Statistics, Penn State University.



Chapter 11
Illustrative Case Studies

11.1 Overview

Here we demonstrate some of the tools outlined in Chapters 2, 3, 4, 5, 6, 7, 8, 9, and
10. The illustrative case studies are based on “real-life” data matrices. The sections
are organized as follows (Table 11.1).

Table 11.1 Organization of Chapter 11

Tool Sections Case study Related to

Hasse diagram
Discretization
p-algorithm

2.5
6.3
6.5

Pollution in
Baden-Wuerttemberg

Environmental
chemistry

POSAC 3.5 Internet sources about
drinking water quality

Environmental health

Attribute-related
sensitivity

4.2 Fish communities in
wetlands

Biology

Ambiguity and
antagonism

4.3, 4.4, 5.5.2 Ranking of
high-production
chemicals

Environmental
chemistry

Attribute value-related
sensitivity

6.6 Ecological value of
communes

Ecology

Dominance among
subsets

5.6 (a) Chemicals in a river
(b) Human environment

index

(a) Environmental
chemistry

(b) Environmental
sciences

Separability 5.4, 5.6 Management in a river
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11.2 Illustrative Case Study: Pollution in Baden-Wuerttemberg
(Environmental Chemistry)

11.2.1 Introduction

For monitoring the pollution status of the German state Baden-Wuerttemberg,
the Environmental Protection Agency divided Baden-Wuerttemberg into 60
regions, which are the objects of our analysis (EPA Baden-Wuerttemberg, 1994;
Bruggemann et al., 1997).

11.2.1.1 Hasse Diagram of (X, IB)

• X, the object set, consists of 59 regions, where data are available.
• IB, the information base, consists of four indicators, cPb, cCd, cZn, and cS, the

concentrations of Pb (lead), Cd (cadmium), Zn (zinc), and S (sulfur) in the herb
layer in mg/kg dry mass. As shorthand notation, we write simply: IB = {Pb, Cd,
Zn, S}.

• Orientation: The larger the concentration, the larger the loading of the region.

For convenience, the Hasse diagram based on the original data matrix, already
shown in Chapter 3, is displayed once again in Fig. 11.1.

11.2.2 Further Tools of Partial Order Analysis

11.2.2.1 Minimum Rank Graph

In Fig. 11.2, the minimum rank graph is shown. We select two regions, namely
regions 48 and 52, both of which are proper maximal elements (see Chapter 2).
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Fig. 11.1 Baden-Wuerttemberg. 59 regions. Herb layer, indicators Pb, Cd, Zn, and S (mg/kg dry
weight)
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Minimum rank graph
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Fig. 11.2 Minimum rank graph of the two regions 48 and 52. Canonical sequence:
Pb ∼= S > Cd > Zn

Both regions are maximal elements; however the minimum rank graph shows
remarkable differences: Region 48 has more successors compared to region 52,
because the concentration of Pb in region 48 is larger than that in region 52. Adding
indicator S reduces |O(48)| drastically, because the concentration of sulfur is pretty
low. Adding further indicators has only slight effects on |O(48)| and therefore on its
minimum rank.

Region 52 has less successors compared to region 48 because of its lower con-
centration of Pb. Adding the indicator S and Cd reduces |O(52)| slightly, whereas
adding indicator Zn to the data matrix has the strongest effect on region 52. The
reason is that the concentration of Zn in region 52 is pretty low. Therefore, many
regions are eliminated as elements of the down set of 52 after the last step.

11.2.2.2 Dominance Degrees

There is information available on the following characteristics:

1. Contribution forests
2. Degree of agricultural activity
3. Industrial density
4. Traffic density
5. Settlement density

The experts scored these five characteristics from 1 to 3, whereby value 3
indicates a bad status, i.e., a high pressure (in the sense of the DPSIR concept of
the OECD; see Kristensen, 2004) on the ecosystem. We select regions having in
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Table 11.2 Pressures

Pressure Identifier Regions

In three
characteristics

H: high pressure 18, 52

In two
characteristics

M: medium pressure 19, 22, 59, 1, 30, 47, 49, 56

In one characteristic L: Low pressure 54, 4, 7, 16, 41, 45, 50, 55, 60, 3, 43, 44, 31, 39, 42

H

M

L

0.44

0.28

0.13

0.05

2

15

8

Fig. 11.3 Directed graph.
Evaluation of the edges by
the dominance degrees �= 0

one, two, or three characteristics a score 3. Table 11.2 informs about the loadings of
regions according to the pressure indicators.

The calculation of the dominance degrees of contextual defined subsets Xi ⊂ X
can be conveniently displayed by a directed graph and is shown in Fig. 11.3.

Figure 11.3 (number of regions belonging to different degrees of pressure is given
in bold numbers; see Table 11.2) shows that Dom(H, M) = 0.44. Therefore, we may
hypothesize that the degree of pressure governs the pollution level. However, if we
compare regions of medium pressure to those of low pressure, the dominance anal-
ysis does not support this hypothesis. The reason may be that the pressure indicators
provide a description on a regional scale, whereas the pollution may also be affected
by long-range airborne transport processes.

11.2.2.3 Transformations of the Data Matrix

Discretization Scheme

The K values (see Chapter 6) were given by the scientists of the Environmental
Protection Agency (Dr Kreimes: personal communication) as follows:
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18

Pb Cd Zn S score = 0

35 57 48 34

14 38 09

41 22 45

17 06

30

Fig. 11.4 Partial ordering of the regions of Baden-Wuerttemberg (see text)

K(Pb) = K(Cd) = K(Zn) = 3 with the scores 0, 1, 2, K(S) = 2.

The minimum and maximum values are taken from the columns of the normal-
ized data matrix (Table A.3).

11.2.2.4 Hasse Diagram

Figure 11.4 shows the resulting partial order. Instead of circles and identifiers
as graphical elements, we draw small bar diagrams, which indicate the pollution
profile.

11.2.2.5 Interpretation

In Fig. 11.4 the numbers to the right of the pollution profile are identifiers of the
regions and the bars show their pollution status with respect to lead (Pb), cad-
mium (Cd), zinc (Zn), and sulfur (S) in the herb layer (mg/kg dry mass). For the
equivalence classes, see Table A.4). The Hasse diagram makes evident that the
following:

• Pollution increases in different manner when starting from the bottom (region 30)
and moving upward along the lines.
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• Any bifurcation tells us that the pollution pattern (like moving upward from
region 17 to 41 on the one hand and 22 on the other hand) is qualitatively
different: 41 is additionally loaded by cadmium, whereas 22 is loaded by lead.

• Any union of lines tells us that the pollution load is so large that qualitative
differences in the lower part of the diagram are of no concern for all objects
upward.

• In comparison to Fig. 11.1, we identify the separated subset {regions 34 and 09}.
These regions cannot be compared with the most other regions, because they have
high scores of the metal Zn, together with a medium score of the rather toxic
but broadly technically used metal Cd. This pollution pattern will not be found
for other regions. The graphical display by a Hasse diagram shows this peculiar
property. The causal background for this high degree of separability may be the
mining activities in former centuries in those regions (Kreimes, 1996).

• There is a triangular shape (see Chapter 5): Going upward on the Hasse diagram,
one sees how the different profiles evolve, and how more and more incompara-
bilities appear and we can see why an object is and where it is located because
we can see the data profile.

• There is a need to remedy the pollution status of many regions, but the strategy
of remediation will be different, as each maximal element has another pollution
profile.

• Finally, the component {12, 9} found in the Hasse diagram, Fig. 11.1 is not repro-
duced. Indeed the numerical differences leading to the two nontrivial components
in Fig. 11.1 are very small.

11.2.2.6 p-Algorithm

We selected the cut values qi0 such that with respect to each attribute, 90% of the
objects are sent into the swamp (see Chapter 6). In Fig. 11.5, the resulting Hasse
diagram (equipped with the profiles of the maximal elements) is shown.
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Fig. 11.5 The same Hasse diagram after applying the p-algorithm. Equivalence classes: {8, 45,
20}, {38, 57, 24}, {19, 43}, and the swamp SW (see text)
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Following the lines of Chapter 5, we give some examples of navigation: Starting
from the maximal elements of the left part, we see there is no Zn (in terms of the
p-algorithm). Applying Eq. (5.9), we identify the objects in the left part of the dia-
gram as being not polluted by Zn. Similarly the right part is that there is no Pb
pollution.

11.3 Illustrative Case Study: Internet Sources About Drinking
Water Quality (Environmental Health, IT)

11.3.1 Introduction

In a study performed by Voigt and Welzl (2002), the question was about the
extent of informativeness of Internet sources about drinking water quality. Drinking
water is extremely important. Its contamination by active pharmaceutical substances
becomes a serious matter (see Freier et al., 2007). Hence it is of interest to know as
to how we get information about the quality of drinking water. Voigt and Welzl
(2002) investigated Internet sources of the 16 states of Germany. Five indicators
were worked out:

1. Number of chemicals reported, NU
2. Kinds of chemicals, KC
3. Other properties like microbial studies, hardness of water, OP
4. Number of monitoring sites in cities, MS
5. Degree of explanations and the contexts, EX

Hence the information base is IB = {NU, KC, OP, MS, EX}.

11.3.2 Data Matrix and Partial Order

The indicator values are 0, 1, 2 and the orientation is that high value indicates a
good information status. The object set X = {BAW, BAY, BER, BRE, BRA, HAM,
HES, MEC, NIE, NOR, RHE, SAA, SAN, SHO, THU}. In Table 11.3, the data are
summarized.

In short, Fig. 11.6 shows that a unique ranking of subsets of the 16 states is possi-
ble, although more than one indicator is needed to characterize them. For example,
BRE < HES < BRA < SAN < BAW < BAY. We see furthermore that SHO and BAW
have good positions as they are near the top of the Hasse diagram. However, they
differ in their attribute values: SHO has value 2 in four of five indicators but 0 in
indicator MS. BAW, however, has only good values in NU and KC, and medium
values for the residual indicators, but no worst value. The Hasse diagram makes us
aware of such data profiles.
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Table 11.3 Sixteen states of Germany and the information status about drinking water

Id State in Germany NU KC OP MS EX

BAW Baden-Württemberg 2 2 1 1 1
BAY Bayern 2 2 2 1 2
BER Berlin 1 2 1 2 1
BRA Brandenburg 0 1 1 0 0
BRE Bremen 0 0 0 0 0
HAM Hamburg 0 0 1 0 1
HES Hessen 0 0 1 0 0
MEC Mecklenburg 0 0 0 0 0
NIE Niedersachsen 0 0 1 0 0
NOR Nordrhein-Westfalen 2 2 1 1 1
RHE Rheinland-Pfalz 2 2 1 1 1
SAA Saarland 0 0 0 0 0
SAC Sachsen 1 1 1 1 1
SAN Sachsen-Anhalt 1 2 1 0 1
SHO Schleswig-Holstein 2 2 2 0 2
THU Thueringen 0 0 1 1 0

BAW

BAY BER

BRA

BRE

HAM

HES

SACSAN

SHO

THU

Equivalence 

class

Equivalence

class

Equivalence 

class

{BAW,NOR,RHE} {BRE,MEC,SAA} {HES,NIE}

Fig. 11.6 Hasse diagram of (X, IB), together with a table of its equivalence classes

Several other chains of this length can be found. If we consider the representative
elements of equivalence classes (see Chapter 2), then we find two linear extensions
(Chapter 3) as follows:

le(1): (BRE, HES, THU, HAM, BRA, SAC, SAN, BER, BAW, SHO, BAY) and
le(2): (BRE , HES, BRA, HAM, SAN, SHO, THU, SAC, BAW, BAY, BER)

Do these two linear extensions reproduce (X/∼=, IB) implying dim
(X/∼=, IB) = 2? With PyHasse software (Chapter 17) this can easily be checked
and answered with “yes.”
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Fig. 11.7 A POSAC-like diagram, drawn after Voigt and Welzl (2002)

The two linear extensions allow a complete embedding of the objects in a two-
dimensional coordinate system. The ranks of the two linear extensions can be taken
as coordinate values. For example, THU would get (3, 7) and SAN (7, 5).

Now POSAC tries to find two coordinates preserving the comparabilities as much
as possible (see Section 3.5). The procedure is based on an optimization algorithm,
hence it may obtain the correct coordinate-wise representation only approximately.
Indeed, the POSAC routine, as provided in the statistical software SYSTAT, finds a
solution with 98% accuracy. The POSAC result is shown in Fig. 11.7.

Figure 11.7 shows the representatives. One can see that BRA is comparable to
HAM, according to the POSAC diagram. However, in reality, it is incomparable.

This example shows that dimension theory (see Chapter 3, Section 3.5) has some
useful applications here. Voigt and Welzl show that LOV(1) is mainly determined
by KC, whereas for LOV(2), the indicators MS, OP, and KC contribute nearly to the
same extent.

11.4 Illustrative Case Study: Fish Communities in Wetlands
(Biology)

11.4.1 Introduction

Wetlands of Gosen are located southeast of Berlin, capital of Germany. There are
12 creeks whose maintenance is cost intensive. There are many considerations for
being “important,” for example, rare macrophytes and the riparian zone as ecotone.
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Here, however, the fish communities are of main interest, because some of the fish
species belong to the “red list species.” That means there is a risk that closing a creek
may cause the extinction of rare fish species. Scientists of the Leibniz-Institute of
Freshwater Ecology and Inland Fisheries investigate these 12 creeks with respect to
their fish communities (Bruggemann et al., 2002).

Hence:

• Object set X = {gs, gv, gl, gm, ga, gz, A, F, G, K, M, T}.
• IB consists of nine indicators measuring the abundance of nine fish species.
• Orientation of the attributes: A creek with more individuals of any of the nine

fish species is considered as more important than a creek with less.

Thus a 12 × 9 matrix of abundance measurements was obtained and is to be
evaluated.

11.4.2 Attribute-Related Sensitivity Study

Figure 11.8 shows the Hasse diagram of this data matrix. There are seven maxi-
mal elements. These seven creeks should be maintained because there are no other
creeks that are better.1

There clearly arises one question: Which fish species influences that result most?
Perhaps the Hasse diagram collapses to only some few maximal elements if the
indicator of one fish species could be deleted from the data matrix. The attribute-
related sensitivity study by means of the matrix W showed that the most important
indicator is the number of individuals of a small fish, called “crucian carp.”

Why is this little fish so important for the structure of the Hasse diagram? The
reason is that the crucian carp is, on the one hand, very weak in competition for
nutrients compared to the other eight fish species. On the other hand, the crucian

K

M

A

G T

F

gz

gm

glgv ga

gs

Fig. 11.8 Creeks of the wetlands of Gosen, ordered by the abundances of nine fish species

1Whether or not the remaining five creeks can be closed depends on the topology of the networks
of creeks and is here of minor interest.
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carp tolerates bad conditions, i.e., very shallow and warm, i.e. oxygen-deficient
creeks. Other fish species avoid these creeks. Hence there is a trade-off: If the cru-
cian carp is present, then the other fish species are not or almost not present, or when
other fish species prefer a certain creek, then the crucian carp tends to stay in other
ones. Therefore, this small fish induces many incomparabilities. Deleting the col-
umn “abundance of crucian carp” from the data matrix will replace many of these
incomparabilities. Hence, the abundance of the crucian carp is the most important
indicator for the Hasse diagram.

11.5 Illustrative Case Study: Ranking of High Production
Volume Chemicals (HPVCs) (Environmental Chemistry)

11.5.1 Introduction

The evaluation of marketed chemicals is confronted with around 1,00,000 already
used chemicals. Yearly around 1,000 chemicals are appearing newly on the mar-
ket. The current number of existing substances marketed in volumes above 1 ton
is estimated to be 30,000. With REACH (registration, evaluation and authorization
of chemicals) a new impact was given to rank chemicals (see, for instance, Ahlers
et al., 2008; Führ and Bizer, 2007): Before sophisticated but rather expensive and
time-consuming risk assessment studies (for instance, by application of the simula-
tion model EUSES; see, e.g., Attias et al., 2005) are performed, one wants to rank
with easily available indicators in order to find out the most important chemicals to
save time and costs.

11.5.2 Partial Order

As an example, 12 high production volume chemicals (HPVC) were selected
(Lerche et al., 2002). Let us repeat the main questions and steps in a ranking study:

What is the aim of ranking? Environmental hazard
How can we describe the environmental hazard?
By attributes like the production volume (prod.vol), toxicity (tox.), accumulation

tendency (acc), and probable lifetime of a chemical (degrad.).
What orientation should be selected?

• Production volume: We let it as it is; large values indicate an hazard
• Toxicity: We have to revert the data (for example, by multiplication with –1)
• Accumulation: We let it as it is; large values indicate an hazard
• Degradation: In the literature, one finds biodegradation in percentage per day.

That means the larger the number, the higher the degree of degradation, and
the lower the lifetime of a chemical in our environment, the lesser their adverse
impact on the environment. Therefore, we have to revert the data.
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Fig. 11.9 Hasse diagram of high production volume chemicals (HPVCs) under accumulation,
toxicity, and lifetime

What are the objects?
Twelve chemicals with a rather high production volume, for which abbreviations

like MAL, CHL, GLY, and ISO are used to identify them in the Hasse diagram.
The following example should illustrate the role and the use of CAM, the cumu-

lative ambiguity maximum. Therefore, we simulate the effect of adding an indicator.
We omit for the moment the information production volume and see how the Hasse
diagram looks like and which value we get for CAM (Fig. 11.9).

11.5.3 Cumulative Ambiguity Maximum (CAM)

Software WHASSE renders the value 0.621 for CAMobject set.
Following the lines of Chapter 4, an impact on the Hasse diagram is to be

expected if an indicator is either deleted from or added to the data matrix. Therefore,
it might be good to look for further indicators to characterize the objects. Indeed we
have one indicator left in our background, the production volume.

Figure 11.10 shows the Hasse diagram, which is obtained by inserting the
corresponding data column “production volume” in the data matrix.

Now, CAMobject set = 0.76.
CAM increased from 0.621 to 0.76. Hence the impact on a Hasse diagram by

adding new indicators is decreased. Inspection of Fig. 11.10 shows three com-
ponents (compare Chapter 2). Therefore, the high number of incomparabilities is
plausible. More attributes would further reduce the number of comparabilities and
introduce more ambiguity into the ranking study. Thus – if there are no urgent con-
textual requirements for the introduction of further indicators – we do not need to
find more of them.



11.5 Illustrative Case Study: Ranking of High Production Volume Chemicals . . . 181

CNB

4NA

4NP

ATR

CHL

DIA

DIM

LIN

GLY

ISO

MALTHI

Fig. 11.10 Hasse diagram of HPVCs under production volume, accumulation, toxicity, and
lifetime

11.5.4 Antagonism

Inspecting the Hasse diagram in Fig. 11.10, we may wonder as to how the separation
X1 = {DIA, LIN, 4NP} from Xres = X − X1 can be explained. Using methods
explained in Chapter 5

Sep(X1, Xres, {PV, log KOW}) = 0.815

Therefore, we can display the order relations by an approximate scatter plot
(Fig. 11.11).

In Fig. 11.11, the objects of Xres which are not minimal, maximal, or isolated
elements are located within the grey field. As the separation is not complete, some
comparabilities among elements of X1 and Xres are still present. Some of these
relations are indicated by lines.

log KOW

PV

3

−2
1 4

Fig. 11.11 The objects of X1
are denoted as diamonds,
whereas the circles are the
elements of MIN, MAX, and
ISO of (Xres, IB) (see text)
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The indicator BD (lifetimes of chemicals) completes the separation. The block
arrows indicate how adding BD breaks the comparabilities such that

AIB = {PV, log KOW, BD} and Sep(X1, Xres, AIB) = 1.

11.6 Illustrative Case Study: Ecological Value of Communes
(Ecology)

11.6.1 Introduction

For a study, 15 out of 108 communes in Italy (Val Baganza near Parma) were
arbitrarily selected and denoted as a, b, . . . , o.

In Val Baganza, the most frequent CORINE Biotope habitats are

• lowland hay meadows
• Medio-European rich soil thickets
• subalpine thermophile siliceous grasslands
• northern Apennine Mesobromion grasslands.

The task is to estimate the ecological value of the 15 communes. However, there
is no measure to quantify the ecological value. Hence we need proxies by which the
unknown ecological value may be quantified (Fig. 11.12, hierarchy of proxies).

Rossi et al. (2008) defined the following indicators as proxies for ecological value
(see Rossi, 2001 for background material):

size_ha: All the other things being equal, the biodiversity tends to increase with
the habitat size and is therefore indicating an ecological value.

vert_rich: All the other things being equal, the value of a habitat seems to be
positively correlated with the number of vertebrates, whose ranges cover the
habitat.

h_rarity: Value of a Corine Biotope habitat within the size of the area studied.

Ecological Value
(unknown)

Biodiversity Rarity

Size_
ha
Sz

Soil_
Rough
ness, Sro

Vert_
rich,
VRI

H_Rarity
HRA

V_Rarity
VRA

Fig. 11.12 Hierarchy of
criteria to describe ecological
value. Abbreviations, such as
Sz and Sro, are used
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v_rarity: Involvement of the Corine Biotope habitats in those areas which host
rare vertebrates.

soil_rough: Value of a habitat with reference to its soil roughness. The irreg-
ular topography of each Corine Biotope habitat has been computed as a
coefficient of variation (CV):

CV = [std. dev. (altitude)/(mean(altitude))]∗100 (11.1)

11.6.2 Partial Order

The data matrix consists of 15 rows and 5 indicators, |X| = 15, |IB| = 5. In
Fig. 11.13, the Hasse diagram of (X, IB) is shown.
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Fig. 11.13 Hasse diagram of 15 Italian communes, IB = {VRI, HRA, VRA, Sro, Sz}
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Equivalent Objects: {d,n}, {b,h}

Fig. 11.14 Hasse diagram of 15 arbitrarily selected communes (out of 108) and five indicators
{VRI, HRA, VRA, Sro, SZ}, each one with the scores 0,1,2



184 11 Illustrative Case Studies

Following the principle of “ordinal modeling,” we also perform a discretization
with the discretization scheme K = 3, with minimum and maximum values taken
from the data matrix (see Chapter 6) and Table A.6. The resulting Hasse diagram is
shown in Fig. 11.14.

We see that the Hasse diagram (Fig. 11.14) has many comparabilities, hence
the selection of the five indicators seems to describe a common concept, which we
interpret as “ecological value” of these communes.

We see furthermore that there is one commune, c, which is isolated, hence this
commune may be more intensively analyzed, applying, for example, the tool of
antagonism (Chapter 5). As we already applied antagonism in several application
chapters, and as the isolation of commune c may just arise from the arbitrariness of
the selection of the communes, we exclude this analysis.

11.6.3 Attempts to Improve the Position in the Partial Order
(Attribute Value Sensitivity)

Now assume that the communes would like to try to improve their ecological status.
Let us select those communes which are presently located at the fifth level (one level
below the top one).

The representative communes are h, k, i.
Indicators which already have the score 2 are not changed, because they are in

the best state. In Table 11.4, applying Δ=1, the actual and the simulated tuples of
indicators are shown together with the effects on successors and predecessors.

Figure 11.15 visualizes the results for the commune h following the data in
Table 11.4.

Figure 11.15 shows the change for commune h in terms of its successors and its
predecessors if the indicator value is increased by �=1.

Table 11.4 Simulated data and their effects on characteristics of the partial order

Object
Standard VRI, HRA,
VRA, Sro, Sz Simulated tuple

Change of
successors1

Change of
predecessors

h 21210 22210 5 −1
21220 2 −1
21211 2 0

k 22110 22210 5 −1
22120 0 −1
22111 1 −1

i 21011 22011 2 −1
21111 0 0
21021 0 0
21022 0 0

The simulated value is in bold literals
1Equivalent elements are counted as successors
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Fig. 11.15 Attribute value sensitivity (avs) (Chapter 4) of the commune h

From Table 11.4 one can deduce that for commune h, the most important effect
is to change for the attribute HRA from score 1 to 2. In this case it gets five more
successors. Hence, in any index ranking, these five additional successors must be
below commune h. Somewhat worse but still efficient is the change of the other two
attributes, Sro and Sz. Commune k: Most efficient is the change in attribute VRA,
where k wins five additional successors. One additional successor is obtained if Sz
is enhanced from 0 to 1.

Commune i: Here, only attribute HRA improves the situation. Commune i gets
two more successors and becomes a maximal element.

11.7 Illustrative Case Study: Chemicals in a River
(Environmental Chemistry)

11.7.1 Introduction

The background may be that an accident happens which releases a mixture of
substances. Here we select chemicals whose systematic name is “alkanes.” In
Fig. 11.16, some simplified chemical formulas are shown.

Fig. 11.16 Chemical
formulas of three alkanes.
From left to right: propane,
2-methylbutane, and
2,2-dimethylpropane
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Fig. 11.17 (LHS) Hasse diagram of the quotient set of alkanes. (RHS) The resulting dominance
graph (see text)

Restrepo et al. (2007) analyzed the chemical class of alkanes. In Fig. 11.17
(LHS), the Hasse diagram of (X, IB) is shown. (The numbers within the circles indi-
cate different molecules. The rectangles indicate the compounds having the same
sum formula CnHm.)

In the partial order (X, IB), X is the object set consisting of alkanes with carbon
number between 5 and 8, and IB is the set of indicators describing the sedimenta-
tion, downstream transport, and volatilization of the chemicals. The indicator values
are calculated by means of EXWAT, assuming some environmental data of a river
(Matthies et al., 1989; Bruggemann and Drescher-Kaden, 2003; Bruggemann et al.,
2006). Orientation: The larger the values of the indicators, the higher the hazard the
chemicals exert.

11.7.2 Dominance

We pose the question: Is the fate of chemicals in the river governed by molecular
weight, or branching of a chemical structure, or the maximal length of the carbon
chain? To answer this question, classify the chemicals into subsets of compounds
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according to their sum formula. Thus molecules with different chemical struc-
ture belong to the same class, because they have the same number of carbon and
hydrogen atoms. Thus the chemical structural information allows us to assign an
additional structure to the Hasse diagram, namely that of chemical classes (rectan-
gles in the diagram). Now among these chemical classes, the dominance values for
any pair can be calculated applying the software.

PyHasse: The result is shown in Fig. 11.17 (RHS). The directed edges are eval-
uated by max(Dom(X1, X2), Dom(X2, X1)). Broken lines correspond to transitivity
relations. We find the dominance sequence C8H18 > C7H16 > C6H14 > C5H12.

In detail:

• The directed edges indicate the prevailing fraction of order relations. For mem-
bers of the chemical class C6H14, x, and members of C5H12, y in 93.3% of all
cases x ≥ y.

• We interpret the diagram as follows: Independent of the branching or other
structural peculiarities of the molecules, the environmental loading is mainly
determined by the molecular weight.

• The larger the weight, the more hazardous the chemical with respect to its fate
descriptors in rivers. The dominance analysis established a canonical sequence
of classes of molecules corresponding to their molecular weight.

11.8 Illustrative Case Study: Management in a River Basin

11.8.1 Background Information

Let us consider an example from water management in the river Elbe basin which
is located in middle/east Europe (Behrendt et al., 2002).

The water management in the watershed of river Elbe is faced with

• regional consequences (as one of the sustainability principles)
• different loadings (pressure indicators, see OECD: http://de.wikipedia.org/

wiki/DPSIR, see also Kristensen (2004): http://enviro.lclark.edu:8002/servlet/
SBRead?ResourceServlet?rid=1145949501662_742777852_522)

• attempts to apply different measures, aiming toward a reduction of pressures on
the river Elbe and its tributaries.

Forecasting the impacts of different scenarios of water management strategies
on the Elbe river basin cannot realistically be simulated by field experiments.
Therefore, a mathematical simulation model is necessary. The model MONERIS
(Behrendt et al., 2002) is a regional water quality model, which takes into account
different inputs within a watershed and estimates retardation factors and degrees
of elimination by reactions or volatilization. Eight indicators, concerning different

http://de.wikipedia.org/wiki/DPSIR
http://de.wikipedia.org/wiki/DPSIR
http://enviro.lclark.edu:8002/servlet/SBRead?ResourceServlet?rid=1145949501662_742777852_522
http://enviro.lclark.edu:8002/servlet/SBRead?ResourceServlet?rid=1145949501662_742777852_522
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speciations and pathways of nitrogen into surface waters, were calculated in order
to characterize the scenarios. Following the DPSIR concept of the OECD, the eight
indicators are classified as pressure indicators. Their orientation is as follows: High
pressures are expressed by high values of the indicators and indicate a bad status of
the surface waters in the river Elbe basin.

