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To Paul and Roberta





Foreword

It is honor and privilege to be asked to provide the foreword to Looking Back. As an
academic statistician, as a director of a research department at Educational Testing

Service (ETS), as a colleague, as a mentor, and as a consultant inside ETS as well as

to various external statistical and scientific agencies, Paul Holland throughout his

illustrious career has made significant contributions to theory and practice in the

fields of psychometrics, statistics, and social science research. On a more personal

note, I have been fortunate to have spent most of my career at ETS during a period

in which Paul was also employed there. Although I did not collaborate as directly

with Paul as did the authors of the various chapters of this book, it is not difficult

to discern Paul’s influence on my own professional career in terms of what I know

about statistics and psychometrics, the kind of activities I engaged in as a practicing

psychometrician, and the stewardship of testing programs I was required to provide

as an ETS technical leader. What is true for me is, I believe, true for many of the

statistics and psychometric staff of my vintage – at ETS as well as elsewhere.

I attended graduate school at the University of Arizona in the late 1970s and

early 1980s and, as part of my degree program, took an applied statistics course in

the sociology department. The course was in the area of analysis of contingency

tables using log-linear models. The primary text for the course was a book by

Stephen Fienberg (one of the contributors to this volume) called The Analysis of
Cross-Classified Data (2nd edition). But looming in the background as highly

recommended supplementary material was a more imposing tome, Discrete Multi-
variate Analysis: Theory and Practice by Yvonne Bishop, Stephen Fienberg, and

one Paul W. Holland. Throughout the course, we were assigned sections of this

tome as supplementary reading and, for someone like me with relatively modest

mathematical training, I found the material enlightening, though challenging and

intimidating as well. As a result of this experience, I was very familiar with the

name Paul Holland and had learned at least some of what I know about log-linear

models and their applications from him well before I ever set foot on the ETS

campus. I viewed Paul as a sort of rock star in the area of discrete data analysis,
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and one of the things that made it exciting and desirable to come to ETS after

I completed graduate school was the opportunity to work for an organization that

employed the great man himself.

I joined ETS in 1984, as what we called then an associate measurement statisti-

cian. I was responsible for overseeing statistical and psychometric support activities

for several ongoing ETS testing programs. While I had some measurement and

applied statistics background, like many freshly minted graduate students, I had

very limited experience with score equating – the statistical process testing com-

panies use to ensure that scores from different forms of the same test (e.g., different

administrations of the SAT) are expressed on a common scale. Then, as well as

today, equating tests constituted a large portion of the activities of ETS psychome-

tricians. So as part of my early on-the-job education, I tried to learn as much as

I could, and as quickly as I could, about equating. Of course, I read various ETS

memos and orientation materials that were given to me as a new employee.

However, I also read what was then a relatively new book, Test Equating, edited
by Paul Holland and Don Rubin. In it was a chapter by Paul and Henry Braun titled

“Observed-Score Test Equating: A Mathematical Analysis of Some ETS Proce-

dures.” In that chapter, Paul and Henry laid out a formal statistical framework for

describing equating procedures in widespread use at ETS. This chapter helped me

greatly to organize and make sense of the various documents about equating that

I was reading and to better understand the nature of what I was seeking to

accomplish in my day-to-day work as an ETS measurement statistician. I am certain

that Paul and Henry’s chapter accelerated my development and made me a more

effective measurement professional than I otherwise would have been.

Of course, throughout the 1980s and early 1990s, like most of my ETS collea-

gues I had the pleasure to see Paul’s work on differential item functioning (DIF)

develop and contribute directly to a substantial research program and, more impor-

tantly, to improved statistical procedures for ensuring fairness. The resulting

methodologies and rules of thumb that Paul and his colleagues developed became

standard operating procedure at ETS and continue to this day. So, once again, my

understanding of statistical approaches to assessing fairness issues and the day-to-

day activities of testing professionals at ETS, and I would guess other companies as

well, were in no small part shaped by Paul’s contributions to psychometric theory

and practice.

Paul, much to our chagrin, left ETS in 1993, taking an academic position at the

University of California at Berkeley. Near the end of last century, Paul Ramsey and

Drew Gitomer, both ETS vice presidents at that time, initiated a concerted effort to

strengthen ETS’s statistical and psychometric foundation. Paul Ramsey asked

Steve Lazer and me to speak with colleagues and to prepare A and B lists of

statisticians/psychometricians we should try to hire. After a number of colleagues

were consulted, it was clear that at the top of everyone’s A list was Paul Holland.

Fortunately, Paul was ready to consider coming back to ETS, as he notes in

Returning to ETS From Berkeley in this volume, and Paul Ramsey and Drew

Gitomer were able to make that happen. The impact of Paul’s return to the ETS

was immediate and profound. He re-established his program of research on
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equating, presaged in the Braun and Holland chapter, which resulted in the

publication of the book The Kernel Method of Test Equating with Alina von Davier
and Dorothy Thayer. This work also led to the creation and deployment of software

for implementing the approach operationally.

Paul began attending National Assessment of Educational Progress technical

advisory committee meetings – contributing to discussions surrounding technical

matters associated with this important testing program. He produced several white

papers on issues associated with the impact on NAEP of the newly passed No Child

Left Behind Act, and, generally, through his wisdom and guidance, helped those of

us charged with directing NAEP psychometric activities better manage the NAEP

program through a period of rapid change. Through his activities he demonstrated

to the NAEP sponsors (the National Center for Education Statistics and the National

Assessment Governing Board) what we all knew from working with him over the

years – that he is not only a world-class researcher, but one who is willing to use

those gifts in tackling problems of real practical importance.

But the impact of Paul’s return on ETS went beyond his contributions to NAEP.

Drew Gitomer recounted to me how he had sent a company-wide announcement of

Paul’s return to ETS and was amazed at the sheer number of positive responses he

received from not just the technical areas but from all parts of ETS, indicating how

happy people were that he was returning and how they were looking forward to

working with him. The conference proceedings that are captured here in Looking
Back are a fitting recognition and celebration of Paul’s substantial impact on ETS

and the profession.

John Mazzeo

Vice President

Statistical Analysis &

Psychometric Research

Educational Testing Service
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Preface

In 2006, Paul W. Holland retired from Educational Testing Service (ETS) after a

career spanning five decades. In 2008, ETS sponsored a conference, Looking Back,
honoring Paul’s contributions to applied and theoretical psychometrics and statis-

tics. Looking Back attracted a large audience that came to pay homage to Paul and

to hear presentations by colleagues who worked with Paul in special ways over

those 40+ years. This book contains papers based on these presentations, as well as

vignettes provided by Paul before each section.

Shelby Haberman, the eminent statistician who is a long-time contemporary of

Paul’s, was attracted to ETS by Paul in 2002. Shelby is very conversant about the

history of statistics. In The Contributions of Paul Holland, Shelby provides a

history with commentary on some of Paul’s major contributions.

The first collection of papers appears under the heading Holland the Young
Scholar. Two well-known statisticians, who worked closely with Paul in the 1970s

when they all were young, contributed papers in this collection. Stephen Feinberg,

co-author with Paul and Yvonne Bishop of the classic Discrete Multivariate
Analysis: Theory and Practice, contributes Algebraic Statistics for p1 Random
Graph Models: Markov Bases and Their Uses with Sonja Petrović and Alessandro

Rinaldo. In Mr. Holland’s Networks, Stanley Wasserman, who was a doctoral

student when Paul taught at Harvard, reports on work in social network theory

that has evolved since Paul’s seminal work with Sam Leinhardt.

As the title Holland Shaping ETS states for the next collection of papers, Paul

applied statistical thinking to a broad range of ETS activities in test development,

statistical analysis, test security, and operations. Donald Rubin attracted Paul to ETS

in 1975 and co-edited with Paul the book Test Equating, which was one of first to

bring professional attention to the critical statistical practice of score equating.

Donald’s Bayesian Analysis of a Two-Group Randomized Encouragement Design
addresses a practical problem in causal inference, an area to which he and Paul made

significant contributions. The development and implementation of procedures for

differential item functioning (DIF) was one major application. Michael Zieky, who

was at ETS when DIF was introduced, provides a valuable history of DIF in the 1980s

in The Origins of Procedures for Using Differential Item Functioning Statistics at
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Educational Testing Service. Brian Junker, who was a summer intern under Paul in

the 1980s, contributes The Role of Nonparametric Analysis in Assessment Modeling:
Then and Now. Paul Rosenbaum, an expert on statistical treatment of data from

observational designs, contributes What Aspects of the Design of an Observational
Study Affect Its Sensitivity to Bias From Covariates That Were not Observed?

Holland left ETS in the early 1990s to become a professor. The next section,

Holland the Berkeley Professor, contains papers from two of his former students.

Derek Briggs addresses a very current topic in Cause or Effect? Validating the
Use of Tests for High-Stakes Inferences in Education. Ben Hansen assesses coach-

ing effects in Propensity Score Matching to Extract Latent Experiments From
Nonexperimental Data: A Case Study.

While Paul was at Berkeley, the productive group he left behind at ETS missed

his guidance and leadership. Paul returned to ETS in 2000 and began to mentor a

new set of young ETS professionals. Three of those lucky individuals contributed to

Holland Rebuilding ETS. Tim Moses worked closely with Paul on several topics,

including, as the title of his paper states, Log-Linear Models as Smooth Operators:
Holland’s Statistical Applications and Their Practical Uses. Sandip Sinharay, who
worked with Paul on several topics, contributed Chain Equipercentile Equating and
Frequency Estimation Equipercentile Equating: Comparisons Based on Real and
Simulated Data. Alina von Davier discusses her work with Paul on his kernel-

equating model and its extensions in An Observed-Score Equating Framework.
When Paul returned to ETS, he asked two ETS employees whom he had

mentored to join his group. Henry Braun currently of Boston College and a former

ETS Vice-President for Research and Neil Dorans of ETS made contributions to

Holland: From Mentor to Colleague. Henry, an expert in the application of

statistics to issues in educational policy, contributes An Exploratory Analysis of
Charter Schools. Neil, who focuses on fairness assessment topics including DIF

and equating, builds upon Paul’s historical review of testing inHolland’s Advice for
the Fourth Generation of Test Theory: Blood Tests Can Be Contests.

The papers in this book attest to how Paul’s pioneering ideas influenced and

continue to influence several fields such as social networks, causal inference, item

response theory, equating, and DIF.

Through Looking Back and this book, we thank Paul for service to our field and

years of generous and wise advice to us and to his many students and colleagues.

Anyone who has met and talked with Paul will share our gratitude to a man who

inspired with his intelligence and encouraged with his enthusiasm for life.

Our deepest thanks go to all contributors for their generosity, help, and patience

and also to the participants in Looking Back. Several ETS staff provided essential

support. Liz Brophy and Jazzme Blackwell organized the conference, which was

attended by 100 scholars. The book benefited from the editorial acumen of Kim

Fryer. The conference and book were supported by a research allocation from the

ETS Research & Development division led by Senior Vice President Ida Lawrence.

Princeton, NJ Neil J. Dorans

Sandip Sinharay
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Part I

Paul Holland’s Contributions



Chapter 1

The Contributions of Paul Holland

Shelby J. Haberman

1.1 Introduction

Paul Holland’s work over his long and varied career has shown both breadth and

depth. He has made major contributions to the analysis of discrete data, to the study

of social networks, to equating, to differential item functioning (DIF), to item

response theory (IRT), and to causal inference. He has worked on a wide variety

of applied problems ranging from scanner accuracy to test security to summarization

of data on candidates. Any review of his contributions will necessarily provide a

rather limited indication of his achievements. Nonetheless, several instructive

themes can be found in his work. One is the long-standing connection with the

analysis of discrete data. A second is a longstanding connection to the social and

behavioral sciences. A third is an emphasis on the observed over the unobserved in

the analysis of data. These themes interact and have been demonstrated in Paul’s

work at least since graduate school. Paul’s doctoral dissertation concerned a new

minimum chi-square test. His involvement in research in the social sciences reflects

both his family background and his early association with his dissertation advisor

Patrick Suppes (Robinson, 2005). The emphasis on the observed can be seen in his

emphasis on observed-score equating and log-linear models rather than on latent-

structure models, although Paul has made major contributions to IRT.

This overview of Paul’s work is necessarily selective and biased. For example,

Paul is a coauthor of a highly influential work on discrete multivariate analysis

(Bishop, Fienberg, & Holland, 1975); however, I will concentrate here on

contributions that are more specifically connected to Paul himself. In addition,

due to my own limited knowledge, causal inference will be less examined than is

appropriate given its significance in Paul’s work. This review will emphasize DIF,

S.J. Haberman (*)

Educational Testing Service, Rosedale Road, Princeton, NJ 08541, USA

e-mail: shaberman@ets.org

N.J. Dorans and S. Sinharay (eds.), Looking Back: Proceedings of a Conference
in Honor of Paul W. Holland, Lecture Notes in Statistics 202,

DOI 10.1007/978-1-4419-9389-2_1, # Springer Science+Business Media, LLC 2011
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IRT, social networks, and kernel equating. Briefer consideration will be given to

other contributions to equating, causal inference, and the analysis of empirical data.

1.2 Differential Item Functioning

A good example of the application of methodology for analysis of contingency tables

to educational measurement arises in testing for DIF by use of the Mantel-Haenszel

(MH) statistic (Mantel & Haenszel, 1959). In Bishop et al. (1975, pp. 147–148), this

statistic is described in terms of a test of conditional independence of two dichoto-

mous random variables given a polytomous variable. No connection to psychomet-

rics is contemplated. The data are independent and identically distributed triples

ðAh;Bh;ChÞ, 1 � h � N, withAh andBh equal 0 or 1 andCh an integer from0 to k � 1

for some integer k � 2. The probability pabc that Ah ¼ a, Bh ¼ b, and Ch ¼ c,
0 � a � 1, 0 � b � 1, and 0 � c � k � 1, is assumed to be positive. The null

hypothesis under study is that Ah and Bh are conditionally independent given Ch.

To test this hypothesis, one considers the counts nabc of h such that Ah ¼ a,
Bh ¼ b, and Ch ¼ c. Let naþc be the number of h with Ah ¼ a and Ch ¼ c, let
nþbc be the number of h with Bh ¼ b and Ch ¼ c, and let nþþc be the number of

h with Ch ¼ c. Under the null hypothesis, the expected value mabc ¼ Npabc of

nabc has maximum-likelihood estimate m̂abc ¼ naþcnþbc=nþþc, at least if nþþc is

positive. Mantel and Haenszel considered the marginal total n11þ, the number of

h with Ah ¼ Bh ¼ 1. Under the null hypothesis, the estimated expected value of

n11þ is m̂11þ , the sum of the expected values m̂11c for 1 � c � k. If nþþc > 1

for each c, then conditional on the observed values of naþc and nþbc, the

difference n11þ � m̂11þ has variance

V ¼
Xk

c¼1

m̂11cn2þcnþ2c=½nþþcðnþþc � 1Þ�

Mantel and Haenszel (1959) suggested use of Z ¼ ðn11þ � m̂11þÞ=V1=2 to test

the hypothesis of conditional independence. If the null hypothesis holds, then

Z converges in distribution to a standard normal random variable.

As noted in Bishop et al. (1975), the MH statistic has an important optimality

property. Consider the log-linear model of no three-factor interaction in which it is

assumed that each log cross-product ratio

log
m11cm22c

m21cm12c

� �
¼ logm11c � logm21c � logm12c þ logm22c

has a common value t. If t ¼ 0, then Ah and Bh are conditionally independent given

Ch. The uniformly most powerful unbiased test of the null hypothesis of conditional

independence of Ah and Bh given Ch against the alternative hypothesis of no three-

factor interaction depends on the MH statistic Z (Birch, 1964).

4 S.J. Haberman



In a typical application to DIF, Ah ¼ 1 if h is an examinee with a correct response

to an item, Ah ¼ 0 otherwise, Bh ¼ 1 if h belongs to some group of interest, say

female examinees, Bh ¼ 0 if h belongs to a reference group, say male examinees,

and Ch is a polytomous variable typically determined by the total score of h on the

examination. The null hypothesis is that the relationship of the item response Ah to

the score variableCh is unaffected by the groupBh (Holland&Thayer, 1988), so that

Ah and Bh are conditionally independent given Ch. This application of this familiar

statistic had a remarkable effect on an entire field, as is evident from an edited

volume on DIF that soon appeared (Holland & Wainer, 1993).

An interesting aspect of the development of DIF is the decision to use the

MH estimate of the common cross-product ratio q ¼ expðtÞ (Mantel & Haenszel,

1959). Let

dc ¼ ðn11c þ n22cÞ=nþþc;

ec ¼ ðn12c þ n21cÞ=nþþc;

fc ¼ n11cn22c=nþþc;

gc ¼ n12cn21c=nþþc;

fþ ¼
Xk

c¼1

fc;

gþ ¼
Xk

c¼1

gc;

and

vc ¼ 1

n11c
þ 1

n12c
þ 1

n21c
þ 1

n22c
:

Then q has MH estimate O ¼ fþ=gþ and t has estimate T ¼ logO. The consider-
ations that entered into this decision reflected the computational environment in

existence at the time. The MH estimate is easily computed, and has a normal

approximation. Let

s2ðTÞ ¼ 1

2

Xk

c¼1

ðdc=fþ þ ec=gþÞðfc=fþ þ gc=gþÞ

and

sðOÞ ¼ OsðTÞ:

1 The Contributions of Paul Holland 5



As the sample size N becomes large, ðQ� qÞ=sðOÞ and ðT � tÞ=sðTÞ both

converge in distribution to a standard normal random variable (Phillips & Holland,

1987), so that approximate confidence intervals are readily derived. A variety of

alternatives to sðTÞ and sðOÞ are also available.

Nonetheless, alternatives to the MH estimate have been available since before

the MH statistic was ever introduced (Woolf, 1955). The estimate

OW ¼ expðTWÞ

can be used with

TW ¼
Pk

c¼1 t̂c=vcPk
c¼1 1=vc

and

t̂c ¼ logðn11cÞ � logðn21cÞ � logðn12cÞ þ logðn22cÞ:

As the sample size N becomes large, ðOW � qÞ=sðOWÞ and ðTW � tÞ=sðTWÞ
converge in distribution to a standard normal random variable, where

s2ðTWÞ ¼ 1
Pk

c¼1 v�1
c

and

sðOWÞ ¼ OsðTWÞ:

To improve the accuracy of large-sample approximations and to avoid problems

that arise if some count nabc is 0, it is helpful to replace nabc by nabc þ 0:5 in the

formulas for TW and sðTWÞ (Haldane, 1955). Unless t is 0, so that conditional

independence holds, the probability is 1 that sðTWÞ< sðTÞ for sufficiently large N.
If t is 0, then sðOÞ=sðOWÞ converges to 1 with probability 1. It is not clear that the

MH estimate O should be used rather than the Woolf estimate OW , although study

of O for use in DIF did yield results that suggested that sO and sW should be rather

similar for the small values of t of primary interest.

The common cross-product ratio q can also be obtained by maximum likelihood,

but iterative computation is needed. Iterative proportional fitting was well known at

the time, as evident in Paul’s publications (Bishop et al., 1975, chap. 3), and Newton-

Raphson algorithms were also available (Haberman, 1978, chap. 3); however,

iterative computation was unattractive at the time. Similarly, use of conditional

maximum likelihood to alleviate problems of small frequency counts was not

practical given computational constraints (Birch, 1964). The question now is

whether improvements in the computational environment warrant revisiting the

methodology for DIF.
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1.3 Item Response Theory

A somewhat more complex application of contingency tables has been to IRT. Here

the basic observation is that in a right-scored test with k � 2 items and n � 1

examinees, the item responses Xij of examinee i, 1 � i � n, on item j, 1 � j � k,
can be used to develop a 2k contingency table. Let Xij be 1 if the response is correct,

and let Xij be 0 otherwise. Let Xi be the vector with coordinates Xij, 1 � j � k, and
assume that the Xi are independent and identically distributed. For simplicity,

assume that each response Xij is 1 with positive probability and is 0 with positive

probability. For each k-dimensional vector x with coordinates xj equal to 0 or 1, let

pðxÞ be the probability that Xi ¼ x, and let f ðxÞ be the number of examinees i with
Xi ¼ x, so that f ðxÞ has expected value mðxÞ ¼ NpðxÞ. Then the array of f ðxÞ forms

a 2k contingency table with a multinomial distribution. To be sure, the number of

cells in the table will be extremely large for an assessment with 100 items; however,

techniques associated with the analysis of contingency tables remain applicable

when IRT is introduced.

In typical item-response models, a d-dimensional latent random vector yi is
assumed to exist, and it is assumed that the Xij, 1 � j � k, are conditionally

independent given yi. The conditional probability that Xij ¼ 1 given yi ¼ o is the

item characteristic curve PjðoÞ. Item response models restrict the distribution of yi
and the item characteristic curves PjðoÞ in a variety of ways. In typical cases, one

has the monotonicity condition that PjðoÞ � Pjðo0Þ if each coordinate of o is at

least as large as the corresponding coordinate of o0. In such case, one may exploit

the mathematical concept of total positivity (Karlin, 1968).

In an early example of this approach (Cressie & Holland, 1983), the one-

dimensional Rasch model is considered. Here the dimension d is 1 and

PjðoÞ ¼ expðo� bjÞ=½1þ expðo� bjÞ�

for real bj. The Rasch model implies that the log-linear model

log pðxÞ ¼ cm �
Xk

j¼1

xjbj;
Xk

j¼1

xj ¼ m;

holds (Tjur, 1982). On the other hand, the log-linear model does not imply the

Rasch model. Indeed, the Rasch model holds if, and only if, a positive random

variable T exists such that expðcm � c0Þ is the mth moment of T for 1 � m � k
(Cressie & Holland, 1983). Under the Rasch model, expðcm � c0Þ is the mth
moment of a random variable with density uvðoÞ relative to the ability distribution,
where u is a positive constant and

1=vðoÞ ¼
Yk

j¼1

½1þ expðo� bjÞ�
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for o real. The well-known result that k moments do not specify a distribution

implies that the ability distribution cannot be determined from the k items even if a

linear constraint is imposed on the item parameters bj in order to determine them.

In practice, the identification problem is much less significant if a parametric

model is employed for the distribution of yi. For example, if yi is assumed to

have a normal distribution with mean 0 and positive variance s2, then the item

parameters bj and the variance s2 can be estimated (Bock & Aitkin, 1981).

A variety of cases can also be considered in which yi is assumed to be polytomous

(Heinen, 1996).

Although initial results were obtained without explicit use of total positivity

(Holland, 1981), total positivity provides a number of generalizations (Holland &

Rosenbaum, 1986). A few simple illustrations of findings are instructive. Any pair

of item responses Xij and Xij0 , j 6¼ j0, must have a nonnegative correlation. If Ti is
the sum of the Xij00 for j

00 for 1 to k, then the conditional correlation of Xij and Xij0

given Ti � Xij � Xij0 must be nonnegative. One learns that negative point-biserial

correlations are fundamentally incompatible with item-response models, for Xij and

Ti � Xij must have a nonnegative correlation and Xij and Ti must have a positive

correlation.

Work on the Dutch identity (Holland, 1990) considered the relationship between

item-response models and log-linear models with only main effects and two-factor

interactions. A rather striking result is that the log-linear model holds if, for some

possible value x ofXi, the conditional distribution of yi givenXi ¼ x is multivariate

normal with positive covariance matrix and if the item logit function

log fPjðoÞ=½1� PjðoÞ�g is a linear function of o for each item j. This result

leads to an even more striking series of conjectures based on Bayes’ theorem and

on Taylor’s theorem. The suggestion is that, for an item-response model with a

large number of items, the item characteristic curves can only be estimated without

problems of parameter identification if each curve is determined by no more than

two parameters. This claim suggests difficulties can be anticipated with the three-

parameter logistic model. The influence of the Dutch identity in IRT has continued.

For example, when the Rasch model is applied and the yi have normal distributions,

then bounds can be obtained on the log cross-product ratios for responses Xij and Xij0

(Haberman, Holland, & Sinharay, 2008). Similar results can also be obtained with

the two-parameter logistic model.

1.4 Social Networks

The use of techniques associated with the analysis of contingency tables is also

quite evident in Paul’s joint work with Samuel Leinhardt on analysis of social

networks. From a statistical point of view, an inherent challenge in the study of

social networks is that observations are usually dependent in complex ways. The

techniques used often come from the analysis of contingency tables, but treatment
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of dependence complicates analysis. For a basic case to explore, consider nodes

(individuals) 1 to g, and let Xij describe the relationship of node i to node j, say
whether individual i regards individual j as a friend. The sociomatrix X is the g by

gmatrix with row i and column j equal to Xij. Various descriptive terms can be used

for relationships. The essential feature is that Xij is equal to 1 if i relates to j and Xij

is 0 otherwise. Relationships need not be reciprocal, so that Xji and Xij need not be

the same. The convention is adopted that Xii ¼ 0, so that nodes are not related to

themselves. Analysis of data can involve both descriptive statistics and probability

models. For instance, the sum Xiþ of the Xij, 1 � j � g, measures the tendency of

node i to relate to other nodes, the sum Xþj of the Xij, 1 � i � g, measures the

tendency of other nodes to relate to node j, the sum Xþþ of the Xij for 1 � i � g and

1 � j � q measures the overall level of relationship in the group, and the sumM ¼
Pg

i¼2

Pi�1
j¼1 XijXji measures the extent to which relationships are mutual (Holland

& Leinhardt, 1970). Far more complex analysis may be based on results for all

combinations of three nodes (triads) i, j, and k for 1 � i<j<k � g, and analysis can
consider changes in networks over time (Holland & Leinhardt, 1977). The descrip-

tive statistics Xþþ, Xiþ, Xþj, andM form the basis of the log-linear model in which,

for each x in the set G of possible sociomatrices for g nodes, the probability pðxÞ
that X ¼ x satisfies

log pðxÞ ¼ kþ rmþ yxþþ þ
Xg

i¼1

axiþ þ
Xg

j¼1

bjxþj; (1.1)

where xiþ is the sum of xij over j, xþj is the sum of xij over i, xþþ is the sum of xij
over i and j, and m is the sum of xijxij for 1 � i<j � g. The model parameters r, y,
ai, and bj determine the constant k due to the constraint that the sum of the pðxÞ, x in
G, must be 1. To identify model parameters, the constraints are imposed that the

sum of the ai is 0 and the sum of the bj is also 0 (Holland & Leinhardt, 1981a). The

model implies that the pairs ðXij;XjiÞ are independent for 1 � i<j � g, and each

pair ðXij;XjiÞ has common log cross-product ratio r. The conditional log odds

log ½PðXij ¼ 1jXji ¼ 0Þ=PðXij ¼ 0jXji ¼ 0Þ� ¼ yþ ai þ bj

then satisfies an additive model.

Numerous special cases of (1.1) appear in the literature (Holland & Leinhardt,

1979). If r ¼ y ¼ ai ¼ bj ¼ 0, then X is uniformly distributed on G. Consider the
following cases:

1. r ¼ ai ¼ bj ¼ 0, so that the Xij are independent and identically distributed with

y the logit of the probability that Xij ¼ 1.

2. ai ¼ bj ¼ 0, so that all pairs ðXij;XjiÞ, i 6¼ j, are identically distributed.

3. r ¼ bj ¼ 0, so that for each node i, the Xij are independent and identically

distributed for j 6¼ i.
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4. r ¼ ai ¼ 0, so that for each node j, the Xij are independent and identically

distributed for i 6¼ j.
5. r ¼ 0, so that the Rasch model holds in which node i and node j, both i and j

integers between 1 and g and i 6¼ j, are in effect regarded as examinee i and item j
(Haberman, 1981).

Statistical inferences can be straightforward or remarkably challenging in (1.1).

Straightforward cases involve strong parameter restrictions. If Case 1, 2, 3, or 4 is

assumed, then conventional use of maximum likelihood is satisfactory for g large.

Case 5 is challenging, for use of maximum likelihood leads to the customary

problems associated with joint estimation in the Rasch model. The case in which

no parameter is restricted in (1.1) is even more difficult (Haberman, 1981; Holland

& Leinhardt, 1981b). The challenges of the model specified by (1.1) can be treated

by linear restrictions on the ai and bj or by use of random effects models as in item-

response theory. Statistical analysis of social networks continues; however, Paul

has not been involved for some time.

1.4.1 Log-Linear Smoothing and Kernel Equating

In work on kernel equating with Dorothy Thayer and later Alina von Davier, Paul

used log-linear models to improve efficiency of estimation of probabilities prior to

application of kernel smoothing (von Davier, Holland, & Thayer, 2004). The log-

linear models, typically polynomial models for one-dimensional or two-dimensional

contingency tables, are employed to estimate probabilities for specific scores or pairs

of scores. In equating applications, these estimated probabilities are then added

together to estimate distribution functions of individual variables. The kernel part of

kernel equating is a traditional approach to estimation in applications far removed

from psychometrics such as density estimation and estimation of the power spec-

trum associated with a stochastic process. The notable feature of kernel equating is

the combination of statistical concepts that have little relationship to each other.

The kernel part of kernel equating is more essential in equating than is the

application of log-linear models. Consider any two real random variables X and Y.
Suppose that X has distribution function F, and Y has distribution function G.
Let F1=2 be the percentile rank function defined for real x to be F1=2ðxÞ ¼
PðX< xÞ þ 1

2
PðX ¼ xÞ. Similarly, let G1=2 be the percentile rank function of Y.

Note that F1=2ðxÞ ¼ FðxÞ if F is continuous at x, a condition equivalent to the

condition that X ¼ x with probability 0. A similar remark applies to G1=2 and G.
Equipercentile methods of equating seek monotone real conversion functions

eY�X and eX�Y such that eY�X is the inverse of eX�Y , GðeY�XÞ ¼ F, and FðeX�YÞ ¼ G.
The function eY�X is used to convert X to Y in the sense that eY�XðXÞ and Y have the

same distribution. The function eX�Y is used to convert Y to X in the sense that

eX�YðYÞ and X have the same distribution. If F and G are both strictly increasing and
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continuous, then F has an inverse F�1, G has an inverse G�1, eY�X ¼ G�1ðFÞ, and
eX�Y ¼ F�1ðGÞ. If X has a normal distribution with mean mX and with positive

variance s2X, and Y has a normal distribution with mean mY and positive variance

s2Y , then eY�XðxÞ ¼ mY þ ðsY=sXÞðx� mXÞ for real x and eX�YðyÞ ¼ mX þ ðsX=sYÞ�
ðy� mYÞ for real y, so that the conversion functions are linear.

If X is discrete, then F is not continuous, so that the inverse F�1 does not exist.

A similar comment applies if Y is discrete. The functions eY�X and eX�Y may still exist

if X and Y are discrete. For example, if X and Y have the same distribution, then eX�Y
and eY�X can be chosen to be the identity function. Nonetheless, in typical cases in

which X and Y are discrete, no functions eX�Y and eY�X can satisfy all requirements.

This problem has two consequences in equipercentile equating. The first conse-

quence involves discrete test scores. In virtually all applications of observed-score

equating, the test scores of each test are discrete variables. As a consequence, the

desired conversion functions eX�Y and eY�X do not generally exist. The second

consequence involves use of empirical distribution functions. For positive integers

m and n, consider independent and identically distributed random variables

Xi, 1 � i � m, with common distribution function F and independent and identically

distributed random variables Yi, 1 � i � n, with common distribution function G.
In equating, equivalent-groups designs have sampling with the Xi, 1 � i � m, and
the Yi, 1 � i � n, independent. In single-groups designs, the pairs ðXi; YiÞ are

independent and identically distributed as ðX; YÞ and m ¼ n. For either case, let wS
be the indicator function of a set S of the real line. The empirical distribution function

F̂ is defined for real x by the equation

F̂ðxÞ ¼ m�1
Xm

i¼1

wð�1; x�ðXiÞ;

so that F̂ðxÞ is the fraction of the Xi that do not exceed x. Similarly,

ĜðyÞ ¼ n�1
Xn

i¼1

wð�1;y�ðYiÞ:

For each x, F̂ðxÞ converges almost surely to FðxÞ asm approaches1. For each y,

ĜðyÞ converges almost surely to GðyÞ as n approaches1. Nonetheless, F̂ and Ĝ are

not continuous functions, so that they do not lead directly to estimates of the

conversion functions eY�X and eX�Y .
It is possible to consider imperfect conversion functions. Kernel equating

provides one source of such functions. In general, strictly increasing continuous

functions dX�Y and dY�X are considered such that dX�Y is the inverse of dY�X and the

expectation

K ¼ Eð½G1=2ðYÞ � F1=2ðdX�YðYÞÞ�2Þ þ Eð½F1=2ðXÞ � G1=2ðdY�XðXÞÞ�2Þ
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is small. If the conversion functions eX�Y and eY�X are defined, then K ¼ 0 when

dY�X ¼ eY�X and dX�Y ¼ eX�Y . If Y and cðXÞ have the same distribution for a continu-

ous and strictly increasing function c, then K ¼ 0 if dY�X ¼ c and dX�Y ¼ c�1.

For a general version of kernel equating, consider a continuous symmetric

random variable Z with mean 0 and variance 1. Let Z have a distribution function

W and a continuously differentiable and positive density w. For example, Z might

have a standard normal distribution with W ¼ F and w ¼ f. Let hX and hY be

positive real constants. Let X have finite variance s2ðXÞ> 0, and let Y have finite

variance s2ðYÞ> 0. Let Z be independent of X and Y. Let aX ¼ sX=ðs2X þ h2XÞ1=2
and aY ¼ sY=ðs2Y þ h2YÞ1=2. Then UX ¼ aXðX þ hXZÞ and UY ¼ aYðY þ hYZÞ are

both random variables, UX has the same mean and variance as X, UY has the same

mean and variance as Y, the distribution function DX of UX is twice continuously

differentiable and strictly increasing, the distribution function DY of UY is twice

continuously differentiable and strictly increasing, and one may consider the

imperfect conversion functions dY�X ¼ D�1
Y ðDXÞ and dX�Y ¼ D�1

X ðDYÞ. Note that

DX converges to F1=2 as hX approaches 0, and DY converges to G1=2 as hY
approaches 0. If X and Y are distinct, then K does not normally approach 0 as hX
and hY approach 0. If X has a normal distribution with mean mX and variance s

2
X > 0,

if Y has a normal distribution with mean mY , and variance s2Y > 0, and if Z has a

standard normal distribution, then dY�XðxÞ ¼ eY�XðxÞ ¼ mY þ ðsY=sXÞðx� mXÞ for

real x, dX�YðyÞ ¼ eX�YðyÞ ¼ mX þ ðsX=sYÞðy� mYÞ for real y, and K ¼ 0, so that

conversion functions are linear. If F and G are continuous and strictly increasing,

then dX�Y converges to eX�Y , dY�X converges to eY�X, and K converges to 0 as hX and

hY approach 0. If X and Y are discrete, then K does not typically converge to 0 as hX
and hY approach 0.

The conversion functions dY�X and dX�Y are readily estimated from the empirical

distribution functions F̂ and Ĝ. Assume that the samples sizes m and n are both at

least 2. Let s2X be the standard estimated sample variance of the Xi, and let s
2
Y be the

estimated sample variance of the Yi. Let

âX ¼ sX=ðs2X þ h2XÞ
1
2

and

âY ¼ sY=ðs2Y þ h2YÞ
1
2:

One estimates DXðxÞ by D̂X ðxÞ ¼ EðF̂ðx= âX � hXZÞÞ and DYðyÞ by D̂Y ðyÞ ¼
EðĜ ðy= âY �hYZÞÞ. It is easily verified that

D̂X ðxÞ ¼ m�1
Xm

i¼1

Wððx= âX � XiÞ=hXÞ
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and

D̂Y ðyÞ ¼ n�1
Xn

i¼1

Wððy= âY �YiÞ=hYÞ:

It is easily seen that D̂X and D̂Y are continuous and strictly increasing. For real x,

D̂X ðxÞ converges to DXðxÞ with probability 1 as the sample size m increases. For

real y, D̂Y ðyÞ converges to DYðyÞ with probability 1 as the sample size n increases.

The estimated conversion functions d̂Y�X ¼ D̂
�1

Y ðD̂XÞ and d̂X�Y ¼ D̂
�1

X ðD̂YÞ have
the consistency properties that, for real y, d̂X�Y ðyÞ converges to dX�YðyÞ with proba-

bility 1 as m and n increase and, for real x, d̂Y�X ðxÞ converges to dY�XðxÞ with

probability 1 as m and n increase. In addition, normal approximations are available

for both d̂Y�XðxÞ and d̂X�Y ðyÞ, and asymptotic confidence intervals may be derived.

Appropriate formulas depend on the equating design.

The selection of the constants hX and hY does depend on whether X and Y are

continuous. Let X and Y both have positive continuous density functions, so that F
and G are both continuous and strictly increasing. As previously noted for this case,

dY�X converges to eY�X and dX�Y converges to eX�Y as hX and hY become small.

In addition, D̂X ðxÞ converges toFðxÞ for x real asm becomes large and hX approaches
0, and D̂Y ðyÞ converges to GðyÞ for y real as n becomes large and hY approaches 0.

The bias EðD̂Y ðyÞ � G1=2ðyÞÞ is of order hY , and the bias EðD̂X ðxÞ � F1=2ðxÞÞ is of
order hX. The normal approximations for d̂Y�X ðxÞ and d̂X�Y ðyÞ also require that hXm
and hYn approach1 as the sample sizes become large. For x and y real, the differences

d̂Y�X ðxÞ � eY�XðxÞ and d̂X�Y ðyÞ � eX�YðyÞ are of order ðm�1 þ n�1Þ1=2 if h2Xm and

h2Yn approach 0 and hXm and hYn approach1 as the sample sizes m and n increase.

Thus in the continuous case, estimation results are rather satisfactory, at least with

sufficient sample size.

The discrete case customarily encountered in equating applications is far less

satisfactory. If X and Y are discrete, then the conversion functions eY�X and eX�Y are

not available, and selection of hX and hY involves a compromise between the desire for

relatively smooth estimated functions d̂X�Y and d̂Y�X and a desire that the distribution

function D̂X be close to the percentile rank function F1=2 and D̂Y be close to G1=2.

This compromise is not influenced very strongly by considerations of sample size. The

constants hX and hY should not approach 0 as the sample sizes m and n become large.

Very small hX and hY result in very high variances of d̂Y�X ðxÞ and d̂X�Y ðyÞ in typical
cases. Suggestions on selection of hX and hY are examined in von Davier et al. (2004).

Use of log-linear models in kernel equating provides an opportunity to reduce

the asymptotic variances of equating functions in the typical case in which X and Y
are polytomous. A compromise between bias and variance is typically involved

when distribution functions F and G are estimated by use of log-linear models for

the univariate probabilities PðX ¼ xÞ, x in the range of X, or PðY ¼ yÞ, y in the

range of Y. In single-groups designs, one may also consider log-linear models for

estimation of the joint probability PðX ¼ x; Y ¼ yÞ for x in the range of X and y in
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the range of Y. Variance estimates for conversion functions derived from kernel

equating with log-linear models have been derived for a variety of equating designs

(von Davier et al., 2004).

1.5 Applications to the Social Sciences

A consistent theme in Paul’s work has been application of statistical methods to the

social sciences. Many of these applications have already been apparent in the review

of work related to the analysis of discrete data. Social networks, DIF, and kernel

equating are normally applied to sociology and educational measurement. Further

work related to the social sciences has been less connected to the analysis of discrete

data. His work on causal inference, although not inherently confined to the social

sciences, is especially important in fields in which randomized experiments are not

readily conducted. Paul’s work on equating is by no means confined to kernel

equating. In addition, Paul has often collaborated with other researchers to analyze

data in the social sciences.

1.5.1 Causal Inference

Paul’s work on causal inference is a significant foray into an area of substantial

interest both to philosophers and to scientists. It is of interest to note that Paul’s

doctoral thesis at Stanford, A Variation on the Minimum Chi-Square Test, was
supervised by Patrick Suppes. Despite his advisor’s distinguishedwork in philosophy

that includes work on causality (Suppes, 1970), Paul has indicated that his interest in

causal inference comes from interaction with Don Rubin (Robinson, 2005), and joint

papers on causal inference appeared in the 1980s (Holland & Rubin, 1983, 1988).

For a discussion by Paul on causality, approaches of philosophers, approaches of

statisticians, and approaches in medicine and social science, see Holland (1986).

My treatment of this area is limited for several reasons. My professional competence

is much more limited here than in other areas in which Paul has worked. In cases in

my life in which decisions of consequence have required reliance on scientific data,

I have been struck by the extraordinary difficulty in applying the data even when

studies have been properly randomized.

1.5.2 Equating

Paul’s work on equating dates back to his first career at Educational Testing Service

(ETS). Much of his work was collaborative. The names Rubin, Braun, Kingston, and

Thayer appear in joint papers and edited volumes on equating. The edited volume
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with Don Rubin is quite helpful as an indication of the state of equating in the early

1980s (Holland & Rubin, 1982). A major aspect of the work is the introduction

of more formal statistical theory into the theory and practice of equating. For

example, standard statistical theory is used to introduce rigorously derived approxi-

mate standard deviations, and careful consideration is given to the meaning of

equipercentile equating from a population perspective. The work informs research

into kernel equating but applies much more broadly. His second career at ETS has

also had a strong emphasis on equating, although, with the exception of Dorothy

Thayer, the collaborators have changed. In addition, to the collaboration with Alina

vonDavier andDorothy Thayer on kernel equating, there has been collaboration with

Neil Dorans and with Mei Liu on population invariance, with Tim Moses on log-

linear smoothing, andwith Sandip Sinharay on design of anchor tests and onmissing-

data assumptions in the NEAT (nonequivalent group anchor test) design. The edited

volume with Neil Dorans and Mary Pommerich provides some indication of the

status of equating and linking during Paul’s second career at ETS (Dorans,

Pommerich, & Holland, 2007). The work on equating has included applications

to GRE® subject tests, the LSAT, and the SAT®.

1.5.3 Analysis of Data

Paul has collaborated with many investigators at ETS and elsewhere on analysis of

data. As is quite often true of statisticians, data and statistical methods involved

have been quite varied. For example, Paul provided early assistance in the study of

scanner accuracy at ETS and in the development of methods to detect possible

student collaboration on examinations. He also collaborated on analysis of items for

TOEFL®, study of examinee-selected responses for AP®, development of methods

to improve accuracy of transcriptions of test items, evaluation of measures to

prevent driving under the influence of alcohol, measurement of food insecurity,

and ranking graduate programs.

1.6 Concluding Remarks

Paul has been active as a statistician for more than four decades, so an overview of

accomplishments is necessarily quite selective. His influence also extends well

beyond his published work. He has served on editorial boards of major journals

in statistics and psychometrics, he has made major contributions to the National

Research Council’s work, he has served as president of the Psychometric Society,

and he has repeatedly been a member of advisory boards for testing organizations

and for research organizations. Paul has also had a major influence on ETS and on

the professions of statistics and psychometrics through his teaching and mentoring

of students and junior colleagues. Such mentoring has a cascading effect, for the
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statisticians and psychometricians whom Paul has mentored have in turn taught and

mentored other statisticians and psychometricians.
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Part II

Holland the Young Scholar

Comments on My Social Network Research

Paul W. Holland

A year or so after I had started teaching in the Statistics Department at Harvard

University, Fred Mosteller asked me if I would mind substituting for him as a

discussant for a session at the American Sociological Association that was to be

held in Boston, Massachusetts, a few months hence. It was a session in which

Nathan Keyfitz, Leo Goodman, and Jim Davis, along with his student Sam

Leinhardt, would be giving methodological papers. I agreed to do this, even though

up to that point I had never had the experience of being a discussant, because the

paper by Davis and Leinhardt had really caught my attention. They used graph

theory and some statistical models to analyze social network data – including a data

bank of over 800 sociograms (i.e., the 0/1 adjacency matrices that describe the

directed graphs [i.e., digraphs] of various forms of friendship).

While I had heard about the mathematical study of graphs and digraphs in my

undergrad and graduate education, it had not been systematic nor very complete.

But I found the Davis and Leinhardt paper fascinating, and I figured out how to

calculate a variance that went along with an expected value that they had used in

their paper. It was for the number of triads within the graph that formed certain

patterns under the assumption that graph was constructed at random but with the

same number of reciprocated and unreciprocated friendships as in the observed

digraph. Davis and Leinhardt had focused on the distribution of the number of

certain specific triads (triples of nodes) in a digraph to see if there was evidence in

these social network data that showed “interesting” structure that went beyond the

nonrandom amounts of reciprocated friendship that pervaded the social networks in

their data base. I think I surprised Davis and Leinhardt by making a small contribu-

tion in my discussion that allowed them to move their work forward. And it led, for

at least 10 years thereafter, to joint work with Leinhardt as a steady and important

part of my own research.

One of themajor contributions of that work, inmy opinion,was the p1-distribution
for stochastic digraphs. Unlike earlier random graph distributions that provided

tests of structure in network data, the p1-distribution had parameters in it for the

differential attractiveness and expansiveness of the nodes, as well as for

tendencies toward friendship reciprocation, which could all be estimated from



data. The p1-distribution moved us, in a small step, from testing to estimation

for directed graphs. We called it the p1 distribution because we thought that it

was the first interesting distribution for digraphs and that it would be followed

by other distributions that had even more interesting parameters. This evolution

required some serious extensions of our work on p1, and has yet to take place,

as far as I know.

Also during my early years at Harvard, I met Steve Fienberg who was a graduate

student in the department. Eventually, Steve, Yvonne Bishop, and I wrote the

discrete data book for which we are known. During this period Steve became

especially adept at, among many other things, figuring out how to use arrays that

included structural zeros to fit interesting models to data without these structural

zeros. After Sam and I had introduced the p1-distribution, Steve figured out how to

fit it using his structural zero trick. Steve’s paper in this volume is an outgrowth of

this observation that uses much more modern mathematics than any of us were

using back in those days.

Stanley Wasserman was also a graduate student at Harvard Statistics. He got

there toward the end of my time, and he became interested in the social network

research that Sam and I had done. He continues his interest in social networks to this

day, as his paper in this volume shows. It is gratifying to see good research done as a

consequence of some work of your own. Social network research has become an

industry in the social sciences with contributors from many fields and from all over

the world.
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Chapter 2

Algebraic Statistics for p1 Random Graph

Models: Markov Bases and Their Uses

Stephen E. Fienberg, Sonja Petrović, and Alessandro Rinaldo

2.1 Introduction

The term social network connotes a social structure composed of individuals (or

organizations), typically labeled as nodes, linked by one or more relations, such

as friendship, information sharing, financial transaction, and so on. Social network

analysis uses a graphical representation where the individuals correspond to

nodes in the graph and the presence of a relationship to edges. The term social

network now also describes specific social structures on the World Wide Web

and many authors have examined the Web itself in various forms as a social

network.

One can find several strains of probabilistic/statistical modeling in modern litera-

ture on networks. Some models attempt to capture empirically observed character-

istics in a descriptive integrated form. Others look at large sample properties for

randomly generated graphs possessing properties of different sorts and then attempt

to discover such properties empirically in large-scale networks. One example of a

property of widespread interest is tightly connected blocks of individuals, also

referred to sometimes as communities. Indeed, the study of blockmodels has a long

history in sociology. Yet other more recent approaches to partition networks into

blocks or clusters have imported tools from machine learning, such as mixed-

membership models that allow individuals to belong to more than one cluster

simultaneously, thereby characterizing properties of networks and relationships

among nodes (Airoldi, Blei, Fienberg, & Xing, 2008).
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Almost all of the “statistically” oriented literature on networks derives from a

handful of seminal papers. In sociology there is the early work of Jacob Moreno

(1934)and the empirical studies of Stanley Milgram (1967)and Travers and

Milgram (1969). In mathematics/probability there are early papers by Leo Katz

and collaborators, e.g., see Katz (1951) and Katz and Powell (1957) and especially

the Erd€os-Rényi (1960) paper on random graph models.

Moreno (1951) invented the sociogram – a diagram of points and lines used to

represent relations among persons, a precursor to the graph representation for social

networks. Milgram (1967) gave the name to what is referred to as the small world
phenomena – short paths of connections linking most people in social spheres.

His experiments had provocative results – a median length of completed chains on

the order of six, the famous six degrees of separation.
The network research community that arose in the 1970s was composed of

mathematicians, sociologists, and statisticians. It built upon all of these earlier

efforts, and we can see the direct impact of the Erd€os-Rényi model on the most

relevant of them, the work of Holland and Leinhardt (1970, 1971, 1976, 1978).

Their work culminated in a paper (Holland & Leinhardt, 1981) in which they

described their p1 model for the analysis of networks, which models dyadic pairs

of nodes independently. The p1 model built on work in a number of their earlier

papers on the topic of network modeling, and it allowed for differential attractive-

ness (popularity) – incoming links – and expansiveness – outgoing links – as well

as an additional effect associated with mutual links due to reciprocation. Holland

and Leinhardt’s p1 model was in fact log-linear in form, and this allowed for

easy computation of maximum likelihood estimates using a special contingency

table representation of the data (Fienberg & Wasserman, 1981a, 1981b), various

generalizations to multidimensional network structures (Fienberg, Meyer, &

Wasserman, 1985), and stochastic block models. These quickly evolved into the

class of p� models (now referred to as exponential random graph models – ERGMs)

due to Frank and Strauss (1986) and expanded upon by Strauss and Ikeda (1990)

and Wasserman and Pattison (1996). Over the past 15–20 years, ERGMs have

been widely used in a descriptive form for cross sectional network structures or

cumulative links for networks.

In this paper, we reconsider the Holland-Leinhardt p1 model using the tools of

algebraic geometry now embodied in the area of research referred to as algebraic

statistics (see Diaconis & Sturmfels, 1998; Drton, Sturmfels, & Sullivant, 2009;

Pistone, Riccomagno, & Wynn, 2001; Gibilisco et al., 2009). In particular, we

derive the basic algebraic generators for the mathematical structure of p1, known as
Markov bases. We also expect to link these results to those on Markov bases for

working with log-linear models for contingency tables (e.g., as described in

Diaconis & Sturmfels, 1998; Dobra, Fienberg, Rinaldo, Slavkovic, & Zhou,

2008; Fienberg, 2007) because of the contingency table representation of Fienberg

and Wasserman (1981a, 1981b), but this is still work in progress.

In a concluding discussion, we describe potential uses of the Markov bases and

mention some possible generalizations to the class of ERGMs.
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2.2 Notation and Structure of the Holland-Leinhardt p1 Model

In this section, we describe in detail the p1 model of Holland-Leinhardt and provide

a short summary of the algebraic statistics tools and language used in our analysis.

We are concerned with describing probability distributions over a directed

graph on the set of n nodes. The nodes correspond to units in a network, such as

individuals, and the edges correspond to links or relationships between two units.

We focus on dyadic pairings (i.e., pairs of nodes in the graph) and keep track of

whether node i sends an edge to j; or vice versa, or none, or both. Let us define

four probabilities: let pijð1; 0Þ be the probability of node i sending an edge toward j
(1 denotes the outgoing side of the edge); pijð0; 1Þ the probability of node j sending
an edge toward i; pijð0; 0Þ the probability that there is no edge between i and j; and
pijð1; 1Þ the probability of i sending an edge to j and j sending an edge to i: For each
dyad (e.g., a pair of nodes ði; jÞ), these four probabilities sum to 1, and we assume

that the n
2

� �
dyads are mutually independent.

The Holland-Leinhardt p1 model of interest postulates that for each dyad ði; jÞ,
the probability of observing the four possible configurations satisfies the following

equations (see Holland & Leinhardt, 1981):

log pijð0; 0Þ ¼ lij
log pijð1; 0Þ ¼ lij þ ai þ bj þ y

log pijð0; 1Þ ¼ lij þ aj þ bi þ y

log pijð1; 1Þ ¼ lij þ ai þ bj þ aj þ bi þ 2yþ rij:

where X

i

ai ¼
X

j

bj ¼ 0:

For each dyad, (i; jÞ, the parameter ai describes the effect of an outgoing edge

from i, and bj the effect of an incoming edge pointed towards j, while rij corresponds
to the added effect of reciprocated edges. The parameter y quantifies the average

density of the network (i.e., the tendency of having edges), and lij is simply a

normalizing parameter to ensure that the probabilities for each dyad ði; jÞ add to 1.

Clearly p1 reduces to the Erd€os-Rényi model (Erd€os & Rényi, 1960) when aif g;
bj

� �
; and rf g are all set equal to 0. For the present purposes, we assume that the

dyad is in one and only one of the possible states. As pointed out in Fienberg and

Wasserman (1981a, 1981b), the p1 model can be represented as a log-linear model

over a 2� 2� n� n table. In particular, the reciprocation parameter is a simple

log-odds ratio for a 2� 2 table associated with the dyad ði; jÞ:

rij ¼ log
pijð0; 0Þpijð1; 1Þ
pijð1; 0Þpijð0; 1Þ

� �

and the other parameters of interest have related representations.
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In this work, we study the following special cases of the general p1 structure:

1. rij ¼ 0, no reciprocal effect.

2. rij ¼ r, constant reciprocation.
3. rij ¼ rþ ri þ rj, edge-dependent reciprocation.

The first two of these cases were studied originally by Holland and Leinhardt

(1981), and the third was introduced in Fienberg and Wasserman (1981a, 1981b).

2.2.1 Algebraic Statistics of the p1 Models

In this section we present the essential algebraic statistics background necessary for

our analysis of p1 models.

Any log-linear model consists of probability distributions whose logarithms

lie in the linear span of the rows of a matrix A. This matrix, whose entries can be

typically chosen to be integers, is also called the design matrix of the model.

In algebraic geometry, this integer matrix determines two objects: algebraically,

an ideal of polynomials, and geometrically, a variety representing the set of

solutions to the system of these polynomial equations. (For basic background on

algebraic geometry and its applications, see Cox, Little, & O’Shea, 2005, 2007.)

Let us formally construct the design matrix for each of the three versions of the

p1 model described above. To each probability pijð�; �Þ we can associate a mono-

mial. Recall that a monomial is a product of powers of indeterminates. Here,

indeterminates are the parameters lij, ai, bi, rij, and y for i; j 2 f1; . . . ; ng. The
correspondence is established as follows:

lijaai a
b
j b

b
i b

a
j y

aþbrminða;bÞ
ij 7!pijða; bÞ (2.1)

where a; b 2 f0; 1g.
The design matrix A is a matrix that encodes this map in the following way:

the columns of A are indexed by pijð�; �Þ’s and its rows by the model parameters.

The entries of the design matrix are either 0 or 1; there is a 1 in the ðr; cÞ-entry of the
matrix if the parameter indexing row r appears in the monomial corresponding to

the probability pijð�; �Þ indexing the column c. For example, in the case rij ¼ 0, the

matrix is of size 4� n
2

� �� �� n
2

� �þ 2n
� �

. For n ¼ 2, the graph on two nodes

consisting of a single edge, the no-reciprocation case design matrix is:

1 1 1 1

0 1 1 2

0 1 0 1

0 0 1 1

0 0 1 1

0 1 0 1

2
6666664

3
7777775

l12
y
a1
a2
b1
b2
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The rows of Z2 are indexed by parameters as indicated, while the columns are

indexed by p12ð0; 0Þ, p12ð1; 0Þ, p12ð0; 1Þ, p12ð1; 1Þ. This means that, for example,

p12ð1; 0Þ, encoded by the second column of the matrix, corresponds to the mono-

mial l12ya1b2. Notice that this monomial simply consists of those parameters

(indeterminates) that we see in the definition of the p1 model. We have just taken

the logarithms of the probabilities here and encoded the result in matrix form.

We will create the design matrices in a systematic way: The rows will always

be indexed by lij, y, a1; . . . ; an, b1; . . . ; bn, rij, lexicographically in that order.

The columns will be ordered in the following way: First fix i and j in the natural

lexicographic ordering; then, within each set, vary the edge directions in this order:

ð0; 0Þ, ð1; 0Þ, ð0; 1Þ, ð1; 1Þ.
It is easy to see that the design matrix for the network on n nodes will consist of

several copies of the two-node matrix, placed as a submatrix in rows and columns

corresponding to all two-node subnetworks.

Let p be the 4� n
2

� �
-dimensional vector containing the probabilities pijð�; �Þ’s.

The vector p being in the p1 model means that the probability vector is described

by the design matrix. Geometrically, this is very similar to saying that the point p
lies in the toric variety parametrized by the design matrix. To be a little more

precise, the probability distributions representing the p1 model equal the real
positive part of the corresponding toric variety. Equivalently, they are the points

in the intersection of the variety and the probability simplex. (Geometers do not

require points to be positive and sum to 1, while in probability theory, points are

required to be positive and sum to 1 – hence the discrepancy.) The beauty of

algebraic geometry is that the geometric object we just described can be des-

cribed implicitly: The points of the variety form a set of solutions to a system of

polynomial equations. Note that the solution set (or, the variety) is a subset of R4 n
2ð Þ.

The polynomial equations for a toric variety have very special form: They are

binomials, and they can be read off from the matrix A. These equations are collected
into an ideal of polynomials, called the toric ideal of A:

IA � ðpbþ � pb
�
: bþ � b�2 kerAÞ; (2.2)

where kerA denotes the kernel of the design matrix: the set of all vectors

b ¼ bþ � b� such that Ab ¼ 0 (equivalently, all solutions of the homogeneous

system of polynomials defined by A). Note that the notation pu is standard multi-

index notation for a monomial, where we think of p as the vector of proba-

bilities, and the vectors bþ and b� are restricted to have integer coordinates. For

example, for the two-node design matrix above, there is one vector in the kernel of

the matrix: ½1;�1;�1; 1�, representing the following relation on the columns of the

matrix: p12ð1; 0Þp12ð0; 1Þ � p12ð1; 1Þp12ð0; 0Þ. Every other vector in the kernel is

a multiple of this one, so this binomial is enough to encode the whole toric ideal.

We represent the observed network as a 4 n
2

� �
-dimensional vector X with 0=1

entries, so that the cardinality of the sample space is 2nðn�1Þ. Indeed, the observed
edge configuration for a given pair of nodes ði; jÞ is a draw from a multinomial
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distribution with size 1 and class probabilities pijð0; 0Þ; pijð1; 0Þ; pijð0; 1Þ; pijð1; 1Þ.
Thus, X is composed of n

2

� �
independent multinomial draws, one for each pair of

nodes. Note that the expected value of X is p. By standard theory of exponential

families (see Barndorff-Nielsen, 1978; Brown, 1986), the vector T ¼ AX contains

the sufficient statistics for the model parameters. (See also Geiger, Meek, &

Sturmfels, 2006.)

Unlike Holland and Leinhardt (1981), who encode the observed network using

the nðn� 1Þ off-diagonal elements of the incidence matrix, we choose to represent

the observed network using a vector of dimension 4 n
2

� � ¼ 2nðn� 1Þ. The signifi-

cant advantage of using this different redundant representation is that the sufficient

statistics are the image of a linear mapping specified by the design matrix A. Thus,
under our parametrization, p1 models are linear exponential families supported over

a polyhedral set (that is, log-linear models), a well-understood class of statistical

models that enjoy remarkable algebraic and geometric properties.

For a given vector t of observed sufficient statistics, the fiber of t is defined to be
the set of all possible observable networks with the same sufficient statistic t. In
statistical jargon, the probability distribution over the networks in the fiber at t is
called the exact distribution corresponding to t. The exact distribution is used to

perform model selection and goodness-of-fit testing in cases in which standard

asymptotic methods, such as w2 approximations, are deemed unreliable. Thus,

practitioners may want to resort to this form of conditional inference when the

observed data are sparse or when the asymptotic validity of standard procedures has

not been theoretically established. Both situations apply to network data in general

and to p1 models in particular (cf., Haberman, 1981). Unfortunately, the size and

combinatorial complexity of the fiber is typically very large, even in small

problems, and complete fiber enumeration, which is required for determining the

exact distribution, is often unfeasible.

The theory of Markov bases provides a possible solution to the problem of

finding the exact distribution corresponding to a given observed sufficient statistics.

A Markov basis (see Diaconis & Sturmfels, 1998) consists of a set of moves that,
starting from any point in the fiber, allows one to perform a random walk over any

fiber in such a way that any point in the fiber has a positive probability of being

visited. Markov bases thus provide a way to compute approximately the exact

distribution of the model for goodness-of-fit purposes, and thus provide alternative

means for model selection and goodness-of-fit testing to standard w2 asymptotic

approximations. The fundamental theorem of Markov bases (see Diaconis &

Sturmfels) states that a set B of vectors is a Markov basis for the log-linear model

associated to the design matrix A, if and only if the corresponding set of binomials

fpbþ � pb
�
: bþ � b� 2 Bg generates the toric ideal IA. Thus one of our main

goals is to explore these toric ideals, use algebraic geometry to derive Markov

bases, and then further our analysis by considering which of the elements will

satisfy the requirement that the probability distributions lie in the probability

simplex. Our analysis is particularly challenging as many of the Markov bases we

obtain from the fundamental theorem of Markov bases violate the p1 constraints
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that each dyad is associated to a multinomial with size 1 (i.e., the constraint that for

each dyad we observe one and only one of the possible four dyadic configurations).

It is worth noting that along with Markov bases, useful for sampling the fibers,

researchers are often interested in other binomial bases for the toric ideal, in

particular the Gr€obner bases. A Gr€obner basis is a special set of generators that is
equivalent to a row-echelon form for a linear system of equations. The set contains

a Markov basis, and generally it is strictly larger, but it has some special properties

desirable for certain computations (for example, one can do polynomial multi-

indeterminate long division only if one has a Gr€obner basis of a system of

polynomials). For background see Cox et al. (2005, 2007), and for a standard

reference on Gr€obner bases for toric ideals, see Sturmfels (1996).

The primary goal of this paper is to understand the structure of these Markov

bases for the three cases of the p1 model. Our secondary goal is to provide a

geometric characterization of the conditions for the existence of the maximum

likelihood estimates (MLEs) of the model parameters; see Haberman (1977) for

more details and general results on existence of the MLEs in models exponential

response models.

For both our goals, we rely on the following software to perform algebraic and

computational geometry calculations:

• 4ti2 (4ti2 Team, 2008) – a software package for algebraic, geometric, and

combinatorial problems on linear spaces – generates basis elements (perhaps

redundant) for Markov bases for specific values of n. In turn, we can use these

to compute exact distribution given the minimal sufficient statistics using Monte

Carlo Markov chain methods.

• Polymake (Gawrilow & Joswig, 2008) – a software package for analyzing

convex polytopes. In Sect. 2.4 we use Polymake to explore conditions for the

existence of (nonzero) MLEs when rij ¼ 0. Nonexistence of MLEs effects both

the computation and the assessment of fit.

The strategy we follow is one that has proved successful in other categorical data

problems. We investigate the form of our problem (determining the Markov basis

or investigating the fiber) in low dimensions (e.g., n ¼ 3; 4; 5). Then we posit

features of the general structure that will hold for arbitrary n.

