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Foreword

Lorenz Kramer, who was the main driving force behind the PHYSBIO pro-
gram, died suddenly on 5 April 2005. This was a shock to his numerous friends
who were not aware that this strong, vigorous and buoyant man struggled for
many years with a deeply rooted decease which all of a sudden went out of
control.

Lorenz has always been an innovator working with enthusiasm and persua-
sion on the leading edge of scientific exploration. The three main subjects of
his work: superconductivity from 1968 to 1981; pattern formation out of equi-
librium starting from 1982 ; biophysics from 1975 to 1980 and again from the
start of this century – were intertwined and supplied each other with ideas and
techniques. One example will suffice here: a direct interpretation of superflow
solutions as saddle points in transitions between different patterns – thereby
connecting two opposites: conservative and gradient systems. He was one of
the principal players in the field of nonlinear science during its acme in 1990s,
and one who directed this field, when it came of age, to new applications,
in particular, in physics of liquid crystals and biophysics. Some of the most
brilliant nonlinear scientists, both theorists and experimentalists, now in their
forties, are his former students and junior colleagues.

Lorenz’s e-mail signature once read: "Basic schedule: 0-24 - but variety is
the spice of life". And he didn’t lack variety: running alone to the highest peak
in the Pyrenees after a busy week of lectures, testing the sturdy design of his
Mac laptop in a backpack while biking to his office. It is thanks to him that the
PHYSBIO workshops were invariably carried out at high altitude as well as
on the highest scientific level. Variety was his birthmark: his father German,
mother Italian, both biologists; his children branched off to industry, music
and architecture; and physics, music, poetry and mountaineering merged in his
personality. There will be no one like him.

Leonid M. Pismen
Technion, Israel

Igor S. Aranson
Argonne National Laboratory, USA
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Preface

Non-linear dynamics and pattern formation in non-equilibrium system have
been attracting a great deal of attention for several decades due to their tremen-
dous importance in many physical, chemical and biological processes. How-
ever, only recently was it realized that similar phenomena play a crucial role in
the vast majority of processes that occur on nanoscales. While on the macro-
and micro-scales one has the advantage of controlling the processes by special
instruments and devices, on nanoscales, such instruments are absent, or their
use is prohibitively expensive. Therefore, spontaneous pattern formation, self-
organization and self-assembly promise a unique route to the control of these
processes. The investigation of self-organization on nanoscales requires sub-
stantial revision of the available scientific knowledge in pattern formation and
nonlinear dynamics due to essentially new mechanisms and phenomena, that
can be ignored in macro- and microworld, but play a decisive role in the world
where typical distances are measured in nanometers. The understanding of the
basic physical principles and mechanisms of self-assembly and pattern forma-
tion on nanoscales can lead to a real breakthrough in nanotechnology and to
the creation of a new generation of electronic devices, sensors, detectors, as
well as “labs-on-a-chip".

The need for intensive investigation of basic mechanisms of self-assembly
and self-organization on nanoscales, as well as the need to draw the attention
of the broad scientific research community specializing in nonlinear dynam-
ics and pattern formation in nonequilibrium systems to the fascinating area of
self-assembly and self-organization on nanoscales inspired the organization of
the NATO Advanced Study Institute “Self-Assembly, Pattern Formation and
Growth Phenomena in Nano-Systems" that took place in St. Etienne de Ti-
nee in France, August 28 - September 11, 2004. Fifteen lecturers from France,
Germany, Hungary, Israel and the USA gave series of lectures to an audience of
graduate students and postdocs from Belgium, France, Germany, Israel, Italy,
Romania, Russia, Spain, the USA and Uzbekistan. The lectures were devoted
to various aspects of self-assembly, pattern formation and nonlinear dynamics
in nano-scale physical, chemical and biological systems, or systems in which
nanoscale processes play a crucial role and determine the macroscopic behav-
ior.

The present book consists of ten articles containing lecture notes written by
the lecturers of the NATO ASI. The first article discusses general aspects of pat-
tern formation and universal features of self-organization in non-equilibrium
systems. The next two articles are devoted to pattern formation and nonlin-
ear phenomena in liquid crystals – a most remarkable system in which nano-

xv



xvi PATTERN FORMATION IN NANO-SYSTEMS

scale anisotropic structure determines quite unusual and complex macroscopic
behavior. The fourth article describes the self-assembly of quantum dots –
spatially-regular nano-scale structures – from thin semiconductor films. These
structures have been attracting a great deal of attention as a promising route
to creating a new generation of electronic devices. The fifth and sixth arti-
cles discuss a remarkable example of the failure of a traditional approach to an
“every day" macroscopic hydrodynamic phenomenon – a moving contact line.
It is shown that it is only by introducing new, mesoscopic physics based on the
liquid structure at nano-scales, that this phenomenon can be explained and un-
derstood. The seventh and eighth articles are devoted to self-organization phe-
nomena in systems where chemical processes that occur at nano-scales lead,
due to nonlinear coupling with thermal and diffusion processes, to macroscopic
non-stationary structures which, in turn, as a result of instabilities, produce mi-
croscopic texture in initially homogeneous media. Namely, these articles dis-
cuss the propagation and instability of combustion fronts in self-propagating
high-temperature synthesis of solid materials, and the propagation and insta-
bilities of polymerization fronts in frontal polymerization processes. The last
two articles deal with micro- and nano-scale self-organization phenomena in
biological systems. The ninth article considers the recently discovered, very in-
teresting phenomenon of self-organization of biological micro-tubules and mo-
tors. Finally, it would not be an exaggeration to say that the last, tenth article, is
devoted to the most remarkable and the most important example of nano-scale
self-assembly – the self-organization and behavior of DNA molecules. This
article presents a comprehensive, contemporary review of the physics of DNA.

To summarize, this book attempts to give examples of self-organization phe-
nomena on micro- and nano-scale as well as examples of the interplay between
phenomena on nano- and macro-scales leading to complex behavior in vari-
ous physical, chemical and biological systems. It is not accidental therefore
that this NATO ASI was organized in conjunction with the European School
PHYSBIO-04. Moreover, it was mainly due to the inspiration of the organiz-
ers of PHYSBIO-04 – Prof. Agnes Buka, Prof. Pierre Coullet, Prof. Lorenz
Kramer and Prof. Yves Pomeau – that the organization of the NATO ASI be-
came possible. We are very grateful to them for their enthusiasm and support.
Tragically, one of the organizers of PHYSBIO-04, Professor Lorenz Kramer,
who was one of the world leading experts in pattern formation and nonlinear
phenomena in non-equilibrium systems, suddenly passed away in April 2005,
while this book was in preparation. This was a great loss to all of us as well as
many others. This book is dedicated to his memory.

ALEXANDER A. GOLOVIN

ALEXANDER A. NEPOMNYASHCHY
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GENERAL ASPECTS OF PATTERN FORMATION

Alexander A. Nepomnyashchya and Alexander A. Golovinb
a Department of Mathematics
Technion – Israel Institute of Technology
32000 Haifa, Israel;

nepom@math.technion.ac.il

b Department of Engineering Sciences and Applied Mathematics
Northwestern University
Evanston, IL 60208, USA;

a-golovin@northwestern.edu

Abstract Pattern formation is a widespread phenomenon observed in different physical,
chemical and biological systems on various spatial scales, including the nano-
meter scale. In this chapter discussed are the universal features of pattern for-
mation: pattern selection, modulational instabilities, structure and dynamics of
domain walls, fronts and defects, as well as non-potential effects and wavy
patterns. Principal mathematical models used for the description of patterns
(Swift-Hohenberg equation, Newell-Whitehead-Segel equation, Cross-Newell
equation, complex Ginzburg-Landau equation) are introduced and some asymp-
totic methods of their analysis are presented.

Keywords: pattern formation, block copolymers, thermal convection, Swift-Hohenberg equa-
tion, pattern selection, Newell-Whitehead-Segel equation, modulational instabil-
ities, dislocations, domain walls, Cross-Newell equation, disclinations, complex
Ginzburg-Landau equation, spiral waves

1. Introduction

The spontaneous development of spatial or spatio-temporal nonuniformi-
ties under homogeneous external conditions is a characteristic feature of non-
equilibrium systems. This phenomenon is called pattern formation [1]-[3].

The most well-known example of pattern formation is Rayleigh-Benard
convection which appears when a fluid layer is uniformly heated from below
[4], [5]. When the heating is sufficiently intensive, convective motion of the
fluid is developed spontaneously: the hot fluid moves upward, and the cold
fluid moves downward. It is remarkable that near the convection onset the re-
gions of upward flow and downward flow form an ordered pattern. There are

1
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2 PATTERN FORMATION IN NANO-SYSTEMS

two kinds of patterns that are observed especially often. The first one is the
roll pattern (or stripe pattern) in which the fluid streamlines form cylinders.
These cylinders may be bent, and they may form spirals or target-like patterns
[6], [7]. Another typical pattern is the hexagonal one in which the liquid flow
is divided into honeycomb cells. For some fluids, the motion is downward in
the center of each cell and upward on the border between the cells; for other
fluids, the motion is in the opposite direction [8].

The same patterns, stripes and hexagons, appear in completely different
physical systems and on different spatial scales. For instance, stripe patterns
are observed in human fingerprints, on zebra’s skin and in the visual cortex
[9]. Hexagonal patterns result from the propagation of laser beams through
a nonlinear medium [10] and in systems with chemically reacting and diffus-
ing species [11]. In many systems the typical scale of periodic spatial struc-
tures is very small, from micro- to nanometers. Examples include hexagonal
Abrikosov vortex lattices in superconductors [12], magnetic stripe phases in
ferromagnetic garnet films [13], spatially-periodic phases of diblock-copolym-
ers [14], spatially-regular surface structures in epitaxial solid films [15], hexag-
onal arrays of nano-pores in aluminum oxide produced by anodization [16],
etc. Self-assembly of spatially regular nano-scale structures is especially im-
portant in several areas of nano-technology [17, 18].

The development of patterns is not necessarily a manifestation of a non-
equilibrium process. A spatially non-uniform state can correspond to the mini-
mum of the free-energy functional of a system in thermodynamic equilibrium,
as Abrikosov vortex lattices, stripe ferromagnetic phases and periodic diblock-
copolymer phases mentioned above. In the latter, a linear chain molecule of
a diblock-copolymer consists of two blocks, say, A and B. Above the criti-
cal temperature Tc, there is a mixture of both types of blocks. Below Tc, the
copolymer melt undergoes phase separation that leads to the formation of A-
rich and B-rich microdomains. In the bulk, these microdomains typically have
the shape of lamellae, hexagonally ordered cylinders or body-centered cubic
(bcc) ordered spheres. On the surface, one again observes stripes or hexago-
nally ordered spots.

We will explain why the above-mentioned two kinds of patterns are so wide-
spread, and the conditions of their appearance will be formulated. It should be
noted, however, that other kinds of patterns, e.g. square patterns [19] and even
quasiperiodic patterns [20] can be also observed. Moreover, there exist non-
stationary, wavy, patterns in the form of traveling [21] and standing waves
[22], rolls with alternating directions [23], traveling squares [24] etc. We will
formulate principles of pattern selection that can be applied to any system.
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2. Basic models for domain coarsening and pattern
formation

Patterns usually appear due to the instability of a uniform state. However,
such an instability does not necessarily lead to pattern formation. Let us con-
sider, e.g., phase separation of a van-der-Waals fluid near the critical point Tc.
For T > Tc, there exists only one phase, while for T < Tc, there exist two
stable phases, corresponding to gas and liquid, and an unstable phase whose
density is intermediate between those of the gas and the liquid. When an ini-
tially uniform fluid is cooled below Tc, the unstable phase is destroyed, and
in the beginning one observes a mixture of stable-phase domains, i.e. liquid
droplets and gas bubbles, which can be considered as a disordered pattern.
However, the domain size of each phase grows with time (this phenomenon is
called Ostwald ripening or coarsening). Finally, one observes a full separation
of phases: a liquid layer is formed in the bottom part of the cavity, and a gas
layer at the top. Thus, the instability of a certain uniform state is not sufficient
for getting stable patterns. Below we formulate some mathematical models
that describe both phenomena, domain coarsening and pattern formation.

Phase separation in binary alloys: Cahn-Hilliard equation

To analyse the phenomenon of domain size growth in a quantitative way, let
us consider a simpler physical system, a metallic alloy. There are two kinds of
atoms, A and B, with volume fractions φA and φB , respectively. For the sake of
simplicity, assume that the averaged volume fractions 〈φA〉 and 〈φB〉 are equal.
There exists a temperature Tc such that for T > Tc the fractions are mixed,
i.e. the order parameter φ = φA − φB vanishes anywhere, while for T <
Tc they are separated, i.e there exist two thermodynamically stable phases,
one with φ > 0 (“A-rich phase") and the other with φ < 0 (“B-rich phase").
A mathematical model of this phenomenon has been suggested by Cahn and
Hilliard [25]. From the point of view of thermodynamics, phase separation can
be described by means of the Ginzburg-Landau free energy functional

F{φ(r), T} =
∫
dr
[
1
2
(∇φ)2 +W (φ)

]
, (1)

where

W (φ) = −1
2
a(T )φ2 +

1
4
φ4. (2)

Above the critical temperature (T > Tc), a(T ) < 0, and the functionW (φ) has
a unique minimum at φ = 0. Below the critical temperature (T < Tc), a(T ) >
0, so that the function W (φ) has the maximum at φ = 0, which corresponds
to an unstable phase, and two minima φ = ±φe(T ), φe(T ) =

√
a(T ), which

correspond to stable, A-rich and B-rich, phases; see Fig.1.
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above the critical temperature below the critical temperature

 

−φ φ e e

A−rich phase B−rich phase 

W W

φ φ 

Figure 1. Free energy density of a binary system as a function of the order parameter above
and below the critical temperature.

Because of the conservation of the total number of atoms of each phase, the
equation that describes the evolution of the order parameter φ(r, t), has the
form of the conservation law,

∂φ

∂t
+∇ · j = 0, (3)

where j is the flux of the order parameter. The Cahn-Hilliard model is based
on the assumption

j = −M(φ)∇δF

δφ
, (4)

where M(φ) is a positive function, and

δF

δφ
= −∇2φ− a(T )φ+ φ3 (5)

is the variational derivative of the functional (1). For the sake of simplicity, let
us take M(φ) = 1, a = 1; then the kinetics of the phase separation is described
by the Cahn-Hilliard equation

∂φ

∂t
= ∇2(−φ+ φ3 − ∇2φ). (6)

Consider first the one-dimensional version of equation (6),

φt = (−φ+ φ3 − φxx)xx (7)
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in an infinite domain −∞ < x < ∞. It is assumed that φ is bounded, and the
mean value 〈φ〉 = 0.

Equation (7) has a set of solutions that do not depend on time. These solu-
tions satisfy the ordinary differential equation (ODE)

(−φ+ φ3 − φxx)xx = 0. (8)

Integrating (8) twice, we find

−φ+ φ3 − φxx = Ax+B,

where A and B are constants. The conditions of boundness and vanishing
mean value prescribe the choice A = B = 0. Note that the equation

−φ+ φ3 − φxx = 0

is equivalent to
δF

δφ
= 0,

so all the solutions of that equation correspond to extrema (but not necessarily
minima) of the free energy functional F . One more integration leads to the
relation

φ2x
2
+
φ2

2
− φ4

4
= E, (9)

where E is a constant. Equation (9) is formally equivalent to the energy con-
servation law of a particle with unit mass in the potential U(φ) = φ2/2−φ4/4.
The phase portrait corresponding to such a particle is shown in Fig.2.

The bounded solutions can be separated into three groups:
1. Constant solutions. Solutions φ = 0 (E = 0) and φ = ±1 (E = 1/4)
correspond to uniform phases, unstable and stable, respectively.
2. Periodic solutions. For any 0 < E < 1/4 there exist periodic solutions
which correspond to a layered pattern with the alternating sign of φ. The solu-
tions can be described analytically by means of Jacobi elliptic sine-functions.
3. Separatrices. For E = 1/4, in addition to the solutions φ = ±1, which
correspond to saddle points in the phase plane (φ, φx), there exist two families
of solutions

φ(x) = ± tanh x− x0√
2

(10)

which correspond to domain walls between the phases φ = ±1.
In the course of evolution governed by the Cahn-Hilliard equation (7), the

system tends to an attracting stationary state which corresponds to a minimum
of the Ginzburg-Landau functional. In order to distinguish between this sta-
tionary state and all other stationary solutions, it is necessary to investigate the
stability of all the solutions listed in the previous paragraph.
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−1
10

φ 

φ 

x

unstable
homogeneous
phase

stable homogeneous 

phase

stable homogeneous 

phase

unbounded
solutions

Figure 2. Phase portrait of a system described by eq.(9).

It is easy to check the linear stability of solutions corresponding to uniform
phases. Linearizing equation (7) around the solution φ = 0, i.e. taking φ = φ̃,
|φ̃| � 1, we get

φ̃t = −φ̃xx − φ̃xxxx.

For the normal modes,

φ̃ = exp[ikx+ σ(k)t],

we find
σ(k) = k2 − k4. (11)

This dispersion relation is shown in Fig.3.
Thus, the uniform phase φ = 0 is unstable (σ(k) > 0) with respect to suffi-
ciently long-wave disturbances, |k| < 1. The disturbance with km = 1/

√
2

has the maximum growth rate, σm = σ(km) = 1/4.
Linearizing equation (7) around the solutions φ = ±1, i.e. taking φ =

±1 + φ̃, we get
φ̃t = 2φ̃xx − φ̃xxxx

and hence σ(k) = −2k2 − k4 < 0 for any k �= 0 (the disturbance with k = 0
violates the condition 〈φ̃〉 = 0). Hence, the uniform phases are linearly stable.
However, the mean value of φ is different from 0 for those phases. Therefore,
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k
m

k1

σ 

 0

long−wave instability 

Figure 3. Dispersion relation (11).

the decomposition of the unstable phase φ = 0 cannot lead to the development
of each of the uniform states in the whole space.

Similarly, it can be shown that the domain wall solutions are (neutrally)
stable, while all the spatially periodic solutions are unstable [26]. The unstable
mode corresponds to a collective motion of pairs of domain walls towards each
other [27]. This motion leads finally to the collision and annihilation of two
domain walls, which leads to the doubling of the structure period, see Fig.4.
Kawahara and Ohta [27] have also derived the equations of motion for arbitrary
(not necessarily periodic) systems of interacting domain walls that are valid
when the distances between the walls are sufficiently large (see also [28]). The
time evolution of the structure leads eventually to a state with one domain wall,
i.e. to complete phase separation. Note that the rate of the domain coarsening
is very slow: for large distances between domain walls, their velocities are
exponentially small, and the average distance L(t) between adjacent domain
walls grows as ln t.

For two- and three-dimensional Cahn-Hilliard equations, there are no sta-
ble spatially periodic solutions as well, and the development of stable spatially
nonuniform patterns is impossible. The evolution leads to the complete sepa-
ration of phases. The growth law of the domain size L is t1/3 [29], [30]. This
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a)

b)

c)

COARSENING

Figure 4. Motion of domain walls during the coarsening process described by the Cahn-
Hilliard equation.

power law is a manifestation of the self-similarity of the coarsening process
(for more details, see [31], [32]).

Phase separation in diblock copolymer melts: modified
Cahn-Hilliard equation

Let us apply the idea of the Cahn-Hilliard approach to a diblock copolymer,
where φA and φB are now the reduced local densities of monomers A and B
which are chemically bonded in the diblock-copolymer linear chain molecule.
As before, we shall assume that 〈φA〉 = 〈φB〉, and use φ = φA−φB (〈φ〉 = 0)
as the order parameter. It has been shown [33]-[35] that the long-range inter-
action of monomers in a copolymer chain can be described by an additional
nonlocal term in the Ginzburg-Landau free energy functional:

F{φ} =
∫
dr
[
1
2
(∇φ)2 − φ2

2
+
φ4

4

]
+
Γ
2

∫
drdr′φ(r)G(r, r′)φ(r′), (12)

where Γ is a constant and G is the Green’s function for the Laplace equation,

∇2G(r, r′) = −δ(r − r′), (13)
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with appropriate boundary conditions. Substituting (12), (13) into (3), (4), one
obtains the following modification of the Cahn-Hilliard equation:

∂φ

∂t
= ∇2(−φ+ φ3 − ∇2φ)− Γφ, 〈φ〉 = 0. (14)

For Γ = 0, the standard Cahn-Hilliard equation is recovered.
If Γ �= 0, the only stationary uniform solution is φ = 0. The stability of this

solution is determined by the linearized equation for the disturbance φ̃,

φ̃t = −∇2φ̃− ∇4φ̃− Γφ̃.
For the normal mode

φ̃ = exp[ik · r+ σ(k)t],

one obtains
σ(k) = k2 − k4 − Γ. (15)

Note that because of the rotational invariance of the problem (14) the growth
rate depends only on the modulus of the wavevector k = |k| but not on its
orientation.

k
c

Ο(ε)

Ο(ε2)

stability: Γ>Γ c

Γ=Γ − ε 2
c

Γ=Γ c =1/4

neutral stability 

σ 

k

short−wave instability 

Figure 5. Dispersion relation (15) for different values of Γ.

One can see that for Γ > Γc = 1/4, σ(k) < 0 for any k, therefore the
uniform phase φ = 0 is stable. The instability appears when Γ becomes less
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than Γc. If Γ = Γc − ε2, 0 < ε � 1, the growth rate σ(k) > 0 in a nar-
row interval of k, k− < k < k+ around the critical value kc = 1/

√
2, see

Fig.5. Thus, there appears a short-wave instability. The length of this interval
is Δk = k+ − k− = O(ε), while the maximum growth rate σ(kc) = O(ε2).
In the plane of the wavevector’s components (kx, ky) the instability region is
the ring k2− < k2x + k2y < k2+; see Fig.6. Note that equation (14) can also be
written in the form

∂φ

∂t
= ε2φ−

(
1
2
+∇2

)2

φ+∇2φ3. (16)

k
x

k
y

k
+k

−

σ<0
σ>0

Figure 6. Ring of unstable wavenumbers in the Fourier plane.

Let us emphasize that there are no other spatially uniform stationary solu-
tions except φ = 0. Thus, when the latter solution is unstable, the system
tends to a non-uniform state, i.e. pattern formation takes place. A direct sim-
ulation shows that stripe patterns are formed [36], with the stripes wavelength
near 2π/kc. Note that because of the rotational invariance of problem (14) the
orientation of the stripes is arbitrary. Initially, a disordered system of stripes
is developed from random initial conditions, and then some large domains are
developed with a definite orientation of stripes inside each domain. The mean
domain size grows with time, i.e. domain coarsening takes place for differently
oriented stripe patterns rather than for different uniform phases.
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Heat convection patterns: Swift-Hohenberg equation

We shall use one more model similar to (16) but with a simpler nonlinear
term:

∂φ

∂t
= ε2φ− (1 +∇2

)2
φ− φ3. (17)

Equation (17) has been suggested by Swift and Hohenberg [37] as a model for
the description of convective pattern in a fluid layer heated from below. Here
φ is the order parameter proportional to the vertical fluid velocity, and ε2 is
proportional to the difference between the actual temperature drop across the
layer and its critical value corresponding to the instability threshold. Numerical
simulations show that pattern formation in the framework of equation (17) is
fully similar to that described by equation (16) [36]. The growth rate of the
disturbance with the wavevector k = (kx, ky) is determined by

σ(kx, ky) = ε2 − (1− k2)2, (18)

hence it is positive inside the ring k2− < k2 < k2+, where k2± = 1± ε. Because
of its relative simplicity, we shall use equation (17) as the basic model for the
description of pattern selection.

3. Pattern selection

As noticed above, in the case of a rotationally invariant problem, linear sta-
bility theory predicts the growth of disturbances with arbitrary directions of
wavevectors. One could expect that the generation of disturbances with differ-
ent orientations would produce a spatially disordered state (weak turbulence
[38] or turbulent crystal [39]). We shall see however that the strong nonlinear
interaction between disturbances typically leads to the selection of spatially
ordered patterns.

Selection of roll patterns

Let us consider the Swift-Hohenberg (SH) equation (17) in the case 0 <
ε � 1. It is natural to expect that the nontrivial solutions of this equation will
be proportional to the square root of the governing parameter ε2, i.e. φ = O(ε).
Also, because the maximum value of the linear growth rate σm = ε2, we can
expect that, at least at the linear stage of growth, the characteristic time scale
of growing disturbances is T = ε2t. Let us look for bounded solutions of
equation (17) in the infinite region r ∈ R2 in the form:

φ(r, t) = ε(φ1(r, T ) + ε2φ3(r, T )) + . . . . (19)

We substitute (19) into (17) and take into account that ∂/∂t = ε2∂/∂T .
To leading order, O(ε), we find:

−(1 +∇2)2φ1 = 0. (20)
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A bounded solution can be described as a sum (integral) of a finite (infinite)
number of plane waves with wavevectors kn, |kn| = 1. Below, we shall as-
sume that the number of plane waves is finite. Because the order parameter φ
is real, we get

φ1(r, T ) =
N∑
n=1

[
An(T )eikn·r +A∗

n(T )e
−ikn·r

]
, (21)

where ∗ denotes complex conjugate. The particular cases N = 1, N = 2
and N = 3 correspond to roll, square and hexagonal patterns, respectively; see
Fig.7.

ROLLS: N=1
k 1

SQUARES: N=2
k 1

k 2

90 o

k 2

k 3

120 o

120 o

120 o

HEXAGONS: N=3

k 1

Figure 7. Wavevector systems corresponding to roll, square and hexagonal patterns.

At order O(ε3), the following equation is obtained:

−(1 +∇2)2φ3 =
∂φ1
∂T

− φ1 + φ31. (22)

Equation (22) has a bounded solution only if the function on the right-hand
side, L+NL, where

L =
N∑
n=1

[(
dAn(T )
dT

−An(T )
)
eikn·r +

(
dA∗

n(T )
dT

−A∗
n(T )

)
e−ikn·r

]
,
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and

NL =
N∑
l=1

N∑
p=1

N∑
q=1

[
Al(T )eikl·r +A∗

l (T )e
−ikl·r

]
×
[
Ap(T )eikp·r +A∗

p(T )e
−ikp·r

] [
Aq(T )eikq ·r +A∗

q(T )e
−ikp·r

]
,

has no Fourier components corresponding to the wavevectors k on the circle
|k| = 1. Let us collect all the terms that contain exp(ikn · r) for a definite n.
The contribution of the linear expression L is obvious. The nonlinear expres-
sion NL contains three terms of the form A2

nA
∗
n exp(ikn · r), and 6(N − 1)

terms of the form AnAmA
∗
m exp(ikn · r), m �= n; see Fig.8. The sum of all

these terms for each n has to vanish, thus we get a set of amplitude equations

dAn

dT
−An + 3A2

nA
∗
n + 6

∑
m�=n

AnAmA
∗
m = 0, n = 1, . . . , N,

or
dAn

dT
= (1− 3|An|2 − 6

∑
m�=n

|Am|2)An. (23)

kn

kn−kn

kn

km

−km

Figure 8. Wavevector arrangements corresponding to self-interaction (left) and cross-
interaction (right) terms in the amplitude equation (23).

If we present the complex amplitudes in the form An = Rn exp(iθn), n =
1, . . . , N , we find that the phases do not change with time,

dθn
dT

= 0, (24)

while the time evolution of real amplitudes is governed by the following system
of equations:

dRn

dT
= (1− 3R2

n − 6
∑
m�=n

R2
m)Rn, n = 1, . . . , N. (25)

The latter equation can be written in the form

dRn

dT
= −dU(R1, . . . , RN )

dRn
, (26)
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where the Lyapunov function

U(R1, . . . , Rn) =
N∑
n=1

⎛⎝−R2
n

2
+
3R4

n

4
+
∑
m�=n

3R2
nR

2
m

2

⎞⎠ (27)

decreases monotonically in time for any (R1, . . . , Rn) except for the stationary
points of the dynamical system (25):

dU(R1, . . . , Rn)
dt

=
N∑
n=1

dU(R1, . . . , RN )
dRn

dRn

dT
= −

N∑
n=1

(
dRn

dT

)2

< 0

except for the points where all the derivatives dRn/dT vanish. Thus, the time
evolution leads generally to a (local) minimum of the function U(R1, . . . , Rn)
which corresponds to a stable stationary solution of the system (25). The sta-
tionary solutions that correspond to maxima or saddle points ofU , are unstable.

As an example, let us consider the particular case N = 2, k2 ⊥ k1. Without
loss of generality, we can assume θ1 = θ2 = 0, because the values of θn can
be changed arbitrarilly by shifting the origin in the plane of r. The system (25)
has the following stationary points:
(i) R1 = R2 = 0, i.e. φ1 = 0 (no convection);
(ii) R1 = 1/

√
3, R2 = 0, i.e. φ1 = (2/

√
3) cos(k1 · r) (rolls with axes

perpendicular to k1);
(iii) R1 = 0, R2 = 1/

√
3, i.e. φ1 = (2/

√
3) cos(k2 · r) (rolls with axes

perpendicular to k2);
(iv) R1 = R2 = 1/3, i.e. φ1 = (2/3)[cos(k1 · r) + cos(k2 · r)] =
(4/3) cos[(k1 + k2)/2] cos[(k1 − k2)/2] (square patterns).

It can be shown that solution (i) corresponds to a maximum of U(R1, R2),
and solution (iv) corresponds to a saddle point, and these solutions are unstable.
Roll solutions (ii) and (iii) correspond to local minima ofU(R1, R2), and these
solutions are stable. The corresponding phase portrait is shown in Fig.9a.

A similar analysis can be carried out in the general case. One can show
that solutions rn = (1/

√
3)δnm n = 1, . . . , N for any m, m = 1, . . . , N ,

which correspond to rolls of different orientation, are stable, while all other
stationary solutions are unstable. Generally, the same result on the stability
of roll patterns and instability of any other patterns is obtained for the more
general system,

dRn

dT
= (1−MnnR

2
n −Mnm

∑
m�=n

R2
m)Rn, n = 1, . . . , N. (28)

where Mnm are elements of a symmetric matrix satisfying the conditions

M11 =M22 = . . . =Mnn > 0; Mnm > Mnn, m �= n (29)
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quescent state (i) roll pattern (ii)

roll pattern (iii)

square pattern (iv)

R 2

R 1

R 2

R 1

quescent state (i) roll pattern (ii)

roll pattern (iii)

square pattern (iv)

(a) (b)

Figure 9. Phase portrait of the system (25) for N=2 corresponding to the selection of (a) roll
patterns; (b) square patterns.

(see [40]). Condition (29) means that the growth of each amplitude Rn is more
strongly suppressed by the action of other amplitudes Rm, m �= n than by a
self-action. In other words, the problem (28), which can be also written as

dIn
dT

=
1
2
(1−MnnIn −Mnm

∑
m�=n

Im)In, n = 1, . . . , N, (30)

where In = R2
n ≥ 0, belongs to the class of problems of competition of species

[9]. Because of the competitive nonlinear interaction, only one species, i.e. a
particular roll pattern, survives at large T .

Selection of square patterns

If condition (29) is violated, more complicated patterns may appear. As an
example, let us consider the Gertsberg-Sivashinsky equation that was derived
in the problem of Rayleigh-Benard convection in a layer between weakly con-
ducting boundaries [41],

∂φ

∂t
= ε2φ− (1 +∇2

)2
φ+∇ · (|∇φ|2∇φ). (31)

Here, the order parameter φ has the meaning of the mean temperature across
the layer. Let us repeat the analysis done in the previous subsection for the
SH equation. For the sake of simplicity, let us consider the interaction of two
orthogonal roll systems taking N = 2 in (21) and assuming k1 ⊥ k2:

φ1 =
(
A1e

ik1·r +A∗
1e

−ik1·r
)
+
(
A2e

ik2·r +A∗
2e

−ik2·r
)
,

k21 = k22 = 1, k1 · k2 = 0.
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Substituting

∇φ1 = ik1

(
A1e

ik1·r −A∗
1e

−ik1·r
)
+ ik2

(
A1e

ik2·r −A∗
2e

−ik2·r
)
,

|∇φ1|2 = −
(
A2
1e

2ik1·r − 2|A1|2 +A∗2
1 e

−2ik1·r
)

−
(
A2
2e

2ik2·r − 2|A2|2 +A∗2
2 e

−2ik2·r
)

into the right-hand side of the equation for φ3, we find the following solvability
conditions:

dA1

dT
= (1− 3|A1|2 − 2|A2|2)A1;

dA2

dT
= (1− 3|A2|2 − 2|A1|2)A2, (32)

or
dR1

dT
= (1− 3R2

1 − 2R2
2)R1;

dR2

dT
= (1− 3R2

2 − 2R2
1)R2, (33)

where we use the polar form of the complex amplitudes, An = Rn exp(iθn),
n = 1, 2. Note, that now the non-diagonal elements M12 = M21 = 2 of
the matrix M defined by (28) are smaller than the diagonal elements M11 =
M22 = 3, hence condition (29) is violated. As in the case of the SH equation,
we obtain 4 stationary solutions: (i) R1 = R2 = 0 (quiescent state); (ii)
R1 = 1/

√
3, R2 = 0 (rolls); (iii) R1 = 0, R2 = 1/

√
3 (rolls); (iv) R1 =

R2 = 1/
√
5 (squares). Now, however, solutions (ii) and (iii) are saddle points,

while the solution (iv) is a stable node. The relation M12 < M11 corresponds
to the case of symbiosis of species [9]. Hence, the stable stationary state is
characterized by a “symbiosis" of two rolls systems, i.e. it is a square pattern.
The corresponding phase portrait is shown in Fig.9b.

Selection of hexagonal patterns

Generally, one can expect the selection of hexagonal patterns due to the
“symbiotic" mechanism described above in the case where the nonlinear inter-
action coefficient Mmn is smaller than Mnn for wavevectors km and kn with
a 60◦ angle between them. However, the ubiquity of hexagonal patterns has
another explanation. In order to describe it, let us consider some modifications
of the models described in Section 2.

Diblock copolymers with different lengths of components chains. If the
chain lengths of the A and B monomers are different, 〈φA〉 �= 〈φB〉, then 〈φ〉 =
〈φA − φB〉 = β �= 0. Ohta and Kawasaki [34] showed that the expression for
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the free energy functional (12) has to be modified in the following way:

F{φ} =
∫
dr
[
1
2
(∇φ)2 − φ2

2
+
φ4

4

]
+

Γ
2

∫
drdr′[φ(r)− β]G(r, r′)[φ(r′)− β], (34)

hence
∂φ

∂t
= ∇2(−φ+ φ3 − ∇2φ)− Γ(φ− β), 〈φ〉 = β. (35)

Define ψ = φ− β and rewrite equation (35) in the form

∂ψ

∂t
= ∇2[−∇2ψ + (3β2 − 1)ψ + 3βψ2 + ψ3]− Γψ. (36)

The crucial difference between equation (36) and equation (14) is the appear-
ance of a quadratic nonlinear term violating the symmetry between ψ and −ψ.
Below we shall see that this term is the origin of the generation of hexagonal
patterns.

Non-Boussinesq convection. The Swift-Hohenberg model (17) is appropri-
ate for the description of the so-called Boussinesq convection [42], when the
dependence of thermophysical fluid parameters on temperature is disregarded.
If this dependence is taken into account, a quadratic nonlinearity appears in
the amplitude equations [43]. We shall use the following phenomenological
modification of the SH equation for non-Boussinesq convection:

∂φ

∂t
= γφ− (1 +∇2

)2
φ+ αφ2 − φ3. (37)

The coefficient α characterizing the non-Boussinesq properties of the fluid can
have either sign. Also, we shall consider the system both above the linear
instability threshold (γ > 0) and below that threshold (γ < 0).

Amplitude equations for hexagonal patterns. Let us consider model (37)
with |α| � 1 and γ = Γα2, Γ = O(1). We assume that the characteristic time
scale is T = α2t, hence ∂/∂t = α2∂/∂T , and construct the solution in the
form φ = αφ1 + α3φ3 + . . ..

Again, to leading order O(α) we obtain equation (20),

−(1 +∇2)2φ1 = 0.

We are interested in a specific solution of that equation,

φ1(r, T ) =
3∑

n=1

[
An(T )eikn·r +A∗

n(T )e
−kn·r

]
, (38)
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where the angle between the unit vectors kn, n = 1, 2, 3, is 120◦, so that

k1 + k2 + k3 = 0. (39)

At order O(α3) we obtain the following equation:

−(1 +∇2)2φ3 =
∂φ1
∂T

− Γφ1 − φ21 + φ31. (40)

Because of the relations

(−k2) + (−k3) = k1, (−k3) + (−k1) = k2, (−k1) + (−k2) = k3,

the quadratic nonlinear term on the right-hand side of (40) generates additional
quadratic terms in the solvability conditions. For instance, the condition of
vanishing of the Fourier component of the right-hand side with the wavevector
k1 leads to the following amplitude equation:

dA1

dT
= ΓA1 + 2A∗

2A
∗
3 − 3|A1|2A1 − 6(|A2|2 + |A3|2)A1. (41)

Two additional amplitude equations are obtained from (41) by the cyclic per-
mutation of the subscripts 1, 2 and 3:

dA2

dT
= ΓA2 + 2A∗

3A
∗
1 − 3|A2|2A2 − 6(|A3|2 + |A1|2)A2, (42)

dA3

dT
= ΓA3 + 2A∗

1A
∗
2 − 3|A3|2A3 − 6(|A1|2 + |A2|2)A3. (43)

The system (41)-(43) can be written as

dAn

dT
= − dU

dA∗
n

, n = 1, 2, 3, (44)

where the Lyapunov function

U(A1, A
∗
1, A2, A

∗
2, A3, A

∗
3) =

3∑
n=1

(
−Γ|An|2 + 32 |An|4

)
(45)

−2(A1A2A3 +A∗
1A

∗
2A

∗
3) + 3(|A1|2|A2|2 + |A1|2|A3|2 + |A2|2|A3|2)

(An and A∗
n are considered as independent variables). It can be shown that

dU/dT ≤ 0, and dU/dT = 0 only for a stationary solution.

Stationary solutions. Let us consider the stationary solutions of the system
of amplitude equations (41)-(43), and their stability.
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Quiescent state. The solution A1 = A2 = A3 = 0 corresponds to the
quiescent state (no convection). The linearized equations for disturbances are:

dÃ1

dT
= ΓÃ1,

dÃ2

dT
= ΓÃ2,

dÃ3

dT
= ΓÃ3. (46)

For normal modes,
Ã1, Ã2, Ã3 ∼ eσT ,

the eigenvalue σ = Γ, hence the quiescent state is stable for Γ < 0 and unstable
for Γ > 0.

Rolls. Consider the solution A1 =
√
Γ/3 exp iθ1, A2 = A3 = 0. This

solution exists only for Γ > 0. Linearizing the system (41)-(43) around this
solution, we find that the system splits into two sub-systems: a separate equa-
tion for Ã1, and a coupled system of equations for Ã2 and Ã3. The equation
for Ã1 is

dÃ1

dT
= ΓÃ1 − 6|A1|2Ã1 − 3A2

1Ã
∗
1. (47)

Substituting the expression for A1 and define Ã1 = a1 exp iθ1, we get

da1
dT

= −Γ(a1 + a∗
1). (48)

Thus, the real (amplitude) disturbance decays with the rate σ = −2Γ, while
the imaginary (phase) disturbance is neutral: σ = 0. The neutral disturbance
corresponds to an infinitesimal change of the phase θ1, i.e. a spatial shift of the
rolls system as a whole. The system of equations for Ã2 and Ã3 reads:

dÃ2

dT
= ΓÃ2 + 2A∗

1Ã
∗
3 − 6|A1|2Ã2, (49)

dÃ3

dT
= ΓÃ3 + 2A∗

1Ã
∗
2 − 6|A1|2Ã3. (50)

Taking the complex conjugate of (50) and assuming

Ã2, Ã
∗
3 ∼ eσT ,

we find that the resulting algebraic system has a nontrivial solution if

(Γ− 6|A1|2 − σ)2 − 4|A1|2 = 0,
hence

σ = −Γ± 2
√
Γ/3. (51)

Thus, the rolls are unstable in the interval 0 < Γ < Γ1 and become stable for
Γ > Γ1, where Γ1 = 4/3.
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Obviously, the same result is obtained for the two other rolls solutions, (i)
A2 =

√
Γ/3 exp iθ2, A3 = A1 = 0 and (ii) A3 =

√
Γ/3 exp iθ3, A1 = A2 =

0.
So, in the interval 0 < Γ < Γ1 neither quiescent state nor roll patterns are

stable. One has to investigate other critical points of the Lyapunov function
(45).

Hexagons. Let us now assume that all the amplitudes An, n = 1, 2, 3 are
not equal to zero, and present them in the form An(T ) = Rn(T ) exp[iθn(T )].
Equation (41) gives rise to the following equations for the real functions:

dR1

dT
= (Γ− 3R2

1 − 6R2
2 − 6R2

3)R1 + 2R2R3 cos(θ1 + θ2 + θ3), (52)

R1
dθ1
dT

= −2R2R3 sin(θ1 + θ2 + θ3). (53)

Four additional equations are obtained by the cyclic permutation of the sub-
scripts 1, 2, and 3.

Note that due to the quadratic terms in the amplitude equations, the phases
θn, n = 1, 2, 3 are not constant. Adding the equations for θn and denoting
Θ = θ1 + θ2 + θ3, we obtain the following equation for the time evolution of
Θ which describes the phase synchronization of the roll subsystems:

dΘ
dT

= −Q sinΘ, (54)

where

Q =
2R2R3

R1
+
2R3R1

R2
+
2R1R2

R3
> 0. (55)

There are two different stationary solutions of equation (54),Θ = 0 andΘ = π
(adding 2πnwith integer n toΘ does not change the planform of φ1). Lineariz-
ing the equation for a disturbance Θ̃, we find that

dΘ̃
dT

= −Q cosΘ · Θ̃. (56)

Hence, the invariant manifold Θ = 0 is attracting, while the manifold Θ = π
is repelling. Below, we shall consider the dynamics on the manifold Θ = 0:

dR1

dT
= (Γ− 3R2

1 − 6R2
2 − 6R2

3)R1 + 2R2R3; (57)

two additional equations are obtained by the cyclic permutation of the sub-
scripts 1, 2, and 3.
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There is a stationary solution which corresponds to a hexagonal pattern:
R1 = R2 = R3 ≡ R, where R satisfies the equation

15R2 − 2R− Γ = 0. (58)

Taking into account that R > 0 by definition, we find that there are two
branches of solutions:

R+ =
1 +

√
1 + 15Γ
15

, Γ ≥ Γ2 = − 1
15

(59)

and

R− =
1− √

1 + 15Γ
15

, Γ2 ≤ Γ < 0. (60)

At the point Γ = Γ2, both branches merge, R+ = R− = 1/15.
Let us now consider the stability of the hexagons on the manifold Θ = 0.

Linearizing (57) and the other two dynamic equations, we obtain the following
system for the evolution of disturbances:

dR̃1

dT
= a+b(R̃2+R̃3),

dR̃2

dT
= a+b(R̃3+R̃1),

dR̃3

dT
= a+b(R̃1+R̃2), (61)

where
a = −2R− 6R2, b = 2R− 12R2. (62)

For the normal modes, Rn ∼ exp(σT ), we obtain the relation:

σ3 − 3aσ2 + 3(a2 − b2)σ − (a− b)2(a+ 2b) = 0. (63)

According to the Descartes rule, all the roots of (63) are negative, so that the
hexagons are stable, if the following conditions are satisfied: (i) −3a > 0; (ii)
3(a2 − b2) > 0; (iii)−(a− b)2(a+ 2b) > 0.

Condition (i) is satisfied for any R > 0. Substituting (62) into condition (ii),
we find R < 2/3; the latter inequality is satisfied for the upper branch (59), if
Γ < Γ3 = 16/3, as well as for the entire lower branch (60). The condition (iii)
gives R > 1/15, hence the lower branch is unstable. Finally, we obtain that
the upper branch is stable in the interval Γ2 < Γ < Γ3, where Γ2 = −1/15,
Γ3 = 16/3. The bifurcation diagram showing stable and unstable branches is
shown in Fig.10.

Because Γ2 < 0, both the quiescent state and the upper branch of hexagons
are stable, i.e. provide a local minimum of the Lyapunov function U , in the
interval Γ2 < Γ < 0. Thus, the transition between the quiescent state and the
hexagonal pattern in the presence of a cubic term in the Lyapunov function is
similar to a first order phase transition which takes place in the presence of a
cubic term in the free energy Ginzburg-Landau functional [44], in contradis-
tinction to the transition between the quiescent state and the roll pattern in the



22 PATTERN FORMATION IN NANO-SYSTEMS
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IS STABLE

Figure 10. Bifurcation diagram of an equilateral hexagonal pattern with the amplitude de-
scribed by eq.(58).

absence of a cubic term in the Lyapunov function, which is similar to a second
order phase transition. The lower branch of hexagons corresponds to a saddle
point. Its stable manifold separates the attraction basins of two stable nodes
corresponding to the quiescent state and to the upper branch of hexagons.

Recall that the roll pattern becomes stable for Γ > Γ1 = 4/3. Hence, in
the interval Γ1 < Γ < Γ3 the Lyapunov function has 4 local minima, three of
them correspond to three types of roll patterns, and one of them corresponds
to hexagons. The basins of attractions between them are separated by stable
manifolds of some additional saddle-point stationary solutions, corresponding
to squares (e.g. R1 = R2 �= 0, R3 = 0) and “skewed hexagons" (e.g. R1 =
R2 �= R3 �= 0). Finding the latter solutions is suggested to the readers as an
exercise.

4. Modulated patterns

In the previous section, we considered perfectly periodic patterns with a
discrete set of basic wavevectors satisfying the condition |kn| = 1 for any n.
Recall that the set of wavevectors corresponding to unstable modes is actually
a ring which contains a continuum of wavevectors. In the present section, we
shall discuss a wider class of solutions corresponding to large-scale modula-
tions of periodic patterns.
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Newell-Whitehead-Segel equation

Let us return to the standard Swift-Hohenberg equation (17),

∂φ

∂t
= ε2φ− (1 +∇2

)2
φ− φ3,

and consider a roll pattern with the basic wavevector k = (1, 0). As we know,
the roll pattern is stable with respect to disturbances with other wavevectors
kn, |kn| = 1. The analysis done in the previous section used implicitly the
assumption that the difference between the wavevectors k and kn is O(1), i.e.
the angle between them is O(1). Now we shall take into account the possibility
of large-scale distortion of patterns by means of disturbances with wavevectors
close to each other. For this goal, we shall apply multiscale analysis. The ring
of unstable modes, 1− ε < k2x+ k2y < 1+ ε, around the point kx = 1, ky = 0
has width O(ε) in the x-direction and width O(ε1/2) in the y-direction, as
shown in Fig.11. Therefore, it is natural to assume that the function φ depends
on the following scaled variables:

x0 = x, x1 = εx, y1/2 = ε1/2y. (64)

The Fourier transform of such a function will be concentrated around the in-
stability ring. As in the previous section, we shall use the scaled time variable
T = ε2t.

Following the idea of multiscale expansions (see, e.g., [45]), we substitute

∂

∂x
=

∂

∂x0
+ ε

∂

∂x1
,
∂

∂y
= ε1/2

∂

∂y1/2
,
∂

∂t
= ε2

∂

∂T

into (17) and obtain:

ε2
∂φ

∂T
= ε2φ−

[
1 +

∂2

∂x20
+ ε

(
2

∂2

∂x0∂x1
+

∂2

∂y21/2

)
+ ε2

∂2

∂x21

]2
φ− φ3.

(65)
Now we substitute the solution in the form

φ = εφ1 + ε2φ2 + ε3φ3 + . . . , (66)

and demand boundness with respect to all the variables at each order.
At order ε, we obtain:

−
(
1 +

∂2

∂x20

)2

φ1 = 0. (67)

The most general bounded solution of this equation,

φ1 = A(T, x1, y1/2)e
ix0 +A∗(T, x1, y1/2)e−ix0 , (68)
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Figure 11. Ring of unstable modes in the Fourier plane and regions corresponding to spatial
modulations in different directions on different scales.

describes a large-scale modulation of a roll pattern.
In the order ε2, we get:

−
(
1 +

∂2

∂x20

)2

φ2 = 2

(
2

∂2

∂x0∂x1
+

∂2

∂y21/2

)(
1 +

∂2

∂x20

)
φ1. (69)

Because (
1 +

∂2

∂x20

)
φ1 = 0,

the right-hand side of (69) vanishes, so that the equation is always solvable,
and its solution is similar to (68):

φ2 = B(T, x1, y1/2)e
ix0 +B∗(T, x1, y1/2)e−ix0 .

Finally, at order ε3, taking into account that(
1 +

∂2

∂x20

)
φ1 =

(
1 +

∂2

∂x20

)
φ2 = 0,

we obtain:

−
(
1 +

∂2

∂x20

)2

φ3 =
∂φ1
∂T

− φ1 + φ31 +

(
2

∂2

∂x0∂x1
+

∂2

∂y21/2

)2

φ1. (70)
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The term proportional to exp ix0 on the right-hand side of (70) must vanish,
otherwise the solution of (70) will not be bounded as x0 → ±∞. That gives
us the following evolution equation for the envelope function A(T, x1, y1/2),
which is called the Newell-Whitehead-Segel (NWS) equation [46, 47]:

∂A

∂T
= A− 3|A|2A−

(
2i

∂

∂x1
+

∂2

∂y21/2

)2

A. (71)

Rescaling the variables,

a = A
√
3, X = x1/2, Y = y1/2/

√
2, (72)

we transform the NWS equation to its standard form:

∂a

∂T
= a− |a|2a+

(
∂

∂X
− i

2
∂2

∂Y 2

)2

a. (73)

Equation (73) is not specific for patterns described by the Swift-Hohenberg
equations, but is generic for any patterns generated by a short-wave monotonic
instability in a rotationally invariant system. Therefore, all the results obtained
below by means of that equation, are generic.

The NWS equation can be written in the form

∂a

∂T
= − δF

δa∗ , (74)

where the Lyapunov functional is defined as

F =
∫
dr

[
1
2
(|a|2 − 1)2 +

∣∣∣∣( ∂

∂X
− i

2
∂2

∂Y 2

)
a

∣∣∣∣2
]
. (75)

Note that

dF

dT
=
∫
dr
(
δF

δa

∂a

∂T
+

δF

δa∗
∂a∗

∂T

)
= −2

∫
dr
∣∣∣∣ ∂a∂T

∣∣∣∣2 ≤ 0. (76)

Therefore, the system tends to a stationary solution and has no time-periodic
or chaotic solutions.

Modulational instabilities of rolls

Equation (74) has a family of stationary solutions which do not depend on
Y :

a = aK(X) =
√
1−K2eiK(X−X0), −1 < K < 1, (77)
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where X0 is an arbitrary constant. For the sake of simplicity, choose X0 = 0.
Taking into account the relations (72), we find that the corresponding order-
parameter field is

φ1 = Aeix0 +A∗e−ix0 = 2
√
3
√
1−K2 cos

(
x0 +

1
2
Kx1

)
= 2

√
3(1−K2) cos

[(
1 +

1
2
Kε

)
x

]
.

Thus, these solutions correspond to roll solutions with wavenumbers

k = 1 +Kε/2, −1 < K < 1 (78)

inside the instability interval, generally different from 1.
Let us investigate the stability of roll solutions in the framework of the NWS

equation. Linearizing equation (73) around the solution (77), we obtain the
following equation:

dã

dT
= −(1− 2K2)ã− (1−K2)ã∗e2iKX +

(
∂

∂X
− i

2
∂2

∂Y 2

)2

ã. (79)

The dependence of the coefficient on X can be eliminated by the transformation

ã(X,T ) = b(X,T )eiKX ;

we obtain

db

dT
= −(1− 2K2)b− (1−K2)b∗ +

(
∂

∂X
− i

2
∂2

∂Y 2
+ iK

)2

b. (80)

Now we can find the normal modes in the form

b = b1e
i(K̃XX+K̃Y Y )+σT + b2e

−i(K̃XX+K̃Y Y )+σ∗T (81)

(actually the eigenvalues σ are real, because the equation is variational). The
condition of existence of nontrivial solutions for the coupled algebraic system
for b1 and b∗

2 gives the following expression for two branches of eigenvalues:

σ±(K̃X , K̃Y ;K) = −1 +K2 − K̃2
X − 1

2
KK̃2

Y − 1
16
K̃4

Y

±
√
(1−K2)2 + 4K̃2

X

(
K +

1
2
K̃2

Y

)2

. (82)

Recall that K̃X , K̃Y are the components of the wavevector of the disturbance,
while K is a parameter of the basic roll solution related to its wavenumber k
according to (78).
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To reveal the instability modes, it is sufficient to consider the branch with
the higher value of σ in the limit of longwave disturbances, i.e. for small
K̃X , K̃Y :

σ+ = −1− 3K2

1−K2
K̃2

X − 1
2
KK̃2

Y + o(K̃2
X , K̃

2
Y ). (83)

One can see that the roll solutions within the interval 1/3 < K2 < 1 are
unstable with respect to disturbances with K̃2

X �= 0, K̃2
Y = 0, i.e. to longitudi-

nal modulations. This kind of instability in nonlinear dissipative systems was
discovered by Eckhaus [48] and is called the Eckhaus instability.

If the wavenumber of the roll solution satisfies the condition K < 0 (i.e.
k < 1), a transverse modulational instability takes place with respect to distur-
bances with K̃2

X = 0, K̃
2
Y �= 0. It is also called the zigzag instability.

We come to the conclusion that only the roll patterns inside the stability
interval 0 < K < 1/

√
3 are stable. The stability interval is also called the

Busse balloon, for it was first discovered by Busse et al. in the context of the
Rayleigh-Benard convection patterns [40]. See the diagram in Fig.12.

1/    3−1/    3 1

K

ECKHAUS

INSTABILITY

−1

ZIGZAG INSTABILITY

0

Figure 12. Intervals of the modulation wavenumberK corresponding to Eckhaus and zigzag
instabilities.

Nonlinear phase diffusion equation

Derivation of the nonlinear phase diffusion equation. The longwave na-
ture of the two basic instabilities of roll patterns described above shows that
longwave distortions of rolls are of major interest. Let us consider longwave
solutions of the NWS equation (73)

a = R(ξ, η, τ) exp[iθ(ξ, η, τ)], (84)

where
ξ = δX, η = δ1/2Y, τ = δ2T ; 0 < δ � 1.

Needless to say that the small parameter δ has nothing to do with the small
parameter ε used in the derivation of the NWS equation: the smallness of ε is
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due to the smallness of the governing parameter in the SH equation, while δ
characterizes the scale of a specific class of solutions of the NWS equation.

Substituting

∂

∂X
= δ

∂

∂ξ
,

∂

∂Y
= δ1/2

∂

∂η
,

∂

∂T
= δ2

∂

∂τ

into (73) and using the representation (84), we obtain:

δ2
∂

∂τ

(
Reiθ

)
= (R−R3)eiθ + δ2

(
∂

∂ξ
− i

2
∂2

∂η2

)2 (
Reiθ

)
. (85)

Let us consider solutions in the form

R = R0 + δ2R2 + . . . , θ = θ0 + δ2θ2 + . . . . (86)

After substituting (86) into (85), we find to leading order:

R0 −R3
0 = 0.

Because we are interested in distorted rolls rather than in the unstable trivial
solution, we choose R0 = 1. Note, that the leading-order roll amplitude is
constant under the action of longwave distortions.

At the next order, a system of coupled equations for R2 and θ0 is obtained.
After eliminating R2, one can obtain the following nonlinear phase diffusion
equation [49] (below we drop the subscript 0):

θτ = θξξ − 1
4
θηηηη + 2θηθξη + θξθηη +

3
2
θ2ηθηη, (87)

which governs the longwave phase distortions of roll patterns.
We shall apply this equation for the consideration of defects in roll patterns.

Dislocation. According to relation (84), the phase θ is defined modulo 2π
at points where R �= 0, and undefined at points where R = 0. The roll pattern
can contain a point defect of the following structure. The amplitude R = 0 at
a certain point, say the point X = Y = 0. Except for this point, the phase
is smooth, but going around the point X = Y = 0 along a closed circle
X2 + Y 2 = const leads to a phase increment 2nπ, where n = ±1. Such a
defect in the roll pattern is called a dislocation. We shall apply the nonlinear
phase equation for the description of the dislocations in the far field, i.e. at
large distances from the center (i.e. for ξ, η = O(1)).

One can easily show [50] that the stationary equation (87) is satisfied by any
solution of the Burgers equation

θξ = ±1
2
(θηη − θ2η). (88)
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A positive dislocation (n = 1) is described by the solution of equation (88),
with the + sign on the right-hand side, which satisfies the boundary conditions
on the cut x = 0, y > 0:

θ(0±, y) = ±π, y > 0. (89)

By means of the Hopf-Cole transformation

θ = ∓ ln(f) (90)

equation (88) is transformed to

fξ = ±1
2
fηη. (91)

First, we shall find the solution which corresponds to a positive dislocation, in
the region ξ > 0 in the form of a self-similar solution: f = f(ζ), ζ = η/

√
2ξ.

The corresponding boundary value problem,

f ′′ + 2ζf ′ = 0, −∞ < ζ < ∞; f(−∞) = 1, f(∞) = exp(−π), (92)

has the following solution:

f =
1 + exp(−π)

2
− 1− exp(−π)

2
erf(ζ).

The solution in the region ξ < 0 is calculated in a similar way. Finally, we
obtain the following expression for θ(ξ, η):

θ(ξ, η) = −sign(ξ) ln

[
1 + exp(−π)

2
− 1− exp(−π)

2
erf

(
η√
2|ξ|

)]
.

(93)
The solution for a negative dislocation is obtained similarly. Contour lines of
the function defined by eq.(93) showing the dislocation structure are shown in
Fig.13.

Nonlinear theory of the zigzag instability. In the previous subsection,
we found that a roll pattern with K < 0 is subject to a transverse (zigzag)
instability with K̃X = 0, K̃Y �= 0. In order to investigate the temporal evo-
lution of a zigzag disturbance on the background of a roll pattern, substitute
θ = Kξ +Φ(η, τ) into the nonlinear phase equation (87). We obtain:

Φτ = −1
4
Φηηηη +KΦηη +

3
2
Φ2
ηΦηη. (94)

For the η-component of the wavevector, Q = Φη, we obtain a Cahn-Hilliard
equation,

Qτ = −1
4
Qηηηη − (−K)Qηη +

1
2
(
Q3
)
ηη
. (95)
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Figure 13. (a) Contour lines of the function (93) showing the structure of a dislocation. (b)
Change of phase around the dislocation.

As we know, the spatially-periodic solutions of equation (95) are unstable. The
coarsening process leads to the kink solution

Q =
√
2(−K) tanh

√
2(−K)η,

which corresponds to a smooth domain wall

θ = Kξ + ln cosh
√
2(−K)η (96)

between two sets of inclined roll patterns. The contour lines of the function
defined by eq.(96) showing the domain wall structure is presented in Fig.14.

Domain walls and fronts

As we found in Sec.3.1, a roll pattern is selected when the off-diagonal ele-
ments of the nonlinear interaction matrix are larger than the diagonal elements
(see (29)), because all other patterns are unstable. Specifically, it is true for
systems governed by the Swift-Hohenberg equation. The stability arguments
cannot determine, however, the direction of the pattern’s wave vector: due to
the isotropy of the problem, roll patterns with different orientation of the wave
vector are equally stable. In reality, rolls with different orientations can de-
velop in different parts of the system forming domains of ordered structures
separated by domain walls. In order to describe this situation, we shall con-
sider a wider class of solutions to the Swift-Hohenberg equation (14),

∂φ

∂t
= ε2φ− (1 +∇2

)2
φ− φ3,
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DOMAIN WALL

η

ξ

Figure 14. Contour line of the function (96) showing the structure of a domain wall.

than those studied in Sec. 4.1.

Coupled Newell-Whitehead-Segel equations. Because we are not going
to consider the zigzag instability, we shall use a simpler assumption on the
scaling of the solution:

φ = φ(T, r0, r1),

where T = ε2t, r0 = r, r1 = εr. The rescaled Swift-Hohenberg equation
reads:

ε2
∂φ

∂T
= ε2φ− φ3 − [(1 +∇2

0) + 2ε(∇0 · ∇1) + ε2∇2
1]
2φ. (97)

As in (19), we assume
φ = εφ1 + ε3φ3 + . . .

At leading order, O(ε), we find:

−(1 +∇2
0)

2φ1 = 0. (98)

In order to consider rolls of different orientations, we take

φ1 =
N∑
n=1

[
An(T, r1)eikn·r0 +A∗

n(T, r1)e
−ikn·r0

]
, (99)

where |kn| = 1.
The ansatz (99) resembles (21), but there is an essential difference: now

the functions An depend on the slow coordinate r1. Therefore we can con-
sider different roll patterns localized in different regions rather than uniformly
superposed.
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At order O(ε3), we obtain the following generalization of equations (23):

∂An

∂T
= (1− 3|An|2 − 6

∑
m�=n

|Am|2)An + 4(kn · ∇1)2An, n = 1, . . . , N.

(100)
By means of the scale transformation,

an = An

√
3, n = 1, . . . , N ;R = r1/2, (101)

the obtained system of coupled NWS equations is transformed to its standard
form,

∂an
∂T

= (1− |an|2 − 2
∑
m�=n

|am|2)an + (kn · ∇R)2an, n = 1, . . . , N. (102)

Generally, the system of coupled NWS equations can be written in the form

∂an
∂T

= − δF

δa∗
n

. (103)

where the Lyapunov functional has the form

F =
∫
dRL[{a}, {a∗}, {k · ∇Ra}, {k · ∇Ra

∗}], (104)

so that
dF

dT
≤ 0. (105)

Here {(·)} means the corresponding set of (·)1,...,N . If the Lyapunov functional
density L does not contain cubic terms, the amplitude equations look like

∂an
∂T

=

⎛⎝1− |an|2 −
∑
m�=n

gmn|am|2
⎞⎠ an + (kn · ∇R)2an, n = 1, . . . , N.

(106)
Otherwise, they can be written as

∂an
∂T

=

⎛⎝Γ− |an|2 −
∑
m�=n

gmn|am|2
⎞⎠ an

+a∗
n′a

∗
n′′ + (kn · ∇R)2an, n = 1, . . . , N, (107)

where
kn + kn′ + kn′′ = 0.
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Stationary domain walls. For the sake of simplicity, let us consider a plane
domain wall perpendicular to the axisX , which separates two semi-infinite roll
systems with wave vectors k1 and k2 [51], as shown in Fig.15a. Because the
Lyapunov functional densities of both roll patterns are equal, there is no reason
for a motion of the domain wall, hence it is motionless [52]. The problem is
governed by the following system of ordinary differential equations:

D1a
′′
1 + a1 − |a1|2a1 − g|a2|2a1 = 0,

D2a
′′
2 + a2 − |a2|2a2 − g|a1|2a2 = 0, (108)

−∞ < X < ∞,

whereDn = (kn)X , and ′ denotes differentiation with respect toX . In the case
of the Swift-Hohenberg equation, g = 2. Generally, roll patterns are selected,
if g > 1. We assume that at large distances from the domain wall there are
perfect roll patterns. This leads to the boundary conditions:

X → −∞, a2 → 0; X → ∞, a1 → 0. (109)

k 1 k
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ROLLS − HEXAGONS FRONT

L
1

= L
2

C=0

(b)

Figure 15. (a) Stationary domain wall between two systems of rolls with different wavevec-
tors; (b) moving front between rolls and hexagons.

Introduce an = Rn exp(iθn), i = 1, 2. The imaginary parts of the equations
give the relations

rnθ
′′
n + 2r

′
nθ

′
n = 0, n = 1, 2,

or
(r2nθ

′
n)

′ = 0, n = 1, 2,

hence
r2nθ

′
n =Mn = const.
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Taking into account the boundary conditions (109), we conclude that M1 =
M2 = 0, so the phases θ1 and θ2 are constant. Taking into account the meaning
of the phase modulations, we conclude that a steady domain wall can exist only
between patterns with the critical values of wavenumbers |kn| (|kn| = 1 in the
case of the SH equation). So, the existence of a domain wall acts as a factor
which selects the wavenumber in a much more definite way than the stability
arguments presented in Sec.4.2.

The real parts of the equations read (we take into account that θ′
1 = θ′

2 = 0):

D1r
′′
1 + r1(1− r21 − gr22) = 0, D2r

′′
2 + r2(1− r22 − gr21) = 0, (110)

X → −∞ : r2 → 0, r1 → 1;X → ∞ : r1 → 0, r2 → 1. (111)

The system of equations (110) describes the two-dimensional motion of a par-
ticle with the Lagrange function (equal to the Lyapunov functional density)
L = K(r′

1, r
′
2)− U(r1, r2), where

K(r′
1, r

′
2) =

1
2
D1(r′

1)
2 +

1
2
D2(r′

2)
2

(note that the “mass" of the fictitious particle is anisotropic) and

U(r1, r2) =
1
2
(r21 + r22)−

1
4
(r41 + 2gr

2
1r

2
2 + r42). (112)

In the case g > 1, when the rolls are stable, the potential U(r1, r2) has a
minimum in the point (0, 0), two maxima in the points (1, 0) and (0, 1), and
a saddle point (1/

√
1 + g, 1/

√
1 + g), see Fig.16. The domain wall solution

corresponds to the trajectory that starts at the maximum point (1, 0) at X →
−∞ and tends to another maximum point (0, 1) as X → ∞. An exact solution
of (110), (111) is known for g = 3, D1 = D2 = D:

r1 =
1
2

(
1− tanh X√

2D

)
, r2 =

1
2

(
1 + tanh

X√
2D

)
. (113)

Moving fronts. Fronts between patterns of different types can be considered
in a similar way. Assuming that phase modulations of patterns are absent, so
that an = rn is real for any n = 1, . . . , N , and the front is flat, we can rewrite
the system of equations (106) in the form

∂rn
∂T

= Dn
∂2rn
∂X2

+
∂U(r1, . . . , rN )

∂rn
, n = 1, . . . , N, (114)

where

U(r1, . . . , rN ) =
1
2

N∑
n=1

r2n − 1
4

N∑
n=1

r4n − g

2

N∑
n=1

n−1∑
m=1

r2nr
2
m. (115)
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Figure 16. Contour lines of the potential energy (112). The line with an arrow corresponds
to the domain wall solution.

A front propagating with a constant velocity c is described by the solution

rn = rn(ξ), n = 1, . . . , N ; ξ = X − cT (116)

of the equation

Dn
d2rn
dξ2

+ c
drn
dξ

+
∂U

∂rn
= 0, n = 1, . . . , N, (117)

satisfying the boundary conditions

rn(−∞) = r−
n , rn(∞) = r+n , (118)

where {r−
n } and {r+n } correspond to steady patterns on both sides of the front.

Multiplying the nth equation of the set (117) by drn/dξ, integrating with re-
spect to ξ from −∞ to ∞ and taking the sum over n from 1 to N , we find
that

c = − U(∞)− U(−∞)∑N
n=1

∫∞
−∞ dξ(drn/dξ)2

=
L+ − L−∑N

n=1

∫∞
−∞ dξ(drn/dξ)2

, (119)

where L± = L(r±
1 , r

±
2 , . . . , r

±
N ) are the densities of the Lyapunov functionals

for the uniform patterns situated at X → ±∞.
Note that c > 0 if L− < L+, and c < 0 if L− > L+, i.e. the pattern

with the lower Lyapunov functional density ousts the pattern with the higher
Lyapunov functional density.
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Cross-Newell phase diffusion equation

The Newell-Whitehead-Segel equations are valid only near the instability
threshold, ε2 � 1. However, even far from the instability threshold the pat-
terns may be subject to large-scale modulations. For their description, another
approach can be applied [53].

Derivation of the Cross-Newell equation. Let us consider the Swift-Hohen-
berg equation,

φt = γφ− (1 +∇2
)2
φ− φ3, (120)

with γ = O(1). Equation (120) has a class of periodic stationary solutions
corresponding to roll patterns:

φ(r) =
∞∑
n=1

An cosnk · r = f(θ), (121)

where θ = k · x, k is a constant wavevector, and f(θ) is a 2π-periodic func-
tion (one can see that only Fourier components with odd n are present in the
expansion (121) for f(θ)).

As we know, the wavevector k of the roll pattern is not unique. Therefore,
we can imagine a situation when the local wavevector of a roll pattern is a slow
function of the coordinate r, and it can slowly change in time:

k = k(R, T), (122)

where R = δr, δ � 1; the appropriate time scale is T = δ2t. Note that the
wavevector for the real function φ is defined up to its sign (thus it is similar to
the order parameter of a nematic crystal, the “director"). The wavevector can
be considered as a gradient of a certain phase function θ,

k = ∇θ.

The scaling of θ is

θ =
1
δ
Θ(R, T).

Let us find the solution of the Swift-Hohenberg equation (120), correspond-
ing to a slowly distorted roll pattern with the wavevector field (122),

φ = φ(θ,R, T ),

where φ is 2π-periodic in θ. Using the transformation formulas for derivatives

∇rφ = (k · ∂θ + δ∇R)φ,
∇2
rφ = (k · ∂θ + δ∇R) (k · ∂θ + δ∇R)φ

=
[
k2∂2θ + δ (2k · ∇R +∇R · k) ∂θ + δ2∇2

R

]
φ,

∂tφ = ∂tθ∂θφ+ δ2∂Tφ = δ∂TΘ∂θφ+ δ2∂Tφ,
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we get:

δ∂TΘ∂θφ+ δ2∂Tφ = γφ− φ3 − [(1 + k2∂2θ
)

+δ (2k · ∇R +∇R · k) ∂θ + δ2∇2
R

]2
φ.(123)

It is natural to expect that the solution can be expanded in powers of δ as

φ = φ0 + δφ1 + . . . . (124)

At order δ0, we obtain the nonlinear equation,

γφ0 − φ30 − (1 + k2∂2θ
)2
φ0. (125)

The solution φ0 coincides with the 2π-periodic function f(θ) described above,
which corresponds to an undistorted roll pattern with the wavenumber k.

At order δ1, we obtain an inhomogeneous linear equation,

γφ1 − 3φ20φ1 − (1 + k2∂2θ
)2
φ1 = ∂TΘ∂θf (126)

+
[(
1 + k2∂2θ

)
(2k · ∇R +∇R · k) + (2k · ∇R +∇R · k) (1 + k2∂2θ

)]
∂θf.

Equation (126) is solvable on the class of 2π-periodic functions only if its right-
hand side is orthogonal to the eigenfunction of the homogeneous equation,
∂θf . Using the notation

〈g〉 ≡ 1
2π

∫ 2π

0
gdθ,

we find the following solvability condition:

τ(k)∂TΘ+∇R · [B(k)k] = 0, (127)

where
τ(k) = 〈(∂θf)2〉, (128)

B(k) = 2
[
〈(∂θf)2〉 − k2〈(∂2θf)2〉

]
. (129)

The relation between k and Θ is k = ∇RΘ, hence

∇R × k = 0. (130)

Equation (127) is called Cross-Newell equation. This equation is universal
and can be derived for any rotationally isotropic system which produces roll
patterns due to a short-wave monotonic instability. Each particular problem is
characterized by specific τ(k) and B(k).
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Monoharmonic approximation. To calculate the functions τ(k), B(k),
one needs the solution of equation (125), f(θ), which cannot be found ana-
lytically. However, in a rather wide interval of γ, the higher harmonics An in
the expansion (121) are small with respect to the basic harmonics A1. Let us
truncate the expansion (121) using only one term,

f ≈ A cos θ, (131)

and apply the Galerkin approximation with one Galerkin function, cos θ. The
projection of the equation (125) on that basic function gives

A2(k2) =
4
3
[
γ − (1− k2)2

)]
, 1− √

γ < k2 < 1 +
√
γ. (132)

Using the approximation (131), (132), we find that

〈(∂θf)2〉 = 〈(∂2θf)2〉 = A2

2
,

hence

τ(k) =
A2

2
=
2
3
[
γ − (1− k2)2

)]
, (133)

B(k) = (1− k2)A2 =
4
3
(1− k2)

[
γ − (1− k2)2

)]
. (134)

The functions τ(k) and B(k) are defined in the interval kL < k < kR, where
k2L = 1−

√
γ, k2R = 1+

√
γ. The function τ(k) is positive in the whole interval

kL < k < kR, while the function B(k) is positive in the interval kL < k < kB
and negative in the interval kB < k < kR, where kB = 1.

Equation (127) can be used for studying the stability of rolls with respect
to large-scale modulations far from threshold (i.e. for γ = O(1)) rather than
γ � 1 [53]. It turns out that the rolls are subject to a zigzag (transverse)
instability if the wavenumber k of the roll pattern has B(k) > 0, i.e. in the
interval kL < k < kB . The Eckhaus (longitudinal) modulational instability
appears as d(kB(k))/dk > 0. The function kB(k) (see formula (134) and
Fig.17) has a maximum at a certain point k = kEL in the interval (kL, kB) and
a minimum at a point k = kER in the interval (kB, kR). Hence, the rolls are
subject to the Eckhaus instability if their wavenumber is either in the interval
(kL, kEL) or in the interval (kER, kR). Finally, we come to the conclusion
that the stability interval (“Busse balloon") is (kB, kER), i.e. it is situated
between the point kB where B(k) changes its sign, and the point kER where
the function kB(k) has its minimum.