11.8.2 The Hasse Diagram

Following Behrendt (personal communication), 14 scenarios of water management
strategies are selected (see Table 11.5).

For any scenario, the eight indicators are estimated by means of MONERIS.
Additionally the measured eight indicators for the years 1985, 1995, and 1999 were
included into the final data matrix as reference years. The structure of the 17 × 8
data matrix as basis for the partial order analysis is shown in Fig. 11.18.

Table 11.5 Fourteen water management scenarios

Scenario Type Explanation (Behrendt, Opitz)

1 Rural 10% reduction of tile drained area
2 Rural 20% reduction of tile drained area
3 Rural 25% of arable land will be cultivated without plough
4 Rural 50% of arable land will be cultivated without plough
5 Rural 75% of arable land will be cultivated without plough
6 Marketing Detergents with P will be replaced by P-free detergents in

Czech Republic
7 Technical/urban All particulate sewage from population not connected to

sewers is transported to wastewater treatment plants
(wwtp’s)

8 Technical/urban 99% of population with sewer connection are connected to
wwtp’s

9 Technical/urban 50% storage for combined sewers (50% storage
corresponds to 11.6 m3 storage volume per hectare paved
urban area)

10 Technical/urban 100% storage for combined sewers (100% storage
corresponds to 23.2 m3 storage volume per hectare paved
urban area)

11 Wwtp All wwtp’s are in agreement with the EU wastewater
guideline

12 Wwtp All wwtp’s with more than 1,00,000 inhabitants implement
an additional microfiltration. P-effluent concentration
lower than 0.050 mg/l P

13 Retention In addition to the surface waters, all wetland areas
(according to Corine 346 km2) are used for retention

14 Retention 0.5% of agricultural area (according to Corine 450 km2) is
transferred to retention areas
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scenario 1
...
...
...
scenario 14

I1, I2, I3, .............................................I8

Estimation by MONERIS

year 1985
year 1995
year 1999

Measured values

Fig. 11.18 Structure of the
17 × 8 data matrix
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Fig. 11.19 Scenarios 1–14
and the years 1985, 1995, and
1999 (“85,” “95,” and “99”).
Equivalence class: {99, 6, 12}

Thus the analysis of (X, IB) is based on (i) object set X of 17 scenarios; (ii)
information base IB of eight indicators; and (iii) orientation: The larger the value,
the higher the pressure. Figure 11.19 shows the Hasse diagram.

Figure 11.19 shows the following:

• There is a simultaneous decrease of pressure values for the chain 85 > 99 > 3 >
4 > 5.

• There are isolated elements, namely the year 1995 and the scenario 14.
• The scenarios, intended to improve the water quality in the future, are not

necessarily better than reference years.
• Many scenarios are incomparable to the recent year, 1999, of measurements.
• Rural scenarios {1, 2, 3, 4, 5} and technical scenarios {7, 8, 9, 10} are separated

subsets (Chapter 5).

11.8.2.1 Use of Superindicators

By an antagonism study, the following result was obtained: X1 = {1, 2, 3, 4, 5},
the rural scenarios, X2 = {7, 8, 9, 10}, the technical scenarios, AIB(X1, X2) =
{I3, I4, I7}. If the set X1 is reduced to X1

′ to have only the rural scenarios 3,
4, 5, with 25, 50, or 75% of arable land cultivated without plough, then
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Sep(X1
′, X2, {I4, I7}) = 1. The two indicators I4 and I7 describe the nitrogen release

into surface waters by erosion (I4) and from wastewater treatment plants (I7). As
these two indicators are responsible for the separation of X1

′ and X2, a combination
of both to a superindicator (see Chapter 7) may allow us to compare scenarios of X1

′
with those of X2. The normalized indicators of nitrogen input due to erosion, I4, and
due to point sources, I7, were combined as follows:

case 1: 0.2∗I4 + 0.8∗I7, case 2: 0.4∗I4 + 0.6∗I7,
case 3: 0.6∗I4 + 0.4∗I7, case 4: 0.8∗I4 + 0.2∗I7

Therefore, four new data matrices were obtained, where the remaining six indi-
cators {I1, I2, I3, I5, I6, I8} are not changed but the four superindicators included
from four weight combinations. From Fig. 11.20, we see that the relative configu-
ration of scenarios 8, 9, and 10 remains unchanged, while the weights used for the
superindicator are varied. Scenario 9 is in all cases worse than the rural scenarios of
X1

′. Scenario 7 is comparable with all three rural scenarios and gets its best position
relative to the scenarios 3, 4, 5 in case 1, where the indicator I7 (nitrogen release
due to wastewater treatment) has a large weight. Obviously then the good values of
I7 can compensate bad values of I4. We suspect that the technical needs to improve
wastewater treatment plants are easier to fulfill than the needs for improving the
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Fig. 11.20 Hasse diagrams of the scenarios {3, 4, 5, 7, 8, 9, 10} corresponding to the four cases
(see above)
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input due to erosion, which is a process depending on factors, some of which cannot
be influenced by technology.

We see that a stepwise aggregation to superindicators (the very idea of METEOR,
Chapter 7) can be helpful. The partial order is enriched without averaging over all
indicators.

11.9 Illustrative Case Study: The Human Environment Interface
Index (HEI) (Environmental Sciences)

11.9.1 Overview and Data Matrix

The human environment interface (HEI) index (Singh, 2008; Patil and Taillie, 2004)
is a composite index based on three leading indicators, namely the following:

Land indicator (L): The land indicator L considers the change in the percentage
of the forested land to the total land area with respect to the reference (base)
year’s characteristic.

Air indicator (A): The amount of carbon dioxide emissions per capita of a
country for a year denotes the level of the air indicator for that year.

Water indicator (W): This indicator is the arithmetic mean of the percent-
age of population with sustainable access to an improved water source and
improved sanitation.

The indicators capture the human progress toward the environmental manage-
ment. Being expressed in different units, these indicators are first transformed into
dimensionless indices. Then an aggregation with equal weights yields the HEI.
Lower value reveals less of a country progress toward environmental protection
goal. Hence, HEI reflects the managerial efforts a country makes to maintain and
improve the greenness of land, blueness of sky, and cleanness of drinking water
(Patil, 2000). The ranking-based information is expected to stimulate the countries
for the improvement of the existing environment.

All in all the number of countries is 151 for which the HEI can be computed,
hence the object set X consists of 151 countries and the information base (IB)
encompasses three indicators. The case study aims at comparing HEI with the
outcomes of partial order.

The complete data matrix, the countries, and the abbreviations used, as well as
the HEI, are shown in the appendix (Table A.5).

11.9.2 Ordinal Approaches

The analysis is based on the raw data matrix. The Hasse diagram of (X, IB) is shown
in Fig. 11.21:
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Fig. 11.21 Hasse diagram for 151 countries, based on the indicators L, A, W

• The object set X consists of 151 countries.
• The information base IB is {L, A, W} and indicators are normalized.
• The orientation: The larger the indicator value, the better the status of the country.

11.9.2.1 Shape

First of all, its shape is striking: The Hasse diagram seems to have a triangular shape
(see Chapter 5). With greater values in the indicators, the number of incomparabil-
ities among the countries seems to increase. As we are aware that the shape also
depends on the convention of how to draw a Hasse diagram, we apply the analysis
tool U(L(i)) and the result is shown in Fig. 11.22.

This diagram shows that there is no trend in the number of incomparabilities
if we compare the different levels. Indeed there are more minimal than maximal
elements.

11.9.2.2 Navigation

The tools are up sets and down sets. For example, when we want to know the
position of Germany with respect to other countries, we can look for up sets and
down sets (Fig. 11.23).
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Fig. 11.22 Average incomparabilities per level

Fig. 11.23 (LHS): F(GE) (up
set of GE); (RHS): O(GE)
(down set of GE) (software
PyHasse)

There are 19 other countries in which all three indicators are better (F(GE)), and
there are 10 countries in which all three indicators are worse (O(GE)) than those in
Germany. There are no connections to 121 other countries (U(GE) = 121), therefore
the profile of Germany based on L, A, and W must be rather peculiar.

11.9.3 Dominance Degree of Contextual Subsets

Consider, for example, the European nations (Table 11.6). We pose the following
question: Is the highly industrialized middle Europe dominated by the lower indus-
trialized and hence less polluted south Europe? We address this question by applying
the dominance-separability approach as explained in Chapter 5.

We calculate the dominance degree and separabilities. In Table 11.7, the domi-
nance degrees (Dom(i,j) and Dom(j,i)) and the separabilities Sep(i,j) can be found
(i, j = SE, ME, . . . , NE).
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Table 11.6 Countries of Europe, classified to belong to north Europe (NE), west Europe (WE),
middle Europe (ME), south Europe (SE), and East Europe (OE)

Country Subset Country Subset Country Subset

Albania SE Iceland WE Germany ME
Austria ME Ireland WE Greece SE
Belgium WE Italy SE Hungary OE
Bulgaria OE Netherlands WE Switzerland ME
Denmark NE Norway NE United Kingdom WE
Finland NE Portugal SE Slovakia SE
France WE Rep. of Moldova OE Spain SE
Sweden NE Ukraine OE

Table 11.7 First figure Dom(i, j) (row i dominates column j), Dom(j, i) (column j dominates
row i), and the symmetric separability

SE ME OE WE NE

SE – 0.5, 0.05, 0.44 0.125, 0.08, 0.79 0.61, 0.02, 0.36 0.67, 0, 0.33
ME – – 0.08, 0,17, 0.75 0.55, 0.28, 0.17 0.58, 0.17, 0.25
OE – – – 0.21, 0, 0.79 0.25, 0, 0.75
WE – – – – 0.33, 0.25, 0.42

If Dom(x, y) ≥ ε, with filter ε being 0.5, we draw a directed edge from x to
y and obtain the following directed graph (i.e., an extremely small network), see
Fig. 11.24.

As can be seen from Fig. 11.24, there is an isolated element, OE. For the other
subsets, two maximal chains (dominance sequences, compare Chapter 5) can be
found: SE > ME > NE and SE > ME > WE.

In any case, south Europe (SE) has a top position among the countries of Europe.

SE OE

ME

WENE

0.67 0.6

0.58 0.55

0.5

Fig. 11.24 Based on the
indices L, A, and W, a
dominance diagram is
constructed (filter ε = 0.5).
For details, see Tables A.19
and A.20
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Fig. 11.25 Hasse diagram, based on the data of Table 11.8 (software PyHasse)

11.10 Illustrative Case Study: Analysis of Lake Restoration
and Biomanipulation: Example Phytoplankton
Community Structure (Biology)

11.10.1 Introduction

The status of a lake (Feldberger Haussee, Germany) needs to be improved (Krienitz
et al., 1996). There is a high phytoplankton population and one wants to reduce it by
inserting predator fish into the lake. The motivation for this biomanipulation lies in
food web theory, but does it work in practice? To answer this question, we applied
partial order on the data matrix, where the years 1987 (start of biomanipulation)
until 1997 are the objects. The concentrations of five phytoplankton species were
selected as indicators. The response of phytoplankton to the changed conditions
reflects the success of the biomanipulation measures.
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Table 11.8 Annual mean value of phytoplankton group concentrations (mg/l)

Year Cl Ba Cr Di Cy Sum

87 5.5 2.3 5.3 0.8 4.0 17.9
88 3.4 0.6 1.3 1.8 7.0 14.1
89 3.6 1.6 1.3 0.2 6.0 13.7
90 3.2 0.2 0.3 0.1 15.0 18.8
91 3.5 1.8 1.7 0.1 13.0 20.1
92 2.7 0.4 3.9 0.1 21.0 28.1
93 6.7 1.4 1.3 0 8.0 17.4
94 2.6 0.3 2.8 0 2.0 7.7
95 0.8 1.4 3.5 1.7 7.5 14.9
96 1.7 1.5 1.2 0 2.0 6.4
97 1.8 0.2 0.6 0.2 0.1 2.9

Clearly, it is of interest as to how the phytoplanktonic biomass is reduced. First
of all, we can see by means of an indicative function (sum of the biomass over
phytoplankton species, see Table 11.8) that the phytoplanktonic mass did not mono-
tonically decrease. Second, the reduction may not impact all species in the same
way: Our focus, however is not on the phytoplankton species distribution and their
intricate dynamics but on how we can rank the years due to the responding phy-
toplankton biomass. By means of Hasse diagrams, we can do both: We can rank
the years but also make evident that the phytoplanktons respond differently to
the grazing stress due to the enhanced zooplanktonic population. Incomparable
years are just the order theoretical expression for that different phytoplankton
behavior.

11.10.2 Methods and Materials

In this study, we have compiled the annual mean values of the main phyto-
plankton groups: Chlorophyceae (Cl), Bacillariophyceae (Ba), Cryptophyceae (Cr),
Dinophyceae (Di) and Cyanophyceae (Cy); the abbreviations of these phytoplank-
ton groups are indicated in parenthesis. For details of phytoplankton successions in
Feldberger Haussee, see Krienitz et al. (1996).

11.10.2.1 Data in the Poset Approach

The years of biomanipulation are considered as our objects and will be compara-
tively evaluated. Hence the object set is X = {87, 88, 89, 90, 91, 92, 93, 94, 95,
96, 97}.

The concentrations of five main phytoplankton groups (mg/l) are selected as the
indicators, by which the years of biomanipulation are characterized: Therefore, the
information base is IB = {Cl, Ba, Cr, Di, Cy}. The phytoplankton data set as well
as the indicative sum of their biomass is shown in Table 11.8.
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Related on the sum (Table 11.8 last column) the ranking of the years would be

92 > 91 > 90 > 87 > 93 > 95 > 88 > 89 > 94 > 96 > 97

The order of years indicates that the expectation of the longer the biomanipula-
tion, the smaller the phytoplanktonic biomass is not correct. Was biomanipulation
successful?

11.10.2.2 Partial Order

Based on the data set of Table 11.8, the Hasse diagram encompassing all years is
shown in Fig. 11.25.

We see two levels and three isolated objects (90, 93, 95). The year 1987, when
the biomanipulation started, is in the same level as six subsequent years. Only
three years, 94, 96, and 97, show the desired dependency. What happens? Once
again: Was the biomanipulation successful? However, we must take care of the
ordinal character of Hasse diagrams. So we follow the idea of ordinal modeling
(see Chapter 6): We could perform a discretization of data or a fuzzy analysis. Here
we will apply the concept of fuzzy partial order.

11.10.3 Results of Fuzzy Partial Order

In fuzzy partial order (Chapter 6), the degree of what should be considered as
“noise” is mapped onto the tolerance level α. Correspondingly, we can find a series
of Hasse diagrams, beginning with a very high degree of tolerance and ending with
the lowest degree of tolerance, where any measurement detail is ordinal interpreted.

There are 31 α cuts with the lowest at 0.406 and the highest at 1:

• With the α less than 0.406, we consider all data differences as irrelevant. Hence,
all years are put into one equivalence class. We do not see any differentiation and
hence we cannot decide whether the biomanipulation was successful.

• If we select α = 0.45, then all differentiations are still neglected, except the
greatest one: The years 87, 88, . . . , 96 form one equivalence class. Year 97 is
a singleton. The Hasse diagram based on this tolerance level (see Fig. 11.26) tells
us that within this crude ordinal modeling, indeed there was an improvement
from the starting year 1987 compared with the final year 1997!

• If we selected α = 0.55, then a chain of three elements is obtained 97 < 94 < 87
(Fig. 11.26).

• Further increasing α values leads to a nonlinear structure of the partial order
which indicates that nature does not react linearly, but due to different phy-
toplankton types differently on the grazing pressure. Still a chain of years
corresponding to the expectation 97 < 96 < 94 < 88 < 87 can be identified.

If α is selected higher or equal to 0.9, then we see a breakdown of the order. We
can no more conclude that the biomanipulation works as expected over the years.
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α = 0.45 α = 0.55 α = 0.7 α = 0.75

α = 0.85 α = 0.9 α = 1

Fig. 11.26 Evolution of (not labeled) Hasse diagrams (PyHasse, see Chapter 17)

There are many possible reactions which even lead to incomparability between the
last two years, i.e., between 96 and 97. Even worse, isolated objects occur. Hence
we may say that now the final two Hasse diagrams are a result of the biological
complexity, which masks the general trend of the years of biomanipulation.

In Fig. 11.26, the Hasse diagram corresponding to α = 1 is what we already have
seen: It is just the Hasse diagram of the original data, i.e., if any measurement detail
is brought into evidence by the partial order concept. Taking the results shown in
Fig. 11.26, together with the tendency to render 97 as a minimal element, there is a
clear evidence that the biomanipulation should be considered successful.

References

Ahlers, J., Stock, F. and Werschkun, B. (2008). Integrated testing and intelligent assessment – New
challenges under REACH. ESPR-Environ. Sci. Pollut. Res., 15, 565–572.

Alkanes. http://www.docbrown.info/page06/DFalkanes.htm.
Attias, L., Boccardi, P., Boeije, G., Brooke, D., de Bruijn, J. and Comber, M., et al. (2005).

European Union system for the evaluation of substances: The second version. Chemosphere,
59, 473–485.

Behrendt, H., Kornmilch, M., Opitz, D., Schmoll, O. and Scholz, G. (2002). Estimation of the
nutrient inputs into river systems – Experiences from German rivers. Reg. Environ. Change, 3,
107–117.

Bruggemann, R. and Drescher-Kaden, U. (2003). Einfuehrung in die modellgestuetzte
Bewertung von Umweltchemikalien – Datenabschaetzung, ausbreitung, verhalten, wirkung und
Bewertung. Berlin: Springer.

Bruggemann, R., Fredrich, F., Wolter, C., Pudenz, S. and Steinberg, C. (2002). Partielle ordnungen:
Ein hilfsmittel zur beschreibung von artengemeinschaften. In A. Gnauck (Ed.), Theorie und
modellierung von oekosystemen, Workshop Koelpinsee 2000 (pp. 173–200). Aachen: Shaker-
Verlag.

Bruggemann, R., Pudenz, S. and Kreimes, K. (1997). Oekologische Bewertung der
Regionen Baden-Wuerttembergs mit neueren mathematischen Techniken. In Landesanstalt
fuer Umweltschutz Baden-Wuerttemberg (Ed.), 5. Statuskolloquium Projekt “angewandte
Oekologie” 18. und 19. Maerz 1997 Schloss Ettlingen (pp. 335–343). Karlsruhe: Landesanstalt
fuer Umweltschutz Baden-Wuerttemberg.

http://www.docbrown.info/page06/DFalkanes.htm


References 199

Bruggemann, R., Restrepo, G. and Voigt, K. (2006). Structure – fate relationships of organic chem-
icals derived from the software packages E4CHEM and WHASSE. J. Chem. Inf. Model., 46,
894–902.

DPSIR. http://de.wikipedia.org/wiki/DPSIR.
Freier, K.P., Bruggemann, R. and Nützmann, G. (2007). Pharmazeutisch aktive Substanzen

in kleinen Flieβgewaessern – Modellierung unter Beruecksichtigung des Einflusses von
Grundwasser. UWSF – Z.Umweltchem.TMkotox., 19(3), 189–196.

Führ, M. and Bizer, K. (2007). REACh as a paradigm shift in chemical policy – responsive
regulation and behavioural models. J. Cleaner Prod., 15, 327–334.

Kreimes, K. (1996). Oekologisches Wirkungskataster Baden-Wuerttemberg – Bewertung und
zusammenfassende Darstellung von Untersuchungsergebnissen. In U. Arndt, A. Fomin, and
S. Lorenz (Eds.), Bio-indikation; neuere Entwicklungen – Nomenklatur – Synoekologische
Aspekte; Beitraege und Diskussion 1. Hohenheimer Workshop zur Bioindikation am Kraftwerk
Altbach-Deizisau, 1995 (pp. 160–169). Ostfildern: Guenter Heimbach.

Krienitz, L., Kasprzak, P. and Koschel, R. (1996). Long term study on the influence of eutroph-
ication, restoration and biomanipulation on the structure and development of phytoplankton
communities in Feldberger Haussee (Baltic Lake District, Germany). Hydrobiologia, 330,
89–110.

Kristensen, P. (2004). The DPSIR framework. http://enviro.lclark.edu:8002/servlet/
SBReadResourceServlet?rid=1145949501662_742777852_522.

Landesanstalt fuer Umweltschutz Baden-Wuerttemberg (Ed.). (1994). Signale aus der Natur, 10
Jahre Oekologisches Wirkungskataster Baden-Wuerttemberg. Ettlingen: Kraft Druck GmbH.

Lerche, D., Bruggemann, R., Sorensen, P.B., Carlsen, L. and Nielsen, O.J. (2002). A comparison
of partial order technique with three methods of multicriteria analysis for ranking of chemical
substances. J. Chem. Inf. Comput. Sci., 42, 1086–1098.

Matthies, M., Bruggemann, R., Muenzer, B., Schernewski, G. and Trapp, S. (1989). Exposure and
ecotoxicity estimation for environmental chemicals (E4CHEM): Application of fate models for
surface waters and soils. Ecol. Model., 47, 115–130.

Patil, G.P. (2000). UNEP workshop on human environment interface index. Washington, DC.
Patil, G.P. and Taillie, C. (2004). Multiple indicators, partially ordered sets, and linear extensions:

Multi-criterion ranking and prioritization. Environ. Ecol. Stat., 11, 199–228.
Restrepo, G., Bruggemann, R. and Voigt, K. (2007). Partially ordered sets in the analysis of alkanes

fate in rivers. Croatica Chem. Acta, 80(2), 261–270.
Rossi, O. (Ed.) (2001). Cartografia multiscalare della natura – testo delle relazioni. IX Congresso

Nazionale Della Societa Italiana Di Ecologia, Lecce Settembre 1999, University of Parma,
Parma, Italy.

Rossi, F., Pecci, A., Amadio, V., Rossi, O. and Soliani, L. (2008). Coupling indicators of ecological
value and ecological sensitivity with indicators of demographic pressure in the demarcation of
new areas to be protected: The case of the Oltrepo Pavese and the Ligurian–Emilian Apennine
area (Italy). Landsc. Urban Plann., 86, 12–26.

Singh, A. (2008). UNEP workshop on human environment interface index. Nairobi, Kenya.
Voigt, K. and Welzl, G. (2002). Drinking water analysis systems in German cities: An evaluation

approach combining Hasse diagram technique with multivariate statistical methods. In K. Voigt
and G. Welzl (Eds.), Order theoretical tools in environmental sciences – Order theory (Hasse
diagram technique) meets multivariate statistics (pp. 113–127). Aachen: Shaker-Verlag.

http://de.wikipedia.org/wiki/DPSIR
http://enviro.lclark.edu:8002/servlet/SBReadResourceServlet?rid=1145949501662_742777852_522
http://enviro.lclark.edu:8002/servlet/SBReadResourceServlet?rid=1145949501662_742777852_522


Chapter 12
Case Study: Child Development (Sociology)

12.1 Overview

Starting point is the data matrix made of six indicators describing different aspects
of child development and 21 nations, mainly of Europe. A ranking of the 21 nations
is based on a composite indicator. Using several methods, we try to assess the
construction of the composite indicator of UNICEF. Both the concordance analy-
sis (Chapter 10) and the canonical order (Chapter 9) support the construction of
the UNICEF. The comparison with the canonical order is naturally more detailed
and we find some rank inversions. With the help of the local partial order model
(Chapter 9), we explain these. Without partial order, there is no reason to define
separated subsets. The partial order constructed from the six indicators and the 21
nations shows several separated subsets (see Chapter 5). Most striking is the sep-
aration between {It, Pt} and the residual set of nations. Which indicators explain
this separation and with which values? The partial order identifies the indicators
“family” and “education” as the responsible ones. When an aggregation to a com-
posite indicator is performed, the single indicators lose their individuality as they
are just summands contributing to the value of the composite indicator. Similarly,
one can construct new orders (called the mr orders, see Chapter 7) which also do
not take into account the individuality of the indicators. The resulting partial orders
contain pretty long chains of nations which allow unambiguous ranking of many
nations without crunching the indicators into one composite indicator. There is a
natural question about as to how much the composite indicator-based ranking can
be improved by changing the value of an indicator. We do not perform a complete
analysis but illustrate the methodological steps with Ireland and Denmark. We show
that Ireland can improve its ranking position best if it has better indicator values in
“education.”

201R. Brüggemann, G.P. Patil, Ranking and Prioritization for Multi-indicator Systems,
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12.2 Basic Information, Data Matrix, and Results
of UNICEF Study

This study is based on a report of UNICEF (Innocenti Research Centre, Report Card
7, 2007). A comprehensive assessment of well-being of “children and young people
in 21 nations of the industrial world is given” (cited from the report).

The study provided 40 different indicators which are aggregated through several
interim steps into six main indicators (Table 12.1).

From the data matrix (see Table A.7), UNICEF defines an index with equal
weights for all six indicators, i.e.

�(x) = �(1/6)∗Ri(x), weight vector = (1/6, 1/6, . . . , 1/6) (12.1)

where Ri(x) is the rank by the ith indicator of nation x.
For example, Belgium (Be) has the following data (Table 12.2)

�(Be) = (1∗7 + 1∗16 + 1∗1 + 1∗5 + 1∗19 + 1∗16)/6 = 10.7

From �, the following ranking, O� , is deduced (from the worst to the best):

(UK, US, Hu, Au, Pt, Fr, Cz, Pl, Gr, Ca, De, Be, Ire, It, No, Su, Es, Fi, Dk, Sw,
Ne)

Table 12.1 Six indicators and their background information

Indicator Abbreviation Background information

Material well-being wb Relative income poverty, households without
jobs, reported deprivation

Health and Safety hs Health at birth, immunization, mortality
Educational well-being ed Aspirations, achievements, participation
Family and peer

relationships
fa Family structure, family relations, peer relations

Behaviors and risks br Risk behavior, experience of violence, health
behavior

Subjective well-being sub Health, personal well-being, school well-being

Table 12.2 Section out of Table A.7

wb hs ed fa br sub

Material
well-being

Health and
safety

Educational
well-being

Family
and peer
relationships

Behaviors
and risks

Subjective
well-being

Belgium Be 7 16 1 5 19 16
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The top third subset is Ne, Sw, Dk, Fi, Es, Su, No.
The middle third subset is It, Ire, Be, De, Ca, Gr, Pl.
The bottom third subset is Cz, Fr, Pt, Au, Hu, US, UK.

12.3 Motivating the Use of Partial Order

This is a detailed UNICEF study, where the peculiarities of any single nation
are commented, and there is a broad discussion on how the six indicators were
obtained.

Now any politician of a nation may see that his nation is “good” with respect
to some indicator, even if his nation receives a bad overall position in the ranking.
Thus Italy is good in the indicator “family,” “fa.” Naturally the question arises: Is
not “family,” “fa,” more important than the others, say “ed,” education, and give
“fa” a higher weight? UNICEF, however, used the same weight for each indicator.
Hence, the summation (Eq. (12.1)) implies that good points may compensate bad
points and vice versa. If, however, such compensation is allowed, then questioning
the uniform weight of any indicator in the index is indeed justified. Thus Italy would
get a better overall position if the weight for “fa” would get a higher value. Such
procedure would however make politicians of other nations unhappy. Poland, for
example, is good in education and would therefore like to see this indicator given a
higher weight.

There is another issue: The need for defining a composite indicator (like that in
Eq. (12.1)) is understandable. However, as the UNICEF report indicates, there is in
some of the six indicators a high degree of conceptual overlapping. For example,
the indicator “he,” health, is one of the six indicators. However, the indicator health
is also partly present in the indicator “sub,” “subjective well-being.” This kind of
conceptual overlap means that health is more pronounced in the ranking, because it
appears two times, once explicitly in “health” and once implicitly in “sub.” Hence, it
may be a good idea to keep the six indicators separated, but simultaneously analyzed
rather than composited.

12.4 Partial Order Analysis

12.4.1 Aims of Partial Order Analysis

1. Can we find chains of nations, where the status of one country is comparably
fixed with respect to some others? There may be a real need to improve child
well-being in one or more of the six attributes for such countries which worry
about their poor position.

2. Are there countries whose positions will severely depend on how the six indi-
cators are combined? They may initialize an update of the study to show how
different weight vectors can influence their positions.
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12.4.2 Hasse Diagram of 21 Nations Based on Six Indicators

In Fig. 12.1, the Hasse diagram is shown based on the entries of Table A.7. We rear-
ranged the table so that the “good” nations are on the top of the Hasse diagram. The
information base, IB, is {wb, hs, ed, fa, br, sub}. In order to include USA, the miss-
ing value in the indicator “sub” was given the mean value taken from the 20 nations.