2.3 Markov Bases Associated with p1 for Small Networks

In this section, we will describe the toric varieties corresponding to the variation on

p1 models. Unfortunately, the algebraic geometry machinery generates universal
basis elements that can take all possible values. Because we are dealing with

probabilities that are non-negative and add to 1, some basis elements ignore the

fact that we get to observe the dyad in one and only one of the four possible states.

Thus once we find the Markov bases, we still need to be careful in identifying those

elements that are useful for our statistical enterprise. The good news is that we are
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able to decompose every Markov basis element using certain basic moves. We can

carry out this construction sequentially in a way that creates only statistically

meaningful moves. The key idea is to decompose the toric ideal of the p1 model

using ideals which are known and easier to understand by ignoring the dyadic

constraints represented by the normalizing parameters lij. This approach reveals a

connection between p1 models and toric varieties, which are associated to certain

graphs that have been studied by the commutative algebra and algebraic geometry

community, specifically Villarreal (2001) and Ohsugi and Hibi (1999).

In terms of ideal generators for the p1 model, reintroducing the normalizing

constants adds another level of algebraic difficulty, and we defer the details of how

to accomplish this to a later more mathematically technical paper’ with ’we refer

the reader to Petrović, Rinaldo, & Fienberg (2010) for details. In terms of moves on

the network, however, we can avoid this difficulty by exhibiting the decomposition

of the moves (although inapplicable in terms of ideal generators) using well-

understood binomials arising from graphs. This approach reduces the complexity

and size of Markov moves, and in addition, allows us to bypass the study of those

basis elements that are not applicable due to the constraints described above.

Finally, we point out that even though the size of the Markov bases grows rapidly

as we increase the number of nodes, there is quite a lot of structure in these

generating sets. In what follows, we will first illustrate this structure on some

small networks. Because there are three cases of the p1 model, we need three

different labels for the design matrices of the n-node network. The design matrix

depends on the choice of n and rij:

1. For the case rij ¼ 0, when the reciprocal effect is zero, we denote the design

matrix for the n-node network by Zn.
2. For the case of constant reciprocation (i.e., rij ¼ r), we denote the n-node

network matrix by Cn.

3. When reciprocation is edge-dependent (i.e., rij ¼ rþ ri þ rj), we denote the

design matrix by En.

2.3.1 Case I: No Reciprocation (rij = 0)

While this is clearly a special case of rij ¼ r, we treat it separately as it is

algebraically interesting in its own right.

We start with the simplest nontrivial example: n ¼ 2. The design matrix Z2,
which encodes the parametrization ’2 of the variety was given in Sect. 2.2.1. The

toric ideal IZ2 is the principal ideal generated by one quadric:

IZ2 ¼ ðp12ð1; 0Þp12ð0; 1Þ � p12ð1; 1Þp12ð0; 0ÞÞ

and thus this single binomial is a Markov basis and also a Gr€obner basis with

respect to any term order. We can verify this by hand, or by using software (4ti2

Team, 2008).
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In general, we can translate binomials into moves in the following way: We will

remove all edges that are represented by the pij’s in the negative monomial and add

all edges represented by the pij’s in the positive monomial. Note that if pijð0; 0Þ
occurs in either, it has no effect: It says to remove or add the “no-edge,” so we do

nothing. The reason why the terms pijð0; 0Þ are kept is to ensure that the binomial is

homogeneous with respect to the pair fi; jg. Here, for example, since the positive

monomial is of degree two, the negative monomial has p12ð0; 0Þ attached to it to

ensure it also is of degree two.

Thus, the generator of IZ2 represents the following Markov move: Delete the

bidirected edge between 1 and 2. Replace it by an edge from 1 to 2 and an edge

from 2 to 1. If we need to allow only one edge per dyad, however, this binomial is

meaningless and there are not really any allowable Markov moves. Philosophically,

the case of no reciprocation somehow contradicts this assumption, since if rij ¼ 0,

a bidirected edge between two nodes is always valued the same as two edges

between them. For this reason, the requirement of only one edge per dyad makes

this problem so much more complicated – relations such as this one for any dyad

in an n-node network will appear in the generating sets of the ideal IZn , but we will
never want to use them.

Next, let n ¼ 3. The design matrix Z3 encodes the parametrization ’3 of the

variety as follows

Z3 ¼

1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1

0 1 1 2 0 1 1 2 0 1 1 2

0 1 0 1 0 1 0 1 0 0 0 0

0 0 1 1 0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1 0 0 1 1

0 0 1 1 0 0 1 1 0 0 0 0

0 1 0 1 0 0 0 0 0 0 1 1

0 0 0 0 0 1 0 1 0 1 0 1

2
666666666666664

3
777777777777775

l12
l13
l23
y
a1
a2
a3
b1
b2
b3

where the columns of Z3 are indexed by p12ð0; 0Þ, p12ð1; 0Þ, p12ð0; 1Þ,
p12ð1; 1Þ, p13ð0; 0Þ, p13ð1; 0Þ, p13ð0; 1Þ, p13ð1; 1Þ, p23ð0; 0Þ, p23ð1; 0Þ, p23ð0; 1Þ,
p23ð1; 1Þ.

The toric ideal IZ3 is minimally generated by the following set of binomials:

p23ð0; 1Þp23ð1; 0Þ � p23ð1; 1Þp23ð0; 0Þ;
p13ð0; 1Þp13ð1; 0Þ � p13ð1; 1Þp13ð0; 0Þ;
p12ð0; 1Þp12ð1; 0Þ � p12ð1; 1Þp12ð0; 0Þ;

p12ð0; 1Þp13ð1; 0Þp23ð0; 1Þ � p12ð1; 0Þp13ð0; 1Þp23ð1; 0Þ:
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The first three generators are precisely the binomials from IZ2 for the three dyads
f1; 2g, f1; 3g, f2; 3g. The only statistically meaningful generator is the cubic.

It represents the following move: Replace the edge from 1 to 2 by the edge from 2

to 1; replace the edge from 2 to 3 by the edge from 3 to 2; replace the edge from 3 to 1

by the edge from 1 to 3. Graphically, it represents the three-cycle oriented

two different ways: the positive monomial represents the cycle 1 ! 3 ! 2 ! 1,

while the negative monomial represents the cycle 1 ! 2 ! 3 ! 1. It also

corresponds to the contrast associated with test involving the fit of either the

quasi-independence or the quasi-symmetry model in a 3� 3 table with structural

zeros down the diagonal:

0 p12ð1; 0Þ p13ð1; 0Þ
p12ð0; 1Þ 0 p23ð1; 0Þ
p13ð0; 1Þ p23ð0; 1Þ 0

Quasi-independence posits a model for the nonzero cell probabilities that

involves a product of a parameter for the row and one for the column, whereas

quasi-symmetry allows for symmetry in the interactions but different marginal

totals. The one degree of freedom contrast needed to examine both of these models

is the same when n ¼ 3, for example,

logp12ð0;1Þþ logp13ð1;0Þþ logp23ð0;1Þ� logp12ð1;0Þ� logp13ð0;1Þ� logp23ð1;0Þ

(cf., the related discussion of these models in Bishop, Fienberg, & Holland, 1975).

Suppose now that n ¼ 4. A minimal generating set for the ideal IZ4 consists of
151 binomials:

• 6 quadrics

• 4 cubics

• 93 quartics

• 48 quintics

Some of these violate the requirement that each dyad can be observed in only one

state. As it is impractical to write all of these binomials down, we will list just a few of

those that are statistically meaningful (i.e., respect the requirement of at most one

edge per dyad at any time). As expected, the quadrics and the cubics are simply the

generators of IZ3 for the 4 three-node subnetworks of the four-node network. The

quadrics are not of interest. The cubics represent the three-cycles. Here is a list of

sample quartics, written in binomial form as it is most appropriate at the moment:

p12ð1; 1Þp34ð1; 1Þp23ð0; 0Þp14ð0; 0Þ � p12ð0; 0Þp34ð0; 0Þp23ð1; 1Þp14ð1; 1Þ;
p23ð1; 1Þp14ð1; 1Þp13ð0; 0Þp24ð0; 0Þ � p23ð1; 0Þp14ð1; 0Þp13ð0; 1Þp24ð0; 1Þ;
p23ð1; 1Þp14ð1; 1Þp12ð0; 0Þp34ð0; 0Þ � p12ð1; 0Þp23ð1; 0Þp34ð1; 0Þp14ð0; 1Þ;
p12ð0; 0Þp23ð1; 1Þp34ð0; 1Þp14ð1; 0Þ � p12ð1; 0Þp23ð1; 0Þp34ð1; 1Þp14ð0; 0Þ:
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Finally, we consider a pair of representative quintics:

p12ð0;0Þp23ð1;1Þp34ð0;1Þp14ð0;1Þp24ð1;0Þ�p12ð0;1Þp23ð1;0Þp34ð1;1Þp14ð0;0Þp24ð0;1Þ;
p12ð1;0Þp23ð1;0Þp14ð0;0Þp13ð1;1Þp24ð1;0Þ�p12ð0;1Þp23ð1;1Þp14ð1;0Þp13ð1;0Þp24ð0;0Þ:

This set of Markov moves is much more complex then the 10 Markov moves

resulting from the simpler parametrization of the p1 model on four nodes described

by Holland and Leinhardt (1981). We postpone further analysis of these binomials to

another paper (see Petrović, Rinaldo, & Fienberg, 2010), where we develop a general

characterization of Markov moves that go beyond the simple case of r ¼ 0. For now,

we simply note that all of them preserve the in- and out-degree distributions of the

nodes in the network. After we study the other two cases for rij, we will see a

recurring underlying set of moves that can be used to understand these ideals.

2.3.2 Case II: Constant Reciprocation (rij = r)

Now we introduce one more row to the zero-r design matrix Zn to obtain the

constant-r matrix Cn. Namely, this row represents the constant r added to those

columns indexed pijð1; 1Þ for all i; j 2 ½n�. It is filled with the pattern 0; 0; 0; 1
repeated as many times as necessary. For example, the design matrix for the two-

node network is as follows:

C2 ¼

1 1 1 1

0 1 1 2

0 1 0 1

0 0 1 1

0 0 1 1

0 1 0 1

0 0 0 1

2

666666664

3

777777775

l12
y
a1
a2
b1
b2
r

In this case, the ideal is empty (there is nothing in the kernel of C2). We should

have expected this result since the case of rij ¼ 0 requires no reciprocation effect.

Here, the bidirected edge is valued differently than the two single edges in a dyad;

this is the meaning of the last row of the design matrix.

For the three-node network, we have the design matrix,

C3 ¼

1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1

0 1 1 2 0 1 1 2 0 1 1 2

0 1 0 1 0 1 0 1 0 0 0 0

0 0 1 1 0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1 0 0 1 1

0 0 1 1 0 0 1 1 0 0 0 0

0 1 0 1 0 0 0 0 0 0 1 1

0 0 0 0 0 1 0 1 0 1 0 1

0 0 0 1 0 0 0 1 0 0 0 1

2
66666666666666664

3
77777777777777775

l12
l13
l23
y
a1
a2
a3
b1
b2
b3
r
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and the Markov basis consists only of the cubic move from the case rij ¼ 0, for

example,

p12ð0; 1Þp13ð1; 0Þp23ð0; 1Þ � p12ð1; 0Þp13ð0; 1Þp23ð1; 0Þ;
used to extract all possible Gr€obner bases of the ideal. Graver bases are not known
for many families of toric ideals. A precise definition of the Graver basis can be

found, for example, in Sturmfels (1996); the motivation for it comes from integer

programming.

Let n ¼ 4. The software 4ti2 (n.d.) outputs a minimal generating set of the ideal

IC4
consisting of:

• 4 cubics

• 57 binomials of degree 4

• 72 of degree 5

• 336 of degree 6

• 48 of degree 7

• 18 of degree 8

Out of this large set, the applicable Markov moves are the same as in the case

rij ¼ 0 with a few degree-six binomials added, such as:

p12ð0; 0Þp13ð1; 1Þp14ð1; 1Þp23ð0; 1Þp24ð1; 0Þp34ð0; 0Þ
� p12ð1; 1Þp13ð0; 1Þp14ð1; 0Þp23ð0; 0Þp24ð0; 0Þp34ð1; 1Þ

2.3.3 Case III: Edge-Dependent Reciprocation
(rij = r + ri + rj)

To construct the design matrix En for this case, we start with the matrix Cn from the

case rij ¼ r, and introduce nmore rows indexed by r1; . . . ; rn. Every fourth column

of the new matrix, indexed by pijð1; 1Þ, has two nonzero entries: a 1 in the rows

corresponding to ri and rj. For example, when n ¼ 2, the matrix looks like this:

E2 ¼

1 1 1 1

0 1 0 1

0 0 1 1

0 0 1 1

0 1 0 1

0 1 1 2

0 0 0 1

0 0 0 1

0 0 0 1

2
6666666666664

3
7777777777775

l12
a1
a2
b1
b2
y
r
r1
r2

Because this is a full-rank matrix, the ideal for the two-node network is empty.
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With n ¼ 3 we get the expected result; the ideal IE3
is the principal ideal

IE3
¼ ðp12ð1; 0Þp23ð1; 0Þp13ð0; 1Þ � p12ð0; 1Þp23ð0; 1Þp13ð1; 0ÞÞ:

With n ¼ 4 we get the first interesting Markov moves for the edge-dependent

case. The software 4ti2 (4ti2 Team, 2008) outputs a minimal generating set of the

ideal IE4
consisting of:

• 4 cubics

• 18 binomials of degree 4

• 24 of degree 5

The cubics, as usual, represent reorienting a three-cycle. Similarly some of

the quartics represent four-cycles. And then we get a few more binomials, of the

following types:

p13ð0; 0Þp24ð0; 0Þp14ð0; 1Þp23ð0; 1Þ � p13ð0; 1Þp24ð0; 1Þp14ð0; 0Þp23ð0; 0Þ

of degree four, and

p13ð0; 0Þp24ð0; 0Þp14ð0; 1Þp12ð1; 0Þp23ð1; 0Þ
� p13ð1; 0Þp24ð0; 1Þp14ð0; 0Þp12ð0; 1Þp23ð0; 0Þ

of degree five. Note that these two are just representatives; we may, for example,

replace every pijð0; 0Þ in each of them by pijð1; 1Þ and get other Markov moves that

are minimal generators of the toric ideal IE4
.

2.4 The Marginal Polytope and the Maximum

Likelihood Estimate

In this final section, we turn our attention to the problem of nonexistence of the

MLE of the model parameters for p1 models. See also Haberman (1977) and Fischer

(1981) for existing results in the literature. In particular, we briefly derive a geo-

metric characterization of the necessary and sufficient conditions for existence of

the MLE. We refer the reader to Petrović et al. (2010) for more details and more

general statements.

Let X be the sample space (i.e., the set of all observable networks), and for a

given design matrix A, consider the set

S ¼ convhull ft ¼ Ax; x 2 Xgð Þ;

consisting of the convex combinations of all the possible observable sufficient

statistics for the p1 model specified by A. Since X is finite, the set S is a polytope
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(a bounded and closed convex set cut out by a finite number of hyperplanes).

Borrowing the terminology from Eriksson, Fienberg, Rinaldo, and Sullivant

(2006), we call the polytope S the marginal polytope of the model. From the theory

of exponential families (see Barndorff-Nielsen, 1978; Brown, 1986), the marginal

polytope is the convex support of the family of distributions representing the p1
model whose design matrix is A. Furthermore, the MLE p̂ of the vector of

probabilities p exists if and only if the vector t of observed sufficient statistics is

in the interior of S. Here, by existence of the MLE we mean that the vector p̂ has

strictly positive coordinates or, equivalently, that the model parameters are strictly

positive.

Thus, in order to decide if the MLE corresponding to an observed sufficient

statistics t exists, it is necessary to decide whether t belongs to the interior of S.
When the MLE does not exist, it then becomes important to identify which

coordinates of p̂ are estimated to be zero, or equivalently, which of the model

parameters are estimated to be zero. Both tasks require dealing directly on the

geometric and combinatorial properties of the marginal polytope and of its boundary.

Unfortunately, due to the product-multinomial constraints, the set S is fairly difficult
to describe, even with the full knowledge of A. Both problems, however, can be

solved by looking at the simpler set

C ¼ cone ft ¼ Ax; x � 0gð Þ

which is the polyhedral cone generated by the sufficient statistics t. Unlike S, C does

not encode the multinomial constraints and, therefore, is much easier to handle.

In particular, there already exists an algorithm to check whether t belongs to

the interior of C (which can be decided by solving a feasibility problem via linear

programming) and, more importantly, to decide which coordinates of p̂ are zero (see
Eriksson et al., 2006; Rinaldo, 2006; Rinaldo, Fienberg, & Zhou, 2009).We refer the

reader to Petrović et al. (2010) for rigorous statements of these results. We remark

that these geometric results reflect the well known fact that, under appropriate

conditions satisfied by p1 models, in more general log-linear model settings, the

MLE under product-multinomial sampling scheme (captured by the set S) exists
if and only if it exists under the Poisson sampling scheme (captured by the set C).
See, for instance, Haberman (1974).

We conclude this section with a more detailed analysis of the p1 model with

r ¼ 0. Unlike the other p1 models we consider, for this special case, explicit and

simple conditions for the existence of the MLE can be directly derived. To this end,

for notational convenience, we no longer represent the network X as a vector.

Instead, we adopt the original notation of Holland and Leinhardt (1981) and define

X is a n� n matrix whose ði; jÞ entry is 1 if there is an edge leaving i into j and
0 otherwise. Note that since self-loops are not allowed, Xii ¼ 0 for all i. Using the

matrix notation, for the p1 model with r ¼ 0, the 2n-dimensional sufficient statis-

tics are the row and column sums of X. Indeed, when r ¼ 0, the p1 model in the

parametrization of Holland and Leinhardt is a linear exponential family.
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There are three cases where the MLE does not exist. The first two cases are clear.

• If a row or column sum is equal to n� 1.

• If a row or column sum is equal to 0.

The third case is subtler, as it corresponds to situations in which the minimal

sufficient statistics can be positive and less than n� 1. From the theory of exponen-

tial families, the MLE p̂ satisfies the moment equations, namely the row and column

sums of p̂ match the corresponding row and column sums of the observed network.

Thus, the MLE does not exist whenever this constraint cannot be satisfied by any

strictly positive vector. As a result, for n ¼ 3, besides the two obvious cases indicated

above, the MLE does not exist if the following three patterns of zeros are observed:

� 0

0 �
�

2

4

3

5;
� 0

�
0 �

2

4

3

5;
�

� 0

0 �

2

4

3

5:

When n ¼ 4, there are four patterns of zeros leading to a nonexistent MLE, even

though the margins can be positive and smaller than three:

� 0 0

0 � 0

�
0 0 �

2

664

3

775;

� 0 0

0 � 0

0 0 �
�

2

664

3

775;

� 0 0

�
0 � 0

0 0 �

2

664

3

775;

�
� 0 0

0 � 0

0 0 �

2

664

3

775:

We found these patterns using polymake. Based on our computations, we

conjecture that for a network on n nodes, the number of patterns of zeros that

lead to nonexistence of the MLE and that fall in this third category is always 2n.

2.5 Discussion

In this paper we begin a reconsideration of the Holland-Leinhardt p1 model using

the tools of algebraic statistics. In particular, we attempt to derive Markov bases

for p1. We have yet to link these to those on Markov bases for log-linear models

for contingency tables, (e.g., as described by Diaconis & Sturmfels, 1998; Dobra

et al., 2008; Fienberg, 2007). But because of the contingency table representation of

Fienberg and Wasserman (1981a, 1981b), we expect some form of congruence.

One of the interesting aspects of the 1981 Holland-Leinhardt paper was its focus

on assessing the fit of the model to actual network data, although they made clear

that there was little or no theory to rely upon. As a reviewer of an earlier draft of this

paper noted: “The asymptotic challenge [for assessing the fit of p1] is considerable,
and a comparison with related item-response theory suggests that some aspects of

the problem are deeply impossible. The asymptotic challenge derives from the very
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high dimension relative to the number of observations and from the considerable

variation in the accuracy of different model parameters.”

Haberman (1981) made precisely this argument in his discussion of the 1981

Holland and Leinhardt paper. What is apparent from a reading of the current

network literature for exponential random graphs is that, more than 35 years

later, this problem has not been solved, either asymptotically or for small samples

(e.g., Hunter, Goodreau, & Handcock, 2008), although the use of random effects
or hierarchical Bayesian versions of p1 is one way that has been used to reign in

the difficulty of high dimensionality. Because of the inherent sparseness of the p1
model, we expect that the Markov bases and related algebraic geometry notions

discussed in this paper will ultimately be useful for exploring two statistical

problems: (a) determining condition for the existence of MLEs, and (b) using

them to traverse conditional (given minimal sufficient statistics) sample spaces,

generating exact distributions useful for assessing goodness of fit.

The p1 model has been generalized in a variety of ways and is usually now

discussed in the context of exponential random graph models (ERGMs, also

known as p� models see Frank & Strauss, 1986; Strauss & Ikeda, 1990; Wasserman

& Pattison, 1996; see Rinaldo et al., 2009, for recent results on the geometric

properties of ERGMs). Laying out a full algebraic statistics framework for ERGMs,

such as that introduced in this paper for p1, appears to be quite difficult. We believe

this difficulty is a consequence of the fact that the likelihood function does

not decompose into independent components in the way that the p1 likelihood

decomposes into independent dyadic components.

We believe that the algebraic statistics framework for the Holland-Leinhardt p1
model, which we have introduced in this paper, is not only mathematically elegant,

but that it also offers a statistically interesting complement to their pioneering work

on network modeling.
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Chapter 3

Mr. Holland’s Networks: A Brief Review

of the Importance of Statistical Studies

of Local Subgraphs or One Small Tune

in a Large Opus

Stanley Wasserman

3.1 Introduction

I enrolled in the Graduate School of Arts and Sciences at Harvard in fall 1973 to do

graduate work in statistics. I had six classmates in my cohort, four of whom

eventually received PhDs. One, Richard Hill, a recent graduate of MIT, was also

an administrator at the Computer Research Center (CRC) of the National Bureau

Economic Research (NBER). He worked there with his former classmate Mark

Eisner, technical director of the CRC.

Paul Holland was full time at CRC, as a senior research associate, from 1972 to

1975, while maintaining a lectureship in the Department of Statistics up the river.

After my first year of studies, Richard and Paul were looking for a research assistant

to begin full-time for summer 1974 and to continue part-time during the academic

year. I was interested, and very pleased to be hired. So, my work with Paul began

that summer and continued for the next 2 years while Paul and I were both in

Cambridge. Paul moved to Educational Testing Service (ETS) late in 1975, so I

moved on as well, spending my last year in graduate school (1976–1977) at

Carnegie-Mellon University, working with his close collaborator at the time, Sam

Leinhardt.

Paul directed my thesis and was my mentor throughout the 1970s. I owe much to

him: I valued his enthusiasm, enjoyed his humor, and was very grateful that much

of what I did back in those early years was regarded by him as a “thing of beauty”

(a standard which I never met again). I do regret that we were not more in contact

over the last two decades.

I am grateful to be able to write a short note for his Festschrift, commenting on

the importance of his research to the burgeoning field of network science.

S. Wasserman (*)

Department of Statistics, Indiana University, 309 North Park Street,

Bloomington, IN 47408, USA
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3.2 Notation

We begin with a graph (or a directed graph), a single set of nodes N, and a set of

lines or arcs L. It is common to use this mathematical concept to represent a

network. We use the notation of Wasserman and Faust (1994), especially Chaps.

13 and 14. There are extensions of these ideas to a wide range of networks,

including multiple relations, affiliation relations, valued relations, and social influ-

ence and selection situations (in which information on attributes of the nodes is

available); see the chapters of Carrington, Scott, and Wasserman (2005).

The purpose of this short exposition is to discuss the developments in statistical

models for networks that have occurred over the past 10 years and relate them to

Paul’s early statistical network research. Background for much of this paper is

summarized in the statistical chapters (Chaps. 8–11) of Carrington, et al. (2005)

(which were written in 2002). More of it can be found in the statistical physics

literature, for example, the review paper of Newman (2003) or the edited volume of

Newman, Barabasi, andWatts (2006). The statistical modeling of social networks is

advancing quite quickly. The many exciting new developments include, for

instance, longitudinal models for the coevolution of networks and behavior

(Snijders, Steglich, & Schweinberger, 2007) and latent space models for social

networks (Handcock, Raftery, & Tantrum, 2007; Hoff, Raftery, & Handcock,

2002). Here, we review a few developments that are relevant to Paul’s work in

the early 1970s.

3.3 The Importance of Mr. Holland to Network Science

3.3.1 Some Past History

One of the most important structural theories in network analysis is structural
balance, and its many derivatives. The history of structural balance, clusterability,

and ranked clusterability began in network science in the 1940s when a variety of

mathematicians invaded the structural space occupied by the early sociometricians.

The forefront of this research yielded a variety of theorems, rooted in graph theory,

that allowed for checks on whether a particular graph was structurally balanced or

clusterable. With these clusterability theorems in hand, a number of researchers

embarked on empirical investigations. Questions such as how common clusterable

signed (di)graphs are, and whether such signed (di)graphs were balanced, needed

answers. These investigations required surveying many sociomatrices obtained

from diverse sources. Further, the empirical studies had to be accompanied by

statistical models that allowed those interested to study whether departures from

theoretical models such as clusterability were statistically large.
The necessary statistical techniques are a bit too long and tedious for the scope

of the current chapter. A few details appear below with a reference to Chap. 14 of
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Wasserman and Faust (1994) for lots more information. But we can report here how

the theorems of clusterability were generalized due to unexpected empirical evidence.

The standard Holland-Leinhardt index for clusterability or transitivity starts with

the triad census, a vector of isomorphic triad counts, either of length 4 (for graphs)

or 16 (for directed graphs). As usual, let T denote the triad census vector. Mathe-

matically, let l be a weighting vector, designed to count the frequency of a particular
structural tendency. Then, l0 T is a linear combination of the triad census, using one

of the weighting vectors derived from the substantive hypothesis under study.

This linear combination is the number of times that the specific configuration,

associated with the chosen weighting vector, occurs in the observed sociomatrix.

Under one of the random directed graph distributions, we can calculate the expected

value and covariance matrix of T; and hence the expected number for this configu-

ration and its variance. This expected number is l0 mT ; and the standard error isffiffiffiffiffiffiffiffiffiffiffi
l0 ST l

p
, where mT is the mean triad census vector, and ST is the 16 � 16 (or 4 � 4)

covariance matrix of the counts of the triad census.

This standardized index is then used as a test statistic for a variety of substantive

null hypotheses. The first two moments of the linear combination of raw counts are

calculated under these null hypotheses, which invariably assume some particular

random digraph distribution. From substantive hypothesis, to weighting vector, to

test statistic, to a statistical evaluation. . . very good science, popularized in the

network science methodological toolkit by Holland and Leinhardt (1970). And they

did the data analysis necessary to prove it was good science, as well.

3.3.2 Empirical Evidence

Davis andLeinhardt (1968, 1972), andDavis (1970) gatherednearly800 sociomatrices

from many different sources and discovered a few interesting facts. First, they found

that many relations measured were directional. The old, recommended strategy of

focusing on semicycles in such structures was difficult to implement. Secondly,

asymmetric dyads, in which one actor chooses another actor but the choice is not

reciprocated, were very common. The ideas of balance and clusterability needed

to be modified to take such situations into account (rather than ignoring the

directionality of these arcs, which was the current practice when attention is

focused on semicycles). Thirdly, they found that signed relations were rather

rare. Thus, they decided to modify the theories of balance and clusterability

so that the theories could be applied to signed directional relations. When even

these new theories were later found lacking, Holland and Leinhardt (1971) revised

them to unsigned directional relations.

Davis and Leinhardt (1972) also found that in some digraphs one subset of actors

chose a second, while actors in this second subset chose members of a third subset.

The clusters of actors appeared to be ranked, or hierarchical in nature, with the

actors on the bottom choosing those at the top (but not vice versa). Figure 3.1 shows

the triads for a signed, directed relation.
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Fig. 3.1 Triads for a signed,

directed relation
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Holland and Leinhardt (1970) were the first to suggest the extension of these ideas

to nonsigned directional relations. To turn ranked clusterability for complete signed

digraphs into an equivalent idea for digraphs without signs is quite simple. Take the

idea of ranked clusters for complete signed digraphs and do not consider arcs with

negative signs. Then, any arc with a sign of “� ” is removed from the signed

digraph. Drop the positive signs from the remaining arcs. The assumption is that

the relation under study is the positive part of the signed relation – for example,

we study only “like,” “not like,” and “dislike.” Figure 3.1 shows the triples of

Fig. 3.2, without the negative arcs. The triples arising from directional relations

are commonly referred to as triads, since we consider the threesome of nodes and all

the arcs between them.

Note that the two problematic triads from ranked clusterability found empiri-

cally to be quite common have one and five arcs. These triads are numbered 2 and

16 in Fig. 3.1. Holland and Leinhardt (1971) showed that ranked clusterability is a

special case of a more general set of theorems that naturally blend balance,

clusterability, and ranked clusterability. Their partially ordered clusterability
leads naturally to a consideration of the concept of transitivity.

Holland and Leinhardt (1971) reviewed the postulates of balance theory,

clusterability, and ranked clusterability, as well as transitive tournaments (Hempel,

1952; Landau, 1951a, 1951b, 1953), and proposed the very general concept of

transitivity to explain social structures. Transitivity includes all the earlier ideas as

special cases. From a transitive digraph, one can obtain balanced, clusterable, and

ranked clusterable graphs by making various assumptions about reciprocity and

asymmetry of choices. During the past two decades, evidence has accumulated that

transitivity is indeed a compelling force in the organization of social groups. What

is even more remarkable, is that the idea was discovered anew, by the physicists

invading the network science world 10 years ago. And now, transitivity and

clusterability are very hot.

3.4 Some Current History

Early work on distributions for graphs was quite limited, forcing researchers to

adopt independence assumptions that were not terribly realistic (see Chaps. 13–16

of Wasserman & Faust, 1994). It is hard to accept the standard assumption common

in much of the literature, especially in physics, of complete independence and then

to adopt the misnamed and overly simplistic random graph distribution (there are,

of course, an infinite number of random graph distributions). The random graph

distribution to the physicists, usually referred to as a Bernoulli graph (Wasserman

& Faust, 1994, Chap. 13), assumes no dependencies at all among the random

components of a graph. Equally hard to believe as a true representation of social
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behavior are the many conditional uniform distributions and p1, which assumes

independent dyads (Holland & Leinhardt, 1977, 1981).

The breakthrough in statistical modeling of networks was first exposited by Frank

and Strauss (1986), who termed their model a Markov random graph. Further
developments, especially commentary on estimation of distribution parameters,

were given by Strauss and Ikeda (1990). Wasserman and Pattison (1996) elaborated

upon the model, describing a more general family of distributions. Pattison

and Wasserman (1999), Robins, Pattison, and Wasserman (1999), and Anderson,

Wasserman, and Crouch (1999) further developed this family of models, showing

how a Markov parametric assumption gives just one, of many, possible sets of

parameters. This family, with its variety and extensions, was named p�, a label by

which it has come to be known. The parameters (which are determined by the

hypothesized dependence structure) reflect structural concerns, which are assumed

to be governing the probabilistic nature of the underlying social and/or behavioral

process.

Work continues on this family, pointing out generalizations (Pattison & Robins,

2002; Robins, Elliot, & Pattison, 2001; Robins, Pattison, & Elliott, 2001; Snijders,

Pattison, Robins, & Handcock, 2006), degeneracies (Handcock, 2002), and new

estimation strategies (Hunter, 2007; Hunter & Handcock, 2006; Snijders, 2002).

The early work by the first researchers extended p* in a variety of ways and laid
the foundation for work in this decade on the estimation problems inherent in the

early formulations. This research also was an important forerunner of the new

parametric specifications that promise wider usage of the family. A more thorough

history of this family of distributions, including a discussion of its roots in spatial

modeling and statistical physics, can be found in Borner, Sanyal, and Vespignani

(2007). Wasserman and Robins (2005) offered a review of p� circa 2003, while

Robins, Pattison, Kalish, and Lusher (2007) reviewed the 2003–2006 period. Other

recent thoughts can be found in the May 2007 issue of Social Networks, a special
issue devoted, in part, to p*.

The work of Frank and Strauss (1986) did indeed begin a new era for statistical

modeling of networks, although it took 10 years for Markov random graphs to be

discussed at more length by network methodologists. What is remarkable is how the

wheel keeps getting reinvented. Witness the rebirth of Holland and Leinhardt’s

transitivity index, as we describe below.

3.5 Clustering Coefficients

The clustering coefficient of a vertex in a graph quantifies how close the vertex and

its neighbors are to being a clique (complete graph). Duncan Watts and Steven

Strogatz introduced the measure in 1998 to determine whether a graph is a small-

world network (hubs, which are part of cliques, but also adjacent to other hubs).
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3.5.1 Formal Definition

A graph G ¼ ðV;EÞ formally consists of a set of vertices V and a set of edges E
between them. An edge eij connects vertex iwith vertex j. The neighborhood N for a

vertex vi is defined as its immediately connected neighbors as follows:

Ni ¼ fvjg : eij 2 E or eji 2 E: (3.1)

The degree ki of a vertex is defined as the number of vertices, jjNijj, in its

neighborhood Ni. The clustering coefficient Ci for a vertex vi is then given by the

proportion of links between the vertices within its neighborhood divided by

the number of links that could possibly exist between them. For a directed graph, eij
is distinct from eji, and therefore for each neighborhood Ni there are kiðki � 1Þ links
that could exist among the vertices within the neighborhood (ki is the total (in + out)

degree of the vertex). Thus, the clustering coefficient for directed graphs is given as

Ci ¼ jjfejkgjj
kiðki � 1Þ : vj; vk 2 Ni; ejk 2 E: (3.2)

An undirected graph has the property that eij and eji are equal by definition.

Therefore, if a vertex vi has ki neighbors, edges could exist among the vertices

within the neighborhood. Thus, the clustering coefficient for undirected graphs can

be defined as

Ci ¼ 2jjfejkgjj
kiðki � 1Þ : vj; vk 2 Ni; ejk 2 E: (3.3)

Let lGðvÞ be the number of triangles on v 2 VðGÞ for undirected graph G. That is,
lGðvÞ is the number of subgraphs of G with three edges and three vertices, one of

which is v. Let tGðvÞ be the number of triples on v 2 VðGÞ. That is, tGðvÞ is the

number of subgraphs (not necessarily induced) with two edges and three vertices,

one of which is v and such that v is incident to both edges. Then we can also define

the clustering coefficient as

Ci ¼ lGðvÞ
tGðvÞ : (3.4)

It is simple to show that the two preceding definitions are the same, since

tGðvÞ ¼ 1

2
kiðki � 1Þ: (3.5)

These measures are 1 if every neighbor connected to vi is also connected to every
other vertex within the neighborhood and 0 if no vertex that is connected to vi
connects to any other vertex that is connected to vi.
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The clustering coefficient for the whole system is usually defined as the average

of the clustering coefficient for each vertex:

C ¼ 1

n

Xn

i¼1

Ci: (3.6)

3.5.2 Clustering Coefficients in Usage and Practice

In words. . . the clustering coefficient C is defined as follows: Suppose that a vertex

v has kv neighbors (or alters, a term usually used in the social network literature);

then at most kvðkv � 1Þ=2 edges can exist between the alters (this occurs when every
neighbor of v is connected to every other neighbor of v). Let Cv denote the fraction

of the allowable edges that actually exist. Then the clustering coefficient C is

simply the average of Cv over all v.
This definition, introduced by Watts and Strogatz (1998), has been very impor-

tant empirically, as featured in Duncan Watts’ books (1999, 2003), and much

research (see, for example, Robins, Pattison, & Woolcock, 2005).

Besides being used over the past decade to check a nondirected graph for

transitivity, it has been used extensively to study the small-world nature of a

graph. From Matt Jackson’s (2008) nice text, a graph exhibiting the small world
property has a small diameter and small average path length (as well illustrated in

Watts, 1999). Quantitatively, a graph is considered small-world if its average

clustering coefficient is significantly larger than that for a random graph constructed

on the same vertex set, and if the graph has a small mean-shortest path length.

The small-world paradigm, introduced by Stan Milgram in the mid-1960s

has stormed into our culture. Milgram’s (1967) study, published in Psychology
Today, showed that people in the United States seemed to be connected by approxi-

mately six acquaintanceship links, on average. From this finding, the notion of six
degrees of separation was born. Milgram actually never used this now very popular

phrase; the most likely popularizer of the term six degrees of separation would be

John Guare, whose Pulitzer Prize–winning and Tony Award play with the same

name was published in 1990 (Guare, 1990).

A generalization of the clustering coefficient to directed graphs is obvious and

straightforward, thus bringing this idea directly in line with Holland and

Leinhardt’s (1971) t index for transitivity. The only difference, of course, is the

normalization for C and the standardization (z-scoring) for t. The similarity was not

noticed by Watts (1999, 2003) or Newman (2003). Holland and Leinhardt’s (1971)

research on this is not even mentioned by Jackson (2008).

The moral: Paul Holland’s work with Sam Leinhardt on indexes for triads was

replicated, with very little attribution, by the current generation of poorly educated

physicists doing network science.

Science, and posterity, will note that Paul and Sam were the first to quantify the

notion and importance of transitivity and clusterability.
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Part III

Holland Shaping ETS

Some of My Favorite Things About Working at ETS

Paul W. Holland

Of course it was the great colleagues and interesting problems that I had at ETS that

kept me there for so many years. It is impossible to list all those with whom I have

worked, but several are represented in this volume, and I will try to say something

about them, as well as a few others.

I first met Dorothy Thayer a few days after I joined the group headed by Albert

Beaton, the Office of Data Analysis Research (ODAR). She was what was called a

scientific programmer elsewhere, but at ETS she was one of several data analysts.

Many of my publications from my years at ETS are jointly authored with her

because we had a good division of labor; I did the theory and formulas, and she

did the programming and data analysis. I was not the only statistician with whom

she worked: Mel Novick, Don Rubin, and currently, Charles Lewis were also

blessed by her careful and thoughtful work. Her care was not always fully

appreciated, however, when it required me (and her other colleagues) to rework

the theory in which Dotty had found an error through her calculations. But more

often than not, if Dottie could not understand what was supposed to be going on in

the theory, I usually concluded that neither did I.

I worked with many other data analysts over my many years at ETS, too many to

list, but I would be remiss if I did not mention a few. John Barone, Jim Ferris, Bruce

Kaplan, Dave Saxe, and Judy Pollack all did amazing things for me with computers

in the days when doing it yourself on a laptop was simply not the option it is today.

I remember when Sam Leinhardt and I got personal computers for our work on

social networks. Mine was the first personal computer at ETS, and now it is

impossible to imagine how work got done without them. Well, in the 1970s and

1980s it did get done, and in those days, ODAR and its data analysts were the key

for getting useful things out of computers.

I first met Don as a graduate student at Harvard when he took a course that

Fred Mosteller and I ran on mathematical models in the social sciences. His did

his thesis work with Bill Cochran and then came to ETS in Beaton’s ODAR group.

There is no question that Don is the main reason I eventually came to work at

ETS. He and I were the two mathematical/consulting statisticians in ODAR

and worked closely with the data analysts on projects that covered a vast array of



education-related research – from evaluating children’s educational TV to

computer-aided instruction. A few years after I had come on board, Don got the

ETS management to fund the Program Statistics Research Project, which supported

statistical research that had relevance to ETS programs. It just so happened that

ETS had suffered some client push-back due to two different types of statistical

problems – the bouncing beta problem in the Law School Validity Study Service

and a significant equating error for one of the graduate school programs. Don

argued that if some resources were put into the study of more modern statistical

ways to doing these tasks that it would help ETS. So, he took on the problem

of stabilizing the regression coefficients used in validity studies, while I began

my foray into test equating that eventually resulted in two books and many papers.

Of course, my greatest debt to Don is his introducing me to the statistical issues in

causal inference. Surprising to some, his initial work on this topic grew out of his

early interest in missing data. The “counterfactual” way of looking at causal

inference problems posits a great deal of missing data (e.g., the response to the

treatment condition of those in the control group) that these responses are always

missing. We wrote several papers together on various subtopics within causal

inference, but his ideas are his own and my contributions were more of explication

in terms that I found easier to understand. Don left ETS and eventually ended up

back at Harvard University’s Department of Statistics where he has had a long and

distinguished career and many distinguished students. I was disappointed when he

left ETS but happy with his many successes.

I first met Brian Junker when he was a graduate student of Bill Stout at the

University of Illinois. Bill and I had a common interest in nonparametric

evaluations of the fit of item response theory (IRT) models in psychometrics, and

we had similar approaches to this. Brian was one of a very solid group of Bill’s

students, and I was able to convince him to be a summer intern at ETS. During that

visit we made a curious discovery about ourselves. For some reason we discussed

the fact that my mother lived in Santa Maria, California. He said, “Oh, where does

she live?” I gave the street name, and he then said, “What is the address on that

street?” I gave it, and from the address he believed that his parents-in-law lived

exactly across the street from my mother. We checked it out and found that it is

truly a small world. Brian’s paper for this volume has, to me, a very clear

connection to the type of foundational IRT work that interested me when I first

met him. He puts a variety of models into a common framework that makes their

common features clearer.

Paul Rosenbaum got his degree with Don at Harvard and then joined the ETS

staff in my group as a young scholar who had wide interests and a willingness to

do serious consulting for the rest of ETS. He and I did some interesting work on the

foundations of IRT, the basic workhorse of modern psychometrics. He too, was

destined to be a great teacher and left ETS for a distinguished career at Penn.

His contribution to this volume is on a topic of great interest to me: the proper

design of good observational studies for drawing causal inferences.

At ETS there are a considerable number of psychometricians and statisticians,

but their numbers are dwarfed by the test development staff that is drawn from
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many academic fields – literature, mathematics, political science, and so on,

depending on the subject matter required. Mike Zieky is one of the first test

developers that I met at ETS, and we were both heavily involved when ETS was

setting up its system for identifying potentially biased items using the DIF measures

that I and others at ETS had developed. The process of setting up DIF analyses for

operational use took many meetings and many brains working together to make it

both practical and effective. This effort apparently paid off because the approach

we took to making DIF operational has been copied in various ways by testing

organizations all over the world. Mike’s contribution to this volume describes the

result of this effort and reflects his many years of experience with it.
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Chapter 4

Bayesian Analysis of a Two-Group Randomized

Encouragement Design

Donald B. Rubin

4.1 Randomized Encouragement Designs

Randomized encouragement designs, terminology established in the seminal article

by Holland (1988) although used earlier (e.g., Swinton, 1975), are the norm when

dealing with human populations. At least in much of the world today, thankfully,

we cannot force anyone to take a randomly assigned treatment; rather, we can only

encourage them to do so, typically after describing some details of what to expect

under each of the treatment conditions prior to participation, so-called informed
consent. As a consequence, human experiments often face the complication of

noncompliance with assigned treatment. For example, the treatment group may

be randomly assigned to be encouraged to study more, whereas the control group

receives no extra encouragement. In this example, hours of studying will be

measured in both groups of the study – treatment and control – as will the primary

outcome variable, final achievement on a test. Not only is it of interest to study the

effects of the encouragement on the amount of studying and on achievement, but it

is also of interest to investigate the relationship between the amount of studying, an

intermediate outcome variable, on the primary outcome variable in the treatment

and control groups.

Holland (1988) was an early statistically coherent and principled attack on this

problem of intermediate outcomes. Yet, it was partially ignored by a student,

colleague, and old friend of his when recently writing with his student about

the problems of noncompliance. Who is the scoundrel and in what publication? The

answer is: the author of this contribution in Jin and Rubin (2008) – JR, henceforth –

that reanalyzed data from Efron and Feldman (1991) – EF, henceforth. EF concerned

a randomized double-blind trial of an active drug (cholestyramine) versus a placebo

for cholesterol reduction – the primary outcome variable, where compliance, or dose,

was measured by the proportion of assigned pills, either active or placebo, taken.
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EF tried to estimate a dose-response relation in the active treatment group even

though the dose taken was self-selected and not randomized; EF described the true

dose-response relation as the one that would be observed in a large study with dose

randomly assigned and strictly enforced.As published, the EF article includedwritten

discussion, and the consensus seemed to be that EF’s analysis was not convincing.

I was among the discussants reaching this conclusion, and inmy discussion, I referred

to Holland (1988), calling it a “particularly relevant” article. But for some reason,

JR did not cite this important paper. I redress that oversight here and clarify and

simplify the analysis of the EF data presented in JR.

4.2 The Efron and Feldman Data and Some Initial

Descriptive Analyses

The patients in the trial were all men who had been told that their cholesterol levels

were elevated, and that they should exercise and diet more, as well as possibly take a

cholesterol-reducing drug; 164 were randomized to take the active drug, indicated by

Zi ¼ T for the ith man, and 171 were randomized to the control group and assigned to

take the placebo, indicated by Zi ¼ C. For each patient, cholesterol levels were

measured before and after taking the drug or placebo. The potential outcome variables

for the ith man, Yi(T), Yi(C), were the decrease in cholesterol level when assigned T or

when assigned C, and the observed cholesterol reduction is the only variable used by

EF or JR besides the treatment indicator, Zi, and the dose taken (notation for doses

later). The observed cholesterol reduction for the ith man is denoted Yi.obs, where

Yi.obs ¼ Yi(T) when Zi ¼ T, and Yi.obs ¼ Yi(C) when Zi ¼ C. The notation used

here relatively closely follows that used in JR.

The dose taken suffers from partial compliance complications: Most patients in

the treatment group took only a fraction of their assigned dose, and most patients

in the control group took only a fraction of their assigned dose. EF opined that this

complication may have a hidden benefit in that it may allow us to estimate a dose-

response relation. Let Di(T) be the proportion of assigned dose actually taken (as

estimated by a pill count) when patient i is assigned treatment, which is observed

when patient i is assigned drug, but missing when assigned control. By design,

Di(C) is zero because the men have no access to the drug except within the

experiment. Analogously, let di(C) be the proportion of placebo dose taken when

patient i is assigned to control, which is observed when patient i is assigned control

and missing when assigned treatment. By design, di(T) is zero because there is no

access to the placebo when assigned treatment. The need for both Di(T) and di(C) is

called “extended noncompliance” in JR, extended from the more usual situation

where we could use just Di(T) and Di(C). The observed values {Di.obs} are {Di(T)}

in the treated group and all zero in the control group, and similarly, the observed

values {di.obs} are {di(C)} in the control group and all zero in the treated group.

Figure 4.1, based on data in Efron and Feldman (1991), reveals an apparent

dose-response relationship in the treated group, with a quadratically increasing trend,
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as estimated by EF, which is not surprising given the nature of the drug. More

surprising, however, is EF’s estimation of a linearly increasing dose-response

relationship in the control group. The placebo is thought to be totally inert, with

no possible causal connection to cholesterol reduction. What is going on in the

control group? Recall that both doses are self-selected, so that the plot suggests those

who are more compliant in the control group (i.e., take more of their assigned dose)

have more cholesterol reduction. This makes sense because all of these men know

that they have high cholesterol, so that those of them who take more of their daily

dose of placebo are also more likely to exercise regularly, watch their intake of

fatty foods, and so on, and therefore would be expected to have more cholesterol

reduction in time than the more noncompliant patients. Placebo compliance is really

a descriptor of the patients, a covariate, which is only observed in the control group.

In some sense, what we want to do is subtract the control group’s apparent dose-

response from the treatment group’s apparent dose-response and be left with a

true apparent dose-response relationship. EF attempted this, but the discussion

indicated that at least several readers were unconvinced. The objective in JR was

to do this subtraction correctly under explicit assumptions, based on the framework

of principal stratification (Frangakis & Rubin, 2002).

A very important consideration is that the observed compliance rates in the

two groups are very different. Figure 4.2, based on data from JR, reveals that

compliance is much better in the control group than in the treatment group, which

is not surprising because cholestyramine works by inhibiting the absorption of fat,

Fig. 4.1 Relationship between observed cholesterol reduction and observed compliance. From

“Principal stratification for causal inference with extended partial compliance: Application to

Efron-Feldman data,” by H. Jin and D. B. Rubin, 2008, Journal of the American Statistical
Association, 103(481), p. 102. Copyright 2008 by the American Statistical Association. Reprinted

with permission
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Fig. 4.2 Histograms of observed compliance. From “Principal stratification for causal inference

with extended partial compliance: Application to Efron-Feldman data,” by H. Jin and D. B. Rubin,

2008, Journal of the American Statistical Association, 103(481), p. 102. Copyright 2008 by the

American Statistical Association. Reprinted with permission

Fig. 4.3 Q-Q plot of observed drug and observed placebo compliance. From “Principal stratifica-

tion for causal inference with extended partial compliance: Application to Efron-Feldman data,”

by H. Jin and D. B. Rubin, 2008, Journal of the American Statistical Association, 103(481), p. 102.
Copyright 2008 by the American Statistical Association. Reprinted with permission
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and as a consequence, it can produce excessive colonic gas in some people. Because

of the randomization, the men in the treatment group would be expected to have the

same distribution of placebo compliance as observed in the placebo group, and

analogously, the men in the placebo group would be expected to have the same

distribution of drug compliance as observed in the treatment group. Figure 4.3

displays the differences in the observed compliance behaviors based on a Q-Q plot

from JR; if the placebo were a perfect blind, we would expect to see roughly a

45-degree line, but this is clearly not the case.

4.3 Efron and Feldman’s Approach to Estimating

Dose-Response

The way EF handled the difference between the distributions was to equipercentile
equate (Holland & Rubin, 1983) Di.obs and di.obs, thereby making Di(T) known for

everyone and making di(C) known for everyone. Effectively then, di(C) becomes a

known covariate, and Di(T) becomes the dose in the active treatment group, which

is then essentially considered ignorably assigned (Rubin, 1978) by EF given di(C),

which is the only covariate used in either the EF analysis or the JR analysis. But a

few issues occur with the EF analysis. First, although the equipercentile equating is

correct in expectation because of the randomization, there is no reflection of any

uncertainty of this imputation of all the missing dose data. Second, why should we

accept the ignorability of the assignment of active dose given placebo dose,

especially when placebo dose is, in fact, fully missing in the group being assigned

active doses? And, third, how can active dose simultaneously be assumed to be a

one-one function of placebo dose and stochastically assigned given it? A fourth

issue concerns the possibility of dose-response changing with the type of placebo-

complier; for example, maybe the better placebo compliers will benefit more from

the same dose of drug because they are also doing other things to improve their

cholesterol, or maybe the opposite is true because there is less room for improve-

ment in cholesterol due to the drug because of their other activities. The EF analysis

does not allow any possibility to study this issue because placebo compliance and

dose of the active drug taken are one-one functions of each other.

The analysis in JR addressed these issues using a Bayesian model that explicated

all needed assumptions, and the presentation here is a crisper and more direct one

than in JR. This perspective is basically the Rubin Causal Model (Holland, 1986) as

expanded to include principal stratification (Frangakis & Rubin, 2002).

4.4 JR’s Assumptions and Hypothetical Experiment

We begin by stating two standard assumptions made by both EF and JR. First, we

accept the stable unit treatment value assumption (SUTVA; Rubin, 1980), whereby

there is no interference between units and no hidden versions of either treatment or
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control for any unit; SUTVA allows us to write the matrix of all values that could be

observed in this experiment as a matrix with 164 + 171 rows, and with a column for

each variable (defined more precisely shortly). Second, both EF and JR assume the

ignorability of treatment assignment of active drug versus placebo, which is

justified by the randomization.

JR also, like EF, considered the active dose taken to be part of the experimental

assignment, but JR made this assumption explicit by describing a hypothetical

experiment that could have led to the EF observed data and that allowed placebo

compliance to be missing in the active treatment group. Thus, JR eliminated EF’s

equipercentile equating of compliances and replaced it with the explicit description

of the assignment mechanism for the dose of the active drug given placebo

compliance, which was assumed latently ignorable (Frangakis & Rubin, 1999),

that is, probabilistic as a function of placebo compliance, rather than just ignorable.

More precisely, in this hypothetical experiment, there was a run-in period prior

to randomization where each man’s baseline placebo compliance was measured

using the same assigned dose as in the actual control group; call this di*. Then at

randomization, 164 men were randomly selected for treatment with the active drug,

and 171 were randomly selected for control and given placebo, just as with the

actual study. For the 164 men selected for active drug treatment, for a man with

baseline placebo compliance, di*, the active dose was assigned according to a

drawn value of a Beta random variable (on [0,1]), which gave the active dose that

was to be assigned and enforced, as a fraction of di* (e.g., if the drawn Beta was 0.9,

the man was assigned 0.9 � di* for his active dose). Because of the known negative

side effects of the drug, no effort was made to assign and enforce a larger dose of the

active drug than the man would take of an inert placebo.

Continuingwith this hypothetical experiment, when the study was complete, it was

noticed that observed placebo compliance in the control group, di(C), was identical to

placebo compliance at baseline, di*, for all men. As a result, the investigators naively

threw away di* in both groups of the experiment, and also, they forgot to record the

parameters of the Beta distribution used to draw values of active dose, thinking

that these values were irrelevant once the actual dose of the active drug was known

(naı̈ve Bayesians, no doubt). Thus, the assignment of active drug versus control is, as

it actually was, strongly ignorable (Rosenbaum&Rubin, 1983), but the assignment of

dose of active drug in the treated group was latently ignorable (Frangakis & Rubin,

1999) – that is, it would be ignorable if di* were observed, and it would be precisely

known if the parameters of the Beta distribution had been remembered.

4.5 JR’S Formal Notation and Model

Figure 4.4, based on data from JR, displays all the variables described in this

hypothetical experiment. One potential Y outcome exists for each possible dose,

which are labeled T0 for zero dose, . . ., and T1 for full dose. The objective is to

estimate true dose-response for this hypothetical experiment from its observed data.
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Let y equal all parameters in the model. Also, assume di(C) ¼ di
* for everyone,

denoted di in the following expressions. Formally, the treatment assignment

mechanism has two parts. First, the actual randomization of Zi ¼ T versus Zi ¼ C:

Pr[Z|di, Yi(C), {Yi(ZDi)}, y] ¼ Pr[Z|y] ~ constant. And second the hypothetical

randomization of dose ZDi given Z ¼ T: Pr[ZDi|di, Yi(C), {Yi(ZDi)}, Z ¼ T, y] ¼
Pr[ZDi|di, Z ¼ T, y] ¼ di � Beta(a1, a2). This model has active dose latently

ignorable given the partially observed variable di, which is, actually, fully missing

for those assigned treatment.

Next, the model for the covariate distribution is Pr[di|y] ¼ Beta(a3, a4).
Diagnostics presented later suggest that these Beta assumptions are reasonable.

Next, we summarize JR’s parametric model for the potential outcomes joint

distribution given di and y. Here is where the science of dose-response enters.

First, Pr[Yi(C)| di, y] ¼ N(b0 + b di, sC
2); that is, response under control is linearly

related to placebo compliance. Also Pr[Yi(ZDi)| Yi(C), di, y] ~ N[Yi(C) +

g1 ZDi + g2 ZDi
2 + g3 ZDi di, s T.C

2], mutually conditionally independent across

the ZDi, and g1 � 0, g2 � 0, g1 + g3 � 0; when ZDi ¼ 0, the expectation of

Yi(ZDi) – Yi(C) is zero; thus, the causal effect of a zero dose of the drug is

constrained to be zero in expectation; moreover, dose-response is constrained to

be monotonally and quadratically increasing for this range of doses.

Fig. 4.4 Principal stratification framework for dose-response with di(C) defining strata and ZDi(T)

defining dose. From “Principal stratification for causal inference with extended partial compliance:

Application to Efron-Feldman data,” by H. Jin and D. B. Rubin, 2008, Journal of the American
Statistical Association, 103(481), p. 108. Copyright 2008 by the American Statistical Association.

Reprinted with permission
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Finally, we summarize the prior distribution on y. The prior distribution on the

parameters of the Betas is specified by adding six “fake” men with both ZDi and di
observed on the equal percentile equating line, where these six men have nothing

else observed. These are the minimum, 25th percentile, median, 75th percentile,

maximum on the equipercentile equating line, as displayed in Fig. 4.5. The purpose

of these fake men is simply to stabilize computation and has little influence on

inference because there are only six fake men and 335 real ones, and the fake values

are accurate in expectation because of the randomization. The prior distribution on

the rest of y is independent and is the standard “noninformative” prior proportional

to 1/(sC sT.C).

4.6 JR’s Computation and Diagnostic Checks

This missing data problem is addressed by JR using MCMC to draw Bayesian

inferences by iterative simulation. The parameters are y, and the key missing data

are di for those assigned treatment and ZDi for those assigned control. The steps of

the simulation are as follows: given y, draw the key missing data; given the key

missing data, draw y; iterate until approximate convergence. A large number of

such draws approximates the posterior distribution of dose-response as a function of

principal strata defined by di(C). The details are found in JR.

The propriety of the Beta-Beta part of their model was addressed by JR using

diagnostic plots given in Fig. 4.6, which display one representative draw of the key

missing data. The upper left Q-Q plot reveals that the drawn doses of the active drug

in the control group (the values on the vertical axis) have nearly the same

Fig. 4.5 Six prior data points for p(a1, a2, a3, a4)
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distribution as the actual doses of the active drug in the treatment group, as they

should, and the upper right Q-Q plot reveals that the drawn values of placebo

compliances in the treatment group (the values on the vertical axis) have essentially

the same distribution as the actual values of placebo compliance in the control

group, as they should too. The lower left plot indicates that according to the JR

model, most of the men would take doses of the active drug that are within 90% of

their placebo compliances. And the lower right plot suggests that the EF assumption

of a deterministic relationship between dose of active drug and placebo compliance

is not well supported by the data, at least under JR’s more flexible model.

4.7 JR’s Dose-Response Results

Figure 4.7 from JR displays the estimated dose-response curves at four selected

values of placebo compliance: a perfect placebo complier, a 75th percentile placebo

complier (di ¼ 0.97), a median placebo complier (di ¼ 0.89) and a 25th percentile

placebo complier (di ¼ 0.60). Compare the four plots at ZDi ¼ 0.60, which is the

largest dose that would be assigned to a 60% placebo complier in our hypothetical

experiment. The solid line is the expected dose-response, and the dotted lines give

95% posterior intervals. The poor placebo complier can expect nearly a 50 point

Fig. 4.6 Diagnostic checks for JR’s model, one posterior draw of key missing data
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reduction from a 60% dose, whereas a perfect placebo complier can expect about

half that! Does this make sense? On reflection, I think so because the poor complier

is probably doing very little to lower his cholesterol, other than taking the drug,

which leaves more reduction available due to the drug alone. This result was at first

surprising but eventually reinforced the utility of the model and approach being

used by JR.

4.8 Discussion of the Dose-Response Conclusions

Under EF’s assumptions, dose-response at each di(C) is a point because Di(T) is a

one-one function of di(C) – very implausible. Instead, JR’s dose-response results

are causal under a debatable assumption. Is Nature’s randomization of dose given

Fig. 4.7 Dose-response results for principal strata, maximum d, 75th d, median d, 25th d. From

“Principal stratification for causal inference with extended partial compliance: Application to

Efron-Feldman data,” by H. Jin and D. B. Rubin, 2008, Journal of the American Statistical
Association, 103(481), p. 109. Copyright 2008 by the American Statistical Association. Reprinted

with permission
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placebo compliance (i.e., the crucial latent ignorability assumption) plausible? Or

do we need to condition further on background medical characteristics related to

possible side effects of the drug? This issue is one that would be interesting to

address by a sensitivity analysis in the context of a currently relevant treatment;

cholestyramine is no longer of much interest because the class of drugs called

statins appear to be much more effective, with typically fewer side effects. The

model and analysis do suggest that in such encouragement designs, it is important to

collect covariates that are predictive of outcomes and compliance behavior to

reduce reliance on untestable assumptions. The framework presented here, how-

ever, appears to be superior to earlier attempts to address the same issue, and much

of it was anticipated in Holland (1988).
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Chapter 5

The Role of Nonparametric Analysis

in Assessment Modeling: Then and Now

Brian W. Junker

5.1 Item Response Models

Item response theory (IRT) is a family of statistical psychometric models for

discretely scored responses of subjects (students, survey respondents, etc.) to

items (questions) on exams, surveys, and so on, using a continuous latent variable

to represent the general propensity of each subject to respond positively to each

item or question. Although polytomous and partially ordered responses are consid-

ered in the IRT literature (e.g., van der Linden & Hambleton, 1997), this chapter

will concentrate on ordered dichotomous response variables

Xij ¼ 1; if subject i responds positively to item j
0; otherwise

;

�
(5.1)

i ¼ 1,. . .,N, j ¼ 1,. . . J, where a positive response might be a correct answer on

a cognitive test, agreement on an attitudinal inventory, or other result. Xij is a

Bernoulli random variable, so that a model can be specified as

P½Xij ¼ 1jyi; bj� ¼ Pðyi; bjÞ
P½Xij ¼ 0jyi; bj� ¼ 1� Pðyi; bjÞ ;

where yi is the subject’s latent variable, bj are parameters describing the distribu-

tion of Xij given yj, and Pðyi; bjÞ is some convenient probability function. The

variable yi is sometimes referred to as a latent proficiency or ability (or, e.g.,

attitude, preference, etc., but this chapter will focus on cognitive assessment)

variable and generally is interpreted as expressing the quantity of whatever is

needed to respond positively to items; similarly bj parameterizes features of item j.
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Here and throughout, yi and bj (and other model parameters represented by Greek

letters) may be scalar- or vector-valued in general. In cases where the distinction

is important, it will be clear from context whether scalar or vector is meant.

In the simplest (but widely useful) IRT models, this chapter assumes yi is

unidimensional, that is, yi is a scalar in ℜ (the real line), and that each Pðyi; bjÞ
is monotone, that is, nondecreasing in yi. It is also usual to assume local indepen-
dence, that is, a subject’s responses are independent given the value of his/her latent
variable yi, so that the IRT likelihood for one subject’s responses is of the form

P½Xi1 ¼ xi1; . . . ;XiJ ¼ xiJjyi; b1; . . . ; bJ�

¼
YJ

j¼1

Pðyi; bjÞxijð1� Pðyi; bjÞÞ1�xij : (5.2)

This model is generative in the sense that it embodies a bit of theory about how

responses are generated: given yi (and the bj’s), item responses could be generated

(simulated) as independent coin-flips with probability Pðyi; bjÞ. The theory is not

deep psychologically – that is, it is not grounded in a detailed account of how

responses are generated by subjects – but it is useful in thinking about how item

response data might impact inference about yi (or bj).
In parametric IRT, Pðyi; bjÞ is a smooth function of yi and a low-dimensional bj.

For example, in the Rasch (1980) model, bj is scalar (one-dimensional) and the

model can be expressed as Pðyi; bjÞ ¼ gðyi; bjÞwhere gðxÞ ¼ expðxÞ=½1þ expðxÞ�:
When y is modeled as a random effect, the Rasch model is clearly a generalized

linear mixed model (GLMM; e.g., McCulloch & Searl, 2001) for example. This

model leads to one fruitful way in which IRT models have been incorporated into

a larger modern statistical modeling framework (e.g., DeBoeck & Wilson, 2004;

Johnson & Albert, 1999; and Skrondal & Rabe-Hesketh, 2004).