Disclinations. The Cross-Newell equation can be used for studying special
type of defects in roll patterns, disclinations [3], [54]. When going around the
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Figure 17. Function kB(k) defined by (134) and intervals of k corresponding to a stable
pattern (kB < k < kER), Eckhaus instability (kL < k < kEL) and zigzag instability (kL <
k < kB).

core of the defect of this type, one observes the pattern vector rotating. As
noticed above, the local wavevector k of a roll pattern is defined up to the sign,
hence k is a director rather than a vector. Thus, the roll pattern “comes back
to itself" after making a full circle around the core if the rotation angle is an
integer number n multiplied by π (rather than 2π). Typical examples of discli-
nations observed in experiments are: (i) focus disclinations, generating a target
pattern (n = 2), (ii) convex disclinations (n = 1), (iii) concave disclinations
(n = −1), and (iv) saddle disclinations (n = −2). Patterns corresponding
to these four types of disclinations are schematically shown in Fig.18. In the
case of a motionless, steady dislocation, the corresponding field k(R) of the
wavevector is governed by the equations

∇R · [kB(k)] = 0, ∇R × k = 0 (135)

(except at the central point where the wavevector field k(R) has a singularity,
and the wavevector is not defined).

Integration of the nonlinear equation (135) can be significantly simplified
by the Legendre transformation [54]

Θ(X,Y ) + Θ̂(kX , kY ) = k · R, (136)

which is equivalent to the inversion of the dependence k(R),

R = R(k),
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Figure 18. Various types of disclination patterns.

and the introduction of the dual function Θ̂(k),

R = ∇kΘ̂(k).

For Θ̂(k), one obtains a linear equation, which can be written in polar coordi-
nates (k, ϕ) as

∂

∂k
(kB)

∂Θ̂
∂k

+
1
k

∂

∂k
(kB)

∂2Θ̂
∂2ϕ

= 0. (137)

The latter equation has a set of solutions in the form

Θ̂(k, ϕ) = Fm(k) cos(mϕ) (138)

with an integer m. One can show [54] that the solution

Θ̂ ∼
∫

dk

kB(k)
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corresponds to a focus disclination with a target pattern, the solution

Θ̂ ∼ k

∫
dk

k3B(k)
cosϕ

describes a convex disclination, the solution

Θ̂ ∼ ln(kB − k) cos 3ϕ

describes the asymptotics of a concave disclination, etc.

5. Beyond the Swift-Hohenberg model

As shown above, the Swift-Hohenberg model (120) and its modification
(37) are sufficient for the explanation of many features of pattern formation.
However, there are several phenomena which need an extension of the Swift-
Hohenberg model for their description.

Non-potential effects

First of all, the Swift-Hohenberg equation (120) is a potential equation
which can be written as

∂φ

∂t
= −δF (φ)

δφ
, (139)

where the Lyapunov functional

F =
∫
dr
[
1
2
(∇2φ)2 − (∇φ)2 +

1− ε2

2
φ2 +

1
4
φ4
]
. (140)

Hence, the system’s dynamics is fully relaxational, i.e. the evolution of the
system is characterized by a monotonic decrease of the Lyapunov functional
and the approach to a final stationary state, which excludes the possibility of
oscillatory instabilities, spatio-temporal chaos etc.

However, dissipative physical systems usually have no Lyapunov function-
als. Hence, some features of pattern formation can be overlooked by using the
model (17).

In order to extend considerations to non-potential systems and to improve
the coincidence of the model predictions with the results of observations and
direct numerical simulations, some additional terms can be added to the right-
hand side of (120), e.g. (see [55])

∂tφ =
[
γ − (1 +∇2

)2]
φ− aφ3 (141)

−bφ(∇φ)2 + cφ2∇2φ+ d∇2φ(∇φ)2 + e(∂iφ)(∂jφ)∂i∂jφ.
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Tuning of the coefficients allows us to reproduce details of the numerically
obtained stability diagrams. Specifically, in addition to the Eckhaus instability
(the disturbance wavevector is parallel to that of the roll) and zigzag instability
(the disturbance wavevector is orthogonal to that of the roll), we can predict a
skewed-varicose instability characterized by a disturbance wavevector inclined
with respect to the wavevector of the roll.

Mean-flow effects

Spiral-defect chaos in Rayleigh-Benard convection. The most remark-
able phenomenon that needs an extension of the Swift-Hohenberg model for
its explanation, is the development of spiral-defect chaos in Rayleigh-Benard
convection [56], [6], which involves rotating spirals, target patterns, disloca-
tions etc. The origin of this complicated behavior is the creation of a two-
dimensional mean flow

U = (∂yζ,−∂xζ), (142)

with vertical vorticity −∇2ζ, in the case when the rolls are curved so that

(∇ (∇2φ)× ∇φ
) · ez = ∂x∇2φ · ∂yφ− ∂xφ · ∂y∇2φ �= 0

[57].
In the presence of a mean flow, the generalized Swift-Hohenberg equation

includes the advection of the convective rolls. It can be written, e.g., in the
form

(∂t + gmU · ∇)φ =
[
γ − (1 +∇2

)2]
φ− aφ3 + d∇2φ(∇φ)2 (143)

[58], [59]. The generation of the mean flow by the curved rolls is described by
a phenomenological equation [58], [60][

τζ∂t − P
(
η∇2 − c2

)]∇2ζ =
[∇ (∇2φ

)× ∇φ
] · ez, (144)

where P is the Prandtl number, τζ , η and c2 are positive constants. The system
(142)-(144) describes the transient spiral-defect chaos reasonably well [58],
[59], though the long-time dynamics may be questionable [60].

Hydrodynamic effects in diblock copolymer films. Similarly, the model
(14) can be extended by adding a flow. The phenomenological system of equa-
tions looks as follows [61]:

∂φ

∂t
+ (v · ∇)φ = ∇2 δF{φ}

δφ
, (145)

ρ

(
∂

∂t
− ν∇2

)
v = −T

[
φ∇δF{φ}

δφ

]
, (146)
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where F{φ} is the free energy functional (12), the operator T selects the trans-
verse component of the vector field it is applied to, so that the incompressibil-
ity condition ∇ · v is satisfied, ρ and ν are the density and kinematic viscosity.
Taking the curl of equation (146), one obtains

ρ

(
∂

∂t
− ν∇2

)
Ω = ∇δF{φ}

δφ
× ∇φ, (147)

where Ω = ∇×v is the vorticity. In thin films, one can average equation (147)
across the film, take its z-component, and disregard the horizontal derivatives
of Ω compared to the vertical one. Finally, one obtains the following system
of equations:

∂φ

∂t
+ (v · ∇)φ = ∇2(−φ+ φ3 − ∇2φ)− Γφ, (148)

∇2ζ = gez · [∇ (∇2 + Γ∇−2
)
φ× ∇φ

]
, (149)

where ∇−2φ(r) denotes − ∫ dr′G (r − r′)φ(r′).
The stability analysis of roll patterns performed in the framework of the sys-

tem (148), (149), reveals a skewed-varicose instability. Numerical simulations
predict the development of labyrinthine, spiral and target patterns.

6. Wavy patterns

Until now, we considered patterns which are developed due to a primary
monotonic instability. Let us now consider the case when this instability is
oscillatory.

Oscillatory instability

As the simplest example, let us take a one-dimensional two-component
reaction-diffusion system

ut = Duuxx + f(u, v), vt = Dvvxx + g(u, v) (150)

(see, e.g., [9]). A uniform steady state (u0, v0) is the solution of the system

f(u0, v0) = g(u0, v0) = 0.

Assuming
u = u0 + ũeikx+σt, v = v0 + ṽeikx+σt

and linearizing around the steady state, we obtain the following equation for
the growth rate σ: ∣∣∣∣ fu −Duk

2 − σ fv
gu gv −Dvk

2 − σ

∣∣∣∣ ,
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or
σ2 − (tr M(k2))σ + det M(k2) = 0,

where

M(k2) =
(

fu −Duk
2 fv

gu gv −Dvk
2

)
,

hence

σ =
1
2

tr M(k2)±
√(

1
2

tr M(k2)
)2

− det M(k2). (151)

Assume that

det M(0) >
(
1
2

tr M(0)
)2

.

In this case, the imaginary part of the growth rate is nonzero for sufficiently
long waves. When

trM(0) = fu + gv

grows and crosses 0, a long-wave oscillatory instability is developed in the
system.

1D complex Ginzburg-Landau equation

Near the threshold, one can derive an equation for a slowly changing in
time and space amplitude function A(t2, x1) [62], which is similar to the NWS
equation discussed in Sec. 3. In the case of a supercritical Hopf bifurcation,
the generic amplitude equation, after rescaling, reads (cf.(73)):

At = A+ (1 + iα)Axx − (1 + iβ)|A|2A. (152)

The latter equation is called the complex Ginzburg-Landau equation. Using
the notation A = R exp(iθ), one can rewrite (152) as a system of two real
equations

Rt = R+
(
Rxx −Rθ2x

)− α (2Rxθx +Rθxx)−R3, (153)

Rθt = (2Rxθx +Rθxx) + α
(
Rxx −Rθ2x

)− βR3. (154)

A vast literature is devoted to the investigation of properties of the complex
Ginzburg-Landau equation (see the review paper [65]). Here we discuss only
a few of the most basic topics.

Periodic waves. The system of equation (153), (154) has a one-parameter
family of solutions

R = R0(K), θ = Kx− Ω(K)t, |K| < 1,
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where
R0(K) =

√
1−K2, Ω(K) = β + (α− β)K2,

which correspond to spatially periodic solutions A(x, t) of equation (152).
Similar to the stationary roll solutions studied in Sec. 3, these solutions may
be stable or unstable, depending on the parameters K, α and β.

Stability of uniform oscillations. For the sake of simplicity, we will con-
sider here only the stability of uniform oscillations, K = 0, R0(0) = 1,
Ω(0) = β. For normal disturbances

(R̃, θ̃) ∼ eσt+iK̃x,

one obtains the following linearized problem:

σR̃ = R̃(1− K̃2) + αK̃2θ̃ − 3R̃,
−βR̃+ σθ̃ = −K̃2θ̃ − 3βR̃− αK̃2R̃,

hence ∣∣∣∣ −2− K̃2 − σ αK̃2

−2β − αK̃2 −K̃2 − σ

∣∣∣∣ = 0,
or

σ2 + 2
(
1 + K̃2

)
σ + 2K̃2(1 + αβ) + (1 + α2)K̃4. (155)

If 1+αβ < 0, the uniform oscillations are unstable with respect to modulations
with the wavenumbers in the interval

0 < K̃2 < K2
m = −1 + αβ

1 + α2
.

This instability is known as the Benjamin-Feir instability. Regions of the
Benjamin-Feir instability in (α, β) parameter plane are shown in Fig.19.

Nonlinear phase equation. If K2
m is small:

1 + αβ = −ε2, β = − 1
α

− ε2

α
, ε � 1,

the nonlinear evolution of the Benjamin-Feir instability can be studied by
means of a nonlinear phase equation (cf. Sec. 4.3.1) [63].

The linear theory predicts K̃ ∼ ε, σ ∼ ε4. Therefore, we assume

R = R(X,T ), θ = −βt+ ε2ϑ(X,T ); X = εx; T = ε4t

and obtain:

ε4RT = R+ε2
[(
RXX − ε4Rϑ2X

)− αε2 (2RXϑX +RϑXX)−R3
]
, (156)
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Figure 19. Regions of the Benjamin-Feir instability.

(
1
α
+
ε2

α

)
R+ ε6RϑT = ε2

[
(2RXϑX +RϑXX) ε2

+α
(
RXX − ε4Rϑ2X

)]
+R3

(
1
α
+
ε2

α

)
. (157)

Let us construct the solution in the form of an asymptotic series in powers
of ε2. We find that the amplitude R is slaved to the phase ϑ0:

r = 1− 1
2
ε4αϑ

(0)
XX +

1
2
ε6
(
−1
2
ϑ
(0)
XXXX − (ϑ(0)X )

2 − αϑ
(2)
XX

)
+ . . . .

The leading order equation governing the evolution of the phase is the Kuramoto-
Sivashinsky equation:

ϑ
(0)
T = −ϑ(0)XX − 1

2
(
1 + α2

)
ϑ
(0)
XXXX − (α+ α−1

) (
ϑ
(0)
X

)2
. (158)

Equation (158) is a paradigmatic model for studying spatio-temporal chaos
[64]. It exhibits solutions in the form of spatially-irregular “cells" splitting and
merging in a chaotic manner in time. An example of spatio-temporal behavior
of a chaotic solution of the Kuramoto-Sivashinsky equation (158) as well as a
snapshot of this solution at a particular moment of time are shown in Fig.20.
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Figure 20. Numerical solutions of eq.(158): spatio-temporal diagram showing spatio-
temporal chaos (upper figure) and a snapshot of the solution at a particular moment of time.

2D complex Ginzburg-Landau equation: spiral wave

In the 2D case, the complex Ginzburg-Landau equation reads:

At = A+ (1 + iα)∇2A− (1 + iβ)|A|2A, (159)

or (A = R exp(iθ))

Rt = R+∇2R−R(∇θ)2 − α(2∇R · ∇θ +R∇2θ)−R3, (160)

Rθt = 2∇R · ∇θ +R∇2θ + α(∇2R−R(∇θ)2)− βR3. (161)

The 2D complex Ginzburg-Landau equation is characterized by extremely
diverse behavior (see [65]). Here we will discuss the most remarkable objects
typical for this equation, spiral waves.

A spiral wave is a solution of the type

R = R(ρ), θ(ρ, ϕ, t) = mϕ+ ψ(ρ) + Ωt, (162)

where (ρ, ϕ) are polar coordinates in the plane (x, y). For the sake of simplic-
ity, we shall take α = 0, and consider only waves with m = 1. The problem is
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governed by the following system of equations:

R′′ +
1
ρ
R′ +R

[
1−R2 − (ψ′)2 − 1

ρ2

]
= 0, (163)

q′ +
1
ρ
q +

2R′

R
q − βR2 = Ω. (164)

Here ′ denotes differentiation with respect to ρ; q = ψ′.
The solution is not singular at the point ρ = 0, because of the boundary

conditions
R(0) = 0, q(0) = 0. (165)

At large distances from the center the spiral wave becomes indistinguishable
from a plane wave with a certain wavenumber k∞, which is the eigenvalue of
the nonlinear problem (163), (164):

R(∞) =
√
1− k2∞, q(∞) = k∞. (166)

The general problem (163)-(166) can be solved numerically. Here we will
present a semi-analytical solution in the limit of small β: β = −ε, |ε| � 1 [66],
[67]. In this limit, one can distinguish between the core region (ρ = O(1)) and
far field region (ρ = O(1/ε)), where the asymptotic expansions are different.

Inner expansion. In the region ρ = O(1), we seek the solution to the
system (163)-(166) in the form

R(ρ) = R0(ρ) + εR1(ρ) + . . . , q = εq1 + . . . .

Also, we assume that |k∞| � 1.
At leading order, we obtain the following nonlinear problem for R0(ρ):

R′′
0 +

1
ρ
R′
0 + (1− 1

ρ2
−R2

0)R0 = 0; R0(0) = 0; |R0(∞)| < ∞. (167)

This problem was studied earlier in the context of the vortex core for the Gross-
Pitaevskii equation which describes a superfluid flow. It is known that the
solution of this problem exists and is unique. The solution can be found only
numerically. For large ρ, the asymptotics of the solution isR2

0 ∼ 1−1/ρ2+. . ..
For the local wavenumber q1, we obtain the linear problem:

q′
1 +

(
1
ρ
+
2R′

0

R0

)
q1 = 1−R2

0, q(0) = 0. (168)

Its solution can be written explicitly as:

q1(ρ) =
1

ρR2
0

∫ ρ

0
dρ′ρ′R2

0(ρ
′)[1−R2

0(ρ
′)]. (169)
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For large ρ, the solution (169) behaves as

q1(ρ) ∼ 1
ρ
(ln ρ+ C + . . .), (170)

hence
ψ′(ρ) ∼ ε

ρ
(ln ρ+ C + . . .). (171)

A numerical evaluation of the constant C gives C ≈ −0.098.

Outer expansion. For the construction of the outer expansion, it is better
to return to the original system of equations (160)-(161) and take into account
that for ρ � 1 the spatial derivatives of the fields are small. We find that the
amplitude field R is slaved to the phase field θ:

R2 ∼ 1− (∇θ)2.

Taking into account that Ω = ε(1 − k2∞), we obtain the following nonlinear
phase equation:

∇2θ = ε
[
k2∞ − (∇θ)2

]
= 0. (172)

This is the Burgers equation which can be linearized by means of the Hopf-
Cole transformation:

θ = −1
ε
lnF, (173)

∇2F − ε2k2∞F = 0. (174)

Introduce the scaled variable s ≡ εk∞ρ. The spiral-wave solution θ = ϕ +
ψ(s) is transformed to

F = e−εϕH(s),

where H(s) satisfies the equation

d2H

ds2
+
1
s

dH

ds
−
(
1− ε2

s2

)
H = 0. (175)

The appropriate solution is a Bessel function with imaginary index: H =
const Kiε(s), hence

F = const e−εϕKiε(s), θ = ϕ− 1
ε
lnKiε(εk∞ρ);

ψ(ρ) = −1
ε
lnKiε(εk∞ρ).

The derivative ψ′(ρ) should be matched to the expression (171) obtained from
the inner solution.
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Matching. Using the asymptotics of the Bessel function for small εk∞ρ,

Kiε(εk∞ρ) ∼ sin
(
ε ln

εk∞ρ

2

)
+ εγ cos

(
ε ln

εk∞ρ

2

)
,

where γ ≈ 0.577 is the Euler constant, we find:

−1
ρ

cos
(
ε ln εk∞ρ

2

)
− εγ sin

(
ε ln εk∞ρ

2

)
sin
(
ε ln εk∞ρ

2

)
+ εγ cos

(
ε ln εk∞ρ

2

) ∼ ε

ρ
(ln ρ+ C).

The matching can be performed if

ε ln
εk∞ρ

2
= −π

2
+ δ, |δ| � 1,

so that

cos
(
ε ln

εk∞ρ

2

)
∼ δ, sin

(
ε ln

εk∞ρ

2

)
∼ −1,

and the asymptotics of the outer solution is given by the expression

ψ′(ρ) ∼ 1
ρ
(δ + εγ) =

1
ρ

(
π

2
+ ε ln

εk∞ρ

2
+ εγ

)
. (176)

Comparing (176) and (171), we find the matching condition:

π

2
+ ε ln

εk∞
2
+ εγ = εC.

Thus, the selected wavenumber k∞ is determined by the formula

k∞ =
2
ε
exp

(
− π

2ε
− γ + C

)
. (177)

Fig.21 shows an example of a spiral-wave solution of eq.(159) obtained nu-
merically. The left figure is a snap-shot corresponding to a particular moment
of time. The spiral is rotating counterclockwise with constant frequency. One
can see that far from the spiral core the wavenumber is constant and so is the
amplitude |A| that is related to the wavenumber by eq.(166). In the core center
A = 0.

7. Conclusions

We have discussed universal features of pattern formation in several sys-
tems that are often encountered at nanometer scales. These systems can be di-
vided in two large classes: variational (potential) systems and non-variational
(non-potential) systems. Variational systems are characterized by a free energy
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Figure 21. Numerical solution of the complex Ginzburg-Landau equation (159) in the form
of a spiral wave.

functional and the system evolution leads to the steady state with the minimum
free energy. Non-variational systems can exhibit more complex, nonstationary
behavior.

One of the main physical reasons for the formation of patterns in varia-
tional systems is phase separation. We have shown that, depending on the
type of interactions in a particular system phase separation can result from a
long-wave instability and lead to the formation of irregular domains of dif-
ferent phases that coarsen in time (as in binary alloys), or can result from a
short-wave instability and lead to self-assembly of stable, spatially periodic
structures (as in diblock-copolymer systems). In the latter case the pattern for-
mation phenomenon is similar to that in macroscopic systems, like Rayleigh-
Benard convection, and can be described by some generic equations, partic-
ularly by the Swift-Hohenberg equation. We have discussed the selection of
patterns with the two most common symmetries: roll patterns and hexago-
nal patterns. We have shown that their dynamics and the selection process is
described by a system of Landau equations and the competition between the
patterns is determined by the Landau nonlinear interaction coefficients. Near
the instability threshold, patterns in large aspect-ratio systems can undergo
spatio-temporal modulations. We have shown that these modulations are de-
scribed by the Newel-Whithead-Segel (NWS) equation that can describe two
basic modulational instabilities of spatially periodic patterns: the Eckhaus in-
stability and the zig-zag instability. These two instabilities are associated with
the mechanism of the wavenumber selection. They are also associated with
the formation of the two most common types of defects in spatially periodic
patterns: dislocations and domain walls between the domains of patterns with
different wavenumbers. The structure of these defects is described by the non-
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linear phase diffusion equations that follow from the NWS equation. Moving
fronts are also formed between periodic structures with different symmetries,
for example between hexagons and rolls, and serve as a vehicle for pattern se-
lection. The motion of such fronts is similar to the motion of a particle in a
potential well and can be described by the corresponding Lagrange function.
Farther from the instability threshold, where the NWS equation is not valid, the
modulations of patterns can be described by a nonlinear Cross-Newell phase
diffusion equation. This equation is capable of describing large but slow vari-
ations of the pattern wavenumber as well as another type of defects in periodic
patterns: disclinations.

We have also discussed the formation of spatio-temporal patterns in non-
variational systems. A typical example of such systems at nano-meter scales
is reaction-diffusion systems that are ubiquitous in biology, chemical catal-
ysis, electrochemistry, etc. These systems are characterized by the energy
supply from the outside and can exhibit complex nonlinear behavior like os-
cillations and waves. A macroscopic example of such a system is Rayleigh-
Benard convection accompanied by mean flow that leads to strong distortion
of periodic patterns and the formation of labyrinth patterns and spiral waves.
Similar nano-meter scale patterns are observed during phase separation of di-
block copolymer films in the presence of hydrodynamic effects. The pattern’s
nonlinear dynamics in both macro- and nano-systems can be described by a
Swift-Hohenberg equation coupled to the non-local mean-flow equation.

A typical feature of a non-potential systems is the non-stationary oscillatory
behavior that usually manifests itself in the propagation of waves. We have
shown that the nonlinear evolution of waves near the instability threshold is
described by the complex Ginzburg-Landau (CGL) equation. This equation is
capable of describing various kinds of instabilities of wave patterns, like the
Benjamin-Feir instability. In two dimensions, the CGL equation describes the
formation of spiral waves that are observed in many biological and chemical
systems characterized by the interplay of diffusion and chemical reactions at
nano-scales.

The material of this chapter can be useful for understanding other chapters
of the present book. For a subsequent reading, the review papers [1], [65] and
the book [2] are also recommended.
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Abstract A systematic overview of various electric-field induced pattern forming instabil-
ities in nematic liquid crystals is given. Particular emphasis is laid on the charac-
terization of the threshold voltage and the critical wavenumber of the resulting
patterns. The standard hydrodynamic description of nematics predicts the oc-
currence of striped patterns (rolls) in five different wavenumber ranges, which
depend on the anisotropies of the dielectric permittivity and of the electrical con-
ductivity as well as on the initial director orientation (planar or homeotropic).
Experiments have revealed two additional pattern types which are not captured
by the standard model of electroconvection and which still need a theoretical
explanation.
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Patterns formed in non-equilibrium systems are fascinating objects, which
arise in many physical, chemical and biological systems [1]. Liquid crystals,
the other key word in the title, are substances with captivating properties [2–
4] and their study has made amazing progress – both in basic research and
applications - in the past couple of years. How do these two subjects join and
why are liquid crystals especially attractive for studying pattern formation?
An attempt will be made in this tutorial review to answer these questions to
some extent.

Pattern forming phenomena in liquid crystals can be divided into two groups.
In the first group, liquid crystals replace isotropic fluids in the study of well
known classical phenomena like Rayleigh-Benard convection, Taylor vortex
flow, viscous fingering, free solidification from melt, directional solidifica-
tion etc. [5]. This gives a possibility to extend the investigations from simple
isotropic systems to more complex, partially ordered media. As liquid crys-
tals are intrinsically anisotropic substances, unusual nonlinear couplings (e.g.
electro-mechanical, thermo-mechanical, rotation-flow) of the hydrodynamic
variables become possible. They induce various focussing effects (heat, light
or charge) which in many cases give rise to considerably lower values of the
external control parameters at the onset of the instability.

In the second group we find pattern forming phenomena based on new insta-
bility mechanisms arising from the specific features of liquid crystals, which
have no counterpart in isotropic fluids or at least are difficult to assess. Some
examples are shear (linear, elliptic, oscillatory, etc.) induced instabilities, tran-
sient patterns in electrically or magnetically driven Freedericksz transitions,
structures formed in inhomogeneous and/or rotating electric or magnetic fields,
electroconvection (EC), etc. [5–7].

Liquid crystals have become an important paradigm to study generic aspects
of pattern forming mechanisms. Besides their stability the large aspect ratios
of the typical convection cells allows the observation of extended regions with
regular roll patterns. The patterns are easy to visualize by exploiting the bire-
fringence of liquid crystals. It is convenient, that the number of accessible
control parameters is larger than in standard isotropic systems. For instance,
one can easily tune magnetic fields or the amplitude and the frequency of an
applied voltage. It is also not difficult to change the symmetry of a convection
layer via the boundary conditions or the amount of anisotropy by changing the
temperature, in order to observe the effect of a transition from an isotropic to an
anisotropic pattern forming system. In general one might state that liquid crys-
tals have just the right amount and right kind of complexity and non-linearity,
to make them so attractive. The understanding of patterns in liquid crystals
has immensely benefitted from a close collaboration between experimentalists

Introduction
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and theoreticians. Though the hydrodynamic description of liquid crystals may
look prohibitively complex in fact a quantitative description of experiments has
been achieved in many cases. In addition universal aspects of pattern forma-
tion can be addressed more easily in some cases (e.g. in terms of amplitude
equations) than in isotropic systems [8].

The overview is organized as follows. In section 1, we outline briefly the
relevant properties of liquid crystals and sketch the theoretical description. In
section 2, we discuss electroconvection for different material parameter sets
and geometries focusing mainly on the onset of convection. A summary con-
cludes the paper.

Physical properties of nematics

The term liquid crystals denotes a family of mesophases, which consist of
elongated (or sometimes oblate) molecules. They are characterized by a long
range orientational order of the molecular axes. The resulting preferred direc-
tion in the system is described by the director field n (with n · n = 1). The
various mesophases differ in the positional order of the constituent molecules.
Quite often one finds with decreasing temperature a multi-step transition from
the fluid-like, random positional ordering of nematic liquid crystals (nematics)
through several, layered structures to smectic liquid crystals (smectics) pos-
sessing short range crystalline order. In the following, we will constrain our-
selves to the highest-symmetry liquid crystalline phase – the nematic – which
is the simplest representative of anisotropic uniaxial liquids.

The thermodynamical equilibrium of nematics would correspond to a spa-
tially uniform (constant n(r)) director orientation. External influences, like
boundaries or external fields, often lead to spatial distortions of the director
field. This results in an elastic increment, fd, of the volume free energy den-
sity which is quadratic in the director gradients [2, 3]:

fd =
1
2
K1(∇ · n)2 + 1

2
K2(n · (∇ × n))2 +

1
2
K3(n × (∇ × n))2. (1)

Here K1, K2 and K3 are elastic moduli associated with the three elementary
types of deformations; splay, twist and bend, respectively. Though the three
elastic moduli are of the same order of magnitude; the ordering K2 < K1 <
K3 holds for most nematics. As a consequence of the orientational elasticity a
local restoring torque (later referred to as elastic torque) acts on the distorted
director field which tends to reduce the spatial variations.

In most experiments (and applications) a nematic layer is sandwiched be-
tween two solid (glass) surfaces supporting transparent electrodes. Special
surface coatings and/or treatments allow control of the director alignment at
the bounding plates. There are two basic geometries: the planar one where n
is parallel to the surfaces (usually along x̂) and the homeotropic one where n

1.
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is normal to the surfaces (along ẑ). In most cases, the interaction between the
liquid crystal and the surface is strong enough to inhibit a change of the di-
rection of n at the boundaries (strong anchoring) despite director gradients in
the bulk. The surface treatments combined with the elastic torques originating
from Eq. (1) ensure the initial homogeneous (i.e. no spatial variations in the
plane of the layer) director alignment of liquid crystal cells.

Due to their orientational order nematics are anisotropic substances. There-
fore, in contrast to isotropic fluids, many physical quantities of nematics must
be described using tensors [2, 3]. As nematics are non-chiral they exhibit an
inversion symmetry as well as a cylindrical symmetry around the director. In
addition, they are characterized by a non-polar molecular packing; thus the
nematic phase is invariant under the transformation n → −n. These sym-
metries imply that the dielectric susceptibility ε, the electrical conductivity σ,
and magnetic susceptibility χ tensors each have only two different compo-
nents in their principal-axis system: ε‖, σ‖, χ‖ and ε⊥, σ⊥, χ⊥, respectively.
For instance, the dielectric displacement D induced by an electric field E is
given as D = ε⊥E + εan(n · E). Analogous relations connect the electric
current j to E, and the magnetization with a magnetic field, respectively. The
difference εa = ε‖ − ε⊥ defines the anisotropy of the dielectric susceptibility.
Substances both with εa > 0 and with εa < 0 can be found among nemat-
ics, moreover, the sign may change with the frequency and/or the temperature
in some compounds (at optical frequencies always εa > 0). Though liquid
crystals are intrinsically insulators, they usually contain (or are intentionally
doped with) some ionic impurities which lead to a finite electric conductiv-
ity. In most cases the anisotropy of the electrical conductivity σa = σ‖ − σ⊥
is positive; in other words charges are more easily transported parallel to the
mean orientation (director n ) of the elongated nematic molecules than per-
pendicular. In the layered smectic phases, on the contrary, typically σa < 0.
In some liquid crystals with a nematic-to-smectic phase transition, when de-
creasing the temperature, pre-transitional fluctuations induce a sign change of
σa already in the nematic temperature range. The anisotropy of the magnetic
susceptibility χa = χ‖ − χ⊥ is positive for the majority of nematics due to
saturated aromatic rings as main building blocks of the constituent molecules.
The few exceptions with χa < 0 are composed of exclusively non-aromatic
(e.g. cyclohexane) rings.

The sign of the anisotropies εa and χa governs the behavior of the liquid
crystal in an electric (E) or a magnetic field (H) field via an electromagnetic
contribution, fem, to the orientational free energy density:

fem = −1
2
εoεa(n · E)2 − 1

2
μoχa(n · H)2. (2)

As a result, for εa > 0 or χa > 0 the electromagnetic torque tends to align
the director along the fields, while in the case of εa < 0 or χa < 0 an orien-



Convective patterns in liquid crystals driven by electric field 59

tation perpendicular to the field directions is preferred [2, 3, 9]. This behavior
establishes the basic working principles of most liquid crystalline electro-optic
devices (displays). Though Eq. (2) indicates a similarity between the behavior
in electric and magnetic fields, one crucial difference should be emphasized.
Since χa is of the order of 10−6 in SI units, distortions of the constant applied
magnetic field when the director varies in space, can safely be neglected. In the
electric case, however, εa is usually of the order of unity, and then the electric
field distortions have to be taken into account.

Though nematics are non-polar substances, a polarization may emerge in
the presence of director gradients, even in the absence of an electric field. This
flexoelectric polarization [2, 3]

Pfl = e1n(∇ · n)− e3n × (∇ × n) (3)

originates in the shape anisotropy of the molecules. Since the flexoelectric
coefficients e1 and e3 of rod-like nematic molecules are usually quite small,
their contribution

ffl = −Pfl · E (4)

to the free energy density is negligible in the majority of cases or is only de-
tectable under special conditions.

Though the free energy considerations introduced above are sufficient to
describe static orientational deformations in nematics, they cannot provide in-
formation about the dynamical properties of the system (e.g. the rate of re-
orientation upon a change of an external field). Usually dynamics involves
material flow which couples to the director field. In the standard nemato-
electrohydrodynamic theory the flow field v is described by a Navier-Stokes
equation, which, besides the elastic and viscous stresses, also includes the
Coulomb force of an electric field on charges present. The nematic anisotropy
is manifested in a complex form of the viscous stress tensor, such that the
effective viscosity depends on the director orientation and the gradients of the
velocity field components, which appear for instance in the strain tensor ∇⊗v.
The dynamics of the director n in liquid crystals is governed by a balance-of-
torques principle, which involves the elastic and electromagnetic torques, as
well as additional viscous torques in the presence of shear flow. It follows
directly from standard symmetry arguments [2, 3, 10] that the complicated
viscous behavior of nematics (reorientation of the director induces flow and
vice versa, flow aligns the director) can be described by eight phenomenologi-
cal transport coefficients - the Ericksen-Leslie viscosity coefficients α1, ..., α6,
and the rotational viscosities γ1 and γ2 - though in fact only 5 of them are inde-
pendent (for their definitions and the relations among them refer to e.g. [2, 3,
10]). In the nemato-electrohydrodynamic model nematics are treated as ohmic
conductors. To describe the dynamics of the charge density ρ = ∇ · D , which
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is coupled via D = ε ·E to the electric field E, the quasi-static approximation
of the Maxwell equations is sufficient in our case, which is equivalent to the
charge conservation:

dρ

dt
+∇ · j = 0 (5)

with the electric current j = σ · E.
The optical properties of nematics correspond to those of uniaxial crystals

[11]. The director defines the local optical axis. The most obvious indication
of the anisotropy of nematics is their birefringence. Since nematics are com-
posed of elongated molecules their extraordinary refractive index ne is always
larger than the ordinary one no, i.e. nematics have a positive optical anisotropy
na = ne − no. When light is passing through a nematic layer, an optical path
difference

Δs =
∫ [

neff (z)− no
]
dz (6)

between the ordinary and extraordinary rays builds up, which depends on the
local director orientation. The effective refractive index neff (z) for the light of
extraordinary polarization decreases with increasing angle between the director
and the light polarization (no ≤ neff (z) ≤ ne). If placed between crossed
polarizers, variation of Δs results in changes of color and/or the intensity of
the transmitted light. This feature makes the polarizing microscope a standard
tool for studying the textures of nematic liquid crystals.

There are, however, conditions where modulation of the optical properties
can be detected with a single or without any polarizer. This occurs if the di-
rector has a spatial tilt modulation periodic in a direction perpendicular to the
light path (e.g. in electroconvection). The extraordinarily polarized light then
senses the ensuing periodic modulation of the refractive index neff , so the
sample acts like an array of lenses. The illuminating light is focused and de-
focussed, resulting in a sequence of alternating dark and bright stripes in a
properly adjusted microscope. This technique, which is used in the majority of
experiments, is known as the shadowgraphy [12, 13]. In this setup of course
no intensity modulation exists when illuminated with light of ordinary polar-
ization (no is constant per definition). Under unpolarized light the intensity
modulations remain visible; however, the contrast is reduced since only part of
the light with the appropriate polarization will contribute.

Besides microscopy, diffraction is another possibility for analyzing periodic
patterns. The modulation of the refractive index is equivalent to an optical grat-
ing, thus illuminating with a laser beam the fringe pattern of the diffraction can
be detected at a distant screen. This allows determination of the pattern wave-
length as well as monitoring the pattern amplitude via the fringe intensities
(see [14] and references therein).
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All physical parameters mentioned above are material specific and tempera-
ture dependent (for a detailed discussion of the material properties of nematics,
see for instance [4]). Nevertheless, some general trends are characteristic for
most nematics. With the increase of temperature the absolute values of the
anisotropies usually decrease, until they drop to zero at the nematic-isotropic
phase transition. The viscosity coefficients decrease with increasing tempera-
ture as well, while the electrical conductivities increase. If the substance has
a smectic phase at lower temperatures, some pre-transitional effects may be
expected already in the nematic phase. One example has already been men-
tioned when discussing the sign of σa. Another example is the divergence of
the elastic modulus K2 close to the nematic-smecticA transition since the in-
cipient smectic structure with an orientation of the layers perpendicular to n
impedes twist deformations.

Electroconvection

Convection instabilities driven by temperature gradients are common in na-
ture. They are, for instance, crucial ingredients for the dynamics of our at-
mosphere and drive the earth dynamo. They present an intensively studied par-
adigm for the dynamics of extended nonlinear systems with many degrees of
freedom and show clearly the typical bifurcation sequences: spontaneous pat-
tern formation by destabilization of the homogeneous basic state → complex
patterns (secondary bifurcations) → chaos/turbulence. The understanding of
such systems has been promoted, in particular, by laboratory experiments in
the buoyancy-driven, classical Rayleigh-Benard convection in a layer of a sim-
ple fluid heated from below [15]. Already this experiment allows a wide range
of possible modifications, such as rotating or inclining the experimental setup
or the use of more complex working fluids such as binary fluids or electrically
conducting liquid metals. The wealth of phenomena are still far from being
exhausted, either from the experimental or from the theoretical point of view.

Electrically driven convection in nematic liquid crystals [6, 7, 16] represents
an alternative system with particular features listed in the Introduction. At on-
set, EC represents typically a regular array of convection rolls associated with
a spatially periodic modulation of the director and the space charge distribu-
tion. Depending on the experimental conditions, the nature of the roll patterns
changes, which is particularly reflected in the wide range of possible wave-
lengths λ found. In many cases λ scales with the thickness d of the nematic
layer, and therefore, it is convenient to introduce a dimensionless wavenum-
ber as q = 2π

λ
d
π that will be used throughout the paper. Most of the patterns

can be understood in terms of the Carr-Helfrich (CH) mechanism [17, 18] to
be discussed below, from which the standard model (SM) has been derived

2.
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[19]. Some scenarios fall outside that frame and need obviously new, other
mechanism(s) for description.

Experiments and theoretical considerations have shown that the key para-
meters are the symmetry of the system (planar or homeotropic boundary con-
ditions), the dielectric and the conductivity anisotropies. It is therefore conve-
nient to categorize the various combinations of parameters as listed in Table 1.
In the last column the structures predicted and/or observed are summarized and
will be discussed below systematically.

Table 1. Eight different combinations (labelled A to H) of initial director alignments and the
sign of anisotropies εa, σa. The EC pattern species are characterized in the last column: CH
stands for patterns, which are compatible with the Carr-Helfrich mechanism, in contrast to the

.

Case Alignment εa σa Type of transition

A planar < 0 > 0 direct CH, ns-EC (prewavy)
B homeotropic > 0 < 0 direct CH
C homeotropic < 0 > 0 secondary CH, ns-EC (prewavy)
D planar > 0 < 0 secondary CH
E planar > 0 > 0 direct CH, Freedericksz
F homeotropic > 0 > 0 direct CH (α-induced)
G planar < 0 < 0 direct CH (α-induced), ns-EC (longitudinal)
H homeotropic < 0 < 0 direct CH, Freedericksz, ns-EC (longitudinal)

First we discuss configurations which can be described by the standard
model where patterns appear either directly or as a secondary instability (sec-
tion 2.1). Then we discuss briefly EC phenomena not covered by the standard
model (section 2.2.).

EC is typically driven by an ac voltage. Its amplitude is used as the main
control parameter, while the driving frequency provides a convenient secondary
control parameter. Two types of modes, the conductive and the dielectric, are
allowed by symmetry (see the generic stability diagram sketched in Fig. 1). In
the low-frequency, conductive regime the director and the flow field are prac-
tically time independent while the electric field follows the external driving
in time; in the high-frequency dielectric regime (for frequencies above the so-
called cut-off frequency fc, which increases with decreasing charge relaxation
time τq = εoε⊥

σ⊥ ) the situation is reversed. In the following we will mostly focus
on the conductive regime.

EC occurs in a layer (parallel to the x− y plane) of homogeneously aligned
nematics in the presence of an electric field across the layer (along the ẑ axis).

remaining, nonstandard ones (ns-EC).

2.1 Standard EC based on the Carr-Helfrich mechanism
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Figure 1. Schematic morphological phase diagram in the U−f plane. Solid lines correspond
to the threshold voltage of standard electroconvection, the dashed line denotes the threshold of
the prewavy patterns or wide domains (see later). For details see [16].

To describe the convecting state, one needs the velocity field v(r, t), the di-
rector field n(r, t) and the charge distribution ρ(r, t) (or the electric potential
φ(r, t) inside the layer), which are available from the nemato-hydrodynamic
equations described in section 1. These coupled partial differential equations
cannot be solved analytically with realistic rigid boundary conditions (van-
ishing v, fixed n and φ at the confining plates). Typically investigations of
EC start with a linear stability analysis of the basic homogeneous state, which
yields the threshold voltage Uc(f) and the critical wavenumber qc(f) as func-
tion of frequency. Much insight into the mechanisms of EC has been obtained
by deriving approximate, analytical expressions for the critical quantities Uc

and qc. This development started with the seminal work of Carr [17] and Hel-
frich [18] in the planar geometry. They extracted the basic positive feedback
mechanism responsible for EC, which is now called the ’Carr-Helfrich (CH)
mechanism’ in the literature: any director fluctuation leads to charge separa-
tion, flow is excited due to the Coulomb force in the Navier-Stokes equation.
The flow exerts a viscous torque on the director reinforcing its initial fluc-
tuation and thus the charge density. The mechanism is opposed by viscous
damping of the flow and the elastic torques, such that EC appears only above
a certain threshold voltage.

The original, so called 1-d formula of Carr and Helfrich, was later refined
and generalized into a 3-d theory capable of calculating the wavevector and
describing real, three dimensional patterns (like normal or oblique rolls), other
geometries and the dielectric regime [16].

Approximate analytical threshold formulas (examples are shown in Eqs. (7)
and (8)) have been very useful not only to interpret specific experiments but
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also to get insight into general trends. For instance, it can be shown that the CH
mechanism remains unaltered if all three key parameters – the initial director
alignment, εa and σa – are “reversed” simultaneously, i.e. the change planar →
homeotropic is combined with the sign reversal of εa and σa. In fact, pairs of
systems connected by this reversal transformation (cases A↔B, C↔D, E↔H
and F↔G in Table 1) show close similarities.

In the following, we first discuss the situations where EC occurs as a primary
forward bifurcation and where the standard model is directly applicable (cases
A and B). Then we discuss configurations where EC sets in as a secondary
instability upon an already distorted Freedericksz ground state and compare
it with experiments (cases C and D). Note that in this case the linear analysis
based on the standard model already becomes numerically demanding. Finally,
we address those combinations of parameters where a direct transition to EC
is not very robust, since it is confined to a narrow εa range around zero. For
cases E and H this range may be accessible experimentally while for cases F
and G it is rather a theoretical curiosity only.

Case A: planar alignment, εa < 0 & σa > 0 . This is the most studied,
classical case, since the conductivity anisotropy of usual nematics (substances
without a smectic phase) is typically positive. As for εa, there is a wide range
of materials with negative dielectric anisotropy.

The starting point is the analytical expression for the neutral curve in planar
alignment with realistic rigid boundary conditions in the conductive regime
[20]:

U2(q, f) =
π2Keff

εoε
eff
a + Ih(α3/q2 − α2)τqσ

eff
a /ηeff

, (7)

with the overlap integral Ih = 0.97267, and the charge relaxation time, τq =
εoε⊥/σ⊥, that decreases with increasing σ⊥. The effective material parameters
Keff > 0, εeffa < 0, σeffa > 0, ηeff > 0 are proportional to the correspond-
ing physical quantities (elastic moduli, dielectric and conductivity anisotropies
and viscous damping coefficients, respectively). The effective values depend
on the frequency (f ) and the wavenumber (q) (for the complete expressions
see [20]). Eq. (7) has been derived using a truncated Galerkin expansion: each
variable is represented by one test function with respect to z which satisfies
the boundary conditions and has the appropriate symmetry. The minimum of
U(q, f) with respect to q yields the critical wavenumber qc(f) that determines
the threshold voltage Uth(f) = U(qc, f).

One can easily identify the effect of various terms in Eq. (7): with the
increase of the orientational elasticity (Keff ), the dielectric torques (εeffa )
(which both tend to turn back the director to the initial homogeneous align-
ment) or the viscous damping of the flow (ηeff ), the threshold increases. The
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only destabilizing term, which is responsible for the onset of the patterning
(q �= 0) instability, is the CH term, (α3/q

2 − α2)τqσ
eff
a (note α2 < 0 and

|α3| � |α2|).

Figure 2. Threshold voltageUth/U0 and the critical wavenumber qc versus the dimensionless
dielectric anisotropy εa/ε⊥ calculated from Eqs. (7) and (8). a; b; Planar alignment with σa >
0, c; d; homeotropic alignment with σa < 0. Dashed lines correspond to the Freedericksz
transition, solid lines to the direct EC transition.

The important role played by the electrical conductivity anisotropy σa is
evident: if σa decreases, U2(q, f) increases and diverges at a small positive
value of σa when the two terms in the denominator of Eq.(7) cancel each other.
If σa approaches zero or becomes negative (case F), the CH term vanishes or
acts as a stabilizing term, respectively; thus convection is not expected. The
role of εa is somewhat different: an EC transition exists for vanishing and even
for positive εa (case E).

When analyzing the frequency dependences Uth(f) and qc(f), it is obvious
from Eq. (7) and in agreement with general symmetry arguments that both
quantities start with zero slope at f = 0. They increase monotonically with f
and diverge at the cutoff frequency fc where the dielectric regime takes over.
For simplicity, we restrict the detailed presentation of the threshold behavior
to the limit f → 0 and to MBBA material parameters [2, 4, 19] except that we
allow for variations of εa (while keeping ε⊥ constant) and for reverse of the
sign of σa for the cases B, D, G and H.
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In Fig. 2, the results for the critical voltage Uth (left panels, in units of U0 =√
π2K1/(εoε⊥), U0 = 1.19V for MBBA parameters) and the corresponding

critical wavenumber qc (right panels) are summarized as functions of εa/ε⊥.
The data are barely distinguishable from the results of a rigorous linear stability
analysis based on the full standard model [21].

In case A (left panels of Fig. 2a-b), U(q) has only one minimum at a finite
qc; both Uc(εa) and qc(εa) are almost linearly decreasing functions. EC sets in
in the whole range εa < 0, at a few Volts applied to the convection cell.

Figure 3. Cross section of a roll pattern at the direct onset to EC in the planar geometry
(indicated by the small dashes at the confining plates). Double arrows denote the director mod-
ulations, which are maximal at the midplane. The lines follow the stream lines. The symbols +
and − denote the sign of the induced charges, shown at a phase of the applied ac voltage where
the electric field points downward.

Figure 3 exhibits the director and charge distribution as well as the velocity
field in the x − z plane at onset of electroconvection, where the x̂ direction
is parallel to the initial (planar) director alignment and λ is the pattern wave-
length.

Experiments carried out on MBBA, I52 and Merck Phase 4 and 5 [22–25]
match very well the quantitative calculations of the stability diagram. Often
oblique rolls (see Fig. 4a), where the wavevector of the striped patterns makes
a nonzero angle with the basic director alignment, appear in the conductive
regime below a Lifshitz point (f < fL), and normal rolls (Fig. 4b) appear
above it. Their wavelengths λ are of the order of the cell thickness d. The
dielectric rolls (Fig. 4c) appearing at frequencies above the cut-off (f > fc)
can be normal or oblique. However, their wavelength is independent of d and
is usually 3− 4μm. The patterns are regular (the snapshot in Fig. 4c was taken
at a higher voltage above threshold in order to have a higher contrast to the
expense of producing defects due to secondary bifurcations) and have a large
aspect ratio.

For completeness, we note that in many cases in experiments traveling rolls
(Hopf bifurcation) have been observed at onset, usually at the high frequency
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Figure 4. Snapshots of EC patterns slightly above onset for case A taken in a polarizing
microscope with a single polarizer (shadowgraph images, Phase 5, d = 9μm). a; Oblique rolls,
b; normal rolls, c; dielectric rolls (Note the difference in magnification.). The initial director
orientation is horizontal. The contrast was enhanced by digital processing.

end of the conductive range (see Fig. 1). The phenomenon lacked theoretical
understanding for a long time, until the standard model was generalized in a
way that the simple ohmic conductivity was replaced by ionic mobilities. The
resulting weak electrolyte model (WEM) [26, 27] provided the explanation and
a good quantitative agreement with experiments in MBBA [28], I52 [24] and
Phase 5 [29].

The dashed line in Fig. 1 is the experimental threshold curve for prewavy
patterns or wide domains (λ ≈ 4 − 10d) that also represent electroconvecting
structures though not captured by the standard model (see later in Section 2.2.).

Case B: homeotropic alignment, εa > 0 & σa < 0. Here the initial
director orientation and the sign of both anisotropies are reversed as compared
to case A.

Recent work showed [30] that in this case EC sets in with a continuous
transition from the homogeneous state directly, similarly to the classical con-
figuration of case A. It has been shown that the pattern forming mechanism,
including the role of the elastic, dielectric, viscous and CH terms, is analo-
gous to that of case A, and the standard model is applicable. The analytical
one-mode neutral-curve expression for homeotropic initial alignment [31] is
as follows:

U2(q, f) =
π2Keff

−εoεeffa − Ih(α3 − α2/q2)τqσ
eff
a /ηeff

. (8)

Eq. (8) is similar to Eq. (7); however, the effective quantities and τq in
Eq. (8) are defined differently. In fact, they can be transformed into each other
by interchanging the subscripts ‖↔⊥ and the material parameters K1 ↔ K3,
η1 ↔ η2 and α2 ↔ −α3. These transformations are natural consequences of
switching the boundary conditions between planar and homeotropic cases.
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The right hand side of Eq. (8) is positive for εa > 0 and σa < 0 (case B).
One expects for Uc(εa) and qc(εa) similar functions (mirror images) to those
of case A. However, the corresponding plots shown in Fig. 2 look somewhat
different. This is due to the asymmetry of the scaling factors (in all cases, we
plot εa in units of ε⊥ and Uth in units of U0 =

√
π2K1/εoε⊥).

The essential difference between cases A and B lies in the symmetry of the
system. In case A the planar geometry is anisotropic, and the wavevector direc-
tion is selected by the boundary conditions. In contrast, the homeotropic align-
ment in case B provides isotropic conditions in the plane of the patterns, and
the direction of the wavevector of the striped patterns is chosen accidentally
at threshold, which corresponds to a spontaneous breaking of the rotational
symmetry.

The director field and charge distribution, as well as the velocity fields are
sketched in Fig. 5 for the homeotropic case. The director tilt angle is deter-
mined by the applied voltage, but, as already stressed before, the azimuthal
angle is not selected in this isotropic configuration. As will be demonstrated
below, this freedom leads easily to disordered patterns with slow variations of
the azimuthal director component in the weakly nonlinear regime.

Figure 5. Cross section of a roll pattern at the direct onset of EC in the homeotropic geom-
etry (indicated by the small dashes at the confining plates). Double arrows denote the director
modulations, which are maximal at the midplane. Thin lines are for the flow field. The symbols
+ and − denote the sign of the induced charges.

Experiments have been carried out on p-(nitrobenzyloxy)-biphenyl [30] and
typical patterns in the conductive range at onset are shown in Fig. 6. At low
frequencies disordered rolls without point defects have been observed with a
strong zig-zag (ZZ) modulation (see Fig. 6a) which can be interpreted as the
isotropic version of oblique rolls. Above a critical frequency, a square pattern
is observed which retains the ZZ character because the lines making up the
squares are undulated. At onset the structure is disordered; however, after a
transient period defects are pushed out and the structure relaxes into a nearly
defect-free, long-wave modulated, quasi-periodic square pattern (see Fig. 6b).
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Figure 6. Snapshots of EC patterns slightly above onset for case B. a; ZZ modulated disor-
dered rolls, b; undulated (soft) squares.

The Uc − f phase diagram is similar to Fig. 1 and can be reproduced quan-
titatively by the standard model. The dielectric regime has not been observed
experimentally for, most likely, purely technical reasons (there is no reason
to exclude the dielectric regime). As for the various patterns in the nonlinear
regime, they have been well reproduced by a suitable weakly nonlinear analysis
[32, 33]. In contrast to the generalized Ginzburg-Landau amplitude equations
usually used in the anisotropic regimes, a generalized Swift-Hohenberg model
had to be constructed here.

Case C: homeotropic alignment, εa < 0 & σa > 0. In this com-
bination of the material parameters, the linear stability analysis of the basic
state does not predict a direct transition to EC since the resulting expression
for U2(q) in Eq. (8) is negative for all q �= 0 (except for εa in the immediate
vicinity of zero, see below). The reason is that the two terms in the denom-
inator act differently compared to the case B (εa > 0, σa < 0) described in
the previous subsection. The Carr-Helfrich torque is now stabilizing while the
dielectric torque (∝ εeffa ) is destabilizing. At q = qF = 0, this term dominates
and describes, at the threshold UF3 (see Fig. 7a), the continuous bifurcation to
the Freedericksz distorted state of homogeneous (along the x̂ direction) bend
(see Fig. 8a).

However, in the vicinity of εa ≈ 0, the destabilizing influence of the CH
term is restored if it becomes comparable with the εeffa term. The inspection
of Eq. (8) shows that this may occur at a very large q: the (α3 − α2/q

2) term,
which is large and positive for usual q (q ≈ 1), decreases with increasing q
and becomes eventually negative for materials with α3 < 0 if q2 > α2/α3

(≈ 100 for MBBA). This results in a patterning mode with q = qα against
which the basic homogeneous homeotropic configuration becomes unstable.
This mode is only activated if its threshold Uα becomes lower than UF3. Uα

and UF3 intersect at a very small, negative εa/ε⊥ ≈ −5 ·10−5 (the intersection
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point is not resolvable even in Fig. 7c). To the right of the intersection, qα
becomes in fact the fastest growing mode [34]. Note that the "α-induced"
direct transition to EC is only an interesting theoretical possibility with no
experimental relevance, since one would need a nematic with εa almost exactly
zero, and one should be able to detect patterns with extremely large q at very
high Uα.

Figure 7. Threshold voltages Uth/U0 and the critical wavenumber qc versus the relative
dielectric anisotropy εa/ε⊥ calculated from Eq. 8. Homeotropic alignment with σa > 0. The
upper (a; b;) and lower (c; d;) plots differ only in the axis scales. Dashed lines correspond to the
Freedericksz transition, solid lines correspond to the direct transition to an ("α-induced") EC
patterned state, dotted lines represent a secondary transition to EC.

Above the Freedericksz threshold UF3, the tilt angle with respect to ẑ in-
creases with increasing voltage such that eventually one arrives at a practically
planarly aligned nematic layer at the midplane. Consequently, the planar CH
mechanism is expected to be activated. Convection rolls are now to be su-
perimposed on the elastically pre-distorted Freedericksz state (Fig. 8b), and
there is no simple analytical threshold formula. Thus, one has to rely on a
numerical linear stability analysis of the Freedericksz state in the framework
of the standard model. Since boundary layers have to be resolved, one needs
more (6 − 8) Galerkin modes than typically required in the standard planar
case. These numerical calculations have achieved the same good agreement
with the experiments in MBBA or Phase 5 [35, 36], as previously in the case
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of the primary bifurcations (cases A and B). Uc in Fig. 7 (a,c) and qc in Fig. 7
(b,d) (dotted lines) represent the results of such calculations that match the ex-
perimental data well [9]. Note that the Uc and qc curves should continue to
almost zero εa; however, we have been unable to access this regime numer-
ically since the minimum of the neutral curve becomes too shallow. In the
range −0.2 < εa/ε⊥ < −0.03, a bifurcation to oblique (instead of normal)
rolls occurs at threshold. This manifests itself as little wiggles in the slope of
the modulus of the critical wavevector plotted in Fig. 7b. Recent experiments
[36] have shown, however, that at certain combinations of the material para-
meters (e.g. for Phase 5/5A) an unusual situation occurs, namely, oblique rolls
become restricted to a finite frequency interval, fL1 < f < fL2. Below fL1,
normal rolls appear, and reappear above fL2; thus there are two Lifshitz points
in this case.

Figure 8. Schematic director profile in case C. a; Freedericksz distorted state, b; with super-
posed electroconvection pattern.

Though the initial homeotropic state is isotropic (as in case B), the isotropy
in the plane is spontaneously broken due to the Freedericksz transition. Con-
sequently, the EC pattern is formed on an anisotropic background with a pre-
ferred direction in the x − y plane (as in case A). The local azimuthal angle
of the Freedericksz tilt direction is singled out by coincidence; thus, it may
vary in space as well as in time, representing a soft Goldstone mode coupled
to the EC patterning mode. As a result, the patterns at onset – oblique rolls
(Fig. 9a) or normal rolls (Fig. 9b) depending on the frequency – are disordered
and correspond to a special manifestation of spatio-temporal chaos, the soft
mode turbulence [37–39].

The chaotic behavior reflected in the disordered patterns can be suppressed
if the initial isotropy of the homeotropic alignment is broken by applying a
magnetic field H parallel to x̂ as shown in Fig. 8 [40]. The azimuthal angle
of n is then singled out by the magnetic field, and the patterns become nicely
ordered and exhibit similar morphologies as shown in Fig. 4 for the case A
(e.g. the disordered pattern of Fig. 9a becomes similar to that in Fig. 4a).
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Figure 9. Snapshots of electroconvection patterns superposed on the Freedericksz state in
case C. a; oblique rolls, b; normal rolls.

The homeotropic geometry offers some advantages in observing certain
phenomena in the (weakly) nonlinear regime of EC (at voltages above Uc). It
is known that normal rolls (NR) become unstable above a certain voltage with
respect to abnormal roll (AR) modes [41] which are characterized by a rotation
of the director in the x−y plane while the roll axis remains unchanged. In pla-
nar cells, the polarization of light adiabatically follows the director orientation
(Mauguin’s principle) [2, 3]. Weak non-adiabatic effects must be resolved in
this case to detect possible in-plane rotations of the director which are maximal
near the mid-plane and vanish at the boundaries.

In homeotropic cells, however, in-plane rotations of the director are reflected
in a net azimuthal rotation of the optical axis (and the light polarization) across
the cell which has allowed a detailed exploration of the characteristics of the
NR-AR transition. Experiments have shown an excellent agreement with the
predictions of generalized Ginzburg-Landau models [36].

Another example is related to the motion of defects (dislocations in the roll
pattern) which constitutes the basic mechanism of wavevector selection. In the
normal-roll regime, the stationary structure is characterized by the condition
q ‖ H. However, when changing the field direction one can easily induce a
temporary wavevector mismatch Δq = qnew−qold which relaxes via a glide
(v ‖ q) motion of defects. Experiments have confirmed the validity of detailed
theoretical predictions, both with respect to the direction (v ⊥ Δq) and the
magnitude (consistent with logarithmic divergence at |Δq| → 0) of the defect
velocity v [42].

The homeotropic geometry also allows for the appearance of structures with
a secondary spatial periodicity – chevrons – in the conductive regime at volt-
ages considerably larger than Uc [43]. Such type of chevrons, which are char-
acterized by a periodic arrangement of defect chains, have been observed be-
fore exclusively in the dielectric regime.
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Case D: planar alignment, εa > 0 & σa < 0. This configuration is
realized by “reversing” the sign of the anisotropies and the initial director ori-
entation compared to case C. Thus, cases D and C belong to the same “family”,
analogous to cases B and A discussed before. The standard model applies and
the theoretical analysis can be based on Eq. (7) for the neutral curve U2(q).

Figure 10. Threshold voltages Uth/U0 and the critical wavenumber qc versus the relative
dielectric anisotropy εa/ε⊥ calculated from Eq. (7). Planar alignment with σa < 0. The
upper (a; b;) and lower (c; d;) plots differ only in the axis scales. Dashed lines belong to the
Freedericksz transition, solid lines to the direct transition to an ("α-induced") EC patterned
state. Dotted lines represent a secondary transition to EC.

Upon increasing the voltage the first transition is usually to the homoge-
neous (q = qF = 0) splay Freedericksz state with a frequency-independent
threshold voltage UF1 (Fig. 10a), i.e the absolute minimum of the neutral curve
is at q = 0. However, very near to εa = 0 the absolute minimum appears at
a finite q. Thus we have the planar counterpart of the “α-induced” EC de-
scribed in case C. The Freedericksz threshold smoothly transforms into an EC
threshold Uα at εa/ε⊥ = 0.0057 (see Fig. 10c-d). Below this, a direct transi-
tion to EC is predicted with qα growing continuously from zero and remaining
extremely small. This transition seems to be a better candidate for experimen-
tal observation than its homeotropic counterpart, because both Uα and qα are
substantially lower than in case C.
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For εa/ε⊥ > 0.0057 EC occurs superimposed onto the Freedericksz state
(secondary instability) at a higher voltage Uc > UF1. The standard model
can also be applied here by carrying out numerical linear stability analysis of
the Freedericksz distorted state, and one is faced with similar modifications
and difficulties as mentioned in case C before. The εa-dependent Uc and qc,
presented by the dotted lines in Fig. 10(a-b), have been calculated numerically.
It should be noted that the convection rolls are now oriented parallel to the
initial director alignment, contrary to the normal rolls in case A or C.

Measurements in the only available substance have revealed well-aligned
rolls in the whole conductive frequency range [30] similarly to case A (com-
pare Fig. 11a with Fig. 4b), indeed with q ⊥ n as predicted by the theory. The
wavenumber scales as d−1. The calculations above provided a good quantita-
tive agreement with experiments for both Uc(f) and qc(f).

Figure 11. a; Snapshot of EC pattern in the Freedericksz distorted planar geometry of case
D. b; Voltage dependence of the contrast (the difference of the maximum Imax and minimum
Imin intensities) of the EC pattern in case D. ε = (U2 − U2

c )/U
2
c is a dimensionless control

parameter.

The transition was found to be mediated by nucleation and traveling of sharp
fronts (Fig. 11a) that indicates a backward bifurcation, although hysteresis has
not been identified directly. Rather, a sharp jump in the contrast (pattern am-
plitude) with increasing voltage has been detected, with some indications that
a low contrast pattern already arises at voltages before the jump occurs in
Fig. 11b. A preliminary, weakly non-linear analysis has exhibited a bifurca-
tion, which is in fact weakly supercritical at low frequencies. If small changes
of the parameters and/or additional effects are included (e.g. flexoelectricity
and weak-electrolyte effects) the bifurcation could become a more expressed
subcritical one [32, 33].
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Case E: planar alignment, εa > 0 & σa > 0 . Here the magni-
tude of εa plays a role. Starting from negative values (case A) a direct EC
threshold persists for zero and positive εa (see Eq. (7) and Fig. 2a-b). The up-
per limit in εa is set by the onset of the homogeneous (q = qF = 0) splay
Freedericksz transition at a threshold UF1. The intersection of Uc and UF1

occurs about εa/ε⊥ = 0.06, where the Freedericksz transition starts preced-
ing the EC bifurcation. The local minimum on the neutral curve still exists
at a finite qc up to εa/ε⊥ = 0.09 where qc discontinuously drops to zero. In
the parameter range where Uc ≈ UF1, interesting scenarios are expected as a
result of the competition between the homogeneous and the convective mode
[44, 45]. As in cases C and D, we have performed a linear stability analysis of
the Freedericksz distorted state but did not find any secondary EC threshold.
To understand this behavior we note that the dielectric destabilizing torque of
the basic state preferring q = 0 prevails over the CH torque resulting in the
Freedericksz transition at UF1. With the increase of the voltage U above UF1,
the tilt-angle of the director increases and reduces further the destabilizing ef-
fect of the CH term so that an even higher voltage would be required for EC
onset. At large enough director tilt, the CH term becomes even stabilizing and
the EC threshold “runs away”. In this case EC does not superimpose onto the
Freedericksz state contrary to cases C and D discussed above.

Case F: homeotropic alignment, εa > 0 & σa > 0. This is one of the
rather uninteresting situations. The only transition predicted is the "α-induced"
high q instability discussed in case C which is the primary transition in a very
narrow εa > 0 interval (see Fig. 7a-d). No transition has been observed exper-
imentally for any wavenumber at any voltage.

Case G: planar alignment, εa < 0 & σa < 0. This is the counterpart
of case F. Thus, theoretically, the “α-induced", low-q instability discussed in
case D persists for εa < 0 but the existence range is much smaller than in case
F. The Uα curve diverges here at εa/ε⊥ ≈ −10−5 that cannot be resolved in
Fig. 10c and has not been observed experimentally.

Case H: homeotropic alignment, εa < 0 & σa < 0. Here one expects
a qualitative behavior similar to case E. A direct EC transition is predicted for
negative εa down to εa/ε⊥ ≈ −0.1 (see Fig. 2c-d), though there is no exper-
imental evidence yet. For more negative εa, the Freedericksz transition takes
over, above which no secondary EC threshold is expected. The discussion and
arguments given for case E apply here as well.
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The standard model is very powerful. As demonstrated before, it describes
quantitatively the EC structures at onset and also quite deeply in the nonlinear
regimes. Nevertheless, there are some situations (one of them is the prewavy
structure mentioned under case A) where the standard model does not predict
a bifurcation to EC, although experimental observations have clearly identi-
fied pattern formation accompanied by convection (ns-EC) in the presence of
electric fields.

Cases A and C: εa < 0 & σa > 0. As discussed above, compounds
with εa < 0 and σa > 0 are the most common examples of substances to
exhibit the CH electroconvection. In substances with higher electrical conduc-
tivity, however, another periodic stripe pattern - the prewavy pattern - arises
occasionally at voltages below the EC threshold Uc. This pattern has been re-
ported for homeotropic [46] (case C) as well as for planar cells (case A) and
has been called wide domains [47, 48, 9]). It is characterized by a wavelength
λ much larger than the sample thickness (λ ≈ 4− 10d) (Fig. 12) as well as by
much longer relaxation times than those of standard EC patterns. The stripes
run perpendicular to the director, i.e. in the same direction as the conductive
normal rolls. The prewavy pattern does not produce (at least near threshold) a
shadowgraph image. It can be made visible only using crossed polarizers. This
implies that the pattern is due to an azimuthal modulation of the director which
is associated with flow vortices parallel to the surfaces [49] (i.e. in the x − y
plane, in contrast to the normal rolls in CH mechanism when both the director
modulation and the flow occur in the x−z plane). While the azimuthal rotation
of the director is easily detectable in homeotropic samples for any d, its visu-
alization in planar samples requires the detection of non-adiabatic corrections
to the light propagation, which restricts the sample thickness.

Measurements have shown that the prewavy pattern appears in a forward
bifurcation [50]. Its threshold voltage Upw has a weak, nearly linear frequency
dependence. It usually occurs at higher frequencies (see Fig. 1). Conductive
normal rolls, dielectric rolls and the prewavy pattern may follow each other
with increasing f (dielectric rolls may be skipped in compounds with higher
conductivity). Near the crossover frequency fc, the conductive (or dielectric)
rolls can coexist with the prewavy pattern resulting in the defect-free chevron
structure [51].

The characteristics of the prewavy pattern which clearly differ from those
of the classical EC patterns cannot be explained using the standard model. The
underlying mechanism is not yet known. One proposed interpretation – the
inertial mode of EC [9] – fails to predict the correct direction of the stripes. The
observation that Upw seems to remain continuous and that the flow survives

2.2 Non-standard EC excluded by the CH mechanism



Convective patterns in liquid crystals driven by electric field 77

Figure 12. The prewavy pattern in homeotropic MBBA. d = 50μm.

when passing the nematic-to-isotropic transition with increasing temperature
may suggest that the prewavy pattern could correspond to the chevron structure
of a not yet detected primary pattern created by an isotropic mechanism already
at voltages belowUpw. However, there are no direct experimental or theoretical
proofs for this idea.

Case G: planar alignment, εa < 0 & σa < 0. Standard EC (based
on the CH mechanism) cannot occur for the material parameter combination
εa < 0, σa < 0 [2] except the “α induced" pattern type. Nevertheless, convec-
tion associated with roll formation has been observed in ac electric field in the
homologous series of N-(p-n-alkoxybenzylidene)-n-alkylanilines, di-n-4-4’-
alkyloxyazoxybenzenes and 4-n-alkyloxy-phenyl-4-n’alkyloxy-benzoates [52–
54]. The characteristics of the patterns: the orientation of the rolls, contrast,
frequency dependence of the wavevector and the threshold, director variation
in space and time etc. – are substantially different from those observed in the
standard EC. Since this roll formation process falls outside of the frame of the
standard model, it has been called nonstandard electroconvection (ns-EC).

The main characteristics of these ns-EC patterns that differ from those of
standard EC are:

The overall contrast of the pattern is low compared to the standard EC
structures. Near onset, the ns-EC pattern is not visible with the conven-
tional shadowgraph method; crossed polarizers are needed to detect the
pattern. Thus, the director field has no z component, i.e. the director is
only modulated in the x − y plane. This feature also explains the low
contrast.

The threshold voltage scales with the cell thickness; thus, the onset is
characterized by a threshold field (not a voltage).
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The critical wavevector is perpendicular to, or subtends a large angle
with the initial director alignment (contrary to normal rolls); thus, the
rolls are parallel (longitudinal) or strongly oblique (see Fig. 13).

The critical wavelength is comparable or larger than the cell thickness.

The director field oscillates with the driving frequency, similar to the
dielectric regime of standard EC.

The threshold is a linear function of the driving frequency.

Figure 13. Snapshots of nonstandard electroconvection pattern in case G taken with crossed
polarizers. a; Oblique rolls, b; parallel rolls. Contrast was enhanced by digital processing. The
initial director orientation is horizontal. The depicted image is 0.225× 0.225mm2, d = 11μm.

As possible explanations, several ideas have been proposed: a hand-waving
argument based on “destabilization of twist fluctuations" [52], a possibility of
an isotropic mechanism based on the non-uniform space charge distribution
along the field [53] and the flexoelectric effect [55–57].

Case H: homeotropic alignment, εa < 0 & σa < 0. Above the
Freedericksz transition where no standard EC is predicted, convection (ns-
EC) builds up with properties similar to those listed for case G. The patterns
are disordered (see Fig. 14) as expected for an initial homeotropic alignment.

Summary

In this paper we have reviewed the structures appearing at onset of electro-
convection in nematic liquid crystals. The influence of the relevant material
parameters (εa and σa) and the role of the initial director alignment were ex-
plored. Our calculations using a linear stability analysis of the standard model
of electroconvection (performed for zero frequency) revealed that four different
scenarios characterized by different ranges of the wavenumber q can be iden-
tified: (1) the qF = 0 mode (a homogeneous deformation known as the Free-
dericksz transition) predicted and observed in cases C, D, E and H, which is
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Figure 14. Snapshots of nonstandard electroconvection pattern in case H taken with crossed
polarizers. a; Oblique rolls, b; parallel rolls. The initial director orientation is horizontal. The
depicted image is 0.45× 0.45mm2, d = 20μm.

actually a convection-free state; (2) the qc ≈ 1 mode (wavelength in the range
of d) which is the classical electroconvection, appearing either as a primary or
a secondary bifurcation; both have been detected and explained quantitatively
in cases A, B and C, D; (3) a short-wavelength structure with qα > 15 in case
F; and (4) a long-wavelength structure with qα < 0.07 in case D. The scenarios
(3) and (4) are only theoretically predicted (“α-induced" EC) for substances
with α3 < 0. With extending the consideration from zero to low frequencies,
no qualitative change of the mode classification is expected, although some
morphological changes of patterns can occur (oblique versus normal rolls).

At high frequencies – in the dielectric regime – Eqs. (7) and (8) do not ap-
ply. For completeness, we mention that independent calculations for this range
would invoke a different q-mode (5), the dielectric rolls, with the wavelength
that does not scale with d.

Experiments, however, have proved that other stripe patterns occur that do
not yet have an unambiguous, widely accepted interpretation. These patterns
can be classified in two additional q-modes: (6) the prewavy pattern (or wide
domains) with 0.2 < q < 0.5 observed in cases A and C and replacing modes
(2) and/or (5) or coexisting with them; and (7) the parallel (longitudinal) rolls
that are observed in cases G and H, with qc ≈ 1 as for mode (2), but otherwise
having different characteristics.

Acknowledgment

The authors wish to thank E. Kochowska and A. Cauquil-Vergnes for the
snapshots of ns-EC patterns. This work was supported by the EU grant EU-
HPRN-CT-2002-00312, the NATO ASI 980684, CRG.LG 973103 and the Hun-
garian Research Fund OTKA T-037336.



80 PATTERN FORMATION IN NANO-SYSTEMS

References

[1] M.C. Cross and P.C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993).

[2] P.G de Gennes and J. Prost, The Physics of Liquid Crystals, Clarendon Press, Oxford, 1993.

[3] S. Chandrasekhar, Liquid Crystals, University Press, Cambridge, 1992.

[4] Physical Properties of Liquid Crystals: Nematics, editors: D.A. Dunmur, A. Fukuda and
G.R. Luckhurst, Inspec, London, 2001

[5] Pattern Formation in Liquid Crystals, editors: A. Buka and L. Kramer, Springer, New York,
1996.