12.4.2.1 Structural Characterization

There are six components, four of which are trivial, i.e., are isolated elements (see
Chapter 2). One nontrivial component consists of the majority of nations X1 =
{Ne, Sw, No, . . . ,} and the other one consists of Italy and Portugal X2 = {It, Pt}. The
set ISO (see Chapter 2) contains the isolated nations Be, Ca, Pl, and Au. How differ-
ent components are related with the data matrix is studied below. UK, Ne, and Dk
are articulation points (Chapter 5). Removing, for example, UK from the data matrix
would make Su an isolated element. Removal of Ne from the data matrix would
generate two new components. Su is an example of a “loosely” connected object.
Isolated and loosely connected ones need our attention because of their peculiar data
profiles. The tool to find out the peculiarity is the search for antagonistic indicators.

12.4.2.2 Level

The Hasse diagram provides three levels. Generally speaking, this low number of
levels means that there are many incomparabilities. Large U(x) sets (see Chapter 3)
in turn indicate that many nations have some indicator values which make them
better and some other indicator values which make them worse than others. Here
are the three levels (see Chapter 5):

level3 ={Ne, Su, No, Sw, Fi, Dk, It, Be, Ca, Pl, Au},
level2 = {Ire, Hu, Es, De, Cz, Fr, Pt}, and
level1 ={Gr, UK, US}.

Ne Sw DkFi

Es

SuNo It

Ire

Be

De

Ca

Gr

Pl

Cz Fr Pt

Au

Hu

US UK

Fig. 12.1 Hasse diagram of 21 nations, IB = {wb, hs, fa, ed, br, sub}
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There is the set of isolated elements ISO = {Be, Ca, Pl, Au} and a nontrivial
component Pt ≤ It.

12.4.2.3 Concordance Analysis

In Chapter 2, we have learned that the drawing of a Hasse diagram is not
unique. Therefore, we must examine two scenarios using concordance analysis (see
Chapter 10):

Scenario H: The objects are given the highest level possible.
Scenario L: The objects are given the lowest level possible.

In Table 12.3, the number of objects related to scenario H is in bold, while that
of scenario L is in italic letters. The concordance indices, con, referring only to the
main diagonal (because of only three subsets) are as follows:

Scenario H: con = 10/21 = 0.48 > T = 0.333 (d is the dimension of
concordance matrix = 3)

Scenario L: con = 12/21 = 0.57 > T = 0.333 (d is the dimension of
concordance matrix = 3)

Thus the level provided by partial order theory corresponds pretty well to the
classification by means of �.

Table 12.3 Concordance analysis for scenarios H and L

Subsets in UNICEF

Subsets in partial
order

Ne, Sw, Dk, Fi, Es,
Su, No

It, Ire, Be, De, Ca,
Gr, Pl

Cz, Fr, Pt, Au, Hu,
US, UK

Ne, Sw, No, Su, Fi,
Dk, It, Be, Ca, Pl,
Au

Ne, Sw, Dk, Fi

6

4

4

0

1

0
Ire, Hu, Es, De, Cz,

Fr, Pt
Es, De, Cz, Su, No,

It

1

3

2

2

4

1

Gr, US, UK
Ire, Hu, Gr, US,

UK, Fr, Pt, Be,
Ca, Pl, Au

0
0

1
5

2
6
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12.4.2.4 Chains

The maximal chain length equals 3. There are eight chains of maximal length 3 and
eight chains of maximal length 2. The identification of chains is an important tool
to find the invariant mutual order among the nations. Let us take one three-element
chain like UK < De < Ne. As discussed in Chapter 7, the relative ranking of the
elements of a chain will be invariant relative to the weight vector. Thus Germany,
De, is in all indicators worse than the Netherlands. Clearly, for Germany, it is not
possible to suggest any weight vector to get a better ranking result than Netherlands.
Germany must improve the situation for children, leading to better values for the
indicators. In Section 12.9.2, we will have more discussion on this.

12.4.2.5 Antichains

There are more and longer antichains than chains, indicating that incomparabil-
ity is the dominant factor. Isolated elements or weakly connected elements like Su
or Fr, or the chain Pt < It, will have large U(x) sets and large ranking intervals.
Following Chapter 3, large ranking intervals imply high influence of weights on the
final ranking positions (see Eq. (3.19)).

12.5 Indicator Set

12.5.1 Attribute-Related Sensitivity

In Fig. 12.2, the values W(X, IB, IB −{qi}), i = 1, . . . , 6 (for details, see Chapter 4),
are shown.

Figure 12.2 shows that the most important indicator is fa, “family and peer rela-
tionships,” and the least one is br, “behavior and risks.” If indicator fa is deleted
from the data matrix, then the Hasse diagram (Fig. 12.3) is obtained.

Sensitivity

0

5

10

15

20

25

wb hs ed fa br sub
Indicators

W W

Fig. 12.2 Attribute-related
sensitivity of the six
indicators to the Hasse
diagram



12.5 Indicator Set 207

Ne Sw

Dk
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Es

Su

No It

Ire

Be

De
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Pl

Cz

Fr Pt

Au

Hu USUK

Fig. 12.3 Effect of deleting indicator fa from the data matrix

We note the following:

• The longest chain contains UK ≤ Cz ≤ Dk ≤ Sw, hence four levels can be
identified.

• The four isolated elements Be, Ca, Pl, and Au remain.
• The component Pt ≤ It is now connected and Italy “moves down” because its

strong indicator “fa” is deleted from the data matrix and its weaker indicators
prevail.

• Su, Switzerland, is still “loosely” connected (Chapter 5), and all other proper
maximal elements (Ne, Fi, and Sw) are covering four or more nations.

Some other nations “move down” too, which were originally in level3 or level2
(Fig. 12.1). For example, in Fig. 12.3, we find Dk ≤ Sw. Hence, with respect to all
five indicators wb, hs, ed, br, and sub, Dk has worse values than Sw. Now look at
Fig. 12.1: Here Dk is incomparable to Sw and is an element of the first level. Only
in the indicator “family,” Denmark is definitely better than Sw. Therefore, adding
the indicator fa to the data matrix makes Denmark incomparable to Sw.

12.5.2 Ambiguity, Cumulative Ambiguity, and Minimum
Rank Graphs

According to Chapter 4, we calculate CAM to be 0.881. As CAM can only vary
between 0 and 1, this means adding new indicators to the data matrix will not change
the Hasse diagram much: New indicators may break some of the comparabilities
making the Hasse diagram (Fig. 12.1) still more flat. We conclude that on the one
hand, the given six indicators provide a sufficient diverse picture and on the other
hand, deleting some indicators from the data matrix may change the Hasse diagram
(as can be seen when Fig. 12.1 is compared with Fig. 12.3). We see that adding
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indicators ed and sub to the column of “fa” leads to CAM = 0.75, which is 85% of
the final value of 0.88. The partial order due to {fa, ed, sub} contains 85% of the
incomparable pairs of the partial order found in Fig. 12.1. The remaining indicators
he and br may be seen as fine-tuning the partial order, because their contribution to
the final CAM value is rather small.

12.5.2.1 Cumulative Ambiguity Graph

In Fig. 12.4, the cumulative ambiguity graph (Chapter 4) is shown.

12.5.2.2 Minimum Rank Graph

As explained in Chapter 4, we start with the most important indicator fa and add
successively the less important ones.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8

Cumulative Ambiguity Graph

natt* natt

NeSw

Dk

Fi

Es Su

No

It

Ire

Be

De

Ca

Gr

Pl

Cz

Fr

Pt

Au

Hu

US

UK

Ne

Sw

Dk Fi

Es Su

No

It Ire

Be

De Ca Gr

Pl

Cz Fr

Pt

Au

Hu US

UK

Am(natt)

 

Fig. 12.4 Am(natt) and the decomposition of IB at natt∗ = 3 (see Chapter 4). (Bottom) LHS, IB(1)

= {fa, ed, sub}; RHS, IB(2) = {wb, hs, br}
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The indicator fa ranks the nations from worst to best as follows:

fa: UK < US < Cz < Ca < Fi < Au < Sw < Pl < De < Fr < Gr < No < Dk < Es <
Ire < Hu < Be < Su < Ne < Pt < It

The result of adding the next indicator, ed, reduces the length of the maximal
chain.

Italy

Instead of 20 successors in the chain, induced by “fa,” Italy has now only one suc-
cessor, namely Pt. Adding indicator ed reduces the minimum rank and increases the
number of possible positions depending on the actual selection of weights.

Belgium

Due to the indicator fa alone, Belgium has 16 successors. Adding the indicator ed,
the number of successors of Be remains the same. The minimum rank graph summa-
rizes the effect of successively adding the indicators to the data matrix. Figure 12.5
provides the minimum rank graph for Belgium and Italy.

12.5.3 Antagonism

Let us select two subsets X1 = {It, Pt} and X2 = X − X1 − ISO.
Through software WHASSE, we find the set of antagonistic indicators AIB

= {ed, fa}. The indicators ed and fa completely separate the two subsets It, Pt
on the one hand and Ne, Sw, Su, . . . , US on the other hand (see Fig. 12.6),
Sep(X1, X2, AIB) = 1).

Once again the indicator “family,” fa, plays a distinctive role: Together with ed,
it separates X2 {Italy, Portugal} from X1, i.e., from 15 other nations.

Minimum rank graph 
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natt
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)|

Fig. 12.5 Minimum rank
graph of Be and It
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fa

ed

It > Pt

X2

X1

Fig. 12.6 Relation of Italy,
It, and Portugal, Pt, to the
other non-isolated nations X2
(not scaled)

12.6 Partial Orders Based on Rank Orders of Attributes

The idea is to try to find orders which are not based on an averaging over all indicator
values but retain the information about their disparity. The Hasse diagram due to the
m3 order (Chapter 7) is shown in Fig. 12.7).

In contrast to Fig. 12.1, we now get pretty long chains. For example

US < UK < Cz < Ire < Es < Sw < Ne or US < UK < Hu < Ca < Es < Sw < Ne.

Thus a comparison of nations on the basis of their worst, median, and best ranks
is much simpler. We can even identify a greatest (Netherlands) and a least element
(USA) (see Chapter 2). We may discard the median (being used as a fine trigger)

Ne

Sw Dk

Fi Es Su

No

It

Ire

Be De

Ca Gr

Pl Cz Fr Au Hu

US

UK

Fig. 12.7 Hasse diagram of m3 order. Pl ∼= Pt
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Au
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US

Fig. 12.8 Hasse diagram of
the m2 order (equivalent:
{US, UK} and {Pl, Pt})

and examine the Hasse diagram, based on the m2 order alone. Instead of the indi-
vidual indicators we now compare nations on the basis of their worst and their best
indicator values simultaneously (Fig. 12.8).

What do we see in Fig. 12.8?

1. Gr <m2 Fi: The worst indicator value of Gr is less than the worst indicator value
of Fi. The best indicator value of Gr is less than the best indicator value of Fi.

2. Ne is at the top of the m2 order. From this we know, independent of how large
actually the interval [min(q(Ne)), max(q(Ne))] is, that all other min values as
well as all other max values are less than or equal to those of Netherlands.

3. Es ||m2 Su: The disparity due to m2 in indicator values of these two nations is
different.

Furthermore, we explained in Chapter 7 the role of incomparabilities in m2

order. There we learned that incomparability in m2 implies an inclusion order of
the [min(q), max(q)] intervals. Hence an antichain like Be, Es, Su, De is a chain in
the ⊆ order according to increasing intervals [min(x), max(x)] (Fig. 12.9).

Germany, De, has the smallest interval. Therefore, Germany has a pretty sharp
distribution of the six indicator values. Any variation of the weight vector for index
calculation would lead to only a small variation in �. No political influence on
the weight vector will help Germany to get a better position than Su or Es or Be.
Belgium has the greatest interval within this subset of countries. This fact means
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ranks

De Su Es Be

Fig. 12.9 Analysis of one
of the antichains of diagram
Fig. 12.8. The medians were
taken from the data matrix

that Belgium has many choices in the selection of weight vectors to improve its
ranking position.

12.7 Linear Orders

12.7.1 Where Are We?

The partial order analysis began with the data matrix, as can be found in Table A.7.
The Hasse diagram was rather flat because of many incomparabilities.

Nevertheless, a sensitivity analysis could be performed and we showed how to find
out why there are separated subsets (for example, {It, Pt} vs other nations). A deci-
sion about a mutual ranking among nations is difficult to make because of the short-
ness of chains. We know that Gr < Es < Ne without crunching the six indicators into
a composite indicator. However, there is no answer for a mutual ranking between,
say, Es and Cz. A step forward in decision making is to analyze the m2 or m3

orders where much of individual information about the indicators is lost but the
information about disparities among their values retained. With this, many longer
chains can be obtained, and we found that, for example, Es > Cz without worry-
ing about weights. We continue this line of argumentation and derive weak orders
among the nations based on purely order theoretical information as can be found in
the Hasse diagram of Fig. 12.1.

12.7.2 Averaged Height Estimated by the Local Partial
Order Model

The essential parameters of this model are U(x), the set of successors, S(x), and the
set of predecessors, P(x) (see Chapters 3 and 9). In Table 12.4, the characteristics of
the LPOM model are summarized.
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Table 12.4 Characteristics of the 21 nations w.r.t. LPOM taken from Fig. 12.1

Nation U S P Nation U S P

Ne 12 8 0 Es 17 2 1
Su 19 1 0 De 17 2 1
No 18 2 0 Cz 15 1 4
Sw 17 3 0 Ire 19 0 1
Fi 18 2 0 Hu 19 0 1
Dk 17 3 0 Gr 18 0 2
It 19 1 0 UK 11 0 9
Be 20 0 0 US 16 0 4
Ca 20 0 0 Fr 19 0 1
Pl 20 0 0 Pt 19 0 1
Au 20 0 0

The LPOM model finds the following weak order:

(UK < US < Cz < Gr < Fr ∼= Pt ∼= Ire ∼= Hu < Au ∼= Pl ∼= Ca ∼= Be < De ∼= Es
< It ∼= Su < Fi ∼= No < Dk ∼= Sw < Ne)

The top seven are Ne, Sw, Dk, No, Fi, Su, and It. Compared with the top seven
of the UNICEF, Italy is included, whereas Spain is located in the middle group. In
its simplest form, LPOM generates many ties. Therefore, we also apply a canonical
order which, however, will result in some ties too because of the inherent symmetry
of the Hasse diagram (Fig. 12.1).

12.7.3 Canonical Order

Following the lattice theoretical method explained in Chapter 9, the ranking is as
follows:

Oposet: (UK < US < Gr < Cz < Pt < Fr < Ire ∼= Hu < Ca ∼= Au ∼=∼= Pl ∼= Be < De < Su < Es < No < Fi < It < Sw < Dk < Ne)

In comparison to the order obtained by the composite indicator of UNICEF, there
are some rank inversions such as Hu vs Gr, Au vs Cz, or It vs Su.

We apply the method explained in Section 10.2 to see quantitatively the degree
of coincidence between the two orders (canonical order and UNICEF ranking). The
partial order analysis shows that 27 incomparable pairs appear between O� and
Oposet, therefore dcoinc = 1–(27/210) = 0.87. The Spearman correlation index (see
Section 10.3) is 0.88. Both numbers indicate that the general trend is rather well
coincident for both approaches.
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12.7.4 Analysis of Rank Inversions: An Example

Why is in the canonical order Su < It, whereas in the UNICEF ranking Su > It? By
application of LPOM, where Su ∼= It, we can outline the reason.

In Fig. 12.10, the rank-ordered rows, qo, of the data matrix of Su and It (see
Chapter 7) are shown.

Averaging due to the UNICEF method leads clearly to Su > It. The high value of
Italy in the indicator fa cannot compensate all the low values in the other indicators.
Why we arrive at Su < It in the canonical order? In Fig. 12.11, a scheme according
to the LPOM approach is shown.

In the Hasse diagram (Fig. 12.1) approximately Su and It have the same order the-
oretical configuration. Both have only one successor and no predecessor. However,
Italy has 19 nations which can take all of the three positions in the S – x – P chain
(see Chapter 9), whereas Switzerland, Su, has only 6. Italy tends to get a higher posi-
tion in the weak order of canonical order because there are more nations to realize
lower positions than for Switzerland.

qo of Italy and Switzerland
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ordered indicators
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Fig. 12.10 Rank-ordered attribute values qo(It) and qo(Su), see Chapter 7

It

UK

Su

Pt

19 nations 6 nations

Fig. 12.11 Scheme to
explain Su < It in canonical
ranking (see text)
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12.8 Sensitivity of the Single Nations to Indicators

So far we have discussed partial orders, having complete set X in mind. Now we take
the point of view of a stakeholder who would like to learn more about his country
x ∈ X.

One question is: What is the sensitivity of a single nation x to the indicators? For
an answer, we have to select the singleton {x} for X′ in Eqs. (4.2) and (4.4). The
results are shown in Table A.8. We see, for example, that wb is important for Ne,
fa for Sw, and De, ed for Su, and It and sub for Dk (W({Ne}, IB, IB-{wb}) = 5,
W({Sw}, IB, IB-{fa}) = 7, etc.). Figure 12.12 illustrates the influence of wb on Ne
by displaying the down sets.

Deleting indicators from the data matrix is certainly not possible when a ranking
of nations is ahead. However, a high sensitivity of a nation to an indicator Ri may
motivate to improve the value of Ri(x). The question is, the improvement of which
indicator Ri is most helpful. Here we perform an attribute value sensitivity study
(see Section 6.6) which may be more straightforward.

12.9 Attribute Value Sensitivity

12.9.1 Preliminaries

What happens if a certain indicator value is changed by a unit, �, in particular 1?
For which indicator out of the six will this have the best effect in terms of partial
order?

If there is a change in partial order, what consequences can be drawn for linear
orders?

The six indicators of this study are ranks. Therefore, to keep the computational
effort tractable, a simulation study needs to be performed in the following.

Ne

Es IreDe

Gr

Cz Hu

USUK

Ne

Dk Es Su No IreDe

Gr CzFr

Au

Hu

US

UK

O(Ne, IB) O(Ne, IB-{wb})

Fig. 12.12 Down sets of Ne according to different information bases
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Let x be the nation of interest and Ri(x) the rank of the ith indicator and y that
nation for which Ri(y) = Ri(x) + 1. Simulating now a change for nation x in Ri, by
�, we consider the following:

(1) x: change of ranks according to Ri(x) → Ri(x) + �

(2) y: change of ranks according to Ri(y) = Ri(x) + � → Ri(x) = Ri(y) − �.

Now, with the example of Ireland, we study �=1 for all single indicators one
after another (Section 12.9.2), and with the example of Denmark, we study the
influence of changing � on certain indicators (Section 12.9.3).

12.9.2 Ireland

The question is: Which kind of improvement of one of the six indicators might be
the most efficient one (Table 12.5)?

12.9.2.1 Changes in Hasse Diagram

Table 12.5 shows that changing the indicator values of ed or br by � = 1 affects the
position of Ireland in the Hasse diagram: By changing the ranks for ed or br, Ireland
becomes an isolated element.

12.9.2.2 Changes in Linear Orders O� and Oposet

O�: While |U| is increasing, Ireland becomes an isolated element. Indeed the rank-
ing interval of 20 and following the lines of Section 3.7, Ireland has the chance to
get the top position in O� through an appropriate weight vector. The lowest possible
rank in O� is 1 and the highest possible rank is 21.

Oposet: As several other nations are isolated elements, Ireland becomes equivalent
to many others in the final weak order. As there is no weight vector which can be
varied, Ireland’s ranking position as an isolated element is slightly better!

Table 12.5 Simulation of the ranks of Ireland. The term “standard” refers to the Hasse diagram,
Fig. 12.1

Indicator |P| |S| |U| What happens

Standard 1 0 19 (See Fig. 12.1)
wb 1 0 19 –
hs 1 0 19 –
ed 0 0 20 Ire is an isolated element in the Hasse diagram
fa 1 0 19 –
br 0 0 20 Ire is an isolated element in the Hasse diagram
sub 1 0 19 –
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12.9.2.3 Consequences for Management

As the indicator br may be the outcome of the situation of the child, which is also
partially described by other indicators, the recommended activity should concentrate
on the indicator ed. In fact, the indicator educational well-being has three more basic
perspectives (see Table 12.1):

• achievement at age 15 with:

1. average achievement in reading literacy
2. average achievement in mathematical literacy
3. average achievement in science literacy

• aspiration: percentage aged 15–19 remaining in education and
• participation: the transition to employment with

1. percentage aged 15–19 not in education, training, or employment
2. percentage of 15-year olds expecting to find low-skilled work

Therefore the activities to give Ireland better positions should be concentrated on
educational well-being with all its aspects.

12.9.3 Denmark

We select three indicators:

(1) sub, the indicator where Denmark has its worst score
(2) ed, an indicator where Denmark gets a middle position and
(3) wb, an indicator where Denmark has the maximal score.

In the first two cases, we examine what happens if � is increased step by step.
In the third case, we reduce the indicator wb step by step. Once again we apply

the two-step procedure as explained in Section 12.9.1.
The results are listed in Table A.9.
In Fig. 12.13, the threshold values of |�u| and |�d| (see Fig. 6.11) are shown.
Figure 12.13 shows, for example, that one has to invest more than five points into

the indicator ed until a change in terms of partial order characteristics appears (in
contrast to sub, where already two points are sufficient).

The study shows that

• improving sub by one point does not change the Hasse diagram; however, by
a change of two points, Denmark gets four successors and consequently |U|
decreases.

• improving ed by five points does not change the characteristics of Denmark.
When Denmark gets in ed, the rank 20 |S(Dk)| increases by one unit.
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Fig. 12.13 Threshold values of |�u| and |�d| of Dk

• a change for the worse in indicator wb, material well-being, by four points does
not change the Hasse diagram. If, however, the rank of wb is changed to the value
13, Denmark loses one successor and |U| increases by one.

12.10 Summary and Commentary

This chapter dwells on two main lines of arguments:

1. How far can we verify the results of a study based on weight vectors by
alternative methods?

2. Do we find additional insights by partial order?

We show that the results of UNICEF based on a weight vector are pretty coinci-
dent. The coincidence of levels, provided by partial order theory with three subsets
derived from the UNICEF ranking, can be questioned because of the rather rough
classification into three states. However, the linear orders derived from more sophis-
ticated partial order techniques do not differ much from those based on an index.
The partial order confirms the UNICEF results although they are based on an equal
weighting of the indicators. If weights are considered as uncertain, then the appli-
cation of Eq. (3.19) allows to check which nation would have a chance to get better
ranking positions just by proposing other weighting schemes. Germany, for exam-
ple, has little possibilities to improve its ranking position. The m2 order shows this
fact unambiguously.

Does an index hide important results? This second question can be answered
with yes. When the partial order is considered, then its network of cover relations is
of concern. This network of lines has much to do with “where is an object and why
is it, where it is.” Therefore, the importance of indicators for the Hasse diagram is
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to be considered and the indicator “family” is the most important one, whereas the
indicator “behavior and risk” is least important.

Reference

UNICEF (2007). Child poverty in perspective: An overview of child well-being in rich countries.
Innocenti report Card 7. Florence: UNICEF Innocenti Research Centre.



Chapter 13
Case Study: Stream Channel Stability
Infrastructure at Bridge Crossings
(Engineering Sciences)

13.1 Overview

Forty-nine bridge crossings were described by 13 indicators. As in Chapter 12, a
composite indicator was suggested. The partial order analysis applied several tools
in order to demonstrate its versatility. So, for example, formal concept analysis
(Chapter 8) was applied resulting in a network of implications. These implica-
tions may be considered as hypotheses and should motivate further investigations
concerning the problem of bridge stability in stream or channel crossings.

Four main questions were posed. Partial order analysis should be able to give an
answer to them:

(1) Comparison of the composite indicator of Johnson (2005) with the result of
partial order analysis. Is the composite indicator justified?

(2) Can the thresholds to classify stream/channel bridge crossings be verified?
(3) Which indicators are important?
(4) Can we reduce the costs of investigations by recommending a set of less

expensive indicators?

By partial order analysis, the questions got the following answers:

(1) The composite indicator is confirmed by the partial order based on 13 indicators
as well as on four superindicators.

(2) The thresholds can be verified.
(3) The “channel alignment” is the most important indicator.
(4) A reduced set of four indicators seems to be the most appropriate one. Two

indicators belong to the level of expertise 1 and the other two belong to levels 2
and 3, respectively.

221R. Brüggemann, G.P. Patil, Ranking and Prioritization for Multi-indicator Systems,
Environmental and Ecological Statistics 5, DOI 10.1007/978-1-4419-8477-7_13,
C© Springer Science+Business Media, LLC 2011



222 13 Case Study: Stream Channel Stability Infrastructure at Bridge Crossings . . .

13.2 The Data Matrix and Basic Results

The data set about 49 bridge crossing sites was provided by a study performed for
the Federal Highway Administration (FHWA). The aim of the FHWA study was to
develop a set of indicators for stream stability at bridge crossings. The stability of
a stream channel near a bridge crossing has many implications for the risk posed
to the bridge structure itself. The indicators used are described by Johnson (2005)
and Newlin and Bhat (2007). “There is an important need to determine the causes
of the failure of bridges over waterways, and the determination of the indicators
most influential in stream stability is vital” (Newlin and Patil, 2010). There are 13
indicators that “describe watershed-scale factors, floodplain function, bank stability,
and channel features.” The indicators are scored with values between 1 and 12,
where 1 is the best and 12 the worst. In Table 13.1, the indicators are listed and
explained and in Table A.10, the data matrix can be inspected.

After a score is assigned for each of the 13 indicators, a total score �(x) is
obtained by a summation of the individual scores. This assumes that each of the
indicators has equal weighting and that they independently describe channel sta-
bility. The total score is then given a classification of “Excellent,” “Good,” “Fair,”
or “Poor” based on threshold values that vary for different stream channel types
(Johnson, 2005).

Furthermore, the 13 indicators can be categorized by level of expertise and
necessary time for evaluation. For different indicators, varying levels of stream
channel behavior knowledge is required. Three levels of expertise are assigned in
the following manner:

(1) “observation and a moderate level of expertise are required,”
(2) “observation and a high level of expertise are required,” and
(3) “measurement and a high level of expertise are required.”

The indicators can also be grouped based on the particular feature of the
stream–bridge intersection that it characterizes. The 13 indicators describe water-
shed/regional scale, local channel conditions, bank stability, and bridge alignment.
The assignment to superindicators is shown in Table 13.2.

We refer to this aggregated set as “four-superindicator system.” So the case study
“bridges” can be analyzed with respect to different aspects, see Fig. 13.1.

The index (Johnson, 2005) used is

�(x) =
∑

gi
∗Ii(x), x bridge site, i = 1, . . . , 13, gi = 1/13 for all i (13.1)

For our purpose we inverted the indicator score values such that the bridge sites
in the best condition get a large value in the corresponding indicator. Therefore,
large values of �(x) indicate sites in a good state. We refer to �(x), according to
Eq. (13.1), as score(total).
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Table 13.1 Indicators of stream channel stability at bridge crossings

Indicator Description No.
Level of
expertise Feature category

Watershed and
floodplain
activity (FA)

Surrounding land use;
forested, grazing,
urbanization, logging, etc.

I1 1 Watershed or
regional

Flow habit (FH) Perennial, intermittent,
ephemeral streams, flooding
behavior, stream order

I2 2 Watershed or
regional

Channel pattern
(CP)

Straight, engineered,
meandering, braided

I3 2 Watershed or
regional

Entrenchment or
channel
confinement
(CC)

Connectivity of floodplain
with channel, evidence of
infrastructure undercutting

I4 2 Watershed or
regional

Bed material (BM) Sediment size, packed or
loose, fraction of sand

I5 3 Local channel

Bar development
(BD)

Narrow or wide, vegetated or
newly deposited, grain size
of deposited sediment

I6 3 Local channel

Obstructions (Ob) Bedrock outcrops, amour
layer, LWD, grade control
structures, revetment, vanes

I7 1 Local channel

Bank soil texture
(ST)

Clay, silt, loam, sand; cohesive
or noncohesive

I8 3 Bank stability

Average bank
slope angle
(BSA)

Bank slope for unconsolidated
and consolidated materials

I9 1 Bank stability

Bank protection
(BP)

Vegetative (riparian zone
width), engineered
revetment

I10 1 Bank stability

Bank cutting (BC) Percentage of raw banks,
undercutting

I11 1 Bank stability

Mass wasting or
bank failure
(BF)

Scalloping of banks,
slumping, tension cracks

I12 2 Bank stability

Bridge–channel
alignment (CA)

Upstream distance to bridge
from meander impact point,
bridge alignment with
channel flow direction

I13 2 Alignment

An abbreviation of the 13 indicators is also given in parentheses in the first column

The three best sites according to � are 48 (9.85), 52 (9.69), and 57 (9.62). The
value of � is in parentheses. The three worst bridge sites are 15 (3), 17(3.23), and
44 (3.85).
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Table 13.2 Superindicators

Superindicator
Superindicator is
obtained as

Stream–bridge intersection on a
regional scale

I1 + I2 + I3 + I4

Local channel characteristics I5 + I6 + I7
Bank stability I8 + I9 + I10 + I11 + I12
Alignment of the bridge with the

stream channel that it crosses
I13

Basic
data matrix
49 x 13

Data
Matrix
49 x 4

Conce
ptual
aggreg
ation

Data 
matrices
49 x 5
49 x 5
49 x 3

Level of
expertise

Index, Γ

Fig. 13.1 Different aspects for studying the bridges. (Left) Superindicators, (middle) basic
indicators I1, . . . , I13, (right) three data matrices according to the three levels of expertise

13.3 Questions We Are Aiming to Answer

13.3.1 Questions

1. Johnson (2005) uses �(x), the total score, to rank the stream channel stability
near a bridge crossing. How does it compare with the ranking based on 13- or on
the 4-superindicator system? Are there other ways of ranking and do they agree
with each other?