There are two basic inferential tasks for parametric IRT. The first task is to

estimate the item parameters bj in order to assess the quality of the items. Given a

calibrated model (that is, well-estimated bj’s), the second task is to make inferences

on the yi’s for ranking, selection and, to the extent that items with differing

cognitive content map to different parts of the y scale, diagnostic purposes. Espe-

cially in large scale testing, it is standard practice to apply an expectation-maximi-

zation (E-M) algorithm (as reviewed by Tanner, 1996, for example) or a similar

method to the marginal likelihood:

P½Xi1 ¼ xi1; . . . ;XiJ ¼ xiJjb1; . . . ; bJ; l�

¼
Z YJ

j¼1

P½Xi1 ¼ xi1; . . . ;XiJ ¼ xiJ jy; bj� f ðyjlÞdy;

to obtain maximum likelihood (ML) estimates of the bj’s [and the hyperparameters

l for the density f(y|l)] and then use these estimates to obtain empirical Bayes
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estimates1 of the y’s. In smaller experimental or observational studies, estimating

treatment or condition effects from the marginal model may be enough.

It is also possible to estimate bj’s and yi’s simultaneously. This approach has a

bad reputation among ML methodologists, since joint ML estimates based on

replicating (5.2) for i ¼ 1 . . .N subjects are usually inconsistent (asymptotically

biased; e.g., Haberman, 1977) unless care is taken with the rates at which N and J
tend to infinity in the asymptotic (e.g., Douglas, 1997). However, Holland’s (1990)

review of several ML approaches suggests that the finite-sample estimates of the

b’s can be quite similar across methods. Moreover, Bayesian joint estimation of

the bj’s and yi’s provides both a better idea of uncertainty involved in estimating y
in small samples, as well as a rationale for consistent Bayesian marginal estimates

based on the joint estimation machinery (as sketched by Patz & Junker, 1999).

In nonparametric IRT, the assumptions of unidimensionality, monotonicity, and
local independence are usually retained, but the function Pðyi; bjÞ is usually

replaced with a general unspecified function PjðyiÞ. The resulting model is some-

times called the monotone unidimensional IRT model (e.g., Junker, 1993) in

contrast to other models that relax one or more of these assumptions. One possible

relaxation is to consider more general response variables than dichotomous

(0/1) X’s. For general (not necessarily dichotomous) observed variables

X ¼ ðX1; . . . ;XJÞ, the monotonicity assumption is replaced with the assumption

that each Xj is stochastically ordered by the unidimensional latent variable y. If this
form of monotonicity holds along with unidimensionality and local independence,

the result is called the monotone unidimensional latent variable model.

5.2 Nonparametric Item Response Theory

Approaching IRT from a nonparametric point of view goes back at least to

Meredith (1965) and arguably back as far as Loevinger (1947) or even farther.

A broader view of nonparametric item response theory (NIRT) can be found in

Junker and Sijtsma (2001a), but this chapter will concentrate on results from the

1980s and 1990s that helped to illuminate the observable structure of IRT models

and lead to serviceable tests for monotone unidimensional IRT models for dichoto-

mous response variables.

A key observation is that the assumptions unidimensionality, monotonicity, and

local independence are not vacuous in the sense that they constrain the possible

multivariate distributions of ðXi1; . . . ;XiJÞ. Indeed, each pair of item response vari-

ables ðXj1 ;Xj2Þ must be positively correlated, analogous to the positive correlations

among observed variables in a one-factor factor analysis model with all positive

factor loadings.

1When the model admits of it, alternative approaches using conditional likelihood are also used

(as reviewed by Sijtsma & Junker, 2006).
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However, much more is true, and in much greater generality. Holland and

Rosenbaum (1986) reviewed the relevant literature on associated random variables

and probability inequalities and extended their earlier work in the area, beginning

with Holland (1981), to prove that any vector of observable variables

X ¼ ðX1; . . . ;XJÞ satisfying a monotone unidimensional latent variable model

must also satisfy conditional association (CA): For any partition of X into disjoint

subsets of variables Y ¼ ðY1; . . . ; YJ1Þ and Z ¼ ðZ1; . . . ; ZJ2Þ,

Cov ð f ðYÞ; gðYÞjhðZÞ ¼ cÞ � 0

for all coordinate-wise nondecreasing functions f( ) and g( ) and all functions

h( ). CA imposes very strong conditions on the observed distribution of X: If f( )
and g( ) are thought of as subtest scores for the subtest Y, then any two subtest

scores will be positively correlated given any information at all about the rest of the

test Z.
The very strong coherence among item response variables implied by CA nearly

characterizes monotone unidimensional latent variable models. It turns out that a

complete characterization of these models requires a moderating assumption about

the covariances among items, vanishing conditional dependence (VCD):

lim
J2!1

CovðXa;XbjXjþ1
; . . . ;XJ1þJ2Þ ¼ 0

for all a; b 2 f1; . . . ; J1g, for every J1. Then one can show (Junker & Ellis, 1997)

that as the test length J ¼ J1 þ J2 increases, CA is not only implied by, but also

guarantees the existence of, a nontrivial monotone unidimensional latent variable

model for the (now infinite) sequence of response variables X ¼ ðX1;X2; . . .Þ.
The machinery of the Junker and Ellis (1997) proof also establishes that the latent

variable y must lie in the tail s-field of the sequence X. That is, although y
can be perfectly estimated using infinitely many item responses, it can never be

perfectly known from finitely many responses. This mathematical result is a useful

way of thinking about what a latent variable in psychometric models “really is”

(Ellis & Junker, 1997, p. 516), in contrast to a variable that is missing under a

particular data collection design but could have been observed under a different

design.

Insights like this are one reason that NIRT has been useful and pursued in the

psychometric literature. Researchers learn things about the fundamental structure of

IRT models, and latent variable measurement models generally, by considering

models with a bare minimum of assumptions.

Results such as the Holland and Rosenbaum (1986) CA theorem also give us

a hunting license for testing for a unidimensional IRT model without specifying a

parametric form for the model. This may be useful if one suspects lack of fit may be

due to the particular form of a parametric IRT model rather than the generic

generative IRT assumptions. Although Bartolucci and Forcina (2005) developed

order-constrained likelihood ratio tests of CA in log-linear models, this approach
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becomes prohibitively slow computationally as the test length J increases; using

a different testing approach, Yuan and Clarke (2001) discussed how the many

conditions implied by CA and VCD may lead to prohibitively large sample size

needs. More successful approaches have been the test of essential unidimensional-

ity initiated by Stout (1987) and the Mokken scaling procedures elaborated and

described by Sijtsma and Molenaar (2002) and their students and colleagues.

In addition, if one knows (or concludes, e.g., from the Stout or Mokken

procedures) that the generic IRT assumptions apply but one does not specify or

fit a parametric IRT model, it is still possible to make inferences about y from the

observed response data. For example Grayson (1988; see also Huynh, 1994) shows

that Xþ ¼ PJ
j¼1 Xj stochastically orders y in a monotone unidimensional IRT

model. Basing inferences on Xþ rather than on a parametric estimate of y can be

especially useful for shorter item sets, for which parametric models can be more

difficult to fit stably, and for very long item sets, for which parametric model fitting

methods based on integrating or maximizing the likelihood may be too slow. These

ideas generally seem to work for nonparametric polytomous IRT models as well

(van der Ark, 2005), although the theoretical results are not as clean as in the

dichotomous case.

5.3 Cognitive Diagnosis Models

In recent years, another set of models, so-called cognitive diagnosis models
(CDMs) have attracted attention in the psychometric literature. The motivations

for using these models are much the same as the motivations behind the report

Knowing What Students Know (National Research Council, 2001): a desire to move

summative testing from a norm-referenced to a criterion-referenced foundation for

testing, a desire to provide formative feedback for teachers and other stakeholders

at a finer grain size than total test score, and a desire to understand what really

matters in student performance and to design tests around that. Models similar to

CDMs have been embedded in online tutoring systems for many years, and indeed

broad psychometric interest in these models was sparked in part by a conference

(and the corresponding edited volume of Nichols, Chipman, & Brennan, 1995) on

cognitively diagnostic assessment (linked largely to online systems) that made great

use of examples from the automated tutoring literature.

CDMs provide a different account of subjects’ cognitive status – and responses to

test items – than traditional IRT, although as has been observed elsewhere (e.g.,

Junker & Sijtsma, 2001b; Rupp & Templin, 2008; and von Davier, 2008) and

as evident in (5.3) below, CDMs are in fact a form of IRT model. As with traditional

IRT, CDMs can be built for dichotomous or polytomous data (e.g., von Davier,

2008), but this chapter will again concentrate on dichotomous item scores as in

Fig. 5.1. Instead of a continuous latent unidimensional variable yi expressing an

undifferentiated quantity of proficiency or knowledge, CDMs typically contemplate
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a vector of dichotomous latent variables yl ¼ ðyi1; . . . ; yiKÞ corresponding to K
skills, knowledge components, or other cognitive features2 needed to respond

successfully to test items. Thus,

yik ¼ 1; if subject i possesses skill k
0; otherwise

:

�

Thus, subject i is not placed on a continuum, but rather into one of 2K latent

classes labeled by yl ¼ ðyi1; . . . ; yiKÞ, indicating which skills the subject does or

does not have.

In addition, because not all items require the same skills for successful response,

CDMs employ a so-called Q-matrix (Barnes, 2005; Embretson, 1984; Tatsuoka,

1990), consisting of elements

qjk ¼ 1; if subject k possesses skill j
0; otherwise

:

�

One can think of Q as the adjacency matrix for a bipartite graph linking skills or

cognitive attributes to items, as in Fig. 5.1. The likelihood for one subject’s

responses resembles the IRT likelihood in (5.2),

P½Xi1 ¼ xiJ ; . . . ;XiJ ¼ xiJjyi; bj;Q�

¼
YJ

j¼1

Pðyi; bj;QÞxijð1� Pðyi; bj;QÞÞ1�xij ; (5.3)

except that, as indicated in the notation in (5.3), the response probability also

depends on Q.
The variety of CDMs has grown considerably in recent years, as illustrated by

the recent review of Rupp and Templin (2008), but for specificity this chapter will

describe only one of the simpler models, the deterministic input, noisy and (DINA)
model. Reviewed and named by Junker and Sijtsma (2001b), this model has

antecedents going back to Embretson (1984) and Tatsuoka (1983) and is one of

Fig. 5.1 A directed bipartite

graph representation of the

Q-matrix. A directed edge is

drawn from skill k to item j
if and only if qjk ¼ 1

2 These features may encompass memorized facts, learned skills, higher-order concepts, and so on,

but for brevity this chapter refers to them all as skills.
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the first to be (re-)discovered whenever researchers want a simple conjunctive

model (e.g., Pardos, Heffernan, Anderson, & Heffernan, 2006). The DINA model

begins by combining the skill indicators for subject i and item j deterministically as

xij ¼
YK

k¼1

yqjkik ¼ 1 if i has all skills for j
0 else

:

�

The 0/1 variable xij would be the ideal response to the item, if subjects’

responses perfectly reflected the pattern of skills, relevant to the item, that they

did and did not possess: If the subject possesses all the skills relevant to an item, the

ideal response is 1 (success); otherwise, it is 0 (failure). Statistical error (inconsis-

tent response, uncertainty, or even Q-matrix misspecification) is modeled in the

probability of correct response as

Pðyi; bj;QÞ ¼ ð1� sjÞxij g1�xij
j : (5.4)

Here, bj ¼ ðsj; gjÞ: the parameter sj may be interpreted as the probability of

slipping, given that the subject possesses all of the skills needed for the item;

similarly gj may be interpreted as the probability of getting the problem right by

other means (e.g., guessing), given that some skills are missing. As long as

1� sj > gj, the model is conjunctive, in the sense that the subject needs all the

skills associated with the item to have a high probability of positive response;

otherwise, the probability of positive response is low.

The inferential tasks faced with CDMs are essentially the same as with IRT

models. The first task is to estimate item parameters (e.g., the guess and slip

parameters) in order to assess the quality of the items (the difference between

1�s and g indicates how well the item discriminates between subjects who do and

do not possess the relevant skills, for example). Given a calibrated model (known

Q-matrix, well-estimated s’s and g’s), the second task is to make inferences on the

yik’s – which skills or cognitive attributes do students possess (or not possess)?

Current methods for estimating item parameters include marginal maximum likeli-

hood (e.g., de la Torre, 2008; Templin, 2009; von Davier, 2008, and the references

therein) and fully Bayesian methods (e.g., Hartz, 2002; Junker & Sijtsma, 2001b).

However, parametric estimation of CDMs becomes difficult as the size of the

data, and/or the number of skills, grows. Published examples (e.g., de la Torre, 2008;

Templin, Henson, Templin, & Roussos, 2008) tend to involve as few as two to four

skills; when the number of skills grows, current estimation methods slow consider-

ably (though vonDavier, 2008, usesMLmethods to estimate models with up to eight

skills). The M-step of a straightforward E-M algorithm typically has to visit each

of the 2K latent classes labeled by the K dimensional binary vector yi, so that the

E-M algorithm may be fast for few skills but slows exponentially as K grows.

Markov chain Monte Carlo (MCMC; e.g., Gelman, Carlin, Stern, & Rubin, 2004,
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Chap. 11) algorithms do not visit y vectors with relatively low probability3 but are

still slow; Anozie and Junker’s (2007) MCMC algorithm took 1 h per 100 steps for

estimating a DINA model on approximately 300 items using approximately 100

skills4 for approximately 600 students using data from the Assistments project

(Junker, 2007; Razzaq et al., 2005) in which students typically answered 20–40

items each.

5.4 Nonparametric CDM

Tomy knowledge, a broad nonparametric theory for CDMs has yet to be developed,

but nonparametric approaches to CDMs are beginning to take shape. This chapter

considers two such approaches, both motivated by computational challenges

in parametric inference with CDMs as the numbers of examinees, items, and/or

skills grow.

5.4.1 Clustering to Make Inferences About Subjects’ Skill Vectors

Henson, Templin, and Douglas (2007) observed that given aQ-matrix, the observed

sum-scores

Wik ¼
X

fj:i answered jg
xijqjk

are informative about subjects’ skills, under a conjunctive model. (These sum-

scores are like subscores in many operational tests, except that the Wik can share

items scores and most subscores are based on disjoint subsets of items. They are

partly justified in this case because they are complete conditional sufficient statistics
for the probability that student i knows skill k under the noisy input, deterministic,

and gate (NIDA) model; see Junker & Sijtsma, 2001b.) Henson et al. (2007)

investigated the use of cutoff scores using weighted and unweighted averages

3 The E-M algorithm can be customized to prune out latent classes with low probability and thus

exhibit similar behavior, once it is working near the final mode. Moreover E-M can be sped up to

some extent with variational methods; see for example Minka (2009). These methods generally

increase the size of the data space and/or latent space that can be dealt with, but they do not

eliminate the computational explosion completely.
4 The system designers had identified 126 skills of interest; this sample of items did not exercise all

skills. A drawback of this analysis was that dependence between skills was not modeled. As de la

Torre and Douglas (2004, Tables 9 and 10) suggested, however, ignoring dependence between

skills may have minimal impact on estimates of item (slip and guess) parameters, and much greater

impact on classifying students as masters or nonmasters of particular skills.

74 B.W. Junker



based on the Wik’s in making inferences about subjects’ corresponding latent skill

indicators yik.
Chiu (2008) investigated, theoretically and empirically, clustering the sum score

vectors

Wi ¼ Wi1; . . . ;WiKð Þ

using K-means and hierarchical clustering (Mardia, Kent, & Bibby, 1980), to try to

reproduce the 2K latent classes implied by the 0/1 skill vectors yi. In what is perhaps
the first theoretical result in nonparametric CDM, Chiu (2008) showed, under

suitable technical conditions, that as long as a nonvanishing proportion of single-

skill items exists for each skill, then as J grows, all 2K latent classes can be

recovered.

Ayers, Nugent, and Dean (2008) worked instead with the normalized scores

Bik ¼
P

f j: i answered jg xijqjkP
f j: i answered jg

qjk
; (5.5)

which they called capability scores. They found, empirically, that clustering the

capability vectors

Bi ¼ ðBi1; . . . ;BiKÞ;
rather than clustering the Wi’s, generally produces skill estimates closer to those of

a fitted DINA, especially when data are missing. The normalization in (5.5)

accommodates different numbers of questions for different subjects, and reduces

the influence in the clustering of skills that appear in many items.

Clustering is, of course, alsomuch faster. In a typical example, Ayers et al. (2008)

found that for ten skills, estimating the skills by fitting the DINA model to the data

using WinBugs (Lunn, Thomas, Best, & Spiegelhalter, 2000) takes approximately

1 day; estimating by fitting DINA using an E-M algorithm (de la Torre, 2008) takes

approximately 15 min, and clustering capability vectors takes approximately 2 s.

To speed up clustering even more, in anticipation of much larger data sets such

as might be encountered in data mining logs from online tutoring systems, Nugent,

Ayers, and Dean (2009) developed a bump-hunting (Good & Gaskins, 1980)

algorithm that Nugent et al. (2009) called conditional subspace clustering, which
first seeks individual dimensions of Bi on which subjects can be separated into high-

density clusters with low-density valleys between them. One-dimensional bump-

hunting can be performed alone or as preprocessing to other clustering methods to

speed up inferences about groups of subjects with similar skill profiles.

The three-dimensional scatter plot in Fig. 5.2 shows the capability vectors for

three skills (for ease of visualization) for a sample of students in the Assistment

project, plotted in the unit (hyper-)cube (the corners of this cube are the labels for

the 2K latent classes). The bump-hunting algorithm identifies three well separated

high-density clusters in the evaluate functions dimension. Apparent clustering in
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the unit conversion dimension is not identified by the algorithm because the

secondary modes contain relatively few subjects; multiplication shows little

bump-and-valley structure at all. Nugent et al. (2009) conjectured that clusters

identified by the bump-hunting alone will often be instructionally relevant.5 If

additional clustering is desired, it can be carried out in the (complementary)

subspaces conditional on the clusters identified by bump-hunting, as illustrated by

the dendrogram in Fig. 5.3. This dendrogram was produced using a minimum-

density linkage method that is particularly useful for visualizing high dimensional

model-based (mixture of normals or other densities) clustering. The same symbols

are used in Fig. 5.3 as in Fig. 5.2 to distinguish the bump-hunting clusters; one can

see that an additional multiskill structure is present within each bump; see Nugent

et al. (2009) for details.

5.4.2 Using Observed Associations to Discover Skills
and Q-Matrix Structure

Of course, no method of estimating skills will be useful if we have the wrong set of

skills for the items, or if the Q-matrix is not specified correctly. Some insight can be

gained into the problem of discovering skills and/or Q-matrix structure by

Fig. 5.2 Illustration of the Nugent et al. (2009) conditional subspace clustering algorithm. This

scatter plot of the capability scores in the (hyper-)cube is defined by the skills being measured,

with clusters discovered by “bump-hunting” identified by different shapes: disks, asterisks, and

triangles

5 This of course depends on having a Q-matrix, among the many that may represent the data (e.g.,

(5.6) and subsequent discussion, as well as Maris & Bechger, 2009), that is itself instructionally

relevant.
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Fig. 5.3 Illustration of the Nugent et al. (2009) conditional subspace clustering algorithm. This

dendrogram shows further model-based clustering within each of the subspaces defined by the

one-dimensional clusters in Fig. 5.2
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considering the related problem of predicting performance on one item from

performance on others, given a conjunctive Q-matrix structure.

For example, consider the Q-matrix

Q ¼
1 1 1

1 1 0

1 0 0

0 1 0

2
664

3
775;

illustrated in Fig. 5.1. We can surmise from the Q-matrix (or equivalently from

Fig. 5.1) that if a subject responds positively to Item 1, the subject knows all three
skills and should respond positively to all the other items (this is only a surmise, not

a strict inference, to the extent that a probabilistic model like that of (5.4) may be in

play). If the subject responds positively to Item 2, then we can surmise positive

responses for Items 3 and 4, but we will be unsure of Item 1. Drawing an arrow to

indicate each surmise here, we arrive at the directed graph in Fig. 5.4, which can

also be represented by the incidence matrix

R ¼
1 1 1 1

0 1 1 1

0 0 1 0

0 0 0 1

2
664

3
775;

where Rab ¼ 1 if there is a directed edge from Xa to Xb and Rab ¼ 1 otherwise.

Using ideas reviewed in van Mechelen, Lombardi, and Ceulemans (2007), we can

also construct R from Q algebraically, as

R ¼ ðQc � QTÞc; (5.6)

where Qc is the element-wise complement of the Q-matrix (i.e., qcjk ¼ 1� qjk), Q
T

is the transpose of Q, and � stands for Boolean matrix multiplication: In the dot

product of each row with each column, “�” is replaced with logical “and”, and “+”

is replaces with logical “or”. If there were no noise in data, then R would be a kind

of partial Guttman ordering: Given success on a subset of the items, we could use

R to predict perfectly which other items a subject would succeed at. The graph in

Fig. 5.4 or equivalently its incidence matrix R is an example of a partially ordered
knowledge structure (POKS; Desmarais & Pu, 2005), a notion closely related to the

knowledge spaces of Doignon and Falmagne (1999).

Fig. 5.4 Surmise

relationships among items.

We surmise positive

performance on item b from

positive performance on item

a, if and only if a directed

edge points from Xa to Xb

(a,b∈{1,. . .,J})
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Tucker (2009) divided the task of discovering skills and Q-matrix structure into

the following two subtasks:

Subtask I. Using raw performance data

X ¼
x11 x12 � � � x1J
..
. ..

. . .
. ..

.

xN1 xN2 � � � xNJ

2
64

3
75

to estimate a surmise graph (incidence matrix) R̂.
Subtask II. Factoring R̂ as in (5.6).

For Subtask I, Desmarais and Pu (2005) observed that Xa ! Xb implies

P½Xb ¼ 1jXa ¼ 1� � 1

and

P½Xa ¼ 1jXb ¼ 0� � 0;

and that these conditions can be tested from the table

derived from X. In particular, we expect n10 to be small, relative to both n00 and n11, if
we can surmise success on Xb from success on Xa. Thus pairwise statistical tests can

generate an estimated graph of surmise relationships, R̂. This is Step 1 in Fig. 5.6.
An example of such an estimated surmise graph from Tucker’s (2009) work is

shown in Fig. 5.5, estimated from data for N ¼ 1,000 simulated examinees,

generated from a Q-matrix with K ¼ 10 skills and J ¼ 20 items; the true R matrix

has 39 edges. Items are marked with their role in the original Q-matrix; for

example, the item marked “m123” is a multiple skill item depending on (simulated)

Skills 1, 2, and 3, while “s2.3” is the second single-skill item depending on Skill 3

only. The ratio of J ¼ 20 item to K ¼ 10 skills is likely too low to obtain stable

inferences about all edges in R; further exploration of this approach using higher

items-to-skills ratios is currently underway.

For Subtask II, it is always possible to set Q ¼ RT , but this produces a Q-matrix

with a maximal number, J, of skills. On the other hand, finding the Q-matrix that

factors R with the minimal number of skills is NP-hard (Leenen, van Mechelen,

& DeBoeck, 1999). Tucker (2009) proposed a faster heuristic algorithm, which she

conjectures will produce useful Q-matrixes for conjunctive CDMs with relatively

sparse surmise graphs (numbered to match the corresponding steps in Fig. 5.6):
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(2) Produce the transitive closure of the estimated R̂: For every pair of edges

Xa ! Xb and Xb ! Xc in R̂, ensure that R̂ also has the edge Xa ! Xc. (3) Compute

theHasse diagram of R̂, that is, the smallest directed graph Ĥ with R̂ as its transitive

closure. (4) Label the leaves of Ĥ with unique skills. For every parent node in Ĥ,

label it with the union of the skill labels of the child nodes, plus additional skills if

needed to preserve non-transitivities. (5) Read the Q-matrix off the labeled Hasse

diagram.

Tucker (2009) conducted a simulation study examining recovery of R from data,

exploring both the effects of various levels of guess and slip parameters in the

Fig. 5.6 Schematic of Tucker’s (2009) skills discovery algorithm, starting from an estimated

surmise graph among items. POKS partially ordered knowledge structure

Fig. 5.5 Part of an estimated surmise graph among items created with the partially ordered

knowledge structure (POKS) algorithm (Tucker, 2009). The item labels are motivated from an

application in the Assistments (Junker, 2007; Razzaq et al., 2005) system; labels beginning with

m indicate multiple-skill items, and labels beginning with s indicate single skill items
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DINA and related models, as well as the operating characteristics of binomial tests

used to compare n10 with n00 and n11 in the table in (5.7). The next step in this work
is to explore the recovery of the Hasse diagram H with Ĥ, since H is the part of the

true Q-matrix that is identifiable from the data (many Q-matrixes can be used to

represent the distribution of the data; see (5.6), or more broadly Maris & Bechger,

2009) using the heuristic algorithm explained previously. Also important will be to

modify the labeling algorithm to identify, among the many possible Q-matrixes for

a particular example, one or more that are instructionally relevant.

5.5 Discussion

Nonparametric IRT has a relatively long history; some parts of it are closely related

to modern nonparametric methods in statistics generally (e.g., Rossi, Wang, &

Ramsay, 2002) but by and large nonparametric IRT has referred to methodology

for (a) understanding the operating characteristics of IRT models generally and

(b) developing formal and informal statistical tests for general IRT models without

regard to parametric form. These methods, which this chapter reviewed briefly,

have been most useful in situations where parametric model fitting is inconvenient,

either because too little data or too much data exist.

Cognitive diagnosis models (CDMs) have recently attracted widespread atten-

tion among statistical psychometricians. Although parametric CDMs have been

around for decades, and have been the object of relatively intense study in the past

decade or so, parametric CDMmethodology seems far from producing professional

testing examples that would satisfy the same standards of reliability, validity, and

distinctness (American Educational Research Association, American Psychological

Association, & National Council on Measurement in Education, 1999) that high-

stakes standardized tests must satisfy (Haberman & von Davier, 2007; Sinharay &

Haberman, 2008). At the same time, CDM-like structures have been successfully

used for years in online tutoring and related systems, going back at least to Nichols

et al. (1995), where the social, educational and legal costs of lower reliability are

not as keenly felt (e.g., as discussed by Junker, 1999). Part of the problem may be

the unlikely hope that applying CDM methods to item response data generated by

professional test developers to satisfy unidimensional IRT design constraints would

produce rich fine-grained multidimensional latent structure (Luecht, Gierl, Tan, &

Huff, 2006).

But it may also be that researchers do not yet understand the fundamental structure

of CDMs; studies of the features of CDMs, apart from particular parameterizations,

are not common, unlike nonparametric IRT. And, especially as data sets become

large and latent skills models more complex, parametric CDMs also suffer computa-

tional efficiency problems. Thus a need for nonparametric CDM thinking exists,
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both to understand the operating characteristics of CDMs and to assist with large-

scale analyses.

Some specific nonparametric approaches to CDMs are beginning to take shape.

This chapter considered two such new approaches to conjunctive CDMs. In one

approach (Sect. 5.4.1 above; Ayers et al., 2008; Chiu, 2008; Nugent et al., 2009),

given the assumption of conjunctive structure and a validQ-matrix, cluster analysis is

applied to identify groups of subjects (examinees, respondents) with similar patterns

of cognitive attributes or skills. In another approach (Sect. 5.4.2; Desmarais &

Pu, 2005; Tucker, 2009), observed association structure between items is first

mined to discover surmise – or equivalently prerequisite – relations among items,

and then these relations are factored to produce possible Q-matrix structure.

Both approaches are in their infancy, but they point to the possible significant

advantages of nonparametric approaches. They exploit simple and interpretable

data summaries that can be computed even when data sets become large, and they

begin to suggest some of the operating characteristics of CDM models generally.
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Chapter 6

What Aspects of the Design of an Observational

Study Affect Its Sensitivity to Bias

from Covariates That Were Not Observed?

Paul R. Rosenbaum

6.1 Introduction and Example

6.1.1 What Is Design Sensitivity?

In discussing observational or nonrandomized studies of treatment effects in his

president’s address to the Royal Society of Medicine, Austin Bradford Hill (1965)

asked:

Our observations reveal an association between two variables, perfectly clear-cut and

beyond what we would care to attribute to the play of chance. What aspects of that

association should we especially consider before deciding that the most likely interpretation

of it is causation? (p. 295)

If Hill were correct, if there were actually aspects of association pertinent to

judging evidence about causation, then a natural goal for the design of observational

studies would be to ensure that these aspects are present in a decisive form.

Hill proposed certain specific aspects to consider, as have others (e.g., Campbell,

1957, 1988; Meyer, 1995; Reynolds & West, 1987; Rutter, 2007; Shadish, Cook, &

Campbell, 2002; Trochim, 1985; Vandenbroucke, 2004; Weed, 1997; Weiss, 1981,

2002). These proposals are useful and widely used, but they have been developed in

an informal manner, with the consequence that it is often difficult to appraise the

precise nature of the evidence provided, its usefulness and limitations, the quantita-

tive magnitude of the evidence, the relative importance of evidence of different

types, and the attending circumstances needed to ensure its validity.

A formal tool for thinking about issues of this sort is the design sensitivity

(Rosenbaum, 2004). Where a sensitivity analysis is a statistical analysis of certain
type performed on data from a particular study, the design sensitivity is a number
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that evaluates the design of an observational study, that is, a particular data

generating process and planned protocol for analysis. A sensitivity analysis asks:

How far would a particular observational study have to depart from an analogous

randomized experiment to materially alter the conclusions about treatment effects?

In an observational study, if the treatment had been effective, and there was, in fact,

no bias distorting the study’s conclusions, then one could not be certain of this from

the observed data; rather, at best, one might be able to report that the study’s

conclusions are insensitive to small and moderate biases. The design sensitivity is

a number, eG, that anticipates the outcome of a sensitivity analysis. In this sense, the

design sensitivity resembles the power of a test of a statistical hypothesis: It

anticipates the results of analysis that will be performed when the data become

available. A stronger design, one with a larger design sensitivity, eG, is expected to

be less sensitive to unobserved biases if the treatment is effective and biases are

absent. In this sense, the design sensitivity is a basis for appraising competing

designs for observational studies.

Focusing on the simple special case of matched pairs, the concept of design

sensitivity is reviewed and extended. Much of the material in the review is drawn

from Rosenbaum (1997, 2003a, 2004, 2005, 2007), Small and Rosenbaum (2008),

and Heller, Rosenbaum, and Small (2009), but some results are new.

After reviewing in Sects. 6.2.1 and 6.2.2 notation for treatment effects and

randomization inference in randomized experiments, Sect. 6.2.3 discusses sensitiv-

ity analysis in observational studies, and Sect. 6.2.5 anticipates the results of a

sensitivity analysis using the power of a sensitivity analysis and the related concept

of design sensitivity. Later sections discuss factors that affect design sensitivity,

including unit heterogeneity in Sect. 6.3, dose–response in Sect. 6.4, coherence

among several outcomes in Sect. 6.5, and situations in which only a small part of the

population is affected by treatment in Sect. 6.6. The example in Sect. 6.1.2 is used to

illustrate several ideas: sensitivity analysis in Sect. 6.2.4, graduated dose–response

in Sect. 6.4.2, extreme doses in Sect. 6.4.4, and coherence in Sect. 6.5.

6.1.2 Example: Genetic Damage Among Professional Painters

At several points, the following example will be used as an illustration: Paint and

paint thinners contain several hazardous components, including lead and organic

solvents, which may cause genetic damage. Pinto et al. (2000) compared male

professional public building painters, working without masks or gloves, in Merida,

Yucatan, Mexico, to male clerks, matched for age.1 Pinto et al. examined several

standard measures in genetic toxicology, including the frequency of micronuclei

per 1,000 cells found in 3,000 oral epithelial cells gently scraped from the cheek of

1 In Table 2 of Pinto et al. (2000), the identification numbers for the 22 pairs (painter, control) are

(25, 48), (22, 50), (23, 47), (12, 44), (13, 45), (11, 42), (20, 43), (19, 41), (18, 39), (17, 38), (16, 37),

(6, 36), (9, 33), (15, 34), (5, 35), (8, 32), (7, 31), (4, 30), (14, 29), (2, 28), (3, 26), (1, 27).
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each individual. For 22 matched pairs, Fig. 6.1 plots the painter-minus-control

difference in micronuclei against duration of exposure for the painter, measured as

log2 yearsð Þ, so 2, 8, or 32 years of work as a painter corresponds with log2ð2Þ ¼ 1,

log2ð8Þ ¼ 3, and log2 32ð Þ ¼ 5, as log2 2k
� � ¼ k. Matching on age is important here,

because a painter cannot have worked for 30 years if he is only 20 years old.

The figure includes a marginal boxplot of the differences and a lowess smooth;

see Cleveland (1994) for discussion of both the boxplot and the lowess smooth.

In Fig. 6.1, the matched pair differences in micronuclei tend to be positive, and

they appear to be larger in pairs in which the painter has worked as a painter for

a longer time. If Wilcoxon’s signed rank test is applied to the matched pair

differences, the one-sided significance level is 0.0032 and the associated

Hodges–Lehmann (HL) point estimate of an additive effect is 0.645; see Lehmann

(1998) for discussion of these standard statistical methods. These inferences would

be appropriate in a randomized experiment, but the data in Fig. 6.1 are not from

such an experiment.
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Fig. 6.1 Plot of 22 matched pair differences, painter-minus-control, in micronuclei frequency per

1,000 cells (MN), plotted against the log2 of years of exposure for the painter. There are also a

marginal boxplot of the 22 differences in MN and a lowess smooth in the scatterplot
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6.2 Design Sensitivity for Matched Observational Studies

6.2.1 Notation for Treatment Effects and Treatment Assignments

Design sensitivity is a general concept, but it is most straightforwardly illustrated in

the case of I matched pairs, i ¼ 1; . . . ; I, of two subjects, j ¼ 1; 2, one treated,

denoted Zij ¼ 1, the other control, denoted Zij ¼ 0, matched exactly for observed

covariates xij, so that 1 ¼ Zi1 þ Zi2 and xi1 ¼ xi2 for each i. In addition, in pair i, the
treatment is applied to the treated subject at dose di > 0; however, unequal doses

appear only in Sect. 6.4, so that in other sections di ¼ 1 for i ¼ 1; . . . ; I. Inevitably
in an observational study, concern arises that matching may have failed to control a

relevant covariate uij that was not observed, so that ui1 6¼ ui2. Each subject ij has
two potential responses, rTij; rCij

� �
, where response rCij is observed if subject ij is

assigned to control, Zij ¼ 0, and rTij is observed if subject ij is assigned to treatment,

Zij ¼ 1, so subject ij exhibits response Rij ¼ Zij rTij þ 1� Zij
� �

rCij, and the effect

of the treatment, namely rTij � rCij, is not observed for any subject ij; see Neyman

(1923) and Rubin (1974). Write Z ¼ Z11; . . . ; ZI2ð ÞT , R ¼ R11; . . . ;RI2ð ÞT ,
rC ¼ rC11; . . . ; rCI2ð ÞT , rT ¼ rT11; . . . ; rTI2ð ÞT and u ¼ u11; . . . ; uI2ð ÞT for the 2I-
dimensional vectors. In a randomized experiment, Fisher’s (1935) randomization

test concerned the sharp null hypothesis of no treatment effect, which says that each

subject is unaffected by treatment, H0 : rTij ¼ rCij; 8ij or H0 : rC ¼ rT . Generally,

the observed response, R, changes with the treatment assignment, Z, but if the null

hypothesis H0 of no effect is true, then R ¼ rC does not change when Z changes.

Define F ¼ rTij; rCij; di; xij; uij
� �

; i ¼ 1; . . . ; I; j ¼ 1; 2
� �

. Also define Z to be

the set containing the 2I possible values z of the treatment assignment Z, so that

z 2 Z if each zij is 0 or 1 and zi1 þ zi2 ¼ 1 for each i. For a finite set S, the number of

elements of S is denoted Sj j, so Zj j ¼ 2I.

6.2.2 Randomization Distributions in Randomized Experiments

In a matched pair experiment, randomization ensures that Pr Z ¼ z jFð Þ ¼ 2�I for

each z 2 Z. In a randomized experiment, under the null hypothesis of no effect, H0,

Fisher (1935) showed that any test statistic, t Z;Rð Þ, has a null distribution created

by the randomization, specifically:

Pr t Z;Rð Þ � k jFf g ¼ Pr t Z; rCð Þ � k jFf g ¼ z 2 Z : t z; rCð Þ � kf gj j
2I

; (6.1)

because under H0, R ¼ rC is fixed by conditioning on F and Pr Z ¼ z jFð Þ ¼ 2�I

for each z 2 Z.
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In the discussion here, t Z;Rð Þ will be Wilcoxon’s signed rank statistic or some

variant of this statistic, and ties of all kinds are assumed not to occur among

the responses Rij. Write Yi for the treated-minus-control difference in observed

responses in pair i, so Yi ¼ Zi1 � Zi2ð Þ Ri1 � Ri2ð Þ, and write sgnðwÞ ¼ 0 or 1 as

w � 0 or w> 0, so that sgnðYiÞ ¼ 1 if the treated subject in pair i had the higher

response. Define two I-dimensional vectors, A ¼ Y1j j; . . . ; YIj jð ÞT for the absolute

differences, and d ¼ d1; . . . ; dIð ÞT for the doses. Let qi ¼ qi A; dð Þ � 0 be a score for

the ith pair determined byA and d; for instance, for Wilcoxon’s signed rank statistic,

qi ¼ qi A; dð Þ is the rank of Yij j among the Y1j j; . . . ; YIj j. The statistics considered

here are of the form t Z;Rð Þ ¼PI
i¼1 sgn Yið Þ qi, which of course includes

Wilcoxon’s signed rank, among many others. Under the null hypothesis H0 of no

treatment effect, Yi ¼ Zi1 � Zi2ð Þ rCi1 � rCi2ð Þ where Zi1 � Zi2 is 1 or � 1 and

Yij j ¼ rCi1 � rCi2j j, so A and d are fixed in (6.1) by conditioning on F. Under H0 in

a randomized experiment, moreover, sgnðYiÞ ¼ 1 or 0 each with probability 1
2

independently for distinct i, and the null distribution of (6.1) of t Z;Rð Þ ¼PI
i¼1 sgn Yið Þ qi is the distribution of the sum of I independent random variables,

i ¼ 1; . . . ; I, taking values 0 and qi each with probability 1
2
.

Associated with a Wilcoxon’s statistic and its variants is a point estimate due to

Hodges and Lehmann (1963). In its most familiar form, it is an estimate of an

additive treatment effect, t, so that rTij � rCij ¼ t for all i; j, with the consequence

that R ¼ rC þ tZ and Yi ¼ tþ Zi1 � Zi2ð Þ rCi1 � rCi2ð Þ ¼ tþ Zi1 � Zi2ð Þei, say.

If the qi are some permutation of a fixed set of ranks, as is true for Wilcoxon’s

signed rank statistic, then with an additive effect, t, in a randomized experiment,

the expectation E t Z;R� tZð Þf g ¼ E
PI

i¼1 sgn Yi � tð Þ qi
n o

¼ 1=2ð ÞPI
i¼1 qi is

known, and the Hodges–Lehmann (HL) estimate is, in effect, the solution bt to the

estimating equation
PI

i¼1 sgn Yi � tð Þ qi ¼ 1=2ð ÞPI
i¼1 qi where qi is the rank of

Yi � tj j. (Actually, Wilcoxon’s
PI

i¼1 sgn Yi � tð Þ qi is a decreasing step function as
t increases, with many small steps for large I, so the solutionbt is defined to be either
the unique point at which

PI
i¼1 sgn Yi � tð Þ qi passes 1=2ð ÞPI

i¼1 qi or midpoint of

the interval on which
PI

i¼1 sgn Yi � tð Þ qi equals 1=2ð ÞPI
i¼1 qi).

6.2.3 Sensitivity Analysis in Observational Studies

In an observational study, treatments are not assigned at random, so there may be

little basis for believing that Pr Z ¼ z jFð Þ ¼ 2�I. A sensitivity analysis considers

departures from random assignment of various magnitudes along with their impact

on inferences about treatment effects. How much would significance levels, point

estimates, or confidence intervals change if departures of a specified magnitude

were made from Pr Z ¼ z jFð Þ ¼ 2�I? A simple model for sensitivity analysis

assumes that, in the population prior to matching, subjects are assigned to treatment

independently with unknown probabilities pij ¼ Pr Zij ¼ 1
��F

� �
such that two
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subjects, ij and ij0, with the same observed covariate, xij ¼ xij0 , may differ in their

odds of treatment by at most a factor of G � 1,

1

G
� pij 1� pij0

� �

pij0 1� pij
� � � G; (6.2)

and then return to the distribution of Z to Z by conditioning on Zi1 þ Zi2 ¼ 1. It is

straightforward to show that this is equivalent to the model

Pr Z ¼ z jFð Þ ¼ exp g zTuð ÞP
b2Z exp g bTu

� � ¼
YI

i¼1

exp g zi1ui1 þ zi2ui2ð Þf g
exp gui1ð Þ þ exp gui2ð Þ ; u 2 U; (6.3)

for z 2 Z where g ¼ log Gð Þ and U ¼ 0; 1½ �2I is the 2I-dimensional unit cube. For

discussion of this model, see Rosenbaum (1987) for the case of matched pairs and

Rosenbaum (2002, Sect. 4) for extensions to other cases, and for the equivalence of

(6.2) and (6.3), see Rosenbaum (2002, Sect. 6.4.2) where the unobserved covariate

uij is constructed from pij as uij ¼ log pij
� �� minklog pikð Þ� �

=g. Expressed as (6.2),
the sensitivity analysis is similar in spirit to method of Cornfield et al. (1959); see

also Gastwirth (1992) and Wang and Krieger (2006). The parameter G may be

reinterpreted in terms of two parameters: one describing the relationship between

uij and the outcome, rCij, and the other describing the relationship between uij and
the treatment, Zij – it is an alternative interpretation of the same analysis; see

Rosenbaum and Silber (2009). Under (6.3), the distribution of t Z;Rð Þ ¼ t Z; rCð Þ
under the null hypothesis H0 of no treatment effect is

Pr t Z; rCð Þ � k jFf g ¼
X

z2Z
w t z; rCð Þ � kf g

YI

i¼1

exp g zi1ui1 þ zi2ui2ð Þf g
exp gui1ð Þ þ exp gui2ð Þ (6.4)

where wðEÞ ¼ 1 if the event E occurs and wðEÞ ¼ 0 otherwise. Here, (6.4) reduces

to (6.1) when G ¼ 1 and g ¼ log Gð Þ ¼ 0.

For a statistic of the form t Z;Rð Þ ¼PI
i¼1 sgn Yið Þ qi, define TG as the sum of I

independent random variables taking value qi with probability G= 1þ Gð Þ and value
0 with probability 1þ Gð Þ�1

. In parallel, define TG as the sum of I independent
random variables taking values qi with probability 1þ Gð Þ�1

and value 0 with

probability G= 1þ Gð Þ. It is straightforward to show that under (6.3) and the null

hypothesis H0 of no treatment effect,

Pr TG � k
� � � Pr t Z; rCð Þ � k jFf g � Pr TG � k

� �
for all u 2 U; (6.5)

where R ¼ rC when H0 is true; see Rosenbaum (1987, 2002, Sect. 4.3). For G ¼ 1,

the bounds in (6.5) are equal Pr T1 � k
� � ¼ Pr T1 � k

� �
and equal (6.1). For fixed

G> 0, the null distribution of t Z;Rð Þ is unknown but bounded by (6.5). For each
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fixed G � 1, (6.5) yields an interval of possible significance levels, point estimates,

and endpoints for confidence intervals. In (6.5), the upper and lower bounds are

sharp: They are each attained for particular u 2 U, so to narrow the bounds one

would need some additional information about u.

The bounds in (6.5) may be computed exactly (see Rosenbaum, 2003b, appen-

dix, for software), but as I ! 1, the central limit theorem supplies approximate

bounds. Because E TG

���F
� �

¼ y
P

qi and var TG

���F
� �

¼ y 1� yð ÞP q2i with

y ¼ G= 1þ Gð Þ, the probability Pr TG � k
� �

in (6.5) is approximately

Pr TG � k
� �

� 1� F
k � y

P
qiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y 1� yð ÞP q2i
p

( )
; (6.6)

where F �ð Þ is the standard normal cumulative distribution. When G ¼ 1, the

randomization distribution of (6.1) equals Pr T1 � k
� �

, and (6.6) yields the usual

large sample approximation to the distribution of Wilcoxon’s signed rank statistic.

Either (6.5) or (6.6) yields bounds on significance levels and, by inverting the

hypothesis test, bounds on the endpoints of confidence intervals. For Wilcoxon’s

statistic for an additive treatment effect, t, one obtains the interval that bounds the
possible HL point estimates for all u 2 U as the interval btmin;btmax½ � where btmin
solves

PI
i¼1 sgn Yi � tð Þ qi ¼ y

PI
i¼1 qi and btmax solves

PI
i¼1 sgn Yi � tð Þ qi ¼

1� yð ÞPI
i¼1 qi where qi is the rank of Yi � tj j; see Rosenbaum (1993).

Various methods of sensitivity analysis in observational studies are discussed by

Copas and Eguchi (2001), Cornfield et al. (1959), Gastwirth (1992), Gastwirth,

Krieger, and Rosenbaum (1998), Imbens (2003), Manski (1990), Robins, Rotnitzky,

and Scharfstein (1999), and Rosenbaum and Rubin (1983). For a few applications, see

Aakvik (2001), Ahmed et al. (2008), Diprete and Gangl (2004), Foster, Wiley-Exley,

and Bickman (2009), Origo (2009), Silber et al. (2005), and Slade et al. (2008).

6.2.4 Example of Sensitivity Analysis

Returning to the example in Sect. 6.1.2 and Fig. 6.1, Table 6.1 displays a sensitivity

analysis for the one-sided significance level from Wilcoxon’s signed rank test and

for the associated HL point estimate bt of an additive effect t. The case G ¼ 1

reproduces the randomization inferences reported in Sect. 6.1.2; these would be

appropriate in paired randomized experiments. When G ¼ 1, there is only one

p-value and only one point estimate bt. If the analysis had failed to control an

unobserved covariate u associated with a 50% increase in the odds of a career as a

painter, G ¼ 1:5, and perhaps a very strong association with micronuclei, then

the interval of possible significance levels is 0:00017; 0:023½ � and the interval of

possible point estimates is 0:33; 0:99½ �. If u were associated with a doubling of the

odds of a career as a painter, G ¼ 2, then the null hypothesis of no treatment effect
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would be just barely plausible, as the largest possible significance level is 0.064,

which exceeds the conventional 0.05 level.

Observational studies vary markedly in their sensitivity to unobserved biases.

Hammond’s (1964) study of heavy smoking as a possible cause of lung cancer

becomes sensitive at about G ¼ 6, while Jick et al.’s (1973) study of coffee as a

cause of myocardial infarction becomes sensitive at about G ¼ 1:3. Pinto et al.’s

(2000) study of painters falls in between: The bias that would explain Table 6.1 is

smaller than that for smoking and lung cancer but larger than that for coffee and

myocardial infarction.

Are there features of the design on an observational study that would make it less

sensitive to biases from unobserved covariates? The remainder of this paper will

investigate this question.

6.2.5 Power of a Sensitivity Analysis; Design Sensitivity

Fix a, 0< a< 1, where conventionally a ¼ 0:05. For each G � 1, there is a critical

value, cG, such that t Z;Rð Þ � cG if and only if the maximum significance level is

less than a for this G and for all u 2 U. From (6.5), cG is the smallest number such

that Pr TG � cG

� �
� a, and from (6.6), for large I this is approximately

cG � y
X

qi þ F�1 1� að Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y 1� yð Þ

X
q2i

q

with y ¼ G= 1þ Gð Þ, which for Wilcoxon’s signed rank statistic without ties is

cG � yI I þ 1ð Þ
2

þ F�1 1� að Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y 1� yð ÞI I þ 1ð Þ 2I þ 1ð Þ=6

p
: (6.7)

For fixed G � 1, at level a, the conditional power given F of the sensitivity

analysis is the chance that the upper bound on the significance level is less than or

equal to a, that is, Pr t Z;Rð Þ � cG jFf g. To compute this conditional power given

F, one would need to know F, so for most purposes it is more practical to consider

Table 6.1 Sensitivity analysis for the 22 matched pair differences, painter-minus-control, in

micronulcei using Wilcoxon’s signed rank statistic and the associated Hodges–Lehmann (HL)

point estimate

G Minimum p-value Maximum p-value Minimum bt Maximum bt
1 0.0032 0.0032 0.64 0.64

1.5 0.00017 0.023 0.47 0.81

2 0.0000096 0.064 0.33 0.99

Note. For three values of G, the table gives the range of possible one-sided p-values for testing the
null hypothesis of no treatment effect, and the range of possible point estimates of an additive

effect t. The null hypothesis of no treatment effect is barely plausible for G ¼ 2 as the maximum

p-value is 0.064, although the minimum point estimate, 0.33, is still positive
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the unconditional power, Pr t Z;Rð Þ � cGf g ¼ E Pr t Z;Rð Þ � cG jFf g½ � where the

expectation is with respect to a model that generates F. When G ¼ 1, this

reproduces the usual definition of the power of a randomization test in a randomized

experiment when applied to matched pair differences sampled from a specific

distribution, such as the normal.

Suppose the treatment is effective, increasing the responses of treated subjects,

rTij > rCij, so that the null hypothesis of no effect, H0, is false, and suppose the

matching has been successful in removing bias, so there is no bias from an

unobserved covariate u. Call this the favorable situation. If the favorable situation
did occur, one would not know that it had occurred from the observable data. One

would see that treated subjects had typically higher responses than matched

controls, so the matched pair differences were typically positive, as in the boxplot

in Fig. 6.1, but one would not know that this pattern was produced by a treatment

effect without bias, as opposed to being produced by bias alone or a combination of

effect and bias. The best one could hope to say is that the observed results were

insensitive to moderately large unobserved biases. The power of the sensitivity

analysis, computed in the favorable situation, is the chance that this will happen.

Consider the following simple case of the favorable situation: There is no bias

from u, so in fact G ¼ 1, and the treatment has an additive effect, rTij � rCij ¼ t> 0,

so the treated-minus-control matched pair differences are Yi ¼ tþ Zi1 � Zi2ð Þ�
rCi1 � rCi2ð Þ ¼ tþ Zi1 � Zi2ð Þei where ei ¼ rCi1 � rCi2. In this case, given F, Yi is
t	 ei with equal probabilities. If the ei were a sample of size I drawn independently
from a continuous distribution F �ð Þ, then the unconditional power Pr t Z;Rð Þ �f
cGg ¼ E Pr t Z;Rð Þ � cG jFf g½ � could be computed in a conventional manner using

the unconventional critical value cG. For instance, Lehmann (1998, Sect. 6.4.2)

shows that the nonnull expectation myand variance s
2
y of theWilcoxon’s signed rank

statistic t Z;Rð Þ are my ¼ I I � 1ð Þp0
1=2þ Ip and

s2y ¼ I I � 1ð Þ I � 2ð Þ p
0
2 � p

0
1

2
� �

þ I I � 1ð Þ
2

2 p� p
0
1

� �2
þ 3p

0
1 1� p

0
1

� �
 �

þ Ip 1� pð Þ; (6.8)

where p ¼ Pr Yi > 0ð Þ, p0
1 ¼ Pr Yi þ Yj > 0

� �
and, using the logical symbol ^ for

“and,” p
0
2 ¼ Pr Yi þ Yj > 0 ^ Yi þ Yk > 0

� �
with i < j < k, so that the central limit

theorem yields the approximate power of a one-sided sensitivity analysis as

Pr t Z;Yð Þ � cGf g � 1� F cG � my
� �

=sy
� �

.

In the favorable situation, under verymild conditions, there is a value, eG, called the
design sensitivity, such that, as the sample size increases, the power of the sensitivity

analysis tends to 1 for all G< eG and to 0 for all G> eG; see Rosenbaum (2004). This

says that, in sufficiently large samples, a particular design – for example, a particular

data generating process and protocol for analysis – can distinguish a treatment effect

from all biases G< eG, but not from biases G> eG. In the case of Wilcoxon’s signed

rank statistic, as I ! 1, a little algebra applied to (6.7) and (6.8) shows
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eG ¼ p
0
1= 1� p

0
1

� �
; essentially, this algebra eliminates terms of order smaller than I2 in

my and sy as irrelevant to the limit. More generally, the design sensitivity eG is the limit

as I ! 1 of the solutions G to the equation

E TG

� �
¼ E t Z;Yð Þf g (6.9)

where the expectations are computed in the favorable situation. For Wilcoxon’s

signed rank statistic, with Yi sampled independently from a distribution F �ð Þ, (6.9)
becomes

G
1þ Gð Þ

I I þ 1ð Þ
2

¼ I I � 1ð Þp0
1

2
þ Ip

which again yields the limiting solution eG ¼ p
0
1= 1� p

0
1

� �
as I ! 1.

What features of the design of an observational study affect its design sensitivity
eG? The remainder of this paper will examine several such features.

6.3 Unit Heterogeneity

6.3.1 An Old Controversy: John Stuart Mill and R. A. Fisher

In 1864, John Stuart Mill, in his System of Logic: Principles of Evidence and
Methods of Scientific Investigation (1867), proposed four methods of experimental

inquiry, including the method of difference: “If an instance in which the phenome-

non . . . occurs and an instance in which it does not . . . have every circumstance save

one in common . . . [then] the circumstance [in] which alone the two instances differ

is the . . . cause or a necessary part of the cause” (III, Sect. 8).

Mill is saying that to establish cause and effect, one should drive out every

source of variation except the cause under study. The use of nearly identical,

genetically engineered mice in the biology laboratory is a modern expression

of the method of difference; see Holland (1986) for discussion of Mill’s method

of difference. In stark contrast, in 1935, Sir Ronald Fisher, in his Design of
Experiments, objected to Mill’s method of difference. In discussing his famous

experiment of “the lady tasting tea,” Fisher (1935, p. 18) wrote:

It is not sufficient remedy to insist that “all the cups must be exactly alike” in every respect

except that to be tested. For this is a totally impossible requirement in our example, and

equally in all other forms of experimentation . . . These are only examples of the differences

probably present; it would be impossible to present an exhaustive list of such possible

differences . . . because [they] . . . are always strictly innumerable. When any such cause is

named, it is usually perceived that, by increased labor and expense, it could be largely
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eliminated. Too frequently it is assumed that such refinements constitute improvements to

the experiment . . .

Fisher is certainly correct that randomization permits causal inference with

heterogeneous experimental units or subjects, but that does not settle the matter

for observational studies when random assignment is infeasible. Is reducing unit

heterogeneity relevant to causal claims?

Suppose that, in the design of an observational study, one could choose between

a study with fewer subjects who were less heterogeneous or more subjects who are

more heterogeneous. Here, heterogeneity refers to the variability of the treated-

minus-control differences Yi in outcomes in matched pairs. For illustration, imagine

that the expected or typical size of the treatment effect is the same in both cases;

only the sample size and the dispersion of the Yis are different in the two studies.

Mill’s method of difference suggests the smaller, less heterogeneous study would

be better. Much of the intuition developed from randomized experiments suggests

that sample size and unit heterogeneity trade off against one another in the standard

error of the estimated treatment effect, and that neither sample size nor dispersion

of matched pair differences has much to do with bias from unmeasured covariates.

Which view is correct when randomization is infeasible?

A common illustration of this choice is the use of identical twins (e.g.,

Ashenfelter & Rouse, 1998; Isacsson, 2007): Twins pairs are less heterogeneous,

but few in number. In particular, Ashenfelter and Rouse compared the earnings of

identical twins with different levels of education. Another illustration is from a study

by Norvell and Cummings (2002) of the effects of helmets in motorcycle crashes,

focusing on crashes in which two people rode one motorcycle, and one wore a

helmet. Again, few such crashes have happened, but the two paired individuals were

on the same motorcycle in the same crash. See Rosenbaum (2005) for additional

illustrations, including the very clever study by Wright and Robertson (1976).

6.3.2 Heterogeneity and Power of a Sensitivity Analysis

As motivation, consider two simulated observational studies, both with constant

treatment effect t ¼ 1
2
and, unknown to us, with no unobserved bias. In the larger

and more heterogeneous study (LM), there are I ¼ 400 pairs and Yi 
 iidN
1
2
; 1

� �
,

while in the smaller and less heterogeneous study (SL), there are I ¼ 100 pairs and

Yi 
 iidN
1
2
; 1

2

� �2n o
. The mean of the I differences is N 1

2
; 1
400

� �
in both studies. If LM

and SLwere analyzed as if theywere randomized experiments, then very similar 95%

confidence intervals for t are obtained from Wilcoxon’s signed rank test, specifi-

cally 0:40; 0:60½ � for LM and 0:43; 0:62½ � for SL, and also very similar HL point

estimates bt of 0.50 for LM and 0.52 for SL. However, if LM and SL were observa-

tional studies, then SL would be much less sensitive to unobserved bias than LM.

Specifically, the upper bound on the one-sided significance level in (6.5) is above

0.05 for G � 2:5 for LM, but the upper bound is less than 0.05 for G � 6 for SL.
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For G ¼ 2, the range of HL point estimates btmin; btmax½ � is 0:19; 0:81½ � for LM and

0:37; 0:67½ � for SL. The SL study is less sensitive to unobserved bias than

Hammond’s (1964) study of smoking and lung cancer, but LM is much more

sensitive. Is this an oddity of two simulated samples, or is it true in general? To

answer this question, attention must turn away from data sets, say the simulated LM

and SL, and toward the data generating processes (or designs) that produce the data.

Table 6.2 presents the power of the sensitivity analysis using Wilcoxon’s signed

rank test in the favorable situation in which treatments are actually randomized and

the matched pair differences Yi are independent and identically distributed so that

Yi � tð Þ=s has a normal, logistic, or Cauchy distribution. For each distribution, two

situations are considered – one with a smaller s and a smaller I, the other with a

larger s and a larger I – so that the “standard error” s=
ffiffi
I

p
is the same. (Here, standard

error is in quotes, because for theCauchy distribution, there is a change in scale but there

is no “standard error.”) In a randomization test,G ¼ 1, the power is about the samewith

small s; Ið Þ and with large s; Ið Þ. In the sensitivity analysis, with G> 1, the power is

much higher with small s; Ið Þ. In this sense, Mill (1867) was correct: In the absence of

randomization, causal inferences are less sensitive to unobserved biases when the unit

heterogeneity is reduced, even at the expense of reduced sample size.

As I ! 1, the power of the sensitivity analysis tends to 1 for G< eG and to 0 for

G> eG where eG is the design sensitivity. Recall from Sect. 6.2.5 that the design

sensitivity for Wilcoxon’s signed rank statistic in the favorable situation is

eG ¼ p
0
1= 1� p

0
1

� �
, where p

0
1 ¼ Pr Yi þ Yj > 0

� �
when the Yi are an independent

and identically distributed (iid) sample. If Yi
iid N t; s2ð Þ, then p
0
1 ¼ F

ffiffiffi
2

p
t=s

� �
,

so with a treatment effect of fixed size, t, reducing heterogeneity, s, increases the
design sensitivity, eG. Table 6.3 calculates eG for several t and s. When it is feasible

to reduce heterogeneity s without altering the treatment effect t, Mill’s method of

difference has the potential to greatly strengthen causal inferences.

Table 6.2 Power of the sensitivity analysis under various assumptions

Errors

I Matched

Pairs t s
s2
I

Power

G ¼ 1

Power

G ¼ 1:5
Power

G ¼ 2

Normal 120 1
2

1 1=120 1.00 0.96 0.60

Normal 30 1
2

1
2

1=120 1.00 1.00 0.96

Logistic 120 1
2

1 1=120 0.93 0.31 0.04

Logistic 30 1
2

1
2

1=120 0.93 0.61 0.32

Cauchy 200 1
2

1 1=200 0.98 0.32 0.02

Cauchy 50 1
2

1
2

1=200 0.95 0.60 0.28

Table 6.3 Design sensitivity
eGWilcoxon’s signed rank test

when Yi
iidNðt; s2Þ

s ¼ 1 s ¼ 1
2

s ¼ 1
4

t ¼ 0 1.00 1.00 1.00

t ¼ 1=4 1.76 3.17 11.71

t ¼ 1=2 3.17 11.71 426.56
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6.3.3 Heterogeneity and the Limiting Uncertainty
in Point Estimates

For the example in Fig. 6.1, for several values of G, Table 6.1 reported the interval

btmin; btmax½ � of possible HL point estimates of a constant treatment effect t. For fixed
G, as I ! 1, the interval of estimates btmin; btmax½ � converges in probability to a real

interval tmin; tmax½ �. The following proposition, which is proved in Rosenbaum

(2005), says that the length of tmin; tmax½ � is strongly affected by the heterogeneity

of the experimental units. Let F �ð Þ and C �ð Þ be, respectively, the standard normal

and standard Cauchy cumulative distributions. Proposition 6.1 indicates what a

sensitivity analysis yields, as I ! 1 in the favorable situation when, unknown to

us, there actually is no unobserved bias.

Proposition 1. If Yi � tð Þ=s
iid F �ð Þ then tmin; tmax½ � is t	 sF�1 yð Þ= ffiffiffi
2

p
, where

y ¼ G= 1þ Gð Þ. If Yi � tð Þ=s
iidC �ð Þ then tmin; tmax½ � is t	 sC�1 yð Þ.
Proposition 1 confirms Mill’s (1867) method. Proposition 1 describes the situa-

tion in which we would like to report as little sensitivity to bias as possible, because

in fact the treatment worked with true effect t and, unknown to us, there was no

unobserved bias. In this situation, even after sampling variability has been driven out

by letting I ! 1, the uncertainty about unobserved bias, as reflected in tmin; tmax½ �,
is directly proportion to s, the heterogeneity in the matched pair differences.

In light of this, Mill’s fanatical effort to reduce s is, indeed, directly relevant to

the evidence about causality, and does not merely reduce the standard error.

6.4 Dose and Response

6.4.1 Does a Dose–Response Relationship Strengthen
Causal Inference?

Much has been written about dose–response relationships as evidence of cause and

effect. Hill (1965) wrote:

. . . if the association is one which can reveal a biological gradient, or dose–response curve,
then we should look most carefully for such evidence. For instance, the fact that the death

rate from cancer of the lung rises linearly with the number of cigarettes smoked daily, adds

a very great deal to the simpler evidence that cigarette smokers have a higher death rate

than non-smokers. (p. 298)

Not everyone agrees. Rothman (1986) wrote:

Some causal associations, however, show no apparent trend of effect with dose; an example

is the association between DES and adenocarcinoma of the vagina . . . Associations that do
show a dose–response trend are not necessarily causal; confounding can result in such a

trend between a noncausal risk factor and disease if the confounding factor itself

demonstrates a biologic gradient in its relation with disease. (p. 18)
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Before offering a positive reinterpretation of Hill’s (1965) argument, Weiss

(1981) makes a similar observation: “ . . . one or more confounding factors can be

related closely enough to both exposure and disease to give rise to [a dose response

relationship] in the absence of cause and effect” (p. 488).