[6] W. Pesch and U. Behn, Electrohydrodynamic Convection in Nematics. In Evolution of
Spontaneous Structures in Dissipative Continuous Systems, editors: F.H. Busse and S.C.
Müller, pages 335–383, Springer, New York, 1998.

[7] L. Kramer and W. Pesch, Electrohydrodynamics in Nematics. In Physical Properties of
Liquid Crystals: Nematics, editors: D.A. Dunmur, A. Fukuda and G.R. Luckhurst, pages
441–454, Inspec, London, 2001

[8] W. Pesch and L. Kramer, General Mathematical Description of Pattern-Forming Instabili-
ties. In Pattern Formation in Liquid Crystals, editors: A. Buka and L. Kramer, pages 69–90,
Springer, New York, 1996.

[9] L.M. Blinov and V.G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials,
Springer, New York, 1994.

[10] H. Pleiner and H. Brandt, Hydrodynamics and Electrohydrodynamics of Liquid Crystals.
In Pattern Formation in Liquid Crystals, editors: A. Buka and L. Kramer, pages 15–68,
Springer, New York, 1996.

[11] M. Born and E. Wolf, Principles of Optics, Pergamon, Oxford, 1996.

[12] S. Rasenat, G. Hartung, B.L. Winkler and I. Rehberg, Exp. Fluids 7, 412 (1989).

[13] S. P. Trainoff and D. Canell, Physics of Fluids 14, 1340 (2002).

[14] N. Éber, S.A. Rozanski, Sz. Németh, Á. Buka, W. Pesch and L. Kramer, Phys. Rev. E 70,
61706 (2004).

[15] E. Bodenschatz, W. Pesch and G. Ahlers, Annu. Rev. Fluid Mech. 32 , 709-778 (2000).

[16] L. Kramer and W. Pesch, Electrohydrodynamic Instabilities in Nematic Liquid Crystals.
In Pattern Formation in Liquid Crystals, editors: A. Buka and L. Kramer, pages 221–255,
Springer, 1996.

[17] E.F. Carr, Mol. Cryst. Liq. Cryst. 7, 253 (1969).

[18] W. Helfrich, J. Chem. Phys. 51, 4092 (1969).

[19] E. Bodenschatz, W. Zimmermann and L. Kramer, J. Phys. (Paris) 49, 1875 (1988).

[20] See equation (6.5) on p. 221 in [16]. Note that there Ih = 0.97267 has been replaced by
one and that α3/q2 − α2 has been approximated by |α2|.

[21] Numerical codes for the linear analysis of the full standard model can be obtained upon
request from the authors.

[22] A. Joets and R. Ribotta, J. Phys. (Paris) 47, 595 (1986).

[23] S. Kai, N. Chizumi and M. Kokuo, Phys. Rev. A 40, 6554 (1989).

[24] M. Dennin, M. Treiber, L. Kramer, G. Ahlers and D. Cannell, Phys. Rev. Lett. 76, 319
(1995).

[25] S. Rasenat, V. Steinberg and I. Rehberg, Phys. Rev. A 42, 5998 (1990).



Convective patterns in liquid crystals driven by electric field 81

[26] M. Treiber and L. Kramer, Phys. Rev. E 58, 1973 (1989).

[27] M. Treiber and L. Kramer, Mol. Cryst. Liq. Cryst. 261, 951 (1995).

[28] I. Rehberg, S. Rasenat and V. Steinberg, Phys. Rev. Lett. 62, 756 (1989).

[29] M. Treiber, N. Éber, Á. Buka and L. Kramer, J. Phys. II (Paris), 7, 649 (1997).

[30] Á. Buka, B. Dressel, W. Otowski, K. Camara, T. Tóth-Katona, L. Kramer, J. Lindau, G.
Pelzl and W. Pesch, Phys. Rev. E 66, 051713/1-8 (2002).

[31] See equation (6.29) on p.244 in [16], which has been rewritten. The definition of σ̄a in
equation (6.31) contains a misprint. The correct equation reads:

σ̄a
(eff) =

σa(ε⊥/ε‖−εaσ⊥/(ε‖σa))
(1+ω′2)S̄ .

[32] Á. Buka, B. Dressel, L. Kramer and W. Pesch, Phys. Rev. Lett. 93(4), 044502/1-4 (2004).

[33] Á. Buka, B. Dressel, L. Kramer and W. Pesch, Chaos 14, 793-802 (2004).

[34] L. Kramer, A. Hertrich and W. Pesch, Electrohydrodynamic Convection in Nematics: the
Homeotropic Case. In Pattern Formation in Complex, Dissipative Systems, editor: S. Kai,
pages 238–246, World Scientific, Singapore (1992).

[35] A. Hertrich, W. Decker, W. Pesch and L. Kramer, Phys. Rev. E 58, 7355 (1998).

[36] A.G. Rossberg, N. Éber, Á. Buka and L. Kramer, Phys. Rev. E 61, R25 (2000).

[37] S. Kai, K. Hayashi and Y. Hidaka, J. Phys. Chem. 100, 19007 (1996).

[38] Y. Hidaka, J.-H. Huh, K. Hayashi, M. Tribelsky and S. Kai, J. Phys. Soc. Jpn. 66, 3329
(1997).

[39] P. Tóth, Á. Buka, J. Peinke and L. Kramer, Phys. Rev. E 58, 1983 (1998).

[40] H. Richter, N. Kloepper, A. Hertrich and Á. Buka, Europhys. Lett. 30, 37 (1995).

[41] H. Richter, Á. Buka and I. Rehberg, Phys. Rev. E 51, 5886 (1995).

[42] P. Tóth, N. Éber, T.M. Bock, Á. Buka and L. Kramer, Europhys. Lett. 57, 824 (2002).

[43] Á. Buka, P. Tóth, N. Éber and L. Kramer, Physics Reports 337, 157 (2000).

[44] B. Dressel and W. Pesch, Phys. Rev. E. 67, 031707 (2003)

[45] B. Dressel, L. Pastur, W. Pesch, E. Plaut and R. Ribotta, Phys. Rev. Lett. 88 , 024503
(2002)

[46] S. Kai and K. Hirakawa, Solid State Commun. 18 1573 (1976).

[47] P. Petrescu and M. Giurgea, Phys. Lett. 59A, 41 (1976).

[48] A.N. Trufanov, M.I. Barnik and L.M. Blinov, A Novel Type of the Electrohydrodynamic
Instability in Nematic Liquid Crystals. in Advances in Liquid Crystal Research and Appli-
cation, editor: L. Bata, pages 549–560, Akadémiai Kiadó - Pergamon Press (1980).

[49] J.-H. Huh, Y. Yusuf, Y. Hidaka, and S. Kai, Mol. Cryst. Liq. Cryst. 410, 39 (2004).

[50] J.-H. Huh, Y. Hidaka, Y. Yusuf, N. Éber, T. Tóth-Katona, Á. Buka and S. Kai, Mol. Cryst.
Liq. Cryst. 364, 111 (2001).

[51] J.-H. Huh, Y. Hidaka, A.G. Rossberg and S. Kai, Phys. Rev. E 61, 2769 (2000).

[52] M. Goscianski and L. Léger, J. Phys. (Paris) 36, N.3, C1-231 (1975).

[53] L.M. Blinov, M.I. Barnik, V.T. Lazareva and A.N. Trufanov, J. Phys. (Paris) 40, N.4, C3-
263 (1979).

[54] E. Kochowska, S. Németh, G. Pelzl and Á. Buka, Phys. Rev. E 70, 011711 (2004).

[55] N.V. Madhusudana and V.A. Raghunathan, Mol. Cryst. Liq. Cryst. Lett. 5, 201 (1988).



82 PATTERN FORMATION IN NANO-SYSTEMS

[56] N.V. Madhusudana and V.A. Raghunathan, Liquid Crystals, 5, 1789 (1989).

[57] M.I. Barnik, L.M. Blinov, A.N. Trufanov and B.A. Umanski, J. Phys. (Paris) 39, 417-422
(1978).



DYNAMICAL PHENOMENA IN NEMATIC LIQUID
CRYSTALS INDUCED BY LIGHT

Dmitry O. Krimer,1 Gabor Demeter,2 and Lorenz Kramer1

1Physikalisches Institut der Universitaet Bayreuth, D-95440 Bayreuth, Germany

2Research Institute for Particle and Nuclear Physics of the Hungarian Academy of Sciences,
Konkoly-Thege Miklos ut 29-33, H-1121 Budapest, Hungary

Abstract A wide range of interesting dynamical phenomena have been observed in ne-
matic liquid crystals, that are induced by strong laser radiation. We review the
latest theoretical advances in describing and understanding these complex phe-
nomena.

Keywords: Nematic liquid crystals, Dynamical phenomena, Optically induced instabilities

The optics of liquid crystals has been a widely investigated subject for
decades, whose importance stems from the enormous range of technological
applications where liquid crystals are utilized for their optical properties. The
most important advantage of liquid crystals is that these optical properties can
be changed and controlled quickly and easily. The basic physical origin of
these phenomena is the subject of a number of review papers [1, 2] and mono-
graphs [3, 4].

A very interesting group of phenomena is that associated with the so-called
light-induced director reorientation in nematic liquid crystals (or nematics for
short). Liquid crystals consist of elongated molecules (rod shaped, or disc
shaped) which have anisotropic polarizability. In a nematic liquid crystal phase,
where the molecular orientation is ordered, the propagation of light waves is
then governed by an anisotropic dielectric tensor. The optical axis of the ne-
matic is aligned along the local direction of the molecular axis which is called
the director. On the other hand, the anisotropic polarizability also means that
an orienting torque is exerted on the molecules by any electrical field, includ-
ing the electric field of the light. Thus an intense light, whose electric field
is strong enough to reorient the molecules (i.e. turn the director), alters the
optical properties of the medium it propagates through. This leads to a large
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variety of nonlinear optical responses of the liquid crystal medium. Some of
these phenomena are rather spectacular (such as the ring pattern due to light
self-phase modulation) and are sometimes collectively referred to as the Giant
Optical Nonlinearity of liquid crystals [1, 2].

Among these phenomena, there are a number of situations where a constant
illumination of the liquid crystal leads to persistent oscillation of the mole-
cules and sometimes even to chaotic behavior. There has been considerable
effort recently to observe, describe and understand these phenomena. A lot of
experiments have been performed, and theoretical models have been proposed.
In some cases, there is sufficient agreement between theory and experiment, in
other cases not. In all cases it is clear that the dynamical behavior excited by
light in nematics is very rich - numerous bifurcations, transitions and regimes
have been predicted and observed. In this paper, we review recent theoretical
developments in modeling, simulating and understanding the physical origins
of these phenomena. We put special emphasis on explorations in the "nonlin-
ear domain", where considerable progress has been made during the past few
years. Numerous instabilities and bifurcations were found, and they helped
interpret experimental observations a great deal. By no means is the task ac-
complished however - there is a number of experimental situations which have
been considered theoretically only very superficially, or not at all. Understand-
ing these complex phenomena is, as yet, far from complete.

Simple setups - complicated phenomena

The basic experimental setup that can be used to generate the complex non-
linear behavior in nematics is deceptively simple. A thin cell is made from
two parallel glass plates enclosing the nematic layer, whose thickness is the
order of L = 10 − 100μm. The glass plates are coated with some chemical
surfactant to achieve a fixed orientation of the nematic director at the interface.
The cell is irradiated with a continuous laser beam, and the reorientation of
the molecules induced by the light is monitored by measuring the changes in
intensity and polarization of the outcoming light. Sometimes a separate probe
beam is used whose changing polarization and intensity supplies information
on director reorientation (Fig. 1). The key properties of the setup are the thick-
ness of the nematic layer, the orientation of the director at the boundaries, the
polarization, angle of incidence, and intensity of the light.

Depending on the relative orientation of the vector of polarization of light
and the initial director orientation, we can distinguish two different cases. In
one case, the two directions enclose some angle 0 < β < π/2, and so an
orienting torque acts, that turns the director for arbitrarily small light intensity
- there is no threshold intensity required (though considerable intensity may
be needed for appreciable changes in the director orientation, as the elasticity

1.
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Figure 1. Typical experimental setup: a thin layer of nematic liquid crystal is sandwiched
between two glass plates and irradiated with laser light. The scattered light (or the light of a
probe beam) is monitored behind the cell.

of the nematic counteracts the reorientation). In the other case, the director
orientation is parallel or perpendicular to the polarization vector, and so the
orienting torque acting on the director is zero. However, even though the con-
figuration where the director is perpendicular to the polarization is always an
equilibrium, it will be unstable above a certain light intensity. Thus, above a
certain threshold intensity, director reorientation will take place. This is the
so called Light-Induced Freedericksz Transition or Optically Induced Freeder-
icksz Transition (OFT) [1, 3], which is analogous to the classical Freedericksz
transition induced by static (or low frequency) electric or magnetic fields. This
transition can already lead to time-dependent behavior in certain geometries.
In other geometries the simple static reoriented state undergoes further bifur-
cations as the light intensity increases and produces complex, time dependent
behavior.

Theoretical description

Basic equations

The starting point for the description of these complex phenomena is the
set of hydrodynamic equations for the liquid crystal and Maxwell’s equation
for the propagation of the light. The relevant physical variables that these
equations contain are the director field n(r, t), the flow of the liquid v(r, t) and
the electric field of the light Elight(r, t). (We assume an incompressible fluid
and neglect temperature differences within the medium.) The Navier-Stokes
equation for the velocity v can be written as [5]

ρm (∂t + v · ∇)vi = −∇j(p δij + πij + T visc
ij ) , (1)

2.
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where ρm and p are the density and the pressure of the nematic, respectively.
πij is the Ericksen stress tensor defined as

πij =
∂F

∂(∂jnk)
· ∂ink, i = x, y, z, (2)

(where the summation over doubly occurring indices is assumed.) In Eq. (2)
F is the free energy density which consists of the elastic part

F (elast) =
K1

2
(∇ · n)2 + K2

2
(n · ∇ × n)2 +

K3

2
(n × ∇ × n)2 , (3)

and the external part which, in our case, is

F (ext) = − εa
16π

| n · Elight |2 . (4)

Here, K1, K2, K3 are, respectively, the splay, twist and bend elastic constants
[5], and Elight is the amplitude of the optical electric field. Any other external
fields which act on the director (static or low frequency electric or magnetic
fields for example) can be incorporated into F (ext) by adding similar terms.
The viscous stress tensor T visc

ij in Eq. (1) is written in terms of the six Leslie
coefficients αi [6],

−T visc
ij = α1ninjnknlAkl + α2njNi + α3niNj + (5)

α4Aij + α5njnkAki + α6ninkAkj .

The symmetric strain-rate tensor Aij and the vector N, which gives the rate of
change of the director relative to the fluid, are

Aij = (∂ivj + ∂jvi)/2 , (6)

N = (∂t + v · ∇)n − ω × n .

Here ω = (∇ × v)/2 is the local fluid rotation. The Leslie coefficients satisfy
the Parodi relation α2 + α3 = α6 − α5 [7]. In addition, the assumption of
incompressibility means that the density ρm is constant, and so ∇·v = 0. The
equation for the director n is

γ1(∂t + v · ∇ − ω×)n = −δ⊥ (γ2An+ h) , (7)

where γ1 = α3 − α2 is the rotational viscosity, and γ2 = α3 + α2. h is the
molecular field obtained from the variational derivatives of F :

hi =
δF

δni
=

∂F

∂ni
− ∂j

(
∂F

∂ni,j

)
, i = x, y, z . (8)

and the projection operator δ⊥
ij = δij −ninj in Eq. (7) ensures conservation of

the normalization n2 = 1.
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In addition, the electric field must be obtained from Maxwell’s equations
for light propagation, which, for a nonmagnetic material in the absence of any
currents and charges, can be written as:

∇ × H =
1
c
ε
∂E
∂t

, ∇ · (εE) = 0,

∇ × E = −1
c

∂H
∂t

, ∇ · H = 0, (9)

with the spatially dependent dielectric tensor

εij = (ε⊥ + iγ⊥) δij + (εa + iγa)ninj , (10)

where εa = ε‖ − ε⊥ [γa = γ‖ − γ⊥] is the real [imaginary] part of the di-
electric anisotropy. The imaginary part which describes absorption is usually
negligible in pure nematics but must be taken into account if the nematic has
been doped by absorbing dyes.

The boundary conditions needed for an unambiguous solution of the PDEs
are usually taken to be a fixed orientation of the director (strong anchoring)
and vanishing velocity field (no-slip) at the nematic-glass interface.

The equations (1), (7) and (9) constitute the starting point for any theoreti-
cal description of dynamical phenomena induced by light in nematics. Clearly,
light propagation is influenced by the spatial distribution of the director ori-
entation through the dielectric tensor (10), and the electric field of the light
influences the orientation of the director through the free energy (4) whose
derivatives (8) enter the director equation (7). The fluid flow must also be
added, as flow is coupled to the director, so any dynamical process that leads
to director reorientation will also induce flow even in the absence of pressure
gradients. This is the so-called backflow.

Some general remarks

The above equations contain three distinct timescales: the time it takes the
light to traverse the cell τl = L/c, the momentum diffusion time τvisc =
�mL

2/γ1 and the director relaxation time τ = γ1L
2/π2K3. These usually dif-

fer by many orders of magnitude, since typically τl ∼ 10−13s, τvisc ∼ 10−6 s
and τ ∼ 1s, so the slow variable of the system is clearly the evolution of the
director which enslaves the other two modes. The electric field of the light can
thus be expressed from Maxwell’s equations as a function of the instantaneous
value of n and can be considered as a self-consistency relation or a constraint.
In a similar way, due to the vastly different magnitude of τ and τvisc, inertial
terms in the Navier-Stokes equation can be neglected, and the flow of the ne-
matic can be expected to be determined entirely by the director components
and their time derivatives.
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These equations are a very complex set of nonlinear partial differential equa-
tions. The main difficulty lies in the fact that, even though Elight and v are
theoretically defined by n at every instant t, in general it is very hard, if not
impossible to express them by n. Most often we can only say that "Elight

and v are a solution of this and that", where "this and that" will be a partial
differential equation. Even when Elight and v can be expressed by n, the ex-
pressions will be complicated integral relationships. To gain any meaningful
solutions (even using computers), one must resort to further assumptions and
approximations. Analytic results are available only under the most restrictive
approximations and simplest cases. Numerical solutions are obtainable under
much less restrictive conditions, but yield proportionally less insight into the
physical origin of the phenomena. A delicate balance is needed when apply-
ing restrictive assumptions to the solutions in order to obtain solvable equa-
tions, and at the same time to keep physical phenomena within grasp. Should
the assumptions be too restrictive, we will readily obtain solutions that miss
important aspects of the dynamics or have no connection with real physical
processes at all. A constant comparison between theoretical results and exper-
imental observations is needed to avoid pitfalls.

There are several major simplifications that can be used to tackle these equa-
tions. First of all, fluid flow is almost always neglected altogether. Then the
Navier-Stokes equation is not needed at all, v is no longer a variable and we
only need to solve the director equation (7) which will now be

γ1∂tn = −δ⊥h. (11)

h will still contain the electric fields through (4) and (8), so (11) is still cou-
pled to (9). This approximation is sometimes justified by arguments that flow
plays only a passive role (backflow) and makes only a quantitative difference.
Sometimes it is argued that when reorientation is small, the effect of flow can
be included in a renormalized (reduced) rotational viscosity. This, however,
turns out not always to be true. A renormalized viscosity is applicable strictly
only in a linear approximation (even then not always), and backflow turns out
to make a qualitative difference in some cases. Thus the real reason why flow is
usually neglected is simply because it reduces the complexity of the equations
a great deal. Explicit treatment of backflow has been attempted only in very
few cases [8–10]. Even without flow, obtaining E from n remains a formidable
task, and usually more approximations are needed.

Another frequently employed simplification is the 1D assumption according
to which all variables depend only on one coordinate, namely, the one transver-
sal to the plane of the nematic layer, say, the z coordinate. This means that
the incident light should be an infinite plane wave (hence this approximation
is often called the infinite plane wave approximation), and, by virtue of in-
compressibility and the boundary conditions, v = (vx(z, t), vy(z, t), 0) which
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grants an enormous simplification of the initial equations [9]. The applica-
tion of this assumption is slightly controversial. Experimental setups rarely
use laser beams whose width w0 is so much larger than that of the cell L, that
would justify it. Also, there is evidence that even if the laser beams were ideal
plane waves, transverse degrees of freedom could not be neglected, for sponta-
neous pattern formation would occur [11, 12] (see the last section). However,
current experimental evidence leads us to believe that the width of the laser
beam w0 plays a crucial role in the observed phenomena only if the cell width
L is about two times larger (w0/L ≈ 0.5) [13]. Theoretical results derived us-
ing the 1D assumption compare remarkably well to experimental observations
obtained using laser beams with w0/L ≈ 1. Due to this, the 1D assumption is
relaxed very rarely.

In the 1D approximation, the director equations (7) reduce to [9]:

γ1∂tnx + nz
[
(α2 − γ2n

2
x)∂zvx − γ2nxny∂zvy

]
= −

[
δ⊥ h

]
x
,

γ1∂tny + nz
[
(α2 − γ2n

2
y)∂zvy − γ2nxny∂zvx

]
= −

[
δ⊥ h

]
y
. (12)

Following the concept of adiabatic elimination, the velocity gradients ∂zvx, ∂zvy
can be expressed with the components of n from (1) and substituted into (12)
[14, 9]. The procedure is straightforward, but expressions are complicated, so
the equations obtained can be solved only numerically.

A further simplification comes from the typical boundary condition of strong
anchoring that allows us to expand the z dependence of the director in terms
of a full set of base functions, typically trigonometric functions. Since elas-
ticity in nematics inhibits the growth of reorientation with a force proportional
to k2i (here ki is the inverse wavelength of the i-th mode), high order modes
will be strongly damped, and thus a truncation to a finite number of modes
is possible. This way, spatial dependence with respect to z is described by a
few mode functions and their amplitudes. If additionally the 1D assumption
is also used (i.e. the physical quantities depend only on z), this procedure
of expansion and projection of the equations onto the base functions can be
used to get rid of spatial dependence altogether. The system reduces to a finite
dimensional one, described by a set of complicated nonlinear ODEs for the
mode amplitudes. This is favorable, as investigating the solutions of nonlin-
ear ODEs is almost always much simpler, even if, in this case not necessarily
faster. On the other hand, taking too few modes can easily result in a loss of
physically important solutions. In any case, a correct choice of director de-
scription (Cartesian components, various angles, e.g. spherical) is essential.
Choosing a representation that corresponds to the symmetries of the setup can
simplify the equations drastically.

It is important to note that the inhibition of high order modes due to elasticity
always holds – even when it is not easy or practical to utilize. Thus sometimes
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a numerical solution of the equations does not use such an expansion, but the
results are projected onto a set of modes for analysis, as the time behavior of
mode amplitudes is often more meaningful and telling than the time behavior
of the director at any one point within the cell.

Equations for the light propagation

The most basic and unavoidable of problems when treating dynamical phe-
nomena induced by light in nematics is the solution of Maxwell’s equations for
some distorted director configuration. Phenomena in the nonlinear domain are
governed by an interplay between director reorientation – light torque change
due to modification of light propagation, so the success or failure of a theory of-
ten depends on the suitably chosen representation and/or approximations used
when dealing with this problem.

One simplification can almost always be applied: since director reorien-
tation changes very slowly on the spatial scale of the wavelength of light, the
electric field can be separated into fast phase exponentials and slow amplitudes
(similarly to many problems of light propagation in anisotropic media). If ad-
ditionally the 1D assumption can be applied, it is possible to write relatively
simple coupled ODEs for the slow field amplitudes (the amplitudes will depend
only on z - slow time dependence will result only through the time dependence
of the director). One possible way to obtain equations for slow amplitudes in
the 1D case is to use the so-called Berreman formalism [15]. The electric and
magnetic fields of the light should be written in the form:

Elight(r, t) =
1
2
(E(z, t)ei(kxx+kyy)e−iωt + c.c.), (13)

with the possible x − y dependence of the fields due to oblique incidence en-
tirely incorporated into the fast exponentials. From (9) or the wave equation
that can be obtained from it, it is straightforward to derive an equation for
the amplitudes E(z, t),H(z, t). A vector of four independent amplitudes de-
scribes the light field, and a set of linear, first order, ordinary differential equa-
tions governs its evolution:

dΨ̄
dz
= ik0DΨ̄, (14)

where

Ψ̄ =

⎛⎜⎜⎝
Ex

Hy

Ey

−Hx

⎞⎟⎟⎠ . (15)

The matrix D depends on the director components [3], and the other two field
components are defined by the above four unambiguously. By calculating the
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eigenvalues of D, one can separate the fast oscillations in z from the slow am-
plitudes. Another frequently used formalism is the separation of the electric
field into an ordinary and an extraordinary wave component [3]. This sep-
aration depends on space and time through the director components, but the
resulting equations are very useful (especially for the case of perpendicular
incidence), as the slow amplitudes change only due to twist distortions of the
nematic which is often small enough to allow a perturbative solution of the
equations.

If the equations of motion (1,7 or 11) are to be integrated by computer, the
equations for the slow field amplitudes can be solved numerically relatively
easily at each step of the integration. Sometimes it is also possible to obtain an
approximate expression for the fields as a function of the director components.
This is not very easy, however, and great care must be taken. While the ampli-
tudes of the electric field may change relatively slowly as the light traverses the
cell, phase differences between various components acquire importance much
faster. This means that integrals of the director components will appear in the
expressions, and perturbation theory has a very limited validity.

Obliquely incident, linearly polarized light

One of the most interesting and investigated geometries is when a linearly
polarized lightwave is incidentat a slightlyoblique angle on a cell of homeotrop-
ically aligned nematic. The direction of polarization is perpendicular to the
plane of incidence in this setup, so the system is symmetric with respect to
inversion over this plane [the x − z plane, see Fig. 2 (a)]. Very interesting
dynamical phenomena were observed in numerous experiments in this geom-
etry. First it was noted that persistent oscillations are possible above a certain
threshold intensity [16, 17]. Then various "competing" oscillatory states and

0 L

LC

(a)

(b)

x

z

y

n

ϕ
θE

α

Figure 2. Basic geometry of the setup. A linearly polarized light wave is incident upon a cell
of homeotropically aligned nematic at a slightly oblique angle α. The direction of polarization
is perpendicular to the plane of incidence (ordinary wave). The setup is symmetric with respect
to the inversion S : y → −y.

3.
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stochastic oscillations were found [18], and it was noted that the system even-
tually exhibits chaotic behavior [19]. Considerable effort went into exploring
the various regimes of regular and stochastic oscillations and trying to iden-
tify the transitions between them [20, 21]. Without a detailed theory, however,
interpretation of experimental observations remained inadequate. Initial theo-
retical investigations performed the linear stability analysis of the homeotropic
state [16, 22]. These treatments used the 1D approximation, neglected flow,
and, employing a mode expansion, managed to derive a solvable set of linear
equations for small distortions around the homeotropic state. They showed
that the first instability of the homeotropic state is a pitchfork bifurcation for
small angles (the usual optical Freedericksz transition), but, above a certain
angle of incidence αTB , the primary instability becomes a Hopf bifurcation.
However, since the angles at which regular oscillations and stochastic behav-
ior were observed were smaller than this critical angle, it was obvious that one
must go beyond the linear stability analysis and look for further bifurcations in
the nonlinear regime.

The next step was the derivation of a "simple" model to try to describe these
complex phenomena [23]. The starting point was again the same as that used
previously for the linear stability analysis: a plane wave approximation for the
light, no flow included and the assumption that reorientation is small around
the homeotropic state, i.e. we are in the weakly nonlinear regime. The director
was described in terms of two angles, as n = (sin θ, cos θ sinϕ, cos θ cosϕ)
[see Fig. 2 b)], and, using the strong anchoring at the boundary, these were ex-
panded asϕ(z, t) =

∑
nAn(t) sin(nπz/L), θ(z, t) =

∑
nBn(t) sin(nπz/L).

The set of mode amplitudes (A1, .., B1, ...) were truncated, and the resulting
expression for the director was substituted into the equations of motion and
projected onto these modes. The aim of this analysis was to derive a set of ex-
plicit first order ODEs for the time evolution of the mode amplitudes. Clearly,
for a "minimal model" expected to be able to describe further bifurcations and
possibly chaotic oscillations, one needs to keep at least three mode amplitudes
and keep nonlinear terms up to at least third order. The difficult point of this
analysis was finding the solution of Maxwell’s equations analytically with the
mode amplitudes as parameters which was accomplished using perturbation
theory and exploiting the fact that the reorientation angles are expected to be
small. (Note that this choice of angles is different from the one usually used,
namely the spherical angles. The reason is that with spherical angles, only the
polar coordinate can be assumed to be small, the azimuthal one not – thus a
power expansion is not possible.) The general form of the equations obtained
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is:

τȦi =
∑
j

LA
ijAj +

∑
j,k

PA
ijkAjBk

+
∑
j,k,l
k≤l

QA
ijklAjBkBl +

∑
j≤k≤l

RA
ijklAjAkAl,

τ Ḃi =
∑
j

LB
ijBj +

∑
j≤k

PB
ijkAjAk +

∑
j,k,l
k≤l

QB
ijklBjAkAl

+
∑
j≤k≤l

RB
ijklBjBkBl . (16)

The inversion symmetry with respect to the x− z plane implies that the equa-
tions must be invariant under the transformation S : {Ai, Bi} → {−Ai, Bi},
so that only odd powers of the Ai-s can appear in the first set of equations and
only even powers in the second set. In a linear approximation, only the A-s
have to be taken into account, as they are the ones driven by the light directly.
Thus for a minimal model the three modes: A1, A2, B1 have been kept. The
resulting set of ODEs has been solved numerically, and the nature of the so-
lutions has been analyzed as a function of the two control parameters of the
problem: the angle of incidence α and the intensity of the light normalized by
the OFT threshold ρ.

The numerical solution of the equations gave exciting results. In the region
where the primary instability of the homeotropic state is a stationary instabil-
ity, two new stationary states are born, which are mutual images under the
symmetry transformation S. These then lose stability at some critical intensity
in a Hopf bifurcation, where two limit cycles are born (again, mutual images
under S). They are depicted in Fig. 3 a) where they are plotted in the phase
space spanned by the three amplitudes {A1, A2, B1}. This is very reassuring,
since it accounts for the regular oscillating regime observed in the experiments
for angles smaller than αTB . As the intensity is increased, the symmetric limit
cycles pass closer and closer to the origin (which, above the OFT threshold
is a saddle), and at a certain intensity ρ1, they become homoclinic trajectories
to the origin (i.e. the homogeneous homeotropic state) [Fig. 3 b)]. Above ρ1,
the two limit cycles merge into one double-length limit cycle that is symmetric
with respect to S, [Fig. 3 c)]. This bifurcation is called a homoclinic gluing,
or a gluing bifurcation. A further increase in the light intensity then brings
about another symmetry-breaking bifurcation, where the symmetric limit cy-
cle gives way to two new asymmetric limit cycles, which are mutual images
under S [Fig. 3 d)]. At a still higher intensity, these too become homoclinic to
the origin [Fig. 3 e)] and merge into a quadruple-length symmetric limit cycle
[Fig. 3 f)]. This sequence of splitting and re-merging of limit cycles continues
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Figure 3. Limit cycles in phase space at various intensities as obtained from the simple model
andα = 7◦. a) ρ = 1.78 b) ρ = 1.80875, c) ρ = 1.85, d) ρ = 1.94, e) ρ = 1.9474 f) ρ = 1.96.

ad infinitum, and the bifurcation thresholds ρi converge to certain value ρ∞.
Beyond this point the motion is chaotic, and the system moves along a strange
attractor in phase space [Fig. 4]. The system exhibits typical signatures of low-
dimensional deterministic chaos, such as great sensitivity to initial conditions
and a positive Lyapunov exponent. The frequency spectrum of the mode am-
plitudes also shows this transition to chaos, by changing from a line spectrum
(where all lines are integer multiples of the same fundamental frequency) to a
continuous spectrum. We would like to emphasize: while this route to chaos
involves the birth of double-length limit cycles at a sequence of points, it is
very different from the usual period doubling scheme, as the stable homoclinic
limit cycle at the bifurcation has an infinite period. This quite distinct route
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to chaos was analyzed in a series of papers [24, 25], but to our knowledge has
never been observed in an experiment before.
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Figure 4. Strange attractor in phase space at α = 7◦ and ρ = 2.18.

Apart from this peculiar route to chaos, there was a great variety of inter-
esting nonlinear behavior found in this simple model in various domains of
the parameter plane spanned by the angle of incidence α and the intensity of
light ρ [23]. The most important result of the model is, however, that the first
region of regular oscillation - stochastic oscillation - regular oscillation which
was found in various experiments [19, 21] could be interpreted in terms of the
system passing through the first gluing bifurcation. As the system is in the
immediate vicinity of this bifurcation, and orbits are close to being homoclinic
trajectories to the origin, there are random transitions between orbits (or differ-
ent parts of the same orbit), due to noise in the experiment. Thus two "compet-
ing" modes of oscillations exist with random transitions between them. Some
distance below and above the bifurcation, the limit cycles do not approach the
vicinity of the origin, and there are no random jumps. Therefore, the evolution
of the system seems regular above and below the bifurcation but is found to
be stochastic in the immediate vicinity. This interpretation is made even more
convincing by a reconstruction of the limit cycles from experimental data [26],
which shows clearly that the symmetry properties of the trajectories above and
below the bifurcation change precisely as expected. However, for higher inten-
sities, the agreement between the predictions of the model and the observations
was not good. Experiments revealed what looked like another gluing bifurca-
tion (whose nature was different from the one expected for the second gluing
in the model), another periodic regime, and then an abrupt transition to chaotic
behavior. This was found at intensities much higher than the intensities where
chaos exists in the model.
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Thus, while the simple model was successful in identifying the first two bi-
furcations above the primary one, experimental results did not confirm the ex-
istence of the full cascade of gluing bifurcations leading to chaos. To gain fur-
ther insight into dynamical phenomena, a numerical study of the equations was
performed [27]. This study retained the assumption that light can be described
by a plane wave, and it also neglected flow. The assumption that reorienta-
tion is small was relaxed. Using a finite differences algorithm, the equations
were first solved, and mode amplitudes characterizing the motion of the system
in phase space were extracted from the solution. The result of this treatment
was somewhat surprising. The first three bifurcations the system goes through
(Freedericksz transition, secondary Hopf and first gluing) were the same as in
the simple model (although there was a considerable difference in the bifurca-
tion threshold for the gluing bifurcation). For higher intensities however, the
cascade of gluing bifurcations was not found. Furthermore, the observed dy-
namical scenarios were different from that observed experimentally, and chaos
was not found in the simulations for the parameters with which the experiments
were performed. This made it clear that, although higher order nonlinearities
that were neglected in the simple model do play a major role in the dynamics
of the system, further assumptions must be discarded for a correct description
of the phenomena.

Clearly, the next step in refining theoretical description of these phenomena
had to be the relaxation of one of the major assumptions and either include
flow in the equations or discard the plane wave approximation and consider
narrow beams. Since other experimental works that investigated dynamical
phenomena induced by narrow laser beams indicated that the beam width be-
comes an important parameter only when it is about two times smaller than
the cell width [13], the choice was to include flow and treat light as a plane
wave. Thus another numerical study of the system was performed, along sim-
ilar lines as the previous one. This time, the full nematodynamical equations
including flow were solved [10]. The results of this calculation were much
more satisfying. The first three bifurcations (primary, secondary Hopf and first
gluing) occurred in the same way as in the simple model and the first simu-
lation. There were only quantitative differences of the bifurcation thresholds
(Fig. 5 shows the lines of the most important bifurcations on the ρ − α plane.
The lines of the primary Hopf bifurcation and the first gluing bifurcation are
shown as calculated from both simulations, so that the difference between the
bifurcation thresholds caused by the inclusion of flow can be seen.) As the
intensity is increased, the bifurcation scenario is qualitatively different for the
calculation with flow. There is a second gluing bifurcation as observed in the
experiments, but its nature is different from that suggested by the model. It
is actually the inverse of the first one - the symmetric limit cycle breaks up
into two small asymmetric limit cycles, like those depicted in Fig. 3 a). After
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Figure 5. Bifurcation diagram on the plane of the two control parameters ρ and α. The solid
lines 1 and 2 mark the primary instability, where the homogeneous homeotropic orientation
becomes unstable. At 1, the bifurcation is a stationary (pitchfork) bifurcation, and a Hopf one
at 2. The two lines connect in the Takens-Bogdanov (TB) point. The solid lines 3 and 4 mark
the first gluing bifurcation and the second gluing bifurcation respectively. The dashed lines 2b
and 3b mark the lines of the primary Hopf bifurcation and the first gluing bifurcation when
calculated without the inclusion of flow in the equations.

this second gluing, a strange attractor appears abruptly as the intensity is in-
creased. This sequence now agrees with the dynamical scenarios observed in
the experiments, so it appears that the calculation that includes flow is capable
of interpreting experimental observations at all intensities. It also proves that
flow plays a major part in the dynamics when the light intensity is high enough,
so it is imperative to take flow into account if observations are to be interpreted
correctly. This supports the assumption that finite beam size effects can be
neglected, even though these experiments too were performed with w0/L ≈ 1.

Another exciting result of the calculation with flow was, that the route to
chaos via a cascade of gluing bifurcations was actually located in the para-
meter plane, close to the Takens-Bogdanov point. Since bifurcation lines are
nearly parallel to the ρ axis in this region, they can be traversed by keeping
the intensity fixed and decreasing the angle of incidence. The scenario can be
found in a region which was not explored by experiments, so the existence of
this very peculiar route remains to be confirmed by a further experiment.
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Perpendicularly incident, circularly polarized light

Another intriguing geometry to which much attention was attracted during
the last two decades is when a circularly polarized beam is incident perpen-
dicularly on a layer of nematic that has initially homeotropic alignment. The
light is polarized in the plane of the layer (the x-y plane) and propagates along
the positive z axis (see Fig. 6). In this case, the optical Freedericksz transi-
tion is observed to be weakly hysteretic, and the molecules undergo a collec-
tive rotation above threshold [28] (that corresponds to a uniform precession
of the director). This effect is well understood in the frame of a purely clas-
sical (hydrodynamic) approach [28]. The fact that the director rotates above
the transition rather than settling to some stationary or oscillating state can be
explained by symmetry. Contrary to the geometry discussed in the previous
section, the present one possesses isotropic symmetry in the plane of the layer.
Thus the only states allowed are rotating ones (the peculiar case of stationary
distortion can be regarded as a rotation whose frequency becomes zero). An-
other explanation in terms of ordinary (o) and extraordinary (e) waves is also
possible. When the director has homeotropic alignment, the phase speeds of
e and o waves are the same, so the phase difference α(z) between e and o
waves remains π/2. Thus light polarization is unchanged and remains circu-
lar when it propagates through the nematic layer. When the director reorients,
α(z) changes because the phase speed of the e-wave traveling across the layer
depends on z. Thus the polarization becomes elliptic inside the layer. The
light-torque acting on the director tries to turn it towards the major axis of
polarization, leading to precession.

The subcritical nature of the Freedericksz transition can be explained as
follows. When the director settles to the precession state, light becomes el-
liptically polarized inside the nematic. On the other hand, it is known that the
Freedericksz transition for elliptically polarized light depends on ellipticity and
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Figure 6. Geometry of the setup: circularly polarized light incident perpendicularly on a
nematic layer with the director n0 ‖ z (homeotropic state). The components of the director n
are described in terms of the angles Θ,Φ (Θ = 0 in the homeotropic state).
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occurs at some intensity between the Freedericksz threshold for linearly polar-
ized light and the one for circularly polarized light (see the next section). (The
threshold for OFT for circularly polarized light is two times higher than that
for a linearly polarized one.) Thus, once reorientation takes place, the ellipti-
cally polarized light that develops inside the nematic can sustain the distortion
even if the intensity is decreased slightly below the initial threshold.

The precession of the molecules can also be interpreted in a quantum picture
as spin angular momentum transfer from the light to the medium and is called
self-induced stimulated light scattering [29]. Since collective molecular rota-
tion dissipates energy, the light beam has to transmit part of its energy to the
medium. As the pure nematic LC is a transparent medium (no absorption), this
energy loss leads to a red shift of part of the light beam [29]. The mechanism
can be described as follows: each scattered photon has its helicity reversed and
thus transfers an angular momentum of 2� (that is perpendicular to the layer)
to the medium. Moreover, its energy is lowered by an amount �Δω. Thus,
p photons produce a constant torque τz = 2�p per unit time, that acts on the
medium and induces a collective molecular precession. This torque is balanced
by the viscous torque. The angular velocity of the uniform precession Ω is re-
lated to the red shift Δω by the simple formula Δω = 2Ω. This formula can
be derived from energy conservation using that i) p photons lose the amount of
energy p�Δω per unit time; ii) the work made by the torque τz on the director
is τzΩ = 2p�Ω = p�Δω . The fact that � disappears in the final relation shows
that one can obtain this formula through a classical approach [30].

In general, the angular momentum of the light beam consists of two parts: a
spin part associated with polarization [31] and an orbital part associated with
spatial distribution [32]. However, if the spatial distribution in the plane of the
layer is supposed to be homogeneous (i.e. when one deals with a plane wave
approximation), then the orbital part is zero. In this context, it may be inter-
esting to note that laser light with a Laguerre-Gaussian amplitude distribution
can be shown to have a well-defined orbital angular momentum [33].

The theoretical description of the OFT in this geometry was reported in [34]
where the importance of twist deformations of the director was pointed out,
and the hysteretic nature of the OFT was explained. In [30] a theoretical and
experimental investigation of the dynamical behavior of the system for the re-
gion of higher intensities was reported. The authors of [30] observed a further
discontinuous transition with large hysteresis from a precession regime with
small reorientation amplitude occurring above the OFT to one with large re-
orientation. The frequency of the large amplitude precession was found to be
much smaller than the one just above the OFT and to exhibit rapid variations
with the incident intensity reaching zero at roughly periodic intervals. In this
work, the authors presented an approximate model that can describe qualita-
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tively both regimes of uniform director precession and also presented clear
experimental evidence of the frequency reduction in the second regime.

Again, one of the simplifications used in this model was the infinite plane
wave approximation. Under this assumption, all relevant functions depend
solely on the spatial coordinate z and the time t. Obviously, the representation
adapted to this geometry is the one given in usual spherical angles Θ(z, t) and
Φ(z, t) such that n = (sinΘ cosΦ, sinΘ sinΦ, cosΘ) [see Fig. 6]. The twist
angle is written then as Φ = Φ0(t)+Φd(z, t), where Φ0(t) does not depend on
z and describes a rigid rotation of the director around the z axis (no distortion),
while Φd(z, t) contains twist distortion. Such a decomposition is not unique in
the sense that any constant can be added to Φ0 and then subtracted from Φd.
The key point, however, is thatΦ0 depends on time only and can be unbounded,
while Φd is required to remain bounded. (Note that nonzero Φd means that the
instantaneous director profile is out of plane.) To construct a simple model,
some further simplifying hypotheses are needed [30], namely i) the backflow
is neglected; ii) the splay-bend distortion is small, i.e., Θ2(z, t) � 1; iii) a
sine trial function for Θ(z, t) is used; iv) the twist distortions are small, i.e.,
|∂zΦd| � 1/L; v) the slow-envelope approximation for Maxwell’s equations
can be used. Retaining terms up to third order in Θ and keeping the lowest
order terms in ∂zΦd, the following expressions for the frequency of the uniform
director precession 2πf0 = dΦ0(t)/dt and the twist gradient ∂zΦd have been
obtained:

f0 =
ρ (1− cosΔ)

2πΔ
, ∂zΦd =

πρ

2Δ
(1− cosΔ)v(z)− 1 + cos[Δv(z)]

sin2 z
, (17)

where time and length are normalized as t → t/τ and z → πz/L, respectively.
Here ρ is the normalized intensity such that ρ = 1 corresponds to the threshold
for OFT, and v(z) = (z − sin z cos z)/π. Δ is the phase delay induced by
the whole layer and is a global measure of the amplitude of reorientation. It
has a direct experimental interpretation, since the quantity Δ/2π represents
roughly the number of self-diffraction rings in the far field [35] and, under the
approximation used, is proportional (with a large prefactor) to the square of the
amplitude of the polar angle Θ2

1(t). Finally, an analytic solution for Δ(ρ) has
been found [30] which is given by a rather cumbersome formula. As is seen
from Eq. (17), f0 indeed becomes smaller and exhibits rapid variation with
increasing Δ (i.e. with increase of the reorientation).

Even though the approximate model gave a satisfactory description of the
observed phenomena, the nature of the transition from one regime to the other
was not understood in this framework. Some years later, a qualitative mecha-
nism based on non-uniform spin angular momentum deposition from the light
to the nematic was introduced to explain the origin of such a transition [36].
A particular interest to this problem arose again more recently, when an addi-
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tional continuous secondary instability between the OFT and the abrupt transi-
tion to the largely reoriented state was observed [37]. Although a preliminary
description of the bifurcation scenario was reported in [38], the global scenario
was still obscure. It became clear that a numerical study was needed to gain
better insight to the problem [39, 40]. The original problem consisting of two
PDEs for Θ and Φ was simplified by means of expansions of Θ and Φd with
respect to z in systems of orthogonal functions which satisfy the boundary con-
ditions: Θ =

∑∞
n=1Θn(t) sinnz , Φd =

∑∞
n=1Φn(t) sin(n+ 1)z/ sin z. We

substitute these expansions into the director equations and project the equation
for Θ onto the modes Θn and the equation for Φ onto Φn (Galerkin method).
This results in a set of coupled nonlinear ODEs for the modes Θn and Φn. In
order to solve this set of ODEs, the two ODEs for the field amplitudes have to
be integrated dynamically at each step of numerical integration for time t [40].
The infinite set of ODEs was reduced to a finite one by truncating the mode
expansion for Θ and Φd. It is worth noting that for a state of uniform director
precession (UP) (f0 =const), the set of ODEs reduces to one of nonlinear al-
gebraic equations for Φn and Θn which become constant in time. The results
of this numerical study which explains the entire scenario is discussed in what
follows.

In Fig. 7, the phase delay Δ/2π is plotted versus the normalized intensity
ρ. The solid lines represent stable uniform precession (UP) states, while the
dashed lines correspond to precession states that are unstable. The region in
gray corresponds to a nonuniform precession (NUP) where nutation (dΔ/dt �=
0) is coupled to precession. In this regime, the lower and the upper lines that
limit the region correspond to the minimum and maximum values taken by Δ
during its oscillation.

The OFT occurs at ρ = 1 via a subcritical Hopf-type bifurcation where
the system settles to a uniform precession state with a small reorientation am-
plitude (Δ ∼ π so that Θ2 � 1) labeled UP1. Decreasing the intensity
from the UP1 regime, the system switches back to the unperturbed state at
ρ = ρ∗

1 � 0.88 where a saddle-node bifurcation occurs. The trajectory in the
(nx, ny) plane is a circle whereas, in a coordinate system that rotates with fre-
quency f0 around the z axis, it is a fixed point. The time Fourier spectra of the
director n have one fundamental frequency f0, whereas Θn, Φn and Δ do not
depend on time.

It is worth noting here that from the weakly nonlinear analysis, it follows
[40] that the nature of the OFT is governed by the sign of the coefficient C =
K1/K3−(9/4) (εa/ε||). C < 0 corresponds to a subcritical OFT, whileC > 0
corresponds to a supercritical OFT. Incidentally, this criterion is identical to
the one derived in the case of OFT under linearly polarized light [41]. In the
present example, C = 0.154 and the OFT is actually supercritical. However,
the solution branch turns over and becomes subcritical (and unstable) already
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Figure 7. (a) Δ/2π on a log scale versus ρ for ρ < 2 and Δ < 50π. (b) Δ/2π on a linear
scale versus ρ for ρ < 4 and Δ < 3π. Solid (dashed) curves correspond to stable (unstable)
solutions.

at ρ = 1 + δρ where δρ � 10−6. This explains why the OFT appears to be
subcritical on the scale used in Fig. 7. In fact, although δρ increases when the
cell thickness is decreased, even at L = 10 μm, the subcritical region is still
too small to detect (δρ � 10−4).

With further increase of the intensity, the UP1 state loses stability via a
supercritical Hopf bifurcation at ρ = ρ2 where the director starts to nutate
(NUP regime). For the NUP state, all modes Θn and Φn with n ≥ 1 are
time dependent, and their Fourier spectrum contains frequencies mf1, where
m is an integer. The spectra of the phase delay Δ and the director n have
contributions at frequencies given by the simple formulas: Δ̃ = {mf1} , ñ =
{f0,mf1 ± f0}. In some narrow region around ρ3 ≈ 1.75, the period T =
1/f1 of the NUP increases progressively with increasing light intensity and
indeed appears to diverge logarithmically at ρ3, as shown in Fig. 8. Thus as
ρ approaches ρ3, the NUP limit cycle collides with the unstable UPS branch
which is a saddle. In fact, we deal here with a homoclinic bifurcation of the
simplest type, where a limit cycle collides with a saddle point having only one
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Figure 8. Characterization of the homoclinic bifurcation f−1
1 (ρ) = O[ln(ρ3 − ρ)] near ρ3

(ρ3 = 1.748542389055). The solid line is the best fit to the theoretically calculated values (•).

unstable direction [42] (all the eigenvalues have negative real parts except one,
which is real and positive).

At ρ = ρ3, the system jumps to a new state of uniform precession of the di-
rector (UP2) with large reorientation (Θ � 74o) and slow precession rate. As
displayed in Fig. 7, starting from the stable UP2 branch above ρ3 and lowering
the excitation intensity, one finds a large and rather complicated hysteretic cy-
cle, which eventually flips back to the UP1 solution at ρ∗

3 = 1.09. This part of
the UP2 branch consists of alternatively stable and unstable regions exhibiting
a series of saddle-node bifurcations. Eventually, this branch connects with the
UPS one which makes a loop and connects with the UP1 branch.

As a result of the appearance of the new frequency f1 at ρ = ρ2, the di-
rector motion becomes quasi-periodic characterized by the two frequencies f0
and f1. This is illustrated in Fig. 9(a), where the trajectory of the director in
the (nx, ny) plane is plotted for ρ = 1.55 at some z inside the layer. This
trajectory is not closed in the laboratory frame indicating quasi-periodicity of
the director. In fact, the two independent motions, namely the precession (f0)
and the nutation (f1), can be isolated by transforming to a frame that rotates
with frequency f0. In the rotating frame, the director performs a simple peri-
odic motion with frequency f1 as is seen in Fig. 9(b) with the arrow indicating
the sense of rotation for the case where the incident light is left circularly po-
larized. (The sense of rotation is always opposite to that of the underlying
precession [43].) As is seen from Fig. 9(c,d) starting from initial conditions
near the unstable UP1 solution or the UPS one, the director eventually settles
on the NUP solution, which is represented by a simple limit cycle.
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Figure 9. (a),(b): director trajectory at ρ = 1.55. (a) Quasiperiodic behavior in the laboratory
frame (nx, ny). (b) Periodic limit cycle in the rotating frame (nrotx , n

rot
y ). The arrow indicates

the sense of rotation when the incident light is left circularly polarized.
(c),(d): director trajectory at ρ = 1.55 in the f0(ρ,NUP)-rotating frame showing the instability
of the UP1 and UPS solutions in the NUP regime. (c) Initial condition near the UP1 solution.
(d) Initial condition near the UPS solution. The arrows indicate the sense of rotation of the
corresponding trajectory when the incident light is left circularly polarized.

In fact, the unstable UPS branch represents the saddle point (or separatrix)
that separates the regions of attraction of the NUP state (or, below ρ2, the UP1
state) from that of the largely-reoriented UP2 state. At this point, it might also
be interesting to note that the UP1 state represents a stable node at ρ ∼ ρ1 (the
relevant stability exponents are real and negative). Then, between ρ1 and ρ2, it
changes to a focus (the stability exponents become complex). At ρ2, the real
part of the complex pair of stability exponents passes through zero and then
becomes positive.
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Figure 10. Calculated dynamics just below ρ = ρ3. (a) Phase shift Δ(t). (b) Instantaneous
angular velocity Ω(t) = dΦ0/dt.

As ρ approaches the homoclinic bifurcation point, the trajectory of the di-
rector approaches the unstable UPS orbit for longer and longer intervals. The
dynamics near ρ3 possesses two time scales, a slow and a fast one, as ex-
pected from the homoclinic nature of the transition. Figure 10 emphasizes
this point, where the phase shift Δ(t) and the instantaneous angular velocity
Ω(t) = dΦ0/dt are plotted versus time.

The bifurcation scenario discussed above was actually observed in the ex-
periment. Although a good qualitative agreement between theory and experi-
ment was found [40], there are quantitative discrepancies. In the experiment,
the measured onset of the nutation-precession motion turns out to be about
20% lower than predicted by theory. Moreover, the slope of the precession fre-
quency versus intensity predicted by theory turned out to be different from that
observed in the experiment. One of the two possible reasons could be the use of
finite beam size in the experiment (that is typically of the order of the thickness
of the layer), whereas in theory the plane wave approximation was assumed.
Actually, the ratio δ between diameter of the beam and the width of the layer is
another bifurcation parameter (in the plane wave approximation, δ → ∞) and
was shown to play crucial role on the orientational dynamics [13]. There and
in [44] the importance of the so called walk-off effect was pointed out which
consists of spatial separation of Pointing vectors of the ordinary and extraordi-
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nary waves. (Ideally, this effect disappears when the propagation takes place
along the principal axis, i.e. the director n.) The problem in this case has to
include lateral degrees of freedom and becomes much more complicated. An
appropriate theoretical description is still missing. The other reason could be
that the fluid velocity in the LC is neglected. In [9], the influence of backflow
on the director dynamics was examined. After adiabatic elimination of the
flow field, a linear stability analysis around the basic state has been performed
in order to assess the "linearized viscosity reduction factor". As expected, the
threshold for the OFT is unchanged, whereas the growth rate σ = (ρ−1)/(τξ)
acquires an additional factor ξ < 1 (ξ = 1 corresponds to neglect of backflow).
Thus, within the linear approximation, backflow results in a renormalization of
the rotational viscosity γ1 (in fact, a reduction). The same expression for the
reduction factor ξ was found in [8], where a one-mode approximation for the
director components and smallness of the twist distortion were used.

As demonstrated in [9], backflow does not lead to qualitative changes in
the dynamical scenario but does lead to substantial quantitative changes in the
secondary bifurcation threshold. It turns out that the regime of nonuniform
precession shifts to higher light intensities by about 20% and exists in a larger
interval. In Fig. 11, Δ/2π is plotted versus the normalized intensity ρ. The
phase delayΔ for the UP regimes is only slightly different from the case with-
out backflow. However, the regime of nonuniform director precession shifts
to higher intensities. As is seen from Fig. 11, the thresholds for the NUP and
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Figure 11. Δ/2π versus ρ in semi-logarithmic scale. Solid (dashed) curves correspond to
stable (unstable) UP solutions. Gray region: nonuniform precession states of the director. Dash-
dotted lines in the (ρ′2, ρ

′
3) interval: nonuniform precession states of the director when backflow

is neglected. The fact that ρ′3 � ρ2 is accidental.
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UP2 regimes turn out to be ρ2 = 1.75 and ρ3 = 2.4 instead of ρ′
2 = 1.45

and ρ′
3 = 1.75 when the backflow is neglected [39, 40]. In [9], it was also

shown that the precession frequency f0 for UP1 states actually increases when
the backflow is included (as expected because γ1 effectively decreases). An
unanticipated spatial oscillations of the backflow in the UP2 regime were also
found which results from spatial oscillations of the director twist ∂zΦ. They
are a consequence of oscillations in the torque resulting from interference phe-
nomena between ordinary and extraordinary light. The backflow behaves very
differently for the three types of the director motion and thus can act as a sen-
sitive diagnostic to distinguish them.

Thus, the inclusion of backflow makes the situation even worse, because
the experimental values of the thresholds ρ2 and ρ3 are even smaller than that
given by the theory without backflow [39, 40]. One is forced to conclude
that the discrepancy between the theoretical predictions and the experiment
is strongly affected by the fact that, in the experiments, the beam size is not
large compared to the layer thickness. By using a large aspect-ratio geometry,
one is now in a position to test the theoretical framework [9] quantitatively.
This can be done by use of a dye-doped nematic, because the values of OFT
in this case can be two orders of magnitude smaller than for a pure nematic
(see [45, 46] and references therein). The low threshold intensity allows the
spot size of the light to be much larger than the thickness of the layer, thus the
plane wave approximation assumed in the theory might be better achieved in
the experiment.

Perpendicularly incident, elliptically polarized light

A natural generalization of the previous geometry is an elliptically polarized
(EP) plane wave incident perpendicularly on a layer of nematic that initially
has homeotropic alignment (see Fig. 6 in the previous chapter). The ellipticity
−π/4 ≤ χ ≤ π/4 is related to the ratio between the minor and the major
axis of the polarization ellipse. The case χ = 0 [χ = ±π/4] corresponds to a
linearly [circularly] polarized light. The sign of χ determines the handedness
of the polarization, thus it is sufficient to choose χ > 0 only. The main differ-
ence with the CP light discussed in the previous section is the broken rotational
invariance around the z-axis.

As shown in [47], the director is unperturbed (U) until the intensity reaches
a critical value that depends on χ: IEPF = ICPF /(1 + cos 2χ), where ICPF
is the intensity for OFT of CP light. Thus we have two control parameters,
the ellipticity χ and the incident intensity I . In what follows, the normalized
intensity ρ = I/ICPF is used.

For χ < π/4 the OFT is a pitchfork bifurcation, and the reoriented state is
a stationary distorted state (D). In [48], the oscillating states (O) were experi-

5.
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mentally observed. The numerical analysis [48] of the basic equations indeed
predicts the existence of such a state. It should be noted that reflection symme-
try is spontaneously broken by the first bifurcation, so in the D and O states,
one has two symmetry degenerate solutions related by {nx → −nx, ny →
−ny}. In [49], a model was derived using the assumption of small director
distortion, i.e. both the polar angle and the twist were assumed to be small
(Θ2 � 1 and Φd � 1). The director and the field equations were expanded
with respect to these angles and only some significant nonlinear terms were
kept. Then a mode expansion for Θ and Φ was used (the same as for CP light,
see previous section), and only the first mode Θ1 for the polar angle was re-
tained. Within this approximation, the phase delay Δ ∼ Θ2

1. The equations
for the Stokes vector (which determine the field amplitudes) were solved iter-
atively using Φd as a small parameter (actually the first iteration was taken).
This allowed elimination of the field amplitudes from the director equations,
which was finally reduced to a set of two ODEs for the phase delay Δ and the
zeroth mode Φ0 (which represents a rigid rotation). The twist modes Φn≥1

were then assumed to adiabatically follow their steady state values and were
shown to decrease rapidly with n, so only a few of them were kept. This rela-
tively simple model was capable of predicting not only O states but also some
other states occurring at higher intensities. It was demonstrated that with the
increase of ρ, the transition from the D to O state takes place via Hopf bifur-
cation, while the transition from oscillation to rotation was shown to be the
gluing of two symmetrical limit cycles (for a certain region of χ < π/4). The
hysteresis between rotations and oscillations at large ellipticity χ was also pre-
dicted. It should be noted that the experimental findings [49] are qualitatively
reproduced by this model.

It was shown in the previous chapter that CP light induces quasiperiodic
director rotation (QPR) if the incident intensity exceeds the one for OFT by
about 40% (no backflow). This is already in a higher region of intensities than
that considered in [49]. So the question was what happens if one mismatches
slightly from the CP case at higher intensities? It became clear [50] that a full
numerical analysis is needed to capture the QPR for the elliptic case, because
i) the small distortion approximation failed to describe QPR for CP case; ii)
higher order nonlinearities in twist terms [∝ (∂zΦd)2] are important. In [50],
the QPR was found both theoretically and experimentally. Apart from this
regime, other regimes of rotating, oscillating or stationary states with large di-
rector distortion and the transitions between them were predicted theoretically
[50]. In what follows, we present a brief overview of the bifurcation scenario
following [50], which is, in our opinion, complete for large and moderate val-
ues of ellipticity.

Figure 12 taken from [50] presents the different regimes that exist in the
(χ, ρ) plane for 0.33 ≤ χ ≤ π/4 � 0.785. Above the OFT threshold, several
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Figure 12. Phase diagram of the dynamical regimes in the parameter plane (χ, ρ). U: Undis-
torted state; D: stationary Distorted states; O: periodic Oscillating states; PR: Periodic Rotating
states; QPR: Quasi-Periodic Rotating states; LD and LO: Large reorientation associated respec-
tively with stationary Distorted and Oscillating states. The dashed lines hPR, hLD and hLO
correspond to the hysteretic region of the PR, LD and LO states, respectively. The points are
experimental data extracted from [49] for D (�), O (◦), PR (�) and hysteretic PR (�).

regimes can exist depending on the values of χ and ρ: stationary distorted
(D), oscillating (O), periodic rotating (PR), quasi-periodic rotating (QPR) and
largely reoriented states (Θ ∼ 1), which may be stationary distorted (LD),
oscillating (LO) or rotating (LR) states (LR states are not shown in Fig. 12,
since they only arise in a narrow region Δχ ∼ 10−2 near χ = π/4). Keeping
the ellipticity fixed and increasing the intensity, these regimes appear as a well-
defined sequence of transitions (as summarized in Table I). The trajectories of
the director in various regimes are shown in Fig. 13.

For 0.33 < χ < 0.53, the OFT is a pitchfork bifurcation, and the reori-
ented state is a D state [see the filled circles in Fig. 13(a)]. This state loses
its stability through a supercritical Hopf bifurcation to an O state [curve 1 in
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Figure 13. Calculated director trajectories in the (nx, ny) plane. (a) χ = 0.4: stationary
distorted state (D) at ρ = 0.72 (•); periodic oscillating state (O) at ρ = 0.76 (curve 1); periodic
rotating state (PR) just above the gluing bifurcation at ρ = 0.83 (curve 2) and slightly below
the transition to the largely reoriented oscillating state (LO) at ρ = 0.97 (curve 3); largely
reoriented oscillating state at ρ = 0.98 (curve 4, see inset). (b) χ = 0.6: stationary distorted
state (D) at ρ = 0.8 (•); periodic oscillating state (O) at ρ = 0.91 (curve 1); periodic rotating
state PR1 slightly above the gluing bifurcation at ρ = 0.917 (curve 2); periodic rotating state
PR2 at ρ = 0.95 (curve 3). (c) χ = 0.74: stationary distorted state (D) at ρ = 0.99 (•);
periodic oscillating state (O) at ρ = 0.9925 (curve 1); periodic rotating state PR1 slightly
above the gluing bifurcation at ρ = 0.9932 (curve 2); periodic rotating state PR2 slightly
above the saddle-node bifurcation at ρ = 0.9936 (curve 3, dashed line); quasi-periodic rotating
state at ρ = 1.5 (curve 4).

Fig. 13(a)] characterized by a single frequency f0 (Table II). As mentioned
above, the reflection symmetry is spontaneously broken by the primary bifur-
cation, so in D and O states one has two symmetry degenerate solutions. As
ρ increases, these two limit cycles merge in a gluing bifurcation at the origin
and restore the reflection symmetry. This leads to the appearance of a sin-
gle double-length limit cycle that corresponds to the trajectory in the PR state
[curve 2 in Fig. 13(a)]. A further increase of the intensity eventually leads
to a discontinuous transition to a largely reoriented oscillating (χ < 0.45) or
stationary distorted (χ > 0.45) state. In both cases, this transition is associ-
ated with a small relative jump of the director amplitude and corresponds to
a homoclinic bifurcation. In fact, stable LO states exist until the intensity is
decreased to a critical value represented by the hysteretic line hLO in Fig. 12,
below which the LO state becomes stationary distorted. This LD state finally
vanishes when the intensity is decreased below the hysteretic line hLD.

For 0.53 < χ < 0.72, one has the sequence U → D → O → PR as before
[see Fig. 13(b)], however there is an additional bifurcation between PR states.
In fact, the limit cycle amplitude of the PR regime, now labeled PR1 [curve
2 in Fig. 13(b)], abruptly increases. This results in another periodic rotating
regime labeledPR2 with higher reorientation amplitude [curve 3 in Fig. 13(b)].
This is a hysteric transition connected to a double saddle-node structure with
the (unstable) saddle separating the PR1 and PR2 branches as already found
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within the approximate model [49]. In that case, the system switches back to
the O or D state at the line labeled hPR in Fig. 12. In contrast, no hysteresis
is observed when ρ is decreased starting from the PR1 regime since the O
→ PR1 transition is continuous. The PR1 → PR2 transition is not shown in
Fig. 12, because it is very near to the gluing bifurcation. At χ = 0.53, the two
saddle nodes coalesce. Finally, for high intensity the system switches abruptly
from the PR2 to the LD regime. The reorientation discontinuity associated
with this transition is small for χ < 0.66 and quite large for χ > 0.66. This is
due to the fact that, for χ < 0.66, part of the limit cycle, associated with the
PR state just below the transition, extends to large reorientations in the (nx, ny)
plane. Consequently, it is already close to the largely reoriented states nearby
[see e.g. curve 3 and 4 in Fig. 13(a)]. The transition to large reorientation
is found to be a homoclinic bifurcation, and when the intensity is decreased,
stable LD states exist until the line hLD is reached.

For 0.72 < χ < π/4, the sequence U → D → O → PR1 → PR2 is ob-
served as before [see Fig. 13(c)]. However, for higher values of ρ, a QPR
regime is born through a secondary supercritical Hopf bifurcation, which in-
troduces a new frequency f1 into the system and transforms the dynamics into
a quasi-periodic behavior [curve 4 in Fig. 13(c)]. As the intensity increases, the
QPR state undergoes a homoclinic transition to a largely reoriented LD or LR
regime, which are respectively represented by a stationary distorted or slowly
rotating (close to χ = π/4) state. This bifurcation is associated with a large
discontinuity of the reorientation amplitude.

The signature of the anisotropy of incident light is visible in the director tra-
jectories in the (nx, ny) plane. The PR trajectories are obviously non-circularly
symmetric for χ = 0.4 and χ = 0.6 [see Figs. 13(a,b)], whereas PR2 and QPR
regimes are almost circularly symmetric when the polarization is almost CP
[see Fig. 13(c)]. The spectral content of the variables nx,y, Δ and Ix,y for O,
PR and QPR is listed in Table II.

Finally, one should mention the particular situation when the PR regime
vanishes at χ = 0.33 (see Fig. 12). There, a direct transition from the O to the
LO regime occurs as the intensity is increased. The corresponding picture is
this: as the intensity is increased, the limit cycle associated with the O regime
collides with an unstable fixed point thus preempting the gluing at the origin.
This dynamical sequence suppresses the appearance of the PR regime.

Starting from the PR or QPR regime and increasing the intensity, an insta-
bility eventually occurs at ρ = ρL (which depends on χ, see Fig. 12), and
the director settles to a largely reoriented oscillating (LO), stationary distorted
(LD) or rotating (LR) state (the latter one exists in a narrow regionΔχ ∼ 10−2

around χ = π/4). From Fig. 12, we see that the final state above ρL is a LO
state if χ < 0.45 and a LD state if χ > 0.45. It was found that the transi-
tion from the PR or QPR regime to the largely reoriented states is related to
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Table 1. Calculated sequence of bifurcations as a function of the ellipticity χ of the incident
light.

Ellipticity Sequence of transitions Bifurcation nature

0.33 < χ < 0.53 Unperturbed→ Distorted Pitchfork
Distorted→ Periodic oscillation Supercritical Hopf

Periodic oscillation→ Periodic rotation Gluing
Periodic rotation→ Periodic oscillation or distorted Homoclinic a

0.53 < χ < 0.72 Unperturbed→ Distorted Pitchfork
Distorted→ Periodic oscillation Supercritical Hopf

Periodic oscillation→ Periodic rotation-1 Gluing
Periodic rotation-1→ Periodic rotation-2 Saddle-node

Periodic rotation-2→ Distorted Homoclinic b

0.72 < χ < π/4 Unperturbed→ Distorted Pitchfork
Distorted→ Periodic oscillation Supercritical Hopf

Periodic oscillation→ Periodic rotation-1 Gluing
Periodic rotation-1→ Periodic rotation-2 Saddle-node

Periodic rotation-2→ Quasi-periodic rotation Supercritical Hopf
Quasi-periodic rotation→ Homoclinic c

Distorted or periodic rotation

χ = π/4 Unperturbed→ Periodic rotation Subcritical Hopf
Periodic rotation→ Quasi-periodic rotation Supercritical Hopf
Quasi-periodic rotation→ Periodic rotation Homoclinic c

a small jump of the director amplitude
b small [large] jump of the director amplitude for χ < 0.66 [χ > 0.66]
c large jump of the director amplitude

Table 2. Spectral content of the director components nx,y , the output intensity components
Ix,y and the phase delay Δ for the different dynamical regimes for an elliptically polarized
excitation.

Regime nx,y Ix,y Δ

Periodic oscillation (O) nf0 nf0 nf0
Periodic rotation (PR) (2n− 1)f0 2nf0 2nf0
Quasi-periodic rotation (QPR) nf1 ± (2m+ 1)f0 nf1 ± 2mf0 nf1 ± 2mf0
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Figure 14. Characterization of the homoclinic bifurcation near ρL for χ = 0.57, T (ρ) =
O[ln(ρL − ρ)], where T is the period of the instantaneous angular velocity Ω(τ) = dΦ0/dτ .
The solid line is the best fit to the theoretically calculated values (•). Inset: time evolution of
Ω(τ) at ρ = 1.02025. A perfect agreement with the calculated values (filled circles) is obtained
with the parameterizations a+ b ln(ρL − ρ) for a � 8.232 and b � −2.406 (solid line).

an increase of the period of the corresponding limit cycle. More precisely, this
period appears to diverge logarithmically at ρ = ρL. This behavior is illus-
trated in Fig. 14 for χ = 0.57. In this figure, the period of the instantaneous
angular velocity Ω(τ) = dΦ0/dτ is plotted as a function of ρ. The origin of
this critical slowing down near the bifurcation point is illustrated in Fig. 15,
where the director trajectory in the (nx, ny) plane is shown. Slightly below ρL
(ρ = 1.02025, black solid line on the left), the trajectory approaches a saddle
fixed point (open circle) during increasingly longer times; this corresponds to
the “plateau" behavior when Ω ∼ 0 in the inset of Fig. 14. On the other hand,
slightly above ρL (ρ = 1.02026, gray line in Fig. 15), the director eventually
settles to a stable focus (filled circle) that corresponds to a LD state. (The
stable LD state in the present example [just above ρL for χ = 0.57] is repre-
sented by a stable focus, in that for lower values of χ the director settles to a
LO state above ρL.) In fact, we deal at ρ = ρL with a homoclinic bifurcation
of the simplest type, where a limit cycle collides with a saddle point having
only one unstable direction (all the eigenvalues have negative real parts except
one, which is real and positive) [42].

As discussed in the previous section, a LR state appears at high intensities
for the circular case (χ = π/4). This slow dynamics is quite fragile and disap-
pears for perturbations of the ellipticity as small as Δχ ∼ 10−2, giving rise to
a LD regime instead. The mechanism for the disappearance of the LR regime
is the following. In the CP limit, the precession frequency associated with the



114 PATTERN FORMATION IN NANO-SYSTEMS

Figure 15. Director trajectory in the (nx, ny) plane near the homoclinic bifurcation point ρL
at χ = 0.57. Inset: homoclinic PR trajectory slightly below ρL (ρ = 1.02025). Main graph:
magnification of the region delimited by the box in the inset. The black solid line on the left is
part of the PR trajectory at ρ = 1.02025, and the gray line is the transient trajectory converging
to a stable fixed point just above ρL (ρ = 1.02026). The dashed line (solid line on the right)
represents the location of the unstable (stable) fixed points in a small range of ρ centered around
ρL. The open and filled circles represent the unstable and stable fixed points at ρ = 1.02025
and ρ = 1.02026, respectively.

LR state exhibits almost periodic modulation as a function of the intensity with
zero minimum values. As soon as the ellipticity is reduced, the points of zero
frequency are transformed into finite regions which continue to increase as χ
is further decreased. Eventually, these regions join leading to the LR → LD
transition.

In the region of largely reoriented states, the LO regime appears for χ <
0.51 [see Fig. 12]. This state is characterized in the (nx, ny) plane by a limit
cycle with a small radius [see curve 4 in Fig. 13(a)]. It was concluded [50]
that the LD states [which were stable at ρ = ρL] lose their stability at some
higher value of ρ in the range 0.45 < χ < 0.51, leading to a LO state. In
fact, the transition LD → LO takes place via a Hopf bifurcation. Moreover,
these unstable LD states eventually recover their stability at higher intensities,
leading to the inverse transition LO → LD.