2. The stream channel stability is assigned to one of the four conditions;
“Excellent,” “Good,” “Fair,” or “Poor” based on threshold values of the total
score. Is this a good classification? Can it be supported by other methods?

3. In general, not all of the indicators are equally important. We are interested to
know which indicators are more influential overall, which are more influential for
specific stream types, and whether it is appropriate to reduce the number of indi-
cators. Furthermore, we would like to know how indicators influence the position
of single sites, and whether there are interrelationships among the indicators.
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4. The 13 indicators can be further classified into three groups based on the level of
expertise. Can we reduce the cost of implementing a stream stability assessment
method by collecting only the less expensive indicators?

13.4 Toward Answers I

13.4.1 Thirteen Basic Indicators

The Hasse diagram (Fig. 13.2) is oriented so that excellent bridge sites are found
in the top level, whereas poor bridge sites are found in the bottom level. According
to the principles of how to draw Hasse diagrams (see Chapter 2), not all minimal
elements appear at the bottom of the diagram. There are in fact 16 minimal elements
(identified by site number):

MIN = {2, 3, 6, 7, 15, 17, 18, 22, 23, 28, 32, 34, 36, 43, 44, 56}

Among these 16 objects, three stream sites, 15, 17, and 36, are represented in the
bottom level because they are the end members of chains of length 3 and belong
therefore to the worst sites. Isolated elements can be considered as elements which
are at the same time maximal and minimal elements. We identify that six out of the
sixteen minimal elements are isolated objects:

ISO = {2, 3, 6, 28, 32, 56}
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Fig. 13.2 Hasse diagram for 49 sites with 13 indicators (see text)
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Table 13.3 Summary of the results by partial orders and of the engineering scientists (13
indicators)

Level due to partial order

Score (total) Level 3 Level 2 Level 1

Excellent 4/4
Good 22/24 2/24
Fair 2/19 16/19 1/19
Poor 2/2

The elements of ISO should appear – following the drawing rules of PyHasse –
in the top level. However, we arranged them in that way that they fit into the rect-
angle of “good” bridges. Any of the isolated elements, bridge site 2, bridge site
3,. . ., bridge site 56, cannot be compared to any other element (see Chapter 3).
Considering their data profile, they are crisscrossing that of any other bridge site.

In Fig. 13.2, the rectangles encompass bridges of the same classification level
after Johnson (2005). The higher the level, the better the bridge site condition.

We see that all “excellent” and most of “good” bridge sites are in level 3. Most of
the “fair” bridges are in level 2 (counted from bottom to top) and all “poor” bridge
sites are in level 1. Furthermore, by the partial order approach, we can identify
chains and levels which we can compare with the results based on score (total).
Bridges which are ranked differently due to the index or due to the partial order
are of high interest: They indicate when averaging the indicators mask important
details. In Table 13.3, the first value is the number of sites on a given level, and
the value after the “/” is the total number of sites due to the classification of the
engineering scientists.

13.4.2 Superindicator System Having Four Indicators

Figure 13.3 is the Hasse diagram for the four-superindicator system. It consists of
seven levels and no isolated objects. There are nine maximal objects in the top level.
Six objects are minimal, MIN = {6, 7, 15, 17, 36, 44}.

The partial aggregation (Chapter 7) which reduces the number of indicators from
13 indicators to four superindicators has resulted in an increase in comparability
between study sites with 133 comparisons in the 13-indicator data set and 460 com-
parisons in the four-superindicator system, demonstrating the enrichment and the
simplification of the partial order. The aggregation of indicators, either to one score,
the score (total), or to the four-superindicator system, is order preserving. Therefore,
it is clear that neither Fig. 13.2 nor Fig. 13.3 will show comparabilities that are not
consistent with the order induced by the score (total). Nevertheless it should be kept
in mind that the appearance of many incomparabilities indicates the strong com-
pensating effect in obtaining the total score �. See, for instance, bridge sites 17
and 57. For both, the total score and the assignment to levels in partial order theory
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Fig. 13.3 Hasse diagram for 49 sites with the four-superindicator system

evaluate 17 worse than 57. Nevertheless, we find (applying up sets (see Chapter 2))
that 17||57. There must be at least one superindicator by which the “poor” bridge is
better than the “excellent” bridge 57. Indeed, we find that 17 > I13 57.

In Fig. 13.3, the polygons from the left bottom to the right top represent the
stream condition assigned to the sites based on the total score of summing all 13
indicators. The subset {42, 48, 52, 57} is evaluated as “Excellent” (Exc.)

As in Section 13.4.1, we compare the partial order approach (Hasse diagram
in Fig. 13.3) with the classification derived from total score (Table 13.4). As in
Table 13.3, the first number is the number of bridge sites in a certain level of the
Hasse diagram, whereas the number after / is the number of bridges according to
the classification by the engineers.

13.4.3 Summary

The Hasse diagram technique can best visualize the order relations among objects.
As one of the most important outputs, Hasse levels can be produced to represent
the relative position of an object against others. The object set is partitioned into
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Table 13.4 Summary of the results by partial orders and of the engineering scientists (four-
superindicator system)

Level 7 Level 6 Level 5 Level 4 Level 3 Level 2 Level 1

Excellent 4/4
Good 4/24 10/24 8/24 2/24
Fair 1/19 3/19 8/19 5/19 2/19
Poor 1/2 1/2

equivalence classes (the “levels”) according to decreasing distance to the maximal
elements (see Chapter 9). Those Hasse levels can be compared with the four inter-
vals corresponding to “Excellent,” “Good,” “Fair,” or “Poor” to see whether there
is a need to adjust the threshold values defining “Excellent,” “Good,” etc. Both the
partial order approach by 13 indicators and that by four superindicators justify the
thresholds.

Question 1 can be answered with “yes.” Question 2, which is a more technical
one, can be answered with “yes” too. There is no need to adjust the threshold values.

13.5 Toward Answers II: Indicator Set

13.5.1 Overview

In this section, we attempt to answer question 3. We will first answer the ques-
tion for the 13 indicators. Here we also take into account that the importance of
the indicators for different contextual bridge sites sets can be different. The impor-
tance of the four superindicators will next be determined. In the section on stability
and minimum rank graphs, we show how the consecutive cumulation of indica-
tors changes the partial order and the minimum rank of certain objects. Finally, we
demonstrate how by formal concept analysis an implication network of indicators
can be established. This may help pose new hypotheses for engineering scientists.

13.5.2 Attribute-Related Sensitivity Analysis

PyHasse provides tools to perform a sensitivity analysis. Following Eq. (4.6) the
channel alignment, I13, is considered as the most important indicator. The next most
important indicator is I8, bank soil texture, which causes a change of 32 compara-
bilities from the Hasse diagram of all indicators. All results are shown in Table A.11
and the summary in Table 13.6.

The sensitivity analysis has also been applied to the four-superindicator sys-
tem (Table A.12, summary in Table 13.6). The superindicator “channel alignment”
again comes out to be the most important indicator, followed by local channel
characteristics, watershed and regional characteristics, and bank characteristics.
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13.5.2.1 Sensitivity Dependent on Different Stream Types (Dune Riffle, Riffle
Pool, . . .)

In order to identify the most important indicators for specific stream types, the full
data matrix has been divided according to the following stream subsets: dune ripple,
riffle pool, plane bed, and modified (Montgomery and Buffington, 1997; US Army
Corps of Engineers, 1994). In Table 13.5 the four possible subsets of stream types
are explained.

The results of the attribute-related sensitivity are summarized in Table 13.6 for
three influential indicators. The indicator for channel alignment appears as the most
important indicator for all data sets summarized in Table 13.6.

The importance of indicators appears to be related to the correlation between
indicators. Indicators that are the least correlated with other indicators appear
to be more important according to the partial order analysis. For example, the
most important indicator, channel alignment I13, is poorly correlated with any of
the other indicators, the maximal correlation value being 0.277 (correlation I13
with I11).

In Fig. 13.4 the two sensitivities (13-indicator system vs. 4-superindicator sys-
tem) are compared: Rather large sensitivities in the 13-indicator system will not

Table 13.5 Stream types, after Montgomery and Buffington (1997)

Stream type Explanation Site Nos

Dune ripple Sand bed, low to moderate slope,
response-type stream with
bedforms

1, 2, 3, 6, 7, 31, 32, 39, 40, 41

Riffle pool Gravel bed, low to moderate slope,
response-type stream with
bedforms

4, 5, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 30, 33, 35, 36, 37,
38, 39, 40, 42, 43, 44, 53

Plane bed Gravel/cobble bed, moderate to steep
slope, response-type stream
without bedforms

25, 26, 27, 28, 29, 42, 45, 48, 49,
50, 51, 52, 53, 54, 55, 56, 57

Modified The natural configuration has been
severely modified by human
intervention

5, 6, 14, 15, 16, 17, 21, 39, 44, 45,
54, 55, 57

Table 13.6 Summary of the attribute sensitivity analysis. 1 being the most important (see
Chapter 4), 2 the next, and 3 the least important indicator

Data set Importance 1 Importance 2 Importance 3

All sites Channel alignment Bank soil texture Obstructions
Dune ripple Channel alignment Bank soil texture Obstructions, bar development
Riffle pool Channel alignment Bank soil texture Obstructions
Plane bed Channel alignment Obstructions Bank protection
Modified Channel alignment Bank soil texture bed material, obstructions
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Fig. 13.4 Sensitivities in the 13-indicator and the 4-superindicator systems

necessarily imply large sensitivities in the four-superindicator system. For exam-
ple, I8 and I10 have sensitivity values 32 and 18, respectively (see Table A.11).
Nevertheless, the index I2 (of the four-superindicator system), quantifying “local
channel” aspects, has the lowest sensitivity. The aggregation may compensate two
indicators with low correlation (0.234).

13.5.3 Ambiguity, Cumulative Ambiguity, and Minimum
Rank Graph

CAM for the 13-indicator system equals 0.887. This value, rather near 1, indicates
that the indicator set is sufficiently complete. In Fig. 13.5, the cumulative ambiguity
graph is shown.



13.5 Toward Answers II: Indicator Set 231

Cumulative Ambiguity Graph

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5 10 15

Am(natt)

natt

Fig. 13.5 Cumulative
ambiguity graph for bridges
based on 13 indicators
(I13 > I8 > I7 > I10 > I4 >

I5 > I11 > I3 > I6 > I1 >

I12 > I2 > I9. Ties:
I2 ∼ I12, I1 ∼ I6, I3 ∼ I11)

1 2 3

4

5

6

7

14

15

16

17

18

19

20 21

22

23

24

25

26

27

28 29

30

31

32

33

34

35

36

37 38

39

40 41

42

43

44

45 48

49

50

51

52

53

54

55

56

57

Fig. 13.6 Hasse diagram based on the set of indicators that generate 82% of the maximum value
of CAM

Figure 13.6 shows that at natt∗ = 4, a selection of the indicators I13, I8, I7, I10,
which provide 82% of the maximum value reached Am(natt∗) = 0.73. Thus follow-
ing the decomposition IB = IB(1) + IB(2) at natt = natt∗, the poset (X, IB(1)) is an
approximation to (X, IB) in the sense that more indicators would only induce minor
changes.

13.5.3.1 Concordance Analysis

In Table 13.7 the concordance analysis is shown (see Chapter 10). The eight levels
of the Hasse diagram (Fig. 13.6) are pairwise aggregated so that four consecutive
evaluation scores by the Hasse diagram are obtained. As before, the indicator by
Johnson was used to evaluate the bridge sites as poor, fair, good, and excellent.
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Table 13.7 Concordance analysis

Hasse poor Hasse fair Hasse good Hasse excellent

Poor 1 1 (bridge site 17)
Fair 3 8 6 3
Good 2 6 16
Excellent 3

If only the main diagonal is considered, then concordance index = 18/49 = 0.37.
If, as was proposed in Section 10.4, the two parallel diagonals are counted and

weighted by 0.5, then we obtain concordance index = (18 + 0.5∗30)/49 = 0.67.
Following the lines of Chapter 10, the concordance can be considered as significant.

The striking exception is bridge site No. 17, which is evaluated by partial order
as good but got an evaluation as poor by the total score. Note, however, that bridge
site No. 17 has |U(17)| = 44, i.e., it is highly incomparable and has a large ranking
interval.

The main message of this section is that we may use a reduced set of indicators
I13, I8, I7, and I10. This set contains two indicators of expertise level 1, one of level
2, and one of level 3. We consider the inclusion of an indicator of level 3 as a disad-
vantage. As a supplement to answering question 4, we can offer another suggestion
to reduce the number of indicators, keeping the costs reduced.

13.5.3.2 Minimum Rank Graph

In Fig. 13.7, the minimum rank graph (see Chapter 4) is shown for four objects:
sites 4, 24, and 48 are maximal elements , whereas site 33 is located in the middle
level of the Hasse diagram (Fig. 13.2).

natt

|O
(x

)|

Fig. 13.7 Minimum rank graph of four sites: 4, 48, 33, and 24
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Fig. 13.8 Partial order model

Site 48: The indicators I8, I7, and especially I10 have only a slight influence,
although these indicators with sensitivity values of 25 and 18 are still important
with respect to the total set of objects. A partial order model for such behavior is
provided in Fig. 13.8 (LHS).

Figure 13.8 (LHS) shows a partial order model for invariance of a minimum
rank graph while adding an indicator, the shaded object being actually considered.
The number of successors is the same, while the structure of the partial order is
changing. Adding indicators reduces the number of successors and increases the
number of incomparable pairs (Fig. 13.8, RHS).

Site 4: According to score (total), site 4 is a good site. Site 4 is ranked pretty
high if only the indicator I13, alignment, is applied. However, with increasing set
of indicators, the minimum rank graph of site 4 rapidly decreases to low values,
making its position in any numerical aggregation model very uncertain. Because all
successors in the case of I13 alone are now incomparable with site 4, the ranking
interval becomes large (Eq. (3.19)).

Site 33: Starting with a rather high position due to indicator I13 (alignment), the
next four indicators reduce the number of successors. Hence, any successor of site
33 in the case of I13 becomes incomparable with site 33 when more indicators are
added to the data matrix.

Site 24: The site is evaluated with respect to indicator I13 as one of the best.
Inserting indicators reduces the number of successors first rapidly, later only slowly.
After inserting the fifth indicator, site 24 remains in a position with less than five
successors.

A partial order model is shown in Fig. 13.8 (RHS). We see this as confirmation
of 24 as a weak site, although the indicators for channel alignment and I8, bank soil
texture, assure site 24 a good position.

13.5.4 Implication Network

Discussing indicator sets should not be restricted to the analysis of the importance
of indicators for a Hasse diagram and therefore for the possible location of objects,
but should also find out the interrelationships among the indicators. Here we do this
for those bridges which are in poor alignment with the channel: We select that set of
bridge sites having low values in the indicator I13 (“Poor alignment bridges”). We
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Table 13.8 Poor alignment bridge sites classified, median values

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13

5 8 8 7 4 7 8 8 3 4 5 5 3

introduce binary attributes depending on whether the indicator value Ii is ≤ mediani

or > mediani (i = 1, 2, . . . , 13). The median values are shown in Table 13.8.

13.5.4.1 Line Diagram

When interrelationships of indicators is of interest, then formal concept analysis
(Chapter 8) is the appropriate tool. The line diagram of the formal concept analysis
is shown in Fig. 13.9 and the context table in Table A.13.

We are mainly interested in the implications. Therefore, we give here only two
examples of how to read the lattice:

(1) Bridge site 15 has the properties CA and FA, whereas bridge site 36 has the
properties BSA, BP, and BM.

(2) Which bridge sites are common for the properties CA and ST? Due to the
infimum which is above sites 34 and 43, we find additionally sites 25 and 27.

13.5.4.2 Implications

It is not meaningful to discuss all 75 associations which can be obtained from the
formal concept analysis. Instead we concentrate (a) on associations with EoA = 100,
i.e., on implications and (b) on those whose list of realized premises contains only
one property. Table 13.9 (Id is the identification number and Nrealiz is the number of
objects for which the premise of the implication is true) shows that selection.

The implications should now read as follows:

Rule 13: A good flow habit FH implies a good value for the bank slope
angle BSA.

Rule 15: A good value for channel pattern, CP, implies good values for channel
confinement (CC) as well as for bank slope angel (BSA).

13.5.4.3 Directed Graph of Implications

These rules refer only to the poor alignment bridge sites and to the median classifica-
tion among them and enlighten the interrelationships of the indicators which might
be of interest for engineers. We can visualize the interrelationships by a directed
graph (Fig. 13.10).
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Fig. 13.9 Line diagram of the formal concept lattice of the “poor alignment bridge sites.” Note,
we selected a layout modus saving space

Table 13.9 Examples of implications for bridges in bad condition with respect to I13

Id Nrealiz Implication Id Nrealiz Implication

13 7 FH => BSA 23 6 ST => FH, BSA
15 6 CP => CC, BSA 24 7 BP => BM
16 6 CC => CP, BSA 25 6 BC => FA, BM, BSA
21 6 BD => BM 26 6 BF => BM
22 6 Ob => BM
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Ob BD BP

ST

FH BC CP

BM BSA CC FA

BF

Fig. 13.10 Implication network among the 12 indicators for poor alignment bridge sites and a
median classification

13.5.4.4 How Should We Use These Implications?

First of all, the rules are here very restricted, as we selected poor alignment bridge
sites and – beyond this – classified the indicators by the median. Granted these
(severe) restrictions, the implications are nothing else than what was given by the
(binary) data matrix! The tool of formal concept analysis is precisely to find out
such relations from the table. The implications should be considered as a work-
ing hypothesis. For example, bed material (BM) gets values above the median, if
either Ob (obstruction), or BD (bar development), or BP (bank protection), etc. (see
Fig. 13.9) got indicator values which are larger than the median within the poor
alignment bridge sites subset. One may hypothesize that the indicators Ob, BD, BP,
BF, and BC correlate with BM, – at least for poor alignment bridge sites!

13.6 Canonical Orders

13.6.1 Where Are We?

The sections of this chapter were so far concerned with comparative knowledge dis-
covery: We looked at the position of objects in various Hasse diagrams, identified
levels, and made use of stability and minimum rank graphs to see how the indicators
are working. In doing this we followed the very principle of partial order analysis
not to intermingle the indicators but to see what they can tell us, keeping them sep-
arated. Central point is the system of order relations among the bridge sites. The
fourth question, however, cannot be answered easily because of the many incompa-
rable pairs. In Chapter 9, we make use of the linear extensions (Chapter 3) whose
multitude expresses the appearance of many incomparable pairs and from which
linear or weak orders can be obtained. The answer to the fourth question as well as
to the first one will be provided in the next section.
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13.6.2 Application of Linear Extensions

Since assigning equal weight to each indicator is rather arbitrary, we are discussing
an alternative: An alternative is provided in Chapters 3 and 9. We will apply the
canonical order due to the Bubley Dyer (BD) and the LPOM algorithms for all
49 and additionally the lattice theoretical method for 15 bridge sites. We are inter-
ested to compare the averaged ranks obtained from them with the values of the
total score �. Table 13.10 shows the results for 49 sites of different indicator con-
stellations (all indicators, only indicators of level 1, etc.). We apply the Spearman
correlation analysis to compare the 10 linear or weak orders with that due to the
index �.

Note that among the five sets of indicators, the scenario (4) yields slightly better
results in comparison to that of level 1 or level 2 indicators. In Fig. 13.11 a scatter
plot of BD vs. � (L.H.S.) and of LPOM vs. � (R.H.S.) is shown (all indicators).

To include the lattice theoretical method, we selected 15 bridge sites pretty
arbitrarily and calculated the linear order of these bridge sites by means of lat-
tice theoretical methods (Section 9.6). In Table 13.11, the indicator constellations
together with their Pearson correlation with � are shown (15 bridge sites).

In all the three methods, the correlation between O� and Oposet, based on indica-
tors of level 1, are the best. The correlation between O� and Oposet based on three

Table 13.10 Spearman correlation indices of � vs. the heights (see Chapter 3) due to the 10 partial
order variants, based on all 49 bridge sites

Scenario Bubley Dyer LPOM

(1) 13 basic indicators 0.92 0.92
(2) Level 1 indicators 0.86 0.87
(3) Level 2 indicators 0.85 0.87
(4) Level 1 and level 2 indicators together 0.9 0.9
(5) Superindicators 0.91 0.9

Fig. 13.11 Comparison of the rank of sites based on score (total) and based on canonical orders



238 13 Case Study: Stream Channel Stability Infrastructure at Bridge Crossings . . .

Table 13.11 Spearman correlation of the linear or weak orders of three partial order methods with
the total score of Johnson for the six indicator constellations

Indicator
configuration

Lattice
theoretical-derived
averaged ranks and
its order

Bubley Dyer-derived
averaged ranks and
its order

Averaged ranks
derived by the
local partial order
model and its order

Level 1 0.93 0.92 0.89
Level 2 0.81 0.81 0.80
Level 1 + level 2 0.76 0.70 0.80
Level 3 0.84 0.85 0.85
Four

superindicators
0.79 0.80 0.83

{I13, I8, I7}a 0.62 0.66 0.70

aThree most important indicators as outcome of the sensitivity study

indicators {I13, I8, I7} is worst. Generally the linear or weak orders due to partial
order are in pretty good agreement with O� . The main message of this section is
that – based on the canonical order (see Chapter 9) – costs and time could be saved,
by using only those indicators which belong to the expertise level 1.

13.7 Summary and Commentary

For the stream channel bridge crossing case study, assigning stream condition based
on score (total) is satisfactory. Also, grouping all 13 indicators into four indices
does not have a large effect on the order relations of the stream sites. The sites
show reasonable agreement with the Hasse diagram and the canonical ranks for
both data matrices. Based on the score (total), the threshold values that assign the
stream sites into four categories are supported by the levels of partial order theory.
Channel alignment is one of the most influential indicators for overall stream stabil-
ity, as expected. However, the watershed and floodplain activity indicator was also
expected to have greater overall influence on the stream stability condition. When
considering the expense of collecting the indicator data, at least 10 indicator scores
(level 1 and level 2) should be collected.
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Chapter 14
Case Study: Watershed Analysis (Hydrology)

14.1 Overview

Twenty-one watersheds were characterized and ranked on the basis of two multiple
indicator systems, level 1 (least expensive) and level 2 (expensive). Furthermore,
level 3 indicators are defined which need investigations in the field and are pretty
expensive and only six watersheds are characterized.

Composite indicators are defined on the basis of level 1 indicators, called LSI,
and level 2 indicators, called SWR. LSI and SWR are thought of as two different
means to rank the watersheds with respect to the environmental health. The indi-
cators on the three levels are considered as proxies to describe the abstract and not
measurable concept of “environmental health.”

One task in the poset analysis is the verification or the falsification of the two
composite indicators.

Whereas LSI is fairly justified by the partial order analysis, the SWR needs more
attention, as its weighting scheme differs from that derived from a partial order
analysis, applying the POSAC method (Chapter 3). Furthermore, it is observed that
the partial order based on level 1 indicators differs remarkably from that based on
level 2 indicators. Finally, it is striking that a proximity analysis (see Chapter 10)
favors level 1 indicators as proxies of level 3, albeit for this study only six watersheds
were available.

By the sensitivity study, it turns out that the indicator “impervious surface in
watersheds” was most important under the level 1 indicators, whereas “invasive
cover class” was most important under level 2 indicators.

As in the analysis of child development (Chapter 12), separated subsets are
found, which are an outcome of a partial order analysis of the indicators of level 1.
The indicator IMP (impervious surface in watersheds), CORFOR (percentage of
total forest that is core forest in watershed) as well as FOR (percentage of forest in
watersheds) explain this separation.

Special attention was given to the level 3 (environmental chemistry and biology)
indicators: An examination of NO3 vs biological parameters renders strongly dif-
fering sensitivity to the weights (of NO3 vs biological parameters): The watershed

241R. Brüggemann, G.P. Patil, Ranking and Prioritization for Multi-indicator Systems,
Environmental and Ecological Statistics 5, DOI 10.1007/978-1-4419-8477-7_14,
C© Springer Science+Business Media, LLC 2011
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“Saint Mary’s A” (SM) is almost insensitive, whereas the ranking of “back river”
(BR) varies strongly with the weights.

14.2 Background and Data Matrix

The data set of 21 watersheds obtained from the Atlantic Slope Consortium (ASC)
will be analyzed with the goal of determining an accurate ranking of the health of
the watersheds. See Brooks et al. (2007). As in Chapter 13 (bridge study), the data
set has different levels of indicators, grouped into level 1 to level 3, increasing in the
quality and accuracy of the data as well as in the amount of cost and effort needed
to obtain the data:

Level 1: Landscape assessment using satellite data is the easiest to access and
the least expensive (data matrix, see Table A.14).

Level 2: Rapid field assessment is obtained from on-site sampling. Certain level
of expertise is involved in the field assessment (data matrix, see Table A.15).
Generally, level 2 data is relatively inexpensive compared to the level 3 data.

Level 3: Intensive field assessment needs to be purchased from the US
Environmental Protection Agency (EPA). It is the most expensive and best
quality of data among the three levels. Due to the money and effort in the
procedure of obtaining this data, it is available for only six watersheds (data
matrix, see Table A.16).

The orientation of all these indicators is as follows: The higher the indicator
value, the better the watershed.

We provide an overview of the three-level indicator system in Table 14.1 and the
names of the watersheds in Table 14.2.

The investigators combined the five level 1 indicators and the seven level 2 indi-
cators to indices: The composite level 1 index is called the landscape index (LSI):

LSI = [FOR + (IMP + LDI)/2 + (MPAT + CORFOR)/2]/3 (14.1)

The composite level 2 index is called stream–wetland–riparian (SWR) index:

SWR = (1/4)∗(FW + SHA + IR + SS) (14.2)

FW = (1/4)∗(BUW + BA + INV + FPWL) (14.3)

The values of both indices can be found in the appendix (Table A.17).
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Table 14.1 Meaning of the indicators of the three levels

Level 1 Level 2 Level 3

Indicator Definition Indicator Definition Indicator Definition

FOR Percentage of
forest in
watershed

BUF Buffer score BIBI Benthic IBI
(index of
biological
integrity)

LDI Landscape
density index
in watershed

IR Incision ratio FIBI Fish IBI

IMP Percentage of
impervious
surface in
watershed

BA Basal area of trees NO3 Concentration of
nitratea

MPAT Mean forest
patch size in
watershed

INV Invasive cover
class

CORFOR Percentage of
total forest that
is core forest
in watershed

SHA Stream habitat
assessment
score

SS Number of stream
stressors

FPWL Number of
floodplain–
wetland
stressors

aThe orientation of NO3 has to be reversed because a large value indicates a bad state of the
watershed

Table 14.2 Watershed names and their identifier

Watershed Identifier Watershed Identifier

Back River BR Conodoguinet A CA
Cattail Creek CC Grindle Creek GC
Gwynn Falls GF Little Contentnea LC
Saint Mary’s A SM Mantua Ma
Southeast Creek SC Middle Creek MC
Upper Patuxent UP Middle River MiR
Ahoskie Ah Pamunkey Pa
Buffalo Creek BC Repaupo Re
Chickahominy Ch White Deer Creek WDC
Christian Creek ChC Wisconisco Wi
Clearfield Creek ClC
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14.3 Partial Order Analysis, Based on Level 1

14.3.1 Hasse Diagram

X: the set of 21 watersheds
IB: the set of five indicators of level 1 ([0,1]-normalized data)
Orientation: The larger the values of the indicators, the better the environmental

health.