An additional complication arises when observational studies are compared to

experiments. Cochran (1965) had argued that observational studies should be

patterned after simple experiments. In clinical trials, it is typically said (Peto

et al., 1976, p. 590) that, within practical and ethical constraints, one should

compare just two treatments that are as different as possible. How does this advice

square with Hill’s idea that a graduated dose–response relationship strengthens

causal claims?

6.4.2 Example: Sensitivity Analysis with and Without Doses

The signed rank statistic with doses is t Z;Rð Þ ¼P I
i¼1 sgn Yið Þ qi with qi equal to

the product of the dose di and the rank of Yij j; see van Eeden (1972) and Rosenbaum
(1997, 2003a). For the example in Sect. 6.1.2 and Fig. 6.1, using log2 yearsð Þ as the
dose of exposure to professional painting, Table 6.4 contrasts the sensitivity

analysis using Wilcoxon’s signed rank statistic ignoring doses in Sect. 6.2.4 to

the analogous sensitivity analysis using the signed rank statistic with doses. The

statistic without doses is about as sensitive to a bias of G ¼ 2 as the statistic with

doses is to a bias of G ¼ 2:5, because the upper bound on the one-sided significance
level is about 0.065 in both instances. In this one example, to a very moderate

degree, the presence of a dose–response relationship reduced sensitivity to unob-

served biases.

Table 6.4 Sensitivity analysis with or without doses for the 22 matched pair differences, painter-

minus-control, in micronulcei using Wilcoxon’s signed rank statistic or the signed rank statistic

with doses

G Ignoring doses Using doses

1 Max 0.0032 Max 0.0025

Min 0.0032 Min 0.0025

2 Max 0.064 Max 0.038

Min 0.0000096 Min 0.000014

2.2 Max 0.085 Max 0.049

Min 0.0000031 Min 0.00000052

2.5 Max 0.12 Max 0.067

Min 0.000000056 Min 0.0000016

Note. For four values of G, the table gives the range of possible one-sided p-values for testing the

null hypothesis of no treatment effect, ignoring or using the log2 of years of work as a painter as

the dose. Without doses, the null hypothesis is barely plausible at G ¼ 2 as the maximum p-value
is 0.064. With doses, the null hypothesis is not quite plausible at G ¼ 2:2 as the maximum p-value is
0.049. In this one case, a dose–response relationship has made the comparison slightly less sensitive

to unobserved biases
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6.4.3 Derivation of the Design Sensitivity with Doses of Treatment

The current section obtains a formula for the design sensitivity for the signed rank

statistic with doses. The result is new, but is analogous to a result in Rosenbaum

(2004) for a different statistic. In Sect. 6.4.4, the formula is used to evaluate the

contribution of a dose–response relationship to evidence of cause and effect.

The signed rank statistic with doses is t Z;Rð Þ ¼P I
i¼1 sgn Yið Þ qi with qi equal to

the product of the dose di and the rank of Yij j. Write

Wik ¼ 1 if Yij j � Ykj j and Yi > 0

¼ 0 otherwise:

Then the signed rank statistic with doses may be written as

t Z;Rð Þ ¼
XI

i¼1

sgn Yið Þ qi ¼
XI

i¼1

XI

k¼1

diWik (6.10)

because
PI

k¼1 diWik ¼ 0 if sgn Yið Þ ¼ 0 and
PI

k¼1 diWik ¼ dirank Yij jð Þ if sgn�
Yið Þ ¼ 1. The representation (6.10) is closely related to the representation of

Wilcoxon’s signed rank statistic as the number of positive Walsh averages, namely

Yi þ Ykð Þ=2. Also, write Vik ¼ 1 if Yij j � Ykj j and Vik ¼ 0 otherwise, so that for the

signed rank statistic with doses, qi ¼
PI

k¼1 diVik.

Proposition 2. Suppose that (i) doses di in the I pairs are independently sampled
from a discrete distribution with L � 1 possible doses, d1; . . . ; dL with
Pr di ¼ d‘ð Þ ¼ �‘, ‘ ¼ 1; . . . ; L; (ii) treatments are randomly assigned within pairs,

Pr Z ¼ z jFð Þ ¼ 2�I for each z 2 Z--, (iii) treated-minus-control differences in
responses Yi are Yi ¼ bdi þ Zi1 � Zi2ð Þei where ei are independent of treatment Zij
and doses di and independently sampled from a distribution F �ð Þ. Then as I ! 1,
the limiting sensitivity to unobserved bias using the signed rank statistic with doses is

eG ¼ U2

L2 � U2

(6.11)

where U2 ¼ E diWikð Þ and L2 ¼ E diVikð Þ with i 6¼ k.

Remark 1. Explicit forms for U2 and L2 are

U2 ¼
XL

‘¼1

XL

m¼1

�‘�md‘ Pr bd‘ þ ej j � bdm þ e0j jð Þ ^ bd‘ þ e> 0ð Þf g;

L2 ¼
XL

‘¼1

XL

m¼1

�‘�md‘ Pr bd‘ þ ej j � bdm þ e0j jð Þ;

where e and e0 are two independent observations fromF �ð Þ. From these expressions, it

is clear that L2 � U2 with equality if and only if 1 ¼ Pr Yi > 0ð Þ ¼ Pr bdi þ e> 0ð Þ.

6 What Aspects of the Design of an Observational Study Affect Its Sensitivity. . . 101



In some instances, U2 and L2 may be determined explicitly, and it is always

straightforward to evaluate these expressions by Monte Carlo. For instance, if b ¼ 1
2

and F �ð Þ is the Cauchy distribution, if the doses are 1, 2, or 3 with equal probabilities,
L ¼ 3, d‘ ¼ ‘, �‘ ¼ 1

3
, for ‘ ¼ 1, 2, 3, then U2 ¼ :803, L2 ¼ 1:040, and

eG ¼ 3:4 ¼ 0:80= 1:04� 0:80ð Þ. These values were obtained by sampling one million

di; dk; ei; ekð Þ and taking U2 as the mean of di w bdi þ eij j � bdk þ ekj jð Þf
^ bdi þ e> 0ð Þg and L2 as the mean of di w bdi þ eij j � bdk þ ekj jð Þ where wðEÞ ¼
1 if event E occurs and wðEÞ ¼ 0 otherwise. Condition (iii) is actually used only to

obtain these explicit forms and numerical values for U2 ¼ E diWikð Þ and

L2 ¼ E diVikð Þ; however, condition (iii) could be replaced by other models for

Pr Yijdið Þ, yielding different forms for U2 ¼ E diWikð Þ and L2 ¼ E diVikð Þ, but the
same (6.11) for the design sensitivity eG in terms of U2 and L2.

Remark 2. In particular, if the I paired control responses, rCi1; rCi2ð Þ, were iid from

some bivariate distribution independent of di, condition (iii) would arise if the

treatment effect were proportional to the dose, rTij � rCij ¼ bdi, because in this case,

Yi ¼ Zi1 � Zi2ð Þ Ri1 � Ri2ð Þ ¼ bdi þ Zi1 � Zi2ð Þ rCi1 � rCi2ð Þ ¼ bdi þ Zi1 � Zi2ð Þei ;

where ei ¼ rCi1 � rCi2ð Þ.
Proof. Assume (i) and (ii) and let U2 ¼ E diWikð Þ, L2 ¼ E diVikð Þ with i 6¼ k. Also,
define U1 ¼ E diWiið Þ ¼ E diw Yi > 0ð Þf g, L1 ¼ E diViið Þ ¼ E dið Þ. From (6.10), the

expectation of the signed rank statistic with doses is

E t Z;Rð Þf g ¼ E
XI

i¼1

XI

k¼1

diWik

 !
¼
XI

i¼1

E diWiið Þ þ
XI

i¼1

X

k 6¼i

E diWikð Þ

¼ IU1 þ I I � 1ð ÞU2:

Because qi ¼
PI

k¼1 diVik,

E TG

���F
� �

¼ y
XI

i¼1

qi ¼ y
XI

i¼1

XI

k¼1

diVik;

where y ¼ G= 1þ Gð Þ, so that

E TG

� �
¼ E E TG

���F
� �n o

¼ y
XI

i¼1

XI

k¼1

E diVikð Þ

¼ y IL1 þ I I � 1ð ÞL2f g:

The design sensitivity, eG, is the limit, as I ! 1, of the solutions to

E t Z;Rð Þf g ¼ E TG

� �
, which is easily seen to be (6.11).
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6.4.4 Evaluation of Design Sensitivity with Doses of Treatment

Table 6.5 evaluates the design sensitivity eG for the signed rank statistic with doses

in the case of L equally probable integer valued doses, ‘ ¼ 1; . . . ; L. (In the notation
of Sect. 6.4.3, d‘ ¼ ‘, �‘ ¼ 1

L, for ‘ ¼ 1; . . . ; L.) Table 6.5 describes the favorable

situation: Specifically, Yi ¼ bdi þ Zi1 � Zi2ð Þei where the ei have either a normal or

a logistic distribution and treatment assignment Zij is randomized. In this case, the

marginal distribution of treated-minus-control difference Yi is symmetric about

b Lþ 1ð Þ=2, and this quantity is more relevant than b itself when comparing

different numbers of doses, L. In the first three rows of Table 6.5, the typical

value of Yi is
1
2
¼ b Lþ 1ð Þ=2, but there are L ¼ 1 or 3 or 5 doses. Table 6.5

addresses two questions raised in Sect. 6.4.1. Does a dose response relationship

reduce sensitivity to unobserved biases when the typical effect remains unchanged?

Would it be better to use just the largest doses, so the typical effect is larger, with no

dose–response relationship?

In Table 6.5, holding b Lþ 1ð Þ=2 fixed while varying the number of doses

provides some support for Hill’s (1965) claim: There is somewhat less sensitivity

to unobserved biases with additional dose levels. However, if b ¼ 1
4
and L ¼ 3, as in

row 2 of Table 6.5, the typical Yi for individuals with dose di ¼ 3 is bdi ¼ 3=4,
rather than 1=2. Would it be better to use only the subset of pairs with the extreme

dose? In this situation with b ¼ 1
4
and L ¼ 3, one could just use those pairs iwith the

largest dose di ¼ 3, in which case there is just one dose level, and this is equivalent

to row 5 of Table 6.5 with b ¼ 3=4 and L ¼ 1. Notice that the design sensitivity eG is

much higher for b ¼ 3=4 and L ¼ 1 in row 5 than for other rows of the table. The

latter observation is consistent with the suggestion of Cochran (1965) and Peto et al.

(1976, p. 590), mentioned in Sect. 6.4.1, that an observational study should resem-

ble a simple experiment in which the treatment and control conditions are as

different as possible. Even b Lþ 1ð Þ=2 ¼ 0:6 with one dose level in row 4 of

Table 6.5 is competitive with L ¼ 5 dose levels and b Lþ 1ð Þ=2 ¼ 0:5.
Three points should be kept in mind when thinking about Table 6.5. First, the

design sensitivities eG in Table 6.5 refer to the limiting case, as I ! 1, so the loss of

Table 6.5 Design sensitivity for L equally probable doses, 1, 2, . . ., L, with
slope b with normal or logistic errors

L b b Lþ1ð Þ
2 Normal Logistic

1 0:50 ¼ 1=2 0.5 3.18 1.95

3 0:25 ¼ 1=4 0.5 3.77 2.17

5 0:17 ¼ 1=6 0.5 3.99 2.25

1 0:60 ¼ 3=5 0.6 4.05 2.24

1 0:75 ¼ 3=4 0.75 5.91 2.74

Note. Here, bðLþ 1Þ=2 is the median treatment effect. With the same median

effect, bðLþ 1Þ=2, a larger number of dose levels, L is slightly better,

yielding a higher design sensitivity. However, one dose, L ¼ 1 but with

a larger median effect is often better. For instance b ¼ 0:25 with L ¼ 3

is inferior to b ¼ :75 with L ¼ 1; however, the latter is equivalent to

insisting on the maximum dose of 3 in former situation
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sample size due to focusing on extreme doses is not considered. For instance, if

the investigator used only the largest doses when there are L ¼ 3 equally probable

doses, moving from row 2 of Table 6.5 to row 5, the investigator would have

discarded two-thirds of the sample, and in practice this must be weighed against

the improved design sensitivity. Power calculations, analogous to those in Table 6.2,

can clarify the trade-off between sample size and design sensitivity. Second, the

ordering of studies by design sensitivity agrees with the ordering by the power of a

sensitivity analysis for sufficiently large I, so in sufficiently large studies, it is correct
to discard pairs with small doses. If one followed the advice of Peto et al. (1976,

p. 590) in designing a clinical trial, pairswith small doseswould not have been collected

in the first place. Third, the calculations in Table 6.5 are based on certain simple

models, and other models are possible. For instance, in Sect. 6.1.2, if one believed that

a man who worked as a professional painter for 2 years was very similar to a clerk in

terms of u, but a man who worked as a professional painter for 10 years was very

different from a clerk in terms of u, then low dose pairs would be less biased than high

dose pairs, and this would provide additional information about u not used by (6.3).

For the example in Sect. 6.1.2, Fig. 6.2 divides the 22 pairs at the median years of

work as a painter, namely 4 years, yielding ten pairs with less than 4 years of work
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Fig. 6.2 Boxplots and point plots of the 22 matched pair differences, painter-minus-control, in

micronuclei, split into pairs in which the painter had less than 4 year’s work as a painter (ten pairs)

or 4 or more year’s work as a painter (12 pairs)
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as a painter and 12 pairs with 4 or more years of work as a painter. Performing the

sensitivity analysis in Sect. 6.2.4 using just the 12 high dose pairs, yields the last

column of Table 6.6. In Table 6.6, the analysis that focuses on the 12 high dose pairs

is the analysis that is least sensitive to unobserved biases, becoming sensitive at

about G ¼ 3:3. Obviously, Table 6.6 concerns just one small example, but the

pattern is consistent with the theoretical calculations in Table 6.5.

6.5 Coherence Among Several Outcomes

The association between a treatment and several outcomes is coherent if it is

compatible with a mechanism through which the treatment is thought to produce

effects. Campbell (1988) wrote that “inferential strength is added when each

theoretical parameter is exemplified in two or more ways, each mode being as

independent as possible of the other, as far as the theoretically irrelevant

components are concerned” (p. 33). See also Reynolds and West (1987) and

Trochim (1985).

For instance, in Sect. 6.1.2, in Pinto et al.’s (2000) study of genetic damage

among professional painters, three standard measures of genetic damage were used,

namely micronuclei frequency (MN), average chromosomal aberrations per cell

(CA), and the sister chromatid exchanges (SCE). These three measures are very

different measures of genetic damage. If all three measures were elevated among

painters, the association might be judged as stronger, more coherent than if one was

elevated among painters, another was elevated among controls, and the third

exhibited no difference. The three measures and the relationships are depicted in

Fig. 6.3 as 22 painter-minus-control matched pair differences. All three measures

are elevated in painters compared to matched controls. In Fig. 6.3, for the matched

pair differences, Kendall’s rank correlation between MN and CA is 0.55, between

CA and SCE is 0.14, and between SCE and MN is 0.13.

In its simplest form, the coherent signed rank statistic for three oriented

outcomes is simply the sum of the three separate signed rank statistics, and with

Table 6.6 Sensitivity analysis for micronuclei (mn) in painters and matched controls in three

analyses: (a) Using all 22 pairs but ignoring doses with Wilcoxon’s signed rank test, (b) Using all

22 pairs with the signed rank test with doses, and (c) Using the 12 high dose pairs with a painter

who has worked for 4 or more years

All pairs (n ¼ 22) All pairs (n ¼ 22) High dose pairs (n ¼ 12)

G Ignoring doses Using doses Ignoring doses

1 0.0032 0.0025 0.0012

2 0.064 0.038 0.016

2.5 0.12 0.067 0.028

3.3 0.22 0.12 0.048
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some attention to detail, the sensitivity analysis in Sect. 6.2.3 may be applied to this

statistic (Rosenbaum, 1997). Table 6.7 is the sensitivity analysis for the three

outcomes in Fig. 6.3. Comparing Tables 6.1 and 6.7, one sees that the coherent

association in Table 6.7 is substantially less sensitive to unobserved biases than the

association for micronuclei alone.

Various calculations of design sensitivity for coherence are given in Rosenbaum

(2004) and Heller et al. (2009). Consider, for instance, four outcomes, with multi-

variate normal matched pair differences, each having expectation or treatment

effect 1
2
, standard deviation 1, and the same intercorrelation r. If only the first

outcome is used in Wilcoxon’s signed rank test, the design sensitivity is eG ¼ 3:17.
If the signed rank test is applied to the average of the first two outcomes, the design

sensitivity is eG ¼ 5:30 for r ¼ 0 and eG ¼ 4:39 for r ¼ 1
4
. If the signed rank test is

applied to the average of all four outcomes, the design sensitivity is eG ¼ 11:71 for

r ¼ 0 and eG ¼ 6:02 for r ¼ 1
4
. Of course, for r ¼ 1, the design sensitivity is again

eG ¼ 3:17 for any subset of the four outcomes.
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Fig. 6.3 Plot of 22 matched pair differences, painter-minus-control, for three measures of genetic

damage: micronuclei frequency (MN), chromosomal aberrations (CA), and sister chromatid

exchanges (SCE)
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6.6 Uncommon but Dramatic Responses to Treatment

6.6.1 Large but Rare Treatment Effects

Salsburg (1986) considered the possibility that a treatment might have a dramatic

effect on some people and no effect at all on most people, where it is not possible

to identify in advance of treatment the subgroup of people who will be affected;

that is, rCij ¼ rTij for many ij, but rCij � rTij for some ij. Building upon earlier work
by Lehmann (1953), Salsburg’s unpaired model assumes rCij are sampled inde-

pendently from a continuous distribution F �ð Þ, while rTij are sampled from

1� pð ÞF �ð Þ þ pFm �ð Þ for 0 � p � 1 and for integer m � 2, so only a fraction p of

the population is affected by the treatment. Here Fm �ð Þ ¼ F �ð Þ � � � � � F �ð Þ is the
distribution of the maximum of m independent observations from F �ð Þ, so it is

stochastically larger than F �ð Þ. If m is large, there is one sense in which the

treatment effect is large and dramatic – perhaps insensitive to unobserved biases –

and there is another sense in which, if p is small, the same effect is, in aggregate,

quite small, because only a fraction of the population is affected. In the discussion

here, for matched pairs, Salsburg’s model is modified ever so slightly to permit

dependence within pairs: Salsburg’s paired model assumes rCij � xi
iidF �ð Þ and

rTij � xi 
 iid 1� pð ÞF �ð Þ þ pFm �ð Þ, so that the pair parameter xi creates dependence
within pair i, but xi is removed by taking matched pair differences.

Figure 6.4 depicts 1,000 matched pair differences from the Salsburg’s paired

model for several values of p and m. In the first boxplot, the treatment has no effect,

because p ¼ 1, so the differences have a normal distribution with expectation 0 and

variance 1þ 1 ¼ 2. In the second boxplot, p ¼ 1=4 of individuals respond to

treatment with a response that equals the maximum of m ¼ 5 responses to the

control. Looking just at the boxplots, it would not be easy to discern that only a

small fraction of the population is affected by the treatment.

Figure 6.5 depicts the corresponding density functions for the matched pair

differences, together with the density function of a normal distribution having the

same expectation and variance. The paired model and the normal differ discernibly

for p ¼ 1=4 and m ¼ 100 and quite noticeably for p ¼ 1=4 and m ¼ 500.

Table 6.7 Sensitivity analysis using the coherent signed rank statistic

G min p-value max p-value

1 0.000061 0.000061

2 1:8� 10�8 0.0041

3 6:1� 10�12 0.018

4 2:2� 10�15 0.039

4.5 <10�15 0.050

Note. The coherent signed rank statistic is the sum of the signed rank statistics

for micronuclei (MN), sister chromatid exchanges (SCE), and chromo-

somal aberrations (CA). For several values of G, the table gives the

maximum and minimum significance level
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6.6.2 Detecting Large but Rare Treatment Effects

Described informally, a locally most powerful rank test is one that has the highest

possible power against small effects in large samples. Lehmann (1953) had shown

that Wilcoxon’s ranks, 1, 2, . . ., I yield the locally most powerful rank test in the

unpaired model with m ¼ 2 as p ! 0 and I ! 1. Conover and Salsburg (1988)

derived the locally most powerful ranks for general m as p ! 0 and I ! 1; these

turn out to be a fairly unintuitive polynomial in the ordinary ranks whose highest

power is m� 1, in agreement with Lehmann’s result for m ¼ 2. Conover and

Salsburg’s ranks closely resemble an intuitive second set of ranks due to

Stephenson (1981), who was motivated by different considerations. Stephenson’s

ranks are also a polynomial in the ordinary ranks whose highest power ism� 1, and

the two types of ranks exhibit nearly identical properties for large I. Because
Stephenson’s ranks are interpretable, they can be inverted to obtain confidence

statements for the magnitude of effect. For detailed discussion of these issues, see

Rosenbaum (2007).
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Fig. 6.4 Samples of 1,000 matched pair differences under Salsburg’s paired model with rCij �
F xi ~ F(.) and rTij � xi ~ (1 � p)F(.) + pF m(.), so that only a fraction p of subjects are affected
by treatment receiving the maximum of m independent observations from F (.), where F (.) is the
standard Normal cumulative distribution. In the first boxplot, there is no treatment effect. It is

difficult to discern in the last three boxplots that most individuals are unaffected by treatment
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Ordinary ranks compare units two (m ¼ 2) at a time. Among I untied units, a unit
has rank k if it is the larger unit in k � 1 of the I � 1 possible comparisons with

another unit. Stephenson’s ranks compare units not two at a time but m at a time.

Consider all I
m

� �
comparisons of m units. Stephenson (1981) asked: In how many

subsets ofm units is unit i the largest? It is easy to check that among I untied units, a
unit with conventional rank k is largest in k�1

m�1

� �
subsets of size m, where a

b

� �
is

defined to equal zero for a< b, so Stephenson’s rank is k�1
m�1

� �
.

In Stephenson’s (1981) generalization, t Z;Rð Þ ¼PI
i¼1 sgn Yið Þ qi, of

Wilcoxon’s signed rank statistic, if the i pair has kth largest of the I untied absolute

differences, A ¼ Y1j j; . . . ; YIj jð ÞT , then it is assigned rank qi ¼ qi A; dð Þ ¼ k�1
m�1

� �
.

These ranks are relatively flat for small Yij j, but then rise steeply for large Yij j.
In Rosenbaum (2007), in data from two observational studies, an inference based

on Stephenson’s ranks was noticeably less sensitive to unobserved biases than an

inference based on Wilcoxon’s ranks. In those two examples, it seemed plausible

that some treated subjects were strongly affected by the treatment, while others

experienced little or no effect. How is the design sensitivity affected by uncommon

but dramatic treatment effects?
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Fig. 6.5 The probability density function of matched pair differences Salsburg’s paired model

when rCij � xi ~ F(.) and rTij � xi ~ (1 � p)F(.) + pFm(.) where F (.) is the standard normal

cumulative distribution. The second curve is a normal density with the same expectation and

variance as the paired model. The effect is clearly visible when p ¼ 1/4 of individuals are affected,

receiving the maximum of m ¼ 500 observations from F (.)
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6.6.3 Design Sensitivity for Large but Rare Effects

The design sensitivity will now be calculated under Salsburg’s paired model with

exponent m and mixing proportion p for the Wilcoxon and Stephenson tests with

subsets of size m. Notice that m and m may differ, because the investigator picks m
for use in the test not knowing m in the model.

Recall that design sensitivity is calculated in the favorable situation in which the

treatment has an effect and there is no bias from the unobserved covariate u, so that

Yi ¼ Zi1 rTi1 � rCi2ð Þ þ Zi2 rTi2 � rCi1ð Þwhere Zi2 ¼ 1� Zi1 and Pr Zi1 ¼ 1 jFð Þ ¼ 1
2
.

Calculating the design sensitivity requires solving (6.9). Using Stephenson’s

signed rank statistic, t Z;Rð Þ ¼PI
i¼1 sgn Yið Þ qi, the ranks qi are some permutation

of i�1
m�1

� �
with i�1

m�1

� � ¼ 0 for i<m, where obviously
PI

i¼1 qi ¼
PI

i¼m

i�1
m�1

� � ¼ I
m

� �
. From this it follows that E TG

� �
¼ G= 1þ Gð Þf gPI

i¼1 qi ¼
G I

m

� �
= 1þ Gð Þ. If the Yi were sampled independently from some distribution

H �ð Þ, define zm as the probability that, in a sample of m independent observations

from H �ð Þ, the observation with the largest absolute value has positive sign. For

m ¼ 2, in the notation for Wilcoxon’s statistic in Sect. 6.2.5, z2 ¼ p
0
1. In the

favorable situation, Stephenson’s test statistic is the number of subsets of m
observations in which the observation with the largest absolute value has positive

sign, so E t Z;Rð Þf g ¼ zm
I
m

� �
. Equation (6.9) is then

G
1þ G

I
m

� 
¼ zm

I
m

� 
; with solution eG ¼ zm

1� zm
; (6.12)

in agreement with the result for m ¼ 2 for Wilcoxon’s statistic, where

eG ¼ p
0
1= 1� p

0
1

� �
.

Under Salsburg’s paired model for rTij and rCij, the Yi are I independent

observations formed as the difference of independent observations from 1� pð ÞF�
�ð Þ þ pFm �ð Þ and F �ð Þ, because differencing removes the pair parameters xi. For
specified p, m, and F �ð Þ, the distribution of Y is straightforwardly, albeit perhaps

numerically, obtained as convolution of two specified distributions. Figure 6.5

depicted the corresponding density in the normal case, F �ð Þ ¼ F �ð Þ. Calculating
zm for this distribution and using (6.12) produces Table 6.8.

Table 6.8 Design sensitivity for Stephenson’s test with subsets of size m
applied to Salsburg’s paired model with rCij 
 Fð�Þ and rTij 
 ð1� pÞFð�Þ þ
pFmð�Þ where p ¼ :25 and Fð�Þ is the standard normal cumulative

distribution

Wilcoxon Stephenson Stephenson

(m ¼ 2) (m ¼ 5) (m ¼ 10)

m ¼ 5 1.6 1.8 2.0

m ¼ 10 1.8 2.2 2.5

m ¼ 100 2.2 3.6 5.5

m ¼ 500 2.4 4.7 8.9
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Table 6.8 gives the design sensitivity, eG, for the sampling distributions depicted

in Fig. 6.5. For m ¼ 100 or m ¼ 500, which differ visibly from the normal distri-

bution in Fig. 6.5, the use of Wilcoxon ranks yields a much lower value of the

design sensitivity, eG, than use of Stephenson’s ranks with m ¼ 5 or m ¼ 10.

In short, if the treatment has no effect on many treated subjects but a dramatic

effect on some subjects, then Wilcoxon’s test may judge the results sensitive to

smaller biases than will Stephenson’s test with m> 2. When a treatment strongly

affects a small fraction of treated subjects, it is important to use methods of analysis

that can discern this pattern.

6.7 Sample Splitting As an Aid to Design

Sections 6.3–6.6 have shown that decisions about the design of an observational

study strongly affect the study’s sensitivity to biases from covariates that were not

measured. Unfortunately, some of these decisions depend on issues that will be

difficult to evaluate in the absence of data. Can unit heterogeneity be reduced by

focusing on a subpopulation? Is the treatment effect much larger when the dose is

larger? Would it be advantageous to look for coherence among several outcomes,

and if so, which outcomes should be used? Does the treatment affect everyone

about equally, or are the effects of the treatment confined to a subpopulation that

cannot be identified in advance?

Heller et al. (2009) evaluated the splitting of a study into a small planning sample

and a large analysis sample. Decisions about design are guided by the planning

sample, which is then discarded, and a statistically independent analysis is based on

the analysis sample. Heller et al. found that when it is possible to materially reduce

sensitivity to unobserved biases through appropriate design decisions, it is often the

case that a small planning sample correctly guides those decisions. The intuitive

reason for this occurrence is that only dramatic issues can dramatically affect

sensitivity to bias, and issues of that sort are often apparent even in a very small

planning sample, perhaps 10% of the full sample. The technical reason is that the

design sensitivity is unaffected by discarding a small analysis sample: In large

samples, the power of the sensitivity analysis with G> 1 is determined by the design

sensitivity, eG, not by the sample size, so increasing eG is all important.

6.8 Summary

A research design is a decision to collect data in a particular way, which might be

formalized as a decision to draw data from one data generating process rather than

another. If several such processes were available, then which one is least sensitive

to the claim that its results are not indicative of a treatment effect, but instead reflect

a bias from failure to adjust for some unmeasured covariate? The design sensitivity
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eG, is a single number that attaches to a data generating process and method of

analysis, and it provides an answer when the sample size is large. Several design

choices have been shown to influence the design sensitivity.
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Chapter 7

The Origins of Procedures for Using

Differential Item Functioning Statistics

at Educational Testing Service

Michael J. Zieky

7.1 Introduction

The chapter deals with the procedures that ETS developed to use the differential

item functioning (DIF) statistic, not the statistic itself. To establish the context for

the origins of the use of DIF at ETS, I first explain the Golden Rule Insurance

Company settlement and its effects. Then I very briefly describe the precursors of

DIF in use at ETS from the late 1960s to the mid 1980s. As those who know ETS

might expect, decisions about the use of DIF were made by a committee. I describe

the members and responsibilities of that committee.

In the remainder of the chapter, I describe some of the most divisive decisions

that we made about how to use DIF at ETS. I do not discuss decisions about which

there was early and complete agreement, even though some of those decisions were

quite important, such as which groups to study. The focus is on the decisions that we

argued about for extended periods, beginning with what to call the statistic. Other

decisions I discuss in the chapter are which DIF statistics to use, whether to use

impact data, what the criteria for flagging items should be, what sample sizes would

require the calculation of DIF, the acceptability of balancing positive and negative

DIF in a test, and how to treat items that favor groups commonly thought of as

disadvantaged.
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7.2 Disclaimer

Because I was a participant in the events I describe in this chapter, I can make no

claims to being an objective historian. I tried to be neutral in describing

disagreements among committee members, even though I participated in those

disagreements.1

7.3 Golden Rule

It is impossible to understand the urgency that impelled the development of DIF

at ETS without knowledge of the events surrounding the lawsuit brought against

the Illinois Department of Insurance and ETS by the unfortunately named Golden

Rule Insurance Company.2 The lawsuit began in 1976 alleging, based on

differences in passing rates between African American and White test takers, that

the test constructed by ETS to license insurance agents in Illinois was racially

discriminatory.

Eight years later, in January of 1984, ETS and the Golden Rule Insurance

Company were still engaged in pretrial legal maneuvering. The pretrial work was

very expensive, and it consumed an inordinate amount of staff time that had to be

diverted from more substantive work. Based on his interest in fair assessment and in

an effort to stop a wasteful use of ETS resources, Gregory Anrig, then president of

ETS, arranged to meet with J. Patrick Rooney, president of the Golden Rule

Insurance Company. At the meeting, Anrig and Rooney agreed to instruct their

attorneys to reach a settlement.

The parties agreed to a voluntary, out-of-court settlement in November of 1984.

The most relevant aspects of the settlement for this chapter were that test items

had to be divided into two groups: (a) items in which correct answer rates (percent

correct) between Black andWhite test takers differed by nomore than 15 percentage

points, and (b) items in which correct answer rates between Black and White test

takers differed by more than 15 percentage points. Test specifications were to

be met, to the extent possible, by items in the first group. If two or more items

were available to meet a test specification, the item with the smallest Black–White

difference in percent correct must be used first. No item that was harder than 40%

correct for either group could be used in a test.

The so-called Golden Rule Settlement was based on raw differences in percent

correct on test items and paid no attention to the causes of those differences. Any

difference in percent correct was considered bias even if it were caused by real and

relevant differences between the groups in average knowledge of the tested subject.

1 If readers cannot tell which side I was on, I have done my reporting job well.
2 There is a built-in headwind when you try to argue against “the Golden Rule.”
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The Golden Rule procedure ignored even the possibility that the differences in

percent correct could be valid.

The items that correlated highest with the total test score, that were the best at

differentiating among test takers at different levels of knowledge and skill, and

that were considered the best items by testing professionals and subject-matter

experts were the items most likely to be eliminated by use of the Golden Rule

procedures. Furthermore, all difficult items – not needed in a minimal-competency

licensing test for insurance agents but crucial in tests designed for many other

purposes such as selective admissions – were excluded.

For those reasons, ETS never believed that the Golden Rule procedure was a

reasonable way to identify or to deal with test bias in general. However, ETS

researchers (including Holland) demonstrated that acceptable tests could still be

made using the Golden Rule procedures in the very limited context of a subset of

the licensing tests that measured the minimal competency required to become an

insurance agent in Illinois. Because the testing program could continue with

reasonable quality, because the terms of the settlement were favorable, and because

8 years had already been spent in costly and time-consuming pretrial work, ETS

agreed to the terms of the settlement.

ETS was (and, I believe, still is) far less skilled at politics than it is in psycho-

metrics. ETS completely overlooked the possibility that Rooney would try to

expand the Golden Rule settlement beyond its original, quite limited application.

Rooney, however, funded a group called FairTest that vigorously lobbied

legislators to mandate the Golden Rule procedure for all tests, regardless of their
purposes. The gist of FairTest’s argument was that ETS admitted that some of its

tests were biased solely on the basis of Black–White score differences. ETS agreed

to “de-bias” such tests using the Golden Rule procedure. According to FairTest,

ETS had to use the same procedures for all of its tests that show Black–White

differences in scores. FairTest alleged that if ETS failed to do so, it would be

making biased tests on purpose.

A procedure that caused little harm in a minimal-competency licensing test for

insurance agents would be devastating if applied to admissions tests for higher

education such as the SAT® or GRE®, or even to licensing tests in more cognitively

loaded areas such as teaching. Professional measurement organizations such as the

National Council for Measurement in Education opposed the Golden Rule proce-

dure. President Anrig acknowledged publicly that accepting the Golden Rule

settlement had been an “error in judgment.”

ETS, however, could not just renounce the Golden Rule procedure and do

nothing in its place. For people without knowledge of measurement (almost all

of the voting public and probably all legislators), the Golden Rule procedure had

great allure. If two items measured the same specification, why not use the item

with smaller Black–White differences? ETS needed an acceptable statistic to

replace the raw differences in percent correct used in the Golden Rule procedure.

If ETS had nothing to offer legislators in place of the Golden Rule procedure, test

quality might be severely compromised by legislation that prohibited the use of

difficult items and mandated the use of items with the smallest raw differences in
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percent correct between Black and White test takers, regardless of the causes of

those differences. The pressure to develop a psychometrically acceptable statistic

to help ensure that tests were fair was intense and growing stronger by the day.

7.4 Precursors to Differential Item Functioning

ETS had a long tradition of searching for an empirical measure of fairness

before DIF statistics were available. With the exception of item response theory

(Lord, 1980), the statistical methods used to evaluate items for fairness in the

1960s, 1970s, and early 1980s are no longer used for that purpose. Therefore,

I provide brief descriptions for readers who may not be familiar with the early

techniques.

ETS researchers used analysis of variance techniques to search for interactions

between performance on test items and group membership in the 1960s and 1970s

(Angoff & Ford, 1973; Cardall & Coffman, 1964). This effort was done on a

research basis, however, and was too cumbersome and difficult to interpret to be

applied operationally to all items.

ETS also used delta plots to find items that might be unfair (Angoff, 1982).

Delta is a measure of item difficulty in which percent correct for a question is

expressed as a normal deviate. In plots of the deltas of a set of items for two

groups, most items would fall very close to a straight line even if the items were

much harder for one group than for the other. Some items, however, fell off the

line because they had greater or lesser differences between groups than most items

in the test had. The delta plots were easy to produce and subject-matter specialists

found them easy to use. Falling off the line was not proof of bias, however. In fact,

the best items in terms of high item-test correlations tended to be furthest away

from the line formed by most items. Therefore, the delta plot technique was

eventually discarded.

ETS investigated a form of the chi square statistic as an indicator of item fairness

(Scheuneman, 1979). Methodological problems and arguments about whether the

procedure was a true chi square statistic caused the method to fall out of favor,

however.

At ETS, the way had been prepared for the use of a measure of DIF in the

early to mid 1980s by work stretching back to the 1960s. The goal was an

empirical means of distinguishing between real group differences in the knowl-

edge and skill measured by the test and unfair differences inadvertently caused by

biased aspects of items. Test developers wanted help in ensuring that items were

fair, but each method tried so far either had methodological difficulties or was too

unwieldy to use on an operational basis with a wide variety of tests and several

groups of test takers. The threat of legislation that would mandate use of the

Golden Rule procedure for all tests further motivated ETS staff members to adopt

a practical measure of DIF. Clearly, ETS was primed to accept and implement a

measure of DIF.
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7.5 The Committee

In 1983, ETS Executive Vice President Robert Solomon, following the

recommendation of Vice President of Research Samuel Messick, established

an ad hoc committee to improve test development and statistical analysis (hence-

forth, the committee). The members of the committee at that time were Solomon,

the directors of the three test development divisions at ETS (Al Carlson,

Ernie Kimmel, and Cheryl Wild),3 the directors of the three statistical analysis

divisions (Al Carlson,4 Gary Marco, and Nancy Petersen), the director of corpo-

rate development (Jerry Murphy), the director of systems (Barbara Foltin), and

three researchers (Paul Holland, Samuel Messick, and Warren Willingham).

Neil Dorans collaborated closely with the committee on DIF. I chaired the

committee.

Among the tasks that Solomon assigned to the committee were increasing the

professionalism of test developers and statisticians, improving training for test

developers and statisticians, updating the ETS procedures for equating, improving

item analysis and test analysis, writing guidelines for the development and use of

constructed response testing, incorporating the use of item response theory in test

development, and responding to proposed antitesting legislation.

The committee contained the lead test developers, statisticians, and systems

analyst, and several prominent researchers including Holland – the people neces-

sary to make decisions about the operational calculation and use of DIF. Therefore,

when measures of DIF were to be incorporated into operational test development,

Solomon gave the committee the tasks of (a) selecting the statistic, (b) developing

statistical analysis procedures for calculating the statistic, (c) devising procedures

for using the statistic in test development, and (d) disseminating the results of using

the statistic.

The use of DIF has become a common and expected part of test development

at ETS and at many other large-scale test publishers. It no longer generates

excitement and controversy. At its inception, however, the use of DIF raised

many difficult issues and engendered many intense arguments among the people

given the responsibility of turning a measure of DIF into an operational reality.

There are few left who recall the disagreements, debates, and disputes that preceded

many of the decisions.5 The remainder of the chapter will discuss some of the

more controversial issues in developing procedures for the use of DIF at ETS.

3 The three test development divisions and the three statistical analysis divisions included one

division for all tests owned by the College Board, one for occupational tests, and one for K–12

and higher education tests not associated with the College Board. ETS is no longer organized in

that way.
4 Carlson served a dual role.
5 Of the 12 people on the committee in 1983, all but one have died, retired, or left ETS.
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7.6 Nomenclature

We could not even agree on what to call the statistic. The phrase differential item
functioning and the acronym DIF have become so entrenched in the psychometric

literature, and have become so common in the jargon of testing professionals, that

it is difficult to conceive of a time when people argued about what name to use.

The preferred phrase and acronym as late as 1986 were differential item perfor-
mance and DIP. Some people (e.g., Dorans & Kulick, 1983, 1986) used the term

unexpected differential item performance or UDIP to highlight the focus on

differences in item performance that were greater than the differences that could

be expected based on construct-related knowledge.

DIP fell out of favor because some of the extended uses of the acronym seemed

too frivolous for the serious topic of item fairness. For example, “UDIP” spoken

aloud sounded like an insult. Items that showed elevated values of differential item

performance were referred to as “dippy.” A tentative title for a chapter on DIP

spoke of “doing the DIP” as a dance step. The executive vice president was not

pleased.

An interim usage in place of DIP was differential item difficulty. It was simple,

descriptive, and alliterative, but the acronym DID was difficult to use unambigu-

ously in speech. (“We did DID.”) Eventually Holland and Dorans proposed

differential item functioning because it placed the emphasis on how the item

functioned, rather than on how people performed. The focus on the item made

sense to the members of the committee. Furthermore, the acronym DIF was

distinctive, had the advantage of replicating the first syllable of differential, and
was easy to use unambiguously in speech and writing. That name and the

associated acronym were adopted by ETS and eventually by the entire testing

community.

7.7 Selecting a Differential Item Functioning Statistic

Ironically, after so many years when a major problem at ETS was finding a usable

DIF statistic, in the mid 1980s the committee was faced with the problem of

deciding which of two good measures of DIF to adopt. The two choices were the

standardization approach (Dorans & Kulick, 1983, 1986) that had become available

in 1983 and an adaptation of the Mantel-Haenszel statistic (Holland & Thayer,

1986) that became available in 1985.

The technical differences between the two approaches are explained well

in Dorans (1989) and will not be reiterated here. Few members of the committee

were able to evaluate the technical adequacy of the two measures. The knowl-

edgeable few assured the less technically sophisticated majority that the measures

had different strengths and weaknesses, but that both were perfectly acceptable.

The standardization measure was easier for test developers and subject matter
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specialists to understand. It was also more useful for test developers because it

could provide information on the relative attractiveness of the distracters in a

multiple-choice item for test takers in matched groups. The adaptation of the

Mantel-Haenszel statistic, however, had some better statistical properties.

Holland transformed the Mantel-Haenszel statistic, which was in the form of

an odds ratio, into a difference on the delta scale of item difficulty commonly used

at ETS. That transformation, called the Mantel-Haenszel Delta Difference (MH D

DIF) was much more meaningful to test developers than was the original odds

ratio, and it removed a major concern about the use of the Mantel-Haenszel

statistic by test developers.

After extended but largely fruitless discussions, the committee as a whole

failed to reach a decision about which measure of DIF to use. A more techni-

cally sophisticated subcommittee was formed (Holland, Marco, Petersen,

and Messick, joined by Dorans). The subcommittee recommended that both
DIF statistics be used operationally. Despite an early fear that test developers

would suffer from information overload, both statistics remain in operational

use to this day. The MH D DIF data are used to flag items that meet certain

criteria, and the standardization data are used to help test developers decide

what aspects of the items are possibly unfair, thus capitalizing on the strengths

of each statistic.

7.8 Use of Impact Data

One of the early arguments about using DIF was whether or not to include impact

data (raw differences in percent correct) in making decisions about items.

No member of the committee believed that impact should be the sole criterion

for identifying unfair items as in the Golden Rule procedure. The whole point of

using DIF statistics was that impact conflated real, construct-related group

differences with differences caused by potentially unfair aspects of items.

Some members of the committee, however, felt that among items with the same

level of DIF, it made sense to use the items with smaller impact. They proposed, for

example, dividing items into three levels of DIF and three levels of impact. The low

DIF items should be used before the medium DIF items, and the medium DIF items

should be used before the high DIF items. However, within each DIF group, the

low impact items should be used before the medium impact items, and the medium

impact items should be used before the high impact items. Thus, impact would

clearly be secondary to DIF as a criterion for item selection, but impact would be

allowed to influence item selection.

The committee, however, decided not to allow impact to have any influence on

item selection because impact was simply not an appropriate measure of fairness.
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7.9 Flagging Criteria

Now, many statisticians and test developers at ETS make daily use of the criteria by

which items become flagged by MH D DIF. They take the criteria as a given and do

not question their origins. Some researchers outside of ETS have adopted the ETS

criteria as though they carried some intrinsic meaning. In reality, the criteria were

admittedly arbitrary and were set by the committee following many arguments

about the best way to use the data. The criteria were finally based on the size of the

difference in Delta that test developers and statisticians judged to be meaningful

based on their experience in working with items.

The criteria were set on a tentative basis to be revised as experience with the

consequences of their use was gained over time. Almost a quarter of a century

later, however, the criteria are unchanged and still in operational use!6

The flagging criteria that were finally adopted were based solely on the magnitude

and significance of MH D DIF. (See Zieky, 1993, for a full description of the

flagging criteria.)

Several models were proposed for using DIF data. The strict cutscore model set

a single cutscore on MH D DIF. Below that point, items could be used freely and no

attention would be paid to the amount of DIF. Above that point, items could not be

used. The advantage would be quick and cheap decision making. Items would

automatically be placed in go or no-go categories. There are, however, major

disadvantages to the strict cutscore model. Any cutscore is arbitrary. Items adjacent

to the cutscore on either side are very similar but would be treated very differently

even if professional judgment found the item just above the cutscore to be superior

to the item just below the cutscore.

The flag and reviewmodel set a single cutscore on MH D DIF. Below that point,

items could be used freely and no attention would be paid to the amount of DIF.

Above that point, items would be reviewed. Items that passed the review would be

treated as though they belonged in the first category. The advantage of the flag and

review model over the strict cutscore model is that acceptable items above the

cutscore could be used after they passed review. As in the strict cutscore model,

however, any cutscore is arbitrary. The review process adds time and costs to test

development, and reviewers may not always make appropriate decisions about

which items are acceptable.

The graded model set multiple cutscores to put items in several categories such

as low, medium, and high DIF. Items in categories with the least DIF would be used

to meet specifications. Items in higher DIF categories would be used only when

necessary to meet specifications. The advantage is that the items in the lowest DIF

categories would be used to assemble tests to the extent possible given the pool of

6 Either the committee was remarkably prescient in selecting the optimal flagging criteria, or

corporate decisions that do not lead to visible disasters tend not to be revisited in the press of all of

the new decisions that must be made.
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available items. The disadvantage is that multiple arbitrary cutscores must be set.

Furthermore, the task of test developers becomes more complicated, particularly if

several group comparisons are made on the same set of items. (For example,

comparisons with White test takers could be made with African American, Asian

American, Hispanic American, and Native American test takers in addition to

comparisons between male and female test takers.)

In the biserial model, test developers would treat the DIF index as they treat the

biserial correlation of the item with the test. Rules of thumb rather than strict

cutscores are used. The rules may vary by subject matter and by test program.

The index is weighed along with other item qualities in selecting items. The biserial

model avoids arbitrary cutscores. It maximizes the role of professional judgment

and minimizes mechanical constraints. The advantages lead directly to the

disadvantages of increased time and expense in test assembly and increased time

in resolution of disputes among test assemblers and reviewers who made different

judgments about which items were most appropriate.

Themodel that the committee finally chose for test assemblywhen pretested items

had DIF data is a combination of the graded model and the flag and review model.

Items are divided into three categories on the basis of MH D DIF. The categories are

essentially small, medium, and large DIF, labeled A, B, and C respectively. Items

from group A are used before items from group B. If specifications cannot be met

with group A items, then group B items may be used with preference given to

the items with the smallest absolute values of DIF. Group C items may not be used

unless necessary to meet specifications and the items have been reviewed and judged

to be fair.

The model that the committee chose for use when DIF data are available only

after an operational administration of the test is the flag and review model. A panel

of diverse and disinterested people reviews any category C items flagged after a test

administration. The flagged items are removed from scoring unless the panel judges

them to be fair. Automatic deletion of the category C items was rejected because

test takers had spent time responding to the items during an operational adminis-

tration. That time should not be retroactively wasted if the items were judged to be

perfectly acceptable.

Despite several intensive reviews of the DIF procedures in the following years,

those models have remained in constant use for close to a quarter of a century with

no revision.

7.10 Sample Sizes

The committee had to develop rules for when testing programs would have to use

DIF. Now DIF is as routine as is item analysis, and no ETS program questions its

necessity. When DIF was first introduced, however, testing programs were

concerned about the additional expenses they would incur and about the additional
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strain on their schedules. In addition, in the absence of any experience with DIF,

programs feared that they would lose many good items.

Because of those concerns, programs hesitated to begin operational use of the

DIF statistic. The committee, therefore, decided to set minimum sample sizes of test

takers in the comparison groups that would trigger mandatory use of DIF. Programs

would be free to do more DIF studies than were mandated, but they could not avoid

the mandated DIF studies.

The committee members split into two groups. The statisticians and the statisti-

cally minded members wanted relatively large sample sizes to be set as triggers for

DIF studies to reduce the amount of random error in the DIF statistic. An unstable

statistic would be misleading, costly, and time consuming.

The people arguing for smaller samples were concerned that requiring large

sample sizes would limit the use of DIF to only the largest testing programs for any

comparisons except male–female. They believed that the increased random error of

small sample sizes was acceptable because they were willing to accept the cost of a

good (truly low DIF) item being mistakenly labeled as bad (high DIF) to obtain the
benefit of DIF data on all items. The other type of error, a bad (truly high DIF) item
being mistakenly labeled as good (low DIF), was seen as less of a problem than if

DIF were not calculated at all, and all items were just assumed to be good.

The small sample size was adopted. Interestingly, the committee’s decision

about implementing DIF was one of the few that was later changed. The minimum

sample sizes required to trigger the mandatory use of DIF were raised about

10 years later to increase the stability of the DIF statistics.

7.11 Balancing DIF

Committee members argued about whether to allow positive DIF items to offset

negative DIF items in a test.7 The clear advantage of allowing positive and negative

items to balance one another was that more items would be available for use in a

test. Some committee members believed that a test would be fair if the algebraic

sum of DIF were close to zero.

One practical problem with allowing positive DIF to balance negative DIF is that

DIF was routinely calculated for as many as five groups (African American, Asian

American, Hispanic American, Native American, and female test takers) whenever

sample sizes were sufficient. DIF results are not identical across groups. Balancing

a negative DIF item for females with a positive DIF item for females might upset

the balance between positive and negative DIF for Black test takers, for example.

7 Positive DIF items favor the so-called focal groups – African American, Asian American,

Hispanic American, Native American, and female test takers – over matched members of the

so-called reference groups – White and Male test takers. Negative DIF items favor the reference

groups over matched members of the focal groups.
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Allowing balance would greatly complicate test assembly by forcing test

developers to manipulate and to keep track of the algebraic sum of DIF for as

many as five groups at once.8

A more substantive argument against allowing negative DIF to balance positive

DIF was that DIF in either direction meant that the item was measuring something

other than, or in addition to, the intended construct. The way tomake a fair test was to

keep the DIF for all items close to zero, not to use one departure from the construct to

offset another departure from the construct. This viewwasmost strongly defended by

Messick, and many of the committee members were convinced by his arguments.

7.12 Positive and Negative DIF

The issue that caused more disagreement than any other among members of the

committee was how to treat items with positive DIF. This issue is one of the few

related to DIF that can still engender arguments among ETS staff.

What could be called the psychometric point of view was that DIF in either

direction (positive or negative) was caused by departure from measurement of the

intended construct. Adherents of that point of view argued for treating positive and

negative DIF symmetrically. If an item with negative DIF was potentially unfair for

the members of the focal group, then an item with positive DIF was potentially

unfair for members of the reference group.

The affirmative action point of view was that positive DIF should be treated

differently than negative DIF. The adherents of asymmetry in the use of DIF

believed it inappropriate to find an item that favors focal group members and

then not use the item.

ETS adopted the psychometrically sound symmetrical DIF policy. In practice,

however, the members of the panels charged with reviewing items found to have

high DIF after an operational administration very rarely find a positive DIF item to

be unfair. The effect is to retain most items with positive DIF when the DIF data are

obtained after an operational administration.

7.13 Conclusion

In 1986, DIF was used operationally for the first time. DIF was first used with

the National Teacher Examination, a licensing test for aspiring teachers.9 Since

that time, DIF has been applied to almost every ETS test with sufficient numbers

8 The widespread use of computers in test assembly that would make the balancing task manage-

able across multiple groups was still in the future.
9 The NTE has since been replaced by Praxis™.
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of test takers.10 The use of Holland’s MH D DIF and Dorans and Kulick’s

standardized P difference have become routine and accepted as a normal aspect

of the test development process.

Few of the test developers who were at ETS when the DIF procedures were first

instituted are still at work. For most test developers, the DIF procedures have been

in place and have remained more or less constant ever since they were hired. (About

half of ETS employees have been with the company for less than 5 years.)

The decisions that were highly controversial in the mid 1980s are now accepted

as a matter of course, as though no alternatives had ever been considered.

In short, the controversial decisions about the implementation of DIF made by

the members of the committee with Doran’s help close to a quarter of a century ago

may not have been optimal, but they have endured and have become widely

accepted and traditional.

This chapter focused on the development of procedures for the use of DIF at

ETS, but we should keep in mind that DIF was just one of Holland’s many

contributions to the science of measurement.11 It is entirely fitting that we honor

the work of Paul Holland, who changed the way that tests are developed at ETS and

at many other testing organizations and who contributed greatly to the fairness of

tests taken by millions of people.

Acknowledgement Any opinions expressed here are those of the author and not necessarily of
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Part IV

Holland the Berkeley Professor

Why I Left ETS and Returned

Paul W. Holland

It might seem strange after 17 years of successful work at Educational Testing

Service (ETS), that in 1993 Roberta and I pulled up stakes and moved to Berkeley,

California. There I joined the University of California faculty, only to move back to

Princeton, New Jersey, after 7 years and rejoin the ETS research staff. My explana-

tion is that in 1990 I was 50 years old and had been at ETS since 1975. I did not

want to wake up when I was 65 and realize that I had been at ETS for 30 years

without consciously intending to do that. So after looking around at the

possibilities, the UC Berkeley Graduate School of Education seemed like a good

choice because Berkeley had a distinguished statistics department as well. The truth

is that when I arrived at Berkeley, I knew most of the members of the statistics

department and only one or two of the education school faculty. Of course, this

changed quickly, and after a semester I began to teach the required quantitative

courses for the school. This was a great experience for me because I got to

meet almost all of the graduate students in their first years of study. They were a

remarkable group of young scholars who seemed to have more energy that I ever

had. Two of them, Derek Briggs and Ben Hansen, have papers in this volume. Their

contributions here are connected in a distant way to the course on causal inference

that I taught when they were at Berkeley. Other students whom I remember fondly

from that time are Eva Ponte, Pamela Paek, Laura Goe, and Insu Paek. Pam, Laura,

and Insu also worked or still work for ETS, so I have been able to see them in action

as professionals as well as students.

I must also mention one faculty member with whom I worked while at Berkeley,

the late Nadine Lambert. She was the first member of the graduate school to

introduce herself to me, and her massive longitudinal data-set on children who

had been diagnosed with attention deficit/hyperactivity disorder (ADHD) years

earlier became part of the material that I used regularly in my statistics courses.

In late 1999, the opportunity arose for me to retire from Berkeley and simulta-

neously rejoin the ETS staff. The new position was named in honor of ETS’s most

distinguished former psychometrician, Fred Lord, whom I greatly admired, and was

too great an opportunity for me to resist. In 2000 Roberta and I packed up and

moved back to Princeton. This volume is a fitting ending to that move.



Chapter 8

Cause or Effect? Validating the Use of Tests

for High-Stakes Inferences in Education

Derek C. Briggs

Casual comparisons inevitably initiate careless causal
conclusions.

—Paul Holland, 2004

8.1 Introduction

A good aphorism can, in a few words, capture an essential truth. Of the many good

aphorisms Paul Holland has coined over the years, I have found myself invoking

the one above frequently enough to worry that I should be paying out royalty fees,

so it is only fitting that I use it as the starting point for some ideas I wish to explore

in this paper.

It is fairly common for people to use the graphical shorthand Z ! X to represent

the inference that a change in some variable Z causes a change in another variable X.
Yet without further explication, this sort of presentation is causally ambiguous. In his

seminal presentation of what he termed Rubin’s causal model (also known as

the potential outcomesmodel or the Neyman–Rubinmodel), Holland (1986) clarified

the elements necessary to define and estimate a quantity interpretable as an average

causal effect. These elements include the units of analysis, the specific treatments

to which units may or may not be exposed, the potential outcomes as a function

of treatment exposure, the mechanism by which units are exposed to treatment

conditions, and the approach taken to estimate an unbiased average causal effect.

In theory, the application of Rubin’s causal model for the design and analysis of

an experiment or quasi-experiment should serve as a safeguard against drawing
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careless causal conclusions. However, this safeguard has an Achilles Heel in the

context of its application in educational research: the often-equivocal nature of test

scores as measures of cognitive outcomes.

Rubin’s causal model is agnostic about the measurement properties of the test

used to define these potential outcomes: The role of a test score is to provide the

units through which the estimate of an average causal effect can be quantified.

My contention is that in many circumstances a failure to think carefully about test

validity will serve to undermine inferences about an estimated average causal

effect, whether or not this effect is unbiased in the statistical sense laid out by

Holland (1986).

Asmeasures, not all outcomes are created equally. For example, death and income

are common outcome measures in epidemiology and economics, and are relatively

straightforward to validate. In educational research, cognitive outcomes are typically

of interest, but such outcomes are unobservable. Cognitive outcomes are measured

with standardized tests, and the match between test scores and their intended inter-

pretation and use has spawned a dense literature in psychometrics under the umbrella

term of validity theory. In this paper, I will be making an argument that at first glance

appears either circular or paradoxical: Causal inference in educational research

depends upon establishing test validity, but test validity depends upon establishing

a causal inference. The reason I developed this argument is because I think it can

serve the purpose of helping to bridge the gap between validity theory and practice

in the context of high-stakes test use in education. That is, once we see that

causal inference and test validity have a symbiotic relationship, it becomes possible

to kill two birds with one stone: In estimating the effect or effects of educational

interventions, we may also gain valuable insights about what it is that tests are

(and are not) really measuring.

Four sections follow. In Sect. 8.2, I provide a policy context for the kinds

of causal inferences being made about education in the wake of the No Child

Left Behind Act of 2001 (NCLB). I suggest that a focus on making causal

inferences that are internally valid has overshadowed the important role played

by the choice of test outcome in causal generalization. In Sect. 8.3, I provide a

brief overview of current conceptions in test validation theory and contrast this

with current state-level practices. I reintroduce an idea dating back to at least

Cronbach (1971) that test validity might be fruitfully evaluated through the lens

of causal inference and experimental design. In Sect. 8.4, I elaborate upon a

validation design that uses the real-world context of NCLB-mandated tutoring as

the basis for an evaluation of the item level instructional sensitivity of large-scale

assessments. In the last section, I offer concluding comments.

8.2 The Context of Causal Inference in Educational Research

It would be difficult to overstate the impact NCLB has had upon state systems of

educational accountability since its implementation in 2002. The stipulations

of NCLB required all schools receiving Title 1 funds to test their students annually
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in the subjects of math, English/language arts, and science in grades 3 through 8 and

at least once during high school. The performance of students within a given

school (disaggregated by demographic subgroups) is then evaluated relative to

criterion-referenced thresholds for each subject-specific test. Students are subse-

quently classified into performance levels (e.g., unsatisfactory, proficient,

advanced). By the year 2012, a target was set that 100% of students should

demonstrate test performance that would place them in the proficient category or

higher. To this end, states were asked to specify target school-level percentages of

students classified as proficient or higher each year leading to 2012. Each year, if a

school’s aggregate percentage is below the target percentage for any student

subgroup or test subject, they will have failed to demonstrate adequate yearly
progress (AYP). High-stakes sanctions are attached to the NCLB law. If a school

fails to make AYP in 2 consecutive years, it must offer parents the opportunity

to choose a different public school for their child to attend. After 3 years of failing

to make AYP, supplemental educational services (i.e., tutoring) must be provided

for all students eligible for free or reduced lunches. After 5 years of failing to make

AYP, schools become candidates for restructuring by an external agency.

The extent to which NCLB has had a positive or negative impact on the

American educational system is unclear. However, the law has achieved one

important ancillary outcome: It has established a tremendous infrastructure for

evaluating the causal effects of educational interventions. When NCLB was

authorized in 2002, relatively few states tested grade 3 through 8 students annually

in multiple subjects, and only 18 had a statewide identification system in place that

could link students, their test scores, and their schools over time. Five years later by

2007, virtually all states were testing students in grades 3 through 8 in math,

English/language arts, and science, and had a statewide student identification

system. Combined with the use of the Internet as a means of transferring large

quantities of data electronically in a timely and secure manner, the upshot is the

availability of longitudinal data for research and evaluation purposes on a scale

previously only possible through federally funded surveys conducted by

organizations such as the Department of Education’s National Center for Education

Statistics.

The scores from the various standardized tests being administered from state

to state are now being used to facilitate a host of evaluative studies. I want to

distinguish two types of prevalent studies. The first type of study is an evaluation in

which a specific educational intervention has been implemented; the second type is

one in which pre-existing teachers and/or schools are themselves under evaluation

as an educational intervention. In both cases, causal inference hinges upon the

following question: What is the effect of a given intervention on one or more

cognitive outcomes? The answer to such a question can have high-stakes

ramifications: Curricula may be adopted or abandoned; teachers may receive salary

increases or get fired. Given that the causal inferences are high-stakes, it is clearly

important to get the magnitude and direction of effect estimates right. But it is just

as important to make sure that appropriate test scores are being used as outcome

measures. I next describe two empirical examples from published studies, one for

each of the study types defined above, in which the choice of outcome measure led
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to very different causal inferences about the effect of an educational intervention.

In both these examples, I focus on the domain of mathematics proficiency in the

middle schools grades, and I put to the side the issue of whether any given causal

effect estimate is in fact unbiased.

8.2.1 Evaluating the Effects of the Connected
Mathematics Curriculum

Beginning in the late 1980s, the National Council for Teachers of Mathematics

(NCTM) published a series of documents describing new standards for how math

should be taught at different grades. The standards called for a greater emphasis on

knowing when and how to use mathematical skills and concepts to solve real world

problems. The Connected Mathematics Project (CMP) was funded by the National

Science Foundation (NSF) to develop a reform-based math curriculum for grades

6 through 8, as described by Ridgway, Zawojewski, and Hoover (2000):

The CMP curriculum is organised around problem settings. Activities are designed to

involve groups of students with mathematical concepts and applications, and in discourse

and reflective writing about these same ideas. Students are expected to observe patterns and

relationships, make conjectures, discuss solutions and generalise from their findings.

The goal is to immerse students in the mathematics and the styles of mathematical thinking

needed for success in high school and eventually college. (p. 182)

As a means of evaluating changes in student understanding during exposure

to reform-based mathematics curricula, the Balanced Assessment (BA) was devel-

oped in a concurrent project also funded by the NSF (Ridgway et al., 2000, citing

Ridgway & Schoenfeld, 1994). According to Ridgway et al. (2000), the BA test was

not designed such that its tasks ran in parallel with those on the CMP curriculum;

rather, the aim was to assess transfer of learning according to the educational goals

set out by the NCTM Standards. The BA tests consist entirely of open-ended items

designed to assess reasoning, mathematical communication, connections, and

problem solving. Because the open-ended items are time-consuming to complete,

only a subset is administered to any given test-taker in one of five forms. Each form

contains 10–15 individual items that are scored both holistically and analytically by

trained raters.