The observation of the QPR regime for ellipticities close to circular polariza-
tion gave results which agree qualitatively with the above theoretical findings
[50]. To gain quantitative agreement, one again should refine the theory by
i) inclusion of flow; ii) taking into account the effect of finite beam size. We
think, however, that neither the former, nor the latter effect would lead to sub-
stantial differences (provided the beam is not several times narrower than the
cell width).
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Finite beam-size effects and transversal pattern
formation

As mentioned in the introductory sections, using the 1D assumption to solve
the relevant equations of motion is a simplification that is relaxed very rarely.
Although a number of works dealt with the OFT in nematics using Gaussian
beam profiles [51, 52], these works dealt exclusively with the primary instabil-
ity and with the properties of the stationary reoriented state above the transition
in various geometries. Dynamical phenomena were not considered in any the-
oretical works, even though there are experiments proving that, decreasing the
width of the beam yields very interesting dynamical behavior and even chaos.
One example is [13], where a circularly polarized light, incident perpendicu-
larly on a cell of nematic was observed to induce various dynamical regimes.
The ratio of the beam width to the cell width δ = w0/L was treated as a con-
trol parameter alongside the intensity ρ, and the various bifurcation scenarios
were compared as δ and ρ were changed. It was found that for δ ≈ 0.3− 0.4,
novel dynamical regimes and even chaotic oscillations could be observed. It
was argued that a spatial mismatch between the ordinary and extraordinary
waves that develops within the cell during propagation may have something
to do with these phenomena. Another study [53] investigated the dynamics
induced by a strongly astigmatic beam of circularly polarized light, again with
normal incidence. The light of an astigmatic beam carries not just the usual
spin angular momentum of circularly polarized photons, but also orbital angu-
lar momentum. It was shown in this study, that as the astigmatism of the beam
is increased above a certain level (i.e. if the orbital component of the angular
momentum reaches a certain ratio to the spin angular momentum component),
chaotic rotation of the molecules can be observed. Both of these experiments
emphasize that the laser beam shape can be an important control parameter,
whose change gives rise to complex dynamics. A proper theory, however, that
can account for the physical reasons or the nature of the transitions is missing
altogether.

Another possibility to consider is, that even if the light is incident on the
cell as a plane wave, pattern formation may occur in the plane of the layer
spontaneously. In other words, the spatially homogeneous state may lose sta-
bility to a finite wavelength perturbation, and a dependence of the physical
quantities on the transverse coordinates may develop. There are several argu-
ments to suggest that such instabilities are to be expected. On one hand, it is
known [54, 55] that periodic patterns can develop in the magnetic or electric
field induced Freedericksz transition in nematics, if the anisotropy of the elastic
constants reaches a certain value (i.e. if three elastic constants are sufficiently
different). It is also known [56], that any nearly homoclinic limit cycle is gener-
ically unstable with respect to spatiotemporal perturbations. This instability

6.
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is either a phase instability or a finite wavelength period doubling instability.
This means that we can certainly expect very complicated behavior (probably
spatio-temporal chaos) to develop in the vicinity of the homoclinic bifurca-
tions that were found in the 1D calculations in various geometries. Solving the
relevant PDEs in 2 or 3 dimensions to search for transversal pattern formation
phenomena would be prohibitively difficult. However, investigating the stabil-
ity of various spatially homogeneous states with respect to finite wavelength
perturbations is much easier and has been performed in several cases.

In [11], the simplified models of director dynamics in two geometries were
examined. One was the director dynamics induced by obliquely incident, lin-
early polarized light. The simple model of this geometry [23] (see section
3) was generalized to include a slow x − y dependence of the amplitudes
A1, A2, B1. Performing a linear stability analysis of the basic state with this
extended model, it was found that the undistorted homeotropic state always
loses stability in a spatially homogeneous bifurcation, i.e. �kc = 0. (In the
course of any linear stability analysis, one considers spatially periodic pertur-
bations, and the wave vector �k of the mode that destabilizes the stationary state
is called the critical wave vector �kc - if this is zero, the instability is said to be
homogeneous.) This is true for both the stationary OFT (curve 1 on Figure 4)
and the oscillatory OFT (curve 2 on Figure 4). For the case of the oscillatory
OFT, the relevant complex Ginzburg-Landau equation was derived which de-
scribes the behavior of the system in the weakly nonlinear regime. The linear
dispersion parameter in this equation turns out to be zero, while the nonlin-
ear dispersion parameter is in such a range that one expects stable plane wave
solutions, spirals and - in 1D - stable hole solutions [57]. The stability of the
stationary distorted state above the OFT was also investigated. It was found
that the secondary Hopf bifurcation which destabilizes it is homogeneous only
if the Frank elastic constants are all equal (K1 = K2 = K3), but it is not
homogeneous otherwise. In fact, �kc �= 0 for any degree of anisotropy of the
elastic constants (here reflection symmetry is broken by the primary transition,
so �kc �= 0 is actually the generic case). This is contrary to the magnetic field
induced transition, where there is a lower threshold to the ratio K1/K2 [54] or
K3/K1 [55], below which �kc = 0 and no stripes appear. Since the instabil-
ity is nonstationary, a finite �kc means the appearance of traveling waves. The
magnitude of �kc grows with the anisotropy of the elastic constants, and its di-
rection (the direction of wave propagation) is roughly parallel to the in-plane
component of the director �n⊥.

Another simple model investigated in [11] is a model of the director dynam-
ics induced by circularly polarized light using three variables. The stability of
the basic state and the uniformly precessing state above the OFT was inves-
tigated, and it was found that both of these states remain stable against any
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finite k perturbation too. The phase diffusion equation for the precessing state,
that describes the spatial evolution of phase disturbances [58] was also derived.
The general form of this equation is ∂tψ = a∇2ψ + b(∇ψ)2. In our case, the
spatially dependent phase perturbation is ψ = B0 − Ωt, and the real constants
appearing in the equation turn out to be: a = (K1 + K2)/K3, b = 0. This
means that we have plane wave solutions (B0 ∼ qx + py) but without group
velocity. These are the only attractors, and presumably all solutions decay to
such states apart from topological point defects. Vortex-like topological de-
fects, whose core however is not described by this equation, should also exist.

The linear stability analysis of the stationary distorted state above the OFT
induced by obliquely incident, linearly polarized light was repeated in [12], this
time without the numerous approximations used in earlier works, using numer-
ical methods. In addition, dye-doped nematics were considered, for which the
threshold for the OFT is much lower and thus permits the experimental real-
ization of a light beam that is much wider than the cell width. For this case,
however, absorption also has to be taken into account, which means that the
OFT does not happen at ρ = 1 for perpendicular incidence (see Fig. 16). Tak-
ing all of this into account, the exact reorientation profiles for the director were
calculated numerically first, and its stability was investigated with respect to
spatially periodic perturbations (proportional to exp[i(qx + py)]). Then the
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Figure 16. Bifurcation diagram of a dye-doped nematic excited by obliquely incident, linearly
polarized light as a function of the intensity ρ and the dimensionless phase parameter κ, which
is proportional to the sin2(α). H marks the domain where the homeotropic orientation is stable.
The line of OFT consists of two parts: for small angles it is a stationary bifurcation (solid line)
and for higher angles a Hopf bifurcation (dashed line). The domain of stationary distortion is
marked SD. The dash-dotted line marks the secondary Hopf bifurcation which gives rise to
traveling waves in the plane of the layer.
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Figure 17. Contour plot of the neutral surface as a function of the dimensionless wave vector
components pL and qL calculated for α = 11◦. The minimum of the surface yields the critical
wave vector components qcL = 0.11 and pcL = −0.06.

neutral surface ρ(q, p) was calculated (defined by the vanishing real part of
the linear growth rate of the perturbation Re[σ(q, p)] = 0 – see Fig. 17). The
minimum of the neutral surface defines the components of the critical wave
vector qc, pc, which destabilizes the stationary distorted state as the intensity
is increased. The intensity value ρ(qc, pc) is the critical intensity at which
the transition occurs. Since we have a nonzero wave number and a nonzero
frequency, traveling waves are expected to appear above the transition. This
analysis also confirmed that the critical wave vector grows as the ratio of the
elastic constants deviates from one, and it is zero if all elastic constants are
equal.

An interesting situation also came to light in the limit of normal incidence.
This case was impossible to analyze in the framework of the approximate
model, as the modes become large quickly and violate the initial assumptions.
It turned out that for α = 0 (which is a peculiar case, since the external symme-
try breaking in the x direction vanishes), another stationary instability precedes
the secondary Hopf bifurcation that spontaneously breaks the reflection sym-
metry with respect to x. It is shown by point A in Fig. 18. It is also seen from
this figure, that the secondary pitchfork bifurcation is destroyed in the case of
oblique incidence, which can be interpreted as an imperfect bifurcation with
respect to the angle α [43].
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Figure 18. Profiles of the director components nx, ny versus ρ at some z inside the layer (not
at the middle). Solid and dashed lines correspond to α = 0◦ and α = 0.5◦ respectively. ρth is
the threshold intensity of the OFT. Point A is a pitchfork bifurcation to a stationary state with
broken x-reflection symmetry (α = 0◦).

Conclusion and Outlook

As shown in the preceding sections, the behavior of nematics excited by
light can be extremely complex. Theoretical models reveal relatively simple
reasons behind the dynamics in only a few cases. More often, experiments
and elaborate computer studies show that a number of factors govern the com-
plex behavior together: director distortion induced by light, light propagation
change due to reorientation, flow of the fluid and the effects of finite beam size
all become factors to reckon with at some point or another.

There has also been a number of works devoted to some generalization of
the simple system that was the subject of the present paper. One of these is
the attempt to control the chaotic oscillations induced by an obliquely incident
laser light with the use of additional laser beams [59]. Another one is the inves-
tigation of the response of nematics driven by circularly polarized light with a
periodically modulated intensity near a Hopf bifurcation. Calculations showed
that the f1/f = 2/1 Arnold tongue (f [f1] is the frequency of modulation
[nutation]) has a large width, and there is a rather large region in the plane of
amplitude - modulation frequency, where the director exhibits chaotic behavior
followed by a cascade of period doubling bifurcations [60]. A third example is
the case of a long-pitch cholesteric liquid crystal. There, the dynamics can be
viewed as the result of the competition between the intrinsic unidimensional
helical pattern (related with the chiral dopant) and the extrinsic one (related
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with the light). It was found [61] for the case of circular polarization, that the
dynamics is more complex than that for a pure nematic and depends strongly
on the amount of the chiral dopant.

The study of these complex systems is important, because they exhibit a
large variety of nonlinear phenomena. While these are all known from the
theory of nonlinear systems, many of these were investigated experimentally
in only a few cases or sometimes not at all. Therefore, this relatively simple
experimental system may be an important tool to realize and analyze various
complex scenarios that appear in nature and may still have many surprises in
store.
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Abstract Some aspects of self-assembly of quantum dots in thin solid films are consid-
ered. Nonlinear evolution equations describing the dynamics of the film insta-
bility that results in various surface nanostructures are analyzed. Two instability
mechanisms are considered: the one associated with the epitaxial stress and the
other caused by the surface-energy anisotropy. It is shown that wetting interac-
tions between the film and the substrate transform the instability spectrum from
the long- to the short-wave type, thus yielding the possibility of the formation
of spatially-regular, stable arrays of quantum dots that do not coarsen in time.
Pattern formation is analyzed by means of amplitude equations near the insta-
bility threshold and by numerical solution of the strongly nonlinear evolution
equations in the small-slope approximation.

Keywords: Quantum dots, self-assembly, thin solid films, pattern formation, instabilities

1. Introduction

In many applications in the electronics industry a thin film of a solid semi-
conductor material needs to be deposited on a solid semiconductor substrate.
This deposition is usually made by means of a molecular beam, and during
the growth process atoms of the film stick to the atoms of the substrate at its
surface. Such a growth process is called epitaxial. If the material of the film
differs from the material of the substrate the growth is called hetero-epitaxial;
when the two materials are the same the growth is called homo-epitaxial. Very
often the growing film does not remain planar during its growth and develops
various kinds of surface structures. The types of these structures depend on
physical characteristics of the materials as well as on the growth conditions.
One particular type of surface structures has been attracting a great deal of
attention during the last decade. It usually occurs during the hetero-epitaxial
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growth and manifests itself as decomposition of a planar solid film into a sys-
tem of islands that are divided from one another by an ultra-thin (a couple of
atoms thick) layer, the so-called “wetting layer". A typical size of the islands
is from a few to a few hundreds of nanometers which is of the same order of
magnitude as the de Broglie wavelength of electrons in semiconductors. Due
to this fact, such surface structures have quite interesting electronic properties,
mainly associated with the possibility of electron localization. This is where
the commonly used name for these nano-structures come from: they are called
“quantum dots". Quantum dots that have formed on the surface of a solid film
can be covered by another material and form localized bulk structures. They
are considered very promising for creating new generation of electronic de-
vices. Electronic properties of quantum dots, however, will not be discussed
here; see [1] for a review. In these lecture notes we shall focus on the mecha-
nisms and the nonlinear dynamics of quantum-dot formation and their evolu-
tion.

One of the typical features of quantum dots is that they can form sponta-
neously as the result of an instability of a thin solid film deposited on a solid
substrate. Therefore, one can talk about self-assembly of quantum dots. Some
examples of self-assembled quantum dots are shown in Fig.1. They can have
various shapes: regular, as faceted pyramids; irregular, as small crystals with
many facets in various orientations; rounded, as cones. They can form sparse
or dense arrays, also regular or irregular, with broad or narrow size distribu-
tion. When an array of quantum dots formed on the surface of a solid film
is kept (annealed) at a high, constant temperature, the dots can either exhibit
coarsening (Ostwald ripening) or not. During coarsening the larger dots grow
at the expense of the smaller ones so that the average dot size increases in
time. In the absence of coarsening, the dot size distribution does not essen-
tially evolve at all. Below we shall discuss the main mechanisms that govern
the shape of quantum dots, the dynamics of their formation and the evolution
of the quantum dot arrays.

2. Mechanisms of morphological evolution of epitaxial
films

Roughly speaking, the principal mechanisms that govern the formation,
morphology and evolution of quantum dots are elastic stress, anisotropic sur-
face energy and surface diffusion. The most common mechanism of instability
that leads to decomposition of an initially planar solid film into a system of is-
lands is associated with elastic stress. When a film of one material is deposited
on a substrate made of another, the mismatch between the crystal-lattice spac-
ings of the two materials (which is almost always present in hetero-epitaxial
systems) results in elastic strain and stress in the film (epitaxial strain and epi-
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Figure 1. Examples of quantum dots (QDs): upper left: Ge QDs on Si(001) [2] ( reprinted
with permission from [2], c©1998 by the American Chemical Society); upper right: PbSe QDs
on PbTe-on-Si(111) [3] (reprinted with permission from [3], c©2003 by the American Physical
Society); lower left: InAs QDs on GaAs(001) [4] (reprinted with permission from [4], c©2003
by the American Institute of Physics); lower right: coarsening of SiGe QDs on Si(001) – figure
b) corresponds to later time than a) [5] (reprinted with permission from [5], c©2000 by the
American Physical Society).

taxial stress). As a result, the film has some excess elastic energy stored in
it. When undulations on the film surface are formed, the epitaxial stress is re-
leased and the elastic energy is lowered. Therefore, the undulated surface is
energetically more preferable than the planar one and this causes the instabil-
ity of a planar film. This instability is called Asaro-Tiller-Grinfeld instability
[6, 7]. A more detailed qualitative description of this instability can be found
in [8].

Another mechanism is associated with the anisotropy of the film surface
energy. Unlike liquids and amorphous materials, crystalline materials have in-
ternal spatially-regular structure, the crystal lattice. While surface energy (per
unit area) of liquids and amorphous materials does not depend on the surface
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orientation, surface energy of a crystal usually does; thus the surface energy of
a crystal is usually anisotropic. Surface-energy anisotropy is responsible for
faceted equilibrium crystal shapes. The equilibrium shape of a given mater-
ial with a fixed volume will be the one that minimizes the total energy of its
surface. If the surface energy of the material is isotropic (that is a constant),
the equilibrium shape must minimize the total surface area. When the volume
is fixed this minimization is provided by a spherical shape, the one that a liq-
uid drop has in the absence of gravity or other bulk forces. When the surface
energy is anisotropic and depends on the surface orientation, a shape that min-
imizes the total surface energy, under the constraint of a fixed volume, is no
longer spherical. It is given by a solution of a corresponding variational prob-
lem that leads to a nonlinear partial differential equation of the second order
for the surface shape. Amazingly, the solution of this PDE can be obtained by
a very elegant and simple geometrical construction which is called the Wulff
plot. A detailed description of this problem and the Wulff construction can
be found in [8]. It can be shown that if the surface energy anisotropy is large
enough, the equilibrium crystal shape will have corners across which the sur-
face orientation will jump. Orientations from the interval of this jump can
never be seen in equilibrium crystal shapes; they are called “forbidden orien-
tations". If one prepares a crystal surface (say, by a cut of a crystal) whose
orientation is forbidden, such surface will be thermodynamically unstable and
undergo “faceting instability" resulting in the formation of hill-and-valley or
pyramidal structures. The slopes of these structures will correspond to thermo-
dynamically preferable and stable orientations (i.e. with lower energy) so that,
although the total surface area will increase, the total surface energy will de-
crease. Interestingly, such surface instability is completely analogous to spin-
odal decomposition that results in phase separation of binary systems. One can
read more about this analogy in [9, 10].

Thus, the following mechanism of instability of a thin solid film deposited
on a solid substrate is possible. The substrate can prescribe the film to grow in a
specific crystallographic orientation that, in the absence of the substrate would
have been forbidden. When the film becomes thick enough and does not “feel"
the substrate any more it will undergo faceting instability and decompose into
a system of faceted islands. This mechanism does not depend on the presence
of epitaxial stress and can occur when the epitaxial stress is negligible or even
in the course of a homo-epitaxial growth.

For any surface morphologies to appear, a surface reconstruction mecha-
nism is required that would transform initially planar surface into a structured
one. In epitaxially grown solid films such mechanism is surface diffusion in
which atoms jump along the surface from one site to another, driven by the
gradient of the surface chemical potential. The surface flux of atoms, js, is
given by the analog of the Fick’s law: js = −M∇sμs, where μs is the sur-
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face chemical potential, M is the atom mobility, and ∇s is the surface gradient
operator. A simple conservation of mass yields ρsvn + ∇s · js = 0, where
vn is the normal velocity of the surface caused by the atoms redistribution and
ρs is the surface density of atoms. The surface chemical potential is typically
determined by the film elastic energy and surface energy, and as such it is a
function of the film local thickness as well as its slope, curvature, and may be
higher spatial derivatives (see below). For very thin films (a few atomic layers)
wetting interactions between the film and the substrate can also become impor-
tant. These interactions are somewhat similar to wetting interactions between
a liquid film and a solid substrate. They are responsible for the presence of an
ultra-thin wetting layer of the film material between the islands resulting from
the film instability and depend on the film thickness and its slope. Naturally,
this dependence decays rapidly with the increase of the film thickness.

Thus, a general evolution equation that describes the evolution of a thin solid
film on a solid substrate has the following form:

ht√
1 + |∇h|2 =M∇2

sμs(h,∇h,∇2h, ...), (1)

where the dependence of μs on the surface shape should be computed accord-
ing to what type of interactions between the film and the substrate are important
for a particular problem.

3. Elastic effects and wetting interactions

In this section we consider evolution of a thin epitaxial film in the case when
the film instability is caused by the epitaxial stress, the film surface energy is
isotropic, and the film is thin enough so that wetting interactions between the
film and the substrate are important. In more detail, the material discussed in
this section can be found in [11]. (The figures are reprinted with permission
from [11], c©2003 by the American Physical Society).

The general evolution equation for the shape of the film surface (1) can be
written in this case as

ht√
1 + |∇h|2 =M∇2

s[E(h) + γK +Φ], (2)

where E(h) is the elastic part of the surface chemical potential, γ is the film
surface energy, K is the curvature of the surface, and Φ(h, |∇h|2) is a wetting
chemical potential that usually can be considered as a function of the film
thickness and slope.

The functional E(h) = 1
2 [σijεij ]z=h, where σij and εij are stress and strain

tensors, respectively. They should be found from the solution of the corre-
sponding elasticity problem that would describe elastic equilibrium of the film
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and the substrate, with the boundary conditions of stress and displacement
continuity at the film-substrate interface, as well as the stress-free condition
at the surface of the film. This makes the functional E(h) very complicated
and non-local. However, the problem simplifies considerably if one applies the
small-slope approximation, assuming that the slopes of the emerging surface
structures are small (which is true in many experimental systems). Also, the
problem becomes simpler if one assumes that the substrate is much stiffer than
the film and consider it as absolutely rigid, neglecting its elastic deformation.

Under these assumptions the evolution equation for the shape of an epitaxial
film on a rigid substrate in the absence of wetting interactions was derived in
[12]. Our problem differs from the one considered in [12] only by the presence
of the wetting potential. As we shall see below, this difference becomes crucial
for the possibility of self-assembly of spatially-regular arrays of quantum dots.

In the presence of wetting interactions, the evolution equation for the scaled
film thickness H derived in [12] is generalized to be [11]

∂TH = ∇2{(H − 1)∇2H +
1
2
(∇H)2

+
Mτ

α2L3
Φ(LH,α2|∇H|2, α

2

L
∇2H)}+O(α2). (3)

Here, the spatial scale isL = γ/(4με2) and the time scale is τ = L3/(4με2M),
where ε � 1 is the lattice misfit of the epitaxially strained film (epitaxial strain
in the horizontal direction), μ is the elastic shear modulus, M is the atom sur-
face mobility, α � 1 is the slope parameter, and dimensionless space and time
coordinates are long-scale, i.e. ∇ ∼ α, ∂T ∼ α2.

We assume that Φ(h, |∇h|) satisfies the following scaling relations

Mτ

L2

∂Φ(L, 0)
∂h

= α4a,
Mτ

L

∂2Φ(L, 0)
∂h2

= 2α2b,
Mτ

L3

∂Φ(L, 0)
∂|∇h|2 = c, (4)

where a, b and c areO(1) constants. Then, takingH = 1+α2[η+h(r, t)], η =
const, and introducing a new time scale, t = α2T , we obtain, after appropriate
rescaling, the following evolution equation for h:

∂th = g∇2h+∇4h+∇6h+∇2[h∇2h+ p(∇h)2 + qh2], (5)

where

g = aβη−2, p =
1
2
+ c, q = bβη−1, β =

3 + 4ν
6(1− ν)

, (6)

and ν is the Poisson ratio. The linear term with the sixth derivative comes from
O(α2) nonlinear terms in eq.(3) after the rescaling (see [12] for details).
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Figure 2. Dispersion curves σ(k) for the ATG-instability of a solid film on a rigid substrate:
(a) without wetting interactions; (b) with wetting interactions: (1) g < gc, (2) g = gc, (3)
g > gc.

Eq.(5) describes the nonlinear evolution of a thin, epitaxially-strained film
in the presence of wetting interactions with the substrate. Without wetting in-
teractions (g = 0), the dispersion relation for the growth rate of infinitesimal
perturbations of the film surface h̃ ∼ eσt+ik·r is σ = k4−k6, see Fig.2a (in the
case of elastic substrate it changes to σ = k3 − k4 [7]). This is the so-called
long-wave spectrum that leads to the growth of perturbations whose wavenum-
ber is smaller than the cut-off value corresponding to σ = 0. Similar spectrum
is described by the Cahn-Hilliard equation that describes spinodal decompo-
sition and coarsening (Ostwald ripening) of phase separating systems. Typi-
cal nonlinear evolution in such systems could be either coarsening or spatio-
temporal chaos, or a blow-up in a finite time [13].

When wetting interactions are present (g > 0) the dispersion relation changes
to σ = −gk2+ k4 − k6, see Fig.2b. One can see that wetting interactions sup-
press the elastically-driven instability. With wetting interactions, the instability
occurs for g < gc = 1/4 at a wavenumber kc =

√
2/2. Thus, wetting inter-

actions change the type of the instability spectrum from the long-wave to the
short-wave type, in which the instability occurs at a fixed, non-zero wavenum-
ber. In systems with short-wave instability formation of stationary, spatially
periodic patterns becomes possible [13, 14].
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Pattern formation in 1+1 system

First, we consider a 1+1 system (2D film with 1D surface) since some im-
portant features of the nonlinear evolution of the film instability can be studied
in this case. In order to study the possibility of pattern formation one first
performs a weakly nonlinear analysis of stationary solutions of eq.(5) near the
instability threshold. A characteristic feature of the system described by eq.(5)
is the presence of the zero mode, σ = 0, corresponding to k = 0 (see Fig.2)
and associated with the conservation of mass. The nonlinear interaction be-
tween the zero mode and the unstable mode can substantially affect the system
behavior near the instability threshold [15, 16] and must be taken into account
in weakly nonlinear analysis.

Consider a 1D version of eq.(5). Take g = gc − 2ε2 and

h ∼ εA(X,T )eikcx + c.c.+ ε2B(X,T ) + . . . ,

where A is the complex amplitude of the unstable mode, B is the real ampli-
tude of the zero mode, X = εx, T = ε2t. Standard multiple-scale analysis
near the bifurcation point yields the following system of equations for A and
B:

∂TA = A+AXX − λ0|A|2A+ sAB, (7)

∂TB = mBXX + w(|A|2)XX ,

where

λ0 =
2
9
(1 + p− 2q)(p+ q − 5

4
), (8)

m =
1
4
, s =

1
4

− q, w = −1 + p+ 2q.

System (7) can be considered as a generic system describing nonlinear evolu-
tion in a large class of unstable systems with a conserved quantity [16].

For λ0 > 0 the periodic structure is supercritical and can be stable, while
for λ0 < 0 it is subcritical and blows up in a finite time. The conclusion
about stability of the supercritical pattern, however, cannot be made unless the
interaction with the zero mode is taken into account. For λ0 > 0, stationary
solution of the system (7),

A0 = λ
−1/2
0 , B0 = 0, (9)

corresponds to a 1D periodic array of “islands". Consider perturbations Ã, B̃
of the solution (9) in the form

Ã = ãeiQX+ωT + b̃e−iQX+ω∗T , B̃ = c̃eiQX+ωT + c.c.,
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where ω∗ is the complex conjugate of ω. One easily obtains from (7) that the
stationary solution becomes unstable with respect to monotonic perturbations,
Im(ω)=0, for

sw

m
+ λ0 < 0. (10)

The condition (10) allows one to determine regions in the (q, p)-plane cor-
responding to different types of pattern excitation and stability near threshold
as shown in Fig.3. The straight lines OCB and OGF correspond to λ0 = 0 and
the curves AB, CD, EF, GH are parts of the hyperbola sw/m + λ0 = 0. It is
interesting that at the intersection point O, p = 1/2, q = 3/4. Since p = 1/2
corresponds to c = 0, this means that unless the wetting potential depends on
the film slope the periodic structure is always subcritical and therefore blows
up. Weakly nonlinear analysis is not useful in this case.

Figure 3. Regions corresponding to different types of excitation and stability of spatially
periodic 1D solutions of eq.(5) near threshold: (1) – supercritical stable; (2) – supercritical
unstable; (3) –subcritical. Coordinates of the points are: O(0.75,0.5), B(-0.25,1.5), C(0.25,1),
F(0.25,-0.5), G(0.5,0).

Now we consider a strongly nonlinear evolution of 1D arrays of islands far-
ther from the instability threshold studied by means of numerical simulations
of eq.(5) using a pseudospectral method with periodic boundary conditions.
For the parameter values corresponding to region 1 in Fig.3, near the instabil-
ity threshold, one observes the formation of a sinusoidal surface profile. With
the increase of the supercriticality (i.e. with the decrease of g from gc = 1/4),
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the surface shape becomes significantly non-harmonic and exhibits two typical
periodic patterns: periodic array of “cone”-type islands and periodic array of
“cap”-type islands shown in Fig.4. “Cones” and “caps”are observed for p > 0
and p < 0, respectively.

Figure 4. Stationary numerical solutions of eq.(5) in 1D for (g, q, p) = (a) (0.1,−1.0, 4.0)
(“cones”) and (b) (0.1, 1.0,−4.0) (“caps”).

For the values of the parameters p and q from region 2 in Fig.3, where
periodic arrays of islands near the instability threshold are unstable due to the
presence of the zero mode, one observes the formation of localized (or strongly
modulated) patches of islands shown in Fig.5. Depending on the sign of the
parameter p, these can be either patches of “cones” or “caps”.

Localized solutions shown in Fig.5 are found only near the instability thresh-
old in the region 2 in Fig.3. With the increase of the supercriticality, one
observes either the formation of periodic arrays of “cones” or “caps”, or the
blow-up. The latter can be of either “island”-type, shown in Fig.6a, or a “pit”-
type, shown in Fig.6b. Spontaneous formation of nano-pits has been recently
observed in experiments [17].
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Figure 5. Localized stationary solutions of eq.(5) in 1D: (a) patches of “cones”, g =
0.24, p = 4.0, q = −2.3; (b) patches of “caps”, g = 0.248, p = −3.0, q = 3.0.

Pattern formation in 2+1 system

Now we consider a more interesting, 2+1 case of a 3D film with a 2D sur-
face whose evolution is described by eq.(5). Note that eq.(5) does not have the
symmetry h → −h. In this case, the instability whose threshold corresponds
to a finite wavenumber (see Fig.2) usually results in a hexagonal pattern that
occurs via a transcritical bifurcation [13, 14]. First we concentrate on the for-
mation of surface structures with hexagonal symmetry.

Hexagonal arrays of dots and pits. The weakly nonlinear evolution of a
hexagonal surface structure, h ∼∑3

j=1Aje
ikj ·r+c.c., where the wavevectors

kj form an equilateral triangle with the side kj = kc ≡ √
2/2, is usually de-

scribed by three Ginzburg-Landau-type equations for the complex amplitudes
Aj [13, 14]. However, in our case the interaction with the zero mode must also
be taken into account. Thus, consider g = gc − 2g1ε2, and

h = ε
3∑

j=1

Aj(R, T )eikj ·r + ε2B(R, T ) + c.c.+ . . . , (11)
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Figure 6. Numerical solutions of eq.(5) in 1D at particular moments of time showing inter-
mediate stages of the two types of the blow-up: (a) “island”-type, g = 0.23, p = −4.0, q =
−1.0, and (b) “pit”-type, g = 0.23, p = 4.0, q = 1.0.

where Aj , j = 1, 2, 3 are three complex amplitudes of the unstable modes
with wavevectors kj , respectively, B is the real amplitude of the zero mode,
R = εr, T = ε2t. Use the multiple-scale analysis near the bifurcation point
to obtain the following system of coupled equations for Aj and B:

∂TAj = g1Aj + 2(kj · ∇)2Aj + r0A
∗
lA

∗
n (12)

+i
∑

l �=n�=j
[A∗

l (r1kl + r2kn) · ∇A∗
n]

−[λ0|Aj |2 + λ1(|Al|2 + |An|2)]Aj + sAjB,

∂TB = m∇2B + w∇2(|A1|2 + |A2|2 + |A3|2), (13)

where

λ1 = (−1 + 34p+ q)(1 +
1
2
p− 2q), (14)

r0 =
1
2
(1− 1

2
p− 2q), r1 = −p− 2r0, r2 = 1− 2r0,

and other parameters are defined in (8). The indices j, l, n run from 1 to 3.
Eqs. (12), (13) are similar to those derived previously for several other pat-

tern forming systems with conserved quantities [16]. Note that since a hexag-
onal pattern occurs via a transcritical bifurcation, eqs.(12) are valid, strictly



Self-Assembly of Quantum Dots from Thin Solid Films 135

speaking, only for r0 = O(ε). Otherwise, these equations should be consid-
ered as model equations describing weakly nonlinear evolution of a hexagonal
pattern (see [18]). System (12),(13) has the following stationary solutions

Aj = A0 = ±|r0|+
√
r20 + 4g1(λ0 + 2λ1)
2(λ0 + 2λ1)

, (15)

B = 0,

corresponding to a spatially regular pattern of equilateral hexagons, with the
signs ± corresponding to r0 > 0 and r0 < 0, respectively. Thus, depending
on the sign of the resonant-interaction coefficient, r0, the system can exhibit
formation of hexagonal arrays of either mounds (dots) or pits. Dots occur for
r0 > 0 (A0 > 0) and pits occur for r0 < 0 (A0 < 0). In both cases, the
hexagonal pattern can be stable only for λ0 > 0 and λ0 + 2λ1 > 0 [14]. Also,
in our case, the presence of the zero mode strongly affects the stability of the
pattern. A detailed stability analysis of hexagonal patterns interacting with the
zero mode, within the framework of the system (12) and (13), has been recently
carried out in the long-wave approximation [16], and it has been shown that if

2ws+m(λ0 + λ1) < 0, (16)

a hexagonal pattern is unstable at any supercriticality g1 [16].
The described stability conditions determine regions in the (q, p)-plane where

self-organization of hexagonal arrangements of dots or pits can be observed.
These regions are shown in Fig.7. The lines BC and FG correspond to λ0 = 0
and the curves AB, CD, EF and GH are parts of the hyperbola λ0 + 2λ1 = 0.
Condition (16) holds outside the region bounded by the dashed lines. Inside
this region surface structures with hexagonal symmetry can be stable in a cer-
tain range of the supercriticality g1 and the pattern wavenumber (a “Busse bal-
loon”) (see [13, 16] and references therein). The lines BK and FL correspond
to r0 = 0 and divide the regions where hexagonal arrays of dots or pits can be
observed. Note that the full stability analysis must include the consideration of
finite-wavelength instabilities [18].

One can see from Fig.7 that, unlike the 1+1 case, in the 2+1 system there is
an interval, 0.4 < p < 0.6 (or |c| < 0.1, see eq.(6)) in which hexagonal arrays
of dots or pits are always subcritical and therefore unstable. Thus, the wetting
interaction between the film and the substrate can lead to the self-organization
of dots or pits with the almost uniform sizes only if the wetting potential has
strong-enough dependence on the surface slope (e.g. sufficient anisotropy),
namely, for |c| > 0.1 or (see eq.(4))∣∣∣∣∂Φ(L, 0)∂|∇h|2

∣∣∣∣ > 0.4με2. (17)
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Figure 7. Regions in (q, p)-plane where self-organization of hexagonal arrays of dots or pits
can be observed in solutions of eq.(5) in 2D. The points B, C, F, G, M and N are (1/4, 1), (13/20,
3/5), (1/2, 0), (7/10, 2/5), (-0.46, 1.91), (0.24,-0.91), respectively.

This conclusion is related to the formation of only those regular structures
whose characteristic scale is much larger than the critical film thickness.

Numerical solutions of eq.(5) in 2D by means of a pseudospectral method
with periodic boundary conditions are shown in Fig.8. One observes the for-
mation of hexagonal arrays of dots or pits in the parameter regions predicted
by the weakly nonlinear analysis. It is interesting that, similar to the 1+1
case, the formation of two types of dots is possible: “cone”-like and “cap”-
like (Fig.8a,b). With the increase of the supercriticality “cones” transform into
“caps”. Similarly, the formation of two types of pits is observed: “anticones”
at small supercriticality and “anticaps” at larger ones (Fig.8c,d).

Wires, rings and other surface structures. It is known that hexagonal pat-
terns can become unstable with respect to patterns with other symmetries [13,
14]. This instability is determined by the Landau coefficient, λ(φ), governing
the nonlinear interaction between two modes characterized by two wavevec-
tors, k1 and k2, k1 = k2 = kc, k1 · k2 = k2c cosφ. The Landau coefficient
is a function of the angle φ between the two wavevectors. Obviously, λ(φ) is
defined for 0 < φ < π and λ(φ) = λ(π−φ). Standard multiple-scale analysis
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Figure 8. Numerical solutions of eq.(5) for various parameter values: (a) hexagonal array
of “cone”-type dots, p = 2.0, q = −0.5, g = 0.2; (b) hexagonal array of “cap”-type dots,
p = −4.0, q = 1.0, g = 0.01; (c) hexagonal array of “anticone”-type pits, p = −4.0, q =
2.0, g = 0.24; (d) hexagonal array of “anticap”-type pits, p = −4.0, q = 2.0, g = 0.2.

of eq.(5) near the bifurcation threshold g = gc yields

λ(φ) = (−3
2
+ p+ 2q)[α+(φ) + α−(φ)]

+(−1 + p) cosφ[α+(φ)− α−(φ)], (18)

α±(φ) =
1± p cosφ− 2q
(cosφ± 1/2)2 .

Note that the function λ(φ) is singular at φ = π/3, 2π/3 due to the res-
onant quadratic interaction between these modes which is responsible for the
formation of a hexagonal pattern and is not taken into account in the compu-
tation of λ(φ). The Landau (cubic) interaction coefficient in this case is equal
to λ1 in (14). Note also that λ(0) = λ0 + sw/m, which explains the stability
condition (10).

Stability of a hexagonal pattern with respect to patterns with other symme-
tries was investigated in a number of works (see, e.g. [13, 14] and references
therein). It was shown that, with the increase of the supercriticality, a hexago-
nal pattern can become unstable with respect to a stripe pattern if λ1/λ0 > 1.
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The presence of the zero mode, as well as the presence of the quadratic non-
linear terms with the coefficients r1 and r2 in eqs. (12) (that characterize
the dependence of the resonant quadratic interaction coefficient on the mode
wavevectors [18]), can promote the instability [18, 16]. Results of the numeri-
cal simulations of eq.(5) that show the transition from hexagonal arrays of dots
or pits to stripe patterns (“wires”) with the increase of the supercriticality are
shown in Fig.9. Transition from dots to wires in epitaxially strained films has
been observed in experiments [19].

Figure 9. Formation of “wire” patterns via transition from (a) dots, p = 4.0, q = −1.0, g =
0.1; (b) pits, p = −4.0, q = 2.0, g = 0.1.

An interesting surface structure can develop in the parameter regions where
λ0 > 0, λ1 > 0 and λ(π/2) < 0. In this case, there is a strong interac-
tion between the modes with orthogonal wavevectors that can lead to a reso-
nant coupling between two system of hexagons whose basic wavevector sets,
(k1,k2,k3) and (k4,k5,k6), each forming an equilateral triangle, are mutu-
ally orthogonal. This can lead to the formation of a dodecagonal quasiperiodic
pattern [20, 21]. The numerical solution of eq.(5) show that such quasiperi-
odic dodecagonal arrangement of dots can indeed form; it is shown in Fig.10a.
However, this dodecagonal structure occurs only at the beginning of pattern
formation; later in time it either gets replaced by a hexagonal structure, or
grows further and ultimately blows up. The intermediate stage of the blow-up
is shown in Fig.10b.

In the parameter regions where the hexagonal patterns are subcritical, or un-
stable according to the condition (16), solutions of eq.(5) blow up in a finite
time. Depending on the resonant interaction coefficient r0, the blow-up oc-
curs through the formation of high, spatially localized mounds, or deep pits.
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Figure 10. Formation of a quasiperiodic array of dots with dodecagonal symmetry, p =
−3.0, q = −0.1, g = 0.249; (a) initial stage of formation; (b) intermediate stage of the
blow-up.

The latter develop into the structures, shown in Fig.11, that strongly resemble
“quantum rings” [22] or “quantum fortresses” [17] observed in experiments.

To conclude, wetting interactions between an epitaxial solid film and a solid
substrate change the instability spectrum from the long-wave type to a short-
wave type and make the formation of spatially-regular arrays of quantum dots
possible. In the next section we shall consider self-assembly of quantum dots
driven by a different mechanism: anisotropy of the film surface energy. We
shall show that the presence of wetting interactions between the film and the
substrate can in this case also lead to self-organization of regular arrays of
anisotropic islands.

4. Surface-energy anisotropy and wetting interactions

Now let us discuss another mechanism that can lead to the formation of
quantum dots, the one associated with the anisotropy of the film surface energy.
The material of this section is discussed in more detail in [23]. (The figures
are reprinted with permission from [23], c©2004 by the American Physical
Society).

Consider a thin, solid film grown on a solid substrate where the lattice mis-
match between the two materials is negligible, the surface energy γ of the film
is strongly anisotropic, the film wets the substrate and it is thin enough for the
wetting interaction energy to affect the chemical potential of the film.

Let us assume that the substrate determines the initial crystallographic ori-
entation of the free surface of a growing film. Let us also assume that in the



140 PATTERN FORMATION IN NANO-SYSTEMS

Figure 11. Intermediate stage of the blow-up solution of eq.(5) in the form of a “quantum
ring”; p = 2.0, q = 1.0, g = 0.2.

absence of the substrate, or when the film is thick enough so it does not “feel"
the substrate, this orientation would be in the range of “forbidden orientations."

Here we consider only high-symmetry orientations, such as [001] and [111].
In this case, the forbidden orientation implies that the surface-stiffness tensor
[24, 8],

γ̃αβ = γδαβ +
∂2γ

∂θα∂θβ
, (19)

is diagonal for this orientation and has two equal negative components,

γ̃11 = γ̃22 ≡ −σ < 0. (20)

(Here θα,β are the surface angular coordinates and δαβ is the Kroneker delta).
In the absence of wetting interactions between the film and the substrate, such
a surface is thermodynamically unstable and exhibits spontaneous formation
of pyramidal “faceted" structures that coarsen in time [10]. However, as we
show below, the presence of wetting interactions can suppress this instability,
or qualitatively change it, so that it would lead to the formation of spatially-
regular arrays of islands.
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The continuum evolution of the film free surface can be described by evolu-
tion equation (1) where the chemical potential

μs =
δF
δh

, (21)

and F is the free energy functional. In the absence of elastic stresses and
wetting interactions between the film and the substrate,

F =
∫
[μ0h+ I(hx, hy) +

1
2
ν(Δh)2] dxdy, (22)

where μ0 is the volume part of the free energy (μ0 is the constant chemi-
cal potential of a planar film), I = γ(hx, hy)

√
1 + (∇h)2 is the weighted

anisotropic surface energy that depends on the local surface slope, and ν is
the regularization coefficient that measures the energy of edges and corners [9,
10, 25] (for simplicity, we write this term in the small-slope approximation
that will be further employed here). The free energy (22) gives the chemical
potential

μs = μ0 + μγ ≡ μ0 + γ̃αβCαβ + νΔ2h, (23)

where Cαβ is the surface curvature tensor.
In the presence of wetting interactions between the film and the substrate,

the film chemical potential strongly depends on the film thickness h for h ∼
δw, where δw is the characteristic wetting length, and μ → μ0 for h � δw. In
this case the film free energy can be written as

F =
∫
[f(h, hx, hy) +

1
2
ν(Δh)2] dxdy, (24)

where f(h, hx, hy) → μ0h + I(hx, hy) for h � δw. The wetting part of the
free energy can be then defined as

Fw =
∫
[f(h, hx, hy)− μ0h− I(hx, hy)] dxdy. (25)

Here we consider the following two models for wetting interactions between
the film and the substrate.

A two-layer wetting model, according to which the wetting interactions be-
tween the film and the substrate are described as a thickness-dependent surface
energy of the film, γ(h). This dependence is usually taken to be [26]

γ(h) = γf + (γs − γf ) exp (−h/δ), (26)

where γs = const is the surface energy of the substrate in the absence of
the film, γf is the energy of the film free surface far from the substrate, and
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δ is the characteristic wetting length. This model is consistent with ab initio
calculations [27]. For anisotropic surface energy of the film,

γf = γ0f [1 + ε(hx, hy)], (27)

where γ0f = const and ε(hx, hy) is the anisotropy function that depends on the
orientation of the film surface. Thus, in this model the free energy density in
(24) is f(h, hx, hy) = γ(h, hx, hy)

√
1 + |∇h|2, and the chemical potential is

computed as μs = μγ + μw, where μγ is defined by (23) and

μw =
∂γ
∂h − [ ∂2γ

∂h∂hx
hx + ∂2γ

∂h∂hy
hy](1 + |∇h|2)√

1 + |∇h|2 (28)

Note that in this case γ̃αβ in μγ depends on h.
A glued wetting-layer model, that considers isotropic wetting free energy,

additive to the anisotropic surface energy, yielding μs = μγ + μw, with μγ
defined by (23) and μw being an exponentially decaying function of h that has
a singularity at h → 0:

μw = −w (h/δ)−αw exp (−h/δ). (29)

Here w > 0 characterizes the “strength" of the wetting interactions, and αw >
0 characterizes the singularity of the wetting potential at h → 0. This singu-
larity is a simple continuum phenomenological model of a very large potential
barrier for removal of an ultra-thin (possibly monolayer) wetting layer that
persists between islands.

Thus, in the small-slope approximation and for high-symmetry orientations,
the surface chemical potential in both of these models have the same form,

μs = μ0γ + μw, (30)

where μ0γ = μγ(h0) is defined by (23) and evaluated at the initial film thickness
h0, and the part of chemical potential due to wetting can be expanded as

μw =W0(h) +W2(h) (∇h)2 +W3(h)∇2h+ . . . , (31)

where W0,2,3(h) are smooth functions, rapidly (exponentially) decaying with
the increase of h, W3(h0) = 0, and 2W2 = dW3/dh (due to (21)).

In the small-slope approximation, and in the particular cases of high-symmetry
orientations ([001] or [111]) of a crystal with cubic symmetry, the evolution
equation (1) for the film thickness can be written in the following form:

∂th = MΔ[σΔh+ νΔ2h− Γijk[h]
+W0(h) +W2(h) (∇h)2 +W3(h)Δh], (32)
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where for the orientations [001] and [111] the nonlinear differential operator
Γijk[h] has the following forms [10], respectively,

Γ001 = (a h2x + b h2y)hxx + (b h
2
x + a h2y)hyy

+4b hxhyhxy, (33)

Γ111 = a [h2xhxx + h2yhyy + 2hxhyhxy]

+
a

3
[h2yhxx + h2xhyy − 2hxhyhxy]

+b [(hxx − hyy)hy + 2hxyhx]. (34)

Here the coefficients a and b characterize the surface-energy anisotropy and
can be computed from the surface-energy dependence on the surface orienta-
tion. Naturally, the nonlinear operator Γ001 is invariant with respect to rotations
by π/2, as well as any of the transformations x → −x, y → −y, x → y,
while Γ111 is invariant with respect to rotations by 2π/3 as well as the transfor-
mation y → −y, b → −b. The functions W0,2,3(h) are determined by the type
of a wetting interaction model and can also differ for different orientations of
the film surface.

Note that eq.(32) with the nonlinear operators Γijk defined by (33), (34) can
be written in a variational form

∂th =M∇2 δF
δh

(35)

where F =
∫
F dxdy, and the free energy density

F = −σ

2
(∇h)2 +

ν

2
(Δh)2 + Gijk

+
∫
W0(h) dh− 1

2
W2(h)(∇h)2, (36)

with

G001 =
a

12
(h4x + h4y) +

b

2
h2xh

2
y, (37)

G111 =
a

12
(∇h)4 +

b

6
(3h2xhy − h3y). (38)

Below we investigate the stability and nonlinear dynamics of the solid-film
surface governed by eq.(32).

Faceting instability in the presence of wetting interactions.

Consider infinitesimal perturbations of a planar film surface, h = h0 +
h̃ eik·x+ω t, and linearize eq.(32) to obtain the following dispersion relation
between the perturbation growth rate, ω, and the wavevector k:

ω =M(−W01k
2 + σk4 − νk6), (39)
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where k = |k| and

W01 =
(
∂W0

∂h

)
h=h0

. (40)

One can see that if the film wets the substrate, i.e. when W01 > 0, the
wetting interactions suppress the long-wave faceting instability caused by the
surface-energy anisotropy. The instability occurs only for

σ2

4νW01
> 1, (41)

i.e. if either the wetting interaction is less than the threshold value, W01 <
W c

01 = σ2/(4ν), or the surface stiffness is larger than the threshold value, σ >
σc = 2

√
W01ν. At the instability threshold, the wavelength of the unstable

perturbations λ is finite, λ = λc = 2π/kc, where

kc =
√

σ

2ν
. (42)

Typical dispersion curves defined by (39) are qualitatively the same as shown
in Fig.2b. Note that the critical wavenumber at the threshold does not depend
on the wetting potential and is determined only by the surface stiffness and
the energy of edges and corners. For the parameter values typical of semicon-
ductors like Si or Ge, with the surface energy γ ∼ 2.0 Jm−2, surface stiffness
σ ∼ 0.2 Jm−2, the lattice spacing a0 ∼ 0.5 nm and the regularization parame-
ter ν ∼ γa20 ∼ 5.0 × 10−19 J, the wavelength of the structure at the onset of
instability is 14.0 nm.

Thus, in the presence of the wetting interactions with the substrate, the
faceting instability becomes short-wave. This is qualitatively different from
the case of the faceting instability in the absence of the wetting interactions
when the instability is long-wave, i.e. when all perturbations whose wave-
lengths are larger than a certain threshold are unstable. In other words, wetting
interactions with the substrate change the faceting instability from the spin-
odal decomposition type [9] (long-wave) to the Turing type [14] (short-wave),
thus leading to the possibility of changing the system evolution from Ostwald
ripening (coarsening) to the formation of spatially regular patterns.

Formation of surface structures: 1+1 case

Here we discuss the nonlinear evolution of surface structures resulting from
the faceting instability in the presence of wetting interactions with the substrate
in a 1+1 case of a two-dimensional film with a one-dimensional surface. In
this case, the evolution equation (32) for the shape of the film surface, after the
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rescaling x → (ν/σ)1/2 x, t → [ν2/(Mσ3)] t, h → (ν/a)1/2 h, becomes

∂th = [hxx + hxxxx − h2xhxx

+w0(h) + w2(h)h2x + w3(h)hxx]xx, (43)

where w0,2,3(h) are the rescaled functions W0,2,3(h), respectively (w3(h0) =
0, 2w2 = dw3/dh). In this scaling, the instability occurs for (∂w0/∂h)h=h0 ≡
w01 < 1/4 at the wavenumber kc =

√
2/2.

First, let us discuss the evolution near the instability threshold by means of
weakly nonlinear analysis. Consider w01 = 1/4 − 2ε2, ε � 1, introduce the
long-scale coordinate X = εx and the slow time T = ε2t, and expand

h̃ = h− h0 = ε[A(X,T )eikcx + c.c.]
+ε2[A2(X,T )e2ikcx +B(X,T ) + c.c.] + . . . , (44)

w0(h) = w00 + w01h̃+ w02h̃
2 + w03h̃

3 + . . . , (45)

w2(h) = w20 + w21h̃+ . . . , (46)

w3(h) = w31h̃+ w32h̃
2 + . . . , (47)

where w31 = 2w20, w32 = w21. Substitute (44)-(47) into eq.(43) to obtain
the corresponding problems in the successive orders of ε. From the problem at
second order one finds

A2 =
2
9
(3w20 − 2w02)A2. (48)

As the solvability condition at the third order, one obtains the evolution equa-
tion for the complex amplitude of the unstable, spatially-periodic mode,A(X,T ).
The solvability condition at the fourth order yields the evolution equation for
the real amplitude B(X,T ) of the zero mode associated with the conservation
of mass. Together, the two equations form the system of coupled equations (7)
with

λ0 =
1
8

− 1
9
(3w20 − 2w02)2 − 1

2
w21 +

3
2
w03, (49)

s =
1
2
w20 − w02, m =

1
4
, w = −2s. (50)

The system of amplitude equations (7) has a stable, stationary solution, A =
λ

−1/2
0 , B = 0, corresponding to spatially periodic pattern (array of dots), if

[16, 11]
λ0 > 8s2 = 2 (w20 − 2w02)2. (51)

Condition (51) defines a region in the parameter space in which one can
observe the formation of stable periodic arrays of dots. First, consider a glued-
layer wetting potential defined by (29). From (41) one obtains that the planar
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film surface becomes unstable with respect to periodic structure for

−σ2δ

wν
> 4(αw + ζ) ζ−(αw+1)e−ζ , (52)

where ζ = h0/δ. Since for the wetting potential (29) w2(h) = w3(h) ≡ 0,
one obtains from (51) and (52) that a near-threshold periodic surface structure
is stable if

aδ2

ν
> f(ζ, αw), (53)

where

f(ζ, αw) = [18 ζ2(ζ + αw)2]−1[10ζ4 + 40αwζ3

+αw(11 + 60αw)ζ2 + 2αw(20α2
w + 11αw − 9)ζ

+α2
w(10α

2
w + 11αw + 1)]. (54)

Conditions (52) and (53) are shown in Fig.12.

Figure 12. (a) Parameter regions where a planar film surface is unstable (above the corre-
sponding curves) for αw = 6.0 (dashed line), αw = 3.0 (solid line) and αw = 1.0 (dashed-
dotted line). (b) Parameter regions where weakly nonlinear periodic surface structures are stable
(above the corresponding curves) for different values of αw.

Now consider a two-layer wetting potential defined by (26) with

γf = γ0f [1 + ε cos 4(θ0 + θ)], (55)

where θ = arctan (hx) and θ0 corresponds to the orientation of the planar
surface of the film, parallel to the substrate; for the high-symmetry orientations
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[01], [11] θ0 = 0, π/4, respectively. It is convenient to introduce the following
dimensionless parameters:

Γ =
γf0
γs
(15ε− 1), ζ = h0

δ
, ε̃1 =

ε+ 1
15ε− 1 , ε̃2 =

95ε− 1
15ε− 1 .

The film wets the substrate if Γ < ε̃−1
1 , or γs/γf0 > ε + 1. In this case, the

nonlinear anisotropy coefficient a in eq.(32) is always positive. The faceting
instability requires a negative surface stiffness that can be achieved only if
15ε− 1 > 0, and

ζ > ln(1 + Γ−1). (56)

The instability threshold condition (41) gives

γsδ
2

ν
≥ 4 eζ [1− Γε̃1]
[Γ(eζ − 1)− 1]2 . (57)

The analysis of the conditions (56) and (57) shows that the short-wave insta-
bility of the film surface that can lead to pattern formation can occur only if the
film thickness is above a threshold value determined only by the surface-energy
anisotropy and the wetting length, namely, for

h0 > δ ln
[
16ε

15ε− 1
]
. (58)

Using (51) one can show that the weakly-nonlinear periodic structure is
stable if

γsδ
2

ν
> f(ζ,Γ, ε), (59)

where

f =
2
27
Γ2(5e2ζ + 14eζ + 35) + 14Γ(eζ + 5) + 35
e−ζ [Γ(eζ − 1)− 1]2 [ε̃2Γ(eζ − 1)− 1] (60)

The conditions (56)-(60) allow one to determine regions in the (Γ, ζ) para-
meter plane where spatially-regular surface structures can occur as a result of
thermodynamic instability of the film surface caused by strongly-anisotropic
surface-tension in the presence of wetting interaction described by the two-
layer model (26). Examples of these regions for different values of the anisotropy
parameter ε are shown in Fig.13. Solid lines correspond to the condition (57),
the dashed lines correspond to the condition (60). The film is unstable in the
regions above the solid lines, and the stable periodic structures can form in the
region near the solid line which lies above the dashed curve. One can see that
for given values of the surface-energy anisotropy, ε, and the value of γsδ/ν,
the formation of stable periodic structures occurs if the ratio of the initial film
thickness to the wetting length is within a certain interval.
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Figure 13. Parameter regions where a planar film surface is unstable (above the solid line)
and where stable periodic structures can form near the instability threshold (near the solidline,
above the dashed line): a) ε = 0.1, γsδ

2/ν = 0.5; b) ε = 0.1, γsδ
2/ν = 2.0; c) ε =

0.2, γsδ
2/ν = 0.5; d) ε = 0.4, γsδ

2/ν = 0.5;

Numerical solutions of eq.(43) for the case of the glued wetting layer model
are shown in Figs.14,15. The shown length scales correspond to the following
parameter values, typical of semiconductors like Si or Ge: γ ∼ 2.0 Jm−2, σ ∼
0.2 Jm−2, δ ∼ 1.5 nm, and the estimates of α = 3.0 and ν ∼ γa20 ∼
5.0 × 10−19 J, where a0 ∼ 0.5 nm is the crystal lattice spacing; the nonlin-
ear coefficient of the surface-energy anisotropy, a, the initial film thickness,
h0, and the wetting interaction strength parameter, w, are varied. In experi-
ment, the film thickness is the main parameter that controls the film instability.
For example, for w ∼ Δγ/δ ∼ 6.7× 107 Jm−3, where Δγ ∼ 0.1 Jm−2 is the
surface-tension difference between the substrate and the film, one finds that
if the initial film thickness, h0, ranges from 1.2 to 5.3 nm, the parameter w01

changes from 2.3 to 7.3 × 10−4, respectively. The instability occurs in this
case for a film thicker than h0 ≈ 1.9 nm, and the wavelength of the structure
at the onset of instability is 14.0 nm.

Fig.14 presents the stationary solutions of eq.(43) for different values of the
dimensionless wetting parameter, w01, corresponding to different values of the
wetting interaction strength, w, and the initial film thickness, h0. One can see
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Figure 14. Stationary numerical solutions of eq.(43) with the wetting potential (29) showing
stationary surface structures for h0 = 3.0 nm, (ζ = 2.0), a = 0.17 Jm−2, and (a) w = 6.8 ×
108 Jm−3 (w01 = 0.24); (b) w = 2.8 × 108 Jm−3 (w01 = 0.1); (c) w = 2.8 × 107 Jm−3

(w01 = 0.01).

that, near the instability threshold, an almost harmonic small-amplitude peri-
odic structure is formed. Farther from the threshold, the formation of periodic
structures with larger amplitude and larger wavelengths can be observed. In
the parameter regions where a near-threshold periodic structure with the wave-
length corresponding to the most rapidly growing linear mode is unstable, it
undergoes coarsening right after formation, and finally evolves into spatially
localized dots. Different stages of this coarsening process and the formation of
localized islands are shown in Fig.15. At the last stage, shown in Fig.15, the
coarsening either completely stops or becomes logarithmically slow.

Thus, the presence of wetting interactions between the film and the sub-
strate can suppress the faceting instability of the film surface, that is thermo-
dynamically unstable due to strong anisotropy of the surface energy, and lead
to the formation of spatially-regular surface structures, or to the formation of
spatially-localized dots divided by a thin wetting layer. Below we consider
evolution of a more realistic, 2+1 system.

Formation of surface structures: 2+1 case

Here we discuss the nonlinear evolution of surface structures resulting from
the faceting instability of a three-dimensional film with a two-dimensional
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Figure 15. Different stages of coarsening of the initial periodic structure, yielding the for-
mation of localized dots divided by a thin wetting layer – numerical solution of eq.(43) with
the wetting potential (29); h0 = 1.5 nm, w = 8.2 × 106 Jm−3, (ζ = 1.0, w01 = 0.1),
a = 0.22 Jm−2.

surface (2+1 case) in the presence of wetting interactions with the substrate.
We consider high-symmetry orientations only, [001] and [111], described by
eq.(32).

After the appropriate rescaling, eq.(32) can be written as

∂th = Δ{Δh+Δ2h− g[h]
+w0(h) + w2(h) (∇h)2 + w3(h)Δh}, (61)

where the nonlinear differential operator g[h] for [001] orientation is

g001 = (h2x + p h2y)hxx + (h
2
y + p h2x)hyy + 4p hxhyhxy, (62)

and for [111] orientation it is

g111 = (h2x +
1
3
h2y)hxx + (h

2
y +

1
3
h2x)hyy +

4
3
hxhyhxy

+q [(hxx − hyy)hy + 2hxyhx]. (63)

Eq.(61) has a special structure in that the linear operator is isotropic, while
the nonlinear operator is anisotropic. The linear growth rate near the instability
threshold, thus, does not depend on the wavevector orientation and the result-
ing dispersion relation is the same as in the 1+1 case, ω = −w01k

2 + k4 − k6,
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with the instability threshold w01 = 1/4 at k = kc =
√
2/2. It is the non-

linear interaction between the modes that will determine the symmetry of the
emerging pattern. This situation is similar to the one considered in [28] where
the effect of surface-energy anisotropy on the formation of cellular patterns
with different symmetries at a crystal-melt interface caused by morphological
instability during directional solidification was studied. First we consider the
weakly nonlinear analysis near the instability threshold.

Since the linear operator of eq.(61) is isotropic and the nonlinear operator
of eq.(61) has a quadratic nonlinearity that breaks h → −h symmetry, the
preferred pattern near the instability threshold will have a hexagonal symmetry,
caused by the quadratic resonant interaction between three different modes
oriented at 120◦ with respect to one another and having the same linear growth
rate. The specific type of the pattern in this case is determined by the phase
locking of the three resonant modes that depends on the quadratic resonant
interaction coefficient. In order to compute this coefficient, take w01 = 1/4−
2γε, ε � 1, introduce the slow time τ = εt, and use the expansions (45)-(47),
as well as the expansion

h = ε

3∑
n=1

An(τ)ekn·r + ε2
3∑

n=1

Bn(τ)ekn·r

+ε2
3∑

n=1

[Bn,n(τ)e2kn·r +Bn,n−1(τ)e(kn−kn−1)·r] (64)

+ c.c.+O(ε3)

whereAn(τ), Bn(τ), Bn,n(τ),Bn,n−1(τ)are complexamplitudes(thespatially-
uniform mode Bn,−n is missing due to the conservation of mass), r is a vector
in the (x, y)-plane, kn = 1/

√
2 and k1 + k2 + k3 = 0 (n = 0 and n = 3

correspond to the same mode with the wavevector k3). We neglect here spatial
modulations of the pattern near the instability threshold. The solvability condi-
tion for the problem for Bn in the order ε2 yields the following three evolution
equations for the amplitudes A1,2,3:

∂τA1 = γA1 + αA∗
2A

∗
3, (65)

where the other two equations are obtained by the cyclic permutation of the
indices in eq.(65). The resonant quadratic interaction coefficient is different
for different surface orientations:

α001 =
3
4
w20 − w02, (66)

α111 = α001 − i
q

4
√
2
sin 3φ0, (67)
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where the angle φ0 characterizes the orientation of the resonant triad{k1,k2,k3}
in the surface plane, k1 = (cosφ0, sinφ0). Thus, in the case of the [001] sur-
face, the quadratic mode interaction is isotropic, while in the case of [111]
surface it depends on the pattern orientation within the [111] plane.

For equilateral patterns Ak = ρeiθk and using α = |α|eiδ one obtains from
(65) the following system of equations for ρ and Θ = θ1 + θ2 + θ3:

∂τρ = γρ+ |α|ρ2 cos(Θ− δ), (68)

∂τΘ = −3ρ|α| sin(Θ− δ). (69)

Eq.(69) has two critical points: stable, Θ = δ, and unstable, Θ = π + δ.
Thus, the system (68)-(69) describes an unbounded growth of a pattern given
by a function

h = ρ [cos(k1 · x+ θ1) + cos(k2 · x+ θ2)
+ cos(k3 · x+ θ3)], (70)

in which the phases are locked: θ1 + θ2 + θ3 = δ. If the resonant interaction
coefficient is real then δ = 0 (α > 0) or δ = π (α < 0), and the function
(70) describes a spatially regular array of hexagons with h > 0 (h < 0) in the
centers of the hexagons for α > 0 (α < 0). Therefore, in the case of the [001]
surface when α001 is real, one could observe the growth of regular hexagonal
arrays of dots for α001 > 0 or pits for α001 < 0. Note that for [001] orientation,
the pattern type is determined purely by the details of the wetting potential
(the coefficients w02 and w20) since in this case the anisotropic surface energy
enters only through the quartic terms in the free energy functional yielding
cubic nonlinear terms in the evolution equation for the surface shape. For
example, for a glued wetting potential of the type (29), w20 = 0, α001 =
−w02 > 0 and therefore the formation of only hexagonal arrays of dots is
possible, an array of pits cannot form.

The situation is different for [111] orientation when the free-energy func-
tional has anisotropic cubic terms leading to anisotropic quadratic terms in the
evolution equation for the surface shape and the complex quadratic resonant
interaction coefficient. In this case, the imaginary part of the resonant inter-
action coefficient depends on the surface-energy anisotropy coefficient, q, and
the pattern orientation within the [111] plane (angle φ0). As one can see from
(68), the most rapidly growing pattern corresponds to the maximum of |α| that
is achieved for φ0 = π/6. Thus, one would observe in this case the growth of
a pattern described by the function (70) with the phases locked at

Θ = arctan

[
q/

√
2

4w02 − 3w20

]
. (71)
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Example of patterns corresponding to different values ofΘ are shown in Fig.16
(see also [28]). One can see that for intermediate values of Θ the growing
pattern consists of a regular hexagonal array of triangular pyramids. Similar
hexagonal arrays of triangular pyramids were observed in experiments reported
in [29]. Although the physical mechanism of the formation of ordered arrays of
triangular pyramids observed in [29] was different (elastic interaction of multi-
ple epitaxial layers), the nonlinear mechanism based on the resonant quadratic
interaction of unstable modes in the presence of the anisotropy of the [111]
orientation is universal and may well be the same in the system studied in [29].

Figure 16. Spatial patterns described by (70) with different values of Θ = θ1 + θ2 + θ3.

The amplitude equations (65) cannot describe the nonlinear stabilization of
a growing surface structure and cannot provide conditions for the formation
of stable, spatially regular structures near the instability threshold. In order
to obtain such conditions higher order (usually cubic) nonlinear terms in the
amplitude equations need to be taken into account. However, in the presence of
the resonant quadratic interaction, the addition of cubic terms in the amplitude
equations near the instability threshold is asymptotically rigorous only if the
quadratic interaction coefficient is small, |α| ∼ ε, which restricts the validity of
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the weakly nonlinear analysis to a narrow range of physical parameters. The
Landau cubic interaction coefficients will be anisotropic and depend on the
pattern orientation in the surface plane [28]. Besides, if one allows for long-
scale spatial modulations of the patterns, the interaction between the unstable
periodic modes and the zero mode will strongly affect the pattern stability (see
above) and must be taken into account. The resulting system of amplitude
equations with cubic terms, coupled to an equation for the zero mode, will be
similar to the system (12)-(13), but will have anisotropic Landau coefficients
and anisotropic and complex quadratic coefficients.

Now we shall discuss the results of numerical simulations of eq.(32) for the
two orientations of the film surface: [001] and [111], with Γijk[h] defined by
(33) and (34), respectively, and for the glued-layer wetting potential W0(h)
defined by (29) (so that W2(h) = W3(h) = 0 in (32)). If the initial film
thickness h0 is so large that the film does not “feel" the substrate, h0 � δ,
the numerical solutions of eq.(61) exhibit the formation of “faceted” pyrami-
dal structures (square pyramids for [001] surface and triangular pyramids for
[111] surface) that coarsen in time, similar to those described in [10]. If the film
is thin enough so that the wetting interactions become important, in the case of
[001] surface one can observe the formation of spatially-regular (with some de-
fects), hexagonal arrays of rounded dots. We have observed that these arrays
of equal-sized dots can be stable for small supercriticality and large enough
surface-energy anisotropy (large enough coefficient a together with the ratio
a/b in eq.(32)). Example of such stable array is shown in Fig.17a. It is in-
teresting that the surface-energy anisotropy is overcome here by the isotropic
wetting interactions. With the increase of the supercriticality and further in-
crease of the surface-energy anisotropy, formation of spatially-regular square
arrays of equal-sized dots shown in Fig.17b is possible. If the anisotropy coef-
ficient a is not sufficiently large, hexagonal arrays of dots that are formed at the
initial stage of the film instability (Fig.18a) coarsen in time resulting in the for-
mation of rounded localized dots shown in Fig.18b. These dots are connected
with each other by a thin wetting layer. The mound slope remains constant
during the coarsening. At the late stages, when the dots become localized, the
coarsening rate decreases sharply and the coarsening apparently stops.

In the case of the [111] orientation of the film surface we have not observed
the formation of regular arrays of dots even near the instability threshold and
for large surface-tension anisotropy coefficients. For all studied parameter val-
ues we have observed the initial formation of a hexagonal array of triangular
pyramids that further coarsened and evolved towards localized triangular pyra-
midal structures; different stages of the coarsening process are shown in Fig.19.
As the localized dots shown in Fig.18b, the localized pyramids here are divided
from one another by a thin wetting layer and at the late stages the coarsening
apparently stops. It is interesting that, unlike [001] surface orientation, the
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Figure 17. Formation of spatially-regular arrays of dots: numerical solutions of eq.(32) for
[001] surface orientation. (a) Stationary hexagonal array of equal-size dots, h0 = 1.5 nm,
w = 1.89 × 107 Jm−3, a = 6.6 Jm−2, (w01 = 0.23, ζ = 1.0). (b) Stationary square array of
equal-size dots, h0 = 1.5 nm, w = 8.2 × 105 Jm−3, a = 11.1 Jm−2, (w01 = 0.01, ζ = 1.0);
Other parameters are the same as in Figs.14,15, and b = 0.

Figure 18. Formation of localized dots via coarsening: numerical solutions of eq.(32) for
[001] surface orientation. (a) Nearly hexagonal array of dots (initial stage); (b) spatially-
localized dots divided by a thin wetting layer (late stage); h0 = 1.5 nm, w = 8.2× 106 Jm−3,
a = 0.22 Jm−2, (w01 = 0.1, ζ = 1.0). Other parameters are the same as in Figs.14,15 and
b = 0.

localized dots grown on [111] surface are strongly anisotropic. This is due
to anisotropic cubic terms in the free energy functional (anisotropic quadratic
terms in the evolution equation) that, in the small slope approximation, be-
come dominant. Note that self-organization of quantum dots in the form of
localized triangular pyramids on a [111] surface was observed in [30]. Al-
though in experiments described in [30] an elastic mechanism of the solid film
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5. Conclusions

We have discussed certain aspects of self-assembly of quantum dots from
thin solid films epitaxially grown on solid substrates. We have considered two
principle mechanisms of instability of a planar film that lead to the formation
of quantum dots: the one associated with epitaxial stress and the one associ-
ated with the anisotropy of the film surface energy. We have focused on the
case of particularly thin films when wetting interactions between the film and
the substrate are important and derived nonlinear evolution equations for the
film surface shape in the small-slope approximation. We have shown that wet-
ting interactions between the film and the substrate damp long-wave modes
of instability and yield the short-wave instability spectrum that can result in
the formation of spatially-regular arrays of islands. We have discussed the
nonlinear evolution of such arrays analytically, by means of weakly nonlinear
analysis, and numerically, far from the instability threshold and have shown

instability seems to play an important role, the triangular shape of the pyramids
with [001] faces is clearly caused by the anisotropic surface energy, which is
correctly captured by the model discussed here.

Figure 19. Formation of localized dots: numerical solutions of eq.(32) for [111] surface
orientation showing different stages of coarsening of initial regular hexagonal array of tri-
angular pyramids. The parameters are the same as in for the case shown in Fig.18, except
b = 0.44 Jm−2.
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that for certain values of physical parameters such arrays can be observed in
experiments.

We note that the area of modeling the self-assembly of quantum dots is very
active. Various numerical methods have been developed for the solution of
the evolution equation for the film surface shape that include non-local elastic
effects and anisotropy, such as phase-field methods, finite element methods and
others [31]. Also, numerous investigations are devoted to atomistic modeling
of self-assembly of quantum dots, as well as to the combination of modeling
at small and large scales. These investigations are reviewed in [32].
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MACROSCOPIC AND MESOPHYSICS
TOGETHER: THE MOVING CONTACT LINE
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Paris Cedex 05, France
and
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Abstract This communication reexamines a famous riddle in fluid mechanics: the moving
contact line problem. I show that there is a solution for the wedge of a viscous
fluid sliding on a solid surface without dropping any basic tenet of the fluid
mechanics of viscous fluids. The solution satisfies in particular the balance of
normal forces. It can be taken as a starting point for a numerical simulation of
‘large’ scale motion like a droplet sliding on an incline, without introducing any
new scaling parameter.

Keywords: Moving contact line, fluid mechanics, viscous fluid, mesoscopic effects

The moving contact line problem can be summarized as follows: we know
that, at equilibrium, the contact angle between a liquid/vapor (l/v) interface and
a flat solid is determined by the Young-Laplace condition relating this angle to
a combination of various equilibrium surface energies of the thermodynamic
phases under consideration. Suppose now that, by some external forcing one
manages to slide the contact line with respect to the solid surface. This leads
immediately to a major problem, since the usual boundary condition for fluid is
the continuity of velocity between the solid and the fluid in contact. Therefore,
if one insists that the l/v interface is a material surface carried by the fluid
motion, there is no way for the contact line to move with respect to the solid.
In this situation mesoscopic and macroscopic physics do mix together in a way
that is very hard to disentangle. Below I present some new ideas on this topic
by assuming that the solid is perfectly smooth, something that is very hard to
achieve concretely in real life experiments.

This moving contact line problem has received a lot of attention over the
years [2]. Recently there has been significant progress in this problem, both
in experiments and theory. The experiments have clearly shown what could be
called a dynamical wetting transition. This was already in the work of Blake
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and collaborators [3] and was upheld in more recent experiments on droplets
sliding down an incline [4]: at low speed the shape of the droplet remains
similar to that of a droplet resting on a flat horizontal plane. Beyond a critical
receding speed, the contact line shows a cusp becoming more and more acute
as the speed of descent increases. This confirms the idea that the relationship
between the speed of sliding of the triple line and the contact angle depends
on microscopic process going on near the moving line. Such a relationship
has to be derived from microscopic models of interaction between the solid
and the two fluids (vapor and liquid) merging along the same line. This is not
surprising, since the Laplace theory of the equilibrium contact angle relies on
the balance of molecular forces.