Once again five indicators are used as proxies for the abstract principle “environ-
mental health” and the Hasse diagram (Fig. 14.1) shows how the watersheds can be
positioned with respect to these five indicators.

Figure 14.1 shows the following:

• There are six levels: Strolling up the Hasse diagram, we find watersheds of
increasing better state with respect to the abstract principle of environmental
health.

• The incomparabilities tell us that a certain state with respect to the environmental
health is realized by profiles (Chapter 3) crisscrossing each other.

• There is a least element, BR, having values with respect to all five indicators
which are less than those of any other watershed.

• Shape: Approximately rectangular, the disparity in the values of the five indica-
tors does not strongly vary with the levels.

BR

CC

GF

SM

SC UP

Ah BC

Ch ChC

ClC

CA

GC

LC

Ma

MC

MiR

Pa

Re

WDC

Wi

Fig. 14.1 Hasse diagram of (X, IB)
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The Hasse diagram of Fig. 14.1 also supports some comparative decisions:

• A crude evaluation follows from the membership of watersheds to one of these
order theoretical levels.

• There are some chains having at least four elements, allowing to order the water-
sheds uniquely without the use of LSI. For example, BR < GF < CA < LC < CC
< GC, or BR < Ma < MC < CC < WDC. A list of all paths between two endpoints
can be obtained by PyHasse.

The indicators of level 1 have different impact on the Hasse diagram as can be
obtained from a sensitivity study (Chapter 4). For level 1 indicators, the following
sequence (ordered for decreasing importance for a Hasse diagram) is found: IMP
>> FOR > CORFOR > LDI ∼= MPAT.

CAM = 0.5. Therefore, any new indicator added or any deletion of an indicator
may remarkably change the partial order (see Chapter 4).

14.3.2 Antagonism

Let X be the set of watersheds and Xres : = X−{GF, BR}, then {CC, SC} and Xres =
{UP, GC, WDC, Ah, BC, ClC, Pa, Wi, SM, LC, MC, Re, Ch, ChC, CA, Ma, MiR} =
X′ ∪ {Ma} are separated subsets (Chapter 5). By the tools provided by WHASSE,
we find that IMP and CORFOR explain the separation at 94.1%. The complete sep-
aration (100%) is obtained if indicator FOR is included. Hence AIB = {FOR, IMP,
CORFOR}. The scatter plot based on the 94.1 approximation is shown in Fig. 14.2.

IMP 

CORFOR 

X’

CC, 
SC 

0.69

0.67

0.64

0.12

0.24 0.26 0.28 0.87 

Ma

Fig. 14.2 Scatter plot explaining 94.1% antagonism between {SC,CC} and Xres. Watershed Ma
belongs to Xres (indicated by a broken line)
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CORFOR

IMP

FOR

Ma ∈ Xres 

X’

CC,SC

Fig. 14.3 3D schematic view on the results of the antagonism study

As one can see in Fig. 14.2, the separation {CC, SC} from Xres is not complete,
because Ma < {CORFOR, IMP}CC and Ma < { CORFOR, IMP}SC. The third indicator
FOR does the job of a complete separation. FOR(CC) < FOR(Ma) as well as
FOR(SC) < FOR(Ma). Figure 14.3 summarizes schematically the results of the
antagonism study.

We see from Fig. 14.3 that the range of FOR(Xres-{Ma}) includes that of {CC,
SC}. This is consistent with the finding of Section 5.5.3.

14.4 Partial Order Point of View, Level 2 Indicators

The Hasse diagram of (X, IBlevel2)

Object set X: 21 watersheds as before
IBlevel2: Seven indicators of level 2.
Orientation: The larger the value, the better the state of the watersheds with

respect to environmental health.

The Hasse diagram can be inspected in Fig. 14.4.
One may expect that the higher number of level 2 indicators leads to more con-

tradictions in the data. This is indeed the case: Instead of six levels in the case of
level 1 indicators, there are now only three. Furthermore, we see the following:

• ISO = {BC, ClC}
• WDC, GF, and GC are articulation points. Deletion of any of the corresponding

rows from the data matrix generates at least one more isolated element. Deletion
of WDC from the data matrix would lead to four more components in the Hasse
diagram.
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BR

CCGF SM SC UP

Ah

BC

ChChC

ClC

CAGC

LCMa

MC MiR

Pa Re

WDC

Wi

Fig. 14.4 Hasse diagram of (X, IBlevel2)

• MAX = {Ma, LC, WDC, BC, ClC}. The only maximal element which is also
found through level 1 indicators is WDC.

• The proximity analysis between (X, IBlevel1) and (X, IBlevel2) (Chapter 10) ren-
ders fraction (isotone) = 0.08, fraction (indifferent) = 0.92, fractions of antitone,
weak isotone, and equivalent = 0. We conclude that level 2 indicators do not con-
tradict those of level 1. However, they strongly reveal different information about
the watersheds.

14.4.1 Attribute-Related Sensitivity

Figure 14.5 shows the result of the sensitivity analysis.

Sensitivity
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Fig. 14.5 Attribute-related sensitivity, level 2 indicators. The most important indicator is INV and
the least one is SS
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Fig. 14.6 Minimum rank graph of ClC, WDC and Ma in (X, IBLevel2) (see Chapter 4)

14.4.2 Minimum Rank Graph

We take ClC, WDC, and MA (which are maximal elements of (X, IBlevel2) and
determine their minimum rank graphs (Fig. 14.6).

In Fig. 14.6, we see the following:

• WDC has a slightly worse position than ClC but is pretty invariant, whereas ClC
moves down through adding indicators.

• ClC has a steep gradient when the fourth indicator is added.
• The watershed Ma is in a middle position if only the fourth indicator, INV, is

considered. All the other additional indicators affect Ma only slightly.

For a closer interpretation, we show the data profiles of ClC, WDC, and Ma in
Fig. 14.7.

We see that each of the three watersheds has at least one indicator, where the
watershed is better than the other two. In the case of indicator 4 of level 2, ClC
is slightly better than WDC; however, the numerical difference is too small to be
visualized.

WDC: Three indicators of WDC are 1 or nearly 1, inclusive of the most impor-
tant indicator INV and the lowest value is 0.72. Hence adding the indicators
has little influence on the position of WDC.

ClC: Adding the indicator BA to the data matrix must eliminate all successors of
ClC, because BA(ClC) is near 0 (note: normalized data). All other watersheds
have better values. Better values in the remaining indicators of ClC cannot
increase the number of successors.
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Fig. 14.7 Data profiles (normalized) of three maximal elements in (X, IBlevel2), the level 2
indicators are ordered by W(qi)

Ma: This watershed is a maximal element because of the good value of indicator
IR. With respect to the indicator INV, the watershed Ma has only a medium
to fair value.

Hence the minimum rank graph starts at rather low values. Adding the next
important indicator FP excludes many successors, because Ma has here its lowest
value. Therefore, a strong negative slope appears. As in the case of ClC, the better
values in the remaining indicators cannot increase the number of successors.

14.5 Analysis Including the Level 3 Indicators

14.5.1 Hasse Diagrams

The Hasse diagram for the level 3 indicators is shown in Fig. 14.8.
Figure 14.8 shows the important role of the indicator NO3 for the Hasse diagram.

14.5.2 Indicator NO3 vs Biological Indicators FIBI and BIBI

Figure 14.8 motivates to study in more detail the role of NO3 vs the biological
indicators. Hereto we define

IBI : = 0.5∗(BIBI + FIBI) and ϕ : = g∗IBI + (1 − g)∗NO3 (14.4)

We perform the stability analysis (Fig. 14.9).
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Fig. 14.8 (LHS) Hasse diagram for level 3 indicators; (RHS) FIBI and BIBI
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Fig. 14.9 Stability plot for the study of six watersheds and level 3 indicators and the composite
indicator: ϕ = g∗(0.5∗BIBI + 0.5∗FIBI) + (1 − g)∗NO3. Vertical linear orders given with enough
space between two subsequent gc values

In Fig. 14.9, the results of METEOR and stability analysis (see Chapter 7) are
shown. We identify eight crucial weights. The stability fields together with the linear
orders are displayed. With g = 0 (LHS), the linear order due to indicator NO3 is
obtained and with g = 1 (RHS), that of indicator IBI is obtained. One can see that

• the high height in the linear orders of watershed SM is rather stable; only if the
weight g is larger than 0.84, it changes its position with watershed UP.

• the watershed CC has the lowest position until g ≈ 0.6 but remains in the lower
part of the ranking.

• the watershed SC has height = 2 for 0 ≤ g ≤ 0.39. For all larger values of g, the
watershed SC remains in the height position 4. The range of g values around 0.39
is a hot spot for SC.

• watershed GF is pretty sensitive to the amount how far NO3 is mixed with IBI.
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• there are two stability fields which are rather large, one between g∗ ≈ 0.1 and
g∗ ≈ 0.3 and another between 0.6 and 0.85. If the indicator NO3 is to be included,
then the ranking of the watersheds does not actually depend on weights taken
from these two ranges.

14.6 Proximity Analysis of Level 1, 2, and 3 Indicators
on the Basis of Six Watersheds

We conclude the partial order analysis of the wetlands with the focus on comparing
the three sets of indicators on the basis of six watersheds. What we want to know is,
which set of indicators is a better proxy for level 3 indicators when a comparative
analysis is our focus. Therefore we analyze the following:

• level 3 vs level 2
• level 3 vs level 1
• level 1 vs level 2

We perform for all indicators a discretization (K = 3, mini and maxi values taken
from the data matrix). The resulting three Hasse diagrams were compared by means
of the proximity analysis (Chapter 10). The results are shown in Fig. 14.10.

We see the following:

1. There is no contribution to antitone
2. There are no weak isotone contributions
3. Dominating is the frequency of indifferent matchings
4. Focusing on how well level 3 indicators are modeled by level 2 or level 1 indica-

tors, the degree of isotone between level 3 and level 1 is 10, whereas that between
level 3 and level 2 is only 2.

We conclude the following:

1. The indicators of the three levels do not contradict each other.
2. The indicators are sharp enough so that there do not appear combinations like

(∼=, <) (see Section 10.6). Therefore, the number of weak isotone equals 0.
3. Any indicator scheme has its own scientific value. Therefore, the objects are

likely to be incomparable. Hence the contribution of “indifferent” is pretty
high.

4. Taking into account that the results are based on only six watersheds and on
a specific discretization scheme, we hypothesize that level 1 indicators are
better suitable to be used as proxies for level 3 indicators compared to level 2
indicators.
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Fig. 14.10 Proximity analysis of the partial orders obtained from the three-level indicator systems
for six watersheds

14.7 Analysis of LSI and SWR

14.7.1 Where Are We?

We have studied the Hasse diagrams and got an impression about the positions of
the watersheds depending on the set of indicators without crunching the 5, 7, or 3
indicators into a composite indicator. All the three Hasse diagrams (level 1, level 2,
and level 3) allow some comparison of the watersheds. Furthermore, we analyzed
the indicator NO3 vs. IBI as if we want to construct a composite indicator based
on NO3 and IBI, without having an idea about the weights. The order theoretical
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answer is to construct stability fields and hot spots in order to identify ranges of the
weights, on the one hand, where some freedom in selecting the numerical value is
and, on the other hand, where a slight variation will change the linear order of the
watersheds.

However, the question is: Can we provide an alternative to the linear or the weak
order a composite indicator provides? Here we do not want to be repetitive with
apply methods explained in Chapter 10. Instead we will examine what the partial
order tool POSAC (Chapter 3) has to offer to us.

14.7.2 Analysis with POSAC

As example, we take a closer look at the index SWR: We compare the weights given
by the experts with weights which we develop from the data matrix itself. The tools
we are applying is POSAC (see Chapter 3) and the concordance method to find the
loadings, i.e., how far the original indicators contribute to the latent order variables
of POSAC.

In this section we are closely following Patil (2001).

14.7.2.1 Loadings

As shown in Section 3.5, POSAC finds two latent order variables, LOV1 and LOV2
in short, and each object has a LOV1 and a LOV2 value corresponding to the
POSAC diagram. We are interested in understanding the strength of the influence
of the original indicators on the LOVs, the “loading.” The loadings are computed
for each indicator, and a loading gives a measure of similarity between the LOV
and the data from a particular indicator. To allow for small deviations in the POSAC
algorithm, we discretize both the LOVs and the original data into eight equidistant
intervals. We compute a concordance value for each indicator and each of the both
LOVs.

For the level 2 data set, 84.6% of the comparabilities are preserved by the
two-dimensional POSAC model, and the two-dimensional POSAC diagram is in
Fig. 14.11.

Table 14.3 shows the loadings concerning the level 2 indicators.
For level 2 the latent order variable LOV1 is most impacted by indicators IR,

which is the incision ratio, IR, followed by INV, which is invasive cover class, and
SHA, the stream habitat assessment score. The latent order variable LOV2 is most
impacted by BUF, which is the buffer score of the watershed, and to a smaller extent
by INV, SHA, and FPWL.

14.7.2.2 Derivation of Weights from the Data Matrix

Using the results of the analysis above on the loadings, we generate weights for the
indicators which are solely based on the data matrix. Let Ii be one of the indicators
and aij the loading for the jth LOV:
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level 2 data

Table 14.3 Loadings ai1, ai2,
using concordance method
for level 2 indicators

LOV1 LOV2

BUF 0.380952 0.571429
IR 0.761905 0.333333
BA 0.428571 0.380952
INV 0.619048 0.476191
SHA 0.571429 0.476191
SS 0.333333 0.428571
FPWL 0.190476 0.476191

Ii = ai1
∗LOV1 + ai2

∗LOV2

We define

gi = (ai1 + ai2)/�(ai1 + ai2) (14.5)

The quantity gi is the final weight with which we combine the (normalized) Ii to
a data-driven composite indicator (DDI):

DDI = �gi
∗Ii (14.6)

Looking at the data-based weights from POSAC (Table 14.4), we see that the
data-based index gives approximately the same amount of weight to all the indica-
tors with a little less weight to stream stressor and FPWL stressor. When compared
to the investigator-based SWR index, the POSAC-derived weights give less weight
to the indicators IR, SHA, and SS than does SWR, since SWR gives all three of
these indicators a weight of 0.25.
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Table 14.4 Weights for
level 2 indicators Indicator DDI (POSAC) SWR

BUF 0.150 0.063
IR 0.154 0.250
BA 0.137 0.063
INV 0.169 0.063
SHA 0.159 0.250
SS 0.126 0.250
FPWL 0.106 0.063

14.8 Summary and Commentary

Considerable effort is expended in the assessment of the quality of watersheds.
Three levels of indicators are defined, where level 1 indicators are the cheapest and
the level 3 indicators the most expensive.

We performed some partial order analyses to see how the wetlands can be com-
pared under the abstract principle of “environmental health,” without applying a
composite indicator. In doing this, we study the system of order relations and con-
sequently it is of interest to see how this system of order relations, displayed in
Hasse diagrams, changes if we delete indicators from the data matrix. We found
which indicators are important and saw that IMP (of the level 1 indicators) is very
important, whereas the sensitivity values of the indicators of level 2 are more spread
out, albeit INV turned out to be the most important one.

A large part of this chapter is devoted to compare the different systems. As a
main result, we see that there is some indication that the level 1 indicators seem to
be better proxies for level 3 than level 2 indicators.

As far as the process of constructing composite indicators is considered, the
POSAC method may be a good alternative and it may be an issue to discuss the
weights of SWR because the order theoretical approach found a different set of
weights.
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Chapter 15
Case Study: Environmental Performance Index
(EPI) (Human and Environmental Health)

15.1 Motivation

In the EPI study, 16 indicators were introduced to analyze nations with respect to
the human health and ecosystem vitality. Once again, indicators are used as proxies
of an abstract principle and partial order shows how nations are ordered following
these proxies.

Data for 102 countries are available. However, in our study, we concentrate
ourselves on 18 European and 10 ASEAN nations.

Our first issue is to see how the 16 indicators work as proxy for environmental
stressors affecting human health. For this purpose, we selected 18 European and
10 ASEAN nations, discretized the indicators, and examined the corresponding two
Hasse diagrams. Although the Hasse diagram concerning the European nations has
many more comparabilities compared to that of the ASEAN nations, both Hasse
diagrams are not considered as a good starting point for further analysis. Therefore,
we changed our focus on what we can learn about the different logical interrelation-
ships among the indicators. A proximity analysis is possible by which a similarity of
ASEAN nations to those of Europe with 16 indicators can be established. As a result,
we find that Japan and two more ASEAN nations are similar to European nations,
although there are different climatic, sociological, economical, and environmental
conditions.

Furthermore, a formal concept analysis (Chapter 8) based on six superindicators
(defined by the EPI study) leads to a network of associations and implications and
it was of interest to compare the network induced by European nations with that
induced by ASEAN nations.

We found that a good value in biodiversity implies good values in water and
natural resources in the ASEAN network, whereas in the European network, good
values in sustainable energy were implied.

257R. Brüggemann, G.P. Patil, Ranking and Prioritization for Multi-indicator Systems,
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15.2 Data Matrix and Aim of the Study

The environmental performance index (EPI) aims at two major goals in environ-
mental protection: (1) the reduction of environmental stressors for the improvement
of human health and (2) the support of ecosystem vitality and better management of
our natural resources (Esty et al., 2006).

The first goal is covered by definition and quantification of 16 indicators
(Table 15.1).

The second goal is covered by the definition of six categories (six superindicators
in our sense) that are “representative of policies that support ecosystem vitality and
resource management” (Esty et al., 2006). We will consider these six superindicators
in later parts of this chapter. There are 102 countries for which we have data for all
16 indicators. Raw data were collected by the investigators for each country for
each indicator and were then scaled in a range [0, 100]. The data matrix 102 ×
16 for the EPI can be found in the appendix (Table A.18). The EPI study is an
excellent study performed over several years by experts in all relevant scientific
fields. It is not our aim to present better or more detailed results but to demonstrate
where and how partial order can be helpful. Therefore, we restrict ourselves to 18
nations of the European Union and 10 nations of the ASEAN group (see Tables
A.19, A.20, and A.21). ASEAN is an association of southeast Asian nations. In order
to compare with the results in the foregoing sections, we repeat now some of the
steps for the nations of ASEAN (where due to EPI three nations were additionally
considered: China, Japan, and South Korea, see EPI study). Because of data gaps,

Table 15.1 Indicators and
their classes in the EPI study Indicator Acronym Code

Child mortality CM I1
Drinking water DW I2
Adequate sanitation AS I3
Indoor air pollution IA I4
Urban particulates UP I5
Regional ozone RO I6
Nitrogen loading NL I7
Water consumption WC I8
Wilderness protection WP I9
Ecoregion protection EP I10
Timber harvest rate TH I11
Overfishing OF I12
Agricultural subsidies AC I13
Energy efficiency EE I14
CO2 per GDP CG I15
Renewable energy RE I16
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Table 15.2 European and ASEAN nations

European nations ASEAN nations

Belgium BEL Poland POL Malaysia MYS
Bulgaria BGR Portugal PRT Japan JPN
Denmark DNK Romania ROU South Korea KOR
Germany DEU Sweden SWE Philippines PHL
Finland FIN Slovenia SVN Viet Nam VNM
France FRA Spain ESP Thailand THA
Greece GRC United Kingdom GBR Indonesia IDN
Ireland IRE Cyprus CYP Myanmar MMR
Italy ITA China CHN
Netherlands NLD Cambodia KHM

LAOS could not be considered. Nevertheless, in the following, we refer to ASEAN
nations (Table 15.2).

15.3 Partial Order Analysis

Hasse diagrams of (XEu, IB) and (XAs, IB):

• The object set XEu consists of 18 European nations, while that of XAs consists of
10 ASEAN nations.

• The information base (IB) consists of 16 indicators.
• The orientation: The larger the indicator value, the better the nation.

Table 15.2 shows the European and ASEAN nations.
As in Chapter 6, we apply a discretization (discretization scheme: K = 3, min and

max values taken from the two matrices). In Fig. 15.1, the two Hasse diagrams are
shown. We see that in (XEu, IB), more comparabilities (30) appear and the degree of
comparability (number of comparable pairs/(0.5∗n∗(n – 1)), n being the number of
objects of the Hasse diagram) is 0.196. In (XAs, IB), only two comparabilities appear
and the degree of comparability is only 0.044. Obviously the degree of disparity
among indicator values of the European nations is remarkably smaller than that of
the ASEAN nations.

The few comparabilities in both diagrams result from (i) the large number of
indicators and (ii) from low correlation of them. Hence there is a need for enriching
the partial orders by stepwise aggregation as a future task.



260 15 Case Study: Environmental Performance Index (EPI) (Human and . . .

MYS JPN KOR PHL THA IDN

MMR

CHN

VNM

KHM

(b) 

BEL BGRCYP DEU

DNK

ESP

FIN

FRA

GBR

GRCIRLITA

NLDPOL

PRT

SVN

SWE

(a) 

ROU

Fig. 15.1 Hasse diagrams of (XEu, IB) (a) and (XAs, IB) (b)

15.4 Comparison of 16 Indicators on the Basis of European
and ASEAN Nations

15.4.1 Partial Order Analysis: European Nations

15.4.1.1 Transposed Data Matrices

One may ask how well any indicator out of the set of 16 is presented by the nations
of the EU. That means that the 18 × 16 data matrix has to be transposed where
now the 16 indicators are considered as objects and the nations are the attributes.
Reading such a transposed matrix, let us take the row for UP, urban particulation,
for the first seven nations:

BEL BGR CYP DEU DNK ESP FIN

UP 87.1 67.5 67.8 91.3 90.9 78.4 92.5

From this part of the transposed data matrix, we learn that UP is best realized
in Finland (FIN) and then in Germany (DEU). The worst realization is found in
Bulgaria.
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Now let us take two other rows:

BEL BGR CYP DEU DNK ESP FIN

WC 9.0 33.3 100.0 70.9 95.9 32.3 99.2
WP 0.3 7.5 24.1 1.0 11.9 18.5 24.1

These two rows tell us that (within the set of seven nations – BEL to FIN) the
indicator WP gets worse values, indicating that wilderness protection (WP) has
smaller values in those nations, whereas water consumption (WC) has got larger
values.

In Fig. 15.2, we see as to how far the 16 indicators (we take the original
values of EPI) can be compared on the basis of their values for 18 European
nations.

There are some chains containing four indicators, like WP < RO < UP < IA. In
all 18 nations of the EU, IA is better than UP, UP better than RO, and RO better
than WP. Such a chain (or better, the set of maximal chains) may be a characteristic
for the subset of nations selected. In other subsets taken out of the 102 nations, such
chains may not occur.

15.4.2 Partial Order Analysis: ASEAN Nations

Figure 15.3 shows the Hasse diagram of indicators.
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Fig. 15.2 Hasse diagram of the transposed data matrix for European nations



262 15 Case Study: Environmental Performance Index (EPI) (Human and . . .

CMDW AS

IA

UP

RO

NL WC

WP

EP TH

OF

AC EE

CG

RE

Fig. 15.3 Hasse diagram indicator values realized by different ASEAN nations

15.4.3 Comparison of Indicator Partial Orders for European
and ASEAN Nations

In comparison to the poset found for the nations of the EU, we see that

• the Hasse diagram of European nations has four levels, whereas the Hasse
diagram of ASEAN nations has only three levels.

• The ASEAN poset has isolated elements, like AC, DW, and AS: Some nations
realize one attribute very good, but there are some others which at the same time
do not have that good status.

• There is in both posets a chain of length 3 (i.e., it contains three indicators) with
the same indicators: RE < CG < TH. Renewable energy (RE) is simultaneously
worst for all European nations and also for ASEAN nations, CO2 per GDP (CG)
is better, and timber harvest (TH) is at the same time the best.

• There is no indicator pair x, y such that x < EU y but x > ASEAN y (see also the
proximity analysis), where EU abbreviates European.

• From the six maximal elements of the European nations poset (AS, IA, CM,
NL, WC, TH) there are four in common with those of the ASEAN nations: NL,
WC, CM, TH and if we count isolated elements as maximal ones, then AS also
belongs to the common group. Only IA (indoor air pollution) is an exception. It
is a minimal element in ASEAN, showing the general need of improving the air
pollution in ASEAN nations.

• From V = 29 (V, count of comparabilities (see Chapter 7 (Eq. 7.11))) in ASEAN,
20 order relations are realized in EU, hence the partial order based on EU is not
an enrichment of that based on ASEAN nations.

Taking OF (overfishing indicator) as an example, OF <ASEAN x, x = WC, EE,
EP, CG, CM, NL, TH. In EU, the indicator OF has not that bad state. See Figs. 15.3
and 15.4.
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Fig. 15.4 Indicators comparable better than OF. Comparison of EU and ASEAN. There are three
indicators in common: child mortality (CM), nitrogen loading (NL), and timber harvest rate (TM)

15.4.4 Proximity and Distance Analysis

15.4.4.1 Proximity

As described in Chapter 10, we perform a proximity analysis by counting the Bi

classes. The result is shown in Fig. 15.5.
The fraction of common order relations is low as “isotone” counts only to less

than 20%. We note that there is no contribution to “antitone,” which confirms what
we already found out by inspection of the Hasse diagrams.

15.4.4.2 Distance

Here is X the set of indicators and we have the following information bases:

EU: = IB1: set of European nations and
ASEAN the set of the ASEAN nations considered before.
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Fig. 15.5 Proximity analysis of the Hasse diagrams of Figs. 15.2 and 15.3
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As further information bases, we introduce different unions of IB1 with IB2 as
follows:

(1) “EU + JPN”: = IB1 ∪ {JPN}
(2) “EU + MYS” = IB1 ∪ {MYS}
(3) “EU + PHL” = IB1 ∪ {PHL}
(4) “EU + 3” = IB1 ∪ {JPN, MYS, PHL}
(5) “EUASEAN” = IB1 ∪ ASEAN

IB2 in (1) is {JPN}, in (2) {MYS}, . . . , in (5) ASEAN. The quantity W(X, IB1,
IB2) is a measure of the distance of the posets based on IB1 to that based on IB2
(Chapters 4 and 10). IB1 is selected to be permanently EU. The information base IB2
varies according to the list above, i.e., there are five scenarios for IB2. Figure 15.6
shows the result.

Figure 15.6 shows that JPN, MYS, and PHL and all three together have only
a slight impact on the order relations among the indicators found by the (rich and
highly developed) EU nations, indicating intrinsic similarities of JPN, MYS, and
PHL with the nations of the EU. However the residual group of nations of ASEAN
influences the order relations, because more and more comparabilities are broken by
the newly added columns referring to the nations. For instance, within EU nations,
we find that RE < RO, RE < DW, and DW < AS. However, by adding ASEAN
nations to the data matrix, these comparabilities will disappear.
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Fig. 15.6 Increasing distance W(X, IB1, IB2). IB2 includes different ASEAN nations as described
above
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15.5 Associations and Implications by Formal Concept Analysis
for EU and ASEAN (Superindicators)

15.5.1 Superindicators

The scientists of the EPI study had a clear hierarchical approach in mind:

• A basic approach of 16 indicators, which allows a detailed analysis
• A coarsening by aggregation of contextually similar indicators to superindicators

The superindicators (SIj, j=1, . . . , 6) are as follows:

• Environmental health, EH
• Air quality, AQ
• Water resources, WR
• Biodiversity and habitat, BH
• Productive natural resources, NR, and
• Sustainable energy, SE

Table 15.3 shows the assignment to superindicators; bold literals indicate the six
superindicators and the dashed cells indicate which of the 16 indicators contribute
to the superindicator.

For construction of the superindicators, we apply the weighting schemes as
shown in Table 15.4. For more explanation, we refer to the EPI study.

Table 15.3 Superindicators “SI1, . . . , SI6”

Indicator Acronym Code EH AQ WR BH NR SE

Child mortality CM I1
Drinking water DW I2
Adequate sanitation AS I3
Indoor air pollution IA I4
Urban particulates UP I5
Regional ozone RO I6
Nitrogen loading NL I7
Water consumption WC I8
Wilderness protection WP I9
Ecoregion protection EP I10
Timber harvest rate TH I11
Overfishing OF I12
Agricultural subsidies AC I13
Energy efficiency EE I14
CO2 per GDP CG I15
Renewable energy RE I16
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Table 15.4 Weights
according to EPI Superindicator Original indicator Weight

EH UP 0.13
IA 0.22
DW 0.22
AS 0.22
CM 0.21

AQ UP 0.5
RO 0.5

WR NL 0.5
WC 0.5

BH WP 0.39
EP 0.39
TH 0.15
WC 0.07

NR TH 0.33
OF 0.33
AC 0.33

SE EE 0.43
RE 0.1
CG 0.47

For example, EH is obtained as follows:

EH = 0.13 ∗ UP + 0.22 ∗ IA + 0.22 ∗ DW + 0.22 ∗ AS + 0.21 ∗ CM (15.1)

whereas AQ is simply:

AQ = 0.5 ∗ (UP + RO) (15.2)

15.5.2 Context Table

We define

cij =
{

1, if SIj(xi) > mean of Slj(xi)
0, else

(15.3)

x ∈ EU or x ∈ ASEAN. By cij, one-valued contexts were defined (Tables 15.5 and
15.6).