Ridgway et al. (2000) reported on the results of a quasi-experimental evaluation

of the CMP curriculum. The study employed a pre-post design with two different

tests: One test was the BA described above; the other was the Iowa Test of Basic

Skills (ITBS). The ITBS consists solely of multiple-choice items that focus on

the mastery of technical skills in mathematics. A total of 500 grade 6 students,

861 grade 7 students, and 1,095 grade 8 students took grade-specific versions of

these tests at the beginning of a fall semester and then again at the end of a spring

semester. In each grade, some students were taught math using the CMP curriculum

(reform-based treatment condition), while others used commercially available

textbooks (nonreform-based control condition). The authors subsequently compared
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the standardized gains for each group as a function of the outcome measure being

used. These results are presented graphically in Figs. 8.1 and 8.2.

When evaluated using the BA tests, the results seem unequivocal. As shown in

Fig. 8.1, students exposed to the CMP curriculum have considerably larger average

gains than students exposed to traditional curricula. In contrast, when evaluated

using the ITBS, far less compelling evidence exists to support the effectiveness of

the CMP curriculum. There appears to be a negative effect in grade 6, no effect in

grade 7, and a positive effect in grade 8.

A couple of comments are in order. First, the items on the ITBS are likely to be

very similar to the types of multiple-choice items on the state-level tests

administered to fulfill the requirements of NCLB. They are not necessarily bad

items, nor is the ITBS necessarily an invalid test. However, the ITBS was not

designed to evaluate the same cognitive outcomes for which the BA test was

designed. If the ITBS were used as the sole outcome measure to estimate the effect

of the CMP curriculum in grade 6, one would be likely to draw the conclusion that

the curriculum should be abandoned. By contrast, were the BA test to be used, we

would conclude that the CMP curriculum should be celebrated. Second, the differ-

ent patterns of findings by test are the kinds of results that can lead to a greater

understanding of the curriculum under investigation and how children are learning.

A typical argument by those developing curricula that supposedly focus on depth of

conceptual understanding is that this will not sacrifice surface understandings that

are more procedural. The results from the Ridgway et al. (2000) study suggested
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that procedural understanding (as measured by the ITBS) might suffer when

students have only been exposed to 1 year of the program, but for students exposed

to 3 years of the CMP curriculum, this gap reverses.

8.2.2 Evaluating the Effectiveness of Teachers
with Value-Added Models

Value-added modeling (VAM) has become increasingly popular in the context

of educational accountability systems because it offers the potential to estimate

the effect of a specific teacher or school on student achievement independent of the

influences of race, socioeconomic status, and other contextual factors. Currently,

the most widely used program is the Educational Value-Added Assessment System

(EVAAS; The SAS Corporation, n.d.). Some form of the EVAAS has been

implemented (or is being considered for implementation) in over 300 school

districts in 21 states. The statistical models that underlie VAM approaches such

as the EVAAS are complex and incorporate techniques that, in theory, adjust for

such factors as preexisting differences in the demographic and academic

characteristics of students and the influence of previous schooling on test score

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

876

E
ff

ec
t 

S
iz

e

Grade

Treatment
Control

Fig. 8.2 Standardized gains on Iowa Test of Basic Skills (ITBS) tests by grade and condition

136 D.C. Briggs



growth (Ballou, Sanders, &Wright, 2004; McCaffrey, Lockwood, Koretz, Louis, &

Hamilton, 2004; Sanders, Saxton, & Horn, 1997).

It is very unclear whether a VAM can be used to estimate quantities that can be

reasonably interpreted as causal effects (Rubin, Stuart, & Zannato, 2004; Briggs &

Wiley, 2008). A necessary condition for the use of a VAM to estimate teacher

effects is the availability of longitudinal data on a collection of teachers with student
test scores that have been linked over time. A statistical model can then be used to

estimate the average score increment each teacher has contributed to the achieve-

ment of his or her students in a current year over and above the achievement that

had been observed for students in prior years. These increments are not inter-

pretable as causal effects in and of themselves. For this we must establish – for

each teacher – a control group of students to represent the average test score

increment that would have been observed had students not attended a class with

the teacher being viewed as the educational treatment. In the EVAAS, this outcome

is represented by the full sample of students across the collection of teachers being

analyzed. As a result, value-added effects are estimated and interpreted relative to

the average score gain contributed by all schools under analysis. The data employed

for a value-added analysis are essentially an extreme version of an observational

study in which students self-select the teacher (and by extension, schools) to which

they are exposed. A key question of interest is whether different value-added

models are better able to adjust for these sorts of selection biases than others.

The results from such a sensitivity analysis were presented by Lockwood et al.

(2007). The authors examined 4 years of longitudinal data for a cohort of 3,387

students in grades 5 through 8 attending public schools in the state of Pennsylvania

from 1999 to 2002. Of interest was the sensitivity of teacher effect estimates to the

complexity of the VAM being specified. The authors chose four different VAMs in

order of the complexity of their modeling assumptions: gain score, covariate

adjustment, complete persistence, variable persistence. They also chose five differ-

ent sets of control variables to include in the VAMs: none, demographics, base year

test score, demographics plus base year test score, and teacher-level variables.

Finally, they considered one novel factor seldom explored in prior VAM sensitivity

analyses: the outcome measure. Students in the available sample had been tested

with the Stanford 9 assessment across grades 5 through 8. Upon examining the

items contained in the Stanford 9, Lockwood et al. disaggregated the test into

two different subscores as a function of items that emphasized problem solving

(40% of the test) and items that emphasized procedures (60% of the test). Having

established three factors for their sensitivity analysis (type of VAM, choice of

covariates, choice of test outcome), the authors estimated teacher effects for each

three-way factor combination and asked the question: Which factor has the greatest

impact on inferences about a given teacher’s effect on student achievement?

What they found was that, by far, the choice of test outcome had the biggest

impact on teacher effect estimates. Regardless of the choice of VAM or covariates,

estimates of teacher effects tended to be strongly correlated (0.8 or higher). On the

other hand, the correlations of teacher effects estimates by outcome were never

greater than 0.4, regardless of the underlying VAM or choice of covariates.
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8.2.3 Can Readily Available Standardized Tests Support
Causal Conclusions?

I chose the two examples above because they illustrate the kinds of evaluative

studies that are now being conducted thanks to the testing infrastructure spurred by

NCLB. Administrators, parents, and policymakers are naturally going to want to

use existing tests to address causal questions about the effectiveness of educational

interventions. At this point, I think the question of whether the tests are up to the

task – regardless of the quality of the underlying study design – is rather open.

Imagine that each of the studies described above involved a randomized controlled

experiment – the gold standard for estimating unbiased causal effects. This change

would mean that in the Ridgway et al. (2000) study, schools were randomly assigned

to the CMP or non-CMP curriculum, while in the Lockwood et al. (2007)

study, students were randomly assigned both to schools and teachers. Assume

further than the effects estimated in each study were unbiased estimates. Now if

each study were conducted only using the test scores readily available to

researchers through state testing programs – ITBS and Stanford 9 math test

scores – we would miss a good chunk of the story about the effectiveness of the

CMP curriculum and Pennsylvania teachers.

Most schools are eager to implement educational interventions that have been

proven to work. To facilitate such decisions, the U.S. Department of Education has

established the What Works Clearinghouse (WWC) as source where decision

makers can turn to for evidence about a prospective intervention’s effectiveness.

The WWC is responsible for reviewing the quality of existing studies conducted to

evaluate the effects of a wide range of educational interventions. However, such

reviews focus almost exclusively on the internal validity of estimated causal effects

(Briggs, 2008). Evidence that tests are valid for the causal inferences they are being

used to support has been essentially delegated to state departments of education and

their test contractors.

8.3 Building a Case for Test Validity: Theory and Practice

8.3.1 Test Validation in Theory

Perhaps the most famous and widely cited definition of what is meant by test

validity comes from Messick’s chapter on validity in the third edition of the book

Educational Measurement (Messick, 1989). Messick wrote, “Validity is an

integrated evaluative judgment of the degree to which empirical evidence and

theoretical rationales support the adequacy and appropriateness of inferences and

actions based on test scores” (p. 13). Messick’s contributions to validity theory,

building upon the work of Cronbach (1971) and Cronbach and Meehl (1955), were
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both influential and somewhat controversial because he rejected the formerly held

trinitarian view of different types of validity (i.e., content, criterion, and construct)

and emphasized the view that it is test scores, not the test itself, that are validated.

In the process, he redefined the term construct validity as a single unitarian concept
that encompassed content and criterion-related validity and made the consequences

of testing a fundamental aspect of what is required to establish construct validity.

In the latest edition of Educational Measurement, Kane advances what he

has described as an argument-based approach to validity (Kane, 1992, 2006).

Kane’s thesis, consistent in spirit with the perspectives of Cronbach (1971),

Messick (1989), and Shepard (1993) before him, is that test validity is a matter

of degree and depends upon the clarity, coherence, and plausibility of any interpre-

tive argument that links test scores to the decisions and inferences for which they

are to be used. The essence of the argument-based approach to validation is

appealing: Be clear about how you plan to interpret and use test scores, build a

case for why the test in question meets these needs, and defend yourself against

alternative cases for why the test is inadequate. On the other hand, as a theory,

the approach is incredibly broad and intentionally nonproscriptive.

8.3.2 Test Validation in Practice

This view of establishing test validity as the process of integrating different sources

of evidence into a comprehensive argument has been formalized in Chap. 1 of the

Standards for Educational and Psychological Testing [American Educational

Research Association, American Psychological Association, & National Council

on Measurement in Education (AERA, APA, & NCME), 1999; hereafter referred to

as “Test Standards for Validity”]. The “Test Standards for Validity” provided five

categories of evidence from which an argument for or against the validity of any

specific test score inference or consequence could be advanced: (a) test content,

(b) the response processes of test-takers, (c) the internal structure of the test, (d) the

relationship of test scores to other variables, and (e) the consequences of test use.

If the “Test Standards for Validity” is to be taken seriously as a reflection of the

consensus position on validity theory, then a critical question is to what extent it

informs the practices of states, especially since NCLB was enacted. Two recent

reviews have examined the gap between theory and state practices. Linn (2006)

examined the validity evidence used to support test score inferences in the assess-

ment programs of six states: California, Colorado, Florida, Ohio, South Carolina,

and Washington. Using information submitted to the U.S. Department of Education

as part of the NCLB peer review process (U.S. Department of Education, 2004),

Linn compared the validity practices of each state against five categories of validity

evidence described in the “Test Standards for Validity.” Linn found that while the

states generally provided a great deal of evidence about the content and internal

structure of their standardized tests, and about the relationship of scores on these

tests with other variables, little evidence existed to show that the states were

8 Cause or Effect? Validating the Use of Tests for High‐Stakes Inferences. . . 139



actively investigating the response processes of test-takers and consequences of test

use (Linn, 2006). Ferrara (2006) conducted a similar review and concluded that “the

types of evidence provided fall far short of current thinking and recent methodo-

logical developments relevant to developing validity evidence. Technical reports

tend to describe evidence without integrating it into statements about the validity of

various interpretations and uses” (p. 616).

My own analysis of the information and evidence that states make publicly

available to support their testing programs have produced results that are consistent

with the findings described Linn and Ferrara. However, the fact that a gap exists

between validation theory and practice does not necessarily imply that tests are

being invalidly used for high-stakes purposes. What can be safely concluded is that

large-scale standardized tests administered from state to state

• Have items that were approved by committees of subject matter experts as being

representative of a state’s content standards,

• Have scores that are suggestive of high reliability, and

• Are developed to avoid obvious cultural biases.

Such information is valuable to be sure. However, these (and other) readily

available pieces of information are only links from what should be a larger

argumentative chain of reasoning. One important link that is missing is evidence

showing the extent to which test scores are sensitive to formal instruction. Such an

assumption seems implicit in the studies by Ridgway et al. (2000) and Lockwood

et al. (2007) and would seem to be central to virtually all state tests used to support

systems of educational accountability. Yet this assumption does not seem to be

regularly validated.

8.3.3 Test Validation as Causal Inference

It seems tome that one principal reason it is so hard to validate the use of tests for high-

stakes inferences is because the approach outlined in the “Test Standards for Validity”

(AERA, APA, & NCME, 1999) essentially requires us to build an inferential argu-

ment by observing effects and then attributing them to a cause (which is daunting)

rather than estimating the effects from a hypothesized cause (which is doable).

Figure 8.3 illustrates a typical psychometric conceptualization of the relation-

ship between test items and a single latent construct underlying these test items.

This conceptualization has an implied causal inference, where the idea seems to be

that having more or less of the latent construct causes a test-taker to answer a given

item correctly or incorrectly. This idea is formalized in item response theory with

the conditional expectation PðX ¼ xijyÞ. From this perspective, a necessary condi-

tion for establishing test validity is to establish that y has a causal effect on item

responses. The impediment, of course, is that y is unobserved (and hence not

manipulable). As a result, we can only observe differences in the item responses

among test-takers and use these to make a causal attribution about y. So y is
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operationally defined only by patterns of item responses. This result explains why

the validity evidence typically provided by psychometricians in the technical

reports of state testing programs rely so heavily upon evaluations of test item

characteristics: their quality, their intercorrelations, and so on. A problem with

such approaches is that it becomes possible to do analysis that is largely divorced

from design. Because no hypotheses are being advanced for what we should expect

to observe, almost any finding can be rationalized as acceptable within some

bounds for acceptable (and perhaps arbitrary) ranges of item difficulty, point

biserials, and reliability.

The notion that causal inference is implicit in test design and validation is

not new. This idea can be found in recent manuscripts in the psychometrics

literature (c.f., Borsboom, Mellenbergh, & Heerden, 2004; Wilson, 2005) and for

decades in books and articles on structural equation modeling. However, in my

view it is neither feasible nor necessary to model all the causes, latent or otherwise,

that influence the item responses of test-takers on large-scale assessments. In his

chapter “Test Validation” from the second edition of Educational Measurement,
Cronbach (1971) pointed toward a more direct approach when he wrote:

Experimental interventions in which something is deliberately done to change student

scores, as a means of identifying influences to which test performance is sensitive, have

been mentioned several times. The treatment may be a change in time limit, a special

instruction, etc. The investigator, knowing of what his treatment consists, can predict its

effect on the tests; the results confirm or challenge some part of his interpretation of the

measuring instrument. (p. 474)

Cronbach was essentially proposing the substitution of an observed and well-

understood educational intervention, Z, for the hypothesized latent construct y in

Fig. 8.3. By well-understood, I mean that Z should have been designed such that not

x1 x2 x3 x5 …x4 x I

I
x i

The “Cause”

The Item 
Level Effects

The Aggregate 
Effect

Fig. 8.3 Test validation as causal inference
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only would exposure to it be expected to have an effect on overall test performance,

but also that this effect could be properly hypothesized for specific items or item

subsets. That is, if test-developers really understand what is being measured, it

should be possible to imagine interventions that would (or at least should) increase

the probability of students answering some test items correctly, but not increase the
probability of answering other items correctly. I illustrate this notion in Fig. 8.4.

Here we imagine a scenario in which the middle-school students in a state are

tested annually on large-scale assessments of math. The items on the test have been

designed to measure different content strands according to the state’s published

standards framework, and these strands distinguish between the mastery of number

properties and operations, algebra, data analysis, and geometry. Now, if we were to

take a sample of students and randomly assign them to either a tutoring program

that focused on instruction and practice in understanding geometric concepts

(Group 1, Z ¼ 1) or a tutoring program that focused on algebra (Group 2,

Z ¼ 0), we should expect that when the test performance of the two groups is

compared, Group 1 students will have a significantly higher probability of answer-

ing geometry items correctly relative to algebra items, and vice-versa for Group 2

students. If we find this to be so, it would seem to bolster an argument that a

manipulation of the underlying construct has had an effect on item response

probabilities. A competing explanation that would need to be ruled out is that at

least some portion of what the test measures is trivial (construct irrelevant) and can

be manipulated through savvy coaching techniques (which results in what Koretz

and Hamilton (2006) have called score inflation). If no significant differences in the
average response probabilities exist between the groups, it would seem to suggest

that whatever the test is measuring is not readily manipulable. Again, a competing

argument would need to be ruled out: Perhaps the tutoring that was implemented

differs from what was intended.

Note that in this brief example the central component of a validity argument

becomes a matter of estimating effects rather than attributing cause. Of course,

much hinges upon the defensibility of substituting Z in place of y. But in my view,

x1 x2 x3 xJ …… xJ+I

Z = 1  Tutoring in Geometry

Z = 0  Tutoring

Geometry Items Number Properties &
Operations, Algebra, Data
Analysis,

Z
Fig. 8.4 Tutoring program as

an indirect manipulation of

the construct of measurement
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being forced to make and defend this argument focuses important attention on

the intended alignment between what is being taught and what is being assessed.

If the substitution of Z in place of y can be defended, then much of the theory and

practice of causal effect estimation can be implemented at the item level. The

resulting patterns would provide evidence for what a test is and is not measuring.

And making item-level inferences would be possible (though challenging) even

when students have not been randomly assigned into tutoring conditions.

8.4 Evaluating a Test’s Instructional Sensitivity in Practice

The provision of supplemental educational services (which I hereafter refer to as

tutoring) to low-income students in schools failing to make AYP under NCLB is

just now beginning to attract the attention of educational researchers. In my view, it

should really be attracting the attention of psychometricians. The tutoring that

students are receiving is likely to be the purest form imaginable of teaching to the

test. The theory of action behind NCLB and all systems of educational accountabil-

ity is that a student who has a poor understanding of, say, algebra would have a

better understanding if he or she had instead been exposed to some intervention

(i.e., better teaching, more motivation, better diet, etc.). It follows from this that for

educational accountability to achieve the consequences that are envisioned, there

are two necessary conditions: the presence of good interventions and standardized

tests that are instructionally sensitive.

In Colorado during the 2006–07 school year, approximately 1,500 students in

grades 4 through 8 received tutoring beyond their normal school instruction in the

subjects of math and reading. All of these students were receiving free lunch

assistance, and 94% were Black or Hispanic students. There were many more

students in the state in the same grades with the same demographic background

and prior test performance who were similarly eligible to receive tutoring but either

chose or were unable to take advantage of the tutoring services. Because both

groups of students had taken the Colorado Student Assessment Program (CSAP)

tests in 2006 and again in 2007, it is possible to estimate an effect of the tutoring.

In an evaluation conducted by the OMNI Institute (2008), the tutoring appeared to

have no aggregate effect on reading performance and a small effect on math

performance. The effect found for math performance was not large enough to

move any of the students from a performance level classification of unsatisfactory

to proficient. These results are consistent with the few other evaluations of NCLB-

mandated tutoring that have been conducted to date (Burch, Steinberg, & Donovan,

2007; Vergari, 2007). However, while the natural conclusion from such studies is

that tutoring programs are largely ineffective, another conclusion must be

entertained: Perhaps the programs are doing exactly what we would expect, and it

is simply the case that the tests are not instructionally sensitive.

How could the principles described in the previous section be applied to this

empirical context? To make this example as concrete as possible, imagine we have
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access to the full population of grade 5 students in a single Colorado school district

during the 2008–2009 school year. A subset of these students was eligible to receive

tutoring services because they were low income and their schools failed to make

AYP. To keep things simple in this illustration, we will focus just onmath outcomes.

Roughly 100 items are administered on the grade 5CSAPmath exam, and these have

been mapped evenly into five designated content standards according to the state’s

department of education (number sense, algebra, statistics, geometry, and problem-

solving). A first order of business would be to determine, through inspection

of curricula or other analysis, the alignment between the tutoring programs and

the CSAP math test. Does the program spend equal amounts of time on instruction

that would map to each of the five item sets found on the CSAP? (If the tutoring

company is being strategic, one might expect them to devote greater energy to the

content with difficulty closest to the performance threshold that demarcates profi-

ciency.) From this analysis a program-specific hypothesis can be generated about the

types of items that should be most sensitive to tutoring. Now assume we have at least

two tutoring programs to compare that have been determined to differ significantly

in their relative alignment with the CSAP test.1 In Program 1, a student has been

exposed to a program with the greatest relative alignment to the 40 items

emphasizing an understanding of number sense and algebra. In Program 2, a student

has been exposed to a program with the greatest relative alignment to the 40

items emphasizing an understanding of statistics and geometry. Given such infor-

mation, we can proceed to empirically compare the probability of correct item

responses as a function of tutoring exposure after conditioning onmath performance

in prior grade(s).

One straightforward way this could be done would be to use the Mantel-

Haenszel procedure described by Holland and Thayer (1988) for use in the context

of diagnosing potential symptoms of item bias. Or, we could use logistic regression

and an approximation technique (c.f., Swaminathan & Rogers, 1990) to estimate

the area between curves as a function of tutoring exposure. Conditional on prior

ability, students receiving more tutoring in number sense and algebra should

outperform their counterparts receiving more tutoring in statistics and geometry

on these test items, and vice-versa. Provisional conclusions about the instructional

sensitivity of the test would hinge upon the results from these analyses. If the test

appears to be instructionally sensitive, it bolsters the validity of its high-stakes use

within an accountability system.

To be sure, many details of this approach would need to be ironed out:

• How big must an item-level difference between groups be before it is considered

practically significant?

• Should the results be aggregated (for example, summed across all number sense

and algebra items) or evaluated item by item for salient trends?

1 It would also be possible to compare a single tutoring program to a control condition of no

tutoring, but this comparison would introduce a clear source of bias in the sense that students

enrolled in tutoring are likely to be more motivated than those who are not.
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• Should an estimate of the current test score be used as a conditioning variable or

only prior test scores? Should all available test score information be included?

(Note: this increase in dimensionality could be reduced through propensity score

estimation.)

• When students have not been randomly assigned to tutoring groups, what other

variables are available for inclusion in the conditioning set?

Many of these questions have already been raised (and addressed) in the

psychometric research literature on differential item functioning (DIF) techniques.

An evaluation of DIF is standard practice for testing companies, but its interpreta-

tion is often highly equivocal because the categorical grouping variables employed

are usually demographic. In contrast, the results are more readily interpretable for

the present test validation context because the grouping variable is a manipulable

treatment that serves as a proxy for the construct of measurement. While it is true

that differences in average response probabilities might be due to selection bias

(depending upon the reasons that some students choose to enroll in tutoring

programs), a mitigating factor is the availability of longitudinal data and the fact

that the students eligible for tutoring are, by definition, from low-income

households. Furthermore, when the item-level performance of students in different

tutoring programs is being compared, one might also be willing to assume that, on

average, both sets of students are similarly motivated relative to students who were

eligible for tutoring but did not enroll.

8.5 Some Final Comments

An important impetus for the test validation design proposed above is that a closer

connection needs to be developed between the ways tests are designed and scores

are interpreted. By looking for what are essentially causal effect estimates at the

item level, we commit ourselves to an understanding of what we think is being

taught in schools and what specific item sets we think will capture this learning.

States such as Colorado should be able to say, for example, “The principle obstacle

to being classified as proficient in mathematics as of grade 5 is an understanding of

basic concepts in geometry and their application to solve measurement problems.

So this should be the focus of our tutoring programs.” If tutoring programs were to

then respond by teaching geometric concepts and applications, we should expect to

see causal effects on the associated geometry items, but not on items that focus, for

example, on number sense. If we do, this is strong evidence in favor of test validity.

If we do not, then I think we need to carefully consider that beyond the possible

explanation that the tutoring is ineffective there is a possibility that the existing test

is not valid for the high-stakes inferences inherent in accountability systems.

In conclusion, I think we can gain much more traction in validating the use of

test scores for high-stakes inferences if we make our causal hypotheses complex but

keep our analyses relatively simple. The evaluation of tutoring programs under
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NCLB provides a unique opportunity for implementing this idea. In my view,

these kinds of validation studies would be easy to convince states to do because

they are at once theory driven and pragmatic – theory-driven because you have to

know what it is your tutoring purports to teach and your tests purport to measure,

but pragmatic because they may save states millions of dollars being spent on

tutoring that does not help or on tests that are invalid for their proposed uses. When

tests must be validated for use in supporting high-stakes causal inferences, the

traditional sources of validity evidence are necessary but not sufficient. If we wish

to avoid causal inferences that are careless, we proceed with business as usual at our

own peril.
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Chapter 9

Propensity Score Matching to Extract

Latent Experiments from Nonexperimental

Data: A Case Study

Ben B. Hansen

9.1 Introduction

9.1.1 Purpose and Context of Paper

During the 1995–1996 academic year, investigators from the College Board

surveyed a random sample of high school junior and senior SAT® takers to probe

how they had prepared for the SAT. Among other questions, students were asked

whether they had taken extracurricular test-preparation classes. Some 12% of

respondents said that they had; the comparison of these students’ SAT scores to

those of the remaining 88% comprised the observational study reported by Powers

and Rock (1999).

Attempts to estimate intervention effects without the benefit of randomization

demand adjustment for covariates, potentially confounding variables. Powers and

Rock’s was no exception. Coached and uncoached students differed in educational

preparation, race, class, and PSAT scores, among other relevant factors determined

in advance of their decisions about coaching; each of these differences would have

to be addressed. The most commonly used methods of adjusting for potential

confounders involve using regression methods to model outcomes, here SAT

scores, as functions of covariates and intervention variables.

Another method that may help is propensity score matching: estimate condi-

tional probabilities of falling in the intervention group given the covariates,

propensity scores (Rosenbaum & Rubin, 1983); match treatment group subjects

to untreated controls whose estimated propensity scores are similar; then carry

out the outcome analysis with adjustment for the propensity score matches.
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When treatment and control groups differ substantially on baseline measures,

propensity matching reduces the differences, creating matched sets within

which baseline treatment and control differences average to something closer

to zero (Rosenbaum, 2001): it improves covariate balance, even when there

are relatively many covariates. Well-balanced covariates lend credibility to an

observational analysis. Cochran (1965, Sec. 3.1) suggested that good covariate

balance be treated as a necessary precondition for analysis of an observational

data set.

Propensity score matching secures this and other advantages at stages of the

analysis that do not require, and often precede, use of measurements of the out-

come. Thus propensity scoring and matching can be seen as parts of the design, as

distinct from the outcome analysis, of an observational study (Rosenbaum, 2010;

Rubin, 2008). Accompanying diagnostic procedures lead to tables and plots that, in

contrast with regression diagnostics, directly bolster the credibility of the adjust-

ment and are often of interest to scientific audiences in themselves.

The current paper revisits Powers and Rock’s (1999) data set, using it in a

demonstration of how specifically to combine propensity scores with modern

matching and ordinary covariance adjustment techniques to obtain inferences

about the coaching effect that are supported by the large-sample theory of a

companion paper (Hansen, 2009). The method improves that of Hansen’s (2004)

analysis of the same data in several ways. It gives narrower confidence bounds; it is

easier to implement. According to the supporting theory, it also better removes bias.

9.1.2 Workflow

Propensity score matching is an attempt to isolate pieces of a nonrandomized

sample that resemble randomized experiments, at least in terms of the observed

variables. The procedure is divisible into roughly six steps:

Step 1. Select a small number of covariates for exact matching (stratification).
If among the variables that demand adjustment one or two seem to most

influence selection into the treatment group, then it or they are the natural

candidates for exact matching.

Step 2. Evaluate plausibility of the proposition that treatment is effectively rando-
mized within the strata created at Step 1.This requires inspecting balance on
those covariates not directly incorporated into the stratification and deter-

mining whether it is comparable with the balance that randomization would

have produced. If so, then there is little reason to estimate or match on

propensity scores: This part of the adjustment is complete.

Step 3. In the more likely event that stratification on just a few covariates does not

balance the others, the next step is to estimate propensity scores and, if
necessary, make other preparations for matching. The optional preparations
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would include the construction of aMahalanobis distance, as recommended

by Rosenbaum and Rubin (1985b), Rubin and Thomas (2000), and others;

however, the method recommended here avoids this extra step. Indeed, with

this method it will ordinarily suffice to estimate just one propensity score,

the conditional probability of being in the treatment group given all of the

covariates, and to estimate it just once, using standard logistic regression

techniques. (On the other hand, modern matching techniques allow one to

match with attention to more than one propensity score, and it can be

advantageous to match on several scores. An illustration appears in

Sect. 9.4.3.)

Step 4. With a matching criterion in hand, match intervention to control subjects.
With flexible techniques like the ones to be demonstrated in this paper,

the matches need not be made only in pairs, or only in triples or in any other

fixed configuration; rather, it is possible to tailor the structure of the

matched sets to the contours of the sample. Thus, even when the treatment

group is much smaller than the control group, there is no need either to

forgo matching those controls that do not fit into pairs or to settle for poor

matches in the interests of finding k > 1 distinct controls for each treatment

subject. On the other hand, in order to avoid inadvertent extrapolation it is

necessary to set aside those subjects that are unusually separated from all

eligible candidates for matching in terms of the propensity score, and this

ordinarily will necessitate leaving aside a few subjects. (Deciding just

which subjects to leave aside is discussed in Sect. 9.4.2, below.)

Step 5. Conduct diagnostic assessments of the match.The diagnostics include: asses-
sment of covariate balance, assessment of the size of the larger matched

discrepancies on propensity scores, and assessment of the consequences of

the matching for effective sample size. The first of these diagnostic criteria is

much more frequently discussed than the other two, but in practice they are

equally important.

Step 6. Repeat from Step 1, Step 3, or Step 4, after suitable modifications to that
step, until a satisfactory match is achieved. With the approach to be

presented here, it will not ordinarily be necessary or advantageous to return

all the way to Step 1. A return to Step 3 is indicated if the match was found

at Step 5 to insufficiently balance covariates that for some reason were

excluded from the propensity score or to diminish effective sample size

more than seemed necessary. A return to Step 4 is indicated if the match

was found at Step 5 to insufficiently balance covariates that were included

in the propensity score or to permit overly large matched distances on the

propensity score.

To estimate treatment effects after matching, use any method of adjustment

suitable for matched or finely stratified experiments: hierarchical linear or

generalized linear modeling; if the outcome is continuous, perhaps linear regression

with fixed effects; or randomization-based inference.
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Many of these methods involve regression modeling. Of course, regression

modeling itself can serve as a basis for confounder control without any propensity

adjustment. The procedure is familiar; in outline:

Step A. Select variables for adjustment.

Step B. Specify and fit regression model.

Step C. Perform regression diagnostics and extract effect estimates from fitted

model, returning as needed to Steps 1 and 2.

Adjustment with regression involves fewer steps, and has no need for a separate

procedure to estimate treatment effects. Clearly, this brevity is an advantage; less

clearly, it is a source of complication. At Steps A and B, one attempts to attend

simultaneously to the reduction of bias associated with confounding, which may

call for flexible specifications and adjustment for more variables, and to keep

standard errors down, which calls for rigid specifications and fewer variables.

In matching, by contrast, the guiding concern is control of confounding bias. One

adjusts inclusively for those pretreatment variables thought to influence the out-

come (Rubin & Thomas, 1996, 2000). Propensity score diagnostics make both

benefits and costs of this adjustment easier to perceive, as I demonstrate below.

Although propensity score matching and regression are sometimes seen as

competitors, it is quite possible to combine the methods, folding a matching into

a regression analysis by adding fixed or random effects for the matched sets. The

matching largely addresses bias due to observed confounders, freeing Steps A and

B of the regression adjustment to focus on reducing error variance – which is

generally better accomplished with more selective covariance adjustment for the

main prognostic variables than by attempting to adjust for all potential confounders.

In turn, such parsimony simplifies Step C; with just a few covariates, regression

diagnostics are often routine. The combined method may have more steps than

regression alone, but the greater focus of each step allows it to be executed with

greater confidence.

9.1.3 Outline

After Sect. 9.1 introduction come two sections reviewing literature this paper draws

on. Section 9.2 reviews the rich set of data Powers and Rock collected in order to

estimate coaching effects. Section 9.3 reviews matching structures and algorithms,

introducing the tradeoff between matching closely on the matching variable and

maximizing effective sample size. Then Sect. 9.4 demonstrates two complementary

ways of estimating propensity scores and, with them, a new and simplified way of

managing the tradeoff between close matching and sample size. Section 9.5

presents permutation-based effect estimates and confidence intervals. Section 9.6

offers a rationale for the use of matching as a prelude and complement to covari-

ance adjustment, drawing connections with supporting large-sample theory

presented in a companion paper.
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9.2 Highlighting the Strengths of a Strong

Observational Study

Section 9.2.1 reviews the structure of Powers and Rock’s fine study. Among other

strengths, it collected an impressive array of descriptive information about coached

and uncoached test takers. Adjusting for all of the potential confounders ought

to enhance the credibility of the results; in practice, however, when the adjustments

are made using regression, increasing the number of potential confounders

for which adjustments are made may decrease the credibility of the analysis.

One issue is that each additional covariate tends to have missing observations, so

that cases with complete data on a smaller set of covariates have incomplete data on

the larger collection of them; common responses to this situation in regression

analysis may raise more questions than they settle. In contrast, with stratification-

based adjustments including matching, a simple device addresses missingness

on the covariate under relatively straightforward assumptions, as Sect. 9.2.2 will

illustrate. Regression diagnostics are typically arcane, but central diagnostics for

stratification-based adjustments convey information about the study design that is

of independent interest to researchers. Section 9.2.3 demonstrates this in the process

of attending to Steps 1 and 2 of Sect. 9.1.2’s propensity matching workflow.

9.2.1 Powers and Rock’s Data

The data to be analyzed derive from a stratified random sample of registrants for

1995–1996 administrations of the SAT-I test, details of which are given by Powers

and Rock (1999). About 6,700 high school juniors and seniors received surveys

asking whether and how they had prepared for the test; the replies of some 4,200

respondents were linked to the College Board’s records of their scores on the 1995

or 1996 exams, as well as scores on previous SAT-I or PSAT tests and their answers

to the Student Descriptive Questionnaire (SDQ), which all SAT-I registrants are

asked to complete. Since its subjects were selected by a probability sampling design

from the pool of all U.S. SAT test takers from a given period, as opposed to a

convenience sample, the study supports inferences with greater external validity

than is typical in evaluation research.

By their responses to questions about extracurricular SAT preparation,

respondents were split into a treated and a control group. Nineteen in twenty of the

survey respondents actually took the spring 1996 or fall 1995 exam for which they

had registered. The analysis given below restricts itself to these 3994 students, using

the corresponding SAT scores as outcomemeasures. Thus the record gives coaching

status and SAT outcomes for all students in the sample to be analyzed; among the

additional measures, each available for some fraction of the students, are pretest

scores, racial and socio-economic indicators, various data about their academic

preparation, and responses to a survey item that, by eliciting students’ first choices
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in colleges, recovered an unusually discriminating measure of students’ educational

aspirations. In all, there are 27 relevant pretreatment variables. The coached and

uncoached groups differ appreciably in many of these recorded measures – as do

high and low scorers on the SAT.

9.2.2 Missing Data; Initial Exact Match

Complete case analysis refers to the practice of handling by setting aside any

subject for whom measurements on some covariate are not available. Although

easy to implement, it can drastically reduce the sample size, particularly when

many covariates are present, in a manner that risks adding to the bias as well as the

variance of estimation. It is nearly as convenient to merge “missing” with an

appropriate level of the covariate or to treat it as a category unto itself,

acknowledging the absence of certain measurements without reducing the sample

size. In adjustment based on matching or stratification, this is the same as making

missingness part of the profiles according to which study subjects are sorted.

Analysis based on this annotated data file will require stronger assumptions than

would a parallel analysis without missing covariates; typically such assumptions

are more credible than those of the complete-case analysis.

Step 1 involves identifying the one or two covariates that most threaten to

confound the comparison in order to match exactly on them. A covariate’s potential

for confounding is partly a function of the size of the difference between its means in

the treatment and control groups, with larger differences portending greater bias. In

the Powers-Rock coaching sample, the variables that are most threatening in this

sense are the race and socio-economic status (SES) variables, as seen in the left

panels of Tables 9.2–9.4. The one race variable separates Asian-Americans (9%)

from underrepresented minorities (8% Black, 3% Mexican-American, 1% Native

American, 1% Puerto Rican, 3% other Hispanic, 3% other), collapsing the 6% of

respondents who did not give their race with Whites (66%). To account for SES,

SDQ responses give three potential stratifiers to choose from, namely parents’

income and education levels of mothers and fathers. All three variables are probably

measured with some error, but it seems that high school students are more likely to

know and less likely tomisreport their parents’ education than their parents’ income;

and splitting the data into thirds at the 33, 67, and 100% quantiles of mother’s and of

father’s education levels, father’s education better separates both PSAT-Math and

PSAT-Verbal scores. I stratify the College Board coaching data by race and father’s

education level, grouping students into three categories of father’s education, plus an

additional category for students not reporting it. Call this the Race-by-SES (Race�
SES) subclassification; Table 9.1 shows sizes and compositions of its subclasses.

Subclassifying in this way, no observations are rejected.

The strategy of creating missingness levels of covariates can also be used to

construct propensity scores, leading to propensity scores which, when matched or

stratified upon, balance both covariate-missingness and observed-covariate profiles
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between treated and control groups. In effect, this addresses the missingness

problem by a strengthening of the nonconfounding assumption, from an assumption

that the collection of covariates deconfounds the comparison to an assumption that

available covariates (along with indicators of their availability) deconfound the

comparison (Rosenbaum & Rubin, 1984, Appendix). The strategy is well suited to

missingness patterns in which observations tend to lack only a few of a large

number of covariates. Such is the case here: On the 23 covariates other than pretest

scores, only 32% of the College Board sample has complete data, but two-thirds are

missing no more than two items, and 90% lack data on no more than five items. Our

propensity score accommodates missing data in this way, in so doing retaining all

3,994 observations. (It also recodes as “missing” the pretest scores of 126 coached

students whose pretests did not or may not have preceded their coaching, as well as

the pretests of uncoached students whose pretests preceded their posttests by

relatively short intervals; see Hansen, 2004, Sec. 1.2).

9.2.3 What Would Cochran Do? Comparability on Covariates,
With and Without Poststratification

Section 3.1 of Cochran’s (1965) landmark paper on observational studies took up

the question of whether and how group differences in the distributions of covariates

ought to inform decisions as to whether to adjust for them. One recommendation

Table 9.1 Race � SES subclasses: sizes and control-to-treated-subject ratios

Father’s education

(by race category)

Percent of # controls per

treated subjectsample treated

White, or no race reported

High school or less 26 9 21

AA or BA 20 15 10

Post-college 20 29 4.5

Not reported 7 10 4.5

White (all) 72 63 8.2

Under-represented minority

High school or less 11 7 11

AA or BA 3 4 6.6

Post-college 3 5 3.6

Not reported 1 2 4.4

Under-represented minority (all) 19 18 7.2

Asian-American

High school or less 4 6 3.8

AA or BA 3 5 3.4

Post-college 3 8 1.5

Not reported 0.4 0.2 15

Asian-American (all) 9 19 2.9

All 100 100 7.0
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was to conduct preliminary checks, comparing the groups on covariates before

considering (perhaps before collecting) data on outcomes. Another recommenda-

tion was to assess group differences in covariate means in terms of corresponding

t-statistics. For covariates of high or moderate prognostic value, t-statistics below
1.5 or so in magnitude would be okay, but statistics larger than that were potentially

problematic. A few such imbalances might well be handled with regression

adjustments once the outcome data become available, but many of them seemed

to present a more fundamental problem. “If several x-variables show t-values
substantially above 1.5,” Cochran wrote, “this raises the question of whether the

groups are suitable for comparison” (p. 243). How do Powers and Rock’s coached

and uncoached samples fare in these terms?

Table 9.2 Coached versus uncoached on demographic variables, with and without race � SES

subclassification

No stratification Race � SES

No

coach Coached z
No

coach Coached z

Parents’ income Q1 0.27 0.14 �6.4 *** 0.24 0.14 �5.3 ***

Parents’ income Q2 0.28 0.2 �4.1 *** 0.25 0.2 �2.3 *

Parents’ income Q3 0.15 0.12 �1.7 0.16 0.12 �1.9

Parents’ income Q4 0.16 0.35 1.3 *** 0.19 0.34 7.8 ***

Parents’ income N/A 0.14 0.2 3.5 *** 0.17 0.2 2.1 *

Dad’s education ¼ high

school

0.43 0.23 �8.4 *** 0.25 0.25 0

Dad’s education ¼ some

college

0.26 0.23 �1.7 0.24 0.24 0

Dad’s education ¼ grad

school

0.23 0.42 9.2 *** 0.39 0.39 0

Dad’s education n/a 0.081 0.12 3.1 ** 0.12 0.12 0

Mom’s education ¼ high

school

0.49 0.29 �8.5 *** 0.4 0.3 �4.8 ***

Mom’s education ¼ some

college

0.27 0.29 1.0 0.29 0.29 0.4

Mom’s education ¼ grad

school

0.16 0.3 7.3 *** 0.22 0.29 4.0 ***

Mom’s education n/a 0.071 0.12 3.7 *** 0.1 0.12 2.1 *

1st language ¼ english 0.8 0.69 �5.5 *** 0.71 0.71 �0.5

1st language ¼ eng.+another 0.079 0.12 2.9 ** 0.1 0.11 0.5

1st language not english 0.075 0.11 2.7 ** 0.11 0.1 �0.6

1st language n/a 0.049 0.084 3.3 ** 0.074 0.083 1.3

Gender B 0.41 0.4 �0.5 0.43 0.4 �1.3

Gender G 0.59 0.6 0.5 0.57 0.6 1.3

Ethnicity ¼ Asian 0.078 0.19 8.2 *** 0.16 0.16 0

Ethnicity ¼ White 0.73 0.63 �5.1 *** 0.65 0.65 0.0

Ethnicity ¼ URM 0.19 0.18 �0.3 0.19 0.19 0

Note. Without stratification, the groups differ starkly in demographic terms. Exact matching on

two demographic variables leaves highly significant imbalances on others. (URM ¼ under

represented minority)
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Table 9.3 Coached versus uncoached on scholastic preparation and achievement variables, with

and without race � SES subclassification

No stratification Race � SES

No

coach Coached z
No

coach Coached z

PSAT-V 51 51 �0.3 51 51 �1.3

min(PSAT-V, 40) 40 40 1.0 39 40 1.6

max(PSAT-V, 60) 61 60 �1.9 61 60 �3.1 **

PSAT-M 50 51 2.3 * 50 51 0.3

min(PSAT-M, 40) 39 40 2.4 * 39 40 2.2 *

max(PSAT-M, 60) 61 61 1.4 61 61 �0.5

PSAT N/A 0.33 0.38 2.0 * 0.32 0.38 2.4 *

Prior SAT-V 480 479 �1.7 481 479 �2.4 *

min(prior SAT-V, 400) 399 399 �0.7 400 399 �1.2

max(prior SAT-V, 600) 600 600 �0.7 600 600 �1.1

Prior SAT-M 480 481 1.0 481 481 0.6

min(prior SAT-M, 400) 400 400 0.1 400 400 �0.1

max(prior SAT-M, 600) 600 600 1.1 600 600 1.0

Prior SAT N/A 0.96 0.95 �0.6 0.96 0.95 �0.6

GPA self-report Q4 0.074 0.048 �2.1 * 0.081 0.045 �2.8 **

GPA self-report Q3 0.32 0.38 3.0 ** 0.32 0.38 2.3 *

GPA self-report Q2 0.45 0.4 �1.9 0.42 0.41 �0.4

GPA self-report Q1 0.1 0.082 �1.5 0.094 0.085 �0.6

GPA self-report n/a 0.056 0.082 2.3 * 0.079 0.081 0.2

Avg. english ¼ excellent 0.38 0.42 1.6 0.4 0.41 0.8

Avg. english ¼ good–fail 0.56 0.49 �2.7 ** 0.52 0.5 �0.9

Avg. english n/a 0.057 0.084 2.4 * 0.079 0.083 0.4

Avg. math ¼ excellent 0.34 0.37 1.1 0.35 0.36 0.4

Avg. math ¼ good–fail 0.6 0.55 �2.4 * 0.57 0.55 �0.6

Avg. math n/a 0.055 0.086 2.8 ** 0.079 0.085 0.6

Avg. natural science ¼ excellent 0.36 0.4 1.5 0.37 0.39 0.8

Avg. natural science ¼ good–fail 0.58 0.52 �2.6 * 0.55 0.52 �0.9

Avg. natural science n/a 0.061 0.086 2.1 * 0.082 0.085 0.3

Avg. social science ¼ excellent 0.45 0.5 2.1 * 0.46 0.49 1.2

Avg. social science ¼ good–fail 0.49 0.42 �3.0 ** 0.46 0.43 �1.2

Avg. social science n/a 0.06 0.082 1.9 0.081 0.08 0

# Yrs. english 0–2 0.17 0.17 �0.1 0.16 0.17 0.5

# Yrs. english ¼ 3–4 0.76 0.74 �0.7 0.74 0.74 �0.0

# Yrs. english n/a 0.074 0.09 1.3 0.097 0.089 �0.7

# Yrs. foreign language ¼ 0–2 0.66 0.5 �7.0 *** 0.63 0.51 �5.3 ***

# Yrs. foreign language ¼ 3–4 0.25 0.4 6.8 *** 0.26 0.39 5.8 ***

# Yrs. foreign language n/a 0.089 0.11 1.2 0.11 0.1 �0.4

# Yrs. math ¼ 0–2 0.29 0.2 �4.2 *** 0.26 0.21 �2.7 **

# Yrs. math ¼ 3–4 0.64 0.7 2.8 ** 0.64 0.7 2.7 **

# Yrs. math n/a 0.071 0.096 2.0 * 0.095 0.092 �0.2

# Yrs. natural science ¼ 0–2 0.46 0.39 �2.9 ** 0.43 0.4 �1.3

# Yrs. natural science ¼ 3–4 0.46 0.5 1.8 0.46 0.49 1.1

# Yrs. natural science n/a 0.086 0.11 2.1 * 0.11 0.11 0.2

(continued)
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The quoted passage makes sense only for unstratified comparisons, because of

its reference to t-statistics. However, if the t-statistic can be replaced with an

analogue that also makes sense in the stratified case, then we can also ask of

Table 9.3 (continued)

No stratification Race � SES

No

coach Coached z
No

coach Coached z

# Yrs. social science ¼ 0–2 0.49 0.4 �3.4 *** 0.47 0.4 �2.8 **

# Yrs. social science ¼ 3–4 0.44 0.5 2.9 ** 0.43 0.51 3.3 ***

# Yrs. social science n/a 0.078 0.092 1.0 0.1 0.09 �1.0

Note. Group differences in these variables are pronounced, if less so than for demographic

variables. In most cases subclassification reduces large imbalances, if not to insignificance

Table 9.4 Coached versus uncoached on attitudes to college and to the SAT, with and without

race � SES subclassification

No stratification Race � SES

Not

coached Coached z
Not

coached Coached z

Avg. SAT at 1st choice

college

1,059 1,098 9.5 *** 1,067 1,097 7.0 ***

Avg. SAT at 1st choice

college n/a
0.36 0.36 0.2 0.35 0.36 0.4

No previous score, or n/a 0.32 0.28 �1.9 0.31 0.28 �1.4

Previous score seemed fair 0.22 0.14 �3.8 *** 0.22 0.15 �3.6 ***

Previous score seemed

unfair

0.46 0.58 4.9 *** 0.47 0.57 4.2 ***

Nervous about SAT? (n/a) 0.21 0.24 1.5 0.21 0.24 1.7

Nervous about SAT? – very 0.18 0.27 4.5 *** 0.19 0.27 4.1 ***

Nervous about SAT? – a bit 0.44 0.39 �2.0 * 0.44 0.39 �2.1 *

Nervous about SAT? – no 0.17 0.098 �3.9 *** 0.16 0.1 �3.7 ***

Score important? (n/a) 0.21 0.24 1.4 0.21 0.24 1.6

Score important? – very 0.63 0.67 1.7 0.64 0.67 1.1

Score important? –

somewhat

0.15 0.086 �3.9 *** 0.15 0.088 �3.5 ***

Prefer 2- or 4-yr.

college? (n/a)
0.11 0.1 �0.6 0.13 0.1 �2.1 *

Prefer 2- or 4-yr.

college? – 4-yr

0.89 0.9 0.6 0.87 0.9 2.1 *

Degree goal: (n/a) 0.27 0.25 �0.8 0.27 0.25 �1.2

Degree goal: < ¼ BA 0.024 0.01 �2.0 * 0.02 0.011 �1.4

Degree goal: BA 0.2 0.12 �4.1 *** 0.18 0.13 �2.8 **

Degree goal: > ¼ BA 0.51 0.61 4.5 *** 0.53 0.61 3.6 ***

Prefers public college 0.61 0.73 5.4 *** 0.64 0.73 3.8 ***

Public or private OK 0.39 0.27 �5.4 *** 0.36 0.27 �3.8 ***

Note. Subclassification on demographic variables fails to address large differences on these

variables

158 B.B. Hansen



the subclassified Powers-Rock sample whether Cochran might have thought

regression suitable to remove remaining observed covariate bias. To compare

unstratified treatment and control groups on a covariate x, we scale the difference
of coached and uncoached x-means, �xt � �xc, by the reciprocal of its permutational

SD (i.e. the SD of the quantity �xt � �xc under random permutations of the labeling

of observations as treatment [t] or control [c]). (This permutational SD has the

advantages that it can be calculated exactly, rather than estimated, and that its

motivation does not require subjects to constitute a simple random sample of a

population (Hansen & Bowers, 2008). Ordinarily it will be similar to the pooled

standard deviation considered by Cochran.) For treatment-control comparisons

of x that account for the Race�SES poststratification, we take weighted avera-

ges of stratum-wise differences of means on a covariate, then scale by their

corresponding permutational SDs. (For these SDs, the relevant hypothetical rando-

mizations are those that shuffle assignments to treatment or control within strata.)

One has choices among weighting schemes when combining �xts � �xcs across

strata s; our comparisons will weight strata by the harmonic mean of the numbers

of treatment and control subjects they contain, which is the weighting implicitly

used to construct the coefficient on the treatment variable in the ordinary least

squares regression of the covariate in question on treatment and stratum dummies.

(See Sect. 9.3.3 for a bit more discussion of harmonic weighting, or Hansen &

Bowers, 2008, for a more systematic development of the issue.) Another slight

modification of Cochran’s suggestion, applying to comparisons both with and

without stratification, has to do with our handling of the possibility of noncompa-

rability on continuous measurements due to differences in spread or skewness of

the variable, rather than mean differences. Whereas Cochran suggested compa-

risons on higher-order moments, we instead compare means of derived variables

constructed to focus attention on continuous covariates’ tails. For instance, rather

than comparing treatment and control means in, say, PSAT-V, (PSAT-V)2, and

(PSAT-V)3, we compare them in their means on PSAT-V and on min(PSAT-V,

40), a variable equal to PSAT verbal score if the score is less than 40 and equal to

40 otherwise, and on max(PSAT-V, 60). These derived variables track the pres-

ence and magnitude of PSAT-V score deviations (from the national mean of verbal

PSAT scores, roughly 50) exceeding about one population SD.

Table 9.2 shows that coached and uncoached students differ quite sharply

in demographic terms – differences between the groups are quite statistically

significant on all but a few of the variables, with many of the z-scores well

above 2.0 in absolute value. The Race�SES stratification markedly reduces the

differences, eliminating them entirely on 7 of the 22 demographic indicators. In

one exceptional case, that of the uppermost quartile of (student-reported) parents’

income, stratification has made things worse, but for the remaining demographic

variables it generally helps. Previously significant differences on whether English

was the student’s first language have been made negligible. As regards other

variables that the Race�SES stratification does not specifically address, one

could ask for a bit more: Controlling for father’s education has reduced

differences in mother’s education, for instance, but 3 of the 4 mother’s education
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variables exhibiting significant differences before stratification remain significant

after it. (Tables 9.2–9.4 were prepared using the RItools add-on package for R

(Bowers, Fredrickson, & Hansen, 2010), which also helps with propensity score

diagnostics.)

Table 9.3 shows scholastic achievement variables. There are many variables

describing subjects’ scholastic achievements around the time of their tests and

coaching decisions; this is to the advantage of the study. But a good many of these

variables have large z-values, which would appear to be to the disadvantage of the
study. Stars appear where the z-value exceeds 2.0 in magnitude, multiple stars

where it exceeds 2.6 or 3.3. Before stratification, fully 23 of 46 variables received

at least one star. Stratification reduced this number to 12 of 46 variables. It is

encouraging that controling only for demographic variables, ethnicity, and

father’s education controls implicitly for some of these nondemographic

variables. However, even with this control well more than several variables

appear by Cochran’s criterion to demand adjustment. Among those imbalances

that remain after subclassification are imbalances in the tails of the pretest

distributions: in the constructed variable max(PSAT-V, 60), for example, where

the uncoached students’ mean exceeds the coached students’ by more than three

standard errors. PSAT scores are likely to be among the strongest predictors of

the posttest.

If that isn’t discouraging enough, Table 9.4 bears worse news. Without stratifi-

cation the coached and uncoached differed significantly on 12 of 20 measurements

describing subjects’ attitudes to college and to the SAT; with Race�SES stratifica-

tion they differed significantly on 13 of 20 such measurements. If addressing

demographic differences helped implicitly with differences in scholastic achieve-

ment, it did little to nothing to help with differences in attitudes toward the test.

These variables are of clear importance both to coaching decisions and to test

performance, and their presence is one of Powers and Rock’s data’s most notable

strengths.

Clearly, the Race�SES subclassification does not do enough. Indeed, by

Cochran’s standards, the situation now seems quite poor – not just “several” but

tens of unsigned z values exceed 2 or more. The answer to the question of

Sect. 9.1.2 Step 2 – Is it plausible that treatment is good as randomized within

subclasses of the exact matching variable? – is a resounding no.

9.3 Matching Structures and Algorithms

Howmuch better can propensity score matching do? In order to answer the question

unequivocally, it is necessary first to review some modern matching methods.

By “matching” many will understand pair matching, the joining of unique

treatment subjects to unique controls. After this, outcome analysis would be
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based on paired differences, as would assessments of covariate balance.1 With pair

matching, and with generalizations of it to be discussed presently, matching

amounts to arranging some part of the sample into finely grained strata; after

matching, any of a variety of off-the-shelf estimation methods accommodating

sparsely stratified data are available for diagnosing the match and then for using

it to estimate treatment effects.

Pair matching generalizes easily enough to matched triples, the creation of

subgroups consisting of a single treatment and two controls, and on to 1:k matching,

wherein treatment subjects are joined to k controls each. Analysis might then be

based on the differences between treatments’ measurements and averages of controls’

measurements. Another generalization is to matching with a varying number of

controls, discussed by Ming and Rosenbaum (2000). Analysis can again begin with

differences between treatment subjects’ measurements and averages of their matched

controls’ measurements, although summarizing these differences across matched sets

is less routine, as contributions from larger matched sets now call for upweighting

relative to contributions from matched pairs, or matched sets with fewer controls.

Given a weighting protocol to accommodate matched sets of varying structures, one

can allow matched sets with multiple treatment subjects, i:1 matches with i > 1, in

addition to sets with multiple controls. This allowance becomes helpful when there

are values of the matching variable (or variables) that are better represented among

treatment subjects than among controls – as is almost guaranteed to occur when one is

matching on propensity scores.

9.3.1 Nearest-Available Versus Optimal Matching

Figure 9.1 presents an artificial data set modeled on an unpublished gender-equity

study. Men and women university scientists within various departments were to be

compared in terms of their lab space assignments, but first it was necessary to match

them on factors that might confound the comparison. The actual study matched on

total grant funding and several other factors, but to simplify the illustration we

consider grant funding alone. The actual study used full matching, which will be

reviewed in Sect. 9.3.2; however, this section uses the gender equity data to contrast

two approaches to pair matching.

1In order that the paired differences be legitimately treated as independent, it is important that

distinct treatment subjects be matched to distinct controls: When both A and B are matched to C,

the A-C difference and the B-C difference cannot ordinarily be treated as independent. A few

estimation techniques have been proposed for nearest-neighbor matching, which pairs subjects

without regard to whether or how often they are paired to subjects elsewhere in the sample,

permitting the pairs to overlap in arbitrary ways (Abadie & Imbens, 2006), but in the main methods

for paired data assume no replacement, as does the remainder of this paper.
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Nearest-available, or greedy, matching algorithms move down the list of treated

subjects from top to bottom, at each step matching a treated subject to the nearest

available control, which is then removed from the list of controls available at the

next step. Matchings are made at a given stage without attention to how they affect

possibilities for later matchings. In the equity matching problem posed in Fig. 9.1,

a nearest-available algorithm for pair matching would first match A to V, then B to

Z, C to X, and finally D to Y, for a total cost (sum of absolute differences in log

Grant Funding) of 3.6. Having matched A to V, Z is the nearest available potential

match for B, but matching B to Z is in fact greedy, in that it forces C and/or D to be

more poorly matched at the next stage. In contrast, optimal matching algorithms

optimize global, rather than local, objectives. The optimal solution for the problem

of pairing each of Fig. 9.1 women with one of its men joins A to V, B to X, C to Y,

and D to Z, for a total cost of 3.4.

For pair matching with a large reservoir of controls, nearest-available algorithms

often do nearly as well as optimal algorithms (Rosenbaum & Rubin, 1985b). But

absent an excess of available controls, or with unfortunate orderings of the list of

treated subjects, nearest-available algorithms can do much worse than optimal ones.

Optimal pair matches are readily determined using the pairmatch function in R,

a part of the optmatch add-on package (Hansen, 2007).

9.3.2 Full Matching and Full Matching with Restrictions

Full matching subdivides a sample into a collection of matched sets consisting

either of a treated subject and any positive number of controls or a control subject

and any positive number of treated persons. It generalizes pair matching and

matching with multiple controls, and often leads to markedly closer matches. For

example, one can readily verify that the optimum placement of the four women and

five men in Fig. 9.1 into matched sets of one woman and one or two men matches A

to V and W, B to X, C to Y, and D to Z, with total cost 3.8. The optimal full match,

depicted in Fig. 9.2, reduces this sum to 3.6. Rosenbaum (1991) introduced full

matching, Gu and Rosenbaum (1993) did a simulation study of it, and Marcus

Fig. 9.1 Pair matching for a gender-equity study. Women and men scientists are to be matched on

Grant Funding. Solid lines indicate the optimal pair match, for which the sum of matched

differences on the matching variable is 3.4; dotted lines, a pair match determined using nearest-

available matching, for which the corresponding sum is 3.6
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(2000) made use of it to assess the Head Start compensatory education program.

Using R, optimal full matches can be found using the fullmatch function of the

optmatch package.

Coincidentally, the optimal full match avoids matching any woman to a man

whose grant funding differs from hers by more than a factor of 10 – a requirement

that full matching enabled me to insist upon in the actual study on which the

example is based. In terms of the matching variable, log10 of grant funding, the

requirement was that matched subjects differ by no more than 1: I imposed a caliper
of 1 on the log-grant variable.2 In the example problem, matching within this

caliper would have been compatible neither with pair matching nor with matching

with one or two controls.

Had the caliper been narrower, say 1/2 rather than 1 unit of the matching

variable, then it would become impossible to find matches for several subjects.

Removing these subjects (D, X, and Y) from the matching problem, full matching

becomes feasible, culminating in matched sets {A, V, W} and {B, C, Z}. On the

other hand pair matching of the remaining subjects would not work, not because

any one subject lacks a permissible match but because arranging permissible

matches into nonoverlapping pairs is impossible. The distinction reflects a general

and important feature of full matching for matching problems that involve calipers

or other prohibitions of certain matches: Barring those units with no permissible

matches, full matching is always able to arrange the remaining units into nonover-

lapping matched sets, even when it is not possible to arrange those units into pairs,

1:k tuples or other specified matching structures. This generality makes full

matching a useful starting point for matching within calipers.

9.3.3 Matching Structures and Effective Sample Size

A less desirable aspect of full matching is its tendency to collect many observations

in a few rather lopsided matched sets. In Fig. 9.2, for example, full matching has

created two matched sets, a 1:4 and a 3:1 structure, after which the data supports

only two matched comparisons, whereas in principle it would have been possible to

arrange for four matched comparisons (either four pairs, omitting a potential

2 In this context, subject-matter intuition decided the width of the caliper. When matching on

propensity scores, the data can be used to choose calipers; see Sect. 9.4.2.

Fig. 9.2 Full-matching

solution to the matching

problem posed by Fig. 9.1
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control, or three pairs and a 1:2 triple). Four matched comparisons would have both

increased the sum of matched discrepancies and violated the caliper of 1 on the

matching variable, and these coarser matches could well translate into distortions in

the matched comparisons that are the purpose of the exercise. Yet settling for fewer

matched comparisons surely reduces the resolution of whatever picture eventually

will emerge, even if it does this in the interest of promoting the faithfulness of the

picture to what it aims to depict.

Because high resolution and low distortion are aims that are in competition with

one another, it is useful to try to quantify them, in order to explicitly manage the

trade-off. As a measure of the resolution supported by the match, translate the

aggregate sizes of matched structures into matched pair equivalents, as follows:

In each matched set – more generally, in each stratum, s – calculate the harmonic

mean of the number of treatment groups subjects and the number of controls,

hðmst;mscÞ ¼ ½ðm�1
st þ m�1

sc Þ=2��1
; add these harmonic means across strata to deter-

mine the effective sample size. The units of this measure are matched-pair

equivalents: A matched pair contributes h(1,1) ¼ 1, so that in matched pair designs

the effective sample size is simply the number of matched sets. A matched

quadruple contributes somewhat more than a matched pair, h(1,3) ¼ 1.5, but less

than twice as much, fitting with the intuition that two matched pairs would enable

two distinct treatment-control comparisons whereas the matched triple enables only

one – pairs of pairs add more resolution than do single matched quadruples.

A matched set, that is a stratum s with either mst ¼ 1 or msc ¼ 1 or both, never

contributes more than twice what a matched pair contributes, as h(1,x) ¼ h(x,1) > 2

for all x < 1, and no stratum s contributes unless both mst > 0 and msc > 0.

Competing candidates for the designation effective sample size, such as the

number of matched sets, the number of matched treated subjects, or the number

of subjects of both kinds, lack comparable graces.3

The full match shown in Fig. 9.2 has an effective sample size of h(1,4) +
h(3,1) ¼ 3/2 + 8/5 ¼ 3.1 pairs. Each of the pair matches depicted in Fig. 9.1, on

the other hand, consists of four pairs and accordingly has effective sample size 4.

The reduced distortion (to the eventual comparison of matched men and women in

measures of their working conditions) that is bought by better matches on grant

funding comes at a price of decreased resolution, and comparing effective sample

sizes quantifies that price. Looking aside from issues of bias,4 to reduce the standard

3A more general motivation for the formula is that in the ordinary least squares regression of a

variable v on the treatment variable, allowing separate intercepts for each stratum, the standard

error of the treatment coefficient is inversely proportional to the square root of the sum of these

harmonic means. This coefficient is in turn interpretable as an average of matched differences

�vst � �vsc, weighted in proportion with hðmst;mscÞ, which is the minimum-variance estimate of the

contrast in the homoskedastic linear model with constant effects of treatment on v across strata (see
e.g., Kalton, 1968).
4 Incidentally, in this example making sense of bias is particularly thorny, as the example involves

contrasts on a trait, gender, which is not readily manipulable. (See the excellent discussions of

Holland, 1986a, 1986b; Rubin, 1986.)
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errors of gender contrasts made on the basis of the full match to the levels of those

that either pair match would support, one expects to have to find one additional pair

of treatment and control subjects who are suitable to be matched.