The difficulty with this idea is that one does not know how the contact an-
gle/velocity relation should enter the equations of fluid mechanics, which is the
question addressed below. Actually, the very problem of the motion of a wedge
of fluid sliding along a solid surface has no known satisfactory solution, except
when the solid is not wet at all by the liquid [5]. However, this problem can
be bypassed in the often realistic limit of a small capillary number [6]. In this
limit, the main contribution to the stress on the interface comes from the capil-
lary forces. Therefore a quasistatic approximation yields the right shape of the
interface, given the curve followed by the contact line and the volume trapped
inside. This yields also the value of the contact angle, which, in general, is
not the Young-Laplace equilibrium angle. The contact angle/velocity relation
accounts for this difference. It gives a well defined and successful schema to
describe various physical phenomena where the contact line motion is crucial
[9], [7]. However, it leaves out other cases where the capillary number is not
small (although this is not so common, except with very viscous fluids). I deal
below with some aspects of this problem.

Specifically, I show that some of the problems that are present in the wedge-
like solution of Huh and Scriven disappear if one drops the condition that the
liquid-vapor interface is a material surface. This is important, because, be-
sides a logarithmic divergence of the dissipation, it is not really a solution to
the problem at hand. It does not satisfy the balance of normal forces across
the liquid-vapor interface. I propose a way to get around this difficulty. The
net result is a set of formula that satisfy all the requirements coming from the
mechanical balance. I shall discuss afterwards the consequence of this formu-
lation.

The early paper [1] solves the Stokes problem in a wedge-like flow, with
boundary conditions that I shall discuss later on (see below for the details). Let
a liquid/vapor (l/v) flat interface cross an equally flat solid surface at a certain
prescribed angle denoted Φ and in between 0 and π. The polar coordinates are
such that r = 0 is at the intersection of the solid and l/v interface. The fluid
of index B is on the right side and corresponds to the values of the polar angle
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0 < θ < Π, and the fluid of index A is on the left side and corresponds to
Φ < θ < π. The solid is moving at a speed U parallel to itself. The calculation
is done in the frame of reference moving with the A/B interface, in such a
way that every quantity is time independent in this frame of reference. The
equations to be solved are, therefore, the Stokes equations in a wedge, with
various boundary conditions.

In order to make comparison of results easier, the notations used here are
close to the ones of Huh and Scriven. The flow is assumed to be incompressible
in each fluid phase. The incompressibility conditions are satisfied there by
means of two stream functions ΨA(r, θ) and ΨB(r, θ), defined in such a way
that the radial and azimuthal components of the fluid velocity are

ur = −1
r

∂Ψ
∂θ

,

and

uθ =
∂Ψ
∂r

. In such a two dimensional geometry, the Stokes equations are reduced to the
biharmonic equation for the stream function

Δ2Ψ(r, θ) = 0, (1)

where the LaplacianΔ in polar coordinates is:

Δ =
∂2

∂r2
+
1
r

∂

∂r
+
1
r2

∂2

∂θ2
.

The relevant solution of the equation (1) is

Ψ(r, θ) = r [a sin(θ) + b cos(θ) + cθ sin(θ) + dθ cos(θ)] , (2)

where (a, b, c, d) make up two sets of four coefficients corresponding to each
phase (that is, a set (aA, bA, cA, dA) and a set (aB, bB, cB, dB)). They are con-
strained by two types of boundary conditions: some for the no-slip condition
on the solid, and the others for the continuity across the l/v interface. The
boundary conditions on the surface of the solid are uθ = 0 both for θ = 0 and
θ = π, ur = U for θ = 0 and ur = −U for θ = π. The normal speed of liquid
A on the solid vanishes, which yields:

bA + πdA = 0. (3)

The same condition for liquid B yields:

bB = 0. (4)



162 PATTERN FORMATION IN NANO-SYSTEMS

The condition for the tangential component on the solid on the A side reads:

aA + dA + πcA = −U. (5)

On the B side, it is:
aB + dB = U. (6)

The other set of boundary conditions expresses the continuity of tangential
speed and tangential stress along the l/v interface (namely, for θ = Φ). The
tangential speed on the l/v interface is just the ur component. Therefore, the
continuity of this velocity component reads:

sin(Φ) [(aA − aB) + Φ(cA − cB)] + cos(Φ) [bA +Φ(dA − dB)] = 0. (7)

The stress is a rank two tensor. The relevant components here are the normal
and tangential stress, namely, the components Σθθ and Σrθ. They both enter
the expression of forces exerted on the element of surface parallel to the l/v
interface. Let us first look at Σrθ part. Its only contribution comes from the
viscous stress. Its general expression in cylindrical coordinates is:

Σrθ = −η
(
∂uθ
∂r

+
1
r

∂ur
∂θ

)
,

where η is the shear viscosity. Since uθ is independent on r, one finds that,
with the stream function given in equation (2), the tangential stress reads:

Σrθ = −η

r
[−a sin(θ)− b sin(θ) + c(2 cos(θ)− θ sin(θ))

−d(θ cos(θ) + 2 sin(θ))]
So the continuity of tangential stress gives:

ηB [−aB sin(Φ) + cB(2 cos(Φ)− Φsin(Φ))
−dB(Φ cos(Φ) + 2 sin(Φ))]

= ηA [−aA sin(Φ)− bA sin(Φ) + cA(2 cos(Φ)− Φsin(Φ))
−dAΦcos(Φ) + 2 sin(Φ))] (8)

Until now, our analysis followed the steps of Huh and Scriven. Before explain-
ing what I propose, I shall discuss what they do next.

Huh and Scriven add, to all constraints already taken into account, that the
l/v interface is a material surface, that is not crossed by any matter flux. This
adds two conditions, namely, the vanishing of the normal velocity on both sides
of the interface. This results in four additional boundary conditions along the
l/v interface: continuity of tangential stress, of tangential speed and one condi-
tion for the normal speed on each side. Now there are eight conditions in all,
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exactly the number of free parameters in the solution of the biharmonic equa-
tion in the two wedges. However, a major difficulty is looming, namely, that
the continuity of normal stress is not satisfied. Because one condition cannot
be satisfied, one could choose as well to drop another one, like the continuity
of tangential stress or the continuity of tangential velocity for instance, instead
of the balance of normal forces. In this respect this freedom is unphysical and
means that this solution, however interesting it is, cannot be seen as physically
sound. The core difficulty is that, by imposing the shape of the l/v interface,
one has lost the freedom existing in fully time-dependent problems when the
interface is taken as a material surface: the normal speed of this interface is left
free. The freedom added in this way permits at the end to satisfy all conditions.

Many attempts to resolve this difficulty have been made over the last thirty
years or so. A solution to this riddle is provided by the phase field approach
of Seppecher [8]. It is a priori free of any divergence related to discontinuities
on the l/v interface, assumed to have a finite thickness. This does not mean,
however, that Seppecher’s solution is a fully satisfactory representation of the
physics of the moving contact line, including at distances far from the triple
point. The phase field model has, I believe, a weakness : it allows the fluid
to evaporate or condense from one fluid phase to the other too easily. I tried
in previous work [2] to get around this by imposing a slow relaxation toward
equilibrium on the van der Waals equation of the phase field model. This was
based upon the idea that this transformation from one thermodynamic phase
(the liquid, for instance) to the other (vapor) requires the molecules to jump
above some barrier, with the jumps being governed by an Arrhenius exponen-
tial that can be very large. This is likely relevant for non-volatile fluids, where
this barrier is very high. Here I consider another situation, namely, a volatile
fluid.

In a volatile fluid, the evaporation is not dominated by the activation energy
but rather by the release or intake of latent heat. That the exchange of latent
heat in the evaporation/condensation process is relevant can be understood as
follows. Suppose that evaporation and condensation are only relevant to ac-
count for the mass exchange across the interface. Then, the velocity of this
interface becomes arbitrary. In classical fluid mechanics, one always assumes
that the interface is a material surface so that the Stokes or Navier-Stokes equa-
tions have the right number of boundary conditions at the interface. If one
omits one boundary condition at the interface, that is if one replaces the two
constraints of zero normal speed across the interface on the two sides by the
single condition of continuity of the normal mass flux, one degree of freedom
is added to the system and the velocity of the interface becomes arbitrary. This
freedom is lost if one takes into account the ‘energetics’ of the phase changes.
Actually, the motion of the interface is completely determined (in the absence
of flow) in a temperature field by the conservation of energy via the Stefan

Macroscopic and mesophysics together
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relation between the jump of the normal heat flux and the actual velocity of
the interface, related, in turn, to the growth of one thermodynamic phase at the
expense of the other. Therefore, the right number of boundary conditions at
the l/v interface is recovered, in principle, by incorporating the energy condi-
tion into eventual evaporation/condensation effects. Indeed, the most common
situation by far in fluid mechanics is the one where evaporation/condensation
is negligible and where the boundary condition is the one of a material surface.
This is the limit in which the heat flux is small enough to make the velocity re-
lated to the evaporation/condensation process negligible compared to the fluid
velocity. In this limit, one recovers the usual no-cross flow condition. How-
ever, in the contact line problem there is no parameter making a priori this
cross flow negligible. Therefore, it should be included together with the Stefan
condition and the Fourier heat equation for the temperature, in order to make
the problem fully consistent. I plan to come back to this general issue later
on. Below I assume that, because of the presence of the solid and because the
latent heat of transformation is small (that is consistent with the assumption of
“easy evaporation" of a volatile liquid) the energy transfer does not play any
role. Moreover, I show that a little evaporation or condensation can be signifi-
cant according to the Maxwell’s conclusion that the shear viscosity of a dilute
gas is independent on its density.

Returning to the analysis of the contact line motion, I shall write the last two
conditions of continuity along the l/v interface. The boundary conditions on
the surface of the solid are in equations (3), (4), (5) and (6) and the continuity
of tangential speed and stress along the l/v interface is in equations (7) and (8).

The remaining boundary conditions come from the continuity of normal
stress across the l/v interface and of the matter flux. The continuity of the
matter flux expresses that the product ρuθ is the same on both sides of the l/v
interface. This yields in general:

ρA [aA cos(Φ) + bA sin(Φ) + cAΦcos(Φ) + dAΦsin(Φ)]
= ρB [aB cos(Φ) + cBΦcos(Φ) + dBΦsin(Φ)] . (9)

I shall assume now that one of the phase is actually much more dilute than
the other, namely, that fluid A is a vapor. Practically speaking, this means that
the dimensionless ratio ρA

ρB
is very small. This makes one of the two dimen-

sionless numbers in the problem disappear, the only one remaining being the
ratio of the shear viscosities, ηA

ηB
. One may think that, if the ratio ρA

ρB
is small,

the same is true for the ratio of shear viscosities ηA
ηB

. This is not so because,
as was shown long ago by Maxwell, the shear viscosity of a dilute gas is inde-
pendent of its density, and I assume realistically that the vapor is a dilute gas.
This sharpens the physical image of the moving contact line: because the shear
viscosity of the vapor is of the same order as that of the liquid, a little bit of
evaporation or condensation is enough to generate stresses on the vapor side
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that may balance those on the liquid side. Therefore, the evaporation speed on
the liquid side can be neglected while it yields the required stress on the vapor
side. In this limit, the continuity of flux across the l/v interface becomes:

aB cos(Φ) + cBΦcos(Φ) + dBΦsin(Φ) = 0. (10)

The continuity of normal stress remains to be worked out. The normal stress is
the sum of the hydrostatic pressure p and of the viscous stress −2η

r
∂uθ
∂θ , and it

must be continuous across the l/v interface. Note that, because I assume a flat
interface, there is no contribution from the Laplace capillary pressure. In the
Stokes approximation, p is a harmonic function. It scales like U f(θ)

r , where
f(θ) is a dimensionless function of θ to be determined. Because p is harmonic
f(θ) has to be of the form f(θ) = α sin(θ) + β cos(θ), where α and β are
some numbers. The equation for momentum balance in the fluid when written
in polar coordinates is, for a velocity field that depends only on θ:

r2
∂p

∂r
= η

[
∂2ur
∂θ2

− ur − 2∂uθ
∂θ

]
. (11)

Substituting the explicit expressions for ur and uθ given above into this equa-
tion, one obtains after tedious algebra

p = −2η
r
(c sin(θ) + d cos(θ)) (12)

Now we can write the continuity of the normal stress p− 2η
r
∂uθ
∂θ :

ηA [aA cos(Φ)− bA sin(Φ) + cA(2 sin(Φ) + Φcos(Φ))
+dA(2 cos(Φ)− Φsin(Φ))]

= ηB [aB cos(Φ) + cB(2 sin(Φ) + Φcos(Φ))
+dB(2 cos(Φ)− Φsin(Φ))] . (13)

There are now  eight linear relations between the eight coefficients(a A, bA, cA
(aB, bB, cB, dB). Unless the determinant of the eight by eight matrix of

coefficients is zero, which may happen for some peculiar values of the angle Φ,
for instance, this problem has a solution.

This set of conditions is the one that is satisfied at large distances from
the triple point in the Seppecher’s phase field equations for the contact line
motion: as in the phase field equations, our model assumes an unhindered in-
terface motion, without caring for the heat transfer due to the latent heat. It
also provides a theory consistent with the balance of normal stress across the
fluid/fluid interface. The idea presented here opens the way to model fluid me-
chanical problems with contact line motion. This is something that is impos-
sible with the Huh-Scriven solution: without balancing the normal stress one

Macroscopic and mesophysics together

, dA) ,
,
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cannot match a large-scale solution (like the one relevant for a sliding drop,
for instance) with the local relation between the contact angle and the speed
of the moving contact line. Indeed, there is still a logarithmic divergence of
the total force on the contact line, because the pressure diverges like 1

r at the
distance r from the moving line. Such a divergence could be taken care of by
merging the large-scale solution (at the scale of the whole droplet, for instance)
with a Seppecher-like solution near the triple line, the solution presented here
being the one valid in the intermediate “matching" domain. Indeed, such a
“large scale" solution cannot keep the freedom coming from the unhindered
evaporation/condensation. With such a freedom, the shape of a sliding droplet
would be arbitrary, because, as in the wedge problem, it leaves enough free
parameters to satisfy the boundary conditions for the Stokes equations. This
is where the latent heat should be taken into account: the cross flow is a func-
tion of the local temperature field, that is itself defined by various boundary
conditions of the problem (including, of course, the value of the equilibrium
temperature at the l/v interface). This fully constrains the problem to bring a
unique and divergenceless solution. I plan to come back to this issue in future
publications.
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NANOSCALE EFFECTS IN MESOSCOPIC FILMS

L. M. Pismen
Department of Chemical Engineering and Minerva Center for Nonlinear Physics of Complex
Systems, Technion – Israel Institute of Technology, 32000 Haifa, Israel

Abstract This chapter reviews the ways to incorporate nanoscale molecular interac-
tions into hydrodynamic theory of mesoscopic films and moving contact lines
exploring wide separation of different characteristic scales. The approach uses
the lubrication approximation, and successfully reduces the description from
density functional theory to equations of Cahn-Hilliard type incorporating ef-
fects of interaction with the substrate and interfacial curvature. These equations
are in turn analyzed to obtain mobility relations for droplets on a precursor film.

Keywords: Molecular interactions, thin films, contact line, disjoining potential, mobility.

Many important technological processes involving flow, transport and chem-
ical reactions take place on or near fluid-solid or fluid-fluid interfaces. Both
equilibrium properties of a fluid and transport coefficients are modified in the
vicinity of interfaces. The effect of these changes is crucial in the behavior of
ultra-thin fluid films, fluid motion in microchannels, etc. It is no less important
in macroscopic phenomena involving interfacial singularities, such as rupture,
coalescence and motion of three-phase contact lines.

Any interphase boundary is essentially a mesoscopic structure. While the
material properties vary smoothly at macroscopic distances along the inter-
face, the gradients in the normal direction are steep, approaching a molecu-
lar scale in the vicinity of the interface. Under these conditions, a nonlocal
character of long-range intermolecular interactions becomes important. This
problem becomes even more acute in the vicinity of solid surfaces, where the
fluid is subject to van der Waals, polar and electrical double layer forces. Such
factors as chemical and geometric inhomogeneities, induced anisotropy, steric
constraints and partial ordering of the fluid may come into play there as well.

On the one hand, interfacial processes are governed by a variety of micro-
scopic factors that lie outside the scope of conventional fluid dynamics and
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theories of macroscopic transport. On the other hand, both the number of par-
ticles involved and the characteristic scale of the spatial structures are too large
to be treated by molecular dynamics or similar methods. This implies a con-
tradiction between the need in macroscopic description and a necessity to take
into consideration microscopic factors, which come to influence the fluid mo-
tion and transport on incommensurately larger scales. This contradiction can
be only resolved by matching the processes taking place on widely separated
scales and described by models of dissimilar kind.

A middle ground between classical hydrodynamics (inapplicable at molec-
ular scales) and molecular dynamics (inapplicable to macroscopic volumes) is
taken by mesoscopic continuum theories introducing intermolecular forces into
coarse-grained equations of motion. Theories of this kind account for special
properties of an interfaces in a natural way by considering it as a diffuse region
interpolating between the two phases. The origin of this approach is in the
diffuse interface model going back to van der Waals [1]. Much later, it became
prominent in the phase field models [2], used mostly in phenomenological the-
ory of solidification where a fictitious phase field, rather than density, plays
the role of a continuous variable changing across the interphase boundary. The
theory of van der Waals was widely used for description of equilibrium fluid
properties, including surface tension and line tension in three-phase fluid sys-
tems [3]. Significant progress has been achieved in application of more so-
phisticated methods of this type, in particular, density functional theory, to the
study of equilibrium properties of thin films [4].

Applications of this theory to dynamical processes in fluids is much more
difficult, as it requires coupling to hydrodynamics. So far, non-equilibrium
continuum theory has been largely based on classical fluid mechanics [5–7].
Intermolecular interactions are taken into account in this theory through dis-
joining potential, computed in lubrication approximation, while slip and inter-
face relaxation are taken into account phenomenologically, if at all. Coupling
the van der Waals–Cahn–Hilliard diffuse interface theory of to hydrodynam-
ics involves incorporating the free energy of an inhomogeneous fluid in hy-
drodynamic equations [8]. Several computational studies based on this set of
equations have been published in the last decade [9–12].

Extension of more advanced methods, in particular, density functional the-
ory, to non-equilibrium phenomena is the principal aim of this survey. We
shall consider a simple one-component fluid with van der Waals interactions
as a suitable medium for exploration of basic theoretical problems of interfa-
cial dynamics. In the case when intermolecular interactions are long-range, in
particular, in the most important case of Lennard–Jones potential, the transfor-
mation from the nonlocal (density functional) to local (van der Waals–Landau–
Cahn) equations fails due to divergences appearing in the commonly used ex-
pansion of the interaction term in the expression for free energy. Setting bound-
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ary conditions on the fluid-solid interface necessary for a local theory is also
contradictory, since it neglects a gradual change of fluid properties near this
boundary.

Formulation of a full dynamic nonlocal theory is not practical due to in-
trinsic difficulties in separation of advective and diffusional fluxes, aggravated
in nonlocal theory by impossibility to reduce external forces to boundary in-
tegrals. Even in the framework of local theory, computational difficulties of
a straightforward approach make it so far impossible to span the entire range
from nanoscopic scale of molecular interactions to observable macroscopic
scales.

Our strategy is therefore to use natural scale separation in weakly distorted
thin films and other systems with almost parallel interacting interfaces to sep-
arate molecular interactions and diffusion in the direction normal to the inter-
faces from hydrodynamic motion in spanwise directions. The former is treated
nonlocally, resulting in computation of quasiequilibrium disjoining potential.
This input is further used in long-scale hydrodynamic computations.

The disparity of scales relieves the formidable task of solving coupled ki-
netic and hydrodynamic equations. It allows one to separate the inner inter-
facial region where macroscopic flow velocity is constant and the interface is
close to equilibrium, and the outer region where flow is incompressible, while
weak gradients of chemical potential are relaxed by diffusion. Macroscopic
flow driven by external sources will remain unaffected by gradients of chem-
ical potential almost everywhere. Nevertheless, coupling to the inner region
influences the flow through boundary conditions sensitive to changes of sur-
face tension, interfacial curvature, and interphase transport. The corrections,
even minute, may become essential when the classical hydrodynamic solution
is singular.

Hydrodynamic Equations

Modified Stokes Equation

Classical hydrodynamic equations should be modified at mesoscopic dis-
tances from interfaces by including thermodynamic driving forces arising in a
non-equilibrium fluid. Local mesoscopic thermo-hydrodynamic theory assum-
ing linear coupling between fluxes and thermodynamic forces in the spirit of
Onsager’s non-equilibrium thermodynamics [8] modifies hydrodynamic equa-
tions by including in the stress balance a reversible part of the stress tensor,
called capillary tensor, which is derived from an applicable free energy func-
tional. This tensor is related to the momentum conservation law, which fol-
lows, by Noether theorem, from the translational invariance of the system.
The capillary tensor complements the usual (irreversible) viscous stress ten-
sor in the hydrodynamic equations. This leads, after some transformations, to

1.
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a modified Stokes equation in the form

−ρ∇μ+∇ · (η∇v) = 0, (1)

where v is the velocity field and η is the dynamic viscosity (generally, de-
pendent on the particle density ρ). The local chemical potential μ, dependent
on proximity of fluid-solid and liquid-vapor interfaces and interfacial curva-
ture (and, possibly, also on external forces) serves as a driving force of fluid
motion.

The capillary tensor, being a local quantity, cannot be unequivocally defined
in a nonlocal framework; nevertheless, we expect the modified Stokes equation
(1) to remain applicable also in this case. It can be introduced directly by in-
cluding molecular interactions into the common driving term (enthalpy gradi-
ent) in the Stokes equation. Since molecular interactions are essential only in a
thin interfacial layer, standard interfacial boundary conditions follow from the
sharp interface limit of Eq. (1), valid when the relevant macroscopic distances
far exceed the range of intermolecular forces. As usual, the Stokes equation is
complemented by the continuity equation

ρt +∇ · (ρv) = 0. (2)

The system of equations is closed by thermodynamic equations defining μ,
to be derived in Sections 2 and 3, which replace an equation of state used in
standard hydrodynamic theory. Combined thermo-hydrodynamic theory based
on Eq. (1) and including nonlocal interactions is formidable, but the problem
can simplified using a natural scale separation in thin films [13, 14], which is
also used in the standard hydrodynamic lubrication approximation [7].

Lubrication Scaling

The lubrication approximation assumes the characteristic length scale in the
“vertical” direction z (normal to the substrate) to be much smaller than that
in the “horizontal” (parallel) directions spanned by the 2D vector x. The ap-
proximation is applicable to liquid films with a large aspect ratio, when the
interface is weakly inclined and curved. The scaling is consistent if one as-
sumes ∂z = O(1), ∇ = O(

√
ε) � 1, where ∇ is now the 2D gradient in the

plane of the solid support. Then the continuity equation requires that the verti-
cal velocity v should be much smaller than the horizontal velocity (denoted by
the 2D vector u): u = O(

√
ε), v = O(ε).

The lubrication equations are derived by expanding both equations and bound-
ary conditions in powers of ε and retaining the lowest-order terms. First, we
deduce from the vertical component of the Stokes equation, reduced in the
leading order to ∂μ/∂z = 0, that chemical potential μ(x, t) is constant across
the layer. The horizontal component of the Stokes equation takes now the form

−ρ∇μ+ ∂z(ηuz) = 0. (3)
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The continuity equation is rewritten as

ρt +∇ · (ρu) + ∂z(ρv) = 0. (4)

Matching the lubrication equation to thermodynamic theory requires some
caution, since thermodynamic theory yielding an expression for μ should be
applied to the entire system including dense (liquid) and dilute (vapor) phases
in equilibrium, whereas only the dense phase may have a suitable aspect ra-
tio. To make the approximation applicable, one has to assume that the in-
terface dividing the dense and the dilute phase is only weakly inclined rela-
tive to the substrate and weakly curved, so that its position can be expressed
by a function h(x, t) with derivatives obeying the above lubrication scaling.
Thermodynamic theory, either local or nonlocal, can be used to compute an
equilibrium density profile across the interface (in the “vertical” direction),
ρ0(z − h(x, t)), which is weakly dependent on the “horizontal” 2D position
and time only through its dependence on h, e.g.

ρt = −ρ′
0(z − h)ht, ∇2ρ = −ρ′

0(z − h)∇2h+ ρ′′
0(z − h)|∇h|2. (5)

As the interface is diffuse, h can be only defined as a nominal interface
position, which may be identified with the location of a particular isodensity
level. The most natural choice is the Gibbs equimolar surface, which satisfies
the relation ∫ h

−∞
(ρ+ − ρ) dz =

∫ ∞

h
(ρ− ρ−) dz, (6)

where ρ± are densities of the dense and dilute phases. This means that the
total mass of an unbounded fluid would not change when the actual profile is
replaced by a sharp boundary located at z = h. The interfacial thickness is
commonly of molecular dimensions, so that on the macroscopic scale ρ′(z)
approaches a delta function, ρ′(z) = −(ρ+ − ρ−)δ(0). In the absence of
interphase mass transport, the velocity normal to any isodensity level should
vanish, n · v = v − u · ∇h = 0. Integrating Eq. (4) and replacing v with the
help of this condition yields the material balance equation averaged across the
liquid layer:

ht +∇ · j = 0, j =
∫ h

0
u(z) dz. (7)

Mobility Coefficient

Solving Eq. (3) with appropriate boundary conditions gives, generally, a
linear relationship between the total flux through the film j and the 2D gradient
of chemical potential:

j = −k(h)ρ∇μ, (8)
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where k(h) is a mobility coefficient .
With the density, as well as viscosity of the dilute phase neglected, the

boundary condition at the free interface for macroscopic flow in the dense
layer is the condition of vanishing tangential stress, which reduces in the lead-
ing order of the lubrication approximation to uz(h) = 0. The classical no-slip
condition on a solid substrate is u(0) = 0. Assuming η and ρ = ρ+ to be
constant, this yields

u = −η−1z
(
h− 1

2z
)
ρ+∇μ, k(h) = 1

3η
−1h3. (9)

The no-slip condition becomes, however, inapplicable on molecular scales. It
is known, in particular, that it generates a multivalued velocity and, hence, an
infinite stress in the vicinity of a contact line, leading formally to an infinite
drag force [15, 16].

The physics of motion in a layer adjacent to the solid surface is quite dif-
ferent from the bulk motion described by the Stokes equation. This generates
effective slip at a microscopic scale comparable with intermolecular distances.
The presence of a slip in dense fluids it is confirmed by molecular dynam-
ics simulations [17, 18] as well as experiment [19]. The two alternatives are
slip conditions of “hydrodynamic” and “kinetic” type. The version of the slip
condition most commonly used in fluid-mechanical theory is a linear relation
between the velocity component along the solid surface and the shear stress
[20], leading to the boundary condition u = buz at z = 0 where b is a phe-
nomenological parameter – slip length. interaction between the fluid and the
substrate. In liquids this length should be of molecular dimensions.

The kinetic slip condition assumes diffusive motion in a thin layer of molec-
ular thickness d adjacent to the solid substrate driven by the chemical potential
gradient. The total flux through the molecular layer can be expressed as

j = −(dD/T )∇μ, (10)

where D is the surface diffusivity and temperature T is measured in energy
units (with the Boltzmann constant rescaled to unity). This relation, first in-
troduced to describe motion in a molecularly thin precursor layer [21, 22], is
extended to mesoscopic films [23] when the usual no-slip boundary condition
on the solid support u(0) = 0 is replaced by the slip condition at the molecular
cut-off distance d with u(d) given by Eq. (10). The solution in the bulk layer
d < z < h is

u = −η−1ρ+
[
λ2 + h(z − d)− 1

2(z
2 − d2)

]
ρ+∇μ, (11)

where λ =
√
Dη/(ρ+T ) = O(d) is the effective slip length. The mobility

coefficient is computed as

k(h) = η−1
[
λ2h+ 1

3(h− d)3
]
, (12)

which reduces to k(h) in Eq. (9) in the limit λ, d → 0.
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Thermodynamic Equations

Free Energy Functional

The starting point for computation of chemical potential is the free energy
functional written in the local density functional approximation [24] as

F =
∫
ρ(x)f [ρ(x)] d3x+

1
2

∫
ρ(x) d3x

∫
r>d

U(r)[ρ(x+ r)− ρ(x)] d3r,

(13)
where f(ρ) is free energy per particle of a homogeneous fluid and U(r) is an
isotropic pair interaction kernel with a short-scale cut-off d. The contribution
of density inhomogeneities is expressed by the last term vanishing in a homo-
geneous fluid.

The chemical potential μ = δF/δρ enters the respective Euler–Lagrange
equation obtained by minimizing the grand ensemble thermodynamic potential
Φ = F −μ

∫
ρ d3x, which defines the equilibrium particle density distribution

ρ(x):

g(ρ)− μ+
∫
r>d

U(r)[ρ(x+ r)− ρ(x)] d3r = 0, (14)

where g(ρ) = d[ρf(ρ)]/dρ. The function F (ρ) = ρ[f(ρ)−μ] should have two
minima ρ± corresponding to two stable uniform equilibrium states of higher
and lower density (liquid and vapor).

A simple example of long-range potential is the modified Lennard–Jones
potential with hard-core repulsion:

U =
{ −Ar−6 at r > d

∞ at r < d
, (15)

where d is the nominal hard-core molecular diameter. The interaction kernel
U(r) gives the free energy density of a homogeneous van der Waals fluid

f(ρ, T ) = T ln
ρ

1− bρ
− aρ, (16)

where T is temperature, b = 2
3πd

3 is the excluded volume and

a = −2π
∫ ∞

d
U(r)r2 dr =

2πA
3d3

. (17)

Equilibrium between the two homogeneous states, ρ = ρ± is fixed by the
Maxwell condition

μ0 =
ρ+f(ρ+)− ρ−f(ρ−)

ρ+ − ρ− , (18)

which defines, together with μ0 = g(ρ±), the equilibrium chemical potential
μ = μ0 and both equilibrium densities.

2.
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The integral equation (14) can be converted to a much simpler differential
equation assuming that density is changing only slightly over distances com-
parable with the characteristic interaction length. Then one can expand

ρ(x+ r) = ρ(x) + r · ∇ρ(x) + 1
2rr : ∇∇ρ(x) + . . . (19)

Using this in Eq. (13) we see that the contribution of the linear term to the non-
local integral vanishes when the system is isotropic and, as a consequence, the
interaction term is spherically symmetrical, and the lowest order contribution
is due to the quadratic term:

F2(x) = −1
2K

∫
ρ(x)∇2ρ(x) d3x = 1

2K

∫
|∇ρ(x)|2 d3x, (20)

where

K = −2π
3

∫ ∞

d
U(r) r4 dr = −

∫ ∞

0
Q(z)z2 dz =

2πA
3d

. (21)

Thus, Eq. (13) is replaced by

F =
∫ [

ρf(ρ)− μρ+ 1
2K|∇ρ(x)|2] d3x. (22)

This derivation, going back to van der Waals [1], has a disturbing flaw. If the
expansion is continued to the next non-vanishing order (fourth), the expression
for the respective coefficient, computed analogous to Eq. (21), diverges when
the common Lennard–Jones potential is used.

Surface Tension and Density Profile

The equation for density distribution near a flat boundary normal to the z
axis is obtained by assuming ρ to be constant in each lateral plane and inte-
grating Eq. (13) in the lateral directions. This yields the free energy per unit
area, or surface tension

γ =
∫ ∞

−∞
ρ(z)[f(ρ)−μ]dz+1

2

∞∫
−∞

ρ(z) dz

∞∫
−∞

Q(ζ)[ρ(z+ζ)−ρ(z)] dζ. (23)

The interfacial energy is contributed both by deviations from the equilibrium
density levels in the transitional region and by the distortion energy localized
there. The 1D interaction kernel Q(z) lumps intermolecular interaction be-
tween the layers z = const. It is computed by lateral integration using as an
integration variable the squared distance q = r2 = ξ2 + z2, where ξ is radial
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distance in the lateral plane. Taking note that the lower integration limit for q
is q0 = z2 at |z| > d, q0 = d2 at |z| ≤ d, we compute

Q(z) = −πA
∫ ∞

q0

q−3 dq =

⎧⎨⎩ −1
2πAz

−4 at |z| > d

−1
2πAd

−4 at |z| ≤ d.
(24)

The respective 1D Euler–Lagrange equation, replacing Eq. (14), is

g [ρ(z)]− μ+
∫ ∞

−∞
Q(ζ)[ρ(z + ζ)− ρ(z)] dζ = 0. (25)

This equation can be rewritten in a dimensionless form

g(ρ)− μ+
3
4
β

∫ ∞

−∞
Q(ζ)[ρ(z + ζ)− ρ(z)] dζ = 0, (26)

where

g(ρ) =
1

1− ρ
− ln

(
1
ρ

− 1
)

− 2βρ. (27)

Here the length is scaled by the nominal molecular diameter d, the density by
b−1, and the chemical potential by T ; the interaction kernel is Q(z) = −z−4

at |z| > 1, Q(z) = −1 at |z| ≤ 1, and the only remaining dimensionless
parameter is the rescaled inverse temperature β = a/(bT ) = (A/T )d−6.

An example of a density profile obtained by solving numerically Eq. (26) is
shown in Fig. 1. The density tail asymptotics can be estimated by considering
a location far removed from the interface placed at the origin [|z| � 1 in the
dimensionless units of Eq. (26)] where a sharp interface limit can be imple-
mented. The density is presented as ρ = ρ± + ρ̃, where ρ̃/ρ ∼ 1/|z|3 � 1 .
Inserting this in (26) and linearizing around ρ = ρ±, we see that the densities
inside the integral are well approximated in the leading order by the two lim-
iting constants, which is equivalent to the sharp interface limit. For example,
for the vapor tail at z > 0, |z| � 1 we have ρ(z) = ρ− and ρ(z + ζ) = ρ+ for
ζ > |z|, ρ(z + ζ) = ρ− for ζ < |z|. Thus, we obtain

ρ = ρ± +
β(ρ+ − ρ−)
4g ′(ρ±)

1
z3

. (28)

This is in good agreement to the numerical solution, as seen in the inset of
Fig. 1. One can check a posteriori using this expression that the contribution
to the integral of neighboring locations with |ζ| = O(1) is of a higher order
∝ |z|−5 and therefore can be neglected.

For comparizon, the 1D version of the local Euler–Lagrange equation de-
rived from Eq. (22),

Kρ′′(z)− g(ρ) + μ = 0. (29)
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Figure 1. The density profile of the liquid-vapor interface obtained by numerical solution
of (26) for β = 9. The inset shows the vapor-phase tail of the numerical solution (solid line)
compared to the asymptotic form (28) depicted by the dashed line.

has exponential asymptotics, as the deviation from either homogeneous state
decays at |z| → ∞ as exp(−√g′(ρ±)|z|). This qualitative difference in asym-
potics is a consequence of incorrect truncation involving divergent higher-order
terms.

Interfacial Curvature

Suppose now that the interface is weakly curved, so that isodensity levels do
not coincide anymore with planes z = const. The nominal location of a curved
diffuse interface (e.g. the Gibbs equimolar surface) can be used to describe it
in the language of differential geometry commonly applied to sharp interfaces.
Its spatial position can be defined in a most general way as a vector function
X(ξ) of surface coordinates ξ. A curved interface can be approximated locally
by an ellipsoid with the half-axes equal to the principal curvature radii. If
both radii far exceed the characteristic interface thickness, all isodensity levels
are approximated by ellipsoidal segments equidistant from the interface. The
density changes along the direction z normal to isodensity surfaces, and the
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density profile along each normal is defined in the zero order by the function
ρ(z) computed above.

A more precise approach is to introduce a coordinate frame aligned with
a weakly deformed interface. Given the interface X(ξ), one can find unit
tangent vectors tα = ∂X/∂ξα along the surface coordinates ξα, the surface
metric tensor gαβ = tα · tβ , and the normal vector n = 1

2ε
αβtα × tβ , where ×

is the 3D cross product and εαβ is the antisymmetric tensor; the Greek indices
taking the values (1,2) are lowered and raised with the help of the metric tensor
gαβ and its inverse gαβ . The curvature tensor καβ is defined through the co-
variant derivatives of the tangent or normal vectors with respect to the surface
coordinates:

∇βtα = καβn, ∇αn = καβg
βγtγ . (30)

Next, we define the coordinate axis z directed along n with the origin on
the Gibbs surface. To fix the signs, we assume that the dense phase prevails at
z < 0. The coordinate surfaces z = const are obtained by shifting the inter-
face along the normal by a constant increment. Evidently, this shift causes the
length to increase on convex, and to decrease on concave sections. The aligned
frame is not well defined far from the interface due to a singularity developing
on the concave side at distance about the smallest value of the local curvature
radius, i.e. the smallest inverse eigenvalue of the curvature tensor. Since the
aligned frame is well defined only sufficiently close to the interface, we have
to assume that the curvature is of O(ε) � 1 when measured on the charac-
teristic scale of intermolecular interactions that defines the effective interface
thickness.

The metric tensor of the aligned coordinate system extends the surface met-
ric to the neighboring layers, so that the infinitesimal interval is computed as

dr2 = dz2 + (gαβ + εzκαβ) ξαξβ +O(ε2). (31)

The free energy integral (32) is rewritten in the aligned frame as a 2D integral
along the Gibbs surface. The free energy per unit area γ is a functional of
the density profile ρ(z), and is computed in the leading order using the stan-
dard two-phase solution on the infinite line ρ0(z). This approximation can be
used whenever the density changes between the two extreme values ρ− and
ρ+ within a thin layer where the aligned frame remains well defined. The in-
terfacial curvature induces, however, an O(ε) correction to the local chemical
potential, denoted as μ̃(ξ). Thus, we write

F =
∫ {

γ[ρ0(z)] + εμ̃

∫ ∞

−∞
ρ0(z)dz

}√
g d2ξ, (32)

where g is the determinant of the surface metric tensor.
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The equation defining μ̃(ξ) (or, after imposing the condition μ̃ = const, the
equilibrium shape of the interface) is obtained by varying Eq. (32) with respect
to normal displacements δX(n) = n δz reshaping the Gibbs surface. The
variation of the area element is expressed through the mean Gaussian curvature
κ = gαβκαβ :

δ
√
g = 1

2

√
ggαβδgαβ =

√
ggαβtα · δtβ

= −
(√

ggαβtα

)
,β

· n δz = −√
ggαβκαβ δz. (33)

The variation of the other term in Eq. (32) is

μ̃ δz

∫ ∞

−∞
ρ′
0(z)dz = μ̃(ρ+ − ρ−). (34)

Assuming, in the leading order, γ = const, the first-order variation is computed
as

(ρ+ − ρ−)μ̃+ γκ = 0. (35)

First-order terms are added as well when Eq. (32) is varied with respect to
ρ; the respective Euler–Lagrange equation can be used to compute first-order
correction to the density profile, which we shall not need.

Equation (35) is equivalent to the Gibbs–Thomson law relating the equi-
librium chemical potential with interfacial curvature. This relation is valid
only when the surface tension γ is independent of curvature, but curvature-
dependent corrections to γ, stemming from corrections to the 1D interaction
kernel (24) due to lateral integration along curved isodensity levels, are of O(ε)
and do not affect Eq. (35).

Fluid-Substrate Interactions

Disjoining Potential

In the proximity of a substrate, the additional term in the free energy integral
(13) is

Fs =
∫
ρ(x) d3x

∫
s
Us(|x − r|)ρs(r) d3r , (36)

where Us is the attractive part of the fluid-substrate interaction potential, ρs is
the substrate density, and

∫
s means that the integration is carried over the vol-

ume occupied by the substrate; all other integrals in Eq. (13) are now restricted
to the volume occupied by the fluid.

We shall consider a flat interface parallel to the substrate surface z = 0, and
suppose that liquid-substrate interactions are also of the van der Waals type
with a modified constant As = αsA. Then the free energy per unit area is

3.
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expressed, after some rearrangements, as

γ =
∫ ∞

0
ρ(z)

{
f(ρ) + ψ(z)

[
αsρs − 1

2
ρ(z)

]}
dz

+
1
2

∫ ∞

0
ρ(z) dz

∫ ∞

0
Q(z − ζ)[ρ(ζ)− ρ(z)] dζ. (37)

The first term contains the same local part as in Eq. (23) complemented by the
liquid-substrate interaction energy. The latter is computed by integrating the
attracting part of the fluid-fluid and fluid-substrate interaction energy laterally
as in Eq. (24) and represents the shift of energy compared to the unbounded
fluid. The term ρ(z)/2 compensates lost fluid-fluid interactions in the substrate
domain which are included in the homogeneous part f(ρ). The function ψ(z)
is computed as

ψ(z) = −πA
∫ ∞

0
dζ
∫ ∞

q0

q−3 dq =
∫ ∞

0
Q(ζ − z)dζ, (38)

where the integration limit is q0 = (z − ζ)2 at |z − ζ| > d, q0 = d2 at
|z − ζ| ≤ d. The result is

ψ(z) =
{ −1

6πAz
−3 at |z| > d

−πAd−3
(
2
3 − z

2d

)
at |z| < d.

(39)

This expression, however, does not take into account steric effects causing
liquid layering in the vicinity of the substrate.

The last term in Eq. (37) expresses, as before, the distortion energy, now
restricted to the half-space z > 0. The Euler–Lagrange equation derived
from Eq. (37) is the familiar Eq. (25) with an additional z-dependent term
ψ(z)[αsρs − ρ(z)].

In a situation compatible with the lubrication approximation, perturbations
due to the proximity of a solid surface are weak. In this case, the translational
invariance of an unbounded two-phase system is weakly broken, and both the
shift of the equilibrium chemical potential due to interactions with the solid
surface and the deviation from the zero-order density profile are small. Since
molecular interactions have a power decay with a nanoscopic characteristic
length, this should be certainly true in layers exceeding several molecular di-
ameters. A necessary condition for the perturbation to remain weak even as
the liquid-vapor and liquid-solid interfaces are drawn together still closer, as
it should happen in the vicinity of a contact line, is smallness of the dimen-
sionless Hamaker constant χ = αsρs/ρ

+ − 1. Even under these conditions,
the perturbation, however, ceases to be weak when the density in the layer
adjacent to the solid deviates considerably from ρ+. This means that low den-
sities near the solid surface are strongly discouraged thermodynamically, and a
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dense precursor layer should form on a solid surface in equilibrium with bulk
liquid even when the liquid is weakly nonwetting. Since ρ+ − ρ(z) ∝ |z|−3

at z → −∞ in an unbounded fluid, the thickness of the precursor layer is
estimated as h0 ∝ χ−1/3 at χ � 1.

Sharp Interface Limit

The equilibrium chemical potential is shifted from the Maxwell construc-
tion, μ = μ0 in the proximity of the solid surface. In the sharp interface
theory, this shift, called disjoining potential [25], is defined as

μs =
1

ρ+ − ρ−
∂γ

∂h
, (40)

where h is the distance between vapor-liquid interface, which should be iden-
tified here with the Gibbs equimolar surface (6), and the substrate.

Returning to Eq. (37), one can observe that only the non-autonomous (z-
dependent) part of the first term is responsible for the disjoining potential
proper, caused by replacing liquid molecules by the solid in the half-space
z < 0. The other terms express the energy of the liquid-vapor interface, which
is modified when the fluid is restricted to the half-space z > 0. The shift of the
chemical potential can be computed, in the leading order, by using in Eq. (37)
the zero-order density profile centered at the nominal interface ρ = ρ0(z − h).

We shall separate several constituent parts of this shift. The derivative of the
non-autonomous term is

F
(1)
h = −

∫ ∞

0
ψ(z) [αsρs − ρ0(z − h)] ρ′

0(z − h)dz. (41)

Before differentiating the remaining terms in Eq. (37), it is convenient to trans-
fer the h-dependence to the integration limits by using a shifted integration
variable z′ = z − h. The derivative of the local algebraic part is

F
(2)
h = ρ0(−h)f(ρ0(−h)). (42)

The nonlocal term in Eq. (37) is transformed after differentiating with respect
to h using the symmetry of the interaction kernel Q(z), and, after shifting the
variable back, integrated by parts with the help of Eq. (38). The result is

F
(3)
h = −1

2

∫ ∞

0
Q(z)[ρ0(−h)− ρ0(z − h)]2 dz

=
∫ ∞

0
ψ(z)[ρ0(−h)− ρ0(z − h)]ρ′

0(z − h) dz. (43)

The latter expression partly cancels with Eq. (41) when all contributions to μs
are summed up. It is further convenient to separate the term proportional to the
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dimensionless Hamaker constant χ = αsρs/ρ
+ − 1. The resulting expression

for the disjoining potential is

μs =
1

ρ+ − ρ−

{
ρ0(−h)f(ρ0(−h))− χρ+

∫ ∞

0
ψ(z)ρ′

0(z − h)dz

−
∫ ∞

0
ψ(z)[ρ+ − ρ0(−h)]ρ′

0(z − h)dz
}
. (44)

In the limit h � d, when ρ′
0(z − h) can be replaced by the delta function

−(ρ+ − ρ−)δ(z − h), the second term yields the standard disjoining potential
of a liquid layer with sharp interface and uniform density ρ+:

μsts = −πχρ+A

6h3
= − H

6πh3ρ+
, (45)

where H = π2ρ+A(αsρs − ρ+) is the Hamaker constant defined in the stan-
dard way. The remaining terms vanish in the sharp interface limit when
ρ0(−h) = ρ+.

Figure 2. The dependence of the disjoining potential μs on the nominal layer thickness h
defined by Eq. (44) for β = 9 and χ = 0.1 and 0.05 (as indicated at the respective curves).

Thick Precursor

A formal first correction to the sharp interface limit valid at h � 1 can be
obtained using the asymptotics of ρ0(z) at z → −∞ given by Eq. (28). The
first term in Eq. (44), proportional to [ρ+−ρ0(−h)]2, decays asymptotically as
h−6. The same asymptotics is obtained for the last term in Eq. (44) when the
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integral is computed in the sharp interface limit. Moreover, both terms differ
by a factor 1

2 only in this approximation. When |χ| � 1, all terms in Eq. (44)
are of the same order of magnitude χ2 when h = O(|χ|1/3). Neglecting the
vapor density, we compute in the limit h � 1

μs = −πAχρ+

6h3
− ρ+

2g′(ρ+)

(
πA

6h3

)2

. (46)

The dependence μs(h) defined by this asymptotic formula is non-monotonic
at χ < 0, passing a maximum at hm = (πA/6|χ|g′(ρ+))1/3 and crossing zero
at h0 = 2−1/3hm, as seen in Fig. 2). The maximum h = hm corresponds to
a minimal thickness of a liquid nucleus condensing on the solid surface. At h
larger than the critical thickness hm, the density profiles are non-monotonic.
Such a solution describes a liquid layer sandwiched between the vapor and the
solid, with a weakly depleted density near the solid surface. Non-monotonic
density profiles are unstable with respect to perturbations with a sufficiently
long wavelength. This instability is inherent to any nonwetting liquid, but the
dynamics is practically frozen whenever the layer has a macroscopic thickness.

At smaller values of h, the maximum disappears, and the solution can be
interpreted as a pure vapor phase thickening near the solid wall. The value
h = h0 such that μs(h0) = 0 corresponds to the nominal interface position on
the “dry” surface in equilibrium with the bulk liquid. Clearly, the surface is not
literally dry, as even on the nominally “dry” patches the density must be close
to bulk liquid density under the specified conditions. At still smaller values
of h (which may be also negative) μs(h) sharply decreases to large negative
values, and the above approximation is no longer valid.

Molecular Precursor

As can be seen in Fig. 2, the precursor layer thickness goes below the molec-
ular dimensions already at moderately small values of χ, so the approximation
(46) formally holds only when χ is exceedingly small; indeed, the condition
χ1/3 � 1 is relevant for the approximation. Submolecular thicknesses are
clearly non-physical. Even though density functional computations, in spite
of their continuous formulation, can be continued to these distances, simple
model potentials cannot account for the various steric constraints, fluctuations
and multiple correlations relevant at this distances. Rather than introducing
excessive physical detail of dubious veracity, we shall modify the model in a
simple way to avoid a divergency at h → 0 arising in a sharp interface model
and to allow for a precursor in equilibrium with bulk fluid.

For this purpose, we assume the precursor film to be of a constant molec-
ular thickness d, but have variable liquid density. The respective free energy
functional can be obtained then by singling out the z = d section in Eq. (37)
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Figure 3. A typical dependence of the chemical potential μ on the effective layer thickness
(see the definition in the text). The inset is the enlarged high-density part of the picture.

and computing the change of chemical potential needed to restore equilibrium
shifted under the influence of fluid-substrate interactions. The Euler–Lagrange
equation, replacing Eq. (25), obtained by minimizing the grand ensemble ther-
modynamic potential Φ = γ − μρ is expressed now as

g(ρ)− μ+ ψ(d)[ρ+(χ+ 1)− ρ] = 0, ψ(d) = −πA

6d3
. (47)

A combined dependence of chemical potential on effective layer thickness
ĥ, defined as ĥ = h at h ≥ d and ĥ = dρ/ρ+ at h ≤ d, is shown in Fig. 3.
The dependence merges the sharp-interface formula (45) at h ≥ d with the
dependence μ(ρ) given by Eq. (47) at h ≤ d. The latter dependence allows for
both dense and dilute precursor with densities approaching those of liquid and
vapor. If the latter possibility is ignored, only the right-hand part of the picture,
enlarged in the inset, is relevant. This part has qualitatively the same, albeit
steeper, tent-like shape as in Fig. 2, allowing for equilibrium between a dense
molecular precursor and bulk liquid at μ = 0. Due to the steep dependence
of the chemical potential on liquid density, the density depletion relative to ρ+

in the precursor at equilibrium with bulk fluid remains small even at moderate
values of χ.
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Dynamic Contact Line

Generalized Cahn–Hilliard Equation

The dynamics of thin films or droplets bounded by a three-phase contact line
is described by Eqs. (7), (8) with the potential μ incorporating both interactions
with the substrate, defined by Eq. (40) with an appropriately chosen interaction
model, and the effect of weak interfacial curvature according to Eq. (35). In
the latter, the vapor density can be neglected, while the curvature expressed
in lubrication approximation as κ = −ε∇2h; the small parameter ε due to a
different scaling in the vertical and horizontal direction, cannot be excluded
from the final form. One can also add here an external potential V (x), e.g. due
to gravity. This leads to a generalized Cahn-Hilliard equation, appropriate for
the case when the order parameter is conserved:

ht = ∇ · k(h)∇W, W = ρ+μ = −γε∇2h+ ρ+μs(h) + V (x). (48)

In the abscence of explicit coordinate dependence, this evolution equation can
be written in a variational form, e.g.

ht = ∇ · k(h)∇δW
δh

, W =
∫ [

γε

2
|∇h|2 + ρ+

∫
μs(h)dh

]
d2x. (49)

A modified non-conservative form of the evolution equation may include
evaporation or condensation driven by the difference between the chemical
potentials of the fluid layer (μ) and the environment (μ0):

ht = ∇ · k(h)∇W − β(W − μ0). (50)

Static Contact Angle

Under equilibrium conditions (in the absence of external forces), Eq. (48)
reduces to

W = γε∇2h− ρ+μs(h) = 0. (51)

A contact line can be defined as a transition between a precursor film and a
“droplet”, or a film of macroscopic thickness. For a straight contact line normal
to the x axis, it is convenient to use a “phase plane” representation of this
equation obtained by taking the nominal layer thickness h as the independent,
and the squared slope y = (h′(x))2 as the dependent variable. The boundary
condition y = 0 is set at the precursor layer thickness h0:

dy
dh
=
2
γε

μs(h), y(h0) = 0. (52)

4.
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The rescaled equilibrium contact angle can be computed by integrating Eq. (52)
from h0 to infinity √

y(∞) =
[
2
γε

∫ ∞

h0

μs(h)dh
]1/2

. (53)

This formula can be used to identify the small parameter ε with the squared
asymptotic contact angle θ; this is done simply by setting y(∞) = 1.

At θ � 1, cos θ ≈ 1 − 1
2θ

2, the above result reproduces the standard
Young–Laplace formula γ cos θ = γgs − γls. This can be seen by using the
relation μs = dγ/dh to evaluate the integral explicitly, and observing that
γ(h0) equals to the gas-solid surface tension γgs, while γ(∞) = γ+ γgs is the
sum of the gas-liquid and liquid-solid surface tensions.

For a finite droplet, the contact line can be nominally defined as the locus of
the inflection point of the profile h(x). The slope at the inflection point coin-
cides with the “apparent” contact angle one would measure in a macroscopic
experiment, which does not resolve a strongly curved transitional region sep-
arating the bulk fluid and the precursor layer. The profile in the transitional
region can be easily matched to a macroscopic solution defining the equilib-
rium shape of the droplet bulk.

Quasistationary motion

As an example of application of the generalized Cahn–Hilliard equation, we
consider the case when a droplet is set into slow motion due to either external
forces or long-range interactions. We assume that the deviation from equilib-
rium shape remains weak and can be treated as a small perturbation every-
where. The droplet mobility can be deduced then from integral conditions
based on an equilibrium solution. This allows us to avoid solving dynamic
equations explicitly and computing a perturbed shape.

We consider quasistationary motion without change of form. Let h(x −
X) be a stationary droplet profile dependent on the position of its center of
symmetry X . In order to keep the lubrication scaling consistent, one has to
assume that the displacement is measurable on the same scale as h, rather
than on a longer “horizontal” scale, and denote accordingly U = ε−1/2X ′(t).
Then the time derivative in Eq. (48) is evaluated as −ε1/2U · ∇h. Following
this substitution, Eq. (48) can be integrated to ε1/2Uh = j, which is just an
expression of local mass conservation in quasistationary motion. Using here
Eq. (48) yields the quasistationary equation

Ch

k(h)
= ∇

[
∇2h− μs(h) + V (x)

γε

]
, (54)

where C = ε−3/2Uη/γ. It is clear from this expression that dynamic distor-
tion of the droplet shape, governed by competition between viscosity and sur-
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face tension is properly characterized by the rescaled capillary number, which
can be defined after replacing ε1/2 → θ as C = |C| = Ca θ−3, rather than
by the standard capillary number Ca = |U |η/γ. This dimensionless number
combines in a rather non-trivial way the two physically unrelated parameters –
velocity and equilibrium contact angle. It characterizes the interplay between
the dynamical (viscous) and static (Laplacian) contributions to the apparent
contact angle. The well-known Tanner’s law in de Gennes’ interpretation [5],
θ ∝ Ca1/3 follows from a possibility to rescale C to unity in the case when
molecular interactions are neglected and θ is reinterpreted as an apparent dy-
namic contact angle. In the opposite case C � 1, the contact angle is close to
its equilibrium value.

Quasistationary equations may be applicable not uniformly, but only in
some constitutive parts of the system. The three distinctive parts, where dif-
ferent scalings are appropriate, are droplet bulk, the contact line region and the
precursor. In the first two regions, the standard lubrication scaling, with the ra-
tio of the vertical and horizontal scales equal to θ, is applicable, but the scaling
of both h and the horizontal extent of the region is different: the droplet radius
a in the droplet bulk, and h0 in the narrow region near the contact line. In the
precursor region, h0 remains the vertical scale, while the horizontal scale may
be extended beyond the standard lubrication ratio, and is defined by the scale
of the applied driving force (e.g. by the distance between the droplets when the
only driving force is their interaction).

Quasistationary equations can be solved numerically [23, 26] or with the
help of analytical matching techniques [27–29] for standard setups, such as
advancing or receding menisci or macroscopic droplets on a precursor layer.
An example of analytical solution based on integral mobility relations [28] is
given in the next Section.

Mobility Relations

Thermodynamic forces

For a single droplet surrounded by the precursor film of thickness h0, the
integral relations defining the droplet mobility are obtained by multiplying
Eq. (54) by h − h0 and integrating over a large region centered on the droplet
[28]. We shall show that the terms including effects of curvature and mole-
cular interaction with the substrate reduce to a pure divergence, and can be
expressed therefore through contour integrals vanishing in an infinite region.
The first term in r.h.s. of Eq. (54) is presented as

(h− h0)∇∇2h = 1
2∇ · T , (55)

where the components of the tensor T are

Tij = (h− h0)(∂i∂jh+ δij∇2h)− ∂ih∂jh. (56)

5.
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Integrating this term leads therefore to a contour integral 1
2

∮
n · T ds, where

n is the normal to the boundary of the integration region. As this boundary lies
on a flat precursor layer, the contour integral vanishes.

The contribution of the disjoining potential is presented as

(h− h0)∇μs(h) = (h− h0)μ′
s(h)∇h = ∇F (h),

F (h) =
∫ h

h0

(h− h0)μ′
s(h)dh. (57)

This leads to a contour integral expressing the driving force due to a weak
gradient of the disjoining potential in the precursor layer:∫

(h− h0)μs(h) dx =
∮

nF ds. (58)

A non-vanishing contour integral yields a driving force due to a weak gra-
dient of the disjoining potential in the precursor layer, which may be caused
either by interaction of individual well separated droplets or by variation of
the disjoining potential due to weak temperature or concentration gradients or
chemical inhomogeneity of the substrate. Still another cause may be the action
of boundaries, such as an apparently unexpected migration of a droplet towards
the edge of a horizontal substrate [30].

The external potential, being coordinate-dependent, generally, cannot be re-
duced to a divergence, but in a special case of gravity potential the total force
is computed easily. For a plane inclined along the x axis, the gravity poten-
tial is V (x) = gρ+(h − αx), where the slope is presented as αθ � 1 and g
is the acceleration of gravity. Multiplying the gradient of the gravity poten-
tial, V ′(x) = gρ+(∇h − α), by h − h0 and integrating over a large segment
centered on the droplet, we observe that the integral of the first term vanishes
whenever the precursor layer is flat in the outlying region, while the second
term gives just the total dimensionless volume or gravity force acting upon the
droplet proportional to its volume above the precursor layer.

Dissipative integral

The remaining terms in Eq. (54) are those due to the external potential and
viscous friction. Whatever is the cause of motion, computation of the droplet
velocity requires evaluation of the dissipative integral

I =
∫

h(h− h0)
k(h)

dx. (59)

As the integrand vanishes in the precursor, the dissipative integral can be eval-
uated separately in the droplet bulk and the vicinity of the contact line, and
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matched at a point where the layer thickness lh0, is much larger than the pre-
cursor thickness but much smaller than the maximum droplet height. The exact
position of the matching point should eventually fall out without affecting the
final result.

We consider first a 2D case. In the contact line region interpolating between
the precursor and the bulk, the integration can be carried out using the phase
plane solution y(h) obtained by integrating Eq. (52). Using the standard Stokes
mobility function, k(h) = 1

3h
3, the contribution of the contact line region to

the dissipative integral is evaluated as

I1 = 3
∫ lh0

h0

h− h0

h2
√
y(h)

dh = 3 ln
l

b
. (60)

The chosen particular form of the disjoining potential which determines the
function y(h) affects only the numerical constant b in the last expression.

In the droplet bulk, one can evaluate the dissipative integral using the circu-
lar cap solution valid when gravity and other external forces can be neglected,
this will be just a spherical cup approximated by a parabola:

h = 1
2a[1− (x/a)2], (61)

where a is the droplet radius and x is the distance from its center of symme-
try.The contact angle falls out when a, as well as x, is measured on the scale
extended relative to the scale of h. The contribution of the bulk region to the
dissipative integral is computed in the leading order in the ratio h0/a � 1 as

I2 = 3
∫ a−lh0

0

dx
h(x)

= 6 ln
2a
lh0

. (62)

Adding up both contributions yields

I = 2I1 + I2 = 6 ln
2a
bh0

. (63)

In 3D, the integral I1 is evaluated exactly as above, since the curvature of the
contact line is negligible when the droplet radius in the x-plane far exceeds the
thickness of this transitional zone. The direction normal to the droplet bound-
ary does not coincide now, however, with the local direction of U . Therefore
the local contribution of the vicinity of the contact line to the dissipative inte-
gral given by Eq. (60) should be multiplied by | cosφ|, where φ is the angle
between the local radius and the direction of motion. Integrating over the cir-
cular droplet boundary yields

I◦
1 = a I1

∫ 2π

0
| cosφ|dφ = 4a I1. (64)
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The bulk integral is evaluated using the spherical cap solution (61) as

I◦
2 =

∫ π

0
| cosφ|dφ

∫ a−lh0

0

xdx
h
= 12a ln

a

2lh0
. (65)

The final result is
I = I◦

1 + I◦
2 = 12a ln

a

2bh0
. (66)

Take note that the bulk and contact line contributions, though distinct, can-
not be separated in a unique way. The logarithmic factor combining the inner
and outer scales is a telltale sign of the matching procedure.

Using the expressions for the dissipative integral, we can readily evaluate
the speed of a drop sliding on an inclined plane when the driving force is
proportional to the volume. As ho can be neglected compared with a, the
volume is computed, respectively in 2D and 3D, as

v2 = 2
3a

2, v3 = 1
4πa

3. (67)

In the absence of other forces, the dimensional and dimensionless droplet ve-
locities following from the integral balance of Eq. (55) are

U =
cgθ

2gραa2

η ln(cva/hm)
, C =

cgG

ln(cva/hm)
, (68)

where G = gρa2α/(θγ) is the Bond number, and the numerical constants
are cg = 1/9, cv = 2/b in 2D, cg = π/48, cv = 1/(2b) in 3D. The final
expressions retain logarithmic dependence on the ration of the macroscopic
and microscopic lengths a/h0. A more interesting problem of motion induced
by droplet interaction is considered below.

Interactions Through the Precursor Film

Interaction of droplets is caused by fluxes induced in the precursor. It may
result in both motion and volume change. As long as the droplets are far re-
moved, both processes are additive and can be analyzed separately using the
integral relations derived in the preceding Section. We consider an assembly
of droplets sitting on the precursor film, and neglect both external forces and
evaporation. The droplets are assumed to be sufficiently far removed, so that a
contour lying in the precursor could be drawn around each of them separately.
This requirement is, in fact, not very stringent, since relaxation to a flat precur-
sor outside the contact line region is exponential with a characteristic length of
O(h0). The droplets might have been formed as a result of spinodal dewetting
and subsequent coarsening. Then what we are going to describe is a late stage
of evolution following the formation of well separated macroscopic droplets.
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Interaction of droplets is totally determined under these conditions by the
respective contour integrals. Evaluating the latter requires, however, solving
Eq. (48) in the precursor. The precursor evolution, as well as droplet motion,
can be considered quasistationary when interaction is weak (an a posteriori
estimate will be given in the end of this subsection). Since the curvature of the
precursor is negligible as well, Eq. (48) reduces to the diffusion equation with
variable effective diffusivity D(h):

∇ · (D∇h) = 0, D(h) =
k(h)μ′

s(h)
η

> 0. (69)

Due to a sharp dependence μs(h), like e.g. in Eq. (46), diffusivity may increase
in this case in thinner layers, in spite of a decrease of mobility k(h).

A single droplet with the radius a � h0, which has (in 3D) the form of a
spherical cap defined by Eq. (61), is in equilibrium with the precursor film with
the thickness

h̃(a) = h0(1 + Δ), Δ =
2γθ2

ah0μ′
s(h0)

∝ h0
a
. (70)

The precursor is thinner near larger droplets, which should therefore grow at
the expense of smaller ones. The deviations from h0 are expected be very
small, as dependence μs(h), like one defined by Eqs. (46) or (47) is very
steep at short distances from the substrate. The diffusion equation (69) can
be replaced therefore by the Laplace equation D∇2h = 0 with the effective
diffusivity D(h0).

In 2D (i.e. for a 1D film), the fluxes can be conveniently computed by con-
sidering interactions between the nearest neighbors [27], but in 3D exact theory
is very complicated, and it is appropriate to use the effective medium approx-
imation, as it is commonly done in theory of coarsening [31]. The total flux
out of the droplet can be defined then as exchange with the precursor film of
some effective thickness hc slowly changing with time. The value of hc is de-
fined by mass conservation requiring the sum of fluxes out of all droplets to
vanish. As in the standard Lifshitz–Slyozov theory [31], it can be conveniently
defined through the radius ac of a critical droplet that neither grows nor decays:
hc = h̃(ac)

The film thickness distribution created by a number of well separated droplets
with radii ak can be written then as

h(x) =
∑
(hk − hc) ln(ak/rk) = ln

∏
(ak/rk)

hk−hc . (71)

where hk = h̃(ak) and rk = |x − Xk| is the distance from the center of kth
droplet. If all droplets are located in a finite region on an infinite plane, the
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divergence at large distances is avoided by setting hc = 〈hk〉, which, in view
of Eq. (70), means that ac = 1/〈a−1

k 〉 is the harmonic average radius.
The flux out of kth droplet is jk = 2πD(hk − hc). These fluxes cause

coarsening of the droplet size distribution, as large droplets grow and small
ones decay. Unlike the standard coarsening problem, the droplets not only
grow or decay, but also move under the influence of the gradient of chemical
potential in the precursor. The driving force is given by the contour integral
in Eq. (58). Due to the fast decay to the local precursor thickness outside the
contact line region, the contour in Eq. (58) can be identified, up to negligi-
ble O(h0) deviations, with the circular droplet boundary. The contribution of
the constant part of F (h) vanishes upon integration. The driving force stems
therefore exclusively from a small circuferential component of ∇F caused by
mass fluxes from far removed droplets. Using Eqs. (57), (70), the driving force
acting on a test droplet placed at the origin is computed in the leading order as

F =
∮

nF (h(s)) ds = a

∫ 2π

0
r̂(φ)F (h(φ)) dφ

= a2F ′(h)
∫ 2π

0
r̂ (r̂ · ∇h) dφ

= πa2(h̃(a)− h0)μ′
s(h0)∇h = 2πaγθ2 ∇h, (72)

where r̂ is the unit vector in the radial direction, φ is the angular coordinate,
and ∇h is the thickness gradient induced by all other droplets:

∇h =
∑
(hk − hc)

rk
r2k
. (73)

Using Eq. (66), the velocity of the droplet is computed then as

U = −θ

η

F

I
= −π

6
γθ3

η ln(a/2bh0)

∑
(hk − hc)

rk
r2k
. (74)

The test droplet is, respectively, attracted and repelled by the droplets above
and below the critical size. This can be attributed to the action of weak fluxes
sucked in by larger and blown out by smaller droplets. For a pair of droplets
considered in the preceding subsection, this causes both droplets to migrate in
the direction of the larger droplet. The smaller droplet moves somewhat faster
due to a smaller logarithmic factor in the dissipative integral, and therefore has
some chance to catch up and coalesce before disappearing.

Conclusion

The above theory blends hydrodynamic and thermodynamic relations into a
common formalism in the framework of lubrication approximation. This pro-
vides a common framework for discussion of different physical effects. It still
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does not alleviate major computational difficulties stemming from large scale
separation under conditions when a simple quasistationary theory fails and the
form of the moving film or droplet becomes strongly distorted in the vicinity of
the contact line. Major unresolved difficulties remain outside the applicability
limits of lubrication approximation. For practical applications, taking account
of surface inhomogeneities is essential. This would introduce into the problem
an whole continuum of scales spanning the gap between nanoscale molecular
interactions and and mesoscopic hydrodynamic scale. Decades of studies of
the dynamic contact line have lead so far to understanding these major diffi-
culties rather than resolving them, and a new level of detail in both experiment
and computations is necessary to attain abilities to effectively control the three-
phase boundary under realistic dynamic conditions.
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Abstract Frontal polymerization (FP) is a process in which a spatially localized reaction
zone propagates through monomer, converting it into polymer. The process is of
interest from both fundamental and applied viewpoints. Two different types of
FP are known, thermal and isothermal. The mechanism of propagation of ther-
mal FP waves is similar to that in combustion, namely, the heat released locally
by the exothermic combustion reactions diffuses ahead, where it accelerates the
reactions, and the process repeats. In isothermal FP, wave propagation is due
to mass diffusion and auto-catalysis, specifically, the gel effect. This chapter
reviews mathematical works on thermal frontal polymerization. We first discuss
the kinetics of free-radical polymerization and then formulate a mathematical
model of free-radical FP. We observe that the famous gasless combustion (GC)
model is a limiting case of the FP model. We describe in detail the methods used
to study the GC model. Specifically, we discuss asymptotic methods, reaction
front approximation and step-function approaches. These methods are applied
to the GC model to determine uniformly propagating one-dimensional waves, to
study their stability, and to perform bifurcation studies near the stability thresh-
old. We then discuss the same questions for the FP model, comparing the results
with those for the GC model. Finally, we briefly describe extensions of the base
FP model discussed in the literature.

Keywords: Modeling, gasless combustion, frontal polymerization, free-radical polymeriza-
tion, traveling wave, stability, bifurcation

1. Introduction

This chapter discusses propagation of polymerization waves. In a polymer-
ization wave, a spatially localized reaction zone, in which the polymerization
reactions occur, propagates into initial reactants (the monomer) leaving the re-
action product (the polymer) in its wake. Two types of polymerization waves,
thermal and isothermal, have been observed experimentally, and the mecha-
nism of wave propagation for each is markedly different. Thermal polymeriza-
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tion waves propagate due to diffusion of heat released in exothermic polymer-
ization reactions. Isothermal polymerization waves are due to mass diffusion
of the species coupled with the gel effect. The chapter focuses on thermal poly-
merization waves which, in many respects, are similar to combustion waves.
It turns out that the nondimensional parameters that determine the structure of
a reaction wave are of the same order of magnitude in many polymerization
processes as in combustion. As a result, thermal polymerization and combus-
tion waves have similar structures (Figure 1). The wave consists of a narrow
reaction zone which separates high-temperature products from initial reactants.
This also explains why methods of combustion theory are useful in the study
of polymerization waves, an area far less developed than combustion.

Figure 1.

The simplest experimental setup for a frontal polymerization (FP) study
consists of a test tube filled with monomer and initiator. When a heat source is
applied at one end of the tube, a reaction wave forms and propagates through
the tube. The heat source locally intensifies the chemical reactions. Initiator
decomposition, which produces the active free radicals that start the polymer
chains, is typically a weakly endothermic reaction. The polymerization reac-
tions that lengthen the polymer chains are significantly exothermic. The heat
that is released due to polymerization diffuses into adjacent layers of the re-
actant mixture and intensifies the reactions there. The process repeats, and in
this way, a self-sustained wave propagates along the tube. Despite the afore-
mentioned similarity in the structure of polymerization and combustion waves,
they behave quite differently. The propagation velocity of such polymerization
waves is of the order of 1 cm/min, and the temperature increase in the system
can be as much as 200K depending on the particular polymerization process,
while these characteristics of combustion waves are much higher.

Schematic of the propagating thermal wave.
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Polymerization waves are interesting from two points of view. First, they are
used to produce polymers. This process strongly resembles another technolog-
ical process occurring in a frontal regime, namely combustion synthesis (CS)
of materials (also known as the self-propagating high-temperature synthesis,
SHS), in which combustion waves are used to make ceramics and intermetallic
compounds [53, 54, 57, 60, 92]. Second, polymerization waves are interest-
ing from a fundamental point of view as another example of reaction wave
propagation.

Frontal polymerization studies began in 1972 [13]. This work was per-
formed as a polymerization analog of SHS. Using methyl methacrylate as the
monomer, the authors demonstrated the phenomenon of polymerization wave
propagation, and they showed how the front velocity and the polymer com-
position are influenced by the choice of initiator, its concentration and pres-
sure change [10–13]. Subsequent experimental work [42, 68, 75, 76] demon-
strated FP for a variety of monomers. Most of these experiments used liq-
uid undiluted monomers. However, FP has also been carried out in systems
with solid monomers [3, 73], in dispersions [71], and in solutions [69]. Along
with demonstrating the feasibility of FP with particular monomers, experimen-
talists have also studied how experimental parameters affect the process and
how to produce polymers with specific desired properties, e.g. functionally
gradient polymeric materials [15], temperature-sensitive hydrogels [99], ther-
mochromic composites [61, 62], conductive composites [89], nanocomposites
[16], polymer-dispersed liquid-crystal materials [27] and others.

The chemical mechanism in FP is usually free-radical polymerization which,
in the simplest case, includes three kinetic steps – initiation, propagation, and
termination [64]. However, the process has also been successfully applied to
epoxy curing [14], ring-opening metathesis [49], thiol-ene systems [78] and
some others, all of which have different chemistries. Another way to classify
FP processes concerns the number of different monomers used in the same
experiment. Homopolymerization refers to systems that contain one type of
monomer. Binary and copolymerization are systems that contain two (or more
in the case of copolymerization) types of monomers. Free-radical binary poly-
mer chains grow by successively adding the same type of monomer radical
to the end of the chain and are analogous to forming two homopolymers in
the same system. Binary polymerization has been demonstrated using a free-
radical monomer and an epoxy monomer, which forms a step polymer [70]. In
contrast to free-radical binary polymerization, free-radical copolymerization
forms polymer chains that contain units of both monomers in the final product
[64]. Frontal copolymerization has been achieved for a variety of monomer
pairs [67, 90].