In Table 15.7, the mean values of EU and ASEAN are given.

15.5.3 Formal Concept Lattice

Figure 15.7 shows the lattice representation of the two mono-valued context tables.
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Table 15.5 Mono-valued contexts of EU (representants of equivalence classes), cEH, cAQ,
following Eq. (15.3)

cEH cAQ cWR cBH cNR cSE

BEL 1 1 0 0 1 1
BGR 0 0 0 0 1 0
CYP 0 0 1 1 0 1
DEU 1 1 0 0 0 1
DNK 1 1 1 1 1 1
ESP 1 0 0 1 0 1
FRA 1 1 1 1 0 1
GRC 1 0 1 0 1 1
IRL 1 1 1 0 1 1
NLD 1 0 0 0 1 1
POL 1 0 1 0 0 0
PRT 1 0 1 1 1 1
SVN 1 1 1 0 0 1

Equivalence classes: {DNK, FIN, GBR, SWE}, {ITA, ESP}, {ROU, BGR}

Table 15.6 Mono-valued contexts of ASEAN (representants of equivalence classes)

cEH cAQ cWR cBH cNR cSE

CHN 0 0 0 1 1 0
IDN 0 0 1 1 1 0
JPN 1 1 1 1 0 1
KHM 0 1 1 1 1 1
KOR 1 1 0 0 0 0
MMR 0 0 1 0 1 1
MYS 1 1 1 1 1 0
VNM 0 0 1 0 1 0

Equivalence classes: {PHL, KHM}, {THA, KOR}

Table 15.7 Mean values (columnwise) of EU and ASEAN

EH AQ WR BH NR SE

EU 95.0 56.0 86.0 40.5 63.6 71.9
ASEAN 63.9 46.5 91.8 61.3 63.8 71.6

Note that the lattices in Fig. 15.7 contain only representatives of the object set and
of the attribute set. Furthermore, the marked lines indicate that a graphical editing
may improve the layout. Here we do not take care of that. Furthermore, it may be
helpful to consider the empty circles like a crossroad to differentiate them from other
crossings in the diagram.

We see that more concepts are found for European nations than for the ASEAN
nations due to the larger cardinality of the object set. Furthermore, we realize that
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Fig. 15.7 The lattices of EU (LHS) and ASEAN (RHS)

the lattice of European nations has some more comparabilities among the concepts
compared to that of the ASEAN ones; in fact the relation of number of cover rela-
tions to number of concepts is around 2 for nations of EU, whereas it is 1.75 for
those of ASEAN. This observation is consistent with our remark at the beginning of
Section 15.4.3.

We give two examples on how to read the lattice:

EU: AQ is a property pretty good for FRA, IRL, BEL, DNK, DEU, SVN
ASEAN: AQ is a property pretty good for KOR, KHM, MYS, JPN

Noting that ASEAN encompasses 8, whereas EU encompasses 18 nations, the
proportion of nations having pretty good air quality, AQ, is larger in ASEAN than
in EU.

Let us now look for the two indicators of resources NR and WR which are labels
for the corresponding two concepts. NR and WR are covering a concept which is
in the lattice of EU in the third level (counted from the bottom) of seven levels,
whereas in ASEAN this concept is in the fifth level of seven levels. In the EU, only
4 of 19 nations have pretty good values simultaneously in both indicators, whereas
this is the case for 5 out of 8 nations of ASEAN.
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15.5.4 Network of Associations and Implications

In Table 15.8, we summarize the associations (see Chapter 8). The associations are
thought of as being written as premise, PR, which implies the conclusion, CON,
by the extent of association (EoA). For example, PR of the property WR has the
objects {POL, SVN, GRC, IRL, DNK, CYP, FRA, PRT} and the conclusion (prop-
erty SE) has the object set {BEL, CYP, DEU, DNK, ESP, FRA, GRC, IRL, NLD,
PRT, SVN}. The intersection of both sets is {SVN, GRC, IRL, DNK, CYP, FRA,
PRT} which is a proper subset of PR: |PR ∩ CON| = 7, however |PR| = 8. Hence
EoA = 0.875 or 88%.

Table 15.8 shows that in EU most often environmental health (EH) and sustain-
able energy (SE) are implied, whereas in ASEAN mainly the resource aspect is
implied (water resources, WR).

Table 15.8 Associations and implications derived for EU and ASEAN

EU ASEAN

Premise Conclusion EoA Premise Conclusion EoA

AQ EH, SE 100 BH WR 80
BH SE 100 BH NR 80
SE EH 91 SE WR 100
WR SE 88 WR NR 83
WR EH 88 NR WR 83
NR EH, SE 86 EH AQ 100

AQ EH

SE
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100

100

100
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80

86

83
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Fig. 15.8 Network of
European “ ” and
ASEAN “ ”
implications and associations
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In EU, the conclusions refer to technical-oriented superindicators. We may
therefore hypothesize that good standards in technical aspects in EU imply good
standards in other technical aspects. Figure 15.8 renders a graphical presentation of
Table 15.8.

Figure 15.8 tells us that if a nation achieves a “good” value in BH (biodiver-
sity and habitat), then in ASEAN it is also true that a good value with respect
to water resources (WR) and natural resources (NR) is obtained. In EU, however,
this implies a good value in sustainable energy (SE). In ASEAN, natural and water
resources are closely coupled, one aspect implies the other. This close coupling of
resources is not found in EU. The arrow from the vertex SE to the vertex EH in
the network (Fig. 15.8) is only realized in EU. Instead, in ASEAN, SE (sustainable
energy) implies water resources. Indeed, as already commented above, WR is most
often implied (three times) in ASEAN, whereas environmental health is most often
implied in EU as it is the end point (sink) of four implications.

15.6 Summary and Commentary

The focus of this chapter is not the ranking of the nations or of a subset of nations,
because the partial orders, even after classification of indicator values in discrete
scores, were poor. In Chapter 7, we discussed how we can enrich the partial order.
Instead of an application of METEOR which remains an interesting task for the
future, we turned to analyzing the interrelationships among the 16 indicators and
among the 6 superindicators.

In detail, we examined the role of indicators when different regions of the world
are considered. Many order relations found for indicators in ASEAN are reproduced
in EU, such as RO < UP and WP < WC. However, in ASEAN, indicators cannot be
often ordered. Indicators are incomparable, because one indicator got large values
by some nations and low values by some others, whereas the reverse happens for
another indicator. This situation appears slightly more often in ASEAN than in EU.
There is a larger disparity in the values of the indicator in ASEAN.

Formal concept analysis can help give more insights into this kind of comparison:
In order not to get too large line diagrams, we concentrated on the six superindica-
tors and tried to find out which associations and implications we will find for both
regions. We found pretty different association structures. Here we were able to show
only the first few steps. One obvious extension would be to analyze multivalued
contexts, to find out which role a common mean value taken for both regions would
play, how robust the association network is, and many other interesting questions.
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Chapter 16
Partial Order and Related Disciplines

16.1 Partial Order and Mathematics

It is always hard to try a positioning. Nevertheless, it may help interested readers to
find their way through the jungle of concepts, relations, and equations of this text.

Certainly, partial order has to do with graph theory in discrete mathematics, as its
visualization is a digraph and questions like connectivity or identification of articu-
lation points and of separated subsets are typical of graph theory; see, e.g., Wagner
and Bodendiek (1989) and Patil and Taillie (2004). There is also a connection to
the network domain, as partial order constitutes a directed graph, which is one of
the characteristics of networks. In our applications here, there is always a matrix,
which quantifies the multi-indicator system, the data matrix. With or without the
interim step of deriving the rank matrix, we arrive at a partial order. Once, how-
ever, the poset is derived, it may be analyzed as a mathematical object on its own
right. So the comparative structure is not only inherent in the rank matrix, but other
matrices can be found, which describe the order relation in different ways. Such
matrices together with their arithmetic are realizations of incidence algebra; see
Stanley (1986). So we have one example of relations to algebra. Another relation to
algebra is the algebra of posets, i.e., how to combine them or how to find simpler
graphs whose combination by different well-defined operations leads back to the
original digraph (Neggers and Kim, 1998). The dismantling of an empirical poset
finds its limits as to how far we can find an interpretation of the resulting simpler
digraphs. Recently, an important step was done by partitioning the attribute set,
construction of the posets induced by the indicators’ subsets, and by an appropri-
ate recombination of the posets. This procedure allows us to consider preferences
among the attributes (Rademaker et al., 2008). Another relation to algebra can be
established, when we realize that formal concept analysis is a powerful tool based
on partial order. Concepts, being ordered by inclusion and forming a lattice, can be
related to each other by two algebraic operations. Finally, formal concept analysis
can be analyzed in terms of universal algebra.

The study of linear extensions and their properties, see, e.g., Habib et al. (1988)
and Syslo (1985), is a field of combinatorics in discrete mathematics (see also
Chapter 18), which also is important in applications of partial order analyzed in
this monograph.
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16.2 Partial Order and Statistics

Welzl et al. (2002) have characterized the analysis of a data matrix with concepts of
variance, distance, and order. This monograph is dedicated to partial order analysis
(PoA) concerned with extracting ordinal information from the data matrix, when the
aim of the ranking within a multi-indicator system is known and the indicators are
appropriately oriented (Chapter 3). With statistical data processing of the day, we
are confronted with three major questions:

Table 16.1 Comparison of partial order analysis (PoA), principal component analysis (PCA), and
cluster analysis (CA)

Method Advantage Disadvantage Remark

Partial order
analysis (PoA)

Comparison of objects
is the central topic.
One of the most
important tools of
PoA is to provide a
linear order of the
objects without the
need of a weighting
of the indicators

We miss
significance
tests

An important concept is
the ordinal modeling
(Chapter 6). Its aim is
to extract that
information from the
data matrix which is
relevant for
comparisons.
However, we still miss
theoretical guidance

Principal
component
analysis (PCA)

Insight into the
structure of data
matrix. Visualization
techniques like
biplots. Test
statistics available.
Weights can be
constructed with
which
superindicators
(“pillars”) can be
constructed

No direct access
to order.
Assumes linear
models

Techniques are available
to extend ordination
technique to nonlinear
models

Cluster analysis
(CA)

Powerful access to
group items due to
their similarity. The
items may be objects
or attributes of the
data matrix

Methodological
artifacts, like
the chain effect
in single linkage
methods

Reordering can be
introduced and
visualized as within
any partitioning, there
is freedom to order
the classes of objects
according to the
partial order relations
among them; see
Mucha (2002)
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1. How do we assess significance of partial order results when there is uncertainty
in the data?

2. What kind of relation between partial order methods and multivariate statistics
tools can be established?

3. How can we find good exploration and visualization techniques beyond Hasse
diagram?

Ad 1: Assessing the significance of partial order results is done by simulations
and can be a good topic for future research in partial order; see in that context
Sørensen et al. (1998, 2000, 2009), Saltelli et al. (2008), Saltelli and Annoni
(2010), and Annoni et al. (2012).

Ad 2: The second question may be answered by checking what the standard
methods of multivariate statistics offer (Table 16.1).

Ad 3: Partially, this question is answered by application of statistical techniques
(Table 16.1); however, the background of this question is “data mining”
which is more closely discussed in Section 16.4.

16.3 Partial Order and Fuzzy Concepts

In Chapter 6, we applied the concept “ordinal modeling” because the order rela-
tions should not be overburdened by small data differences, which nevertheless are
ordinal interpreted. One possibility is to introduce fuzzy concepts into partial order
analysis. There are several possibilities:

(a) Instead of a hierarchical clustering, we may use a fuzzy cluster concept. This at
least avoids the hard decision of whether or not an object belongs to a cluster.
After an appropriate selection of a cluster center, partial order is applied to the
cluster centers as fictitious objects; see Luther et al. (2000).

(b) In the Kosko approach, the crisscrossing of data profiles is replaced by a fuzzy
subsethood. We have described this procedure and shown applications in this
monograph (Chapters 6 and 11). Is the Kosko measure the ideal measure to
obtain a fuzzy subsethood? What can be said about its relation to the mutual
probabilities, derived from linear extensions? Could we find better measures
than the Kosko measure which sums the indicator values? How to find optimal
α-cuts (optimal with respect to what)? The question of α-cuts is discussed by
Annoni et al. (2008). There, however, is still a need for theoretical work.

(c) An interesting alternative is provided by Fattore (2008), who does not use
the Kosko measure but the height of an object in the set of linear extensions
as a fuzzy membership function. This attractive method needs further atten-
tion, especially in its theoretical implications. It does not, however, directly
contribute to “ordinal modeling.”



274 16 Partial Order and Related Disciplines

16.4 Partial Order and Data Mining

16.4.1 Overview

We come back to some of the aforementioned points: There is a limit at present in
the graphical presentation of partial order. Hasse diagrams are a wonderful visual-
ization tool for working with posets with few elements. Alternatively, one may look
for other visualization techniques, POSAC (Chapter 3), Bertin strategy, RRR, as
well as the elimination of endmembers (EoE), and the use of dominance diagrams
(Chapter 5).

16.4.2 POSAC

The idea is to project the m-dimensional attribute space due to m attributes of the
information base into a two-dimensional plane spanned by two latent order vari-
ables LOV(1) and LOV(2). The projection is done by keeping at maximum the
comparabilities found in the m-dimensional property space. The scatter plot allows
an inspection of the whole object set and is – in principle – not restricted by the
number of objects. The interpretation of the latent variables is sometimes diffi-
cult, and the computational methods lead to approximate solutions. By partial order
dimension analysis, it can be checked as to whether a two-dimensional representa-
tion is intrinsically possible. However, there are still computational problems to be
mastered.

16.4.3 Bertin Strategy

The starting point of Bertin strategy is the multicoordinate approach: The ranks of
objects and the labels of the attributes represent the rows and columns, resp., of the
Bertin matrix. An iterative procedure of row and column permutations is applied
until the matrix gets as far as possible a blocked form (see http://en.wikipedia.org/
wiki/Jacques_Bertin). The homogeneity of the block matrices is checked in order
to maximize the homogeneity within the blocks and to minimize it among the
block matrices. The complexity of this procedure corresponds to that of traveling
sales man problem, hence heuristic approaches (cluster analysis) are to be applied.
According to Welzl et al. (2002) there is, however, still need of statistical tests.

16.4.4 Rank Range Run (RRR) and Elimination
of Endmembers (EoE)

The RRR approach was introduced by Myers et al. (2006). The main steps in rank
range run (RRR) are the following:

http://en.wikipedia.org/wiki/Jacques_Bertin
http://en.wikipedia.org/wiki/Jacques_Bertin
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1. Assign ranks to each of the attributes.
2. Order the objects according to their minimum rank.
3. If there are equal minimum ranks, take the maximum rank as an ordering

property; if the maximal rank is equal, then take the median.
4. Each object is represented by a vertical line according to its minimum and

maximum rank values.
5. Locate the objects along the horizontal axis by following the order of Step 3.
6. Mark the median of the ranks for each object.

Depending on how the orientation is selected (rank = 1 for the best or the worst
value) the graphical display gives an overview about the ordinal properties with a
focus on the whole set and with less focus on a single object. The length of any line
associated with an object is associated with a degree of inequality. Here we stress
that this approach does not depend on the representation by a graph, like the Hasse
diagrams, and is suitable for data mining. Elimination of endmembers in RRR can
be seen as a purification process; see Myers et al. (2006): One may ask oneself as
to which elimination of an object with the highest rank gives the most reduction
in the rank range (EoE gets positive values) and which object with minimum rank
would give the most reduction in the rank range (EoE gets negative values). One
may plot the EoE values vs the rank range run. This kind of analysis helps to iden-
tify attributes whose improvement would give a high effect on the overall status of
an object or attributes whose status is responsible for the bad evaluation of some
objects. For an example, see Newlin and Patil (2010).

Graphical analysis tools based on partial order concepts can be further devel-
oped, mainly based on the dominance relation (Chapter 5) and the local partial order
approach (Chapter 9); see Myers and Patil (2010).

16.5 Partial Order and Network Analysis

Network is a topic in the systems analysis research because the analysis of networks
as an abstract concept can deliver important results in several fields, such as

• Biology: food webs, biochemical networks
• Sociology: social networks
• Chemistry: reaction networks inclusive of biochemical networks
• Engineering: electrical networks
• Information technology: dependency networks of, e.g., compilers
• Urban drinking water systems
• River networks
• Transportation networks
• Bridge networks
• Implication networks as provided by the formal concept analysis (see Chapters 8,

13 and 15).
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Even partial order can be considered as networks as comparative evaluation
networks.

(a) What can network analysis learn from partial order approach and (b) what
tools of network analysis can be helpful for partial order theory?

(a) Networks are vertex/node and directed edge evaluated graphs. So they fall into
the general domain of graph theory. An obvious introduction of partial order is
possible by considering the set of all subgraphs of a given graph and to order
them by the (graph theoretical) inclusion relation. In chemistry, this concep-
tualization of molecular graphs and subgraphs as posets made an important
contribution to the discovery of the relationships of chemical properties with
molecular graphs obtained from molecules. See Klein (1986) in this context and
Klein and Bytautas (2000) and Ivanciuc et al. (2005, 2006a, b) for the extended
concepts like reaction graphs and substitution graphs.

Another way to analyze a number of networks by partial order methods
comes when networks are to be compared, i.e., when the set of networks is
a poset. Then according to the aim of the comparative study, the indicators are
obtained from the characterization of networks by network invariants, such as
diameter, number of nodes, eccentricity, and centrality. In this case, networks
are considered as objects described by multiple indicators. We have not seen
this promising approach in the network analysis literature so far.

Partial order finds application in network analysis when the set of vertices
can be partitioned into two classes. In that case a Galois lattice provides useful
tools (Wasserman and Faust, 2009).

(b) A powerful use of network concepts comes into play with well-known software
graphviz to which PyHasse has an interface. The software graphviz resulted
from network analysis and its graphical representation. The software graphviz
(Gansner et al., 2009) uses many theoretical results concerning directed graphs
and allows the user to draw Hasse diagrams under different options, such as

• Rank separation,
• Merging parallel connecting lines,
• Aggregation of objects to clusters, and
• Constrain rank assignments (subgraphs may get their own location for

sources and sinks).
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Chapter 17
Partial Order and Software

17.1 Software Available

Halfon (2006) reviews available software. We summarize and update the review for
the convenience of the reader:

RANA, Pavan (2003)
DART, Manganaro et al. (2008)
PRORANK, Pudenz (2005) and Voigt et al. (2006)
CORRELATION, Sørensen et al. (2005)
WHASSE, Bruggemann et al. (1999)
POSAC, Shye (1994) and Borg and Shye (1995); see also http://ca.huji.ac.il/bf/

hudap-Info.pdf
POSET, Patil et al. (2009, personal communication (POSET-ranking))
PyHasse, Bruggemann et al. (2008a, b), Bruggemann and Voigt (2009), and

Voigt et al. (2008a, b)
VB-RAPID, Joshi et al. (2010)

If formal concept analysis is included then the list above can be extended; see the
home page: http://www.upriss.org.uk/fca/fcasoftware.html:

TOSCANA, see Vogt and Wille (1995a, b)
CONIMP-variants, see Burmeister (1997)
CONEXP1.3, see Yevtushenko (2000), http://sourceforge.net/projects/conexp

17.2 Brief Characterization of Some of the Software

Some software packages may be presented briefly. The selection is subjective and
does not reflect any quality or importance.

PRORANK (programming language: JAVA): Still under development, intends
to include multivariate statistics as far as possible. It already has tools to edit the
graphics and to handle subsets of objects and indicators. In comparison with the
software WHASSE, data handling is greatly facilitated.
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CORRELATION (programming language: DELPHI): The very idea is to exam-
ine two partial orders and how far a “correlation” can be found on the basis of these
two posets.

WHASSE (programming language: DELPHI): Includes down sets, antagonism,
object selection wizards, matrix W, linear extensions and applications to calcu-
late rank frequency distributions, averaged ranks and mutual probabilities, and
CAM (called P(IB)). WHASSE is professionally programmed, has a well-developed
graphical user interface, and can be delivered as a stand-alone package, i.e., it is not
necessary to use Internet for installing the software.

DART (programming language C++): Includes multivariate procedures like PCA
and KMEANS clustering and several functions to provide linear orders and also has
some facilities for posetic approaches.

POSAC: In SYSTAT.
POSET (programming language: C++): Development at Penn State Center for

Statistical Ecology and Environmental Statistics. It provides linear ranks on the basis
of linear extensions.

PyHasse (programming language: PYTHON): Major software used in the mono-
graph. Therefore, we describe PyHasse in more detail later (Section 17.3).

VB-RAPID (VISUAL BASIC): Developed by Joshi et al. (2010). It is described
in more detail in Section 17.4.

17.3 PyHasse

17.3.1 Overview

PyHasse is based on the free downloadable PYTHON programming software, ver-
sion 2.6. PYTHON programs can be used on different platforms and under different
operating systems; there are many specific and powerful free downloadable libraries
available.

Graphical user interfaces (GUIs) can be programmed by Tkinter, which is avail-
able together with PYTHON and is based on Tk/Tcl. PYTHON supports testing
and can be considered as an “experimental software,” allowing the programmer
to quickly gain experience in programming work and, more important, to test and
efficiently program new theoretical tools.

17.3.2 General Principles of PyHasse

First of all, PyHasse should be considered as a test version. It actually consists of
more than 30 programs (called “modules”) and is still pretty dynamically under
development. An overview with status of March 2009 can be found in Bruggemann
and Voigt (2009).

The modules are independently written programs, so new ideas can be easily
programmed without having to take care of already used variable names. All mod-
ules are related to two libraries, written by Bruggemann, which contain basic
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procedures and basic classes of object-oriented programming: rmod2 and raioop2.
Some modules have interfaces by which results can be interchanged.

One of the modules is “pyhassemenue7,” the central platform from where gen-
eral information can be obtained (for example a tutorial) and from where actual
interesting modules can be selected.

The appearance of the modules (i.e., their user interfaces) is similar as far as
possible. Each module has a “help” function. This help function informs about

• aim of the module,
• prerequisites (especially how to handle Excel R© data files as input),
• usage (or steps),
• known bugs or difficulties, and
• recommended example files (provided with the PyHasse software).

In many cases, there is also an “about” button, which informs about the sta-
tus of the module and gives background information, for example, about important
literature.

17.3.3 List of Modules

In PyHasse, three types of modules are available:

M: Basic PyHasse Analysis Tool
D: Simple versions of decision support systems
H: Supporting modules (interfaces, tutorial writers) (Table 17.1)

Table 17.1 PyHasse modules, alphabetically sorted (status November 2009)

Name Main tasks Class Remark

1 antag2.py Which pair of attributes leads to
the maximal Sep(X1, X2)

M

2 avrank4.py Canonical order based on lattice
theoretical method. Module
avrank4.py is mainly based
on the free software lcell of
Wienand (2005, 2006). See
also Morton et al. (2006,
2009)

M For a broader
background,
see also
Chapter 9

3 avs6.py Changes of attribute values:
Which consequences

M Will be replaced
in the near
future by pooc

4 cap6.py Comparative acquisition profile M
5 concord2.py Concordance analysis H
6 covi2.py Reads interactively cover

information, generates a
Hasse diagram, and translates
it into graphviz format

H
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Table 17.1 (continued)

Name Main tasks Class Remark

7 covreader4 Reads information from an
external cover matrix

H

8 dahp4 The weights for super-attributes
are found by the AHP
procedure of Saaty (1994)

M A comparison
with weights
obtained from
other methods
is of interest;
however, we
leave it for
future work

9 dds8.py Calculation of dominance
diagrams

M

10 Disco2.py Discordance–concordance
analysis

D

11 discretiz1.py Performs a discretization,
transformed data matrix is
available for mainHD16

H

12 fuzzyHD12.py Fuzzy partial order analysis M
13 genlinext1.py If the number of objects is less

than 10, then the averaged
ranks and the height
frequency matrix are
calculated very fast. Height
frequency plots for selected
objects are available

H

14 graphviz1.py Reads information from cover
matrix (available from, e.g.,
mainHD16 and provides the
Hasse diagram in graphviz
format)

H

15 hdgt4 Some graph theoretical
information of the Hasse
diagram. Provides averaged
ranks by extended local
partial order model version
(Bruggemann and Carlsen,
2011)

M

16 HDsimpl1 Quick access to the Hasse
diagram from a data matrix

H

17 hpor1.py Hierarchical partial order
analysis. Based on averaged
ranks form of groups of
attributes; Carlsen (2008)

M

18 interval4.py Analysis by m2-order and
inclusion order of the
intervals

M

19 linagg6.py Monte Carlo Simulation of the
rank of an index, randomly
selecting the weights

M
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Table 17.1 (continued)

Name Main tasks Class Remark

20 linext_play2.py Reads in linear extensions and
calculates their intersection

H

21 LPOMstruct1.py Reads in characteristics of a
Hasse diagram and calculates
the average heights

H

22 mainHD19.py Hasse diagram, down sets, up
sets, intervals, minimum
spanning trees, linear
extensions after Bubley Dyer,
LPOM, chain statistics

M The most
important tool

23 mutprobavrk.py Reads in characteristics of a
Hasse diagram and calculates
mutual ranking probabilities

H

24 optimsim5.py Which attribute subset makes a
partial order most similar to a
given one

M Will be replaced
in the near
future

25 oreste6.py If preferences of a > b, vs b > a
are known then a graphical
characterization of the
decision situation is given

D

26 owa3.py Aggregation to superindicators
applying fuzzy concepts;
Yager (1993)

M

27 palg4.py Application of p-algorithm M
28 pir3.py Information about PyHasse

texts
H

29 pooc3 Attribute-related sensitivity M Will be upgraded
in the near
future

30 POTanalysis1 Module mainHD19 is simplified
to fit into pyhassemenue7

H

31 prom6 PROMETHEE (simplified) D
32 pyHasse_progr1.py Information about PyHasse

modules
H

33 pyhassemenue7.py Information platform and access
to the modules of PyHasse

H

34 randomdm2.py Generates random data matrices H
35 sensi11.py Attribute-related sensitivity

analysis
M

36 sep3.py Calculates which set of
attributes is common for X1
and X2 such that for all
x ∈ X1, y ∈ X2, x > y;
common for X1 and X2, such
that for all
x ∈ X1, y ∈ X2, x < y;
common for X1 and X2, such
that for all
x ∈ X1, y ∈ X2, x = y

M sepanal2.py with
many more
tools replaced
sep3.py (July
2010)
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Table 17.1 (continued)

Name Main tasks Class Remark

37 simi4.py Proximity analysis of two
partial orders, test for
inclusion of two partial
orders, set of edges
corresponding to the
symmetric difference of any
two partial orders

M In testing phase

38 stability3.py Calculates stability fields and
hot spots

M

39 zetareader1 Reads in an external zeta
matrix, calculation of mutual
probability after De Loof
et al. (2008a)

H

Fig. 17.1 Graphical user interface of mainHD19.py
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The module mainHD19 is the main working module and can be used to analyze
transformed data matrices of the modules discretiz1.py and palg4.py. Additionally
mainHD19 provides data formats such that the graph theoretical program graphviz
(see http://4webmaster.de/wiki/Graphviz-Tutorial) can be applied to obtain readable
directed graphs. The user interface of mainHD19.py is shown in Fig. 17.1.

There are four areas in the graphical user interface:

1. informal part and the access to different data
2. characteristics of a poset can be obtained as well as the Hasse diagrams
3. navigation within a Hasse diagram
4. linear or weak orders by LPOM or Bubley Dyer algorithm

Some buttons are only activated if the needed information is provided.
Table 17.2 lists the use of PyHasse in the theoretical part of the monograph.