Optimal full matching reduces matched discrepancies to the lowest possible

levels (Rosenbaum, 1991). Insofar as controlling the matching variable reduces bias

of matched comparisons, this prevents distortions that might otherwise be present in

them; but it does so at the expense of effective sample size. Hansen (2004) used full

matching with structural restrictions: explicit limits on the numbers of controls that

could be matched to one treated subject and on the number of treated subjects

permitted to be matched to a single control. The dotted lines in Fig. 9.3 demonstrate

the result of full matching research scientists under the restrictions that no more

than two controls share a match in the treatment group and no more than two

treatment group members share a matching control: in the syntax of optmatch,

fullmatch(loggrant, max.controls¼2, min.controls¼1/2). The
structural restrictions improve unrestricted full matching’s effective sample size from

3.1 to 4 pair-equivalents.

Unfortunately, structural restrictions bring an undesirable complication to the

workflow of full matching: The combination of structural restrictions with calipers

may render a matching problem infeasible. In Figs. 9.1 or 9.3, the restrictions max.
controls¼2 and min.controls¼1/2 are jointly compatible with a caliper

of 1.0 on the matching variable, for example, but not with a caliper of 0.8, which

would prevent B from being matched to X or Y. This is a complication, not a

limitation, because the matching algorithm implemented by optmatch finds and

quickly reports such infeasibility when it is present, and one adapts by simply

reducing or lifting the structural restrictions that caused it. Narrowing the caliper

on the log of grant funding to 0.8 in Fig. 9.3, for instance, fullmatch() reports

infeasibility unless max.controls is at least 4 and min.controls is no more

than 1/3. Finding each of these cutoffs requires a line search, however; although

optmatch has dedicated functions to conduct the line searches, minControlsCap
andmaxControlsCap, the process is a bit more time consuming, requiring up to a

few minutes in problems for which matching alone takes seconds.

Fig. 9.3 Matching with restrictions (dotted lines) and on an alternate matching variable selected

to reduce separation between the groups (solid lines) for the problem posed by Fig. 9.1.

(The restrictions are min.controls¼1/2, max.controls¼2; matching on the alter-

nate variable, here log grant as PI (principal investigator), is done within calipers of 1.0 on the

original matching variable, log total grant)
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An alternate strategy to limit full matching’s profligacy with effective sample

size is to find a primary matching variable on which the treatment and control groups

are less separated. In Fig. 9.3, the as-PI grant funding variable plays this role: On it,

men’s and women’s means differ by 80% of a pooled SD, whereas the two groups

were separated by 95% of a pooled SD on the original matching variable, log total

grant funding. The solid, curved lines in Fig. 9.3 represent an optimal full match on

the new matching variable with calipers of 1.0 on the original matching variable.

Because no additional structural restrictions are used (i.e. min.controls or

max.controls arguments to fullmatch), this matching problem is always

feasible, in the sense that full matching finds matches for each matching candidate

with an opposite-group counterpart within caliper distance of it. This approach may

be more or less sparing with effective sample size than matching with restrictions,

depending upon the alternate matching variable; in this case it is a bit less sparing,

yielding an effective sample size of 3.8 as opposed to 4.0 pair-equivalents.

To summarize: Optimal full matching on a variable is a very effective strategy

for setting up comparisons between subjects with similar values of the variable. It

places each subject into some matched set, except perhaps if specified potential

matches have been forbidden in advance, in which case any subjects for whom all

possible matches have been forbidden are, necessarily, excluded from matching.

A drawback is that it may lead to relatively small effective sample sizes, even when

it makes use of most or all of the available sample. One remedy is to match with

structural restrictions, as demonstrated in an earlier analysis of Powers and Rock’s

data (Hansen, 2004); an operationally simpler remedy is to full match on another

matching variable, a variable on which the groups are less separated, perhaps within

calipers of the original matching variable.

9.4 Estimating and Matching on Propensity Scores

This section narrates the creation and refinement of several related propensity-score

full matches of Powers and Rock’s sample. A documented transcript of R code used

to create the propensity scores, the matches, and the accompanying diagnostics is

available from the author upon request.

9.4.1 Matching the Full Sample on an Ordinary
Propensity Score

In an observational study, one seeks to measure and adjust for a collection of

pre-exposure variables, X ¼ ðX1; . . . ;XkÞ, with the property that conditional on X

the assignment to treatment conditions (Z ) is independent of potential responses,

Yc andYt (Holland, 1986b, Sec. 4.5). Our candidate for such a collection of x-variables
is the union of those appearing in Tables 9.2–9.4. There are far too many to attempt to

match on all of them at once. This is where propensity scores come in.
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The propensity score is the conditional probability of assignment to treatment

given the covariates, PðZ ¼ 1jX ¼ xÞ, or a monotonic transformation thereof.

In particular, ’ðxÞ :¼ logitðPðZ ¼ 1jX ¼ xÞÞ is sometimes called the linear
propensity score, as the most common model for the regression of Z on X, that it

is logistic-linear in x, entails that ’ ðxÞ is linear in x. Rosenbaum and Rubin (1985b)

suggested matching on estimates of ’ ðxÞ, rather than estimates of PðZ ¼ 1jX ¼ xÞ,
because estimates of PðZ ¼ 1jX ¼ xÞ often cluster near 0 and 1 while linear

propensity scores remain more dispersed; [15] offers additional considerations in

support of this recommendation.

If the form of the regression of the treatment variable on covariates were known,

we would certainly use that knowledge in our estimate of the propensity score.

More commonly, as here, we know nothing about that regression. In these cases,

Hansen (2009) suggested that the important thing is to avoid gross misspecification

of the model. If using logistic regression, or something similar, one should aim to

chose predictors in such a way as to bring the (true) linear propensity score, ’ ðxÞ,
within their linear span. If this can be achieved, or nearly achieved, then moderate

overfitting or underfitting of the score is unlikely to be harmful. To this end, we

model Z as logistic in all of the variables appearing in Tables 9.2–9.4, expanding

each of the measurement variables into natural cubic splines (Ruppert, Wand, &

Carroll, 2003, Sec. 3.7.2) with four degrees of freedom (d.f.). It would also be

possible to add interactions to the model. Hansen (2004) used stepwise regression to

select from among the many possible interactions; with Bayesian methods, one

could use more of them by incorporating penalties on the second-order terms.

Logistic regression is likely to over fit, making the treatment and control groups

more separated on the estimated propensity score than they would be on the true

propensity score, if it were available. Indeed, it can be shown that whenever a linear

combination of a covariate exists such that the two groups have no overlap on that

linear combination, then logistic regression will return a linear predictor on which

the two groups are fully separated (Hastie, Tibshirani, & Friedman, 2001, p. 111),

even if overlap on the true propensity score is substantial. The downside of logistic

regression’s tendency to exaggerate separation is that it can make it hard to match

closely on estimated propensity scores. This turns out to be less of a problem than it

might at first seem, however, because precise matching on the estimated propensity

score will turn out not to be necessary. The upside to logistic regression’s tendency

to separate the groups is that a plot comparing the groups on ’̂ ðxÞ, as seen in

Fig. 9.4, reveals immediately whether the groups can be separated by a linear

combination of x-variables. If they can, then propensity matching is made difficult;

but by the same token any comparison between the groups is, at least in terms of X,

inherently extrapolative.

Matching is performed separately within each Race�SES subclass.

This matching within subclasses forces exact matching on race and SES, as was

decided at Step 1 (see Sect. 9.1.2) of the matching procedure, as executed in

Sect. 9.2.2; furthermore, trading one large matching problem for many smaller

ones drastically improves computation time. The algorithm optmatch employs

requires on the order of n3 logðnÞ operations, where n is the number of subjects to
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be matched (Hansen & Klopfer, 2006); exchanging n ¼ 4,000 for 12 n’s summing

to 4,000 reduces this time estimate by 97%. Subdivided in this way, the whole full

matching problem takes a second or two to solve using a modern computer.

Full matching on the propensity score does wonders for the imbalances on

covariates found at Step 2 of the matching workflow, demonstrated in Sect. 9.2.3.

Examining how full matching changes these imbalances is part of Step 5. With no

stratification whatsoever, the chi-square statistic combining the imbalances

(Hansen & Bowers, 2008) is extremely significant, 486 on 66 d.f.; the root mean

square (RMS) of the covariate-wise measures of imbalance is, accounting for

correlations among them, (486/66)1/2 ¼ 2.7 – well above even Cochran’s more

generous benchmark (2.0). Furthermore, although at Step 2 the Race�SES sub-

classification was found to cut w2 nearly in half, to 287 on 61 d.f., even so the RMS

of the z-statistics was still 2.1: worse than Cochran would have thought salvageable,
and markedly worse than what one would expect under randomization. At this first

pass through Step 5, we find full matching on the propensity score to have reduced

covariate imbalance measurements by an order of magnitude, to w2 ¼ 17, on 69 d.f.,

for an RMS z-measure of 0.5. Cochran’s criterion is easily met, and moreover, the

randomization p-value is indistinguishable from 1: Balance on observed covariates

is now better than what randomization would be expected to produce. (Unobserved

variables are another matter.)

Step 5 also requires that we assess matched propensity score discrepancies and

the effect of the matching on effective sample size, and on both of these counts the

full match within Race�SES subclasses leaves something to be desired. Outlyingly

large matched discrepancies exist on ’̂ ðxÞ: Although half are lower than 3%

Fig. 9.4 Estimated linear

propensity scores, ’̂ ðxÞ, in
the coached and the

uncoached groups
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of a pooled SD in ’̂ ðxÞ, some matched subjects are separated by as much as 2.4 SDs

of ’̂ ðxÞ. The effective sample size is only 679 pair-equivalents. With 500 treatment

subjects and 3,500 controls, this is only slightly better than what 1:2 matched triples

would have given, the sample size equivalent of 667 matched pairs. On two counts,

then, Step 6 directs us to try again from an earlier stage of the procedure. Nothing

calls into question the choice of stratifying variables or the propensity model, so

there is no need to back up as far as Steps 1 or 3. Rather, we revisit Step 4, attending

first to the large matched discrepancies.

9.4.2 Matching Within Propensity Score Calipers

Figure 9.4 shows a few coached students whose propensity scores fall outside of the

range of propensity scores for uncoached students and a good number of uncoached

students with estimated scores below those of anyone who received coaching.

Having an estimated propensity score outside of the range of propensity scores

estimated for the comparison group is sometimes taken as a sign of a subject that

must be excluded from the analysis (e.g. Dehejia & Wahba, 1999). However, the

fact that propensity scores are ordinarily known to be overfitted suggests that falling

outside of the comparison range in this way may often be an artifact of the fitting

routine. The asymptotic theory of Hansen (2009) suggested that a weaker criterion

is more appropriate: impose calipers on the propensity score, calipers strict enough

to prevent outlying matched discrepancies on it. The calipers are imposed for all

subjects, but for those subjects near the extremes of their groups’ ’̂ ðxÞ
distributions, they have the side effect of excluding the subject if it has no

counterpart within caliper distance.

In full matching without calipers, the largest matched discrepancy exceeds the

95th percentile of matched discrepancies by a factor of six (2.38 as compared to

0.40 pooled SDs in the propensity score). Let us reduce this factor to something

closer to, say, 2. Imposing a caliper of half of a pooled SD in ’̂ ðxÞ, sp, has several
effects: It slightly reduces the effective sample size, from 679 to 676; it makes

imbalance even less, moving w2 from 17 to 11; it brings the maximum matched

discrepancy on ’̂ ðxÞ down to 0.499, just more than double the 95th percentile of

such discrepancies (0.24); and it excludes 10 coached students, 2% of the treatment

group, and 140 uncoached students from matching.

As the objective of the analysis is to estimate the benefit of coaching, leaving

aside a few potential controls is not a problem. Rejecting treatment group members

may be a problem, as the final matched analysis will be unable to speak to effects of

the treatment on them (Rosenbaum & Rubin, 1985a). To avoid rejecting treatment

group members, Rosenbaum and Rubin (1985b) first imposed a propensity score

caliper and then lifted it for those treatment group subjects more separated from any

member of the control group than the width of the caliper. This strategy makes

sense, but only within reasonable limits. If the data contain no suitable comparisons

for a member of the treatment group, then no basis exists for matched estimation of
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the treatment’s effect on it. Rather than pretending otherwise, it would be better to

restrict the scope of the analysis, estimating treatment effects only for a proper

subset of the intervention group.

Narrowing the scope of the analysis to only 98% of the intervention group, as

full matching with an sp/2 caliper would force us to do, changes the focus of the

analysis only very slightly. However, as optmatch’s caliper function permits the

user to relax a caliper requirement selectively, we can easily take a moderate step in

the direction of Rosenbaum and Rubin (1985b), permitting those coached students

without counterparts within the sp/2 caliper to be matched to uncoached students as

far as sp away. This brings 5 of the missing 10 back into the analysis, so that only

1% of treatment group subjects are rejected. The 95th percentile of matched

discrepancies is about 0.24 sp. As the five newly matched coached students are

matched to controls much farther from them than sp/2 > 2*0.24 sp, our outlier
condition is violated; but the violation is contained, affecting only five cases, and

the remaining matched discrepancies are all less than sp/2. Balance is slightly

diminished but remains excellent:w2 ¼ 14:1, on 69 d.f.; p is effectively 1.

9.4.3 Focusing the Propensity Score

The first match we considered, in Sect. 9.4.1, had another potential shortcoming in

addition to its large matched discrepancies on the propensity score: Its effective

sample size was disappointingly small. The modified match of Sect. 9.4.2 removed

outlying matched discrepancies at the expense of slightly worsening effective

sample size. This section returns to the sample size issue, addressing it by

incorporating a second propensity score in the matching criterion.

The propensity score used thus far strives just as much to balance variables of

possible prognostic relevance, for instance the number of semesters of foreign

language taken, as it does to balance variables of clear prognostic relevance, such

as pretest scores. Alternatively, one could estimate and match on a propensity score

based only on a subset or lower-dimensional reduction of the x-variables, call it ~X,
selected or constructed so as to summarize prognostic information in X. Hansen

(2008b) discussed prognostic summaries of this type, describing conditions under

which if it is sufficient to adjust for X then it is sufficient to adjust for ~X. Methods

for confidently isolating ~X from within X are a topic of current research, and are

somewhat beyond the scope of this paper. What is within the scope of the paper is to

demonstrate how even a crude prognostic reduction of X can be used to comple-

ment and focus a propensity score formed in the ordinary way.

As a prognostic reduction of the covariate, I take all of the pretest measures,

PSAT math and verbal and, where available, prior SAT math and verbal scores,

along with indicators of availability of both of these sets of scores. (I have imputed

median values on these variables to those students who either did not take the

relevant test or did take it, but may have done so after their coaching or after their

decision not to obtain coaching; see Hansen, 2004.) In addition, I include two
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functions of these and the remaining covariates, constructed as follows: First, fit

two regression models to the control group, one predicting math scores on the

posttest while the other predicts verbal posttest scores, both using all covariates as

predictors. (For fitting, I simply use ordinary least squares.) Second, extrapolate the

fitted regressions to the entire sample. These ŷcðxÞ’s, the estimated conditional

mean potential responses to control, are the prognostic summaries which, taken

together with the pretest variables themselves, form ~x. One then fits a focused
propensity score, ’̂ ð~xÞ, by logistic regression of z on ~x, as opposed to x.

Extrapolating conditional mean fits from controls to the treatment group is risky

when the groups exhibit separation on x, as indeed they do in this example. It is

ironic that we are led to extrapolate this way in the interest of focusing the

propensity score: A central purpose of propensity adjustment itself is to reduce

and mitigate this sort of extrapolation, to which regression methods are notoriously

vulnerable (Rubin, 1997). But we need not rely on the focused propensity scores

alone. To retain advantages of adjustment for the ordinary propensity score, which

does not inherit ŷcð�Þ’s vulnerability to separation, we can match on our focused

propensity score but within the propensity score calipers that were described in

Sect. 9.4.2.

Figure 9.5 shows that the coached and uncoached groups are considerably less

separated on ’̂ ð~xÞ than on ’̂ ðxÞ. The groups’ means differ on the ordinary

propensity score by 1.1 SDs in it, but by only 42% of an SD in the focused

Fig. 9.5 Coached and uncoached students’ (a) propensity scores, ’̂ ðxÞ, at left; and (b) focused or
“prognostic” propensity scores, ’̂ ð~xÞ, at right. Focusing the propensity score markedly reduces the

apparent separation between the groups: At left, the group means differ by 1.1 pooled SDs of ’̂ ðxÞ;
at right, by only .42 pooled SDs of ’̂ ð~xÞ
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propensity score. Recall that in the illustration in Sect. 9.3.3, effective sample size

was increased by replacing full matching on one variable with full matching on a

second variable, a variable on which the groups were less separated, with the added

constraint of calipers on the original variable. In like fashion, full matching on ’̂ ð~xÞ
within calipers of ’̂ ðxÞ, rather than on ’̂ ðxÞ itself within calipers on the same

variable, increases effective sample size from 677 to 701 matched-pair equivalents.

Imbalance overall is increased, from w2 ¼ 14 to w2 ¼ 56 on 69 d.f., but not past

Cochran’s limits (the RMS of z-measures is (56/69)1/2 ¼ 0.9) nor to a level

incommensurate with what randomization might have produced (p ¼ 0.9). Imbal-

ance on the eight pretest and derived variables, the targets of our second propensity

score’s focus, is quite effectively controlled: w2 ¼ 1:2 on 8 d.f., for an RMS

imbalance of 0.4 on these central prognostic variables; looking at these variables

alone, the randomization p-value is indistinguishable from 1.

9.5 Results

9.5.1 Matched, Permutation-Based Estimates
of the Treatment Effect

Had coaching been allocated at random within matched sets, more or less

assumption-free inferences about the treatment effect could be made using

randomization-based permutation tests. Without randomization, permutation

tests are not assumption free, but they dispense with various ancillary assumptions

(Rosenbaum, 2002b). In particular, according to Hansen (2009), if potential

responses in the absence of treatment (Holland, 1986b), Yc, were known to be

conditionally independent of assignment to treatment conditions, Z, given the

covariates, X, then propensity score matching could bring about a situation

comparable to that of randomized studies. If the propensity match balances all

of the covariates at least crudely and balances the main prognostic variables well,

and if it avoids outlying matched differences on the propensity score, then

asymptotic inferences based on a normal approximation are valid under similar

data conditions as would be needed to justify the approximation after random

assignment. These balance and outlier requirements are, of course, precisely what

the matching and diagnostic procedures of Sects. 9.2 and 9.4 sought to ensure.

Under the conditional independence assumption, then, we can test hypotheses

about coaching effects, at least for the 99% of coached students included in our

match. For simplicity, we consider only hypotheses according to which coaching

effects are the same for everyone. (Hypotheses stipulating varying treatment effects

somewhat complicate notation and calculations.) Consider for instance the hypoth-

esis H : Yt � Yc þ 50, that coaching would increase any subject’s SAT math score

by 50 points. For each coached student i in the sample, the observed posttest

measure, yi, reveals i’s potential response to treatment, yti. According to H, his
potential response to control is implicitly revealed to be yi � 50. For the purpose of
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testing this H, for each i compute ~yi as yi � 50, if i was coached, or as yi itself, if i
was not coached. Now calculate the matched correlation of ~y and z, the indicator of
coaching, and compare it to the distribution of such correlations as z is indepen-
dently permuted within matched sets. Then H is sustained at level a, and 50 goes

inside our (1 � a)100% confidence interval for coaching’s putatively constant

effect on SAT math score, if and only if r~y;zjmatch falls within the central (1 � a)
100% of this permutation distribution. By repeating the procedure with hypotheses

to the effect that Yt � Yc � 60, 70, and so forth, as well as 40, 30, and so on, one

bounds the extent of the confidence interval; continuing to iterate over a finer grid

of hypothesized treatment effects, one delimits the interval with arbitrary precision.

Applying this approach with our matched sample (and with grids 1 SAT point

wide) gives 95% confidence intervals of [�10,9] and [12,30] for effects of coaching

on verbal and on math scores, respectively. For point estimates, define a0 to be the

largest a such that the (1 � a)100% confidence interval has positive extent. The

centroids of the (1 � a0)100% confidence intervals, also known as Hodges-

Lehmann point estimates, are 0 and 21, respectively. These results are quite similar

to those Hansen (2004) reported using a somewhat different match and a model-

based method of analysis.

9.5.2 Matched Outcome Analysis with Permutation Tests
and Covariate Adjustment

Rubin (1979) and Rubin and Thomas (2000), among others, recommended that

propensity score adjustments for all potentially relevant preexposure variables be

combined with regression adjustments for a few of the most important ones. This

idea can be combined with permutation-based inference for treatment effects.

When regression, matching, and permutation-type inferences are suitably com-

bined, the validity of the inferences need not depend on the correctness of a working

model for Y, or for Yc or Yt. Instead, it can be warranted by the combination of the

assumption of conditional independence of Yc and Z given X, the trueness of our

implementation of the propensity scoring, matching and diagnostic methods, and by

supporting theory asymptotic theory. This can happen in at least two ways.

In the first, for covariate adjustment we use the coefficients fitted when

estimating ŷc’s (Sect. 9.4.3). Equivalently, for each i calculate ei ¼ yi � ŷcðxiÞ;
now calculate tests, confidence intervals and point estimates for the treatment effect

in the manner of Sect. 9.5.1, substituting e’s for y’s throughout.5 The method yields

5 This is not quite a permutation test, because ŷcð�Þ is determined by the composition of the control

group, so that even under the hypothesis of no effect whatsoever, Yc � Yt, ei’s vary as treatment

and control labels are permuted. However, let mci be the expectation of ŷcðxiÞ as treatment labels

are permuted and let ei ¼ yi � mci, for each i. In a closely related context, Hansen and Bowers

(2009) reviewed arguments to the effect that in large samples, differences between re;zjmatch and

re;zjmatch are negligible, and the permutation distribution of re;zjmatch is well approximated by

treating e s as if they were e s.
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similar estimates of the coaching effect to those of Sect. 9.5.1. The verbal effect

is again estimated at 0 points, but with a 95% confidence interval of [�7,6].

Covariate adjustment reduces the width of the interval by more than 30%.

The covariate-adjusted estimate of the math effect is also sharper: The point

estimate remains at 21 while the 95% confidence interval again shrinks by about

a third, from [12,30] to [14,26].

The second method is discussed by Rosenbaum (2002a). Let X1, typically a

proper subset of variables in X, represent those preexposure variables for which

covariate adjustment is desired. Rather than testing hypotheses about the treat-

ment effect by referring matched correlations of ~y and z to their distributions under
permutations of z, as in the previous section, one computes matched, partial
correlations of ~y and z, adjusted for covariance of ~y and x1, and refers them to

their distributions under permutations of z. In the present example, taking X1

to consist of the pretest scores and their missingness indicators leads to the same

point estimates as did the first method, but with modestly wider confi-

dence intervals: [�7,7] rather than [�7,6]; [14,27] as opposed to [14,26]. The

confidence intervals remain much narrower than those calculated without covari-

ate adjustment.

9.5.3 The Coaching Debate

Powers and Rock’s (1999) study was published in the midst of ebullient claims

on behalf of coaching’s benefits to SAT scores. The Princeton Review (2004)

has long said its students’ average benefit is 140 points in combined SAT

score, and during the 1990s, Kaplan Educational Centers claimed average

benefits of 120 points (Zehr, 2001). The coaching companies’ figures appear to

be based on studies conducted for them by outside accounting or consulting

firms (Princeton Review, 2004); but since neither these studies nor methodologi-

cal descriptions of them are published or publicly available, the integrity of

their conclusions was difficult to assess. In contrast, Powers and Rock found

much weaker coaching effects: about 20 points on the math section and 10 on

the verbal.

Applying methods similar to those of this paper to Powers and Rock’s data,

Hansen (2004) estimated somewhat higher math effects and somewhat lower verbal

effects, for a net coaching benefit similar to what Powers and Rock had found. The

present analysis finds math effects more similar to Powers and Rock’s original

estimates, alongside verbal effect estimates that remain lower than theirs. Briggs

(2001) and Domingue and Briggs (2009) have used NELS:88 and ELS:02 data

to study SAT coaching, arriving at similar conclusions about the magnitude of

its effects.
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9.6 Discussion

9.6.1 Matching as a Basis for Confounder Control

Regression adjustment for confounder control is ordinarily motivated by the idea

that a general rule relating the covariates and intervention variable to outcomes, a

“response schedule” (Freedman, 2004), can be specified in outline a priori and then

estimated in detail from the data. Holland (1979) presented an alternative interpre-

tation in which the role of model fitting is to construct smoothed representations of

within-sample patterns of multivariate association; similar conceptualizations

of the role of regression are a staple of recent texts on causal inference in the social

science (Angrist & Pischke, 2009; Morgan & Winship, 2007). Still, confounder

control from regression can be expected to succeed only if the model beneath the

regression manages to do one of these things, accurately represent a general rule

relating its independent and dependent variables or accurately represent potentially

subtle patterns of multivariate association between the variables.

Matching prior to regression adjustment seems to make it easier for regression to

do its work. In a paper contemporaneous with Holland’s (1979), Rubin (1979)

compared regression adjustments after matching to regression alone in a situation

of moderate misspecification, finding that the regression after matching more

reliably discovered and corrected for multivariate associations than did regression

unassisted by matching. The finding was explained in large part by matching’s

tendency to reduce the possibility of extrapolation between groups being compared,

even extrapolation in terms of combinations of covariates that wouldn’t be seen in a

comparison of the groups on any one covariate. Such extrapolation can be difficult

to identify, but estimating and matching on propensity scores quite dependably

reveals and mitigates it (Rubin, 1997).

Yet propensity matching has been presented, here and elsewhere (Rubin, 1991;

Rosenbaum, 2001), as a primary countermeasure to bias due to measured con-

founding, not just as an assistant to regression adjustment. At first blush, propensity

matching seems to have requirements similar to those of regression adjustment since

it involves specifying and fitting a regression of its own. Indeed, its requirements

would appear to be tougher: The regression it involves has a binary dependent

variable while the outcome regression’s dependent variable may be continuous, in

which case more informative diagnostic procedures may be available for it; and the

matching procedure, an extra stepwhich confounder control from regression does not

need, is inherently inexact, whereas theory supporting the method seems to require

matching exactly on the propensity score.

It may well be that propensity matching requires stringent, scarcely attainable

conditions if it alone is to remove confounding bias in precisely the manner suggested

by the original theory of propensity scores (Rosenbaum & Rubin, 1983). But

the theory separately predicts, and in practice it has frequently been reaffirmed,

that propensity matching can alleviate an intervention and a control group’s

incompatibilities in terms of observed confounders. Newer theory (Hansen, 2009)
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says that in large samples, this alleviation of differences suffices to remove bias

due to observed confounders. If knowing the precise form of the outcome’s

dependence on observed confounders would suffice to estimate treatment effects,

that is, then the combination of a well-implemented propensity matching with a

simple covariate adjustment – requiring prior knowledge neither of the

outcome’s nor of the treatment’s regression on covariates – also suffices to

validly estimate treatment effects.

9.6.2 A Comparison of Matching Strategies: Focus
Versus Restrictions

The recommendations of this paper are to full match, in order to make use of as much

of the sample as possible; to match within calipers of an linear propensity score

estimated in the usual way, so as to balance many variables at once and to avoid large

matched discrepancies; but within those calipers to match on a second, more focused

propensity score, in order to avoid inordinately reducing the effective sample size.

Confronting the same matching problem as discussed here, Hansen (2004)

addressed similar concerns by full matching on just one estimated propensity

score but using structural restrictions (reviewed briefly in Sect. 9.3.3), which the

current recommendation does not involve. How do the two approaches compare?

In this instance, results from the two approaches do not differ greatly, but the

obtaining differences are instructive. Balance overall is similar but a bit better for

focused matching, w2 ¼ 56 versus w2 ¼ 79 for matching with restrictions, on 69 d.f.

in both cases. Effective sample size is similar but very slightly better for matching

with restrictions, 701 versus 705. Figure 9.6 shows that both did well at balancing

the main prognostic variables, although balance on predictive uncoached verbal

scores, the ŷcðxÞ’s for SAT-V, is markedly better under the focused approach.

Propensity matching with focus on selected prognostic variables appears to more

reliably balance those variables.

Both of these matches incorporate propensity-score calipers, which Hansen’s,

2004 paper’s matches did not. It seems best to use calipers, which help to ensure

favorable large-sample properties by heading off outlying differences on the (true)

propensity score (Hansen, 2009) and have also been recommended by other authors

(Haviland, Nagin, & Rosenbaum, 2007; Rosenbaum & Rubin, 1985b; Rubin &

Thomas, 2000). However, certain combinations of calipers with structural

restrictions make matching impossible, as discussed in Sect. 9.3.3. This problem

does not arise when full matching without restrictions. Indeed, when the calipers

used in Sects. 9.4.2 and 9.4.3 above are combined with the specific restrictions used

by Hansen (2004), matching is impossible in 10 of the 12 subclasses, and only 119

subjects can be matched to one another. It becomes necessary first to determine

what restrictions are compatible with the caliper, a task that is more computation-

ally intensive than anything required by the method of this paper (see Sect. 9.3.3),
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and then to adjust these restrictions with attention to balance, a task that is more

labor intensive than anything required so far. The matching strategy recommended

here requires substantially less effort on the part of the statistician.

9.6.3 Why Match: Particularly If We’re Going to Use
Regression after Matching Anyway?

Recall Cochran’s criterion for when an imbalanced comparison might and might

not plausibly be rectified by statistical adjustments: The adjustment would have a

fighting chance, in Cochran’s assessment, if there were a few imbalances large

Fig. 9.6 Treatment-control differences on key prognostic covariates, adjusted for the initial

Race � SES stratification and for two propensity score matches that subdivide the Race � SES

strata: the match produced by full matching with calipers and structural restrictions, and the match

produced by full matching on the focused propensity score within propensity score calipers
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enough to give t-statistics greater than 2, but not necessarily otherwise. A sample

like Powers and Rock’s (1999), with its tens of highly significant imbalances,

appears hopeless from his perspective; nonetheless, propensity score full matching

reduces most all of the imbalances to insignificance. (See Hansen, 2008a, for

discussion of the meaning and uses of statistical significance in this setting.)

Part of what informed Cochran’s pessimism about these situations was the

difficulty of adjusting for tens of confounding variables using the methods of his

day. Matching seemed equipped to handle no more than a few confounders. This

paper has reviewed a combination of propensity scoring, matching and diagnostic

techniques that enables analysts to address confounding on quite large numbers of

covariates, sharply and simultaneously reducing covariate imbalances by

poststratifying more finely and with greater focus than do poststratifications of

the kind that would have been familiar to Cochran. (Our initial exact matching on

race and SES is such a poststratification.) One can only speculate about what

Cochran would have thought of the method, but it has handily addressed a problem,

substantial covariate imbalances on a large number of variables, that his 1965 paper

regarded as both intractable and damning.

Multiple regression, on the other hand, was well known to Cochran – he

contributed importantly to the development of the technique as it is known today –

and unlike exact matching, it was feasible with more than two or three covariates.

However, Cochran did not recommend it as a remedy for covariate imbalances like

the Powers-Rock study’s. Of course, few of today’s diagnostic techniques for

assessing and adjusting a multiple regression specification were available in

Cochran’s day. Why not adjust for the many confounders using some form of

regression-based covariance adjustment, using modern diagnostics (Cook &

Weisberg, 1982; Fox, 2005) to ensure that the model fits reasonably well? One

reason to hesitate runs as follows. Thoroughly applying diagnostics to a multiple

regression adjusting for many or all of the covariates would be a daunting chore,

rivaled in tediousness only by the task of reviewing that it had been properly done.

Because no one undertakes that task willingly, few journals would be willing to

publish the many plots and other materials needed to be ensure that it had been done

correctly; and because the journal wouldn’t be publishing the material anyway, it

will rarely be checked by peer reviewers. The reader of an article reporting results

from a large multiple regression is thus forced to trust that all of the necessary

diagnostics have been adequately done. Because the diagnostics take time, and little

credit to be had for actually doing them, savvy readers expect that they will have

been done hastily or perhaps not at all. Researchers can try to counter such

perceptions by laying out their analytic procedure in detail, as Powers and Rock’s

research reports admirably do; but in other ways claiming to have diagnosed one’s

regression model with great care tells against the credibility of one’s observational

study. It raises the possibility of data dredging, when a researcher fiddles excessively

with his regression specification under a conscious or unconscious stopping rule that

favors statistically significant or otherwise desirable estimates of the treatment

effect. Taken together, these conflicting threats and pressures engender a quite

rational cynicism about multiple regression-adjusted treatment effect estimates.
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On the other side of the ledger, with stratification-based adjustments, the rele-

vant diagnostics are of the form we’ve just seen, assessments of whether the

stratification renders treatment and control groups indistinguishable in terms of

the covariates. Such comparisons are themselves of interest to scientific audiences

of studies, particularly when they are set alongside unstratified comparisons of the

groups, as in Tables 9.2–9.4, because they convey relevant information about data

characteristics as well as information about statistical adjustments. When they

suggest adjustments to the stratification or matching, those adjustments are made

prior to any outcome analysis, greatly mitigating the threat of unconscious or

semiconscious data dredging. Diagnostics for propensity score matching are better

suited to the scholarly record than regression diagnostics, and more likely to

enhance the credibility of the research.

Author’s Note Portions of this chapter are reprinted with permission from the Journal of
the American Statistical Association. Copyright 2004 by the American Statistical Association.
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Part V

Holland Rebuilding ETS

Returning to ETS from Berkeley

Paul W. Holland

One of the joys of returning to Educational Testing Service (ETS) was not only to

reconnect with old friends, but also to meet the new and much younger staff that had

arrived at roughly the same time as my return. Sandip Sinharay had just arrived the

year before and added a burst of energy, which he continues to display. Working

with him on several papers was a very gratifying collaboration.

When I returned, I served as an interim group head for the members of statistics

and psychometrics research. I was very pleased that Shelby Haberman eventually

agreed to come to ETS from Northwestern University to continue his many lines of

research as well provide a more permanent leadership role for this group. Shelby

was an excellent addition to ETS, and his research continues to add to serious

contributions to both theory and practice, something that I value highly.

Shortly after I arrived back at ETS I decided to take the work that I had done on

kernel equating years earlier and turn it into a book. At about the same time, I met

Alina von Davier, who was interested in working at ETS, and I decided to hire her

to help me write the book. This was a very fortunate choice because not only did

the book materialize due to her skills and enthusiasm (as well as those of Dotty

Thayer), but ETS also got a great employee and the field of educational measure-

ment got a skilled scientist who has continued to work on many problems of

importance to the testing enterprise.



Chapter 10

Log-Linear Models as Smooth Operators:

Holland’s Statistical Applications

and Their Practical Uses

Tim P. Moses

10.1 Overview

Paul Holland’s statistical applications have produced important answers to several

problems encountered in equating practice. This paper focuses on one of Holland’s

far-reaching applications: his application of log-linearmodels as a smoothingmethod

for equipercentile equating. Section 10.2 describes the context for Holland’s initial

equating work and the practical problems inevitably faced when researching and

doing equipercentile equating. Section 10.3 describes the application of log-linear

models as a smoothing technique for addressing equipercentile equating problems.

The developments that were introduced to adapt this application to test equating are

also described. Section 10.4 summarizes some of the collaborative investigations

by Holland and Moses of the use of log-linear models for equating.

10.2 Initial Work with Equipercentile Equating

Paul Holland’s equating work began in 1978when ETSers Donald Rubin and Robert

Solomon started the Program Statistics Research Project (von Davier, Holland, &

Thayer, 2004, p. vii). The purpose of this initiative was to focus the statistical

research interests of the newly formed Research Statistics Group on problems

relevant to the work of the testing programs at ETS. Holland was given responsi-

bility for the test equating research part of this initiative.

Holland’s research responsibilities amounted to a fairly large task because

equating research and practice had been ongoing pursuits at ETS for several years

(e.g., Lord, 1950, 1955; Wilks, 1961). His initial work in test equating produced
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a conference and book (Holland & Rubin, 1982) and mathematical analyses of

equating methods commonly used at ETS (Braun & Holland, 1982). New equating

methods were also developed in response to arising needs (e.g., section pre-equating,

see Holland & Thayer, 1981). This work appears to have laid the groundwork for

future work that would address some of the more long-standing problems in test

equating.

One long-standing problem encountered in equipercentile equating is test scores

that are possible to attain but unobserved in sample data. Table 10.1 illustrates the

issue, showing the relative and cumulative relative frequencies for some test scores

of a hypothetical test. In Table 10.1, test score 8 is not observed and therefore has a

relative frequency of 0.00. One result of this unobserved test score is that more than

one score will have the same cumulative relative frequency (i.e., scores 7 and 8).

This result creates a problem for equipercentile conversions based on finding scores

with matching percentiles because these conversions rely on each score’s percentile

being unique.

The difficulties of unobserved test scores can create problems that are more

serious than Table 10.1’s ambiguities, particularly for the so-called post stratifica-

tion equipercentile equating method (also known as the frequency estimation or the

direct equipercentile method). The post stratification equipercentile method is

based on using administration groups’ marginal anchor score distributions to

estimate the test score distributions for a hypothetical, synthetic population. For

example, if test X and anchor A were administered to population P, test Y and A

were administered to population Q (P 6¼ Q), the joint (X,A) probability distribution

in synthetic population T (¼wP + (1 � w)Q, 0 � w � 1) would be estimated as,

ProbTðX;AÞ ¼ wProbPðX;AÞ þ ð1� wÞ ProbPðX;AÞ
ProbPðAÞ ProbQðAÞ: (10.1)

Similarly, the joint (Y,A) probability distribution in T would be estimated as,

ProbTðY;AÞ ¼ ð1� wÞProbQðY;AÞ þ w
ProbQðY;AÞ
ProbQðAÞ ProbPðAÞ: (10.2)

Equations (10.1) and (10.2) require that the A scores be observed in both P

and Q, otherwise divisions by zero undermine the estimation of the synthetic

population distributions.

Table 10.1 Part of the

frequency distribution for a

hypothetical test
Score Relative frequency

Cumulative relative

frequency

10 0.12 1.00

9 0.17 0.88

8 0.00 0.71

7 0.07 0.71
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In his initial equating research, Holland realized that equipercentile methods

have practical limitations (Braun & Holland, 1982, p. 22). He was also aware of

several ad hoc practices being used to avoid the equipercentile method’s

difficulties, some of which include

• Adding small constants to all test scores (Hanson, 1990; Kolen&Brennan, 1995),

• Averaging unobserved test scores with observed test scores (Kolen & Brennan,

1995; Livingston, 2004),

• Substituting observed parts of the score distribution for the unobserved parts

(Jarjoura & Kolen, 1985),

• Tukey-Cureton Smoothing (Angoff, 1984; Cureton & Tukey, 1951),

• Negative hypergeometric and Beta4 smoothing (Keats & Lord, 1962; Lord,

1965), and

• Smoothing by hand drawings and graph paper (Angoff, 1984).

Discussions of the ad hoc practices have detailed their potential for inaccuracy,

their arbitrariness, and their lack of usefulness for particular types of test score

distributions (e.g., Kolen, 1991). Braun and Holland’s (1982) quote, “Modern

methods of data smoothing should have important contributions to make” (p. 22),

revealed Holland’s interest in finding a different method for addressing unobserved

test scores in equipercentile equating.

10.3 Log-Linear Models as a Smoothing Technique

Whereas most practices for using equipercentile equating methods when test scores

are unobserved appear to be based on pragmatic motivations (i.e., adding small

constants, pooling scores, etc.), Holland’s perspective was that the estimation of

test score distributions should be treated as a statistical problem. He drew on his

background in categorical data analysis (Bishop, Fienberg, & Holland, 1975) and

proposed a particular class of log-linear models for use with test score distributions

(Holland & Thayer, 1987). This application could be expected to produce modeled

test score distributions that satisfy statistical criteria, including the following:

• Consistency: With increasing sample size, models’ estimates converge to the

population values.

• Efficiency: Given the sample size, the deviations of the estimated distributions

are as small as possible.

• Positivity: All test scores’ probabilities are greater than zero.

• Integrity: The observed moments in the test data (i.e., means, variances,

correlations) are preserved in the modeled distribution.

Because log-linear models are based on meeting statistical criteria, the modeled

test score distributions could be used to avoid the equipercentile equating method’s

difficulties with unobserved test scores (positivity), and they would likely be more

accurate estimates than those produced by other, previously proposed approaches.
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In addition, log-linear models are extremely flexible, supporting the fitting of a wide

variety of test score distributions. Finally, the modeled distributions produced by a

log-linear model can be smooth. The desirable statistical properties, flexibility and

smoothness outcome, resulted in log-linear smoothing becoming a widely used

technique at ETS and elsewhere.

10.3.1 Log-Linear Models and Univariate Test
Score Distributions

This section illustrates how log-linear modeling may be applied to estimate and

smooth the distribution of a single test, X, with possible scores x1,. . .,xJ, or xj,
with j ¼ 1,. . ., J. The transposed row vector of observed score frequencies,

n ¼ (n1,. . .,nJ )t, sums to the total sample size, N. There are N independent

observations of the discrete random variable X, and n is assumed to follow the

multinomial distribution M(N, p), where p denotes the population probabilities

corresponding to the n ¼ (n1,. . .,nJ )
t values. The log-linear model expresses the log

of the expected (not actual) relative frequencies in terms of a polynomial function of

the test scores,

logeð pjÞ ¼ b0 þ
XI

i¼1

bix
i
j; (10.3)

where the xij are functions of the possible test scores (e.g., x
1
j ; x

2
j ; x

3
j ; . . . ; x

I
j ), b0 is

a normalizing constant that forces the sum of the expected relative frequencies ( pj)
to equal 1, and the bi are parameters to be estimated in the model-fitting process.

The value of I determines the extent of smoothing and, when maximum likelihood

estimation is used, the number of moments of the actual test score distribution that

are preserved in the smoothed distribution. If I ¼ 1 then the smoothed distribution

preserves only the first moment (the mean) of the observed distribution. If I ¼ 4

then the smoothed distribution preserves the first, second, third, and fourth

moments (mean, variance, skewness, and kurtosis) of the observed distribution.

The value of I also determines the extent to which the smoothed frequencies,

mj ¼ Npj, approximate the observed frequencies, nj.
Figure 10.1 presents the frequency distribution for a hypothetical 20-item test

with a possible score range from 0 to 20. This distribution exhibits previously

described issues that would be problematic in equipercentile equating, in that scores

0, 13, 15, 17, and 20 are unobserved (i.e., have frequencies of 0). In addition,

fluctuations in the frequencies can be attributable to each frequency being based on

nine or fewer examinees.

The log-linear model in (10.3) may be used to model the major characteristics

observed in Fig. 10.1’s frequency distribution to smooth out fluctuations attribut-

able to sampling variability and to provide reasonable estimates of the frequencies

at unobserved scores 0, 13, 15, 17, and 20. Figures 10.2–10.6 plot the observed
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distribution shown in Fig. 10.1 along with estimated distributions produced by

fitting five log-linear models to the observed distribution. These five models differ

in their number of parameters, ranging from I ¼ 0 to 4.

Figures 10.2–10.6 illustrate the major features of univariate log-linear models.

Figure 10.2 gives the null model upon which most log-linear models are based,

showing that models based on I ¼ 0 produce a uniform distribution where the

overall sample size is the only observed characteristic preserved in the modeled

distribution. Figures 10.3–10.6 are based on fitting more features in the observed

distribution, beginning with the mean (I ¼ 1, Fig. 10.3), the mean and variance

(I ¼ 2, Fig. 10.4), the mean, variance, and skewness (I ¼ 3, Fig. 10.5), and the

mean, variance, skewness, and kurtosis (I ¼ 4, Fig. 10.6). The figures show that

modeled distributions based on more parameters (larger I values) fit the observed

distribution more closely. The figures can inform decisions of the most appropriate
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Fig. 10.2 Observed and modeled frequency distributions (I ¼ 0)
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model, suggesting that the model based on fitting the mean, variance, and skewness

(I ¼ 3 in Fig. 10.5) fits the observed distribution considerably better than the simpler

models (Figs. 10.2–10.4) and is perhaps almost as good as the model based on fitting

the mean, variance, skewness, and kurtosis (I ¼ 4 in Fig. 10.6). Comparisons of the

models’ fit statistics could also inform model selection (see Sect. 10.4).

The log-linear model in (10.3) can be expanded in several ways. One important

class of models can fit score-specific features and overall features of test score

distributions. For example, structures such as lumps (abnormally large frequencies)

and bimodality can occur in distributions due to different types of scoring and
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Fig. 10.3 Observed and modeled frequency distributions (I ¼ 1)
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Fig. 10.4 Observed and modeled frequency distributions (I ¼ 2)
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rounding practices or to heterogeneous examinee groups. To account for these

structures, (10.3) can be expanded by adding an indicator function, Sð jÞ,

logeð pjÞ ¼ b0 þ
XI

i¼1

bix
i
j þ bIþ1SðjÞ: (10.4)
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Fig. 10.5 Observed and modeled frequency distributions (I ¼ 3)
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Fig. 10.6 Observed and modeled frequency distributions (I ¼ 4)
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For the test score(s) in a subset, Sð jÞ is set equal to 1, and for the test scores not in
the subset, Sð jÞ is set equal to 0. The result is that (10.4) will fit I overall moments

in the observed distribution and the frequencies of the scores defined in the subset.

Equation (10.4) can be expanded to model the moments of the subset distribution

through products of Sð jÞ and xij.
To illustrate the use of (10.4), the observed test score distribution shown in

Fig. 10.7 is modeled. This is the same distribution as shown in Fig. 10.1 except the

frequency at test score 0 is abnormally large, amounting to a lump at 0. Most of this

distribution appears to have an overall shape that would be appropriately modeled

by fitting the mean, variance, and skewness. The frequency at score 0 disrupts the

overall shape of the distribution. Equation (10.4) might be used by defining

an indicator function Sð jÞ such that it is equal to 1 at score xj ¼ 0 and is equal

to 0 otherwise. Figure 10.8 shows the observed and modeled distributions based

on such a model with I ¼ 3. This model appears to fit the observed distribution

adequately, and the abnormally large frequency at score 0 does not interfere with

the model’s fit with the overall distribution.

10.3.2 Log-Linear Models and Bivariate Test Score Distributions

An important extension of univariate log-linear models such as (10.3) and (10.4) is

the modeling of bivariate distributions, as would be encountered when a group of

examinees takes two tests. A bivariate log-linear model for a distribution where

examinees take test X and anchor A can be expressed as,

logeðpjlÞ ¼ b0 þ
XI

i¼1

bx;ix
i
j þ
XH

h¼1

ba;ha
h
l þ

XD

d¼1

XE

e¼1

bxa;dex
d
j a

e
l ; (10.5)

0

2

4

6

8

10

0 5 10 15 20

X

F
re

q
u

en
cy

Observed

Fig. 10.7 Figure 10.1’s observed frequency distribution for a hypothetical 20-item test with an

abnormally large frequency at score 0
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where pjl is the expected probability of examinees obtaining test score xj and anchor
score al, I is the number of moments observed in X’s univariate distribution fit,

H is the number of moments observed in A’s univariate distribution fit, and the D
and E values determine the number of cross-moments observed in the joint (X,A)

distribution fit. WhenD ¼ E ¼ 1, (10.5) will fit the observed XA covariance, or the

conditional means of X given the A scores and of A given the X scores. Higher

values of D and E can be used to model the conditional standard deviations and

skewness of X given A and of A given X, conditional moments that can vary in

complex ways in joint distributions of bounded test scores.

The fitting of bivariate log-linear models such as (10.5) is typically more

challenging than the fitting of univariate models such as (10.3) and (10.4). The

tests may be fairly long, amounting to many possible score combinations in the joint

distribution. For example, with a test of 76 possible scores and an anchor with 36

possible scores, 2,736 score combinations are possible. Fitting algorithms for log-

linear models typically requires the forming of square matrices where all possible

score combinations are paired with each other (Holland & Thayer, 2000; SAS

Institute, 2002). This means, for example, that several 2,736 � 2,736 matrices

might be needed, each of which would contain more than seven million cells.

Other difficulties are that the majority of the possible score combinations in

bivariate distributions are likely to be unobserved in test data due to the volumes

of some examinees at testing programs’ typical test administrations and also due to

moderate or high correlations between the tests being modeled. The size of the

model fitting task and the size of the available examinee data can result in

nonconverging bivariate models.
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Fig. 10.8 Figure 10.7’s observed frequency distribution modeled with I ¼ 3 and an indicator

function for score 0’s abnormally large frequency
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10.3.3 Practical Issues in Fitting Log-Linear Models

In his proposals of the use of log-linear models for smoothing test data (Holland &

Thayer, 1987, 2000), Holland described several developments directly suited to the

difficulties of test data. Holland proposed specific developments for addressing

difficulties such as the size of large bivariate modeling problems, including

1. Scaling strategies other than the power functions of the test scores shown in

(10.3)–(10.5).

2. Convergence criteria that focused directly on the likelihood function and the

models’ moment-matching results rather than on changes in the b’s.
3. Algorithms for performing computations in ways that avoid the forming of

extremely large matrices.

My personal experience with available algorithms such as SAS Proc GENMOD

(Moses, von Davier, & Casabianca, 2004; SAS Institute, 2002) has found that

Holland’s algorithm can often produce converged solutions in situations where

other algorithms fail.

Not only are Holland’s algorithms directly suited to the difficulties of test data,

they are also suited to the interests of those working with test data (Holland &

Thayer, 1987, 2000). Holland recognized that the log-linear modeling results of

most practical value when used to smooth test data involve the smoothed

probabilities and frequencies rather than the b’s. The use of a model convergence

criterion that focused directly on moment-matching in the smoothed distribution

helped ensure that smoothed distributions would reflect user-specified features of

observed data. A factorization of the variance-covariance matrix of the smoothed

results (i.e., the C-matrix) resulted in an efficiently storable matrix that made it

possible to estimate asymptotic standard errors of smoothed equating functions

(Holland, King, & Thayer, 1989; Moses & Holland, 2008).

10.4 Research on Using Log-Linear Models

for Equating: A Summary

Since the introduction and use of log-linear smoothing methods, concerns have

arisen for how to best utilize their flexibility. Although it is certainly true that log-

linear models’ wide ranges of parameterizations support the modeling of many

types of test score distributions, the short timelines typical of equating practice have

not necessarily supported the elaborate search processes typically demonstrated for

comparing and selecting appropriate models (e.g., Holland & Thayer, 2000; von

Davier et al., 2004). Useful applications of log-linear models to equating practice

need to simultaneously satisfy concerns of flexibility, accuracy, and efficiency. This

section describes some of the research studies by Holland and Moses that have
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considered the selection of log-linear models in sample data and the implications

of log-linear models for equating function accuracy.

10.4.1 Implications of Selecting Univariate Log-Linear
Models for Equating Function Accuracy

Initial studies by Holland and Moses considered how to select the parameterizations

for univariate log-linear models (i.e., the I value in (10.3)) in sample test data (Moses

& Holland, 2007a, 2009, 2010a). Relevant prior work had focused on repeated

use of particular models not selected based on sample data (Livingston, 1993;

Skaggs, 2004) or on using one of many possible statistical strategies for selecting

models’ parameterizations in sample data (i.e., likelihood ratio chi-square tests, see

Hanson, 1990). Simulations were designed to evaluate the repeated use of several

statistical strategies for selecting univariatemodels’ parameterizations in sample data

and for smoothing test data prior to computing equipercentile equating functions.

For realistic simulations, Holland and Moses obtained a range of univariate test

score distributions from different testing programs, found well-fitting log-linear

models for these distributions and used them as population distributions, drew

random samples of different sizes from the populations, used the statistical strategies

to select the appropriate parameterizations of the log-linear models in the sample

data, and computed equipercentile equating functions for two tests where the log-

linear models were selected by some statistical selection strategy.

Some of the considered statistical strategies are based on a search process

described in Haberman (1974) for comparing one of four chi-square statistics

(likelihood ratio, Pearson, Freeman-Tukey, and Cressie-Read). Others are based

on minimizing a combination of model fit and model parameterization, such as the

Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC), and

the Consistent Akaike Information Criterion (CAIC). An index of model fit some-

times attributed to Goodman (Agresti, 2002) that is routinely produced in statistical

software packages (SAS Institute, 2002) was also considered. See Bozdogan (1987)

for formulas for these statistics.

Figure 10.9 shows one of the population distributions considered in the studies

by Holland and Moses. This distribution is produced from a univariate log-linear

model where I ¼ 6, a model that was determined to fit a particular test score

distribution fairly well. In the studies, several hundred samples of various sizes

were drawn from the I ¼ 6 and other population distributions, and the selection

strategies were used to select the log-linear models from a range of models

(e.g., I ¼ 2, 3, . . ., 10) fit to the sample datasets.

Table 10.2 presents the average I value selected in 500 datasets of sample sizes

of 100, 500 and 2,500 for the eight statistical strategies mentioned above. The

results in Table 10.2 show that the statistical strategies can be differentiated based

on their tendencies to select log-linear models with more or fewer parameters.
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The AIC and Goodman strategies tended to select models with more parameters,

and the chi-square, BIC, and CAIC strategies selected fewer parameters. All

strategies are more accurate when sample sizes are large (i.e., 500 or 2,500 rather

than 100). These results were consistent across several distributions. In general, the

AIC strategy appeared to be the most accurate strategy across all the conditions

considered in the study, though it had a tendency to select models that overfit very

simple distributions.

In other simulations (Moses & Holland, 2007a, 2009), the repeated use of the

statistical strategies for selecting log-linear models was evaluated with respect

to equipercentile equating accuracy. These evaluations involved forming pairs of

the population test score distributions, smoothing test data sampled from the

populations using the statistical strategies to select the log-linear models, computing
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Fig. 10.9 An I ¼ 6 population distribution

Table 10.2 I ¼ 6 in the population

Average parameters selected (500 replications)

Selection strategy N ¼ 100 N ¼ 500 N ¼ 2,500

Likelihood ratio chi-square 2.62 3.14 5.08

Pearson chi-square 3.04 3.31 5.27

Freeman-Tukey chi-square 2.41 2.96 4.99

Cressie-Read chi-square 2.73 3.13 5.15

AIC 3.72 4.95 6.28

BIC 2.27 2.75 4.78

CAIC 2.15 2.52 4.65

Goodman 4.85 4.39 6.31

Note. AIC Akaike information criterion, BIC Bayesian information criterion, CAIC Consistent

Akaike information criterion
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equipercentile equating functions to link the pairs of test scores with the smoothed

distributions, and comparing the sample estimated equating functions to the popula-

tion equating functions in terms of bias and variability. The results reflected the bias

vs. variability tradeoff often described in smoothing discussions (Kolen, 1991; Kolen

& Brennan, 2004): The use of statistical strategies that tended to select relatively few

parameters in sample data produced sample equating functions with more bias and

less variability, whereas the use of other strategies that tended to select more

parameters produced sample equating functions with less bias and more variability.

Across all of the equating and sample size conditions considered in the Moses

and Holland (2007a, 2009) studies, the AIC strategy produced the most accurate

equating functions, with the least bias, and only slightly more variability than

the equating functions produced using other statistical strategies.

Although the results of the equating function evaluations in the Moses and

Holland studies (2007a, 2009) were understandable in terms of the statistical

strategies’ selection tendencies and tradeoffs in bias and variability, the actual

influence of selection strategies on equating function accuracy was smaller than

expected. Specifically, the results suggested that most of the practically important

equipercentile equating accuracy could be realized when the selection strategy

tended to select models with I values of at least 3. The accuracy gains diminished

greatly among selection strategies that varied in I selections greater than 3, even

when the population model considered had an I value of 6.
Some analyses were done to assess why the selection of log-linear models such as

those with I values of 3 might produce equating functions acceptably accurate for

practice even when the population I value might be 6. The follow-up analyses in the

Moses and Holland studies (2007a, 2009) showed that equipercentile equating

functions can be somewhat robust to an overly simple log-linear smoothing model

because they are based on cumulative frequency distributions rather than the fre-

quency distributions modeled with the log-linear models. For example, Fig. 10.10

shows a poorly chosen smoothing model fit to Fig. 10.9’s population distribution

model 9 (I ¼ 3 rather than I ¼ 6). This model has clear deficiencies in fitting the

population model, and with sample sizes of 1,000 or greater, many statistical

strategies would consider this model too simple (Table 10.2 in this paper). However,

the smoothingmodel shown in Fig. 10.10 is used in equipercentile equating only after

it is used to calculate a cumulative frequency distribution. The cumulative frequency

distributions are calculated from Fig. 10.10’s frequency distributions and shown in

Fig. 10.11. They are then rescaled so they can be evaluated with respect to the

frequency distributions (Fig. 10.12). The figures show that the cumulative

distributions used in equipercentile equating can approximate the population cumu-

lative distributions evenwhen they are based on poorly fitting frequency distributions.

To summarize, the results of the Moses and Holland studies suggested the

following,

• Statistical selection strategies vary in their tendencies to select more or fewer

parameters, with the chi-square, BIC, and CAIC strategies selecting models with

fewer parameters, and theAIC and Goodman strategies selectingmodels with more

parameters.
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• The best selection strategy for equating function accuracy is the AIC strategy,

which favored more parameters, producing equating functions with the least bias

and negligibly higher variability.

• The selection strategies do not have tomake perfectly accuratemodel selections in

order to produce equating functions that are sufficiently accurate for practice. The

accuracy implications are greater for the consideration of models with I ¼ 2 vs.

I ¼ 3 than for considerations such asmodels with I ¼ 5 vs. I ¼ 6. These accuracy

implications are partially due to the possibility that accurate cumulative

distributions can be calculated from inaccurate frequency distributions.
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10.4.2 Implications of Selecting Bivariate Parameterizations
for Equating Function Accuracy

Other studies by Holland and Moses extended initial focus on univariate

distributions and equating functions to bivariate distributions and the equating

functions based on bivariate distributions (Moses & Holland, 2010a, 2010b).

These studies were carried out by finding well-fitting log-linear models such as

(10.5) for actual test data, treating these models as populations from which to draw

samples of particular sizes, and then making selections of the bivariate parameter-

izations with different statistical strategies and computing equipercentile equating

functions based on the selected models. The model selection process focused only

on the bivariate terms, where models were considered with D ¼ E values of 0, 1, 2,

or 3. The statistical strategies evaluated were the same ones as evaluated in the

studies of univariate distributions. Two equipercentile equating functions were

evaluated: the post stratification equating function described in Sect. 10.2 and the

chained equipercentile equating function, an equating function that uses marginal

distributions and not bivariate distributions in its equating.

The model selection results for selections of bivariate parameterizations were

somewhat different from those obtained for selections of univariate parameter-

izations described in Sect. 10.4.1. Whereas in the Moses and Holland (2010a)

univariate results the chi-square strategies were fairly similar and the AIC and

Goodman strategies selected relatively more parameters (Table 10.2), in the Moses

and Holland (2010a, 2010b) bivariate results the Pearson and Cressie-Read

chi-square strategies tended to select more parameters than the other strategies

(D ¼ E ¼ 2 or 3) and the Goodman strategy tended to select the fewest parameters
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Fig. 10.12 The I ¼ 6 and I ¼ 3 distributions from Figs. 10.9 and 10.10
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(D ¼ E ¼ 0 or 1). Further examination of the simulation results showed that the

Pearson chi-square, Cressie-Read chi-square, and Goodman strategies were affe-

cted by extreme sparseness that tends to arise in bivariate distributions of test data.

The Pearson and Cressie-Read chi-square strategies used chi-square statistics that

required divisions by smoothed frequencies. When these chi-square statistics were

calculated based on log-linear smoothing models that mis-fit the observed bivariate

data, they could be greatly inflated in such a way that models with the largest

numbers of bivariate parameters would be selected at high rates. The Goodman

strategy was based on evaluating the likelihood ratio chi-square statistic with

respect to its degrees of freedom, an evaluation that would result in the selection

of very few bivariate parameters because chi-square statistics are often consider-

ably smaller than their degrees of freedom in sparse bivariate test data.

The influence of the selection strategies for bivariate log-linear smoothing

models on equating function accuracy showed a bias and variability tradeoff:

Equating functions based on selection strategies that tended to select more bivari-

ate parameters (i.e., Pearson and Cressie-Read chi-squares) were less biased and

more variable than equating functions based on strategies that selected fewer

bivariate parameters (i.e., Goodman). In terms of practical implications, the post

stratification equating function was more strongly influenced than the chained

equating function by the use of different bivariate selection strategies. This result

was not surprising given that the post stratification equating function makes direct

use of bivariate test distributions whereas the chained equating function does not.

10.4.3 Implications of Log-Linear Models
for Standard Error Estimation

Another evaluation of the use of log-linear models was on the estimation accuracy

of asymptotic standard errors of smoothed equating functions (Moses & Holland,

2007b). In this simulation, different log-linear smoothing models were fit to

hundreds of sample datasets and the standard deviations of the equated scores

were compared to the averages of the standard error estimates. Similar to the studies

described in Sects. 10.4.1 and 10.4.2, the results showed that equating functions

based on log-linearmodels withmore parameters weremore variable (i.e., had larger

standard errors) than equating functions based on log-linear models with fewer

parameters. Interestingly, the accuracy of the standard error estimation was less

influenced by the choice of log-linear model than by the accuracy of the equating

function. Log-linear models that were incorrect with respect to the population test

score distributions produced quite accurate standard error estimates, a result that has

been shown by others (Liou & Cheng, 1995; Liou, Cheng, & Johnson, 1997).
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10.5 Discussion

As described in this paper, Paul Holland has been an active contributor to the theory

and practice of test equating for several years. His application of log-linear models

is one of the most recommended smoothing techniques for equipercentile equating

(Kolen & Brennan, 2004; Livingston, 2004). The widespread use of his application

is no doubt related to his efforts to develop a practical algorithm suited to the

difficulties of test data and to integrate smoothing as an explicit step within

the entire equating process (e.g., von Davier et al., 2004). I was obviously very

fortunate to have worked with Paul in evaluating different aspects of using log-linear

models to equate tests. Our collaborative work has increased the understanding of

how this statistical application performs in practical situations and has helped me

become a better equating practitioner.

Acknowledgement Any opinions expressed here are those of the author and not necessarily of

Educational Testing Service.
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Chapter 11

Chain Equipercentile Equating

and Frequency Estimation Equipercentile

Equating: Comparisons Based on Real

and Simulated Data

Sandip Sinharay

11.1 Introduction

The nonequivalent groups with anchor test (NEAT) design, also known as the

common item, nonequivalent groups design (Kolen & Brennan, 2004), is used in

equating scores of several large-scale tests such as the SAT® and the certification

examinations conducted by the American Society for Quality. The two observed-

score equating (OSE) methods popular with the NEAT design are chain equating

(CE) and poststratification equating (PSE). Here, we consider their nonlinear

versions, that is, the frequency estimation equipercentile equating (FEEE) for

PSE, and the chained equipercentile equating (CEE) method for CE (see Kolen &

Brennan, 2004, for further details on these methods).