Mathematical models of frontal polymerization have also been developed.
They are discussed below. These works study the velocity of the reaction front
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and determine which factors influence the behavior of the wave [2, 28–31, 90,
65–67]. The above references assume a uniformly propagating wave. How-
ever, experiments indicate that instabilities can develop in the wave thus de-
stroying its uniformity [35, 77]. Relevant theoretical studies focus on linear
[81, 87] and nonlinear [17, 32, 74] stability analyses for frontal homopolymer-
ization. The paper [66] extends the analysis to two monomer systems, namely
frontal copolymerization and binary frontal polymerization.

In this chapter, we review the theoretical work on thermal FP. We begin
with a derivation of a base mathematical model which governs propagation of
free-radical polymerization waves. We demonstrate that this model reduces
in a limiting case to the famous gasless combustion (GC) model, which has
been extensively studied in the context of SHS. We discuss some theoretical
approaches to the simpler GC model and then apply them to the base model of
free-radical FP. Some extensions of the base model are also discussed.

2. Mathematical model

The base mathematical model of free-radical FP was first proposed in [31],
then studied in more detail in [86], and employed in a number of subsequent
papers. In what follows, we formulate the model, referring the reader to the
papers cited above for additional information regarding the derivation of the
model. Reference [86] addresses most completely the validity of the assump-
tions that are made when deriving the model.

Free-radical polymerization involves a number of kinetics steps [64]. There
are two species in the initial mixture: the monomer and the initiator. First,
the initiator decomposes producing primary radicals, which are needed to start
the growth of the polymer chain: a primary radical reacts with a monomer
molecule to produce a polymer radical. The chain growth step is carried out by
the successive addition of monomer molecules to the active polymer radical.
Finally, an inactive polymer is formed by the combination of two radicals.
These kinetics steps can be summarized as follows:

(1) I kd−→ f × 2R (initiator decomposition)

(2) R +M
kp−→ P∗

1 (chain initiation)

(3) P∗
n +M

kp−→ P∗
n+1 (chain growth)

(4) P∗
n +R

kt−→ P (primary radical termination)

(5) P∗
n + P

∗
m

kt−→ P (polymer radical termination)

where I, R, M, P, and P∗
n, n = 1, 2, . . . represent initiator, primary radical,

monomer, dead polymer and a polymer radical containing n monomer mole-
cules, respectively. Here, combination is the assumed mode of termination
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(i.e., only one polymer molecule is formed as a result of the termination reac-
tions), and f is the initiator efficiency factor (defined as the ratio of the number
of primary radicals in polymer molecules to the total number of primary radi-
cals formed by initiator). The reaction rate parameters have the usual form of
Arrhenius exponentials

kj = kj(T ) = k0j exp
(
− Ej

RgT

)
(j = d, p, t),

where Rg is the universal gas constant, T is the temperature of the medium,
and k0j and Ej are the pre-exponential factor and activation energy, respec-
tively, of the reaction designated by j. Thus, the kinetic equations that describe
the change in the concentrations of the species with time t due to the species
production and consumption in the chemical reactions can be written as

∂I

∂t
= −kdI, (2.1)

∂R

∂t
= 2fkdI − kpRM − ktRP

∗, (2.2)

∂M

∂t
= −kpRM − kpMP ∗, (2.3)

∂P ∗

∂t
= kpRM − ktRP

∗ − ktP
∗2, (2.4)

∂P

∂t
= ktRP

∗ + ktP
∗2. (2.5)

Here I , R, M , P ∗, and P denote the concentrations in mol/L of the cor-
responding species, and P ∗ is the total polymer radical concentration, i.e.,
P ∗ =

∑
n

P ∗
n .

These kinetic equations must be supplemented by the energy balance in
the system, which accounts for the thermal diffusion and the net heat release.
Reaction (1) is typically endothermic, whereas reactions (2) through (5) are
exothermic. Although all of the reactions contribute somewhat to the net en-
thalpy of the polymerization process, the heat release due to the chain initiation
and growth is most significant [46]. Thus, we account for the heat release due
to reactions (2) and (3) and neglect all other heats of reaction. The energy
balance takes the form

∂T

∂t
= κ∇̃2T + qkp(RM +MP ∗),
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where κ is the thermal diffusivity of the mixture and q is the rise in temper-
ature induced per unit concentration of reacted monomer. We assume that κ
is constant. We consider the problem in two dimensions: the x̃-axis coincides
with the direction of propagation of the polymerization wave (i.e., the axis of
the tube), and the y-axis points in the direction perpendicular to that of propa-
gation. Thus, ∇̃2 is the two-dimensional Laplacian with respect to the spatial
variables x̃ and y. We could formulate a three-dimensional model as well,
i.e., to consider polymerization wave propagation in a 3D cylinder (simply re-
placing the 2D Laplacian by a 3D), but for the most part of this chapter, the
two-dimensional formulation is sufficient.

We remark that we have not included diffusion terms in the mass balance
equations, because mass diffusion in condensed phase is negligible compared
to heat diffusion. We also have not accounted for convective flow of reactants
in the equations, because in many polymerizing systems the medium is so vis-
cous that the flow can be neglected.

The characteristic scale of the polymerization wave (i.e., the spatial region
over which the major variation of the temperature and the species concentra-
tions occurs) is typically much smaller than the length of the tube. Thus, on the
scale of the polymerization wave the tube can be considered infinite, −∞ <
x̃ < ∞. It is convenient to introduce a moving coordinate x = x̃ − ϕ(t, y),
whereϕ is the position of a characteristic point of the wave. The specific choice
of ϕ will be described later. Expressed in the moving coordinate system, the
mass and energy balance equations become

∂I

∂t
− ϕt

∂I

∂x
+ kdI = 0, (2.6)

∂T

∂t
= κ∇2T + ϕt

∂T

∂x
+ qkpM(R+ P ∗), (2.7)

∂P

∂t
− ϕt

∂P

∂x
− ktRP

∗ − ktP
∗2 = 0, (2.8)

∂R

∂t
− ϕt

∂R

∂x
− 2fkdI + kpRM + ktRP

∗ = 0, (2.9)

∂P ∗

∂t
− ϕt

∂P ∗

∂x
− kpRM + ktRP

∗ + ktP
∗2 = 0, (2.10)

∂M

∂t
− ϕt

∂M

∂x
+ kpM(R+ P ∗) = 0. (2.11)

Here, the Laplacian ∇2 in the moving coordinate system is given by

∇2 =
(
1 + ϕ2

y

) ∂2

∂x2
+

∂2

∂y2
− ϕyy

∂

∂x
− 2ϕy ∂2

∂x∂y
, (2.12)
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and ϕt, ϕy, ϕyy denote the corresponding derivatives.
The boundary conditions for the system (2.6)–(2.11) are the initial state of

the mixture far ahead of the polymerization wave (x → −∞) and the final
state far behind the wave (x → ∞), where all of the reactions have come to
completion

x → −∞ : T = T0, I = I0, M =M0, R = P = P ∗ = 0, (2.13)

x → +∞ :
∂T

∂x
= 0. (2.14)

Here, I0 and M0 denote the concentrations of the initiator and the monomer
initially present in the mixture, and T0 is the initial temperature. In addition to
the boundary conditions (2.13)-(2.14), we need boundary conditions in y. Let
us assume that y varies over a finite interval, 0 < y < �, and either periodic
or no-flux conditions in y are prescribed. In most of the discussions below,
we are interested in one-dimensional traveling waves, i.e., the solutions that
depend only on x. The boundary conditions in y stated above allow for such y-
independent solutions. Unless the dependence of the solution on y is really an
issue, we will not even refer to the boundary conditions in y when discussing
these mathematical models.

To further simplify the system of kinetic equations, we use the steady-state
assumption (SSA) for the total radical concentration, i.e., the sum of the pri-
mary (R) and polymer (P ∗) radical concentrations. The SSA asserts that the
rate of change of the concentration of the radicals is negligible compared to
the rates of their production and consumption, and it involves setting the time
derivative of the total radical concentration to zero. It mathematically means
that, appropriately nondimensionalized, the equation for the total radical con-
centration has a small parameter in front of the time derivative. Setting this
parameter to zero means that we consider only the outer solution and thus
disregard a short transient from the initial state to the steady state. This as-
sumption, which has been studied in the context of polymerization waves in
[86], reduces equations (2.9)-(2.11) to the single equation

∂M

∂t
− ϕt

∂M

∂x
+ keff (T )

√
IM = 0, (2.15)

and the energy balance to

∂T

∂t
= κ∇2T + ϕt

∂T

∂x
+ qkeff (T )

√
IM, (2.16)

where the effective reaction rate keff (T ) is given by

keff (T ) = k0eff exp
(
−Eeff

RgT

)
,
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k0eff = k0p

(
2fk0d
k0t

)1/2

, Eeff = Ep +
Ed − Et

2
.

Our mathematical model consists of the mass balances in (2.6) and (2.15),
the energy balance (2.16), the boundary conditions (2.13) and (2.14) in x, the
boundary conditions in y discussed above and appropriate initial conditions.
For convenience, we make a change of variables for the initiator concentration,
I = J2, and the equations then become

∂J

∂t
− ϕt

∂J

∂x
+ Jk1(T ) = 0, (2.17)

∂M

∂t
− ϕt

∂M

∂x
+ JMH(J0 − J)k2(T ) = 0, (2.18)

∂T

∂t
= κ∇2T + ϕt

∂T

∂x
+ qJMH(J0 − J)k2(T ), (2.19)

and the boundary conditions ahead of (x = −∞) and behind (x = +∞) the
polymerization wave are

x = −∞ : M =M0, T = T0, J = J0 ≡
√
I0, (2.20)

x = +∞ :
∂T

∂x
= 0. (2.21)

Here

k1(T ) =
1
2
kd(T ) = k01 exp

(
− E1

RgT

)
, k01 =

1
2
k0d, E1 = Ed,

k2(T ) = keff (T ) = k02 exp
(
− E2

RgT

)
, k02 = k0eff , E2 = Eeff ,

and H(J0 − J) is the Heaviside function, i.e., it equals zero if J ≥ J0, and
unity if J < J0. Using the SSA results in a spurious nonzero value of the
polymerization reaction rate for the initial state of the wave (i.e., where J =
J0). Introducing the Heaviside function fixes this problem.

Finally, our mathematical model that describes the polymerization wave
propagation consists of equations (2.17)-(2.21).

3. Gasless combustion

It is useful to consider certain limiting cases in which the multistep kinetics
reduces to a one-step reaction scheme. One such limiting situation is when
appreciable consumption of the initiator occurs in the wake of the polymer-
ization wave and, therefore, does not affect the wave propagation. This is the
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case, e.g., if the decomposition rate constant is sufficiently small. In such a
situation, we can approximate J in (2.18) and (2.19) by its initial value J0, the
Heaviside function – by unity, and disregard the equation (2.17) for I . The
equations then become

∂M

∂t
− ϕt

∂M

∂x
+Mk(T ) = 0, (3.22)

∂T

∂t
− ϕt

∂T

∂x
− κ∇2T − qMk(T ) = 0, (3.23)

where ∇2 is as defined in (2.12), the heat release parameter q is the same as in
the previous model, and k(T ) is an Arrhenius exponential,

k(T ) = k0 exp(−E/(RgT )), k0 = k02
√
I0, E = E2.

The boundary conditions are

x → −∞ : T = T0, M =M0, x → ∞ :
∂T

∂x
= 0. (3.24)

This is the famous model of gasless combustion (GC) [63]. GC is a com-
bustion process in which both the initial reactants and the final products are
condensed, and intermediate gaseous components, even if they are present,
do not play a significant role in the process. The story of the discovery of
such combustion processes is interesting. In the 60s, a group of researchers in
the Institute of Chemical Physics in Chernogolovka, USSR, were studying the
mechanism of combustion of gasifying condensed systems (such as explosives
and propellants). The process was so complicated by the production of gases
that no convincing theoretical model was proposed. In order to better under-
stand the mechanism of combustion, the researchers looked for a “toy” system,
which would have many features of the real process except for gas production.
Such a system was found (the iron-aluminum thermite) [43], and its behavior
was consistent with the predictions of the simplest combustion theory based
on (3.22) and (3.23). This success attracted attention of the researchers, and
a search for new gasless combustion systems eventually led to a remarkable
discovery of the combustion synthesis process.

We begin with a discussion of a one-dimensional traveling wave solution
which is a mathematical representation of the uniformly propagating reaction
wave that we are discussing. This discussion is a bit technical but gives a good
insight into the combustion theory.

Since the system (3.22), (3.23) is already written in a moving coordinate
system, the traveling wave solution is a stationary solution of this problem,
i.e., a solution of the problem

3.1 Uniformly propagating GC wave
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κ
d2T̂

dx2
− u

dT̂

dx
+ qM̂k(T̂ ) = 0, (3.25)

u
dM̂

dx
+ M̂k(T̂ ) = 0, (3.26)

x → −∞ : T̂ = T0, M̂ =M0, x → ∞ :
dT̂

dx
= 0, (3.27)

where u = −ϕt is the propagation velocity of the wave that has to be deter-
mined in the course of solution along with the temperature and concentration
profiles. The hat denotes the stationary solution.

We observe that eliminating the reaction term from (3.25), (3.26) yields

κ
d2T̂

dx2
− u

dT̂

dx
− qu

dM̂

dx
= 0, (3.28)

Integrating (3.28) and using the boundary conditions (3.27) as x → −∞, we
obtain the first integral of the system

κ
dT̂

dx
= u(T̂ − T0) + qu(M̂ −M0). (3.29)

Evaluating (3.29) as x → ∞ allows us to determine the limiting value Ta of the
temperature as Ta = T0+qM0. This is the adiabatic temperature in the system
which ensues due to the temperature rise by q degrees as a unit concentration
of M reacts.

It is convenient to nondimensionalize the problem (3.25) – (3.27) using the
following quantities

θ =
T − Ta
Ta − T0

, a =
M

M0
, ξ = x

√
k(Ta)
κZ

,

v = u

√
Z

κk(Ta)
, Z =

E(Ta − T0)
RgT 2

a

, δ =
Ta − T0
Ta

.

Thus, the nondimensional adiabatic and initial temperatures are equal to zero
and negative one, respectively. The nondimensional concentration varies from
zero to one. Next, Z is the so-called Zeldovich number, which can be thought
of as a nondimensional activation energy of the reaction and is ∼ 10 in both
combustion and FP problems. It is the large parameter in our asymptotic stud-
ies below. Finally, the parameter δ is very close to unity in combustion prob-
lems because Ta � T0, while in FP problem, it is about 0.5.

The nondimensional problem has the form
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d2θ

dξ2
− v

dθ

dξ
+ Za exp

(
Zθ

1 + δθ

)
= 0, (3.30)

−vda
dξ

− Za exp
(

Zθ

1 + δθ

)
= 0, (3.31)

θ(−∞) = −1, θ(+∞) = 0, a(−∞) = 1. (3.32)

The first integral (3.29) becomes

dθ

dξ
= v(θ + a). (3.33)

Equations (3.31), (3.33) can be reduced to
a single phase-plane equation

v2
da

dθ
= −

Za exp
(

Zθ
1+δθ

)
θ + a

, −1 < θ < 0, a(−1) = 1, a(0) = 0

(3.34)
for the concentration a as a function of θ. Note that there are two boundary
conditions for a first order equation. The additional condition allows us to
determine the nondimensional propagation velocity v.

Figure 2.

The structure of the solution a(θ) can be understood by analyzing the reac-
tion term in the equation. For all θ, −1 < θ < 0, that are not too close to zero,
the reaction term is exponentially small for Z � 1. It becomes appreciable

Schematic of the phase-plane solution.

plane approach.3.1.1 Phase



206 PATTERN FORMATION IN NANO-SYSTEMS

in an O(1/Z) vicinity of zero. Thus, the entire range of θ can be divided into
two regions (see Figure 2). One region is where θ is not too close to zero. In
this case the reaction term can be neglected, and we obtain the outer solution
a(θ) = 1 taking into account the boundary condition at θ = −1. The other
region is a boundary layer where θ is close to zero. This is the reaction zone.
Here, a drops from unity to zero at θ = 0 due to the reaction. To determine
the solution in this region, the inner solution, we stretch the reaction zone by
introducing the inner variables

a(θ) = A(τ), τ = Zθ.

Then (3.34) reduces to

v2
dA

dτ
= −

A exp
(

τ
1+δτ/Z

)
τ/Z +A

, −∞ < τ < 0, A(−∞) = 1, A(0) = 0.

We remark that the inner variable τ varies over the negative semiaxis, and the
above condition at −∞ represents the matching condition for the inner and
outer solutions.

Expanding both unknowns, namely, the concentration and the propagation
velocity, as

A(τ) = A0(τ) +
1
Z
A1(τ) + . . . , v = v0 +

1
Z
v1 + . . .

we obtain at the leading order

v20
dA0

dτ
= −eτ , −∞ < τ < 0, A0(−∞) = 1, A0(0) = 0.

The solution of this problem is given by

v0 = 1, A0(τ) = 1− exp τ,
and the complete solution has the form

v = 1 +O

(
1
Z

)
, a(θ) = 1− exp(Zθ) +O

(
1
Z

)
.

Equation (3.33), which at the leading order takes the form,

dθ

dξ
= θ + 1− exp(Zθ), (3.35)

allows us to determine the spatial distribution of the nondimensional tempera-
ture θ(ξ). It is easy to find an implicit solution of (3.35). However, the integral
that appears in the course of solution cannot be evaluated exactly. It could be
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evaluated asymptotically for large Z. Instead, we will dwell upon the asymp-
totic solution of the differential equation. We first observe that the equation is
invariant with respect to translations in ξ, i.e., if θ(ξ) is a solution of the equa-
tion, then θ(ξ + c) is also a solution for any constant c. Thus, we can assume
without loss of generality that θ takes on a prescribed value at ξ = 0 (the value
must be between −1 and 0 because θ varies over this interval, see (3.32)). For
convenience, we take

θ(0) = θ0 ≡ − 1
Z
ln 2. (3.36)

Consider first ξ > 0. In this region, θ increases from θ0 to zero as ξ goes from
zero to infinity. Thus, θ is of order 1/Z. It is not difficult to check that the
ξ-region where the major increase in θ occurs is also of order 1/Z. Thus, we
introduce

η = Zξ, τ(η) = Zθ(ξ). (3.37)

The initial value problem (3.35), (3.36) takes the form

dτ

dη
=
1
Z
τ + 1− exp(τ), τ(0) = − ln 2.

The solution of this problem is

τ(η) = − ln(1 + e−η) +O

(
1
Z

)
. (3.38)

Let us now consider the region ξ < 0. Here, θ takes on both order one and
order 1/Z values, so we consider two regions. One region is adjacent to the
origin, where both ξ and θ are of order 1/Z (inner region), and the other region
is where both ξ and θ are of order one (outer region). In the inner region, we
use the same scaling (3.37) and as a result get the same solution (3.38). In the
outer region, the solution of (3.35) that satisfies θ(−∞) = −1 is

θ(ξ) = −1 + c exp(ξ),

where c is a constant that has to be found upon matching the outer and the inner
solutions. To match the solutions, we expand the outer solution for small ξ as

θ(ξ) ∼ −1 + c+ cξ,

the inner solution for large negative η as

τ(η) ∼ η =⇒ θ(ξ) ∼ ξ,

and equate the expansions to obtain c = 1. The composite solution [34] is

θ(ξ) = −1 + eξ − 1
Z
ln(1 + e−Zξ)− ξ.
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Finally, upon simple manipulations, we obtain

θ =
{ −1 + exp(ξ)− 1

Z ln(1 + exp(Zξ)), ξ < 0
− 1

Z ln(1 + exp(−Zξ)), ξ > 0
. (3.39)

For future reference, we present here the corresponding dimensional propa-
gation velocity for Z � 1

u2 =
κ

Z
k(Ta) = κ

RgT
2
a

E(Ta − T0)
k0 exp

(
− E

RgTa

)
. (3.40)

Let us discuss the accuracy of the formula for
the

can be written in the form

v2 = −
Za exp

(
Zθ

1+δθ

)
(θ + a)da/dθ

≡ B(a(θ), θ).

If a(θ) is the solution of the problem, then B(a(θ), θ), which is a function of
θ, is in fact a constant equal to the square of the propagation velocity. Suppose
we consider B(ρ(θ), θ), where ρ(θ) is an arbitrary monotonically decreasing
function that satisfies the same boundary conditions as a(θ). Then it has been
proved in [97] that

min
−1<θ<0

B(ρ(θ), θ) ≤ v2 ≤ max
−1<θ<0

B(ρ(θ), θ). (3.41)

This is an interesting result because choosing any function ρ that has the above
properties will give an estimate of the propagation velocity. Of course, in order
to derive accurate estimates, we have to choose a ρ(θ) that is in some sense
close to the actual solution a(θ). A convenient choice is

ρ(θ) = 1− G(θ)
G(0)

, G(θ) =
∫ θ

−1

1
1 + s

exp
(

Zs

1 + δs

)
ds

(this choice as well as related issues are discussed in [97]). Then the inequality
(3.41) yields

ZG(0) ≤ v2 ≤ ZG(0)
1−G(0)

. (3.42)

We evaluate the integral G(0) for large Z using the Laplace method to obtain

G(0) =
∫ 0

−1

1
1 + s

exp
(

Zs

1 + δs

)
ds =

1
Z
+O

(
1
Z2

)
.

propagation velocity that we derived above for large Z. Equation
(3.34)

Estimates of velocity.3.1.2
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Thus, as expected

v2 = 1 +O

(
1
Z

)
.

While this proves our asymptotic result, the estimate (3.42) in fact gives more
than just an asymptotic formula, because we can evaluate the integral to get
numerical estimates of v as well as asymptotic estimates. It turns out that for
physically relevant values of the parameters, v = 1± 0.02.

Further analysis and reaction front approach. We now return
 problem (3.30)-(3.32). We have already solved the problem using the phase-
plane approach and gained some understanding of the behavior of the solution. We
want to recover the solution by solving the problem directly, i.e., without
reducing the problem to a phase-plane equation. The goal is to learn how to
handle such problems in preparation for solving complete, time- and space-
dependentproblems like (3.22)-(3.24) that cannotbe reduced to the phase- plane
equation.

Let us begin with analyzing the reaction term

W = Za exp
(

Zθ

1 + δθ

)
.

Using (3.33) (with v = 1) and (3.35), we obtain

W = Z

(
dθ

dξ
− θ

)
exp

(
Zθ

1 + δθ

)
= Z(1− eZθ) exp

(
Zθ

1 + δθ

)
.

Let us assume that δ = 0 in the exponential. This assumption, which does not
change the leading order behavior of the reaction term, makes the subsequent
calculations more transparent. Thus, we consider

W = ZeZθ(1− eZθ).

Next, we use (3.39) to determine the dependence of W on ξ. For ξ > 0, we
obtain

W = Z
e−Zξ

(1 + e−Zξ)2
.

For ξ < 0, the reaction term is exponentially small for |ξ| = O(1) and reduces
to

W = Z
eZξ

(1 + eZξ)2

for small |ξ| (note that the above expressions for W for ξ > 0 and for ξ <
0 are equal). Thus, the reaction term is significant only in a narrow region
of order 1/Z in ξ, and the structure of the solution is as follows. Ahead of

     to the 3.1.3
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the narrow reaction zone, there is a preheat region where the reaction term is
negligibly small, and the temperature increases from its initial value to almost
the adiabatic value. Behind the reaction zone, there is a product region where
the reaction term is also negligible (see Figure 1). In both the product region
(ξ > 0) and the preheat region (ξ < 0) the reaction term can be neglected in
(3.30), (3.31), and the reactionless equations

d2θ

dξ2
− v

dθ

dξ
= 0, v

da

dξ
= 0

have to be solved. The solution that satisfies the boundary conditions (3.32)
(as well as the condition a(∞) = 0) is

θ(ξ) =
{ −1 + c exp(vξ), ξ < 0
0, ξ > 0 , (3.43)

a(ξ) =
{
1, ξ < 0
0, ξ > 0 . (3.44)

To determine the solution in the reaction zone, we introduce the inner variables

A(η) = a(ξ), τ(η) = Zθ(ξ), η = Zξ.

Then (3.30) and (3.31) take the form

d2τ

dη2
− v

Z

dτ

dη
+A exp

(
τ

1 + δτ/Z

)
= 0,

v
dA

dη
+A exp

(
τ

1 + δτ/Z

)
= 0,

and reduce at the leading order in Z � 1 to

d2τ

dη2
+A exp(τ) = 0, v

dA

dη
+A exp(τ) = 0. (3.45)

Using the matching conditions to the solution in the product region

τ(∞) = 0, A(∞) = 0, (3.46)

we obtain the first integral of the system (3.45)

dτ

dη
= vA,

which, combined with the temperature equation in (3.45), yields

d2τ

dη2
+
1
v

dτ

dη
eτ = 0.
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The solution of this equation that satisfies (3.46) and (3.36) is given by

τ(η) = − ln(1 + e−η/v)

(the latter condition is used for consistency with the phase-plane approach). To
match the inner solution to the outer solution in the preheat region, we expand
the outer solution for small ξ

θ(ξ) = −1 + c exp(vξ) ∼ −1 + c+ cvξ

and the inner solution for large negative η

τ(η) = − ln(1 + e−η/v) ∼ η/v θ(ξ) ∼ ξ/v.

Comparing the expansions, we obtain c = 1, v = 1. Thus, the leading or-
der solution, which is obtained by adding the inner and outer solutions and
subtracting the common parts, is

θ =
{ −1 + exp(vξ)− 1

Z ln(1 + exp(Zξ/v)), ξ < 0
− 1

Z ln(1 + exp(−Zξ/v)), ξ > 0
, (3.47)

v = 1.

This solution coincides with the solution (3.39) obtained by the phase-plane
approach. It can be easily checked that the inner and outer solutions for the
concentration a(ξ) also match.

An important observation is that, in the limit Z → ∞, the solution (3.47)
reduces to

θ =
{ −1 + exp(vξ), ξ < 0
0, ξ > 0 , (3.48)

This is a leading order outer solution, i.e., it is the solution in the preheat and
product regions where the reaction term is neglected (cf. (3.43)). This solution
is continuous at ξ = 0, i.e.,

θ|ξ→0+ = θ|ξ→0− , (3.49)

and it satisfies
dθ

dξ

∣∣∣∣
ξ→0+

− dθ

dξ

∣∣∣∣
ξ→0−

= −v. (3.50)

The last condition means that the heat flux undergoes a jump across the reaction
zone due to heat production by the reaction.

This observation is important, because it suggests a simplified approach to
the problem, i.e., an approximate solution can be constructed to a large extent
by just looking at the preheat and product regions where the reaction term is
insignificant and then matching the two solutions, so that the resulting solution
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is continuous (3.49), and an appropriate heat balance (3.50) is satisfied. Of
course, this solution is not (and cannot be) complete, because the propagation
speed v cannot be found unless we have accounted for the processes in the reac-
tion zone. Thus, solution (3.48) has to be supplemented by some analysis of the
processes in the reaction zone that allows to determine the propagation veloc-
ity. We perform this analysis for the original problem (3.22), (3.23) rather than
for the nondimensional uniformly propagating wave problem (3.30), (3.31).
This analysis is guided by the above analysis of the equations in the reaction
zone that demonstrated which terms are most significant in the reaction zone.
The significant terms in (3.22), (3.23) are the reaction rates, the heat conduc-
tion in the direction of wave propagation x, and the convective term in the
concentration equation. Thus, equations (3.22), (3.23) in the reaction zone
reduce to

−ϕt∂M
∂x

+Mk(T ) = 0, (3.51)

κ(1 + ϕ2
y)
∂2T

∂x2
+ qMk(T ) = 0. (3.52)

One could arrive at this result by means of a more systematic analysis, namely,
by nondimensionalizing the equations and introducing stretched inner vari-
ables as we did before. We will restrict ourselves to using this less formal
approach.

Eliminating the reaction term from (3.51) and (3.52), we obtain

κ(1 + ϕ2
y)
∂2T

∂x2
= −qϕt∂M

∂x
. (3.53)

We integrate this equation across the reaction zone, taking into account that as
the reaction zone shrinks to an interface, (i) the temperature gradient at the left
end of the reaction zone must be equal to the gradient of the preheat region
temperature at x = 0, and (ii) the temperature gradient at the right end of the
reaction zone must be equal to the gradient of the product region temperature
at x = 0. In addition, we note that the concentration M of the reactant varies
from its initial valueM0 to zero across the reaction zone. As a result, we obtain
a jump condition for the gradient of the outer temperature solution

κ

[
∂T

∂x

]
= −qM0

ϕt
1 + ϕ2

y

. (3.54)

Here
[f ] = f |x→0+ − f |x→0− (3.55)

denotes the jump in the quantity f across the reaction zone located at x = 0.
Condition (3.54) is a dimensional heat balance at the reaction zone that has the
same physical meaning as (3.50).
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Next, integrating (3.53) from a current point in the reaction zone to the
product end of it, we obtain

κ(1 + ϕ2
y)
∂T

∂x
= −qϕtM.

Combining this equation with (3.51), we obtain

ϕ2
t

1 + ϕ2
y

∂M

∂x
= −κ

q
k(T )

∂T

∂x
. (3.56)

Integrating (3.56) across the reaction zone yields

ϕ2
t

1 + ϕ2
y

=
κ

qM0

∫ Tb

T0

k(T ) dT. (3.57)

Here, Tb is the temperature at the right end of the reaction zone. The lower
limit of integration in (3.57) is taken to be T0 instead of the actual temperature
at the left end of the reaction zone, because the main contribution to the inte-
gral comes from the temperature range close to Tb so that changing the lower
limit does not significantly change the integral. Finally, we observe that if the
Zeldovich number is large, the integral can be approximately evaluated (using
the Laplace method). Employing the same nondimensional quantities as above
(but using Tb as the reference temperature instead of Ta), i.e., introducing

θ =
T − Tb
Tb − T0

, Z =
E(Tb − T0)

RgT 2
b

, δ =
Tb − T0
Tb

,

we obtain∫ Tb

T0

k(T ) dT =
∫ 0

−1
k(Tb) exp

(
Zθ

1 + δθ

)
(Tb − T0) dθ ∼∫ 0

−1
k(Tb) exp(Zθ) (Tb − T0) dθ ∼ Tb − T0

Z
k(Tb) =

RgT
2
b

E
k(Tb).

As a result, (3.57) reduces to

ϕ2
t

1 + ϕ2
y

= Fc(Tb) ≡ κ
RgT

2
b

EqM0
k(Tb). (3.58)

We have arrived at the reaction front formulation of the GC model. It con-
sists of the reactionless equations

∂M

∂t
− ϕt

∂M

∂x
= 0,

∂T

∂t
− ϕt

∂T

∂x
− κ∇2T = 0, (3.59)

that have to be solved in the preheat (x < 0) and product (x > 0) regions
subject to the boundary conditions (3.24), appropriate initial conditions, the
condition that the temperature is continuous at x = 0, the heat balance condi-
tion (3.54), and, finally, the formula (3.57) (or (3.58)) for the velocity.
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3.1.4 Step function  approach. There is another approach to solving  the GC and
FP problems, which we find quite useful. It involves the use of step functions in
the reaction rate terms. Such an approach has a long and glorious
nning with works by Le Chatelier and many others who introduced the ignition

sequent researchers (see [100] for a more detailed discussion). By no means
are we trying to revive the old theories.  Our use of step functions is due to

ately chosen
step function are close to one another in the sense of distributionsand, therefore,
yield nearly the same results. Let us discuss it in greater detail. Consider the
temperature dependence of the reaction rate in (3.30), i.e., the function

k̃(θ) ≡ Z exp
(

Zθ

1 + δθ

)
, (3.60)

where, as before, −1 < θ < 0. This function is depicted in Figure 3 for
different values of Z (left figure).

Figure 3.

We make two observations regarding k̃(θ). First, as Z increases, the region
in θ where k̃(θ) is appreciable decreases (in fact, it behaves as 1/Z). Second,
the integral value of this function over the entire interval of variation of θ is
approximately 1. Thus, k̃(θ) can be thought of as an approximation to the
Dirac delta-function δ(θ) (in fact, it would be more correct to refer to it as a
’one-sided’ delta-function because θ < 0). One might expect that the reason
why combustion front approximations provide results similar to those with Ar-
rhenius kinetics is exactly that the Arrhenius exponential is an approximation
to the δ-function. If this is the case, then a different approximation to the δ-
function should yield results similar to those with Arrhenius kinetics. As a
simple approximation, one can use step-functions (see Figure 3)

K̃(θ) = ZH(θ − 1/Z),

history, begi-

temperature in the ‘pre-Arrhenius’ times and were severely criticized by sub-

the understanding that the Arrhenius exponential and an appropri

Comparison of the Arrhenius (left) and step-function (right) kinetics.
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where H is the Heaviside function. We note that the integral value of k̂(θ) is
the same as that of k̃(θ), and their maximum values are equal. Let us apply
this approach to the dimensional problem (3.22), (3.23).

We replace the Arrhenius temperature dependence k(T ) of the reaction rate
in (3.22), (3.23) by the step function

K(T ) = k(Tb)H(T − T∗), (3.61)

where H is the Heaviside function, Tb is a characteristic temperature in the
reaction zone, and T∗ is chosen in such a way that∫ Tb

T0

K(T ) dT =
∫ Tb

T0

k(T ) dT. (3.62)

Computing the integrals in (3.62) as∫ Tb

T0

K(T ) dT =
∫ Tb

T∗
k(Tb) dT = (Tb − T∗)k(Tb),

∫ Tb

T0

k(T ) dT ≈ RgT
2
b

E
k(Tb),

we obtain

T∗ = Tb(1− ε), ε =
RTb
E

� 1. (3.63)

To illustrate this approach, we consider the problem (3.25)-(3.27). We re-
place the Arrhenius exponential k in this problem by the step function (3.61),
(3.63). In addition, to simplify the notation, we introduce a = M/M0. Thus,
we want to solve the equations

κ
d2T̂

dx2
− u

dT̂

dx
+ qaK(T̂ ) = 0, (3.64a)

u
dM̂

dx
+ aK(T̂ ) = 0, (3.64b)

subject to the boundary conditions

x → −∞ : T̂ = T0, a = 1, x → ∞ :
dT̂

dx
= 0. (3.65)

As the characteristic temperature Tb, we take

Tb = T̂ (+∞). (3.66)
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We also assume that T̂ (0) = T∗ which can be done due to translational invari-
ance of the problem. We obtain the following equations

x < 0 : κ
d2T̂

dx2
− u

dT̂

dx
= 0, −uda

dx
= 0, (3.67a)

x > 0 : κ
d2T̂

dx2
− u

dT̂

dx
+ qak(Tb) = 0, −uda

dx
− k(Tb)a = 0. (3.67b)

The matching conditions at x = 0 are

T̂ (0−) = T̂ (0+) = T∗, a(0−) = a(0+), (3.68a)

dT̂ (0−)
dx

=
dT̂ (0+)
dx

. (3.68b)

Solving equations (3.67) subject to the matching conditions (3.68a) and the
boundary conditions (3.65) yields

x < 0 : T̂ (x) = T0 + (T∗ − T0)eux/κ, a(x) = 1, (3.69a)

x > 0 : T̂ (x) = T∗ +
qu2

κk(Tb) + u2
(1− e−k(Tb)x/u), a(x) = e−k(Tb)x/u.

(3.69b)
Applying (3.66) and the matching conditions (3.68b) to the solution (3.69)
results in

Tb = T∗ +
qu2

κk(Tb) + u2
, (T∗ − T0)

u

κ
=

qu2

κk(Tb) + u2
k(Tb)
u

.

Solving these equations yields Tb = T0 + q (i.e., the temperature far in the
product region is the adiabatic temperature as expected) and

u2 =
κk(Tb)
Z − 1 . (3.70)

Since Z � 1, (3.70) simplifies to

u2 =
κk(Tb)
Z

, (3.71)

which is exactly the formula we derived earlier (see (3.40).
The step function approach typically gives accurate results (in some cases

even more accurate than the reaction front approximation). This method, how-
ever, involves more algebraic manipulations than the reaction front approxi-
mation, and it is quite often advantageous to use the reaction front approxi-
mation. The step function approach is particularly useful when the problem at
hand involves several different Arrhenius exponentials. In this case, asymptotic
analysis may yield nonuniform and even irrelevant results (see the discussion
in [55]).
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The uniformly propagating wave that we have found may be either stable or
unstable depending on the parameter values. If the wave is unstable, it cannot
be observed experimentally, and other regimes of propagation occur. Before
we can talk about these other regimes of propagation, we have to perform a
linear stability analysis of the uniformly propagating wave. We consider the
gasless combustion wave under the reaction front approximation.

We perturb the stationary solution as

T = T̂ (x) + δ exp(ωt+ iky)T̃ (x), (3.72)

M = M̂(x) + δ exp(ωt+ iky)M̃(x), (3.73)

ϕ = −ut+ δ exp(ωt+ iky). (3.74)

Here, k is the wavenumber, ω is the temporal frequency of perturbations, and
δ is a small magnitude of perturbations.

Substituting the expansions (3.72)-(3.74) into equations (3.59) (separately,
for x > 0 and x < 0), into the boundary conditions (3.24), and linearizing
(i.e., keeping only linear terms in δ � 1) we obtain

(ω + κk2)T̃ + uT̃ ′ − κT̃ ′′ = (ω + κk2)T̂ ′, (3.75)

ωM̃ + uM̃ ′ = 0, (3.76)

T̃ (−∞) = 0, T̃ ′(+∞) = 0, M̃(−∞) = 0. (3.77)

Substituting the expansions (3.72)-(3.74) into the matching conditions and lin-
earizing, we obtain [

T̃
]
= 0, (3.78)

κ

u

[
T̃ ′
]
= ω

T̂b − T0
u

, (3.79)

−ω

u
=

zT̃ (0)

2(T̂b − T0)
, (3.80)

where

z =
F ′(T̂b)(T̂b − T0)

F (T̂b)
≡ (T̂b − T0)

∂ lnu

∂T̂b
. (3.81)

The solution of (3.75), (3.77) is

T̃ (x) =
{

c1 exp(r+x) + u
κ(T̂b − T0) exp

(
u
κx
)
, x < 0

c2 exp(r−x), x > 0
, (3.82)

3.2 Linear stability analysis of gasless combustion wave
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where
r± = u(1± d)/(2κ), d =

√
1 + 4Ω + 4s2,

with s = κk/u as the non-dimensional wavenumber and Ω = κω/u2 as the
non-dimensional frequency of the perturbation. Substituting this into the lin-
earized matching conditions gives

c1 +
u

κ
(T̂b − T0) = c2,

κ

u

(
c2r− − c1r+ −

(u
κ

)2
(T̂b − T0)

)
=
(T̂b − T0)ω

u
,

−ω

u
=

zc2

2(T̂b − T0)
.

Eliminating c1 and c2 from the above equations yields the dispersion relation

4Ω3 +
(
1 + 4s2 + 2z − 1

4
z2
)
Ω2 +

1
2
z(1 + 4s2)Ω +

1
4
s2z2 = 0. (3.83)

Instability occurs when a pair of complex conjugate eigenvalues crosses the
imaginary axis as the parameters vary. At the stability boundary

zc = 4− 4s2(1 + 4s2)−1 + 2
√
(2− 2s2(1 + 4s2)−1)2 + 1 + 4s2, (3.84)

Ω = ±iω0, ω2
0 =

1
8
zc(1 + 4s2). (3.85)

The neutral stability curve in the (s, z)-plane has a minimum at s = 0.5. The
neutral stability curve is shown in Figure 8 (the lowest curve). The uniformly
propagating wave is unstable in the region above the curve, i.e., for z > zc,
and it is stable below the curve. It can be easily checked that the parameter z is
nothing else but the Zeldovich number Z and can be also written in the form

z =
th
tr
, (3.86)

where tr and th are the reaction time and the characteristic time of the removal
of heat from the reaction zone, respectively. Relation (3.86) provides a simple
physical interpretation of this result [98]. If the reaction time in the uniformly
propagating wave is much less than the time required to remove the heat from
the reaction zone (i.e., z is large), such a wave cannot exist, because the tem-
perature in the reaction zone will grow. One can expect in this case, that the
reaction zone will speed up (because higher reaction zone temperatures result
in faster propagation) until it hits cold layers of the reactants. Then it will
rapidly lose heat due to high temperature gradients. After a period of depres-
sion, which is characterized by an almost stationary reaction zone during which
the temperature in the reaction zone builds up, the process repeats periodically.
This is exactly what is seen in experiments and numerical computations.
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Previous results, both theoretical and experimental, have indicated that var-
ious modes of propagation are possible. In addition to uniformly propagat-
ing planar fronts, fronts whose propagation velocities are oscillatory in time
(pulsating combustion) were observed. The experiments in [84] exhibited a
period doubling in the pulsating mode of propagation. Various types of multi–
dimensional combustion modes depending on the geometry of the sample were
also shown. In a cylindrical geometry, for example, there have been numerous
experimental observations of spinning, radial, and multiple-point combustion
waves [22, 23, 88, 44, 45, 58]. In the spinning mode of propagation, which
was first found in filtration combustion [59], in which a gas participates in the
reaction, one or more luminous points are observed to move in a helical fash-
ion along the surface of the cylindrical sample. In the radial mode, a front
whose location depends on the radial variable but not on the angular variable
propagates in a pulsating manner. Finally, in multiple–point combustion, one
or more luminous spots are observed to appear, disappear and reappear on the
surface of the sample.

Numerical simulations were performed on the planar problem in [83], which
showed that the transition to the self–oscillatory combustion occurs when a pa-
rameter related to the Zeldovich number is increased. Numerical studies [5, 6,
79] of the one-dimensional problem found transitions to relaxation oscillations
and period doublings, and these studies demonstrated two routes to chaotic
dynamics as the bifurcation parameter related to the Zeldovich number was in-
creased. Numerical studies [36–41, 1, 7, 4] of the two– and three–dimensional
model found spinning modes of propagation as well as standing modes, which
describe multiple point propagation, and quasi–periodic modes of propagation.

A nonlinear analysis of the one-dimensional problem in [51] described the
transition via bifurcation from a uniformly propagating wave to a pulsating
combustion wave. Several other theoretical studies have addressed the non-
linear stability problem in two and three dimensions [9, 25, 26, 47, 48, 52].
In a cylindrical geometry, bifurcation to stable pulsating, spinning or standing
waves were shown as a result of loss of stability of the steady planar mode of
combustion [25, 47]. Interactions among several types of pulsating, spinning
and standing waves leading to quasi-periodic modes of propagation, were also
considered [9, 26, 48]. A continuous band of the wave numbers in the instabil-
ity region was considered in [52]. Some of these solution branches correspond
to the modes of burning which have been experimentally observed, whereas
other branches represent new modes of combustion which have not as yet been
observed in the laboratory. A related analysis of various types of solutions
bifurcating from uniformly propagating traveling wave solutions of a general
reaction-diffusion system was performed in [8, 95, 96].

3.3 Weakly nonlinear analysis
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In order to present here some basic results of the weakly stability analy-
sis, we consider below a general reaction-diffusion system of equations. We
assume that the problem has a one-dimensional traveling wave solution that
loses stability in the same way as the gasless combustion wave as discussed in
greater detail below. A study of a general reaction-diffusion system rather than
a specific model is useful, because it allows us to focus on general properties
of the solution, independent of a particular model.

We consider the general reaction-diffusion system

∂u

∂t
= A

(
∂2u

∂x̃2
+
∂2u

∂y2

)
+ f(u;μ), t > 0, −∞ < x̃ < +∞, 0 < y < �,

(3.87)
where u(x̃, y, t) and f(u;μ) are vector-functions,

u = (u1, u2, . . . , um), f(u;μ) = (f1(u;μ), f2(u;μ), . . . , fm(u;μ)),

and u is assumed to be bounded as x̃ → ±∞ and periodic in y. The matrix
A is diagonal with nonnegative elements aj (j = 1, . . . ,m) on the diagonal,
t, x̃ and y are the temporal and spatial variables, and μ is a real parameter. As
related to the gasless combustion model, this problem can be thought of as the
combustion wave propagation in a cylindrical shell. The length � is not arbi-
trary and will be chosen later (see the remark following equation (3.92)). We
assume that (3.87) exhibits a traveling wave solution û(x), x = x̃+ ct, which
propagates along the x̃-axis with constant velocity c. Note that in general, û(x)
and c depend on μ, so we will write ûμ and cμ when it is necessary to point out
this dependence. The traveling wave solution, which we refer to as the basic
solution, satisfies the system of equations

Aû′′ − cû′ + f(û;μ) = 0, (3.88)

where the prime denotes differentiation with respect to x.
We assume that the basic solution loses stability when μ exceeds a critical

value, and we seek solutions appearing as a result of this instability. Let us first
describe the conditions for the loss of stability. Consider the problem (3.87)
linearized about the basic solution and written in the moving coordinate system
attached to the traveling wave

∂ũ

∂t
= A

(
∂2ũ

∂x2
+
∂2ũ

∂y2

)
− c

∂ũ

∂x
+Bμ(û)ũ, (3.89)

where ũ is the perturbation of the basic solution andBμ(û) is the Jacobi matrix,

Bμ(û) =
(
∂fi(û;μ)
∂ûj

)
, i, j = 1, . . . ,m.
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We write ũ as
ũ = eωt+ikyg(x), (3.90)

where k is the the wave number of the perturbations and ω = ω(k2, μ) is the
growth rate. Substituting (3.90) into (3.89), we obtain

Ag′′ − cg′ − k2Ag +Bμg = ωg. (3.91)

We seek solutions of (3.91) which are bounded at infinity. Thus, ω is an eigen-
value of the operator defined by the left-hand side of (3.91). Suppose that there
exists a critical value of the parameter μ (say μ = 0) such that the following
conditions are satisfied:
(i) for μ < 0 and all k �= 0, all eigenvalues ω of (3.91) have negative real parts;
(ii) for μ = 0 and k = k0 �= 0, there exist a pair of purely imaginary eigen-
values ω±, i.e. ω± = ±iω0 �= 0, and all other eigenvalues corresponding to
k �= 0 have negative real parts;
(iii) for each μ > 0 (and sufficiently small), there is a pair of complex conju-
gate eigenvalues ω±(k20, μ) such that �(ω±(k20, μ)) > 0 and ω±(k20, 0)= ω±.
The real parts of all other eigenvalues with k �= 0 are negative;
(iv) for k = 0 and all values of μ, there exists an eigenvalue ω = 0 which,
as can be easily seen by differentiating (3.88) with respect to x, corresponds
to the eigenfunction û′; all other eigenvalues for k = 0 are assumed to have
negative real parts.

The conditions stated above mean that the basic solution is stable when
μ < 0, and it loses stability when μ passes through the critical value μ = 0 via
a Hopf bifurcation. (This is exactly the case with the gasless combustion wave
as discussed earlier.)

Therefore, for μ = 0, the system of equations (3.89) has the following
solutions

e±i(ω0t+k0y)g0(x), e±i(ω0t−k0y)g0(x), û
′
0, (3.92)

where g0 is a solution of (3.91) for k = k0, μ = 0, ω = iω0. In order for these
modes to satisfy the periodic boundary conditions in y, we will assume that the
length � of the interval is

� =
2πN
k0

, (3.93)

where N is a positive integer. It is worth noting that the exponentials

exp(±ik0y)
arise in the course of solution of (3.89) by separation of variables, and they are
nothing else but the eigenfunctions of the operator ∂2/∂y2 on the interval (0, �)
with periodic boundary conditions. In a more general problem, in which the
wave propagates along the axis of a cylinder with an arbitrary cross section Ω
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and satisfies the no-flux boundary condition at the lateral surface of the cylin-
der, the same separation of variables process will result in the eigenfunctions
of the problem

∇2ψ + k20ψ = 0 in Ω,
∂ψ

∂n

∣∣∣∣
∂Ω

= 0, (3.94)

in place of the exponentials.
We observe that the solutions we seek are not traveling wave solutions in

the strict sense of the word. For a traveling wave solution u, we must have
u = u(x), where x = x̃ + ct for some constant speed c. It can be also
written as x = x̃ − ϕ(t) with ϕ(t) = −ct. Here, ϕ(t) is the coordinate of the
front (or any other characteristic point of the solution). We seek solutions with
ϕ = ϕ(y, t). That is, we look for solutions u of the problem (3.87) having the
form

u(x̃, y, t) = v(x, y, t), x = x̃− ϕ(y, t), (3.95)

which bifurcate from the basic solution when it loses stability. The function ϕ
is to be determined as part of the solution process. We observe that the specific
choice of coordinate to which ϕ corresponds will not affect any of the results
obtained below. Substituting (3.95) into (3.87), we obtain the set of equations
for v and ϕ

∂v

∂t
− ∂ϕ

∂t

∂v

∂x
= A∇2v + f(μ; v), (3.96)

where v is a bounded vector-function, and ∇2 is the Laplacian in the moving
coordinate system,

∇2 ≡ ∂2

∂x2
+
(
∂

∂y
− ∂ϕ

∂y

∂

∂x

)2

. (3.97)

We observe that v = û(x), ϕ = −ct is a steady state solution of the
problem (3.96)-(3.97).

We seek solutions near the stability threshold, i.e., when the parameter μ
is near the stability boundary, and the solution itself is close to the uniformly
propagating wave. Therefore, we introduce the small parameter ε by defining

μ = νε2, (3.98)

and represent the solution as

v = û+ w, ϕ = −cμt+Ψ, (3.99)

where w and Ψ are small. Substituting (3.99) into (3.96), we obtain
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∂w

∂t
+cμ

∂w

∂x
− ∂Ψ

∂t

(
dû

dx
+
∂w

∂x

)
= A∇2w+f(û+w;μ)−f(û;μ). (3.100)

The following expansion of the nonlinear term f about the basic solution is
used

f(û+ w;μ) ∼ f(û;μ) +Bμ(û)w +
1
2
aμ(û;w,w) +

1
6
bμ(û;w,w,w) + . . . ,

(3.101)
where aμ and bμ are bilinear and trilinear forms in w, respectively.

Since we seek solutions that are close to periodic solutions but not necessar-
ily periodic, we introduce slow time scales

t1 = εt, t2 = ε2t, (3.102)

in addition to the fast time scale t and expand as

w ∼
∞∑
j=1

εjwj(t, t1, t2, y, x), Ψ ∼
∞∑
j=1

εjΨj(t, t1, t2, y). (3.103)

Upon formal substitution of (3.98), (3.101)-(3.103) into (3.100), we equate
coefficients of like powers of ε and obtain a sequence of problems for the re-
cursive determination of wj , j = 1, 2, 3, . . .

Lwj +MΨj
dû

dx
= fj , (3.104a)

Lw ≡ ∂w

∂t
+ c0

∂w

∂x
−A

∂2w

∂x2
−A

∂2w

∂y2
−B0w, (3.104b)

MΨ ≡ A
∂2Ψ
∂y2

− ∂Ψ
∂t

, (3.104c)

where c0 and B0 are the values of cμ and Bμ at μ = 0. The functions fj for
j = 1, 2, 3 are given by

f1 = 0,

f2 = −∂w1

∂t1
−MΨ1

∂w1

∂x
+
∂Ψ1

∂t1

dû

dx
− 2A∂Ψ1

∂y

∂2w1

∂x∂y

+A
(
∂Ψ1

∂y

)2 d2û

dx2
+
1
2
a0(w1, w1),

f3 = −∂w2

∂t1
− ∂w1

∂t2
+ a0(w1, w2) +

1
6
b0(w1, w1, w1) + νTw1−

MΦ1
∂w2

∂x
−MΦ2

∂w1

∂x
− ∂Ψ1

∂t1

∂w1

∂x
+
∂Ψ2

∂t1

dû

dx
+
∂Ψ1

∂t2

dû

dx
+ ν

∂Ψ1

∂t0

d ˙̂u
dx
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−2A
(
∂Ψ2

∂y

∂2w1

∂x∂y
+
∂Ψ1

∂y

∂2w2

∂x∂y
− ∂Ψ1

∂y

∂Ψ2

∂y

d2û

dx2
− 1
2

(
∂Ψ1

∂y

)2 ∂2w1

∂x2

)
,

where a0 and b0 are the values of a and b at μ = 0, and

Tw = Ḃ0w− ċ0
∂w

∂x
, Ḃ0 =

∂Bμ

∂μ

∣∣∣∣
μ=0

, ċ0 =
∂cμ
∂μ

∣∣∣∣
μ=0

, ˙̂u =
∂û

∂μ

∣∣∣∣
μ=0

.

Since the homogeneous equation

Lw = 0, −∞ < x < ∞, 0 < y < �, t > 0 (3.105)

has nontrivial solutions that are �-periodic in y, 2π/ω0-periodic in time and
decay as x → ±∞, it is necessary that solvability conditions be satisfied in
order for solutions of the nonhomogeneous problem (3.104) to exist. To derive
the solvability conditions, we introduce the inner product

〈f, g〉 =
∫ 2π/ω0

0
dt

∫ �

0
dy

∫ ∞

−∞
fgdx,

for functions f and g that are bounded continuous functions of x on (−∞,∞).
We assume as well that the product fg → 0 as x tends to ±∞ in such a way
that the above integrals exist. Furthermore, we assume that both functions are
2π/ω0-periodic in time and �-periodic in y.

The formally adjoint operator L∗ is defined in the usual way, i.e.,

〈Lf, g〉 = 〈f, L∗g〉,
and has the form

L∗φ ≡ ∂φ

∂t
+ c

∂φ

∂x
+A

∂2φ

∂x2
+A

∂2φ

∂y2
+B∗

0φ = 0, (3.106)

φ → 0 as x → ±∞,

and the adjoint homogeneous solutions, which are 2π/ω0-periodic in time and
�-periodic in y, are

φ0 = θ0(x), φ1 = θ1(x)e1, φ2 = θ1(x)e2, (3.107)

where
e1 ≡ ei(ω0t+k0y), e2 ≡ ei(ω0t−k0y),

and θ0 and θ1 are solutions of

Aθ′′
0 + c0θ

′
0 +B∗

0θ0 = 0,
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Aθ′′
1 −Ak2θ1 + c0θ

′
1 +B∗

0θ1 + iω0θ1 = 0.

Here, the matrix B∗
0 is adjoint to B0. The solvability conditions can then be

written in the form

〈fj , φk〉 = 0 j = 1, 2, 3, . . . ; k = 0, 1, 2. (3.108)

Now, we determine the solutions of (3.104) for j = 1 and j = 2. For j = 1
the solution can be written in the form

w1 = wh
1 + wp

1, (3.109a)

where wp
1 is a particular solution that corresponds to MΨ1û

′, and wh
1 is the

homogeneous solution. It can be verified directly that

wp
1 = Ψ1û

′. (3.109b)

The homogeneous solution has the form

wh
1 = (R1e1 + S1e2)g0(x) + c.c.−H1û

′, (3.109c)

where c.c. denotes complex conjugate. This is due to the fact that the operator
L is the same operator as the one we get in the linear stability analysis for
μ = 0, and therefore, wh

1 is a linear combination of the linearly unstable modes
(3.92) with the amplitudes that depend on the slow times t1 and t2. Next, the
form of the front Φ1 is also represented as a superposition of the same modes

Ψ1 = R1e1 + S1e2 + c.c.+H1. (3.109d)

We remark that we wrote the same H1 in (3.109c) and in (3.109d) so that
w1 does not contain the mode û′. This ought to be the case, because in the
moving coordinate system (3.95), the system is no longer invariant with respect
to translations in x, and therefore the mode û′ which appears due to translation
invariance should be absent.

For j = 2, the three solvability conditions (3.108) imply that

∂R1

∂t1
=
∂S1
∂t1

= 0,
∂H1

∂t1
= m(| R1 |2 + | S1 |2), (3.110)

where m is a constant, which can be easily computed. If the solvability condi-
tions are satisfied, the solution w2 can be written in the form

w2 = wh
2 + wp

2 +Ψ2û
′, (3.111)

where wh
2 is a solution of the homogeneous problem, so that

wh
2 = (R2e1 + S2e2)g0(x) + c.c.−H2û

′, (3.112)
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and
Ψ2 = R2e1 + S2e2 + c.c.+H2.

The amplitudes of the modes depend on the slow times. Next, wp
2 is a particular

solution that corresponds to the right–hand side f2. To determine the particular
solution, we expand f2 as a polynomial in e1, e2, and their complex conjugates
and find that wp

2 is given by

wp
2 = (R

2
1e

2
1 + S2

1e
2
2)g1(x) +R1S1e1e2g2 +R1S1e1e2g3+ (3.113)

+e1g4 + e2g5 + c.c.+ g6.

The functions g1, . . . , g6 satisfy the equations that can be easily derived by
substituting (3.112) into equation (3.104). These equations are not presented
here (cf. [93]).

Next, applying the solvability conditions (3.108) to (3.104) with j = 3, we
obtain a coupled set of Landau equations

∂R1

∂t2
= νR1χ+ β1R1|R1|2 + β2R1|S1|2, (3.114a)

∂S1
∂t2

= νS1χ+ β1S1|S1|2 + β2S1|R1|2. (3.114b)

We do not present here explicit expressions for the coefficients β1, β2 and χ.
Though computing these expressions is a straightforward calculation, it is not
very instructive, and we restrict ourselves by mentioning that these coefficients
are some complex-valued quantities. Amplitude equations of this form have
been derived in many problems, e.g., in the gasless combustion problem [47].
This is not surprising, because the form of the amplitude equations is typically
a consequence of symmetries of the original problem.

Let us discuss some solutions of the Landau amplitude equations. It is con-
venient to write the amplitudes R1 and S1 of Ψ1, which determines the shape
of the front, in the form

R1(t2) = a(t2) exp(iθa(t2)), S1(t2) = b(t2) exp(iθb(t2)). (3.115)

Substituting (3.115) into (3.114) and separating real and imaginary parts results
in

da

dt2
= νχra+ β1ra

3 + β2rab
2 (3.116a)

db

dt2
= νχrb+ β1rb

3 + β2rba
2 (3.116b)

dθa
dt2

= νχi + β1ia
2 + β2ib

2, (3.116c)
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dθb
dt2

= νχi + β1ib
2 + β2ia

2. (3.116d)

Here, the subscripts r and i denote the real and imaginary parts of the respec-
tive coefficients. In order to determine the steady state solutions of (3.116),
which in the original problem correspond to a superposition of waves traveling
along the front, we set da/dt2 = db/dt2 = 0. This leads to

a(νχr + β1ra
2 + β2rb

2) = 0, b(νχr + β1rb
2 + β2ra

2) = 0. (3.117)

There are four critical points

a1 = b1 = 0, a2 = 0, b2 = wt, a3 = wt, b3 = 0, a4 = b4 = ws,

where

wt = (−νχr/β1r)1/2, ws = (−νχr/(β1r + β2r))1/2.

In the case of the first critical point, the amplitudes R1 and S1 are identically
equal to zero, which corresponds to the uniformly propagating wave in the
original problem. The second and third critical points correspond to waves
traveling along the front, which are right- and left-traveling waves (spinning
modes), respectively. The last critical point corresponds to a standing wave.

It can be shown that χr > 0 for all parameter values. Thus, from the expres-
sion for wt, we conclude that left- and right-traveling waves exist for ν > 0
(the so-called supercritical bifurcation) if β1r < 0 and for ν < 0 (the subcrit-
ical bifurcation) if β1r > 0. In a similar way, the supercritical bifurcation of
standing waves occurs if β1r + β2r < 0, and the subcritical bifurcation occurs
if β1r + β2r > 0. All the subcritical bifurcations are known to produce lo-
cally unstable regimes. The supercritical bifurcation can lead to either stable
or unstable solutions depending on the parameter values. Specifically, the su-
percritical bifurcation of traveling waves (which occurs if β1r < 0) is stable
if β2r < β1r and unstable otherwise. The supercritical bifurcation of standing
waves (which occurs if β1r + β2r < 0) is stable if β2r > β1r and unstable
otherwise.

Let us provide some interpretations of the bifurcating regimes based on the
magnitude of � (equivalently, the value of N in (3.93)). Consider a spinning
mode. If N = 1, then Ψ1 has one maximum in y that travels along the front
with time. This mode has been observed in GC experiments and is referred
to as a one-headed spinning mode. The maximum manifests itself as a bright
spot. Similarly, N = 2 and N = 3 correspond to two- and three-headed
spinning modes, respectively, that have also been experimentally observed.
Spinning modes with more than three bright spots have not been seen in the
GC experiment. Standing modes can be given a similar interpretation (they are
discussed in greater detail in another chapter of this book).
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Figure 4.

A similar bifurcation analysis has been done for other geometries. Consider,
for example, a circular cylinder of radius R with no-flux boundary conditions
at the lateral surface. The wave û propagates along the axis of the cylinder.
The form of the front in this case is

Ψ1 = R1ψ1 + S1ψ2 + c.c.+H1,

where ψ1 and ψ2 are the eigenfunctions of the problem (3.94) given by

ψ1,2 = e±inθJn(σnmr/R), n,m = 1, 2, 3, . . . .

Here, (r, θ) are polar coordinates in the cross section, σnm is the mth positive
zero of the derivative of the Bessel function Jn, and the radius R must be such
that

σnm/R = k0.

The amplitudesR1 and S1 satisfy the same Landau equations as in the previous
case (with different values of the coefficients). The value of n gives the number
of maxima in the angular direction, while the value of m gives the number of
maxima in the radial direction. Let Rnm = σnm/k0. Since

σ11 < σ21 < σ01 < σ31 < σ12 < . . . ,

Propagation modes in a cylindrical sample.
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we have
R11 < R21 < R01 < R31 < R12 < . . . ,

and we can expect the following bifurcating spinning modes as R increases.
For R = R11, it is a one-headed spinning mode with the bright spot rotating
along the front at the lateral surface; for R = R21 – a similar two-headed
spinning mode; for R = R01, the mode is quite different. It does not have any
angular dependence, and a bright circle periodically appears and disappears
at the surface (contracting to the axis of the cylinder when it disappears). In
GC experiments, this mode was named the limiting mode; we refer to it as
the radial mode (see Figure 4). We remark that σ01 is a simple eigenvalue of
(3.94) rather than a double, so a single Landau equation governs the amplitude
of the unstable mode. For R = R31, there is a three-headed spinning mode at
the surface. For R = R12, there are two bright spots rotating in the angular
direction – one along the lateral surface of the cylinder and the other inside.

Figure 5.

Consider next rectangular geometries, such as a strip with no-flux boundary
conditions in y or a cylinder with a square cross section. Here, the unsta-
ble modes are different from the ones we discussed above, and the amplitude

Propagation modes in rectangular geometries.
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equations are not Landau equations [93, 94], which is not surprising given
a different symmetry of the problem. We illustrate some of the propagation
modes in Figure 5.

4. Analysis of base FP model

We now return to the base model (2.17)-(2.21) of frontal polymerization.
We want to find uniformly propagating FP waves and perform linear and non-
linear stability analyses, as we did in the case of the gasless combustion model.
Before we study the model, we would like to reformulate it using the reaction
front approximation.

First, we use the step-function approach and replace the Arrhenius depen-
dence of the reaction rate on temperature ki(T ) with the step function (cf.
Section 3.1.4)

Ki(T ) = AiH(T − Ti), (4.118)

where
Ai = ki(Tb) = k0i exp[−Ei/(RgTb)], i = 1, 2

is the Arrhenius function for decomposition (i = 1) and polymerization (i =
2) reactions evaluated at Tb. Here, Tb is the characteristic temperature in the
reaction zone, and Ti given by

Ti = Tb(1− εi), εi = RgTb/Ei

is the temperature at which the first and second reactions begin. As before, the
height of the chosen step function is equal to the maximum of the Arrhenius
temperature-dependent function, and the integral values of the two functions
over the range T0 to Tb are approximately equal. The model (2.17)-(2.21), in
which the Arrhenius functions are replaced by the step-functions (4.118), is al-
ready tractable analytically [31] though the algebraic manipulations are rather
cumbersome. Figure 6 compares the uniformly propagating wave derived ana-
lytically by solving the model with the step-functions with the wave computed
numerically by solving the problem (2.17)-(2.21) with Arrhenius functions.
Figure 7 compares the analytical and experimental propagation velocities as a
function of the initiator concentration.

To avoid cumbersome calculations, we further simplify the model making
use of the fact that the activation energies of the decomposition and polymer-
ization reactions are large, which results in narrow reaction zones that can be
replaced by a reaction front (cf. Section 3.1.3). In this case, equations (2.17)-
(2.19) must be solved without the reaction term both ahead of and behind the
reaction front and matched at the reaction front by satisfying matching condi-
tions. In order to derive the matching conditions, we study the equations in
the reaction zone similar to what we did in the case of the gasless combustion
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Figure 6. Temperature and monomer profiles in the uniformly propagating polymeriza-
tion wave obtained analytically in the step-function model and numerically in the full model.

Figure 7. Propagation velocity as a function of the initiator concentration. The analytical

model. The dominant balance in the reaction zone equations is between the re-
action term and the highest spatial derivative (which could be formally derived
by stretching the spatial scale in the direction of propagation x)

−ϕt∂J
∂x
+ JA1 = 0, (4.119)

−ϕt∂M
∂x

+ JMA2 = 0, (4.120)

κ(1 + ϕ2
y)
∂2T

∂x2
+ qJMA2 = 0. (4.121)

Combining equations (4.120) and (4.121) results in

Adapted from [31].

result is a solution of the step-function model. Adapted from [31].
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κ(1 + ϕ2
y)
∂2T

∂x2
+ qϕt

∂M

∂x
= 0. (4.122)

Integrating (4.122) from a point x in the reaction zone to the product end of
it, where M = Mb (the final concentration of the monomer), and ∂T/∂x is
essentially zero, we obtain

κ
∂T

∂x
= −q(M −Mb)ϕt

1 + ϕ2
y

. (4.123)

Furthermore, integrating (4.122) across the reaction zone gives

κ

[
∂T

∂x

]
=
q(M0 −Mb)ϕt

1 + ϕ2
y

, (4.124)

where the square brackets denote the jump in a quantity across the reaction
zone (see (3.55)). As the reaction zone is very thin, we can assume continuity
of temperature across the front

[T ] = 0. (4.125)

Eliminating x from (4.119) and (4.120) and integrating the resulting equation
from a point in the reaction zone to the product end of it (where M =Mb and
J is essentially zero) gives

M =Mb exp
(
JA2

A1

)
. (4.126)

Evaluating (4.126) at the left end of the reaction zone (where M = M0 and
J = J0) yields

Mb = f(Tb) ≡ M0 exp(−j0), j0 =
J0A2

A1
. (4.127)

Finally, we derive an expression for the propagation velocity of the polymer-
ization front analogous to formula (3.58) derived for the gasless combustion
wave. We substitute (4.126) into (4.123) to obtain

κ
∂T

∂x
= −

qMb

(
exp

(
JA2
A1

)
− 1
)
ϕt

1 + ϕ2
y

. (4.128)

Dividing (4.128) by (4.119) and integrating over the reaction zone, we obtain

κA1(Tb − Ti) =
ϕ2
t

1 + ϕ2
y

qMb

∫ j0

0

exp η − 1
η

dη.
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Using the definitions

Ti = Tb

(
1− RgTb

E1

)
, A1 = k01 exp

(
− E1

RgTb

)
,

and inserting (4.127) in place of Mb, we reduce the above equation to

ϕ2
t

1 + ϕ2
y

= Fp(Tb), (4.129a)

Fp(Tb) ≡ κk01RgT
2
b

qM0E1
exp(j0 − E1

RgTb
)
(∫ j0

0

eη − 1
η

dη

)−1

. (4.129b)

Note that using the definition of j0, we can rewrite (4.129b) as

Fp(Tb) =
κJ0k02RgT

2
b

qM0E1
exp

(
− E2

RgTb

)
Φ(j0), (4.129c)

Φ(j0) =
(
j0e

−j0

∫ j0

0

eη − 1
η

dη

)−1

. (4.129d)

Under the reaction front approximation, we solve the reactionless equations
on either side of the reaction front (i.e. all the reaction rates are neglected in
(2.17)-(2.19))

∂T

∂t
− ϕt

∂T

∂x
= κ∇2T, (4.130)

∂M

∂t
− ϕt

∂M

∂x
= 0, (4.131)

∂J

∂t
− ϕt

∂J

∂x
= 0 (4.132)

subject to the boundary conditions (2.20), (2.21) in x, appropriate bound-
ary conditions in y, appropriate initial conditions and the conditions (4.124),
(4.125), (4.127), and (4.129) derived from the reaction zone analysis.

It is interesting to compare the reaction front formulations of the gasless
combustion and frontal polymerization models. First of all, there is an addi-
tional differential equation in the FP model, namely, equation (4.132). The
equation, however, can be easily solved yielding

J =
{

J0, x < 0
0, x > 0 ,

which agrees with our physical understanding that, due to the absence of any
transport of the species, J takes on a constant initial concentration value ahead
of the reaction zone, and it is completely consumed in the reaction zone. There-
fore, the J-equation can be disregarded. In both reaction front formulations,
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the temperature is continuous across the reaction zone, the heat flux undergoes
a jump (due to heat production in the reaction zone), and there is an expres-
sion for the propagation velocity in terms of the temperature Tb in the reaction
zone. The main difference between the models is the presence of the quantity
Mb in the FP model. This is the final value of the concentration of M , i.e., the
concentration of the unreacted monomer. It is not surprising that Mb > 0 in
the FP model, while in the gasless combustion model, the final concentration
of the reactant is zero. Indeed, in the gasless combustion model, M must be
zero behind the reaction zone – otherwise, the reaction would not stop. In the
FP model, the reactions stop, because the initiator is completely consumed, so
Mb does not have to be zero, and, in fact, it is not. In the limit Mb → 0 (equiv-
alently, j0 → ∞, from which Φ → 1), the FP model simplifies to the gasless
combustion model (with a small modification in Fc).

In this section, we determine stationary solutions of the above problem,
which correspond to uniformly propagating one-dimensional traveling waves
in the laboratory coordinate system. We solve the following reactionless sys-
tem ahead of (x < 0) and behind (x > 0) the front

dM̂

dx
= 0, κ

d2T̂

dx2
− u

dT̂

dx
= 0, (4.133)

subject to the boundary conditions

x = −∞ : T̂ = T0, M̂ =M0, (4.134)

x = +∞ :
dT̂

dx
= 0, (4.135)

and the matching conditions[
T̂
]
= 0, κ

[
dT̂

dx

]
= −qu(M0 − M̂b), (4.136)

u2 = Fp(T̂b), M̂b =M0 exp(−ĵ0(T̂b)), (4.137)

ĵ0(T̂b) ≡ 2
√
I0
k02
k01

exp
E1 − E2

RT̂b
.

Here, the quantities with the hat denote the stationary solution, and u = −ϕt
is the propagation velocity of the uniformly propagating wave. The stationary
solution that satisfies (4.133)-(4.136) is given by

T̂ (x) =
{

T0 + (T̂b − T0) exp
(
u
κx
)
, x < 0

T̂b, x > 0
, (4.138)

4.1 Uniformly propagating wave
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M̂(x) =
{

M0, x < 0
M̂b, x > 0

, (4.139)

where u, M̂b and T̂b are determined from

T̂b = T0 + q(M0 − M̂b), M̂b = f(T̂b), û2 = F (T̂b). (4.140)

In order to complete the solution of the stationary problem, we have to de-
termine from (4.140) the propagation velocity u, the temperature T̂b in the
reaction zone, and the concentration M̂b of the unreacted monomer. The first
two equations determine T̂b and M̂b, and then the last equation gives u. It is
easy to find an approximate solution for T̂b and M̂b in the case when M̂b is
small. Then T̂b is close to the adiabatic temperature Ta and approximately

M̂b = f(Ta), T̂b = T0 + q(M0 − M̂b).

We remark that if a more accurate solution is needed, the above equations can
be easily converted into a convergent iteration procedure.

As was the case with gasless combustion, the uniformly propagating poly-
merization wave may become unstable as parameters are varied. We perform a
linear stability analysis of the uniformly propagating polymerization wave by
employing the reaction front approximation.

We perturb the stationary solution as we did in the case of gasless combus-
tion as

T = T̂ (x) + δ exp(ωt+ iky)T̃ (x), (4.141)

M = M̂(x) + δ exp(ωt+ iky)M̃(x), (4.142)

J = Ĵ(x) + δ exp(ωt+ iky)J̃(x), (4.143)

ϕ = −ut+ δ exp(ωt+ iky). (4.144)

As before, k is the wavenumber, ω is the temporal frequency, and δ is the
small magnitude of the perturbations. All of the steps of the analysis (and
even many intermediate results) here are the same as for gasless combustion,
and, therefore, we omit the details. We substitute these expansions into the
reactionless equations, boundary conditions and matching conditions. We then
linearize the problem and solve the linear problem to obtain the dispersion
relation

4Ω3 +
(
1 + 4s2 + 2z −

(z
2

− P
)2)

Ω2 +
z

2
(1 + 4s2 + P )Ω + s2

z2

4
= 0.