Table 17.2 Use of PyHasse in the theory part of the monograph

Sections Figures Topic PyHasse module Remark

4.2.5 Sensitivity measures sensi11.py
4.4.1 Stability and related

graphs
snsi11.py

5.2 Figure 5.3 Incomparabilities
related to levels

mainHD16.py Now (30 July 2010):
mainHD19.py

5.4.2 Antagonistic
attributes

antag2.py Only analysis for
pairs of attributes

5.5 Figure 5.20 Dominance dds.8
6.3 Discretization discretiz1.py
6.4 Fuzzy partial order fuzzyHD12.py
6.5 p-algorithm palg4.py
7.2.5 Figure 7.7 MC simulation linagg6.py
7.3 m2 order, inclusion

order
interval4.py Now (30 July 2010)

interval7.py
7.4.2 Comparability

acquisition profile
cap6.py

7.5 Stability fields stability3.py
9.3.3 Local partial order

model
mainHD16.py LPOMstruct1.py:

interactive
program

9.4 Bubley Dyer
algorithm

mainHD19.py

9.6 Lattice method avrank4.py
9.8.2 Figure 9.8 Mutual probability mutprobavrk1.py Interactive program
10.4 Concordance

analysis
concord2.py

10.6 Proximity analysis simi4.py Now (30 July
2010): simi5.py

http://4webmaster.de/wiki/Graphviz-Tutorial
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17.4 RAPID

17.4.1 Standards

Under the auspices of the USNSF project for digital governance and hot spot geoin-
formatics for monitoring, etiology, early warning, and sustainable management and
development at the Penn State Center for Statistical Ecology and Environmental
Statistics, G.P. Patil, Principal Investigator, effort has been in progress for method-
ology and software development for ranking and prioritization information delivery
(RAPID).

The software “RAPID” has been under development to clearly encompass
features of some well-known programs and more, such as

• WHASSE
• POSET
• POSAC
• PyHasse

17.4.1.1 Steps of Developing RAPID

RAPID is developed in several steps. RAPID0 provides the Hasse diagram and basic
tools to analyze it. RAPID1 will contain additional features arising from the partial
order context.

Of most importance is that a tool of getting linear or weak orders out of a poset
is available. The general concept is explained in Fig. 17.2.

There are several crucial steps:

a) The starter for the Monte Carlo Markov chain calculation (MCMC) after Bubley
Dyer,

b) Sampling of the final subset of linear extensions, and
c) Defining conditions in the decision mark.

Especially (c) still uses some heuristics.
The programming language is VISUAL BASIC at present.

17.4.2 Modules and Facilities of VB-RAPID

In contrast to PyHasse, VB-RAPID 1 consists of one single program and the access
to different tools of partial order follows by menus and submenus. The main menus
are

File: Open and save data
Functions: Basic information about the data matrix
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(X, IB)

data matrix

n too large ?
or
|U| too large ?

CRF

Linear or
weak order

no

MCMC
(Bubley Dyer)

yes

Fig. 17.2 RAPID-ranking,
a combination of the Bubley
Dyer and the cumulative rank
frequency (CRF) algorithm;
see Chapter 9

HASSE Diagram: Hasse diagram in two possible orientations
Results: Access to partial order tools (see below)
Help: Context specific help texts written in HTML

The menu “Results” pops up to the following submenu:

1. Level population
2. Cover matrix
3. Down sets and up sets
4. Intervals
5. Maximal, minimal, and isolated elements
6. Structural details (predecessors, successors, and incomparable elements)
7. Sensitivity, based on the matrix W (W(X,IB(i),IB(j)))
8. LPOM
9. D-matrix (which we did not consider in the monograph)

10. Minimum rank graph
11. Articulation points
12. Bubley Dyer simulation (combined with CRF)

Information in (3)–(5), (6), (8), (9), (11) is rendered in textual form, all others
display a graphic additionally, like, e.g., in (12) height probability graphs.

In contrast to PyHasse, VB-RAPID provides a graphical editor (menu HASSE
Diagram), by which the number of crossings can be manually reduced.
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Chapter 18
Ranking and Prioritization with Partial Order
for Multi-indicator Systems – An Integrative
View with a Look Forward

18.1 Looking Back

We started with “Why prioritization, why ranking.” We showed that the compara-
bility is a concept, which is suitable for performing prioritization or ranking. When
we use computational support, concepts like “comparability” must be formalized.
Partial order fits best into the powerful evaluation and utilization of multi-indicator
systems.

In Table 18.1, we summarize some published partial order material.
In Chapter 1, we showed examples, where ranking is needed, and posed

questions, such as

(1) How do rankings depend on weighting schemes?
(2) Can we provide tools to perform rankings without subjectivism?
(3) Can we give alternatives to ranking by composite indicators?

The monograph has been designed to answer these questions and more.
Now that we are at the end of this monograph, what have been our answers?

(1) We relate the maximal ranking interval of an object due to a composite indicator
with partial order characteristics.

(2) Yes, we can. The Hasse diagram allows to identify chains. Objects which are in
a chain can be compared without subjectivism, because all attributes uniquely
rank one object of the chain higher than another one.

(3) The theoretical approach is to determine from the set of linear extensions the
averaged ranks. This is a task of high computational complexity (Pruesse and
Ruskey, 1994). Besides the lattice theoretical method (Chapter 9), we have
provided alternatives. One promising alternative is the use of the “local par-
tial order model” (LPOM), which is approximate in nature but simple in its
application.

291R. Brüggemann, G.P. Patil, Ranking and Prioritization for Multi-indicator Systems,
Environmental and Ecological Statistics 5, DOI 10.1007/978-1-4419-8477-7_18,
C© Springer Science+Business Media, LLC 2011
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Table 18.1 Partial order applications

Set of objects Main result References

Regions of Baden-
Wuerttemberg,
Germany

Identification of pollution pattern
which may be caused by former
mining activities

Bruggemann et al.
(1999)

Sediment sites in Lake
Ontario

A classification concerning the
loading pattern causing hazards
for drinking water and bathing
activity

Bruggemann et al.
(2001)

European countries Which services are considered as
sufficient and which not

Annoni and
Bruggemann (2009)

Web pages Which Web pages inform best
about drinking water quality
and why

Voigt and Welzl (2002)

Chemical compounds How properties of chemicals can
be estimated from their position
in a partially ordered set

Ivanciuc et al. (2006a, b)

Management strategies Which strategy is most favorable
and why

Simon et al. (2005)

High production
volume chemicals

Which chemical should first be
examined more closely by
simulation models

Lerche et al. (2002)

Regions in Italy Poverty is a multidimensional
problem. Which economical
criteria are of most concern

Annoni et al. (2008)

Creeks in southeast of
Berlin, Germany

Which creeks should be kept
although their maintenance is
cost intensive

Bruggemann et al.
(2002)

Refrigerants Which new chemical substances
can best replace refrigerants
which pose a risk to the
environment

Restrepo et al. (2008)

Strategies dismantling
nuclear reactors

Which strategy is the best Van de Walle et al.
(1995)

Countries in the world Human–environment interface
based rankings of the countries
using land, air, and water
indicators at national levels

Patil and Taillie (2004)

Bridges at stream
crossings in
Pennsylvania, USA

Rankings and prioritizations of
bridges and indicators

Newlin and Patil (2010)

Pennsylvania wide 635
square mile
hexagonal cells

Rank range runs and endmember
eliminations for restoration

Myers and Patil (2010)
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As almost everywhere, there is no answer which does not have its “but.” So let
us take a closer look.

(1) If there is no need to discuss weights then the ranking interval is of no interest.
(2) If there are few chains or if the length of the chains is short, then chains are

not helpful. We encountered such a case in the EPI study, see Chapter 15.
By METEOR, however, an enrichment is possible for which we need to find
weights.

(3) Linear or weak orders based on the combinatorial analysis of the linear exten-
sions depend solely on the partial order implicit in a data matrix. Different data
matrices can generate the same partial order, so long as they have a common
rank matrix.

However, such linear orders are useful as a means to revisit the weights, or the
data matrix itself.

Chapter 2: We introduced the axioms of partial order and discussed the issue of
equivalence classes. We arrived at the central instrument for displaying partial order,
the Hasse diagram, and presented basic characteristics of partial order, like chains,
antichains, maximal and minimal elements, which can be nicely viewed on a Hasse
diagram.

Chapter 3: The set of linear extensions is introduced as an important tool. Many
partial order concepts are based on linear extensions. We introduced POSAC and
showed how the concept of partial order dimension can be helpful.

How can we study complex Hasse diagrams? This issue is of much impor-
tance because real-life studies provide us with partial orders whose Hasse diagrams
contain a messy system of lines. We introduced down sets and up sets as order theo-
retical “zooms.” We also established a relation between maximum ranking intervals
and partial order.

Chapter 4: Here we render tools for discussing the attributes forming the columns
of a data matrix: If we deleted one column from the data matrix or added a new
column to the data matrix, what is the effect on the Hasse diagram? We devel-
oped several tools in the context of attribute-related sensitivity and provided graphs
allowing us a view on the evolution of partial order as a function of the canonical
sequence of attributes.

Chapter 5: The intricate interplay between attribute values and the Hasse dia-
gram is the main focus of this chapter. Down sets and up sets help us to find relations
between the position of an object in a Hasse diagram and properties of the data
matrix. The relations supporting properties of the data matrix ⇔ properties of the
partial order are the leading ideas in this chapter and we arrive at the concepts of sep-
arability, antagonism, and dominance degree. Separability is a genuine outcome of
partial order. Incomparability is not a hindrance to obtain a linear order but a conse-
quence of the data matrix. Once separated object sets are identified, the antagonism
is an important concept to see which attributes are responsible for the separation.

Chapter 6: The ordinal character of Hasse diagrams requires a suitable ordinal
interpretation of data, even if there may be a loss of small accuracy. A reasonable
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data manipulation which allows an approximate interpretable Hasse diagram needs
to be acceptable. The leading idea is that of order-preserving map: Transformation
of data matrices is a legitimate way to explore the data matrix. If the order of
objects is the central point, it is clear that the transformation should not change
the orders among the objects, i.e., the transformation of the data matrix should be
order preserving. An order-preserving transformation will lead to a new poset which
is an enrichment of the original one. Clearly, the requirement for order-preserving
transformations is not sufficient, since we want to do an ordinal modeling which
keeps all “relevant” information to the maximal extent. We discuss several meth-
ods, such as, equidistant classification, the p-algorithm, and the fuzzy partial order
approach.

Thinking of attribute values as ordinal information implies the question about
the changes in a partial order as a result in a change of an attribute value.
Correspondingly, the partial order depends not only on the design of the data matrix
(in terms of the selection of attributes, their values, and the set of objects) but also on
the values of any entry and we call this analysis the attribute value related sensitivity
analysis.

Chapter 7: In Chapter 6, we discussed methods to get clearer Hasse diagrams by
object-oriented manipulations. In Chapter 7, however, the focus is on manipulations
concerning the attributes. We revisit the calculation of an index, observe that the
set of linear extensions is more general than any composite indicator. Furthermore,
we introduce METEOR and its variants to obtain stability fields and hot spots in
the space of weights. Stability fields in the space of weights are useful because
they show us where we have some flexibility in selecting numerical values for
weights, and where not. When we accept stepwise introduction of weights of lin-
early aggregated and normalized attributes, then there is also the need of finding
the best cumulative aggregation strategy, i.e., that one which enriches the partial
order most efficiently. Hence we introduce a method to find out the best aggregation
strategy, the method of “comparative acquisition profile” (CAP).

Chapter 8: Whereas in Chapter 6 the objects and in Chapter 7 the attributes are
in the focus, Chapter 8 provides a unifying approach: It provides an analysis which
takes a symmetric view on the data matrix, the formal concept analysis. An attractive
outcome of formal concept analysis is the automatic generation of associations and
implications among attributes. How are attributes and their values related with each
other given the set of objects of the actual study? We cannot apply this attractive
method everywhere, because it needs on the one hand a discretization and suitable
scaling, and on the other hand, its lattice diagram becomes very large and very
complex.

Chapter 9: How do we get linear orders? This is the main topic in this chapter.
We start with the simple concept of levels, discuss local partial order model, give
a brief description of the Bubley Dyer algorithm and the lattice theoretical method
and of the procedure used in VB-RAPID. One may not always be interested in
finding a linear or weak order for all objects. Instead sometimes it is of interest
how two incomparable objects rank relatively to each other. An appropriate concept
is the mutual probability and we render an estimation method. We are aware that
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this method is approximate and not applicable for all partial orders because the
estimation formula is based on certain structural restrictions of the poset.

Chapter 10: The monograph discusses alternate methods of getting linear orders.
Clearly we want to compare them with the index calculations. Accordingly, the
focus of this chapter is on how we can compare linear orders or more generally
partial orders. Here we introduce concordance analysis, discuss the intersection of
posets as a method to compare them, and introduce the concept of proximity of
partial orders. For example, it is applied in the study of the Environmental Health
Performance Indicator (EPI).

Chapter 11: With Chapter 10, the first part of the monograph is finished. In
Chapter 11, we provide real-life examples to illustrate theoretical concepts. For
example, we are applying fuzzy partial order to the problem of evaluation of
biomanipulation of lakes (Kasprzak et al. 1988) (Section 11.10).

Chapters 12–15: The remaining chapters (Chapters 12, 13, 14, and 15) dwell on
real-life case studies, where concepts discussed in former chapters are applied.

18.2 Looking in Between

With progress in sciences and computational advances, the world is not getting
simpler, but more and more complex. We are more and more able to describe
factors which may be important for characterizing management options. One may
even apply complex simulation models to obtain indicators, as briefly discussed in
Sections 11.7 and 11.8. Clearly, management will be more and more confronted
with multi-indicator systems. Simon et al. (2005), for example, discuss a system of
108 indicators in order to rank nine water management options. These indicators are
partially based on mathematical simulation models.

In multi-indicator systems, indicators are carefully invented and quantified,
requiring a high degree of sophistication and effort. Most often the indicators are
simply combined into a composite indicator. Even if considerable effort is put into
the task of finding suitable weights, there are disadvantages:

• Loss of information due to the weighted average. All the efforts and insights put
in single indicators get intertwined.

• Subjectivity in the weights.
• Contextual overlap, if several indicators have some aspects in common (see

Chapter 12, where the aspect “health” appears three times in the final indicators
of the UNICEF study).

Can we do better? What research do we need to let partial order provide essential
guidance for handling multi-indicator systems?

Although somewhat repetitive, it may be useful first to summarize the guidance
partial orders provide (Table 18.2).
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Table 18.2 Multi-indicator system and partial order guidance

Multi-indicator system Partial order guidance

Role of the attributes of a data matrix.
Statistical analysis

Ambiguity graph, attribute-related sensitivity.

Discussion of the results due to a composite
indicator

Minimum rank graph and other variants,
antagonism, chains, down sets, and up sets.
Establish linear or weak orders on the basis
of partial order.

Comparing the results of a composite
indicator, depending on subjective
weights. Performing robustness tests

Attribute value related sensitivity, dominance
diagrams, “leading” indicators by search for
latent order variables and their relation to
the original set of indicators.

Ideally, after the construction of the data matrix, consistent with the aim of the
ranking, we should be able to answer:

(1) Whether the loss of information due to a composite indicator is “low,”
“medium,” or “high?” A measure for the loss of information (information seen
as a range of values corresponding to the multi-indicator system) can be the
rank range of each object.

(2) Whether the partial order can deliver a linear order with only few ties in relation
to the total number of order relations?

(3) Whether the ranking based on composite indicator is deviating from the
canonical order taken from partial order?

(4) For which object subsets the deviation is strong?
(5) What are then the main reasons for deviations, in terms of weights, attributes,

and attribute values?
(6) How to evaluate the findings in (5) above and start an iteration cycle to reduce

the deviations?

These six issues are closely related. Software tools should extract satisfactory
answers. At the moment, however, it is up to the user to combine appropriately
the results of the software tools and to evaluate them. The development of such
a software needs computational effort, but also much scientific research on partial
order theory.

18.3 Looking Forward

18.3.1 Conceptual Developments

18.3.1.1 Mathematical Concepts of Partial Order

The mathematical study of partial order in its own right provides many concepts
which are also useful for applications in multi-indicator systems. For example, we
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may wish to have a closer look at concepts like the jump and bump numbers which
are characteristics of linear extensions and turn out to be useful in queuing prob-
lems; see Habib et al. (1988). Do they provide a useful weighting system for linear
extensions (Patil and Taillie, 2004)? Bump numbers of linear extensions help iden-
tify where chains of the partial order are preserved. Can we extract useful guidance
for multi-indicator systems? We think, yes.

If a data matrix consists of data with (white) noise, then depending on the
number of attributes, noise will tend to increase the number of incomparabilities.
Incomparable pairs are differently represented in linear extensions. Some linear
extensions preserve more the chains (bump number is high and correspondingly
the jump number is low) whereas some others locate incomparable objects some-
where in the linear order (jump number is high, the bump number is low). Therefore,
one may suppress those linear extensions which take to a high degree into account
the incomparabilities. In other words, an appropriate weighting scheme for linear
extensions based on jump or bump numbers can reduce the effect of noise in the
data matrix.

18.3.1.2 Linear Orders and Comparison of Linear Orders

Linear or weak order derived from partial order is an essential component for guid-
ance with a multi-indicator system. Therefore the task is to make optimal use of what
is known in the scientific literature in the context of canonical order. For example:

(a) An alternative to get linear order may be to get good estimates of the mutual
ranking probabilities, see De Loof et al. (2008a) and from them the linear order
(De Loof, 2010).

(b) It is attractive to extend the local partial order model. The crucial point is to
classify the incomparable elements in a suitable manner. The LPOM concept
for example considers all elements incomparable to an actually selected ele-
ment x as isolated, with the consequence of many artificial ties, whereas in
Bruggemann et al. (2005) and Bruggemann and Carlsen (2011), the elements
incomparable to x are differently handled.

18.3.2 Partial Order Concepts vs Composite Indicator

When we obtain linear or weak orders from posets, the comparison with a composite
indicator based ranking may reveal discrepancies. It is then of interest to identify
subsets of objects or subsets of attributes where either the discrepancies are above a
certain limit or below. In any case, we need a systematic procedure which

• identifies the discrepancies,
• make a suggestion for limits when a discrepancy is to be considered as large or

small,
• identifies object sets of high/low discrepancy, and
• suggests indicators which are mainly responsible for large/low discrepancies.
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Table 18.3 Comparability knowledge discovery

Chapters Concepts CI Non-CI
Ordinal
Exploration

2, 3, 6 Partial order and Hasse diagram:
Chains and antichains

Yes No Yes

3 �hmax(U) Yes Yes No
4 Sensitivity analysis Yes Yes Yes
4 Cumulative ambiguity graph Yes Yes Yes
5 Separated subsets No No Yes
5 Antagonism No Yes Yes
5 Dominance No Yes Yes
7 Stability fields Yes Yes No
8 Implications No Yes Yes
9 Canonical orders Yes Yes No
10 Proximity Yes Yes Yes

Here it may be useful to summarize the interplay of partial order techniques and
the weights if a composite indicator is already known or not (Table 18.3). In this
table, we will consider three basic cases:

Header “CI”: Composite indicator is known. Partial order as a tool to get more
insights into the aggregation procedure to obtain a composite indicator.

Header “non-CI”: Composite indicator is not known. Alternatives to crunch
a multi-indicator system by means of databased weights into an index.
Indicators serve as proxies for a certain abstract but unknown principle.

Header “Ordinal Exploration”: Exploration of ordinal dependencies of a data
matrix. A linear (or weak) order is not the primary aim.

The column CI describes how different tools support the known composite indi-
cator, i.e., it is clarified how and how much the ordinal analysis of the data matrix
justify the construction of the composite indicator

(a) with respect to the weighting scheme and
(b) with respect to the elected functional form (linear or not).

In case of the composite indicator as a linear function, the analysis reduces to an
analysis of the weights. For example, in the first row and third column of Table 18.3,
the identification of a chain tells us how many objects are not crucially ordered
by the order due to the composite indicator. In the case of the second row but the
fourth column, �hmax(U(x)) tells us how changing the weights affects the position
of objects.

The sensitivity analysis throws light on the collection of the indicators and how
much influence the removal of an indicator will have on the poset. Stability fields:
A representation of sensitivity and invariance of rankings with respect to weights.
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Ranking without weights (canonical order) enables us to examine the reasonable-
ness of composite indicators. Proximity: Different multi-indicator systems having
the same object set can be ordinally compared.

18.3.3 Computational Advances and Needs for the Future

Posets are “in good hands” if their mathematical behavior is to be analyzed, because
of the increased interest in studying posetic structures in pure mathematics. So,
instead of claiming the need of further mathematical research, it is rather the task
of the users of posets to make optimal use of the rich knowledge about posets in
the mathematical literature (see also Section 16.1). However, even if the mathemat-
ical concept turned out to be useful in practical data analytical work, the application
may be difficult because of many simple but tedious calculations. Hence, the appli-
cation of mathematical knowledge for empirical posets requires software which is
accessible and understandable by the average trained user and not only by com-
putational experts of the corresponding field. The PyHasse software is a trial to
overcome this kind of gap between mathematical development and practical appli-
cations. However, we see PyHasse certainly as a preliminary experimental software
which can be the starting point for professionally written software.

It is also important that preferences of stakeholders and experts are integrated in
the formulation of the framework for the partial order, see Bruggemann et al. (2007)
and Rademaker et al. (2008). In this context, the conceptualization behind METEOR
(Chapter 7) may be a good example for the incorporation of the preferences of
stakeholders and experts:

(1) METEOR includes valuable knowledge about mutual preferences between two
indicators and does not require knowledge of weights for the whole set of
indicators at once.

(2) Each aggregation enriches the partial order, thus more or longer chains are
found (Section 11.8).

So we see METEOR and its further development as a main methodological step
toward an efficient help for stakeholders and decision makers.

For further software-oriented development of METEOR, we first have to check
whether or not a composite indicator is known.

18.3.3.1 Composite Indicator as a Linear Function Is Known

In that case, we are restricted in the flexibility of selecting weights of the step-
wise aggregation, because finally the known set of weights must be obtained. The
methodology of CAP (see Chapter 7) fits into this restriction. Within PyHasse
(Chapter 17), the CAP methodology is included, and there is also a sequence of
aggregations under the guidance of pairwise Spearman correlation.
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Independent of the sequence of aggregations, we ask as to how to interpret steep
slopes in the CAP graph in terms of the object set. How stable is such a steep slope
if we remove or insert objects from and into the data matrix?

18.3.3.2 Composite Indicator Is Not Known

In such a case, weights are uncertain. Here the methodology of stability fields and
hot spots in the space of weights applies.

Separability

Separability and related concepts, such as antagonism, are a consequence of apply-
ing product order. When object subsets are contextually defined, one may ask about
their separation, i.e., ask about their separability degree. If this separability degree
is large enough, it is of interest to find the reasons for the separation in terms of
the attributes and their values. Corresponding software tools (PyHasse) are under
development, however, they still need much effort.

18.3.4 Statistical Significance

We urgently need within the methodology of PoA a quantification of what may be
considered as noise and what as significant. What is the significance of a result
of matrix W, how sure we are that a maximal element is a maximal element, how
significant is an order relation like a < b. To answer these kinds of questions, we
have to develop not only a series of well-designed simulation experiments, but also
practical guidance applicable even when the multi-indicator system and the object
set are large.

18.3.5 Contextual Work

The conceptual work mentioned in Sections 18.2 and 18.3 needs a steady control and
verification by case studies. The development of guidance for multi-indicator sys-
tems cannot be performed on the basis of pure theoretical work. We need new case
studies and also continuing analysis of available case studies. Some ideas follow.

18.3.5.1 Poverty

The available procedures in poverty study are unsatisfactory, since they are based
on crude aggregation tools (weighted means), where ordinal variables are treated
as they were real numbers (Annoni et al., 2011). Poset theory provides evaluation
algorithms that are data driven and do not aggregate ordinal variables, see Fattore
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(2008). He derives from the mutual probability a fuzzy membership function assess-
ing the degree of poverty. The problem of poverty is thus translated into the fuzzy
framework. Some issues and research questions follow:

• How to define a fuzzy poverty membership function taking into account that the
number of linear extensions can be untractable?

• How is the degree of deprivation of an individual assessed?
• Material deprivation changes over time. We need new tools to evaluate the

intensity and the structure of material deprivation dynamics.
• Posets arising from material deprivation data are huge. Thus we come back to the

problem of data mining in the context of partial order.

18.3.5.2 Bridge Sites

The formal concept analysis was restricted to the “bad alignment bridges.” We
obtained a network of implications which could be verified by engineers. It will be of
interest to examine as to how far this network of implications refers to other states
of bridge sites and compare these implication networks. An interesting approach
which, however, needs a close cooperation with the engineers is an analysis of the
subsets according to the channel types. What can be said about the dominances
among such subsets?

18.3.5.3 EPI Index

The EPI index and its data matrix is still a challenge. An important question, for
example, can be as to how stable the association networks are when objects are
deleted from or added to the data matrix. Furthermore, these association networks
depend on the context table. What is the influence of different scaling models?
Finally, the association networks among the indicators require an analysis in terms
of network concepts.
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Appendix

Glossary

σ (qi): Normalized sensitivity measure = 2∗W(X, IB, {qi})/(n∗(n − 1)), n is the
number of objects

�(x): = �gi
∗qi(x) : qi the columns of the data matrix, columnwise normalized, the

attributes (indicators) characterizing the objects
�: an aggregation function, a function based on the attributes of the information

base. It is a weak positive monotone function of the attributes
ζ matrix: A convenient way to code a partial order. Given a partial order (X, ≤)

with |X| = n, ζ matrix is an n × n matrix, one row for each element and
one column for each element of X. The cell in the row corresponding to an
element a and in the column corresponding to an element b of X is 1 if a ≤ b
and zero otherwise

(X, IB): objects partially ordered on the basis of the information base IB
|A|: number of elements in the set A
Aggregation: Technique to reduce the number of attributes. Mostly by weighted

sums
AIB(X1, X2): set of antagonistic indicators with Sep(X1, X2) = 1
AIB: AIB set of antagonistic indicators.
Antichain: Given a partial order (X, ≤), if a subset X′ ⊂ X is such that for no (x, y) ∈

X′ × X′ x ⊥ y holds, then this subset, equipped with the partial order relation,
is an antichain.

Articulation point: element whose elimination increases the number of components
in the graph

Attributes: Properties of objects that are relevant or helpful in prioritization.
Synonyms: indicators. Denoted by q, q1, q2, . . . . Properties are ordinal mea-
surements/observations

Axioms of partial order

• if x ≤ y and y ≤ x, then x = y (anti-symmetry)
• if x ≤ y and y ≤ z, then x ≤ z (transitivity)
• x ≤ x (reflexivity)

305R. Brüggemann, G.P. Patil, Ranking and Prioritization for Multi-indicator Systems,
Environmental and Ecological Statistics 5, DOI 10.1007/978-1-4419-8477-7,
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Behavior classes Bi: Comparison of two posets by counting appropriately the match-
ings (<, <), (<, >). etc. The symbol like (<, <) is a shorthand notation of
(x <IB1 y) and (x <IB2 y)

Break: by an additional indicator, x ⊥ y is changing to x || y
CAMobject set = Uobject set/[n∗(n − 1)]
CAMquotient set = Uquotient set/[nK

∗(nK−1)]
Canonical order: ranking purely based on the data matrix and the assumption that

all linear extensions are equally probable
CAP: Comparative acquisition profile. Method to evaluate aggregation strategies
Chain: If a subset X′ ⊂ X is such that for all (x, y) ∈ X′ × X′ a complete order can

be found, then X′ together with the partial order relation is a chain
Comparability: Given the data matrix for (X, IB), where IB = {q1, q2, . . . , qm},

objects x and y are comparable if either x ≤ y or y ≤ x
Complete, total, or linear order: A partial order (X, ≤), where X = {x1, x2, . . . , xn}

such that x1 ≤ x2 ≤ . . . ≤ xn

Concept: A pair of object set X and property set Q such that X′ = Q and Q′ = X
Concordance analysis: Comparison of two families of ordered subsets
Context table: Table representing g(x) = q: x ∈ X, q ∈ Q, x has the property q or q

belongs to x
Component: weak connected subposets of a poset
CRF: Cumulative rank frequency

dcoinc = 1 − 2∗ |UX| / (
n∗ (n − 1)

)

Data matrix: A matrix with n rows and m columns. The cell in the ith row and the
jth column is the value qi(j) of the jth attribute qj for the object no i

Derivation operator: Relates an object set to its property set or the property set to its
object set. X′

i = {q ∈ Q : g(x) = q, for all x ∈ Xi}, Q′
i = {x ∈ X : g(x) = q,

for all q ∈ Qi}. Instead of the prime as operator, we use the sign d
Discretization scheme: Selection of mini, maxi, and of K(qi)
Discretization:

I(qi) = [min
x

(qi (x), max
x

(qi (x))], x ∈ X

The interval I(qi) is subdivided in K(qi) subintervals having the same lengths
Ik(qi)

I(qi) =
⋃

Ik(qi), k = 1, ..., K(qi), Ik(qi) = mini + maxi − mini

K(qi)
· [k −1, k),

If k = K(qi), then the closed interval is to be taken.