Von Davier, Holland, and Thayer (2004a, 2004b) showed that both the CEE and

FEEEmethods are examples of OSEmethods under different assumptions about the

missing data in the NEAT design. These assumptions cannot be directly evaluated

using the data that are usually available under a NEAT design. In practical situations,

the FEEE and CEE methods tend to produce different results when the two non-

equivalent groups of examinees differ substantially in performance on the anchor

test. The weaker the correlation between the test and anchor scores, the bigger the

difference. Naturally, practitioners would like to know which of the two methods

leads to more accurate equating so that they can employ that method. This paper

attempts to answer that question by discussing a collection of results found by

several researchers on the comparison of the FEEE and CEE methods.

The next section describes the NEAT design and discusses the two equating

methods. The three sections that follow discuss the comparison of the FEEE and

CEE methods based on (a) theoretical arguments, (b) simulated data, and (c)

operational test data. Conclusions and discussion are provided in the last section.
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11.2 The Nonequivalent Groups with Anchor Test

Design and the Two Equating Methods

In the NEAT design, two operational tests, the new test X and the old test1 Y, are
given to two different samples of examinees from different test populations

(denoted here by P and Q). In addition, an anchor test A is given to both samples.

Test X is observed on P but not Q, and Y is observed on Q but not P; data for X in Q
and Y in P are always missing in a NEAT design. The data collection design is

shown in Table 11.1.

The task is to equate the scores of X to those of Y. Both external anchor tests

(anchor tests whose scores do not contribute to the reported examinee score) and

internal anchor tests (anchor tests whose scores contribute to the reported examinee

score) are considered in this study.

The target population T for the NEAT design, which is the population on which

the equating is supposed to be defined, is the synthetic population based on P and Q
(Braun & Holland, 1982), in which P and Q are given weights w and (1 � w) that
indicate their degree of influence on T. Following Braun and Holland (1982), T is

denoted by

T ¼ wPþ ð1� wÞQ; 0 � w � 1: (11.1)

The total or combined population, often denoted by P + Q, that is obtained by

pooling the samples from P andQ, is the synthetic population. The weightw in (11.1)

is usually taken as proportional to the sample size from P, i.e. w ¼ NP/(NP + NQ),

where NP and NQ denote the sample sizes from P and Q.
In our discussion, we will let F, G, and H denote the cumulative distribution

functions (cdfs) of X, Y, and A, respectively, and will use the subscripts P, Q, and T
to indicate the populations that the cdfs refer to. For example, FP(x) denotes the
proportion of examines in P for which X is less than or equal to the value x,
i.e., FP(x) ¼ P{X � x|P}.

We take the position, as in von Davier et al. (2004a), that in order to justify an

equating method as an OSE method, it is necessary and sufficient to show that the

1Note that X and Y are often different forms of the same test (for example, forms A and B of SAT)

rather than being different tests. We call them tests rather than test forms for simplicity. The new
test is often referred to as the test/form to be equated, and the old test is referred to as the test/form
to be equated to.

Table 11.1 The design table for the nonequivalent groups with anchor test

(NEAT) design

X A Y

P ✓ ✓

Q ✓ ✓

Note. X ¼ old test, A ¼ anchor test, Y ¼ new test, P and Q ¼ two different samples

of examinees from different test populations
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method is equivalent to an equipercentile equating function defined on the target

population, that is, for some FT(x) and GT(y),

EquiXY;TðxÞ ¼ GT
�1ðFTðxÞÞ: (11.2)

A basic requirement for developing an OSE method for the NEAT design is to

make sufficiently strong and not directly testable missing-data assumptions that

allow FT(x) and GT(y) to be estimated in order to apply (11.2). The assumptions of

CEE and FEEE, formalized in von Davier et al. (2004a), are described next.

In FEEE, it is assumed that the conditional distribution of X given A in P is the

same as the conditional distribution of X given A in T for any choice of T ¼ wP +

(1 – w)Q. An analogous assumption holds for Y given A in Q and in T.
Using these assumptions, the marginal distribution of X in T, P{X ¼ xj|T}, is

estimated as

PfX ¼ xj Tj g ¼
X

j

PfX ¼ xj A ¼ alj TgPfA ¼ al Tgj ; (11.3)

where P{A ¼ al|T} ¼ wP{A ¼ al|P} + (1 � w)P{A ¼ al|Q} is the marginal dis-

tribution of A in T. A similar expression for the marginal distribution of Y in T,
P{Y ¼ yk|T}, can be obtained. The next steps are to compute the corresponding

cdfs FT(x) and GT(y) from P{X ¼ xj|T} and P{Y ¼ yk|T}, continuize the cdfs, and
employ (11.2) to obtain the FEEE equating function.

In CE, it is assumed that the equipercentile function computed in P for linking

X toA is the sameas that for linkingX toA inT for any choice ofT ¼ wP + (1 – w)Q.
An analogous assumption holds for the links from A to Y in Q and in T.

The assumptions lead to the relationship

H�1
TðFTðxÞÞ ¼ H�1

PðFPðxÞÞ: (11.4)

From the definition of inverse functions, (11.4) is equivalent to defining the cdf,

FT (x), by

FTðxÞ ¼ HTðH�1
PðFPðxÞÞÞ: (11.5)

In a similar manner, the CEE assumptions lead to

G�1
TðuÞ ¼ G�1

QðHQðH�1
TðuÞÞÞ: (11.6)

Equations (11.5) and (11.6) may be combined to form the chain equipercentile

equating function linking X to Y as

G�1
TðFTðxÞÞ ¼ G�1

QðHQðH�1
TðHTðH�1

PðFPðxÞÞÞÞÞÞ
¼ G�1

QðHQðH�1
PðFPðxÞÞÞÞ: (11.7)
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The above descriptions make it clear that both the FEEE and CEE methods can

be expressed as OSE methods.

The FEEE assumptions imply missing data assumptions that are conditional on

the anchor test. The CEE assumptions require some manipulation to see their

implication for the missing data. No simple connection exists between these two

sets of assumptions. Researchers von Davier et al. (2004a) gave an example where

the means of A in P and Q differed by about a third of a standard deviation and the

two methods produced results that were different enough to have practical

consequences. In such an example, it is impossible for both sets of assumptions

to be simultaneously satisfied – one or both sets must be violated.

The next three sections discuss the comparison of the FEEE and CEE methods

based on (a) theoretical arguments, (b) simulated data, and (c) operational test data.

11.2.1 Theoretical Comparison

It was discussed above that both the FEEE and CEE methods can be expressed as

OSE methods. Researchers von Davier et al. (2004b) showed that both of these

methods produce essentially identical results under two extreme conditions: (a) the

two populations are very similar or (b) the anchor test is perfectly correlated with

both tests. The second of these conditions is never satisfied in practice, while the first

is sometimes satisfied for a small number of carefully controlled tests like the SAT.

Hence one can expect the two methods to produce different results in most practical

situations.

The CEE method uses two equatings of unequally reliable tests and then chains

them together for the final result. Several experts thought that such a procedure

might inherit some problems because of the unequal reliability issues of each link.

Harris and Kolen (1990) declared the FEEE method to be preferable to the CEE

method on theoretical grounds. In their recent book on equating, Kolen and Brennan

(2004, p. 146) referred to CEE as having “theoretical shortcomings.” However,

Holland, Sinharay, von Davier, and Han (2008) commented, “We have attempted to

discover what these problems might be, but currently regard such efforts as point-

less. The theoretical basis of CEE is exactly like that of FEEE and consists of sets of

assumptions about the missing data in the NEAT design that, in turn, allow CEE to

be interpreted as an OSE equipercentile function for the NEAT design” (p. 38).

On the other hand, Livingston (2004) explained that when the correlation coeffi-

cient between the tests to be equated and the anchor test is considerably lower than

1 and P and Q differ substantially in ability, the FEEE method does not adjust

enough for the difference in difficulty of the tests to be equated and hence leads to

biased equating. Livingston commented that this problem does not occur for the

CEE method. Livingston, Dorans, and Wright (1990) explained that stratifying on

observed scores in the FEEEmethod is a fallible approximation to stratifying on true

scores, and this fallibility results in an under-correction of the group differences that

increases as the anchor-score difference between the groups increases.
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11.2.2 Comparisons Based on Simulated Data

Wang, Lee, Brennan, and Kolen (2008) and Sinharay and Holland (2007) compared

the bias, variability, and root mean squared error (RMSE) of the CEE and FEEE

equating functions under several conditions by generating data from item response

theory (IRT) models. Wang et al. generated data from the three-parameter logistic

(3PL) model while Sinharay and Holland generated data from the two-parameter

logistic (2PL) model and also from its multivariate version with four dimensions.

Both of these studies found that the CEE method tends to show less bias and less

RMSE than the FEEE method when large differences are present between the two

groups, while the FEEE method has slightly less variability than the CEE method

for all simulation conditions. Sinharay and Holland also found that for data pro-

duced under the multivariate IRT model, the FEEE method leads to slightly less

bias, variability, and RMSE than the CEE method when the new form population is

more able than the old form population in some content areas and less able in some

other content areas (a situation observed by, for example, Klein & Jarjoura, 1985).

Some results for data simulated from the 2PL model by Sinharay and Holland are

discussed next.

Sinharay and Holland (2007) varied the following factors in their simulation

study that simulated data from the 2PL model:

1. Test length. X and Y are always of equal length and the length takes one of the

values (45, 60, or 78) to emulate three operational tests: (a) a 45-item basic skills

test, (b) the 60-item mathematics section of an admissions test, and (c) the

78-item verbal section of the same admissions test. The factor that is denoted

by test length refers tomore than simply the length of the tests to be equated. Each

test length has its own set of item parameters that were estimated from an

operational test data set and were used to simulate the data for the comparison

of the two equating methods. Moreover, the length of the anchor test for each test

length is different as indicated below.

2. Sample size. The sample sizes for P and Q are equal and are equal to one of three

values: 100 (small), 500 (medium), and 5,000 (large).

3. Difference in the mean ability (denoted as Da) of the two examinee populations
P and Q. Four values were used: �0.2, 0, 0.2, and 0.4. Units are in standard

deviation (SD) of y.
4. Difference in the mean difficulty (denoted as Dd) of the two tests X and Y. Three

values were used: 0, 0.2, and 0.5. Units are in SD of y.

The values for the above four factors were chosen after examining data from

several operational tests. The anchor test is of length 20 for the 45-item basic skills

test and is the same length as the operational administrations of the two admissions

tests – 35 for the 78-item test and 25 for the 60-item test. Sinharay and Holland

(2007) considered three types of anchor tests, but here we will only discuss the

results for the minitest (an anchor that is a representative of the total test in content
coverage and difficulty). The average difficulty of an anchor test was always
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centered at the average difficulty level of Y, the old test form. The item parameters

for test Y were computed from real data sets. The item parameters for the tests X
and A were simulated from a multivariate normal distribution fitted on the item

parameters used for test Y. For any simulation condition determined by a level

of each of the four factors, the bias, variability, and RMSE of the FEEE and CEE

methods were computed by comparing the equating functions produced by these

two methods to the CEF, which was easy to compute for these simulated data.

Figures 11.1 and 11.2 compare the bias and variability of the two methods for

nine simulation conditions (all combinations of three test lengths [45, 60, and 78]

and three Das [0, 0.2, and 0.4]) when the sample size is 500 and Dd ¼ 0. The results

were very similar for other values ofDd. In any panel of these two figures, the values

Fig. 11.1 Comparison of the bias of the frequency estimation equipercentile equating (FEEE) and

chained equipercentile equating (CEE) methods for sample size of 5,000
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of bias or standard error of equating (SEE), multiplied by 100, for FEEE and CEE

are plotted along the Y-axis for all possible scores that are plotted along the X-axis.

Each row corresponds to a test length. Figure 11.1 shows that when Da (the ability

difference between the two groups) increases, the bias of the CEEmethod increases,

but the bias of the FEEE method increases much more rapidly so that the difference

in bias of these twomethods is substantial whenDa ¼ 0:4. Figure 11.2 shows that the
SD of the FEEEmethod is always smaller than that of the CEEmethod, but only very

slightly. Sinharay and Holland (2007) found similar results for other simulation

conditions when data were generated from a 2PL model.

Two problems with comparing the methods using data generated from an IRT

model are that the simulated data have an uncertain relationship to operational data

and that the simulated data may favor one of these methods. For example, Wang

Fig. 11.2 Comparison of the standard error of equating (SEE) of the frequency estimation

equipercentile equating (FEEE) and chained equipercentile equating (CEE) methods for sample

size of 500
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et al. (2008) acknowledged that their simulation procedure may have disadvantaged

the FEEE method to an unknown extent. If the data were simulated in another

manner, the FEEE method might have exhibited less bias than that in the studies of

Wang et al. and Sinharay and Holland (2007). Two ways to overcome this limita-

tion are (a) to use operational test data or (b) to simulate data to reflect reality as

closely as possible. The following section discusses the first of these ways.

11.2.3 Comparisons Based on Operational Test Data

Several researchers compared the FEEE and CEE methods based on operational

test data. Marco, Petersen, and Stewart (1983) compared the FEEE and CEE

methods using data from SAT-V (the verbal section of the SAT). Livingston

et al. (1990) compared the FEEE and CEE methods using data from the SAT-V

and SAT-M (the math section of the SAT). Harris and Kolen (1990) compared the

FEEE and CEE methods using data from a certification test. von Davier et al.

(2004a) compared the two methods using data from a high volume testing program.

Ricker and von Davier (2007), Sinharay and Holland (2007), and Holland et al.

(2008) compared the FEEE and CEE methods using a specially designed data set

from a licensure test.

Harris and Kolen (1990) compared the results of the FEEE and CEE methods

and concluded that the results were different enough to have practical implications.

In von Davier et al. (2004a), the equating functions of CEE and FEEE were

compared and found to differ significantly. Holland et al. (2008) compared the

marginal distributions of the missing data (that is, the marginal distribution of X in

Q and Y in P) predicted by the two methods to the corresponding observed values

(both were known because of the unique design of the study) and found that the

predictions from the two methods were close, but the predictions from the CEE

method were closer to the corresponding observed values. Marco et al. (1983),

Livingston et al. (1990), Ricker and von Davier (2007), and Sinharay and Holland

(2007) compared the equating functions obtained from the FEEE and CEE methods

to suitably chosen criterion equating functions (CEF).
Obtaining the CEF for real data applications is not straightforward – these

researchers employed several methods to obtain one. For example, Livingston

et al. (1990) sampled from a large group of examinees who were divided into two

random groups by spiraling of two test forms X and Y. The equipercentile equating
of these two test forms (assuming the two groups of examinees receiving the two

test forms were random groups) was used as the CEF. Livingston et al. sampled

examinees from the large examinee group in different ways to form nonequivalent

groups and then equated X to Y using anchor tests which were also taken by the

examinees. Sinharay and Holland (2007) used a data set from von Davier et al.

(2006) where the usually missing data in the NEAT design (that is, data for X in Q
and Y in P) were available so that it was possible to obtain the CEF as the single

group equating function of X to Y in P + Q. Ricker and von Davier (2007) found
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little difference between the results from the CEE and FEEE methods. The common

finding fromMarco et al. (1983), Livingston et al., and Sinharay and Holland is that

the CEE method performs better than the FEEE method when the two examinee

groups P and Q differ substantially, whereas the FEEE method performs better than

the CEE method when the two examinee groups do not differ much.

Researchers von Davier, Holland, and Thayer (2003), von Davier et al. (2004a,

2004b), and von Davier (2003) compared the FEEE and CEE methods with respect

to SEE and the degree of population invariance using several operational test data

sets. These studies showed that both the FEEE and CEE methods appear to be

similar in their SEE and in their degrees of population invariance.

Thus, the findings from operational data also slightly favor the CEE method.

However, the results from these two methods do not differ too much. For example,

Holland et al. (2008) compared these methods under a difficult equating situation

where the two tests differed substantially in difficulty and the two population

differed substantially in ability but found only a slight difference between the

results of the two methods. Next, we discuss some results from operational data

from Sinharay and Holland (2007).

The operational data used in Sinharay and Holland (2007) are those used by von

Davier et al. (2006) and are from one form of a licensing test for prospective

teachers. The form included 120 multiple-choice items, about equally divided

among four content areas – language arts, mathematics, social studies, and science.

Ordinarily, the total score from different forms of this test are equated through a

NEAT design with an internal anchor test. The form of the test used here was

administered twice, and the two examinee populations played the role of P and Q.
The mean total scores (the number right) of the examinees taking the test at these

two administrations differed by approximately one-fourth of a standard deviation,

as can be seen from the second column of Table 11.2.

Construction of the pseudo-tests. These data were used to construct two pseudo-

tests (X and Y) as well as three different pseudo-anchor tests (A1, A2, and A3) of
different lengths. A pseudo-test consists of a subset of the test items from the

original 120-item test, and the score on the pseudo-test for an examinee is found

from the responses of that examinee to the items in the pseudo-test. The pseudo-

tests X and Y each contain 44 items: 11 from each of the four content areas. Tests

X and Y, having no items in common, were made parallel in content, but test X was

constructed to be much easier than test Y.

The external anchor test cases. To create data sets with external anchor tests,

a basic set of 24 items (6 items from each content area) was selected to be

representative of the original test and to serve as the largest external anchor A1.
This anchor test has no items in common with either X or Y. The two other anchor

tests, A2 and A3, were formed by deleting 4 and 8 items, respectively, from A1 in

such a way that A2 is a 20-item subset of A1, and A3 is a 16-item subset of A2.
Furthermore, to maintain parallelism in content, test A2 had five items from each

content area, while A3 had four. The mean percent correct of the anchor tests

approximately equaled that for the original test.

11 Chain Equipercentile Equating and Frequency Estimation Equipercentile. . . 211



T
a
b
le

1
1
.2

N
s,

m
ea
n
s,

st
an
d
ar
d
d
ev
ia
ti
o
n
s,

re
li
ab
il
it
ie
s,

an
d
av
er
ag
e
p
ro
p
o
rt
io
n
s
co
rr
ec
t
fo
r
th
e
sc
o
re
s
o
n
th
e
to
ta
l
an
d
P
se
u
d
o
-t
es
ts

o
n
P
,
Q
,
an
d
th
e

C
o
m
b
in
ed

G
ro
u
p
,
P
þ

Q

T
es
t

T
o
ta
l
(1
2
0
it
em

s)
X
(4
4
it
em

s)
Y
(4
4
it
em

s)
A
1
(2
4
it
em

s)
A
2
(2
0
it
em

s)
A
3
(1
6
it
em

s)
X
1
¼

X
þ

A
1

Y
1
¼

Y
þ

A
1

P N
¼

6
,1
6
8

8
2
.3

(1
6
.0
)

3
5
.1

2
6
.6

1
6
.0

1
3
.7

1
0
.8

5
1
.2

4
2
.6

(5
.7
)

(6
.7
)

(4
.2
)

(3
.6
)

(3
.0
)

(9
.3
)

(1
0
.3
)

[0
.8
1
]

[0
.8
1
]

[0
.7
5
]

[0
.7
1
]

[0
.6
8
]

[0
.8
8
]

[0
.8
8
]

0
.8
0

0
.6
0

0
.6
7

0
.6
9

0
.6
8

0
.7
5

0
.6
3

Q N
¼

4
,2
3
7

8
6
.2

(1
4
.2
)

3
6
.4

2
8
.0

1
7
.0

1
4
.5

1
1
.5

5
3
.4

4
5
.0

(4
.8
)

(6
.3
)

(3
.9
)

(3
.3
)

(2
.8
)

(8
.0
)

(9
.6
)

[0
.7
7
]

[0
.7
9
]

[0
.7
3
]

[0
.6
9
]

[0
.6
6
]

[0
.8
5
]

[0
.8
7
]

0
.8
3

0
.6
4

0
.7
1

0
.7
3

0
.7
2

0
.7
9

0
.6
6

P
þ

Q
N
¼

1
0
,4
0
5

3
5
.6

2
7
.2

1
6
.4

1
4
.0

1
1
.1

5
2
.1

4
3
.6

(5
.4
)

(6
.6
)

(4
.1
)

(3
.5
)

(3
.0
)

(8
.9
)

(1
0
.1
)

[0
.8
0
]

[0
.8
0
]

[0
.7
5
]

[0
.7
1
]

[0
.6
8
]

[0
.8
7
]

[0
.8
7
]

0
.8
1

0
.6
2

0
.6
8

0
.7
0

0
.6
9

0
.7
7

0
.6
4

N
ot
e.
N
u
m
b
er
s
in

p
ar
en
th
es
es

(
)
ar
e
st
an
d
ar
d
d
ev
ia
ti
o
n
s;
n
u
m
b
er
s
in

b
ra
ck
et
s
[
]
ar
e
re
li
ab
il
it
ie
s

212 S. Sinharay



Table 11.2 also gives the Ns, means, standard deviations, reliabilities (Cronbach’s

alpha), and average proportion correct for the scores onX, Y,A1,A2, andA3, and for
the two sums X1 ¼ X þ A1 and Y1 ¼ Y þ A1 (that play a role for the internal

anchor cases to be discussed shortly) for the examinees in P, Q, and the combined

group. X is considerably easier than Y (the average percent correct on X ranges from

80 to 83%while on Y the range is 60 to 64%). The mean score onX for the combined

group is 127% of a standard deviation larger than themean score onY. In addition, all
three anchor tests show differences of approximately a quarter of a standard deviation

between P and Q. The reliabilities of the three anchor tests behave as expected, with
A1 being the most reliable and A3 the least reliable. However, the range of these

reliabilities is modest – from 0.68 to 0.75 on the combined group.

The pseudo-test data were designed to lead to a difficult equating problem for

which CEE and FEEE were expected to give different answers. The large differ-

ence in difficulty between X and Y made the equating problem non-linear. The

difference in the test performance of P andQwas intentionally chosen to be as large

as possible; this difference ensured that CEE and FEEE would give different results.

The internal anchor test cases. To create data sets that had internal anchor tests, we

formed X1 ¼ X þ A1 and Y1 ¼ Y þ A1. Then we paired X1 and Y1 with A1, A2,
or A3 as the three internal anchor test cases. Because A2 was a subset of A1 and A3
was a subset of A2, each of the three anchor tests is internal to the tests X1 and Y1.
This approach allows one to keep the total tests of the same size (44 þ 24 ¼ 68

items) as one varies the lengths (and therefore the reliabilities) of the anchor tests.

Mimicking the nonequivalent groups with anchor test (NEAT) design. Because all the
examinees in P and Q took all 120 items on the original test, all of the examinees in

P andQ have scores forX, Y, X1, and Y1 as well as for each of the three anchor tests,
A1,A2, and A3. In order to mimic the structure of the NEAT design, it was pretended

that scores for X or X1 were not available for the examinees in Q and that scores for

Y or Y1were not available for the examinees in P. However, because all scores are, in
fact, available for the pseudo-test data, they allow one to compare the frequencies

predicted by the CEE and FEEE assumptions with the actual frequencies in the data.

Ricker and von Davier (2007) found little difference between the equating

functions of the FEEE andCEEmethods for these data.What follows is a comparison

of the predictions made by CEE and FEEE with the observed data for X or X1 in Q
and for Y or Y1 in P (see Holland et al. 2008 for a description of how the predictions

are computed). The comparisons are divided into three parts, as described below.

Comparisons of the observed and predicted frequencies. Figure 11.3 shows the

observed and predicted frequencies for CEE and FEEE for X and X1 in Q and for Y
and Y1 in P, for the case of the longest anchor test, A1. (All of the graphs for the
shorter anchor tests look very similar and are omitted.) The solid lines connect the

observed frequencies.

It is evident that the predicted distributions for CEE and FEEE are very similar

and that they depart from the observed frequencies by similar amounts and in

similar directions. In general, the agreement between the observed and predicted
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frequencies is quite good, indicating that both CEE and FEEE make predictions that

are reasonably close to the data. To look at the differences in more detail, we used

the Freeman-Tukey (FT) residuals, which are defined as

ffiffiffiffi
ni

p þ
ffiffiffiffiffiffiffiffiffiffiffiffi
ni þ 1

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mi þ 1

p
;

where ni is the observed frequency for score i and mi is the corresponding predicted

frequency. The FT residuals are graphed in Fig. 11.4. The figure shows that the

patterns of the FT residuals for CEE and FEEE are very similar and appear fairly

random, well within the expected range for well-fitting predictions. However, the

residuals for CEE often are smaller than those for FEEE. This finding is clearest in

the middle range of scores in the top row of plots in Fig. 11.4. In summary, both

CEE and FEEE track the data fairly well and both sets of predictions appear to be

somewhat more similar to each other than they are to the observed data.
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Fig. 11.3 Frequencies for X in Q and Y in P for external anchor test A1 (top row) and for X1 in Q
and Y1 in P for internal anchor test A1 (bottom row). Note. FEEE ¼ frequency estimation

equipercentile equating, CEE ¼ chained equipercentile equating
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Comparisons of the goodness-of-fit measures. Table 11.3 gives the values of w2FT ,
which is given by

w2FT ¼
X

i

ffiffiffiffi
ni

p þ
ffiffiffiffiffiffiffiffiffiffiffiffi
ni þ 1

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mi þ 1

p� �2

;

for all the cases in the study. Table 11.3 shows, just like Fig. 11.4, that the predictions

of CEE are somewhat closer to the observed frequencies than the FEEE predic-

tions. In all cases, w2FT is smaller for CEE than for FEEE. Thus, while the CEE and

FEEE predictions are very similar, as seen in Fig. 11.3, those of CEE are, on average,

slightly closer to the observed frequencies.

In addition, there is a consistent tendency for w2FT for FEEE to get smaller as the

length of the anchor test increases. Thus, it is evident that the length (and the
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Fig. 11.4 Freeman-Tukey residuals for X inQ and Y in P for external anchor test A1 (top row) and
for X1 in Q and Y1 in P for internal anchor test A1 (bottom row). Note. FEEE ¼ frequency

estimation equipercentile equating, CEE ¼ chained equipercentile equating
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reliability) of the anchor test has a distinct and measurable effect on improving the

predictions of FEEE. This finding is consistent with the argument of Livingston

(2004) that the FEEE method provides biased results for a low value of the anchor-

test-to-total-test-correlation. The predictions for CEE do not show this trend for the

external anchor test cases, but they do show it for the internal anchor test cases.

Comparisons of the moments. Another comparison of the predictions for CEE and

FEEE made in Holland et al. (2008) concerned those of the mean and SD of the

observed frequency distributions. The values of these moments are given in

Table 11.4. The table also shows the percent relative differences (% rel. dif.)

between the observed and predicted moments. The % rel. dif. is the predicted

moment minus the observed moment divided by the absolute value of the observed
moment times 100. Thus, positive values indicate overprediction, while negative

values indicate underprediction.
In almost every case in Table 11.4, in terms of the absolute value of the % rel.

dif., the CEE predictions are closer to the observed data than are the FEEE

predictions. The predictions of the means are quite accurate for both methods; the

means have the consistently smallest percent relative differences in the table, but

the differences for the CEE predictions are always smaller. For the SDs, the percent

relative differences are generally a little larger than that for the means, but again,

those for CEE are always smaller.

Table 11.3 The Freeman-Tukey goodness-of-fit measure

External anchor Internal anchor

Tests and anchors w2FT Tests and anchors w2FT
X, A1: Q X1, A1: Q

FEEE 66.3 FEEE 56.0

CEE 52.1 CEE 49.1

X, A2 X1, A2

FEEE 76.0 FEEE 69.4

CEE 62.9 CEE 66.9

X, A3 X1, A3

FEEE 85.1 FEEE 77.7

CEE 60.4 CEE 69.4

Y, A1: P Y1, A1: P

FEEE 49.9 FEEE 72.3

CEE 39.2 CEE 69.2

Y, A2 Y1, A2

FEEE 58.0 FEEE 83.5

CEE 47.4 CEE 79.4

Y, A3 Y1, A3

FEEE 67.4 FEEE 93.7

CEE 45.0 CEE 85.0

Note. A1 is the longest anchor test, A3 is the shortest. FEEE frequency estimation

equipercentile equating, CEE chained equipercentile equating
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As seen earlier for the goodness-of-fit measures, there is a consistent tendency

for the accuracy of the FEEE-predictions of the means and SDs to increase as the

length of the anchor test increases. The CEE predictions for the mean and SD for the

internal anchor test show the same consistent improvement as the length of

the anchor test increases.

11.2.4 Conclusions and Discussion

This study discusses a collection of results that compare the two most common OSE

methods for the NEAT design – CEE and FEEE. The research works discussed here

used a variety of ways to compare the two methods – some used theoretical

arguments, some used simulated data, and some used operational data.

Table 11.4 Observed (obs) and predicted moments and percent relative difference (% rel. dif.) for

external and internal anchor-test cases

External anchor cases Internal anchor cases

Observed

and

predicted Mean

Mean %

rel. dif. SD

SD %

rel. Zdif.

Observed

and

predicted Mean

Mean %

rel. dif. SD

SD %

rel. dif.

X,A1:Q X1, A1:Q

Obs 36.38 4.77 Obs 53.38 8.04

FEEE 36.16 �0.6 5.15 7.9 FEEE 53.17 �0.4 8.47 5.3

CEE 36.43 0.1 4.98 4.4 CEE 53.31 �0.1 8.35 3.8

X, A2 X1, A2

Obs 36.38 4.77 Obs 53.38 8.04

FEEE 36.13 �0.7 5.19 8.8 FEEE 53.11 �0.5 8.57 6.5

CEE 36.41 0.1 5.03 5.5 CEE 53.29 �0.2 8.44 4.9

X, A3 X1, A3

Obs 36.38 4.77 Obs 53.38 8.04

FEEE 36.04 �0.9 5.26 10.2 FEEE 52.94 �0.8 8.67 7.8

CEE 36.33 �0.1 5.09 6.7 CEE 53.16 �0.4 8.52 5.9

Y, A1:P Y1, A1:P

Obs 26.59 6.68 Obs 42.62 10.31

FEEE 26.79 0.8 6.56 �1.7 FEEE 42.82 0.5 10.17 �1.3

CEE 26.44 �0.6 6.72 0.6 CEE 42.62 0.0 10.26 �0.4

Y, A2 Y1, A2

Obs 26.59 6.68 Obs 42.62 10.31

FEEE 26.82 0.9 6.52 �2.3 FEEE 42.89 0.6 10.18 �2.2

CEE 26.45 �0.5 6.64 �0.5 CEE 42.64 0.0 10.16 �1.4

Y, A3 Y1, A3

Obs 26.59 6.68 Obs 42.62 10.31

FEEE 26.91 1.2 6.49 �2.8 FEEE 43.08 1.1 10.00 �3.0

CEE 26.55 �0.2 6.62 �0.9 CEE 42.80 0.4 10.11 �1.9

Note. A1 is the longest anchor test, A3 is the shortest. FEEE frequency estimation equipercentile

equating, CEE chained equipercentile equating
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The existing research suggests unequivocally that the CEE method performs

slightly better than the FEEE method under most circumstances. The only situations

when the CEE method performs worse than the FEEE method are when the two

populations are the same in ability and when they differ differentially in the various

content areas of the test (that is, one population is better than the other in some content

areas and worse in some other content areas) – both of these situations are rare in

practice.

Linear equating methods were not considered in this paper. However, results

discussed in this paper are in agreement with the existing results for linear equating.

For example, Livingston et al. (1990) and Puhan (2010) showed using operational

data that the chain linear equating leads to more accurate equating in general than

the Tucker equating method (which can be viewed as the linear version of the

FEEE method).

What should a practitioner do regarding the choice of CEE versus FEEE in an

operational testing situation? As mentioned earlier, the psychometric basis for CEE

was questioned for a long time. However, accumulating evidence suggests that the

missing data assumptions of CEE are reasonable and likely to be useful in a variety

of circumstances. In addition, as discussed in this paper, an ever increasing set of

findings slightly favors CEE over FEEE methods for simulated data and in real test

situations, and we do not expect that result to change with further research. While

further research is surely needed to help distinguish situations where one of these

methods is to be preferred, it is certainly the case that CEE is a clear competitor to

FEEE and the other OSE methods for the NEAT design.

Several related issues could be explored in future. The existing studies compared

the FEEE and CEEmethod with respect to the bias, SEE, and RMSE of the equating

function and population invariance. It will be useful to consider other equating

criteria such as the same distributions property and the first- and second-order

equity properties (e.g. Tong & Kolen, 2005). Also, more research is needed

regarding simulation of data that will not favor any of these two methods – a

comparison of the two methods for this type of data will provide a clear picture of

the relative performance of the two methods.
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Chapter 12

An Observed-Score Equating Framework

Alina A. von Davier

12.1 Introduction

Paul Holland has made remarkable contributions to equating theory and practice

and has influenced the work of many researchers and psychometricians. In this

paper, it is argued that the methodology introduced by Holland and Thayer (1989)

and von Davier, Holland, and Thayer (2004b), along with the kernel method of test

equating, involves more than simply a continuization method for test score

distributions: It has introduced a powerful equating framework1 for all observed-

score equating (OSE) methods. This framework has already proven to be useful for

various research purposes outside of Gaussian kernel equating (KE). Referred to in

this paper as the observed-score equating (OSE) framework, it is one example of

the application of Holland’s work to the practice of equating.

Identifying a framework that connects the methods used in OSE practice is part

of the continuous search for a theory of equating (see also Holland & Hoskens,

2003; von Davier, 2011). This equating framework, the OSE framework, together

with Dorans and Holland’s five requirements of an equating procedure (Dorans &

Holland, 2000), is the closest to a theory that is available for OSE.

This paper starts with a brief history of KE methods (in particular, Gaussian KE)

and the development of the OSE framework. A few formal aspects of the equating

process are included here, along with the introduction of the analytical standard

errors from the KE procedure. The practical advantages of the modular structure of

the OSE framework are discussed. It is shown how the framework extends beyond

A.A. von Davier (*)

Educational Testing Service, Rosedale Road, Princeton, NJ 08541, USA
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1“Conceptual frameworks (theoretical frameworks) are a type of intermediate theory that has the

potential to connect to all aspects of inquiry (e.g. problem definition, purpose, literature review,

methodology, data collection and analysis). Conceptual frameworks act like maps that give

coherence to empirical inquiry” (Conceptual framework, 2010, para 2).

N.J. Dorans and S. Sinharay (eds.), Looking Back: Proceedings of a Conference
in Honor of Paul W. Holland, Lecture Notes in Statistics 202,

DOI 10.1007/978-1-4419-9389-2_12, # Springer Science+Business Media, LLC 2011

221



the Gaussian kernel to include all existing OSE methods. The paper also covers the

rich body of equating research that has evolved around the OSE framework and

points out directions for new research.

12.2 History of Kernel Equating Methods

To equate test forms, psychometricians often use the percentile rank method (or

the equipercentile equating function in conjunction with linear interpolation for

continuizing the otherwise discrete distribution functions). One of the consequences

of this method is that the linearly interpolated cumulated distribution functions

(cdfs) and the equating function have irregularities – that is, the functions are not

smooth (see Kolen & Brennan, 2004, Figs. 2.4, 2.5, and 2.10). Another issue that

arises in equipercentile equating with linear interpolation is that the equated scores

are assigned arbitrarily when no examinees are recorded at a particular score.

To address these issues, research over the past 30 years has focused on procedures

for smoothing the data prior to equating (presmoothing) and after the equating

(postsmoothing) on alternative procedures for continuizing the cdfs and on new

equating functions.

In 1989, Holland and his colleagues published two ETS research reports that

described a new equating method that they called the kernel method of test equating

(Holland, King, & Thayer, 1989; Holland & Thayer, 1989). These reports made

several important contributions, the main one being the application of statistical

techniques for continuizing discrete distributions using Gaussian kernels to test

score distributions in the field of psychometrics. This new continuization method

resulted in several advantages over the traditional linear interpolation method of

continuization, which had been and continues to be broadly used by practitioners

and researchers. These advantages include the fact that the KEmethod can potentially

result in the following: (a) a family of equating functions with linear equating as a

special case, (b) smooth and differentiable equating functions with a parameter or

bandwidth that controls thedegreeof smoothing, and (c) analytical asymptotic standard

errors that are defined everywhere on the domain of the function. The equating steps

described in Holland and Thayer (1989) were outlined as follows: (a) presmoothing

(using log-linear models), (b) continuization (using the Gaussian kernels), (c) compu-

tation of the equating function, and (d) computation of the standard error of equating

(SEE).The fact thatHollandandThayer discussed the steps (noted innext section) tobe

followed in a general OSE process went almost unnoticed. As is shown later in the

paper, these steps provide the basic structure for the OSE framework (see Appen-

dix 12.1 for the differences between OSE framework between 1989 and 2004).

In 1993, Livingston applied the theoretical work of Holland and Thayer and wrote

two papers (Livingston, 1993a, 1993b) that led to equating practitioners adopting

the use of log-linear models to presmooth data. One of the papers (Livingston,

1993a) showed the significant impact on the SEE of the use of a well-fit log-linear

model to presmooth the data. The other paper (Livingston, 1993b) showed that the
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two methods of continuization of discrete test score distributions – the traditional

linear interpolation and the Gaussian kernel, gave very similar results – with the

Gaussian kernel method achieving slightly better results (closer to the equating

criterion and with lower SEE). At the time Livingston wrote those papers, there

was no automatic way to select the degree of smoothing within the Gaussian kernel

method, and therefore, a practitioner had to try various smoothing degrees manually

and somehow fix on an ad hoc basis the values of the bandwidth that controlled

smoothing. That is, at that time, the process was impractical and the choice of the

degree of smoothing was arbitrary.

In 2004, von Davier et al. (2004b) published The Kernel Method of Test
Equating, which to some degree changed the way researchers talk (and maybe

think) about equating. This shift did not happen overnight, but over time the change

became noticeable in the terms of the framework and type of vocabulary used in

research papers on equating (see Appendix 12.1). While some of these concepts

were available since 1989, practitioners and researchers adopted them only more

recently, after the kernel equating book was published. This paradigm shift and the

ongoing research are the focus of this paper (see Appendix 12.1). Appendix 12.1

describes the research agenda around the OSE framework in the past, present, and

future.

In the beginning, not even the authors of the book realized the full set of

implications of their work. For example, they called the book The Kernel Method
of Test Equating, while a more appropriate title perhaps should have been A New
Equating Framework and the Application of Gaussian Kernel Continuization to

emphasize the level of generalizability of the proposed framework. This framework

easily includes not only the Gaussian kernel, but also other kernels, as well as the

traditional linear interpolation method. The framework described in von Davier

et al. (2004b) also introduced several new concepts, such as (a) the design function

(DF), (b) the standard error of equating differences (SEED), (c) explicit use of the

assumptions that underlie common data collection designs, (d) new approaches for

employing data collected from these designs, (e) ways to model the impact of the

data collection strategy by using DF, (f) new names or acronyms for known designs,

such as the equivalent groups (EG) design and the nonequivalent groups with

anchor test (NEAT) design, (g) and the fact that the Gaussian kernel is only one

possible choice for continuization and only one of many efficient applications

within the framework. The most important feature in the framework, although it

is implicit, is an approach to equating that makes use of a statistical parametrical

model – an approach that relies on a set of assumptions, makes inferences about the

data, includes an estimation method for the parameters, and has accuracy and

diagnostic measures.

Since the book was published (von Davier et al. 2004b), the research on OSE

has been revived, and to a significant extent, it has shifted from direct empirical

applications to theoretical development of new equating models, new continuization

models, and new work extending the accuracy measures to building tests of linear

hypotheses of equating functions (see Appendix 12.1). Many of these recent or

current studies rely on OSE framework.
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The purpose of the paper is to (a) identify the components of the conceptual

framework of OSE methods, (b) discuss how this framework encompasses all OSE

methods, (c) emphasize the practical advantages of the modular structure of the

framework, (d) indicate how this framework has already proven to be useful for

various research purposes outside of Gaussian KE, and (e) discuss potential further

developments in the equating field that could be derived from this OSE framework.

12.3 A Brief Description of the Observed-Score

Equating Framework

The process of observed-score kernel equating was described in von Davier et al.

(2004b) as consisting of the following: (a) presmoothing (using log-linear models),

(b) estimation of the score probabilities (using DF), (c) continuization (using the

Gaussian kernels), (d) computation of the equating function and new diagnostic

measures, and (e) computation of accuracy measures, such as SEE and the newly

developed SEED. The equating process described in von Davier et al. was enhanced

in several ways since its first description in Holland and Thayer (1989) (see above

the four equating steps from Holland & Thayer, 1989, and see Appendix 12.1 for a

tabular comparison of the two descriptions of the equating process).2

In this paper, OSE framework follows the five steps in the OSE process as

described in von Davier et al. (2004b) and also includes an explicit description of

the relationship between the observed-score equipercentile and linear equating

functions. Next the notation and the OSE framework are introduced.

Explicitly or implicitly, in most OSE methods (in particular for the nonlinear

methods), the equating functions depend on the score probabilities for each of the

two test distributions to be equated on a target population, called T here. The two

tests are denoted here by X and Y, and their score values are denoted by xj (with
j ¼ 0, . . ., J) and yk (with k ¼ 0, . . ., K), respectively. The vectors of the score

probabilities are denoted by r and s on T:

r ¼ r1; :::; rJð Þ; and s ¼ s1; :::; sKð Þ (12.1)

and each rj and sk are defined by

rj ¼ PfX ¼ xjjTg and sk ¼ PfY ¼ ykjTg: (12.2)

2 The appendix contains a summary of the three generations of the OSE framework. The first

column shows the steps employed within the framework, while additions made in 2004 and in

2009 are included in the next two columns. Examination of the appendix reveals, for example, that

Step 2 of the current approach was not added until 2004 (hence the odd numbering in column one

of 1, 3, 4, and 5). The table also reveals that another major shift between the 1989 and 2004 was the

addition of the SEED to the framework.
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The score probabilities for X are associated with the X raw scores, {xj}, and those
for Y are associated with the Y raw scores, {yk}. Based on the equating design

employed, the score probabilities r and s are computed through the design function,

which can range from the simple identity function to more complex functions for

anchor test methods (von Davier et al. 2004b, Chap. 2).

The steps in the OSE framework are covered in more detail in the following

subsections.

12.3.1 Presmoothing (Step 1)

The score probabilities are first either estimated through various procedures such as

fitting log-linear models to the observed-score test probabilities or by estimating

them using the sample frequencies; either way, they are subsequently collected as

part of a row vector, û . The estimated marginal score probabilities r̂ and ŝ are

actually computed (explicitly or not) using DF. A description of log-linear model

presmoothing is not given here because (a) it is richly documented in the literature

(Holland & Thayer, 1987, 1989, 2000; Moses & Holland, 2008), (b) it is an

equating step that is already widely followed and understood by practitioners of

equating, and (c) in theory (and consistent with the goals of this paper), it can be

achieved using other methods and models that can easily be made to match the

results obtained from OSE framework.

12.3.2 Estimating the Score Probabilities (Step 2)

The estimated equating function can be written to express the influence of the data

collection design as

êyðxÞ ¼ eyðx; DFðûÞÞ: (12.3)

Or it can equivalently be written as

êyðxÞ ¼ eyðx; r̂; ŝÞ; (12.4)

where u is a generic notation of the data-vector that reflects the way the data are

collected, and û denotes its estimate. For example, if the data are collected from an

EG design, then the data are in the form of two univariate distributions; in this case

design function is the identity function and u ¼ (r, s). If the data are collected

following a single group (SG) design, where the same group of test takers takes both

test forms X and Y, then u is the vector whose components are the joint probabilities

from the single bivariate distribution. In this case, design function is a linear
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function that computes the marginal probabilities r and s from this bivariate

distribution. The design function becomes more complex for the various equating

methods for the NEAT design, but the results of its application to vector u are

always the score probabilities vectors, r and s on T.

12.3.3 Continuization (Step 3)

In OSE framework for KE (Gaussian or others), the kernel functions are continuous

random variables added to the original discrete variable. Consider X(hX) as a

continuous transformation of X such that

XðhXÞ ¼ aXðX þ hXVÞ þ ð1� aXÞmXT ; (12.5)

where

a2X ¼ s2XT
s2XT þ s2Vh

2
X

(12.6)

and hX is the bandwidth controlling the degree of smoothness. In (12.5), V is a

continuous (kernel) distribution with variance s2V and mean 0. The mean and the

variance of X on T are denoted by mXT and s2XT , respectively. The role of aX in (12.5)
is to ensure that the first two moments of the transformed random variable X(hX) are
the same as the first two moments of the original discrete variable X. When hX is

large, the distribution of X(hX) approximates the distribution of V; when hX is small,

X(hX) approximates X, but as a continuous function. In von Davier et al. (2004b),

V followed a standard normal distribution (that is, a Gaussian kernel, with mean 0

and variance 1) and this is why the terms Gaussian KE and KE are sometime used

interchangeably. However, Lee and von Davier (2008) discussed the use of alter-

native kernels for equating, and in their approach, V is a generic continuous

distribution. The Y distribution is continuized in a similar way.

One important property of OSE framework that was developed for KE functions

(Gaussian or other kernels) is that by manipulating the bandwidths for the new

distributions one can obtain a family of equating functions that includes linear

equating (when the bandwidths are large) and equipercentile equating (when the

bandwidths are small) as special cases. The choice of bandwidth balances the fit

and the smoothness of the new continuous function. In von Davier et al. (2004b), the

bandwidth is obtained by minimizing a penalty function that has two parts and

the user can choose to select the first part only or both parts to minimize. By using

the first part of the penalty function, one ensures that the continuous function stays

close to the discrete density; by adding the second part of the penalty function, one

also penalizes for roughness. If the user chooses to select only the first part of the
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penalty function, then the resulting equating function will be close to the traditional

equating function obtained through linear interpolation.

The continuized function X(hX) can be evaluated or diagnosed by comparing

its moments to the moments of the discrete score distribution, in this case, of X.
The residuals at the score points can be also investigated. However, more research

is necessary on the degree of smoothing needed for the density functions.

12.3.4 Computing the Equating Function (Step 4)

Once the discrete distribution functions have been transformed into continuous

cumulative distribution functions, then the observed-score equipercentile equating

function that equates X to Y is computed as

êyðxÞ ¼ eyðx; DFðûÞÞ ¼ GTc
�1ðFTcðx; r̂Þ; ŝÞ; (12.7)

where GTc is the continuized cumulative distribution function of Y on the target

population T and FTc is the continuized cumulative distribution function of X on T.
The equating function eY in (12.7) can have different formulas (linear or nonlinear,

for example). In a NEAT design, it can take the form of chained equating, post-

stratification equating, Levine equating, and so on.

The equating function can be evaluated by comparing themoments of the equated

scores distribution êyðxÞ to the moments of the targeted discrete score distribution, in

this case, of Y. Other commonly used diagnostic measures involve accuracy

measures (see below) and historical information available about the equating results

from previous administrations of the assessment.

12.3.5 Computing Accuracy Measures (Step 5)

The SEE and SEED are described next. von Davier, Holland, and Thayer (2004a)

applied the theorem known as the delta method (Kendall & Stuart, 1977; Rao,

1973) to obtain both the SEE and the SEED. The delta method was applied to the

function from (12.7) that depends on the parameter vectors r and s on T. According
to the delta method, the analytical expression of the asymptotic variance of the

equating function is given by

VarðêyðxÞÞ ¼ Varðeyðx;DFðûÞÞ � JeyJDFŜJ
t

DFJ
t
ey
; (12.8)

where S is the estimated asymptotic covariance of the vectors r and s after the

presmoothing, Jey is the Jacobian vector, that is, the vector of the first derivatives of

ey (x; r, s) with respect to each component of r and s, and JDF is the Jacobian matrix,
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that is, the matrix of the first derivatives of the design function with respect to each

component of vector u.

The asymptotic SEE for ey(x) is the square root of the asymptotic variance in (12.8),

and it depends on three factors that correspond to the data collection andmanipulation

steps carried out so far: (a) the data collection design through JDF, (b) presmoothing

(using a log-linear model, for example) through estimating the r and s and their

estimated covariance matrix S, and (c) the combination of continuization and the

mathematical form of the equating function from Step 4 (computing the equating

function) in the OSE framework.

Moreover, (12.8) makes obvious the modular character of OSE framework (and

therefore, of the software created for it): If one changes the data collection design,

the only thing that will change (12.8) will be JDF. If one changes the equating

method (linear or nonlinear, chained versus frequency estimation, etc.), the only

piece that will change in (12.8) is Jey . Finally, if one chooses a different log-linear

model, then what will change in (12.8) is S.
Hence, the formula of the estimated asymptotic variance of the equating function

from (12.8), that is

JeyJDFŜJ
t

DFJ
t
ey
; (12.9)

could be seen simplistically as the formal representation of OSE framework.

In addition to the five steps in the equating process described above that are

synthesized in (12.9), the OSE framework also includes an explicit description of

the relationship between the observed-score equipercentile and linear equating

functions, which is described in the next section.

12.4 The Relation Between Linear and Equipercentile

Equating Functions

Following von Davier et al. (2004a, 2004b), all OSE functions linking X to Y on T
can be regarded as equipercentile equating functions that have the form shown in

(12.7) and (12.10):

EquiXYTðxÞ ¼ G�1
Tc ðFTcðxÞÞ; (12.10)

where FTc(x) and GTc(y) are continuous forms of the cdfs of X and Y on T, and y ¼
G�1

T ðpÞ is the inverse function of p ¼ GT(y). Different assumptions about FTc(x)
and GTc(y) lead to different versions of EquiXYT(x) and, therefore, to different OSE

functions (for example, chained equating, frequency estimation, etc.).

Let mXT, mYT, sXT, and sYT denote the means and standard deviations of X and Y
on T that are computed from FTc(x) and GTc(y), as in mXT ¼ R

xdFTcðxÞ, and so on.
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In general, any linear equating function is formed from the first two moments of

X and Y on T as

LinXYTðxÞ ¼ mYT þ ðsYT=sXTÞðx� mXTÞ: (12.11)

The linear equating function in (12.11) that uses the first two moments computed

from FTc(x) and GTc(y) will be said to be compatible with EquiXYT(x) in (12.10).

It is the compatible version of LinXYT(x) that appears in Theorem 1. The issue of

compatible linear and equipercentile equating functions is covered in more detail

in von Davier, Fournier-Zajac, and Holland (2007). Theorem 1 is proved in von

Davier et al. (2004b), and it connects the equipercentile function, EquiXYT(x), in
(12.11) to its compatible linear equating function, LinXYT(x), in (13.11).

In addition to outlining the relationship between the compatible equipercentile

and linear equating functions, Theorem 1 also provides a translation into formal

language of the well-known fact that when FTc(x) and GTc(y) have the same shape,

the equipercentile equating function is identical to the linear equating function.

Theorem 1. For any population, T, if FTc(x) and GTc(y) are continuous cdfs, and
F0 and G0 are the standardized cdfs that determine the shapes of FTc(x) and GTc(y);
that is, both F0 and G0 have mean 0 and variance 1 and

FTcðxÞ ¼ F0

x� mXT
sXT

� �
and GTcðyÞ ¼ G0

y� mYT
sYT

� �
; (12.12)

then

EquiXYTðxÞ ¼ G�1
Tc ðFTcðxÞÞ ¼ LinXYTðxÞ þ RðxÞ; (12.13)

where the remainder term, R(x), is equal to

sYT r
x� mXT
sXT

� �
; (12.14)

and r(z) is the function

rðzÞ ¼ G�1
0 ðF0ðzÞÞ � z: (12.15)

When FTc(x) and GTc(y) have the same shape, it follows that r(z) ¼ 0 in (12.15)

for all z, so that the remainder in (12.13) satisfies R(x) ¼ 0, and thus, EquiXYT(x) ¼
LinXYT(x).

However, it is not always true, for the various methods used in the NEAT design,

that the means and standard deviations of X and Y used to compute LinXYT(x) are the
same as those from FTc(x) and GTc(y) that are used in (12.8) to form EquiXYT(x).
The compatibility of a linear and equipercentile equating function depends on both

the equating method employed and how the continuization process for obtaining

FTc(x) and GTc(y) is carried out.
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The continuization method for kernel equating post-stratification (KE-PSE)

methods ensures that the means and standard deviations of FTc(x) and GTc(y) are
the same as those of the underlying discrete distributions for any choice of band-

width. KE-PSE includes the frequency estimation and Tucker methods in OSE

framework and uses a kernel to continuize the discrete score distributions (see von

Davier et al. 2004b, for details). As mentioned earlier, in KE, LinXYT(x) corresponds
to large bandwidths, whereas EquiXYT(x) corresponds to smaller bandwidths that

optimize a penalty function (von Davier et al. 2004b). Thus, in KE-PSE, the four

moments underlying LinXYT(x) are the same as those of the FTc(x) and GTc(y) that
underlie EquiXYT(x), and the linear and equipercentile functions are compatible.

The compatibility of linear and nonlinear equating functions does not hold for all

classes of equating methods. For example, the traditional method of continuization

by linear interpolation (Kolen & Brennan, 2004) does not reproduce both the mean

and variance of the underlying discrete distribution. The piecewise linear continuous

cdf that the linear interpolation method produces is only guaranteed to reproduce

themean of the discrete distribution that underlies it. The variance of the continuized

cdf is larger than that of the underlying discrete distribution by 1/12 (Holland &

Thayer, 1989). Moreover, the four moments of X and Y on T that are implicitly used

by the chained linear or the Tucker linear method are not necessarily the same, nor

are they the same as those of the continuized cdfs of frequency estimation or the

chained equipercentile methods. The issue of compatibility of the various linear and

equipercentile methods used in practice for the NEAT design is a topic worthy of

further research.

In conclusion, the OSE framework introduced here includes the five steps of the

equating practice formally described in (12.9), and it also incorporates both the

linear and nonlinear equating functions together with a description of their

relationship.

12.5 Recent and Current Research on Equating Based

on the Observed-Score Equating Framework

This section describes several new research directions and their links to OSE

framework. Each of these research projects is discussed in this section in the context

of a step or feature of OSE framework. Various new studies take advantage of the

formal and coherent formulation and the modular characteristics of OSE framework

and focus on application of OSE framework to address particular equating issues.

Although the KE method is often mentioned, the research studies described here

use OSE framework more than the Gaussian KE method itself, and the research that

was carried out is innovative in ways that have gone outside the scope of the KE-

Software (ETS, 2006, 2007, 2010). Some other studies have focused on replacing

various procedures used in the five steps of the equating process. These studies are

described next.
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12.5.1 Studies that Address Step 1, Presmoothing

The studies mentioned in this section focus on investigating further the use of

log-linear models in the presmoothing step in the OSE process. The presmoothing

methodology is reflected in OSE framework through the covariance matrix in (12.9).

The studies focus either on (a) expanding the methodology described in Holland and

Thayer (2000) and von Davier et al. (2004b) or (b) investigating the impact of

presmoothing on the equating results. The first group of research studies includes (a)

an analysis by Moses and Holland (2008) on extending the KE framework to include

the possibility of unsmoothed data; (b) a paper by Moses and von Davier (2006) on

extending the procedure to presmoothing trivariate distributions, where the third

variable could be, for example, a background variable such as gender; and

(c) studies byHolland andMoses (2007) and Chen, Yan, Hemat, Han, and von Davier

(2007) on selection algorithms for log-linear models. The studies in the second group

focus on the impact of themisfit of the log-linearmodel on equating results and include

papers by Puhan, von Davier, and Gupta (2008) and Mekhael and von Davier (2007).

The work by Cui and Kolen (2007) on investigating the cubic-B-spline method

for presmoothing in equating could be considered in this second group, although the

authors did not use OSE framework.

12.5.2 Studies that Address Step 2, Estimating the Score
Probabilities

The three studies mentioned in this section focus on expanding the OSE framework

to new data collection designs. Formally, the data collection design is reflected in

the OSE framework through the Jacobian matrix of the design function in (12.9).

Shen and von Davier (2007) and Duong and von Davier (2008) presented a

method for equating tests from bimodal data collected from an SG design using

OSE framework that was developed for KE in a counterbalanced (CB) design. The

practical benefit of this newly developed approach applied within OSE framework

is that it explicitly accounts for the bimodal distribution in the equating results,

which has not been done before in OSE.

Moses, Deng, and Zhang (2010) extended OSE framework with the post-stratifi-

cation equating function to include a second anchor. In their study, they expanded

upon the work on post-stratification equating in von Davier et al. (2004b, Chap. 2) to

include a bivariate anchor distribution and to condition the test distributions on this

new bivariate anchor. The practical benefit of this approach is that the differences in

ability between the two populations of test takers can be better adjusted for by

including the second anchor. The advantage of the OSE framework here is that it

allows for the computation of the SEEDbetween the equating functions based on two

anchors and those based on one anchor. These accuracy measures in turn can help

practitioners decide whether considering an additional anchor would significantly

increase the precision of equating.
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12.5.3 Studies that Address Step 3, Continuization

Several studies that propose alternative continuization methods are briefly reviewed.

Formally, the continuization methodology is reflected in OSE framework through the

Jacobian vector of the equating function in (12.9).

The motivation for these recent studies on continuization was to simplify the

algorithm of continuization and to improve the resulting equating function in terms

of bias and error. The studies discussed here fall into three categories: (a) obtaining the

continuized distribution using other kernels, (b) using othermethods of continuization,

or (c) improving the KE by fine-tuning the Gaussian kernel continuization.

The paper by Lee and von Davier (2008) falls in the first category of studies. The

paper uses implicitly the OSE framework and investigates alternative distributions

to be used as kernels for continuizing the distribution function. As a potential

alternative to the Gaussian kernel, Lee and von Davier (2008) discussed the possi-

bility of using a logistic kernel. One of the advantages of the logistic kernel is that the

analytical form of the derivatives required for computing the SEE and the SEED is

very simple. This kernel also simplifies the analysis of the behavior of the equating

functions (and the two cdfs) in the tails of the distributions. The results of this study,

however, do not support the claim that the use of a Gaussian kernel distorts the higher

moments of the distribution.

The works of Wang (2011) and Haberman (2008) fall in the second category

of studies. They both use an exponential family of functions to approximate and

continuize the discrete distribution. This approach does not naturally result in a

family of equating functions as KE does, and therefore, it does not include linear

equating as one of the options. Wang (2004) continuized the discrete probability

distribution by using the polynomial log-linear function (from the presmoothing

step) divided by the area under it, to ensure that the distribution is a probability

distribution function. The method is called the continuized log-linear (CLL)
method. The CLL method also assumes that the possible values of the discrete

distribution are equally spaced or are consecutive integers.

Haberman (2008) introduces a new way to continuize discrete distribution

functions using exponential families of functions. In his study, a distribution from

the continuous (univariate or bivariate) exponential family is used for continuization

of the discrete test score distributions. The continuous distribution is estimated by

constraining several of its consecutive moments to match the equivalent moments

of the original discrete test score distribution(s). Once the continuous distribution

is obtained DF is used (explicitly or not) to obtain the marginal distribution, and then

OSE framework continues from Step 4. In the Wang (2011) and Haberman (2008)

studies, presmoothing and continuization are done in one step, and the continuization

does not depend on a bandwidth.Wang’s and Haberman’s methods are conceptually

very similar; the numerical approximations and operational implementations are

different.

More recently, some studies have been looking into alternative numerical ways for

determining the bandwidth in the kernel framework (the third category of studies).
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Cid and von Davier (2009) investigated the use of adaptive kernels where the

bandwidth is allowed to vary across the score range to account for the differences

in sample sizes at different scores. Liang and von Davier (2009) applied the cross-

validation technique to estimate the bandwidth that balances the closeness of the

continuous distribution to the discrete distribution with the smoothness of the contin-

uous function. Cross-validation is commonly used in density estimation procedures.

12.5.4 Studies that Address Step 4, Equating

Formally, the composition of the equating function with the design function is

reflected in OSE framework through the Jacobian vector of the equating function

and the Jacobian matrix of DF in (12.9). The research carried out recently focused

on the evaluation of the equating results and it is mentioned below. The studies fall

under these research directions: (a) equating evaluation and (b) equating criteria.

Equating evaluation. In von Davier et al. (2004b), the percent relative error

diagnostic indexes were described for all equating methods but the chained equat-

ing methods (both linear and nonlinear). One recent study focused on expanding

the index to chained equating (Jiang, von Davier, & Chen, 2011). Another

study (Moses, 2008) is investigating the following questions: What are the

characteristics of a good equating method? Should the equating function reflect

the irregularities in the data or should it be smooth? Should a procedure attempt to

balance the two?

Equating criteria. Other research directions under equating encompass the research

on establishing an equating criterion in simulation or special studies. Shen and von

Davier (2007) discussed the choice and development of an equating criterion for

equating functions in the NEAT design. Inspired by the work of Holland, von Davier,

Sinharay, and Han (2006) and Holland, Sinharay, von Davier, and Han (2008), Shen

and von Davier recommend the creation of a synthetic single group design with

the equipercentile method as the equating criterion for equating the two tests. The

synthetic single group is constructed to be similar to the target population in the

NEAT design, that is, to be a weighted average of the two nonequivalent samples

from the NEAT design. In order to use such an equating design, one needs to have

data for both tests to be equated in both nonequivalent samples. This is only possible

in a special study or with simulated data. Routine operational administrations cannot

provide the data structure needed for this purpose.

12.5.5 Studies that Address Step 5, Accuracy Measures

Formally, the accuracy methods (SEE and SEED) are directly reflected in OSE

framework via the computation in (12.9) or a slight adaptation of it. Here, studies

that focus on extending the use of SEE and SEED are briefly reviewed. These include

12 An Observed-Score Equating Framework 233



(a) studies that extend the application of the SEE and SEED to other equating

functions and (b) studies that extend the use of the SEE and SEED to hypotheses

testing.

The formulas in OSE framework for the computation of SEE and SEED for KE

functions can easily be adapted to derive these indexes for all the OSE functions.

Recent research already showed that OSE framework can be used to compute

standard errors of the traditional equipercentile equating (Wang, 2004) or

the SEED between a KE method and a traditional equating method (Moses,

Deng, & Zhang, 2010).

The SEED has been shown to have practical uses: It aids in the decision to be

made between equating functions that are (a) linear and nonlinear or (b) based on

different assumptions, such as post-stratification and chained equating (see von

Davier & Kong, 2005; von Davier et al. 2004b). In addition to these already

established uses, SEED can be extended to construct omnibus statistical tests to

decide between two equating functions (see Rijmen, Qu, & von Davier, 2008).

12.5.6 Studies that Address the Relation Between Linear
and Equipercentile Equating Functions
in the Observed-Score Equating Framework

Formally, the relationship between the linear and equipercentile equating functions

is only captured in Theorem 1 and is not directly reflected in (12.9). This subsection

mentions two studies that propose nonlinear versions of the Levine OSE function

that have used the five steps from OSE framework and Theorem 1 in their develop-

ment. The motivation for looking into other equating methods based on classical test

theory (CTT) is due to the search for a theory of equating based on CTT concepts,

such as true and observed-scores and reliability, and measurement errors (see also

Holland & Hoskens, 2003).