(4.145)

4.2 Linear stability analysis of frontal polymerization
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Here, we used the same nondimensional quantities as in (3.83), and

P = qf ′(T̂b) ≡ q
∂M̂b

∂T̂b
.

An instability occurs when a pair of complex conjugate eigenvalues crosses the
imaginary axis as the parameters vary. At the stability boundary,

zc = 4 + 2P − 4s2 (1 + 4s2 + P
)−1

+2

√(
2 + P − 2s2 (1 + 4s2 + P )−1

)2 − P 2 + 1 + 4s2,

Ω = ±iω0, ω2
0 =

1
8
zc(1 + 4s2 + P ). (4.146)

Figure 8. Neutral stability curves in the (s, z) plane for various values of P . Above respective
curves, uniform propagation is unstable.

The neutral stability curve in the (s, z)-plane has a minimum at s = sm > 0
for all P ≥ 0. Neutral stability curves are shown in Figure 8 for physically
meaningful values of P . We remark that the parameter P is related to the
concentration of the unreacted monomer. Thus, it is not surprising that the
dispersion relation for P = 0 coincides with the dispersion relation in the GC
model (3.83).

There are interesting experimental results concerning the nonlinear dynam-
ics of polymerization waves [24, 50, 72, 74, 77]. In [77] for example, non-
standard geometries such as conical test tubes are used. Theoretical work on

4.3 Weakly nonlinear analysis of frontal polymerization
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Figure 9. Graphs of β1r (upper curve) and β2r (lower curve) versus the nondimensional
0

this subject is limited. The only nonlinear analysis studies are those of one-
dimensional pulsating modes of propagation [32] and spinning and standing
modes in a cylindrical shell [17, 18].

In the latter case, the authors derived Landau equations (3.114) for the am-
plitudes of the unstable modes and determined the dependence of the coeffi-
cients of these equations on the parameters of the FP problem. Figure 9 depicts
the real parts of the coefficients β1 and β2 as functions of j0 (which is pro-
portional to the initial concentration of the initiator) for the typical parameter
values [81] (E1 − E2)/(RgqM0) = 19.79 and E1/(RgqM0) = 58.4. The
wavenumber s = 0.55, which is close to the value sm at which the neutral
stability curve has a minimum.

We see that both quantities are negative, which implies that both traveling
and standing waves appear as a result of a supercritical bifurcation. For the
parameter values chosen, β1r > β2r, so the traveling waves are stable while
the standing waves are unstable. This observation agrees with the experimental
data in [72], where spinning waves have been observed while standing waves
have not been seen.

initial concentration of the initiator j . Adapted from [17].
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5. Other thermal FP studies

We briefly comment below on some generalizations of the base FP model
discussed in this chapter.

The FP model that we have considered is an adiabatic model – no heat losses
to the environment are accounted for. In reality, it is nearly impossible to avoid
heat losses. Studies of the GC model demonstrate that if the rate of heat loss to
the environment exceeds a critical value then extinction occurs, i.e., no com-
bustion wave propagation is possible (see [55, 100] and the references therein).
Indeed, the larger are heat losses, the slower is the wave propagation, so that
effective heat losses per unit time increase, which results in even slower wave
propagation, etc. This extinction phenomenon also occurs in FP. However,
there are differences between the two processes. We have seen that the prin-
cipal qualitative difference between the two models is that in the FP model,
the monomer is not completely consumed in the reaction zone. The remaining
monomer is responsible both for the greater resistance of polymerization waves
to heat losses and for their more stable behavior [29, 87]. Indeed, heat losses
decrease the propagation velocity, so that the residence time of the monomer
in the reaction zone is greater. Therefore, in the nonadiabatic FP model, the
monomer reacts to a higher conversion than in the adiabatic problem, thus
producing more heat and helping the wave to survive. In the GC model, this
survival mechanism is absent because conversion is complete.

Mathematical models of the frontal copolymerization process were devel-
oped, studied and compared with experimental data in [67, 90]. An interesting
observation was that the propagation speed of the copolymerization wave was
not necessarily related to the propagation speeds in the two homopolymeriza-
tion processes, in which the same two monomers were polymerized separately.
For example, the propagation speeds in the homopolymerization processes
could be 1 cm/min in each, but in the copolymerization process, the speed
could be 0.5 cm/min. Mathematical models of free-radical binary frontal poly-
merization were presented and studied in [66, 91]. Another model in which
two different monomers were present in the system (thiol-ene polymerization)
was discussed in [21]. A mathematical model that describes both free-radical
binary frontal polymerization and frontal copolymerization was presented in
[65]. The paper was devoted to the linear stability analysis of polymerization
waves in two monomer systems. It turned out that the dispersion relation for
two monomer systems was the same as the dispersion relation for homopoly-
merization. In fact, this dispersion relation held true for N -monomer systems
provided that there is only one reaction front, and the final concentrations of
the monomers could be written as a function of the reaction front temperature.

Sandwich-type FP models were considered in [19, 20]. The geometry of
the problem involves two adjacent layers that can exchange heat. One layer
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contains the reactive mixture that includes a monomer and an initiator, while
the other layer is comprised either of a heat conducting inert material [20] or
a chemically active mixture [19]. The mathematical model is similar to that
in GC [82]. A motivation to study this geometry came from experiments on
fabrication of polymer-dispersed liquid-crystal materials where this geometry
has been utilized. An interesting feature of the problem is the existence of
several propagating waves for the same parameter values.

Some other works that we would like to mention studied the kinetics effects
in FP [85], the influence of the gel effect on the propagation of thermal frontal
polymerization waves [28], the use of complex initiators as a means to increase
the degree of conversion of the monomer [30], and FP of metal-containing
monomers [3].

In the frontal polymerization studies discussed in this chapter, the focus was
on the propagation of the polymerization wave, its velocity, stability, the spatial
profiles of the species involved, etc. Formation of a polymerization front from
relevant initial conditions was presumed. From experimental work, however,
it is known that formation of the front does not always occur (this is similar
to ignition considerations in GC problems [56, 100]). The problem of forma-
tion of a polymerization front by a high temperature heat source was studies in
[33, 80]. An asymptotic analysis of the problem resulted in an integral equa-
tion. Two parameters govern the qualitative behavior of the solution to the
integral equation. Depending on the magnitude of these parameters, the solu-
tion exhibits either bounded or unbounded behavior indicating the formation
or non-formation of a polymerization wave. Paper [33] contains a numerical
analysis of the model.

6. Conclusion

Frontal polymerization, the process of propagation of a polymerization wa-
ve, is important from both fundamental and applied viewpoints. In this chapter,
we reviewed theoretical results on the base model of free-radical frontal poly-
merization. Based on the analogy of the gasless combustion model and using
the methods developed in combustion theory, we determined uniformly propa-
gating polymerization waves and discussed their linear and nonlinear stability.

Frontal polymerization can be used to synthesize valuable products, e.g.
nanocomposites and liquid crystals, and theoretical studies represent an im-
portant tool for understanding the process.
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Abstract
We consider the gasless combustion model of the SHS (Self-Propagating

High Temperature Synthesis) process in which combustion waves, referred to
as solid flames, are employed to synthesize desired materials. Specifically, we
consider the combustion of a solid sample in which combustion occurs on the
surface of a cylinder of radius R. In addition to uniformly propagating pla-
nar waves there are many other types of waves. The study of different waves
is important since the nature of the wave determines the structure of the prod-
uct material. The model depends, in particular, on the Zeldovich number Z, a
nondimensional measure of the activation energy of the reaction, and the nondi-
mensional radius R of the sample. In our analytical study we consider R � 1
and derive coupled nonlocal complex Ginzburg–Landau type equations for the
amplitudes of counterpropagating waves along the front as functions of slow
temporal and spatial variables. The equations are written in characteristic vari-
ables and involve averaged terms which reflect the fact that on the slowest time
scale, the effect on one wave, of a second wave traveling with the group velocity
in the opposite direction on the intermediate time scale, enters only through its
average. Solutions of the amplitude equations in the form of traveling, stand-
ing, and quasiperiodic waves are found. In our numerical study we describe
various types of propagating solid flames as parameters of the problem are var-
ied, including (i) uniformly propagating planar flames, (ii) pulsating propagating
planar flames, and flames exhibiting more complex spatiotemporal dynamics.
These include (iii) spin modes in which one or several symmetrically spaced
hot spots rotate around the cylinder as the flame propagates along the cylindri-
cal axis, thus following a helical path, (iv) counterpropagating (CP) modes, in
which spots propagate in opposite angular directions around the cylinder, exe-
cuting various types of dynamics, (v) alternating spin CP modes (ASCP), where
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rotation of a spot around the cylinder is interrupted by periodic events in which a
new spot is spontaneously created ahead of the rotating spot, (vi) modulated spin
waves consisting of rotating spots which exhibit a periodic modulation in speed
and temperature as they rotate (vii) asymmetric spin waves in which two spots of
unequal strength and not separated by angle π, rotate together as a bound state,
(viii) modulated asymmetric spin waves in which the two asymmetric spots os-
cillate in a periodic manner as they rotate, alternately approaching each other
and then moving apart periodically in time, and others.

Keywords: Solid fuel combustion, SHS, Spatiotemporal pattern formation

1. Introduction

In the SHS (Self Propagating High Temperature Synthesis) process of ma-
terials synthesis reactants are ground into a powder, cold pressed and ignited
at one end. A high temperature combustion wave then propagates through the
sample converting reactants into products. When gas plays no significant role
in the process, the resulting gasless combustion wave is referred to as a "solid
flame". The process was pioneered in the former Soviet Union, and has sub-
sequently been the focus of a great deal of research e.g., [24, 25, 28]. The
SHS process enjoys a number of advantages over conventional technology, in
which the sample is placed into a furnace and "baked" until it is "well done".
The advantages include (i) simpler equipment, (ii) significantly shorter syn-
thesis times, (iii) greater economy, since the internal energy of the chemical
reactions is employed rather than the costly external energy of the furnace,
(iv) greater product purity, due to volatile impurities being burned off by the
very high combustion temperatures of the propagating combustion wave, and
(v) no intrinsic limit on the size of the sample to be synthesized, as exists in
conventional technology.

The objective of this paper is to examine the roles of the Zeldovich number
Z and the nondimensional sample sizeR on the different modes of propagation
possible in SHS. In particular, we expand on results in [6] for surface modes
on a cylinder of radius R as well as chaotic modes occurring in planar SHS
combustion. The characteristics of the resulting combustion wave depend sig-
nificantly on the mode of propagation and impact on the nature of the product
synthesized and indeed the ability of the combustion wave to propagate in large
samples.

We note that burning sometimes occurs throughout the sample, while under
other circumstances it occurs only on the surface of the sample, though this
is generally due to the effect of limited oxidizer filtration through the sides of
the sample, which is not accounted for here. In this chapter we nevertheless
restrict consideration to surface burning so that the process can be modeled in
two dimensions. Our model thus describes solid flame propagation in a thin
cylindrical annulus between two coaxial cylinders, as in the synthesis of hollow
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tubes. It also provides insight into the behavior of combustion throughout the
sample since visual observation is limited to views of the surface of the sample.
Since the activation energy of the combustion reaction is typically large, reac-
tion is restricted to a thin zone. No appreciable reaction occurs ahead of the
zone since the temperature is not sufficiently high and no reaction occurs be-
hind the zone since the reactants have been consumed. In analytical studies the
thin reaction zone is often approximated by an interface separating the fresh
unburned mixture from the burned product. The resulting model, referred to
as the reaction sheet model, employs surface delta function kinetics with reac-
tion confined to the interface. In numerical computations there is no interface,
but rather a thin reaction zone which we refer to as the combustion front. The
model employs Arrhenius reaction kinetics.

It is known that in many instances the combustion wave does not propagate
in a uniform spatial and temporal manner, but rather nonuniformities can de-
velop in the front speed and in the temperature along the front as well. Since
the mode of propagation determines the microstructure of the product, i.e., the
nature of the final product, a study of different modes of propagation is im-
portant for technological applications of the SHS process. In particular, it is
known that for sufficiently large activation energies (more precisely Zeldovich
numbers, defined below) the uniformly propagating combustion wave is unsta-
ble. In this case the only stable planar mode is the planar pulsating mode in
which there is no spatial structure along the front, i.e., the combustion wave
remains planar while the front speed and temperature oscillate in time in a
periodic, quasiperiodic or chaotic fashion, e.g., [3, 8, 9, 18, 21, 26, 31, 32].

Other modes of propagation involve spatial as well as temporal structure.
The modes described in this chapter involve one or more localized hot spots
(temperature maxima) along the front which exhibit a variety of dynamics. The
spots become highly localized as the sample size increases. We will see that,
in a sense, the spots behave like particles, which execute interesting dynam-
ics. The modes described here involve dynamical behavior of one or more hot
spots. The modes of propagation include spin combustion, in which one or
more hot spots move on a helical path along the surface of the cylinder, and
multiple point combustion, in which hot spot(s) repeatedly appear, disappear
and then reappear. Spinning waves were observed in [26]. Subsequent obser-
vations of spinning waves and other nonplanar modes are described in, e.g.,
[13, 19, 24, 25, 34]. Nonplanar modes, including spinning modes, have also
been described analytically, e.g., [19, 33], and numerically, e.g., [1, 5, 11, 14,
15].

Another family of nonplanar modes of propagation involves pairs of coun-
terpropagating (CP) hot spots along the front. Such modes of solid flame prop-
agation have been observed experimentally in [27] and have been described
via numerical computations in [11]. It was found in [27] that under low pres-
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sure conditions the desired product was formed by the high temperature spots.
Thus, the spots play a crucial role in the synthesis process. The observations
in [27] indicated that the spots appeared to be annihilated at a collision, only
to be regenerated further along the sample. The spots can be regenerated at the
same angle where the collision occurred or on the opposite side of the cylin-
der, e.g., 180◦ away from the collision site, e.g., [11, 27]. Furthermore, for
some parameters the angles corresponding to creation and annihilation sites
can spontaneously change as the mode propagates along the cylinder ([11]).
This behavior was described in [11] employing the model for surface combus-
tion described below. However, it was shown that the annihilation and creation
of spots was only apparent. After collision the spots would stay at a relatively
low undetectable level until they would be amplified to a detectable level fur-
ther along the sample. The results in [11] suggest that CP modes develop as
transitions from standing waves. In this chapter we show that CP behavior can
also be associated with spinning modes.

An important issue for both the theory and applications of SHS is the be-
havior of unsteady solid flames in large scale systems, e.g., cylinders whose
diameter significantly exceeds the scale of the combustion wave, i.e., the size
of the preheat zone, which is of the order of millimeters. Technological ap-
plications of SHS are generally associated with systems whose scale is much
larger since often the desired goal is to synthesize large samples of material. In
addition, the problem is of theoretical interest since it involves a much wider
range of scales than is typically encountered in analysis of SHS problems. Vir-
tually all analytical studies of solid flame propagation employ the Zeldovich
number Z = N(1 − σ)/2, where N is the suitably nondimensionalized acti-
vation energy and σ = Tu/Tb where Tu and Tb are the unburned and burned
temperatures far ahead of and far behind the front, respectively, as a control
parameter. We also employ the radius R of the sample as a control parameter,
as in [11]. Here, we consider that the cylindrical radius increases up to O(10)
times the size of the preheat zone. Furthermore, the scale of the patterns, e.g.,
the extent of the localized hot spots associated with spin combustion, becomes
progressively narrower as R increases and can be smaller than the size of the
preheat zone. Thus, combustion waves for large diameter samples involve the
effect of small scale behavior on the large scale dynamics, i.e., on the scale of
the sample size. One characteristic that we use to categorize these branches
is the mean axial flame speed, V , which is both a readily measurable quantity
and which is related to the ability of the flames to survive when heat losses are
accounted for.

We first describe some analytical results and then describe results obtained
from computations. We analytically derive coupled nonlocal complex Ginzburg-
Landau type equations for the amplitudes of counterpropagating waves along
the front as functions of slow temporal and spatial variables. The equations are
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written in characteristic variables and involve averaged terms which reflect the
fact that on the slowest time scale, the effect on one wave, of a second wave
traveling with the group velocity in the opposite direction on the intermediate
time scale, enters only through its average. Solutions of the amplitude equa-
tions in the form of traveling, standing, and quasiperiodic waves are found.

Our numerical studies concern the behavior of solutions for a fixed R, with
Z employed as the control parameter. Planar front solutions always exist. The
planar solutions can be either uniformly propagating, where the front temper-
ature and front speed are constant, or planar pulsations, where the temperature
on the front and the front speed oscillate in time, often exhibiting complex
dynamics, e.g., [9, 31]. It is known that as Z increases past a critical value
the uniformly propagating solutions lose stability to pulsating flames if R is
sufficiently small and to spinning flames if R is sufficiently large, e.g., [21].
In the case of planar pulsations, as Z increases further the pulsations become
increasingly relaxational, with temporally localized large temperature spikes
alternating with long periods of relatively low temperatures. A sequence of
period doubling transitions is known to occur as Z increases further, e.g, [9].
The pulsating planar solutions have a lower mean front speed than the uni-
formly propagating flame and the mean front speed generally decreases as the
pulsating solutions become more relaxational, i.e., as Z increases.

In our computations we fixZ at a value beyond the stability boundary so that
the uniformly propagating planar solution is unstable and the pulsating planar
solution has become relaxational and undergone a transition from a singly peri-
odic solution to a period doubled (2T ) solution. Furthermore, the mean speed
of the pulsating planar solution is reduced considerably from the adiabatic,
uniformly propagating flame speed. While we do not consider heat losses in
this chapter, it is well known that slowly propagating flames are more prone
to extinction via heat losses than more rapidly propagating flames. However,
heat losses are also a source of instability. Thus, on the route to extinction
interesting dynamics occur (see e.g., [16, 30].

We find that the pulsating planar solution is stable for small R, but becomes
unstable to nonplanar perturbations for larger values of R. Our results show
that the transition from pulsating planar, i.e., one dimensional behavior, to spot
behavior is a jump transition, i.e., the spots enter with finite amplitude as R
increases, consistent with the phenomenological description in [2]. This is
not surprising since instability of the uniformly propagating solution is also
expected to lead to instability of spinning solutions which differ infinitesimally
from it.

We next summarize the most important modes that we find. All modes are
characterized by hot spots on the front exhibiting various dynamical behavior.
These modes are described in more detail in section 4. As R increases the
first nonplanar mode that we find corresponds to a pair of counterpropagating
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(CP) hot spots, with the transition occurring at R = Rcp. The front speed V
associated with these modes near the transition point is larger than that of the
unstable, uniformly propagating planar mode. CP modes are characterized by
two counterpropagating hot spots which either collide and pass through each
other unchanged except for a phase shift, as in the behavior of solitons, or are
weakened in the collision and subsequently strengthened. The latter can occur
in various ways as described in [11]. A pair of CP spots will have two collision
sites. Near the transition the behavior at each collision site, i.e., of each colli-
sion, is symmetrical. As R increases, the collisions of the counterpropagating
spots become asymmetrical, so that the amplitudes of the spots at one collision
site differ from those at the other. Thus, there is apparent creation or annihi-
lation at the sites, consistent with the observations in [27]. This increasingly
complex dynamical behavior is accompanied by a reduction in the mean flame
speed V . We provide only a limited description of the CP modes as they were
discussed in detail in [11], albeit for different parameter values.

Spin modes enter at R = Rtw1 > Rcp. Our results indicate that, as with
the CP modes, the spin modes enter with finite amplitude, consistent with the
phenomenological description in [2]. This is not surprising since instability
of the uniformly propagating solution is also expected to lead to instability of
spinning solutions which differ infinitesimally from it. The first spin mode is
a traveling wave with one hot spot (TW1). As R increases, the spot becomes
more localized and the temperature of the spot increases. This increasing lo-
calization and relaxational behavior of the spin mode is associated with a re-
duction in the mean flame speed V . We find a transition to modulated traveling
waves (MTWs) at Rmtw > Rtw1, in which the intensity and speed of the hot
spot oscillate in time as the wave propagates.

We next find a transition to a family of modes which does not appear to
have been previously observed. For Rascp > Rmtw we find Alternating Spin
CP modes (ASCP). For most of the time there is a single hot spot spinning
around the cylinder. Call this spot S1 and say that it is spinning clockwise. At
certain times (periodic in an appropriately moving coordinate system), a new
spot is spontaneously created ahead of S1. Call this spot S2. The new spot
S2 splits into two counterpropagating spots, S2,c and S2,cc which propagate
in the clockwise and counterclockwise directions, respectively. The spots S1
and S2,cc subsequently collide and are eventually mutually annihilated after
the collision while the spot S2,c continues to propagate. In contrast to the CP
modes described above, where the annihilation is only apparent, i.e., a weak
spot emanates from the collision, we find that actual annihilation occurs here.
The spot S2,c continues rotating clockwise until a new spot is created ahead of
it and the process repeats periodically in time. The rotation rate is nonuniform,
although it is roughly uniform away from the CP events. We believe that the
behavior of the ASCP mode is a consequence of the increasing localization
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of the spots as R increases. As the spot is localized, a considerable region of
the combustion front is nearly planar. Since planar fronts are unstable for the
parameters that we consider, additional spots are expected to form, leading to
the pattern described above. The ASCP branch evolves from a branch of 1-
headed spin solutions, which is stable up to R = O(10) in units of the preheat
zone length.

We have also found other spin modes. For any value of R for which a TW1
exists, a TW2 will exist for 2R, simply by replicating the TW1 solution. Thus,
since stable TW1 modes are found in the interval (Rtw1, Rmtw), TW2 modes
exist and may be stable in the interval (2Rtw1, 2Rmtw). Furthermore, the mean
front speed V should be the same as for the corresponding TW1 solution. Thus,
rapid axially propagating TW2 modes should exist for R near 2Rtw1. We find
that the replicated TW2 modes are stable but only for a subset of the interval
(2Rtw1, 2Rmtw). The replicated TW2 mode clearly involves two hot spots of
equal intensity which are symmetric, by which we mean that the two identi-
cal spots are symmetrically located on the circle, i.e., are separated by angle
ψ = π. In addition to the TW2 modes we have found a family of asymmetric
traveling waves consisting of 2 rotating hot spots which are of unequal tem-
perature and are asymmetric, i.e., separated by angle ψ < π. Nevertheless, the
two spots rotate together as a traveling wave in which the two spots are bound
together. We call these modes ATW2 for Asymmetric TW2 modes. We find
such modes for relatively large values of R, and their axial propagation speeds
are smaller than for the replicated TWs. We also find modulated ATW2 modes
(MATW2) in which the two spots alternately approach each other and move
apart as they propagate.

We have also investigated 3−headed spins. We find that replicated TW3
modes are not stable. In a limited range of R we have found stable 3-headed
spin modes that are not pure TWs. Rather, each spot alternately speeds up and
slows down so that it alternately approaches and separates from its neighbors.
We find that for R near 3Rtw the behavior is that of a modulated traveling
wave (MTW3) exhibiting quasiperiodic dynamics. For larger values of R, the
behavior is apparently chaotic. At seemingly random times two of the spots
nearly touch, after which one spot is rapidly propelled away from the other as
they rotate. Upon increasing R further we find that two spots collide during
the transient, leading to annihilation of one spot and a collapse of the solution
from three heads to two.

In section 2 we describe the model and briefly describe the numerical method
employed. In section 3 we present our analytical results. In section 4 we dis-
cuss the numerical results in detail.
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2. Mathematical Model

We consider a model which accounts for diffusion of heat and one-step, ir-
reversible Arrhenius kinetics. Since the reactants are solid we neglect diffusion
of mass. We consider the case where combustion occurs on the surface of a
cylindrical sample of radius R̃. We further assume that there is a deficient
component of the solid mixture and that all other components are present in
sufficiently large quantities that the evolution of only the deficient component
needs to be followed in the model.

We let ˜ denote dimensional quantities and let x̃ and ψ denote the axial and
angular cylindrical coordinates, respectively, and assume that the combustion
wave propagates in the −x̃ direction. Let T̃ and Ỹ denote the temperature and
mass fraction of the deficient component respectively. The model is given by

T̃t̃ = λ̃T̃x̃x̃ + λ̃
1
R̃2

T̃ψψ + β̃ÃỸ exp

(
− Ẽ

R̃gT̃

)
, (2.1)

Ỹt̃ = −ÃỸ exp

(
− Ẽ

R̃gT̃

)
,

where λ̃ is the thermal diffusivity, Ã is the frequency factor, β̃ is the scaled
heat of reaction, Ẽ is the activation energy (all assumed constant) and R̃g is
the gas constant. The boundary conditions are

Ỹ → Ỹu, T̃ → T̃u, as x̃ → −∞,

T̃x̃ → 0, as x̃ → ∞.

We note that T̃ → T̃b as x̃ → ∞ where the subscripts u and b refer to unburned
and burned respectively, however, we employ the Neumann condition in our
model. The solution is periodic in ψ with period 2π. We observe that Tb is
derivable from the time-independent solution of the problem as T̃b = T̃u+β̃Ỹu.

We nondimensionalize as in [21] by introducing

Y =
Ỹ

Ỹu
, Θ =

T̃ − T̃u

T̃b − T̃u
, t =

t̃Ũ2

λ̃
, x =

x̃Ũ

λ̃
,

σ =
T̃u

T̃b
, N =

Ẽ

R̃gT̃b
.

Here,

Ũ2 =
λ̃Ã

2Z
exp(−N),

where Z = N(1 − σ)/2 is the Zeldovich number, Ũ is the velocity of the
uniformly propagating front for asymptotically large Z ([18]), and lengths are
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scaled by the size of the preheat zone. We next introduce the moving coordi-
nate

z = x− φ(t),

where φ(t) is defined by Y (φ(t), ψ = 0, t) = 0.5. Here, the choice of the angle
ψ at which Y = 0.5 is arbitrary; ψ = 0 is chosen merely for convenience.
The velocity φt and the location x = φ(t) do not model the front velocity
and location when there are nonplanar disturbances, since they, unlike these
functions, also depend on ψ. However, for all angles the reaction zone will be
localized in a neighborhood of z = 0. Thus, φt is the approximate velocity of
the wave, so that the transformation to the moving coordinate system enables
us to localize the reaction zone to a neighborhood of z = 0.

In terms of the nondimensionalized quantities, the system (2.1) becomes

Θt = φtΘz +Θzz +
1
R2
Θψψ + 2ZY exp

(
N(1− σ)(Θ− 1)
σ + (1− σ)Θ

)
,

Yt = φtYz − 2ZY exp
(
N(1− σ)(Θ− 1)
σ + (1− σ)Θ

)
, (2.2)

where

R =
R̃Ũ

λ̃
.

The coefficient of the reaction term arises from the use of the asymptotic pla-
nar adiabatic burning velocity Ũ in the nondimensionalization. The use of the
asymptotic value of Ũ with finite activation energy affects the length and time
scales of the computation (for example, uniformly propagating, planar solu-
tions at finite activation energy have a front velocity slightly different from
unity), but does not change any of the resulting spatiotemporal patterns.

In addition, we introduce a cutoff function g(Θ)which multiplies the Arrhe-
nius term so that the reaction term vanishes for sufficiently small temperatures.
The function g(Θ) is defined by

g(Θ) = 0, Θ < Θcut, g(Θ) = 1, Θ > Θcut.

We have tested both discontinuous and smooth cutoff functions and find that
the different possibilities have virtually no effect on the computed solution.
The cutoff function is employed to avoid the "cold boundary difficulty" which
arises because the Arrhenius model for the reaction term does not vanish far
ahead of the front, which is incompatible with the boundary condition T = Tu
as x → ∞. In addition, in practice no significant reaction occurs ahead of
the reaction zone. For the computations presented here Θcut = .03. We have
found that the results are insensitive to variations in Θcut as long as its value is
of this order.
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The boundary conditions are specified at finite points far from the reaction
zone which is in the vicinity of z = 0. The computations presented here were
obtained with the boundary conditions imposed at z = ±12. There is virtually
no effect of further increasing the size of the computational domain. Note that
no boundary condition is imposed on Y in the burned region.

Since we consider distributed Arrhenius kinetics, there is strictly speaking
no combustion front but rather a narrow reaction zone in which the chemical
reaction terms are significant. However, a front can be defined in a number of
ways, e.g., as the curve of maximum reaction rate or as the curve where the
reactant mass fraction decreases to half its initial value, etc. These procedures
treat the front as a curve for each value of time, zf (ψ, t), along which tem-
perature, mass fraction and reaction rate vary. In order to present our results,
we have developed a procedure to approximate the combustion front and the
temperature on the front as a function of time t and the cylindrical angle ψ. We
define the front for each value of ψ as the z location where the reaction term
is maximal. Thus, for each value of ψ and t we compute a value z = zf (ψ, t),
where the reaction term takes a maximum and define the resulting function as
the combustion front. That is, with

W (z, ψ, t) = Y exp
(
N(1− σ)(Θ− 1)
σ + (1− σ)Θ

)
,

we let zi denote the axial collocation points, and compute W at all collocation
points. For each value of ψ and t we find im, the value of i where W (zi, ψ, t)
attains its maximum. We then locally fit W to a quadratic in z using the points
W (zim , ψ, t), W (zim+1 , ψ, t) and W (zim−1 , ψ, t). We next compute the value
of z which maximizes this quadratic and use this value as zf (ψ, t), our approx-
imation to the front location. Finally, we compute Θf (ψ, t), the temperature
at zf (ψ, t), by Chebyshev interpolation. We refer to Θf (ψ, t) obtained in this
manner as the temperature at the front.

In our model for the front it does not follow that Θ is maximal at the front.
In many instances the location of maximum temperature does in fact correlate
with the front location as defined above. However, under certain circumstances
the temperature can increase behind the front. Axial profiles of temperature for
a one dimensional problem are shown in [9].

a Fourier pseudo-spectral method in ψ. In order to better resolve the reaction
zone in which the solution changes rapidly , we adapti vely transform the co-
ordinate z. The transformation has the effect of expanding the reaction zone
so that in the new coordinate system the solution varies more gradually and is

ences, e.g., [11, 6].

For the numerical computations we employ an adaptive Chebyshev pseu-

therefore easier to compute. The method is described in detail in other refer-

dospectral method in z that we previously developed, e.g., [8,4], together with
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3. Analytical Results

For the analytical studies we employ the reaction sheet approximation, in
which the distributed Arrhenius kinetics is replaced by a surface delta function
corresponding to the reaction being confined to the interface φ(ψ, t). For sim-
plicity we employ Cartesian coordinates. We introduce the moving coordinate
system (ξ, y) where ξ = x − φ(y, t). The mass fraction Y of the deficient
reaction component is given by Y = 1 for ξ < 0, and Y = 0 for ξ > 0,
which corresponds to complete consumption of the reactant at the interface.
The temperature Θ ≡ T−Tu

Tb−Tu
then satisfies

∂Θ
∂t

− ∂φ

∂t

∂Θ
∂ξ

= ΔΘ, (3.3)

subject to the boundary conditions Θ→ 0 as ξ → −∞ and Θ→ 1 as ξ → ∞.
The interface φ satisfies

∂φ

∂t
= −

(
1 +

(
∂φ

∂y

)2
)1/2

eZ[Θ(t,0,y)−1]. (3.4)

Here, the LaplacianΔ is expressed in the moving coordinate system. At the in-
terface the temperature is continuous, i.e., [Θ] = 0, while its derivative jumps,

i.e., [∂Θ∂ξ ] =
∂φ
∂t /

(
1 +

(
∂φ
∂y

)2)
. Here, [f ] = f(ξ = 0+) − f(ξ(0−) denotes

the jump in the quantity f across the interface.
The problem possesses a solution which describes a uniformly propagating

planar interface. This solution, which we term the basic solution, is given by

Θ̂(ξ) =
{
1, ξ > 0
eξ, ξ < 0 , (3.5)

Φ̂(t) = −t. (3.6)

The stability of this solution depends on the parameters of the problem. We
first note that the Zeldovich number Z can be interpreted as the ratio of the
diffusion time scale tD and the reaction time scale tr. Thus, for Z sufficiently
small all the heat released in the reaction can be diffused away from the inter-
face. However, for Z sufficiently large this is not the case. The heat released in
the reaction which exceeds the amount of heat that can be carried away by dif-
fusion necessarily raises the temperature at the interface. This, in turn, leads to
an increase in the thermal gradient into the fresh fuel (leading to the interface
speeding up), which lowers the interface temperature (leading to the interface
slowing down), and the process repeats. This is the mechanism for the onset
of oscillatory propagation as Z exceeds a critical value Zc.
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A linear stability analysis of the basic solution yields the dispersion relation

4(iω)3 + (iω)2(1 + 4Z − Z2 + 4k2) + iωZ(1 + 4k2) + Z2k2 = 0, (3.7)

where iω is the growth rate and k is the wave number of the perturbation. The
basic solution is linearly stable (unstable) if �(iω) < 0 (�(iω) > 0). The
neutral stability curve in the (k, Z)-plane is determined by

(1 + 4k2)Z2 − 4(1 + 3k2)Z − (1 + 4k2)2 = 0.
The basic solution (3.5)-(3.6) is linearly stable (unstable) in the region below
(above) the curve. The curve has a minimum at k = k0 = 0.5, Z = Zc = 4.
The frequency of oscillation for a solution on the neutral stability curve at
the wavenumber k is given by ω2 = (1 + 4k2)Z/4. We observe that ω0 =
ω(k0) =

√
2. We note that due to translation invariance the dispersion relation

(3.7) also admits, for all values of Z, the trivial solution ω = k = 0, which
corresponds to the eigenfunction Θ̂

′
. Since 0 < ψ < 2π, only discrete points

on the neutral stability curve are permitted, with their location determined by
the sample size R. For R sufficiently small all the points except for the point
corresponding to (k = 0, Z = 2 +

√
5) which corresponds to planar pulsa-

tions, occur very high up on the curve. Thus, for R sufficiently small only the
planar pulsating solution is expected to be observed, in agreement with exper-
imental observations. As R is increased the points high up on the curve begin
to march downward, and additional, more complex spatiotemporal modes of
propagation are expected to be observed, e.g., spin modes which have been
experimentally observed for larger R.

An analysis of the bifurcation from uniformly propagating planar modes to
pulsating propagating planar modes was carried out in [21], which showed that
the bifurcation is a supercritical Hopf bifurcation. Weakly nonlinear analyses
of the problem in 3D, in which the effect of melting ahead of the reaction inter-
face occurred, exhibited the bifurcation of spinning as well as pulsating planar
propagation [19]. Similar analyses near codimension-two points [12, 20] de-
scribed the interaction of the pulsating and spinning modes. The effect of heat
losses leading to extinction, was considered in [16]. Finally, a description of
the transition to a spiral mode of propagation was considered in [22]. In this
analysis, gasless solid fuel combustion in a thin disk ignited at a point was
considered. Consider the behavior on the upper face of the disk. It was shown
that a circular interface with a uniform temperature distribution propagated
outward from the ignition point at a uniform rate. When a critical radius was
reached, a hot spot (local temperature maximum) appeared on the circular in-
terface. As the interface continued to propagate outward, the hot spot rotated
around the expanding circle at a uniform rate, leading to the hot spot following
a trajectory which is an Archimedean spiral. Furthermore, additional hot spots
appeared, sometimes leading to the appearance of a luminous circle.
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In [23] a weakly nonlinear analysis for the case of counterpropagating waves
was considered. In this case coupled nonlocal complex Ginzburg-Landau equa-
tions for the amplitudes of the counterpropagating waves were derived. We
now summarize the derivation. Again, for simplicity, we consider the prob-
lem in Cartesian coordinates. Moreover, though the derivation in [23] was for
the case when the effect of melting was accounted for, here we do not include
melting effects.

We introduce the perturbation Ψ as

φ = −t+Ψ. (3.8)

We then formally introduce an operator ℵ which acts on any smooth function
v(ξ) as

ℵ(v) = (exp(Ψ
∂

∂ξ
))v(ξ) ≡

∞∑
j=0

1
j!
(Ψ

∂

∂ξ
)
j

v(ξ), (3.9)

and define the perturbation w of the basic solution Θ̂ as

Θ = ℵ(Θ̂ + w). (3.10)

We observe that the operator (3.9) represents a shift in ξ. We choose the pertur-
bation to be of this form since it will simplify the ensuing calculations. Substi-
tuting (3.8), (3.10) into equations (3.3)–(3.4) for Θ and φ subject to the jump
conditions, we find that w and Ψ satisfy

ℵ(Lw) ≡ ℵ
(
∂w

∂t
+
∂w

∂ξ
− ∂2w

∂ξ2
− ∂2w

∂y2

)
= 0, (3.11)

∂Ψ
∂t
= 1−

(
1 +

(
∂φ

∂y

)2
)1/2

exp(Zℵ(Θ̂ + w)(t, 0, y)− 1), (3.12)

[ℵ(Θ̂+w)] = 0,
[
∂ℵ(Θ̂ + w)

∂ξ

]
=
(
−1 + ∂Ψ

∂t

)
/

(
1 +

(
∂Ψ
∂y

)2
)
, (3.13)

w → 0 as ξ → −∞, (3.14)

| w |< ∞ as ξ → +∞, (3.15)

| w |< ∞ as y → ±∞. (3.16)

We seek solutions with slowly–varying amplitudes when the parameter Δ is
near the stability boundary. Therefore we introduce the small parameter ε by
defining

Z = Zc(1 + σε2). (3.17)
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We then introduce the slow time and space variables

t1 = εt, t2 = ε2t, (3.18)

y1 = εy, (3.19)

and expand as

w ∼
∞∑
j=1

εjwj(t, t1, t2, y, y1, ξ), (3.20)

Ψ ∼
∞∑
j=1

εjψj(t, t1, t2, y, y1). (3.21)

We note that Ψ, which describes the position of the propagating front, may
grow linearly in time, while the other physical variables are bounded. We
therefore assume in our expansions, that all terms are bounded except for those
terms which are associated with the average position of the front. These terms
are assumed to grow no faster than linearly in time.

Upon formal substitution of (3.17)-(3.21) into (3.11)-(3.16), we equate coef-
ficients of like powers of ε and obtain a sequence of problems for the recursive
determination of wj and ψj j = 1, 2, 3, ...

Lwj = fj , (3.22)

[wj ] = ψj + pj , (3.23)[
∂wj

∂ξ

]
= ψj +

∂ψj
∂t

+ qj , (3.24)

∂ψj
∂t

+ Z0wj

∣∣
ξ=0+ + rj = 0 , (3.25)

wj → 0 as ξ → −∞, (3.26)

| wj |< ∞ as ξ → +∞, (3.27)

| wj |< ∞ as y → ±∞. (3.28)

The functions fj , pj , qj and rj for j = 1, 2, 3 are given by

f1 = 0, p1 = 0, q1 = 0, r1 = 0, (3.29)

f2 = −∂w1

∂t
+ 2

∂2w1

∂y∂y1
, (3.30)

p2 = −1
2
ψ2
1 − ψ1

∂ψ1

∂t
, (3.31)
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q2 = −1
2
ψ2
1 − 2ψ1

∂ψ1

∂t
+
∂ψ1

∂t1
+ ψ1

∂2ψ1

∂y2
+
(
∂ψ1

∂y

)2

, (3.32)

r2 = Zcψ1
∂w1

∂ξ

∣∣∣∣∣ξ=0+ +
1
2

(
∂ψ1

∂t

)2

+
1
2

(
∂ψ1

∂y

)2

+
∂ψ1

∂t1
, (3.33)

f3 = −∂w2

∂t
+ 2

∂2w2

∂y∂y1
− ∂w1

∂t2
+
∂2w1

∂y12
, (3.34)

p3 = −
(
1 +

∂

∂t

)
(ψ1ψ2) +

1
6

(
1 + 2

∂

∂t
− ∂2

∂y2

)
ψ1

3 − 1
2
∂ψ1

2

∂t1
, (3.35)

q3 = −
(
1 + 2

∂

∂t
− ∂2

∂y2

)
(ψ1ψ2)+

+
1
6

(
1 + 3

∂

∂t
− 2 ∂

2

∂y2
+

∂2

∂t2
− ∂3

∂t∂y2

)
ψ3
1+ (3.36)

+
∂2ψ2

1

∂y∂y1
− ∂ψ2

1

∂t1
+
∂ψ2

∂t1
+
∂ψ1

∂t2
,

r3 =
∂ψ2

∂t1
+
∂ψ1

∂t2
− σ

∂ψ1

∂t

+
∂ψ1

∂t

(
∂ψ2

∂t
+
∂ψ1

∂t1

)
+
∂ψ1

∂y

(
∂ψ2

∂y
+
∂ψ1

∂y1

)
+ (3.37)

+
1
3

(
∂ψ1

∂t

)3

+ Zc

(
ψ1

∂w2

∂ξ
+ ψ2

∂w1

∂ξ
+
1
2
ψ2
1

∂2w1

∂ξ2

)
|ξ=0+ .

We consider the case of an already established propagating front, rather than
the problem of the evolution of arbitrary initial data to form the propagating
front. Thus we assume that the transient period of formation has passed. There-
fore, we consider the general long time solution of (3.22)-(3.28) for j = 1,
which is given by

w1 = (R1e1 + S1e2)g(ξ) + c.c.−H1Θ̂
′ , (3.38)

ψ1 = R1e1 + S1e2 + c.c.+H1, e1,2 ≡ exp{i(ω0t± k0y)}. (3.39)

This solution describes periodic waves traveling in opposite directions along
the front. The as yet undetermined complex amplitudes R1 and S1 of these
waves are bounded functions of the slow variables and H1 can grow linearly in
time on the slow time scales. Solvability conditions which are described below
will provide equations for these amplitudes.

Since the long time homogeneous problem (3.22)-(3.28) with j = 1 has
nontrivial solutions, it is necessary that solvability conditions be satisfied in
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order for solutions to exist for j ≥ 2. To derive the solvability conditions we
introduce the inner product

〈f, g〉 = 1
PQ

∫ P

0
dt

∫ Q

0
dy

(∫ 0

−∞
+
∫ ∞

0

)
fgdξ,

for functions f and g that are bounded continuous functions of ξ on (−∞, 0]
and [0,∞), with a possible jump discontinuity at 0. We assume as well that
the product fg −→ 0 as ξ tends to ±∞ in such a way that the above integrals
exist. Furthermore, since (3.38)-(3.39) are periodic in t and y, it is clear that
the functions fj , pj , qj , and rj will also be periodic in t and y. Therefore we
have confined consideration to functions f and g which are periodic in t and
y, with periods P = 2π

ω0
and Q = 2π

k0
respectively. We also define an inner

product (φ, ψ) for any functions φ, ψ which are independent of ξ, as

(φ, ψ) =
1
PQ

∫ P

0
dt

∫ Q

0
φψdy.

The adjoint problem to (3.22)-(3.28) with j = 1 is

∂v

∂t
+
∂v

∂ξ
+
∂2v

∂ξ2
+
∂2v

∂y2
= 0 (3.40)

subject to the jump conditions at ξ = 0

[v] = 0, Zc
∂v

∂t

∣∣∣∣ξ=0 + Zc
∂v

∂ξ

∣∣∣∣ξ=0− +
[
∂2v

∂t∂ξ

]
= 0, (3.41)

and boundary conditions

| v |→ 0 as ξ → +∞, | v |< ∞ as ξ → −∞, (3.42)

| v |< ∞ as y → ±∞.

The long time adjoint solutions, which are P and Q periodic in t and y respec-
tively, are

v1 =
{

e1 exp (−μ2ξ), ξ < 0
e1 exp (−μ1ξ), ξ > 0 , (3.43)

v2 =
{

e2 exp (−μ2ξ), ξ < 0
e2 exp (−μ1ξ), ξ > 0 , (3.44)

v0 =
{
1, ξ < 0
exp (−ξ), ξ > 0 , (3.45)

where μ1, μ2 are given by

μ1,2 = (1± d)/2, d =
√
1 + 4iω0 + 4k20 = 2 + iω0. (3.46)
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The solvability conditions can then be written in the form

〈fj , v〉+ ((pj − qj), v|ξ=0) + (pj ,
∂v

∂ξ
|ξ=0−)−

1
Zc
(rj , [

∂v

∂ξ
]) = 0, (3.47)

where the functions fj , pj , qj , and rj are those in (3.22)-(3.25), and v is given
by (3.43)-(3.45) respectively.

Thus for j = 2, the three solvability conditions (3.47) imply that

∂R1

∂t1
− ω

′
0

∂R1

∂y1
= 0, (3.48)

∂S1
∂t1

+ ω
′
0

∂S1
∂y1

= 0, (3.49)

∂H1

∂t1
= −1

4
(| R1 |2 + | S1 |2). (3.50)

>From (3.48)-(3.49) it is clear that R1 and S1 represent waves propagating
with group velocity ω

′
0 =

dω
dk (k0) =

√
2 along y1-axis, in opposite directions.

Integrating (3.50) we have

H1 = H1(t1 = a)− 1
4

∫ t1

a
(|R1 |2+ |S1 |2)dt1 (3.51)

for some constant a. Differentiating (3.51) with respect to y1 and using (3.48)
and (3.49) we obtain

∂H1

∂y1
= − 1

4ω′
0

(| R1 |2− |S1 |2) + h(y1, t2), (3.52)

where

h(y1, t2) =
∂H1

∂y1
|t1=a +

1
4ω′

0

(| R1 |2− |S1 |2)|t1=a.

Introducing the characteristic coordinates

η1 = y1 + ω
′
0t1, η2 = y1 − ω

′
0t1. (3.53)

and using (3.53) in (3.48) and (3.49) we obtain

∂R1

∂η2
= 0,

∂S1
∂η1

= 0. (3.54)

We now seek solutions w2 and ψ2 in the form

w2 = wh
2 + wp

2, (3.55)

ψ2 = ψh
2 + ψp

2 , (3.56)
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where wh
2 , ψh

2 are solution of the homogeneous problem, so that

wh
2 = (R2e1 + S2e2)g(ξ) + c.c.−H2Θ̂

′
, (3.57)

ψh
2 = R2e1 + S2e2 + c.c.+H2, (3.58)

where R2, S2 and H2 are to be determined. Expanding the right–hand sides of
(3.30)-(3.33) we find that wp

2 , ψp
2 are given by

wp
2 = (R

2
1e

2
1 + S2

1e
2
2)g1(ξ) +R1S1e1e2g2 +R1S1e1e2g3+ (3.59)

+e1g4 + e2g5 + c.c.+ g6,

ψp
2 = (R

2
1e

2
1 + S2

1e
2
2)a1 + a2R1S1e1e2 + a3R1S1e1e2+ (3.60)

+a4e1 + a5e2 + c.c.+ a6,

where

g1(ξ) =
{

b11 exp (μ7ξ), ξ < 0
b12 exp (μ8ξ), ξ > 0 ,

μ7,8 = (1± d2)/2, d2 =
√
1 + 8iω0 + 16k20,

g2(ξ) =
{

b9 exp (μ5ξ), ξ < 0
b10 exp (μ6ξ), ξ > 0 ,

μ5,6 = (1± d1)/2, d1 =
√
1 + 8iω0,

g3(ξ) =
{

b7 exp (μ3ξ), ξ < 0
b8 exp (μ4ξ), ξ > 0 ,

μ3,4 = (1± d0)/2, d0 =
√
1 + 16k20,

g4(ξ) =

⎧⎨⎩ b5 exp (μ1ξ) + c1
2μ1−1

(
∂R1
∂t1

− 2ik0 ∂R1
∂y1

)
ξ exp (μ1ξ), ξ < 0

b6 exp (μ2ξ) + c2
2μ2−1

(
∂R1
∂t1

− 2ik0 ∂R1
∂y1

)
ξ exp (μ2ξ), ξ > 0

,

g5(ξ) =

⎧⎨⎩ b3 exp (μ1ξ) + c1
2μ1−1

(
∂S1
∂t1
+ 2ik0 ∂S1∂y1

)
ξ exp (μ1ξ), ξ < 0

b4 exp (μ2ξ) + c2
2μ2−1

(
∂S1
∂t1
+ 2ik0 ∂S1∂y1

)
ξ exp (μ2ξ), ξ > 0

,

g6(ξ) =
{

b1 exp ξ − ∂H1
∂t1

ξ exp ξ, ξ < 0
b2, ξ > 0

.

The quantities aj , bj , and dj in the above formulas are given by

a1 = −0.01− 2.46i, a2 = −0.61− 1.97i,
c1 = −1− iω0/Zc, c2 = −iω0/Zc,
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a3 = −0.39, a4 = a5 = a6 = 0,

d0 = 2.236, d1 = 2.49 + 2.28i, d2 = 2.95 + 1.92i,

b1 =| R1 | 2 +| S1 | 2 +H2
1/2, b2 = 0,

b3 =
1
4

(
H1S1(5 + 3.5iω0)− ∂S1

∂t1

)
, b4 =

1
4

(
H1S1(1− 0.5iω0)− ∂S1

∂t1

)
,

b5 =
1
4

(
H1R1(5 + 3.5iω0)− ∂R1

∂t1

)
, b6 =

1
4

(
H1R1(1− 0.5iω0)− ∂R1

∂t1

)
,

b7 = 1.45, b8 = 0.0625,

b9 = 1.15 + 4.87i, b10 = −0.46 + 0.08i,
b11 = 1.52 + 3.7i, b12 = 1.21− 0.17i.

Next, applying the solvability condition (3.47) to (3.22)-(3.25) with j = 3,
using the expressions (3.50), (3.52) in the new coordinate system (3.53), we
obtain

−2ω′
0

∂R2

∂η2
= −∂R1

∂t2
+σαR1+A

∂2R1

∂η21
+BR1 |R1 |2 +cR1 |S1 |2 − (3.61)

−1
2
iR1h(

η1 + η2
2

, t2)|η1=η2+2ω
′
0a
,

2ω
′
0

∂S2
∂η1

= −∂S1
∂t2

+ σαS1 +A
∂2S1
∂η22

+BS1 |S1 |2 +cS1 |R1 |2 + (3.62)

+
1
2
iS1h(

η1 + η2
2

, t2)|η1=η2+2ω
′
0a
,

where

A =
8
9

− 5
18
iω0, α = 2 + iω0,

B = 1.12 + 6.77i,

c = −1.82− 0.56i.
Equations (3.61)-(3.62) are inhomogeneous versions of (3.54). Therefore,

in order that solutions R2 and S2 exist, solvability conditions must be satisfied.
Since the equations for R2 and S2 decouple we treat them separately. We first
consider (3.61). The solvability condition is that

lim
L→∞

1
2L

∫ L

−L
φr3dη2 = 0,

where r3 denotes the right-hand side of (3.61) and φ is any element of the ker-
nel of the adjoint of (3.54), that is any function of η1 only. A similar solvability
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condition can be written for (3.62), with η1 replaced by η2. The solvability
conditions yield (3.63)-(3.63) below.

We observe that the same equations can be obtained directly by integrating
(3.61) and (3.62) on [−L,L] with respect to η2 and η1 respectively, dividing
by 2L, taking the limit L → ∞, and using the condition that R2 and S2 are
bounded at infinity, to obtain

∂R1

∂t2
=
(
αβ − i

8ω′
0

|̃R1 |2
)
R1+

+A
∂2R1

∂η21
+BR1 |R1 |2 + CR1 |̃S1 |2,

∂S1
∂t2

=
(
αβ − i

8ω′
0

|̃S1 |2
)
S1+ (3.63)

+A
∂2S1
∂η22

+BS1 |S1 |2 +CS1 |̃R1 |2,

where
lim

η1→+∞ |R1 |2= lim
η1→−∞ |R1 |2,

lim
η2→+∞ |S1 |2= lim

η2→−∞ |S1 |2 .
We note that these conditions are satisfied for the plane wave solutions which
are considered below.

Here,

C = c+
i

8ω′
0

,

and the averaged quantities are defined as

f̃ = lim
L→∞

1
2L

∫ L

−L
f(σ, t2)dσ.

When taking the average we used the fact that the average of ∂H1/∂y1|t1=a
equals zero, and

lim
L→∞

1
2L

∫ L+b

−L+b
f(η)dη = lim

L→∞
1
2L

∫ L

−L
f(η)dη

for any constant b.
Equations (3.63) and (3.63) constitute a coupled set of complex Ginzburg-

Landau equations. They differ from the usual complex Ginzburg-Landau equa-
tions by the appearance of the averaged terms, which may be interpreted as
follows. The functions R1 and S1 (together with their complex conjugates) are
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the amplitudes of waves traveling in opposite directions on the t scale. On the
t1 scale they also describe waves traveling in opposite directions, each with
speed ω

′
0. On the t2 scale the R1 wave sees the S1 wave going by very rapidly.

Therefore, the effect on R1 of the S1 wave enters only through its average.
The effect of the R1 wave on S1 is similar. In addition, the spatial variables in
(3.63) – (3.63) are the characteristic variables.

Even for the simplest solutions, such as standing waves, the averages mani-
fest themselves by providing different stability criteria than for complex Ginz-
burg–Landau equations without averages.

Equations similar to (3.63)–(3.63) were obtained by Knobloch and De Luca
[17] who used symmetry arguments to derive the form of the equations, with-
out determining the coefficients in terms of the parameters of a specific prob-
lem. Furthermore, they assumed that R1 and S1 were periodic. Since the basic
solution in our problem is a uniformly propagating combustion wave rather
than a homogeneous state, we have additional terms in our amplitude equa-
tions. Nevertheless, equations (3.63)– (3.63) can be reduced to those in [17]
by an appropriate change of variables.

In [23] we derived plane wave solutions of the nonlocal amplitude equations
and investigated their stability. The plane wave solutions correspond either to
traveling waves, to standing waves or to quasiperiodic waves, depending on
parameters. Note that plane wave solutions of the amplitude equations corre-
spond to quasiperiodic solutions of the original model.

4. Computational Results

In this section we report on the results of computations which appear in
[6, 7]. Unless otherwise stated for all of the computations reported here we
fixed N = 25 and σ = 0.6 so that Z = 5. For these parameters, the uniformly
propagating planar solution is unstable. The stability boundary is approxi-
mately Z = 4.2 and is very close to the analytically predicted value which is
calculated for δ−function kinetics rather than the distributed kinetics that we
employ. The control parameter is R which is varied over approximately the
interval 0 < R < 20.

An overview of our results is shown in Figure 1 where we plot the mean
axial flame speed V for the different solution branches that we have found. We
compute V by first computing the z location of the front for each value of ψ,
as described above. We next compute φ(t) by integrating the velocity φt in
time. We then compute xf (ψ, t), the front location in the fixed frame. The
mean axial flame speed V is then obtained by performing a linear least squares
fit to xf (t) and taking the slope as V . We do not consider a solution to be
equilibrated until we find that V does not vary with different choices of angles
ψ employed in computing the average V , or if the run is continued longer in
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time. We note that all solution branches are described (and computed) with
respect to a coordinate system moving with the flame.

Figure 1. V as a function of R for various solution branches. Solid (dotted) lines indicate
stable (unstable) solutions.

Figure 1 incorporates several solution branches. A common characteristic of
these solution branches is the formation of hot spots. The branches are charac-
terized by different dynamics exhibited by the spots. For small values of R the
flame speed is close to that of the unstable, uniformly propagating mode. How-
ever, our results show that even for small values of R the primary conversion of
reactant to product occurs via the spinning of the spots rather than through ax-
ial diffusion of heat. As R increases the spots become increasingly localized in
space and exhibit increasing temperature. As a result large regions of the front
are nearly uniform and thus prone to additional instabilities. Furthermore, as
the spots become localized, the behavior at a fixed angle ψ becomes increas-
ingly relaxational in time analogous to the behavior of the slowly propagating
pulsating planar solution. Since for all solution branches the mean axial speed
V is nonincreasing as R increases, the branches can be loosely thought of as
providing a transition from behavior analogous to the higher speed uniform
mode to behavior analogous to the lower speed planar pulsating mode as R
increases. Since slowly propagating flames are more likely to be extinguished
by heat losses, the modes at the left end of the branches may be more likely to
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posite directions around the cylindrical surface and spinning modes in which
one or more spots rotates around the cylinder in the same direction. As seen
in Figure 1, the nonplanar solutions which appear first, i.e., for the smallest
values of R, are CP solutions. For values of R below those indicated in the
figure, only planar pulsating solutions are found. Spin behavior develops only
for larger values of R. The CP modes indicated in Figure 1 correspond to a
variety of behaviors. An extensive discussion of different CP modes of solid
flames, computed for different parameter values than those in this chapter, is
presented in [11]. Here, we briefly describe various types of CP behavior that
we have found.

In Figure 2 we show a space time plot of a CP mode for R = 1. We note
that there are collisions at ψ = 0 and ψ = π. The collision sites are determined
by the initial conditions. This CP mode is periodic and symmetric in that the
behavior at the two collision sites is the same, just 180◦ out of phase in time.
In this mode, the hot spots enter and leave the collision essentially unchanged
except for a phase shift, much like the behavior of solitons. Our computa-
tions indicate that the amplitude of the symmetric CP mode, i.e., the maximum
temperature achieved at a collision, does not approach 0 as R approaches the
transition point. Thus, the stable CP modes develop with finite amplitude. Our
results also indicate that the mean speed V for these modes exceeds the speed
for the unstable, uniformly propagating planar solution. Thus, near the transi-
tion point finite amplitude CP modes can propagate faster than the uniformly
propagating mode. The mean propagation speed decreases as R increases.

As R increases there is a transition to CP modes which exhibit different
behavior at each of the two collision sites. We illustrate such a solution in
Figure 3 for R = 1.2, where we plot Θf as a function of t at the two collision
sites ψ = 0 and ψ = π. Each spike in the time history of Θf corresponds
to a collision. The solution is periodic, however, we note that had we chosen
an angle different from one of the collision sites Θf would exhibit two spikes
per period corresponding to the two counterpropagating hot spots. In contrast
to the solution for R = 1 an asymmetry between the two collision sites has
developed. Spots entering the collision at ψ = 0 are stronger than when they
exit the collision and conversely for collisions at ψ = π. The collisions take on
the character of apparent creation/annihilation sites as the asymmetry between

survive heat loss effects than those at the right end. Due to the increased lo-
calization more of the front (in terms of ψ) attains the rather cool temperatures
away from the spot, thus resulting in the lower mean speeds. This behavior is
similar to that observed for planar modes of propagation, where the develop-
ment of relaxation oscillations is accompanied by a decrease in the mean speed
of the flame, e.g., [1, 21].

Broadly speaking, hot spot dynamics can be classified into two categories.
Counterpropagating (CP) behavior in which pairs of spots propagate in op-



270 PATTERN FORMATION IN NANO-SYSTEMS

Figure 2. Θf as a function of ψ for a range of times for CP solution with R = 1. Time
increases along the vertical axis.

the two sites increases. The development of nonlinear behavior for the CP
solutions is accompanied by a reduction in the mean flame speed V .

The CP modes in Figures 2 and 3 are periodic in time. In Figure 4 we illus-
trate a CP mode for R = 2.25 in which the collisions do not occur in a periodic
manner. We note that for this figure the collision sites, which are determined by
initial conditions, are no longer at ψ = 0 and ψ = π. The problem is invariant
under shifts in ψ, so that solutions which are shifted in ψ are also stable. The
CP solution in Figure 4 exhibits apparent creation and annihilation in that at
one collision site strong waves interact producing weak waves (apparent anni-
hilation) while at the other collision site weak waves interact to produce strong
waves (apparent creation). These and other CP modes were described in detail
in [11] for different parameters. We have not traced the CP solutions further
here, however, additional dynamical behavior, e.g., CP modes in which sites
alternate between being an apparent creation site and an apparent annihilation
site, was found in [11]. Such behavior is likely to occur for the parameters
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employed in this chapter as well. In [11] we also showed that additional stable
CP solutions existed, including solutions with multiple pairs of CP spots, e.g.,
one pair may execute the same dynamics as the others but with a time lag.

We next consider the spin mode solution branches shown in Figure 1. The
first branch we focus on corresponds to 1-headed spin modes which are trav-
eling waves (TW1). These modes require larger radii for stability than the CP
modes. Stable CP modes may be able to exist for smaller values of R as they
are, in a sense, reinforced by collisions after circuiting only half the cylinder.

Figure 3. Θf as a function of t at the two collision sites ψ = 0 and ψ = π for CP mode with
R= 1.2.

The TW1 modes also appear to enter with nonzero amplitude of the rotating
hot spot. The smallest value of R for which we can find a stable TW1 mode is
R=1.68. For this value of R the temperature of the hot spot is approximately
1.21. Unstable TW1 modes may well exist for smaller values of R. If we de-
crease R further solutions with TW1 initial data evolve to CP modes. We note
that the mean axial speeds V for the TW1 modes near onset are below those of
the CP modes near onset, probably due to the fact that R is larger.

We find that the TW1 modes are stable for 1.68 ≤ R ≤ 5.5. Over this
interval V decreases with R as indicated in Figure 1. In addition, the spinning
spot becomes hotter and more localized as R increases. In Figure 5 we plotΘf

as a function of the distance Rψ around the cylinder at specific times for TW1
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modes with R = 1.75 and R = 5.5. The figure shows that as R increases the
temperature on the front becomes nearly uniform over most of the front away
from the hot spot.

For R ≥ 6.1 we are unable to compute stable TW1 modes. Rather, we find
modulated traveling waves consisting of a single hot spot which alternately
speeds up and slows down and its intensity alternately increases and decreases
as it rotates around the cylinder, thus describing a modulated traveling wave

Figure 4. Θf as a function of ψ for a range of times for CP solution with R = 2.25 . Time
increases along the vertical axis.

for a 1-headed spin (MTW1). A space time plot of such a mode is shown in
Figure 6 for R = 6.1.

More complex behavior occurs for larger values of R. In Figure 7 we show
a space time plot for R = 7.5. We note that there are periods of time where
the trajectory of the spot (streak in the figures) is nearly horizontal. In order to
analyze the nature of these solutions and relate them to the modes that occur
for larger values of R we refer to Figure 8 which shows a space time plot of
the front temperature over a small time interval around one of these events. A
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small spot develops spontaneously ahead of the main propagating spot. The
new spot splits into two counterpropagating spots, one of which collides with
the original spot leading to their eventual mutual annihilation, while the other
spot continues to rotate. Thus, for most of the time there is only one spot, but
at times there can be either two or three spots on the front. We refer to these
modes as Alternating Spin CP (ASCP) modes. As can be seen from Figure 7
these events occur periodically in time so that the mode is quasiperiodic. In

Figure 5. Θf as a function of distance Rψ around the cylinder for TW1 solutions with
R = 1.75 and R = 5.5 .

Figure 9 we illustrate the CP event by showing Θ as a function of z and ψ
at selected times around a CP event. In this figure the lateral direction is ψ
so that propagation around the cylinder corresponds to lateral movement of a
hot spot. The upper part of each figure corresponds to burned material (lighter
shading) and the lower part (darker shading) is unburned material. The shad-
ing scale is the same for all frames in the figure. The first frame (t = 948.8)
shows a single spot propagating counterclockwise (to the right in the figure).
At t = 950.1 a new spot forms ahead of the main spot. At t = 950.45 the new
spot splits into two daughter spots, one of which propagates to the right and the
other to the left. At t = 950.58 the leftward propagating spot collides with the
original spot, leading to the highest temperatures in the sequence of frames,
while the rightward moving spot continues to propagate. At t = 950.88 the
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temperature at the collision site has decreased. Ultimately the two colliding
spots completely annihilate each other. At t = 957.8 there is again a single
spot as in the first frame. The large temperatures at the collision illustrated

Figure 6. Θf as a function of ψ for a range of times for MTW1 solution withR = 6.1 . Time
increases along the vertical axis.

at t = 950.58 together with the subsequent annihilation can be explained by
examining the degree of conversion η = 1 − Y . In Figure 10 we plot η at
t = 950.45 and t = 950.58. In this plot light corresponds to complete burning
(η = 1) and dark corresponds to unburned reactant (η = 0). For this problem
the internal layer connecting η = 0 and η = 1 is an extremely thin strip. At
t = 950.48 the new spot has split and one of the daughter spots is counterprop-
agating toward the original spot. It can be seen from Figure 10 that a pocket
of unburned reactant penetrates the burned region between these two counter-
propagating spots. At t = 950.58 when the two spots have collided, the pocket
of unburned reactant has been essentially consumed in the high temperatures
at the resulting collision. After this time the remnant of the collision decays
due to thermal diffusion as there is no longer any unburned reactant to sustain
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Figure 7. Θf as a function of ψ for a range of times for ASCP solution with R = 7.5 . Time
increases along the vertical axis.

the high temperature. The ASCP mode demonstrates that both spin and CP
behavior can occur in a periodic fashion in the same solution. We note that
the spontaneous creation of new spots ahead of rotating spots also occurs in
gaseous combustion stabilized on a rotating burner ([10]).

We conjecture that the mechanism for ASCP behavior is the increasing lo-
calization of the spot as R increases. When R is sufficiently large, the portion
of the front excluding the hot spot (topologically a circle in the moving coor-
dinate) has a nearly uniform temperature (cf. Figure 5). Since the uniformly
propagating planar mode is unstable additional spots are expected to form in
the region away from the propagating spot. These spots can either exhibit spin
or CP behavior. In the ASCP mode the new spot exhibits CP behavior.

We believe that the ASCP mode evolves continuously from the MTW1
branch which evolved from the TW1 branch. This mode, while exhibiting
both spin and CP behavior, is essentially a one-headed spin except for brief in-
tervals of time. As R increases V decreases and the instantaneous temperature
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Figure 8. Θf as a function of ψ for a range of times for ASCP solution with R = 7.5 . Solu-
tion is shown over a small interval of time around an event in which a new spot is spontaneously
created. Time increases along the vertical axis.

at collision increases. We have computed ASCP modes from R = 6.625 up to
R = 9. We have not attempted to compute this mode for larger values of R.

We next consider multi-headed spins. We first refer to the branch labeled
TW2 in Figure 1. These solutions are replicates of analogous TW1 modes.
Thus, for any value of R the TW2 solution consists of two replicates of the
TW1 mode at R/2 and separated by π radians. We have tested the stability of
these solutions by imposing perturbations in the initial conditions which do not
correspond to replicated perturbations. (We note that replicated conditions cor-
respond in Fourier space to even order modes. Thus, we impose perturbations
which have odd Fourier modes.) We have found stable replicated TW2 modes
for 3.5 ≤ R ≤ 11, corresponding to TW1 modes for 1.75 ≤ R ≤ 5.5. We
note that for R = 3.36, corresponding to the TW1 at R = 1.68, the smallest
value of R for which we found stable TW1 modes, we were unable to compute
a TW2 solution. Rather, the perturbed replicated initial conditions evolved
to a TW1 solution. Thus, our computations indicate that the replicated TW2
branch is stable, but not for all values of R for which a stable TW1 solution ex-
ists for R/2. The replicated TW2 solutions near R = 3.5 have the same large
mean speed as the TW1 mode near R = 1.75, suggesting that these modes
would be less prone to extinction and thus they may be more readily observed
in experiments.
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In the region of bistability between the TW1 and TW2 branches, the two
spin modes are differentiated by lower axial flame speeds for the TW1 solu-
tions, along with more localized, higher temperature spots than for the TW2
mode. The more localized spots result in a large region of the front being at
a relatively low temperature thus possibly explaining the slower axial flame
speed as compared to the TW2 solution. Ultimately, the localization is such
that a new spot is spontaneously created and ASCP behavior ensues. For the
TW2 mode the spots are at lower temperature and less localized since they
are replicates of TW1 spots corresponding to lower values of R. Thus, the
resulting front speed V is larger and closer to that of the uniform mode.

For R > 11 we are unable to compute stable TW2 modes. We note that
the MTW1 branch described above appears to evolve continuously from the
TW1 branch. We were unable to find any such branch evolving from the TW2

Figure 9. Θ as a function of ψ and z for selected times for ASCP solution with R = 7.5 .
Axial direction is vertical.

branch. When we tried to compute 2-headed spins for R = 12 using continua-
tion, i.e., employing equilibrated TW2 data for R=11 as initial conditions, we
found that the solution evolved to the mode shown in Figure l11, an asymmet-
ric 2-headed spin, which we denote by ATW2, accompanied by a jump in V .
This solution is a 2-headed traveling wave in that two spots rotate around the
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cylinder at a uniform rate and without any change in shape. However, the two
spots are not symmetrically placed, i.e., are not separated by ψ = π and they
are of unequal strength. The stronger (hotter) spot leads the weaker (cooler)
spot. The spots rotate together as a bound state.

Bound states were also described in one dimensional computations of an
excitable system ([29]). We have computed ATW2 modes up to R = 20. The
mean axial speed V is nearly independent of R along the ATW2 branch as seen
in Figure 1.

There are transitions from the ATW2 branch to non TW modes still exhibit-
ing leading and trailing spot behavior at both its extremities, i.e., for smaller

Figure 10. η as a function of ψ and z for selected times for ASCP solution with R = 7.5 .
Axial direction is vertical.

R and larger R. Upon increasing R beyond R = 20 we find slowly varying
bound states in which a new spot is spontaneously created ahead of the leading
spot, and subsequently ahead of the trailing spot in the bound state. The new
spot, together with the leading (trailing) spot, exhibits episodes of ASCP be-
havior, Denote the strong leading spot in the bound state by S and the trailing
weak spot by s. As the slowly varying bound state propagates, events occur in
which a new spot forms ahead of S. Call this new spot SS. The new spot SS
together with the spot S then exhibits ASCP behavior. That is, SS splits into



Spatiotemporal Pattern Formation in Solid Fuel Combustion 279

a pair of counterpropagating spots, one of which annihilates with S when they
collide while the other continues to propagate. The effect is a speed up of the
leading spot. Subsequently, similar behavior occurs for the trailing spot. We
believe that the latter event is an attempt to maintain the bound state nature of
the mode. We term this an Asymmetric Alternating Spin CounterPropagating
(AASCP) mode. We note that the time interval between these events does not
appear to be regular.

Upon decreasing R along the ATW2 branch we find a family of modulated
ATW2 modes (MATW2), where the two bound spots alternately approach one
another and then separate in an oscillatory manner. The solution is quasiperi-
odic, as the approaches and separations occur periodically. We note that this
is an example of increasing spatiotemporal complexity accompanied by de-
creasing R. This is in contrast to the behavior of the 1-headed spins. We were
unable to compute MATW2 modes for R < 7.5, where we found that MATW2
initial data evolved to a 1-headed spin solution.

Figure 11. Θf as a function of ψ for a range of times for ATW2 solution withR = 12 . Time
increases along the vertical axis.
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speed is close to that of the TW1 at R = 1.75 (but somewhat smaller) and the
amplitude of the spots is of the same order as the TW1 mode. The MTW3 so-
lutions have a small domain of attraction and unless very small steps are taken
in R, MTW3 initial data evolves to either 1-headed or 2-headed spins. Upon
increasing R, we find that the 3-headed spin modes exhibit apparently chaotic
behavior. For certain, apparently random, times two spots come close together
and nearly touch. One of the spots is then nearly extinguished and moves
rapidly away from its neighbor. The spot then becomes hotter and continues
its spinning behavior around the cylinder.

Upon increasing R further, we find it difficult to obtain equilibrated 3-
headed spins. Starting with initial data corresponding to a 3-headed spin we
find that during the transient, two spots actually collide, leading to the anni-
hilation of one spot and the mode collapses to a steady state 2-headed spin.
Thus, for increasing R, the 3-headed spins are either unstable or have a small
domain of attraction.

References

[1] A. P. Aldushin, A. Bayliss, B. J. Matkowsky, Dynamics of Layer Models of Solid Flame
Propagation, Physica D, 143 (2000), 109.

[2] A. P. Aldushin, B. A. Malomed, Ya. B. Zeldovich, Phenomenological Theory of Spin
Combustion, Combustion and Flame, 42 (1981), 1.

[3] A. P. Aldushin, T. M. Martemyanova, A. G. Merzhanov, B. I. Khaikin, K. G. Shkadinsky,
Autooscillatory Propagation of Combustion Front in Heterogeneous Condensed Media,
Combustion Explosion and Shock Waves 9 (1973), 531.

Finally, we have investigated 3-headed spin modes. We find that replicated
3-headed spin modes, obtained by replicating a TW1 mode three times, are
unstable. We note that for replicated 3-headed spins, replicated perturbations
correspond to perturbations whose Fourier wave numbers are divisible by 3.
This is in contrast to 2-headed spins, where replicated perturbations correspond
to Fourier wave numbers which are divisible by 2. Since the TW1 mode is
stable, replicated 2-headed spin modes are necessarily stable to all even (2n)
perturbations and potentially unstable only to odd (2n + 1) perturbations. In
contrast, replicated 3-headed spin modes are necessarily stable to all mode
(3n) perturbations and potentially unstable to mode (3n + 1) and (3n + 2)
perturbations. This may be why replicated 3-headed spins are less stable than
replicated 2-headed spins.

We do find 3-headed spins modes that are stable over a small range of values
of R. For small values of R, these solutions are characterized by three spots
undergoing a modulated rotation around the cylinder (MTW3), in which each
spot alternately approaches and separates from its neighbors. These events do
not occur periodically, in contrast to the MATW2 mode described above. We
note that while the replicated TW3 mode is unstable, the stable MTW3 mode
for R = 5.25 has features similar to the replicated mode, in that the front



Spatiotemporal Pattern Formation in Solid Fuel Combustion 281

[13] A. V. Dvoryankin, A. G. Strunina, A. G. Merzhanov, Trends in the Spin Combustion of
Thermites, Combustion, Explosion and Shock Waves 18 (1982), 134.