Dom(X1, X2) + Dom(X2, X1) + Sep(X1, X2) = 1

Dom(X1, X2): = ∣∣{(x, y) ∈ X1
∗X2, x ≥ y

}∣∣ / (|X1|∗ |X2|
)
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Dom(X2, X1): = ∣∣{(x, y) ∈ X1
∗X2, x ≤ y

}∣∣ / (|X1|∗ |X2|
)

Elements: members of a set. If the set-theoretical background is important, then
objects are considered as elements of a certain set

Equivalence relation �: A binary relation among objects which is symmetric, reflex-
ive, and transitive. The most often used equivalence relation is the equality of
two vectors q(x) and q(y)

Equivalent classes: If q(x) = q(y), then x is equivalent to y. The set of all elements,
which are mutually equivalent, is called an equivalence class

Equivalent objects x ∼= y: Given (X, {q1, q2, . . . , qm}), x and y in X are equivalent if
qi(x) = qi(y), for i = 1, 2, . . . , m

F(x): Principal up set generated by x. F(x) = {y in X | x ≤ y}. Synonymously, order
filter

Greatest element: If there is only one maximal element
Hasse diagram: Visual representation of a partially ordered set
Hasse diagram technique: abbreviation HDT, understood as partial orders derived

from data matrices
hav(x): Average height of x in X over LE(X)
Height of a poset: number of elements in the maximum of maximal chain
h1e(x): Height of an object x in a linear extension le of (X, ≤) is the number of

elements y such that y ≤ x in the linear extension
I�: The rank of a linear or a weak order induced by the index is considered as

attribute value
I(x, y): Order interval generated by the pair x, y. I(x, y) = {z : ∈ X, x ≤ z ≤ y, x, y

included}. Instead of I(x, y), one also uses [x, y]
IB(i) = IB – {qi}
IB(k): IB with k attributes
IB: Information base, the set of attributes {q1, q2, . . . , qm}
IBi: any information base
Incomparability: Notion that x || y
Index: An aggregation function that is just a weighted sum of normalized attributes.

Synonymously used, composite indicator
Indicators: Attributes
Iposet : The rank of a linear or a weak order derived by partial order is considered as

attribute value
Isolated element x: element x for which there is no other element z for which z > x

and no other element y for which y < x
Isolated elements are maximal and minimal elements at the same time

Kosko measure: SH(a, b) = � min(qi(a), qi(b))/� qi(a)
LE(X): The set of all linear extensions of a poset X
Least element: If there is only one minimal element
Length of a poset, lg: number of cover relations in the maximum of maximal chains
Level 1 object: Given (X, IB), x in X is a level 1 object in the Hasse diagram if there

is no y in X such that y ≤ x
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Level: elements in the same vertical position of a Hasse diagram
Level number: Count of levels, starting with the bottom level
Linear extension: Given a partial order (X, ≤), a linear order which preserves the

orders of (X, ≤), equivalent
Linear extension: Given a partial order (X, ≤), permutation of X that is order

preserving
LOV(.): Latent order variable
LPOM: Local partial order model
m: number of attributes in the data matrix
matrix W: see W matrix
METEOR: method of evaluation by order theory. CAP and stability field and hot

spot identification in the space of weights are tools of METEOR
Maximal element x of a chain: An element x for which there is no other element z

for which z > x
Minimal element x of a chain: An element x for which there is no other element z

for which z < x
mr orders: Orders derived by Eq. (2.3) applied on rows of the data matrix which are

ordered for increasing values. m2: min and max values, m3: min, median, and
max values

mutual probability probm(x > y) : Count of frequencies how often x > y in the set of
linear extensions divided by the total number of linear extensions

N(X1, X2) = |X1|∗|X2|, X1 ∩ X2 = ∅

n: number of objects to be prioritized
Navigation: Methods how to identify objects and why they are in positions, where

they are. Equations (5.8) and (5.9) are mostly used
O�: Order induced by the index �

O<x>: Order induced by <x>. For example, Ohav_LPOM is the order induced by
averaged heights calculated through the local partial order model

O(x): principal down set (often called principal order ideal), generated by x. O(x) =
{y in X | y ≤ x}

O(x, IB): principal order ideal generated by x. O(x) = {y in X|y ≤ x}, where X is the
poset induced by (X, IB)

Objects: Entities to be prioritized or ranked in order of importance. Object sets
denoted by X, X1, X2

Oposet: Order induced by canonical order
Order preserving map: A map g: X1 → X2 such that x ≤1 y implies g(x) ≤2 g(y),

given two partial orders (X1, ≤1) and (X2, ≤2) are order preserving with
respect to ≤1 and ≤2

Orientation: A decision about the meaning of high and low values of attributes for
the ranking aim

P(x): P(x) = F(x) − {x}, the predecessors of x
p-algorithm: Transformation of the data matrix
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Partial order: A pair (X, ≤) with a set X and a binary relation “≤” over X which is
reflexive, antisymmetric, and transitive

Poset: Set with a partial order
Poset ranking: Monte Carlo Markov chain (MCMC) method combined with cumu-

lative rank frequency (CRF) technique
Principal down set: synonym, principal order ideal induced by one element x
Prioritization: Ranking entities in order of importance
probm(x > y), mutual probability that x > y: If x||y in the poset, then pm(x > y) =

(number of linear extensions of poset X with height of x greater than that of
y)/|LE(X)|

proper maximal element x: An element for which there z �= x with z < x, but no
element z′ �= x for which z′ > x

proper minimal element x: An element for which there z �= x with z > x, but no
element z′ �= x for which z′ < x

property: special case that qi(x) = 0 or 1. If qi(x) = 1, then x “has the ith property”
q(x) ≤ q(y): Given (X, IB) and x, y in X, q(x) ≤ q(y) if and only if qi(x) ≤
qi(y), for all qi in IB

qi(x): value of the ith attribute for object x
RAPID ranking: Software realization of poset ranking
Quotient set: The set of equivalence classes under a certain equivalence relation,

X/�, � often being ∼=
S(x): S(x) = O(x) − {x}, the “successors” of x
Scores: qi(x) transformed by discretization to si(x)
Sep(X1, X2) = |U(X1, X2)| /N(X1, X2)
Sep(X1, X2): = |U(X1, X2)| |{(x, y) ∈ X1

∗X2, x||y}| /(|X1|∗|X2|), then Sep(X1, X2, IB)
= |U(X1, X2, IB)|/N(X1, X2)

Separated object sets X1, X2 with X1 ∩ X2 = ∅ : if for all x ∈ X1 and for all y ∈ X2
is valid: x || y

Set-theoretical representation of (X, IB): a set of ordered pairs (x, y) ∈ X2 such that
x ≤ y

SH: Subsethood relation
Shape (of a Hasse diagram): visual impression of a Hasse diagram as rectangular or

triangular
Superindicator: weighted sum of some indicators
SW: Swamp: Subset of unimportant object set after p-algorithm
Symmetric difference �: A and B are sets: A � B = A ∪ B − A ∩ B
U(x): = {y ∈ X, y||x in (X, IB)}
U(X1, X2) = {(x, y): x||y, x ∈ X1, y ∈ X2, X1 ∩ X2}
U(X1, X2, IB) = {(x, y): x||IB y, x ∈ X1, y ∈ X2, X1 ∩ X2}
UX/∼=: = {(x, y), x, y representants of equivalence classes with x || y}
UX: = {(x, y), x, y ∈ X with x || y}
V = |{(x, y) ∈ (X, IB)}|
W(X′ ⊆ X, IB, IB − {qi}): sensitivity of a single indicator qi

W(x ∈ X′, IB′, IB′′): distance measure between O(x, IB′) and O(x, IB′′) =∣∣O(x, IB′)�O(x, IB′′)
∣∣
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W(X′, IB′, IB′′): distance between (X′, IB′) and (X′, IB′′) = � W(x ∈ X′, IB′, IB′′),
summed over x in X′

W matrix: W(X, IB(i), IB(j)) is an entry of the W matrix
Weak order: A linear order of the quotient set; there are equivalence set with more

than 1 element (sequence like a > b = c > d > . . .)
Weight vector: A vector of numbers gi, where 1 ≥ gi ≥ 0 and �gi = 1. Weights are

needed to formulate an index:
Width of a poset: maximum set of mutually incomparable elements
Width: Number of elements in the maximum antichain
W matrix: W(X, IBi, IBj)
x ≤ y: Given (X, IB) and x and y in X, x ≤ y if and only if q(x) ≤ q(y)
x < y: Given (X, {q1, q2, . . . , qm}) and x and y in X, x ≤ y with qi(x) < q1(y) for

some i
x ⊥ y: x and y are comparable, without indicating whether x < y or x > y
x || y: Given a partial order (X, ≤)),and x and y in X, x||y if and only if neither x ≤ y

nor y ≤ x holds. For (X, IB), x||y if and only if x and y are incomparable

Some Abbreviations Appearing in the Case Studies

ASC: Atlantic slope consortium
EPI: environmental performance index
HD: Hasse diagram
HDT: Hasse diagram technique
HEI: Human environment interface index
HPVC: high production volume chemicals
METEOR: method of evaluation by order theory
PAH: polycondensated aromatic hydrocarbons
PCB: polychlorinated biphenyls
PoA: partial order analysis
POT: partial order theory
QSAR: quantitative structure activity relationships (chemistry)
QSPR: quantitative structure property relationships
VOC: volatile organic chemicals
wwtp: wastewater treatment plant
DPSIR: indicator system of OECD, driving forces, pressures, states, impacts,

responses
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Tables of the First 11 Chapters

Table A.1 Illustrative
example, data matrix
(Chapter 6)

q1 q2

a 4.00E − 01 3.00E − 01
b 3.10E + 00 4.00E + 00
c 2.50E + 00 2.10E + 00
d 1.30E + 00 1.40E + 00
e 1.40E + 00 4.90E + 00
f 3.00E + 00 2.90E + 00
g 3.40E + 00 3.00E + 00
h 5.00E + 00 5.00E + 00
i 5.01E + 00 4.80E + 00
j 6.30E + 00 2.00E + 00

Table A.2 Total
concentrations of Pb, Cd, and
Zn in the epiphytic mosses
(mg/kg dry mass) (Chapter 7)

Id Pb Cd Zn

6 11 0.2 31
8 20 0.4 55
7 14 0.3 41

17 13 0.3 63
9 17 0.3 45

16 13 0.4 51
22 14 0.3 41
14 12 0.6 41
5 14 0.4 45

29 9 0.4 29

Data are rounded. “Id” is the identifier for the regions

Table A.3 Data matrix (normalized) of pollution in Baden-Wuerttemberg (Germany)

Regions Pbnorm Cdnorm Znnorm Snorm

6 0.41964 0.14286 0.00963 0.38043
8 0.64286 0.14286 0.00788 0.38043
7 0.50893 0.19048 0.00876 0.33967

17 0.24107 0.11905 0.01576 0.39946
9 0.01339 0.45238 0.72855 0.0625

16 0.41964 0.2619 0.01226 0.31793
22 0.41964 0.04762 0.00876 0.48913
18 0.19643 1 0.00876 1
30 0.33036 0.16667 0.00788 0.34239
23 0.46429 0.07143 0.02102 0.44837
15 0.375 0.21429 0.00525 0.3587
14 0.41964 0.38095 0.01401 0.40217
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Table A.3 (continued)

Regions Pbnorm Cdnorm Znnorm Snorm

5 0.46429 0.21429 0.01226 0.44565
28 0.375 0.09524 0.01401 0.3587
39 0.41964 0.21429 0.01751 0.37772
40 0.28571 0.11905 0.01401 0.38587
29 0.24107 0.30952 0.00788 0.36141
41 0.28571 0.38095 0.01839 0.40489
42 0.28571 0.21429 0.01313 0.36413
27 0.01786 0.2619 0.00701 0.33967
38 0.73214 0.40476 0.01401 0.37228
49 0.33036 0.2381 0.01664 0.36141
37 0.24107 0.2619 0.01313 0.33424
47 0.46429 0.2381 0.00613 0.35326
48 1 0.97619 0.01313 0.33967
51 0.33036 0.30952 0.0035 0.35054
4 0.33036 0.02381 0.00701 0.3913
3 0.33036 0.30952 0.01138 0.36957

13 0.05357 0.40476 1 0
26 0.33036 0.09524 0.00088 0.34511
36 0.50893 0.09524 0.01138 0.33152
46 0.33036 0.19048 0.01313 0.36141
50 0.59821 0.28571 0.00963 0.375
53 0.41964 0.2619 0.01576 0.38043
45 0.64286 0.38095 0.02364 0.38859
54 0.28571 0.21429 0.00701 0.38043
59 0.55357 0.28571 0.00701 0.30435
60 0.41964 0.45238 0.01226 0.49185
58 0.41964 0.2381 0.00876 0.44293
57 0.73214 0.33333 0.01839 0.40761
35 0.00893 0.54762 0.61471 0.4375
34 0.03571 0.90476 0.81611 0.01359
33 0.04464 0.59524 0.68476 0.04891
25 0.375 0.19048 0.01489 0.30163
12 0.04464 0.52381 0.78109 0.30163
21 0 0.54762 0.71103 0.07337
11 0.375 0.16667 0.00788 0.37228
2 0.28571 0.30952 0.00788 0.38587
1 0.41964 0.07143 0.00263 0.32337

10 0.41964 0.04762 0.00963 0.38859
20 0.64286 0.30952 0.01226 0.375
24 0.73214 0.40476 0.01839 0.37772
31 0.46429 0.33333 0.00876 0.37772
32 0.50893 0.04762 0.01489 0.39946
19 0.33036 0 0 1
43 0.19643 0.2381 0.01839 1
44 0.33036 0.16667 0.01751 0.39402
52 0.86607 0.52381 0.01576 1
56 0.41964 0.2381 0.01401 0.44022
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Table A.4 Baden-Wuerttemberg: Equivalence classes and their pollution profile

Equivalent classes
(we omit “{” and “}”) Pattern of pollution

Count of objects in each
equivalence class

1, 6, 7, 8, 10, 11, 15.16, 20, 25, 28,
36, 39, 47, 50, 53, 59

1000 17

2, 3, 26, 27, 29, 30, 37, 40, 42,
46, 49, 51, 54

0000 13

4, 17, 19, 43, 44 0001 5
9, 12, 13, 21, 33 0120 5
5, 22, 23, 32, 56, 58 1101 6
14, 60 1101 2
52, 57 2101 2
24, 38 2100 2
31, 45 1100 2
48 2200 1
34 0220 1
35 0111 1
41 0101 1
18 0201 1

Objects used as representatives (see Chapter 2) are in bold letters

Table A.5 HEI data matrix

Country Country ID Land index Air index Water index HEI

Antigua and Barbuda AB 0.5 0.941 0.93 0.79
Afghanistan AF 0.5 0.999 0.125 0.541
Algeria AG 0.5 0.958 0.905 0.788
Albania AL 0.485 0.994 0.94 0.806
Angola AN 0.495 0.994 0.41 0.633
Austria AS 0.505 0.905 1 0.803
Australia AU 0.498 0.787 1 0.761
Azerbaijan AZ 0.508 0.94 0.795 0.748
Bangladesh BA 0.506 0.998 0.725 0.743
Brunei Darussalam BD 0.49 0.795 1 0.762
Burkina Faso BF 0.497 0.999 0.355 0.617
Belgium BG 0.498 0.848 1 0.782
Bahamas BH 0.5 0.929 0.985 0.805
Burundi BI 0.47 1 0.83 0.766
Belize BL 0.418 0.98 0.71 0.702
Benin BN 0.467 0.998 0.43 0.632
Botswana BO 0.489 0.972 0.805 0.755
Barbados BR 0.5 0.931 1 0.81
Bhutan BT 0.5 0.998 0.66 0.719
Bulgaria BU 0.51 0.926 1 0.812
Bolivia BV 0.492 0.982 0.765 0.746
Brazil BZ 0.486 0.979 0.815 0.76
Central A. Republic CA 0.497 0.999 0.475 0.657
Cambodia CB 0.483 0.999 0.235 0.572
Chad CD 0.497 1 0.28 0.592
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Table A.5 (continued)

Country Country ID Land index Air index Water index HEI

D. R. of the Congo CG 0.487 0.999 0.33 0.606
China CH 0.51 0.971 0.575 0.685
Chile CI 0.498 0.952 0.945 0.799
Cameroon CM 0.475 0.999 0.685 0.72
Canada CN 0.5 0.794 1 0.765
Colombia CO 0.49 0.98 0.885 0.785
Costa Rica CR 0.487 0.984 0.94 0.803
Comoros CS 0.488 0.999 0.97 0.819
Cote d’Ivoire CT 0.456 0.989 0.665 0.703
Cuba CU 0.513 0.973 0.945 0.81
Cape Verde CV 0.565 0.996 0.725 0.762
Cyprus CY 0.53 0.91 1 0.813
Djibouti DJ 0.5 0.993 0.955 0.816
Dominica DM 0.472 0.986 0.9 0.786
Denmark DN 0.501 0.866 1 0.789
Dominican Republic DR 0.5 0.971 0.765 0.745
Ecuador EC 0.474 0.975 0.855 0.768
Egypt EG 0.5 0.981 0.975 0.819
Equatorial Guinea EQ 0.48 0.994 0.485 0.653
El Salvador ES 0.482 0.988 0.795 0.755
Finland FI 0.501 0.852 1 0.784
Fiji FJ 0.495 0.989 0.45 0.645
France FR 0.506 0.918 1 0.808
Gambia GA 0.524 0.998 0.495 0.672
Guinea-Bissau GB 0.468 0.998 0.56 0.675
Germany GE 0.5 0.872 1 0.791
Georgia GG 0.5 0.988 0.895 0.794
Ghana GH 0.472 0.997 0.725 0.731
Guinea GI 0.493 0.998 0.53 0.674
Grenada GN 0.5 0.977 0.96 0.812
Gabon GO 0.498 0.972 0.695 0.721
Greece GR 0.512 0.89 1 0.801
Guatemala GU 0.474 0.989 0.865 0.776
Guyana GY 0.488 0.977 0.905 0.79
Haiti HA 0.487 0.998 0.37 0.618
Honduras HO 0.472 0.99 0.815 0.759
Hungary HU 0.504 0.933 0.99 0.809
Iceland IC 0.5 0.893 1 0.798
Indonesia ID 0.462 0.987 0.665 0.705
Ireland IL 0.513 0.872 1 0.795
India IN 0.501 0.987 0.56 0.683
Iraq IQ 0.5 0.955 0.82 0.758
Iran (Islamic R. of) IR 0.5 0.948 0.875 0.774
Israel IS 0.513 0.881 1 0.798
Italy IT 0.505 0.907 1 0.804
Jamaica JM 0.474 0.949 0.955 0.793
Jordan JO 0.5 0.974 0.975 0.816
Japan JP 0.5 0.889 1 0.797
Kazakhstan KA 0.504 0.911 0.95 0.788
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Table A.5 (continued)

Country Country ID Land index Air index Water index HEI

Kenya KE 0.491 0.996 0.72 0.736
Kiribati KI 0.5 0.997 0.48 0.659
Korea, D. P. R. KO 0.5 0.886 0.995 0.794
Korea, Republic of KR 0.497 0.907 0.775 0.726
Kuwait KU 0.5 0.681 1 0.727
Kyrgyzstan KY 0.506 0.984 0.885 0.792
Lao P. D. R. LA 0.488 0.999 0.335 0.607
Lebanon LE 0.499 0.94 0.995 0.811
Libyan A. Jamahiriya LI 0.5 0.92 0.845 0.755
Madagascar MA 0.489 0.999 0.445 0.644
Morocco MC 0.5 0.986 0.74 0.742
Maldives MD 0.5 0.986 0.78 0.755
Mexico ME 0.483 0.954 0.81 0.749
Mali ML 0.496 0.999 0.67 0.722
Mongolia MO 0.498 0.965 0.45 0.638
Mauritania MR 0.499 0.986 0.35 0.612
Mauritius MT 0.497 0.982 0.995 0.825
Malawi MW 0.46 0.999 0.665 0.708
Myanmar MY 0.458 0.998 0.68 0.712
Mozambique MZ 0.496 0.999 0.5 0.665
Namibia NA 0.495 1 0.59 0.695
Nicaragua NC 0.449 0.992 0.81 0.75
Niger NG 0.497 0.999 0.395 0.63
Netherlands NL 0.502 0.864 1 0.789
Norway NO 0.505 0.89 1 0.798
Nepal NP 0.472 0.998 0.58 0.683
Nigeria NR 0.477 0.991 0.58 0.683
New Zealand NZ 0.508 0.911 1 0.806
Oman OM 0.5 0.9 0.655 0.685
Peru PE 0.489 0.987 0.755 0.744
Papua New Guinea PG 0.487 0.994 0.62 0.7
Philippines PH 0.484 0.988 0.845 0.772
Pakistan PK 0.497 0.992 0.76 0.75
Palau PL 0.5 0.85 0.895 0.748
Panama PN 0.463 0.975 0.91 0.783
Portugal PO 0.533 0.934 1 0.822
Paraguay PR 0.484 0.99 0.86 0.778
Qatar QA 0.5 0.05 1 0.517
Republic of Moldova RM 0.502 0.974 0.955 0.81
Rwanda RW 0.468 0.999 0.245 0.571
Saudi Arabia SA 0.5 0.835 0.975 0.77
Saint Lucia SC 0.457 0.984 0.935 0.792
Sudan SD 0.478 0.998 0.685 0.721
Senegal SE 0.487 0.996 0.74 0.741
South Africa SF 0.499 0.897 0.865 0.754
Singapore SI 0.5 0.721 1 0.74
Saint Kitts and Nevis SK 0.5 0.969 0.97 0.813
Sri Lanka SL 0.472 0.995 0.855 0.774
Samoa SM 0.453 0.991 0.99 0.811
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Table A.5 (continued)

Country Country ID Land index Air index Water index HEI

Solomon Islands SN 0.492 0.995 0.525 0.671
Slovakia SO 0.52 0.902 1 0.807
Spain SP 0.509 0.92 1 0.81
Sierra Leone SR 0.473 0.999 0.615 0.696
Suriname SU 0.5 0.939 0.875 0.771
Saint V. and the Gren. SV 0.487 0.983 0.945 0.805
Sweden SW 0.5 0.923 1 0.808
Syrian A. Republic SY 0.5 0.961 0.85 0.77
Switzerland SZ 0.506 0.929 1 0.812
Tajikistan TA 0.5 0.99 0.75 0.747
Thailand TH 0.488 0.962 0.9 0.784
Tunisia TN 0.5 0.972 0.82 0.764
Togo TO 0.48 0.998 0.44 0.639
Turkey TR 0.502 0.963 0.86 0.775
Trinidad and Tobago TT 0.477 0.795 0.945 0.739
United Arab Emirates UA 0.505 0.559 1 0.688
Uganda UG 0.476 0.999 0.655 0.71
United Kingdom UK 0.504 0.891 1 0.798
Ukraine UN 0.503 0.927 0.985 0.805
Uruguay UR 0.515 0.979 0.96 0.818
United States US 0.502 0.764 1 0.755
U. R. of Tanzania UT 0.494 0.999 0.79 0.761
Vanuatu VA 0.503 0.996 0.94 0.813
Venezuela VE 0.487 0.921 0.755 0.721
Viet Nam VN 0.508 0.993 0.62 0.707
Yemen YE 0.499 0.99 0.535 0.675
Zambia ZA 0.439 0.998 0.71 0.716
Zimbabwe ZI 0.456 0.985 0.725 0.722

Table A.6 Biological indicators discretized. 15 Italian regions (Val Baganza)

VRI HRA VRA Sro SZ

a 2 2 2 1 0
b 2 1 2 1 0
c 2 0 2 1 1
d 1 2 0 0 0
e 2 1 2 0 0
f 1 1 2 0 0
g 2 1 1 2 2
h 2 1 2 1 0
i 2 1 0 1 1
j 1 2 1 0 0
k 2 2 1 1 0
l 1 1 0 0 0
m 0 1 0 0 0
n 1 2 0 0 0
o 2 1 0 0 0
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Table A.8 Individual sensitivities (Section 12.9)

Nation wb hs ed fa br sub

Ne 5 0 0 2 0 0
Sw 0 0 2 7 0 1
Dk 0 0 1 2 0 4
Fi 0 0 1 3 0 1
Es 2 0 2 1 0 0
Su 0 1 4 1 0 1
No 0 1 1 2 0 1
It 0 0 3 0 0 0
Ire 1 0 0 0 0 0
Be 0 1 0 0 0 1
De 0 0 0 2 0 0
Ca 0 1 0 0 0 1
Gr 1 1 1 0 0 0
Pl 0 0 0 0 0 0
Cz 0 0 0 0 0 1
Fr 0 0 1 0 0 0
Pt 0 0 0 0 0 0
Au 0 0 0 1 0 0
Hu 0 0 0 0 0 0
US 0 1 0 0 0 0
UK 0 0 0 0 0 0

Table A.9 Results of attribute value sensitivity

Sub |P| |S| |U| ed |P| |S| |U| wb |P| |S| |U|
10 0 3 17 14 0 3 17 18 0 3 17
11 0 3 17 15 0 3 17 17 0 3 17
12 0 4 16 16 0 3 17 16 0 3 17
13 0 5 15 17 0 3 17 15 0 3 17
14 0 5 15 18 0 3 17 14 0 3 17
15 0 5 15 19 0 3 17 13 0 2 18
16 0 5 15 20 0 4 16 12 1 1 18
17 0 5 15 21 0 4 16 11 1 1 18
18 0 6 14 10 1 1 18
19 0 7 13 9 1 1 18
20 0 7 13 8 1 1 18
21 0 7 13 7 1 1 18

6 1 1 18
5 1 1 18
4 1 0 19
3 1 0 19
2 1 0 19
1 1 0 19
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Table A.12 W matrix for four-indicator data set

Wij Case 0 Case 1 Case 2 Case 3 Case 4

Case 0 0 88 99 63 324
Case 1 88 0 187 151 412
Case 2 99 187 0 162 423
Case 3 63 151 162 0 387
Case 4 324 412 423 387 0

Table A.13 Bridge implications context table (in transposed form)

Bridge I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13

15 1 0 0 0 0 0 0 0 0 0 0 0 1
21 1 0 1 1 1 1 0 0 1 1 1 1 1
25 1 1 1 1 1 1 1 1 1 1 1 0 1
27 1 1 0 0 1 1 1 1 1 0 1 1 1
34 1 1 0 0 1 0 0 1 1 0 1 0 1
36 0 0 0 0 1 0 0 0 1 1 0 0 0
38 1 1 1 1 1 0 1 1 1 1 1 1 0
41 1 1 1 1 1 1 1 1 1 1 0 1 0
43 0 1 1 1 0 0 0 1 1 0 0 0 1
44 0 0 0 0 1 1 1 0 0 1 0 1 0
54 1 1 1 1 1 1 1 0 1 1 1 1 0
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Table A.16 Six watersheds with level 3 data, not normalized and not correctly oriented

Level 3

Watershed BIBI FIBI NO3

Back River 1.515 2.215 1.318
Cattail Creek 3.756 3.268 4.332
Gwynn Falls 1.938 2.445 1.362
Saint Mary’s A 2.858 3.875 0.196
Southeast Creek 2.687 3.444 3.008
Upper Patuxent 3.750 4.113 2.836

Table A.17 LSI and SWR indices

Watershed Level 1 (LSI) Level 2 (SWR)

Back River 0.086644 0.454389
Cattail Creek 0.419760 0.590053
Gwynn Falls 0.165877 0.547895
Saint Mary’s A 0.610704 0.6578
Southeast Creek 0.420902 0.6608
Upper Patuxent 0.475743 0.703947
Ahoskie 0.669110 0.425078
Buffalo Creek 0.469730 0.634135
Chickahominy 0.367849 0.56638
Christian Creek 0.396977 0.522032
Clearfield Creek 0.700867 0.557112
Conodoguinet A 0.314043 0.55524
Grindle Creek 0.611351 0.415143
Little Contentnea 0.569343 0.704768
Mantua 0.276758 0.704304
Middle Creek 0.513816 0.582975
Middle River 0.356022 0.459299
Pamunkey 0.643537 0.62629
Repaupo 0.431547 0.717355
White Deer Creek 0.887110 0.864193
Wisconisco 0.756694 0.698257
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