The Levine method has been known to be a linear function without a curvilinear

analogue and without a version in KE. Nevertheless, the Levine OSE method is

often computed in practical applications for comparison purposes. Under certain

circumstances it might be more accurate than the other linear equating methods and,

hence, used operationally for score reporting (see Petersen, Marco, & Stewart,

1982). These circumstances refer to the quality of the tests and the anchor and to

a situation where a linear equating is appropriate (i.e. the distributions of the two

variables X and Y have similar shapes). However, situations do exist where the tests

and the anchor are very carefully constructed but the two test distributions differ in

shape (see von Davier et al. 2006). In such a case, a nonlinear version of the Levine

function would be needed.

Chen and Holland (2008) and von Davier et al. (2007) presented different ways of

constructing a nonlinear Levine observed-score and true-score equating methods in

OSE framework. The newly developed nonlinear Levine equating functions from von

Davier et al. and Chen and Holland (2008) rely on Theorem 1 and OSE framework.
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12.6 Future Directions

This paper demonstrates that the method introduced by Holland and Thayer (1989)

and von Davier et al. (2004b) represents more than simply a continuization method.

This paper shows that von Davier et al. (2004b) introduced a powerful equating

framework for all OSE methods that has already proven useful for various research

purposes. Moreover, through its modular features, the OSE framework facilitates

the manipulation of the software developed to compute the KE. KE Software (ETS,

2006, 2007, 2010) can be easily enhanced by adding routines to replace different

parts of (12.9). Acknowledging that the OSE fits under a modular framework can

make the operational infrastructure flexible and efficient.

Although the KE method has been around for almost 20 years, it has been slowly

adopted in operational practice (for instance, at ETS, it was first adopted by several

programs in 2008) despite the theoretical and practical advantages KE offers. The

arguments for supporting a more extensive use of OSE framework in operational

practice are (a) the accuracy and diagnostic measures available within the frame-

work; (b) the framework’s modular system, which translates readily into a modular

software package; and (c) the easy-to-use software interface. Moreover, the OSE

framework has the potential to introduce automatic procedures (with incorporated

decision steps) and therefore can reduce some of the present routine equating

workload for psychometricians and data analysts.

Research focused on decision aids and automatic equating procedures is needed

to simplify the equating process and tomake it more efficient. Developing or refining

indexes and tests – such as (a) testing linear hypotheses about equating differences

on specific intervals, (b) using SEED for aiding in the process of comparing equating

functions, and (c) developing indexes for deciding among log-linear models in

presmoothing, as well as (d) making attempts to develop procedures to improve

the fit of log-linear models (and therefore improve the stability of equating results)

for score ranges that matter to a particular program – are of vital importance in the

practice of equating. In addition, researchers should focus on (e) expanding the

research onOSE framework to include the scaling process, (f) monitoring scale drift,

and (g) studying ways to equate tests that have bimodal distributions. For example,

the scaling process (that is, the process by which the equated raw-scores are placed

onto a reporting scale) can be formalized as part of the OSE framework. The scores

on the reporting scale are, mathematically speaking, obtained from the composition

of the scaling function and equating function. As such, one could eventually

formalize this step by including the Jacobian of the scaling function with respect

to the equated scores into (12.9). However, the discreteness of the scaling function

and the routine of rounding scores for reporting purposes would definitely be a

challenge in formalizing this step.

In this paper, the OSE framework was laid out, past research was linked to steps

in the framework, and areas where additional research might be beneficial for

practical use were mentioned.
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Part VI

Holland: From Mentor to Colleague

Great Colleagues Make a Great Institution

Paul W. Holland

When Don Rubin and I decided to hire Henry Braun into the research statistics

group, we had no inkling of just how far Henry would go at Educational Testing

Service (ETS). He became my boss as the director of the division and then my

boss’s boss when he rose to the vice president for research. I liked having a

statistician up there in the administrative stratosphere of the organization. More-

over, he was somehow able to continue to do research while in these roles and has

made many contributions to educational research with a current emphasis on

educational policy at the national level.

In the late 1980s, Neil Dorans and I were both interested in developing good

methods for detecting test questions that exhibited differential item functioning

(DIF). Neil came at it as part of his work on the SAT®, while I had begun to think

about providing DIF methods that had good statistical properties but were easy to

compute. I was unhappy with what the field of psychometrics had come up with

regarding measuring DIF in those days, and Neil wanted something that could

be used with the huge data sets that arose with the SAT. We came up with different

but closely related approaches that are now widely applied. Over the years Neil

and I have had many opportunities to collaborate. One of the most satisfying for

me was our chapter on linking and equating in the fourth edition of Educational
Measurement edited by Robert Brennan. In every respect, Neil has been an

outstanding example of the great ETS research combination of scholarship and

practical work.



Chapter 13

An Exploratory Analysis of Charter Schools

Henry I. Braun, Christina Tang, and Kathleen M. Sheehan

13.1 Introduction and Overview

Charter schools are publicly supported schools to which parents can opt to send

their children. The goal of the charter school movement is to offer parents a choice

of schools within the public school sector. In general, charter schools are freed from

many of the regulations under which traditional public schools operate – with the

hope that the increased flexibility will result in superior student achievement.

The first charter schools opened their doors in 1991, and since then thousands

more have been started. The rules governing charter schools vary from state to state,

but in all states charter schools are established under the auspices of authorizers

approved by the state. The authorizers can be public or private, including

universities, school districts, for-profit entities, individuals, and so on.

Charter schools have attracted a great deal of attention, and their relative effec-

tiveness in comparison to public noncharter schools has been the object of much

study (see Carnoy, Jacobsen, Mishel, & Rothstein, 2005). Within-state comparisons

have produced mixed findings. In part, these findings can be attributed to the

difficulty in conducting research in this area. The technical difficulties include

data insufficiency and the perennial problem of making credible causal inferences

from observational or quasi-experimental studies. These and other difficulties are

addressed in the report of the Charter School Achievement Consensus Panel (2006).

Responding to the interest in charter schools, the National Assessment Governing

Board asked the National Center for Education Statistics (NCES) to oversample

charter schools for the grade 4 assessment conducted in 2003. Students from

approximately 150 charter schools were included in the assessment. Analysis of

the resulting data for both reading and mathematics (National Center for Education

H.I. Braun (*)

Lynch School of Education, Boston College, 140 Commonwealth Avenue,

Chestnut Hill, MA 02467, USA

e-mail: braunh@bc.edu

N.J. Dorans and S. Sinharay (eds.), Looking Back: Proceedings of a Conference
in Honor of Paul W. Holland, Lecture Notes in Statistics 202,

DOI 10.1007/978-1-4419-9389-2_13, # Springer Science+Business Media, LLC 2011

241

mailto:braunh@bc.edu


Statistics, 2005) revealed that, on average, students enrolled in charter schools did

not perform as well as students enrolled in public noncharter schools. Furthermore, a

comparison of grade 4 reading scores between charter schools associated with a

local education authority (C/LEA) and charter schools not associated with an LEA

(C/nLEA) showed that students enrolled in the former performed about 10 points

better, on average, than those enrolled in the latter.1 In mathematics, the difference

was about 11 points, again in favor of charter schools associated with an LEA.

Both resultswere somewhat surprising to proponents of charter schools.Aplausible

explanation for the first result was that students enrolled in charter schools were, on

the whole, more disadvantaged than those enrolled in public noncharter schools and

that theNCES analyses had not properly accounted for these differences. However, a

subsequent reanalysis of this data using hierarchical linear models (Braun, Jenkins,

& Grigg, 2006) did not materially change the findings described above. That is, in

both reading and mathematics, after adjusting simultaneously for differences in all

measured student characteristics, the average of charter school means was about 4

points lower than the average public noncharter school means. Both differences

were statistically significant.

Following the example of the NCES report, Braun et al. (2006) also compared the

results for the two types of charter schools. When school means for grade 4 reading

were adjusted for measured differences in their student populations, the average

school mean for C/LEA schools was slightly more than 4 points greater than the

average school mean for C/nLEA schools. In mathematics, the gap in (adjusted)

meanswas slightly less than 4 points. The differences were not statistically significant.

Braun et al. (2006) also conducted a multilevel analysis of data drawn only from

charter schools. The intent was to examine the relationships between various

characteristics of charter schools and the achievement of the students enrolled in

those schools. In reading, a combination of student and school characteristics

accounted for about 82% of the between school variance. Only three charter school

specific variables were in the model (including charter school type). In mathemat-

ics, student and school characteristics accounted for about 69% of the between

school variance. In this case, several charter school specific variables were in the

model (including charter school type).2

As pointed out by Braun et al. (2006), estimating school effectiveness from

cross-sectional data is problematic, even with the possibility of incorporating

individual student characteristics into the model. In point of fact, it is difficult to

compensate adequately for the absence of prior measures of achievement.

1Local education authorities (LEAs) are usually school districts that are established by one or more

political entities, such as towns or cities. In the presentation that follows, the former set of schools

will be denoted by C/LEA and the latter set by C/nLEA. In Braun, Jenkins, and Grigg (2006), they

are referred to as PSD-affiliated and non-PSD-affiliated, respectively.
2Charter school type was retained in both models because of policy maker interest. The

corresponding regression coefficients were not significant in either case.
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Nonetheless, taking these findings at face value, the straightforward interpretation

is that the distinction between C/LEA and C/nLEA schools was not particularly

useful in explaining the variation in average scores among charter schools. How-

ever, this distinction remained of interest, at least for some stakeholders. In partic-

ular, the expectation was that C/nLEA schools would typically have more flexibility

and, consequently, yield better results. As reported above, this expectation was not

realized.

Of course, one possible explanation was collinearity between the charter school

type indicator and the various measured school characteristics. This speculation then

gave rise to the question as to whether the collection of school characteristics could

be employed to reliably distinguish between the two types of charter schools (C/LEA

and C/nLEA); in particular, which charter school specific characteristics would

prove to be useful predictors. A related question concerned the relationships between

charter school characteristics and (adjusted) school means.

The purpose of this note is to describe the results of a set of exploratory analyses

intended to address these questions. With respect to the these two questions, the

analyses drew both on general school data and on the information derived from a

special charter school questionnaire that was completed by school personnel at the

time of the National Assessment of Educational Progress (NAEP) administration.

The information comprised responses to six sets of characteristics of charter

schools:

• Monitoring

• Exemptions (Waivers)

• Constitutes (Progress reporting)

• Strong law state

• Charter school size

• Teacher certification

Each set was constructed from the responses to a number of related queries. For

example, with respect to monitoring, school personnel were queried about whether

they were monitored by the school’s authorizer in one or more of the following areas:

instructional practices, student achievement, student behavior, student attendance,

school governance, school finances, and compliance with state or federal relations.

Responses were yes, no, or don’t know.Waivers concerns the number and type of state

or district policies for which the school was granted a waiver or exemption. Progress
reporting is a count of the number of stakeholders to which the school had to make a

report. Strong law state categorized the home state as having or not having a strong

charter school law. School size classified school enrollment as low or high. Finally,

teacher certification indicated the percentage of certified teachers in the school. For

further details consult Appendix A of Braun et al. (2006, pp. 52–53).

The analysis was carried out in three phases:

1. Nonlinear models were fit to the full set of 148 charter schools. The best fitting

model is only moderately successful in distinguishing between C/LEA and

C/nLEA schools.
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2. In view of the possibility that charter schools with higher adjusted score means

may exhibit different patterns than charter schools with lower adjusted score

means, the full set was divided into two groups: Those schools with adjusted

reading means > 211 and those schools with adjusted reading means < 211.

(Note: 211 is approximately the average of all charter school reading means.)

Models were fit separately to each group. The outcomes were similar to those in

Phase 1. A parallel analysis was conducted using a split based on adjusted

mathematics means, with comparable results.

3. With the results of Phases 1 and 2 in hand, it was decided that it would be useful

to determine if the average difference in means between school types was, in

some sense, unusually large. Accordingly, the full charter school set was

successively divided into two groups, based on all possible splits of four of the

available school characteristics.3 For both reading and mathematics, the absolute

value of the difference in average school means resulting from each split was

recorded and the empirical distribution of these absolute differences was

compiled. When this empirical distribution is used as a reference distribution,

it appears that in either case the average difference in school means between

C/LEA and C/nLEA schools is not particularly unusual.

13.1.1 Analyses: Phase 1

In view of the nature of the data, traditional linear discriminant models would likely

not be satisfactory. Accordingly, a nonlinear (or tree regression) approach, which is

more flexible, was followed (Breiman, Friedman, Olshen, & Stone, 1988). The

outcome variable is the indicator for whether the school is C/LEA or C/nLEA. The

predictors are the various school characteristics. The fitting algorithm successively

searches among the predictors for the best cut-point or split, where best is deter-

mined by a statistic related to the accuracy in discriminating between the groups.

Once the best split has been found, the search is repeated for each of the two

subsamples that have been created. The process continues until an appropriate

stopping point has been reached.

To begin, a number of analyses were conducted to determine which of the

measured charter school specific characteristics were potentially useful predictors

and, for those characteristics, whether a single cut along the scale could be employed.

For example, the variable monitor appeared to be a good predictor. Schools were

assigned a score of 0–6, depending on the number of areas monitored.4 Based on the

3The other two characteristics are dichotomous and so do not accommodate multiple splits.
4One area of monitoring was excluded due to missing data.
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preliminary analyses, we decided to dichotomize the variable, with schools monitored

in three or fewer areas in one category (labeled L) and schools monitored in four or

more areas in another category (labeled H). Exemptions were dichotomized as none

(labeled N) or one or more (labeled 1M). With respect to constitutes, schools were

assigned a score of 0–6, depending on the number of groups to which they had to

report.5 The other two variables, strong law and school size, were already dichoto-

mous. These reductions and transformations enabled us to produce simpler and more

interpretable regression models.

Drawing on the results of Braun et al. (2006), a number of general school

characteristics were added to the database. In particular, for the variable teacher

certification, schools were dichotomized as either none (N) or some or all (AS) of

the school’s teachers were certified.

When the amount of data is not large compared to the number of predictors, a

common problem in regression is overfitting. To guard against this, we divided the

full sample into five mutually exclusive subsamples of about 30 schools each.

These subsamples were denoted by the letters A through E, respectively. Using a

fixed predictor pool, a regression model was successively fit to the data, leaving out

each subsample in turn. This resulted in five fitted models.6 Each model was cross-

validated on the corresponding excluded subsample, then the results were combined

over the five cross-validations to produce an overall cross-validated estimate of the

predictive accuracy of the model.

In nonlinear regression with a dichotomous outcome, the splits were compared on

the basis of their deviance. In this case, each split yielded two nodes, and the deviance

was defined as the sum of the squared differences between the observed and

the predicted values summed over the nodes. The observed value was 1 (C/LEA)

or 0 (C/nLEA), and the predicted value was the proportion of schools in the node that

were C/LEA. One measure of the utility of the fitted tree was R2, which is defined as

the squared correlation between the observed values and the predicted values.

The results for this phase are presented in Appendix 1. Figure 13.1 displays

the regression tree for 119 schools (leaving out subsample E). The first split is on

the monitor variable. The monitor ¼ L branch (with 24 schools) is not further

subdivided. The monitor ¼ H branch (with 95 schools) is subdivided by

exemptions. The exemptions ¼ N branch (with 39 schools) is not further

subdivided. The exemptions ¼ 1M (with 56 schools) is further subdivided by the

teacher certification variable. There are no further splits. Indeed, it is noteworthy

that only three predictors are included in the final tree, which has only four nodes.

The vertical placement of a node indicates the deviance associated with that

node, and the horizontal placement indicates the empirical probability of schools in

that node being C/LEA. For purposes of prediction, schools in nodes with that

probability greater than 0.5 are classified as C/LEA and schools in nodes with

5Two groups were excluded due to missing data.
6Fortunately, each of the five models incorporated the same subset of predictors.
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that probability less than 0.5 are classified as C/nLEA. In this case, schools in the

nodes with monitor ¼ L or with monitor ¼ H, exemptions ¼ 1M, and teacher

certified ¼ AS are classified as C/LEA since these nodes have empirical

probabilities greater than 0.5. The remaining schools are classified as C/nLEA.

Note that all four nodes are located well away from the threshold of 0.5. The results

of the analyses are found in Appendix 1.

For each of the five estimation samples, Table 13.1 displays the number of

schools in each node, and Table 13.2 displays the proportions of schools in each

node that are in C/LEA. The results are very consistent across the five samples.

Table 13.3 then presents the results for the cross-validated predictions. Predictions

of C/nLEA were correct nearly 74% of the time, while predictions of C/LEA were

correct 67% of the time. (This difference most likely reflects the positions of the

nodes relative to 0.5.) The overall prediction accuracy was approximately 0.7.

Since chance agreement is 0.5, this yielded a kappa value of 0.40 indicating fair

to moderate accuracy.

Although NAEP scores are not involved in the fitting algorithm, it is of interest

to note the distribution of adjusted school means for the two subsets of schools

(Fig. 13.2). It is evident that there is both considerable heterogeneity within each

subset and substantial overlap between them. Table 13.4 shows the averages and

standard deviations for each subset. These findings are then compared with the

predicted classifications based on the final model. The distributions of adjusted

means for the two classifications are presented in Fig. 13.3 and the summary

statistics in Table 13.5. Thus, the average difference in school means between the

school types is slightly larger than the average difference between the two pairs of

nodes.

13.1.2 Analyses: Phase 2

In this phase, schools were first categorized by the magnitude of their adjusted

reading mean. Because of the reduced sample size, only one model was fit to each

half-sample. The results of these analyses are found in Appendix 2.

The regression model for higher performing schools (N ¼ 84) is displayed in

Fig. 13.4. The tree structure is similar to that found for the full data set. Table 13.6

shows the number of schools in each node, and Table 13.7 shows the empirical

probabilities of a school being in C/LEA associated with each node. Table 13.8

presents the predictions of the model cross-classified with the actual designations.

The kappa ¼ 0.40 as before, though this is not based on cross-validation.

Figure 13.5 displays the distributions of adjusted school means for the C/LEA

and C/nLEA subsets. Again, we see considerable heterogeneity within each subset

and substantial overlap between subsets. Table 13.9 presents the averages and

standard deviations for each subset. Note that the means are nearly identical,

although the distributions have rather different shapes. These findings are then

compared with the predicted classifications based on the final model. The
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distributions of adjusted means for the two classifications are presented in Fig. 13.6,

and the summary statistics are presented in Table 13.10.

The regression model for lower performing schools (N ¼ 64) is displayed in

Fig. 13.7. The tree structure is different from that found for the full data set in that

there are only three nodes rather than four nodes. Table 13.11 shows the number of

schools in each node, and Table 13.12 shows the empirical probabilities of a school

being in C/LEA associated with each node. Table 13.13 presents the predictions of

the model cross-classified with the actual designations. The kappa ¼ 0.40 as

before, though this is not based on cross-validation.

Figure 13.8 displays the distributions of adjusted school means for the C/LEA

and C/nLEA subsets. Again, we see considerable heterogeneity within each subset

and substantial overlap between subsets. Table 13.14 presents the averages and

standard deviations for each subset. Note that in this case the average for C/nLEA

is about 0.5 points greater than the average for C/LEA. These findings are

then compared with the predicted classifications based on the final model.

The distributions of adjusted means and the summary statistics for the two

classifications are displayed in Fig. 13.9, and are presented in Table 13.15.

13.1.3 Analyses: Phase 3

In this phase, charter schools were successively divided into two groups based on a

split at different levels on each of four school characteristics. The results of these

analyses are found in Appendix 3.

Table 13.16 displays the splits and, for each split, the corresponding absolute

difference in the averages of the school means for the two groups formed by the

split. Figure 13.10 presents a smoothed version of the empirical distribution of these

absolute differences. (Note that this distribution is not a standard sampling distri-

bution because of the dependencies generated by repeatedly splitting the same data

set.) The difference of 3.5 in adjusted means between C/LEA and C/nLEA

(cf., Table 13.4), which is highlighted in the figure, does fall near the tail of the

reference distribution.

Phases 2 and 3 were repeated using data from the mathematics assessment.

The results were quite comparable to those based on the reading assessment.

In particular, the difference between C/LEA and C/nLEA did fall near the tail of

the reference distribution.

13.2 Conclusions

We conclude that measured school characteristics are of limited utility in

distinguishing between C/LEA and C/nLEA schools, with the likely reason that

the variation across authorizers within states, as well as differences between states,

undermine any attempt to make general statements about charter school types.
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Looking for clearer patterns when the schools are divided into those with higher and

lower adjusted school means is no more successful. Finally, the observed difference

based on the C/LEA–C/nLEA classification is not found to be extreme when

compared to differences based on other characterizations. Although charter school

affiliation may be of substantive interest, little statistical support exists for further

investigation using the available data.
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Fig. 13.1 Tree model estimated from all schools except the 29 schools assigned to sample E. Note.
Monitor: L ¼ 0–3; Monitor: H ¼ 4–6; Exemptions: N ¼ 0; Exemptions: 1M ¼ 1 or more;

TeachCert: N ¼ no teacher certificate; TeachCert: AS ¼ some or all teacher certificate; LEA ¼
local education authority
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Fig. 13.2 Distribution of adjusted school means for the 70 local education authority (LEA)

schools and the 78 non-LEA schools
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Fig. 13.3 Distribution of adjusted school means for the 76 schools classified at nodes 1 and 2 and

the 72 schools classified at nodes 3 and 4
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Table 13.1 Numbers of schools assigned to each cross-validation sample by node

Estimation sample

Node ~A ~B ~C ~D ~E

Monitor ¼ L (Node 1) 23 28 26 23 24

Monitor ¼ H & Exemptions ¼ 1M & Cert ¼ AS (Node 2) 38 32 34 36 40

Monitor ¼ H & Exemptions ¼ 1M & Cert ¼ N (Node 3) 14 18 15 17 16

Monitor ¼ H & Exemptions ¼ 0 (Node 4) 43 40 43 43 39

Total 118 118 118 119 119

Note. Sample ~A includes all schools except the 30 schools assigned to sample A, etc.

Monitor: L ¼ 0–3; Monitor: H ¼ 4–6; Exemptions: N ¼ 0; Exemptions: 1M ¼ 1 or more;

TeachCert: N ¼ no teacher certificate; TeachCert: AS ¼ some or all teacher certificate

Table 13.2 Empirical values for probability that school is associated with LEA, by node and

sample

f estimation sample

Node ~A ~B ~C ~D ~E

Monitor ¼ L (Node 1) 0.65 0.68 0.69 0.70 0.83

Monitor ¼ H & Exemptions ¼ 1M & Cert ¼ A, S (Node 2) 0.66 0.66 0.71 0.61 0.60

Monitor ¼ H & Exemptions ¼ 1M & Cert ¼ N (Node 3) 0.36 0.33 0.33 0.29 0.19

Monitor ¼ H & Exemptions ¼ 0 (Node 4) 0.30 0.22 0.28 0.21 0.23

Note. Tabled value is the probability that school ¼ LEA|node, sample. Monitor: L ¼ 0–3;

Monitor: H ¼ 4–6; Exemptions: N ¼ 0; Exemptions: 1M ¼ 1 or more; TeachCert: N ¼ no teacher

certificate; TeachCert: AS ¼ some or all teacher certificate

Table 13.3 Agreement between observed and predicted classifications

Predicted school type

LEA Non-LEA Total

True type LEA 51 19 70

Non-LEA 25 53 78

Total 76 72 148

Note. Observed agreement ¼ 0.70; kappa ¼ 0.40; LEA ¼ local education authority

Table 13.4 Adjusted school means for two types of schools: local educational authority (LEA)

schools and non-LEA schools

Type Total schools Observed number LEA Percent LEA (%) Adjusted mean SD

LEA 70 70 100 213.44 8.34

Non-LEA 78 0 0 209.96 7.73

Total 148 70 47 211.61 8.19

Table 13.5 Adjusted school means for two types of schools: schools classified at nodes 1 and 2

and schools classified at nodes 3 and 4

Node Total schools Observed number LEA Percent LEA (%) Adjusted mean SD

1 & 2 76 51 67 212.78 8.49

3 & 4 72 19 26 210.37 7.72

Total 148 70 47 211.61 8.19

Note. LEA local education authority
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Fig. 13.4 Tree model estimated from all schools with adjusted mean > 211. Note. Monitor:

L ¼ 0–3; Monitor: H ¼ 4–6; Exemptions: N ¼ 0; Exemptions: 1M ¼ 1 or more; TeachCert:

N ¼ no teacher certificate; TeachCert: AS ¼ some or all teacher certificate; LEA ¼ local educa-
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Fig. 13.5 Distribution of adjusted school means for the 47 local education authority (LEA)

schools and the 37 non-LEA schools
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Table 13.6 Numbers of schools assigned by node

Node Number of schools

Monitor ¼ L (Node 1) 19

Monitor ¼ H & Exemptions ¼ 1M & TeachCert ¼ AS (Node 2) 30

Monitor ¼ H & Exemptions ¼ 1M & TeachCert ¼ N (Node 3) 7

Monitor ¼ H & Exemptions ¼ 0 (Node 4) 28

Total 84

Note. Mean > 211. Monitor: L ¼ 0–3; Monitor: H ¼ 4–6; Exemptions: N ¼ 0; Exemptions:

1M ¼ 1 or more; TeachCert: N ¼ no teacher certificate; TeachCert: AS ¼ some or all teacher

certificate

Table 13.7 Empirical values for probability by node

Node Probability

Monitor ¼ L (Node 1) 0.79

Monitor ¼ H & Exemptions ¼ 1M & TeachCert ¼ AS (Node 2) 0.67

Monitor ¼ H & Exemptions ¼ 1M & TeachCert ¼ N (Node 3) 0.43

Monitor ¼ H & Exemptions ¼ 0 (Node 4) 0.32

Note. School ¼ LEA|Node, Sample. Monitor: L ¼ 0–3; Monitor: H ¼ 4–6; Exemptions: N ¼ 0;

Exemptions: 1M ¼ 1 or more; TeachCert: N ¼ no teacher certificate; TeachCert: AS ¼ some or

all teacher certificate

Table 13.8 Agreement between observed and predicted classifications

Predicted school type

LEA Non-LEA Total

True type LEA 35 12 47

Non-LEA 14 23 37

Total 49 35 84

Note. Observed agreement ¼ 0.70; kappa ¼ 0.40; LEA local education authority

Table 13.9 Adjusted school means for two types of schools: local education authority (LEA)

schools and non-LEA schools

Type Total schools Observed number LEA Percent LEA (%) Adjusted mean SD

LEA 47 47 100 218.27 4.33

Non-LEA 37 0 0 216.50 4.10

Total 84 47 56 217.49 4.30

Table 13.10 Adjusted school means for two types of schools: schools classified at nodes 1 and 2

and schools classified at nodes 3 and 4

Node Total schools Observed number LEA Percent LEA (%) Adjusted mean SD

1 & 2 49 35 71 217.94 4.31

3 & 4 35 12 34 216.87 4.27

Total 84 47 56 217.49 4.30

Note. LEA local education authority
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Table 13.11 Numbers of schools assigned by node

Node Number of schools

Exemptions ¼ 1M & TeachCert ¼ AS (Node 1) 23

Exemptions ¼ 1M & TeachCert ¼ N (Node 2) 15

Exemptions ¼ 0 (Node 3) 26

Total 64

Note. Mean < 211. Exemptions: 1M ¼ 1 or more; TeachCert: N ¼ no teacher certificate;

TeachCert: AS ¼ some or all teacher certificate

Table 13.12 Empirical values for probability by node

Node Probability

Exemptions ¼ 1M & TeachCert ¼ AS (Node 1) 0.61

Exemptions ¼ 1M & TeachCert ¼ N (Node 2) 0.27

Exemptions ¼ 0 (Node 3) 0.19

Note. School ¼ LEA|Node, Sample. Exemptions: 1M ¼ 1 or more; TeachCert: N ¼ no teacher

certificate; TeachCert: AS ¼ some or all teacher certificate

Table 13.13 Agreement between observed and predicted classifications

Predicted school type

LEA Non-LEA Total

True type LEA 14 9 23

Non-LEA 9 32 41

Total 23 41 64

Note. Observed agreement ¼ 0.70; kappa ¼ 0.40; LEA ¼ local education authority

Table 13.14 Adjusted school means for two types of schools: local education authority (LEA)

schools and non-LEA schools

Type Total schools Observed number LEA Percent LEA (%) Adjusted mean SD

LEA 23 23 100 203.58 5.25

Non-LEA 41 0 0 204.05 4.95

Total 64 23 35.9 203.88 5.02
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Fig. 13.9 Distribution of adjusted school means for the 23 schools classified at node 1 and the

41 schools classified at nodes 2 and 3

Table 13.15 Adjusted school means for two types of schools: schools classified at node 1 and

schools classified at nodes 2 and 3

Node Total schools Observed number LEA Percent LEA (%) Adjusted mean SD

1 23 14 61 202.67 5.86

2 & 3 41 9 22 204.56 4.42

64 23 35.9 203.88 5.02

Note. LEA local education authority
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Appendix 3

Table 13.16 The absolute differences based on all possible splits on four school characteristics

Group 1 Group 2

Absolute value of difference

in adjusted school means

across groups

Monitor 0 Monitor 1-6 4.4225

Monitor 0-1 Monitor 2-6 3.8038

Monitor 0-2 Monitor 3-6 3.8320

Monitor 0-3 Monitor 4-6 2.1849

Monitor 0-4 Monitor 5-6 1.2902

Monitor 0-5 Monitor 6 0.7144

Exemptions 0 Exemptions 1-7 0.8126

Exemptions 0-1 Exemptions 2-7 1.3015

Exemptions 0-2 Exemptions 3-7 1.9236

Exemptions 0-3 Exemptions 4-7 1.1150

Exemptions 0-4 Exemptions 5-7 1.3811

Exemptions 0-5 Exemptions 6-7 1.7902

Exemptions 0-6 Exemptions 7 0.2564

Report 0 Report 1-6 2.0043

Report 0-1 Report 2-6 0.1424

Report 0-2 Report 3-6 1.6643

Report 0-3 Report 4-6 0.8846

Report 0-4 Report 5-6 1.0432

Report 0-5 Report 6 2.0790

Teacher Cert 1 Teacher Cert 2-3 2.2946

Teacher Cert 1-2 Teacher Cert 3 2.1062

LEA Non-LEA 3.4834

Note. LEA local education authority
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Chapter 14

Holland’s Advice for the Fourth Generation

of Test Theory: Blood Tests Can Be Contests

Neil J. Dorans

14.1 Overview

According to Holland (2008) in The First Four Generations of Test Theory, testing
as a scientific enterprise is not more than 120 years old. Holland divides this enterprise

into four overlapping generations. The first generation, which was influenced by

concepts such as error of measurement and correlation that were developed in other

fields, focused on test scores and saw developments in the areas of reliability, classical

test theory, generalizability theory, and validity. This generation began in the early

twentieth century and continues today, but most of its major developments were

achieved by 1970. The second generation, which focused on models for item level

data, began in the 1940s and peaked in the 1970s but continues into the present as well.

The third generation started in the 1970s and continues into today. It is characterized

by the application of statistical ideas and sophisticated computational methods to item

level models, as well as models of sets of items.

The current fourth generation attempts to bridge the gap between the statistician/

psychometrician role and the role of other components of the testing enterprise.

It recognizes that testing occurs within a larger complex system and that measurement

needs to occurwithin this larger context. In this paper, wewill discuss one ofHolland’s

important contributions to the fourth generation of testing, the notion of tests as both

blood tests and contests, and its implications for differential item functioning (DIF),

which is a critical statistical procedure for ensuring fair measurement.

While the third generation was marked by statistical and computational advances,

the work in this generation was too specialized. It seems as if modeling the item,

and indirectly, the test, was the only concern of this generation of model builders.

Examinees were needed to produce scores; if unavailable, the model could be used

to simulate scores. In fact, simulations were more convenient and less hassle
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than grappling with unruly uncooperative data. That simulations inform reality is

something of a fantasy. Holland (2008) noted that real tests exist in a complex world

with test takers, test administrators, test score users, test developers, and legislation

and policy issues.

A key feature of Holland’s (2008) fourth generation of test theory is that tests are

only a part of a testing program. A test is a single instrument, but a testing program

is a whole system of test production, administration, scoring, using, and interpreting

test results that repeat in annual or other cycles and in many different sites.

Another aspect of the fourth generation of testing is the difference between what

Holland (2008) called tests as blood tests and tests as contests. Users of test results
often see tests as measurements in the same way that a blood test is a measurement

of some aspect of an individual. In a remark appended to Cattell (1890) work,

Galton wrote:

One of the most important objects of measurement. . .is to obtain a general knowledge of

the capacities of a man by sinking shafts, as it were, at a few critical points. In order to

ascertain the best points for the purpose, the sets of measures should be compared with an

independent estimate of the man’s powers. (p. 380)

This is a vintage measurement view of testing. But the contest view should never

be forgotten when it is relevant. As Holland (2008) noted, high stakes always make

the contest perspective relevant. Test takers often see tests as contests in which they

can be winners or losers. They want fairness.

Contest and the blood test views are sometimes in conflict.We address this conflict

in the balance of this paper. In Sect. 14.2, we mention some of Holland’s major

contributions to and influences on the fourth generation of testing. In Sect. 14.3, we

apply contest/blood test thinking to the area of DIF. Section 14.4 is a recap of previous

sections.

14.2 Briefly, Holland’s Contributions to Differential

Item Functioning and Equating

Score equating and DIF are fourth generation activities that have been going on for

decades. Holland has been active in both. He coauthored four books on these topics:

Holland and Rubin (1982), von Davier, Holland, and Thayer (2004), and Dorans,

Pommerich, and Holland (2007) about score linking and equating; and Holland and

Wainer (1993) on DIF. The difference in number, 3 to 1, and the fact that that DIF is

sandwiched in time between the equating books, reveal that Paul was more inter-

ested in equating than DIF.

14.2.1 Equating

Early in the 1980s, Paul and I tried to define the notion of score equatability. DIF

(Holland & Wainer, 1993; Zieky, this volume, Chap. 8), renorming the SAT®
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(Dorans, 2002), 3,000 miles, and a variety of other issues kept us from doing so.

In 2000, after Dorans grappled with concording the SAT and ACT (Dorans, Lyu,

Pommerich, & Houston, 1997) and Holland chaired the Committee on Equivalency

and Linkage of Educational Tests for the National Research Council that produced

Uncommon Measures: Equivalence and Linkage Among Educational Tests (Feuer,
Holland, Green, Bertenthal, & Hemphill, 1999), we finally got around to

equatability again. The end result was Population Invariance and the Equatability
of Tests: Basic Theory and the Linear Case (Dorans & Holland, 2000), which made

the case for assessing equatability by checking assumptions associated with equat-

ing. Holland and Dorans (2006) contained within it the essence of our collaborative

effort on score linking.

14.2.2 Differential Item Functioning

Shortly after Holland had completed Alderman and Holland (1981), an early foray

into an area that would command much of his attention over the next decade, he

introduced Dorans to direct standardization (Mosteller & Tukey, 1977). Dorans

adapted this approach and introduced the standardization method, which was soon

applied to the SAT program to assess item fairness (Dorans & Kulick, 1983, 1986).

A few years later, as noted by Zieky (this volume, Chap. 8), Holland was drawn

deeply into the problem of developing an alternative to the so-called Golden Rule

method. Dorans was pulled into this work as well, and a close collaboration on

DIF issues occurred over the next several years as Holland spearheaded the

implementation of Mantel-Haenszel (MH) and standardization procedures here at

ETS. The MH approach became an industry-wide standard.

Holland’s book with Wainer (Holland & Wainer, 1993) was the apex of his work

with DIF. Holland’s work on DIF was mostly reactive, with some notable exceptions.

In Hackett, Holland, Pearlman, and Thayer (1987) and Schmitt, Holland, and

Dorans (1993), he illustrated how experimentation could be used to advance our

substantive understanding of DIF. As he left the DIF domain, Holland (1994) issued

a challenge to the DIF community: DIF is a psychometric procedure that is carried

out for contest reasons – the public needs to view test items as fair. We take up that

challenge in the next section, which examines DIF from contest and measurement

perspectives.

14.3 True-Score Estimates Are Really Observed Scores

In this section, I briefly describe the standardization method for DIF assessment and

what is sometimes called its true-score version, SIBTEST (Shealy & Stout, 1993).

Then I explore the fairness of the SIBTEST procedure.
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14.3.1 Standardization

Dorans (1982) reviewed item bias studies that had been conducted on SAT data in

the late seventies and concluded that these studies were flawed because either DIF

was confounded with lack of model fit or contaminated by impact as a result of fat
matching, the practice of grouping scores into broad categories of roughly compa-

rable ability. A new method was needed. As noted above, Dorans and Kulick (1983,

1986) developed the standardization approach after consultation with Holland.

The formulas in the following section can be found in these articles and in Dorans

and Holland (1993).

14.3.1.1 Standardization’s Definition of Differential Item Functioning

An item exhibits DIF when the expected performance on an item differs for

matched examinees from different groups. Expected performance can be

operationalized by nonparametric item-test regressions. Differences in empirical

item-test regressions are indicative of DIF.

The first step in the standardization analysis is to use all available data to

estimate nonparametric item-test regressions in the reference group and in the

focal group. The focal group is the focus of analysis while the reference group

serves as a basis for comparison.

Let ef ðYjXÞ define the empirical item-test regression for the focal group f,
and let erðYjXÞ define the empirical item-test regression for the reference group r,
where Y is the item score variable and X is the matching variable. The definition

of null DIF employed by the standardization approach implies that ef ðYjXÞ ¼
erðYjXÞ.

The most detailed definition of DIF is at the individual score level, m,

Dm ¼ ef ðYjX ¼ mÞ � erðYjX ¼ mÞ; (14.1)

where ef ðYjX ¼ mÞ and erðYjX ¼ mÞ are realizations of the item-test regressions at

score level m. The Dm are the fundamental measures of DIF according to the

standardization method. Plots of these differences, as well as plots of ef ðYjXÞ and
erðYjXÞ, provide visual descriptions of DIF in fine detail for binary as well as

polytomously scored items. For illustrations of nonparametric item-test regressions

and differences for an actual SAT item that exhibits considerable DIF, see Dorans

and Kulick (1986).

14.3.1.2 Standardization’s Primary Differential Item Functioning Index

While plots describe DIF directly, a need was identified for some numerical index

that targets suspect items for close scrutiny, while allowing acceptable items to
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pass swiftly through the screening process. Standardization has such an index,

STD EIS-DIF (Dorans & Kulick, 2006), which uses a weighting function supplied

by the standardization group. The standardization group supplies specific weights for

each score level that are used in weighting each individual Dm before accumulating

the weighted differences across score levels to arrive at a summary item-discrepancy

index, STD EIS-DIF, which is defined as:

STD EIS-DIF ¼ ef ðYÞ � êf ðYÞ

¼
PM

m¼1

Nfm � ef ðYjX ¼ mÞ
PM

m¼1

Nfm

�
PM

m¼1

Nfm � erðYjX ¼ mÞ
PM

m¼1

Nfm

; (14.2)

where Nfm=
PM

m¼1

Nfm is the weighting factor at score level Xm supplied by the

standardization group to weight differences in item performance between the

focal group ef ðYjXÞ and the reference group «rðYjXÞ.
In contrast to impact, in which each group has its relative frequency serve as a

weight at each score level, standardization uses a standard or common weight on

both ef ðYjX ¼ mÞ and erðYjX ¼ mÞ, namely Nfm=
PM

m¼1

Nfm. The use of the same

weight on both ef ðYjX ¼ mÞ and erðYjX ¼ mÞ is the essence of the standardization
approach.

Use of Nfm means that EISDIF equals the difference between the observed perfor-

mance of the focal group on the item and the predicted performance of selected

reference group members who are matched in ability to the focal group members.

This difference can be derived very simply; see Dorans and Holland (1993).

For standardization, the definition of null-DIF conditions on an observed score,

ef ðYjXÞ ¼ erðYjXÞ: (14.3)

14.3.2 SIBTEST: A Model-Based Standardization Approach
to Differential Item Functioning

Shealy and Stout (1993) introduced a general model-based approach to assessing

DIF and other forms of differential functioning. They cite the standardization

approach as a progenitor, but claim that SIBTEST was developed independently

of standardization. From a theoretical perspective, SIBTEST is elegant. It sets

DIF within a general multidimensional model of item and test performance. Unlike

most item response theory (IRT) approaches, which posit a peculiar form for the

item response model (e.g. a two-parameter logistic model), SIBTEST does not
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specify a particular functional form. In this sense, it is a nonparametric IRT model,

in principle, in which the null definition of standardization is replaced by

ef ðYjTxÞ ¼ erðYjTxÞ; (14.4)

where Tx represents a true score forX. As such, it employs ameasurement invariance

definition of null DIF, while standardization employs a prediction invariance defini-

tion (Meredith & Millsap, 1992).

Kelley (1927) provided a framework for true-score theory that introduced his

formula relating observed test scores, true scores, and reliability. This research led

to classical test theory that was eventually first codified by Gulliksen (1950) and

later given a sound statistical basis by Lord and Novick (1968). Classical test theory

decomposes an observed score for the ith person on occasion o, Xio, into a

systematic component Txi and an error component Exio,

Xio ¼ Txi þ Exio: (14.5)

Note that this definition is at the level of the individual, and o in the classical

definition could refer to replications of parallel tests. In this representation, Txi is
defined as the expected value for a single person i across parallel measurements;

expectation is over tests,

Txi ¼ eoðXioÞ: (14.6)

Holland (Holland & Hoskens, 2003) preferred to think of Xio as representing the

score of an individual i from a subpopulation in which all individuals have the same

true score or ability level. In this case, Txi is defined as the expected value on a

single test Xio across parallel people from subpopulation o,

Txo ¼ eiðXioÞ: (14.7)

Because the tests are parallel in one case and the people are parallel in the other

case, these two expectations yield the same answer, Txi ¼ eoðXioÞ ¼ Txo ¼ eiðXioÞ,
when the tests are parallel and the people are parallel. Hence alternative conceptua-

lizations of the true score exist: one at the level of the individual (across parallel

tests), and one at the level of the test (across parallel people). But neither conceptu-

alization can be realized in practice.

Tomake SIBTEST practical, Shealy and Stout (1993) resorted to Kelley’s (1927)

equation for estimating true scores from observed scores. In essence, SIBTEST

replaces the empirical item-test regression used by standardization with an adjusted

regression that employs Kelley’s equation. The null definition of DIF for standard-

ization as shown in (14.3) is replaced by this null-DIF hypothesis,

ef ðYjX ¼ mÞ þ Adjmf ¼ erðYjX ¼ mÞ þ Adjmr (14.8)
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where

Adjmf ¼ Ef ðYjX ¼ mþ 1Þ � Ef ðYjX ¼ m� 1Þ
T̂f ðX ¼ mþ 1Þ � T̂f ðX ¼ m� 1Þ

T̂rðX ¼ mÞ � T̂f ðX ¼ mÞ
2

� �
(14.9)

and

Adjmr ¼ �ErðYjX ¼ mþ 1Þ � ErðYjX ¼ m� 1Þ
T̂rðX ¼ mþ 1Þ � T̂rðX ¼ m� 1Þ

T̂rðX ¼ mÞ � T̂f ðX ¼ mÞ
2

� �
: (14.10)

Kelley’s (1927) correction comes into play at this point:

T̂gðXÞ ¼ relgðXÞ � X þ ð1� relgðXÞÞ � egðXÞ: (14.11)

This equation produces a subgroup-specific linear transformation of the observed

score X. It is not the true score, as defined above, which takes an expectation across
parallel people or across parallel test forms. The expectation used by SIBTEST

produces a mean for the focal group and a mean for the reference group. In

SIBTEST, an observed score on X is treated differently depending on whether it is

obtained by the reference group or the focal group. It is regressed to a different mean.

This difference in regressed means leads to a higher item-test regression for the

lower scoring group and a lower one for the higher scoring group. For example,

SIBTEST’s effect on Black/White DIF would be to reduce the negative DIF against

the Black group on the grounds that DIF indicated by standardization is inflated to

the extent that the groups differ on the unreliable observed score matching variable.

Is the use of the differential regression corrections and its effect on the item-test

regression defensible from a contest point of view? DIF, after all, is a contest

activity. We examine this question in the next subsection.

14.3.2.1 A Dangerous Application

Wainer (2007) cites Kelley’s (1927) equation as a contender for the world’s most

dangerous equation. According to Wainer, a dangerous equation is one that people

are ignorant of and has serious implications for a wide variety of applications.

Sometimes an equation can be dangerous if it is known and misused. Shealy and

Stout (1993) were aware of Kelly’s formula, but they misused it. Estimated true

scores are not true scores. Instead they are linear transformations of observed scores

that are regressed toward a mean to a degree that reflects the uncertainty of the

prediction. The use of different transformations for the reference and focal groups is

tantamount to using subgroup specific linkings of observed scores that take into

account subgroup means and standard deviations.
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Shealy and Stout (1993) operate within the classical test theory framework,

which is the core of Holland’s first generation of testing (Holland, 2008). Whenever

the Kelley correction is used in practice, certain problems arise. First, as noted

above, TSEs are not true scores. Tucker (1971) addressed this type of distinction in

the context of factor scores.

An even more perplexing issue associated with using the use of the Kelley

correction is the which group question. Each examinee is a member of a large

number of groups. In DIF, race/ethnicity and gender are the groups of interest.

For example, one test taker is male and White. Hence, he belongs to the group

called White males, the group called male, and the group called White, as well

as being a member of the total group that includes both gender groups and all

ethnic/racial groups and those who choose not to identify themselves. As a White

male, he has observed scores that can be regressed to the total group mean, the mean

of Whites, and the mean of males or the mean of White males. The observed scores

of an Asian American woman, on the other hand, could be regressed to the mean of

Asian Americans, the mean of women, or the mean of Asian American women or

the overall mean.

If SIBTEST regressed to the overall mean, it would be identical to standard-

ization since the Kelley correction is simply a linear transformation of the observed

scores and standardization results are invariant with respect to this linear transfor-

mation except for some clumping that might be introduced if scores were rounded.

In order for SIBTEST to be different from standardization, it has to regress to

different means, namely those of the focal and reference group.

14.3.2.2 SIBTEST True-Score Estimates (TSE): An Example

Consider the following example constructed from data in the public domain on a

well-known math test. The SAT is a widely used admissions test with widely

published statistical properties. In 2005, the average SAT-Math mean was 520. I

chose 2005 because themean that year is a reportable score; SAT scores ranged from

200 to 800 in steps of 10 (College Board, 2005). Let’s assume that the reliability of

the test X is the same in both the focal and reference groups.

The leftmost column of Table 14.1 contains labels for each group. Alongside

that column are the means for each group. Next come three pairs of columns. Each

pair contains TSEs based on Kelley’s formula using a common reliability of 0.90

and the difference between the TSEs and the observed score that appears at the top

of the each pair of rows. Three observed scores are considered: 420, which is just

below the mean score of Black female test takers on SAT-Math; 520, the total group

average; and 600, just above the average score for Asian American male test takers.

For an observed score of 420, using of one of the three Black group means (424,

431, or 442) leaves the score basically unchanged (420, 421 or 422), which means a

Black examinee with a score of 420 would have an estimated true score close to

420. In contrast, the TSE for an Asian American examinee with a 420 would
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increase by 15 to 18 points (435, 436, or 438), depending on which of the three

Asian American means (566, 580, or 595) were used. If the score of 420 were

regressed to the total group mean of 520, all examinees with observed score of 420

would be regressed to 430, an increase of 10 points, regardless of which group they

came from.

On the other hand, for a score of 600, regression to the total group mean of 520

would reduce the observed score by about 8 points to 592. If their subgroup specific

version of the regression were used, Asian American test takers with 600 would be

barely affected, while Black examinees with scores of 600 would be pulled down

toward 580.

The average score of 520 would be pulled toward 510 for Black examinees and

toward 530 for Asian American examinees.

If the reliability of the test decreases, the TSEs are regressed more toward the

mean, and if separate regressions are employed, the estimates are pulled even more

toward different means.

In the equal reliability case, the kernel of the SIBTEST correction for the unreli-

ability of the matching variable is captured in the term TrðX ¼ mÞ � Tf ðX ¼ mÞ� �
=2

which is half the difference in the TSEs for the focal and reference groups at xm. This
term is added to the item-test regression for the focal group and subtracted from

the one for the reference group. The ultimate effect is that relative to the observed

item-test regressions used by standardization; these adjustments make the item look

easier for the lower scoring group and harder for the higher scoring group. Hence a

positive DIF item (favors lower-scoring focal group, e.g. Black examinees) under

standardization would look evenmore positive under SIBTEST, while a negative DIF

item (favors higher scoring reference group, e.g. White test takers) would look less

Table 14.1 True-score estimate (TSE) and difference between true-score estimate and observed

score (OS) as a function of observed score and group mean (mean) for a test score reliability of 0.90

Reliability ¼ 0.90

Subgroup OS ¼ 420 OS ¼ 520 OS ¼ 600

Name Mean TSE TSE – OS TSE TSE – OS TSE TSE – OS

Black female 424 420 0 510 �10 582 �18

Black 431 421 1 511 �9 583 �17

Black male 442 422 2 512 �8 584 �16

Female 504 428 8 518 �2 590 �10

White female 520 430 10 520 0 592 �8

Total 520 430 10 520 0 592 �8

White 536 432 12 522 2 594 �6

Male 538 432 12 522 2 594 �6

White male 554 433 13 523 3 595 �5

Asian American female 566 435 15 525 5 597 �3

Asian American 580 436 16 526 6 598 �2

Asian American male 595 438 18 528 8 600 �1

Note.Any difference between OS and TSE in bold could produce a scale score difference of 10–20

points
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negative under SIBTEST. Conversely, a positive DIF item (favors higher-scoring

focal group, e.g. Asian American examinees) under standardization would look less

positive under SIBTEST while a negative DIF item (favors lower scoring reference

group, e.g. White test takers) would look more negative. In effect, SIBTEST would

suggest less negative DIF for Black examinees and more negative DIF for Asian

American examinees.

14.3.2.3 Which Group?

The use of TSEs in place of observed scores produces results that run counter to the

purpose of DIF when examined from a contest perspective. For example, a Black

examinee obtains a 600 but instead receives a true score estimate of about 580

(rounded estimate). An Asian American examinee keeps his or her score of 600. A

second Black examinee keeps his or her score of 420, but a second Asian American

test taker with the 420 gets a 440. A third Asian American test taker with a 520

receives a 530, while a third Black test taker with a 520 receives a lower score of

510. In essence, SIBTEST adjusts your score in the direction of the mean of the

group you came from before assessing DIF, making an adjustment that seems to

run counter to the intent of the DIF analysis.

Take an Asian American female examinee with a score of 420. Because she is in

the Asian American group, she gets boosted past 430 towards 440. As a female, she

only gets up to 430. What about the Black female test taker with a score of 600? She

gets dropped almost to 580 as a member of the Black group and close to 590 as a

female. Which TSE is better? One might argue that conditioning on both gender

and race is better than using either one alone. Then the Asian American female test

taker with a 420 gets close to 440, while the Black female test taker with a 600 gets

close to 580. If we had more useful information, we could condition on that, and in

an ideal world, we could reduce our uncertainty about the transformed observed

score to an acceptably small level. Along the way, we would have a wide variety of

estimates to choose from, none of which is a true score in the sense of an expected

score over many parallel people as noted in the next section.

14.3.2.4 Constructing the Perfect True Score Estimate

The example cited above used a reliability of 0.9. While results from SIBTEST and

standardization differ here, they don’t differ by much. Most of the literature that

shows differences between these methods or between MH and SIBTEST involves

tests with lower reliabilities. Standardization suffers when the matching variable is

unreliable. SIBTEST attempts to fix the unreliability by regressing scores toward

the focal and reference group means, respectively.

As noted earlier, the true score of real interest is the expected value of an

examinee’s performance over many parallel forms of a test or the expected value

of many parallel people on the test. The approach employed by SIBTEST of using

268 N.J. Dorans



subgroup-specific conversions of observed score that regress observe scores toward

subgroup means does not achieve this goal.

As noted earlier, classical test theory decomposes an observed score into a

systematic component Txi and an error component Exio. Holland (Holland &

Hoskens, 2003) preferred to think of Xio as representing the score of an individual

i from a subpopulation in which all individuals have the same true score or ability

level. In their case, Txi is defined as the expected value on a single test Xio across

parallel people from subpopulation o as shown in (14.7).

SIBTEST uses (14.11) to estimate true score for a given value of X. Equation
(14.11) represents a subgroup-specific linear transformation of the observed scoreX.
The expectation used by SIBTEST produces a mean for the focal group and a mean

for the reference group. In SIBTEST, an observed score on X is treated differently.

Depending on whether the score is obtained by a person in the reference group or the

focal group, it is regressed to a different mean. It is not regressed to the true score

defined in (14.7), which is an expectation across parallel people.

Hence SIBTEST, as operationalized, fails to achieve what it seeks as a measure-

ment model. In addition, it introduces unfairness into a process that is all about

fairness. It replaces an unbiased estimate of individual true score with a least squares

estimate that depends on group membership. This is akin to regressing ice skaters’

scores, which exhibit some unreliability, towards the mean of ice skaters from their

country instead of using their actual ice skating scores.

14.4 Keeping the Contest in Mind

Holland (2008) noted that the fourth generation of testing is characterized by an

emerging view that testing should be aware of multiple perspectives, not all of

which are compatible. Two important perspectives in high stakes testing are what

he calls the contest and blood test perspectives. This paper has described the tests-

as-blood-tests perspective as one that is more aligned with the interests of test users,

while the tests-as-contests perspective is aligned with the interests of the test taker.

To the extent that testing conditions are poor, such as when tests and anchors are

unreliable and when matching variables and anchors are unrepresentative of the

items and tests being studied, DIF and equating methods aligned with the contest

and blood test perspectives will produce different results.

The methods most aligned with the tests-as-blood-tests perspective will replace

data with model assumptions. Each method is based on underlying theories and

assumptions that are likely to be incorrect when these methods are applied in these

undesirable situations. The use of these methods with their strong reliance on mea-

surement models to augment weak data should not be done blindly. Assumptions

should be questioned.

The standardization DIF method employs regressions involving observables.

It focuses on observed scores and employs regressions that match on an observed

score in the same way in both populations of interest. Standardization assesses
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whether the item-test regressions are the same across focal and reference groups.

It is a contest-oriented method. It has problems, however, when the matching

variable is unreliable.

The SIBTESTDIFmethod appears to be more aligned with measurement models

(i.e. blood tests). This method assumes that examinee group differences influence

DIF or test form difficulty differences more than can be observed in unreliable test

scores. The observed data are pulled toward what is suggested to be appropriate by

the measurement model. The degree to which this pulling occurs depends on the

extent that these data are unreliable. In the absence of reliable data on the individual,

it will presume, for example, that a Black examinee would receive the average score

obtained by all Black examinees, and a male examinee would receive the average

score obtained by male examinees. SIBTEST regresses observed item data to what

would be expected for the focal or reference group on the basis of ample data that

show that race and gender are related to item performance. In essence, the SIBTEST

method uses a subgroup-specific TSE as a surrogate for the true score that is defined

in the classical test theory model.

SIBTEST results differ from standardization results because SIBTEST transforms

raw scores differently across the different groups. It starts from the premise that the

observed score is not only unreliable but biased against higher scoring groups. Instead

of viewing a true score as an expectation over replications of parallel tests or parallel

individuals, SIBTEST treats TSE as a prediction problem, introducing bias to reduce

mean squared error.

Knowing a person’s gender, race, years of schooling, performance on similar

tests, and so on should lead to TSEs with smaller mean squared error than test score

alone does. But is it sensible to use this information in a process that exists to

demonstrate that items behave consistently across subgroups? The author thinks

the answer is no.

One of the requirements of test score equating is that equating functions are

invariant across test groups. If X and Y are two parallel tests, the linking relationship

between them would be invariant across subgroups. In addition, X ¼ X holds in all

subgroups because it is parallel to itself. Likewise, the relationship between the true

score on X and X is the same in all subgroups.

When SIBTEST employs a subgroup specific transformation of X (or Y) toward a
different mean, it implicitly states that the relationship of X to itself is subgroup

dependent. Subgroup specific regressions have been rejected as means of equating

tests for over 80 years (Kelley, 1927). Why employ these transformations prior to a

DIF analysis? SIBTEST use of subgroup specific regressions seems to run counter

to the purpose of producing a fair contest.

Poor reliability leads to poor assessment. SIBTEST does not provide a correct

solution to the reliability problem. The solution is to marry measurement with

contest. The most direct way of doing this is to ensure that the matching variable

is reliable enough. Then the observed score approaches the true score. If a score is

not reliable enough to support a DIF analysis, it probably is not reliable enough to

be reported.
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The fourth generation of testing should fully integrate both the contest and blood

test perspectives. As Holland (1994) said in the context of DIF:

. . .tests are not just measuring instruments. . .that they are sometimes contests as well is the

main reason that we care about fairness. . .
The measurement view can certainly inform the contest view (and I think that this is

important to say to those who only subscribe to the contest view) but neither can replace the

other. (p. 29)

The best way to resolve the contest/measurement conflict is not with measure-

ment models that attempt to compensate for poor measurement, but with better

measurement. Better measurement should lead to fairer and more useful contests.

When the results of statistical procedures based on different perspectives converge,

both fairness and measurement are served.
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Exponential random graph model

(ERGM), fuzzy truncation model,

Generalized linear mixed model

(GLMM), IRT model, Log-linear

model, Neyman-Rubin model,

p1 model, Potential outcomes

model, Rasch model, Rubin

causal model

N

NAEP. See National Assessment of

Educational Progress

National Assessment of Educational Progress

(NAEP), 243, 246

National Bureau Economic Research

(NBER), 39

National Center for Education Statistics

(NCES), 133, 241–242

National Council for Teachers of

Mathematics (NCTM), 134

National Council on Measurement in

Education (NCME), 81, 139, 140

National Research Council (NRC), 15, 71, 265

National Science Foundation (NSF), 134

National Teacher Examination, 125

NBER. See National Bureau Economic

Research

NCES. See National Center for Education
Statistics

NCLB. See No Child Left Behind ACT

NCME. See National Council on
Measurement in Education

NCTM. See National Council for Teachers
of Mathematics

NEAT design. See Nonequivalent groups
with anchor test design

Neighbors, 45–47, 161

Network, 9, 19, 21–23, 25–36, 39–47

Neyman-Rubin model, 131

No Child Left Behind ACT (NCLB), 132,

133, 135, 138, 139, 143, 146

Nodes, 9, 10, 19, 21–26, 28–32, 35, 40,

43, 80, 245–247, 250, 251, 253,

255–257

Noncompliance, 55, 56

Nonequivalent groups with anchor test

design (NEAT design), 15, 203–218,

223, 226, 227, 229, 230, 233

Nonlinear regression, 244, 245

Nonparametric item-test regressions, 266

NRC. See National Research Council

NSF. See National Science Foundation

Subject Index 281



O

Observational study, 87–112, 137, 149, 150,

153–160, 166, 178

Observed-score equating (OSE)

framework, 221–226, 228, 230–235

functions, 228, 234

methods, 203–206, 217, 218, 221, 222,

224, 234, 235

OMNI Institute, 143

Online, 71, 75, 81

OSE. See Observed-score equating

P

Partially ordered knowledge structure

(POKS), 78, 80

Pearson, 195, 199, 200

Percent relative differences, 216, 217

Percent relative error (PRE), 233

2PL model, 207, 209

3PL model, 207

p1 model, 22–28, 31, 33–36

POKS. See Partially ordered knowledge

structure

Population invariance, 15, 211, 218

Poststratification equating (PSE), 203

Post stratification equipercentile method, 186

Potential outcomes model, 131

Praxis™, 125

PRE. See Percent relative error
Principal stratification, 57–59, 61, 64

Prognostic score, 171

PSAT, 149, 153, 159, 160, 170

PSE. See Poststratification equating

Pseudo-tests, 211–213

Psychometrician, 16, 52, 81, 129, 141, 143,

221, 222, 235, 263

Psychometric Society, 15

R

Random assignment, 91, 97, 172

Randomization inference, 88, 93

Ranked clusterability, 40, 43

Rasch model, 7, 8, 10, 68

Research design, 111

RItools, 160

Rooney, J. P., 116, 117

Root mean squared error (RMSE),

207, 208, 218

Rubin causal model, 59

S

SAS, 136, 193–195

SAT®, 15, 117, 149, 153, 154, 158, 160,

170, 172–174, 203, 204, 206, 210,

239, 264–266, 270

SAT-M, 157, 210

SAT-V, 157, 176, 210

SEE. See Standard error of equating

SEED. See Standard error of equating

differences

Sensitivity analysis, 65, 87, 88, 91–100,

104–107, 111, 137

SG design. See Single group design

SIBTEST, 263, 265–272

Simulation, 62, 80, 162, 195, 196, 200,

207–210, 218, 233, 263, 264

Single group design (SG design), 225, 231

Six degrees of separation, 22, 47

Small world phenomena, 22

Social network, 3, 4, 8–14, 19–22, 40, 45, 47, 51

Sociogram, 19, 22

Stable unit treatment value assumption

(SUTVA), 59, 60

Standard error of equating (SEE), 209, 211,

218, 222, 224, 227, 228, 232–234

Standard error of equating differences

(SEED), 223, 224, 227, 231–235

Standardization, 47, 120, 121, 265–274

Standardization method, 265, 266

Standardized P difference, 126

Strict cutscore, 122, 123

Strongly ignorable, 60

Structural balance, 40

Structural zero, 20, 30

SUTVA. See Stable unit treatment value

assumption

T

Taylor’s theorem, 8

Test as contest, 264, 272

Test as measurement DIF, 4, 126

Test equating, 52, 185, 186, 201, 221, 222,

231, 274

Three-factor interaction, 4

Three-parameter logistic model. See 3PL
model

4ti2, 27, 28, 32, 33

TOEFL®, 15, 126

Toric ideal, 25–29, 32, 33

Transitivity, 41, 43, 45, 47

282 Subject Index



Triad, 9, 19, 41

True score estimate (TSE), 263–272

Two-parameter logistic model.

See 2PL model

U

UC Berkeley Graduate School of

Education, 129

University of California, 129

V

Value-added modeling (VAM), 136–137

VAM. See Value-added modeling

Vanishing conditional dependency (VCD), 70

VCD. See Vanishing conditional dependency

W

What Works Clearinghouse (WWC), 138

WWC. See What Works Clearinghouse

Subject Index 283


	Looking Back
	Foreword
	Preface
	Contents
	Contributors
	Part I: Paul Holland´s Contributions
	Part II: Holland the Young Scholar
	Part III: Holland Shaping ETS
	Part IV: Holland the Berkeley Professor
	Part V: Holland Rebuilding ETS
	Part VI: Holland: From Mentor to Colleague
	Author Index
	Subject Index