[14] T. P. Ivleva, A. G. Merzhanov, K. G. Shkadinsky, Mathematical Model of Spin Combus-
tion, Soviet Physics Doklady 23 (1978), 255.

[15] T. P. Ivleva, A. G. Merzhanov, K. G. Shkadinsky, Principles of the Spin Mode of Com-
bustion Front Propagation, Combustion, Explosion and Shock Waves 16 (1980), 133.

[16] H.G. Kaper, G.K. Leaf, S.B. Margolis, B.J. Matkowsky, On nonadiabatic condensed
phase combustion, Combustion Science and Technology 53 (1987), 289.

[17] E. Knobloch, J. De Luca, Amplitudes equation for travelling wave convection, Nonlin-
earity 3 (1990), 975.

[18] S. B. Margolis, An Asymptotic Theory of Condensed Two-Phase Flame Propagation,
SIAM J. Appl. Math. 43 (1983), 351.

[19] S. B. Margolis, H. G. Kaper, G. K. Leaf, B. J. Matkowsky, Bifurcation of Pulsating and
Spinning Reaction Fronts in Condensed Two- Phase Combustion, Comb. Sci. and Tech
43 (1985), 127.

[20] S.B. Margolis, B.J. Matkowsky, New modes of quasi-periodic combustion near a degen-
erate Hopf bifurcation point, SIAM J. Appl. Math. 48 (1988), 828. i

[21] B. J. Matkowsky, G. I. Sivashinsky, Propagation of a Pulsating Reaction Front in Solid
Fuel Combustion, SIAM J. Appl. Math. 35 (1978), 465.

[22] B.J. Matkowsky, V.A. Volpert, Spiral gasless condensed phase combustion, SIAM J.
Appl. Math. 54 (1994), 132.

[23] B.J. Matkowsky, V.A. Volpert, Coupled nonlocal complex Ginzburg-Landau equations in
gasless combustion, Physica D 54 (1992), 203.

[24] A. G. Merzhanov, SHS Processes: Combustion Theory and Practice, Arch. Combustionis
1 (1981), 23.

[4] A. Bayliss, D. Gottlieb, B. J. Matkowsky, M. Minkoff, An Adaptive Pseudo-Spectral
Method for Reaction Diffusion Problems, J. Comput. Phys. 81 (1989), 421.

[5] A. Bayliss, R. Kuske, B. J. Matkowsky, A Two-Dimensional Adaptive Pseudo-Spectral
Method, J. Comput. Phys. 91 (1990), 174.

[6] A. Bayliss, B. J. Matkowsky, A. P. Aldushin, Dynamics of Hot Spots in Solid Fuel Com-
bustion. Physica D, 166 (2002), 104.

[7] A. Bayliss, B.J. Matkowsky, A.P. Aldushin, Solid Flame Waves, Chapter 4 in Perspectives
and Problems in Nonlinear Science: A Celebratory Volume in Honor of Larry Sirovich,
Eds. E. Kaplan, J. Marsden. K. Sreenivasan, Springer Verlag, 2003

[8] A. Bayliss, B. J. Matkowsky, Fronts, Relaxation Oscillations, and Period Doubling in
Solid Fuel Combustion, J. Comput. Phys. 71 (1987), 147.

[9] A. Bayliss, B. J. Matkowsky, Two Routes to Chaos in Condensed Phase Combustion,
SIAM J. Appl. Math. 50 (1990), 437.

[10] A. Bayliss, B. J. Matkowsky, Structure and Dynamics of Kink and Cellular Flames Sta-
bilized on a Rotating Burner, Physica D 99 (1996), 276.

[11] A. Bayliss, B. J. Matkowsky, Interaction of Counterpropagating Hot Spots in Solid Fuel
Combustion, Physica D 128 (1999), 18.

[12] M. Booty, S.B. Margolis, B.J. Matkowsky, Interaction of pulsating and spinning waves
in condensed phase combustion, SIAM J. Appl. Math. 46 (1986), 801.



282 PATTERN FORMATION IN NANO-SYSTEMS

[33] G. I. Sivashinsky, On Spinning Propagation of Combustion Waves, SIAM J. Appl. Math.
40 (1981), 432.

[34] A. G. Strunina, A. V. Dvoryankin, A. G. Merzhanov, Unstable Regimes of Thermite Sys-
tem Combustion, Combustion, Explosion and Shock Waves 19 (1983), 158.

[25] A. G. Merzhanov, Self-Propagating High-Temperature Synthesis: Twenty Years of Search
and Findings, in: Combustion and Plasma Synthesis of High-Temperature Materials, Z.A.
Munir, J.B. Holt, Eds., VCH, (1990), 1.

[26] A. G. Merzhanov, A. K. Filonenko, I. P. Borovinskaya, New Phenomena in Combustion
of Condensed Waves, Soviet Phys. Dokl. 208 (1973), 122.

[27] A. S. Mukasyan, S. C. Vadchenko, L. O. Khomenko, Combustion Modes in the Titanium-
Nitrogen System at Low Nitrogen Pressures, Combustion and Flame 111 (1997), 65.

[28] Z. A. Munir, U. Anselmi-Tamburini, Self-Propagating Exothermic Reactions: The Syn-
thesis of High-Temperature Materials by Combustion, Material Science Reports, A Re-
view Journal 15 (1989), 277.

[29] M. Or-Guil, I. G. Kevrekidis, M. B-ar, Stable Bound States of Pulses in an Excitable
System, Physica D 135 (1999), 157.

[30] J.H. Park, A. Bayliss, B.J. Matkowsky, A.A. Nepomnyashchy, Period doubling cascades
on the route to extinction in the interfacial motion of a nonadiabatic solid flame, submit-
ted for publication (2005).

[31] C. Raymond, A. Bayliss, B. J. Matkowsky, V. Volpert, Transitions to Chaos in Condensed
Phase Combustion with Reactant Melting, Int’l. J. Self-Propagating High-Temperature
Synthesis, 10 (2001), 133.

[32] K. G. Shkadinsky, B. I. Khaikin, A. G. Merzhanov, Propagation of a Pulsating Exother-
mic Reaction Front in the Condensed Phase, Combustion, Explosion and Shock Waves 1
(1971), 15.



SELF-ORGANIZATION OF MICROTUBULES AND
MOTORS

Igor S. Aranson
Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois, 60439

aronson@msd.anl.gov

Lev S. Tsimring
Institute for Nonlinear Science, University of California, San Diego,
La Jolla, CA 92093-0402

ltsimring@ucsd.edu

Abstract Here we introduce a model for spatio-temporal self-organization of an ensem-
ble of microtubules interacting via molecular motors. Starting from a generic
stochastic model of inelastic polar rods with an anisotropic interaction kernel
we derive a set of equations for the local rods concentration and orientation. At
large enough mean density of rods and concentration of motors, the model de-
scribes orientational instability. We demonstrate that the orientational instability
leads to the formation of vortices and (for large density and/or kernel anisotropy)
asters seen in recent experiments. The corresponding phase diagram of vortex-
asters transitions is in qualitative agreement with experiment.

Keywords: Microtubules, Molecular Motors, Self-Organization, Master Equation

One of the central questions in biology concerns the formation of complex
highly organized microscopic structures from initially disordered states. Com-
plex ordered structures are established and maintained through a dynamic in-
terplay between self-assembly and regulatory processes. Molecular motors
play essential role in carrying out these developmental tasks. One of the most
important functions of molecular motors is to organize a network of long stiff
hollow filaments (microtubules) during cell division to form cytosceletons of
daughter cells [1]. Recent in vitro experiments with purified motors and micro-
tubules in thin microchambers [2–7] have shown a surprising variety of large-
scale two-dimensional structures: vortices, in which filaments are oriented at
some angle with respect to the radial direction, and asters, in which filaments

Introduction

283

© 2006 Springer. Printed in the Netherlands.

A. A. Golovin and A. A. Nepomnyashchy (eds.), 

Self-Assembly, Pattern Formation and Growth Phenomena  in Nano-Systems, 283–294. 



284 PATTERN FORMATION IN NANO-SYSTEMS

are oriented radially, see Fig. 1. The final structure depends on the relative
concentrations of the molecular components: at large enough concentration of
molecular motors and microtubules, the latter organize in asters and vortices
depending on the type and concentration of molecular motors, see Fig. 1. The
experiments also indicated that the final structure can be reached through dif-
ferent assembly pathways and that dynamic transitions from one state to the
other can be induced by varying the kinetic parameters.

Figure 1. Vortices and asters observed experimentally in microtubules/molecular motors mix-
tures for various concentration of motors and for two different types of motors (kinesin and
NCD), reprinted from [5].

After a molecular motor binds to a microtubule at a random position, it
marches along it in a fixed direction for some time until it unbinds. Since the
mass of a molecular motor is small in comparison with that of a microtubule,
the motion of molecular motors does not lead to appreciable displacement of
the microtubule. If a molecular motor binds to two microtubules, it can change
their mutual position and orientation significantly. In Ref. [5], the interac-
tion of rod-like filaments via motor binding and motion has been studied, and
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patterns resembling experimental ones were observed in small-scale molecular
dynamics type simulations. In [8] a phenomenological model for the molecu-
lar motor density and the microtubule orientation has been proposed, which in-
cluded transport of molecular motors along microtubules and alignment of mi-
crotubules mediated by molecular motors. Ref. [9, 10] generalized this model
by including separate densities of free and bound molecular motors, as well as
the density of microtubules. A transition from asters to vortices was found as
the density of molecular motors was increased, in apparent disagreement with
experimental evidence [7] that the asters give way to vortices with the decrease
of the molecular motor concentration. A phenomenological flux-force relation
for active gels was suggested in [11]. While vortex and aster solutions were
obtained, an analysis of that model is difficult because of a large number of un-
known parameters. In Ref. [12] a set of equations for microtubule density and
orientation was derived by averaging conservation laws for microtubule proba-
bility distribution function. However, this model, contrary to experiment, does
not exhibit orientation transition for the homogeneous microtubules distribu-
tions. Moreover, according to Ref. [12], even initially oriented microtubule
states appear to decay for any concentration of the motors.

Here we derive a model for the collective spatio-temporal dynamics of mi-
crotubules starting with a master equation for interacting inelastic polar rods
[13]. Our model differs from the transport equations [12] in that it maintains
the detailed balance of rods with a certain orientation. The model exhibits
an onset of orientational order for large enough density of microtubules and
molecular motors, formation of vortices and then asters with the increase in the
molecular motor concentration, in a qualitative agreement with experiment.

Maxwell Model and Orientational Instability

Molecular motors enter the model implicitly by specifying the interaction
rules between two rods. Since the diffusivity of molecular motors is about
100 times larger than that of microtubules, as a first approximation we neglect
spatial variations of the molecular motor density. While the varying concentra-
tion of molecular motors affects certain quantitative aspects [7], our analysis
captures salient features of the phenomena and the collision rules are spatially
homogeneous. All rods are assumed to be of equal length l and diameter d � l,
and are characterized by their centers of mass, r, and the orientation angles φ.

We consider the orientational dynamics only and ignore the spatial coordi-
nates of interacting rods (an analog of the Maxwell model of binary collisions
in kinetic theory of gases, see e.g. [15]). Since the motor residence time on
microtubules (about 10 sec) is much smaller than the characteristic time of
pattern formation (10 min or more), we model molecular motor – microtubule
inelastic interaction as an instantaneous collision in which two rods change

1.
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Figure 2. a - sketch of motor-mediated two-rod interaction for γ = 1/2, b - integration
regions C1,2 for Eq.(1.2).

their orientations:(
φa1
φa2

)
=
(

γ 1− γ
1− γ γ

)(
φb1
φb2

)
, (1.1)

where φb1,2 and φa1,2 are orientations before and after the collision, respectively,
and γ characterizes the collision inelasticity. After the collision, the angle be-
tween two rods is reduced by the factor 2γ − 1. Here, γ = 0 corresponds
to a totally elastic collision (rods exchange their angles) and γ = 1/2 corre-
sponds to a totally inelastic collision in which rods acquire identical orienta-
tions, φa1,2 = (φ

b
1+φ

b
2)/2 (see Fig. 2,a). Here we assume that two rods interact

only if the angle between them is less than φ0, |φb2 − φb1| < φ0 < π. Because
of 2π-periodicity, two rods with mutual angle between 2π − φ0 and 2π also
interact. In this case we have to replace φb,a1 → φb,a1 +π, φb,a2 → φb,a2 −π in Eq.
(1.1). In the following we will only consider the case of totally inelastic rods
(γ = 1/2) and φ0 = π; the generalization for arbitrary γ and φ0 is straight-
forward. The probability P (φ) obeys the following master equation (compare
with Ref. [15]):

∂tP (φ) = Dr∂
2
φP (φ) + g

∫
C1

dφ1dφ2P (φ1)P (φ2) (1.2)

×[δ(φ− φ1/2− φ2/2)− δ(φ− φ2)] + g

∫
C2

dφ1dφ2

×P (φ1)P (φ2)[δ(φ− φ1/2− φ2/2− π)− δ(φ− φ2)],

where g is the “collision rate” proportional to the number of molecular motors,
the diffusion term ∝ Dr describes the thermal fluctuations of the rod orien-
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Figure 3. Stationary solutions P (φ) for different ρ. Inset: the stationary value of |τ | vs ρ
obtained from the Maxwell model (1.3), dashed line - truncated model (1.8).

tation, and the integration domains C1, C2 are shown in Fig.2a. Changing
variables t → Drt, P → gP/Dr, w = φ2 − φ1, we arrive at

∂tP (φ) = ∂2φP (φ) +
∫ π

−π
dw

× [P (φ+ w/2)P (φ− w/2)− P (φ)P (φ− w)] . (1.3)

The rescaled number density ρ =
∫ 2π
0 P (φ, t)dφ now is proportional to the

density of rods multiplied by the density of motors. Let us consider the Fourier
harmonics:

Pk = 〈e−ikφ〉 = 1
2π

∫ 2π

0
dφe−ikφP (φ, t). (1.4)

The zeroth harmonic P0 = ρ/2π = const, and the real and imaginary parts
of P1 represent the components τx = 〈cosφ〉, τy = 〈sinφ〉 of the average
orientation vector τ , τx + iτy = P ∗

1 . Substituting Eq.(1.4) into Eq.(1.3) we
obtain

Ṗk + (k2 + ρ)Pk = 2π
∑
m

Pk−mPmS[πk/2−mπ], (1.5)
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where S(x) = sinx/x. Due to the angular diffusion term, the amplitudes Pk
decay exponentially with |k|. Assuming Pk = 0 for |k| > 2 one obtains from
Eq.(1.5)

Ṗ1 + P1 = P0P12(4− π)− 8
3
P2P

∗
1 (1.6)

Ṗ2 + 4P2 = −P0P22π + 2πP 2
1 . (1.7)

Since near the instability threshold the decay rate of P2 is much larger than
the growth rate of P1, we can neglect the time derivative Ṗ2. Thus we obtain
P2 = AP 2

1 with A = 2π(ρ+ 4)−1, and arrive at:

τ̇ = ετ −A0|τ |2τ , (1.8)

where ε = ρ(4π−1 − 1)− 1 ≈ 0.273ρ− 1 and A0 = 8A/3. For large enough
ρ > ρc = π/(4 − π) ≈ 3.662, an ordering instability leads to spontaneous
rod alignment. This instability saturates at the value determined by ρ. Near
threshold, A0 ≈ 2.18. Fig. 3 shows stationary solutions P (φ) obtained from
Eq. (1.3). As seen from the inset in Fig. 3, the corresponding values of |τ | are
consistent with the truncated model (1.8) up to ρ < 5.5.

Spatial Localization

In order to describe the spatial localization of interactions, we introduce the
probability distribution P (r, φ, t) to find a rod with orientation φ at location r

By analogy with Eq. (1.2), the corresponding master equation for
P (r, φ, t) can be written as

∂tP (r, φ) = ∂2φP (r, φ) + ∂iDij∂jP (r, φ)

+
∫ ∫

dr1dr2

∫ φ0

−φ0

dw [W (r1, r2, φ+ w/2, φ− w/2)

×P (r1, φ+ w/2)P (r2, φ− w/2)δ
(
r1 + r2
2

− r
)

− W (r1, r2, φ, φ− w)P (r2, φ)P (r1, φ− w)δ (r2 − r)] , (2.9)

where we performed the same rescaling as in Eq.(1.3) and dropped the argu-
ment t for brevity. The first two terms on the r.h.s. of (2.9) describe angular
and translational diffusion of rods with the diffusion tensor

Dij =
1
Dr

(
D‖ninj +D⊥(δij − ninj)

)
, (2.10)

where n = (cos(φ), sin(φ)) and Dr, D‖, D⊥ are known from polymer physics
[16],

D‖ =
kBT

ξ‖
, D⊥ =

kBT

ξ⊥
, Dr =

4kBT
ξr

. (2.11)

at time t.

2.
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Figure 4. Schematics of orientation field τ for three different values of ϕ: aster (ϕ = 0);
generic vortex (0 < ϕ < π/2) and ideal vortex (ϕ = ±π), see Eq. (3.15).

Here, ξ‖, ξ⊥, ξr are the corresponding drag coefficients. For rod-like mole-
cules, ξ‖ = 2πηsl/ log(l/d); ξ⊥ = 2ξ‖; ξr ≈ πηsl

3/3 log(l/d) where ηs is
shear viscosity [16].

The last term in Eq.(2.9) describes molecular motor-mediated interaction of
rods. We assume that after the interaction, the two rods share the same orien-
tation and the same spatial location in the middle of their original locations.
The interaction kernel W is localized in space, but in general does not have
to be isotropic. On the symmetry grounds we assume the following form (we
assume 2D geometry and neglect higher-order anisotropic corrections):

W =
1
b2π

exp
[
−(r1 − r2)2

b2

]
(1 + β(r1 − r2) · (n1 − n2)), (2.12)

with b ≈ l = const. This form implies that only nearby microtubules inter-
act effectively due to molecular motors. The O(β) anisotropic term describes
the dependence of the coupling strength on the mutual orientation of micro-
tubules: “diverging” polar rods (such as shown in Fig. 2,a) interact stronger
than “converging” ones. This is the simplest term yielding non-trivial coupling
between density and orientation. The parameters b and β depend on the type
of the motor. Our calculations show that β is small for kinesin and large for
NCD molecular motors due to the difference in the motor’s dwelling time at
the end of the microtubules, [5].

We perform Fourier expansion in φ and truncate the series at |n| > 2.
Then, 2πP0 gives the local number density ρ(r, t), and P±1 the local orien-
tation τ (r, t). Omitting tedious but straightforward calculations (see [13] for
details), rescaling space by l, and introducing the dimensionless parameters
B = b/l,H = βlB2, we arrive at
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Figure 5. Phase boundaries obtained form the linear stability analysis of aster solution for
B2 = 0.05, dashed line shows bundling instability limit ρ0 > ρb = 5. Inset: Position of
critical pointHc vs B at ρ0 = 4.5.

∂tρ = ∇2

[
ρ

32
− B2ρ2

16

]
+
πB2H

16
[
3∇ · (τ∇2ρ− ρ∇2τ

)
+ 2∂i (∂jρ∂jτi − ∂iρ∂jτj)]− 7ρ0B4

256
∇4ρ, (2.13)

∂tτ =
5
192

∇2τ +
1
96

∇(∇ · τ) + ετ −A0|τ |2τ

+ H

[∇ρ2

16π
−
(
π − 8

3

)
τ (∇ · τ )− 8

3
(τ∇)τ

]
+
B2ρ0
4π

∇2τ . (2.14)

The last two terms in Eqs. (2.13), (2.14) are linearized near the mean den-
sity, ρ0 = 〈ρ〉. The last term in Eq.(2.13) regularizes the short-wave instability
when the diffusion term changes sign for ρ0 > ρb = 1/4B2. This instability
leads to strong density variations associated with the formation of microtubule
bundles, see Fig. 5.
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Figure 6. Stationary vortex and aster solutions τx + iτy = F (r) exp[iθ + iϕ(r)] to Eq.
(3.16), for ρ0 = 4, B2 = 0.05.

Aster and Vortex Solutions

If B2H � 1, the density modulations are rather small, and Eq. (2.14) for
orientation τ decouples from Eq. (2.13). It is convenient to rewrite Eq. (2.14)
for complex variable ψ = τx + iτy in polar coordinates r, θ:

ψ = F (r) exp[iθ + iϕ(r)], (3.15)

where the amplitude F (r) and the phase ϕ(r) are real functions. For the aster
solution ϕ(r) = 0 and for the vortex ϕ(r) �= 0, see Fig. 4. Asters and
vortices can be examined in the framework of one-dimensional problem for
V =

√
A0F (r) exp[iϕ(r)]:

∂tV = D1ΔrV +D2ΔrV
∗ +

(
1− |V |2)V

−H
(
a1V Re∇rV + a2∂rV ReV +

a2V ImV
r

)
, (3.16)

where Δr = ∂2r + r−1∂r − r−2, ∇r = ∂r + r−1, D1 = 1/32 + ρ0B
2/4π,

D2 = 1/192, a1 = (π − 8/3)/√A0 ≈ 0.321, a2 = 8/3
√
A0 ≈ 1.81, and

we rescaled time and space by t → t/ε and r → r/
√
ε, respectively. The

3.
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aster and vortex solutions for certain parameter values obtained by numerical
integration of Eq. (3.16) are shown in Fig. 6. Vortices are observed only for
small values of H and give way to asters for larger H . For H = 0, Eq.(3.16)
reduces to a form that was studied in [17]. It was shown in [17] that the term
ΔrV

∗ favors vortex solution (ϕ = π/2). In contrast, the terms proportional
to H select asters. Increasing H leads to a gradual reduction of ϕ, and at a
finite H0(ρ0) φ(r) = 0, i.e. the transition from vortices to asters occurs. For
0 < H < H0, the vortex solution has a non-trivial structure. As seen in Fig. 6,
the phase ϕ → 0 for r → ∞, i.e. vortices and asters become indistinguishable
far away from the core.

The phase diagram is shown in Fig. 5. The solid line H0(ρ0), separating
vortices from asters, is obtained from the solution of the linearized Eq. (3.16)
by tracking the most unstable eigenvalue λ of the aster. For this purpose the
solution to Eq. (3.16) was sought in the form V = F + iw exp(λt), where real
w obeys L̂ = λw with operator

L̂ ≡ D̄Δr +
(
1− F 2 − a1H∇rF

) − a2HF∇r, (3.17)

(D̄ = D1−D2). Eq. (3.17) was solved by the matching-shooting method. The
dashed line corresponds to the orientation transition limit ρ0 = ρc. The lines
meet at the critical point Hc = H0(ρc) above which vortices are unstable for
arbitrarilly small ε > 0. The phase diagram is consistent with experiments, see
Ref. [5]: for low value of kernel anisotropy H < Hc (possibly corresponding
to kinesin motors) the increase of density ρ0 first leads to the formation of
vortices and then to asters. For H > Hc (possibly corresponding to Ncd) only
asters are observed.

For H �= 0 well-separated vortices and asters exhibit exponentially weak
interaction. For asters this follows from the fact that L̂ is not a self-adjoint op-
erator. The null-space of L̂† exponentially decays at large r, w ∼ exp[−r/L0]
with the screening length in the original length units L0 = D̄/a2H

√
ε (see

[18]). Thus, L0 diverges for H → 0, and at the threshold ρ0 → ρc.
We studied the full system (2.13),(2.14) numerically. The integration was

performed in a two-dimensional square domain with periodic boundary condi-
tions by a quasi-spectral method. For small H we observed vortices and for
large H asters, in agreement with the above analysis. For the same integration
time the number of vortices is typically smaller than the number of asters due
to the fact that the screening length of asters is smaller. Therefore, vortices are
more keen to annihilation then asters. As seen in Fig. 7, due to topological
constraints, asters and vortices co-exist with a saddle-point type defect (total
topological charge in a periodic domain must be zero). Asters have a unique
orientation of the microtubules (here, towards the center). Asters with the op-
posite orientation of τ are unstable. In large domains asters form a disordered
network of cells with a cell size of the order of L0. The neighboring cells
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Orientation τ for vortices (H = 0.006, left) and asters (H = 0.125, right) obtained
from Eqs. (2.13,2.14) from random initial conditions. Color code indicates the intensity of |τ |
(red corresponds to maximum and blue to zero), B2 = 0.05, ρ0 = 4, domain of integration
80× 80 units, time of integration 1000 units.

are separated by “shock lines” containing saddle-type defects. The pattern of
asters resembles the "frozen" or spiral glass state [18, 19]. Starting from ran-
dom initial conditions we observed initial merging and annihilation of asters.
Eventually, annihilation slows down due to the exponential weakening of the
aster interaction.

4. Conclusion

We have derived continuous equations for the evolution of microtubule con-
centration and orientation. However, in this derivation we have neglected spa-
tial non-uniformity of motors that can be an important factor in microtubule
pattern formation [7]. The inclusion of the transport equations for the densities
of free and bounded molecular motors in the model, in principle, is straightfor-
ward, but it can complicate the analysis (cf. [7–9]). We are planning to address
this issue in our future work. We have found that an initially disordered sys-
tem exhibits an ordering instability similar to the nematic phase transition in
ordinary polymers at high density. The important difference is that here the
ordering instability is mediated by molecular motors and can occur at arbitrar-
illy low densities of microtubules provided that the density and processivity
of molecular motors are sufficiently high. At the nonlinear stage, the insta-
bility leads to the experimentally observed formation of asters and/or vortices.
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Note that somewhat similar vortices were observed in a system of interacting
granular rods [20, 17].
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PHYSICS OF DNA

Maxim D. Frank-Kamenetskii
Center for Advanced Biotechnology and Department of Biomedical Engineering, Boston Uni-
versity, 36 Cummington St., Boston, MA 02215, USA

Abstract The physical aspects of DNA structure and function are overviewed. Major
DNA structures are described, which include: the canonical Watson-Crick dou-
ble helix (B form), B’, A, Z duplex forms, parallel-stranded DNA, triplexes and
quadruplexes. Theoretical models, which are used to treat DNA, are considered
with special emphasis on the elastic-rod model. DNA topology, supercoiling and
their biological significance are extensively discussed. Recent developments in
the understanding of molecular interactions responsible for the stability of the
DNA double helix are presented.

Keywords: DNA; RNA; proteins; central dogma; DNA topology; knots; links; statistical
mechanics; knot theory; Monte Carlo method; DNA supercoiling; base pairs;
stacking interactions; triplexes; quadruplexes; DNA melting.

1. Introduction

DNA plays a crucial role in all living organisms because it is the key molecule
responsible for storage, duplication, and realization of genetic information.
DNA is a heteropolymeric molecule consisting of residues (nucleotides) of
four types, A, T, C and G. Fig. 1 shows the chemical structure of the DNA
single strand and the complementary base pairs.

The genetic message is "written down" in the form of continuous text con-
sisting of four letters (DNA nucleotides A, G, T and C). This continuous text,
however, is subdivided, in its biological meaning, into sections. The most sig-
nificant sections are genes, parts of DNA, which carry information about the
sequence of amino acids in proteins.

The importance of the DNA molecule cannot be overestimated. It is there-
fore natural that the molecule has been attracting attention not only of biolo-
gists and physicians but also of chemists and physicists, even theorists (for an
introduction into the field of DNA science, see Frank-Kamenetskii, 1997 [19]).
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2. Major structures of DNA

In spite of the enormous versatility of living creatures and, accordingly, vari-
ability of genetic texts that DNA molecules in different organisms carry, they
all have virtually identical physical, spatial structure: the double-helical B form
discovered by Watson and Crick (1953) [89]. Sequences of the two strands of
the double helix obey the complementarity principle. This principle is the most
important law in the field of DNA, and probably, is the most important law of
living nature. It declares that, in the double helix, A always opposes T and
visa versa, whereas G always opposes C and visa versa (see Fig. 1b). In the
cell, a copy of the gene is taken in the form of an RNA molecule, in the pro-
cess known as transcription. This messenger RNA (mRNA) is utilized in the
special molecular machines, ribosomes, to synthesize a protein molecule. This
translation process is realized according to the genetic code. The unidirec-
tional flow of information in the cell, DNA→RNA→ protein, constitutes the
famous central dogma of molecular biology first formulated by Francis Crick
(1916-2004). The RNA molecule is chemically very similar to DNA. The only
significant difference is in the 2’ position of sugar: RNA carries the OH group
while in DNA the oxygen is absent. Another difference is that the role of T
(thymine) in RNA is played by U (uracile). These two bases are different only
by the methyl group.

Figure 1. (a) DNA single strand and (b) the Watson-Crick complementary base pairs.
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B-DNA (Fig. 2a) consists of two helically twisted sugar-phosphate back-
bones stuffed with base pairs of two types, AT and GC. The helix is right-
handed with 10 base pairs per turn. The base pairs are isomorphous: the dis-
tances between glycosidic bonds, which attach bases to sugar, are virtually
identical for AT and GC pairs. Because of this isomorphism, the regular dou-
ble helix is formed for an arbitrary sequence of nucleotides and the fact that
DNA should form a double helix imposes no limitations on DNA texts. The
surface of the double helix is by no means cylindrical. It has two very distinct
grooves: the major groove and the minor groove. These grooves are extremely
important for the functioning of DNA because, in the cell, numerous proteins
recognize specific sites on DNA via binding with the grooves.

Each nucleotide has a direction and therefore the chemical direction is in-
herent in each of the DNA single strands. In the B-DNA double helix, the
two strands have opposite directions. In B-DNA, base-pairs are planar and
perpendicular to the axis of the double helix.

Under normal conditions in solution, often referred to as "physiological"
(neutral pH, room temperature, about 200 mM NaCl), DNA adopts the B form.
All available data indicate that the same is true for the totality of DNA within
the cell. It does not exclude, however, the possibility that separate stretches of
DNA carrying special nucleotide sequences would adopt other conformations.

Up to now, only one such conformation is demonstrated, beyond any doubts,
to exist under physiological conditions. When several A residues in one strand
(and, accordingly, several T residues in the other DNA strand) occur, they
adopt the B’ form. In many respects, the B’ form is similar to the classical
B form but there are also significant differences. The main difference con-
sists in the fact that base pairs in B’-DNA are not planar: They form a kind of
propeller with a propeller twist of 20◦.

Stretches of A residues produce bends in the double helix (reviewed by Sin-
den, 1994 [66]). Such bends play a very important role in DNA functioning.
Although the structural basis of these bends is not fully understood, the in-
volvement of the B’ form in the DNA bending is very probable. In spite of its
importance, the B’ form does not differ dramatically from the B conformation.
Other helical conformations have been found in the course of DNA biophysical
studies, which are significantly different from B-DNA.

2.1 B-DNA

2.2 B’-DNA
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Figure 2. Various DNA structures. (a) B-DNA; (b) Z-DNA; (c) intermolecular triplex; (d)
cruciform; (e) H-DNA (intramolecular triplex); (f) G-quadruplex and its various foldings.

Similarly to B-DNA, the A form can be adopted by an arbitrary sequence
of nucleotides. Like in B-DNA, in A-DNA the two complementary strands are
antiparallel and form right-handed helices. DNA undergoes transition from the
B to A form under dehydration conditions (reviewed by Ivanov and Krylov,
1992 [34]). In A-DNA, the base pairs are planar but their planes make a con-
siderable angle with the axis of the double helix. In doing so, the base pairs
shift from the center of the duplex forming an empty channel in the center.

2.3 A-DNA
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Although A-DNA plays a rather modest role in DNA functioning, the struc-
ture is very important because it is the predominant structure for duplex RNA.
Right now we witness a new revolution in molecular biology due to the dis-
covery of crucial role of small duplex RNA molecules in regulation of gene
activity (see below).

Z-DNA (Fig. 2b) presents the most striking example of how different from
the B form the DNA double helix can be (Wang et. al., 1979 [87]). Although in
Z-DNA the complementary strands are antiparallel like in B-DNA, unlike in B-
DNA, they form left-handed, rather than right-handed, helices. There are many
other dramatic differences between Z- and B-DNA (reviewed by Dickerson,
1992 [15]).

Not any sequence can adopt the Z form. To adopt the Z form, the regular
alternation of purines (A or G) and pyrimidines (T or C) along one strand is
strongly preferred. However, even this is not enough for Z-DNA to be formed
under physiological conditions. Nevertheless, Z-DNA can be adopted by DNA
stretches in cell due to DNA supercoiling (see Section 4.3.1). The biological
significance of Z-DNA, however, remains to be elucidated.

The complementary strands in a DNA duplex can be parallel. Such parallel-
stranded (ps) DNA is formed most readily if both strands carry only adenines
and thymines and their sequence excludes formation of the ordinary antiparal-
lel duplex (reviewed by Rippe and Jovin, 1992 [58]). If these requirements are
met, the parallel duplex is formed under quite normal conditions. It is right-
handed, but the AT pairs are not the usual, Watson-Crick ones, but rather the
so-called reverse Watson-Crick.

Some other sequences also can adopt parallel duplexes. For instance, at
acidic conditions two strands carrying only C residues form parallel duplex
consisting of protonated CC+ base pairs (see Section 2.7).

If DNA carries a homopurine-homopyrimidine tract, a homopyrimidine oli-
gonucleotide can bind to this tract lying in the major groove (Fig. 2c) and
forming Hoogsteen pairs with DNA bases (Moser and Dervan, 1987 [53];
Lyamichev et al., 1988 [45]; reviewed by Frank- Kamenetskii and Mirkin,
1995 [23]; Soyfer and Potaman, 1996 [69]). The canonical base-triads thus
formed are shown in Fig. 3. In recent years, the variety of sequences, which
have been found to be capable to form triplexes, has been significantly enlarged
(reviewed by Frank- Kamenetskii and Mirkin, 1995 [23]; Soyfer and Potaman,

2.4 Z-DNA

2.5 ps-DNA

2.6 Triplexes
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1996 [69]). In addition to intermolecular triplexes, intramolecular triplexes or
H-DNA (Fig. 2e) can be formed under certain conditions (see Section 4.4.3).

Of all nucleotides, guanines are the most versatile in forming different struc-
tures. They may form GG pairs but the most stable structure, which is formed
in the presence of monovalent cations (especially potassium), is G4 quadru-
plex (see Fig. 2f). G- quadruplexes may exist in a variety of modifications:
all-parallel, all-antiparallel and others (reviewed by Sinden, 1994 [66]). As
a result, G-quadruplexes are easily formed both inter- and intramolecularly,
again with a variety of modifications.

A totally unusual quadruplex structure was discovered by Gehring et al.
(1993) [28]. It contains two hemiprotonated parallel-stranded duplexes con-
sisting of CC+ pairs. The two parallel-stranded duplexes are associated in a
mutually antiparallel manner so that CC+ base pairs from one duplex are "lay-
ered" by CC+ pairs from the other duplex, thus alternating along the structure
(Gehring et. al. (1993) [28]; Chen et. al. (1994) [10]).

3. DNA functioning

According the central dogma, there are two fundamental processes, in which
DNA participates: replication and transcription. They are both far from trivial
to be executed because the DNA chemical structure imposes serious constrains
on how DNA can function. A major limitation consists in the fact that DNA
and RNA chains can be extended only from one of two ends, the so-called
3’-end, which carries the 3’-OH group. Another limitation in case of replica-
tion is less fundamental: DNA polymerases have not acquired in the course of
evolution the ability to start DNA synthesis without the presence of the 3’-OH
group. In other words, in addition to the template and the precursors of DNA
(dNTPs) the DNA polymerase always requires a primer to start synthesis of
the new DNA chain. It is not the case for transcription: RNA polymerase can
start RNA synthesis on DNA template without any primer.

Due to all these constrains, the DNA replication becomes a complicated
process (see schematics in Fig. 4). The process begins when a special type of
RNA polymerase called primase synthesizes short RNA primers, which then
extended by DNA polymerase. On one of the two strands, where primer ex-
tension proceeds in the 5’→3’ direction, the synthesis is straightforward (it is
called the leading strand, see Fig. 4). But how can primer be extended on
the opposite, so-called lagging, strand as a template? It is done in a very non-
elegant way: short pieces of DNA are synthesizes in the 5’→3’ direction, i.e.

2.7 Quadruplexes

3.1 Replication
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Figure 3. The structure of various base-triades.

in the direction opposite to the direction of the replication fork movement. A
complicated task of removing RNA primers and repairing the gaps is required
to finalize replication. But, again because of the constrains, the full copy of
original DNA cannot be obtained: RNA primer at the 5’-end of the newly syn-
thesized chain cannot be replaced with DNA since no 3’-end becomes available
after the primer is removed.

Therefore, each cycle of replication ends up with duplex DNA carrying a
3’ overhang at one of two termini of the newly synthesized molecule. How
does living nature deal with this problem of ends? Interestingly, prokaryotes
(bacteria) and eukaryotes (higher organisms) deal with the problem very differ-
ently. Prokaryotes rid out of ends entirely keeping DNA in the form of circular
molecules. This allows them to avoid the end problem. DNA molecules in the
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Figure 4. Schematics of the DNA replication process in the cell (see the text for explanation).
DNA strands are shown in straight lines, DNA strands in the wavy lines.

eukaryote nucleus are linear. How do they avoid any genetic information loss
due to the end effects? It is done in the two levels. First, both termini of chro-
mosomal DNA carries long senseless repeats, called telomeres, which serve as
buffers and allow many cycles of replication to occur before any genetic infor-
mation may be lost. In all vertebrates, including humans, the repeating motif
in one of two DNA strands is: 5’TTAGGG3’. Obviously, however, sooner or
later the telomere repeats are exhausted. A special enzyme has been discov-
ered, which extends the telomeric repeats (Chan and Blackburn, 2004 [9]). The
enzyme uses the 3’-overhanging telomeric repeats at the ends of chromosomes
as primers but where does it find the template? Astonishingly, the enzyme it-
self carries the template in the form for a RNA molecule, which has several
repeats of the 5’CCCUAA5’ sequence serving as a template for telomere ex-
tension. Interestingly, telomerase is inactive in somatic cells and is active only
in gametes. Therefore, during the individual development telomeres must be
shortened. This is exactly what is observed for humans and some researchers
believe that this chromosomal DNA shortening during the life span may be one
of the mechanisms of aging (see Epel et al., 2004 [17]).

The DNA molecule is a depository of information about the entire organ-
ism and its development, and virtually all cells of a given organism carry the
same set of DNA molecules (the whole genome). However, at each particular
moment and in each particular tissue (and even in the individual cell) some

3.2 Transcription and gene expression
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genes are switched on and some are switched off. This regulation of gene ex-
pression is essentially what the biology is all about. As we understand now,
there are two levels of regulation of gene expression. The first one is universal
for all living creatures and is a part of the central dogma. It consists in activa-
tion or repression of initiation of mRNA copying of particular gene by RNA
polymerase. Although this part of central dogma has been subjected to a very
serious revision with respect to eukaryotes after discovery of the exon-intron
organization of eukaryotic genomes and the process of splicing, in the very
core the principle of regulation remains unchanged. The second mechanism,
which is specific only for eukaryotes, had been totally overlooked before five
years ago. It is the so-called RNA interference (RNAi) pathway, whose dis-
covery constitutes no less than a new revolution in molecular biology, which is
well under way right now (see, e g., Novina and Sharp, 2004 [54]; Matzke and
Bircher (2005) [50]). This is only a negative regulation consisting in the spe-
cific degradation of particular mRNA molecules on their way between the nu-
cleus, where they are synthesized via the transcription process, and cytoplasm,
where they are ultimately used in the translation process (protein syntheses on
ribosomes). The specificity of the degradation process is realized via synthesis
of short (about 20-bp-long) duplex RNA molecules, in which the sequence of
one of the strands is identical to a part of the mRNA molecule destined to be
degraded. A special complex of proteins, which included nucleases, secures
the recognition of mRNA and its subsequent cleavage.

4. Global DNA conformation

DNA behaves as an almost ideal polymer chain. No other polymer molecule
is closer to the ideal polymer chain than the DNA double helix. Due to unusu-
ally high bending rigidity of DNA, the ratio of its persistence length, a, to its
diameter, d, is very high. This leads to very small, sometimes negligible, ex-
cluded volume effects under a variety of ambient conditions, not only at the
θ-point, like with ordinary polymers (see, e.g., Grosberg and Khokhlov, 1994
[30]). This unusual rigidity stems from the fact that DNA consists of two,
rather than one, polymer chains. A common mechanism of polymer flexibility,
due to rotation around single bonds, is excluded for the double helix. It ex-
hibits bending flexibility only due to accumulation of small changes of angles
between adjacent base pairs. As a result, the DNA double helix is best mod-
eled as an elastic rod (see Fig. 5a). Within first approximation, one can neglect
the sequence dependence of the DNA bending and torsional rigidities and treat
DNA as a homogeneous and isotropic elastic rod. This model proved to be
a remarkably good first approximation to treat global DNA macromolecular
properties.

4.1. Elastic rod model of DNA
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Figure 5. Theoretical models of DNA: (a) elastic-rod model; (b) helix-coil model; (c) poly-
electrolyte model.

Within the framework of this model, the DNA chain is characterized by
three parameters: the bending rigidity, measured in terms of the persistence
length, a, or the Kuhn statistical length (b = 2a); the torsional rigidity C;
the DNA effective diameter, d. Numerous properties of linear and circular
DNA molecules can be quantitatively understood in terms of the elastic rod
model and the same set, under given ambient conditions, of the above three
parameters.

Ambient conditions, especially the concentration of counter-ions in solu-
tion, may significantly affect some DNA parameters. This is the case for the
DNA effective diameter. Because DNA is a highly charged polyion, the ex-
cluded volume effects strongly depend on the screening of Coulomb interac-
tion between DNA segments approaching each other. As a result, the DNA
effective diameter significantly exceeds its geometrical diameter of 2nm at a
low concentration of counter-ions in solution. By contrast, DNA bending and
torsional rigidities are ionic-strength-independent within a wide range of am-
bient conditions.

For the theoretical treatment of statistical-mechanical properties of DNA
within the elastic-rod model, a Metropolis-Monte-Carlo-type approach was
elaborated by Frank-Kamenetskii et al. (1985) [22]. In this approach, the
DNA chain is modeled as a series of straight segments so that each Kuhn
length contains k such segments. The total elastic energy is the sum of terms,
each of which corresponds to a pair of adjacent straight segments and quadrat-
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ically depends on the angle between them (see Frank-Kamenetskii et al., 1985
[22]; Vologodskii and Frank-Kamenetskii, 1992 [81] for details). The final re-
sults are obtained, within the framework of the model, as asymptotic ones for
the large k values. Fortunately, all characteristics we studied leveled off very
quickly with increasing k so that k = 10 proved to be a quite sufficient value to
get very reliable quantitative asymptotic results (see Fig. 6). Asymptotically,
this model corresponds to the elastic-rod model of the polymer chain (it is also
often referred as the worm-like model; see, e.g., Grosberg and Khokhlov, 1994
[30]).

Figure 6. Typical results of Metropolis-Monte Carlo calculations on the dependence on the
number of straight segments per Kuhn length, k, of a mean quantity (the mean writhing number,
Wr, see Section 4.3.2.1, in the particular case) for closed polymer chain. The data are from
Vologodskii and Frank-Kamenetskii (1992) [81].

DNA is a unique object for experimental studies of a virtually ideal macro-
molecular coil. In addition to the already mentioned fact of an exceptionally
high a/d ratio, DNA samples are strictly monodisperse and the length of the
molecule can be varied in a very wide range: From below one persistence
length up to hundreds of persistence lengths. Smith et al. (1992) [67] per-

4.2. Linear DNA
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formed remarkable measurements of strain/extension relationship on single
DNA molecules. Bustamante et al. (1994; 2003) [7, 8] showed that experi-
mental data agree with theoretical predictions obtained within the framework
of the elastic-rod model. After the DNA molecule was fully extended, further
increase of force led to a sharp transition to what was first interpreted as a new
more extended DNA conformation, in which the average distance between ad-
jacent base pairs was 1.6 times larger than in the normal B-DNA (Smith et
al., 1996 [68]; Strick et al., 1996 [71]). However, further experimental studies
have strongly indicated that this extended conformation actually results from
separation of DNA strands, i.e. the transition is just DNA melting under the ex-
ternal force (Rouzina and Bloomfield, 2001a,b [59, 60]; Williams et al., 2002
[92]; Williams and Rouzina, 2002 [91]). Most recently, this interpretation of
the DNA behavior under stretching force has been fully supported by molecu-
lar dynamic simulations (Harris et al., 2005 [32]).

Normally, linear DNA is in the B-form. Numerous studies, including accu-
rate measurements of force-extension curves in single-molecule experiments
(see Bustamante et al. (2003) [8] and references therein) have made it pos-
sible to determine an accurate value of the DNA persistence length, a, which
proved to be very close to 50 nm (Hagerman (1988) [31]; Taylor and Hager-
man (1990) [72]; Vologodskaia and Vologodskii (2002) [75], Du et al. (2005)
[16]). Therefore, the Kuhn statistical length for DNA is equal to 100 nm.

Figure 7. In closed circular DNA, two complementary strands form linkage of a high order.

It was unexpectedly found in 1963 that DNA exists in certain viruses in a
closed circular (cc) form. In this state, the two single strands of which the
DNA consists are each closed on them- selves. Fig. 7 schematically illustrates
ccDNA. One can see that the two complementary strands in ccDNA proved

4.3. DNA topology
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to be linked. They form a high-order linkage (of the order of N/γ0, where
N is the number of pairs in the DNA and γ0 in the number of base pairs per
turn of the double helix). Initially, the discovery of circular DNA was not
seen to be very significant, since this form of DNA was regarded as exotic.
However, over the years, the cc form of DNA was discovered in an even greater
number of organisms. Currently, it is generally acknowledged that precisely
this form of DNA is typical of prokaryotic DNAs, and also of the cytoplasm
DNAs of animals. Also most virus DNAs pass through a stage of the cc form
in the course of infection of cells. As we discussed in Section 3, the reason
for such abundance of circular DNAs lies in the fact that circularization is
one of two basic mechanisms developed in the course of evolution to deal
with fundamental constraints imposed on DNA replication by DNA chemical
structure.

The discovery of ccDNA has led to the formulation of fundamentally new
problems, since it turned out that many of the physical properties of the closed
circular form differ radically from those of the linear form. The difference
between the properties of these two forms of DNA is not at all due to the
existence of end effects in the one case but not in the other.

There are two levels of DNA topology. First, ccDNA as a whole can be
unknotted (form the trivial knot, or unknot) or form knots of different types
(see Fig. 8). Secondly, two complementary strands in DNA are linked with

The

Let a ring molecule be formed by fortuitous closure of a linear molecule consisting 
of n

knot? This problem has been clearly formulated by Max Delbriick and
solved

ics of knots, one needs, first of all, a knot invariant. Indeed, a closed
chain can  b e unknotted or can form knots of different types.
beginning of the table of knots is shown in Fig.8. However, an analytical
expression for the knot in variant is unknown. Therefore, we had to use a
computer and analgebraic invariant elaborated in the topological theory of knots .  
We found that the most convenient in variant was the Alexander polynomial 
(reviewed by Frank-Kamenetskii and Vologodskii, 1981 [24] and Vologodskii
and Frank-Kamenetskii, 1992 [81]).

The next problem consisted of generating closed polymer chains. In our
first calculations, we simulated DNA as a freely-joint polymer chain. Sev-
eral methods exist to generate exclusively closed chains for this model (Frank-

that arises in theoretical analysis
 

of
 ring r chains, including  ccDNA,  is  formulated in the following way.polyme 

segments. What is the probability of forming a knotted chain, i.e., a nontri-
vial

1975 [21]).
by our group (Vologodskii et al., 1974 [76]; Frank-Kamenetskii et al.,

mechan

each other topologically (Fig.7).

problem4.3.1. Knots.  firs t

4.3.1.1. ZStatistical mechanics of knots. To solve the problem of statistical

The very
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Figure 8. Knots.

Kamenetskii and Vologodskii, 1981 [24]; Vologodskii and Frank-Kamenetskii,
1992 [81]). Using these methods and teaching the computer to calculate the
Alexander polynomials and therefore to distinguish the knots of different type,
we could calculate the knotting probability.

Analogous calculations have been performed later by other researchers (re-
viewed by Frank-Kamenetskii and Vologodskii, 1981 [24]; see also more re-
cent papers by Deruchi and Tsurusaki, 1993a, b, 1994 [12–14]). The data on
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the relationship between the probability of knot formation and the number of
Kuhn lengths in the chain are shown in Fig. 9. Remarkably, the data are well
approximated by a simple equation:

P (n) = 1− exp(−κn),
where κ = 3 · 10−3.

Figure 9. Probability of knot formation, P , as a function of the number n of Kuhn statistical
lenghts for an infinitely thin polymer chain.

The above calculations were performed under the assumption that the poly-
mer chain under consideration has zero diameter. In the very early stage
of our study of knots we already realized that the excluded volume effects
should significantly decrease the knotting probability (Vologodskii et al., 1974
[76], Frank-Kamenetskii et al., 1975 [21]). However, the knotting probability
proved to be even more sensitive to the excluded volume effects than we orig-
inally anticipated so that these effects could not be neglected even in the case
of DNA.

We arrived at this conclusion using the Metropolis-Monte Carlo approach to
calculate DNA topological characteristics within the framework of the elastic-
rod model (Frank- Kamenetskii et al., 1985 [22]).

This approach made it possible to simulate the behavior of DNA molecules
allowing for excluded volume effects (Klenin et al., 1988 [36]). So we arrived
at quantitative predictions about the dependence of knotting probability on the
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DNA effective diameter, d. Fig.10 shows the results. One can see a dramatic
dependence of the P value on d. Even in case of DNA geometric diameter,
which corresponds to d = 0.02 in Fig. 10, the knotting probability is already
significantly lower than for d = 0. However, in reality the effective diameter
of DNA noticeably exceeds its geometric value due to the excluded volume ef-
fects, which are determined by the screened electrostatic interactions between
highly charged DNA segments. Therefore, the d value can be varied by chang-
ing the ionic strength of the solution. These theoretical predictions have been
checked experimentally (see the next section).

Figure 10. Dependence of the equilibrium fraction of knotted molecules on DNA effective
diameter, d, for closed DNA containing 14 Kuhn lengths (lower curve), 20 Kuhn lengths (mid-
dle curve) and 30 Kuhn lengths (upper curve). The data are from Klenin et al. (1988) [36].
The diameter is measured in Kuhn lengths; so, to obtain the d value in nanometers one has to
multiply the figures on the abscissa by the factor of 100.
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ence of such topological states in molecules has been raised at least since the
late-1940s (see Frisch, 1993 [26]). It has acquired special interest since the dis-
ery of closed circular DNA molecules. The calculations of the probability of
knot formation upon closing a polymer chain (see Section 4.3.1.1) have posed
the problem of the possible existence of knotted DNAs. The results indicated
that the equilibrium fraction of knotted DNAs must be appreciable for circular
DNAs containing more than about 104 base pairs (30 Kuhn lengths). In most
cases, DNA molecules have even greater length, and a hypothesis has been
put forward of the existence in the cell of special mechanisms that prevent the
formation of knotted DNAs (Frank-Kamenetskii et al., 1975 [21]). In fact, in
the course of replication of a knotted chain (at least for some types of knots)
the daughter strands cannot separate. That is, the replication of knotted DNAs
involves serious problems.

Knotted molecules were first detected in preparations of single-stranded cir-
cular DNAs after they had been treated under special conditions with a type I
topoisomerase (Liu et al., 1976 [41]). This was the first case when a knotted
molecule was observed. However, the problem of knotting of normal, double-
stranded DNAs continued to be very intriguing. It turned out that there is a spe-
cial subclass of topoisomerases called type II topoisomerases, which are capa-
ble of untying and tying knots in ccDNAs. Moreover, these enzymes catalyze
the formation of catenanes from pairs or from a larger number of molecules of
ccDNA. Here entire networks are formed, similarly to those observed in vivo
in kinetoplasts.

In contrast to type I topoisomerases, type II topoisomerases break, and then
rejoin both strands of DNA molecules. It has been shown that the enzyme
"draws" a segment of the same or of another molecule lying nearby through
the "gap" that is formed in the intermediate state between the ends that arise
through breakage. Thus, the type II topoisomerases catalyze the process of
mutual penetration of segments of the double helix through one another. This
process has been elaborated in details by Wang and his collaborators in their
remarkable studies of the enzyme by various methods including X-ray crystal-
lography (Berger et al., 1996 [5]; Wang, 1996 [86]).

Almost 20 years after theoretical estimations of the probability of DNA
knotting were first published (Vologodskii et al., 1974 [76]; Frank-Kamenetskii
et al., 1975 [21]), quantitative experimental data have been reported (Rybenkov
et al., 1993 [61]; Shaw and Wang, 1993 [65]) which fully agreed with the the-
ory. In these experiments, the equilibrium fraction of knotted DNA molecules
at various ionic conditions was quantitatively measured while molecules car-
rying "cohesive" ends randomly closed, in the absence of any proteins. Com-
paring the fraction with theoretical predictions of Klenin et al. (1988) [36],

4.3.1.2.ZZKnotted DNAs. As mathematical objects, knots and links have been
studied already for more than hundred years. The question of possible exist-
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the value of DNA effective diameter, d, was determined as a function of salt
concentration. The obtained dependence proved to be in complete quantita-
tive agreement with theoretical predictions of Stigter (1977) [70], which were
based on the polyelectrolyte model of DNA schematically shown in Fig 5c.

While studying knotting and catenation of DNA molecules under the ac-
tion of type II topoisomerases, Cozzarelly, Vologodskii and their co-workers
made an astonishing discovery. They found that these enzymes are actually
molecular motors, which directionally simplify DNA topology with respect to
knots and links (Rybenkov et al., 1997 [62]). But how could that be? Are
not topoisomerases much smaller than DNA molecules they untie? How such
global characteristic as topology can be "sensed" by proteins? These intriguing
questions are currently under intense theoretical and experimental investigation
(Vologodskii et al., 2001 [83]).

4. 3. 2.
that the two complementary strands of DNA form a link, in the topological se-
nse One can present a table of links similar to the table of knots in Fig.8
(see Frank-Kamenetskii and Vologodskii, 1981 [24]). However, because the
two complementary strands of DNA are attached to each other forming the
duoble helix, the links which DNA can form, belong to a subclass of all po-
ssible links. Namely, they form a class of the so-called torus links because
the two strands could be put into a torus. For torus links, the well-known
Gauss integral, which defines the linking number value, Lk , is a strict top-
ological invariant (see Frank-Kamenetskii and Vologodskii, 1981 [24]).

There is another viewpoint on the torus links. The two strands in this case
could be treated as the edges of a ribbon. Therefore, the topological theory of
torus links is actually the theory of ribbons.
4.3.2.1. DNA supercoiling. The application of the topological ideas to study-
ing the properties of ccDNA was started by Fuller (1971) [27] when he app-
lied the results of the ribbon theory to analyzing the properties of these molec-
ules. According to this theory (White, 1969 [90]; a simple derivation can be
found in Frank-Kamenetskii and Vologodskii, 1981 [24]), besides the topolo-
gical characteristic of a ribbon, the Lk value, two differential-geometric cha-
racteristics play an important role, the twist, Tw, of the ribbon, and its writh-
ing, Wr. All three characteristics are interrelated by the condition:

Lk = Tw +Wr. (4.1)

The ccDNA is generally not characterized by the total quantity Lk, but by the
number of excess turns (the number of supercoils τ ):

τ = Lk −N/γ0. (4.2)

Torus links and ribbons. From the schematics in Fig. 7 it is clear
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The number of base pairs per turn of the double helix, γ0, is rigorously fixed
under given ambient conditions. However, upon changing the ambient condi-
tions (temperature, composition of solvent, etc.), it can vary. Therefore, the
number of supercoils τ , in contrast to the Lk value, is a topological invariant
of DNA only under fixed ambient conditions.

Very valuable information on the energy and conformation characteristics of
ccDNA has arisen from experiments in which the value of Lk could vary, and
the equilibrium distribution of the cc molecules over the Lk value was studied.
The most convenient way to vary Lk is to employ special enzymes we have
already mentioned above, the topoisomerases. The studies under discussion
employed type I topoisomerases, which alter the topological state of ccDNA
by breaking and rejoining only one of the strands of the double helix. The
mechanism of action of these enzymes has been elaborated in great details
(Wang, 1996 [86]). These enzymes relax the distribution of the molecules over
the Lk value to its equilibrium state. The very sensitive gel- electrophoresis
method was used to analyze the distribution of the ccDNA molecules over the
Lk value. This method can easily separate two molecules of ccDNA that differ
in Lk just by one.

Naturally, the maximum of the equilibrium distribution always corresponds
to τ = 0 because this minimizes the elastic energy. Note that, although the
quantity τ can only adopt discrete values that differ by no less than unity, it
is not required to be an integer. Therefore, as a rule, molecules having τ = 0
do not appear in a preparation. A distribution, in which the molecules having
positive and negative values of τ are separated, is obtained when the elec-
trophoresis is performed under conditions differing from those under which
the reaction with the topoisomerase is conducted. The change in the condi-
tions means that we must substitute some other value γ′

0 instead of γ0 in Eq.
(4.2) without changing the Lk value. This means that the entire distribution is
shifted by the amount of δτ = N [(1/γ0) − (1/γ′

0)]. Then the molecules that
had the τ value in the original distribution will have the values τ ′ = τ + δτ in
the new distribution. If the value δτ is large enough, all of the topoisomers are
well separated.

Experiments have shown that the obtained distribution is always normal
(Depew and Wang, 1975 [11]; Pulleyblank et al., 1975 [57]; Horowitz and
Wang, 1984 [33]). The variance, 〈τ2〉, of this normal distribution was mea-
sured for different DNAs. These experiments have played a very important
role in studying the physical properties of ccDNA. They made it possible to
determine the free energy of supercoiling, which is directly connected to the
variance:

G = kBTτ
2/2〈τ2〉 = 1100kBTN−1τ2, (4.3)

where kB is the Boltzmann constant and T is the absolute temperature.
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4.3.2.2. Theoretical understanding of DNA supercoiling. Quantitative
explanation and prediction of a variety of DNA topological characteristics,
most notably the data on the equilibrium knotting probability and on the eq-
uilibrium distribution of ccDNA over topoisomers, demonstrated a remarka-
ble success of the DNA elastic-rod model. The model also proved to be ex-
tremely successful in theoretical treatment of the phenomenon of DNA super-

In its traditional form, the Monte Carlo approach does not permit simulat-
ing highly or even moderately supercoiled molecules because the probability
of their occurrence due to thermal motion is negligible. We have extended our
Metropolis-Monte Carlo calculations (Frank- Kamenetskii et al., 1985 [22]) to
make it possible to generate supercoiled DNA molecules with arbitrary super-
coiling (Klenin et al., 1991 [37]; Vologodskii et al., 1992 [82]). The computa-
tional procedure is described at length by Vologodskii and Frank-Kamenetskii
(1992) [81].

An ensemble of chains generated by the approach is used to calculate dif-
ferent averaged characteristics of supercoiled molecules and enables one to
obtain theoretical images of supercoiled molecules. Fig. 11 presents examples
of such images. Our theoretical predictions about the shape of supercoiled
DNA molecules agree with most available experimental data.

Marko and Siggia (1994, 1995) [47, 48] developed an approximate analyti-
cal theory describing the structures of supercoiled DNA molecules. This theory
provides insight into the role of entropic effects in the shapes of supercoiled
DNA molecules of the type shown in Fig. 11.

4.4. Breakdown of the elastic-rod model: DNA unusual
structures induced by supercoiling

With increasing negative supercoiling, the elastic-rod model breaks down.
This happens when the elastic energy stored in the form of bending and tor-
sional deformations exceeds the energy necessary for local formation of un-
usual DNA structures. These unusual structures release superhelical stress
thus decreasing the total energy of the molecule. The competition between
different unusual structures for the total pool of the superhelical energy dra-
matically depends on the presence of special sequence motifs, which favor
various unusual structures. Before these unusual structures (cruciforms, Z-
DNA, H-DNA) were discovered, the main reason for breakdown of the double
helix was believed to be the local melting (separation of DNA complementary
strands, see Section 5). Anshelevich et al. (1979) [1] and Vologodskii et al.
(1979) [77] were the first to include DNA melting and cruciform formation into
comprehensive statistical mechanical treatment of supercoiled DNA. As other
unusual structures emerged and their energy parameter became available, the
treatment has been modified accordingly (Vologodskii and Frank-Kamenetskii,

coiling.
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Figure 11. Results of computer simulations of supercoiled DNA molecules for different
values of superhelical density σ = τγ0/N . The data are from Klenin et al. (1991) [37].
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1982 [79]; Frank-Kamenetskii and Vologodskii, 1984 [25]; Vologodskii and
Frank-Kamenetskii, 1984 [80]; Anshelevich et al., 1988 [3]). These unusual
structures are briefly described below.

4.4.1. Z-DNA. Negative supercoiling mostly favors formation of left-han-
ded Z-DNA (see Section 2.4) because, in this case, the maximal release of
superhelical stress per base pair adopting a non-B-DNA structure is achiev-
ed. As a result, although under physiological ambient conditions the Z form is 
energetically very unfavorable as compared with B-DNA, it is easily adopt-
ed in negatively supercoiled DNA by appropriate DNA sequences (with alte-
rnating purines and pyrimidines).

Linear DNA with the appropriate sequence adopts the Z conformation at a
very high salt concentration (about 3M NaCl).

coiling is cruciform, which requires palindromic regions (see Fig. 2d). To
form a cruciform, a palindromic region should be larger than a certain minim-
um. For example, six-base-pair-long palindromes recognized by restriction en-
zymes do not form cruciforms under any conditions.

4.4.3.
which are adopted under superhelical stress by sequences carrying purines (A
and G) in one strand and pyrimidines (T and C) in the other, i.e. homopurine-
homopyrimi sequences (reviewed by Mirkin and Frank-Kamenetskii, 1994
[52]; Frank-Kamenetskii and Mirkin, 1995 [23]; Soyfer and Potaman, 1996
[69]). The major element of H-DNA is a triplex formed by one half of the ins-
ert adopting theb H form and by one of the two strands of the second half of the
insert (Fig. 2e).Two major classes of triplexes are known-pyrimidine-purine-
pyrimidine (PyPuPy) and pyrimidine-purine-purine (PyPuPu). Fig.3 shows the
canonical base-triads entering these triplexes.

Always two isomeric forms of H-DNA are possible, which are designated
as H-y3, H-y5, H-r3 and H-r5, depending on which kind of triplex is formed
and which half of the insert forms the triplex (see Fig. 2e). H-DNA may be
considered as an intramolecular triplex (it is often referred to in this way). Its
formation under physiological ambient conditions occurs only under superhe-
lical stress.

The discovery of H-DNA (Lyamichev et al., 1985, 1986 [43, 44]; Mirkin et
al., 1987 [51]; reviewed by Mirkin and Frank-Kamenetskii, 1994 [52]; Frank-
Kamenetskii and Mirkin, 1995 [23]; Soyfer and Potaman, 1996 [69]) stimu-
lated studies of intermolecular triplexes, which may be formed between homo-
purine-homopyrimidine regions of duplex DNA and corresponding pyrimidine
or purine oligonucleotides (see Section 2.6).

4.4.2.  Cruciforms. Another structure readily formed under negative super-

 H-DNA. H-DNA forms a special class of unusual structures,
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5. The DNA stability

Soon after the discovery of the double helix by Watson and Crick (1953)
[89], the phenomenon of DNA melting was demonstrated experimentally. It
was shown that when the DNA solution is heated, the complementary strands
separate: instead of the regular double helix, two single-stranded DNA coils
emerge (Marmur and Doty, 1962 [49]). This phenomenon is also called the
helix-coil transition. The DNA melting may be monitored by various tech-
niques. Two most popular methods are UV-spectrometry and microcalorimetry
(reviewed by Breslauer et al., 1992 [6]). Instead of exhibiting a phase transi-
tion, DNA melts gradually, in a wide temperature range (Fig. 12b). DNAs
from different organisms differ in their melting profiles.

5.1. Helix-coil model

In attempts to understand the phenomenon of DNA melting, a simplified
theoretical model was elaborated (see Fig. 5b), which treated DNA as a one-
dimensional array of interacting spins. Each spin corresponded to a DNA base
pair. Spin up corresponded to the helical state while spin down corresponded
to the melted (open) state of the base pair. Two features made the problem
much more difficult and much more interesting than the one-dimensional Ising
model well known in the solid state physics. First, because open regions in
DNA presented closed polymer chains, a long-range interaction between spins
emerged. Secondly, because two base pairs in DNA (AT and GC) have dif-
ferent stability, DNA had to be modeled as a linear array of spins under the
influence of disorder external magnetic field. Although irregular, the sequence
is fixed so that the external field is quenched.

5.1.1. Theoretical development. In statistical-mechanical terms, the second
feature of DNA helix-coil model (the linear memory due to the fixed sequ-
ence of DNA base pairs) means that one cannot average the partition function
over different sequences of AT and GC pairs even if one assumes that the seq-
uence itself is totally random. In reality, of course, the sequence is not rand-
om because it carries the genetic information. However, at early stages of tre-
atment of the DNA melting phenomenon, long before the first real DNA
sequences became available, the sequence was assumed to be random in theo-
retical studies. This made it possible to apply not only numerical but also ana-
lytical tools to treat the problem. Among others, important contributions of
Vedenov et al. (1971) [74], Azbel (1972) [4] and Lifshitz (1973) [40] are worth

As to the numerical solution, the challenge was to reduce the problem of
direct computation of the partition function for a chain consisting of a very
large number (N ) of base pairs ("spins"), which required exponentially large
computer time, to a procedure, which required polynomial time Nα with α as

mentioning.
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Figure 12. Melting of DNA. (a) The helix-coil transition of a DNA molecule (intramolecular
melting), (b) Typical DNA melting profile. This curve is also often called the differential melt-
ing curve. The curve was obtained for DNA which has the code name of ColEl and contains
about 6500 nucleotide pairs.

small as possible. Several rigorous algorithms were proposed (Vedenov et al.,
1967, 1971 [74, 73]; Poland, 1974 [55]).

However, an efficient way of solving the problem, which allowed for both
the above features of the DNA helix-coil model, was not available until Fix-
man and Friere (1977) [18] proposed their algorithm. In so doing they heavily
relied on the Poland (1974) [55] algorithm and some of our results (Frank-
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Kamenetskii and Frank-Kamenetskii, 1969 [20]; Lukashin et al, 1976 [42]).
Theoretical development of the helix-coil model has been extensively reviewed
by Vedenov et al. (1971) [74], Wada et al. (1980) [85], Wada and Suyama
(1986) [84], and Wartell and Benight (1985) [88].

It is worth mentioning that the helix-coil model without long-range interac-
tions found applications far beyond the area of DNA biophysics. Among other
applications, the model has been extensively used to study of helix-coil tran-
sition in polypeptides and most recently it was used by Selinger and Selinger
(1996) [64] to explain experimental data on chiral order in random copolymers
consisting of two enantiomers.

nce appeared in 1977 (of bacteriophage ΦX174), DNA bio-physicists were well
equipped to compare quantitatively experimental DNA melting profiles with
theoretical predictions. It was first done by Lyubchenko et al. (1978) [46].
Essentially, it was the beginning of the end of the theme of DNA melting
in DNA biophysics because theoretical prediction correlated with experiment
sufficiently well. Even more direct comparison was done by Kalambet et al.
(1985) [35] using electron-microscopy visualization of the melted regions in
DNA with the known sequence on different stages of the melting process. Such
comparisons and similar studies (reviewed by Wartell and Benight, 1985 [88];
Wada and Suyama, 1986 [84]) left no doubts that we correctly understood in
quantitative terms major features of the phenomenon of DNA melting.

5.1.3. Heterogeneous stacking. A theme that dominated the field after the
first demonstration of a success of the theory in achieving quantitative explanation
of experimental data for DNAs with known sequences, was the so-called het-
erogeneous stacking. In the original helix-coil model, the external field could
acquire only two values, corresponding to AT and GC pairs. This meant that in-
teraction between all possible combinations of near neighbors along the DNA
chain was assumed to be the same. Of possible 16 types of nearest neighbors,
or stacks, only 10 are different because of the complementarity rule. It was
quite natural to attribute some remaining differences between theory and ex-
periment to the fact that these 10 parameters are different, i.e., to the effect
of heterogeneous stacking. However, the very fact that the original model,
which ignored the difference, worked well, indicated that the deviations from
the mean interaction energy between adjacent base pairs were small as com-
pared with the energy itself. In other words, these data indicated that the het-
erogeneous stacking was a small parameter.

In the first paper where heterogeneous stacking was allowed for, Gotoh and
Tagashira (1981) [29] overlooked the fact that of 10 parameters of heteroge-
neous stacking only 8 of their combinations (invariants) actually determine the

5.1.2. Comparison with experiment.  When the very first full DNA seque-
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behavior of long DNA chains. When they adjusted all 10 parameters of het-
erogeneous stacking by comparing theory with experiment, a great confusion
occurred because, unexpectedly, the effect of heterogeneous stacking proved
to be very large. Vologodskii et al. (1984) [78] dispelled the confusion ad-
justing 8 invariants, not 10 parameters, by comparing theory with experiment.
As a result, a reasonable set of relatively small parameters of heterogeneous
stacking emerged (Vologodskii et al., 1984 [78]). Still, some discrepancy re-
mained between the heterogeneous stacking parameters obtained from data on
large DNA fragments (about 103 bp) and short duplexes (about 20 bp). This
controversy has been resolved by SantaLucia (1998) [63] who arrived at a very
solid "unified" set of DNA melting parameters.

5.2. Slow relaxational processes

The remarkable success of statistical-mechanical theory in explaining the
phenomenon of DNA melting overshadowed some significant limitation of the
approach. For a long time experimental observations of hysteresis phenomena
in DNA melting were largely ignored. However, when comparison of theory
and experiment reached a high precision, kinetic effects in DNA melting could
not be ignored any longer.

A comprehensive analysis of slow relaxation processes in DNA melting was
performed by Anshelevich et al. (1984) [2]. The hysteresis phenomena in
DNA melting are a direct consequence of the fact that very long regions are
melted out cooperatively in the course of the process. The characteristic time
of strands separation for a helical region consisting of m base pairs may be
roughly estimated as (see Anshelevich et al., 1984 [2], for more accurate ex-
pressions):

τ = (τ0/m) sm (5.4)

where τ0 ∼ 106s and s is the stability constant for a base pair. Although s is
very close to unity within the melting range, because m is several hundreds the
sm value may be extremely large. Hence, very large τ values and a significant
contribution of kinetic effects.

Subsequent thorough experimental studies completely confirmed all ma-
jor theoretical predictions (Kozyavkin et al., 1984,1986 [38, 39]; Wada and
Suyama, 1986 [84]).

5.3. Stacking versus base pairing

Despite an impressive progress in detailed physical understanding of the
DNA melting phenomenon, the central question on the nature of forces deter-
mining the stability of the double helix remained unanswered until very re-
cently. Indeed, there are two radically different interactions within the double
helix: stacking between adjacent base pairs and pairing between complemen-
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tary bases. Melting experiments cannot answer the question of their respective
contribution because the melting free energy includes sum of these two con-
tributions. Therefore, independent determination of at least one of the two
components, stacking or base paring, is required to separate the two contri-
butions into the melting free energy. Such independent determination of the
stacking parameters has recently been performed in my group (Protozanova et
al. 2004 [56]).

It was found that a duplex DNA fragment carrying a single-strand break
(nick) assumes two sates: closed conformation in which stacking between base
pairs flanking the nick is preserved and open or kinked conformation, in which
stacking is fully disrupted (see Fig. 13). The relative occupancy of these two
states, i. e. Nopen/Nclosed, can be determined in gel electrophoresis mobility
experiments. This ratio is shown to be governed by the stacking free energy
parameter for the pairs flanking the nick:

Nopen/Nclosed = exp(−ΔGst/RT ). (5.5)

As a result, stacking parameters for all possible contacts have been deter-
mined (Protozanova et al. 2004 [56]). Comparing the obtained values of
with melting parameters for various contacts, the conclusion was made that the
DNA double helix is predominantly stabilized by stacking interactions. For AT
pairs the base-pairing contribution is virtually absent while GC pairs stabilize
the duplex state but their contribution is pretty small.

This conclusion is not surprising. Indeed, it has long been realized that

Figure 13. Stacking-unstacking in the nick site of DNA carrying a single-strand break.
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6. Conclusion

DNA physics is a very well developed field, which forms a solid background
for understanding the basic principles of DNA functioning in the cell and for
numerous biotechnology applications of DNA. Indeed, such major tools of
contemporary biotechnology as polymerase chain reaction (PCR), DNA chips
and microarrays heavily rely on our knowledge and understanding of DNA
physics. DNA physics also plays a decisive role in a rapid progress in design
nanostructures and nanodevises based on DNA.
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